Science.gov

Sample records for litter environment affects

  1. Fallout volume and litter type affect (137)Cs concentration difference in litter between forest and stream environments.

    PubMed

    Sakai, Masaru; Gomi, Takashi; Negishi, Junjiro N

    2016-11-01

    It is important to understand the changes in the (137)Cs concentration in litter through leaching when considering that (137)Cs is transferred from basal food resources to animals in forested streams. We found that the difference of (137)Cs activity concentration in litter between forest and stream was associated with both litter type and (137)Cs fallout volume around Fukushima, Japan. The (137)Cs activity concentrations in the litter of evergreen conifers tended to be greater than those in the litter of broad-leaved deciduous trees because of the absence of deciduous leaves during the fallout period in March 2011. Moreover, (137)Cs activity concentrations in forest litter were greater with respect to the (137)Cs fallout volume. The (137)Cs activity concentrations in stream litter were much lower than those in forest litter when those in forest litter were higher. The (137)Cs leaching patterns indicated that the differences in (137)Cs activity concentration between forest and stream litter could change with changes in both fallout volume and litter type. Because litter is an important basal food resource in the food webs of both forests and streams, the (137)Cs concentration gradient reflects to possible (137)Cs transfer from lower to higher trophic animals. Our findings will improve our understanding of the spatial heterogeneity and variability of (137)Cs concentrations in animals resident to the contaminated landscape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. [Litter decomposition and its main affecting factors in tidal marshes of Minjiang River Estuary, East China].

    PubMed

    Zhang, Lin-Hai; Zeng, Cong-Sheng; Zhang, Wen-Juan; Wang, Tian-E; Tong, Chuan

    2012-09-01

    By using litterbag method, this paper studied the decomposition of the leaf- and flower litters of two emergent macrophytes, native species Phragmites australis and invasive species Spartina alterniflora, and related affecting factors in the Minjiang River estuary of East China. In the decomposition process of the litters, the decay of standing litter (0-90 days) was an important period, and the loss rate of the flower- and leaf litters dry mass of P. australis and S. alterniflora was 15.0 +/- 3.5% and 13.3 +/- 1.1%, and 31.9 +/- 1.1% and 20.8 +/- 1.4%, respectively. During lodging decay period (91-210 days), the loss rate of the flower- and leaf litters dry mass of P. australis and S. alterniflora was 69.5 +/- 0.6% and 71.5 +/- 2.5%, and 76.8 +/- 1.9% and 67.5 +/- 2.1%, respectively. In standing decay period, the decomposition rate of the two plants litters was positively correlated with the litters C/N but negatively correlated to the litters N/P, and the litters P was an important factor limiting the litters decay. In lodging decay period, the effects of the litters C/N, C/P, and N/P decreased, while the environment factors (climate, soil moisture, soil acidity and salinity, and sediment properties) acted more important roles. The differences in the factors affecting the decay of the litters in different decomposition periods were mainly related to the micro-environment and tidal process for the two plant communities.

  3. Do leaf-litter attributes affect the richness of leaf-litter ants?

    PubMed

    Silva, Paulo S D; Bieber, A G D; Corrêa, M M; Leal, I R

    2011-10-01

    The search for factors shaping leaf-litter ant communities has received particular attention due to the essential role of these insects in many ecological processes. Here, we aimed to investigate how the number of leaves and leaf morphotypes affect the litter-ant species density at forest edge and interior in an Atlantic Forest remnant in the state of Alagoas, Brazil. This study was developed based on 28 litter plots (1m² each), 14 in the forest interior and 14 in the forest edge. As we early expected, ant species density increased with increasing both the number of leaves and the number of leaf morphotypes, but this result was clearly influenced by plot location. Contrasting with the forest interior, ant species density did not increase as the number of leaves increased in the forest edge. Possibly, factors such as plant species richness, vegetation structure and environmental conditions affect ant species density as well as promote a patchy distribution of species in ant communities along the edge-to-interior gradient. Our findings suggest that edge-affected forests present more simplified ant communities, with different factors shaping its structure. We encourage future studies to include leaf litter heterogeneity as one of the explanatory variables investigated.

  4. Optimal litter size for individual growth of European rabbit pups depends on their thermal environment.

    PubMed

    Rödel, H G; Hudson, R; von Holst, D

    2008-04-01

    In altricial mammals and birds, the presence of a large number of litter or brood mates often affects the development of individual offspring by reducing the share of resources provided by the parents. However, sibling presence can also be favourable, conferring thermoregulatory benefits when ambient temperatures are low. Consequently, shifts in the relation between costs and benefits of sibling presence can be expected as a function of the thermal environment. In a study of a European rabbit population (Oryctolagus cuniculus) living in a field enclosure, we investigated the effects of litter size and soil temperature on pup growth over 7 years. Temperatures inside the subterranean nests were positively correlated with soil temperature and with litter size. Soil temperature varied strongly across the breeding season, ranging from 3 to 21 degrees C. Under warmer soil temperature conditions (10-15 degrees C and >15 degrees C), pup growth decreased with increasing litter size, where litters of two pups (smallest litter size considered) showed the highest growth rates. In contrast, under colder soil temperature conditions (<10 degrees C), the highest growth rates were found in litters of three pups. We also asked if such temperature-dependent differences in the optimal pup growth rates might be explained by differences in maternal characteristics, which might affect lactational performance. We assessed maternal performance using females' postpartum body mass and social rank. However, we did not find consistent differences in maternal characteristics between females giving birth to different-sized litters during different soil temperature conditions, which would have provided an alternative explanation for the observed differences in litter size-dependent pup growth. We conclude that under colder soil temperature conditions, the thermal benefits of a greater number of littermates outweigh the negative consequences of competition for milk, leading to an environment

  5. 17β-estradiol in runoff as affected by various poultry litter application strategies.

    PubMed

    Delaune, P B; Moore, P A

    2013-02-01

    Steroidal hormones, which are excreted by all mammalian species, have received increasing attention in recent years due to potential environmental implications. The objective of this study was to evaluate 17β-estradiol concentrations in runoff water from plots receiving poultry litter applications using various management strategies. Treatments included the effects of 1) aluminum sulfate (alum) application rates to poultry litter; 2) time until the first runoff event occurs after poultry litter application; 3) poultry litter application rate; 4) fertilizer type; and 5) litter from birds fed modified diets. Rainfall simulators were used to cause continuous runoff from fertilized plots. Runoff samples were collected and analyzed for 17β-estradiol concentrations. Results showed that increasing alum additions to poultry litter decreased 17β-estradiol concentrations in runoff water. A significant exponential decline in 17β-estradiol runoff was also observed with increasing time until the first runoff event after litter application. Concentrations of 17β-estradiol in runoff water increased with increasing litter application rate and remained above background concentrations after three runoff events at higher application rates. Management practices such as diet modification and selection of fertilizer type were also shown to affect 17β-estradiol concentrations in runoff water. Although results from these experiments typically represented a worst case scenario since runoff events generally occurred immediately after litter application, the contaminant loss from pastures fertilized with poultry litter can be expected to be much lower than continual estradiol loadings observed from waste water treatment plants. Management practices such as alum amendment and application timing can significantly reduce the risk of 17β-estradiol losses in the environment.

  6. Factors affecting arsenic and copper runoff from fields fertilized with poultry litter.

    PubMed

    DeLaune, P B; Moore, P A

    2014-07-01

    Arsenic (As) and copper (Cu) runoff from fields fertilized with poultry litter has received increasing attention in recent years, although it is not known if heavy metal runoff from poultry litter poses a significant threat to the environment. The objective of this study was to determine the main factors affecting As and Cu concentrations in runoff water from pastures receiving poultry litter applications. Rainfall simulation studies were conducted to determine the effects of the following treatments on metal runoff: (i) aluminum sulfate (alum) additions, (ii) diet modification using phytase or high available phosphorus corn, (iii) fertilizer type, (iv) poultry litter application rate, and (v) time until the first runoff event occurs after poultry litter application. Results showed that alum additions to poultry litter significantly decreased As and Cu concentrations in runoff water. Copper concentrations were highest in runoff from poultry litter from birds fed phytase diets compared with other diets; however, this effect may have been a result of wet storage conditions rather than diet. Triple superphosphate applications resulted in the lowest heavy metal concentrations in runoff water among all fertilizer treatments, while normal poultry litter resulted in the highest concentrations. Arsenic and Cu concentrations increased in runoff water as poultry litter application rates increased and decreased with increasing time until the first runoff event. These data indicate that adding alum to poultry litter, a cost-effective best management practice, which also results in lower P runoff and ammonia emissions, may also be an effective tool in reducing metal runoff. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Future increase in temperature more than decrease in litter quality can affect microbial litter decomposition in streams.

    PubMed

    Ferreira, Verónica; Chauvet, Eric

    2011-09-01

    The predicted increase in atmospheric CO(2) concentration for this century is expected to lead to increases in temperature and changes in litter quality that can affect small woodland streams, where water temperature is usually low and allochthonous organic matter constitutes the basis of the food web. We have assessed the individual and interactive effect of water temperature (5 and 10°C) and alder litter quality produced under ambient CO(2) levels (ambient litter) or under CO(2) concentrations predicted for 2050 (elevated litter) on litter decomposition and on fungal activity and assemblage structure. Litter decomposition rates and fungal respiration rates were significantly faster at 10 than at 5°C, but they were not affected by litter quality. Litter quality affected mycelial biomass accrual at 5 but not at 10°C, while increases in temperature stimulated biomass accrual on ambient but not on elevated litter. A similar pattern was observed for conidial production. All variables were stimulated on elevated litter at 10°C (future scenario) compared with ambient litter at 5°C (present scenario), but interactions between temperature and litter quality were additive. Temperature was the factor that most strongly affected the structure of aquatic hyphomycete assemblages. Our results indicate that if future increases in atmospheric CO(2) lead to only slight modifications in litter quality, the litter decomposition and fungal activities and community structure will be strongly controlled by increased water temperature. This may have serious consequences for aquatic systems as faster litter decomposition may lead to food depletion for higher trophic levels.

  8. Impacts of poultry house environment on poultry litter bacterial community composition.

    PubMed

    Dumas, Michael D; Polson, Shawn W; Ritter, Don; Ravel, Jacques; Gelb, Jack; Morgan, Robin; Wommack, K Eric

    2011-01-01

    Viral and bacterial pathogens are a significant economic concern to the US broiler industry and the ecological epicenter for poultry pathogens is the mixture of bedding material, chicken excrement and feathers that comprises the litter of a poultry house. This study used high-throughput sequencing to assess the richness and diversity of poultry litter bacterial communities, and to look for connections between these communities and the environmental characteristics of a poultry house including its history of gangrenous dermatitis (GD). Cluster analysis of 16S rRNA gene sequences revealed differences in the distribution of bacterial phylotypes between Wet and Dry litter samples and between houses. Wet litter contained greater diversity with 90% of total bacterial abundance occurring within the top 214 OTU clusters. In contrast, only 50 clusters accounted for 90% of Dry litter bacterial abundance. The sixth largest OTU cluster across all samples classified as an Arcobacter sp., an emerging human pathogen, occurring in only the Wet litter samples of a house with a modern evaporative cooling system. Ironically, the primary pathogenic clostridial and staphylococcal species associated with GD were not found in any house; however, there were thirteen 16S rRNA gene phylotypes of mostly gram-positive phyla that were unique to GD-affected houses and primarily occurred in Wet litter samples. Overall, the poultry house environment appeared to substantially impact the composition of litter bacterial communities and may play a key role in the emergence of food-borne pathogens.

  9. Impacts of Poultry House Environment on Poultry Litter Bacterial Community Composition

    PubMed Central

    Dumas, Michael D.; Polson, Shawn W.; Ritter, Don; Ravel, Jacques; Gelb, Jack; Morgan, Robin; Wommack, K. Eric

    2011-01-01

    Viral and bacterial pathogens are a significant economic concern to the US broiler industry and the ecological epicenter for poultry pathogens is the mixture of bedding material, chicken excrement and feathers that comprises the litter of a poultry house. This study used high-throughput sequencing to assess the richness and diversity of poultry litter bacterial communities, and to look for connections between these communities and the environmental characteristics of a poultry house including its history of gangrenous dermatitis (GD). Cluster analysis of 16S rRNA gene sequences revealed differences in the distribution of bacterial phylotypes between Wet and Dry litter samples and between houses. Wet litter contained greater diversity with 90% of total bacterial abundance occurring within the top 214 OTU clusters. In contrast, only 50 clusters accounted for 90% of Dry litter bacterial abundance. The sixth largest OTU cluster across all samples classified as an Arcobacter sp., an emerging human pathogen, occurring in only the Wet litter samples of a house with a modern evaporative cooling system. Ironically, the primary pathogenic clostridial and staphylococcal species associated with GD were not found in any house; however, there were thirteen 16S rRNA gene phylotypes of mostly Gram-positive phyla that were unique to GD-affected houses and primarily occurred in Wet litter samples. Overall, the poultry house environment appeared to substantially impact the composition of litter bacterial communities and may play a key role in the emergence of food-borne pathogens. PMID:21949751

  10. Increasing shrub abundance and N addition in Arctic tundra affect leaf and root litter decomposition differently

    NASA Astrophysics Data System (ADS)

    McLaren, J.; van de Weg, M. J.; Shaver, G. R.; Gough, L.

    2013-12-01

    Changes in global climate have resulted in a ';greening' of the Arctic as the abundance of deciduous shrub species increases. Consequently, not only the living plant community, but also the litter composition changes, which in turn can affect carbon turnover patterns in the Arctic. We examined effects of changing litter composition (both root and leaf litter) on decomposition rates with a litter bag study, and specifically focused on the impact of deciduous shrub Betula nana litter on litter decomposition from two evergreen shrubs (Ledum palustre, and Vaccinium vitis-idaea) and one graminoid (Eriophorum vaginatum) species. Additionally, we investigated how decomposition was affected by nutrient availability by placing the litterbags in an ambient and a fertilized moist acidic tundra environment. Measurements were carried out seasonally over 2 years (after snow melt, mid-growing season, end growing season). We measured litter mass loss over time, as well as the respiration rates (standardized for temperature and moisture) and temperature sensitivity of litter respiration at the time of harvesting the litter bags. For leaves, Betula litter decomposed faster than the other three species, with Eriophorum leaves decomposing the slowest. This pattern was observed for both mass loss and litter respiration rates, although the differences in respiration became smaller over time. Surprisingly, combining Betula with any other species resulted in slower overall weight loss rates than would be predicted based on monoculture weight loss rates. This contrasted with litter respiration at the time of sampling, which showed a positive mixing effect of adding Betula leaf liter to the other species. Apparently, during the first winter months (September - May) Betula litter decomposition is negatively affected by mixing the species and this legacy can still be observed in the total mass loss results later in the year. For root litter there were fewer effects of species identity on root

  11. The Effects of Litter on Littering Behavior in a Forest Environment

    ERIC Educational Resources Information Center

    Crump, S. Larry; And Others

    1977-01-01

    The effects of littered and nonlittered areas on littering behavior were determined in picnic areas in the Uinta National Forest, Utah. Littered and nonlittered conditions were controlled by spreading or removing litter from specified areas. Observations revealed that in the nonlittered areas there was more litter than in the littered areas. (CS)

  12. The Effects of Litter on Littering Behavior in a Forest Environment

    ERIC Educational Resources Information Center

    Crump, S. Larry; And Others

    1977-01-01

    The effects of littered and nonlittered areas on littering behavior were determined in picnic areas in the Uinta National Forest, Utah. Littered and nonlittered conditions were controlled by spreading or removing litter from specified areas. Observations revealed that in the nonlittered areas there was more litter than in the littered areas. (CS)

  13. Plant Litter Submergence Affects the Water Quality of a Constructed Wetland.

    PubMed

    Pan, Xu; Ping, Yunmei; Cui, Lijuan; Li, Wei; Zhang, Xiaodong; Zhou, Jian; Yu, Fei-Hai; Prinzing, Andreas

    2017-01-01

    Plant litter is an indispensable component of constructed wetlands, but how the submergence of plant litter affects their ecosystem functions and services, such as water purification, is still unclear. Moreover, it is also unclear whether the effects of plant litter submergence depend on other factors such as the duration of litter submergence, water source or litter species identity. Here we conducted a greenhouse experiment by submerging the litter of 7 wetland plant species into three types of water substrates and monitoring changes in water nutrient concentrations. Litter submergence affected water quality positively via decreasing the concentration of nitrate nitrogen and negatively via increasing the concentrations of total nitrogen, ammonium nitrogen and total phosphorus. The effects of litter submergence depended on the duration of litter submergence, the water source, the litter species identity, and the plant life form. Different plant species had different effects on the water nutrient concentrations during litter submergence, and the effects of floating plants might be more negative than that of emergent plants. These results are novel evidence of how the submergence of different plant (life form) litter may affect the purification function of constructed wetlands. For water at low eutrophication levels, submerging a relative small amount of plant litter might improve water quality, via benefiting the denitrification process in water. These findings emphasized the management of floating plant litter (a potential removal) during the maintenance of human-controlled wetland ecosystems and provided a potential tool to improve the water quality of constructed wetlands via submerging plant litter of different types.

  14. Intestinal Microbiota of Broiler Chickens As Affected by Litter Management Regimens.

    PubMed

    Wang, Lingling; Lilburn, Mike; Yu, Zhongtang

    2016-01-01

    Poultry litter is a mixture of bedding materials and enteric bacteria excreted by chickens, and it is typically reused for multiple growth cycles in commercial broiler production. Thus, bacteria can be transmitted from one growth cycle to the next via litter. However, it remains poorly understood how litter reuse affects development and composition of chicken gut microbiota. In this study, the effect of litter reuse on the microbiota in litter and in chicken gut was investigated using 2 litter management regimens: fresh vs. reused litter. Samples of ileal mucosa and cecal digesta were collected from young chicks (10 days of age) and mature birds (35 days of age). Based on analysis using DGGE and pyrosequencing of bacterial 16S rRNA gene amplicons, the microbiota of both the ileal mucosa and the cecal contents was affected by both litter management regimen and age of birds. Faecalibacterium, Oscillospira, Butyricicoccus, and one unclassified candidate genus closely related to Ruminococcus were most predominant in the cecal samples, while Lactobacillus was predominant in the ileal samples at both ages and in the cecal samples collected at day 10. At days 10 and 35, 8 and 3 genera, respectively, in the cecal luminal microbiota differed significantly in relative abundance between the 2 litter management regimens. Compared to the fresh litter, reused litter increased predominance of halotolerant/alkaliphilic bacteria and Faecalibacterium prausnitzii, a butyrate-producing gut bacterium. This study suggests that litter management regimens affect the chicken GI microbiota, which may impact the host nutritional status and intestinal health.

  15. Plant Litter Submergence Affects the Water Quality of a Constructed Wetland

    PubMed Central

    Cui, Lijuan; Li, Wei; Zhang, Xiaodong; Zhou, Jian; Yu, Fei-Hai; Prinzing, Andreas

    2017-01-01

    Plant litter is an indispensable component of constructed wetlands, but how the submergence of plant litter affects their ecosystem functions and services, such as water purification, is still unclear. Moreover, it is also unclear whether the effects of plant litter submergence depend on other factors such as the duration of litter submergence, water source or litter species identity. Here we conducted a greenhouse experiment by submerging the litter of 7 wetland plant species into three types of water substrates and monitoring changes in water nutrient concentrations. Litter submergence affected water quality positively via decreasing the concentration of nitrate nitrogen and negatively via increasing the concentrations of total nitrogen, ammonium nitrogen and total phosphorus. The effects of litter submergence depended on the duration of litter submergence, the water source, the litter species identity, and the plant life form. Different plant species had different effects on the water nutrient concentrations during litter submergence, and the effects of floating plants might be more negative than that of emergent plants. These results are novel evidence of how the submergence of different plant (life form) litter may affect the purification function of constructed wetlands. For water at low eutrophication levels, submerging a relative small amount of plant litter might improve water quality, via benefiting the denitrification process in water. These findings emphasized the management of floating plant litter (a potential removal) during the maintenance of human-controlled wetland ecosystems and provided a potential tool to improve the water quality of constructed wetlands via submerging plant litter of different types. PMID:28129405

  16. Abundance of pathogens in the gut and litter of broiler chickens as affected by bacitracin and litter management.

    PubMed

    Wei, Shan; Gutek, Amanda; Lilburn, Michael; Yu, Zhongtang

    2013-10-25

    Clostridium perfringens, Salmonella spp. and Campylobacter spp. are food-borne enteric pathogens that are commonly associated with poultry. The objective of this study was to investigate the effects of supplemental bacitracin and litter management (fresh vs. reused) on the abundance of these pathogens in commercial broiler chickens. Specific quantitative PCR (qPCR) assays were used to quantify C. perfringens, virulent C. perfringens that carried the genes encoding α-toxin (cpa) and NetB-toxin (netB), Salmonella, and Campylobacter in samples of ileal mucosa, cecal content, and litter. Campylobacter was not detected in any of the samples collected. The abundance of Salmonella was not affected by either bacitracin or litter condition. Generic C. perfringens was detected in the ileal mucosa at very low level at 10 days of age but was much higher at 35 days. Chickens reared on reused litter tended to have a lower abundance of generic C. perfringens compared with those reared on fresh litter. In the ileal mucosa, no cpa or netB was detected at day 10 but was detected at day 35 in the chickens that were not fed supplemental bacitracin. Chicks fed supplemental bacitracin had reduced abundance of generic C. perfringens as well as the cpa and netB genes in the ileal mucosa, cecal content, and litters. A strong positive correlation was found between the abundance of all three measurements of C. perfringens. The abundance of Salmonella spp. and C. perfringens was also shown to be correlated. This is the first study that has examined the effect of dietary bacitracin and litter conditions on the prevalence of these three common enteric pathogens. Unless contaminated from previous flocks, reused litter may not necessarily contain significantly greater abundances of C. perfringens or Salmonella.

  17. Poultry litter and the environment: Physiochemical properties of litter and soil during successive flock rotations and after remote site deposition.

    PubMed

    Crippen, Tawni L; Sheffield, Cynthia L; Byrd, J Allen; Esquivel, Jesus F; Beier, Ross C; Yeater, Kathleen

    2016-05-15

    The U.S. broiler meat market has grown over the past 16 years and destinations for U.S. broiler meat exports expanded to over 150 countries. This market opportunity has spurred a corresponding increase in industrialized poultry production, which due to the confined space in which high numbers of animals are housed, risks accumulating nutrients and pollutants. The purpose of this research was to determine the level of pollutants within poultry litter and the underlying soil within a production facility; and to explore the impact of spent litter deposition into the environment. The study follows a production facility for the first 2.5 years of production. It monitors the effects of successive flocks and management practices on 15 physiochemical parameters: Ca, Cu, electrical conductivity, Fe, K, Mg, Mn, moisture, Na, NO3(-)/N, organic matter, P, pH, S, and Zn. Litter samples were collected in-house, after clean-outs and during stockpiling. The soil before house placement, after the clean-outs and following litter stockpiling was monitored. Management practices markedly altered the physiochemical profiles of the litter in-house. A canonical discriminant analysis was used to describe the relationship between the parameters and sampling times. The litter profiles grouped into five clusters corresponding to time and management practices. The soil in-house exhibited mean increases in all physiochemical parameters (2-297 fold) except Fe, Mg, %M, and pH. The spent litter was followed after deposition onto a field for use as fertilizer. After 20 weeks, the soil beneath the litter exhibited increases in EC, Cu, K, Na, NO3(-)/N, %OM, P, S and Zn; while %M decreased. Understanding the impacts of industrialized poultry farms on the environment is vital as the cumulative ecological impact of this land usage could be substantial if not properly managed to reduce the risk of potential pollutant infiltration into the environment. Published by Elsevier B.V.

  18. Metal/metalloid fixation by litter during decomposition affected by silicon availability during plant growth.

    PubMed

    Schaller, Jörg

    2013-03-01

    Organic matter is known to accumulate high amounts of metals/metalloids, enhanced during the process of decomposition by heterotrophic biofilms (with high fixation capacity for metals/metalloids). The colonization by microbes and the decay rate of the organic matter depends on different litter properties. Main litter properties affecting the decomposition of organic matter such as the nutrient ratios and the content of cellulose, lignin and phenols are currently described to be changed by silicon availability. But less is known about the impact of silicon availability during plant growth on elemental fixation during decay. Hence, this research focuses on the impact of silicon availability during plant growth on fixation of 42 elements during litter decay, by controlling the litter properties. The results of this experiment are a significantly higher metal/metalloid accumulation during decomposition of plant litter grown under low silicon availability. This may be explained by the altered litter properties (mainly nutrient content) affecting the microbial decomposition of the litter, the microbial growth on the litter and possibly by the silicon double layer, which is evident in leaf litter with high silicon content and reduces the binding sites for metals/metalloids. Furthermore, this silicon double layer may also reduce the growing biofilm by reducing the availability of carbon compounds at the litter surface and has to be elucidated in further research. Hence, low silicon availability during plant growth enhances the metal/metalloid accumulation into plant litter during aquatic decomposition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Do soil organisms affect aboveground litter decomposition in the semiarid Patagonian steppe, Argentina?

    PubMed

    Araujo, Patricia I; Yahdjian, Laura; Austin, Amy T

    2012-01-01

    Surface litter decomposition in arid and semiarid ecosystems is often faster than predicted by climatic parameters such as annual precipitation or evapotranspiration, or based on standard indices of litter quality such as lignin or nitrogen concentrations. Abiotic photodegradation has been demonstrated to be an important factor controlling aboveground litter decomposition in aridland ecosystems, but soil fauna, particularly macrofauna such as termites and ants, have also been identified as key players affecting litter mass loss in warm deserts. Our objective was to quantify the importance of soil organisms on surface litter decomposition in the Patagonian steppe in the absence of photodegradative effects, to establish the relative importance of soil organisms on rates of mass loss and nitrogen release. We estimated the relative contribution of soil fauna and microbes to litter decomposition of a dominant grass using litterboxes with variable mesh sizes that excluded groups of soil fauna based on size class (10, 2, and 0.01 mm), which were placed beneath shrub canopies. We also employed chemical repellents (naphthalene and fungicide). The exclusion of macro- and mesofauna had no effect on litter mass loss over 3 years (P = 0.36), as litter decomposition was similar in all soil fauna exclusions and naphthalene-treated litter. In contrast, reduction of fungal activity significantly inhibited litter decomposition (P < 0.001). Although soil fauna have been mentioned as a key control of litter decomposition in warm deserts, biogeographic legacies and temperature limitation may constrain the importance of these organisms in temperate aridlands, particularly in the southern hemisphere.

  20. Alum affects ammonia-producing microorganisms in poultry litter

    USDA-ARS?s Scientific Manuscript database

    Scientists at the USDA-ARS in Bowling Green, KY and in Fayetteville, AR are working to uncover the microbiology of ammonia production in poultry litter. Poultry litter is a valuable nutrient source for plants and microorganisms that contains high levels of protein, nitrogen, and other minerals. Howe...

  1. The Evaluation of Litter Behavior Modification in a River Environment.

    ERIC Educational Resources Information Center

    Wagstaff, Mark C.; Wilson, Beth E.

    1988-01-01

    Behavior modification techniques were evaluated by observing litter collection behavior of commercial rafting groups. The number of litter pieces retrieved by treatment and control groups was significantly different. Results support the idea that verbal appeal and role modeling can be effective litter control techniques. (Author/CW)

  2. How does litter cover, litter diversity and fauna affect sediment discharge and runoff?

    NASA Astrophysics Data System (ADS)

    Goebes, Philipp; Seitz, Steffen; Kühn, Peter; Scholten, Thomas

    2013-04-01

    Litter cover plays a major role in soil erosion processes. It is known that litter cover reduces erosivity of raindrops, decreases sediment discharge and lowers runoff volume compared to bare ground. However, in the context of biodiversity, the composition of litter cover, its effect on sediment discharge and runoff volume and their influence on soil erosion have not yet been analyzed in detail. Focusing on initial soil erosion (splash), our experimental design is designated to get a better understanding of these mechanisms. The experiments were carried out within the DFG research unit "Biodiversity and Ecosystem Functioning (BEF)-China" in subtropical China. The "New Integrated Litter Experiment (NILEx)" used as platform combining different subprojects of BEF-China dealing with "decomposition and nutrient cycling", "mechanisms of soil erosion" and "functional effects of herbivores, predators and saproxylics" in one experiment. In NILEx, 96 40cm x 40cm runoff plots on two hill slopes inside a castanea molissima forest plantation have been installed and filled with seven different types of litter cover. 16 one-species plots, 24 two-species plots, 4 four-species plots and 4 bare ground plots have been set up, each replicated once. We prepared 48 Plots with traps (Renner solution) for soil macrofauna (diplopods and collembola), so half of the plots were kept free from fauna while the other half was accessible for fauna. Rainfall was generated artificially by using a rainfall simulator with a continuous and stable intensity of 60 mm/h. Our experiments included two runs of 20 minutes duration each, both conducted at two different time steps (summer 2012 and autumn 2012). Runoff volume and sediment discharge were measured every 5 minutes during one rainfall run. Litter coverage and litter mass were recorded at the beginning (summer 2012) and at the end of the experiment (autumn 2012). Our results show that sediment discharge as well as runoff volume decreases

  3. Intestinal Microbiota of Broiler Chickens As Affected by Litter Management Regimens

    PubMed Central

    Wang, Lingling; Lilburn, Mike; Yu, Zhongtang

    2016-01-01

    Poultry litter is a mixture of bedding materials and enteric bacteria excreted by chickens, and it is typically reused for multiple growth cycles in commercial broiler production. Thus, bacteria can be transmitted from one growth cycle to the next via litter. However, it remains poorly understood how litter reuse affects development and composition of chicken gut microbiota. In this study, the effect of litter reuse on the microbiota in litter and in chicken gut was investigated using 2 litter management regimens: fresh vs. reused litter. Samples of ileal mucosa and cecal digesta were collected from young chicks (10 days of age) and mature birds (35 days of age). Based on analysis using DGGE and pyrosequencing of bacterial 16S rRNA gene amplicons, the microbiota of both the ileal mucosa and the cecal contents was affected by both litter management regimen and age of birds. Faecalibacterium, Oscillospira, Butyricicoccus, and one unclassified candidate genus closely related to Ruminococcus were most predominant in the cecal samples, while Lactobacillus was predominant in the ileal samples at both ages and in the cecal samples collected at day 10. At days 10 and 35, 8 and 3 genera, respectively, in the cecal luminal microbiota differed significantly in relative abundance between the 2 litter management regimens. Compared to the fresh litter, reused litter increased predominance of halotolerant/alkaliphilic bacteria and Faecalibacterium prausnitzii, a butyrate-producing gut bacterium. This study suggests that litter management regimens affect the chicken GI microbiota, which may impact the host nutritional status and intestinal health. PMID:27242676

  4. Factors affecting arsenic and copper runoff from pastures fertilized with poultry litter

    USDA-ARS?s Scientific Manuscript database

    Heavy metal runoff from soils fertilized with poultry litter has received increasing attention in recent years, although it is not really known if heavy runoff from poultry litter poses a significant threat to the environment. The objective of this study was to evaluate arsenic (As) and copper (Cu)...

  5. Litter lipid content affects dustbathing behavior in laying hens.

    PubMed

    Scholz, B; Kjaer, J B; Urselmans, S; Schrader, L

    2011-11-01

    Within the European Union, the provision of dustbathing material in layer housing systems will be compulsory beginning in 2012. In cage systems, food particles are mainly used as litter material and are provided on scratching mats by an automatic transporting system. However, because dustbathing is a means for hens to remove stale lipids from their plumage, lipid content of a substrate may be an important asset with regard to its adequacy. This study analyzes dustbathing behavior as affected by lipid content of feed used as litter material. A total of 72 laying hens of 2 genotypes (Lohmann Selected Leghorn, Lohmann Brown) were kept in 12 compartments (6 hens each). Compartments were equipped with a plastic grid floor (G) and additionally contained 3 different dustbathing trays (each 1,000 cm(2)/hen) holding low-lipid (0.82%; L), normal-lipid (4.2%; N), and high-lipid (15.7%; H) food particles. The experiment began at 20 wk of life, and video recordings were done at wk 23, 26, and 29. Number of dustbaths, time spent dustbathing, average dustbath duration, foraging, and single behaviors within dustbaths were analyzed during the light period over 2 d in each observation week. Dustbaths occurred most frequently in the L compared with the N, H, and G treatments (all P < 0.001). Total time spent dustbathing was longest in the L treatment compared with the N and H treatments (P < 0.001). No difference in the average duration of single dustbaths was found between the L, N, and H treatments. However, when dustbath interruptions (less than 10 min) were excluded, the duration of single dustbaths was longer in the H compared with the L (P = 0.009) and N (P = 0.024) treatments. Foraging was most frequently observed in the N compared with the L, H, and G treatments (all P < 0.001). More body wing shakes occurred in the L compared with the N treatment, and the number of vertical wing shakes was higher in the N compared with the H treatment (all P ≤ 0.05). Our results showed

  6. Invertebrate grazers affect metal/metalloid fixation during litter decomposition.

    PubMed

    Schaller, Jörg; Brackhage, Carsten

    2015-01-01

    Plant litter and organic sediments are main sinks for metals and metalloids in aquatic ecosystems. The effect of invertebrates as key species in aquatic litter decomposition on metal/metalloid fixation by organic matter is described only for shredders, but for grazers as another important animal group less is known. Consequently, a laboratory batch experiment was conducted to examine the effect of invertebrate grazers (Lymnaea stagnalis L.) on metal/metalloid fixation/remobilization during aquatic litter decomposition. It could be shown that invertebrate grazers facilitate significantly the formation of smaller sizes of particulate organic matter (POM), as shown previously for invertebrate shredders. The metal/metalloid binding capacity of these smaller particles of POM is higher compared to leaf litter residuals. But element enrichment is not as high as shown previously for the effect by invertebrate shredders. Invertebrate grazers enhance also the mobilization of selected elements to the water, in the range also proven for invertebrate shredders but different for the different elements. Nonetheless invertebrate grazers activity during aquatic litter decomposition leads to a metal/metalloid fixation into leaf litter as part of sediment organic matter. Hence, the effect of invertebrate grazers on metal/metalloid fixation/remobilization contrasts partly with former assessments revealing the possibility of an enhanced metal/metalloid fixation.

  7. Comprehensive affected environment

    SciTech Connect

    1995-10-01

    Energy Vision 2020 evaluates the affected environment to help provide a baseline for measuring the environmental consequences of alternative energy strategies. Because this report is also an environmental impact statement, special emphasis is given to the environment. This regional perspective takes in both natural conditions and those resulting from human development. It considers socioeconomic, air, water, and land resources. This section of the Energy Vision 2020 draft report provides the overview for the environmental assessment.

  8. Evaluation of different litter materials for broiler production in a hot and humid environment: 2. Productive performance and carcass characteristics.

    PubMed

    Garcês, Alice P J T; Afonso, Sónia M Santana; Chilundo, Abel; Jairoce, Chenjerai T S

    2017-02-01

    The availability of wood by-products for bedding material is falling in many regions due to rising demand for other uses. The objective of this study was to evaluate six alternative litter sources-river bed sand, coconut husk, rice hulls, Guinea grass, newspaper, and corncob-as a substitute for wood shavings (WS). The trial was carried out over 35 days in an open-sided and naturally ventilated broiler house under conditions of high ambient temperatures and relative humidity. During the brooding period (0 to 14 days), chicks raised on grass had lower (P < 0.05) footpad temperature than those grown on WS. After the brooding period (15 to 35 days), the temperatures of both litter and birds were higher (P < 0.05) for coconut husk than for WS. Grass litter resulted in lower (P < 0.05) final BW, FCR, and production efficiency. Sand and rice hulls were associated with lower (P < 0.05) survival rate and higher (P < 0.05) gizzard weight. Litter type did not affect carcass and meat yields. The footpad dermatitis score, associating incidence and severity, was not statistically different among the litter substrates tested, although numerically higher in coconut husk, grass, and corncob. The results obtained in this experiment indicate that, in a hot and humid environment, all materials except grass can be used as a substitute for wood shavings with comparable production efficiency.

  9. Habitat, food, and climate affecting leaf litter anuran assemblages in an Atlantic Forest remnant

    NASA Astrophysics Data System (ADS)

    Rievers, Camila Rabelo; Pires, Maria Rita Silvério; Eterovick, Paula Cabral

    2014-07-01

    Leaf litter anuran assemblages include both species that have terrestrial development and species that, during the breeding season, aggregate around bodies of water where their tadpoles develop. The resources used by these two groups in the leaf litter are likely to differ, as well as their sampled species richness, abundance and biomass as resource availability changes. We conducted a 12-month survey of leaf litter anuran assemblages at three forest areas in the largest Atlantic Forest remnant in the state of Minas Gerais in southeastern Brazil. Each month we estimated, based on capture rates, anuran species richness, abundance, and biomass as assemblage descriptors. We also measured variables that could potentially affect these descriptors in space and time: invertebrate litter fauna (abundance and richness of taxa), leaf litter biomass, and microclimatic conditions (air humidity, air and soil temperature, soil water content, and rainfall). We tested for differences in these variables among areas. We used general linear models to search for the variables that best explained variation in anuran abundance (based on capture rates) throughout the year. We analyzed species with terrestrial development (TD) and with aquatic larvae (AL) separately. We recorded 326 anurans of 15 species. Sampled anuran abundance (correlated to species richness and biomass) was explained by air humidity and/or invertebrate abundance for species with TD, and by soil water content or air humidity and leaf litter biomass for species with AL. The variability in the results of studies on leaf litter frogs that try to find variables to explain changes in community descriptors may be due to spatial variation of resources among areas and also to the fact that TD and AL species are frequently analyzed together, when in fact they are likely to show different responses to resources present in the leaf litter habitat, reflected on capture rates.

  10. Litter decay controlled by temperature, not soil properties, affecting future soil carbon.

    PubMed

    Gregorich, Edward G; Janzen, Henry; Ellert, Benjamin H; Helgason, Bobbi L; Qian, Budong; Zebarth, Bernie J; Angers, Denis A; Beyaert, Ronald P; Drury, Craig F; Duguid, Scott D; May, William E; McConkey, Brian G; Dyck, Miles F

    2017-04-01

    Widespread global changes, including rising atmospheric CO2 concentrations, climate warming and loss of biodiversity, are predicted for this century; all of these will affect terrestrial ecosystem processes like plant litter decomposition. Conversely, increased plant litter decomposition can have potential carbon-cycle feedbacks on atmospheric CO2 levels, climate warming and biodiversity. But predicting litter decomposition is difficult because of many interacting factors related to the chemical, physical and biological properties of soil, as well as to climate and agricultural management practices. We applied (13) C-labelled plant litter to soil at ten sites spanning a 3500-km transect across the agricultural regions of Canada and measured its decomposition over five years. Despite large differences in soil type and climatic conditions, we found that the kinetics of litter decomposition were similar once the effect of temperature had been removed, indicating no measurable effect of soil properties. A two-pool exponential decay model expressing undecomposed carbon simply as a function of thermal time accurately described kinetics of decomposition. (R(2)  = 0.94; RMSE = 0.0508). Soil properties such as texture, cation exchange capacity, pH and moisture, although very different among sites, had minimal discernible influence on decomposition kinetics. Using this kinetic model under different climate change scenarios, we projected that the time required to decompose 50% of the litter (i.e. the labile fractions) would be reduced by 1-4 months, whereas time required to decompose 90% of the litter (including recalcitrant fractions) would be reduced by 1 year in cooler sites to as much as 2 years in warmer sites. These findings confirm quantitatively the sensitivity of litter decomposition to temperature increases and demonstrate how climate change may constrain future soil carbon storage, an effect apparently not influenced by soil properties.

  11. Nitrogen Addition Significantly Affects Forest Litter Decomposition under High Levels of Ambient Nitrogen Deposition

    PubMed Central

    Chen, Gang; Peng, Yong; Xiao, Yin-long; Hu, Ting-xing; Zhang, Jian; Li, Xian-wei; Liu, Li; Tang, Yi

    2014-01-01

    Background Forest litter decomposition is a major component of the global carbon (C) budget, and is greatly affected by the atmospheric nitrogen (N) deposition observed globally. However, the effects of N addition on forest litter decomposition, in ecosystems receiving increasingly higher levels of ambient N deposition, are poorly understood. Methodology/Principal Findings We conducted a two-year field experiment in five forests along the western edge of the Sichuan Basin in China, where atmospheric N deposition was up to 82–114 kg N ha–1 in the study sites. Four levels of N treatments were applied: (1) control (no N added), (2) low-N (50 kg N ha–1 year–1), (3) medium-N (150 kg N ha–1 year–1), and (4) high-N (300 kg N ha–1 year–1), N additions ranging from 40% to 370% of ambient N deposition. The decomposition processes of ten types of forest litters were then studied. Nitrogen additions significantly decreased the decomposition rates of six types of forest litters. N additions decreased forest litter decomposition, and the mass of residual litter was closely correlated to residual lignin during the decomposition process over the study period. The inhibitory effect of N addition on litter decomposition can be primarily explained by the inhibition of lignin decomposition by exogenous inorganic N. The overall decomposition rate of ten investigated substrates exhibited a significant negative linear relationship with initial tissue C/N and lignin/N, and significant positive relationships with initial tissue K and N concentrations; these relationships exhibited linear and logarithmic curves, respectively. Conclusions/Significance This study suggests that the expected progressive increases in N deposition may have a potential important impact on forest litter decomposition in the study area in the presence of high levels of ambient N deposition. PMID:24551152

  12. Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes

    NASA Astrophysics Data System (ADS)

    Straková, P.; Niemi, R. M.; Freeman, C.; Peltoniemi, K.; Toberman, H.; Heiskanen, I.; Fritze, H.; Laiho, R.

    2011-09-01

    acquisition. This caused an increase in the rate of litter decomposition. The effects of the short-term WT drawdown were minor compared to those of the long-term WT drawdown: e.g., the increase in the activity of C-acquiring enzymes was up to 120 % (bog) or 320 % (fen) higher after the long-term WT drawdown compared to the short-term WT drawdown. In general, the patterns of microbial activity as well as their responses to WT drawdown depended on peatland type: e.g., the shift in activity allocation to C-acquisition was up to 100 % stronger at the fen compared to the bog. Our results imply that changes in plant community composition in response to persistent WT drawdown will strongly affect the C dynamics of peatlands. The predictions of decomposer activity under changing climate and/or land-use thus cannot be based on the direct effects of the changed environment only, but need to consider the indirect effects of environmental changes: the changes in plant community composition, their dependence on peatland type, and their time scale.

  13. Warming and altered precipitation affect litter decomposition and nitrogen dynamics in a mixed-grass prairie

    NASA Astrophysics Data System (ADS)

    Chen, X.; Luo, Y.; Xu, X.; Li, D.; Niu, S.

    2013-12-01

    Litter decomposition and nitrogen dynamics are important processes in ecosystems and how they respond to climate changes is a global concern. In order to explore the effects of warming and altered precipitation on litter decomposition and nitrogen dynamics, we conducted a field decomposition experiment with warming (+3°C) and altered precipitation (half and double) in a mixed-grass prairie in Oklahoma, USA, using litter bags with dominant C3 and C4 grasses since June, 2012. Litter bags were collected every month in the first six months and subsequently every three month thereafter. Remaining litter biomass as well as element concentration were measured in the lab. Warming significantly decreased the litter decomposition rate (k) by 25.4% for C3 grasses and 25.0% for C4 grasses. Doubled precipitation significantly increased the litter decomposition rate by 23.3% for C3 grasses and 30.1% for C4 grasses while half precipitation showed no significant effects. Soil temperature and soil moisture, controlled by warming and altered precipitation, are found to be the most important factors in regulating litter decomposition rate. Warming also decreased N concentration in C3 grasses while doubled precipitation increased N concentration in C4 grasses after one year of field decomposition. During that time, N concentration showed an average increase of 99.6% in C3 grass while only 68.1% in C4 grass. Other elements such as P and K were not much affected by these treatments although there were significant differences between C3 and C4 grasses. Our results suggest that climate change has significant impact on litter decomposition rate, which could influence the carbon balance of the ecosystem. Nutrient dynamics, especially nitrogen, were shown to be specific to plant types under altered climatic conditions. Our results show that conclusion derived from single-factor climate change experiments should be treated with caution due to interactive effects of warming with altered

  14. Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates.

    PubMed

    Ferreira, Verónica; Gulis, Vladislav; Graça, Manuel A S

    2006-10-01

    We assessed the effect of whole-stream nitrate enrichment on decomposition of three substrates differing in nutrient quality (alder and oak leaves and balsa veneers) and associated fungi and invertebrates. During the 3-month nitrate enrichment of a headwater stream in central Portugal, litter was incubated in the reference site (mean NO3-N 82 microg l-1) and four enriched sites along the nitrate gradient (214-983 microg NO3-N l-1). A similar decomposition experiment was also carried out in the same sites at ambient nutrient conditions the following year (33-104 microg NO3-N l-1). Decomposition rates and sporulation of aquatic hyphomycetes associated with litter were determined in both experiments, whereas N and P content of litter, associated fungal biomass and invertebrates were followed only during the nitrate addition experiment. Nitrate enrichment stimulated decomposition of oak leaves and balsa veneers, fungal biomass accrual on alder leaves and balsa veneers and sporulation of aquatic hyphomycetes on all substrates. Nitrate concentration in stream water showed a strong asymptotic relationship (Michaelis-Menten-type saturation model) with temperature-adjusted decomposition rates and percentage initial litter mass converted into aquatic hyphomycete conidia for all substrates. Fungal communities did not differ significantly among sites but some species showed substrate preferences. Nevertheless, certain species were sensitive to nitrogen concentration in water by increasing or decreasing their sporulation rate accordingly. N and P content of litter and abundances or richness of litter-associated invertebrates were not affected by nitrate addition. It appears that microbial nitrogen demands can be met at relatively low levels of dissolved nitrate, suggesting that even minor increases in nitrogen in streams due to, e.g., anthropogenic eutrophication may lead to significant shifts in microbial dynamics and ecosystem functioning.

  15. Prior Hydrologic Disturbance Affects Competition between Aedes Mosquitoes via Changes in Leaf Litter

    PubMed Central

    Smith, Cassandra D.; Freed, T. Zachary; Leisnham, Paul T.

    2015-01-01

    Allochthonous leaf litter is often the main resource base for invertebrate communities in ephemeral water-filled containers, and detritus quality can be affected by hydrologic conditions. The invasive mosquito Aedes albopictus utilizes container habitats for its development where it competes as larvae for detritus and associated microorganisms with the native Aedes triseriatus. Different hydrologic conditions that containers are exposed to prior to mosquito utilization affect litter decay and associated water quality. We tested the hypothesis that larval competition between A. albopictus and A. triseriatus would be differentially affected by prior hydrologic conditions. Experimental microcosms provisioned with Quercus alba L. litter were subjected to one of three different hydrologic treatments prior to the addition of water and mosquito larvae: dry, flooded, and a wet/dry cycle. Interspecific competition between A. albopictus and A. triseriatus was mediated by hydrologic treatment, and was strongest in the dry treatment vs. the flooded or wet/dry treatments. Aedes triseriatus estimated rate of population change (λ') was lowest in the dry treatment. Aedes albopictus λ' was unaffected by hydrologic treatment, and was on average always increasing (i.e., > 1). Aedes triseriatus λ' was affected by the interaction of hydrologic treatment with interspecific competition, and was on average declining (i.e., < 1.0), at the highest interspecific densities in the dry treatment. Dry treatment litter had the slowest decay rate and leached the highest concentration of tannin-lignin, but supported more total bacteria than the other treatments. These results suggest that dry conditions negatively impact A. triseriatus population performance and may result in the competitive exclusion of A. triseriatus by A. albopictus, possibly by reducing microbial taxa that Aedes species browse. Changing rainfall patterns with climate change are likely to affect competition between A

  16. Prior Hydrologic Disturbance Affects Competition between Aedes Mosquitoes via Changes in Leaf Litter.

    PubMed

    Smith, Cassandra D; Freed, T Zachary; Leisnham, Paul T

    2015-01-01

    Allochthonous leaf litter is often the main resource base for invertebrate communities in ephemeral water-filled containers, and detritus quality can be affected by hydrologic conditions. The invasive mosquito Aedes albopictus utilizes container habitats for its development where it competes as larvae for detritus and associated microorganisms with the native Aedes triseriatus. Different hydrologic conditions that containers are exposed to prior to mosquito utilization affect litter decay and associated water quality. We tested the hypothesis that larval competition between A. albopictus and A. triseriatus would be differentially affected by prior hydrologic conditions. Experimental microcosms provisioned with Quercus alba L. litter were subjected to one of three different hydrologic treatments prior to the addition of water and mosquito larvae: dry, flooded, and a wet/dry cycle. Interspecific competition between A. albopictus and A. triseriatus was mediated by hydrologic treatment, and was strongest in the dry treatment vs. the flooded or wet/dry treatments. Aedes triseriatus estimated rate of population change (λ') was lowest in the dry treatment. Aedes albopictus λ' was unaffected by hydrologic treatment, and was on average always increasing (i.e., > 1). Aedes triseriatus λ' was affected by the interaction of hydrologic treatment with interspecific competition, and was on average declining (i.e., < 1.0), at the highest interspecific densities in the dry treatment. Dry treatment litter had the slowest decay rate and leached the highest concentration of tannin-lignin, but supported more total bacteria than the other treatments. These results suggest that dry conditions negatively impact A. triseriatus population performance and may result in the competitive exclusion of A. triseriatus by A. albopictus, possibly by reducing microbial taxa that Aedes species browse. Changing rainfall patterns with climate change are likely to affect competition between A

  17. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil.

    PubMed

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Ismail, Iqbal M I; Shah, Ghulam Mustafa; Almeelbi, Talal

    2017-02-15

    We investigated the impact of zinc oxide nanoparticles (ZnO NPs; 1000mgkg(-1) soil) on soil microbes and their associated soil functions such as date palm (Phoenix dactylifera) leaf litter (5gkg(-1) soil) carbon and nitrogen mineralization in mesocosms containing sandy soil. Nanoparticles application in litter-amended soil significantly decreased the cultivable heterotrophic bacterial and fungal colony forming units (cfu) compared to only litter-amended soil. The decrease in cfu could be related to lower microbial biomass carbon in nanoparticles-litter amended soil. Likewise, ZnO NPs also reduced CO2 emission by 10% in aforementioned treatment but this was higher than control (soil only). Labile Zn was only detected in the microbial biomass of nanoparticles-litter applied soil indicating that microorganisms consumed this element from freely available nutrients in the soil. In this treatment, dissolved organic carbon and mineral nitrogen were 25 and 34% lower respectively compared to litter-amended soil. Such toxic effects of nanoparticles on litter decomposition resulted in 130 and 122% lower carbon and nitrogen mineralization efficiency respectively. Hence, our results entail that ZnO NPs are toxic to soil microbes and affect their function i.e., carbon and nitrogen mineralization of applied litter thus confirming their toxicity to microbial associated soil functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Tadpoles of Early Breeding Amphibians are Negatively Affected by Leaf Litter From Invasive Chinese Tallow Trees

    NASA Astrophysics Data System (ADS)

    Leonard, N. E.

    2005-05-01

    As wetlands are invaded by Chinese tallow trees (Triadica sebifera), native trees are displaced and detrital inputs to amphibian breeding ponds are altered. I used a mesocosm experiment to examine the effect of Chinese tallow leaf litter on the survival to, size at, and time to metamorphosis of amphibian larvae. Fifty 1000-L cattle watering tanks were treated with 1500 g dry weight of one of five leaf litter treatments: Chinese tallow, laurel oak (Quercus laurifolia), water tupelo (Nyssa aquatica), slash pine (Pinus elliottii), or a 3:1:1:1 mixture. Each tank received 45 tadpoles of Pseudacris feriarum, Bufo terrestris, and Hyla cinerea in sequence according to their natural breeding phonologies. Every Pseudacris feriarum and Bufo terrestris tadpole exposed to Chinese tallow died prior to metamorphosis. Hyla cinerea survival in tanks with tallow-only was significantly lower than that observed for all other leaf treatments. Hyla cinerea tadpoles from tallow-only and mixed-leaf treatments were larger at metamorphosis and transformed faster than those in tanks with native leaves only. These results suggest that Chinese tallow leaf litter may negatively affect tadpoles of early breeding frogs and that Chinese tallow invasion may change the structure of amphibian communities in temporary ponds.

  19. Flower litters of alpine plants affect soil nitrogen and phosphorus rapidly in the eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Jinniu; Xu, Bo; Wu, Yan; Gao, Jing; Shi, Fusun

    2016-10-01

    Litters of reproductive organs have rarely been studied despite their role in allocating nutrients for offspring reproduction. This study determines the mechanism through which flower litters efficiently increase the available soil nutrient pool. Field experiments were conducted to collect plant litters and calculate biomass production in an alpine meadow of the eastern Tibetan Plateau. C, N, P, lignin, cellulose content, and their relevant ratios of litters were analyzed to identify their decomposition features. A pot experiment was performed to determine the effects of litter addition on the soil nutrition pool by comparing the treated and control samples. The litter-bag method was used to verify decomposition rates. The flower litters of phanerophyte plants were comparable with non-flower litters. Biomass partitioning of other herbaceous species accounted for 10-40 % of the aboveground biomass. Flower litter possessed significantly higher N and P levels but less C / N, N / P, lignin / N, and lignin and cellulose concentrations than leaf litter. The litter-bag experiment confirmed that the flower litters of Rhododendron przewalskii and Meconopsis integrifolia decompose approximately 3 times faster than mixed litters within 50 days. Pot experiment findings indicated that flower litter addition significantly increased the available nutrient pool and soil microbial productivity. The time of litter fall significantly influenced soil available N and P, and soil microbial biomass. Flower litters fed the soil nutrition pool and influenced nutrition cycling in alpine ecosystems more efficiently because of their non-ignorable production, faster decomposition rate, and higher nutrient contents compared with non-flower litters. The underlying mechanism can enrich nutrients, which return to the soil, and non-structural carbohydrates, which feed and enhance the transitions of soil microorganisms.

  20. Does Proximity to Subsurface Poultry Litter Affect Corn Seedling Survival and Growth?

    USDA-ARS?s Scientific Manuscript database

    Poultry litter provides a rich nutrient source for crops, but the usual practice of surface broadcasting litter can degrade water quality by allowing storm runoff to transport nutrients into streams and lakes, while much of the ammonia N escapes into the atmosphere. Subsurface application of litter...

  1. Nitrogen loss in chicken litter compost as affected by carbon to nitrogen ratio and turning frequency.

    PubMed

    Ogunwande, G A; Osunade, J A; Adekalu, K O; Ogunjimi, L A O

    2008-11-01

    The study was undertaken to investigate the effects of carbon to nitrogen (C:N) ratio and turning frequency (TF) on the loss of total nitrogen (TN) during composting of chicken litter (a mixture of chicken manure, waste feed, feathers and sawdust) with a view to producing good quality compost. Carbon to nitrogen ratios of 20:1, 25:1 and 30:1 and TF of 2, 4 and 6 days were experimented. The initial physico-chemical properties of the litter were determined. During the composting process, moisture level in the piles was periodically replenished to 55% and the temperature, pH and TN of the chicken litter were periodically monitored. Also, the dry matter (DM), total carbon (TC), total phosphorus (P) and total potassium (K) were examined at the end of composting. The results showed that both C:N ratio and TF had significant (p < or = 0.05) effect on pile temperature, pH changes, TN, TC, P and K losses while DM was only affected (p < or = 0.05) by C:N ratio. All treatments reached maturation at about 87 days as indicated by the decline of pile temperatures to near ambient temperature. Losses of TN, which were largely attributed to volatilization of ammonia (NH3), were highest within the first 28 days when the pile temperatures and pH values were above 33 degrees C and 7.7, respectively. Moisture loss increased as C:N ratio and TF increased. In conclusion, the treatment with a combination of 4 days TF and C:N ratio 25:1 (T4R25) had the minimum TN loss (70.73% of the initial TN) and this indicated the most efficient combination.

  2. Invertebrates control metal/metalloid sequestration and the quality of DOC/DON released during litter decay in slightly acidic environments.

    PubMed

    Schaller, Jörg; Machill, Susanne

    2012-11-01

    Plant litter and organic sediments are a main sink for metals and metalloids in aquatic ecosystems. The effect of invertebrate shredder (a key species in litter decay) on metal/metalloid fixation by organic matter is described only under alkaline water conditions whereas for slightly acidic waters nothing can be found. Furthermore, less is known about the effect of invertebrate shredders on the quality of dissolved organic carbon (DOC) and nitrogen (DON) released during litter decay. We conducted an experiment to investigate the impact of invertebrate shredder (Gammarus pulex) on metal/metalloid fixation/remobilization and on the quality of DOC/DON released under slightly acidic water conditions. During decomposition of leaf litter, invertebrate shredder facilitated significantly the emergence of smaller particle sizes of organic matter. The capacity of metal fixation was significantly higher in smaller particles (POM 2,000-63 μm) compared to original leaf litter and litter residues. Thus, G. pulex enhanced metal fixation by organic partition of sediments by increasing the amount of smaller particle of organic matter in aquatic ecosystems. In contrast, the capacity of metal/metalloid fixation in the smallest fraction of POM (<63 μm) was lower compared with leaf residues in treatment without invertebrates. Remobilization of metals and metalloids was very low for all measured elements. A significant effect of invertebrates on quantitative formation of DOC/DON was confirmed. The quality of released DOC/DON, which may affect metal/metalloid remobilization, was also significantly affected by invertebrate shredders (e.g., more carboxylates). Hence, invertebrate shredder enhanced significantly the fixation of metals/metalloids into POM in slightly acidic environments.

  3. Factors That Can Undermine the Psychological Benefits of Coastal Environments: Exploring the Effect of Tidal State, Presence, and Type of Litter.

    PubMed

    Wyles, Kayleigh J; Pahl, Sabine; Thomas, Katrina; Thompson, Richard C

    2016-11-01

    The beneficial effects of blue environments have been well documented; however, we do not know how marine litter might modify these effects. Three studies adopted a picture-rating task to examine the influence of litter on preference, perceived restorative quality, and psychological impacts. Photographs varied the presence of marine litter (Study 1) and the type of litter (Studies 2 and 3). The influence of tide and the role of connectedness were also explored. Using both quantitative and qualitative methods, it was shown that litter can undermine the psychological benefits that the coast ordinarily provides, thus demonstrating that, in addition to environmental costs of marine litter, there are also costs to people. Litter stemming from the public had the most negative impact. This research extends our understanding of the psychological benefits from natural coastal environments and the threats to these benefits from abundant and increasing marine litter.

  4. How does litter quality affect the community of soil protists (testate amoebae) of tropical montane rainforests?

    PubMed

    Krashevska, Valentyna; Maraun, Mark; Scheu, Stefan

    2012-06-01

    Litter quality and diversity are major factors structuring decomposer communities. However, little is known on the relationship between litter quality and the community structure of soil protists in tropical forests. We analyzed the diversity, density, and community structure of a major group of soil protists of tropical montane rainforests, that is, testate amoebae. Litterbags containing pure and mixed litter of two abundant tree species at the study sites (Graffenrieda emarginata and Purdiaea nutans) differing in nitrogen concentrations were exposed in the field for 12 months. The density and diversity of testate amoebae were higher in the nitrogen-rich Graffenrieda litter suggesting that nitrogen functions as an important driving factor for soil protist communities. No additive effects of litter mixing were found, rather density of testate amoebae was reduced in litter mixtures as compared to litterbags with Graffenrieda litter only. However, adding of high-quality litter to low-quality litter markedly improved habitat quality, as evaluated by the increase in diversity and density of testate amoebae. The results suggest that local factors, such as litter quality, function as major forces shaping the structure and density of decomposer microfauna that likely feed back to decomposition processes.

  5. Development of a phosphorus index for pastures fertilized with poultry litter--factors affecting phosphorus runoff.

    PubMed

    DeLaune, Paul B; Moore, Philip A; Carman, Dennis K; Sharpley, Andrew N; Haggard, Brian E; Daniel, Tommy C

    2004-01-01

    Currently, several state and federal agencies are proposing upper limits on soil test phosphorus (P), above which animal manures cannot be applied, based on the assumption that high P concentrations in runoff are due to high soil test P. Recent studies show that other factors are more indicative of P concentrations in runoff from areas where manure is being applied. The original P index was developed as an alternative P management tool incorporating factors affecting both the source and transport of P. The objective of this research was to evaluate the effects of multiple variables on P concentrations in runoff water and to construct a P source component of a P index for pastures that incorporates these effects. The evaluated variables were: (i) soil test P, (ii) soluble P in poultry litter, (iii) P in poultry diets, (iv) fertilizer type, and (v) poultry litter application rate. Field studies with simulated rainfall showed that P runoff was affected by the amount of soluble P applied in the fertilizer source. Before manure applications, soil test P was directly related to soluble P concentrations in runoff water. However, soil test P had little effect on P runoff after animal manure was applied. Unlike most other P indices, weighting factors of the P source components in the P index for pastures are based on results from runoff studies conducted under various management scenarios. As a result, weighting factors for the P source potential variables are well justified. A modification of the P index using scientific data should strengthen the ability of the P index concept to evaluate locations and management alternatives for P losses.

  6. Decreased carbon limitation of litter respiration in a mortality-affected piñon-juniper woodland

    NASA Astrophysics Data System (ADS)

    Berryman, E.; Marshall, J. D.; Rahn, T.; Litvak, M.; Butnor, J.

    2012-10-01

    Microbial respiration depends on microclimatic variables and carbon (C) substrate availability, all of which are altered when ecosystems experience major disturbance. Widespread tree mortality, currently affecting piñon-juniper ecosystems in Southwestern North America, may affect C substrate availability in several ways; for example, via litterfall pulses and loss of root exudation. To determine piñon mortality effects on C and water limitation of microbial respiration, we applied field amendments (sucrose and water) to two piñon-juniper sites in central New Mexico, USA: one with a recent (< 1 yr), experimentally-induced mortality event and a nearby site with live canopy. We monitored the respiration response to water and sucrose applications to the litter surface and to the underlying mineral soil surface, testing the following hypotheses: (1) soil respiration in a piñon-juniper woodland is water- and labile C-limited in both the litter layer and mineral soil; (2) water and sucrose applications increase temperature sensitivity of respiration; (3) the mortality-affected site will show a reduction in C limitation in the litter; (4) the mortality-affected site will show an enhancement of C limitation in the mineral soil. Litter respiration at both sites responded to increased water availability, yet surprisingly, mineral soil respiration was not limited by water. Temperature sensitivity was enhanced by some of the sucrose and water treatments. Consistent with hypothesis 3, C limitation of litter respiration was lower at the recent mortality site compared to the intact canopy site. Results following applications to the mineral soil suggest the presence of abiotic effects of increasing water availability, precluding our ability to measure labile C limitation in soil. Widespread piñon mortality may decrease labile C limitation of litter respiration, at least during the first growing season following mortality.

  7. Plant genetic identity of foundation tree species and their hybrids affects a litter-dwelling generalist predator.

    PubMed

    Wojtowicz, Todd; Compson, Zacchaeus G; Lamit, Louis J; Whitham, Thomas G; Gehring, Catherine A

    2014-11-01

    The effects of plant genetics on predators, especially those not living on the plant itself, are rarely studied and poorly understood. Therefore, we investigated the effect of plant hybridization and genotype on litter-dwelling spiders. Using an 18-year-old cottonwood common garden, we recorded agelenid sheet-web density associated with the litter layers of replicated genotypes of three tree cross types: Populus fremontii, Populus angustifolia, and their F1 hybrids. We surveyed 118 trees for agelenid litter webs at two distances from the trees (0-100 and 100-200 cm from trunk) and measured litter depth as a potential mechanism of web density patterns. Five major results emerged: web density within a 1-m radius of P. angustifolia was approximately three times higher than within a 1-m radius of P. fremontii, with F1 hybrids having intermediate densities; web density responded to P. angustifolia and F1 hybrid genotypes as indicated by a significant genotype × distance interaction, with some genotypes exhibiting a strong decline in web density with distance, while others did not; P. angustifolia litter layers were deeper than those of P. fremontii at both distance classes, and litter depth among P. angustifolia genotypes differed up to 300%; cross type and genotype influenced web density via their effects on litter depth, and these effects were influenced by distance; web density was more sensitive to the effects of tree cross type than genotype. By influencing generalist predators, plant hybridization and genotype may indirectly impact trophic interactions such as intraguild predation, possibly affecting trophic cascades and ecosystem processes.

  8. Soil Fauna Affects Dissolved Carbon and Nitrogen in Foliar Litter in Alpine Forest and Alpine Meadow

    PubMed Central

    Liao, Shu; Yang, Wanqin; Tan, Yu; Peng, Yan; Li, Jun; Tan, Bo; Wu, Fuzhong

    2015-01-01

    Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) are generally considered important active biogeochemical pools of total carbon and nitrogen. Many studies have documented the contributions of soil fauna to litter decomposition, but the effects of the soil fauna on labile substances (i.e., DOC and TDN) in litter during early decomposition are not completely clear. Therefore, a field litterbag experiment was carried out from 13th November 2013 to 23rd October 2014 in an alpine forest and an alpine meadow located on the eastern Tibetan Plateau. Litterbags with different mesh sizes were used to provide access to or prohibit the access of the soil fauna, and the concentrations of DOC and TDN in the foliar litter were measured during the winter (the onset of freezing, deep freezing and thawing stage) and the growing season (early and late). After one year of field incubation, the concentration of DOC in the litter significantly decreased, whereas the TDN concentration in the litter increased. Similar dynamic patterns were detected under the effects of the soil fauna on both DOC and TDN in the litter between the alpine forest and the alpine meadow. The soil fauna showed greater positive effects on decreasing DOC concentration in the litter in the winter than in the growing season. In contrast, the dynamics of TND in the litter were related to seasonal changes in environmental factors, rather than the soil fauna. In addition, the soil fauna promoted a decrease in litter DOC/TDN ratio in both the alpine forest and the alpine meadow throughout the first year of decomposition, except for in the late growing season. These results suggest that the soil fauna can promote decreases in DOC and TDN concentrations in litter, contributing to early litter decomposition in these cold biomes. PMID:26406249

  9. Soil Fauna Affects Dissolved Carbon and Nitrogen in Foliar Litter in Alpine Forest and Alpine Meadow.

    PubMed

    Liao, Shu; Yang, Wanqin; Tan, Yu; Peng, Yan; Li, Jun; Tan, Bo; Wu, Fuzhong

    2015-01-01

    Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) are generally considered important active biogeochemical pools of total carbon and nitrogen. Many studies have documented the contributions of soil fauna to litter decomposition, but the effects of the soil fauna on labile substances (i.e., DOC and TDN) in litter during early decomposition are not completely clear. Therefore, a field litterbag experiment was carried out from 13th November 2013 to 23rd October 2014 in an alpine forest and an alpine meadow located on the eastern Tibetan Plateau. Litterbags with different mesh sizes were used to provide access to or prohibit the access of the soil fauna, and the concentrations of DOC and TDN in the foliar litter were measured during the winter (the onset of freezing, deep freezing and thawing stage) and the growing season (early and late). After one year of field incubation, the concentration of DOC in the litter significantly decreased, whereas the TDN concentration in the litter increased. Similar dynamic patterns were detected under the effects of the soil fauna on both DOC and TDN in the litter between the alpine forest and the alpine meadow. The soil fauna showed greater positive effects on decreasing DOC concentration in the litter in the winter than in the growing season. In contrast, the dynamics of TND in the litter were related to seasonal changes in environmental factors, rather than the soil fauna. In addition, the soil fauna promoted a decrease in litter DOC/TDN ratio in both the alpine forest and the alpine meadow throughout the first year of decomposition, except for in the late growing season. These results suggest that the soil fauna can promote decreases in DOC and TDN concentrations in litter, contributing to early litter decomposition in these cold biomes.

  10. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream.

    PubMed

    Mora-Gómez, Juanita; Elosegi, Arturo; Duarte, Sofia; Cássio, Fernanda; Pascoal, Cláudia; Romaní, Anna M

    2016-08-01

    Microorganisms are key drivers of leaf litter decomposition; however, the mechanisms underlying the dynamics of different microbial groups are poorly understood. We investigated the effects of seasonal variation and invertebrates on fungal and bacterial dynamics, and on leaf litter decomposition. We followed the decomposition of Populus nigra litter in a Mediterranean stream through an annual cycle, using fine and coarse mesh bags. Irrespective of the season, microbial decomposition followed two stages. Initially, bacterial contribution to total microbial biomass was higher compared to later stages, and it was related to disaccharide and lignin degradation; in a later stage, bacteria were less important and were associated with hemicellulose and cellulose degradation, while fungi were related to lignin decomposition. The relevance of microbial groups in decomposition differed among seasons: fungi were more important in spring, whereas in summer, water quality changes seemed to favour bacteria and slowed down lignin and hemicellulose degradation. Invertebrates influenced litter-associated microbial assemblages (especially bacteria), stimulated enzyme efficiencies and reduced fungal biomass. We conclude that bacterial and fungal assemblages play distinctive roles in microbial decomposition and differ in their sensitivity to environmental changes, ultimately affecting litter decomposition, which might be particularly relevant in highly seasonal ecosystems, such as intermittent streams. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. 17B-Estradiol in Runoff as Affected by Various Poultry Litter Application Strategies

    USDA-ARS?s Scientific Manuscript database

    Runoff of estrogen from land fertilized with poultry litter has recently received increased attention. The objective of this study was to determine the effects of various poultry litter application strategies on 17B-estradiol concentrations in runoff water. Treatments included the effects of 1) al...

  12. Microbial communities may modify how litter quality affects potential decomposition rates as tree species migrate

    Treesearch

    Ashley D. Keiser; Jennifer D. Knoepp; Mark A. Bradford

    2013-01-01

    Background and aims Climate change alters regional plant species distributions, creating new combinations of litter species and soil communities. Biogeographic patterns in microbial communities relate to dissimilarity in microbial community function, meaning novel litters to communities may decompose differently than predicted from their chemical composition. Therefore...

  13. Decreased carbon limitation of litter respiration in a mortality-affected piñon-juniper woodland

    NASA Astrophysics Data System (ADS)

    Berryman, E.; Marshall, J. D.; Rahn, T.; Litvak, M.; Butnor, J.

    2013-03-01

    Microbial respiration depends on microclimatic variables and carbon (C) substrate availability, all of which are altered when ecosystems experience major disturbance. Widespread tree mortality, currently affecting piñon-juniper ecosystems in southwestern North America, may affect C substrate availability in several ways, for example, via litterfall pulses and loss of root exudation. To determine piñon mortality effects on C and water limitation of microbial respiration, we applied field amendments (sucrose and water) to two piñon-juniper sites in central New Mexico, USA: one with a recent (< 1 yr), experimentally induced mortality event and a nearby site with live canopy. We monitored the respiration response to water and sucrose applications to the litter surface and to the underlying mineral soil surface, testing the following hypotheses: (1) soil respiration in a piñon-juniper woodland is water- and labile C-limited in both the litter layer and mineral soil; (2) piñon mortality reduces the C limitation of litter respiration; and (3) piñon mortality enhances the C limitation of mineral soil respiration. Litter respiration at both sites responded to increased water availability, yet surprisingly, mineral soil respiration was not limited by water. Consistent with hypothesis 2, C limitation of litter respiration was lower at the recent mortality site compared to the intact canopy site. Applications to the mineral soil showed evidence of reduction in CO2 flux on the girdled site and a non-significant increase on the control. We speculate that the reduction may have been driven by water-induced carbonate dissolution, which serves as a sink for CO2 and would reduce the net flux. Widespread piñon mortality may decrease labile C limitation of litter respiration, at least during the first growing season following mortality.

  14. Nutrient enrichment in water more than in leaves affects aquatic microbial litter processing.

    PubMed

    Biasi, Cristiane; Graça, Manuel A S; Santos, Sandro; Ferreira, Verónica

    2017-06-01

    Nutrient enrichment of soils and water will intensify in the future and has the potential to alter fundamental ecosystem processes, such as litter decomposition. We tested the direct (via water nutrient enrichment) and indirect (via changes in leaf chemistry) effects of nutrient enrichment on microbial activity and decomposability of Quercus robur L. (oak) leaves in laboratory microcosms simulating streams. Senescent leaves of oak trees grown without and with fertilization were incubated under ambient and elevated water nutrient [nitrogen (N) and phosphorus (P)] concentrations for 60 days. Soil fertilization led to an increase in leaf (3.4×) and leaf litter (2.3×) N concentration. Increased water-dissolved nutrients concentrations stimulated microbial activity (N uptake, microbial respiration, fungal biomass buildup and conidia production by aquatic hyphomycetes) that translated into accelerated litter decomposition (2.1× for unfertilized and 1.6× for fertilized trees). Leaves from fertilized trees had higher microbial activity and decomposition rates than leaves from unfertilized trees only at low dissolved nutrient availability. When both litter and water nutrients concentration increased, microbial activity and leaf decomposition were stimulated, but the effects were additive and direct effects from increased dissolved nutrient availability were stronger than those mediated by increases in litter N concentration (indirect effects). Our results suggest that increases in water nutrient availability (within the range used in this study) may exert a stronger control on microbial activity and litter decomposition than litter nutrient enrichment.

  15. Does previous use affect litter box appeal in multi-cat households?

    PubMed

    Ellis, J J; McGowan, R T S; Martin, F

    2017-02-14

    It is commonly assumed that cats actively avoid eliminated materials (especially in multi-cat homes), suggesting regular litter box cleaning as the best defense against out-of-box elimination. The relationship between previous use and litter box appeal to familiar subsequent users is currently unknown. The purpose of this study was to investigate the relationship between previous litter box use and the identity of the previous user, type of elimination, odor, and presence of physical/visual obstructions in a multi-cat household scenario. Cats preferred a clean litter box to a dirty one, but the identity of the previous user had no impact on preferences. While the presence of odor from urine and/or feces did not impact litter box preferences, the presence of odorless faux-urine and/or feces did - with the presence of faux-feces being preferred over faux-urine. Results suggest neither malodor nor chemical communication play a role in litter box preferences, and instead emphasize the importance of regular removal of physical/visual obstructions as the key factor in promoting proper litter box use.

  16. The nutrition of poultry as a factor affecting litter quality and foot pad dermatitis - an updated review.

    PubMed

    Swiatkiewicz, S; Arczewska-Wlosek, A; Jozefiak, D

    2017-10-01

    Foot pad dermatitis (FPD), a condition of inflammation and necrotic lesions on the plantar surface of the footpads, is commonly observed in fast-growing broiler chickens and turkeys. FPD negatively affects the welfare of birds, performance indices and the economic profit of poultry meat production. Nutrition is an important factor affecting water intake, excreta moisture and litter quality and, in this way, the occurrence and intensity of FPD in birds. This article reviews and discusses the recent results published in the literature on the effects of nutritional factors on litter quality and FPD severity in broiler chickens and turkeys. Literature data on the efficacy of nutritional methods on the litter quality and FPD occurrence are not consistent. However, the results of several experiments indicate that the optimal level of crude protein, biotin and electrolytes (Na, K) in the diet, as well as feed additives such as feed enzymes hydrolysating non-starch polysaccharides and organic sources of microelements (zinc), may reduce the litter moisture as well as FPD incidence and severity in broiler chickens and turkey. Journal of Animal Physiology and Animal Nutrition © 2017 Blackwell Verlag GmbH.

  17. Aquatic hyphomycete diversity and identity affect leaf litter decomposition in microcosms.

    PubMed

    Duarte, Sofia; Pascoal, Cláudia; Cássio, Fernanda; Bärlocher, Felix

    2006-04-01

    We conducted a microcosm experiment with monocultures and all possible combinations of four aquatic hyphomycete species, Articulospora tetracladia, Flagellospora curta, Geniculospora grandis and Heliscus submersus, to examine the potential effects of species richness on three functional aspects: leaf litter decomposition (leaf mass loss), fungal production (ergosterol buildup) and reproductive effort (released spores). Both species richness and identity significantly affected fungal biomass and conidial production (number and biomass of released spores), whereas only species identity had a significant effect on leaf mass loss. In mixed cultures, all measures of fungal functions were greater than expected from the weighted performances of participating species in monoculture. Mixed cultures outperformed the most active monoculture for biomass accumulation but not for leaf mass loss and conidial production. The three examined aspects of aquatic hyphomycete activity tended to increase with species richness, and a complementary effect was unequivocally demonstrated for fungal biomass. Our results also suggest that specific traits of certain species may have a greater influence on ecosystem functioning than species number.

  18. Increased plastic litter cover affects the foraging activity of the sandy intertidal gastropod Nassarius pullus.

    PubMed

    Aloy, Alexander B; Vallejo, Benjamin M; Juinio-Meñez, Marie Antonette

    2011-08-01

    This study analyzed the foraging behavior of the gastropod Nassarius pullus on garbage-impacted sandy shores of Talim Bay, Batangas, Philippines. The effect of different levels of plastic garbage cover on foraging efficiency was investigated. Controlled in situ baiting experiments were conducted to quantify aspects of foraging behavior as affected by the levels of plastic litter cover in the foraging area. The results of the study indicated that the gastropod's efficiency in locating and in moving towards a food item generally decreased as the level of plastic cover increased. Prolonged food searching time and increased self-burial in sand were highly correlated with increased plastic cover. The accuracy of orientation towards the actual position of the bait decreased significantly when the amount of plastic cover increased to 50%. These results are consistent with the significant decreases in the abundance of the gastropod observed during periods of deposition of large amounts of plastic and other debris on the shore. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Initial phylogenetic relatedness of saprotrophic fungal communities affects subsequent litter decomposition rates.

    PubMed

    Kivlin, Stephanie N; Treseder, Kathleen K

    2015-05-01

    Ecosystem-level consequences of biodiversity loss of macroorganisms are well understood, while the repercussions of species extirpation in microbial systems are not. We manipulated species richness and phylogenetic relatedness of saprotrophic fungi in situ in a boreal forest to address this issue. Litter decomposition rates (as total mass loss) after 2 months were significantly higher in the least phylogenetically related fungal assemblages. Likewise, cellulose loss was also highest in the most distantly related treatments after 1 year. There were marginal effects of species richness on mass loss that only affected decomposition after 2 months. At the end of 1 year of decomposition, most fungal communities had collapsed from their original diversity to two species, mainly in the Penicillium or Hypocrea clades. Two concurrent processes may explain these results: competition between closely related fungal taxa and phylogenetic conservation in cellulose decomposition. Our results suggest that phylogenetic relatedness of fungal communities may be a more appropriate metric than species richness or community composition to predict functional responses of fungal communities to global change.

  20. Intensive cattle grazing affects pasture litter-fall: an unrecognized nitrous oxide source.

    PubMed

    Pal, Pranoy; Clough, Tim J; Kelliher, Francis M; van Koten, Chikako; Sherlock, Robert R

    2012-01-01

    The rationale for this study came from observing grazing dairy cattle dropping freshly harvested plant material onto the soil surface, hereafter called litter-fall. The Intergovernmental Panel on Climate Change (IPCC) guidelines include NO emissions during pasture renewal but do not consider NO emissions that may result from litter-fall. The objectives of this study were to determine litter-fall rates and to assess indicative NO emission factors (EFs) for the dominant pasture species (perennial ryegrass [ L.] and white clover [ L.]). Herbage was vacuumed from intensively managed dairy pastures before and after 30 different grazing events when cows (84 cows ha) grazed for 24 h according to a rotational system; the interval between grazing events ranged from 21 to 30 d. A laboratory incubation study was performed to assess potential EF values for the pasture species at two soil moisture contents. Finely ground pasture material was incubated under controlled laboratory conditions with soil, and the NO emissions were measured until rates returned to control levels. On average, pre- and postgrazing dry matter yields per grazing event were 2516 ± 636 and 1167 ± 265 kg DM ha (±SD), respectively. Pregrazing litter was absent, whereas postgrazing fresh and senesced litter-fall rates were 53 ± 24 and 19 ± 18 kg DM ha, respectively. Annually, the rotational grazing system resulted in 12 grazing events where fresh litter-fall equaed to 16 kg N ha yr to the soil. Emission factors in the laboratory experiment indicated that the EF for perennial ryegrass and white clover ranged from 0.7 to 3.1%. If such EF values should also occur under field conditions, then we estimate that litter-fall induces an NO emission rate of 0.3 kg NO ha yr. Litter-fall as a source of NO in grazed pastures requires further assessment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Correlation of foliage and litter chemistry of sugar maple, Acer saccharum, as affected by elevated CO2 and varying N availability, and effects on decomposition

    Treesearch

    J. S. King; K. S. Pregitzer; D. R. Zak; M. E. Kubiske; W. E. Holmes

    2001-01-01

    Rising atmospheric carbon dioxide has the potential to alter leaf litter chemistry, potentially affecting decomposition and rates of carbon and nitrogen cycling in forest ecosystems. This study was conducted to determine whether growth under elevated atmospheric CO2 altered the quality and microbial decomposition of leaf litter of a widely...

  2. Sustaining anti-littering behavior within coastal and marine environments: Through the macro-micro level lenses.

    PubMed

    Beeharry, Yashna Devi; Bekaroo, Girish; Bokhoree, Chandradeo; Phillips, Michael Robert; Jory, Neelakshi

    2017-06-30

    Being regarded as a problem of global dimensions, marine litter has been a growing concern that affects human beings, wildlife and the economic health of coastal communities to varying degrees. Due to its involvement with human behavior, marine littering has been regarded as a cultural matter encompassing macro and micro level aspects. At the micro or individual level, behavior and behavioral motivation of an individual are driven by perception of that person while at the macro or societal level, aspects including policies and legislations influence behavior. This paper investigates marine littering through the macro-micro level lenses in order to analyze and recommend how anti-littering behavior can be improved and sustained. Using Coleman's model of micro-macro relations, research questions are formulated and investigated through a social survey. Results showed important differences in perceptions among participating groups and to address key issues, potential actions are proposed along with a framework to sustain anti-littering behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Treadmill walking differently affects body composition and metabolic parameters of female rats from normal or small litters.

    PubMed

    Sakakima, G M; Dos Santos, E R; Bueno, G C; Rempel, M S; Furlan, J P; da Costa, Cem; Godoi, Vaf; Pedrosa, Mmd

    2016-06-01

    This work assessed whether walking affects bodily development and metabolic parameters of female rats raised in small litters (three pups, group S) or control litters (nine pups, group C). After weaning, some of the rats had five sessions per week of a 30-min treadmill walking (CE and SE), while the others remained sedentary (CS and SS) until the age of 120 days. Exercise caused a reduction of body weight (CS/CE = 1.18), Lee index (CS/CE = 1.04), fasting blood glucose (CS/CE = 1.35), mesenteric (CS/CE = 1.23), and ovarian fat (CS/CE = 1.33) in CE, but only glucose was decreased in SE (SS/SE = 1.16). The diameter of adipocytes decreased to a half in the small-litter groups. Exercise increased subcutaneous (CS/CE = 0.88 and SS/SE = 0.71), but decreased retroperitoneal adipocytes (CS/CE = 1.2 and SS/SE = 1.3). Litter size reduction had little impact on females at the age of 120 days, but the light physical activity seemed insufficient to counteract all the effects of lactational overfeeding. On the other hand, pups from exercised mothers had a decrease in their biometric and glycemic indexes, demonstrating the transgenerational action of regular, although light, exercise.

  4. Maternal and affective behaviors of lactating rats reared in overlapping litters.

    PubMed

    Uriarte, Natalia; Fernández, María Victoria; Agrati, Daniella; Zuluaga, María José; Ferreño, Marcela; Ferreira, Annabel

    2014-01-01

    Postpartum mating in rats gives rise to complex family units consisting of the mother and two overlapping litters. As a consequence, newborn pups of the second litter, since the moment they are born, acquire experience not only from interaction with the mother and age-matched littermates but also from interaction with older siblings. Newborn pups reared in overlapping litters (OLs) receive a different pattern of maternal stimulation compared to those reared in single litters (SL: one litter of same aged pups), as the mothers reduce some maternal behavior components and juvenile pups from the first litter develop maternal behavior. Since there is strong evidence showing that variations in maternal behavior are transmitted throughout generations, we hypothesized that the altered pattern of maternal stimulation received by OL reared females would modify their behavior during motherhood. To test this hypothesis maternal behavior, maternal aggression and experimental anxiety of dams reared under OL and SL conditions during the first postpartum week were compared. No differences were found between the groups in their maternal behavior and aggression. This result may be explained by the maternal behavior of the juveniles that could compensate for the deficits in the caregiving behaviors received by OL litters. However, a subtle temporal reorganization of the licking behavior was found in OL reared mothers, together with an increased anxiety-related behavior in the plus maze test. These results suggest dissociation in the effects provoked by early environmental alterations on different behavioral systems, and more importantly, that independently of their early family composition, both groups can cope effectively with the changing demands of the pups.

  5. How interacting fungal species and mineral nitrogen inputs affect transfer of nitrogen from litter via arbuscular mycorrhizal mycelium.

    PubMed

    He, Yuejun; Cornelissen, J Hans C; Zhong, Zhangcheng; Dong, Ming; Jiang, Changhong

    2017-04-01

    In the karst landscape, widespread in the world including southern China, soil nutrient supply is strongly constrained. In such environments, arbuscular mycorrhizal (AM) fungi may facilitate plant nutrient uptake. However, the possible role of different AM fungal species, and their interactions, especially in transferring nitrogen (N) from litter to plant, is poorly understood. We conducted two microcosm experiments to investigate the role that two karst soil AM fungi, Glomus etunicatum and Glomus mosseae, play in the transfer of N from decomposing litter to the host plant and to determine how N availability influences these processes. In experiment 1, Cinnamomum camphora tree seedlings were grown in compartments inoculated with G. etunicatum. Lolium perenne leaf litter labeled with δ(15)N was added to the soil in unplanted compartments. Compartments containing the δ(15)N labeled litter were either accessible to hyphae but not to seedling roots or were not accessible to hyphae or roots. The addition of mineral N to one of the host compartments at the start of the experiment significantly increased the biomass of the C. camphora seedlings, N content and N:P ratio, AM mycelium length, and soil microbial biomass carbon and N. However, significantly, more δ(15)N was acquired, from the leaf litter by the AM hyphae and transferred to the host when mineral N was not added to the soil. In experiment 2, in which C. camphora seedlings were inoculated with both G. etunicatum and G. mosseae rather than with G. mosseae alone, there was a significant increase in mycelial growth (50.21%), in soil microbial biomass carbon (417.73%) in the rhizosphere, and in the amount of δ(15)N that was transferred to the host. These findings suggest that maintaining AM fungal diversity in karst soils could be important for mediating N transfer from organic material to host plants in N-poor soils.

  6. Eutrophication triggers contrasting multilevel feedbacks on litter accumulation and decomposition in fens.

    PubMed

    Emsens, W-J; Aggenbach, C J S; Grootjans, A P; Nfor, E E; Schoelynck, J; Struyf, E; van Diggelen, R

    2016-10-01

    Eutrophication is a major threat for the persistence of nutrient-poor fens, as multilevel feedbacks on decomposition rates could trigger carbon loss and increase nutrient cycling. Here, we experimentally investigate the effects of macronutrient (NPK) enrichment on litter quality of six species of sedge (Carex sp.), which we relate to litter decomposition rates in a nutrient-poor and nutrient-rich environment. Our research focused on four levels: we examined how eutrophication alters (1) fresh litter production ("productivity shift"), (2) litter stoichiometry within the same species ("intraspecific shift"), (3) overall litter stoichiometry of the vegetation under the prediction that low-competitive species are outcompeted by fast-growing competitors ("interspecific shift"), and (4) litter decomposition rates due to an altered external environment (e.g., shifts in microbial activity; "exogenous shift"). Eutrophication triggered a strong increase in fresh litter production. Moreover, individuals of the same species produced litter with lower C:N and C:P ratios, higher K contents, and lower lignin, Ca and Mg contents (intraspecific shift), which increased litter decomposability. In addition, species typical for eutrophic conditions produced more easily degradable litter than did species typical for nutrient-poor conditions (interspecific shift). However, the effects of nutrient loading of the external environment (exogenous shift) were contradictory. Here, interactions between litter type and ambient nutrient level indicate that the (exogenous) effects of eutrophication on litter decomposition rates are strongly dependent of litter quality. Moreover, parameters of litter quality only correlated with decomposition rates for litter incubated in nutrient-poor environments, but not in eutrophic environments. This suggests that rates of litter decomposition can be uncoupled from litter stoichiometry under eutrophic conditions. In conclusion, our results show that

  7. 40 CFR 1502.15 - Affected environment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Affected environment. 1502.15 Section 1502.15 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY ENVIRONMENTAL IMPACT STATEMENT § 1502.15 Affected environment. The environmental impact statement shall succinctly describe the...

  8. 40 CFR 1502.15 - Affected environment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Affected environment. 1502.15 Section 1502.15 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY ENVIRONMENTAL IMPACT STATEMENT § 1502.15 Affected environment. The environmental impact statement shall succinctly describe the...

  9. 40 CFR 1502.15 - Affected environment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Affected environment. 1502.15 Section 1502.15 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY ENVIRONMENTAL IMPACT STATEMENT § 1502.15 Affected environment. The environmental impact statement shall succinctly describe the...

  10. 40 CFR 1502.15 - Affected environment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Affected environment. 1502.15 Section 1502.15 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY ENVIRONMENTAL IMPACT STATEMENT § 1502.15 Affected environment. The environmental impact statement shall succinctly describe the...

  11. 40 CFR 1502.15 - Affected environment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Affected environment. 1502.15 Section 1502.15 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY ENVIRONMENTAL IMPACT STATEMENT § 1502.15 Affected environment. The environmental impact statement shall succinctly describe the...

  12. Citizen scientists reveal: Marine litter pollutes Arctic beaches and affects wild life.

    PubMed

    Bergmann, Melanie; Lutz, Birgit; Tekman, Mine B; Gutow, Lars

    2017-09-27

    Recent data indicate accumulation areas of marine litter in Arctic waters and significant increases over time. Beaches on remote Arctic islands may be sinks for marine litter and reflect pollution levels of the surrounding waters particularly well. We provide the first quantitative data from surveys carried out by citizen scientists on six beaches of Svalbard. Litter quantities recorded by cruise tourists varied from 9-524gm(-2) and were similar to those from densely populated areas. Plastics accounted for >80% of the overall litter, most of which originated from fisheries. Photographs provided by citizens show deleterious effects of beach litter on Arctic wildlife, which is already under strong pressure from global climate change. Our study highlights the potential of citizen scientists to provide scientifically valuable data on the pollution of sensitive remote ecosystems. The results stress once more that current legislative frameworks are insufficient to tackle the pollution of Arctic ecosystems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Maternal immune activation affects litter success, size and neuroendocrine responses related to behavior in adult offspring.

    PubMed

    French, Susannah S; Chester, Emily M; Demas, Gregory E

    2013-07-02

    It is increasingly evident that influences other than genetics can contribute to offspring phenotype. In particular, maternal influences are an important contributing factor to offspring survival, development, physiology and behavior. Common environmental pathogens such as viral or bacterial microorganisms can induce maternal immune responses, which have the potential to alter the prenatal environment via multiple independent pathways. The effects of maternal immune activation on endocrine responses and behavior are less well studied and provide the basis for the current study. Our approach in the current study was two-pronged: 1) quantify sickness responses during pregnancy in adult female hamsters experiencing varying severity of immune responsiveness (i.e., differing doses of lipopolysaccharide [LPS]), and 2) assess the effects of maternal immune activation on offspring development, immunocompetence, hormone profiles, and social behavior during adulthood. Pregnancy success decreased with increasing doses of LPS, and litter size was reduced in LPS dams that managed to successfully reproduce. Unexpectedly, pregnant females treated with LPS showed a hypothermic response in addition to the more typical anorexic and body mass changes associated with sickness. Significant endocrine changes related to behavior were observed in the offspring of LPS-treated dams; these effects were apparent in adulthood. Specifically, offspring from LPS treated dams showed significantly greater cortisol responses to stressful resident-intruder encounters compared with offspring from control dams. Post-behavior cortisol was elevated in male LPS offspring relative to the offspring of control dams, and was positively correlated with the frequency of bites during agonistic interactions, and cortisol levels in both sexes were related to defensive behaviors, suggesting that changes in hypothalamo-pituitary-adrenal axis responsiveness may play a regulatory role in the observed behavioral

  14. Field Experiments in Litter Control

    ERIC Educational Resources Information Center

    Finnie, William C.

    1973-01-01

    A series of urban and highway litter experiments in Richmond (Virginia), St. Louis, and Philadelphia indicated well-designed litter cans reduced littering about 15 percent along city streets and nearly 30 percent along highways. Also, the propensity to litter is critically affected by the characteristics of the individual and environmental…

  15. Field Experiments in Litter Control

    ERIC Educational Resources Information Center

    Finnie, William C.

    1973-01-01

    A series of urban and highway litter experiments in Richmond (Virginia), St. Louis, and Philadelphia indicated well-designed litter cans reduced littering about 15 percent along city streets and nearly 30 percent along highways. Also, the propensity to litter is critically affected by the characteristics of the individual and environmental…

  16. Space Allowance of the Littered Area Affects Lying Behavior in Group-Housed Horses

    PubMed Central

    Burla, Joan-Bryce; Rufener, Christina; Bachmann, Iris; Gygax, Lorenz; Patt, Antonia; Hillmann, Edna

    2017-01-01

    Horses can sleep while standing; however, recumbency is required for rapid eye movement (REM) sleep and therefore essential. Previous research indicated a minimal duration of recumbency of 30 min per 24 h to perform a minimal duration of REM sleep. For group-housed horses, suitable lying area represents a potentially limited resource. In Switzerland, minimal dimensions for the space allowance of the littered area are therefore legally required. To assess the effect of different space allowances of the littered area on lying behavior, 38 horses in 8 groups were exposed to 4 treatments for 11 days each; T0: no litter provided, T0.5: 0.5× minimal dimensions, T1: minimal dimensions, and T1.5: 1.5× minimal dimensions. Non-littered areas were covered with hard rubber mats. Lying behavior was observed during the last 72 h of each treatment. The total number of lying bouts per 24 h was similar in treatments providing litter, whereas in treatment T0, recumbency occurred only rarely (F1,93 = 14.74, p = 0.0002) with the majority of horses lying down for less than 30 min per 24 h (χ12=11.82, p = 0.0006). Overall, the total duration of recumbency per 24 h increased with increasing dimensions of the littered area, whereby the effect attenuated between treatment T1 and T1.5 in high-ranking horses but continued in low-ranking horses (F1,91 = 3.22, p = 0.076). Furthermore, low-ranking horses showed considerably more forcedly terminated lying bouts in treatments T0.5 and T1, but were similar to high-ranking horses in T1.5 (F1,76 = 8.43, p = 0.005). Nonetheless, a number of individuals showed durations of recumbency of less than 30 min per 24 h even in treatment T1.5. The lying behavior was dependent on the availability of a soft and deformable surface for recumbency. A beneficial effect of enlarged dimensions of the littered area was shown by increased durations of recumbency and decreased proportion of forcedly terminated lying

  17. Space Allowance of the Littered Area Affects Lying Behavior in Group-Housed Horses.

    PubMed

    Burla, Joan-Bryce; Rufener, Christina; Bachmann, Iris; Gygax, Lorenz; Patt, Antonia; Hillmann, Edna

    2017-01-01

    Horses can sleep while standing; however, recumbency is required for rapid eye movement (REM) sleep and therefore essential. Previous research indicated a minimal duration of recumbency of 30 min per 24 h to perform a minimal duration of REM sleep. For group-housed horses, suitable lying area represents a potentially limited resource. In Switzerland, minimal dimensions for the space allowance of the littered area are therefore legally required. To assess the effect of different space allowances of the littered area on lying behavior, 38 horses in 8 groups were exposed to 4 treatments for 11 days each; T0: no litter provided, T0.5: 0.5× minimal dimensions, T1: minimal dimensions, and T1.5: 1.5× minimal dimensions. Non-littered areas were covered with hard rubber mats. Lying behavior was observed during the last 72 h of each treatment. The total number of lying bouts per 24 h was similar in treatments providing litter, whereas in treatment T0, recumbency occurred only rarely (F1,93 = 14.74, p = 0.0002) with the majority of horses lying down for less than 30 min per 24 h ([Formula: see text], p = 0.0006). Overall, the total duration of recumbency per 24 h increased with increasing dimensions of the littered area, whereby the effect attenuated between treatment T1 and T1.5 in high-ranking horses but continued in low-ranking horses (F1,91 = 3.22, p = 0.076). Furthermore, low-ranking horses showed considerably more forcedly terminated lying bouts in treatments T0.5 and T1, but were similar to high-ranking horses in T1.5 (F1,76 = 8.43, p = 0.005). Nonetheless, a number of individuals showed durations of recumbency of less than 30 min per 24 h even in treatment T1.5. The lying behavior was dependent on the availability of a soft and deformable surface for recumbency. A beneficial effect of enlarged dimensions of the littered area was shown by increased durations of recumbency and decreased proportion of forcedly terminated

  18. MINERALIZATION OF NITROGEN FROM BROILER LITTER AS AFFECTED BY SOIL TEXTURE IN THE SOUTHEASTERN COASTAL PLAIN

    USDA-ARS?s Scientific Manuscript database

    A field study was conducted during 2004-2005 to determine nitrogen (N) mineralization of broiler litter (BL) in two Coastal Plain soils of differing texture, sandy or clayey. The soils were a Tifton loamy sand (fine-loamy, siliceous, thermic, Plinthic Kandiudults) and a Greenville sandy clay loam (...

  19. Does Short-term Litter Input Manipulation Affect Soil Respiration and the Carbon-isotopic Signature of Soil Respired CO2

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Wu, J.

    2016-12-01

    Global change greatly alters the quality and quantity of plant litter inputs to soils, and further impacts soil organic matter (SOM) dynamics and soil respiration. However, the process-based understanding of how soil respiration may change with future shift in litter input is not fully understood. The Detritus Input and Removal Treatment (DIRT) experiment was conducted in coniferous forest (Platycladus orientalis (Linn.) Franco) ecosystem of central China to investigate the impact of above- and belowground litter input on soil respiration and the carbon-isotopic signature of soil respired CO2. Short-term (1-2 years) litter input manipulation significantly affected soil respiration, based on annual flux values, soil respiration was 31.9%, 20.5% and 37.2% lower in no litter (NL), no root (NR) and no input (NRNL), respectively, compared to control (CK). Whereas double litter (DL) treatment increased soil respiration by 9.1% compared to CK. The recalcitrance index of carbon (RIC) and the relative abundance of fungi increased under litter removal or root exclusion treatment (NL, NR and NRNL) compared to CK. Basal soil respiration was positively related to liable C and microbial biomass and negatively related to RIC and fungi to bacteria (F: B) ratio. The carbon-isotopic signature of soil respired CO2 enriched under litter removal and no input treatment, and slightly depleted under litter addition treatment compared to CK. Our results suggest that short-term litter input manipulation can affect the soil respiration by altering substrate availability and microbial community structure, and also impact the carbon-isotopic signature of soil respired CO2 possibly duo to change in the component of soil respiration and soil microclimate.

  20. Factors Affecting the Abundance of Leaf-Litter Arthropods in Unburned and Thrice-Burned Seasonally-Dry Amazonian Forests

    PubMed Central

    Silveira, Juliana M.; Barlow, Jos; Louzada, Julio; Moutinho, Paulo

    2010-01-01

    Fire is frequently used as a land management tool for cattle ranching and annual crops in the Amazon. However, these maintenance fires often escape into surrounding forests, with potentially severe impacts for forest biodiversity. We examined the effect of experimental fires on leaf-litter arthropod abundance in a seasonally-dry forest in the Brazilian Amazon. The study plots (50 ha each) included a thrice-burned forest and an unburned control forest. Pitfall-trap samples were collected at 160 randomly selected points in both plots, with sampling stratified across four intra-annual replicates across the dry and wet seasons, corresponding to 6, 8, 10 and 12 months after the most recent fire. Arthropods were identified to the level of order (separating Formicidae). In order to better understand the processes that determine arthropod abundance in thrice-burned forests, we measured canopy openness, understory density and litter depth. All arthropod taxa were significantly affected by fire and season. In addition, the interactions between burn treatment and season were highly significant for all taxa but Isoptera. The burned plot was characterized by a more open canopy, lower understory density and shallower litter depth. Hierarchical partitioning revealed that canopy openness was the most important factor explaining arthropod order abundances in the thrice-burned plot, whereas all three environmental variables were significant in the unburned control plot. These results reveal the marked impact of recurrent wildfires and seasonality on litter arthropods in this transitional forest, and demonstrate the overwhelming importance of canopy-openness in driving post-fire arthropod abundance. PMID:20877720

  1. Factors affecting the abundance of leaf-litter arthropods in unburned and thrice-burned seasonally-dry Amazonian forests.

    PubMed

    Silveira, Juliana M; Barlow, Jos; Louzada, Julio; Moutinho, Paulo

    2010-09-21

    Fire is frequently used as a land management tool for cattle ranching and annual crops in the Amazon. However, these maintenance fires often escape into surrounding forests, with potentially severe impacts for forest biodiversity. We examined the effect of experimental fires on leaf-litter arthropod abundance in a seasonally-dry forest in the Brazilian Amazon. The study plots (50 ha each) included a thrice-burned forest and an unburned control forest. Pitfall-trap samples were collected at 160 randomly selected points in both plots, with sampling stratified across four intra-annual replicates across the dry and wet seasons, corresponding to 6, 8, 10 and 12 months after the most recent fire. Arthropods were identified to the level of order (separating Formicidae). In order to better understand the processes that determine arthropod abundance in thrice-burned forests, we measured canopy openness, understory density and litter depth. All arthropod taxa were significantly affected by fire and season. In addition, the interactions between burn treatment and season were highly significant for all taxa but Isoptera. The burned plot was characterized by a more open canopy, lower understory density and shallower litter depth. Hierarchical partitioning revealed that canopy openness was the most important factor explaining arthropod order abundances in the thrice-burned plot, whereas all three environmental variables were significant in the unburned control plot. These results reveal the marked impact of recurrent wildfires and seasonality on litter arthropods in this transitional forest, and demonstrate the overwhelming importance of canopy-openness in driving post-fire arthropod abundance.

  2. Succession of Phylogeny and Function During Plant Litter Decomposition (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Brodie, Eoin

    2013-03-01

    Eoin Brodie of Berkeley Lab on "Succession of phylogeny and function during plant litter decomposition" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  3. Enrichment of uranium in particulate matter during litter decomposition affected by Gammarus pulex L.

    PubMed

    Schaller, Jörg; Weiske, Arndt; Mkandawire, Martin; Dudel, E Gert

    2008-12-01

    Plant litter and organic matter of aquatic sediments provide a significant sink of soluble inorganic uranium species in contaminated ecosystems. The uranium content in detritus has been observed to increase significantly during decomposition. However, the influence of the decomposer community on uranium fixation remains unclear. In view of this, we investigated the influence of a shredder (the freshwater shrimp Gammarus pulex L) on uranium fixation and mobilization during the degradation of plant litter. Leaf litter from Alnus glutinosa (L.) Gaertn. with 1152 mg kg(-1) U of dry biomass (DM) and without uranium was used in a 14-day laboratory experiment. The uranium concentration in the particulate organic material (POM) at the end of experiment was 1427 mg kg(-1) DM. After 14 days of decay, the residues of the leaves show a uranium concentration of 644 mg kg(-1) DM. Uranium concentrations in the media initially increased reaching up to 63.9 microg L(-1) but finally decreased to an average value of 34.3 microg L(-1). Atthe same time, DOC levels increased from 2.43 mg L(-1) up to 11.4 mg L(-1) in the course of the experiment Hence, inorganic uranium fixation onto particulate organic matter was enhanced by the activity of G. pulex.

  4. Fungal diversity of saprotrophic litter fungi in a Mediterranean maquis environment.

    PubMed

    Lunghini, D; Granito, V M; Di Lonardo, D P; Maggi, O; Persiani, A M

    2013-01-01

    Monospecific and mixed-leaf litters from plant species of Mediterranean maquis (Quercus ilex, Phillyrea angustifolia, Pistacia lentiscus, Cistus spp.) in an undisturbed area in southern Italy were studied with respect to the structure and composition of their decomposer fungal community over an incubation period of 403 d. The data matrix structure was analyzed by means of detrended correspondence analysis (DCA), while indicator species analysis (ISA) was used to determine the preferential association of species with a substrate, a succession phase and monospecific/mixed experimental conditions. The ecological nature of the gradient expressed by the DCA axes was investigated by means of experimental and main chemical leaf-litter variables. The litter mixture had non-additive effects on the decomposition process even though the fungal species richness of the mixed litter was considerably higher than that of the monospecific litter. Our findings highlight the occurrence of shifts in the fungal community during decomposition in response to changes in the substrate, such as those related to the cellulose content and lignin/N ratio.

  5. Soil fauna slow down decomposition of leaf litter

    NASA Astrophysics Data System (ADS)

    Frouz, J.

    2009-04-01

    In one year incubation laboratory experiment, decomposition of alder, oak and willow litter was compared with decomposition of excrements of St marks Fly larvae (Bibio marci), produced from the same liter. Decomposition (amount of CO2 produced) was significantly higher in leas litter than in excrements. Invertebrates affect litter by many ways liter is fragmented mechanically during feeding exposed to alkaline environment and enzymes in the gut and coated by clay mineral during gut passage. In order to explore potential mechanisms that may be responsible for reduction of decomposition process 3 litter treatments with mimic certain aspects of invertebrate influence was prepared: fragmented litter, litter treated by alkaline solution and mixed with clay (kaolinite). Among those treatments Alkalization has the most strong effect on decomposition slow down.

  6. Arsenic fixation on iron-hydroxide-rich and plant litter-containing sediments in natural environments

    NASA Astrophysics Data System (ADS)

    Fritzsche, Andreas; Dienemann, Holger; Dudel, Ernst Gert

    2006-10-01

    Iron-hydroxide-rich and plant litter-containing sediments from natural sites contaminated with uranium mine tailing leachates were examined for their ability to adsorb arsenic. The samples with high contents of iron hydroxides (Fetotal concentration, >300 g kg-1) exhibited remarkable fixation of arsenic (up to 40 g As kg-1). This value corresponded approximately to the supersaturation point for natural iron hydroxides under the present conditions, and it was significantly lower than the value found for synthetic iron hydroxides. There was a strong correlation ( R=0.8999) between the concentration of iron and that of arsenic at low arsenic contents, indicating adsorption on strong binding sites. Although all the samples had noticeable contents of organic carbon (plant litter), calcium, and manganese, no obvious effect of these elements on arsenic fixation could be detected. The amount of iron hydroxides was found the only fixation-controlling parameter immediately below a leaching water source.

  7. Temperature affects leaf litter decomposition in low-order forest streams: field and microcosm approaches.

    PubMed

    Martínez, Aingeru; Larrañaga, Aitor; Pérez, Javier; Descals, Enrique; Pozo, Jesús

    2014-01-01

    Despite predicted global warming, the temperature effects on headwater stream functioning are poorly understood. We studied these effects on microbial-mediated leaf decomposition and the performance of associated aquatic hyphomycete assemblages. Alder leaves were incubated in three streams differing in winter water temperature. Simultaneously, in laboratory, leaf discs conditioned in these streams were incubated at 5, 10 and 15 °C. We determined mass loss, leaf N and sporulation rate and diversity of aquatic hyphomycete communities. In the field, decomposition rate correlated positively with temperature. Decomposition rate and leaf N presented a positive trend with dissolved nutrients, suggesting that temperature was not the only factor determining the process velocity. Under controlled conditions, it was confirmed that decomposition rate and leaf N were positively correlated with temperature, leaves from the coldest stream responding most clearly. Sporulation rate correlated positively with temperature after 9 days of incubation, but negatively after 18 and 27 days. Temperature rise affected negatively the sporulating fungi richness and diversity only in the material from the coldest stream. Our results suggest that temperature is an important factor determining leaf processing and aquatic hyphomycete assemblages and that composition and activity of fungal communities adapted to cold environments could be more affected by temperature rises. Highlight: Leaf decomposition rate and associated fungal communities respond to temperature shifts in headwater streams.

  8. Influence of raised plastic floors compared with pine shaving litter on environment and Pekin duck condition.

    PubMed

    Karcher, D M; Makagon, M M; Fraley, G S; Fraley, S M; Lilburn, M S

    2013-03-01

    Commercial poultry production management practices have been under increased public scrutiny driven by concerns for food safety and animal welfare. Within the United States, wood shavings and raised plastic floors are common flooring systems used in duck production. It is intuitive that each flooring type would present different management challenges influencing physical characteristics of growing ducks. This study evaluated the relationship between flooring type and duck condition during the winter. Random samples of 20 ducks from 5 predetermined areas (n = 100) were examined in commercial duck houses (n = 9, litter; n = 11, raised plastic slats). Ducks were assessed at 7, 21, and 32 d of age for eye, nostril, and feather cleanliness, feather and foot pad quality, and gait. The data were analyzed to determine the proportion of ducks with a given score. In both housing types, the proportion of 0 scores for foot pad quality improved during the production cycle (P < 0.0001). Feather hygiene declined with age in ducks reared on litter flooring, whereas ducks reared on slatted flooring had cleaner feathers at d 32 (P < 0.011). With the exception of foot pad scores, the majority of ducks had no detectable problems for any single trait. The only main effect due to flooring pertained to feather quality with the proportion of ducks having a 0 or 1 score greater in litter flooring systems than slats (P < 0.05). Overall, the condition of ducks reared, regardless of flooring system, was considered to be good.

  9. Foliar litter nitrogen dynamics as affected by forest gap in the alpine forest of eastern Tibet Plateau.

    PubMed

    Wu, Qiqian; Wu, Fuzhong; Yang, Wanqin; Zhao, Yeyi; He, Wei; Tan, Bo

    2014-01-01

    There is increasing attention on the effects of seasonal snowpack on wintertime litter decomposition, as well as the processes following it, in cold biomes. However, little information is available on how litter nitrogen (N) dynamics vary with snowpack variations created by tree crown canopies in alpine forests. Therefore, to understand the effects of seasonal snowpack on litter N dynamics during different critical stages, litterbags with fir (Abies faxoniana), birch (Betula albo-sinensis), larch (Larix mastersiana) and cypress (Sabina saltuaria) foliar litter were placed on the forest floor beneath snowpack created by forest gaps in the eastern Tibet Plateau. The litterbags were sampled at the onset of freezing, deep freezing, thawing and growing stages from October 2010 to October 2012. Mass loss and N concentrations in litter were measured. Over two years of decomposition, N release occurred mainly during the first year, especially during the first winter. Litter N release rates (both in the first year and during the entire two-year decomposition study period) were higher in the center of canopy gaps than under closed canopy, regardless of species. Litter N release rates in winter were also highest in the center of canopy gaps and lowest under closed canopy, regardless of species, however the reverse was found during the growing season. Compared with broadleaf litter, needle litter N release comparisons of gap center to closed canopy showed much stronger responses to the changes in snow cover in winter and availability of sunshine during the growing season. As the decomposition proceeded, decomposing litter quality, microbial biomass and environmental temperature were important factors related to litter N release rate. This suggests that if winter warm with climate change, reduced snow cover in winter might slow down litter N release in alpine forest.

  10. Decreased carbon limitation of litter respiration in a mortality-affected pinon-juniper woodland

    Treesearch

    Erin Berryman; John D. Marshall; Thom Rahn; Marcie Litvak; John Butnor

    2013-01-01

    Microbial respiration depends on microclimatic variables and carbon (C) substrate availability, all of which are altered when ecosystems experience major disturbance. Widespread tree mortality, currently affecting pinon-juniper ecosystems in southwestern North America, may affect C substrate availability in several ways, for example, via litterfall pulses and loss of...

  11. Does anthracene affect microbial activities and organic matter decomposition? A comparative study in Pinus halepensis litters from Mediterranean coastal and inland areas.

    PubMed

    Qasemian, Leila; Guiral, Daniel; Ziarelli, Fabio; Ruaudel, Florence; Farnet, Anne-Marie

    2012-10-01

    The widespread concern about pollution caused by Polycyclic Aromatic Hydrocarbons (PAHs) raises the question of how they affect soil microbial communities which are potentially involved in the transformation of these pollutants. Using microcosms, we describe the effect of anthracene, a model PAH, on microbial communities inhabiting a Pinus halepensis litter from both coastal (COS) and inland (INL) Mediterranean sites. The microcosms were incubated over 3 months (25°C, 60% WHC) and the effects of anthracene on microbial activities of both litters were monitored. Different enzyme activities (laccase, cellulase, β-glucosidase and acid phosphatase) and microbial respiration were measured and variations in litter chemical composition over incubation were determined using (13)C Nuclear Magnetic Resonance (NMR) from both sites. Our results show that lignocellulolytic enzymes increased markedly after a 3-month incubation in COS microcosms, especially in the presence of anthracene, whereas INL microcosms were not similarly affected. These results show that anthracene not only has no toxic effect on the microbial activities tested but actually enhances the lignocellulolytic activities of the fungal communities from coastal litters, demonstrating the detoxification potential and resistance of stressed Mediterranean coastal ecosystems.

  12. Soil respiration as affected by long-term broiler litter application to a udult in the ozark highlands.

    PubMed

    McMullen, Richard L; Brye, Kristofor R; Gbur, Edward E

    2015-01-01

    The United States produced 8.4 billion broiler chickens () and an estimated 10.1 to 14.3 million Mg of broiler litter (BL) in 2012. Arkansas' production of 1 billion broilers in 2012 produced an estimated 1.2 to 1.7 million Mg of BL, most of which was concentrated in the Ozark Highlands region of northwest Arkansas. Increased CO release from soils associated with agricultural practices has generated concerns regarding the contribution of certain agricultural management practices to global warming. The objectives of this study were to evaluate the effects of long-term (>6 yr) BL application to a Udult on soil respiration and annual C emissions and to determine the predictability of soil respiration based on soil temperature and moisture in the Ozark Highlands region of northwest Arkansas. Soil respiration was measured routinely between May 2009 and May 2012 in response to annual BL application rates of 0, 5.6, and 11.2 Mg dry litter ha that began in 2003. Soil respiration varied ( < 0.01) with BL rate, measurement date, and year. Additions of BL stimulated respiration after application, and rainfall events after dry-soil conditions stimulated respiration in all years. Soil temperature at the 10-cm depth, 0- to 6-cm soil volumetric water content (VWC), and annual CO-C emissions were unaffected ( > 0.05) by BL application rate but differed ( < 0.01) among study years. Multiple regression indicated that soil respiration could be reasonably predicted using 2-cm-depth soil temperature (T) and the product of T and VWC as predictors ( = 0.52; < 0.01). Results indicate that organic amendments, such as BL, can stimulate release of CO from the soil to the atmosphere, potentially negatively affecting atmospheric greenhouse gas concentrations; thus, there may be application rates above which the benefits of organic amendments may be diminished by adverse environmental effects. Improved BL management strategies are needed to lessen the loss of CO from BL-amended soils.

  13. Arsenic species in broiler (Gallus gallus domesticus) litter, soils, maize (Zea mays L.), and groundwater from litter-amended fields.

    PubMed

    D'Angelo, Elisa; Zeigler, Georgia; Beck, E Glenn; Grove, John; Sikora, Frank

    2012-11-01

    Manure and bedding material (litter) generated by the broiler industry (Gallus gallus domesticus) often contain high levels of arsenic (As) when organoarsenical roxarsone and p-arsanilic acid are included in feed to combat disease and improve weight gain of the birds. This study was conducted to determine As levels and species in litter from three major broiler producing companies, and As levels in soils, corn tissue (Zea mays L.), and groundwater in fields where litter was applied. Total As in litter from the three different integrators ranged between <1 and 44 mg kg(-1). Between 15 and 20% of total As in litter consisted of mostly of arsenate, with smaller amounts of roxarsone and several transformation products that were extractable with phosphate buffer. Soils amended with litter had higher levels of bioavailable As (extractable with Mehlich 3 solution and taken up by corn leaves). Arsenic concentrations in plant tissue and groundwater, however, were below the World Health Organization thresholds, which was attributed to strong sorption/precipitation of arsenate in Fe- and Al-rich soils. Ecological impacts of amending soils with As-laden litter depend on the As species in the litter, and chemical and physical properties of soil that strongly affect As mobility and bioavailability in the environment. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Early environment affects neuroendocrine regulation in adulthood.

    PubMed

    Taylor, Shelley E; Karlamangla, Arun S; Friedman, Esther M; Seeman, Teresa E

    2011-04-01

    Animal and human research indicates that the early environment can exert effects on hypothalamic pituitary adrenal (HPA) axis functioning across the lifespan. Using data from the National Study of Midlife Development in the United States and the National Study of Daily Experience substudy, we identified curvilinear relations between adult reports of parental affection in childhood and adult diurnal cortisol rhythms. Reports of both very affectionate and very unaffectionate parental relations in childhood were associated with flatter diurnal rhythms, suggesting potential dysregulation of the HPA axis at both extremes of family environment. Participants in the bottom tertile showed more signs of HPA axis dysregulation than those in the top tertile. We discuss processes that may underlie these effects, with reference to the theory of allostatic load.

  15. Poultry litter environment selects for the development of antibiotic resistance (AR) in Salmonella Heidelberg via conjugative IncX plasmids

    USDA-ARS?s Scientific Manuscript database

    The fitness of S. Heidelberg in poultry litter (PL) was determined following growth preconditioning in either Brain Heart Infusion (BHI) broth or poultry litter extracts (PLE, a centrifuged and filter sterilized PL slurry). Isolates were monitored by direct culture count for up to 9 days. The concen...

  16. Suberin-derived aliphatic monomers as biomarkers for SOM affected by root litter contribution

    NASA Astrophysics Data System (ADS)

    Kogel-Knabner, I.; Spielvogel, S.-; Prietzel, J.-

    2012-12-01

    belowground carbon input among the tree species and that (iii) forest conversion may substantially alter SOC stocks and spatial distribution. Suberin biomarkers can thus be used as indicators for the presence of root influence on SOM composition and for identifying root-affected soil compartments.

  17. Photodegradation of roxarsone in poultry litter leachates

    USGS Publications Warehouse

    Bednar, A.J.; Garbarino, J.R.; Ferrer, I.; Rutherford, D.W.; Wershaw, R. L.; Ranville, J.F.; Wildeman, T.R.

    2003-01-01

    Arsenic compounds have been used extensively in agriculture in the US for applications ranging from cotton herbicides to animal feed supplements. Roxarsone (3-nitro-4-hydroxyphenylarsonic acid), in particular, is used widely in poultry production to control coccidial intestinal parasites. It is excreted unchanged in the manure and introduced into the environment when litter is applied to farmland as fertilizer. Although the toxicity of roxarsone is less than that of inorganic arsenic, roxarsone can degrade, biotically and abiotically, to produce more toxic inorganic forms of arsenic, such as arsenite and arsenate. Experiments were conducted on aqueous litter leachates to test the stability of roxarsone under different conditions. Laboratory experiments have shown that arsenite can be cleaved photolytically from the roxarsone moiety at pH 4-8 and that the degradation rate increases with increasing pH. Furthermore, the rate of photodegradation increases with nitrate and natural organic matter concentration, reactants that are commonly found in poultry-litter-water leachates. Additional photochemical reactions rapidly oxidize the cleaved arsenite to arsenate. The formation of arsenate is not entirely undesirable, because it is less mobile in soil systems and less toxic than arsenite. A possible mechanism for the degradation of roxarsone in poultry litter leachates is proposed. The results suggest that poultry litter storage and field application practices could affect the degradation of roxarsone and subsequent mobilization of inorganic arsenic species. ?? 2002 Elsevier Science B.V. All rights reserved.

  18. Differentiating littering, urban runoff and marine transport as sources of marine debris in coastal and estuarine environments

    NASA Astrophysics Data System (ADS)

    Willis, Kathryn; Denise Hardesty, Britta; Kriwoken, Lorne; Wilcox, Chris

    2017-03-01

    Marine debris is a burgeoning global issue with economic, ecological and aesthetic impacts. While there are many studies now addressing this topic, the influence of urbanisation factors such as local population density, stormwater drains and roads on the distribution of coastal litter remains poorly understood. To address this knowledge gap, we carried out standardized surveys at 224 transect surveys at 67 sites in two estuaries and along the open coast in Tasmania, Australia. We explored the relative support for three hypotheses regarding the sources of the debris; direct deposition by beachgoers, transport from surrounding areas via storm water drains and coastal runoff, and onshore transport from the marine system. We found strong support for all three mechanisms, however, onshore transport from the marine reservoir was the most important mechanism. Overall, the three models together explained 45.8 percent of the variation in our observations. Our results also suggest that most debris released into the marine environment is deposited locally, which may be the answer to where all the missing plastic is in the ocean. Furthermore, local interventions are likely to be most effective in reducing land-based inputs into the ocean.

  19. Differentiating littering, urban runoff and marine transport as sources of marine debris in coastal and estuarine environments

    PubMed Central

    Willis, Kathryn; Denise Hardesty, Britta; Kriwoken, Lorne; Wilcox, Chris

    2017-01-01

    Marine debris is a burgeoning global issue with economic, ecological and aesthetic impacts. While there are many studies now addressing this topic, the influence of urbanisation factors such as local population density, stormwater drains and roads on the distribution of coastal litter remains poorly understood. To address this knowledge gap, we carried out standardized surveys at 224 transect surveys at 67 sites in two estuaries and along the open coast in Tasmania, Australia. We explored the relative support for three hypotheses regarding the sources of the debris; direct deposition by beachgoers, transport from surrounding areas via storm water drains and coastal runoff, and onshore transport from the marine system. We found strong support for all three mechanisms, however, onshore transport from the marine reservoir was the most important mechanism. Overall, the three models together explained 45.8 percent of the variation in our observations. Our results also suggest that most debris released into the marine environment is deposited locally, which may be the answer to where all the missing plastic is in the ocean. Furthermore, local interventions are likely to be most effective in reducing land-based inputs into the ocean. PMID:28281667

  20. Differentiating littering, urban runoff and marine transport as sources of marine debris in coastal and estuarine environments.

    PubMed

    Willis, Kathryn; Denise Hardesty, Britta; Kriwoken, Lorne; Wilcox, Chris

    2017-03-10

    Marine debris is a burgeoning global issue with economic, ecological and aesthetic impacts. While there are many studies now addressing this topic, the influence of urbanisation factors such as local population density, stormwater drains and roads on the distribution of coastal litter remains poorly understood. To address this knowledge gap, we carried out standardized surveys at 224 transect surveys at 67 sites in two estuaries and along the open coast in Tasmania, Australia. We explored the relative support for three hypotheses regarding the sources of the debris; direct deposition by beachgoers, transport from surrounding areas via storm water drains and coastal runoff, and onshore transport from the marine system. We found strong support for all three mechanisms, however, onshore transport from the marine reservoir was the most important mechanism. Overall, the three models together explained 45.8 percent of the variation in our observations. Our results also suggest that most debris released into the marine environment is deposited locally, which may be the answer to where all the missing plastic is in the ocean. Furthermore, local interventions are likely to be most effective in reducing land-based inputs into the ocean.

  1. Forest type affects the influence of harvest on annual and cumulative litter decay in forest and wetland sites across Canada.

    NASA Astrophysics Data System (ADS)

    Trofymow, J. A.; Thompson, E.; Cameron, A.; Pare, D.; Lavigne, M.; Flanagan, L.; Moore, T.; Amiro, B.; Smyth, C.

    2007-12-01

    A litter decomposition study was established in 16 sites at 7 stations of the Fluxnet Canada Research Network. These sites included paired mature and clearcut forest sites at 5 upland stations (BC, SK, ON, QC, NB) as well as one site at each of two wetland stations (AW, QW) . All sites are instrumented for in situ measurements of soil moisture and temperature. Litterbags were prepared using one of four standard material types (aspen leaves - AL, black spruce needles BS, Douglas fir needles DF and birch wood sticks BW). Six replicate plots were located at each site, each plot contained sufficient numbers of surface litterbags of each material type to allow for four annual collections (2004 - 2007). As well unconfined birch chopsticks were placed at three depths down the soil profile (surface, 5cm, 15cm) and replaced annually to examine the effects of interannual variability on decay. Cumulative litter decay after three years litters rank by % mass remaining had ALlitters decay more rapidly in clearcut than forests, other than birchwood at one site (QC). Decay of surface birch sticks were similar and interannual variability was less than variability down the soil profile. The effects of clearcut varied with forest site type, on wetter sites surface BW decayed faster in clearcuts than closed forest, however this was reversed in drier forest site types. At lower soil depths on drier sites, decay was more rapid in clearcuts than closed forest. Work is continuing to relate insitu microclimates to decay rates.

  2. Effects of Litter on Seedling Emergence and Seed Persistence of Three Common Species on the Loess Plateau in Northwestern China.

    PubMed

    Zhang, Rui; Hu, Xiaowen; Baskin, Jerry M; Baskin, Carol C; Wang, Yanrong

    2017-01-01

    Litter accumulation resulting from land use change (enclosure) is one of the key variables influencing seedling recruitment and consequently the regeneration of plant populations and seed persistence in the soil seed bank. A better understanding of the effects of litter on seed germination and seedling emergence is crucial for developing a new set of indicators for grassland ecosystem health and for grassland management policy. We investigated the effects of seed position in litter and amount of litter covering the seed on seedling emergence and seed persistence of three common species on the Loess Plateau in northwestern China. Seed position beneath the litter layer provided a suitable environment for seedling emergence of the three species. A moderate amount of litter (160 g/m(2)) was beneficial for seedling emergence of the small-seeded species Stipa bungeana and Lespedeza davurica from seeds from beneath the litter layer. The large-seeded species Setaria glauca was more tolerant of a high amount of litter (240 g/m(2)) than the two small-seeded species. Seed persistence in the soil differed among the three species and also was affected by seed position in litter and amount of litter cover. The proportion of viable seeds of Stipa bungeana and Setaria glauca on top of the litter layer increased with an increase in amount of litter. Seedling emergence and seed persistence varied significantly among species, amount of litter and seed position in litter. A moderate amount of litter and seeds positioned beneath the litter layer were better for seedling recruitment than for those on top of the litter layer. A high amount of litter was more favorable for persistence of seeds positioned on top of the litter than for those beneath the litter. Our study showed that maintaining litter amount between 80 and 160 g/m(2) is optimal for S. bungeana dominated grassland on the Loess Plateau. We suggest that litter amount can serve as a guide for monitoring and managing grassland

  3. Effects of Litter on Seedling Emergence and Seed Persistence of Three Common Species on the Loess Plateau in Northwestern China

    PubMed Central

    Zhang, Rui; Hu, Xiaowen; Baskin, Jerry M.; Baskin, Carol C.; Wang, Yanrong

    2017-01-01

    Litter accumulation resulting from land use change (enclosure) is one of the key variables influencing seedling recruitment and consequently the regeneration of plant populations and seed persistence in the soil seed bank. A better understanding of the effects of litter on seed germination and seedling emergence is crucial for developing a new set of indicators for grassland ecosystem health and for grassland management policy. We investigated the effects of seed position in litter and amount of litter covering the seed on seedling emergence and seed persistence of three common species on the Loess Plateau in northwestern China. Seed position beneath the litter layer provided a suitable environment for seedling emergence of the three species. A moderate amount of litter (160 g/m2) was beneficial for seedling emergence of the small-seeded species Stipa bungeana and Lespedeza davurica from seeds from beneath the litter layer. The large-seeded species Setaria glauca was more tolerant of a high amount of litter (240 g/m2) than the two small-seeded species. Seed persistence in the soil differed among the three species and also was affected by seed position in litter and amount of litter cover. The proportion of viable seeds of Stipa bungeana and Setaria glauca on top of the litter layer increased with an increase in amount of litter. Seedling emergence and seed persistence varied significantly among species, amount of litter and seed position in litter. A moderate amount of litter and seeds positioned beneath the litter layer were better for seedling recruitment than for those on top of the litter layer. A high amount of litter was more favorable for persistence of seeds positioned on top of the litter than for those beneath the litter. Our study showed that maintaining litter amount between 80 and 160 g/m2 is optimal for S. bungeana dominated grassland on the Loess Plateau. We suggest that litter amount can serve as a guide for monitoring and managing grassland

  4. The importance of biotic factors in predicting global change effects on decomposition of temperate forest leaf litter.

    PubMed

    Rouifed, Soraya; Handa, I Tanya; David, Jean-François; Hättenschwiler, Stephan

    2010-05-01

    Increasing atmospheric CO(2) and temperature are predicted to alter litter decomposition via changes in litter chemistry and environmental conditions. The extent to which these predictions are influenced by biotic factors such as litter species composition or decomposer activity, and in particular how these different factors interact, is not well understood. In a 5-week laboratory experiment we compared the decomposition of leaf litter from four temperate tree species (Fagus sylvatica, Quercus petraea, Carpinus betulus and Tilia platyphyllos) in response to four interacting factors: elevated CO(2)-induced changes in litter quality, a 3 degrees C warmer environment during decomposition, changes in litter species composition, and presence/absence of a litter-feeding millipede (Glomeris marginata). Elevated CO(2) and temperature had much weaker effects on decomposition than litter species composition and the presence of Glomeris. Mass loss of elevated CO(2)-grown leaf litter was reduced in Fagus and increased in Fagus/Tilia mixtures, but was not affected in any other leaf litter treatment. Warming increased litter mass loss in Carpinus and Tilia, but not in the other two litter species and in none of the mixtures. The CO(2)- and temperature-related differences in decomposition disappeared completely when Glomeris was present. Overall, fauna activity stimulated litter mass loss, but to different degrees depending on litter species composition, with a particularly strong effect on Fagus/Tilia mixtures (+58%). Higher fauna-driven mass loss was not followed by higher C mineralization over the relatively short experimental period. Apart from a strong interaction between litter species composition and fauna, the tested factors had little or no interactive effects on decomposition. We conclude that if global change were to result in substantial shifts in plant community composition and macrofauna abundance in forest ecosystems, these interacting biotic factors could have

  5. Effects of Litter Manipulation on Litter Decomposition in a Successional Gradients of Tropical Forests in Southern China

    PubMed Central

    Chen, Hao; Gurmesa, Geshere A.; Liu, Lei; Zhang, Tao; Fu, Shenglei; Liu, Zhanfeng; Dong, Shaofeng; Ma, Chuan; Mo, Jiangming

    2014-01-01

    Global changes such as increasing CO2, rising temperature, and land-use change are likely to drive shifts in litter inputs to forest floors, but the effects of such changes on litter decomposition remain largely unknown. We initiated a litter manipulation experiment to test the response of litter decomposition to litter removal/addition in three successional forests in southern China, namely masson pine forest (MPF), mixed coniferous and broadleaved forest (MF) and monsoon evergreen broadleaved forest (MEBF). Results showed that litter removal decreased litter decomposition rates by 27%, 10% and 8% and litter addition increased litter decomposition rates by 55%, 36% and 14% in MEBF, MF and MPF, respectively. The magnitudes of changes in litter decomposition were more significant in MEBF forest and less significant in MF, but not significant in MPF. Our results suggest that change in litter quantity can affect litter decomposition, and this impact may become stronger with forest succession in tropical forest ecosystem. PMID:24901698

  6. Effects of litter manipulation on litter decomposition in a successional gradients of tropical forests in southern China.

    PubMed

    Chen, Hao; Gurmesa, Geshere A; Liu, Lei; Zhang, Tao; Fu, Shenglei; Liu, Zhanfeng; Dong, Shaofeng; Ma, Chuan; Mo, Jiangming

    2014-01-01

    Global changes such as increasing CO2, rising temperature, and land-use change are likely to drive shifts in litter inputs to forest floors, but the effects of such changes on litter decomposition remain largely unknown. We initiated a litter manipulation experiment to test the response of litter decomposition to litter removal/addition in three successional forests in southern China, namely masson pine forest (MPF), mixed coniferous and broadleaved forest (MF) and monsoon evergreen broadleaved forest (MEBF). Results showed that litter removal decreased litter decomposition rates by 27%, 10% and 8% and litter addition increased litter decomposition rates by 55%, 36% and 14% in MEBF, MF and MPF, respectively. The magnitudes of changes in litter decomposition were more significant in MEBF forest and less significant in MF, but not significant in MPF. Our results suggest that change in litter quantity can affect litter decomposition, and this impact may become stronger with forest succession in tropical forest ecosystem.

  7. Litter chemistry prevails over litter consumers in mediating effects of past steel industry activities on leaf litter decomposition.

    PubMed

    Lucisine, Pierre; Lecerf, Antoine; Danger, Michaël; Felten, Vincent; Aran, Delphine; Auclerc, Apolline; Gross, Elisabeth M; Huot, Hermine; Morel, Jean-Louis; Muller, Serge; Nahmani, Johanne; Maunoury-Danger, Florence

    2015-12-15

    Soil pollution has adverse effects on the performance and life history traits of microorganisms, plants, and animals, yet evidence indicates that even the most polluted sites can support structurally-complex and dynamic ecosystems. The present study aims at determining whether and how litter decomposition, one of the most important soil ecological processes leaf, is affected in a highly trace-metal polluted site. We postulated that past steel mill activities resulting in soil pollution and associated changes in soil characteristics would influence the rate of litter decomposition through two non-exclusive pathways: altered litter chemistry and responses of decomposers to lethal and sub-lethal toxic stress. We carried out a litter-bag experiment using Populus tremula L. leaf litter collected at, and allowed to decompose in, a trace metal polluted site and in three unpolluted sites used as controls. We designed a fully-factorial transplant experimental design to assess effects of litter origin and exposure site on the rate of litter decomposition. We further determined initial litter chemistry, fungal biomass, mesofauna abundance in litter bags, and the soil macrofauna community. Irrespective of the site of litter exposure, litter originating from the polluted site had a two-fold faster decomposition than litter from the unpolluted sites. Litter chemistry, notably the lignin content, seemed most important in explaining the degradation rate of the leaf litter. Abundance of meso and macro-detritivores was higher at the polluted site than at the unpolluted sites. However, litter decomposition proceeded at similar rates in polluted and unpolluted sites. Our results show that trace metal pollution and associated soil and litter changes do not necessarily weaken consumer control on litter decomposition through lethal and sub-lethal toxic stress.

  8. Long-term dynamics of pine and hardwood litter in contrasting environments: Toward a global model of decomposition

    Treesearch

    Henry L. Gholz; David A. Wedin; Stephen M. Smitherman; Mark E. Harmon; William J. Parton

    2000-01-01

    We analysed data on mass loss after five years of decomposition in the field from both fine root and leaf litters from two highly contrasting trees, Drypetes glallca, a tropical hardwood tree from Puerto Rico, and pine species from North America as part of the Long-Term Intersite Decomposition Experiment (LIDET). LIDET is a reciprocal litterbag study...

  9. Litter-of-origin trait effects on gilt development

    USDA-ARS?s Scientific Manuscript database

    The preweaning litter environment of gilts can affect subsequent development. In a recent experiment designed to test the effects of diet on gilt development, individual birth weights, immunocrits, sow parity, number weaned, and individual weaning weights were collected for gilts during the preweani...

  10. Experimental evidence that litter size imposes an oxidative challenge to offspring.

    PubMed

    Gibson, Alyssa B; Garratt, Michael; Brooks, Robert C

    2015-12-01

    The post-natal environment in which young develop can substantially impact development, adult phenotype and fitness. In wild mice, competition among litter-mates affects development rate and adult behaviour. We manipulated post-natal litter size in a cross-fostering design to investigate the effects of enlarged and reduced litter sizes on sexual signalling, oxidative stress and the links between them. Oxidative stress causes somatic damage that can limit reproductive success and lifespan, and is predicted to mediate investment in life-history traits, including sexual signals. We predicted that litter enlargement would cause an increase in potential oxidative stress, inhibit growth and reduce sexual signalling in male mice. Males reared in enlarged litters were smaller at weaning and, despite rapid growth immediately after weaning, remained smaller at 10 weeks of age than those reared in smaller litters. Females from enlarged litters were consistently smaller throughout post-weaning development and showed no increase in growth rate compared with females from reduced litters. In enlarged litters, protein thiol concentration was lower at weaning in the liver and kidneys, with this trend continuing at 10 weeks of age in the kidneys only. Aconitase enzyme activity was also lower in mice from enlarged litters at weaning and 10 weeks of age in the kidneys. Male mice from enlarged litters scent marked more frequently and had larger preputial glands than those from reduced litters, indicating greater sexual signalling investment irrespective of this increased oxidative challenge. The results of this study are the first to reveal oxidative costs of developmental stress in small mammals.

  11. Effect of Bacillus Subtilis-based Direct-fed Microbials on Immune Status in Broiler Chickens Raised on Fresh or Used Litter.

    PubMed

    Lee, K W; Lillehoj, H S; Jang, S I; Lee, S H; Bautista, D A; Siragusa, G R

    2013-11-01

    Type of dietary direct-fed microbials (DFMs) or poultry litter could directly influence the composition of gut microbiota. Gut microbiota plays an important role in shaping the developing immune system and maintaining the homeostasis of the mature immune system in mammal and chickens. The present study was carried out to investigate the interaction among litter, DFMs and immunity in broiler chickens exposed to a field-simulated environment. Immune status of broiler chickens was assessed by serum antibodies against Eimeria spp. and Clostridium spp. and intestinal cytokine mRNA expression. The current experimental design had a 3 ×2 factorial arrangement of treatments with three types of litter, i.e., fresh litter or used litter that was obtained from a farm with no disease outbreak (used litter) or a farm with history of a gangrenous dermatitis outbreak (GD litter), and two dietary treatments with or without DFMs. It was found that either DFM addition or type of litter significantly affected anticoccidial antibody levels of broiler chickens at d 42. In general, dietary DFMs increased the anticoccidial antibodies in the fresh-litter raised chickens, but lowered the levels in the GD-litter raised chickens. Serum antibodies against Clostridium perfringens α-toxin were significantly (p<0.05) higher in chickens raised on GD litter compared with those raised on fresh litter. Cytokine mRNA expression was significantly (p<0.05) altered by either the type of litter or DFMs. Of interest, dietary DFMs lowered interferon-γ, interleukin 1beta, and CXCLi2 cytokine mRNA expression in chickens raised on fresh litter but increased them in GD-litter raised chickens. In conclusion, dietary DFMs modulate various immune parameters of broiler chickens, but the DFM-mediated effects were dependent upon the type of litter on which chickens were raised.

  12. Effect of Bacillus Subtilis-based Direct-fed Microbials on Immune Status in Broiler Chickens Raised on Fresh or Used Litter

    PubMed Central

    Lee, K. W.; Lillehoj, H. S.; Jang, S. I.; Lee, S. H.; Bautista, D. A.; Siragusa, G. R.

    2013-01-01

    Type of dietary direct-fed microbials (DFMs) or poultry litter could directly influence the composition of gut microbiota. Gut microbiota plays an important role in shaping the developing immune system and maintaining the homeostasis of the mature immune system in mammal and chickens. The present study was carried out to investigate the interaction among litter, DFMs and immunity in broiler chickens exposed to a field-simulated environment. Immune status of broiler chickens was assessed by serum antibodies against Eimeria spp. and Clostridium spp. and intestinal cytokine mRNA expression. The current experimental design had a 3 ×2 factorial arrangement of treatments with three types of litter, i.e., fresh litter or used litter that was obtained from a farm with no disease outbreak (used litter) or a farm with history of a gangrenous dermatitis outbreak (GD litter), and two dietary treatments with or without DFMs. It was found that either DFM addition or type of litter significantly affected anticoccidial antibody levels of broiler chickens at d 42. In general, dietary DFMs increased the anticoccidial antibodies in the fresh-litter raised chickens, but lowered the levels in the GD-litter raised chickens. Serum antibodies against Clostridium perfringens α-toxin were significantly (p<0.05) higher in chickens raised on GD litter compared with those raised on fresh litter. Cytokine mRNA expression was significantly (p<0.05) altered by either the type of litter or DFMs. Of interest, dietary DFMs lowered interferon-γ, interleukin 1beta, and CXCLi2 cytokine mRNA expression in chickens raised on fresh litter but increased them in GD-litter raised chickens. In conclusion, dietary DFMs modulate various immune parameters of broiler chickens, but the DFM-mediated effects were dependent upon the type of litter on which chickens were raised. PMID:25049746

  13. Long-term presence of tree species but not chemical diversity affect litter mixture effects on decomposition in a neotropical rainforest.

    PubMed

    Barantal, Sandra; Roy, Jacques; Fromin, Nathalie; Schimann, Heidy; Hättenschwiler, Stephan

    2011-09-01

    Plant litter diversity effects on decomposition rates are frequently reported, but with a strong bias towards temperate ecosystems. Altered decomposition and nutrient recycling with changing litter diversity may be particularly important in tree species-rich tropical rainforests on nutrient-poor soils. Using 28 different mixtures of leaf litter from 16 Amazonian rainforest tree species, we tested the hypothesis that litter mixture effects on decomposition increase with increasing functional litter diversity. Litter mixtures and all single litter species were exposed in the field for 9 months using custom-made microcosms with soil fauna access. In order to test the hypothesis that the long-term presence of tree species contributing to the litter mixtures increases mixture effects on decomposition, microcosms were installed in a plantation at sites including the respective tree species composition and in a nearby natural forest where these tree species are absent. We found that mixture decomposition deviated from predictions based on single species, with predominantly synergistic effects. Functional litter diversity, defined as either richness, evenness, or divergence based on a wide range of chemical traits, did not explain the observed litter mixture effects. However, synergistic effects in litter mixtures increased with the long-term presence of tree species contributing to these mixtures as the home field advantage hypothesis assumes. Our data suggest that complementarity effects on mixed litter decomposition may emerge through long-term interactions between aboveground and belowground biota.

  14. Litter composition effects on decomposition across the litter-soil interface

    EPA Science Inventory

    Background/Question/Methods Many studies have investigated the influence of plant litter species composition on decomposition dynamics, but given the variety of communities and environments around the world, a variety of consequences of litter-mixing have been reported. Litter ...

  15. Litter composition effects on decomposition across the litter-soil interface

    EPA Science Inventory

    Background/Question/Methods Many studies have investigated the influence of plant litter species composition on decomposition dynamics, but given the variety of communities and environments around the world, a variety of consequences of litter-mixing have been reported. Litter ...

  16. Decreased toxicity of Bacillus thuringiensis subsp. israelensis to mosquito larvae after contact with leaf litter.

    PubMed

    Tetreau, Guillaume; Stalinski, Renaud; Kersusan, Dylann; Veyrenc, Sylvie; David, Jean-Philippe; Reynaud, Stéphane; Després, Laurence

    2012-08-01

    Bacillus thuringiensis subsp. israelensis is a bacterium producing crystals containing Cry and Cyt proteins, which are toxic for mosquito larvae. Nothing is known about the interaction between crystal toxins and decaying leaf litter, which is a major component of several mosquito breeding sites and represents an important food source. In the present work, we investigated the behavior of B. thuringiensis subsp. israelensis toxic crystals sprayed on leaf litter. In the presence of leaf litter, a 60% decrease in the amount of Cyt toxin detectable by immunology (enzyme-linked immunosorbent assays [ELISAs]) was observed, while the respective proportions of Cry toxins were not affected. The toxicity of Cry toxins toward Aedes aegypti larvae was not affected by leaf litter, while the synergistic effect of Cyt toxins on all B. thuringiensis subsp. israelensis Cry toxins was decreased by about 20% when mixed with leaf litter. The toxicity of two commercial B. thuringiensis subsp. israelensis strains (VectoBac WG and VectoBac 12AS) and a laboratory-produced B. thuringiensis subsp. israelensis strain decreased by about 70% when mixed with leaf litter. Taken together, these results suggest that Cyt toxins interact with leaf litter, resulting in a decreased toxicity of B. thuringiensis subsp. israelensis in litter-rich environments and thereby dramatically reducing the efficiency of mosquitocidal treatments.

  17. Decreased Toxicity of Bacillus thuringiensis subsp. israelensis to Mosquito Larvae after Contact with Leaf Litter

    PubMed Central

    Stalinski, Renaud; Kersusan, Dylann; Veyrenc, Sylvie; David, Jean-Philippe; Reynaud, Stéphane; Després, Laurence

    2012-01-01

    Bacillus thuringiensis subsp. israelensis is a bacterium producing crystals containing Cry and Cyt proteins, which are toxic for mosquito larvae. Nothing is known about the interaction between crystal toxins and decaying leaf litter, which is a major component of several mosquito breeding sites and represents an important food source. In the present work, we investigated the behavior of B. thuringiensis subsp. israelensis toxic crystals sprayed on leaf litter. In the presence of leaf litter, a 60% decrease in the amount of Cyt toxin detectable by immunology (enzyme-linked immunosorbent assays [ELISAs]) was observed, while the respective proportions of Cry toxins were not affected. The toxicity of Cry toxins toward Aedes aegypti larvae was not affected by leaf litter, while the synergistic effect of Cyt toxins on all B. thuringiensis subsp. israelensis Cry toxins was decreased by about 20% when mixed with leaf litter. The toxicity of two commercial B. thuringiensis subsp. israelensis strains (VectoBac WG and VectoBac 12AS) and a laboratory-produced B. thuringiensis subsp. israelensis strain decreased by about 70% when mixed with leaf litter. Taken together, these results suggest that Cyt toxins interact with leaf litter, resulting in a decreased toxicity of B. thuringiensis subsp. israelensis in litter-rich environments and thereby dramatically reducing the efficiency of mosquitocidal treatments. PMID:22610426

  18. Factors affecting perception of outdoor public environments.

    PubMed

    Nelson, T M; Loewen, L J

    1993-02-01

    Comfort and related perceptions are important in respect to use of outdoor public places. In a laboratory, 170 persons viewed four such places on slides and rated them on 10 dimensions, namely, "comfortable," "playful," "serious," "active," "unsafe," "good," "tense," "interesting," "gloomy," and "pleasing." Instructions were used to vary time of day and the number of people present at the location. It was found that women (n = 96) regard outdoor environments as more threatening than do men (n = 74) which suggests that women feel more vulnerable to untoward acts and that public places are rated less desirous at dusk than at dawn, presumably because dusk is followed by night and dawn by day. It was also discovered that such public environments are rated better than deserted places when occupied by two or more persons. Some of these results are consistent with the Prospect-Refuge Theory of Appleton.

  19. Does external walking environment affect gait patterns?

    PubMed

    Patterson, Matthew R; Whelan, Darragh; Reginatto, Brenda; Caprani, Niamh; Walsh, Lorcan; Smeaton, Alan F; Inomata, Akihiro; Caulfield, Brian

    2014-01-01

    The objective of this work is to develop an understanding of the relationship between mobility metrics obtained outside of the clinic or laboratory and the context of the external environment. Ten subjects walked with an inertial sensor on each shank and a wearable camera around their neck. They were taken on a thirty minute walk in which they mobilized over the following conditions; normal path, busy hallway, rough ground, blind folded and on a hill. Stride time, stride time variability, stance time and peak shank rotation rate during swing were calculated using previously published algorithms. Stride time was significantly different between several of the conditions. Technological advances mean that gait variables can now be captured as patients go about their daily lives. The results of this study show that the external environment has a significant impact on the quality of gait metrics. Thus, context of external walking environment is an important consideration when analyzing ambulatory gait metrics from the unsupervised home and community setting.

  20. Litter ammonia generation: moisture content and organic versus inorganic bedding materials.

    PubMed

    Miles, D M; Rowe, D E; Cathcart, T C

    2011-06-01

    Negative impacts on the environment, bird well-being, and farm worker health indicate the need for abatement strategies for poultry litter NH(3) generation. Type of bedding affects many parameters related to poultry production including NH(3) losses. In a randomized complete block design, 3 trials compared the cumulative NH(3) volatilization for laboratory-prepared litter (4 bedding types mixed with excreta) and commercial litter (sampled from a broiler house during the second flock on reused pine wood chips). Litters were assessed at the original moisture content and 2 higher moisture contents. Broiler excrement was mixed with pine wood shavings, rice hulls, sand, and vermiculite to create litter samples. Volumetrically uniform litter samples were placed in chambers receiving humidified air where the exhaust passed through H(3)BO(3) solution, trapping litter-emitted NH(3). At the original moisture content, sand and vermiculite litters generated the most NH(3) (5.3 and 9.1 mg of N, respectively) whereas wood shavings, commercial, and rice hull litters emitted the least NH(3) (0.9-2.6 mg of N). For reducing NH(3) emissions, the results support recommendations for using wood shavings and rice hulls, already popular bedding choices in the United States and worldwide. In this research, the organic bedding materials generated the least NH(3) at the original moisture content when compared with the inorganic materials. For each bedding type, incremental increases in litter moisture content increased NH(3) volatilization. However, the effects of bedding material on NH(3) volatilization at the increased moisture levels were not clearly differentiated across the treatments. Vermiculite generated the most NH(3) (26.3 mg of N) at the highest moisture content. Vermiculite was a novel bedding choice that has a high water absorption capacity, but because of high NH(3) generation, it is not recommended for further study as broiler bedding material. Controlling unnecessary moisture

  1. Responses of litter invertebrate communities to litter manipulation in a Japanese conifer plantation

    NASA Astrophysics Data System (ADS)

    Yoshida, Tomohiro; Takito, Yuki; Soga, Masashi; Hijii, Naoki

    2013-08-01

    We examined how the litter invertebrate communities were affected by the temporal changes in the mass and structural complexity of the litter resources by adding and removing litter on the forest floor of a temperate conifer plantation (Cryptomeria japonica) in Japan. We showed that litter mass and depth in the litter-addition (L+) plots changed rapidly into a steady-state condition similar to those in the control plots, mainly due to accelerated decomposition processes during the rainy season. Higher area-based densities of litter invertebrates in the L+ plots, similar mass-based densities between the L+ and control plots, and significant positive correlations between litter mass and the number of individuals implied that the abundance of litter invertebrates would be governed by litter mass rather than by the litter depth. Many litter invertebrates including detritivores were collected even in the litter-removal (L-) area. The relative abundances of invertebrate predators collecting pitfall traps were higher in the L- plots and lower in the L+ plots compared to those in the control plots, whereas those collecting Tullgren funnels were higher in the L+ plots than in the control plots. In the L+ plots, the range of variation in the community compositions among the samples decreased significantly over time in response to a drastic decrease in litter mass, in contrast to the control plots, which showed a relatively constant community composition during the study period. Our litter manipulation experiment reveals some of the mechanisms responsible for maintaining an equilibrium state of forest-floor litter mass and for the responses of litter invertebrate communities to temporal changes in the litter.

  2. Effect of intravenous endotoxin on blood cell profiles of broilers housed in cages and floor litter environments.

    PubMed

    Wang, W; Wideman, R F; Chapman, M E; Bersi, T K; Erf, G F

    2003-12-01

    Commercial broilers are constantly exposed to airborne microorganisms and endotoxin (lipopolysaccharide, LPS). It has been shown that microbial contamination of the air was higher in broiler houses using floor litter than in broiler houses using netting-type floors. The current study evaluated the effect of housing conditions on blood leukocyte profiles and tested the hypothesis that, when compared to broilers reared in clean stainless steel cages (Cage group), broilers raised on floor litter (Floor group) should experience a higher environmental challenge and have a desensitized immune system that may exhibit better tolerance/resistance to subsequent intravenous LPS challenge. Hematological parameters were evaluated prior to and following i.v. administration of 1 mg/kg BW Salmonella typhimurium LPS (dissolved at 1 mg/0.25 mL in PBS) or i.v. injection of 0.25 mL/kg BW PBS alone. The results showed that prior to LPS/PBS injection, broilers in the cage group had higher heterophil and monocyte concentrations, a higher B cell percentage within the lymphocyte population, and a higher heterophil to lymphocyte (H:L) ratio in the blood. The i.v. LPS injection resulted in 25% mortality in the cage group and 42% mortality in the floor group within 8 h post-injection. LPS reduced the concentrations of total white blood cells (WBC) and all differential WBC except eosinophils and increased thrombocyte concentrations within 1 h post-injection in both groups. All of these values returned to their respective pre-injection levels within 48 h post-injection in the surviving birds. The two groups exhibited similar overall hematological changes after LPS injection except that the cage group showed a higher H:L ratio at 8 h post-injection and a lower B-cell percentage within the lymphocyte population at 48 h post-injection when compared with the floor group. We concluded that the immune systems of broilers reared on floor litter were desensitized and exhibited less pronounced leukocyte

  3. Litter sex composition influences dominance status of Alpine marmots (Marmota marmota).

    PubMed

    Dupont, Pierre; Pradel, Roger; Lardy, Sophie; Allainé, Dominique; Cohas, Aurélie

    2015-11-01

    In social species, the hierarchical status of an individual has important consequences for its fitness. While many studies have focused on individual condition to explain access to dominance, very few have investigated the influence of the social environment, especially during early life. Yet it is known that environmental conditions early in life may influence several traits at adulthood. Here, we examine the influence of early social environment on accession to dominance by investigating the influence of litter size and sex composition on survival and the probability of ascending to dominance later in life using a 20-year dataset from a wild population of Alpine marmots (Marmota marmota). Although litter size had no effect on the fate of individuals, litter sex composition affected male juvenile survival and both male and female probabilities of reaching dominant status when adult. Male juveniles incur lower survival when the number of male juveniles in the litter increases, and individuals of both sexes from male-biased litters are more likely to become dominant than individuals from female-biased litters. However, the absolute number of sisters in the litter, rather than the sex ratio, seems to be an important predictor of the probability of acquiring dominant status: pups having more sisters are less likely to become dominant. Several potential mechanisms to explain these results are discussed.

  4. Considering Affective Responses towards Environments for Enhancing Location Based Services

    NASA Astrophysics Data System (ADS)

    Huang, H.; Gartner, G.; Klettner, S.; Schmidt, M.

    2014-04-01

    A number of studies in the field of environmental psychology show that humans perceive and evaluate their surroundings affectively. Some places are experienced as unsafe, while some others as attractive and interesting. Experiences from daily life show that many of our daily behaviours and decision-making are often influenced by this kind of affective responses towards environments. Location based services (LBS) are often designed to assist and support people's behaviours and decision-making in space. In order to provide services with high usefulness (usability and utility), LBS should consider these kinds of affective responses towards environments. This paper reports on the results of a research project, which studies how people's affective responses towards environments can be modelled and acquired, as well as how LBS can benefit by considering these affective responses. As one of the most popular LBS applications, mobile pedestrian navigation systems are used as an example for illustration.

  5. How Autism Affects Speech Understanding in Multitalker Environments

    DTIC Science & Technology

    2014-10-01

    AD_________________ Award Number: W81XWH-12-1-0363 TITLE: How Autism Affects Speech...REPORT TYPE Annual Report 3. DATES COVERED 30 Sep 2013 – 29 Sep 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER How Autism Affects Speech...from background noise is a critical skill for understanding spoken language in such environments. Recent studies suggest that adults with Autism

  6. Evidence for Extraintestinal Growth of Bacteroidales Originating from Poultry Litter

    PubMed Central

    Mantha, Sirisha; Hair, Elliott; Nayak, Bina; Harwood, Valerie J.

    2014-01-01

    Water quality monitoring techniques that target microorganisms in the order Bacteroidales are potential alternatives to conventional methods for detection of fecal indicator bacteria. Bacteroidales and members of the genus Bacteroides have been the focus of microbial source tracking (MST) investigations for discriminating sources of fecal pollution (e.g., human or cattle feces) in environmental waters. For accurate source apportionment to occur, one needs to understand both the abundance of Bacteroides in host feces and the survival of these host-associated microbial markers after deposition in the environment. Studies were undertaken to evaluate the abundance, persistence, and potential for growth of Bacteroidales originating from poultry litter under oxic and anoxic environmental conditions. Bacteroidales abundance, as determined by quantitative PCR (qPCR) with GenBac primers and probe, increased 2 to 5 log gene copies ml−1 and 2 log gene copies g litter−1 under most conditions during incubation of poultry litter in a variety of laboratory microcosm and field mesocosm studies. DNA sequencing of the Bacteroidales organisms in the litter identified taxa with sequences corresponding exactly to the GenBac primer and probe sequences and that were closely related to Bacteroides uniformis, B. ovatus, and B. vulgatus. These results suggest that MST studies using qPCR methods targeting Bacteroidales in watersheds that are affected by poultry litter should be interpreted cautiously. Growth of Bacteroidales originating from poultry litter in environmental waters may occur while Bacteroidales growth from other fecal sources declines, thus confounding the interpretation of MST results. PMID:25326306

  7. Litter-Spinning Retarders

    NASA Technical Reports Server (NTRS)

    Wilson, John C.

    1995-01-01

    Aerodynamic plates stop litter from spinning during hoisting by helicopter. Features of proposed litter-spinning retarders include convenience of deployment and independence from ground restraint. Retarder plate(s) folded flat against bottom of litter during storage or while litter is loaded. Plate(s) held in storage position by latch that releases manually or automatically as litter is hoisted. Upon release, springs move plates into deployed position.

  8. Litter-Spinning Retarders

    NASA Technical Reports Server (NTRS)

    Wilson, John C.

    1995-01-01

    Aerodynamic plates stop litter from spinning during hoisting by helicopter. Features of proposed litter-spinning retarders include convenience of deployment and independence from ground restraint. Retarder plate(s) folded flat against bottom of litter during storage or while litter is loaded. Plate(s) held in storage position by latch that releases manually or automatically as litter is hoisted. Upon release, springs move plates into deployed position.

  9. Poultry litter application on pastures and hayfields

    USDA-ARS?s Scientific Manuscript database

    Poultry litter is widely used on pastures and hayfields in Georgia. There are many benefits when it is used wisely. Producers should use nutrient management planning and recommended rates to ensure poultry litter is used in ways that maximize its benefits without harming the environment....

  10. Microbial Environment Affects Innate Immunity in Two Closely Related Earthworm Species Eisenia andrei and Eisenia fetida

    PubMed Central

    Dvořák, Jiří; Mančíková, Veronika; Pižl, Václav; Elhottová, Dana; Šilerová, Marcela; Roubalová, Radka; Škanta, František; Procházková, Petra; Bilej, Martin

    2013-01-01

    Survival of earthworms in the environment depends on their ability to recognize and eliminate potential pathogens. This work is aimed to compare the innate defense mechanisms of two closely related earthworm species, Eisenia andrei and Eisenia fetida, that inhabit substantially different ecological niches. While E. andrei lives in a compost and manure, E. fetida can be found in the litter layer in forests. Therefore, the influence of environment-specific microbiota on the immune response of both species was followed. Firstly, a reliable method to discern between E. andrei and E. fetida based on species-specific primers for cytochrome c oxidase I (COI) and stringent PCR conditions was developed. Secondly, to analyze the immunological profile in both earthworm species, the activity and expression of lysozyme, pattern recognition protein CCF, and antimicrobial proteins with hemolytic function, fetidin and lysenins, have been assessed. Whereas, CCF and lysozyme showed only slight differences in the expression and activity, fetidin/lysenins expression as well as the hemolytic activity was considerably higher in E. andrei as compared to E. fetida. The expression of fetidin/lysenins in E. fetida was not affected upon the challenge with compost microbiota, suggesting more substantial changes in the regulation of the gene expression. Genomic DNA analyses revealed significantly higher level of fetidin/lysenins (determined using universal primer pairs) in E. andrei compared to E. fetida. It can be hypothesized that E. andrei colonizing compost as a new habitat acquired an evolutionary selection advantage resulting in a higher expression of antimicrobial proteins. PMID:24223917

  11. Microbial environment affects innate immunity in two closely related earthworm species Eisenia andrei and Eisenia fetida.

    PubMed

    Dvořák, Jiří; Mančíková, Veronika; Pižl, Václav; Elhottová, Dana; Silerová, Marcela; Roubalová, Radka; Skanta, František; Procházková, Petra; Bilej, Martin

    2013-01-01

    Survival of earthworms in the environment depends on their ability to recognize and eliminate potential pathogens. This work is aimed to compare the innate defense mechanisms of two closely related earthworm species, Eisenia andrei and Eisenia fetida, that inhabit substantially different ecological niches. While E. andrei lives in a compost and manure, E. fetida can be found in the litter layer in forests. Therefore, the influence of environment-specific microbiota on the immune response of both species was followed. Firstly, a reliable method to discern between E. andrei and E. fetida based on species-specific primers for cytochrome c oxidase I (COI) and stringent PCR conditions was developed. Secondly, to analyze the immunological profile in both earthworm species, the activity and expression of lysozyme, pattern recognition protein CCF, and antimicrobial proteins with hemolytic function, fetidin and lysenins, have been assessed. Whereas, CCF and lysozyme showed only slight differences in the expression and activity, fetidin/lysenins expression as well as the hemolytic activity was considerably higher in E. andrei as compared to E. fetida. The expression of fetidin/lysenins in E. fetida was not affected upon the challenge with compost microbiota, suggesting more substantial changes in the regulation of the gene expression. Genomic DNA analyses revealed significantly higher level of fetidin/lysenins (determined using universal primer pairs) in E. andrei compared to E. fetida. It can be hypothesized that E. andrei colonizing compost as a new habitat acquired an evolutionary selection advantage resulting in a higher expression of antimicrobial proteins.

  12. Effect of cage vs. floor litter environments on the pulmonary hypertensive response to intravenous endotoxin and on blood-gas values in broilers.

    PubMed

    Wang, W; Erf, G F; Wideman, R F

    2002-11-01

    Intravenous endotoxin has been shown to trigger a delayed pulmonary hypertensive response that varies widely in magnitude and duration among individual broilers. It was proposed that this individual variability may reflect immunological differences acquired during previous respiratory challenges that might have subsequently altered the endotoxin-initiated biochemical cascade. In Experiment 1, we tested the hypothesis that, when compared with broilers reared in clean stainless steel cages (Cage group), broilers reared on floor litter (Floor group) should experience a greater respiratory challenge and therefore may consistently exhibit a more enhanced pulmonary hypertensive response to intravenous endotoxin. Birds in the Cage group were grown in stainless steel cages at a low density (72 birds/8 m2 chamber), and fecal and dander materials were removed daily. Birds in the Floor group were reared on wood-shavings litter at a higher density (110 birds/8 m2 chamber). Pulmonary and systemic mean arterial pressures and blood-gas values were evaluated prior to and following the intravenous administration of 1 mg Salmonella typhimurium endotoxin. Broilers in the Floor and Cage groups exhibited pulmonary hypertensive responses to endotoxin that were very similar in terms of time of onset, duration, and magnitude, as well as variability in the response among individuals. Systemic hypotension also developed similarly in both groups following endotoxin injection. Blood-gas values indicated that the partial pressure of CO2 and the HCO3- concentration in arterial blood were higher (P < 0.05) in the Floor group than in the Cage group prior to and subsequent to the endotoxin injection. In Experiment 2, we reevaluated the effect of a dirty vs. a clean environment on blood-gas values using a different strain of broilers, and confirmed the negative impact of floor rearing on blood-gas values. We conclude that broilers reared on the floor inhaled litter dust and noxious fumes, which

  13. High dietary biotin levels affect the footpad and hock health of broiler chickens reared at different stocking densities and litter conditions.

    PubMed

    Sun, Z W; Fan, Q H; Wang, X X; Guo, Y M; Wang, H J; Dong, X

    2017-06-01

    Responses to stocking density (SD), dietary biotin concentration and litter condition were evaluated on 2016 Ross 308 male broilers in the fattening period (day 22-day 42). The birds were placed in 48 pens with either dry or wet litter to simulate the final stocking density of 30 kg (12 broilers/m(2) ; normal stocking density, NSD) and 40 kg (16 broilers/m(2) ; high stocking density, HSD) of body weight (BW)/m(2) floor space. A corn-soybean meal-based diet was supplemented with biotin to provide a normal (NB; 155 μg/kg) or high (HB, 1521 μg/kg) level of dietary biotin. There were six repetitions per treatment. The inappropriate moisture content of litter associated with HSD was avoided (p < 0.05) by good management (SD difference: dry litter, 6.65% vs. wet litter, 13.23%; 42 days), which made it advantageous (p < 0.01) for footpad (SD difference: dry litter, 0.118 vs. wet litter, 0.312; weekly average value) and hock health (SD difference: dry litter, 0.090 vs. wet litter, 0.303; weekly average value) of HSD birds, but not (p > 0.05) for growth and processing yield. In HSD, the biotin effect (gains, FCR) was significantly higher (p < 0.01) than in NSD. The similar response of HSD birds to supplemental biotin was observed (p < 0.05) for lesion scores of footpad and hock in particularly finishing chickens, and a significant interaction (p < 0.01) among stocking density, biotin supplementation and litter condition existed from 35 to 42 days of age. Taken together, increasing dietary biotin improves the performance and well-being of broiler chickens stocked at high densities in litter-independent and litter-dependent manners respectively. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  14. The affective quality of human-natural environment relationships.

    PubMed

    Hinds, Joe; Sparks, Paul

    2011-10-03

    Using a psychometric methodology the present study explored the associations between natural environments and experiential feeling states. The effects of the frequency of participants' (N = 90) experience of the natural environment and of the location of their childhood upbringing were also investigated. Ten natural environments mapped on to an orthogonal two-component experiential structure labeled Eudemonia (ostensibly positive feelings) and Apprehension (ostensibly negative feelings). Generally, the more natural environments tended to be associated with higher eudemonia and higher apprehension, the less natural environments with both lower eudemonia and lower apprehension. In line with expectations, participants from rural childhood locations, compared with urban participants, reported less Apprehension and participants with greater experience of the natural environment, compared with participants with less experience, reported greater Eudemonia and less Apprehension. Results are discussed in relation to environmental experiences and affective psychological wellbeing.

  15. Uterine crowding in the sow affects litter sex ratio, placental development and embryonic myogenin expression in early gestation.

    PubMed

    Tse, W-Y; Town, S C; Murdoch, G K; Novak, S; Dyck, M K; Putman, C T; Foxcroft, G R; Dixon, W T

    2008-01-01

    Uterine crowding in the pig results in intrauterine growth restriction (IUGR), and permanently affects fetal muscle fibre development, representing production losses for the commercial pig herd. The present study sought to understand how different levels of uterine crowding in sows affects muscle fibre development in the early embryo at the time of muscle fibre differentiation and proliferation. Sows either underwent surgical, unilateral oviduct ligation (LIG; n = 10) to reduce the number of embryos in the uterus, or remained as intact, relatively-crowded controls (CTR; n = 10). Embryos and placentae were collected at Day 30 of gestation, and myogenic regulatory factor (MRF) transcript abundance was determined using real-time PCR for both myogenin (MYOG) and myoblast differentiation 1 (MYOD1). Unilateral tubal ligation resulted in lower numbers of embryos in utero, higher placental weights and a higher male : female sex ratio (P < 0.05). Relative MYOD1 expression was not different, but MYOG expression was higher (P < 0.05) in the LIG group embryos; predominantly due to effects on the male embryos. Relatively modest uterine crowding therefore affects MRF expression, even at very early stages of embryonic development, and could contribute to reported differences in fetal muscle fibre development, birthweight and thus post-natal growth performance in swine.

  16. [Leaf litter decomposition and nutrient release of different stand types in a shelter belt in Xinjiang arid area].

    PubMed

    Yang, Yu-Hai; Zheng, Lu; Duan, Yong-Zhao

    2011-06-01

    From October 2007 to November 2008, an in situ mesh bag experiment was conducted to study the leaf litter decomposition and nutrient release of forest stands Populus alba var. pyramidalis, Amorpha fruticosa, and P. alba var. pyramidalis + A. fruticosa in a shelter belt in Karamay, Xinjiang. It was observed that the mass loss rate of leaf litter differed with tree species, and was significantly affected by leaf litter composition. The leaf litter of P. alba var. pyramidalis + A. fruticosa was more easily decomposed than that of the other two mono-dominance forest trees. The analysis with improved Olson' s exponential model indicated that P. alba var. pyramidalis leaf litter had the lowest decomposition coefficient (k = 0.167), while P. alba var. pyramidalis + A. fruticosa leaf litter had the highest one (k = 0.275). According to the model, it would cost for about 2.41-4.19 years and 10.79-17.98 years to have 50% and 95% decomposition of the three kind leaf litters, respectively. The residual rates of nitrogen, phosphorus, and potassium in the three kind leaf litters differed with decomposition period. After one year decomposition, potassium was wholly released, while nitrogen and phosphorus were immobilized or enriched via the absorption from surrounding environment. Except that the A. fruticosa leaf litter had a decreased organic carbon decomposition rate in the mid period of decomposition, the leaf litters of P. alba var. pyramidalis and P. alba var. pyramidalis + A. fruticosa all had an increasing organic carbon decomposition rate with the decomposition, which was about 35.5%-44.2% after one year decomposition. The C/N value of the leaf litters had a decreasing trend, and the decrement was smaller in the early and mid periods but larger in the late period of decomposition.

  17. Marine Litter in the context of `G7' - Nothing but empty rhetoric?

    NASA Astrophysics Data System (ADS)

    Neumann, J.; Imhoff, H.

    2016-02-01

    The G7 summit 2015 in Germany has demonstrated that the major advanced economies mark a new path and mindset beyond their classical issues of world economy, foreign-, security-, and development policy - the protection of the marine environment. Focus themes were marine litter, deep-sea mining, and the protection of the high seas. In the G7 Leaders' Declaration they "acknowledge that marine litter, in particular plastic litter, poses a global challenge, directly affecting marine and coastal life and ecosystems […]". Based on priority actions defined in the annex to the Leaders' Declaration, termed the `G7 Action Plan to combat Marine Litter' (G7AP ML), in fact a novelty to the otherwise rather restrained political statements, the German Presidency aims at further defining and specifying actions that are listed in the `G7AP ML'. This will include inter alia explicit measures and timelines. Emphasizing the global importance and willingness of the G7 to act, and aiming at a swift implementation of the action plan with the intention to establish a real and realistic tool in the race of litter input vs. reduction of anthropogenic pressure on the marine environment, is key to the envisaged approach. Thus, building on existing experiences, such as the OSPAR Regional Action Plan on Marine Litter for the North-East Atlantic, it is intended to expand the geographical range of application towards a global perspective. What has been learned - e.g. concerning the need of close collaboration with stakeholders? What has been decided - on how implementation may be done in reality? And is the `G7AP ML' a valuable add-on to other initiatives, e.g. Global Partnership on Marine Litter - United Nations Environment Programme (UNEP)? These questions will be discussed in the light of the state of the art of the G7 marine litter topic.

  18. Affect and Mathematics: Persistence in the Mathematical Environment.

    ERIC Educational Resources Information Center

    Blum-Anderson, Judy

    The attitudes and beliefs that students hold about the subject of mathematics and about themselves as learners of mathematics contribute as much to the school's mathematical environment as do the concrete and cognitive aspects of mathematics. This paper considers the effects of mathematical affect and the use of intervention programs to increase…

  19. Cigarette Litter: Smokers’ Attitudes and Behaviors

    PubMed Central

    Rath, Jessica M.; Rubenstein, Rebecca A.; Curry, Laurel E.; Shank, Sarah E.; Cartwright, Julia C.

    2012-01-01

    Cigarette butts are consistently the most collected items in litter clean-up efforts, which are a costly burden to local economies. In addition, tobacco waste may be detrimental to our natural environment. The tobacco industry has conducted or funded numerous studies on smokers’ littering knowledge and behavior, however, non-industry sponsored research is rare. We sought to examine whether demographics and smokers’ knowledge and beliefs toward cigarette waste as litter predicts littering behavior. Smokers aged 18 and older (n = 1,000) were interviewed about their knowledge and beliefs towards cigarette waste as litter. Respondents were members of the Research Now panel, an online panel of over three million respondents in the United States. Multivariate logistic regressions were conducted to determine factors significantly predictive of ever having littered cigarette butts or having littered cigarette butts within the past month (p-value < 0.05). The majority (74.1%) of smokers reported having littered cigarette butts at least once in their life, by disposing of them on the ground or throwing them out of a car window. Over half (55.7%) reported disposing of cigarette butts on the ground, in a sewer/gutter, or down a drain in the past month. Those who did not consider cigarette butts to be litter were over three and half times as likely to report having ever littered cigarette butts (OR = 3.68, 95%CI = 2.04, 6.66) and four times as likely to have littered cigarette butts in the past month (OR = 4.00, 95%CI = 2.53, 6.32). Males were significantly more likely to have littered cigarette butts in the past month compared to females (OR = 1.49, 95%CI = 1.14, 1.94). Holding the belief that cigarette butts are not litter was the only belief in this study that predicted ever or past-month littering of cigarette waste. Messages in anti-cigarette-litter campaigns should emphasize that cigarette butts are not just litter but are toxic waste and are harmful when disposed of

  20. Cigarette litter: smokers' attitudes and behaviors.

    PubMed

    Rath, Jessica M; Rubenstein, Rebecca A; Curry, Laurel E; Shank, Sarah E; Cartwright, Julia C

    2012-06-01

    Cigarette butts are consistently the most collected items in litter clean-up efforts, which are a costly burden to local economies. In addition, tobacco waste may be detrimental to our natural environment. The tobacco industry has conducted or funded numerous studies on smokers' littering knowledge and behavior, however, non-industry sponsored research is rare. We sought to examine whether demographics and smokers' knowledge and beliefs toward cigarette waste as litter predicts littering behavior. Smokers aged 18 and older (n = 1,000) were interviewed about their knowledge and beliefs towards cigarette waste as litter. Respondents were members of the Research Now panel, an online panel of over three million respondents in the United States. Multivariate logistic regressions were conducted to determine factors significantly predictive of ever having littered cigarette butts or having littered cigarette butts within the past month (p-value < 0.05). The majority (74.1%) of smokers reported having littered cigarette butts at least once in their life, by disposing of them on the ground or throwing them out of a car window. Over half (55.7%) reported disposing of cigarette butts on the ground, in a sewer/gutter, or down a drain in the past month. Those who did not consider cigarette butts to be litter were over three and half times as likely to report having ever littered cigarette butts (OR = 3.68, 95%CI = 2.04, 6.66) and four times as likely to have littered cigarette butts in the past month (OR = 4.00, 95%CI = 2.53, 6.32). Males were significantly more likely to have littered cigarette butts in the past month compared to females (OR = 1.49, 95%CI = 1.14, 1.94). Holding the belief that cigarette butts are not litter was the only belief in this study that predicted ever or past-month littering of cigarette waste. Messages in anti-cigarette-litter campaigns should emphasize that cigarette butts are not just litter but are toxic waste and are harmful when disposed of

  1. Microarthropods accelerate litter decomposition and alter the fate of litter carbon and nitrogen in the soil

    NASA Astrophysics Data System (ADS)

    Soong, Jennifer; Horton, Andrew; Wall, Diana; Cotrufo, Francesca

    2015-04-01

    Soil fauna have been found to accelerate litter decomposition in some ecosystems, with calls for the need to include them in global models of C and N cycling. However, their influence on the fate of decomposing litter C and N is not clear. Does the acceleration of mass loss affect how much litter C and N end up stored as soil organic matter (SOM), or how much C and N are lost to the atmosphere during decomposition? We will present the results from our three-year, 100% mass loss, tracking of 13C and 15N labeled Andropogon gerardii leaf litter decomposing at a tallgrass prairie site, where we used a naphthalene treatment to suppress microarthropods and examine their effects on the fate of decomposing litter C and N. Initially, leaching was the main pathway of litter inputs to the mineral associated SOM. We found that microarthropods accelerated the first 18 months of litter mass loss, but after 24 months mass loss rates converged. This early acceleration of mass loss was associated with an increase of litter fragment inputs to the soil. This increase in litter inputs to the soil caused by microarthropods resulted in an increase in microbial uptake of litter C (measured by tracing 13C into phospholipid fatty acids), and a shift in the microbial community. The C:N ratio of litter inputs to the soil was significantly increased by the presence of microarthropods. Together these results demonstrate how microarthropods accelerate shredding, mass loss, and litter fragment inputs to the soil during the early stages of decomposition but they do not affect the total amount of litter contribution to SOM over the entire course of decomposition. However, microarthropods do alter the C:N composition of litter inputs to the soil through their top-down influence on the microbial community responsible for decomposing and transforming litter inputs to the soil. Our results reveal the complex interactions between microarthropods, litter mass loss, soil microbes and C:N dynamics, and

  2. Do learning style and learning environment affect learning outcome?

    PubMed

    DiBartola, L M; Miller, M K; Turley, C L

    2001-01-01

    This study compared learning outcomes of students with different learning styles, as identified by the Kolb Learning Style Inventory indicators, in a traditional in-class environment with those taking the same course via distance education. The above-average scores were evenly distributed, 47% of the in-class group and 43% of the distance group. For three of the four learning styles, there was no relationship to learning outcome or environment. The Diverger group did show a relationship with above-average scores in the distance group (83%). The findings support that the classroom or distance environment did not influence learning outcome. Learning style did not appear to affect learning outcome in either group, except that the Diverger learning style may have a positive relationship to learning in the distance environment.

  3. Using column experiments to examine transport of As and other trace elements released from poultry litter: Implications for trace element mobility in agricultural watersheds.

    PubMed

    Oyewumi, Oluyinka; Schreiber, Madeline E

    2017-08-01

    Trace elements are added to poultry feed to control infection and improve weight gain. However, the fate of these trace elements in poultry litter is poorly understood. Because poultry litter is applied as fertilizer in many agricultural regions, evaluation of the environmental processes that influence the mobility of litter-derived trace elements is critical for predicting if trace elements are retained in soil or released to water. This study examined the effect of dissolved organic carbon (DOC) in poultry litter leachate on the fate and transport of litter-derived elements (As, Cu, P and Zn) using laboratory column experiments with soil collected from the Delmarva Peninsula (Mid-Atlantic, USA), a region of intense poultry production. Results of the experiments showed that DOC enhanced the mobility of all of the studied elements. However, despite the increased mobility, 60-70% of Zn, As and P mass was retained within the soil. In contrast, almost all of the Cu was mobilized in the litter leachate experiments, with very little retention in soil. Overall, our results demonstrate that the mobility of As, Cu, Zn and P in soils which receive poultry litter application is strongly influenced by both litter leachate composition, specifically organic acids, and adsorption to soil. Results have implications for understanding fate and transport of trace elements released from litter application to soil water and groundwater, which can affect both human health and the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Natural zeolites in diet or litter of broilers.

    PubMed

    Schneider, A F; Almeida, D S De; Yuri, F M; Zimmermann, O F; Gerber, M W; Gewehr, C E

    2016-04-01

    This study aims to analyse the influence of adding natural zeolites (clinoptilolite) to the diet or litter of broilers and their effects on growth performance, carcass yield and litter quality. Three consecutive flocks of broilers were raised on the same sawdust litter, from d 1 to d 42 of age, and distributed in three treatments (control with no added zeolites, addition of 5 g/kg zeolite to diet and addition of 100 g/kg zeolites to litter). The addition of zeolites to the diet or litter did not affect growth performance or carcass yield. The addition of zeolites to the diet did not influence moisture content of the litter, ammonia volatilisation was reduced only in the first flock and pH of litter was reduced in the second and third flock. However, the addition of zeolites to the litter reduced moisture content, litter pH and ammonia volatilisation in all flocks analysed. The addition of 5 g/kg zeolite to the diet in three consecutive flocks was not effective in maintaining litter quality, whereas the addition of 100 g/kg natural zeolites to sawdust litter reduced litter moisture and ammonia volatilisation in three consecutive flocks raised on the same litter.

  5. Is it worth hyperaccumulating Ni on non-serpentine soils? Decomposition dynamics of mixed-species litters containing hyperaccumulated Ni across serpentine and non-serpentine environments.

    PubMed

    Adamidis, George C; Kazakou, Elena; Aloupi, Maria; Dimitrakopoulos, Panayiotis G

    2016-06-01

    Nickel (Ni)-hyperaccumulating species produce high-Ni litters and may potentially influence important ecosystem processes such as decomposition. Although litters resembling the natural community conditions are essential in order to predict decomposition dynamics, decomposition of mixed-species litters containing hyperaccumulated Ni has never been studied. This study aims to test the effect of different litter mixtures containing hyperaccumulated Ni on decomposition and Ni release across serpentine and non-serpentine soils. Three different litter mixtures were prepared based on the relative abundance of the dominant species in three serpentine soils in the island of Lesbos, Greece where the Ni-hyperaccumulator Alyssum lesbiacum is present. Each litter mixture decomposed on its original serpentine habitat and on an adjacent non-serpentine habitat, in order to investigate whether the decomposition rates differ across the contrasted soils. In order to make comparisons across litter mixtures and to investigate whether additive or non-additive patterns of mass loss occur, a control non-serpentine site was used. Mass loss and Ni release were measured after 90, 180 and 270 d of field exposure. The decomposition rates and Ni release had higher values on serpentine soils after all periods of field exposure. The recorded rapid release of hyperaccumulated Ni is positively related to the initial litter Ni concentration. No differences were found in the decomposition of the three different litter mixtures at the control non-serpentine site, while their patterns of mass loss were additive. Our results: (1) demonstrate the rapid decomposition of litters containing hyperaccumulated Ni on serpentine soils, indicating the presence of metal-tolerant decomposers; and (2) imply the selective decomposition of low-Ni parts of litters by the decomposers on non-serpentine soils. This study provides support for the elemental allelopathy hypothesis of hyperaccumulation, presenting the

  6. Microbial abundance and composition influence litter decomposition response to environmental change.

    PubMed

    Allison, Steven D; Lu, Ying; Weihe, Claudia; Goulden, Michael L; Martiny, Adam C; Treseder, Kathleen K; Martiny, Jennifer B H

    2013-03-01

    Rates of ecosystem processes such as decomposition are likely to change as a result of human impacts on the environment. In southern California, climate change and nitrogen (N) deposition in particular may alter biological communities and ecosystem processes. These drivers may affect decomposition directly, through changes in abiotic conditions, and indirectly through changes in plant and decomposer communities. To assess indirect effects on litter decomposition, we reciprocally transplanted microbial communities and plant litter among control and treatment plots (either drought or N addition) in a grassland ecosystem. We hypothesized that drought would reduce decomposition rates through moisture limitation of decomposers and reductions in plant litter quality before and during decomposition. In contrast, we predicted that N deposition would stimulate decomposition by relieving N limitation of decomposers and improving plant litter quality. We also hypothesized that adaptive mechanisms would allow microbes to decompose litter more effectively in their native plot and litter environments. Consistent with our first hypothesis, we found that drought treatment reduced litter mass loss from 20.9% to 15.3% after six months. There was a similar decline in mass loss of litter inoculated with microbes transplanted from the drought treatment, suggesting a legacy effect of drought driven by declines in microbial abundance and possible changes in microbial community composition. Bacterial cell densities were up to 86% lower in drought plots and at least 50% lower on litter derived from the drought treatment, whereas fungal hyphal lengths increased by 13-14% in the drought treatment. Nitrogen effects on decomposition rates and microbial abundances were weaker than drought effects, although N addition significantly altered initial plant litter chemistry and litter chemistry during decomposition. However, we did find support for microbial adaptation to N addition with N

  7. Litter of origin effects on gilt development in a commercial setting

    USDA-ARS?s Scientific Manuscript database

    The preweaning litter environment of gilts can affect subsequent development. In a recent experiment designed to test the effects of dietary ME and lysine on gilt development, individual birth weights, immunocrits (related to colostrum intake), sow parity, number weaned, individual weaning weights, ...

  8. Litter Ammonia Generation: Moisture Content and Organic vs. Inorganic Bedding Materials

    USDA-ARS?s Scientific Manuscript database

    Negative impacts on the environment, bird well-being, and farm worker health indicate the need for abatement strategies for poultry litter NH3 generation. Type of bedding affects many parameters related to poultry production including NH3 losses. Broiler excrement was mixed with pine wood shavings, ...

  9. Litter quality versus soil microbial community controls over decomposition: a quantitative analysis

    USGS Publications Warehouse

    Cleveland, Cory C.; Reed, Sasha C.; Keller, Adrienne B.; Nemergut, Diana R.; O'Neill, Sean P.; Ostertag, Rebecca; Vitousek, Peter M.

    2014-01-01

    The possible effects of soil microbial community structure on organic matter decomposition rates have been widely acknowledged, but are poorly understood. Understanding these relationships is complicated by the fact that microbial community structure and function are likely to both affect and be affected by organic matter quality and chemistry, thus it is difficult to draw mechanistic conclusions from field studies. We conducted a reciprocal soil inoculum × litter transplant laboratory incubation experiment using samples collected from a set of sites that have similar climate and plant species composition but vary significantly in bacterial community structure and litter quality. The results showed that litter quality explained the majority of variation in decomposition rates under controlled laboratory conditions: over the course of the 162-day incubation, litter quality explained nearly two-thirds (64 %) of variation in decomposition rates, and a smaller proportion (25 %) was explained by variation in the inoculum type. In addition, the relative importance of inoculum type on soil respiration increased over the course of the experiment, and was significantly higher in microcosms with lower litter quality relative to those with higher quality litter. We also used molecular phylogenetics to examine the relationships between bacterial community composition and soil respiration in samples through time. Pyrosequencing revealed that bacterial community composition explained 32 % of the variation in respiration rates. However, equal portions (i.e., 16 %) of the variation in bacterial community composition were explained by inoculum type and litter quality, reflecting the importance of both the meta-community and the environment in bacterial assembly. Taken together, these results indicate that the effects of changing microbial community composition on decomposition are likely to be smaller than the potential effects of climate change and/or litter quality changes in

  10. Litter quality versus soil microbial community controls over decomposition: a quantitative analysis.

    PubMed

    Cleveland, Cory C; Reed, Sasha C; Keller, Adrienne B; Nemergut, Diana R; O'Neill, Sean P; Ostertag, Rebecca; Vitousek, Peter M

    2014-01-01

    The possible effects of soil microbial community structure on organic matter decomposition rates have been widely acknowledged, but are poorly understood. Understanding these relationships is complicated by the fact that microbial community structure and function are likely to both affect and be affected by organic matter quality and chemistry, thus it is difficult to draw mechanistic conclusions from field studies. We conducted a reciprocal soil inoculum × litter transplant laboratory incubation experiment using samples collected from a set of sites that have similar climate and plant species composition but vary significantly in bacterial community structure and litter quality. The results showed that litter quality explained the majority of variation in decomposition rates under controlled laboratory conditions: over the course of the 162-day incubation, litter quality explained nearly two-thirds (64%) of variation in decomposition rates, and a smaller proportion (25%) was explained by variation in the inoculum type. In addition, the relative importance of inoculum type on soil respiration increased over the course of the experiment, and was significantly higher in microcosms with lower litter quality relative to those with higher quality litter. We also used molecular phylogenetics to examine the relationships between bacterial community composition and soil respiration in samples through time. Pyrosequencing revealed that bacterial community composition explained 32 % of the variation in respiration rates. However, equal portions (i.e., 16%) of the variation in bacterial community composition were explained by inoculum type and litter quality, reflecting the importance of both the meta-community and the environment in bacterial assembly. Taken together, these results indicate that the effects of changing microbial community composition on decomposition are likely to be smaller than the potential effects of climate change and/or litter quality changes in

  11. Non-Native Plant Litter Enhances Soil Carbon Dioxide Emissions in an Invaded Annual Grassland

    PubMed Central

    Zhang, Ling; Wang, Hong; Zou, Jianwen; Rogers, William E.; Siemann, Evan

    2014-01-01

    Litter decomposition is a fundamental ecosystem process in which breakdown and decay of plant detritus releases carbon and nutrients. Invasive exotic plants may produce litter that differs from native plant litter in quality and quantity. Such differences may impact litter decomposition and soil respiration in ways that depend on whether exotic and native plant litters decompose in mixtures. However, few field experiments have examined how exotic plants affect soil respiration via litter decomposition. Here, we conducted an in situ study of litter decomposition of an annual native grass (Eragrostis pilosa), a perennial exotic forb (Alternanthera philoxeroides), and their mixtures in an annual grassland in China to examine potential invasion effects on soil respiration. Alternanthera litter decomposed faster than Eragrostis litter when each was incubated separately. Mass loss in litter mixes was more rapid than predicted from rates in single species bags (only 35% of predicted mass remained at 8 months) showing synergistic effects. Notably, exotic plant litter decomposition rate was unchanged but native plant litter decomposition rate was accelerated in mixtures (decay constant k = 0.20 month−1) compared to in isolation (k = 0.10 month−1). On average, every litter type increased soil respiration compared to bare soil from which litter was removed. However, the increases were larger for mixed litter (1.82 times) than for Alternanthera litter (1.58 times) or Eragrostis litter (1.30 times). Carbon released as CO2 relative to litter carbon input was also higher for mixed litter (3.34) than for Alternathera litter (2.29) or Eragrostis litter (1.19). Our results indicated that exotic Alternanthera produces rapidly decomposing litter which also accelerates the decomposition of native plant litter in litter mixtures and enhances soil respiration rates. Thus, this exotic invasive plant species will likely accelerate carbon cycling and increase soil respiration

  12. Non-native plant litter enhances soil carbon dioxide emissions in an invaded annual grassland.

    PubMed

    Zhang, Ling; Wang, Hong; Zou, Jianwen; Rogers, William E; Siemann, Evan

    2014-01-01

    Litter decomposition is a fundamental ecosystem process in which breakdown and decay of plant detritus releases carbon and nutrients. Invasive exotic plants may produce litter that differs from native plant litter in quality and quantity. Such differences may impact litter decomposition and soil respiration in ways that depend on whether exotic and native plant litters decompose in mixtures. However, few field experiments have examined how exotic plants affect soil respiration via litter decomposition. Here, we conducted an in situ study of litter decomposition of an annual native grass (Eragrostis pilosa), a perennial exotic forb (Alternanthera philoxeroides), and their mixtures in an annual grassland in China to examine potential invasion effects on soil respiration. Alternanthera litter decomposed faster than Eragrostis litter when each was incubated separately. Mass loss in litter mixes was more rapid than predicted from rates in single species bags (only 35% of predicted mass remained at 8 months) showing synergistic effects. Notably, exotic plant litter decomposition rate was unchanged but native plant litter decomposition rate was accelerated in mixtures (decay constant k = 0.20 month(-1)) compared to in isolation (k = 0.10 month(-1)). On average, every litter type increased soil respiration compared to bare soil from which litter was removed. However, the increases were larger for mixed litter (1.82 times) than for Alternanthera litter (1.58 times) or Eragrostis litter (1.30 times). Carbon released as CO2 relative to litter carbon input was also higher for mixed litter (3.34) than for Alternathera litter (2.29) or Eragrostis litter (1.19). Our results indicated that exotic Alternanthera produces rapidly decomposing litter which also accelerates the decomposition of native plant litter in litter mixtures and enhances soil respiration rates. Thus, this exotic invasive plant species will likely accelerate carbon cycling and increase soil respiration

  13. Leaf litter of invasive Chinese tallow (Triadica sebifera) negatively affects hatching success of an aquatic breeding anuran, the southern leopard frog (Lithobates sphenocephalus)

    Treesearch

    C.K. Adams; D. Saenz

    2012-01-01

    Chinese tallow (Triadica sebifera (L.) Small) is an aggressive invasive tree species that can be abundant in parts of its non-native range. This tree species has the capability of producing monocultures, by outcompeting native trees, which can be in or near wetlands that are utilized by breeding amphibians. Existing research suggests that leaf litter from invasive...

  14. Seasonal climate manipulations have only minor effects on litter decomposition rates and N dynamics but strong effects on litter P dynamics of sub-arctic bog species.

    PubMed

    Aerts, R; Callaghan, T V; Dorrepaal, E; van Logtestijn, R S P; Cornelissen, J H C

    2012-11-01

    Litter decomposition and nutrient mineralization in high-latitude peatlands are constrained by low temperatures. So far, little is known about the effects of seasonal components of climate change (higher spring and summer temperatures, more snow which leads to higher winter soil temperatures) on these processes. In a 4-year field experiment, we manipulated these seasonal components in a sub-arctic bog and studied the effects on the decomposition and N and P dynamics of leaf litter of Calamagrostis lapponica, Betula nana, and Rubus chamaemorus, incubated both in a common ambient environment and in the treatment plots. Mass loss in the controls increased in the order Calamagrostis < Betula < Rubus. After 4 years, overall mass loss in the climate-treatment plots was 10 % higher compared to the ambient incubation environment. Litter chemistry showed within each incubation environment only a few and species-specific responses. Compared to the interspecific differences, they resulted in only moderate climate treatment effects on mass loss and these differed among seasons and species. Neither N nor P mineralization in the litter were affected by the incubation environment. Remarkably, for all species, no net N mineralization had occurred in any of the treatments during 4 years. Species differed in P-release patterns, and summer warming strongly stimulated P release for all species. Thus, moderate changes in summer temperatures and/or winter snow addition have limited effects on litter decomposition rates and N dynamics, but summer warming does stimulate litter P release. As a result, N-limitation of plant growth in this sub-arctic bog may be sustained or even further promoted.

  15. Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence.

    PubMed

    Zhang, Weidong; Chao, Lin; Yang, Qingpeng; Wang, Qingkui; Fang, Yunting; Wang, Silong

    2016-10-01

    Nitrogen addition has been shown to affect plant litter decomposition in terrestrial ecosystems. The way that nitrogen deposition impacts the relationship between plant litter decomposition and altered soil nitrogen availability is unclear, however. This study examined 18 co-occurring litter types in a subtropical forest in China in terms of their decomposition (1 yr of exposure in the field) with nitrogen addition treatment (0, 0.4, 1.6, and 4.0 mol·N·m(-2) ·yr(-1) ) and soil fauna exclusion (litter bags with 0.1 and 2 cm mesh size). Results showed that the plant litter decomposition rate is significantly reduced because of nitrogen addition; the strength of the nitrogen addition effect is closely related to the nitrogen addition levels. Plant litters with diverse quality responded to nitrogen addition differently. When soil fauna was present, the nitrogen addition effect on medium-quality or high-quality plant litter decomposition rate was -26% ± 5% and -29% ± 4%, respectively; these values are significantly higher than that of low-quality plant litter decomposition. The pattern is similar when soil fauna is absent. In general, the plant litter decomposition rate is decreased by soil fauna exclusion; an average inhibition of -17% ± 1.5% was exhibited across nitrogen addition treatment and litter quality groups. However, this effect is weakly related to nitrogen addition treatment and plant litter quality. We conclude that the variations in plant litter quality, nitrogen deposition, and soil fauna are important factors of decomposition and nutrient cycling in a subtropical forest ecosystem.

  16. Pulse frequency and soil-litter mixing alter the control of cumulative precipitation over litter decomposition.

    PubMed

    Joly, François-Xavier; Kurupas, Kelsey L; Throop, Heather L

    2017-09-01

    Macroclimate has traditionally been considered the predominant driver of litter decomposition. However, in drylands, cumulative monthly or annual precipitation typically fails to predict decomposition. In these systems, the windows of opportunity for decomposer activity may rather depend on the precipitation frequency and local factors affecting litter desiccation, such as soil-litter mixing. We used a full-factorial microcosm experiment to disentangle the relative importance of cumulative precipitation, pulse frequency, and soil-litter mixing on litter decomposition. Decomposition, measured as litter carbon loss, saturated with increasing cumulative precipitation when pulses were large and infrequent, suggesting that litter moisture no longer increased and/or microbial activity was no longer limited by water availability above a certain pulse size. More frequent precipitation pulses led to increased decomposition at high levels of cumulative precipitation. Soil-litter mixing consistently increased decomposition, with greatest relative increase (+194%) under the driest conditions. Collectively, our results highlight the need to consider precipitation at finer temporal scale and incorporate soil-litter mixing as key driver of decomposition in drylands. © 2017 by the Ecological Society of America.

  17. Leaf litter decomposition in a southern Sonoran Desert ecosystem, northwestern Mexico: Effects of habitat and litter quality

    NASA Astrophysics Data System (ADS)

    Martínez-Yrízar, Angelina; Núñez, Silvia; Búrquez, Alberto

    2007-11-01

    Leaf litter decomposition of dominant woody perennial species in the three most common habitats of the southern Sonoran Desert was studied using the litter-bag method. Our objective was to assess the influence of litter quality on decomposition rates in three contrasting desert environments. The hypotheses were: (1) decomposition rates within the same litter type are faster in more mesic habitats, (2) decomposition rates are lower in higher lignin content or lower nutrient quality substrates, and (3) species-rich substrates enhance decomposition rates. For all litter types and habitats, a rapid loss of mass occurred during the summer rains at the start of the experiment, but total loss within the same litter type differed significantly among habitats. Decay rates were not higher in the more mesic habitat, but in the dry plains where solar irradiance and termite activity were highest. While termite activity was less important in the arroyos and absent in the hillsides habitats, proliferation of fungal mycelium in these sites was much higher than in the plains, suggesting that biotic and abiotic factors act both independently of litter richness. Lignin content seems to be an important factor controlling the loss of litter, because decay rates were inversely related to litter initial lignin content in all three habitats. Leaf litter diversity did not enhance rates of decomposition. The leaf litter mixture had k-values similar to the most recalcitrant monospecific litter in all three habitats, indicating a neutral or even antagonistic role of species-specific compounds in decomposition rates.

  18. Changes in litter quality induced by nutrient addition alter litter decomposition in an alpine meadow on the Qinghai-Tibet Plateau

    PubMed Central

    Zhu, Wenyan; Wang, Jinzhou; Zhang, Zhenhua; Ren, Fei; Chen, Litong; He, Jin-Sheng

    2016-01-01

    The effects of nitrogen (N) and phosphorus (P) addition on litter decomposition are poorly understood in Tibetan alpine meadows. Leaf litter was collected from plots within a factorial N × P addition experiment and allowed to decompose over 708 days in an unfertilized plot to determine the effects of N and/or P addition on litter decomposition. Results showed that nutrient addition significantly affected initial P and P-related biochemical properties of litter from all four species. However, the responses of litter N and N-related biochemical properties to nutrient addition were quite species-specific. Litter C decomposition and N release were species-specific. However, N and P addition significantly affected litter P release. Ratios of Hemicellulose + Cellulose to N and P were significantly related to litter C decomposition; C:N ratio was a determinant of litter N release; and C:P and (Hemicellulose + Cellulose):P controlled litter P release. Overall, litter C decomposition was controlled by litter quality of different plant species, and strongly affected by P addition. Increasing N availability is likely to affect litter C decomposition more indirectly by shifting plant species composition than directly by improving litter quality, and may accelerate N and P cycles, but shift the ecosystem to P limitation. PMID:27694948

  19. Changes in litter quality induced by nutrient addition alter litter decomposition in an alpine meadow on the Qinghai-Tibet Plateau.

    PubMed

    Zhu, Wenyan; Wang, Jinzhou; Zhang, Zhenhua; Ren, Fei; Chen, Litong; He, Jin-Sheng

    2016-10-03

    The effects of nitrogen (N) and phosphorus (P) addition on litter decomposition are poorly understood in Tibetan alpine meadows. Leaf litter was collected from plots within a factorial N × P addition experiment and allowed to decompose over 708 days in an unfertilized plot to determine the effects of N and/or P addition on litter decomposition. Results showed that nutrient addition significantly affected initial P and P-related biochemical properties of litter from all four species. However, the responses of litter N and N-related biochemical properties to nutrient addition were quite species-specific. Litter C decomposition and N release were species-specific. However, N and P addition significantly affected litter P release. Ratios of Hemicellulose + Cellulose to N and P were significantly related to litter C decomposition; C:N ratio was a determinant of litter N release; and C:P and (Hemicellulose + Cellulose):P controlled litter P release. Overall, litter C decomposition was controlled by litter quality of different plant species, and strongly affected by P addition. Increasing N availability is likely to affect litter C decomposition more indirectly by shifting plant species composition than directly by improving litter quality, and may accelerate N and P cycles, but shift the ecosystem to P limitation.

  20. Nitrogen and Phosphorus Loads in an Agricultural Watershed Affected by Poultry Litter Application and Wastewater Effluent, Northeastern Oklahoma and Northwestern Arkansas, 2002-2009

    NASA Astrophysics Data System (ADS)

    Esralew, R.; Tortorelli, R. L.

    2010-12-01

    The Eucha-Spavinaw Basin in Northeastern Oklahoma and Northwestern Arkansas is the source of water for Lake Eucha and Spavinaw Lake, which are part of the water supply for the city of Tulsa, Oklahoma. Lake Eucha and Spavinaw Lakes have experienced deteriorating water quality largely due to growth of algae, notably cyanobacteria, from the excess input of nutrients. As a result, the city of Tulsa has spent millions of dollars to eliminate taste and odor problems resulting from production of algal and bacterial byproducts. To evaluate changes in nutrient loading resulting from a reduction in land application of poultry litter, installation of best management practices, and reductions in the phosphorus concentrations in wastewater effluent, the U.S. Geological Survey investigated nitrogen and phosphorus concentrations from samples collected during baseflow and runoff and used regression models to estimate nitrogen and phosphorus loads, yields, and flow-weighted concentrations in two major tributaries to Lake Eucha, Spavinaw and Beaty Creeks, for the period 2002-2009. Estimated mean flow-weighted total unfiltered nitrogen and phosphorus concentrations in the basin were about 5 to 10 times greater than the 75th percentile of flow-weighted nutrient concentrations in other mostly undeveloped basins of the United States. Spavinaw and Beaty Creeks contributed an estimated mean annual total load of about 762,500 kilograms of nitrogen and 49,200 kilograms of phosphorus per year, 76 to 91 percent of which was transported to Lake Eucha by runoff. Thirty-four percent of the nitrogen load and 48 percent of the phosphorus load to Lake Eucha occurred during the year 2008 which was the wettest year on record for the Eucha-Spavinaw Basin. The results of this analysis indicate that although efforts were made to control nutrient loading, nutrient concentrations, especially phosphorus, were substantially augmented by non-point sources and that most loading occurs during runoff events

  1. Carbon redistribution during interrill erosion in subtropical forests: Effects of leaf litter diversity and soil fauna

    NASA Astrophysics Data System (ADS)

    Goebes, Philipp; Seitz, Steffen; Kühn, Peter; Scholten, Thomas

    2016-04-01

    Soil erosion is crucial for degradation of carbon (C) from their pools in the soil. If C of the eroded sediment and runoff are not only related to soil pools but also resulting additively from decomposition of litter cover, the system gets more complex. The role of these amounts for C cycling in a forest environment is not yet known properly and thus, the aim of this study was to investigate the role of leaf litter diversity, litter cover and soil fauna on C redistribution during interrill erosion. We established 96 runoff plots that were deployed with seven domestic leaf litter species resulting in none species (bare ground), 1-species, 2-species and 4-species mixtures. Every second runoff plot was equipped with a fauna extinction feature to investigate the role of soil meso- and macrofauna. Erosion processes were initiated using a rainfall simulator at two time steps (summer 2012 and autumn 2012) to investigate the role of leaf litter decomposition on C redistribution. C fluxes during 20 min rainfall simulation were 99.13 ± 94.98 g/m². C fluxes and C contents both were affected by soil fauna. C fluxes were higher with presence of soil fauna due to loosening and slackening of the soil surface rather than due to faster decomposition of leaves. In contrast, C contents were higher in the absence of soil fauna possibly resulting from a missing dilution effect in the top soil layer. Leaf litter diversity did not affect C fluxes, but indirectly affected C contents as it increased the soil fauna effect with higher leaf litter diversity due to superior food supply. Initial C contents in the soil mainly determined those of the eroded sediment. For future research, it will be essential to introduce a long-term decomposition experiment to get further insights into the processes of C redistribution.

  2. Mixing effects on litter decomposition rates in a young tree diversity experiment

    NASA Astrophysics Data System (ADS)

    Setiawan, Nuri Nurlaila; Vanhellemont, Margot; De Schrijver, An; Schelfhout, Stephanie; Baeten, Lander; Verheyen, Kris

    2016-01-01

    Litter decomposition is an essential process for biogeochemical cycling and for the formation of new soil organic matter. Mixing litter from different tree species has been reported to increase litter decomposition rates through synergistic effects. We assessed the decomposition rates of leaf litter from five tree species in a recently established tree diversity experiment on a post-agriculture site in Belgium. We used 20 different leaf litter compositions with diversity levels ranging from 1 up to 4 species. Litter mass loss in litterbags was assessed 10, 20, 25, 35, and 60 weeks after installation in the field. We found that litter decomposition rates were higher for high-quality litters, i.e., with high nitrogen content and low lignin content. The decomposition rates of mixed litter were more affected by the identity of the litter species within the mixture than by the diversity of the litter per se, but the variability in litter decomposition rates decreased as the litter diversity increased. Among the 15 different mixed litter compositions in our study, only three litter combinations showed synergistic effects. Our study suggests that admixing tree species with high-quality litter in post-agricultural plantations helps in increasing the mixture's early-stage litter decomposition rate.

  3. Poor sleep quality affects spatial orientation in virtual environments.

    PubMed

    Valera, Silvana; Guadagni, Veronica; Slone, Edward; Burles, Ford; Ferrara, Michele; Campbell, Tavis; Iaria, Giuseppe

    2016-01-01

    Sleep is well known to have a significant impact on learning and memory. Specifically, studies adopting an experimentally induced sleep loss protocol in healthy individuals have provided evidence that the consolidation of spatial memories, as acquired through navigating and orienteering in spatial surroundings, is negatively affected by total sleep loss. Here, we used both objective and subjective measures to characterize individuals' quality of sleep, and grouped participants into either a poor (insomnia-like) or normal (control) sleep quality group. We asked participants to solve a wayfinding task in a virtual environment, and scored their performance by measuring the time spent to reach a target location and the number of wayfinding errors made while navigating. We found that participants with poor sleep quality were slower and more error-prone than controls in solving the task. These findings provide novel evidence that pre-existing sleep deficiencies in otherwise healthy individuals affects negatively the ability to learn novel routes, and suggest that sleep quality should be accounted for among healthy individuals performing experimental spatial orientation tasks in virtual environments.

  4. [Factors affecting the satisfaction of recruits with the military environment].

    PubMed

    Cetin, Mesut; Ebrinç, Servet; Başoğlu, Cengiz; Semiz, Umit Başar; Cobanoğlu, Necati; Can, Sibel; Karaduman, Ferit

    2003-01-01

    Life satisfaction is one of the global indicators of adjustment. The purpose of this study was to investigate the roles of individual and familial characteristics, and attitudes towards military service of new recruits in terms of their satisfaction with the fundamental principles of military service and daily military lifestyle and environment. The study was conducted among 214 soldiers recruited one month previously in an orientation camp for privates located in an Istanbul military center. All subjects were administered a questionnaire concerning individual and familial sociodemographic features and their feelings about the fundamental principles of military service and daily military lifestyle and environment. Variables included in the questionnaire such as "prior concern about military service", "unexpected timing of military service", "disappointment with military service", "older age at onset of military service" and "higher education level of the subject himself or his mother", were found to be negatively correlated with the satisfaction levels of soldiers. All these items, excluding the education level of the mother, were determined to predict a low level of satisfaction in recruits. Satisfaction with the fundamental principles of military service and daily military life and environment of recruits, which is a good indicator of adjustment, is concluded to have been affected by the attitudes of individuals towards military service and expectations from this position, the educational level of soldiers and the age of the soldier at the start of military service.

  5. Intensive care unit environment may affect the course of delirium.

    PubMed

    Zaal, Irene J; Spruyt, Carolina F; Peelen, Linda M; van Eijk, Maarten M J; Wientjes, Rens; Schneider, Margriet M E; Kesecioglu, Jozef; Slooter, Arjen J C

    2013-03-01

    Delirium is a common disorder in intensive care unit (ICU) patients. It is unclear whether ICU environment affects delirium. We investigated the influence of ICU environment on the number of days with delirium during ICU admission. In this prospective before-after study, ICU delirium was compared between a conventional ICU with wards and a single-room ICU with, among others, improved daylight exposure. We included patients admitted for more than 24 h between March and June 2009 (ICU with wards) or between June and September 2010 (single-room ICU). Patients who remained unresponsive throughout ICU admission were excluded. The presence of delirium in the preceding 24 h was assessed daily with the confusion assessment method for the ICU (CAM-ICU) by research physicians combined with evaluation of medical and nursing charts. The number of days with delirium was investigated with Poisson regression analysis. We included 55 patients (449 observation days) in the ICU with wards and 75 patients (468 observation days) in the single-room ICU. After adjusting for confounding, the number of days with delirium decreased by 0.4 days (95 % confidence interval 0.1-0.7) in the single-room ICU (p = 0.005). The incidence of delirium during ICU stay was similar in the ICU with wards (51 %) and in the single-room ICU (45 %, p = 0.53). This study is the first to show that ICU environment may influence the course of delirium in ICU patients.

  6. The impact of alum addition on organic P transformations in poultry litter and litter-amended soil.

    PubMed

    Warren, Jason G; Penn, Chad J; McGrath, Joshua M; Sistani, Karamat

    2008-01-01

    Poultry litter treatment with alum (Al(2)(SO(4))(3) . 18H(2)O) lowers litter phosphorus (P) solubility and therefore can lower litter P release to runoff after land application. Lower P solubility in litter is generally attributed to aluminum-phosphate complex formation. However, recent studies suggest that alum additions to poultry litter may influence organic P mineralization. Therefore, alum-treated and untreated litters were incubated for 93 d to assess organic P transformations during simulated storage. A 62-d soil incubation was also conducted to determine the fate of incorporated litter organic P, which included alum-treated litter, untreated litter, KH(2)PO(4) applied at 60 mg P kg(-1) of soil, and an unamended control. Liquid-state (31)P nuclear magnetic resonance indicated that phytic acid was the only organic P compound present, accounting for 50 and 45% of the total P in untreated and alum-treated litters, respectively, before incubation and declined to 9 and 37% after 93 d of storage-simulating incubation. Sequential fractionation of litters showed that alum addition to litter transformed 30% of the organic P from the 1.0 mol L(-1) HCl to the 0.1 mol L(-1) NaOH extractable fraction and that both organic P fractions were more persistent in alum-treated litter compared with untreated litter. The soil incubation revealed that 0.1 mol L(-1) NaOH-extractable organic P was more recalcitrant after mixing than was the 1.0 mol L(-1) HCl-extractable organic P. Thus, adding alum to litter inhibits organic P mineralization during storage and promotes the formation of alkaline extractable organic P that sustains lower P solubility in the soil environment.

  7. Effect of Fresh Poultry Litter and Compost on Soil Physical and Chemical Properties

    NASA Technical Reports Server (NTRS)

    Carr, Stacy; Tsegaye, Teferi; Coleman, Tommy

    1998-01-01

    Application of poultry litter and compost as a substitute for fertilizer not only uses unwanted waste and decreases expenditures for commercial fertilizer, it adds nutrients to soil for plant uptake. The properties of soil affected by poultry litter were analyzed to determine the positive and negative aspects of using this substitute fertilizer. This study focused on changes associated with saturated hydraulic conductivity, bulk density, nitrate concentrations, and pH after application of varying concentrations of poultry litter and compost. Soil samples from Tennessee Valley Substation in Alabama were analyzed in a laboratory at Alabama A&M University. As a result of the application of fresh poultry litter and compost, we found that the saturated hydraulic conductivity increased and the bulk density decreased, while the pH was generally not affected. Using poultry litter and compost as an alternative commercial fertilizers could be adapted by the farming community to protect the sustainability of our environment. Unwanted waste is used productively and soil is enriched for farming.

  8. Effect of Fresh Poultry Litter and Compost on Soil Physical and Chemical Properties

    NASA Technical Reports Server (NTRS)

    Carr, Stacy; Tsegaye, Teferi; Coleman, Tommy

    1998-01-01

    Application of poultry litter and compost as a substitute for fertilizer not only uses unwanted waste and decreases expenditures for commercial fertilizer, it adds nutrients to soil for plant uptake. The properties of soil affected by poultry litter were analyzed to determine the positive and negative aspects of using this substitute fertilizer. This study focused on changes associated with saturated hydraulic conductivity, bulk density, nitrate concentrations, and pH after application of varying concentrations of poultry litter and compost. Soil samples from Tennessee Valley Substation in Alabama were analyzed in a laboratory at Alabama A&M University. As a result of the application of fresh poultry litter and compost, we found that the saturated hydraulic conductivity increased and the bulk density decreased, while the pH was generally not affected. Using poultry litter and compost as an alternative commercial fertilizers could be adapted by the farming community to protect the sustainability of our environment. Unwanted waste is used productively and soil is enriched for farming.

  9. Watching eyes on potential litter can reduce littering: evidence from two field experiments.

    PubMed

    Bateson, Melissa; Robinson, Rebecca; Abayomi-Cole, Tim; Greenlees, Josh; O'Connor, Abby; Nettle, Daniel

    2015-01-01

    Littering constitutes a major societal problem, and any simple intervention that reduces its prevalence would be widely beneficial. In previous research, we have found that displaying images of watching eyes in the environment makes people less likely to litter. Here, we investigate whether the watching eyes images can be transferred onto the potential items of litter themselves. In two field experiments on a university campus, we created an opportunity to litter by attaching leaflets that either did or did not feature an image of watching eyes to parked bicycles. In both experiments, the watching eyes leaflets were substantially less likely to be littered than control leaflets (odds ratios 0.22-0.32). We also found that people were less likely to litter when there other people in the immediate vicinity than when there were not (odds ratios 0.04-0.25) and, in one experiment but not the other, that eye leaflets only reduced littering when there no other people in the immediate vicinity. We suggest that designing cues of observation into packaging could be a simple but fruitful strategy for reducing littering.

  10. Watching eyes on potential litter can reduce littering: evidence from two field experiments

    PubMed Central

    Bateson, Melissa; Robinson, Rebecca; Abayomi-Cole, Tim; Greenlees, Josh; O’Connor, Abby

    2015-01-01

    Littering constitutes a major societal problem, and any simple intervention that reduces its prevalence would be widely beneficial. In previous research, we have found that displaying images of watching eyes in the environment makes people less likely to litter. Here, we investigate whether the watching eyes images can be transferred onto the potential items of litter themselves. In two field experiments on a university campus, we created an opportunity to litter by attaching leaflets that either did or did not feature an image of watching eyes to parked bicycles. In both experiments, the watching eyes leaflets were substantially less likely to be littered than control leaflets (odds ratios 0.22–0.32). We also found that people were less likely to litter when there other people in the immediate vicinity than when there were not (odds ratios 0.04–0.25) and, in one experiment but not the other, that eye leaflets only reduced littering when there no other people in the immediate vicinity. We suggest that designing cues of observation into packaging could be a simple but fruitful strategy for reducing littering. PMID:26644979

  11. Environmental fate of roxarsone in poultry litter. Part II. Mobility of arsenic in soils amended with poultry litter

    USGS Publications Warehouse

    Rutherford, D.W.; Bednar, A.J.; Garbarino, J.R.; Needham, R.; Staver, K.W.; Wershaw, R. L.

    2003-01-01

    Poultry litter often contains arsenic as a result of organo-arsenical feed additives. When the poultry litter is applied to agricultural fields, the arsenic is released to the environment and may result in increased arsenic in surface and groundwater and increased uptake by plants. The release of arsenic from poultry litter, litter-amended soils, and soils without litter amendment was examined by extraction with water and strong acids (HCI and HN03). The extracts were analyzed for As, C, P, Cu, Zn, and Fe. Copper, zinc, and iron are also poultry feed additives. Soils with a known history of litter application and controlled application rate of arsenic-containing poultry litter were obtained from the University of Maryland Agricultural Experiment Station. Soils from fields with long-term application of poultry litter were obtained from a tilled field on the Delmarva Peninsula (MD) and an untilled Oklahoma pasture. Samples from an adjacent forest or nearby pasture that had no history of litter application were used as controls. Depth profiles were sampled for the Oklahoma pasture soils. Analysis of the poultry litter showed that 75% of the arsenic was readily soluble in water. Extraction of soils shows that weakly bound arsenic mobilized by water correlates positively with C, P, Cu, and Zn in amended fields and appears to come primarily from the litter. Strongly bound arsenic correlates positively with Fe in amended fields and suggests sorption or coprecipitation of As and Fe in the soil column.

  12. Water addition, evaporation and water holding capacity of poultry litter.

    PubMed

    Dunlop, Mark W; Blackall, Patrick J; Stuetz, Richard M

    2015-12-15

    Litter moisture content has been related to ammonia, dust and odour emissions as well as bird health and welfare. Improved understanding of the water holding properties of poultry litter as well as water additions to litter and evaporation from litter will contribute to improved litter moisture management during the meat chicken grow-out. The purpose of this paper is to demonstrate how management and environmental conditions over the course of a grow-out affect the volume of water A) applied to litter, B) able to be stored in litter, and C) evaporated from litter on a daily basis. The same unit of measurement has been used to enable direct comparison-litres of water per square metre of poultry shed floor area, L/m(2), assuming a litter depth of 5cm. An equation was developed to estimate the amount of water added to litter from bird excretion and drinking spillage, which are sources of regular water application to the litter. Using this equation showed that water applied to litter from these sources changes over the course of a grow-out, and can be as much as 3.2L/m(2)/day. Over a 56day grow-out, the total quantity of water added to the litter was estimated to be 104L/m(2). Litter porosity, water holding capacity and water evaporation rates from litter were measured experimentally. Litter porosity decreased and water holding capacity increased over the course of a grow-out due to manure addition. Water evaporation rates at 25°C and 50% relative humidity ranged from 0.5 to 10L/m(2)/day. Evaporation rates increased with litter moisture content and air speed. Maintaining dry litter at the peak of a grow-out is likely to be challenging because evaporation rates from dry litter may be insufficient to remove the quantity of water added to the litter on a daily basis. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  13. Influence of waste management policy on the characteristics of beach litter in Kaohsiung, Taiwan.

    PubMed

    Liu, Ta-Kang; Wang, Meng-Wei; Chen, Ping

    2013-07-15

    Marine debris is a ubiquitous problem that poses a serious threat to the global oceans; it has motivated public participation in clean-up campaigns, as well as governmental involvement in developing mitigation strategies. While it is known that the problem of marine litter may be affected by waste management practices on land, beach survey results have seldom been compared with them. In this study, marine litter surveys on four beaches of Cijin Island were conducted to explore the effects of waste management and policy implications. Indirect evidence shows that chances for land-based litter, such as plastic bags and bottles, entering the marine environment can be greatly decreased if they can be properly reduced, reused and recycled. We suggest that mitigation measures should focus on source reduction, waste recycling and management, utilizing effective economic instruments, and pursuing a long-term public education campaign to raise the public awareness of this problem. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. UVB Exposure Does Not Accelerate Rates of Litter Decomposition in a Semiarid Riparian Ecosystem

    NASA Astrophysics Data System (ADS)

    Uselman, S. M.; Snyder, K. A.; Blank, R. R.; Jones, T. J.

    2010-12-01

    Aboveground litter decomposition is controlled mainly by substrate quality and climate factors across terrestrial ecosystems, but photodegradation from exposure to high-intensity ultraviolet-B (UVB) radiation may also be important in arid and semi-arid environments. We investigated the interactive effects of UVB exposure and litter quality on decomposition in a Tamarix-invaded riparian ecosystem during the establishment of an insect biological control agent in northern Nevada. Feeding by the northern tamarisk beetle (Diorhabda carinulata) on Tamarix spp. trees leads to altered leaf litter quality and increased exposure to solar UVB radiation from canopy opening. In addition, we examined the dynamics of litter decomposition of the invasive exotic Lepidium latifolium, because it is well-situated to invade beetle-infested Tamarix sites. Three leaf litter types (natural Tamarix, beetle-affected Tamarix, and L. latifolium) differing in substrate quality were decomposed in litterbags for one year in the field. Litterbags were subjected to one of three treatments: (1) Ambient UVB or (2) Reduced UVB (where UVB was manipulated by using clear plastic films that transmit or block UVB), and (3) No Cover (a control used to test for the effect of using the plastic films, i.e. a cover effect). Results showed a large cover effect on rates of decomposition and nutrient release, and our findings suggested that frequent cycles of freeze-thaw, and possibly rainfall intensity, influenced decomposition at this site. Contrary to our expectations, greater UVB exposure did not result in faster rates of decomposition. Greater UVB exposure resulted in decreased rates of decomposition and P release for the lower quality litter and no change in rates of decomposition and nutrient release for the two higher quality litter types, possibly due to a negative effect of UVB on soil microbes. Among litter types, rates of decomposition and net release of N and P followed this ranking: L. latifolium

  15. Environmentally friendly animal litter

    SciTech Connect

    Chett, Boxley; McKelvie, Jessica

    2013-08-20

    A method of making an animal litter that includes geopolymerized ash, wherein, the animal litter is made from a quantity of a pozzolanic ash mixed with a sufficient quantity of water and an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. After the geopolymerized ash is formed, it is dried, broken into particulates, and sieved to a desired size. These geopolymerized ash particulates are used to make a non-clumping or clumping animal litter. Odor control may be accomplished with the addition of a urease inhibitor, pH buffer, an odor eliminating agent, and/or fragrance.

  16. Social environment affects juvenile dispersal in great tits (Parus major).

    PubMed

    Nicolaus, Marion; Michler, Stephanie P M; Jalvingh, Kirsten M; Ubels, Richard; van der Velde, Marco; Komdeur, Jan; Both, Christiaan; Tinbergen, Joost M

    2012-07-01

    1. Habitat selection can affect individual fitness, and therefore, individuals are expected to assess habitat quality of potential breeding sites before settlement. 2. We investigated the role of social environment on juvenile dispersal behaviour in the great tit (Parus major). Two main contradictory hypotheses can be formulated regarding social effects on juvenile dispersal as follows: (i) High fledgling density and sex ratio may enhance the intensity of local (kin) competition and, therefore, reduce individual survival chance, enhance emigration and reduce settlement ('repulsion' hypothesis) (ii) Alternatively, high fledgling density and sex ratio may signal high-quality habitat or lead to aggregation and thus increase individual survival chance, reduce emigration and enhance settlement ('attraction' hypothesis). 3. To disentangle positive from negative effects of high density and male-biased sex ratio on dispersal, we manipulated the social composition of the fledgling population in 12 semi-isolated nest-box areas (plots) via a change of fledgling density (low/high) as well as fledgling sex ratio (female-biased/balanced/male-biased) across 3 years. We then tested whether experimental variation in male and female fledgling densities affected variation in local survival, emigration and settlement of juveniles, and whether social effects on survival and dispersal support the 'repulsion' or 'attraction' hypothesis. 4. We found no experimental effects on local survival and emigration probabilities. However, consistent with the 'attraction' hypothesis, settlement was significantly and positively affected by local experimental sex ratio in each of the study years: both male and female juveniles avoided female-biased plots and settled more in plots that were balanced and male-biased the previous year. 5. Our study provides unprecedented experimental evidence that local sex ratio plays a causal role in habitat selection. We suggest that settlers avoid female

  17. Litter Supply as a Driver of Microbial Activity and Community Structure on Decomposing Leaves: a Test in Experimental Streams

    PubMed Central

    Gerull, Linda; Mutz, Michael

    2013-01-01

    Succession of newly created landscapes induces profound changes in plant litter supplied to streams. Grasses dominate inputs into open-land streams, whereas tree litter is predominant in forested streams. We set out to elucidate whether the activity and structure of microbial communities on decomposing leaves are determined by litter quality (i.e., grass or tree leaves colonized) or whether changes during riparian succession affecting litter standing stocks on the stream bed play an overriding role. We used 15 outdoor experimental streams to simulate changes in litter supplies reflecting five stages of riparian succession: (i) a biofilm stage with no litter, (ii) an open-land stage characterized by grass litter inputs, (iii) a transitional stage with a mix of grass and tree litter, (iv) an early forested stage with tree litter, and (v) an advanced forested stage with 2.5 times the amount of tree litter. Microbial activities on tree (Betula pendula) and grass (Calamagrostis epigejos) litter were unaffected by either the quantity or type of litter supplied to the experimental streams (i.e., litter standing stock) but differed between the two litter types. This was in stark contrast with bacterial and fungal community structure, which markedly differed on grass and tree litter and, to a lesser extent, also among streams receiving different litter inputs. These patterns reveal distinct responses of microbial community structure and activity to the bulk litter available in streams but consistent responses to the litter type colonized. PMID:23770903

  18. Mixing effects of understory plant litter on decomposition and nutrient release of tree litter in two plantations in Northeast China.

    PubMed

    Zhao, Lei; Hu, Ya-Lin; Lin, Gui-Gang; Gao, Yong-chao; Fang, Yun-Ting; Zeng, De-Hui

    2013-01-01

    Understory vegetation plays a crucial role in carbon and nutrient cycling in forest ecosystems; however, it is not clear how understory species affect tree litter decomposition and nutrient dynamics. In this study, we examined the impacts of understory litter on the decomposition and nutrient release of tree litter both in a pine (Pinus sylvestris var. mongolica) and a poplar (Populus × xiaozhuanica) plantation in Northeast China. Leaf litter of tree species, and senesced aboveground materials from two dominant understory species, Artemisia scoparia and Setaria viridis in the pine stand and Elymus villifer and A. sieversiana in the poplar stand, were collected. Mass loss and N and P fluxes of single-species litter and three-species mixtures in each of the two forests were quantified. Data from single-species litterbags were used to generate predicted mass loss and N and P fluxes for the mixed-species litterbags. In the mixture from the pine stand, the observed mass loss and N release did not differ from the predicted value, whereas the observed P release was greater than the predicted value. However, the presence of understory litter decelerated the mass loss and did not affect N and P releases from the pine litter. In the poplar stand, litter mixture presented a positive non-additive effect on litter mass loss and P release, but an addition effect on N release. The presence of understory species accelerated only N release of poplar litter. Moreover, the responses of mass loss and N and P releases of understory litter in the mixtures varied with species in both pine and poplar plantations. Our results suggest that the effects of understory species on tree litter decomposition vary with tree species, and also highlight the importance of understory species in litter decomposition and nutrient cycles in forest ecosystems.

  19. Littering Behavior in Public Places

    ERIC Educational Resources Information Center

    Robinson, Stuart N.

    1976-01-01

    This review summarizes the present state of knowledge concerning littering behavior. Available studies are categorized according to the variables that influence littering--individual and environmental. Theoretical issues of attitude-behavior consistency and incentive effectiveness are analyzed with respect to littering and litter control. Results…

  20. Littering Behavior in Public Places

    ERIC Educational Resources Information Center

    Robinson, Stuart N.

    1976-01-01

    This review summarizes the present state of knowledge concerning littering behavior. Available studies are categorized according to the variables that influence littering--individual and environmental. Theoretical issues of attitude-behavior consistency and incentive effectiveness are analyzed with respect to littering and litter control. Results…

  1. Environment and Host Affects Arbuscular Mycorrhiza Fungi (AMF) Population

    PubMed Central

    Rahim, Norahizah Abd; Jais, Hasnah Md; Hassan, Hasnuri Mat

    2016-01-01

    The association of arbuscular mycorrhiza fungi (AMF) and roots undoubtedly gives positive advantages to the host plant. However, heavily fertilised soil such as in oil palm plantation, inhibit the growth of mycorrhiza. Thus, the aim of this research is to distinguish and quantify the availability of AMF population and propagules at different sites of an oil palm plantation by Most Probable Number (MPN) assay. In addition, root infection method was employed to observe host compatibility through the propagation of AMF using two different types of hosts, monocotyledon (Echinochloa cruss-galli) and dicotyledon (Vigna radiata). Three different locations at an oil palm plantation were chosen for sampling. Each location was represented by a distinctive soil series, and were further divided into two sites, that is canopy and midway area. Midway site had a greater population of AMF compared to canopy. The result showed that different environments affect the availability of AMF in the soil. Higher number of AMF infection observed in monocotyledon host suggests that the fibrous root system provide a better association with mycorrhiza. PMID:27965735

  2. Environment and Host Affects Arbuscular Mycorrhiza Fungi (AMF) Population.

    PubMed

    Rahim, Norahizah Abd; Jais, Hasnah Md; Hassan, Hasnuri Mat

    2016-11-01

    The association of arbuscular mycorrhiza fungi (AMF) and roots undoubtedly gives positive advantages to the host plant. However, heavily fertilised soil such as in oil palm plantation, inhibit the growth of mycorrhiza. Thus, the aim of this research is to distinguish and quantify the availability of AMF population and propagules at different sites of an oil palm plantation by Most Probable Number (MPN) assay. In addition, root infection method was employed to observe host compatibility through the propagation of AMF using two different types of hosts, monocotyledon (Echinochloa cruss-galli) and dicotyledon (Vigna radiata). Three different locations at an oil palm plantation were chosen for sampling. Each location was represented by a distinctive soil series, and were further divided into two sites, that is canopy and midway area. Midway site had a greater population of AMF compared to canopy. The result showed that different environments affect the availability of AMF in the soil. Higher number of AMF infection observed in monocotyledon host suggests that the fibrous root system provide a better association with mycorrhiza.

  3. Abundance of litter on Condor seamount (Azores, Portugal, Northeast Atlantic)

    NASA Astrophysics Data System (ADS)

    Pham, C. K.; Gomes-Pereira, J. N.; Isidro, E. J.; Santos, R. S.; Morato, T.

    2013-12-01

    Marine litter is an emerging problem for the world's ocean health but little is known on its distribution and abundance on seamounts and how it affects deep-sea ecosystems. The scientific underwater laboratory set up on Condor seamount offered an ideal case study for the first documentation of litter distribution on a shallow seamount with historical fishing. A total of 48 video transects deployed on the summit (n=45) and the northern flank (n=3) covered an area of 0.031 and 0.025km2, respectively, revealing 55 litter items. Litter density on the summit was 1439 litter items km-2, whilst on the deeper northern flank, estimates indicate densities of 397 litter items km-2. Lost fishing line was the dominant litter item encountered on both areas (73% of total litter on the summit and 50% on northern flank), all being entirely or partly entangled in the locally abundant gorgonians Dentomuricea cf. meteor and Viminella flagellum. Other items included lost weights, anchors and glass bottles. The predominance of lost fishing gear identifies the source of litter on Condor seamount as exclusively ocean-based and related to fishing activities. Abundance of litter on the Condor seamount was much lower than that reported from other locations closer to populated areas.

  4. 49 CFR 520.5 - Guidelines for identifying major actions significantly affecting the environment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... significantly affecting the environment. 520.5 Section 520.5 Transportation Other Regulations Relating to... significantly affecting the environment. (a) General guidelines. The phrase, “major Federal actions significantly affecting the quality of the human environment,” as used in this part, shall be construed with a...

  5. Odour emissions from poultry litter - A review litter properties, odour formation and odorant emissions from porous materials.

    PubMed

    Dunlop, Mark W; Blackall, Patrick J; Stuetz, Richard M

    2016-07-15

    Odour emissions from meat chicken sheds can at times cause odour impacts on surrounding communities. Litter is seen as the primary source of this odour. Formation and emission of odour from meat chicken litter during the grow-out period are influenced by various factors such as litter conditions, the environment, microbial activity, properties of the odorous gases and management practices. Odour emissions vary spatially and temporally. This variability has made it challenging to understand how specific litter conditions contribute to odour emissions from the litter and production sheds. Existing knowledge on odorants, odour formation mechanisms and emission processes that contribute to odour emissions from litter are reviewed. Litter moisture content and water thermodynamics (i.e. water activity, Aw) are also examined as factors that contribute to microbial odour formation, physical litter conditions and the exchange of individual odorant gases at the air-water interface. Substantial opportunities exist for future research on litter conditions and litter formation mechanisms and how these contribute to odour emissions. Closing this knowledge gap will improve management strategies that intercept and interfere with odour formation and emission processes leading to an overall reduction in the potential to cause community impacts.

  6. Video-Based Affect Detection in Noninteractive Learning Environments

    ERIC Educational Resources Information Center

    Chen, Yuxuan; Bosch, Nigel; D'Mello, Sidney

    2015-01-01

    The current paper explores possible solutions to the problem of detecting affective states from facial expressions during text/diagram comprehension, a context devoid of interactive events that can be used to infer affect. These data present an interesting challenge for face-based affect detection because likely locations of affective facial…

  7. How oral environment simulation affects ceramic failure behavior.

    PubMed

    Lodi, Ediléia; Weber, Kátia R; Benetti, Paula; Corazza, Pedro H; Della Bona, Álvaro; Borba, Márcia

    2017-09-16

    Investigating the mechanical behavior of ceramics in a clinically simulated scenario contributes to the development of new and tougher materials, improving the clinical performance of restorations. The optimal in vitro environment for testing is unclear. The purpose of this in vitro study was to investigate the failure behavior of a leucite-reinforced glass-ceramic under compression loading and fatigue in different simulated oral environment conditions. Fifty-three plate-shaped ceramic specimens were produced from computer-aided design and computer-aided manufactured (CAD-CAM) blocks and adhesively cemented onto a dentin analog substrate. For the monotonic test (n=23), a gradual compressive load (0.5 mm/min) was applied to the center of the specimens, immersed in 37ºC water, using a universal testing machine. The initial crack was detected with an acoustic system. The fatigue test was performed in a mechanical cycling machine (37ºC water, 2 Hz) using the boundary technique (n=30). Two lifetimes were evaluated (1×10(6) and 2×10(6) cycles). Failure analysis was performed using transillumination. Weibull distribution was used to evaluate compressive load data. A cumulative damage model with an inverse power law (IPL) lifetime-stress relationship was used to fit the fatigue data. A characteristic failure load of 1615 N and a Weibull modulus of 5 were obtained with the monotonic test. The estimated probability of failure (Pf) for 1×10(6) cycles at 100 N was 31%, at 150 N it was 55%, and at 200 N it was 75%. For 2×10(6) cycles, the Pf increased approximately 20% in comparison with the values predicted for 1×10(6) cycles, which was not significant. The most frequent failure mode was a radial crack from the intaglio surface. For fatigue, combined failure modes were also found (radial crack combined with cone crack or chipping). Fatigue affects the fracture load and failure mode of leucite-reinforced glass-ceramic. Copyright © 2017 Editorial Council for the

  8. Anti-Litter Curriculum Packet, Interdisciplinary, K-12.

    ERIC Educational Resources Information Center

    Tillis, Richard

    This curriculum packet consists of 20 illustrated cards with 15 activities designed to create "positive feelings" about a clean environment. Activities range from picture coloring for younger students, to lessons such as the economic and health problems litter creates for older students. Objectives include encouraging anti-litter and…

  9. Anti-Litter Curriculum Packet, Interdisciplinary, K-12.

    ERIC Educational Resources Information Center

    Tillis, Richard

    This curriculum packet consists of 20 illustrated cards with 15 activities designed to create "positive feelings" about a clean environment. Activities range from picture coloring for younger students, to lessons such as the economic and health problems litter creates for older students. Objectives include encouraging anti-litter and…

  10. Control of climate and litter quality on leaf litter decomposition in different climatic zones.

    PubMed

    Zhang, Xinyue; Wang, Wei

    2015-09-01

    Climate and initial litter quality are the major factors influencing decomposition rates on large scales. We established a comprehensive database of terrestrial leaf litter decomposition, including 785 datasets, to examine the relationship between climate and litter quality and evaluate the factors controlling decomposition on a global scale, the arid and semi-arid (AS) zone, the humid middle and humid low (HL) latitude zones. Initial litter nitrogen (N) and phosphorus (P) concentration only increased with mean annual temperature (MAT) in the AS zone and decreased with mean annual precipitation (MAP) in the HL zone. Compared with nutrient content, MAT imposed less effect on initial litter lignin content than MAP. MAT were the most important decomposition driving factors on a global scale as well as in different climatic zones. MAP only significantly affected decomposition constants in AS zone. Although litter quality parameters also showed significant influence on decomposition, their importance was less than the climatic factors. Besides, different litter quality parameters exerted significant influence on decomposition in different climatic zones. Our results emphasized that climate consistently exerted important effects on decomposition constants across different climatic zones.

  11. Parents and Early Life Environment Affect Behavioral Development of Laying Hen Chickens

    PubMed Central

    de Haas, Elske N.; Bolhuis, J. Elizabeth; Kemp, Bas; Groothuis, Ton G. G.; Rodenburg, T. Bas

    2014-01-01

    Severe feather pecking (SFP) in commercial laying hens is a maladaptive behavior which is associated with anxiety traits. Many experimental studies have shown that stress in the parents can affect anxiety in the offspring, but until now these effects have been neglected in addressing the problem of SFP in commercially kept laying hens. We therefore studied whether parental stock (PS) affected the development of SFP and anxiety in their offspring. We used flocks from a brown and white genetic hybrid because genetic background can affect SFP and anxiety. As SFP can also be influenced by housing conditions on the rearing farm, we included effects of housing system and litter availability in the analysis. Forty-seven rearing flocks, originating from ten PS flocks were followed. Behavioral and physiological parameters related to anxiety and SFP were studied in the PS at 40 weeks of age and in the rearing flocks at one, five, ten and fifteen weeks of age. We found that PS had an effect on SFP at one week of age and on anxiety at one and five weeks of age. In the white hybrid, but not in the brown hybrid, high levels of maternal corticosterone, maternal feather damage and maternal whole-blood serotonin levels showed positive relations with offsprings’ SFP at one week and offsprings’ anxiety at one and five weeks of age. Disruption and limitation of litter supply at an early age on the rearing farms increased SFP, feather damage and fearfulness. These effects were most prominent in the brown hybrid. It appeared that hens from a brown hybrid are more affected by environmental conditions, while hens from a white hybrid were more strongly affected by parental effects. These results are important for designing measures to prevent the development of SFP, which may require a different approach in brown and white flocks. PMID:24603500

  12. Parents and early life environment affect behavioral development of laying hen chickens.

    PubMed

    de Haas, Elske N; Bolhuis, J Elizabeth; Kemp, Bas; Groothuis, Ton G G; Rodenburg, T Bas

    2014-01-01

    Severe feather pecking (SFP) in commercial laying hens is a maladaptive behavior which is associated with anxiety traits. Many experimental studies have shown that stress in the parents can affect anxiety in the offspring, but until now these effects have been neglected in addressing the problem of SFP in commercially kept laying hens. We therefore studied whether parental stock (PS) affected the development of SFP and anxiety in their offspring. We used flocks from a brown and white genetic hybrid because genetic background can affect SFP and anxiety. As SFP can also be influenced by housing conditions on the rearing farm, we included effects of housing system and litter availability in the analysis. Forty-seven rearing flocks, originating from ten PS flocks were followed. Behavioral and physiological parameters related to anxiety and SFP were studied in the PS at 40 weeks of age and in the rearing flocks at one, five, ten and fifteen weeks of age. We found that PS had an effect on SFP at one week of age and on anxiety at one and five weeks of age. In the white hybrid, but not in the brown hybrid, high levels of maternal corticosterone, maternal feather damage and maternal whole-blood serotonin levels showed positive relations with offsprings' SFP at one week and offsprings' anxiety at one and five weeks of age. Disruption and limitation of litter supply at an early age on the rearing farms increased SFP, feather damage and fearfulness. These effects were most prominent in the brown hybrid. It appeared that hens from a brown hybrid are more affected by environmental conditions, while hens from a white hybrid were more strongly affected by parental effects. These results are important for designing measures to prevent the development of SFP, which may require a different approach in brown and white flocks.

  13. [Effects of environmental factors on litter decomposition in arid and semi-arid regions: A review].

    PubMed

    Wang, Xin-Yuan; Zhao, Xue-Yong; Li, Yu-Lin; Lian, Jie; Qu, Hao; Yue, Xiang-Fei

    2013-11-01

    Litter decomposition is one of the important biochemical processes in arid and semi-arid regions, and a key component of regional nutrient turnover and carbon cycling, which is mainly affected by climate, litter quality, and decomposer community. In order to deeply understand the relationships between litter decomposition and environmental factors in arid and semi-arid regions, this paper summarized the research progress in the effects of abiotic factors (soil temperature, precipitation, and ultraviolet-B radiation) and biotic factors (litter quality, soil microbial and animal composition and community structure) on the litter decomposition in these regions. Among the factors, precipitation and ultraviolet-B radiation are considered to be the main limiting factors of litter decomposition. In arid and semi-arid regions, precipitation can significantly increase the litter decomposition rate in a short term, while the photo-degradation induced by ultraviolet-B radiation, due to the strong and long-term radiation, can increase the decomposition rate of terrestrial litter. Litter quality, soil microbial and animal composition and community structure are mainly affected by the type of ecosystems in a long term. However, the affecting mechanisms of these environmental factors on litter decomposition are still not very clear. It was suggested that the future litter ecological research should be paid more attention to the interaction of environmental factors under climate change, the variations of litter decomposition at different spatial scales, and the establishment of litter decomposition models in relation to the synergistic interactions of multiple factors.

  14. Canine dysautonomia in a litter of Havanese puppies.

    PubMed

    Hull, Noah C; O'Toole, Donal; Miller, Myrna M; Shoults, Hannah; Deck, Robin; Jones, Warren; Johnson, Gayle C; Shaw, Daniel P; Schumaker, Brant A

    2015-09-01

    Canine dysautonomia is a sporadic, generally fatal disease that rarely affects groups of related animals. Four 10-week-old Havanese puppies from a litter of 5 developed clinical signs of canine dysautonomia. The 4 affected dogs were exposed to an outdoor environment, whereas the fifth littermate was not exposed to the outdoors and remained clinically healthy. Clinical signs of dysautonomia developed 10-16 days after going outside the house. An unrelated dog also developed dysautonomia after exposure to 1 of the affected Havanese littermates. All 5 dogs had morphological changes consistent with dysautonomia (widespread neuronal degeneration in autonomic ganglia, select brainstem nuclei, and ventral horn motor neurons). Differential diagnoses were excluded through negative toxicological evaluation, fecal parasite screening, negative Canine distemper virus reverse transcription polymerase chain reaction, fluorescent antibody testing, attempted virus isolation, and electron microscopy. The 5 affected dogs were in the Kansas City, Missouri area, where there is a high incidence of dysautonomia.

  15. A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams.

    PubMed

    Ferreira, Verónica; Castagneyrol, Bastien; Koricheva, Julia; Gulis, Vladislav; Chauvet, Eric; Graça, Manuel A S

    2015-08-01

    The trophic state of many streams is likely to deteriorate in the future due to the continuing increase in human-induced nutrient availability. Therefore, it is of fundamental importance to understand how nutrient enrichment affects plant litter decomposition, a key ecosystem-level process in forest streams. Here, we present a meta-analysis of 99 studies published between 1970 and 2012 that reported the effects of nutrient enrichment on litter decomposition in running waters. When considering the entire database, which consisted of 840 case studies, nutrient enrichment stimulated litter decomposition rate by approximately 50%. The stimulation was higher when the background nutrient concentrations were low and the magnitude of the nutrient enrichment was high, suggesting that oligotrophic streams are most vulnerable to nutrient enrichment. The magnitude of the nutrient-enrichment effect on litter decomposition was higher in the laboratory than in the field experiments, suggesting that laboratory experiments overestimate the effect and their results should be interpreted with caution. Among field experiments, effects of nutrient enrichment were smaller in the correlative than in the manipulative experiments since in the former the effects of nutrient enrichment on litter decomposition were likely confounded by other environmental factors, e.g. pollutants other than nutrients commonly found in streams impacted by human activity. However, primary studies addressing the effect of multiple stressors on litter decomposition are still few and thus it was not possible to consider the interaction between factors in this review. In field manipulative experiments, the effect of nutrient enrichment on litter decomposition depended on the scale at which the nutrients were added: stream reach > streamside channel > litter bag. This may have resulted from a more uniform and continuous exposure of microbes and detritivores to nutrient enrichment at the stream-reach scale. By

  16. Functionally dissimilar neighbors accelerate litter decomposition in two grass species.

    PubMed

    Barbe, Lou; Jung, Vincent; Prinzing, Andreas; Bittebiere, Anne-Kristel; Butenschoen, Olaf; Mony, Cendrine

    2017-02-16

    Plant litter decomposition is a key regulator of nutrient recycling. In a given environment, decomposition of litter from a focal species depends on its litter quality and on the efficiency of local decomposers. Both may be strongly modified by functional traits of neighboring species, but the consequences for decomposition of litter from the focal species remain unknown. We tested whether decomposition of a focal plant's litter is influenced by the functional-trait dissimilarity to the neighboring plants. We cultivated two grass species (Brachypodium pinnatum and Elytrigia repens) in experimental mesocosms with functionally similar and dissimilar neighborhoods, and reciprocally transplanted litter. For both species, litter quality increased in functionally dissimilar neighborhoods, partly as a result of changes in functional traits involved in plant-plant interactions. Furthermore, functional dissimilarity increased overall decomposer efficiency in one species, probably via complementarity effects. Our results suggest a novel mechanism of biodiversity effects on ecosystem functioning in grasslands: interspecific functional diversity within plant communities can enhance intraspecific contributions to litter decomposition. Thus, plant species might better perform in diverse communities by benefiting from higher remineralization rates of their own litter.

  17. Marine litter in the Nordic Seas: Distribution composition and abundance.

    PubMed

    Buhl-Mortensen, Lene; Buhl-Mortensen, Pål

    2017-08-23

    Litter has been found in all marine environments and is accumulating in seabirds and mammals in the Nordic Seas. These ecosystems are under pressure from climatic change and fisheries while the human population is small. The marine landscapes in the area range from shallow fishing banks to deep-sea canyons. We present density, distribution and composition of litter from the first large-scale mapping of sea bed litter in arctic and subarctic waters. Litter was registered from 1778 video transects, of which 27% contained litter. The background density of litter in the Barents Sea and Norwegian Sea is 202 and 279 items/km(2) respectively, and highest densities were found close to coast and in canyons. Most of the litter originated from the fishing industry and plastic was the second most common litter. Background levels were comparable to European records and areas with most littering had higher densities than in Europe. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. The Effect of Litter Position on Ultraviolet Photodegradation of Standing Dead Litter

    NASA Astrophysics Data System (ADS)

    Lin, Y.; King, J. Y.

    2012-12-01

    In dryland ecosystems, models incorporating only biotic mechanisms usually underestimate the decay rate of plant litter. Photodegradation, an abiotic process through which solar radiation breaks down organic matter, has recently been proposed as an important pathway of litter decomposition in dryland ecosystems, accounting for as much as 25 to 60% of mass loss. However, it remains unclear what factors control the relative importance of photodegradation and biotic decomposition. It is hypothesized that this balance is affected by the location of litter within the litter layer (or thatch): in upper layers of thatch, photodegradation is significant because litter is exposed to sunlight; in lower layers where litter is strongly shaded, photodegradation is negligible compared to biotic decomposition. In August 2011, a field experiment was initiated at the University of California's Sedgwick Reserve, Santa Ynez, CA, in order to understand how ultraviolet (UV) radiation and litter position within the thatch affect litter decomposition. Two levels of UV radiation (280-400 nm) are achieved by screens: "UV-Pass" (transmitting > 81% of UV radiation) and "UV-Block" (transmitting < 8% of UV radiation). Litterbags were placed either at the top or at the bottom of the thatch. Results after 9 months of field exposure show that at the top of the thatch, litter mass loss was 13% higher in UV-Pass than in UV-Block, suggesting the occurrence of UV photodegradation. Surprisingly, litter mass loss was 52% higher in UV-Pass at the bottom of the thatch, even though very limited UV radiation penetrated through the thatch (at least 10 cm thick). The relative humidity in the thatch was higher in UV-Pass than in UV-Block treatments, especially at night; thus it is speculated that the UV manipulation not only alters the incoming radiation spectrum but also affects microclimate, consequently changing biotic decomposition. At the bottom of the thatch, lignin concentration of plant litter was 19

  19. Affective Transitions in Narrative-Centered Learning Environments

    ERIC Educational Resources Information Center

    McQuiggan, Scott W.; Robison, Jennifer L.; Lester, James C.

    2010-01-01

    Affect has been the subject of increasing attention in cognitive accounts of learning. Many intelligent tutoring systems now seek to adapt pedagogy to student affective and motivational processes in an effort to increase the effectiveness of tutorial interaction and improve learning outcomes. To this end, recent work has begun to investigate the…

  20. LIGHT-INDUCED PROCESSES AFFECTING ENTEROCOCCI IN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Fecal indicator bacteria such as enterococci have been used to assess contamination of freshwater and marine environments by pathogenic microorganisms. Various past studies have shown that sunlight plays an important role in reducing concentrations of culturable enterococci and ...

  1. LIGHT-INDUCED PROCESSES AFFECTING ENTEROCOCCI IN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Fecal indicator bacteria such as enterococci have been used to assess contamination of freshwater and marine environments by pathogenic microorganisms. Various past studies have shown that sunlight plays an important role in reducing concentrations of culturable enterococci and ...

  2. The Unintended Effects of a Posted Sign on Littering Attitudes and Stated Intentions.

    ERIC Educational Resources Information Center

    Horsley, A. Doyne

    1988-01-01

    Compares the effect of two different anti-littering signs. Results suggest that the ambiguously worded litterbug sign was interpreted differently by individuals and that it did not encourage an anti-littering attitude or affect stated intention to litter. (CW)

  3. Effects of neonatal litter size and age on ovarian gene expression and follicular development in gilts

    USDA-ARS?s Scientific Manuscript database

    Gilts raised in small litters have greater ovulation rate, stay in the herd longer and produce more pigs. The objective was to understand how neonatal litter size affects gilt development. The hypothesis is that gilts reared in smaller litters have greater ovarian follicular development. Within 24 h...

  4. The Unintended Effects of a Posted Sign on Littering Attitudes and Stated Intentions.

    ERIC Educational Resources Information Center

    Horsley, A. Doyne

    1988-01-01

    Compares the effect of two different anti-littering signs. Results suggest that the ambiguously worded litterbug sign was interpreted differently by individuals and that it did not encourage an anti-littering attitude or affect stated intention to litter. (CW)

  5. How Autism Affects Speech Understanding in Multitalker Environments

    DTIC Science & Technology

    2015-12-01

    that adults with Autism Spectrum Disorders have particular difficulty recognizing speech in acoustically-hostile environments (e.g., Alcantara et al...Autism Spectrum Disorders (ASD) may have particular difficulty recognizing speech in these types of acoustically-hostile environments (e.g...current proposal compares children with autism spectrum disorders (ASD) to typically-developing chronologically age-matched (CA) and language-age

  6. Occurrence and sorption of fluoroquinolones in poultry litters and soils from São Paulo State, Brazil.

    PubMed

    Leal, Rafael Marques Pereira; Figueira, Rafael Fernandes; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges

    2012-08-15

    Animal production is one of the most expressive sectors of Brazilian agro-economy. Although antibiotics are routinely used in this activity, their occurrence, fate, and potential impacts to the local environment are largely unknown. This research evaluated sorption-desorption and occurrence of four commonly used fluoroquinolones (norfloxacin, ciprofloxacin, danofloxacin, and enrofloxacin) in poultry litter and soil samples from São Paulo State, Brazil. The sorption-desorption studies involved batch equilibration technique and followed the OECD guideline for pesticides. All compounds were analyzed by HPLC, using fluorescence detector. Fluoroquinolones' sorption potential to the poultry litters (K(d) ≤65 L kg(-1)) was lower than to the soil (K(d) ~40,000 L kg(-1)), but was always high (≥69% of applied amount) indicating a higher specificity of fluoroquinolones interaction with soils. The addition of poultry litter (5%) to the soil had not affected sorption or desorption of these compounds. Desorption was negligible in the soil (≤0.5% of sorbed amount), but not in the poultry litters (up to 42% of sorbed amount). Fluoroquinolones' mean concentrations found in the poultry litters (1.37 to 6.68 mg kg(-1)) and soils (22.93 μg kg(-1)) were compatible to those found elsewhere (Austria, China, and Turkey). Enrofloxacin was the most often detected compound (30% of poultry litters and 27% of soils) at the highest mean concentrations (6.68 mg kg(-1) for poultry litters and 22.93 μg kg(-1) for soils). These results show that antibiotics are routinely used in poultry production and might represent one potential source of pollution to the environment that has been largely ignored and should be further investigated in Brazil. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Increased decomposer diversity accelerates and potentially stabilises litter decomposition.

    PubMed

    Kitz, Florian; Steinwandter, Michael; Traugott, Michael; Seeber, Julia

    2015-04-01

    Little is known about the effect of decomposer diversity on litter decomposition in alpine areas. Especially under the premise that alpine ecosystems are very sensitive to global change and are currently undergoing extensive land-use changes, a better understanding is needed to predict how environmental change will affect litter decomposition. A mesocosm experiment was conducted to compare the effects of the most common and functionally diverse invertebrates (earthworms, millipedes and sciarid larvae) found in alpine soils on decomposition rates and to assess how decomposer diversity affects litter decomposition. Experimental and estimated (i.e. projected to field decomposer-biomass) litter mass loss was 13-33% higher in the three-species treatment. Notably, the variability in decomposition was greatly reduced when decomposer diversity was high, indicating a portfolio effect. Our results suggest that invertebrate decomposer diversity is essential for sustaining litter decomposition in alpine areas and for the stability of this service.

  8. Climate history shapes contemporary leaf litter decomposition

    Treesearch

    Michael S. Strickland; Ashley D. Keiser; Mark A. Bradford

    2015-01-01

    Litter decomposition is mediated by multiple variables, of which climate is expected to be a dominant factor at global scales. However, like other organisms, traits of decomposers and their communities are shaped not just by the contemporary climate but also their climate history. Whether or not this affects decomposition rates is underexplored. Here we source...

  9. The Experimental Control of Littering

    ERIC Educational Resources Information Center

    Clark, Roger N.; And Others

    1972-01-01

    Behavior, incentives, and education programs were researched as factors relating to littering. Experiments in theaters, forest campgrounds, and hiking and dispersed car camping areas indicate incentive systems are necessary and feasible for curbing litter problems. (BL)

  10. The Experimental Control of Littering

    ERIC Educational Resources Information Center

    Clark, Roger N.; And Others

    1972-01-01

    Behavior, incentives, and education programs were researched as factors relating to littering. Experiments in theaters, forest campgrounds, and hiking and dispersed car camping areas indicate incentive systems are necessary and feasible for curbing litter problems. (BL)

  11. Do Learning Style and Learning Environment Affect Learning Outcome?

    ERIC Educational Resources Information Center

    DiBartola, Leesa M.; Miller, Miriam K.; Turley, Catherine L.

    2001-01-01

    Kolb's Learning Style Inventory was completed by 29 allied health students on campus and 27 in distance education. Both groups had similar learning outcomes. Only the Diverger learning style showed a correlation between learning environment and outcome: 83% of Divergers with above average grades were in distance education. (Contains 20…

  12. Office Space: How Will Technology Affect the Education Office Environment?

    ERIC Educational Resources Information Center

    Day, C. William

    2009-01-01

    The office environment 10 years from now will be different from the one today. More office personnel will be organized around processes rather than functions. More work activities will be done by teams rather than individuals, and those teams will change over time, as will the nature of the work projects and the people who constitute the team. The…

  13. How Autism Affects Speech Understanding in Multitalker Environments

    DTIC Science & Technology

    2013-10-01

    autism spectrum disorder using the Let’s Face It! skills battery. Autism Research, 1(6), 329-340. ...adults with Autism Spectrum Disorders have particular difficulty recognizing speech in acoustically-hostile environments (e.g., Alcantara et al...other talkers (Barker & Newman, 2004; van de Weijer, 1998). Studies suggest that adults with Autism Spectrum Disorders (ASD) may have

  14. Office Space: How Will Technology Affect the Education Office Environment?

    ERIC Educational Resources Information Center

    Day, C. William

    2009-01-01

    The office environment 10 years from now will be different from the one today. More office personnel will be organized around processes rather than functions. More work activities will be done by teams rather than individuals, and those teams will change over time, as will the nature of the work projects and the people who constitute the team. The…

  15. Do Learning Style and Learning Environment Affect Learning Outcome?

    ERIC Educational Resources Information Center

    DiBartola, Leesa M.; Miller, Miriam K.; Turley, Catherine L.

    2001-01-01

    Kolb's Learning Style Inventory was completed by 29 allied health students on campus and 27 in distance education. Both groups had similar learning outcomes. Only the Diverger learning style showed a correlation between learning environment and outcome: 83% of Divergers with above average grades were in distance education. (Contains 20…

  16. Distribution of beach litter along the coastline of Cádiz, Spain.

    PubMed

    Williams, Allan Thomas; Randerson, Peter; Di Giacomo, Carlo; Anfuso, Giorgio; Macias, Ana; Perales, José Antonio

    2016-06-15

    A total of 59 categories of litter items were found at 20 beaches (13 mechanically cleaned, 7 non-cleaned) in the Cádiz tourist environment, Spain. Cluster Analysis and Principal Components Analysis were used to highlight similarities and contrasts between sites and/or associations between litter categories. Multivariate analyses separated beaches according to the total numbers of litter items present. Non-cleaned sites showed a variety of litter category abundance with distinct origins and abundant, ubiquitous items (plastic and glass fragments). Of the 7 non-cleaned beaches (49 litter categories) river-mouth sites were distinct due with high numbers of litter items. The sheltered inner part of Cádiz Bay beaches had a wide range of litter type. Many sites were associated with locally deposited recreational litter categories; while industrial/commercial/fishing categories were abundant only at a few sites, indicating items transported onto the shore from the Guadalete river.

  17. Designing for Automatic Affect Inference in Learning Environments

    ERIC Educational Resources Information Center

    Afzal, Shazia; Robinson, Peter

    2011-01-01

    Emotions play a significant role in healthy cognitive functioning; they impact memory, attention, decision-making and attitude; and are therefore influential in learning and achievement. Consequently, affective diagnoses constitute an important aspect of human teacher-learner interactions motivating efforts to incorporate skills of affect…

  18. Affective Responses and Cognitive Models of the Computing Environment.

    ERIC Educational Resources Information Center

    Wallace, Andrew R.; Sinclair, Kenneth E.

    New electronic technologies provide powerful tools for managing and processing the rapidly increasing amounts of information available for learning; teachers, however, have often been slow in integrating computers into the curriculum. This study addresses the question of how prospective teachers construct affective and cognitive models about…

  19. Affective Behavior and Nonverbal Interaction in Collaborative Virtual Environments

    ERIC Educational Resources Information Center

    Peña, Adriana; Rangel, Nora; Muñoz, Mirna; Mejia, Jezreel; Lara, Graciela

    2016-01-01

    While a person's internal state might not be easily inferred through an automatic computer system, within a group, people express themselves through their interaction with others. The group members' interaction can be then helpful to understand, to certain extent, its members' affective behavior in any case toward the task at hand. In this…

  20. Affective Behavior and Nonverbal Interaction in Collaborative Virtual Environments

    ERIC Educational Resources Information Center

    Peña, Adriana; Rangel, Nora; Muñoz, Mirna; Mejia, Jezreel; Lara, Graciela

    2016-01-01

    While a person's internal state might not be easily inferred through an automatic computer system, within a group, people express themselves through their interaction with others. The group members' interaction can be then helpful to understand, to certain extent, its members' affective behavior in any case toward the task at hand. In this…

  1. Designing for Automatic Affect Inference in Learning Environments

    ERIC Educational Resources Information Center

    Afzal, Shazia; Robinson, Peter

    2011-01-01

    Emotions play a significant role in healthy cognitive functioning; they impact memory, attention, decision-making and attitude; and are therefore influential in learning and achievement. Consequently, affective diagnoses constitute an important aspect of human teacher-learner interactions motivating efforts to incorporate skills of affect…

  2. The effect of lignin photodegradation on decomposability of Calamagrostis epigeios grass litter.

    PubMed

    Frouz, Jan; Cajthaml, Tomáš; Mudrák, Ondřej

    2011-11-01

    The common grass Calamagrostis epigeions produces a large amount of dead biomass, which remain above the soil surface for many months. In this study, we determined how exposure of dead biomass above the soil affects its subsequent decomposition in soil. Collected dead standing biomass was divided in two parts, the first one (initial litter) was stored in a dark, dry place. The other part was placed in litterbags in the field. The litterbags were located in soil, on the soil surface, or hanging in the air without contact with soil but exposed to the sun and rain. After 1 year of field exposure, litter mass loss and C and N content were measured, and changes in litter chemistry were explored using NMR and thermochemolysis-GC-MS. The potential decomposability of the litter was quantified by burying the litter from the litterbags and the initial litter in soil microcosms and measuring soil respiration. Soil respiration was greater with litter that had been hanging in air than with all other kinds of litter. These finding could not be explained by changes in litter mass or C:N ratio. NMR indicated a decrease in polysaccharides relative to lignin in litter that was buried in soil but not in litter that was placed on soil surface or that was hanging in the air. Thermochemolysis indicated that the syringyl units of the litter lignin were decomposed when the litter was exposed to light. We postulate that photochemical decay of lignin increase decomposability of dead standing biomass.

  3. Developmental and Evolutionary History Affect Survival in Stressful Environments

    PubMed Central

    Hopkins, Gareth R.; Brodie, Edmund D.; French, Susannah S.

    2014-01-01

    The world is increasingly impacted by a variety of stressors that have the potential to differentially influence life history stages of organisms. Organisms have evolved to cope with some stressors, while with others they have little capacity. It is thus important to understand the effects of both developmental and evolutionary history on survival in stressful environments. We present evidence of the effects of both developmental and evolutionary history on survival of a freshwater vertebrate, the rough-skinned newt (Taricha granulosa) in an osmotically stressful environment. We compared the survival of larvae in either NaCl or MgCl2 that were exposed to salinity either as larvae only or as embryos as well. Embryonic exposure to salinity led to greater mortality of newt larvae than larval exposure alone, and this reduced survival probability was strongly linked to the carry-over effect of stunted embryonic growth in salts. Larval survival was also dependent on the type of salt (NaCl or MgCl2) the larvae were exposed to, and was lowest in MgCl2, a widely-used chemical deicer that, unlike NaCl, amphibian larvae do not have an evolutionary history of regulating at high levels. Both developmental and evolutionary history are critical factors in determining survival in this stressful environment, a pattern that may have widespread implications for the survival of animals increasingly impacted by substances with which they have little evolutionary history. PMID:24748021

  4. Physical processes affecting the sedimentary environments of Long Island Sound

    USGS Publications Warehouse

    Signell, R.P.; Knebel, H. J.; List, J.H.; Farris, A.S.; ,

    1997-01-01

    A modeling study was undertaken to simulate the bottom tidal-, wave-, and wind-driven currents in Long Island Sound in order to provide a general physical oceanographic framework for understanding the characteristics and distribution of seafloor sedimentary environments. Tidal currents are important in the funnel-shaped eastern part of the Sound, where a strong gradient of tidal-current speed was found. This current gradient parallels the general westward progression of sedimentary environments from erosion or non-deposition, through bedload transport and sediment sorting, to fine-grained deposition. Wave-driven currents, meanwhile, appear to be important along the shallow margins of the basin, explaining the occurrence of relatively coarse sediments in regions where tidal currents alone are not strong enough to move sediment. Finally, westerly wind events are shown to locally enhance bottom currents along the axial depression of the sound, providing a possible explanation for the relatively coarse sediments found in the depression despite tide- and wave-induced currents below the threshold of sediment movement. The strong correlation between the near-bottom current intensity based on the model results and the sediment response as indicated by the distribution of sedimentary environments provides a framework for predicting the long-term effects of anthropogenic activities.

  5. Environment Matters: Exploring the Relationships between the Classroom Environment and College Students' Affect in Mathematics Learning in China

    ERIC Educational Resources Information Center

    Wang, Wenlan; Yin, Hongbiao; Lu, Genshu; Zhang, Qiaoping

    2017-01-01

    This study explored the relationships between Chinese college students' perceptions of the classroom environment and some affective aspects in the study of mathematics. A total of 2529 students responded to three measures that were specifically designed to assess college students' perceptions of the mathematics classroom environment, their…

  6. Are litter decomposition and fire linked through plant species traits?

    PubMed

    Cornelissen, Johannes H C; Grootemaat, Saskia; Verheijen, Lieneke M; Cornwell, William K; van Bodegom, Peter M; van der Wal, René; Aerts, Rien

    2017-09-11

    Contents I. II. III. IV. V. VI. VII. References SUMMARY: Biological decomposition and wildfire are connected carbon release pathways for dead plant material: slower litter decomposition leads to fuel accumulation. Are decomposition and surface fires also connected through plant community composition, via the species' traits? Our central concept involves two axes of trait variation related to decomposition and fire. The 'plant economics spectrum' (PES) links biochemistry traits to the litter decomposability of different fine organs. The 'size and shape spectrum' (SSS) includes litter particle size and shape and their consequent effect on fuel bed structure, ventilation and flammability. Our literature synthesis revealed that PES-driven decomposability is largely decoupled from predominantly SSS-driven surface litter flammability across species; this finding needs empirical testing in various environmental settings. Under certain conditions, carbon release will be dominated by decomposition, while under other conditions litter fuel will accumulate and fire may dominate carbon release. Ecosystem-level feedbacks between decomposition and fire, for example via litter amounts, litter decomposition stage, community-level biotic interactions and altered environment, will influence the trait-driven effects on decomposition and fire. Yet, our conceptual framework, explicitly comparing the effects of two plant trait spectra on litter decomposition vs fire, provides a promising new research direction for better understanding and predicting Earth surface carbon dynamics. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  7. Labile compounds in plant litter reduce the sensitivity of decomposition to warming and altered precipitation.

    PubMed

    Suseela, Vidya; Tharayil, Nishanth; Xing, Baoshan; Dukes, Jeffrey S

    2013-10-01

    Together, climate and litter quality strongly regulate decomposition rates. Although these two factors and their interaction have been studied across species in continent-scale experiments, few researchers have studied how labile and recalcitrant compounds interact to influence decomposition, or the climate sensitivity of decomposition, within a litter type. Over a period of 3 yr, we studied the effects of warming and altered precipitation on mass loss and compound-specific decomposition using two litter types that possessed similar heteropolymer chemistry, but different proportions of labile and recalcitrant compounds. Climate treatments immediately affected the mass loss of the more recalcitrant litter, but affected the more labile litter only after 2 yr. After 3 yr, although both litter types had lost similar amounts of mass, warming (c. 4°C) and supplemental precipitation (150% of ambient) together accelerated the degradation of alkyl-carbon and lignin only in the more recalcitrant litter, highlighting the role of initial litter quality in determining whether the chemistry of litter residues converges or diverges under different climates. Our finding that labile compounds in litter reduce the climate sensitivity of mass loss and the decomposition of recalcitrant matrix is novel. Our results highlight the potential for litter quality to regulate the effect of climatic changes on the sequestration of litter-derived carbon. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  8. Stream carbon and nitrogen supplements during leaf litter decomposition: contrasting patterns for two foundation species.

    PubMed

    Pastor, Ada; Compson, Zacchaeus G; Dijkstra, Paul; Riera, Joan L; Martí, Eugènia; Sabater, Francesc; Hungate, Bruce A; Marks, Jane C

    2014-12-01

    Leaf litter decomposition plays a major role in nutrient dynamics in forested streams. The chemical composition of litter affects its processing by microorganisms, which obtain nutrients from litter and from the water column. The balance of these fluxes is not well known, because they occur simultaneously and thus are difficult to quantify separately. Here, we examined C and N flow from streamwater and leaf litter to microbial biofilms during decomposition. We used isotopically enriched leaves ((13)C and (15)N) from two riparian foundation tree species: fast-decomposing Populus fremontii and slow-decomposing Populus angustifolia, which differed in their concentration of recalcitrant compounds. We adapted the isotope pool dilution method to estimate gross elemental fluxes into litter microbes. Three key findings emerged: litter type strongly affected biomass and stoichiometry of microbial assemblages growing on litter; the proportion of C and N in microorganisms derived from the streamwater, as opposed to the litter, did not differ between litter types, but increased throughout decomposition; gross immobilization of N from the streamwater was higher for P. fremontii compared to P. angustifolia, probably as a consequence of the higher microbial biomass on P. fremontii. In contrast, gross immobilization of C from the streamwater was higher for P. angustifolia, suggesting that dissolved organic C in streamwater was used as an additional energy source by microbial assemblages growing on slow-decomposing litter. These results indicate that biofilms on decomposing litter have specific element requirements driven by litter characteristics, which might have implications for whole-stream nutrient retention.

  9. The influence of litter quality and micro-habitat on litter decomposition and soil properties in a silvopasture system

    NASA Astrophysics Data System (ADS)

    Tripathi, G.; Deora, R.; Singh, G.

    2013-07-01

    Studies to understand litter processes and soil properties are useful for maintaining pastureland productivity as animal husbandry is the dominant occupation in the hot arid region. We aimed to quantify how micro-habitats and combinations of litters of the introduced leguminous tree Colophospermum mopane with the grasses Cenchrus ciliaris or Lasiurus sindicus influence decomposition rate and soil nutrient changes in a hot desert silvopasture system. Litter bags with tree litter alone (T), tree + C. ciliaris in 1:1 ratio (TCC) and tree + L. sindicus 1:1 ratio (TLS) litter were placed inside and outside of the C. mopane canopy and at the surface, 3-7 cm and 8-12 cm soil depths. We examined litter loss, soil fauna abundance, organic carbon (SOC), total (TN), ammonium (NH4-N) and nitrate (NO3-N) nitrogen, phosphorus (PO4-P), soil respiration (SR) and dehydrogenase activity (DHA) in soil adjacent to each litter bag. After 12 months exposure, the mean residual litter was 40.2% of the initial value and annual decomposition rate constant (k) was 0.98 (0.49-1.80). Highest (p < 0.01) litter loss was in the first four months, when faunal abundance, SR, DHA and humidity were highest but it decreased with time. These variables and k were highest under the tree canopies. The litter loss and k were highest (p < 0.01) in TLS under the tree canopy, but the reverse trend was found for litter outside the canopy. Faunal abundance, litter loss, k, nutrient release and biochemical activities were highest (p < 0.01) in the 3-7 cm soil layer. Positive correlations of litter loss and soil fauna abundance with soil nutrients, SR and DHA demonstrated the interactions of litter quality and micro-habitats together with soil fauna on increased soil fertility. These results suggest that a Colophospermum mopane and L. sindicus silvopasture system best promotes faunal abundance, litter decomposition and soil fertility. The properties of these species and the associated faunal resources may be

  10. Within-litter differences in personality and physiology relate to size differences among siblings in cavies.

    PubMed

    Guenther, A; Trillmich, F

    2015-06-01

    Many aspects of an animal's early life potentially contribute to long-term individual differences in physiology and behaviour. From several studies on birds and mammals it is known that the early family environment is one of the most prominent factors influencing early development. Most of these studies were conducted on highly altricial species. Here we asked whether in the highly precocial cavy (Cavia aperea) the size rank within a litter, i.e. whether an individual is born as the heaviest, the lightest or an intermediate sibling, affects personality traits directly after birth and after independence. Furthermore, we investigated whether individual states (early growth, baseline cortisol and resting metabolic rate) differ between siblings of different size ranks and assessed their relation to personality traits. Siblings of the same litter differed in personality traits as early as three days after birth. Pups born heaviest in the litter were more explorative and in general more risk-prone than their smaller siblings. Physiological state variables were tightly correlated with personality traits and also influenced by the size rank within litter, suggesting that the size relative to littermates constitutes an important factor in shaping an individual's developmental trajectory. Our data add valuable information on how personalities are shaped during early phases of life and indicate the stability of developmentally influenced behavioural and physiological traits.

  11. Interaction between loggerhead sea turtles (Caretta caretta) and marine litter in Sardinia (Western Mediterranean Sea).

    PubMed

    Camedda, Andrea; Marra, Stefano; Matiddi, Marco; Massaro, Giorgio; Coppa, Stefania; Perilli, Angelo; Ruiu, Angelo; Briguglio, Paolo; de Lucia, G Andrea

    2014-09-01

    Anthropogenic debris in the environment affects many species that accidentally ingest it. The aim of this study is to evaluate the quantity and composition of marine litter ingested by loggerheads in Sardinia, thus supplying for the lack of data in the existing literature for this area. Seventeen of the 121 (14.04%) monitored turtles presented debris in their digestive tracts. Litter in faecal pellet of alive individuals (n = 91) and in gastro-intestinal contents of dead ones (n = 30) was categorized, counted and weighed. User plastic was the main category of ingested debris with a frequency of occurrence of 13.22% of the total sample, while sheet (12.39%) and fragments (9.09%) were the most relevant sub-categories. This study highlights for the first time the incidence of litter in alive turtles in Sardinia. This contribution improves the knowledge about marine litter interaction on Caretta caretta as bio-indicator. Results will be useful for the Marine Strategy implementation.

  12. Fungi exposed to chronic nitrogen enrichment are less able to decay leaf litter.

    PubMed

    van Diepen, Linda T A; Frey, Serita D; Landis, Elizabeth A; Morrison, Eric W; Pringle, Anne

    2017-01-01

    Saprotrophic fungi are the primary decomposers of plant litter in temperate forests, and their activity is critical for carbon (C) and nitrogen (N) cycling. Simulated atmospheric N deposition is associated with reduced fungal biomass, shifts in fungal community structure, slowed litter decay, and soil C accumulation. Although rarely studied, N deposition may also result in novel selective pressures on fungi, affecting evolutionary trajectories. To directly test if long-term N enrichment reshapes fungal responses to N, we isolated decomposer fungi from a long-term (28 yr) N-addition experiment and used a common garden approach to compare growth rates and decay abilities of isolates from control and N-amended plots. Both growth and decay were significantly altered by long-term exposure to N enrichment. Changes in growth rates were idiosyncratic, as different species grew either more quickly or more slowly after exposure to N, but litter decay by N isolates was consistent and generally lower compared to control isolates of the same species, a response not readily reversed when N isolates were grown in control (low N) environments. Changes in fungal responses accompany and perhaps drive previously observed N-induced shifts in fungal diversity, community composition, and litter decay dynamics. © 2016 by the Ecological Society of America.

  13. Effects of parasitism on host reproductive investment in a rodent-flea system: host litter size matters.

    PubMed

    Warburton, Elizabeth M; Khokhlova, Irina S; Dlugosz, Elizabeth M; Der Mescht, Luther Van; Krasnov, Boris R

    2017-02-01

    Parents may alter offspring phenotype depending on the type of environment they encounter. Parasitism is a common stressor; therefore, maternal reproductive investment could change in response to parasitic infection. However, few experiments have investigated the relationship between parasitism and maternal investment, whereas earlier field studies provided contradictory evidence. We investigated number, sex ratio, and growth of offspring in two rodent species, solitary altricial Meriones crassus and social precocial Acomys cahirinus, exposed to parasitism by fleas Xenopsylla ramesis and Parapulex chephrenis. No effect of treatment on litter size or sex ratio of a litter was found in either rodent species. Flea parasitism was found to affect pre-weaning body mass gain in M. crassus, but not in A. cahirinus pups. Furthermore, it appeared that female M. crassus invested resources into their offspring differently in dependence of litter size. In small litters (1-3 offspring), pups from infested females gained more body mass before weaning than pups from uninfested mothers. However, this trend was reversed in females with large litters indicating that parasitized females have a finite amount of resources with which to provision their young. Thus, M. crassus mothers parasitized by fleas seemed to receive some sort of external cues (e.g., stress caused by infestation) that prompted them to alter offspring provisioning, depending on species-specific possibilities and constraints. Therefore, parasites could be a mediator of environmentally induced maternal effects and offspring provisioning may have adaptive value against parasitism.

  14. Family Environments and Children's Executive Function: The Mediating Role of Children's Affective State and Stress.

    PubMed

    He, Zhong-Hua; Yin, Wen-Gang

    2016-09-01

    There is increasing evidence that inadequate family environments (family material environment and family psychosocial environment) are not only social problems but also factors contributing to adverse neurocognitive outcomes. In the present study, the authors investigated the relationship among family environments, children's naturalistic affective state, self-reported stress, and executive functions in a sample of 157 Chinese families. These findings revealed that in inadequate family material environments, reduced children's cognitive flexibility is associated with increased naturalistic negative affectivity and self-reported stress. In addition, naturalistic negative affectivity mediated the association between family expressiveness and children's cognitive flexibility. The authors used a structural equation model to examine the mediation model hypothesis, and the results confirmed the mediating roles of naturalistic negative affectivity and self-reported stress between family environments and the cognitive flexibility of Chinese children. These findings indicate the importance of reducing stress and negative emotional state for improving cognitive functions in children of low socioeconomic status.

  15. Rearing environment affects development of the immune system in neonates.

    PubMed

    Inman, C F; Haverson, K; Konstantinov, S R; Jones, P H; Harris, C; Smidt, H; Miller, B; Bailey, M; Stokes, C

    2010-06-01

    Early-life exposure to appropriate microbial flora drives expansion and development of an efficient immune system. Aberrant development results in increased likelihood of allergic disease or increased susceptibility to infection. Thus, factors affecting microbial colonization may also affect the direction of immune responses in later life. There is a need for a manipulable animal model of environmental influences on the development of microbiota and the immune system during early life. We assessed the effects of rearing under low- (farm, sow) and high-hygiene (isolator, milk formula) conditions on intestinal microbiota and immune development in neonatal piglets, because they can be removed from the mother in the first 24 h for rearing under controlled conditions and, due to placental structure, neither antibody nor antigen is transferred in utero. Microbiota in both groups was similar between 2 and 5 days. However, by 12-28 days, piglets reared on the mother had more diverse flora than siblings reared in isolators. Dendritic cells accumulated in the intestinal mucosa in both groups, but more rapidly in isolator piglets. Importantly, the minority of 2-5-day-old farm piglets whose microbiota resembled that of an older (12-28-day-old) pig also accumulated dendritic cells earlier than the other farm-reared piglets. Consistent with dendritic cell control of T cell function, the effects on T cells occurred at later time-points, and mucosal T cells from high-hygiene, isolator pigs made less interleukin (IL)-4 while systemic T cells made more IL-2. Neonatal piglets may be a valuable model for studies of the effects of interaction between microbiota and immune development on allergy.

  16. Factors affecting pollutant concentrations in the near-road environment

    NASA Astrophysics Data System (ADS)

    Baldwin, Nichole; Gilani, Owais; Raja, Suresh; Batterman, Stuart; Ganguly, Rajiv; Hopke, Philip; Berrocal, Veronica; Robins, Thomas; Hoogterp, Sarah

    2015-08-01

    An improved understanding of traffic-related air pollutants is needed to estimate exposures and adverse health impacts in traffic corridors and near-road environments. In this study, concentrations of black carbon (BC), nitrogen oxides (NO, NO2, NOx), sulfur dioxide (SO2), and particulate matter (PM2.5, PM10, ultrafine particles, and accumulation mode particles, AMP) were measured using a mobile air pollutant laboratory along nine transects across major roads in Detroit, MI in winter 2012. Repeated measurements were taken during rush-hour periods at sites in residential neighborhoods located 50-500 m from both sides of the road. Concentration gradients attributable to on-road emissions were estimated by accounting for traffic volume and mix, wind speed, wind direction, and background concentrations. BC, NO, NOx, and UFP had the strongest gradients, and elevated concentrations of NOx, NO2, PM2.5 and PM10, as well as decreased particle size, were found at the 50 m sites compared to background levels. Exponential models incorporating effects of road size, wind speed, and up- and downwind distance explained from 31 to 53% of the variability in concentration gradients for BC, NO, NOx, UFP and particle size. The expected concentration increments 50 m from the study roads were 17.0 ppb for NO, 17.7 ppb for NOx, 2245 particles/cm3 for UFP, and 0.24 μg/m3 for BC, and the expected distance to decrease increments by half was 89-129 m in the downwind direction, and 14-20 m in the upwind direction. While accounting for portion of the temporal and spatial variability across transects and measurement periods, these results highlight the influence of road-to-road differences and other locally-varying factors important in urban and industrial settings. The study demonstrates a methodology to quantify near-road concentrations and influences on these concentrations while accounting for temporal and spatial variability, and it provides information useful for estimating exposures of

  17. Labile Compounds in Plant Litter Reduce the Sensitivity of Decomposition to Warming and Altered Precipitation

    NASA Astrophysics Data System (ADS)

    Suseela, V.; Tharayil, N.; Xing, B.; Dukes, J. S.

    2013-12-01

    Together, climate and litter quality strongly regulate decomposition rates. While these two factors and their interaction have been studied across species in continent-scale experiments, few researchers have studied how labile and recalcitrant compounds interact to influence decomposition, or the climate sensitivity of decomposition, within a litter type. Over a period of three years, we studied the effects climate change on mass loss and compound-specific decomposition using two litter types that differed in the relative proportions of labile and recalcitrant compounds, but that had heteropolymers with similar molecular structure. We examined how warming and altered precipitation affected the decomposition of two types of Polygonum cuspidatum (Japanese knotweed) litter (stem litter that was either newly senesced or one year old), at the Boston-Area Climate Experiment (BACE), in Massachusetts, USA. We placed litter bags in an old-field ecosystem exposed to four levels of warming (up to 4oC) and three levels of precipitation (ambient, drought (-50%) and wet (+50%) treatments. The compound-specific degradation of litter was assessed using Diffuse Reflectance Infrared Fourier Transform Spectroscopy and 13C Nuclear Magnetic Resonance Spectroscopy. Climate treatments immediately affected mass loss of the more recalcitrant litter, but affected the more labile litter only after two years. After three years, although both litter types had lost similar amounts of mass, warming (~4oC) and supplemental precipitation (150% of ambient) together accelerated degradation of alkyl-carbon and lignin only in the more recalcitrant litter, highlighting the role of initial litter quality in determining whether the chemistry of litter residues converges or diverges under different climates. The results from this study indicate that the effect of climate on litter decomposition depends on the quality of litter; litter with a greater initial proportion of labile compounds was less

  18. Psychosocial Environment and Affective Outcomes in Technology-Rich Classrooms: Testing a Causal Model

    ERIC Educational Resources Information Center

    Dorman, Jeffrey P.; Fraser, Barry J.

    2009-01-01

    Research investigated classroom environment antecedent variables and student affective outcomes in Australian high schools. The Technology-Rich Outcomes-Focused Learning Environment Inventory (TROFLEI) was used to assess 10 classroom environment dimensions: student cohesiveness, teacher support, involvement, investigation, task orientation,…

  19. Traffic environment and demographic factors affecting impaired driving and crashes

    PubMed Central

    Romano, Eduardo O.; Peck, Raymond C.; Voas, Robert B.

    2012-01-01

    Introduction Data availability has forced researchers to examine separately the role of alcohol among drivers who crashed and drivers who did not crash. Such a separation fails to account fully for the transition from impaired driving to an alcohol-related crash. Method In this study, we analyzed recent data to investigate how traffic-related environments, conditions, and drivers’ demographics shape the likelihood of a driver being either involved in a crash (alcohol impaired or not) or not involved in a crash (alcohol impaired or not). Our data, from a recent case–control study, included a comprehensive sampling of the drivers in nonfatal crashes and a matched set of comparison drivers in two U.S. locations. Multinomial logistic regression was applied to investigate the likelihood that a driver would crash or would not crash, either with a blood alcohol concentration (BAC)=.00 or with a BAC≥.05. Conclusions To our knowledge, this study is the first to examine how different driver characteristics and environmental factors simultaneously contribute to alcohol use by crash-involved and non-crash-involved drivers. This effort calls attention to the need for research on the simultaneous roles played by all the factors that may contribute to motor vehicle crashes. PMID:22385743

  20. Understanding processes affecting mineral deposits in humid environments

    USGS Publications Warehouse

    Seal, Robert R.; Ayuso, Robert A.

    2011-01-01

    Recent interdisciplinary studies by the U.S. Geological Survey have resulted in substantial progress toward understanding the influence that climate and hydrology have on the geochemical signatures of mineral deposits and the resulting mine wastes in the eastern United States. Specific areas of focus include the release, transport, and fate of acid, metals, and associated elements from inactive mines in temperate coastal areas and of metals from unmined mineral deposits in tropical to subtropical areas; the influence of climate, geology, and hydrology on remediation options for abandoned mines; and the application of radiogenic isotopes to uniquely apportion source contributions that distinguish natural from mining sources and extent of metal transport. The environmental effects of abandoned mines and unmined mineral deposits result from a complex interaction of a variety of chemical and physical factors. These include the geology of the mineral deposit, the hydrologic setting of the mineral deposit and associated mine wastes, the chemistry of waters interacting with the deposit and associated waste material, the engineering of a mine as it relates to the reactivity of mine wastes, and climate, which affects such factors as temperature and the amounts of precipitation and evapotranspiration; these factors, in turn, influence the environmental behavior of mineral deposits. The role of climate is becoming increasingly important in environmental investigations of mineral deposits because of the growing concerns about climate change.

  1. The maternal autoimmune environment affects the social behavior of offspring.

    PubMed

    Zhang, Yubin; Gao, Donghong; Kluetzman, Kerri; Mendoza, Alvaro; Bolivar, Valerie J; Reilly, Andrew; Jolly, Jane K; Lawrence, David A

    2013-05-15

    Autism spectrum disorders (ASD) are neurodevelopmental disorders with unknown etiology. BTBR-T(+)tf/J (BTBR) mice, a mouse strain with behaviors that resemble autism and with elevated levels of anti-brain antibodies (Abs), have enhanced activation of peripheral B cells and CD4(+) T cells and an expanded percentage of CD4(+) T cells expressing Vβ6 chains. The CD4(+)CD25(+)Vβ6(+) and Vβ6-splenic cells of BTBR mice have elevated levels of IL-4, IFN-γ and IL-17, but there appears to be no preferential CD4(+) T subset skewing/polarization. The high level of IgG production by BTBR B cells was dependent on T cells from BTBR mice. The CD4(+) T cells of BTBR mice, especially those expressing Vβ6 become spontaneously activated and expanded in an autoimmune-like manner, which occurred in both BTBR and B6 hosts that received an equal number of BTBR and B6 bone marrow cells. BTBR mice also have an elevated percentage of peripheral blood neutrophils, which may represent their elevated inflammatory state. B6 offspring derived from B6 dams that were gestationally injected with purified IgG from sera of BTBR mice, but not IgG of B6 mice, developed significantly impaired social behavior. Additionally, B6 offspring that developed in BTBR dams had impaired social behavior, while BTBR offspring that developed in B6 dams had improved social behavior. All of the immunological and behavioral parameters of BTBR mice were compared with those of B6 mice, which have relatively normal behaviors. The results indicate maternal Abs and possibly other maternal influences affect the social behavior of offspring.

  2. Genotypic diversity of an invasive plant species promotes litter decomposition and associated processes.

    PubMed

    Wang, Xiao-Yan; Miao, Yuan; Yu, Shuo; Chen, Xiao-Yong; Schmid, Bernhard

    2014-03-01

    Following studies that showed negative effects of species loss on ecosystem functioning, newer studies have started to investigate if similar consequences could result from reductions of genetic diversity within species. We tested the influence of genotypic richness and dissimilarity (plots containing one, three, six or 12 genotypes) in stands of the invasive plant Solidago canadensis in China on the decomposition of its leaf litter and associated soil animals over five monthly time intervals. We found that the logarithm of genotypic richness was positively linearly related to mass loss of C, N and P from the litter and to richness and abundance of soil animals on the litter samples. The mixing proportion of litter from two sites, but not genotypic dissimilarity of mixtures, had additional effects on measured variables. The litter diversity effects on soil animals were particularly strong under the most stressful conditions of hot weather in July: at this time richness and abundance of soil animals were higher in 12-genotype litter mixtures than even in the highest corresponding one-genotype litter. The litter diversity effects on decomposition were in part mediated by soil animals: the abundance of Acarina, when used as covariate in the analysis, fully explained the litter diversity effects on mass loss of N and P. Overall, our study shows that high genotypic richness of S. canadensis leaf litter positively affects richness and abundance of soil animals, which in turn accelerate litter decomposition and P release from litter.

  3. Reducing Children's Littering on a Nature Trail

    ERIC Educational Resources Information Center

    LaHart, David E.; Bailey, Jon S.

    1975-01-01

    This study compared incentives and educational methods to motivate children to pick up litter and to prevent littering. Incentives did aid in getting litter picked up. One-sentence anti-litter statements, educational materials, and lectures reduced littering, but incentives did not. (MR)

  4. Reducing Children's Littering on a Nature Trail

    ERIC Educational Resources Information Center

    LaHart, David E.; Bailey, Jon S.

    1975-01-01

    This study compared incentives and educational methods to motivate children to pick up litter and to prevent littering. Incentives did aid in getting litter picked up. One-sentence anti-litter statements, educational materials, and lectures reduced littering, but incentives did not. (MR)

  5. Using a Feedback Environment to Improve Creative Performance: A Dynamic Affect Perspective

    PubMed Central

    Gong, Zhenxing; Zhang, Na

    2017-01-01

    Prior research on feedback and creative performance has neglected the dynamic nature of affect and has focused only on the influence of positive affect. We argue that creative performance is the result of a dynamic process in which a person experiences a phase of negative affect and subsequently enters a state of high positive affect that is influenced by the feedback environment. Hierarchical regression was used to analyze a sample of 264 employees from seven industry firms. The results indicate that employees’ perceptions of a supportive supervisor feedback environment indirectly influence their level of creative performance through positive affect (t2); the negative affect (t1) moderates the relationship between positive affect (t2) and creative performance (t2), rendering the relationship more positive if negative affect (t1) is high. The change in positive affect mediates the relationship between the supervisor feedback environment and creative performance; a decrease in negative affect moderates the relationship between increased positive affect and creative performance, rendering the relationship more positive if the decrease in negative affect is large. The implications for improving the creative performances of employees are further discussed. PMID:28861025

  6. Effects of radionuclide contamination on leaf litter decomposition in the Chernobyl exclusion zone.

    PubMed

    Bonzom, Jean-Marc; Hättenschwiler, Stephan; Lecomte-Pradines, Catherine; Chauvet, Eric; Gaschak, Sergey; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Dubourg, Nicolas; Maksimenko, Andrey; Garnier-Laplace, Jacqueline; Adam-Guillermin, Christelle

    2016-08-15

    The effects of radioactive contamination on ecosystem processes such as litter decomposition remain largely unknown. Because radionuclides accumulated in soil and plant biomass can be harmful for organisms, the functioning of ecosystems may be altered by radioactive contamination. Here, we tested the hypothesis that decomposition is impaired by increasing levels of radioactivity in the environment by exposing uncontaminated leaf litter from silver birch and black alder at (i) eleven distant forest sites differing in ambient radiation levels (0.22-15μGyh(-1)) and (ii) along a short distance gradient of radioactive contamination (1.2-29μGyh(-1)) within a single forest in the Chernobyl exclusion zone. In addition to measuring ambient external dose rates, we estimated the average total dose rates (ATDRs) absorbed by decomposers for an accurate estimate of dose-induced ecological consequences of radioactive pollution. Taking into account potential confounding factors (soil pH, moisture, texture, and organic carbon content), the results from the eleven distant forest sites, and from the single forest, showed increased litter mass loss with increasing ATDRs from 0.3 to 150μGyh(-1). This unexpected result may be due to (i) overcompensation of decomposer organisms exposed to radionuclides leading to a higher decomposer abundance (hormetic effect), and/or (ii) from preferred feeding by decomposers on the uncontaminated leaf litter used for our experiment compared to locally produced, contaminated leaf litter. Our data indicate that radio-contamination of forest ecosystems over more than two decades does not necessarily have detrimental effects on organic matter decay. However, further studies are needed to unravel the underlying mechanisms of the results reported here, in order to draw firmer conclusions on how radio-contamination affects decomposition and associated ecosystem processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. [Litter production and breakdown in swamps dominated by palms (Arecaceae) in northeastern Costa Rica].

    PubMed

    Myers, Ronald L

    2013-09-01

    In Raffia (Raphia taedigera) palm-swamps, it is frequent to observe high mounds at the base of the palm clumps. These mounds are formed by the accumulation of litter and organic matter, or might result from upturned roots of wind-thrown trees. The mounds serve as anchorage site for the palms, and could be important for the establishment of woody tree species in the swamp. The formation of these mounds might be explained by the unequal accumulation of organic matter in the wetland, or by differences in decomposition rates between Raffia litter versus the litter produced in adjacent mixed forests. To distinguish between these hypotheses, I compared the spatial distribution of litter in a R. taedigera swamp with the litter distribution on an adjacent slope forest, where litter distribution is expected to be homogeneous. In addition, I compared decomposition rates of major components of fine litter in three different environments: two wetlands dominated by palms (R. taedigera and Manicaria saccifera) and a slope forest that experiences lower inundation effects. On the palm swamp, noticeable concentration of litter was observed near the bases of clumps of palm as opposed to the swamp floor. In the adjacent slope forest, the magnitude of the differences in the distribution of litter is small and there is no accumulation at the base of emergent trees. It was also found that litter production increases during heavy rains and storms that follow dry periods. The swamp environment, independent of the litter, showed significantly lower decomposition rates than the surrounding forest slope. Furthermore, R. taedigera litter decomposes as fast as the slope forest litter. Overall, these results suggest that resistance to decomposition is not a major factor in the formation of mounds at the bases of R. taedigera clumps. Instead, litter accumulation contributes to the formation of the mounds that rise above the surface of the swamp.

  8. In situ characterization of forest litter using ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    André, Frédéric; Jonard, François; Jonard, Mathieu; Lambot, Sébastien

    2016-03-01

    Decomposing litter accumulated on the soil surface in forests plays a major role in several ecosystem processes; its detailed characterization is therefore essential for thorough understanding of ecosystem functioning. In addition, litter is known to affect remote sensing radar data over forested areas and their proper processing requires accurate quantification of litter scattering properties. In the present study, ultrawideband (0.8-2.2 GHz) ground-penetrating radar (GPR) data were collected in situ for a wide range of litter types to investigate the potential of the technique to reconstruct litter horizons in undisturbed natural conditions. Radar data were processed resorting to full-wave inversion. Good agreement was generally found between estimated and measured litter layer thicknesses, with root-mean-square error values around 1 cm for recently fallen litter (OL layer) and around 2 cm for fragmented litter in partial decomposition (OF layer) and total litter (OL + OF). Nevertheless, significant correlations between estimated and measured thicknesses were found for total litter only. Inaccuracies in the reconstruction of the individual litter horizons were mainly attributed to weak dielectric contrasts amongst litter layers, with absolute differences in relative dielectric permittivity values often lower than 2 between humus horizons, and to uncertainties in the ground truth values. Radar signal inversions also provided reliable estimates of litter electromagnetic properties, with average relative dielectric permittivity values around 2.9 and 6.3 for OL and OF litters, respectively. These results are encouraging for the use of GPR for noninvasive characterization and mapping of forest litter. Perspectives for the application of the technique in biogeosciences are discussed.

  9. Riparian litter inputs to streams in the central Oregon Coast Range

    USGS Publications Warehouse

    Hart, Stephanie K.; Hibbs, David E.; Perakis, Steven S.

    2013-01-01

    Riparian-zone vegetation can influence terrestrial and aquatic food webs through variation in the amount, timing, and nutritional content of leaf and other litter inputs. We investigated how riparian-forest community composition, understory density, and lateral slope shaped vertical and lateral litter inputs to 16 streams in the Oregon Coast Range. Riparian forests dominated by deciduous red alder delivered greater annual vertical litter inputs to streams (504 g m−2 y−1) than did riparian forests dominated by coniferous Douglas-fir (394 g m−2 y−1). Deciduous forests also contributed greater lateral litter inputs per meter of stream bank on one side (109 g m−1 y−1) than did coniferous forests (63 g m−1 y−1). Total litter inputs from deciduous forests exceeded those from coniferous forests most strongly in November, coincident with an autumn peak in litter inputs. Lateral litter inputs contributed most to total inputs during winter in both forest types. Annual lateral litter movement increased with slope at deciduous sites, but only in spring/summer months at coniferous sites. Neither experimental removal of understory vegetation nor installation of mesh fences to block downslope litter movement affected lateral litter inputs to streams, suggesting that ground litter moves <5 m downslope annually. N concentrations of several litter fractions were higher at deciduous sites and, when combined with greater litter amounts, yielded twice as much total litter N flux to streams in deciduous than coniferous sites. The presence of red alder in riparian forests along many small streams of the deeply incised and highly dendritic basins of the Oregon Coast Range enhances total fluxes and seasonality of litter delivery to both terrestrial and aquatic food webs in this region and complements the shade and large woody debris provided by large coniferous trees.

  10. Warming and Nitrogen Addition Increase Litter Decomposition in a Temperate Meadow Ecosystem

    PubMed Central

    Gong, Shiwei; Guo, Rui; Zhang, Tao; Guo, Jixun

    2015-01-01

    Background Litter decomposition greatly influences soil structure, nutrient content and carbon sequestration, but how litter decomposition is affected by climate change is still not well understood. Methodology/Principal Findings A field experiment with increased temperature and nitrogen (N) addition was established in April 2007 to examine the effects of experimental warming, N addition and their interaction on litter decomposition in a temperate meadow steppe in northeastern China. Warming, N addition and warming plus N addition reduced the residual mass of L. chinensis litter by 3.78%, 7.51% and 4.53%, respectively, in 2008 and 2009, and by 4.73%, 24.08% and 16.1%, respectively, in 2010. Warming, N addition and warming plus N addition had no effect on the decomposition of P. communis litter in 2008 or 2009, but reduced the residual litter mass by 5.58%, 15.53% and 5.17%, respectively, in 2010. Warming and N addition reduced the cellulose percentage of L. chinensis and P. communis, specifically in 2010. The lignin percentage of L. chinensis and P. communis was reduced by warming but increased by N addition. The C, N and P contents of L. chinensis and P. communis litter increased with time. Warming and N addition reduced the C content and C:N ratios of L. chinensisand P. communis litter, but increased the N and P contents. Significant interactive effects of warming and N addition on litter decomposition were observed (P<0.01). Conclusion/Significance The litter decomposition rate was highly correlated with soil temperature, soil water content and litter quality. Warming and N addition significantly impacted the litter decomposition rate in the Songnen meadow ecosystem, and the effects of warming and N addition on litter decomposition were also influenced by the quality of litter. These results highlight how climate change could alter grassland ecosystem carbon, nitrogen and phosphorus contents in soil by influencing litter decomposition. PMID:25774776

  11. Warming and nitrogen addition increase litter decomposition in a temperate meadow ecosystem.

    PubMed

    Gong, Shiwei; Guo, Rui; Zhang, Tao; Guo, Jixun

    2015-01-01

    Litter decomposition greatly influences soil structure, nutrient content and carbon sequestration, but how litter decomposition is affected by climate change is still not well understood. A field experiment with increased temperature and nitrogen (N) addition was established in April 2007 to examine the effects of experimental warming, N addition and their interaction on litter decomposition in a temperate meadow steppe in northeastern China. Warming, N addition and warming plus N addition reduced the residual mass of L. chinensis litter by 3.78%, 7.51% and 4.53%, respectively, in 2008 and 2009, and by 4.73%, 24.08% and 16.1%, respectively, in 2010. Warming, N addition and warming plus N addition had no effect on the decomposition of P. communis litter in 2008 or 2009, but reduced the residual litter mass by 5.58%, 15.53% and 5.17%, respectively, in 2010. Warming and N addition reduced the cellulose percentage of L. chinensis and P. communis, specifically in 2010. The lignin percentage of L. chinensis and P. communis was reduced by warming but increased by N addition. The C, N and P contents of L. chinensis and P. communis litter increased with time. Warming and N addition reduced the C content and C:N ratios of L. chinensis and P. communis litter, but increased the N and P contents. Significant interactive effects of warming and N addition on litter decomposition were observed (P<0.01). The litter decomposition rate was highly correlated with soil temperature, soil water content and litter quality. Warming and N addition significantly impacted the litter decomposition rate in the Songnen meadow ecosystem, and the effects of warming and N addition on litter decomposition were also influenced by the quality of litter. These results highlight how climate change could alter grassland ecosystem carbon, nitrogen and phosphorus contents in soil by influencing litter decomposition.

  12. Leaf litter input mediates tadpole performance across forest canopy treatments.

    PubMed

    Williams, Bethany K; Rittenhouse, Tracy A G; Semlitsch, Raymond D

    2008-03-01

    Understanding the mechanisms limiting the distributions of organisms is necessary for predicting changes in community composition along habitat gradients. In many areas of the USA, land originally cleared for agriculture has been undergoing a process of reforestation, creating a gradient of canopy cover. For small temporary wetlands, this gradient can alter abiotic conditions and influence the resource base of wetland food webs by affecting litter inputs. As distributions of amphibians and many other temporary wetland taxa correlate with canopy cover, we experimentally manipulated shade levels and litter types in pond mesocosms to explore mechanisms limiting species performance in wetlands with canopy cover. Most differences between ponds were mediated by litter type rather than direct effects of shading. Although all three amphibian species tested are open-canopy specialists, spring peepers were the only species to show decreased survival in shaded ponds. Pond litter type generally had strong effects on growth and development rates, with tadpoles of two species in grass litter ponds growing to twice the size of, and metamorphosing 7 days earlier than, those in leaf litter ponds. Contrary to our initial hypothesis, shade level and litter type showed very few significant interactions. Our results indicate that the effects of shading cannot be considered in isolation of vegetation changes in pond basins when evaluating the effects of forest succession on temporary pond communities.

  13. Mower/Litter Removal

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Burg Corporation needed to get more power out of the suction system in their Vac 'N Bag grass mower/litter remover. The president submitted a problem statement to the Marshall Space Flight Center Technology Transfer Office, which devised a way to guide heavier items of trash to a point where suction was greatest, and made changes to the impeller and the exhaust port, based on rocket propulsion technology. The improved system is used by highway departments, city governments and park authorities, reducing work time by combining the tasks of grass cutting and vacuuming trash and grass clippings.

  14. Are fire, soil fertility and toxicity, water availability, plant functional diversity, and litter decomposition related in a Neotropical savanna?

    PubMed

    Carvalho, Gustavo Henrique; Batalha, Marco Antônio; Silva, Igor Aurélio; Cianciaruso, Marcus Vinicius; Petchey, Owen L

    2014-07-01

    Understanding how biodiversity and ecosystem functioning respond to changes in the environment is fundamental to the maintenance of ecosystem function. In realistic scenarios, the biodiversity-ecosystem functioning path may account for only a small share of all factors determining ecosystem function. Here, we investigated the strength to which variations in environmental characteristics in a Neotropical savanna affected functional diversity and decomposition. We sought an integrative approach, testing a number of pairwise hypotheses about how the environment, biodiversity, and functioning were linked. We used structural equation modelling to connect fire frequency, soil fertility, exchangeable Al, water availability, functional diversity of woody plants, tree density, tree height, and litter decomposition rates in a causal chain. We found significant effects of soil nutrients, water availability, and Al on functional diversity and litter decomposition. Fire did not have a significant direct effect on functional diversity or litter decomposition. However, fire was connected to both variables through soil fertility. Functional diversity did not influence rates of litter decomposition. The mediated effects that emerged from pairwise interactions are encouraging not only for predicting the functional consequences of changes in environmental variables and biodiversity, but also to caution against predictions based on only environmental or only biodiversity change.

  15. Effects of anthropogenic heavy metal contamination on litter decomposition in streams - A meta-analysis.

    PubMed

    Ferreira, Verónica; Koricheva, Julia; Duarte, Sofia; Niyogi, Dev K; Guérold, François

    2016-03-01

    Many streams worldwide are affected by heavy metal contamination, mostly due to past and present mining activities. Here we present a meta-analysis of 38 studies (reporting 133 cases) published between 1978 and 2014 that reported the effects of heavy metal contamination on the decomposition of terrestrial litter in running waters. Overall, heavy metal contamination significantly inhibited litter decomposition. The effect was stronger for laboratory than for field studies, likely due to better control of confounding variables in the former, antagonistic interactions between metals and other environmental variables in the latter or differences in metal identity and concentration between studies. For laboratory studies, only copper + zinc mixtures significantly inhibited litter decomposition, while no significant effects were found for silver, aluminum, cadmium or zinc considered individually. For field studies, coal and metal mine drainage strongly inhibited litter decomposition, while drainage from motorways had no significant effects. The effect of coal mine drainage did not depend on drainage pH. Coal mine drainage negatively affected leaf litter decomposition independently of leaf litter identity; no significant effect was found for wood decomposition, but sample size was low. Considering metal mine drainage, arsenic mines had a stronger negative effect on leaf litter decomposition than gold or pyrite mines. Metal mine drainage significantly inhibited leaf litter decomposition driven by both microbes and invertebrates, independently of leaf litter identity; no significant effect was found for microbially driven decomposition, but sample size was low. Overall, mine drainage negatively affects leaf litter decomposition, likely through negative effects on invertebrates.

  16. Exploring Undergraduate Students' Mental Models of the Environment: Are They Related to Environmental Affect and Behavior?

    ERIC Educational Resources Information Center

    Liu, Shu-Chiu; Lin, Huann-shyang

    2015-01-01

    A draw-and-explain task and questionnaire were used to explore Taiwanese undergraduate students' mental models of the environment and whether and how they relate to their environmental affect and behavioral commitment. We found that students generally held incomplete mental models of the environment, focusing on objects rather than on processes or…

  17. Experiences and Implications of Social Workers Practicing in a Pediatric Hospital Environment Affected by SARS

    ERIC Educational Resources Information Center

    Gearing, Robin Edward; Saini, Michael; McNeill, Ted

    2007-01-01

    This phenomenological study's purpose was threefold: to detail the experiences of social workers practicing in a hospital environment affected by severe acute respiratory syndrome (SARS), to describe essential themes and structures of social work practices within this crisis environment, and to explore recommendations for better preparedness to…

  18. Exploring Undergraduate Students' Mental Models of the Environment: Are They Related to Environmental Affect and Behavior?

    ERIC Educational Resources Information Center

    Liu, Shu-Chiu; Lin, Huann-shyang

    2015-01-01

    A draw-and-explain task and questionnaire were used to explore Taiwanese undergraduate students' mental models of the environment and whether and how they relate to their environmental affect and behavioral commitment. We found that students generally held incomplete mental models of the environment, focusing on objects rather than on processes or…

  19. Experiences and Implications of Social Workers Practicing in a Pediatric Hospital Environment Affected by SARS

    ERIC Educational Resources Information Center

    Gearing, Robin Edward; Saini, Michael; McNeill, Ted

    2007-01-01

    This phenomenological study's purpose was threefold: to detail the experiences of social workers practicing in a hospital environment affected by severe acute respiratory syndrome (SARS), to describe essential themes and structures of social work practices within this crisis environment, and to explore recommendations for better preparedness to…

  20. Evaluating the effects of bedding materials and elevated platforms on contact dermatitis and plumage cleanliness of commercial broilers and on litter condition in broiler houses.

    PubMed

    Kaukonen, E; Norring, M; Valros, A

    2017-10-01

    1. Experiment 1, comparing wood shavings and ground straw bedding with peat, was performed on 7 broiler farms over two consecutive batches during the winter season. Experiment 2, assessing the effect of elevated (30 cm) platforms, was conducted in three farms replicated with 6 consecutive batches. 2. Footpad lesions were inspected at slaughter following the Welfare Quality® (WQ) assessment and official programme. Hock lesions, plumage cleanliness and litter condition were assessed using the WQ assessment. Litter height, pH, moisture and ammonia were determined. 3. Footpad condition on wood shavings appeared to be worse compared with peat using both methods of assessment and was accompanied by inferior hock skin health. WQ assessment resulted in poorer footpad and hock skin condition on ground straw compared with peat. Farms differed in footpad and hock skin condition. Footpad and hock lesions were not affected by platform treatment. Peat appeared more friable than ground straw. The initial pH of wood shavings was higher and moisture was lower than in peat, but at the end of production period there were no differences. Ground straw exhibited higher initial and lower end pH, and was drier in the beginning than peat. Litter condition and quality were not affected by platform treatment. 4. This study provides new knowledge about the applicability of peat as broiler bedding and shows no negative effects of elevated platforms on litter condition or the occurrence of contact dermatitis in commercial environments. The results suggest a complicated relationship between litter condition, moisture and contact dermatitis. Furthermore, it is concluded that the farmer's ability to manage litter conditions is important, regardless of the chosen litter material. Peat bedding was beneficial for footpad and hock skin health compared with wood shavings and ground straw.

  1. Long-term effects of poultry litter, alum-treated litter, and ammonium nitrate on aluminum availability in soils.

    PubMed

    Moore, P A; Edwards, D R

    2005-01-01

    Research has shown that alum [Al(2)(SO(4))(3).14H(2)O] applications to poultry litter can greatly reduce phosphorus (P) runoff, as well as decrease ammonia (NH(3)) volatilization. However, the long-term effects of fertilizing with alum-treated litter are unknown. The objectives of this study were to evaluate the long-term effects of normal poultry litter, alum-treated litter, and ammonium nitrate (NH(4)NO(3)) on aluminum (Al) availability in soils, Al uptake by tall fescue (Festuca arundinacea Schreb.), and tall fescue yields. A long-term study was initiated in April of 1995. There were 13 treatments (unfertilized control, four rates of normal litter, four rates of alum-treated litter, and four rates of NH(4)NO(3)) in a randomized block design. All fertilizers were broadcast applied to 52 small plots (3.05 x 1.52 m) cropped to tall fescue annually in the spring. Litter application rates were 2.24, 4.49, 6.73, and 8.98 Mg ha(-1) (1, 2, 3, and 4 tons acre(-1)); NH(4)NO(3) rates were 65, 130, 195, and 260 kg N ha(-1) and were based on the amount of N applied with alum-treated litter. Soil pH, exchangeable Al (extracted with potassium chloride), Al uptake by fescue, and fescue yields were monitored periodically over time. Ammonium nitrate applications resulted in reductions in soil pH beginning in Year 3, causing exchangeable Al values to increase from less than 1 mg Al kg(-1) soil in Year 2 to over 100 mg Al kg(-1) soil in Year 7 for many of the NH(4)NO(3) plots. In contrast, normal and alum-treated litter resulted in an increase in soil pH, which decreased exchangeable Al when compared to unfertilized controls. Severe yield reductions were observed with NH(4)NO(3) beginning in Year 6, which were due to high levels of acidity and exchangeable Al. Aluminum uptake by forage and Al runoff from the plots were not affected by treatment. Fescue yields were highest with alum-treated litter (annual average = 7.36 Mg ha(-1)), followed by normal litter (6.93 Mg ha(-1)), NH(4)NO

  2. Flammability across the gymnosperm phylogeny: the importance of litter particle size.

    PubMed

    Cornwell, William K; Elvira, Alba; van Kempen, Lute; van Logtestijn, Richard S P; Aptroot, André; Cornelissen, J Hans C

    2015-04-01

    Fire is important to climate, element cycles and plant communities, with many fires spreading via surface litter. The influence of species on the spread of surface fire is mediated by their traits which, after senescence and abscission, have 'afterlife' effects on litter flammability. We hypothesized that differences in litter flammability among gymnosperms are determined by litter particle size effects on litterbed packing. We performed a mesocosm fire experiment comparing 39 phylogenetically wide-ranging gymnosperms, followed by litter size and shape manipulations on two chemically contrasting species, to isolate the underlying mechanism. The first-order control on litter flammability was, indeed, litter particle size in both experiments. Most gymnosperms were highly flammable, but a prominent exception was the non-Pinus Pinaceae, in which small leaves abscised singly produced dense, non-flammable litterbeds. There are two important implications: first, ecosystems dominated by gymnosperms that drop small leaves separately will develop dense litter layers, which will be less prone to and inhibit the spread of surface litter fire. Second, some of the needle-leaved species previously considered to be flammable in single-leaf experiments were among the least flammable in litter fuel beds, highlighting the role of the litter traits of species in affecting surface fire regimes.

  3. 49 CFR 520.5 - Guidelines for identifying major actions significantly affecting the environment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... significantly affecting the quality of the human environment,” as used in this part, shall be construed with a... actions should ordinarily be considered as significantly affecting the quality of the human...

  4. 49 CFR 520.5 - Guidelines for identifying major actions significantly affecting the environment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... significantly affecting the quality of the human environment,” as used in this part, shall be construed with a... actions should ordinarily be considered as significantly affecting the quality of the human...

  5. 49 CFR 520.5 - Guidelines for identifying major actions significantly affecting the environment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... significantly affecting the quality of the human environment,” as used in this part, shall be construed with a... actions should ordinarily be considered as significantly affecting the quality of the human...

  6. 49 CFR 520.5 - Guidelines for identifying major actions significantly affecting the environment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... significantly affecting the quality of the human environment,” as used in this part, shall be construed with a... actions should ordinarily be considered as significantly affecting the quality of the human...

  7. Effect of mountain climatic elevation gradient and litter origin on decomposition processes: long-term experiment with litter-bags

    NASA Astrophysics Data System (ADS)

    Klimek, Beata; Niklińska, Maria; Chodak, Marcin

    2013-04-01

    Temperature is one of the most important factors affecting soil organic matter decomposition. Mountain areas with vertical gradients of temperature and precipitation provide an opportunity to observe climate changes similar to those observed at various latitudes and may serve as an approximation for climatic changes. The aim of the study was to compare the effects of climatic conditions and initial properties of litter on decomposition processes and thermal sensitivity of forest litter. The litter was collected at three altitudes (600, 900, 1200 m a.s.l.) in the Beskidy Mts (southern Poland), put into litter-bags and exposed in the field since autumn 2011. The litter collected at single altitude was exposed at the altitude it was taken and also at the two other altitudes. The litter-bags were laid out on five mountains, treated as replicates. Starting on April 2012, single sets of litter-bags were collected every five weeks. The laboratory measurements included determination of dry mass loss and chemical composition (Corg, Nt, St, Mg, Ca, Na, K, Cu, Zn) of the litter. In the additional litter-bag sets, taken in spring and autumn 2012, microbial properties were measured. To determine the effect of litter properties and climatic conditions of elevation sites on decomposing litter thermal sensitivity the respiration rate of litter was measured at 5°C, 15°C and 25°C and calculated as Q10 L and Q10 H (ratios of respiration rate between 5° and 15°C and between 15°C and 25°C, respectively). The functional diversity of soil microbes was measured with Biolog® ECO plates, structural diversity with phospholipid fatty acids (PLFA). Litter mass lost during first year of incubation was characterized by high variability and mean mass lost ranged up to a 30% of initial mass. After autumn sampling we showed, that mean respiration rate of litter (dry mass) from the 600m a.s.l site exposed on 600m a.s.l. was the highest at each tested temperature. In turn, the lowest mean

  8. Contrasting effects of plant species traits and moisture on the decomposition of multiple litter fractions.

    PubMed

    Riggs, Charlotte E; Hobbie, Sarah E; Cavender-Bares, Jeannine; Savage, Jessica A; Wei, Xiaojing

    2015-10-01

    Environmental variation in moisture directly influences plant litter decomposition through effects on microbial activity, and indirectly via plant species traits. Whether the effects of moisture and plant species traits are mutually reinforcing or counteracting during decomposition are unknown. To disentangle the effects of moisture from the effects of species traits that vary with moisture, we decomposed leaf litter from 12 plant species in the willow family (Salicaceae) with different native habitat moisture preferences in paired mesic and wetland plots. We fit litter mass loss data to an exponential decomposition model and estimated the decay rate of the rapidly cycling litter fraction and size of the remaining fraction that decays at a rate approaching zero. Litter traits that covaried with moisture in the species' native habitat significantly influenced the decomposition rate of the rapidly cycling litter fraction, but moisture in the decomposition environment did not. In contrast, for the slowly cycling litter fraction, litter traits that did not covary with moisture in the species' native habitat and moisture in the decomposition environment were significant. Overall, the effects of moisture and plant species traits on litter decomposition were somewhat reinforcing along a hydrologic gradient that spanned mesic upland to wetland (but not permanently surface-saturated) plots. In this system, plant trait and moisture effects may lead to greater in situ decomposition rates of wetland species compared to upland species; however, plant traits that do not covary with moisture will also influence decomposition of the slowest cycling litter fraction.

  9. Early prediction of student goals and affect in narrative-centered learning environments

    NASA Astrophysics Data System (ADS)

    Lee, Sunyoung

    Recent years have seen a growing recognition of the role of goal and affect recognition in intelligent tutoring systems. Goal recognition is the task of inferring users' goals from a sequence of observations of their actions. Because of the uncertainty inherent in every facet of human computer interaction, goal recognition is challenging, particularly in contexts in which users can perform many actions in any order, as is the case with intelligent tutoring systems. Affect recognition is the task of identifying the emotional state of a user from a variety of physical cues, which are produced in response to affective changes in the individual. Accurately recognizing student goals and affect states could contribute to more effective and motivating interactions in intelligent tutoring systems. By exploiting knowledge of student goals and affect states, intelligent tutoring systems can dynamically modify their behavior to better support individual students. To create effective interactions in intelligent tutoring systems, goal and affect recognition models should satisfy two key requirements. First, because incorrectly predicted goals and affect states could significantly diminish the effectiveness of interactive systems, goal and affect recognition models should provide accurate predictions of user goals and affect states. When observations of users' activities become available, recognizers should make accurate early" predictions. Second, goal and affect recognition models should be highly efficient so they can operate in real time. To address key issues, we present an inductive approach to recognizing student goals and affect states in intelligent tutoring systems by learning goals and affect recognition models. Our work focuses on goal and affect recognition in an important new class of intelligent tutoring systems, narrative-centered learning environments. We report the results of empirical studies of induced recognition models from observations of students

  10. Influence of habitat, litter type, and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian landscape.

    PubMed

    Vasconcelos, Heraldo L; Laurance, William F

    2005-07-01

    Amazonian forest fragments and second-growth forests often differ substantially from undisturbed forests in their microclimate, plant-species composition, and soil fauna. To determine if these changes could affect litter decomposition, we quantified the mass loss of two contrasting leaf-litter mixtures, in the presence or absence of soil macroinvertebrates, and in three forest habitats. Leaf-litter decomposition rates in second-growth forests (>10 years old) and in fragment edges (<100 m from the edge) did not differ from that in the forest interior (>250 m from the edges of primary forests). In all three habitats, experimental exclusion of soil invertebrates resulted in slower decomposition rates. Faunal-exclosure effects were stronger for litter of the primary forest, composed mostly of leaves of old-growth trees, than for litter of second-growth forests, which was dominated by leaves of successional species. The latter had a significantly lower initial concentration of N, higher C:N and lignin:N ratios, and decomposed at a slower rate than did litter from forest interiors. Our results indicate that land-cover changes in Amazonia affect decomposition mainly through changes in plant species composition, which in turn affect litter quality. Similar effects may occur on fragment edges, particularly on very disturbed edges, where successional trees become dominant. The drier microclimatic conditions in fragment edges and second-growth forests (>10 years old) did not appear to inhibit decomposition. Finally, although soil invertebrates play a key role in leaf-litter decomposition, we found no evidence that differences in the abundance, species richness, or species composition of invertebrates between disturbed and undisturbed forests significantly altered decomposition rates.

  11. Through the sands of time: Beach litter trends from nine cleaned north cornish beaches.

    PubMed

    Watts, Andrew J R; Porter, Adam; Hembrow, Neil; Sharpe, Jolyon; Galloway, Tamara S; Lewis, Ceri

    2017-09-01

    Marine litter and its accumulation on beaches is an issue of major current concern due to its significant environmental and economic impacts. Yet our understanding of spatio-temporal trends in beach litter and the drivers of these trends are currently limited by the availability of robust long term data sets. Here we present a unique data set collected systematically once a month, every month over a six year period for nine beaches along the North Coast of Cornwall, U.K. to investigate the key drivers of beach litter in the Bude, Padstow and Porthcothan areas. Overall, an average of 0.02 litter items m(-2) per month were collected during the six year study, with Bude beaches (Summerleaze, Crooklets and Widemouth) the most impacted (0.03 ± 0.004 litter items m(-2) per month). The amount of litter collected each month decreased by 18% and 71% respectively for Padstow (Polzeath, Trevone and Harlyn) and Bude areas over the 6 years, possibly related to the regular cleaning, however litter increased by 120% despite this monthly cleaning effort on the Padstow area beaches. Importantly, at all nine beaches the litter was dominated by small, fragmented plastic pieces and rope fibres, which account for 32% and 17% of all litter items collected, respectively. The weathered nature of these plastics indicates they have been in the marine environment for an extended period of time. So, whilst classifying the original source of these plastics is not possible, it can be concluded they are not the result of recent public littering. This data highlights both the extent of the marine litter problem and that current efforts to reduce littering by beach users will only tackle a fraction of this litter. Such information is vital for developing effective management strategies for beach and marine litter at both regional and global levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Reciprocal Effects of Litter from Exotic and Congeneric Native Plant Species via Soil Nutrients

    PubMed Central

    Meisner, Annelein; de Boer, Wietse; Cornelissen, Johannes H. C.; van der Putten, Wim H.

    2012-01-01

    Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to congeneric native plant species. Here, we test how the legacy of litter from three exotic plant species affects their own performance in comparison to their congeneric natives that co-occur in the invaded habitat. We also analyzed litter effects on soil processes. In all three comparisons, soil with litter from exotic plant species had the highest respiration rates. In two out of the three exotic-native species comparisons, soil with litter from exotic plant species had higher inorganic nitrogen concentrations than their native congener, which was likely due to higher initial litter quality of the exotics. When litter from an exotic plant species had a positive effect on itself, it also had a positive effect on its native congener. We conclude that exotic plant species develop a legacy effect in soil from the invaded range through their litter inputs. This litter legacy effect results in altered soil processes that can promote both the exotic plant species and their native congener. PMID:22359604

  13. Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.

    PubMed

    Schilling, Erik M; Waring, Bonnie G; Schilling, Jonathan S; Powers, Jennifer S

    2016-09-01

    We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality.

  14. Vegetation patches increase wind-blown litter accumulation in a semi-arid steppe of northern China

    NASA Astrophysics Data System (ADS)

    Yan, Yuchun; Xin, Xiaoping; Xu, Xingliang; Wang, Xu; Yan, Ruirui; Murray, Philip J.

    2016-12-01

    Litter decomposition is an important source of soil organic matter and nutrients; however, few studies have explored how vegetation patches affect wind-driven litter mobility and accumulation. In this study, we aimed to test the following hypotheses: (1) vegetation patches can reduce litter removal and facilitate litter accumulation, (2) litter mobility results in the heterogeneous redistribution of carbon and nutrients over the land surface, and (3) litter removal rates differ among different litter types (e.g., leaf and stem). Four vegetation patch types and six litter types were used to investigate the impacts of vegetation patches on litter mobility and accumulation. The results show that compared with almost bare ground patches, patches with vegetation cover had significantly higher litter accumulation, with the shrub patch type having the highest accumulation amount. The rate of litter removal due to wind was highest for the almost bare surface type (P4) and lowest for the shrub patch (P1) and Stipa grandis community (P2) types. There were significant differences in the removal rate among the different litter types. These findings indicate that wind-based litter redistribution among bare, S. grandis-dominated, and shrub-dominated patches is at least partially responsible for increasing the spatial heterogeneity of resources on a landscape scale.

  15. Effects of dietary coarsely ground corn and litter type on broiler live performance, litter characteristics, gastrointestinal tract development, apparent ileal digestibility of energy and nitrogen, and intestinal morphology.

    PubMed

    Xu, Y; Stark, C R; Ferket, P R; Williams, C M; Auttawong, S; Brake, J

    2015-03-01

    The objectives of this study were to evaluate the effects of the dietary inclusion of 2 coarsely ground corn (CC) levels (0 or 50%) in diets of broilers reared on 2 litter types (new wood shavings or used litter) on live performance, litter characteristics, gastrointestinal tract (GIT) development, apparent ileal digestibility (AID) of energy and nitrogen (N), and intestinal morphology. No interaction effects between CC level and litter type were observed on live performance. No litter effect was observed on live performance. Dietary inclusion of 50% CC increased BW at 35 d (P<0.01) and improved cumulative feed conversion ratio (FCR) at 35 and 49 d of age (P<0.01). The 50% CC treatment increased absolute and relative gizzard weight (P<0.01) and decreased jejunum unit weight (g/cm) (P<0.01). The new litter treatment (litter N) increased absolute and relative proventriculus weight (P<0.05) but did not affect gizzard weight. An interaction effect between CC level and litter type was observed for litter N, where the 50% CC treatment reduced litter N regardless of litter type (P<0.01), but litter N was reduced by new litter only among birds fed 0% CC (P<0.05). The 50% CC inclusion increased litter pH (P<0.05) and improved the AID of energy and N by 6.8% (P<0.01) and 3.5% (P<0.05), respectively. The 50% CC treatment increased jejunum villi tip width (P<0.05) and villi surface area (P<0.01), and decreased the muscularis layer thickness (P<0.01), whereas new litter increased jejunum villi and ileum villi height (P<0.05), jejunum villi surface area (P<0.01), and the ratio of jejunum villi height to crypt depth (P<0.01). This study showed that birds fed pelleted and screened diets containing 50% CC exhibited improved BW, FCR, and AID of energy and N, in conjunction with altered morphology of the GIT and intestinal mucosa. Litter type affected some GIT traits and functions but did not affect live performance.

  16. Countervailing effects on pine and oak leaf litter decomposition in human-altered Mediterranean ecosystems.

    PubMed

    Sheffer, Efrat; Canham, Charles D; Kigel, Jaime; Perevolotsky, Avi

    2015-04-01

    Species affect the dynamics of litter decay through the intrinsic properties of their litter, but also by influencing the environmental conditions imposed by their canopy, roots, and litter layers. We examined how human-induced changes in the relative abundances of two dominant Mediterranean trees-Pinus halepensis and Quercus calliprinos-impact leaf litter decomposition. A reciprocal transplant experiment tested decomposition of pine, oak, and mixed leaf litter in oak woodland and pine forest ecosystems with different relative abundances of pine and oak. Using likelihood methods, we tested the importance and magnitude of the environmental effects of local species abundance, litter layer composition, and soil properties on litter mass loss. Oak litter decomposition was slower than pine, and had an antagonistic effect on mixed litter decay. These results differ from other reported pine-oak associations, and are probably associated with a higher content of tannins and phenols in oak compared to pine litter in our study sites. The environmental effects of the two species were opposite to their litter decomposition dynamics. An increased proportion of pine in the oak woodlands and a higher content of pine needles in the litter layer of pine forests reduced decay rates. The presence of more oak and broadleaf litter in the litter layer accelerated decomposition in pine forests. Our results highlight the importance of considering multidimensional species effects mediated by both chemical and physical properties, and imply that man-made changes in the composition and configuration of plant communities may result in complex unpredicted consequences to ecosystem biogeochemistry.

  17. Runoff quality from no-till cotton fertilized with broiler litter in subsurface bands.

    PubMed

    Adeli, A; Tewolde, H; Shankle, M W; Way, T R; Brooks, J P; McLaughlin, M R

    2013-01-01

    Surface broadcast of broiler litter to no-till row crops exposes the litter and its nutrients to risks of loss in runoff water and volatilization and may limit the potential benefit of litter to the crops. Subsurface banding of litter could alleviate these risks. A field study was conducted in 2008 and 2009 on an upland Falkner silt loam soil to determine the effect of broiler litter placement on runoff nutrient losses from no-till cotton ( L.). Treatments included surface broadcast broiler litter applied manually, subsurface-banded litter applied by tractor-drawn equipment, and no broiler litter, all in combination with or without winter wheat ( L.) cover crop residue. Broiler litter rate was 5.6 Mg ha. The experimental design was a randomized complete block with a split-plot arrangement of treatments replicated three times. In 2008, simulated rainfall was used to generate runoff 27 d after litter application. Subsurface-banded litter reduced runoff total C, N, P, NH, NO, Cu, Zn and water-soluble P (WP) concentrations by 72, 64, 51, 49, 70, 36, 65, and 77%, respectively, compared with surface broadcast. The reductions were greater in 2009 where runoff occurred 1 d after litter application. Bacterial runoff was decreased by one log with subsurface-banded litter compared to surface broadcast. Except for C, NH, N, and WP, the presence of winter cover crop residue did not affect the load or runoff nutrient concentrations in either year. The results indicate that subsurface banding litter to no-till cotton substantially reduces nutrient and bacterial losses in runoff compared with surface broadcasting. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Influence of Litter Diversity on Dissolved Organic Matter Release and Soil Carbon Formation in a Mixed Beech Forest

    PubMed Central

    Scheibe, Andrea; Gleixner, Gerd

    2014-01-01

    We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica) and ash (Fraxinus excelsior), characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Park (Thuringia, Germany). Litter was added in pure and mixed treatments with either beech or ash labeled with 13C. We collected soil water in 5 cm mineral soil depth below each treatment biweekly and determined dissolved organic carbon (DOC), δ13C values and anion contents. In addition, we measured carbon concentrations and δ13C values in the organic and mineral soil (collected in 1 cm increments) up to 5 cm soil depth at the end of the experiment. Litter-derived C contributes less than 1% to dissolved organic matter (DOM) collected in 5 cm mineral soil depth. Better decomposable ash litter released significantly more (0.50±0.17%) litter carbon than beech litter (0.17±0.07%). All soil layers held in total around 30% of litter-derived carbon, indicating the large retention potential of litter-derived C in the top soil. Interestingly, in mixed (ash and beech litter) treatments we did not find a higher contribution of better decomposable ash-derived carbon in DOM, O horizon or mineral soil. This suggest that the known selective decomposition of better decomposable litter by soil fauna has no or only minor effects on the release and formation of litter-derived DOM and soil organic matter. Overall our experiment showed that 1) litter-derived carbon is of low importance for dissolved organic carbon release and 2) litter of higher decomposability is faster decomposed, but litter diversity does not influence the carbon flow. PMID:25486628

  19. Influence of litter diversity on dissolved organic matter release and soil carbon formation in a mixed beech forest.

    PubMed

    Scheibe, Andrea; Gleixner, Gerd

    2014-01-01

    We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica) and ash (Fraxinus excelsior), characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Park (Thuringia, Germany). Litter was added in pure and mixed treatments with either beech or ash labeled with 13C. We collected soil water in 5 cm mineral soil depth below each treatment biweekly and determined dissolved organic carbon (DOC), δ13C values and anion contents. In addition, we measured carbon concentrations and δ13C values in the organic and mineral soil (collected in 1 cm increments) up to 5 cm soil depth at the end of the experiment. Litter-derived C contributes less than 1% to dissolved organic matter (DOM) collected in 5 cm mineral soil depth. Better decomposable ash litter released significantly more (0.50±0.17%) litter carbon than beech litter (0.17±0.07%). All soil layers held in total around 30% of litter-derived carbon, indicating the large retention potential of litter-derived C in the top soil. Interestingly, in mixed (ash and beech litter) treatments we did not find a higher contribution of better decomposable ash-derived carbon in DOM, O horizon or mineral soil. This suggest that the known selective decomposition of better decomposable litter by soil fauna has no or only minor effects on the release and formation of litter-derived DOM and soil organic matter. Overall our experiment showed that 1) litter-derived carbon is of low importance for dissolved organic carbon release and 2) litter of higher decomposability is faster decomposed, but litter diversity does not influence the carbon flow.

  20. Litter manipulation and associated invertebrate fauna in secondary forest, central Amazonia, Brazil

    NASA Astrophysics Data System (ADS)

    Santos, Evanira M. R.; Franklin, Elizabeth; Luizão, Flávio J.

    2008-11-01

    Plant litter from selected tree species has been used for improving soil productivity in low-input systems of secondary vegetation in Central Amazon, leading to different conditions for invertebrates. Soil invertebrate assemblages were monitored to test the effects of adding litter types of contrasting nutritional quality and periods of exposure on the development of the community. We established four second growth plots with 80 subplots of 3 m 2 from which the original litter was removed and replaced in 60 subplots. Twenty subplots received Hevea brasiliensis leaves, 20 others Carapa guianensis leaves, and another 20 an equal mixture of H. brasiliensis, C. guianensis and Vismia guianensis. Twenty subplots were left with the original litter. Litter and mineral soil (5 cm deep) sub-horizons were collected after 45, 100, 160, 240 and 300 days of exposure. The invertebrates were extracted using Kempson apparatus. At the day 210, the litter was replenished to match the surrounding litter. Regression analyses showed no significant effect of litter type, but the period of exposure did affect the community in both sub-horizons. Only after the litter replenishment, the type of litter and periods of exposure affected the community in the litter sub-horizon. Because we tried to isolate the effects of litter composition from other large-scale phenomena, several factors interfered in the experiment and potential problems were identified to optimize the investigation. The sampling design must be improved by using a larger number of subsamples for each kind of litter within each plot. Coarse parameters of Order and Family were suited to detect major environmental patterns on soil invertebrates, but taxonomic resolution to species and/or morphospecies is required to detect more subtle effects. Future manipulations should also be done on a longer time scale, and the replicates need to be spread over larger areas to capture the natural variations within the ecosystems.

  1. Direct and indirect effects of UV-B exposure on litter decomposition: a meta-analysis.

    PubMed

    Song, Xinzhang; Peng, Changhui; Jiang, Hong; Zhu, Qiuan; Wang, Weifeng

    2013-01-01

    Ultraviolet-B (UV-B) exposure in the course of litter decomposition may have a direct effect on decomposition rates via changing states of photodegradation or decomposer constitution in litter while UV-B exposure during growth periods may alter chemical compositions and physical properties of plants. Consequently, these changes will indirectly affect subsequent litter decomposition processes in soil. Although studies are available on both the positive and negative effects (including no observable effects) of UV-B exposure on litter decomposition, a comprehensive analysis leading to an adequate understanding remains unresolved. Using data from 93 studies across six biomes, this introductory meta-analysis found that elevated UV-B directly increased litter decomposition rates by 7% and indirectly by 12% while attenuated UV-B directly decreased litter decomposition rates by 23% and indirectly increased litter decomposition rates by 7%. However, neither positive nor negative effects were statistically significant. Woody plant litter decomposition seemed more sensitive to UV-B than herbaceous plant litter except under conditions of indirect effects of elevated UV-B. Furthermore, levels of UV-B intensity significantly affected litter decomposition response to UV-B (P<0.05). UV-B effects on litter decomposition were to a large degree compounded by climatic factors (e.g., MAP and MAT) (P<0.05) and litter chemistry (e.g., lignin content) (P<0.01). Results suggest these factors likely have a bearing on masking the important role of UV-B on litter decomposition. No significant differences in UV-B effects on litter decomposition were found between study types (field experiment vs. laboratory incubation), litter forms (leaf vs. needle), and decay duration. Indirect effects of elevated UV-B on litter decomposition significantly increased with decay duration (P<0.001). Additionally, relatively small changes in UV-B exposure intensity (30%) had significant direct effects on litter

  2. Direct and Indirect Effects of UV-B Exposure on Litter Decomposition: A Meta-Analysis

    PubMed Central

    Song, Xinzhang; Peng, Changhui; Jiang, Hong; Zhu, Qiuan; Wang, Weifeng

    2013-01-01

    Ultraviolet-B (UV-B) exposure in the course of litter decomposition may have a direct effect on decomposition rates via changing states of photodegradation or decomposer constitution in litter while UV-B exposure during growth periods may alter chemical compositions and physical properties of plants. Consequently, these changes will indirectly affect subsequent litter decomposition processes in soil. Although studies are available on both the positive and negative effects (including no observable effects) of UV-B exposure on litter decomposition, a comprehensive analysis leading to an adequate understanding remains unresolved. Using data from 93 studies across six biomes, this introductory meta-analysis found that elevated UV-B directly increased litter decomposition rates by 7% and indirectly by 12% while attenuated UV-B directly decreased litter decomposition rates by 23% and indirectly increased litter decomposition rates by 7%. However, neither positive nor negative effects were statistically significant. Woody plant litter decomposition seemed more sensitive to UV-B than herbaceous plant litter except under conditions of indirect effects of elevated UV-B. Furthermore, levels of UV-B intensity significantly affected litter decomposition response to UV-B (P<0.05). UV-B effects on litter decomposition were to a large degree compounded by climatic factors (e.g., MAP and MAT) (P<0.05) and litter chemistry (e.g., lignin content) (P<0.01). Results suggest these factors likely have a bearing on masking the important role of UV-B on litter decomposition. No significant differences in UV-B effects on litter decomposition were found between study types (field experiment vs. laboratory incubation), litter forms (leaf vs. needle), and decay duration. Indirect effects of elevated UV-B on litter decomposition significantly increased with decay duration (P<0.001). Additionally, relatively small changes in UV-B exposure intensity (30%) had significant direct effects on litter

  3. Positive affect in the family environment protects against relapse in first-episode psychosis.

    PubMed

    Lee, Gary; Barrowclough, Christine; Lobban, Fiona

    2014-03-01

    To evaluate the contribution of positive affect in the family environment to relapse in first episode psychosis. 65 service users with a first episode of psychosis were recruited into the current study along with their key relatives. Relatives were interviewed and rated using the Expressed Emotion (EE) measure of warmth, whilst service users completed questionnaires about the positive and negative affects that they perceived from the family environment. Associations between these measures and relapse were examined in a one-year prospective design. Service users were less likely to relapse within 6 and 12-month follow-up periods when their relatives were rated high on EE warmth, or when they perceived more positive affect from the family. The relationships between service users' perceived positive affect and relapse were preserved after controlling for baseline symptoms, substance use and employment status. Service users' perceptions of positive affect and EE ratings of warmth appeared to be stronger predictors of relapse outcome than criticism and other EE variables. Positive family environments may protect against relapse in first episode psychosis. Psychosocial interventions should aim to foster and maintain positive affect in families during the early stages of illness. Further research is needed to understand the mechanisms linking positive affect and outcomes for people recovering from psychosis.

  4. Youth perceptions of how neighborhood physical environment and peers affect physical activity: a focus group study.

    PubMed

    Smith, Alan L; Troped, Philip J; McDonough, Meghan H; DeFreese, J D

    2015-06-20

    There is need for a youth-informed conceptualization of how environmental and social neighborhood contexts influence physical activity. We assessed youths' perceptions of their neighborhood physical and peer environments as affecting physical activity. Thirty-three students (20 girls; ages 12-14 years) participated in focus groups about the physical environment and peers within their neighborhoods, and their understanding of how they affect physical activity. Inductive analysis identified themes of access (e.g., to equipment); aesthetics; physical and social safety; peer proximity and behavior (e.g., bullying); adult support or interference; and adult boundary setting. Participants also identified interconnections among themes, such as traffic shaping parent boundary setting and, in turn, access to physical spaces and peers. Young adolescents view neighborhoods in ways similar to and different from adults. Examining physical and social environments in tandem, while mindful of how adults shape and youth perceive these environments, may enhance understanding of youth physical activity behavior.

  5. Environmentally-friendly animal litter

    DOEpatents

    Boxley, Chett; McKelvie, Jessica

    2013-09-03

    An animal litter composition that includes geopolymerized ash particulates having a network of repeating aluminum-silicon units is described herein. Generally, the animal litter is made from a quantity of a pozzolanic ash mixed with an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. This geopolymerization reaction may occur within a pelletizer. After the geopolymerized ash is formed, it may be dried and sieved to a desired size. These geopolymerized ash particulates may be used to make a non-clumping or clumping animal litter or other absorbing material. Aluminum sulfate, clinoptilolite, silica gel, sodium alginate and mineral oil may be added as additional ingredients.

  6. Environmentally-friendly animal litter

    SciTech Connect

    Boxley, Chett; McKelvie, Jessica

    2012-08-28

    An animal litter composition including geopolymerized ash particulates having a network of repeating aluminum-silicon units is described herein. Generally, the animal litter is made from a quantity of a pozzolanic ash mixed with a sufficient quantity of water and an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. After the geopolymerized ash is formed, it is dried, broken into particulates, and sieved to a desired size. These geopolymerized ash particulates are used to make a non-clumping or clumping animal litter. Odor control is accomplished with the addition of a urease inhibitor, pH buffer, an odor eliminating agent, and/or fragrance.

  7. Foliar litter decomposition in an alpine forest meta-ecosystem on the eastern Tibetan Plateau.

    PubMed

    Yue, Kai; Yang, Wanqin; Peng, Changhui; Peng, Yan; Zhang, Chuan; Huang, Chunping; Tan, Yu; Wu, Fuzhong

    2016-10-01

    Litter decomposition is a biological process fundamental to element cycling and a main nutrient source within forest meta-ecosystems, but few studies have looked into this process simultaneously in individual ecosystems, where environmental factors can vary substantially. A two-year field study conducted in an alpine forest meta-ecosystem with four litter species (i.e., willow: Salix paraplesia, azalea: Rhododendron lapponicum, cypress: Sabina saltuaria, and larch: Larix mastersiana) that varied widely in chemical traits showed that both litter species and ecosystem type (i.e., forest floor, stream and riparian zone) are important factors affecting litter decomposition, and their effects can be moderated by local-scale environmental factors such as temperature and nutrient availability. Litter decomposed fastest in the streams followed by the riparian zone and forest floor regardless of species. For a given litter species, both the k value and limit value varied significantly among ecosystems, indicating that the litter decomposition rate and extent (i.e., reaching a limit value) can be substantially affected by ecosystem type and the local-scale environmental factors. Apart from litter initial acid unhydrolyzable residue (AUR) concentration and its ratio to nitrogen concentration (i.e., AUR/N ratio), the initial nutrient concentrations of phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) were also important litter traits that affected decomposition depending on the ecosystem type.

  8. Effects of chemically amended litter on broiler performances, atmospheric ammonia concentration, and phosphorus solubility in litter.

    PubMed

    Do, J C; Choi, I H; Nahm, K H

    2005-05-01

    The effects of 6 different litter amendments on broiler performance, level of atmospheric ammonia (NH3) concentration, and soluble reactive phosphorus (SRP) in litter was determined. Through 3 experiments conducted on 2 different commercial farms, one chemical amendment was added to the litter and then was compared with a control. Broiler performance was not affected by any of the amendments except the ferrous sulfate amendment for which mortality was 25.5%. Application of aluminum chloride (AlCl3 x 6H2O) to the litter lowered atmospheric ammonia concentrations at 42 d by 97.2%, whereas ferrous sulfate (FeSO4 x 7H2O) lowered it by 90.77%. Ammonia concentrations were reduced by 86.18, 78.66, 75.52, and 69.00% by aluminum sulfate [alum or Al2(SO4)3 x 14H2O)], alum + CaCO3, aluminum chloride + CaCO3, and potassium permanganate (KMnO4), respectively, when compared with each control at 42 d. Each amendment except KMnO4 significantly reduced SRP contents. Alum and aluminum chloride were the effective compounds evaluated on the commercial farms with respect to reducing ammonia contents, phosphorus solubility, and mortality.

  9. Subsurface band application of poultry litter

    USDA-ARS?s Scientific Manuscript database

    Broiler litter is commonly used as a fertilizer on pastures and cropland. Poultry litter is typically land-applied by broadcasting the litter on the soil surface. Rain falling on soil to which poultry litter has been applied, may carry phosphorus (P) and nitrogen (N) nutrients from the soil into s...

  10. Fertilisation is not a new beginning: sperm environment affects offspring developmental success.

    PubMed

    Ritchie, Hannah; Marshall, Dustin J

    2013-08-15

    For organisms with complex life histories, the direction and magnitude of phenotypic links among life-history stages can have important ecological and evolutionary effects. While the phenotypic links between mothers and offspring, as well as between larvae and adults, are well recognised, the links between sperm phenotype and offspring phenotype have been less well explored. Here, we used a split-clutch/split-ejaculate design to examine whether the environment that sperm experience affects the subsequent performance of larvae in the broadcast spawning marine invertebrate Galeolaria gemineoa. The environment that sperm experienced affected the developmental success of larvae sired by these sperm; larvae sired by sperm that experienced low salinities had poorer developmental success than larvae sired by sperm that experienced a normal salinity. When we explored the interactive effects of the sperm environment and the larval environment with an orthogonal design, we found an interaction; when sperm and larvae experienced the same environment, performance was generally higher than when the sperm and larval environments differed. These effects could be due to selection on specific sperm phenotypes, phenotypic modification of the sperm or both. Together, our results challenge the traditional notion that sperm are merely transporters of genetic material; instead, significant covariance between sperm and offspring phenotypes exists. Our study adds to a growing list that demonstrates that fertilisation does have a homogenising effect on the phenotype of the zygote, and that events before fertilisation during the gamete phase can carry through to affect performance in later life-history stages.

  11. Arsenic speciation and reactivity in poultry litter

    USGS Publications Warehouse

    Arai, Y.; Lanzirotti, A.; Sutton, S.; Davis, J.A.; Sparks, D.L.

    2003-01-01

    Recent U.S. government action to lower the maximum concentration levels (MCL) of total arsenic (As) (10 ppb) in drinking water has raised serious concerns about the agricultural use of As-containing biosolids such as poultry litter (PL). In this study, solid-state chemical speciation, desorbability, and total levels of As in PL and long-term amended soils were investigated using novel synchrotronbased probing techniques (microfocused (??) synchrotron X-ray fluorescence (SXRF) and ??-X-ray absorption near-edge structure (XANES) spectroscopies) coupled with chemical digestion and batch experiments. The total As levels in the PL were as high as ???50 mg kg-1, and As(II/III and V) was always concentrated in abundant needle-shaped microscopic particles (???20/ ??m x 850 ??m) associated with Ca, Cu, and Fe and to a lesser extent with S, CI, and Zn. Postedge XANES features of litter particles are dissimilar to those of the organo-As(V) compound in poultry feed (i.e., roxarsone), suggesting possible degradation/transformation of roxarsone in the litter and/or in poultry digestive tracts. The extent of As desorption from the litter increased with increasing time and pH from 4.5 to 7, but at most 15% of the total As was released after 5 d at pH 7, indicating the presence of insoluble phases and/or strongly retained soluble compounds. No significant As accumulation (< 15 mg kg-1) was found in long-term PL-a mended agricultural surface soils. This suggests that As in the PL may have undergone surface and subsurface transport processes. Our research results raise concerns about long-term PL amendment effects on As contamination in surrounding soilwater environments.

  12. Increased rainfall variability and N addition accelerate litter decomposition in a restored prairie.

    PubMed

    Schuster, Michael J

    2016-03-01

    Anthropogenic nitrogen deposition and projected increases in rainfall variability (the frequency of drought and heavy rainfall events) are expected to strongly influence ecosystem processes such as litter decomposition. However, how these two global change factors interact to influence litter decomposition is largely unknown. I examined how increased rainfall variability and nitrogen addition affected mass and nitrogen loss of litter from two tallgrass prairie species, Schizachyrium scoparium and Solidago canadensis, and isolated the effects of each during plant growth and during litter decomposition. I increased rainfall variability by consolidating ambient rainfall into larger events and simulated chronic nitrogen deposition using a slow-release urea fertilizer. S. scoparium litter decay was more strongly regulated by the treatments applied during plant growth than by those applied during decomposition. During plant growth, increased rainfall variability resulted in S. scoparium litter that subsequently decomposed more slowly and immobilized more nitrogen than litter grown under ambient conditions, whereas nitrogen addition during plant growth accelerated subsequent mass loss of S. scoparium litter. In contrast, S. canadensis litter mass and N losses were enhanced under either N addition or increased rainfall variability both during plant growth and during decomposition. These results suggest that ongoing changes in rainfall variability and nitrogen availability are accelerating nutrient cycling in tallgrass prairies through their combined effects on litter quality, environmental conditions, and plant community composition.

  13. Disparate radiocesium leaching from two woody species by acceleration of litter decomposition using microbial inoculation.

    PubMed

    Hashida, Shin-Nosuke; Yoshihara, Toshihiro

    2016-10-01

    Studies focusing on the migration of radionuclides in the forest floor have demonstrated that the ecological half-life of radiocesium on organic layer containing the debris of plant litter with various fungi and microorganisms is shorter than that in the deeper soil zone, suggesting that the litter decomposition affects radiocesium mobilization. Here, we showed the involvement of lignin, one of the major cell wall components of plant litter, in the fate of contaminated radiocesium during the process of fungal litter decomposition. In this study, litter decomposition of two different woody species, broadleaf deciduous Japanese cherry consisted of hardwood lignin and coniferous evergreen Japanese cedar with softwood lignin, were accelerated by in vitro fungal inoculation. In vitro inoculation exhibited 1.93- to 2.59-times faster decomposition than field experiment. Then, the cherry litter lost approximately 25% of initially contaminated radiocesium within 1 month of in vitro decomposition, whereas the cedar litter kept initial level at least for 6 month. The retention of radiocesium correlated with thioglycolate lignin content in cedar litter but not in cherry litter. Consequently, the behavior of radiocesium contaminated in litter fall may vary depending on the contamination pathway or the manner of nutrient mobilization at the stage of abscission between evergreen and deciduous trees.

  14. No evidence for leaf-trait dissimilarity effects on litter decomposition, fungal decomposers, and nutrient dynamics.

    PubMed

    Frainer, André; Moretti, Marcelo S; Xu, Wenjing; Gessner, Mark O

    2015-02-01

    Biodiversity and ecosystem-functioning theory suggest that litter mixtures composed of dissimilar leaf species can enhance decomposition due to species trait complementarity. Here we created a continuous gradient of litter chemistry trait variability within species mixtures to assess effects of litter dissimilarity on three related processes in a natural stream: litter decomposition, fungal biomass accrual in the litter, and nitrogen and phosphorus immobilization. Litter from a pool of eight leaf species was analyzed for chemistry traits affecting decomposition (lignin, nitrogen, and phosphorus) and assembled in all of the 28 possible two-species combinations. Litter dissimilarity was characterized in terms of a range of trait-diversity measures, using Euclidean and Gower distances and dendrogram-based indices. We found large differences in decomposition rates among leaf species, but no significant relationships between decomposition rate of individual leaf species and litter trait dissimilarity, irrespective of whether decomposition was mediated by microbes alone or by both microbes and litter-consuming invertebrates. Likewise, no effects of trait dissimilarity emerged on either fungal biomass accrual or changes during decomposition of nitrogen or phosphorus concentrations in individual leaf species. In line with recent meta-analyses, these results provide support for the contention that litter diversity effects on decomposition, at least in streams, are less pronounced than effects on terrestrial primary productivity.

  15. Litter contribution to soil organic carbon in the agriculture abandons processes

    NASA Astrophysics Data System (ADS)

    Novara, Agata; Francaviglia, Dario; La Mantia, tommaso; Gristina, Luciano; La Bella, Salvatore; Tuttolomondo, Teresa

    2015-04-01

    Mechanisms of litter decomposition, translocation and stabilization into soil layers are fundamental processes in ecosystem functioning as it regulates the cycle of soil organic matter (SOM), CO2 emission into the atmosphere, carbon sequestration into the soil. In this study, it was investigated the contribution of litters of different stages of Mediterranean secondary succession on Carbon sequestration, analyzing the role of earthworms on translocation of SOM into soil profile. For this purpose δ13C difference between meadow C4-C soil and C3-C litter were used in a field experiment. Four undisturbed litters of different stages of succession were collected (45, 70, 100 and 120 since agriculture abandon) and placed on the top of isolated soil cores. The litter contribution to C stock was affected by plant species and increased with the age of the stage of secondary succession. The soil organic carbon after 1 year since litter position increased up to 40% in comparison to no litter treatment in soil with litter of 120 years since abandon. The new carbon derived from C3-litter was decomposed and transferred into soil profile thanks to earthworms and dissolved organic carbon leaching. After 1 years the carbon increase attributed to earthworm activity ranged from 6% to 13% in soil under litter in field abandoned since 120 and 45 years, respectively.

  16. Consequences of biodiversity loss for litter decomposition across biomes.

    PubMed

    Handa, I Tanya; Aerts, Rien; Berendse, Frank; Berg, Matty P; Bruder, Andreas; Butenschoen, Olaf; Chauvet, Eric; Gessner, Mark O; Jabiol, Jérémy; Makkonen, Marika; McKie, Brendan G; Malmqvist, Björn; Peeters, Edwin T H M; Scheu, Stefan; Schmid, Bernhard; van Ruijven, Jasper; Vos, Veronique C A; Hättenschwiler, Stephan

    2014-05-08

    The decomposition of dead organic matter is a major determinant of carbon and nutrient cycling in ecosystems, and of carbon fluxes between the biosphere and the atmosphere. Decomposition is driven by a vast diversity of organisms that are structured in complex food webs. Identifying the mechanisms underlying the effects of biodiversity on decomposition is critical given the rapid loss of species worldwide and the effects of this loss on human well-being. Yet despite comprehensive syntheses of studies on how biodiversity affects litter decomposition, key questions remain, including when, where and how biodiversity has a role and whether general patterns and mechanisms occur across ecosystems and different functional types of organism. Here, in field experiments across five terrestrial and aquatic locations, ranging from the subarctic to the tropics, we show that reducing the functional diversity of decomposer organisms and plant litter types slowed the cycling of litter carbon and nitrogen. Moreover, we found evidence of nitrogen transfer from the litter of nitrogen-fixing plants to that of rapidly decomposing plants, but not between other plant functional types, highlighting that specific interactions in litter mixtures control carbon and nitrogen cycling during decomposition. The emergence of this general mechanism and the coherence of patterns across contrasting terrestrial and aquatic ecosystems suggest that biodiversity loss has consistent consequences for litter decomposition and the cycling of major elements on broad spatial scales.

  17. Statistical analysis of litter experiments in teratology

    SciTech Connect

    Williams, R.; Buschbom, R.L.

    1982-11-01

    Teratological data is binary response data (each fetus is either affected or not) in which the responses within a litter are usually not independent. As a result, the litter should be taken as the experimental unit. For each litter, its size, n, and the number of fetuses, x, possessing the effect of interest are recorded. The ratio p = x/n is then the basic data generated by the experiment. There are currently three general approaches to the analysis of teratological data: nonparametric, transformation followed by t-test or ANOVA, and parametric. The first two are currently in wide use by practitioners while the third is relatively new to the field. These first two also appear to possess comparable power levels while maintaining the nominal level of significance. When transformations are employed, care must be exercised to check that the transformed data has the required properties. Since the data is often highly asymmetric, there may be no transformation which renders the data nearly normal. The parametric procedures, including the beta-binomial model, offer the possibility of increased power.

  18. Developmental environment affects risk-acceptance in the hissing cockroach, Gromphadorhina portentosa.

    PubMed

    Mishra, Sandeep; Logue, David M; Abiola, Ife O; Cade, William H

    2011-02-01

    Consistent individual differences in the tendency to accept risk have been demonstrated in invertebrates, fish, birds, and mammals, including humans. These individual differences have been associated with size, growth rate, survival, and reproductive success. Little research, however, has investigated the effect of developmental environment on individual differences in risk-acceptance. Competing hypotheses offer different explanations of how variation in the quality of the developmental environment affects risk-acceptance in adults. The first hypothesis states that individuals developing in poor quality environments take risks because such behavior is their only means of obtaining adequate fitness returns. The second hypothesis states that individuals developing in poor environments avoid risk because their poor physical condition makes them especially vulnerable to injury or death. We measured several forms of risk-accepting behavior (exploration, foraging, and recovery after disturbance) in male hissing cockroaches (Gromphadorhina portentosa) that had developed in nutritional and social environments of varying quality. Individuals raised on poor nutrition diets exhibited lower levels of risk-acceptance than those raised on high nutrition diets. Risk-acceptance among individuals that developed on poor nutrition diets was negatively correlated with body size. We conclude that quality of developmental environment affects risk-acceptance across behavioral contexts in male hissing cockroaches. Our findings are consistent with the hypothesis that condition-dependent vulnerability mediates the relationship between developmental environment and risk-acceptance.

  19. Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Zhang, Yaojun; Zou, Jianwen; Siemann, Evan

    2014-06-01

    Solidago canadensis is an aggressive invader in China. Solidago invasion success is partially attributed to allelopathic compounds release and more benefits from AM fungi, which potentially makes the properties of Solidago litter different from co-occurring natives. These properties may comprehensively affect litter decomposition of co-occurring natives. We conducted a field experiment to examine litter mixing effects in a Phragmites australis dominated community invaded by Solidago in southeast China. Solidago had more rapid mass and N loss rate than Phragmites when they decomposed separately. Litter mixing decreased N loss rate in Phragmites litter and increased that of Solidago. Large decreases in Phragmites mass loss and smaller increases in Solidago mass loss caused negative non-additive effect. Solidago litter extracts reduced soil C decomposition and N processes, suggested an inhibitory effect of Solidago secondary compounds. These results are consistent with the idea that nutrient transfer and secondary compounds both affected litter mixtures decomposition.

  20. Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect

    PubMed Central

    Zhang, Ling; Zhang, Yaojun; Zou, Jianwen; Siemann, Evan

    2014-01-01

    Solidago canadensis is an aggressive invader in China. Solidago invasion success is partially attributed to allelopathic compounds release and more benefits from AM fungi, which potentially makes the properties of Solidago litter different from co-occurring natives. These properties may comprehensively affect litter decomposition of co-occurring natives. We conducted a field experiment to examine litter mixing effects in a Phragmites australis dominated community invaded by Solidago in southeast China. Solidago had more rapid mass and N loss rate than Phragmites when they decomposed separately. Litter mixing decreased N loss rate in Phragmites litter and increased that of Solidago. Large decreases in Phragmites mass loss and smaller increases in Solidago mass loss caused negative non-additive effect. Solidago litter extracts reduced soil C decomposition and N processes, suggested an inhibitory effect of Solidago secondary compounds. These results are consistent with the idea that nutrient transfer and secondary compounds both affected litter mixtures decomposition. PMID:24976274

  1. Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect.

    PubMed

    Zhang, Ling; Zhang, Yaojun; Zou, Jianwen; Siemann, Evan

    2014-06-30

    Solidago canadensis is an aggressive invader in China. Solidago invasion success is partially attributed to allelopathic compounds release and more benefits from AM fungi, which potentially makes the properties of Solidago litter different from co-occurring natives. These properties may comprehensively affect litter decomposition of co-occurring natives. We conducted a field experiment to examine litter mixing effects in a Phragmites australis dominated community invaded by Solidago in southeast China. Solidago had more rapid mass and N loss rate than Phragmites when they decomposed separately. Litter mixing decreased N loss rate in Phragmites litter and increased that of Solidago. Large decreases in Phragmites mass loss and smaller increases in Solidago mass loss caused negative non-additive effect. Solidago litter extracts reduced soil C decomposition and N processes, suggested an inhibitory effect of Solidago secondary compounds. These results are consistent with the idea that nutrient transfer and secondary compounds both affected litter mixtures decomposition.

  2. Maternal environment affects the genetic basis of seed dormancy in Arabidopsis thaliana.

    PubMed

    Postma, Froukje M; Ågren, Jon

    2015-02-01

    The genetic basis of seed dormancy, a key life history trait important for adaptive evolution in plant populations, has yet been studied only using seeds produced under controlled conditions in greenhouse environments. However, dormancy is strongly affected by maternal environmental conditions, and interactions between seed genotype and maternal environment have been reported. Consequently, the genetic basis of dormancy of seeds produced under natural field conditions remains unclear. We examined the effect of maternal environment on the genetic architecture of seed dormancy using a recombinant inbred line (RIL) population derived from a cross between two locally adapted populations of Arabidopsis thaliana from Italy and Sweden. We mapped quantitative trait loci (QTL) for dormancy of seeds produced in the greenhouse and at the native field sites of the parental genotypes. The Italian genotype produced seeds with stronger dormancy at fruit maturation than did the Swedish genotype in all three environments, and the maternal field environments induced higher dormancy levels compared to the greenhouse environment in both genotypes. Across the three maternal environments, a total of nine dormancy QTL were detected, three of which were only detected among seeds matured in the field, and six of which showed significant QTL × maternal environment interactions. One QTL had a large effect on dormancy across all three environments and colocalized with the candidate gene DOG1. Our results demonstrate the importance of studying the genetic basis of putatively adaptive traits under relevant conditions. © 2015 John Wiley & Sons Ltd.

  3. Litter accumulation and nutrient content of roadside plant communities in Sichuan Basin, China

    USDA-ARS?s Scientific Manuscript database

    It is widely recognized that plant community composition strongly influences plant litter, but this relationship is difficult to interpret over heterogeneous conditions typical of modified environments such as roadways. We characterized litter accumulation and nutrient content (i.e., organic C, tota...

  4. Microbial composition alters the response of litter decomposition to environmental change.

    PubMed

    Matulich, Kristin L; Martiny, Jennifer B H

    2015-01-01

    Kecent studies cemonstrate that microorganisms are sensitive to environmental change, and that their community composition influences ecosystem functioning. However, it is unknown whether microbial composition interacts with the environment to affect the response of ecosystem processes to changing abiotic conditions. To investigate the potential for such interactive effects on leaf litter decomposition, we manipulated microbial composition and three environmental factors predicted to change in the future (moisture, nitrogen availability, and temperature). We isolated fungal and bacterial taxa from leaf litter and used them to construct unique communities. Communities were inoculated into microcosms containing sterile leaf litter and exposed to four environmental treatments (control conditions, increased temperature, decreased moisture, and elevated nitrogen availability). Respiration was tracked over 60 days, and communities were pyrosequenced to assess compositional changes. As hypothesized, composition and environmental treatment interacted to influence respiration rates. In particular, microbial composition interacted more strongly with changing nitrogen availability and less so with changing moisture or temperature. Further, the magnitude of a community's response to a particular environmental change was partly. explained by changes in composition over the course of the experiment; microcosms that showed a large change in respiration rate included more taxa whose relative abundance changed as well. Together, these results suggest that information about microbial composition may be more useful for predicting functional responses to some types of environmental changes than others.

  5. The effect of leaf litter cover on surface runoff and soil erosion in Northern China.

    PubMed

    Li, Xiang; Niu, Jianzhi; Xie, Baoyuan

    2014-01-01

    The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05). Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, p<0.05), and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h-1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05) with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes.

  6. [Effects of the decomposition of poplar and alder mixed leaf litters on soil microbial biomass].

    PubMed

    Chen, Qin; Fang, Sheng-Zuo; Tian, Ye

    2012-08-01

    An incubation test was conducted to study the effects of the decomposition of poplar and trabeculate alder leaf litters with different mixed ratios and under different application ways on soil microbial biomass carbon (MBC) and nitrogen (MBN). The mixed ratio of the litters had significant effects on soil MBC and MBN. On the 30th day of incubation, soil MBC and MBN were significantly higher in the treatments with > or = 50% of alder litter than in the treatment with poplar litter only and the control. On the 75th day of incubation, the soil MBC in the treatments with > or = 40% of alder litter and the soil MBN in the treatments with > or = 30% of alder litter were significantly greater than those in the treatment with poplar litter only and the control. After 135 days incubation, soil MBC and MBN were significant higher in the treatments with > or = 20% and > or = 40% of alder litter than in the treatment with poplar litter only and the control, respectively. There was no significant difference in the soil MBC/MBN between the treatments with different mixed ratios of poplar and alder leaf litters and the control. Overall, soil MBC/MBN increased during the early period of incubation and decreased in the later period, suggesting that soil microflora changed during the decomposition of the litters. In the whole incubation period, the application ways of the litters had lesser effects on the soil MBC, MBN, and MBC/MBN, indicating that the addition ways of the litters did not affect soil microflora.

  7. The Effect of Leaf Litter Cover on Surface Runoff and Soil Erosion in Northern China

    PubMed Central

    Li, Xiang; Niu, Jianzhi; Xie, Baoyuan

    2014-01-01

    The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05). Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, p<0.05), and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h−1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05) with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes. PMID:25232858

  8. Manganese Cycling in a Long-term Plant Litter Decomposition Time Series

    NASA Astrophysics Data System (ADS)

    Keiluweit, M.; Nico, P. S.; Kleber, M.; Bougoure, J.; Harmon, M. E.; Pett-Ridge, J.

    2012-12-01

    Climate change is predicted to affect the chemical composition of plant litter, and global warming may increase microbial and enzymatic activity, with uncertain consequences for litter decomposition rates in soils. This uncertainty has highlighted the need to better understand the controls on litter decomposition rates and pathways. A key controlling processes that is poorly understood is the coupling between decomposition pathways and the inorganic resources available in fresh litter or the underlying soil. For example, a strong correlation was established between the concentration of manganese (Mn) in needle litter and the degradation of litter lignocellulose across boreal forest ecosystems, suggesting that litter decomposition proceeds more efficiently in the presence of Mn. There is good reason to assume that this is due to the critical role of Mn(III)-ligand complexes acting as potent oxidizers in the fungal decomposition of lignocellulose. Here we investigated how litter decomposing organisms redistribute and repurpose the Mn inherently present in fresh plant litter in order to enhance decomposition. For this purpose, we used two 7-year litter decomposition time series collected at sites at the H.J. Andrews Experimental Forest with widely differing decomposition rates. Spatially-resolved X-ray absorption spectroscopy and wet-chemical extractions were used to track pathways of microbially-mediated Mn transport and associated changes in its speciation in each annual litter layer. The cycling of Mn and other metal cations (e.g., Ca and Fe) was then related to changes in the litter chemistry as documented by 13C TMAH and FTIR. Our results show that, as litter decomposition progresses, reduced Mn in the vascular system of fresh needles is transformed into oxidized forms concentrated in Mn oxide precipitates. This transformation of Mn into more reactive forms proceeds faster at the site of greater decomposition. Our imaging data suggests that during this process Mn

  9. Interactions of tissue and fertilizer nitrogen on decomposition dynamics of lignin-rich conifer litter

    USGS Publications Warehouse

    Perakis, Steven S.; Matkins, Joselin J.; Hibbs, David E.

    2012-01-01

    High tissue nitrogen (N) accelerates decomposition of high-quality leaf litter in the early phases of mass loss, but the influence of initial tissue N variation on the decomposition of lignin-rich litter is less resolved. Because environmental changes such as atmospheric N deposition and elevated CO2 can alter tissue N levels within species more rapidly than they alter the species composition of ecosystems, it is important to consider how within-species variation in tissue N may shape litter decomposition and associated N dynamics. Douglas-fir (Pseudotsuga menziesii ) is a widespread lignin-rich conifer that dominates forests of high carbon (C) storage across western North America, and displays wide variation in tissue and litter N that reflects landscape variation in soil N. We collected eight unique Douglas-fir litter sources that spanned a two-fold range in initial N concentrations (0.67–1.31%) with a narrow range of lignin (29–35%), and examined relationships between initial litter chemistry, decomposition, and N dynamics in both ambient and N fertilized plots at four sites over 3 yr. High initial litter N slowed decomposition rates in both early (0.67 yr) and late (3 yr) stages in unfertilized plots. Applications of N fertilizer to litters accelerated early-stage decomposition, but slowed late-stage decomposition, and most strongly affected low-N litters, which equalized decomposition rates across litters regardless of initial N concentrations. Decomposition of N-fertilized litters correlated positively with initial litter manganese (Mn) concentrations, with litter Mn variation reflecting faster turnover of canopy foliage in high N sites, producing younger litterfall with high N and low Mn. Although both internal and external N inhibited decomposition at 3 yr, most litters exhibited net N immobilization, with strongest immobilization in low-N litter and in N-fertilized plots. Our observation for lignin-rich litter that high initial N can slow decomposition

  10. Evaluation of litter type and dietary coarse ground corn inclusion on broiler live performance, gastrointestinal tract development, and litter characteristics.

    PubMed

    Xu, Y; Stark, C R; Ferket, P R; Williams, C M; Nusairat, B; Brake, J

    2015-03-01

    Two 49 d floor pen studies were conducted to evaluate the effects of litter type and dietary coarse ground corn (CC) inclusion on broiler live performance, gastrointestinal tract (GIT) development, and litter characteristics. Experiment 1 was a 2×2 factorial arrangement of 2 genders (male or female) and 2 CC levels (0 or 50%). From 15 to 35 d, the addition of CC decreased feed intake (P<0.01) and BW gain (P<0.05) of males but not females. The inclusion of CC decreased feed intake (P<0.01) and BW gain (P<0.01) from 0 to 49 d but improved adjusted feed conversion ratio (AdjFCR) from 35 to 49 d (P<0.05). Male broilers exhibited better live performance than females during the study as evidenced by greater feed intake (P<0.01) and BW gain (P<0.01), and improved FCR (P<0.01), but with increased mortality (P<0.05). The inclusion of CC increased relative gizzard weight (P<0.01) and decreased relative proventriculus weight (P<0.01) at 49 d. Experiment 2 was a 2×2 factorial arrangement of 2 CC levels (0 or 50%) and 2 litter types (ground old litter or new wood shavings litter). The inclusion of CC decreased feed intake throughout the experiment without affecting final BW when only males were used and improved FCR after 25 d (P<0.01). New litter improved FCR from 1 to 14 d (P<0.01). At 49 d, the birds fed the CC diet had reduced excreta nitrogen (P<0.05) and litter moisture (P<0.05). In conclusion, 50% CC inclusion initially produced negative effects on live performance that became positive as BW increased. The effects of CC became evident at an earlier age for males. New litter had only a marginal benefit on broiler live performance.

  11. Elementary Students' Affective Variables in a Networked Learning Environment Supported by a Blog: A Case Study

    ERIC Educational Resources Information Center

    Allaire, Stéphane; Thériault, Pascale; Gagnon, Vincent; Lalancette, Evelyne

    2013-01-01

    This study documents to what extent writing on a blog in a networked learning environment could influence the affective variables of elementary-school students' writing. The framework is grounded more specifically in theory of self-determination (Deci & Ryan, 1985), relationship to writing (Chartrand & Prince, 2009) and the transactional…

  12. Assessing the Utility of a Virtual Environment for Enhancing Facial Affect Recognition in Adolescents with Autism

    ERIC Educational Resources Information Center

    Bekele, Esubalew; Crittendon, Julie; Zheng, Zhi; Swanson, Amy; Weitlauf, Amy; Warren, Zachary; Sarkar, Nilanjan

    2014-01-01

    Teenagers with autism spectrum disorder (ASD) and age-matched controls participated in a dynamic facial affect recognition task within a virtual reality (VR) environment. Participants identified the emotion of a facial expression displayed at varied levels of intensity by a computer generated avatar. The system assessed performance (i.e.,…

  13. Can Mood-Inducing Videos Affect Problem-Solving Activities in a Web-Based Environment?

    ERIC Educational Resources Information Center

    Verleur, Ria; Verhagen, Plon W.; Heuvelman, Ard

    2007-01-01

    The purpose of this study was to examine whether a video-induced positive and negative mood has a differential effect on subsequent problem-solving activities in a web-based environment. The study also examined whether task conditions (task demands) moderated the mood effect. As in traditional experimental mood-effect studies, the affective video…

  14. Assessing the Utility of a Virtual Environment for Enhancing Facial Affect Recognition in Adolescents with Autism

    ERIC Educational Resources Information Center

    Bekele, Esubalew; Crittendon, Julie; Zheng, Zhi; Swanson, Amy; Weitlauf, Amy; Warren, Zachary; Sarkar, Nilanjan

    2014-01-01

    Teenagers with autism spectrum disorder (ASD) and age-matched controls participated in a dynamic facial affect recognition task within a virtual reality (VR) environment. Participants identified the emotion of a facial expression displayed at varied levels of intensity by a computer generated avatar. The system assessed performance (i.e.,…

  15. The Relationships of Dissociation and Affective Family Environment with the Intergenerational Cycle of Child Abuse

    ERIC Educational Resources Information Center

    Narang, D.S.; Contreras, J.M.

    2005-01-01

    Objective:: The purpose was to test a model that may explain how physically abused children become physically abusive parents. It was predicted that when the family's affective environment is uncohesive, unexpressive, and conflictual, a history of abuse experiences would be associated with elevated dissociation. It was hypothesized that…

  16. Gene-environment interplay in affect and dementia: emotional modulation of cognitive expression in personal outcomes.

    PubMed

    Palomo, T; Beninger, R J; Kostrzewa, R M; Archer, T

    2004-01-01

    A multitude of factors, that either singly, interactively, or sequentially influence the gene-environment interplay in affective and dementia states, include several phases of neurodevelopmental liability in both humans and laboratory animals. Genetic vulnerability for both affective disorders and dementia describes a scenario distinguished by progressive need for concern, particularly in view of the interplay between these areas of ill-health. The contribution of emotional and cognitive expression to personal outcomes, e.g., as a function of affective personality type, a state-dependent analysis of personality characteristics, appears to pervade both the individual's experience of social and physical environments and the performance of cognitive tasks. The role of the endocannabinoids in mental health may offer insights for the psychopharmacology of both cognition and affect. Maladaptive emotional reactions and a defective cognitive ability will contribution to unsatisfactory/maladaptive coping strategies, in turn, leading to further complications of an affective and dysfunctional nature, eventually with a clinical psychopathological outcome. These considerations impinge upon critical issues concerning predisposition and vulnerability. Classical eye-blink conditioning provides a highly established procedure for assessment of defective physiology in models of Alzheimer's dementia. In order to develop a consideration of the array of situations presenting the variation of outcome due to type of affective personality, the role of fear and anxiety and stress in affective states influencing cognition are examined and the critical role of brain circuits mediating emotions influencing cognitive outcomes is discussed.

  17. Challenges in researching violence affecting health service delivery in complex security environments.

    PubMed

    Foghammar, Ludvig; Jang, Suyoun; Kyzy, Gulzhan Asylbek; Weiss, Nerina; Sullivan, Katherine A; Gibson-Fall, Fawzia; Irwin, Rachel

    2016-08-01

    Complex security environments are characterized by violence (including, but not limited to "armed conflict" in the legal sense), poverty, environmental disasters and poor governance. Violence directly affecting health service delivery in complex security environments includes attacks on individuals (e.g. doctors, nurses, administrators, security guards, ambulance drivers and translators), obstructions (e.g. ambulances being stopped at checkpoints), discrimination (e.g. staff being pressured to treat one patient instead of another), attacks on and misappropriation of health facilities and property (e.g. vandalism, theft and ambulance theft by armed groups), and the criminalization of health workers. This paper examines the challenges associated with researching the context, scope and nature of violence directly affecting health service delivery in these environments. With a focus on data collection, it considers how these challenges affect researchers' ability to analyze the drivers of violence and impact of violence. This paper presents key findings from two research workshops organized in 2014 and 2015 which convened researchers and practitioners in the fields of health and humanitarian aid delivery and policy, and draws upon an analysis of organizational efforts to address violence affecting healthcare delivery and eleven in-depth interviews with representatives of organizations working in complex security environments. Despite the urgency and impact of violence affecting healthcare delivery, there is an overall lack of research that is of health-specific, publically accessible and comparable, as well as a lack of gender-disaggregated data, data on perpetrator motives and an assessment of the 'knock-on' effects of violence. These gaps limit analysis and, by extension, the ability of organizations operating in complex security environments to effectively manage the security of their staff and facilities and to deliver health services. Increased research

  18. Research Into the Role of Students’ Affective Domain While Learning Geology in Field Environments

    NASA Astrophysics Data System (ADS)

    Elkins, J.

    2009-12-01

    Existing research programs in field-based geocognition include assessment of cognitive, psychomotor, and affective domains. Assessment of the affective domain often involves the use of instruments and techniques uncommon to the geosciences. Research regarding the affective domain also commonly results in the collection and production of qualitative data that is difficult for geoscientists to analyze due to their lack of familiarity with these data sets. However, important information about students’ affective responses to learning in field environments can be obtained by using these methods. My research program focuses on data produced by students’ affective responses to field-based learning environments, primarily among students at the introductory level. For this research I developed a Likert-scale Novelty Space Survey, which presents student ‘novelty space’ (Orion and Hofstien, 1993) as a polygon; the larger the polygons, the more novelty students are experiencing. The axises for these polygons correspond to novelty domains involving geographic, social, cognitive, and psychological factors. In addition to the Novelty Space Survey, data which I have collected/generated includes focus group interviews on the role of recreational experiences in geology field programs. I have also collected data concerning the motivating factors that cause students to take photographs on field trips. The results of these studies give insight to the emotional responses students have to learning in the field and are important considerations for practitioners of teaching in these environments. Collaborative investigations among research programs that cross university departments and include multiple institutions is critical at this point in development of geocognition as a field due to unfamiliarity with cognitive science methodology by practitioners teaching geosciences and the dynamic nature of field work by cognitive scientists. However, combining the efforts of cognitive

  19. Leaf Litter Chemistry Drives the Structure and Composition of Soil Testate Amoeba Communities in a Tropical Montane Rainforest of the Ecuadorian Andes.

    PubMed

    Krashevska, Valentyna; Sandmann, Dorothee; Marian, Franca; Maraun, Mark; Scheu, Stefan

    2017-04-07

    We investigated the role of leaf litter chemistry and richness in affecting testate amoeba communities of tropical rainforest in the Ecuadorian Andes. Litterbags containing leaf litter from four dominating tree species (Clusia sp., Myrcia pubescens, Graffenrieda emarginata, and Cecropia andina) with richness 1, 2, and 4 species were established and exposed in the field for 12 months at 2000 m a.s.l. Chemical elements and compounds of leaf litter were analyzed before exposure. At the end of exposure, microbial biomass and litter mass loss were measured, and living testate amoeba species number, density, biomass, and community composition were determined. In total, 125 testate amoeba species colonized the litter in litterbags. The results suggest that high litter nitrogen and low lignin concentrations are indicators of high litter quality for testate amoebae density and species richness. Their species number and density significantly declined in the order 1 > 4 > 2 leaf litter species and varied with leaf litter chemistry being at a maximum in high-quality single leaf litter species and low in low-quality leaf litter. Further, the addition of litter of high-quality to low-quality litter increased testate amoebae biomass and density; however, the values did not exceed the ones in single high-quality litter treatments. Moreover, the structure of testate amoeba communities varied with litter chemistry, with Fe, Na, lignin, and litter C-to-N ratio being of major importance, and indicating that litter chemistry reflects habitat quality for testate amoebae. Overall, the data show that leaf litter chemistry overrides leaf litter richness in structuring testate amoeba communities.

  20. Effects of broiler litter rate, timing and cover crop on cotton yield and residual soil N

    USDA-ARS?s Scientific Manuscript database

    Timing of broiler litter applications has critical effect on the availability of litter-derived nutrients and should affect cotton (Gossypium spp.) growth and yield. This experiment was conducted on a Leeper silty clay loam (fine, montmorillionitic, nonacid, thermic Vertic Haplaquepts) soil at Missi...

  1. Effect of moisture content on the heating profile in composted broiler litter

    USDA-ARS?s Scientific Manuscript database

    Moisture content can affect the magnitude of heat generation during composting. Temperature was recorded every 2 min for 7 d at 10-cm increments throughout the vertical profile of broiler litter treated with five quantities of water addition. Water additions were applied to achieve litter moisture...

  2. Leaf litter decomposition and elemental change in three Appalachian mountain streams of different pH

    Treesearch

    Steven W. Solada; Sue A. Perry; William B. Perry

    1996-01-01

    The decomposition of leaf litter provides the primary nutrient source for many of the headwater mountain streams in forested catchments. An investigation of factors affected by global change that influence organic matter decomposition, such as temperature and pH, is important in understanding the dynamics of these systems. We conducted a study of leaf litter elemental...

  3. Effects of multiple but low pesticide loads on aquatic fungal communities colonizing leaf litter.

    PubMed

    Talk, Anne; Kublik, Susanne; Uksa, Marie; Engel, Marion; Berghahn, Rüdiger; Welzl, Gerhard; Schloter, Michael; Mohr, Silvia

    2016-08-01

    In the first tier risk assessment (RA) of pesticides, risk for aquatic communities is estimated by using results from standard laboratory tests with algae, daphnids and fish for single pesticides such as herbicides, fungicides, and insecticides. However, fungi as key organisms for nutrient cycling in ecosystems as well as multiple pesticide applications are not considered in the RA. In this study, the effects of multiple low pesticide pulses using regulatory acceptable concentrations (RACs) on the dynamics of non-target aquatic fungi were investigated in a study using pond mesocosm. For that, fungi colonizing black alder (Alnus glutinosa) leaves were exposed to multiple, low pulses of 11 different pesticides over a period of 60days using a real farmer's pesticide application protocol for apple cropping. Four pond mesocosms served as treatments and 4 as controls. The composition of fungal communities colonizing the litter material was analyzed using a molecular fingerprinting approach based on the terminal Restriction Fragment Length Polymorphism (t-RFLP) of the fungal Internal Transcribed Spacer (ITS) region of the ribonucleic acid (RNA) gene(s). Our data indicated a clear fluctuation of fungal communities based on the degree of leaf litter degradation. However significant effects of the applied spraying sequence were not observed. Consequently also degradation rates of the litter material were not affected by the treatments. Our results indicate that the nutrient rich environment of the leaf litter material gave fungal communities the possibility to express genes that induce tolerance against the applied pesticides. Thus our data may not be transferred to other fresh water habitats with lower nutrient availability.

  4. Evaluation of nitrogen retention and microbial populations in poultry litter treated with chemical, biological or adsorbent amendments.

    PubMed

    Cook, Kimberly L; Rothrock, Michael J; Eiteman, Mark A; Lovanh, Nanh; Sistani, Karamat

    2011-07-01

    Poultry litter is a valuable nutrient source for crop production. Successful management to reduce ammonia and its harmful side-effects on poultry and the environment can be aided by the use of litter amendments. In this study, three acidifiers, two biological treatments, one chemical urease inhibitor and two adsorber amendments were added to poultry litter. Chemical, physical and microbiological properties of the litters were assessed at the beginning and the end of the experiment. Application of litter amendments consistently reduced organic N loss (0-15%) as compared to unamended litter (20%). Acidifiers reduced nitrogen loss through both chemical and microbiological processes. Adsorbent amendments (water treatment residuals and chitosan) reduced nitrogen loss and concentrations of ammonia-producing bacteria and fungi. The use of efficient, cost-effective litter amendments to maximum agronomic, environmental and financial benefits is essential for the future of sustainable poultry production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Enriching early adult environment affects the copulation behaviour of a tephritid fly.

    PubMed

    Díaz-Fleischer, Francisco; Arredondo, José; Aluja, Martín

    2009-07-01

    Early adult experiences in enriched environments favours animal brain and behavioural development ultimately resulting in an increased fitness. However, measuring the effect of environmental enrichment in animal behaviour in nature is often a complicated task, considering the complexity of the natural environment. We expanded previous studies to evaluate how early experience in an enriched environment affects copulation behaviour when animals are confronted with a complex semi-natural environment. Anastrepha ludens flies are an ideal model system for studying these effects because their natural habitats differ significantly from the cage environments in which these flies are reared for biological control purposes. For example, in the field, males form leks of up to six individuals. Each male defends a territory represented by a tree leaf whereas in rearing cages, territories are completely reduced because of the high population density. In a series of three experiments, we observed that male density represented the most influential stimulus for A. ludens male copulation success. Males that experienced lower densities in early adulthood obtained the highest proportion of copulations. By contrast, female copulation behaviour was not altered by female density. However, exposure to natural or artificial leaves in cages in which flies were kept until tested influenced female copulation behaviour. Females that were exposed to enriched environments exhibited a shorter latency to mate and shorter copulation durations with males than females reared in poor environments. We discuss the influence of early experience on male copulation success and female-mating choosiness.

  6. External built residential environment characteristics that affect mental health of adults.

    PubMed

    Ochodo, Charles; Ndetei, D M; Moturi, W N; Otieno, J O

    2014-10-01

    External built residential environment characteristics include aspects of building design such as types of walls, doors and windows, green spaces, density of houses per unit area, and waste disposal facilities. Neighborhoods that are characterized by poor quality external built environment can contribute to psychosocial stress and increase the likelihood of mental health disorders. This study investigated the relationship between characteristics of external built residential environment and mental health disorders in selected residences of Nakuru Municipality, Kenya. External built residential environment characteristics were investigated for 544 residents living in different residential areas that were categorized by their socioeconomic status. Medically validated interview schedules were used to determine mental health of residents in the respective neighborhoods. The relationship between characteristics of the external built residential environment and mental health of residents was determined by multivariable logistic regression analyses and chi-square tests. The results show that walling materials used on buildings, density of dwelling units, state of street lighting, types of doors, states of roofs, and states of windows are some built external residential environment characteristics that affect mental health of adult males and females. Urban residential areas that are characterized by poor quality external built environment substantially expose the population to daily stressors and inconveniences that increase the likelihood of developing mental health disorders.

  7. Post-deposition early-phase migration and retention behavior of radiocesium in a litter-mineral soil system in a Japanese deciduous forest affected by the Fukushima nuclear accident.

    PubMed

    Koarashi, Jun; Nishimura, Syusaku; Nakanishi, Takahiro; Atarashi-Andoh, Mariko; Takeuchi, Erina; Muto, Kotomi

    2016-12-01

    The fate of radiocesium ((137)Cs) derived from the Fukushima nuclear accident and associated radiation risks are largely dependent on its migration and retention behavior in the litter-soil system of Japanese forest ecosystems. However, this behavior has not been well quantified. We established field lysimeters in a Japanese deciduous broad-leaved forest soon after the Fukushima nuclear accident to continuously monitor the downward transfer of (137)Cs at three depths: the litter-mineral soil boundary and depths of 5 cm and 10 cm in the mineral soil. Observations were conducted at two sites within the forest from May 2011 to May 2015. Results revealed similar temporal and depth-wise variations in (137)Cs downward fluxes for both sites. The (137)Cs downward fluxes generally decreased year by year at all depths, indicating that (137)Cs was rapidly leached from the forest-floor litter layer and was then immobilized in the upper (0-5 cm) mineral soil layer through its interaction with clay minerals. The (137)Cs fluxes also showed seasonal variation, which was in accordance with variations in the throughfall and soil temperature at the sites. There was no detectable (137)Cs flux at a depth of 10 cm in the mineral soil in the third and fourth years after the accident. The decreased inventory of mobile (or bioavailable) (137)Cs observed during early stages after deposition indicates that the litter-soil system in the Japanese deciduous forest provides only a temporary source for (137)Cs recycling in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Ingestion of marine litter by loggerhead sea turtles, Caretta caretta, in Portuguese continental waters.

    PubMed

    Nicolau, Lídia; Marçalo, Ana; Ferreira, Marisa; Sá, Sara; Vingada, José; Eira, Catarina

    2016-02-15

    The accumulation of litter in marine and coastal environments is a major threat to marine life. Data on marine litter in the gastrointestinal tract of stranded loggerhead turtles, Caretta caretta, found along the Portuguese continental coast was presented. Out of the 95 analysed loggerheads, litter was present in 56 individuals (59.0%) and most had less than 10 litter items (76.8%) and less than 5 g (dm) (96.8%). Plastic was the main litter category (frequency of occurrence=56.8%), while sheet (45.3%) was the most relevant plastic sub-category. There was no influence of loggerhead stranding season, cause of stranding or size on the amount of litter ingested (mean number and dry mass of litter items per turtle). The high ingested litter occurrence frequency in this study supports the use of the loggerhead turtle as a suitable tool to monitor marine litter trends, as required by the European Marine Strategy Framework Directive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Patterns of litter disappearance in a northern hardwood forest invaded by exotic earthworms.

    PubMed

    Suárez, Esteban R; Fahey, Timothy J; Yavitt, Joseph B; Groffman, Peter M; Bohlen, Patrick J

    2006-02-01

    A field study was conducted to evaluate the effects of exotic earthworm invasions on the rates of leaf litter disappearance in a northern hardwood forest in southcentral New York, USA. Specifically, we assessed whether differences in litter quality and the species composition of exotic earthworm communities affected leaf litter disappearance rates. Two forest sites with contrasting communities of exotic earthworms were selected, and disappearance rates of sugar maple and red oak litter were estimated in litter boxes in adjacent earthworm-free, transition, and earthworm-invaded plots within each site. After 540 days in the field, 1.7-3 times more litter remained in the reference plots than in the earthworm-invaded plots. In the earthworm-invaded plots, rates of disappearance of sugar maple litter were higher than for oak litter during the first year, but by the end of the experiment, the amount of sugar maple and oak litter remaining in the earthworm-invaded plots was identical within each site. The composition of the earthworm communities significantly affected the patterns of litter disappearance. In the site dominated by the anecic earthworm Lumbricus terrestris and the endogeic Aporrectodea tuberculata, the percentage of litter remaining after 540 days (approximately 17%) was significantly less than at the site dominated by L. rubellus and Octolasion tyrtaeum (approximately 27%). This difference may be attributed to the differences in feeding behavior of the two litter-feeding species: L. terrestris buries entire leaves in vertical burrows, whereas L. rubellus usually feeds on litter at the soil surface, leaving behind leaf petioles and veins. Our results showed that earthworms not only accelerate litter disappearance rates, but also may reduce the differences in decomposition rates that result from different litter qualities at later stages of decay. Similarly, our results indicate that earthworm effects on decomposition vary with earthworm community

  10. Atmospheric water vapor as driver of litter decomposition during rainless seasons

    NASA Astrophysics Data System (ADS)

    Dirks, I.; Navon, Y.; Kanas, D.; Dumbur, R.; Grünzweig, José

    2010-05-01

    Litter production in many drought-affected ecosystems coincides with the beginning of an extended season of no or limited rainfall. Because of lack of moisture litter decomposition during such periods has been largely ignored so far, despite potential importance for the overall decay process in such ecosystems. To determine drivers and extent of litter decay in rainless periods a litterbag study was conducted in Mediterranean shrublands, dwarf shrublands and grasslands. Heterogeneous local and common straw litter was left to decompose in open and shaded patches of various field sites in two study regions. Fresh local litter lost 4-18% of its initial mass over about 4 months without rainfall, which amounted to 15-50% of total annual decomposition. Lab incubations and changes in chemical composition suggested that litter was degraded by microbial activity, enabled by absorption of water vapor from the atmosphere. High mean relative humidity of 85% was measured during 8-9 h of most nights, but the possibility of fog deposition or dew formation at the soil surface was excluded. Over 95% of the variation in mass loss and changes in litter nitrogen were explained by characteristics of water-vapor uptake by litter. Photodegradation induced by the intense solar radiation was an additional mechanism of litter decomposition as indicated by lignin dynamics. Lignin loss from litter increased with exposure to ultraviolet radiation and with initial lignin concentration, together explaining 90-97% of the variation in lignin mass change. Results indicate that water vapor is a driver of litter decay which has been ignored so far. Water-vapor absorption presumably enables microbial degradation, which, together with solar radiation and litter quality, controls decomposition and changes in litter chemistry during rainless seasons. Warmer and drier conditions as a consequence of climate change will result in enhanced drying of litter layers also outside currently classified drylands

  11. A traits-based test of the home-field advantage in mixed-species tree litter decomposition.

    PubMed

    Jewell, Mark Davidson; Shipley, Bill; Paquette, Alain; Messier, Christian; Reich, Peter B

    2015-10-01

    Litter often decomposes faster in its environment of origin (at 'home') than in a foreign environment ('away'), which has become known as the home-field advantage (HFA). However, many studies have highlighted the conditional nature of the HFA, suggesting that current understanding of this phenomenon is not yet sufficient to generalize across systems. The HFA hypothesis was tested for mono-specific and mixed-species litter using a tree-based experiment that manipulated the functional identity and diversity of the host tree community. Litter types of varying quality were transplanted between several host tree communities and decomposition rates were measured using litterbags. Since the decomposer community should respond to traits of the litter input and not their taxonomic identity, a traits-based index of litter-tree similarity was developed. Mono-specific litter exhibited HFA, but when the same litter was decomposed in mixture, this trend was not observed. Mixed-species litter decomposed on average no faster or slower than monoculture litter and exhibited both positive and negative species interactions. These non-additive interactions of decomposition rates in mixture were influenced by the degree of similarity between litter and tree traits. Both synergistic and antagonistic interactions decreased in magnitude with increasing litter-tree similarity such that mixture rates were predictable from monocultures. The HFA occurred more strongly for mono-specific litter than for the litter types mixed together because interactions between species may have masked this effect. However, when expressed as a function of trait similarity between litters and tree communities, the HFA was not detected. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Amending poultry litter to reduce ammonia producing bacteria

    USDA-ARS?s Scientific Manuscript database

    Poultry litter is a valuable nutrient source for crop production that requires proper management to garner environmentally and financially sustainable benefits. Successful management to reduce ammonia (NH3-N) and its harmful side-effects for poultry and the environment can be aided by the use of lit...

  13. The use of beached bird surveys for marine plastic litter monitoring in Ireland.

    PubMed

    Acampora, Heidi; Lyashevska, Olga; Van Franeker, Jan Andries; O'Connor, Ian

    2016-09-01

    Marine plastic litter has become a major threat to wildlife. Marine animals are highly susceptible to entanglement and ingestion of debris at sea. Governments all around the world are being urged to monitor litter sources and inputs, and to mitigate the impacts of marine litter, which is primarily composed of plastics. European policies, such as Oslo-Paris Convention (OSPAR) and Marine Strategy Framework Directive (MSFD) have adopted the monitoring of a seabird species, the Northern Fulmar (Fulmarus glacialis), as an environmental quality indicator through the analysis of stomach contents of beached Fulmar specimens. The aims of this research were to: firstly set a baseline investigation of multispecies of seabirds in Ireland affected by the ingestion of litter and, secondly to investigate the feasibility of using Fulmar and/or other potential species of seabird as an indicator for marine debris in Ireland through beached bird surveys. Within 30 months, 121 birds comprising 16 different species were collected and examined for the presence of litter. Of these, 27.3% (n = 33) comprising 12 different species were found to ingest litter, mainly plastics. The average mass of ingested litter was 0.141 g. Among 14 sampled Northern Fulmars, 13 (93%) had ingested plastic litter, all of them over the 0.1 g threshold used in OSPAR and MSFD policy target definitions. Results show that seabirds in Ireland are ingesting marine litter, as in many other countries in the world. Monitoring seabird litter ingestion has the potential to form part of a wider marine litter monitoring programme that can help to inform mitigation and management measures for marine litter.

  14. Effects of elevated CO2 on litter chemistry and subsequent invertebrate detritivore feeding responses.

    PubMed

    Dray, Matthew W; Crowther, Thomas W; Thomas, Stephen M; A'Bear, A Donald; Godbold, Douglas L; Ormerod, Steve J; Hartley, Susan E; Jones, T Hefin

    2014-01-01

    Elevated atmospheric CO2 can change foliar tissue chemistry. This alters leaf litter palatability to macroinvertebrate detritivores with consequences for decomposition, nutrient turnover, and food-web structure. Currently there is no consensus on the link between CO2 enrichment, litter chemistry, and macroinvertebrate-mediated leaf decomposition. To identify any unifying mechanisms, we presented eight invertebrate species from aquatic and terrestrial ecosystems with litter from Alnus glutinosa (common alder) or Betula pendula (silver birch) trees propagated under ambient (380 ppm) or elevated (ambient +200 ppm) CO2 concentrations. Alder litter was largely unaffected by CO2 enrichment, but birch litter from leaves grown under elevated CO2 had reduced nitrogen concentrations and greater C/N ratios. Invertebrates were provided individually with either (i) two litter discs, one of each CO2 treatment ('choice'), or (ii) one litter disc of each CO2 treatment alone ('no-choice'). Consumption was recorded. Only Odontocerum albicorne showed a feeding preference in the choice test, consuming more ambient- than elevated-CO2 birch litter. Species' responses to alder were highly idiosyncratic in the no-choice test: Gammarus pulex and O. albicorne consumed more elevated-CO2 than ambient-CO2 litter, indicating compensatory feeding, while Oniscus asellus consumed more of the ambient-CO2 litter. No species responded to CO2 treatment when fed birch litter. Overall, these results show how elevated atmospheric CO2 can alter litter chemistry, affecting invertebrate feeding behaviour in species-specific ways. The data highlight the need for greater species-level information when predicting changes to detrital processing-a key ecosystem function-under atmospheric change.

  15. Effects of Elevated CO2 on Litter Chemistry and Subsequent Invertebrate Detritivore Feeding Responses

    PubMed Central

    Dray, Matthew W.; Crowther, Thomas W.; Thomas, Stephen M.; A’Bear, A. Donald; Godbold, Douglas L.; Ormerod, Steve J.; Hartley, Susan E.; Jones, T. Hefin

    2014-01-01

    Elevated atmospheric CO2 can change foliar tissue chemistry. This alters leaf litter palatability to macroinvertebrate detritivores with consequences for decomposition, nutrient turnover, and food-web structure. Currently there is no consensus on the link between CO2 enrichment, litter chemistry, and macroinvertebrate-mediated leaf decomposition. To identify any unifying mechanisms, we presented eight invertebrate species from aquatic and terrestrial ecosystems with litter from Alnus glutinosa (common alder) or Betula pendula (silver birch) trees propagated under ambient (380 ppm) or elevated (ambient +200 ppm) CO2 concentrations. Alder litter was largely unaffected by CO2 enrichment, but birch litter from leaves grown under elevated CO2 had reduced nitrogen concentrations and greater C/N ratios. Invertebrates were provided individually with either (i) two litter discs, one of each CO2 treatment (‘choice’), or (ii) one litter disc of each CO2 treatment alone (‘no-choice’). Consumption was recorded. Only Odontocerum albicorne showed a feeding preference in the choice test, consuming more ambient- than elevated-CO2 birch litter. Species’ responses to alder were highly idiosyncratic in the no-choice test: Gammarus pulex and O. albicorne consumed more elevated-CO2 than ambient-CO2 litter, indicating compensatory feeding, while Oniscus asellus consumed more of the ambient-CO2 litter. No species responded to CO2 treatment when fed birch litter. Overall, these results show how elevated atmospheric CO2 can alter litter chemistry, affecting invertebrate feeding behaviour in species-specific ways. The data highlight the need for greater species-level information when predicting changes to detrital processing–a key ecosystem function–under atmospheric change. PMID:24465985

  16. Litter contribution to soil organic carbon in the agriculture abandons processes

    NASA Astrophysics Data System (ADS)

    Novara, A.; Rühl, J.; La Mantia, T.; Gristina, L.; La Bella, S.; Tuttolomondo, T.

    2015-02-01

    Mechanisms of litter decomposition, translocation and stabilization into soil layers are fundamental processes in ecosystem functioning as it regulates the cycle of soil organic matter (SOM), CO2 emission into the atmosphere, carbon sequestration into the soil. In this study, it was investigated the contribution of litters of different stages of Mediterranean secondary succession on Carbon sequestration, analyzing the role of earthworms on translocation of SOM into soil profile. For this purpose δ13C difference between meadow C4-Csoil and C3-Clitter were used in a field experiment. Four undisturbed litters of different stages of succession were collected (45, 70, 100 and 120 since agriculture abandon) and placed on the top of isolated soil cores. The litter contribution to C stock was affected by plant species and increased with the age of the stage of secondary succession. The soil organic carbon after 1 year since litter position increased up to 40% in comparison to no litter treatment in soil with litter of 120 years since abandon. The new carbon derived from C3-litter was decomposed and transferred into soil profile thanks to earthworms and dissolved organic carbon leaching. After 1 years the carbon increase attributed to earthworm activity ranged from 6 to 13% in soil under litter in field abandoned since 120 and 45 years, respectively.

  17. Litter contribution to soil organic carbon in the processes of agriculture abandon

    NASA Astrophysics Data System (ADS)

    Novara, A.; Rühl, J.; La Mantia, T.; Gristina, L.; La Bella, S.; Tuttolomondo, T.

    2015-04-01

    The mechanisms of litter decomposition, translocation and stabilization into soil layers are fundamental processes in the functioning of the ecosystem, as they regulate the cycle of soil organic matter (SOM) and CO2 emission into the atmosphere. In this study the contribution of litters of different stages of Mediterranean secondary succession on carbon sequestration was investigated, analyzing the role of earthworms in the translocation of SOM into the soil profile. For this purpose the δ13C difference between meadow C4-C soil and C3-C litter was used in a field experiment. Four undisturbed litters of different stages of succession (45, 70, 100 and 120 since agriculture abandon) were collected and placed on the top of isolated C4 soil cores. The litter contribution to C stock was affected by plant species and it increased with the age of the stage of secondary succession. One year after the litter position, the soil organic carbon increased up to 40% in comparison to soils not treated with litter after 120 years of abandon. The new carbon derived from C3 litter was decomposed and transferred into soil profile thanks to earthworms and the leaching of dissolved organic carbon. After 1 year the carbon increase attributed to earthworm activity was 6 and 13% in the soils under litter of fields abandoned for 120 and 45 years, respectively.

  18. Role of leaf litter nitrogen immobilization in the nitrogen budget of a swamp stream

    SciTech Connect

    Qualls, R.G.

    1984-01-01

    Attempts were made to determine if immobilization-mobilization of N in the litter layer is of a sufficient magnitude to affect the concentrations of inorganic N in the overlying water, and to determine the effect of concentrations of dissolved nutrients and hydroperiod on litter decomposition, N uptake, and N release by litter. The study was conducted in two blackwater stream swamps in North Carolina: Creeping Swamp (CR) and Chicod Creek (CH). With the low levels of dissolved nutrients in CR, there was little difference in litter decomposition rate along elevation gradients. Decomposition was faster at the inundated sites in CH and the faster decomposition was associated with nutrient enrichment. Exogenous N immobilized in litter reached higher levels in the enriched swamp CH. Despite faster decomposition in CH, no substantial mineralization of litter N had occurred prior to June. A budget of litter N and dissolved inorganic N inflow showed that immobilization by flooded litter over 1 linear km of CR during the sampling period was 87 kg, equivalent to about 25% of the inorganic N inflow. This proportion shows that litter can play a significant role in controlling N concentration in stream water in small swamp streams. 24 references, 3 figures, 3 tables.

  19. Negative and positive interactions among plants: effects of competitors and litter on seedling emergence and growth of forest and grassland species.

    PubMed

    Loydi, A; Donath, T W; Otte, A; Eckstein, R L

    2015-05-01

    Living plant neighbours, but also their dead aboveground remains (i.e. litter), may individually exert negative or positive effects on plant recruitment. Although living plants and litter co-occur in most ecosystems, few studies have addressed their combined effects, and conclusions are ambivalent. Therefore, we examined the response in terms of seedling emergence and growth of herbaceous grassland and forest species to different litter types and amounts and the presence of competitors. We conducted a pot experiment testing the effects of litter type (grass, oak), litter amount (low, medium, high) and interspecific competition (presence or absence of four Festuca arundinacea individuals) on seedling emergence and biomass of four congeneric pairs of hemicryptophytes from two habitat types (woodland, grassland). Interactions between litter and competition were weak. Litter presence increased competitor biomass. It also had positive effects on seedling emergence at low litter amounts and negative effects at high litter amounts, while competition had no effect on seedling emergence. Seedling biomass was negatively affected by the presence of competitors, and this effect was stronger in combination with high amounts of litter. Litter affected seedling emergence while competition determined the biomass of the emerged individuals, both affecting early stages of seedling recruitment. High litter accumulation also reduced seedling biomass, but this effect seemed to be additive to competitor effects. This suggests that live and dead plant mass can affect species recruitment in natural systems, but the mechanisms by which they operate and their timing differ.

  20. Considerations on the effects of tidal regimes in the movement of floating litter in an estuarine environment: Case study of the estuarine system of Santos-São Vicente, Brazil.

    PubMed

    Fernandino, Gerson; Elliff, Carla Isobel; Frutuoso, Gabriela Amado; Silva, Eric Vinícius Nascimento Malaquias da; Gama, Guilherme Santiago; Sousa, João Henrique de Oliveira; Silva, Iracema Reimão

    2016-09-15

    Floating litter in the estuarine system of Santos-São Vicente is common and is part of day-to-day activities of various users of the area. The objective of the present study was to carry out a quali-quantitative evaluation of the occurrence of floating litter, to infer their sources, and to identify environmental factors that are likely to control occurrence and distribution, with particular emphasis on the effects of tidal regimes. Six sampling stations were selected along the aforementioned estuary and visited monthly between July 2010 and January 2012. Floating litter was counted from a fixed sampling station. Plastics prevailed (89.64%) and their main source was domestic activities (55.41%). More litter was found during ebb spring tides, with higher concentrations obeying confluence patterns of the estuary's channels. Results indicated that occurrence can be attributed to the deficiency in basic sewage system in the area and the deliberate disposal into the estuary by the local population.

  1. Radiocesium leaching from contaminated litter in forest streams.

    PubMed

    Sakai, Masaru; Gomi, Takashi; Naito, Risa S; Negishi, Junjiro N; Sasaki, Michiko; Toda, Hiroto; Nunokawa, Masanori; Murase, Kaori

    2015-06-01

    In Japanese forests suffering from the Fukushima Daiichi Nuclear Power Plant accident, litter fall provides a large amount of radiocesium from forests to streams. Submerged litter is processed to become a vital food resource for various stream organisms through initial leaching and subsequent decomposition. Although leaching from litter can detach radiocesium similarly to potassium, radiocesium leaching and its migration are poorly understood. We examined both radiocesium and potassium leaching to the water column and radiocesium allocation to minerals (glass beads, silica sand, and vermiculite) in the laboratory using soaked litter with and without minerals on a water column. The mineral types did not affect radiocesium leaching from litter, but soaking in water for 1, 7, and 30 days decreased the radiocesium concentration in litter by ×0.71, ×0.66, and ×0.56, respectively. Meanwhile, the 1-, 7-, and 30-day experiments decreased potassium concentration in litter by ×0.17, ×0.11, and ×0.09, respectively. Leached radiocesium remained in a dissolved form when there was no mineral phases present in the water, whereas there was sorption onto the minerals when they were present. In particular, vermiculite adsorbed radiocesium by two to three orders of magnitude more effectively than the other minerals. Because radiocesium forms (such as that dissolved or adsorbed to organic matter or minerals) can further mobilize to ecosystems, our findings will increase our understanding regarding the dynamics of radiocesium in stream ecosystems.

  2. Comparison of markers predicting litter size in different pig breeds.

    PubMed

    Kwon, W-S; Rahman, M S; Ryu, D-Y; Khatun, A; Pang, M-G

    2017-05-01

    To overcome the limitations of conventional analysis of male fertility in animals and humans, proteomic studies have been performed to develop fertility-related biomarkers for prognosis and diagnosis of male fertility. However, the studies were focused on specific species or breeds. Therefore, a study is required to validate whether fertility-related markers would apply to other breeds in pigs. In this study, previously developed fertility-related biomarkers from Landrace were validated to use for prognosis of male fertility in commercially available breeds. Expression level of eight biomarkers in non-capacitated and capacitated (C) spermatozoa from Yorkshire and Duroc boars was analyzed. And then, to explore the validity of these markers for prognosis of male fertility, i.e. litter size, artificial insemination was performed. Among them, RAB2A (NC) and UQCRC1 (NC) turned out to be highest efficient markers for Yorkshire. RAB2A (C) was most efficient marker for Duroc. Average litter size has increased as much as 1.41 live born after prediction using eight fertility-related biomarkers in Yorkshire. In addition, average 2.52 litter size was increased after prediction using eight fertility-related biomarkers in Duroc. Average litter sizes were especially highly increased after prediction of fertility using RAB2A (NC) in Yorkshire (1.57 piglets) and TPI (NC) in Duroc (3.14 piglets), respectively. As a result, all biomarkers were significantly correlated with litter size. However, overall accuracy to predict litter size in three breeds was different in response with each marker. Average litter size after artificial insemination was also significantly affected by marker selection. Therefore, this study suggests that developed fertility-related markers may be used for prognosis and diagnosis of male fertility irrespective of breed. However, selection of efficient markers for breeds should be considered to obtain more accurate and efficient outcomes. © 2017 American

  3. Decomposition and nitrogen dynamics of (15)N-labeled leaf, root, and twig litter in temperate coniferous forests.

    PubMed

    van Huysen, Tiff L; Harmon, Mark E; Perakis, Steven S; Chen, Hua

    2013-12-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using (15)N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7-20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.

  4. Decomposition and nitrogen dynamics of 15N-labeled leaf, root, and twig litter in temperate coniferous forests

    USGS Publications Warehouse

    van Huysen, Tiff L.; Harmon, Mark E.; Perakis, Steven S.; Chen, Hua

    2013-01-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7–20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.

  5. Fungi vectored by the bark beetle Ips typographus following hibernation under the bark of standing trees and in the forest litter.

    PubMed

    Persson, Ylva; Vasaitis, Rimvydas; Långström, Bo; Ohrn, Petter; Ihrmark, Katarina; Stenlid, Jan

    2009-10-01

    The bark beetle Ips typographus has different hibernation environments, under the bark of standing trees or in the forest litter, which is likely to affect the beetle-associated fungal flora. We isolated fungi from beetles, standing I. typographus-attacked trees, and forest litter below the attacked trees. Fungal identification was done using cultural and molecular methods. The results of the two methods in detecting fungal species were compared. Fungal communities associated with I. typographus differed considerably depending on the hibernation environment. In addition to seven taxa of known ophiostomoid I. typographus-associated fungi, we detected 18 ascomycetes and anamorphic fungi, five wood-decaying basidomycetes, 11 yeasts, and four zygomycetes. Of those, 14 fungal taxa were detected exclusively from beetles that hibernated under bark, and six taxa were detected exclusively from beetles hibernating in forest litter. The spruce pathogen, Ceratocystis polonica, was detected occasionally in bark, while another spruce pathogen, Grosmannia europhioides, was detected more often from beetles hibernating under the bark as compared to litter. The identification method had a significant impact on which taxa were detected. Rapidly growing fungal taxa, e.g. Penicillium, Trichoderma, and Ophiostoma, dominated pure culture isolations; while yeasts dominated the communities detected using molecular methods. The study also demonstrated low frequencies of tree pathogenic fungi carried by I. typographus during its outbreaks and that the beetle does not require them to successfully attack and kill trees.

  6. Long-term marine litter monitoring in the remote Great Australian Bight, South Australia.

    PubMed

    Edyvane, K S; Dalgetty, A; Hone, P W; Higham, J S; Wace, N M

    2004-06-01

    , fishing-related litter in the Bight has reduced at a slower rate than domestic litter. While the level of glass and soft plastics on the beach have both reduced by almost 93% (i.e. 103-7 kg and 119-8 kg, respectively), the level of hard plastics, has diminished at a slower rate, with reductions of only 75% (i.e. 122-30 kg). Some fisheries (i.e. rock lobster, Southern Shark Fishery) have shown marked reductions in fishing-related litter. This is probably due, to some extent, to significant reductions in fishing effort in the region, although this requires further investigation. The information from the Anxious Bay beach litter survey is crucial in monitoring trends in ocean litter in Australia's southern oceans and compliance with international litter regulations. While fishing-related litter remains the major source of ship-based or ocean litter in Australia's southern oceans, the continued reduction in ship-based litter since 1991 supports increasing compliance to MARPOL (Annex V) by commercial fisheries and shipping in the Great Australian Bight. While Australia participates in marine debris monitoring programs in the Antarctic (under CCAMLR), there is currently no national program or management framework to assess, manage and monitor ocean-based litter along Australia's coasts, and monitor compliance with MARPOL. Apart from the commitments under CCAMLR for Antarctic (and sub-Antarctic) marine environments, there are no other regional programs, guidelines or monitoring protocols or to assess and manage ocean litter in the Southern Ocean.

  7. Differential responses of ammonia/ammonium-oxidizing microorganisms in mangrove sediment to amendment of acetate and leaf litter.

    PubMed

    Wang, Yong-Feng; Li, Xiao-Yan; Gu, Ji-Dong

    2014-04-01

    The effects of acetate and leaf litter powder on ammonia/ammonium-oxidizing microorganisms (AOMs) in mangrove sediment were investigated in a laboratory incubation study for a period of 60 days. The results showed that different AOMs responded differently to the addition of acetate and leaf litter. A higher diversity of anaerobic ammonium-oxidizing (anammox) bacteria was observed when acetate or leaf litter was added than the control. However, acetate and leaf litter generally inhibited the growth of anammox bacteria despite that leaf litter promoted their growth in the first 5 days. The inhibitory effects on anammox bacteria were more pronounced by acetate than by leaf litter. Neither acetate nor leaf litter affected ammonia-oxidizing archaea (AOA) community structures, but promoted their growth. For ammonia-oxidizing bacteria (AOB), the addition of acetate or leaf litter resulted in changes of community structures and promoted their growth in the early phase of the incubation. In addition, the promoting effects by leaf litter on AOB growth were more obvious than acetate. These results indicated that organic substances affect AOM community structures and abundances. The study suggests that leaf litter has an important influence on the community structures and abundances of AOMs in mangrove sediment and affects the nitrogen cycle in such ecosystem.

  8. Marine Litter, Eutrophication and Noise Assessment Tools

    NASA Astrophysics Data System (ADS)

    Palazov, Atanas; Velcheva, Maya; Milkova, Tanya; Slabakova, Violeta; Marinova, Veselka

    2017-04-01

    MARLEN - Marine Litter, Eutrophication and Noise Assessment Tools is a project under the Programme BG02.03: Increased capacity for assessing and predicting environmental status in marine and inland waters, managed by Bulgarian Ministry of environment and waters and co-financed by the Financial Mechanism of the European Economic Area (EEA FM) 2009 - 2014. Project Beneficiary is the Institute of oceanology - Bulgarian Academy of Sciences with two partners: Burgas municipality and Bulgarian Black Sea Basin Directorate. Initial assessment of ecological state of Bulgarian marine waters showed lack of data for some descriptors of MSFD. The main goal of MARLEN is to build up tools for assessment of marine environment by implementing new technologies and best practices for addressing three main areas of interest with lack of marine data in particular: a) Marine litter detection and classification in coastal areas; b) Regular near real time surface water eutrophication monitoring on large aquatory; c) Underwater noise monitoring. Developed tools are an important source of real time, near real time and delay mode marine data for Bulgarian Black Sea waters. The partnership within the project increased capacity for environmental assessments and training of personnel and enhances collaboration between scientific institutes, regional and local authorities. Project results supported implementation of MSFD in Bulgarian marine waters for the benefit of coastal population, marine industry, tourism, marine research and marine spatial planning.

  9. Photodegradation of Leaf Litter in Water-Limited Ecosystems

    NASA Astrophysics Data System (ADS)

    Cory, R. M.; Powers, H.; McDowell, N.; Rahn, T.

    2008-12-01

    The longstanding view of terrestrial decomposition holds that heterotrophic respiration drives release of CO2, but recent studies, such as Austin and Vivanco (2006) have shown that in water-limited environments, photochemical decomposition of leaf litter may be equally or more effective than microbial decomposition. Although initial studies have concluded that photochemical degradation can be important in some environments, it has been difficult to quantify and the oxidative mechanisms involved remain unknown. Thus, the objectives of our study were to (1) quantify the CO2 emitted during photochemical degradation of leaf litter and (2) use the stable isotopic signatures of evolved CO2 to elucidate pathways of production. Emitted CO2 and its isotopic signature were measured using a tunable diode laser (TDL) to assess the pool of photochemically-labile plant matter (δ13C-CO2) in a given sample and to assess the source of the oxygen (δ18O-CO2). We quantified the photochemical release of CO2 and its isotopic signature from dried leaf litter of 10 tree and grass species prevalent in major biotic zones of New Mexico. The cumulative CO2 released upon exposure of 0.1-0.3 g of dried leaf litter to three hours of simulated sunlight ranged from 8-25 mg CO2-C g-1 dried litter, corresponding to 1-2% mass loss. Generally, the δ13C-CO2 was more depleted (4-7 ± 2 per mil) than the average δ13C of the respective leaf litter sample. The δ18O-CO2 evolved is approximately equal to δ18O of atmospheric O2, suggesting that the oxidation mechanism involves direct reaction with atmospheric O2.

  10. The effects of litter carrying on rifle shooting.

    PubMed

    Tharion, W J; Rice, V; Sharp, M A; Marlowe, B E

    1993-08-01

    This study investigated whether the use of a shoulder harness would affect shooting accuracy after patient litter carrying. Two- and four-person teams, 12 male and 9 female soldiers, fired at targets before and after (1) a 15-minute bout of rapid, short litter carries and lifts, and (2) a moderate speed 30-minute litter carry with and without a harness for both types of carries. Shooting accuracy was 10% poorer (p < 0.05) after the 15-minute bout (mean +/- SD = 8.9 +/- 1.9 mm) than after the 30-minute carry (8.1 +/- 1.7 mm). Four-person teams using litter-carriage harnesses had 17% tighter shot groups (45.5 +/- 30.4 mm2) (p < 0.05) than four-person teams that did not use harnesses (54.5 +/- 26.1 mm2) and two-person teams with (56.3 +/- 29.1 mm2) or without harnesses (54.9 +/- 30.7 mm2). The harness can potentially improve shooting accuracy after litter carrying.

  11. Precipitation pulse size and frequency controls on dryland litter decomposition rates

    NASA Astrophysics Data System (ADS)

    Kurupas, K. L.; Throop, H.

    2014-12-01

    Drylands are an important component of the global carbon (C) cycle, accounting for 40% of the land area and 20% of the soil organic C globally. Litter decomposition is a key biogeochemical process, controlling C and nutrient cycling. While simple decomposition models successfully predict decomposition rates in many systems based on climate variables, there is a disconnect between the modeled and measured rates decomposition in drylands. This disconnect may stem from abiotic factors of importance in drylands, such as photodegradation and soil-litter mixing, not being taken into account. Soil-litter mixing can accelerate decomposition, but the underlying mechanisms are poorly understood. Potential mechanisms include microclimate buffering, physical abrasion, and enhanced microbial colonization. Recent work suggests that litter decomposition is remarkably insensitive to climate variables, at least when variables are presented as long temporal-scale values (e.g., annual precipitation). We hypothesized that decomposition would be more strongly affected by litter moisture content than total precipitation (PPT) alone. Thus, frequent, small PPT pulses would accelerate decomposition more than larger, but infrequent pulses. Furthermore, soil-litter mixing would enhance decomposition by buffering litter moisture content. To test the combined influence of soil-litter mixing and PPT pulses on decomposition, we incubated litter and soil in a semi-controlled greenhouse which simulated dryland summer temperatures. Two litter types (grass and shrub) were incubated under two levels of soil-litter mixing (no mixing and complete soil-litter mixing) and with 16 different PPT treatments (a factorial combination of four PPT pulses sizes and four PPT frequencies). We measured instantaneous CO2 flux throughout the 30 day incubation and mass loss at the end of the incubation. Shrub litter decomposed faster than grass litter. Flux rates generally peaked at day 8 and declined thereafter. CO2

  12. Public participation in wilderness and backcountry litter control: a review of research and management experience.

    Treesearch

    Robert M. Muth; Roger N. Clark

    1978-01-01

    This paper describes the application of the Incentive System for Litter Control to wilderness and backcountry environments. Based on research, observation, and management experience, a set of procedures was developed and is presented here. Additional management considerations are discussed.

  13. Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition.

    PubMed

    DeMarco, Jennie; Mack, Michelle C; Bret-Harte, M Syndonia

    2014-07-01

    Climate warming in arctic tundra may shift dominant vegetation from graminoids to deciduous shrubs, whose functional traits could, in turn, alter biotic and abiotic controls over biogeochemical cycling of carbon (C) and nitrogen (N). We investigated whether shrub-induced changes in microclimate have stronger effects on litter decomposition and nutrient release than changes in litter quality and quantity. In arctic tundra near Toolik Lake, Alaska, USA, we incubated a common substrate in a snow-addition experiment to test whether snow accumulation around arctic deciduous shrubs altered the environment enough to increase litter decomposition rates. We compared the influence of litter quality on the rate of litter and N loss by decomposing litter from four different plant functional types in a common site. We used aboveground net primary production values and estimated decay constant (k) values from our decomposition experiments to calculate community-weighted mass loss for each site. Snow addition had no effect on decomposition of the common substrate, and the site with the highest abundance of shrubs had the lowest decomposition rates. Species varied in their decomposition rates, with species from the same functional type not always following similar patterns. Community-weighted mass loss was 1.5 times greater in the high shrub site, and only slightly decreased when adjusted for soil environment, suggesting that litter quality and quantity are the primary drivers of community decomposition. Our findings suggest that on a short time scale, the changes in soil environment associated with snow trapping by shrubs are unlikely to influence litter nutrient turnover enough to drive positive snow-shrub feedbacks. The mechanisms driving shrub expansion are more likely to do with shrub-litter feedbacks, where the higher growth rates and N uptake by shrubs allows them to produce more leaves, resulting in a larger litter N pool and faster internal cycling of nutrients.

  14. Effects of personal relevance and simulated darkness on the affective appraisal of a virtual environment.

    PubMed

    Toet, Alexander; Houtkamp, Joske M; Vreugdenhil, Paul E

    2016-01-01

    This study investigated whether personal relevance influences the affective appraisal of a desktop virtual environment (VE) in simulated darkness. In the real world, darkness often evokes thoughts of vulnerability, threat, and danger, and may automatically precipitate emotional responses consonant with those thoughts (fear of darkness). This influences the affective appraisal of a given environment after dark and the way humans behave in that environment in conditions of low lighting. Desktop VEs are increasingly deployed to study the effects of environmental qualities and (architectural or lighting) interventions on human behaviour and feelings of safety. Their (ecological) validity for these purposes depends critically on their ability to correctly address the user's cognitive and affective experience. Previous studies with desktop (i.e., non-immersive) VEs found that simulated darkness only slightly affects the user's behavioral and emotional responses to the represented environment, in contrast to the responses observed for immersive VEs. We hypothesize that the desktop VE scenarios used in previous studies less effectively induced emotional and behavioral responses because they lacked personal relevance. In addition, factors like signs of social presence and relatively high levels of ambient lighting may also have limited these responses. In this study, young female volunteers explored either a daytime or a night-time (low ambient light level) version of a desktop VE representing a deserted (no social presence) prototypical Dutch polder landscape. To enhance the personal relevance of the simulation, a fraction of the participants were led to believe that the virtual exploration tour would prepare them for a follow-up tour through the real world counterpart of the VE. The affective appraisal of the VE and the emotional response of the participants were measured through self-report. The results show that the VE was appraised as slightly less pleasant and more

  15. Effects of personal relevance and simulated darkness on the affective appraisal of a virtual environment

    PubMed Central

    Houtkamp, Joske M.; Vreugdenhil, Paul E.

    2016-01-01

    This study investigated whether personal relevance influences the affective appraisal of a desktop virtual environment (VE) in simulated darkness. In the real world, darkness often evokes thoughts of vulnerability, threat, and danger, and may automatically precipitate emotional responses consonant with those thoughts (fear of darkness). This influences the affective appraisal of a given environment after dark and the way humans behave in that environment in conditions of low lighting. Desktop VEs are increasingly deployed to study the effects of environmental qualities and (architectural or lighting) interventions on human behaviour and feelings of safety. Their (ecological) validity for these purposes depends critically on their ability to correctly address the user’s cognitive and affective experience. Previous studies with desktop (i.e., non-immersive) VEs found that simulated darkness only slightly affects the user’s behavioral and emotional responses to the represented environment, in contrast to the responses observed for immersive VEs. We hypothesize that the desktop VE scenarios used in previous studies less effectively induced emotional and behavioral responses because they lacked personal relevance. In addition, factors like signs of social presence and relatively high levels of ambient lighting may also have limited these responses. In this study, young female volunteers explored either a daytime or a night-time (low ambient light level) version of a desktop VE representing a deserted (no social presence) prototypical Dutch polder landscape. To enhance the personal relevance of the simulation, a fraction of the participants were led to believe that the virtual exploration tour would prepare them for a follow-up tour through the real world counterpart of the VE. The affective appraisal of the VE and the emotional response of the participants were measured through self-report. The results show that the VE was appraised as slightly less pleasant and

  16. The Designed Environment and How it Affects Brain Morphology and Mental Health.

    PubMed

    Golembiewski, Jan A

    2016-01-01

    The environment is inextricably related to mental health. Recent research replicates findings of a significant, linear correlation between a childhood exposure to the urban environment and psychosis. Related studies also correlate the urban environment and aberrant brain morphologies. These findings challenge common beliefs that the mind and brain remain neutral in the face of worldly experience. There is a signature within these neurological findings that suggests that specific features of design cause and trigger mental illness. The objective in this article is to work backward from the molecular dynamics to identify features of the designed environment that may either trigger mental illness or protect against it. This review analyzes the discrete functions putatively assigned to the affected brain areas and a neurotransmitter called dopamine, which is the primary target of most antipsychotic medications. The intention is to establish what the correlations mean in functional terms, and more specifically, how this relates to the phenomenology of urban experience. In doing so, environmental mental illness risk factors are identified. Having established these relationships, the review makes practical recommendations for those in public health who wish to use the environment itself as a tool to improve the mental health of a community through design. © The Author(s) 2015.

  17. [Dynamics of microbes and enzyme activities during litter decomposition of Pinus massoniana forest in mid-subtropical area].

    PubMed

    Song, Ying; Gu, Xi-Rong; Yan, Hai-Yuan; Mao, Wen-Tao; Wu, Xue-Lian; Wan, Yu-Xuan

    2014-03-01

    The dynamics of microbial quantity and enzyme activities during decomposition process of masson pine (Pinus massoniana) leaf litter, oak (Quercus aliena) leaf litter and their mixture (at natural mass ratio, 8: 2) were studied with litterbag method in the pinus forest typical vegetations of mid-subtropical Jinyun Mountain nature reserve. The results showed that the decomposition constant K of leaf litter ranked as follows: mixture (0.94) > oak (0.86) > masson pine (0.67). Microbial groups and enzyme activity exhibited some similar responses to the litter decomposition process. After 135 days, fungal and microbial quantities reached the maximum while bacterial and actinomycetic number reached the minimum, presumably due to the high-temperature environment. The correlative analysis showed that the cellulase and acid phosphatase activity had significant positive relationship with the dry weight remaining rate (P < 0.05), which played a key role for microbes in utilizing the substrates at early stages. Meanwhile, the polyphenol oxidase activity showed highly significant negative correlation with the dry weight remaining rate (P < 0.01) in pine litter and the mixed litter, which worked on further decay of recalcitrant compound at late stages. Through the whole process, the microbial quantity and polyphenol oxidase activity were generally in the order of oak litter > mixed litter > pine litter, while in most cases the oak litter showed the lowest acid phosphatase activity, the ranking of which had some differences with the order of the decomposition constant K, indicating that litter decomposition was the result of integrated action by microbe and many kinds of enzymes. The results suggested that differences in litter composition and seasonal climate strongly influenced the microbial communities and the ecosystem processes they mediate. When mixed with oak leaves in given stand, the pine litter had an accelerating decomposition rate, which might depend on the higher

  18. COVERING THEIR BUTTS: RESPONSES TO THE CIGARETTE LITTER PROBLEM

    PubMed Central

    Smith, Elizabeth A.; McDaniel, Patricia A.

    2011-01-01

    Background Cigarette butt litter is a potential target of tobacco control. In addition to its toxicity and non-biodegradability, it can justify environmental regulation and policies that raise the price of tobacco and further denormalize its use. This paper examines how the tobacco industry has managed the cigarette butt litter issue and how the issue has been covered in the media. Methods We searched the Legacy Tobacco Documents Library (http://legacy.library.ucsf.edu) using a snowball strategy. We analyzed data from approximately 700 documents, dated 1959–2006, using an interpretive approach. We also searched two newspaper databases, Lexis/Nexis and Newsbank, and found 406 relevant articles, dated 1982–2009 which we analyzed quantitatively and qualitatively. Results The tobacco industry monitored and developed strategies for dealing with the cigarette litter issue because it affected the social acceptability of smoking, created the potential for alliances between tobacco control and environmental advocates, and created a target for regulation. The industry developed anti-litter programs with Keep America Beautiful (KAB) and similar organizations. Media coverage focused on industry-acceptable solutions, such as volunteer clean-ups and installation of ashtrays; stories that mentioned KAB were also more frequently positive toward the tobacco industry. Among alternative approaches, clean outdoor air laws received the most media attention. Conclusions Cigarette litter, like secondhand smoke, is the result of smoker behavior and affects nonsmokers. The tobacco industry has tried and failed to mitigate the impact of cigarette litter. Tobacco control advocates should explore alliances with environmental groups and propose policy options that hold the industry accountable for cigarette waste. PMID:20966130

  19. [Decomposition and phosphorus dynamics of the litters in standing and litterbag of the Hangzhou Bay coastal wetland ].

    PubMed

    Shao, Xue-xin; Liang, Xin-qiang; Wu, Ming; Ye, Xiao-qi; Jiang, Ke-yi

    2014-09-01

    Wetlands litter decomposition affects wetlands nutrient cycling. The decomposition progress of standing litter was monitored and the litterbag simulation experiment was carried out in order to analyze dynamics of litter decomposition and phosphorus release in Phragmites australis (PA), Spartina alterniflora (SA) and Scirpus mariqueter (SM) marshes of Hangzhou Bay coastal wetland. Results show that the dry mass of standing litter and P concentration decrease gradually and the litter drops to the sediment surface after 180 d. There are distinctive stages of the plant litter decomposition in litterbag simulation experiments. The loss rate is faster during 0- 15 d than that of later days. The loss rate in root decomposition of three plants are SM > PA > SA, while the trend is opposite for that of aboveground tissues. The time needed for 95% of dry mass decomposition in the plant tissues is between 1. 2- 8. 3 a. The P concentration in litters decreases rapidly in the initial stage and then increases slowly while the net P pools decreases all the time. Pearson's correlation coefficient shows that there is no significant correlation between the litter decomposition rate and C/N ratio. However, the litter C/P ratio affects greatly on plant decomposition rate. Environmental factors in the atmospheric temperature also have an impact on the decomposition rate of leaves. The different decomposition progresses between standing litter and litterbag are caused by environmental factors.

  20. Poultry Industry Trends for Litter Utilization

    USDA-ARS?s Scientific Manuscript database

    Broiler litter utilization falls primarily into two broad categories, as fertilizer or in litter-to-energy processes. Without economic, environmentally sound litter uses, potential or real regional litigation may force alternative management that can be detrimental to the grower’s bottom line as wel...

  1. Methods for estimating litter decomposition. Chapter 8

    Treesearch

    Noah J. Karberg; Neal A. Scott; Christian P. Giardina

    2008-01-01

    Litterfall in terrestrial ecosystems represents the primary pathway for nutrient return to soil. Heterotrophic metabolism, facilitated through comminution by small insects and leaching during precipitation events, results in the release of plant litter carbon as CO2 into the atmosphere. The balance between litter inputs and heterotrophic litter...

  2. 46 CFR 108.709 - Litter.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Litter. 108.709 Section 108.709 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.709 Litter. Each unit must have a litter that is— (a) Stowed in a location that...

  3. 46 CFR 108.709 - Litter.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Litter. 108.709 Section 108.709 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.709 Litter. Each unit must have a litter that is— (a) Stowed in a location that...

  4. Neural networks underlying affective states in a multimodal virtual environment: contributions to boredom

    PubMed Central

    Mathiak, Krystyna A.; Klasen, Martin; Zvyagintsev, Mikhail; Weber, René; Mathiak, Klaus

    2013-01-01

    The interaction of low perceptual stimulation or goal-directed behavior with a negative subjective evaluation may lead to boredom. This contribution to boredom may shed light on its neural correlates, which are poorly characterized so far. A video game served as simulation of free interactive behavior without interruption of the game’s narrative. Thirteen male German volunteers played a first-person shooter game (Tactical Ops: Assault on Terror) during functional magnetic resonance imaging (fMRI). Two independent coders performed the time-based analysis of the audio-visual game content. Boredom was operationalized as interaction of prolonged absence of goal-directed behavior with lowered affect in the Positive and Negative Affect Schedule (PANAS). A decrease of positive affect (PA) correlated with response amplitudes in bilateral insular clusters extending into the amygdala to prolonged inactive phases in a game play and an increase in negative affect (NA) was associated with higher responses in bilateral ventromedial prefrontal cortex (vmPFC). Precuneus and hippocampus responses were negatively correlated with changes in NA. We describe for the first time neural contributions to boredom, using a video game as complex virtual environment. Further our study confirmed that PA and NA are separable constructs, reflected by distinct neural patterns. PA may be associated with afferent limbic activity whereas NA with affective control. PMID:24348366

  5. Effects of subsidy quality on reciprocal subsidies: how leaf litter species changes frog biomass export.

    PubMed

    Earl, Julia E; Castello, Paula O; Cohagen, Kara E; Semlitsch, Raymond D

    2014-05-01

    Spatial subsidies are resources transferred from one ecosystem to another and which can greatly affect recipient systems. Increased subsidy quantity is known to increase these effects, but subsidy quality is likely also important. We examined the effects of leaf litter quality (varying in nutrient and tannin content) in pond mesocosms on gray treefrog (Hyla versicolor) biomass export, as well as water quality and ecosystem processes. We used litter from three different tree species native to Missouri [white oak (Quercus alba), northern red oak (Quercus rubra), and sugar maple (Acer saccharum)], one non-native tree [white pine (Pinus strobus)], and a common aquatic grass [prairie cordgrass (Spartina pectinata)]. We found that leaf litter species affected almost every variable we measured. Gray treefrog biomass export was greatest in mesocosms with grass litter and lowest with white oak litter. Differences in biomass export were affected by high tannin concentrations (or possibly the correlated variable, dissolved oxygen) via their effects on survival, and by primary production, which altered mean body mass. Effects of litter species could often be traced back to the characteristics of the litter itself: leaf nitrogen, phosphorus, and tannin content, which highlights the importance of plant functional traits in affecting aquatic ecosystems. This work and others stress that changes in forest species composition could greatly influence aquatic systems and aquatic-terrestrial linkages.

  6. Variability of aboveground litter inputs alters soil physicochemical and biological processes: a meta-analysis of litterfall-manipulation experiments

    NASA Astrophysics Data System (ADS)

    Xu, S.; Liu, L.; Sayer, E. J.

    2013-03-01

    Global change has been shown to greatly alter the amount of aboveground litter inputs to soil, which could cause substantial cascading effects on belowground biogeochemical cyling. Although having been studied extensively, there is uncertainty about how changes in aboveground litter inputs affect soil carbon and nutrient turnover and transformation. Here, we conducted a comprehensive compilation of 68 studies on litter addition or removal experiments, and used meta-analysis to assess the responses of soil physicochemical properties and carbon and nutrient cycling under changed aboveground litter inputs. Our results suggested that litter addition or removal could significantly alter soil temperature and moisture, but not soil pH. Litter inputs were more crucial in buffering soil temperature and moisture fluctuations in grassland than in forest. Soil respiration, soil microbial biomass carbon and total carbon in the mineral soil increased with increasing litter inputs, suggesting that soil acted as a~net carbon sink although carbon loss and transformation increased with increasing litter inputs. Total nitrogen and the C : N ratio in the mineral soil increased with increased litter inputs. However, there was no correlation between litter inputs and extractable inorganic nitrogen in the mineral soil. Compared to other ecosystems, tropical and subtropical forests are more sensitive to variation in litter inputs. Increased or decreased litter inputs altered the turnover and accumulation of soil carbon and nutrient in tropical and subtropical forests more substantially over a shorter time period compared to other ecosystems. Overall, our study suggested that, although the magnitude of responses differed greatly among ecosystems, increased litter inputs generally accelerated the decomposition and accumulation of carbon and nutrients in soil, and decreased litter inputs reduced them.

  7. Biotic and abiotic factors affect the nest environment of embryonic leatherback turtles, Dermochelys coriacea.

    PubMed

    Wallace, Bryan P; Sotherland, Paul R; Spotila, James R; Reina, Richard D; Franks, Bryan F; Paladino, Frank V

    2004-01-01

    Clutches of leatherback turtles, Dermochelys coriacea, have lower hatching success than those of other sea turtles, but causes of high embryonic mortality are unknown. We measured characteristics of clutches along with spatial and temporal changes in PO(2) and temperature during incubation to determine the extent to which they affected the developmental environment of leatherback embryos. Minimum PO(2) in nests decreased as both the total number and mass of metabolizing embryos increased. Increases in both the number and mass of metabolizing embryos caused an increase in maximum nest temperature. However, neither PO(2) nor temperature was correlated with hatching success. Our measurements of relatively high nest PO(2) (lowest 17.1 kPa or 16.9% O(2)) indicate that hypoxia apparently does not cause the low hatching success of leatherback clutches. Oxygen partial pressure increased and temperature decreased from the center toward the periphery of leatherback nests. We inferred from these measurements that positions of eggs within nests vary in quality and potentially affect overall developmental success of entire clutches. The large metabolic mass of leatherback clutches and limits to gas flux imposed by the sand create a situation in which leatherback embryos collectively affect their own environment.

  8. Quantification of toxic metals derived from macroplastic litter on Ookushi Beach, Japan.

    PubMed

    Nakashima, Etsuko; Isobe, Atsuhiko; Kako, Shin'ichiro; Itai, Takaaki; Takahashi, Shin

    2012-09-18

    The potential risk of toxic metals that could leach into a beach environment from plastic litter washed ashore on Ookushi Beach, Goto Islands, Japan was estimated by balloon aerial photography, in situ beach surveys, and leaching experiments in conjunction with a Fickian diffusion model analysis. Chromium (Cr), cadmium (Cd), tin (Sn), antimony (Sb), and lead (Pb) were detected in plastic litter collected during the beach surveys. Polyvinyl chloride (PVC) fishing floats contained the highest quantity of Pb. Balloon aerial photography in conjunction with a beach survey gave an estimated mass of Pb derived from plastic litter of 313 ± 247 g. Lead leaching experiments on collected PVC floats showed that Pb in the plastic litter could leach into surrounding water on the actual beach, and that plastic litter may act as a "transport vector" of toxic metals to the beach environment. Using the experimental data, the total mass of Pb that could leach from PVC plastic litter over a year onto Ookushi Beach was estimated as 0.6 ± 0.6 g/year, suggesting that toxic metals derived from plastic beach litter are a potential "pathway" to contamination of the beach environment due to their accumulation in beach soil over time.

  9. Annual litter fall in an intact mixed dipterocarp forest of Brunei Darussalam

    NASA Astrophysics Data System (ADS)

    Roh, Yujin; Lee, Jongyeol; Lee, Sohye; Abu Salim, Kamariah; Davies, Stuart James; Son, Yowhan

    2016-04-01

    Estimating litter dynamics in an intact tropical forests is important for understanding tropical forests. Litter fall varies with seasonality, forest type or species composition, forest age, soil water retention, and soil fertility. These parameters are known to be strongly affected by elevation. The objective of this study was to estimate annual litter fall along a relative elevation in an intact mixed dipterocarp forest of Brunei Darussalam. This study was conducted in the Kuala Belalong lowland MDF, which is part of the Ulu Tembulong National Park, Brunei Darussalam. Five 0.36 ha plots were established within the permanent 25 ha UBD-CTFS plot. The plots were divided into three groups by relative elevation of the site: 1) high (N = 1), 2) middle (N = 2) and 3) low (N = 2). In January 2015, nine litter traps were installed in each plot and falling litter was collected every month from February to November, 2015. The collected litter was separated into leaves and other materials, and then weighed after drying at 80oC. The average annual litter fall in this site was 8.70 ± 0.16 Mg ha-1 yr-1, and this was within the range reported in previous studies which were conducted in tropical forests. Litter fall at high, middle and low plots was 9.09 ± 0.46, 8.90 ± 0.29 and 8.06 ± 0.29 Mg ha-1 yr-1, respectively. Litter fall was not significantly different among the groups (P>0.05). The results of regression analysis showed that litter fall was not significantly increased with altitude. We suppose that litter fall may be relatively constant in this site. *Supported by research grants from the Korea Forest Service (S121314L130100)

  10. Shrub encroachment in Arctic tundra: Betula nana effects on above- and belowground litter decomposition.

    PubMed

    McLaren, Jennie R; Buckeridge, Kate M; van de Weg, Martine J; Shaver, Gaius R; Schimel, Joshua P; Gough, Laura

    2017-03-06

    Rapid arctic vegetation change as a result of global warming includes an increase in the cover and biomass of deciduous shrubs. Increases in shrub abundance will result in a proportional increase of shrub litter in the litter community, potentially affecting carbon turnover rates in arctic ecosystems. We investigated the effects of leaf and root litter of a deciduous shrub, Betula nana, on decomposition, by examining species-specific decomposition patterns, as well as effects of Betula litter on the decomposition of other species. We conducted a 2-yr decomposition experiment in moist acidic tundra in northern Alaska, where we decomposed three tundra species (Vaccinium vitis-idaea, Rhododendron palustre, and Eriophorum vaginatum) alone and in combination with Betula litter. Decomposition patterns for leaf and root litter were determined using three different measures of decomposition (mass loss, respiration, extracellular enzyme activity). We report faster decomposition of Betula leaf litter compared to other species, with support for species differences coming from all three measures of decomposition. Mixing effects were less consistent among the measures, with negative mixing effects shown only for mass loss. In contrast, there were few species differences or mixing effects for root decomposition. Overall, we attribute longer-term litter mass loss patterns to patterns created by early decomposition processes in the first winter. We note numerous differences for species patterns between leaf and root decomposition, indicating that conclusions from leaf litter experiments should not be extrapolated to below-ground decomposition. The high decomposition rates of Betula leaf litter aboveground, and relatively similar decomposition rates of multiple species below, suggest a potential for increases in turnover in the fast-decomposing carbon pool of leaves and fine roots as the dominance of deciduous shrubs in the Arctic increases, but this outcome may be tempered by

  11. Influence of litter chemistry and stoichiometry on glucan depolymerization during decomposition of beech (Fagus sylvatica L.) litter.

    PubMed

    Leitner, Sonja; Wanek, Wolfgang; Wild, Birgit; Haemmerle, Ieda; Kohl, Lukas; Keiblinger, Katharina M; Zechmeister-Boltenstern, Sophie; Richter, Andreas

    2012-07-01

    highly correlated to cellulase activities, suggesting that cellulose was the primary substrate for glucan depolymerization at this stage of decomposition. Litter stoichiometry did not affect glucan depolymerization or glucose consumption rates early in decomposition. At later stages, however, we found significant negative relationships between glucan depolymerization and litter C:N and AUR:N ratio and a positive relationship between glucan depolymerization and litter N concentration. Litter C:N and C:P ratios were negatively related to cellulase, peroxidase and phenoloxidase activities three and six months after incubation, further corroborating the importance of resource stoichiometry for glucan depolymerization after the initial pulse of starch degradation.

  12. Galling by Rhopalomyia solidaginis alters Solidago altissima architecture and litter nutrient dynamics in an old-field ecosystem

    SciTech Connect

    Crutsinger, Greg; Habenicht, Melissa N; Classen, Aimee T; Schweitzer, Jennifer A; Sanders, Dr. Nathan James

    2008-01-01

    Plant-insect interactions can alter ecosystem processes, especially if the insects modify plant architecture, quality, or the quantity of leaf litter inputs. In this study, we investigated the interactions between the gall midge Rhopalomyia solidaginis and tall goldenrod, Solidago altissima, to quantify the degree to which the midge alters plant architecture and how the galls affect rates of litter decomposition and nutrient release in an old-field ecosystem. R. solidaginis commonly leads to the formation of a distinct apical rosette gall on S. altissima and approximately 15% of the ramets in a S. altissima patch were galled (range: 3-34%). Aboveground biomass of galled ramets was 60% higher and the leaf area density was four times greater on galled leaf tissue relative to the portions of the plant that were not affected by the gall. Overall decomposition rate constants did not differ between galled and ungalled leaf litter. However, leaf-litter mass loss was lower in galled litter relative to ungalled litter, which was likely driven by modest differences in initial litter chemistry; this effect diminished after 12 weeks of decomposition in the field. The proportion of N remaining was always higher in galled litter than in ungalled litter at each collection date indicating differential release of nitrogen in galled leaf litter. Several studies have shown that plant-insect interactions on woody species can alter ecosystem processes by affecting the quality or quantity of litter inputs. Our results illustrate how plant-insect interactions in an herbaceous species can affect ecosystem processes by altering the quality and quantity of litter inputs. Given that S. altissima dominates fields and roadsides and that R. solidaginis galls are highly abundant throughout eastern North America, these interactions are likely to be important for both the structure and function of old-field ecosystems.

  13. Marine litter distribution and density in European seas, from the shelves to deep basins.

    PubMed

    Pham, Christopher K; Ramirez-Llodra, Eva; Alt, Claudia H S; Amaro, Teresa; Bergmann, Melanie; Canals, Miquel; Company, Joan B; Davies, Jaime; Duineveld, Gerard; Galgani, François; Howell, Kerry L; Huvenne, Veerle A I; Isidro, Eduardo; Jones, Daniel O B; Lastras, Galderic; Morato, Telmo; Gomes-Pereira, José Nuno; Purser, Autun; Stewart, Heather; Tojeira, Inês; Tubau, Xavier; Van Rooij, David; Tyler, Paul A

    2014-01-01

    Anthropogenic litter is present in all marine habitats, from beaches to the most remote points in the oceans. On the seafloor, marine litter, particularly plastic, can accumulate in high densities with deleterious consequences for its inhabitants. Yet, because of the high cost involved with sampling the seafloor, no large-scale assessment of distribution patterns was available to date. Here, we present data on litter distribution and density collected during 588 video and trawl surveys across 32 sites in European waters. We found litter to be present in the deepest areas and at locations as remote from land as the Charlie-Gibbs Fracture Zone across the Mid-Atlantic Ridge. The highest litter density occurs in submarine canyons, whilst the lowest density can be found on continental shelves and on ocean ridges. Plastic was the most prevalent litter item found on the seafloor. Litter from fishing activities (derelict fishing lines and nets) was particularly common on seamounts, banks, mounds and ocean ridges. Our results highlight the extent of the problem and the need for action to prevent increasing accumulation of litter in marine environments.

  14. Marine Litter Distribution and Density in European Seas, from the Shelves to Deep Basins

    PubMed Central

    Pham, Christopher K.; Ramirez-Llodra, Eva; Alt, Claudia H. S.; Amaro, Teresa; Bergmann, Melanie; Canals, Miquel; Company, Joan B.; Davies, Jaime; Duineveld, Gerard; Galgani, François; Howell, Kerry L.; Huvenne, Veerle A. I.; Isidro, Eduardo; Jones, Daniel O. B.; Lastras, Galderic; Morato, Telmo; Gomes-Pereira, José Nuno; Purser, Autun; Stewart, Heather; Tojeira, Inês; Tubau, Xavier; Van Rooij, David; Tyler, Paul A.

    2014-01-01

    Anthropogenic litter is present in all marine habitats, from beaches to the most remote points in the oceans. On the seafloor, marine litter, particularly plastic, can accumulate in high densities with deleterious consequences for its inhabitants. Yet, because of the high cost involved with sampling the seafloor, no large-scale assessment of distribution patterns was available to date. Here, we present data on litter distribution and density collected during 588 video and trawl surveys across 32 sites in European waters. We found litter to be present in the deepest areas and at locations as remote from land as the Charlie-Gibbs Fracture Zone across the Mid-Atlantic Ridge. The highest litter density occurs in submarine canyons, whilst the lowest density can be found on continental shelves and on ocean ridges. Plastic was the most prevalent litter item found on the seafloor. Litter from fishing activities (derelict fishing lines and nets) was particularly common on seamounts, banks, mounds and ocean ridges. Our results highlight the extent of the problem and the need for action to prevent increasing accumulation of litter in marine environments. PMID:24788771

  15. Litter Accumulation and Nutrient Content of Roadside Plant Communities in Sichuan Basin, China.

    PubMed

    He, Huiqin; Monaco, Thomas

    2017-08-30

    It is widely recognized that feedbacks exist between plant litter and plant community species composition, but this relationship is difficult to interpret over heterogeneous conditions typical of modified environments such as roadways. Given the need to expedite natural recovery of disturbed areas through restoration interventions, we characterized litter accumulation and nutrient content (i.e., organic carbon, total N, and P) and quantified their association with key plant species. Plant species cover and litter characteristics were sampled at 18 successional forest plant communities along major roadways in Sichuan Basin, western China. Variation in litter across communities was assessed with principal component analysis (PCA) and species with the highest correlation to PCA axes were determined with Pearson's r coefficients. Plant communities with the longest time since road construction (i.e., 70 years) were distinctly different in litter total N and organic carbon compared to plant communities with a shorter disturbance history. We encountered 59 plant species across sampling plots, but only four rare species (i.e., frequency < 5) were strongly correlated with litter characteristics (p < 0.01); none of which were the most abundant where they occurred. These results highlight the importance of site-specific factors (i.e., geographic location, disturbance age) regulating plant litter across heavily disturbed landscapes and how litter characteristics and rare plant species are correlated.

  16. Sampling of riverine litter with citizen scientists--findings and recommendations.

    PubMed

    Rech, S; Macaya-Caquilpán, V; Pantoja, J F; Rivadeneira, M M; Campodónico, C Kroeger; Thiel, M

    2015-06-01

    The quantity and composition of litter at riversides and in the surface waters, as well as the occurrence of illegal dumping sites, were studied along four rivers in Chile. Data generated by volunteers were compared to the results from a professional survey, using an identical protocol. Litter was found in considerable quantities at the riversides and in the surface waters at all the sites investigated. A generalized linear mixed model analysis showed that the recorded litter densities did not differ between volunteers and professionals, even after controlling for river, site, or distance between sampling locations, demonstrating that the volunteers successfully applied the sampling protocol. Differences occurred with respect to litter composition, which is most likely due to difficulties in the classification of litter items and particles and to the underestimation of litter present in surface water samples. Even though this study was only conducted at a small number of rivers and sites, a comparatively consistent pattern of direct and intentional litter deposition at riversides was recorded, highlighting that river basins require more protection. The results also show that the citizen science approach can be a suitable means for more extensive litter surveys at riversides and in other natural environments.

  17. Genetic determinism for within-litter birth weight variation and its relationship with litter weight and litter size in the Ripollesa ewe breed.

    PubMed

    Casellas, J; Caja, G; Piedrafita, J

    2007-06-01

    Birth weight plays a central role in lamb survival and growth, and the knowledge of its genetic determinism has become essential in worldwide selection programmes. Within this context, within-litter birth weight variation (BWV) has been suggested as an attractive trait to homogenise litters in prolific species, although it has not been analysed in sheep. The objective of this study was to ascertain whether maternal additive genetic variance exists for BWV in Ripollesa ewes, and to study its genetic, permanent environmental and residual relationships with litter weight (LW) and litter size (LS) at birth. Data were recorded in the Ripollesa experimental flock of the Universitat Autònoma of Barcelona, between 1986 and 2005, and included 1 662 litters from 380 ewes, with 712 records of BWV and 1 530 records of LW. Traits were analysed with a multivariate animal model solved through Bayesian methodologies, and with a threshold characterisation of LS. Additionally, the effect of BWV on lamb survival was studied. Additive genetic variance was observed for BWV (h2 = 0.061), as well as for LW (h2 = 0.200) and LS (h2 = 0.141). Nevertheless, genetic correlations among those traits were not substantial (BWV and LW = 0.151; BWV and LS = - 0.219; LW and LS = - 0.320) and suffered from a high degree of uncertainly, with the null correlation included within the highest posterior interval at 95%. Within-litter birth weight variation and LS showed a negative and large permanent environmental correlation ( - 0.872), and LW and LS were negatively correlated due to residual ( - 0.762) and permanent environmental ( - 0.449) random sources of variation. Within-litter birth weight variation influenced lamb mortality during the first 7 days of life (P < 0.05), increasing and decreasing survivability in heavier and lighter littermates, respectively. Nevertheless, stillbirths and lambs died after the 1st week of life were not affected by BWV (P>0.05). The low

  18. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems.

    PubMed

    Sayer, Emma J

    2006-02-01

    The widespread use of forest litter as animal bedding in central Europe for many centuries gave rise to the first litter manipulation studies, and their results demonstrated that litter and its decomposition are a vital part of ecosystem function. Litter plays two major roles in forest ecosystems: firstly, litterfall is an inherent part of nutrient and carbon cycling, and secondly, litter forms a protective layer on the soil surface that also regulates microclimatic conditions. By reviewing 152 years of litter manipulation experiments, I show that the effects of manipulating litter stem from changes in one, or both, of these two functions, and interactions between the variables influenced by the accumulation of litter can result in feedback mechanisms that may intensify treatment effects or mask responses, making the interpretation of results difficult.Long-term litter removal increased soil bulk density, overland flow, erosion, and temperature fluctuations and upset the soil water balance, causing lower soil water content during dry periods. Soil pH increased or decreased in response to manipulation treatments depending on forest type and initial soil pH, but it is unclear why there was no uniform response. Long-term litter harvesting severely depleted the forests of nutrients. Decreases in the concentrations of available P, Ca, Mg, and K in the soil occurred after only three to five years. The decline in soil N occurred over longer periods of time, and the relative loss was greater in soils with high initial nitrogen concentration. Tree growth declined with long-term litter removal, probably due to lower nutrient availability. Litter manipulation also added or removed large amounts of carbon thereby affecting microbial communities and altering soil respiration rates. Litter manipulation experiments have shown that litter cover acts as a physical barrier to the shoot emergence of small-seeded species; further, the microclimate maintained by the litter layer may be

  19. Genetic Based Plant Resistance and Susceptibility Traits to Herbivory Influence Needle and Root Litter Nutrient Dynamics

    SciTech Connect

    Classen, Aimee T; Chapman, Samantha K.; Whitham, Thomas G; Hart, Stephen C; Koch, George W

    2007-01-01

    It is generally assumed that leaf and root litter decomposition have similar drivers and that nutrient release from these substrates is synchronized. Few studies have examined these assumptions, and none has examined how plant genetics (i.e., plant susceptibility to herbivory) could affect these relationships. Here we examine the effects of herbivore susceptibility and resistance on needle and fine root litter decomposition of pi on pine, Pinus edulis. The study population consists of individual trees that are either susceptible or resistant to herbivory by the pi on needle scale, Matsucoccus acalyptus, or the stem-boring moth, Dioryctria albovittella. Genetic analyses and experimental removals and additions of these insects have identified trees that are naturally resistant and susceptible to these insects. These herbivores increase the chemical quality of litter inputs and alter soil microclimate, both of which are important decomposition drivers. Our research leads to four major conclusions: Herbivore susceptibility and resistance effects on 1) needle litter mass loss and phosphorus (P) retention in moth susceptible and resistant litter are governed by microclimate, 2) root litter nitrogen (N) and P retention, and needle litter N retention are governed by litter chemical quality, 3) net nutrient release from litter can reverse over time, 4) root and needle litter mass loss and nutrient release are determined by location (above- vs. belowground), suggesting that the regulators of needle and root decomposition differ at the local scale. Understanding of decomposition and nutrient retention in ecosystems requires consideration of herbivore effects on above- and belowground processes and how these effects may be governed by plant genotype. Because an underlying genetic component to herbivory is common to most ecosystems of the world and herbivory may increase in climatic change scenarios, it is important to evaluate the role of plant genetics in affecting carbon and

  20. Allelopathic Effects of Litter Axonopus compressus against Two Weedy Species and Its Persistence in Soil

    PubMed Central

    Samedani, B.; Juraimi, A. S.; Rafii, M. Y.; Anuar, A. R.; Sheikh Awadz, S. A.; Anwar, M. P.

    2013-01-01

    This study investigated the allelopathic effect of Axonopus compressus litter on Asystasia gangetica and Pennisetum polystachion. In experiment 1 the bioassays with 0, 10, 30, and 50 g L−1 of aqueous A. compressus litter leachate were conducted. Experiment 2 was carried out by incorporating 0, 10, 20, 30, 40, and 50 g L−1 of A. compressus litter leachate into soil. In experiment 3, the fate of A. compressus litter leachate phenolics in the soil was investigated. A. compressus leachates did not affect the germination percentage of A. gangetica and P. polystachion, but delayed germination of A. gangetica seeds and decreased seed germination time of P. polystachion. A. compressus litter leachates affected weeds hypocotyl length. Hypocotyl length reductions of 18 and 31% were observed at the highest concentration (50 g L−1) compared to the control in A. gangetica and P. polystachion, respectively. When concentration of A. compressus litter leachate-amended soil increased A. gangetica and P. polystachion seedling shoot length, root length, seedling weight and chlorophyll concentration were not affected. The 5-week decomposition study of A. compressus showed that the phenolic compounds in A. compressus litter abruptly decreased about 52% after two weeks and remained steady until the end of the incubation. PMID:24260020

  1. Effects of nutrient enrichment on mangrove leaf litter decomposition.

    PubMed

    Keuskamp, Joost A; Hefting, Mariet M; Dingemans, Bas J J; Verhoeven, Jos T A; Feller, Ilka C

    2015-03-01

    Nutrient enrichment of mangroves, a common phenomenon along densely populated coastlines, may negatively affect mangrove ecosystems by modifying internal carbon and nutrient cycling. The decomposition of litter exerts a strong influence on these processes and is potentially modified by eutrophication. This study describes effects of N and P enrichment on litter decomposition rate and mineralisation/immobilisation patterns. By making use of reciprocal litter transplantation experiments among fertiliser treatments, it was tested if nutrient addition primarily acts on the primary producers (i.e. changes in litter quantity and quality) or on the microbial decomposers (i.e. changes in nutrient limitation for decomposition). Measurements were done in two mangrove forests where primary production was either limited by N or by P, which had been subject to at least 5 years of experimental N and P fertilisation. Results of this study indicated that decomposers were always N-limited regardless of the limitation of the primary producers. This leads to a differential nutrient limitation between decomposers and primary producers in sites where mangrove production was P-limited. In these sites, fertilisation with P caused litter quality to change, resulting in a higher decomposition rate. This study shows that direct effects of fertilisation on decomposition through an effect on decomposer nutrient availability might be non-significant, while the indirect effects through modifying litter quality might be quite substantial in mangroves. Our results show no indication that eutrophication increases decomposition without stimulating primary production. Therefore we do not expect a decline in carbon sequestration as a result of eutrophication of mangrove ecosystems.

  2. Biodegradation of veterinary ionophore antibiotics in broiler litter and soil microcosms.

    PubMed

    Sun, Peizhe; Cabrera, Miguel L; Huang, Ching-Hua; Pavlostathis, Spyros G

    2014-01-01

    Ionophore antibiotics (IPAs) are polyether compounds used in broiler feed to promote growth and control coccidiosis. Most of the ingested IPAs are excreted into broiler litter (BL), a mixture of excreta and bedding material. BL is considered a major source of IPAs released into the environment as BL is commonly used to fertilize agricultural fields. This study investigated IPA biodegradation in BL and soil microcosms, as a process affecting the fate of IPAs in the environment. The study focused on the most widely used IPAs, monensin (MON), salinomycin (SAL), and narasin (NAR). MON was stable in BL microcosms at 24-72% water content (water/wet litter, w/w) and 35-60 °C, whereas SAL and NAR degraded under certain conditions. Factor analysis was conducted to delineate the interaction of water and temperature on SAL and NAR degradation in the BL. A major transformation product of SAL and NAR was identified. Abiotic reaction(s) were primarily responsible for the degradation of MON and SAL in nonfertilized soil microcosms, whereas biodegradation contributed significantly in BL-fertilized soil microcosms. SAL biotransformation in soil microcosms yielded the same product as in the BL microcosms. A new primary biotransformation product of MON was identified in soil microcosms. A field study showed that MON and SAL were stable during BL stacking, whereas MON degraded after BL was applied to grassland. The biotransformation product of MON was also detected in the top soil layer where BL was applied.

  3. Exercise in personal protective equipment in a hot, humid environment does not affect risk propensity

    PubMed Central

    Schlader, Zachary J.; Temple, Jennifer L.; Hostler, David

    2016-01-01

    ABSTRACT We tested the hypothesis that heat stress created by light exertion in encapsulating personal protective equipment (PPE) in a hot, humid environment increases risk propensity. Ten healthy subjects (29 ± 7 y) completed 2 trials presented in a counter-balanced manner. Subjects donned encapsulating PPE, and in one trial they wore a tube-lined shirt underneath that was perfused with 5°C water. Subjects completed 2 15 min bouts of walking exercise on a treadmill at ˜50% maximal heart rate in a 32°C, 81% RH environment. Subjects completed the Balloon Analog Risk Task (BART), an objective measure of risk-taking, before, between the 2 exercise bouts, and following the final exercise bout. Personal cooling lowered (P < 0.01) mean skin temperature by 8.0 ± 1.6°C. Intestinal temperature rose (P < 0.01) in both trials, but was lower (P < 0.01) at the end of exercise in the cooling trial (38.0 ± 0.3°C vs. 37.6 ± 0.3°C). BART derived indices of risk propensity were not affected by trial or time (trial × time interaction: P ≥ 0.33). These data indicate that 60 min of exposure to mild heat stress created by light exertion in encapsulating PPE does not affect risk-taking behavior. PMID:27857956

  4. Assessing the utility of a virtual environment for enhancing facial affect recognition in adolescents with autism.

    PubMed

    Bekele, Esubalew; Crittendon, Julie; Zheng, Zhi; Swanson, Amy; Weitlauf, Amy; Warren, Zachary; Sarkar, Nilanjan

    2014-07-01

    Teenagers with autism spectrum disorder (ASD) and age-matched controls participated in a dynamic facial affect recognition task within a virtual reality (VR) environment. Participants identified the emotion of a facial expression displayed at varied levels of intensity by a computer generated avatar. The system assessed performance (i.e., accuracy, confidence ratings, response latency, and stimulus discrimination) as well as how participants used their gaze to process facial information using an eye tracker. Participants in both groups were similarly accurate at basic facial affect recognition at varied levels of intensity. Despite similar performance characteristics, ASD participants endorsed lower confidence in their responses and substantial variation in gaze patterns in absence of perceptual discrimination deficits. These results add support to the hypothesis that deficits in emotion and face recognition for individuals with ASD are related to fundamental differences in information processing. We discuss implications of this finding in a VR environment with regards to potential future applications and paradigms targeting not just enhanced performance, but enhanced social information processing within intelligent systems capable of adaptation to individual processing differences.

  5. Caffeine consumption, sleep, and affect in the natural environments of depressed youth and healthy controls.

    PubMed

    Whalen, Diana J; Silk, Jennifer S; Semel, Mara; Forbes, Erika E; Ryan, Neal D; Axelson, David A; Birmaher, Boris; Dahl, Ronald E

    2008-05-01

    Sleep problems are a cardinal symptom of depression in children and adolescents and caffeine use is a prevalent and problematic issue in youth; yet little is known about caffeine use and its effects on sleep in youth with depression. We examined caffeine use and its relation to sleep and affect in youth's natural environments. Thirty youth with major depressive disorder (MDD) and 23 control youth reported on caffeine use, sleep, and affect in their natural environment using ecological momentary assessment at baseline and over 8 weeks, while MDD youth received treatment. Youth with MDD reported more caffeine use and sleep problems relative to healthy youth. Youth with MDD reported more anxiety on days they consumed caffeine. Caffeine use among youth with MDD decreased across treatment, but sleep complaints remained elevated. Findings suggest that both sleep quality and caffeine use are altered in pediatric depression; that caffeine use, but not sleep problems, improves with treatment; and that caffeine may exacerbate daily anxiety among youth with depression.

  6. Caffeine Consumption, Sleep, and Affect in the Natural Environments of Depressed Youth and Healthy Controls*

    PubMed Central

    Whalen, Diana J.; Silk, Jennifer S.; Semel, Mara; Forbes, Erika E.; Ryan, Neal D.; Axelson, David A.; Birmaher, Boris; Dahl, Ronald E.

    2008-01-01

    Objective Sleep problems are a cardinal symptom of depression in children and adolescents and caffeine use is a prevalent and problematic issue in youth; yet little is known about caffeine use and its effects on sleep in youth with depression. We examined caffeine use and its relation to sleep and affect in youth’s natural environments. Methods Thirty youth with major depressive disorder (MDD) and 23 control youth reported on caffeine use, sleep, and affect in their natural environment using ecological momentary assessment at baseline and over 8 weeks, while MDD youth received treatment. Results Youth with MDD reported more caffeine use and sleep problems relative to healthy youth. Youth with MDD reported more anxiety on days they consumed caffeine. Caffeine use among youth with MDD decreased across treatment, but sleep complaints remained elevated. Conclusions Findings suggest that both sleep quality and caffeine use are altered in pediatric depression; that caffeine use, but not sleep problems, improves with treatment; and that caffeine may exacerbate daily anxiety among youth with depression. PMID:17947257

  7. Assessing the Utility of a Virtual Environment for Enhancing Facial Affect Recognition in Adolescents with Autism

    PubMed Central

    Crittendon, Julie; Zheng, Zhi; Swanson, Amy; Weitlauf, Amy; Warren, Zachary; Sarkar, Nilanjan

    2014-01-01

    Teenagers with autism spectrum disorder (ASD) and age-matched controls participated in a dynamic facial affect recognition task within a virtual reality (VR) environment. Participants identified the emotion of a facial expression displayed at varied levels of intensity by a computer generated avatar. The system assessed performance (i.e., accuracy, confidence ratings, response latency, and stimulus discrimination) as well as how participants used their gaze to process facial information using an eye tracker. Participants in both groups were similarly accurate at basic facial affect recognition at varied levels of intensity. Despite similar performance characteristics, ASD participants endorsed lower confidence in their responses and substantial variation in gaze patterns in absence of perceptual discrimination deficits. These results add support to the hypothesis that deficits in emotion and face recognition for individuals with ASD are related to fundamental differences in information processing. We discuss implications of this finding in a VR environment with regards to potential future applications and paradigms targeting not just enhanced performance, but enhanced social information processing within intelligent systems capable of adaptation to individual processing differences. PMID:24419871

  8. [Relationships between decomposition rate of leaf litter and initial quality across the alpine timberline ecotone in Western Sichuan, China].

    PubMed

    Yang, Lin; Deng, Chang-chun; Chen Ya-mei; He, Run-lian; Zhang, Jian; Liu, Yang

    2015-12-01

    The relationships between litter decomposition rate and their initial quality of 14 representative plants in the alpine forest ecotone of western Sichuan were investigated in this paper. The decomposition rate k of the litter ranged from 0.16 to 1.70. Woody leaf litter and moss litter decomposed much slower, and shrubby litter decomposed a little faster. Then, herbaceous litters decomposed fastest among all plant forms. There were significant linear regression relationships between the litter decomposition rate and the N content, lignin content, phenolics content, C/N, C/P and lignin/N. Lignin/N and hemicellulose content could explain 78.4% variation of the litter decomposition rate (k) by path analysis. The lignin/N could explain 69.5% variation of k alone, and the direct path coefficient of lignin/N on k was -0.913. Principal component analysis (PCA) showed that the contribution rate of the first sort axis to k and the decomposition time (t) reached 99.2%. Significant positive correlations existed between lignin/N, lignin content, C/N, C/P and the first sort axis, and the closest relationship existed between lignin/N and the first sort axis (r = 0.923). Lignin/N was the key quality factor affecting plant litter decomposition rate across the alpine timberline ecotone, with the higher the initial lignin/N, the lower the decomposition rate of leaf litter.

  9. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes.

    PubMed

    García-Palacios, Pablo; Maestre, Fernando T; Kattge, Jens; Wall, Diana H

    2013-08-01

    Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesised litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~ 37%). [corrected]. However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models. © 2013 John Wiley & Sons Ltd/CNRS.

  10. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes

    PubMed Central

    García-Palacios, Pablo; Maestre, Fernando T.; Kattge, Jens; Wall, Diana H.

    2015-01-01

    Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesized litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~27%). However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models. PMID:23763716

  11. Effects of litter addition on ectomycorrhizal associates of a lodgepole pine (Pinus contorta) stand in Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Cullings, Kenneth W.; New, Michael H.; Makhija, Shilpa; Parker, V. Thomas

    2003-01-01

    Increasing soil nutrients through litter manipulation, pollution, or fertilization can adversely affect ectomycorrhizal (EM) communities by inhibiting fungal growth. In this study, we used molecular genetic methods to determine the effects of litter addition on the EM community of a Pinus contorta stand in Yellowstone National Park that regenerated after a stand-replacing fire. Two controls were used; in unmodified control plots nothing was added to the soil, and in perlite plots perlite, a chemically neutral substance, was added to maintain soil moisture and temperature at levels similar to those under litter. We found that (i) species richness did not change significantly following perlite addition (2.6 +/- 0.3 species/core in control plots, compared with 2.3 +/- 0.3 species/core in perlite plots) but decreased significantly (P < 0.05) following litter addition (1.8 +/- 0.3 species/core); (ii) EM infection was not affected by the addition of perlite but increased significantly (P < 0.001) in response to litter addition, and the increase occurred only in the upper soil layer, directly adjacent to the added litter; and (iii) Suillus granulatus, Wilcoxina mikolae, and agaricoid DD were the dominant organisms in controls, but the levels of W. mikolae and agaricoid DD decreased significantly in response to both perlite and litter addition. The relative levels of S. granulatus and a fourth fungus, Cortinariaceae species 2, increased significantly (P < 0.01 and P < 0.05, respectively) following litter addition. Thus, litter addition resulted in some negative effects that may be attributable to moisture-temperature relationships rather than to the increased nutrients associated with litter. Some species respond positively to litter addition, indicating that there are differences in their physiologies. Hence, changes in the EM community induced by litter accumulation also may affect ecosystem function.

  12. Shelter environment and placement in community affects lifestyle factors among homeless families in Minnesota.

    PubMed

    Richards, Rickelle; Smith, Chery

    2006-01-01

    To investigate the impact of the shelter environment and surrounding community on lifestyle factors influencing the health of homeless families. Seven focus groups were conducted at two homeless shelters serving families in Minneapolis, Minnesota. Food resources and food prices at convenience stores were recorded within a five-block radius of shelters. Low-income parents of children aged 3-12 years (n = 53). Focus groups were transcribed verbatim, evaluated for common themes, coded, and reevaluated for consistency. Food resources were mapped via GIS software, and recorded food prices were compared to available TFP market basket prices. ANALYSIS RESULTS: The shelter environment and surrounding community influenced lifestyle factors related to health, including food access and availability, exercise behaviors, job access, and day care issues. Participants commented that location of grocery stores, inflated prices, and poor food quality and variety limited their families' food choice and access. Walking was the main form of exercise and served as a means of transportation. Finding employment, housing, and affordable day care caused high levels of stress because of inadequate social support and government subsidies. Several strategies should be considered to modify environments affecting lifestyle factors among homeless families, including greater affordability and access of food, reevaluation of food stamp allotments, alterations in urban planning designs, and increased access to affordable day care.

  13. Early Life in a Barren Environment Adversely Affects Spatial Cognition in Laying Hens (Gallus gallus domesticus)

    PubMed Central

    Tahamtani, Fernanda M.; Nordgreen, Janicke; Nordquist, Rebecca E.; Janczak, Andrew M.

    2015-01-01

    Spatial cognition in vertebrates is adversely affected by a lack of environmental complexity during early life. However, to our knowledge, no previous studies have tested the effect of early exposure to varying degrees of environmental complexity on specific components of spatial cognition in chickens. There are two main rearing systems for laying hens in the EU: aviaries and cages. These two systems differ from one another in environmental complexity. The aim of the present study was to test the hypothesis that rearing in a barren cage environment relative to a complex aviary environment causes long-lasting deficits in the ability to perform spatial tasks. For this purpose, 24 white Dekalb laying hens, half of which had been reared in an aviary system and the other half in a conventional cage system, were tested in a holeboard task. Birds from both treatment groups learnt the task; however, the cage-reared hens required more time to locate rewards and had poorer levels of working memory. The latter finding supports the hypothesis that rearing in a barren environment causes long-term impairment of short-term memory in chickens. PMID:26664932

  14. The affect of a clearcut environment on woody debris respiration rate dynamics, Harvard Forest, Massachusetts

    NASA Astrophysics Data System (ADS)

    Vanderhoof, M. K.; Williams, C. L.

    2011-12-01

    At an ecosystem scale, the distribution of carbon is largely a function of stand development and disturbance processes. Clearcut logging remains a common practice both in the United States and globally and typically results in elevated storage of carbon in onsite woody debris and detritus. The residence time and decomposition rate of this woody debris and detritus will affect the rate of CO2 efflux to the atmosphere and thus affect the long term consequences of such disturbances on carbon flux and storage. The removal of a forest canopy also affects a site's microclimate including the albedo, air temperature, air humidity, as well as soil temperature and moisture, many of the same factors that affect the rate of woody debris decomposition. Thus it could be expected that differences in woody debris characteristics (e.g. size, abundance, state of decay), as well as differences in microclimate, between mature and recently clearcut forest sites, would result in differences in piece and site-level woody debris decomposition rates. Although woody debris stocks post-harvest have been well characterized, few studies have explored post-disturbance woody debris respiration rates, which directly measures carbon emissions from woody debris, distinguishing decomposition from mass loss due to fragmentation or leaching. This study addressed the question: does a clearcut environment in a temperate forest affect the rate of decomposition of coarse woody debris? The rate of respiration of downed spruce logs were repeatedly measured in-situ using an LI-6250 gas analyzer in Harvard Forest, Petersham, Massachusetts. Treatments included clear-cut, shaded clear-cut, mature spruce stand, and transfer (from clearcut to spruce stand). Gas analyzer measurements were accompanied by measurements of log temperature and percent water, soil temperature, moisture and pH, as well as light levels, air temperature and humidity to determine dominant drivers of respiration rates.

  15. How genetic variation is affected by geographic environments and ploidy level in Erianthus arundinaceus?

    PubMed

    Zhang, Jianbo; Yan, Jiajun; Shen, Xiaoyun; Chang, Dan; Bai, Shiqie; Zhang, Yu; Zhang, Jin

    2017-01-01

    Erianthus arundinaceus is not only a candidate plant for sugarcane breeding programs, but also a potential bioenergy grass. Genetic variation that is affected by geographic environments and ploidy level is very important for the utilization of Erianthus arundinaceus. In this study, effects of geographic environments and ploidy level on genetic variation were studied through analyzing the genetic diversity, genetic similarity and cluster analysis of 46 E. arundinaceus materials from natural habitats in China by using 7 ISSRs and 15 SSRs. Results showed that: 1) Seven ISSRs generated total 66 bands, of which 77% were polymorphic bands, the Nei's genetic similarity coefficient of tested materials ranged from 0.642 to 0.904 with an average value of 0.765. Fifteen SSRs generated 138 bands, of which 81% were polymorphic bands, the Nei's genetic similarity coefficient of tested materials ranged from 0.634 to 0.963 with an average value of 0.802. The results indicated great genetic diversity existed in the tested materials. 2)The tested materials were clustered into 3 groups and 7 subgroups, which demonstrated a strong geographic effect on variation of the local E. arundinaceus, and weak relationship was found between genetic distance and geographic distance. Five tetraploid materials were not clustered together, and were clustered together with materials from similar geographical location. 3) The genetic variation and cluster results were affected by geographic landforms and environments, the gene flow was blocked by Ocean and mountains, and promoted by river. The effect of ploidy level on genetic variation was little.

  16. Measurement of broiler litter production rates and nutrient content using recycled litter.

    PubMed

    Coufal, C D; Chavez, C; Niemeyer, P R; Carey, J B

    2006-03-01

    It is important for broiler producers to know litter production rates and litter nutrient content when developing nutrient management plans. Estimation of broiler litter production varies widely in the literature due to factors such as geographical region, type of housing, size of broiler produced, and number of flocks reared on the same litter. Published data for N, P, and K content are also highly variable. In addition, few data are available regarding the rate of production, characteristics, and nutrient content of caked litter (cake). In this study, 18 consecutive flocks of broilers were reared on the same litter in experimental pens under simulated commercial conditions. The mass of litter and cake produced was measured after each flock. Samples of all litter materials were analyzed for pH, moisture, N, P, and K. Average litter and cake moisture content were 26.4 and 46.9%, respectively. Significant variation in litter and cake nutrient content was observed and can largely be attributed to ambient temperature differences. Average litter, cake, and total litter (litter plus cake) production rates were 153.3, 74.8, and 228.2 g of dry litter material per kg of live broiler weight (g/kg) per flock, respectively. Significant variation in litter production rates among flocks was also observed. Cumulative litter, cake, and total litter production rates after 18 flocks were 170.3, 78.7, and 249.0 g/kg, respectively. The data produced from this research can be used by broiler producers to estimate broiler litter and cake production and the nutrient content of these materials.

  17. Interaction between parental environment and genotype affects plant and seed performance in Arabidopsis.

    PubMed

    He, Hanzi; de Souza Vidigal, Deborah; Snoek, L Basten; Schnabel, Sabine; Nijveen, Harm; Hilhorst, Henk; Bentsink, Leónie

    2014-12-01

    Seed performance after dispersal is highly dependent on parental environmental cues, especially during seed formation and maturation. Here we examine which environmental factors are the most dominant in this respect and whether their effects are dependent on the genotypes under investigation. We studied the influence of light intensity, photoperiod, temperature, nitrate, and phosphate during seed development on five plant attributes and thirteen seed attributes, using 12 Arabidopsis genotypes that have been reported to be affected in seed traits. As expected, the various environments during seed development resulted in changed plant and/or seed performances. Comparative analysis clearly indicated that, overall, temperature plays the most dominant role in both plant and seed performance, whereas light has a prominent impact on plant traits. In comparison to temperature and light, nitrate mildly affected some of the plant and seed traits while phosphate had even less influence on those traits. Moreover, clear genotype-by-environment interactions were identified. This was shown by the fact that individual genotypes responded differentially to the environmental conditions. Low temperature significantly increased seed dormancy and decreased seed longevity of NILDOG1 and cyp707a1-1, whereas low light intensity increased seed dormancy and decreased seed longevity of NILDOG3 and NILDOG6. This also indicates that different genetic and molecular pathways are involved in the plant and seed responses. By identifying environmental conditions that affect the dormancy vs longevity correlation in the same way as previously identified naturally occurring loci, we have identified selective forces that probably shaped evolution for these important seed traits.

  18. Gravitational environment produced by a superconducting magnet affects osteoblast morphology and functions

    NASA Astrophysics Data System (ADS)

    Qian, Airong; Zhang, Wei; Weng, Yuanyuan; Tian, Zongcheng; Di, Shengmeng; Yang, Pengfei; Yin, Dachuan; Hu, Lifang; Wang, Zhe; Xu, Huiyun; Shang, Peng

    The aims of this study are to investigate the effects of gravitational environment produced by a superconducting magnet on osteoblast morphology, proliferation and adhesion. A superconducting magnet which can produce large gradient high magnetic field (LGHMF) and provide three apparent gravity levels (0g,1gand2g) was employed to simulate space gravity environment. The effects of LGHMF on osteoblast morphology, proliferation, adhesion and the gene expression of fibronectin and collagen I were detected by scanning electron microscopy, immunocytochemistry, adhesion assays and real time PCR, respectively, after exposure of osteoblasts to LGHMF for 24 h. Osteoblast morphology was affected by LGHMF (0g,1gand2g) and the most evident morphology alteration was observed at 0g condition. Proliferative abilities of MC3T3 and MG-63 cell were affected under LGHMF (0g,1gand2g) conditions compared to control condition. The adhesive abilities of MC3T3 and MG-63 cells to extracellular matrix (ECM) proteins (fibronectin, laminin, collagen IV) were also affected by LGHMF (0g,1gand2g), moreover, the effects of LGHMF on osteoblast adhesion to different ECM proteins were different. Fibronectin gene expression in MG63 cells under zero gravity condition was increased significantly compared to other conditions. Collagen I gene expression in MG-63 and MC3T3 cells was altered by both magnetic field and alerted gravity. The study indicates that the superconducting magnet which can produce LGHMF may be a novel ground-based space gravity simulator and can be used for biological experiment at cellular level.

  19. Interaction between parental environment and genotype affects plant and seed performance in Arabidopsis

    PubMed Central

    He, Hanzi; de Souza Vidigal, Deborah; Snoek, L. Basten; Schnabel, Sabine; Nijveen, Harm; Hilhorst, Henk; Bentsink, Leónie

    2014-01-01

    Seed performance after dispersal is highly dependent on parental environmental cues, especially during seed formation and maturation. Here we examine which environmental factors are the most dominant in this respect and whether their effects are dependent on the genotypes under investigation. We studied the influence of light intensity, photoperiod, temperature, nitrate, and phosphate during seed development on five plant attributes and thirteen seed attributes, using 12 Arabidopsis genotypes that have been reported to be affected in seed traits. As expected, the various environments during seed development resulted in changed plant and/or seed performances. Comparative analysis clearly indicated that, overall, temperature plays the most dominant role in both plant and seed performance, whereas light has a prominent impact on plant traits. In comparison to temperature and light, nitrate mildly affected some of the plant and seed traits while phosphate had even less influence on those traits. Moreover, clear genotype-by-environment interactions were identified. This was shown by the fact that individual genotypes responded differentially to the environmental conditions. Low temperature significantly increased seed dormancy and decreased seed longevity of NILDOG1 and cyp707a1-1, whereas low light intensity increased seed dormancy and decreased seed longevity of NILDOG3 and NILDOG6. This also indicates that different genetic and molecular pathways are involved in the plant and seed responses. By identifying environmental conditions that affect the dormancy vs longevity correlation in the same way as previously identified naturally occurring loci, we have identified selective forces that probably shaped evolution for these important seed traits. PMID:25240065

  20. Bacterial communities from shoreline environments (costa da morte, northwestern Spain) affected by the prestige oil spill.

    PubMed

    Alonso-Gutiérrez, Jorge; Figueras, Antonio; Albaigés, Joan; Jiménez, Núria; Viñas, Marc; Solanas, Anna M; Novoa, Beatriz

    2009-06-01

    The bacterial communities in two different shoreline matrices, rocks and sand, from the Costa da Morte, northwestern Spain, were investigated 12 months after being affected by the Prestige oil spill. Culture-based and culture-independent approaches were used to compare the bacterial diversity present in these environments with that at a nonoiled site. A long-term effect of fuel on the microbial communities in the oiled sand and rock was suggested by the higher proportion of alkane and polyaromatic hydrocarbon (PAH) degraders and the differences in denaturing gradient gel electrophoresis patterns compared with those of the reference site. Members of the classes Alphaproteobacteria and Actinobacteria were the prevailing groups of bacteria detected in both matrices, although the sand bacterial community exhibited higher species richness than the rock bacterial community did. Culture-dependent and -independent approaches suggested that the genus Rhodococcus could play a key role in the in situ degradation of the alkane fraction of the Prestige fuel together with other members of the suborder Corynebacterineae. Moreover, other members of this suborder, such as Mycobacterium spp., together with Sphingomonadaceae bacteria (mainly Lutibacterium anuloederans), were related as well to the degradation of the aromatic fraction of the Prestige fuel. The multiapproach methodology applied in the present study allowed us to assess the complexity of autochthonous microbial communities related to the degradation of heavy fuel from the Prestige and to isolate some of their components for a further physiological study. Since several Corynebacterineae members related to the degradation of alkanes and PAHs were frequently detected in this and other supralittoral environments affected by the Prestige oil spill along the northwestern Spanish coast, the addition of mycolic acids to bioremediation amendments is proposed to favor the presence of these degraders in long-term fuel pollution-affected

  1. Decomposition and nitrogen dynamics of 15N-labeled leaf, root, and twig litter in temperate coniferous forests

    Treesearch

    T.L. van Huysen; M.E. Harmon; S.S. Perakis; H. Chen

    2013-01-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled...

  2. Controls on mass loss and nitrogen dynamics of oak leaf litter along an urban-rural land-use gradient

    Treesearch

    Richard V. Pouyat; Margaret M. Carreiro

    2003-01-01

    Using reciprocal leaf litter transplants, we investigated the effects of contrasting environments (urban vs. rural) and intraspecific variations in oak leaf litter quality on mass loss rates and nitrogen (N) dynamics along an urban-rural gradient in the New York City metropolitan area. Differences in earthworm abundances and temperature had previously been documented...

  3. Effects of bedding materials in applied broiler litter and immobilizing agents on runoff water, soil properties, and bermudagrass growth

    USDA-ARS?s Scientific Manuscript database

    Recently poultry producers in the USA have begun using different types of bedding materials in production houses. Nutrient release into the environment from applied broiler litter (BL) made with different bedding materials has not been investigated. In this greenhouse study, broiler litter (BL) wi...

  4. A traits-based test of the home-field advantage in mixed-species tree litter decomposition

    PubMed Central

    Jewell, Mark Davidson; Shipley, Bill; Paquette, Alain; Messier, Christian; Reich, Peter B.

    2015-01-01

    Background and Aims Litter often decomposes faster in its environment of origin (at ‘home’) than in a foreign environment (‘away’), which has become known as the home-field advantage (HFA). However, many studies have highlighted the conditional nature of the HFA, suggesting that current understanding of this phenomenon is not yet sufficient to generalize across systems. Methods The HFA hypothesis was tested for mono-specific and mixed-species litter using a tree-based experiment that manipulated the functional identity and diversity of the host tree community. Litter types of varying quality were transplanted between several host tree communities and decomposition rates were measured using litterbags. Since the decomposer community should respond to traits of the litter input and not their taxonomic identity, a traits-based index of litter–tree similarity was developed. Key Results Mono-specific litter exhibited HFA, but when the same litter was decomposed in mixture, this trend was not observed. Mixed-species litter decomposed on average no faster or slower than monoculture litter and exhibited both positive and negative species interactions. These non-additive interactions of decomposition rates in mixture were influenced by the degree of similarity between litter and tree traits. Both synergistic and antagonistic interactions decreased in magnitude with increasing litter–tree similarity such that mixture rates were predictable from monocultures. Conclusions The HFA occurred more strongly for mono-specific litter than for the litter types mixed together because interactions between species may have masked this effect. However, when expressed as a function of trait similarity between litters and tree communities, the HFA was not detected. PMID:26162398

  5. Type C botulism in cattle being fed ensiled poultry litter.

    PubMed

    Neill, S D; McLoughlin, M F; McIlroy, S G

    1989-05-27

    A botulinum toxin from ensiled poultry litter which caused a major outbreak of bovine botulism was characterised as type C1. The litter produced transient ataxia when fed to two experimental calves and the clinical signs were accompanied by a transient appearance of serum toxin. Type C1 toxin was demonstrated in muscle tissues which had been taken during the outbreak from an affected animal with high circulating serum toxin, and held frozen for seven months. Clostridium botulinum type C organisms were demonstrated in faeces from another affected animal and also in kidney tissue from a third animal. These observations have implications for the diagnosis and management of future outbreaks of botulism and for the potential health risk from the meat of affected animals.

  6. Marine litter prediction by artificial intelligence.

    PubMed

    Balas, Can Elmar; Ergin, Aysen; Williams, Allan T; Koc, Levent

    2004-03-01

    Artificial intelligence techniques of neural network and fuzzy systems were applied as alternative methods to determine beach litter grading, based on litter surveys of the Antalya coastline (the Turkish Riviera). Litter measurements were categorized and assessed by artificial intelligence techniques, which lead to a new litter categorization system. The constructed neural network satisfactorily predicted the grading of the Antalya beaches and litter categories based on the number of litter items in the general litter category. It has been concluded that, neural networks could be used for high-speed predictions of litter items and beach grading, when the characteristics of the main litter category was determined by field studies. This can save on field effort when fast and reliable estimations of litter categories are required for management or research studies of beaches--especially those concerned with health and safety, and it has economic implications. The main advantages in using fuzzy systems are that they consider linguistic adjectival definitions, e.g. many/few, etc. As a result, additional information inherent in linguistic comments/refinements and judgments made during field studies can be incorporated in grading systems.

  7. Riparian plant litter quality increases with latitude.

    PubMed

    Boyero, Luz; Graça, Manuel A S; Tonin, Alan M; Pérez, Javier; J Swafford, Andrew; Ferreira, Verónica; Landeira-Dabarca, Andrea; A Alexandrou, Markos; Gessner, Mark O; McKie, Brendan G; Albariño, Ricardo J; Barmuta, Leon A; Callisto, Marcos; Chará, Julián; Chauvet, Eric; Colón-Gaud, Checo; Dudgeon, David; Encalada, Andrea C; Figueroa, Ricardo; Flecker, Alexander S; Fleituch, Tadeusz; Frainer, André; Gonçalves, José F; Helson, Julie E; Iwata, Tomoya; Mathooko, Jude; M'Erimba, Charles; Pringle, Catherine M; Ramírez, Alonso; Swan, Christopher M; Yule, Catherine M; Pearson, Richard G

    2017-09-05

    Plant litter represents a major basal resource in streams, where its decomposition is partly regulated by litter traits. Litter-trait variation may determine the latitudinal gradient in decomposition in streams, which is mainly microbial in the tropics and detritivore-mediated at high latitudes. However, this hypothesis remains untested, as we lack information on large-scale trait variation for riparian litter. Variation cannot easily be inferred from existing leaf-trait databases, since nutrient resorption can cause traits of litter and green leaves to diverge. Here we present the first global-scale assessment of riparian litter quality by determining latitudinal variation (spanning 107°) in litter traits (nutrient concentrations; physical and chemical defences) of 151 species from 24 regions and their relationships with environmental factors and phylogeny. We hypothesized that litter quality would increase with latitude (despite variation within regions) and traits would be correlated to produce 'syndromes' resulting from phylogeny and environmental variation. We found lower litter quality and higher nitrogen:phosphorus ratios in the tropics. Traits were linked but showed no phylogenetic signal, suggesting that syndromes were environmentally determined. Poorer litter quality and greater phosphorus limitation towards the equator may restrict detritivore-mediated decomposition, contributing to the predominance of microbial decomposers in tropical streams.

  8. Effects of snow condition on microbial respiration of Scots pine needle litter in a boreal forest

    NASA Astrophysics Data System (ADS)

    Ohnuki, Masataka; Domisch, Timo; Dannoura, Masako; Ataka, Mioko; Finér, Leena; Repo, Tapani; Osawa, Akira

    2016-04-01

    Climate warming scenarios predict decreasing snow depths and increasing winter precipitation in boreal forests ("rain on snow"). I These conditions may affect the decomposition and the microbial respiration of leaf litter, contributing a major part of tree litters, To understand how different snow conditions during winter would affect the microbial respiration of Scots pine needle litter in a boreal forest, we conducted a laboratory experiment using needle litter of two age classes (newly dropped and older litter). The experiment simulated four different winter treatments, followed by spring and early summer : (1) ambient snow cover (SNOW), (2) Compressed snow and ice encasement (ICE), (3) frozen flood (FLOOD) and (4) no snow cover at all (NO SNOW). The experiment was carried out in four walk-in dasotrons (n=3) with soil temperatures of -2° C and air temperatures of 2° C during winter and increased to 15° C and 20° C during spring, respectively . Needle litter samples were collected three times (prior to the winter, just after winter and at the end of the experiment). We evaluated the microbial respiration from the litter at several temperatures (-5° C, 0° C, 5° C and 12° C), the SIR index (an index estimating the microbial biomass), and the C/N ratio .And we calculated Q10 value (index of microbial respiration activity) using microbial respiration data. We found significant differences in microbial respiration between the newly dropped and older litter at the beginning and at the end of the experiment. However, there were no significant differences in Q10 value and the SIR (index of microbial biomass) between the different winter treatments. All samples showed decrease of microbial activity with time. Finally, we conclude that the winter snow conditions with mild air temperatures as used in our experiment, are not detrimentally affecting the Scots pine needle litter decomposition and its respiration.

  9. Influence of Poultry Litter Applications on Nematode Communities in Cotton Agroecosystems

    PubMed Central

    Koenning, S. R.; Barker, K. R.

    2004-01-01

    The effects of the application of poultry litter at 0.0, 6.7, 13.4, and 20.1 tons/ha on population changes during the growing season on nematode communities were evaluated in two cotton production fields in North Carolina. Numbers of bactivorous nematodes increased at midseason in response to the rate at which litter was applied but decreased with increasing litter application rates at cotton harvest. Numbers of fungivores at cotton harvest were related positively to the rate of litter applied, and this affected a positive increase in the fungivore-to-bacterivore ratio at this sampling date. The rate at which poultry litter was applied resulted in an increase in the bacterivore to plant-parasite ratio, and this corresponded with increased cotton lint yield. Trophic diversity was increased by litter application rate at cotton harvest at one location but not at another. The plant-parasite maturity index was greater consistently at one site than at a second site where the Hoplolaimus columbus population density was above the damage threshold for cotton. The population density of H. columbus was suppressed with increasing rates of poultry litter application, but other plant-parasitic nematodes were affected marginally. PMID:19262834

  10. Association between litterers' profile and littering behavior: A chi-square approach

    NASA Astrophysics Data System (ADS)

    Asmui, Mas'udah; Zaki, Suhanom Mohd; Wahid, Sharifah Norhuda Syed; Mokhtar, Noorsuraya Mohd; Harith, Siti Suhaila

    2017-05-01

    Littering is not a novelty, yet a prolonged issue. The solutions have been discussed for a long time; however this issue still remains unresolved. Littering is commonly associated with littering behavior and awareness. The littering behavior is normally influenced by the litter profile such as gender, family income, education level and age. Jengka Street market, which is located in Pahang, is popularly known as a trade market. It offers diversities of wet and dry goods and is awaited by local residents and tourists. This study analyzes association between litterers' profile and littering behavior. Littering behavior is measured based on factors of trash bin facilities, awareness campaign and public littering behavior. 114 respondents were involved in this study with 62 (54.39%) are female aged more than 18 years old and majority of these female respondents are diploma holders. In addition, 78.95% of the respondents have family income below than RM3,000.00 per month. Based on the data analysis, it was found that first-time visitors littered higher than frequent visitors, lack of providing trash bin facilities contributes to positive littering behavior and there is a significant association between litterers' age and littering behavior by using chi-square approach.

  11. ARTIE: An Integrated Environment for the Development of Affective Robot Tutors.

    PubMed

    Imbernón Cuadrado, Luis-Eduardo; Manjarrés Riesco, Ángeles; De La Paz López, Félix

    2016-01-01

    Over the last decade robotics has attracted a great deal of interest from teachers and researchers as a valuable educational tool from preschool to highschool levels. The implementation of social-support behaviors in robot tutors, in particular in the emotional dimension, can make a significant contribution to learning efficiency. With the aim of contributing to the rising field of affective robot tutors we have developed ARTIE (Affective Robot Tutor Integrated Environment). We offer an architectural pattern which integrates any given educational software for primary school children with a component whose function is to identify the emotional state of the students who are interacting with the software, and with the driver of a robot tutor which provides personalized emotional pedagogical support to the students. In order to support the development of affective robot tutors according to the proposed architecture, we also provide a methodology which incorporates a technique for eliciting pedagogical knowledge from teachers, and a generic development platform. This platform contains a component for identiying emotional states by analysing keyboard and mouse interaction data, and a generic affective pedagogical support component which specifies the affective educational interventions (including facial expressions, body language, tone of voice,…) in terms of BML (a Behavior Model Language for virtual agent specification) files which are translated into actions of a robot tutor. The platform and the methodology are both adapted to primary school students. Finally, we illustrate the use of this platform to build a prototype implementation of the architecture, in which the educational software is instantiated with Scratch and the robot tutor with NAO. We also report on a user experiment we carried out to orient the development of the platform and of the prototype. We conclude from our work that, in the case of primary school students, it is possible to identify, without

  12. ARTIE: An Integrated Environment for the Development of Affective Robot Tutors

    PubMed Central

    Imbernón Cuadrado, Luis-Eduardo; Manjarrés Riesco, Ángeles; De La Paz López, Félix

    2016-01-01

    Over the last decade robotics has attracted a great deal of interest from teachers and researchers as a valuable educational tool from preschool to highschool levels. The implementation of social-support behaviors in robot tutors, in particular in the emotional dimension, can make a significant contribution to learning efficiency. With the aim of contributing to the rising field of affective robot tutors we have developed ARTIE (Affective Robot Tutor Integrated Environment). We offer an architectural pattern which integrates any given educational software for primary school children with a component whose function is to identify the emotional state of the students who are interacting with the software, and with the driver of a robot tutor which provides personalized emotional pedagogical support to the students. In order to support the development of affective robot tutors according to the proposed architecture, we also provide a methodology which incorporates a technique for eliciting pedagogical knowledge from teachers, and a generic development platform. This platform contains a component for identiying emotional states by analysing keyboard and mouse interaction data, and a generic affective pedagogical support component which specifies the affective educational interventions (including facial expressions, body language, tone of voice,…) in terms of BML (a Behavior Model Language for virtual agent specification) files which are translated into actions of a robot tutor. The platform and the methodology are both adapted to primary school students. Finally, we illustrate the use of this platform to build a prototype implementation of the architecture, in which the educational software is instantiated with Scratch and the robot tutor with NAO. We also report on a user experiment we carried out to orient the development of the platform and of the prototype. We conclude from our work that, in the case of primary school students, it is possible to identify, without

  13. How do genetic correlations affect species range shifts in a changing environment?

    PubMed

    Duputié, Anne; Massol, François; Chuine, Isabelle; Kirkpatrick, Mark; Ronce, Ophélie

    2012-03-01

    Species may be able to respond to changing environments by a combination of adaptation and migration. We study how adaptation affects range shifts when it involves multiple quantitative traits evolving in response to local selection pressures and gene flow. All traits develop clines shifting in space, some of which may be in a direction opposite to univariate predictions, and the species tracks its environmental optimum with a constant lag. We provide analytical expressions for the local density and average trait values. A species can sustain faster environmental shifts, develop a wider range and greater local adaptation when spatial environmental variation is low (generating low migration load) and multitrait adaptive potential is high. These conditions are favoured when nonlinear (stabilising) selection is weak in the phenotypic direction of the change in optimum, and genetic variation is high in the phenotypic direction of the selection gradient. © 2012 Blackwell Publishing Ltd/CNRS.

  14. Emotion and auditory virtual environments: affect-based judgments of music reproduced with virtual reverberation times.

    PubMed

    Västfjäll, Daniel; Larsson, Pontus; Kleiner, Mendel

    2002-02-01

    Emotions are experienced both in real and virtual environments (VEs). Most research to date have focused on the content that causes emotional reactions, but noncontent features of a VE (such as the realism and quality of object rendering) may also influence emotional reactions to the mediated object. The present research studied how noncontent features (different reverberation times) of an auditory VE influenced 76 participants' ratings of emotional reactions and expressed emotional qualities of the sounds. The results showed that the two emotion dimensions of pleasantness and arousal were systematically affected if the same musical piece was rendered with different reverberation times. Overall, it was found that high reverberation time was perceived as most unpleasant. Taken together, the results suggested that noncontent features of a VE influence emotional reactions to mediated objects. Moreover, the study suggests that emotional reactions may be a important aspect of the VE experience that can help complementing standard presence questionnaires and quality evaluations.

  15. Soil microbiome transfer method affects microbiome composition, including dominant microorganisms, in a novel environment.

    PubMed

    Howard, Mia M; Bell, Terrence H; Kao-Kniffin, Jenny

    2017-06-15

    We show that choice of soil microbiome transfer method, i.e. direct soil transfers and a common soil wash procedure, dramatically influences the microbiome that develops in a new environment, using high-throughput amplicon sequencing of 16S rRNA genes and the fungal internal transcribed spacer (ITS) region. After 3 weeks of incubation in commercial potting mix, microbiomes were most similar to the source soil when a greater volume of initial soil was transferred (5% v/v transfer), and least similar when using a soil wash. Abundant operational taxonomic units were substantially affected by transfer method, suggesting that compounds transferred from the source soil, shifts in biotic interactions, or both, play an important role in their success. © FEMS 2017.

  16. Leaf litter breakdown of native and exotic tree species in two Hawaiian streams that differ in flow

    Treesearch

    Megan Roberts; Ayron M. Strauch; Tracy Wiegner; Richard A. Mackenzie

    2016-01-01

    Riparian leaf litter is a major source of allochthonous organic material to temperate and tropical streams, promoting primary and secondary productivity in lotic and nearshore habitats. In tropical island streams, where native leaf-shredding macroinvertebrates are absent, physical fragmentation from stream flow is an important factor affecting leaf litter breakdown and...

  17. Recent social environment affects colour-assortative shoaling in juvenile angelfish (Pterophyllum scalare).

    PubMed

    Gómez-Laplaza, Luis M

    2009-09-01

    Theory predicts that fish should show colour-assortative shoaling in order to avoid the oddity effect whereby individuals that differ in some feature from the group majority appear to incur increased risk of predation. It has also been shown that early experience plays an important role in affecting social preferences in some fish species. In this study, the importance of colour phenotype in promoting assortative shoaling and the role played by the recent social environment on its expression were investigated in juvenile angelfish, Pterophyllum scalare. Individuals of the uniformly black and golden colour morphs were housed in a group with conspecifics of like and unlike body colour to themselves, as well as in mixed-colour groups for 4 weeks. Subsequently, they were subjected to a binary choice to shoal with a group of conspecifics composed of unfamiliar fish of either a like or unlike colour phenotype to themselves. The response of the individuals to the colour attributes of the shoals was related to their recent social environment. Fish in like- and mixed-colour previous treatments showed a preferential association with like colour conspecifics. In contrast, the shoaling behaviour exhibited by fish previously maintained with a group of unlike-coloured conspecifics (cross-housed treatment) indicated no significant preference for any of the shoals. The results suggest that angelfish use body colouration as an intraspecific shoaling cue and that learning, in the form of recent familiarization with a specific colour phenotype of conspecifics, can affect colour-assortative shoaling preferences in this species. This learning component of the choice need not be restricted to early developmental stages.

  18. Variance component estimates for alternative litter size traits in swine.

    PubMed

    Putz, A M; Tiezzi, F; Maltecca, C; Gray, K A; Knauer, M T

    2015-11-01

    Litter size at d 5 (LS5) has been shown to be an effective trait to increase total number born (TNB) while simultaneously decreasing preweaning mortality. The objective of this study was to determine the optimal litter size day for selection (i.e., other than d 5). Traits included TNB, number born alive (NBA), litter size at d 2, 5, 10, 30 (LS2, LS5, LS10, LS30, respectively), litter size at weaning (LSW), number weaned (NW), piglet mortality at d 30 (MortD30), and average piglet birth weight (BirthWt). Litter size traits were assigned to biological litters and treated as a trait of the sow. In contrast, NW was the number of piglets weaned by the nurse dam. Bivariate animal models included farm, year-season, and parity as fixed effects. Number born alive was fit as a covariate for BirthWt. Random effects included additive genetics and the permanent environment of the sow. Variance components were plotted for TNB, NBA, and LS2 to LS30 using univariate animal models to determine how variances changed over time. Additive genetic variance was minimized at d 7 in Large White and at d 14 in Landrace pigs. Total phenotypic variance for litter size traits decreased over the first 10 d and then stabilized. Heritability estimates increased between TNB and LS30. Genetic correlations between TNB, NBA, and LS2 to LS29 with LS30 plateaued within the first 10 d. A genetic correlation with LS30 of 0.95 was reached at d 4 for Large White and at d 8 for Landrace pigs. Heritability estimates ranged from 0.07 to 0.13 for litter size traits and MortD30. Birth weight had an h of 0.24 and 0.26 for Large White and Landrace pigs, respectively. Genetic correlations among LS30, LSW, and NW ranged from 0.97 to 1.00. In the Large White breed, genetic correlations between MortD30 with TNB and LS30 were 0.23 and -0.64, respectively. These correlations were 0.10 and -0.61 in the Landrace breed. A high genetic correlation of 0.98 and 0.97 was observed between LS10 and NW for Large White and

  19. SOA Formation Potential of Emissions from Soil and Leaf Litter

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Vanderschelden, G. S.; Wen, M.; Cobos, D. R.; Jobson, B. T.; VanReken, T. M.

    2013-12-01

    dominated by soil/litter emissions--soil/litter monoterpene emissions in spring could contribute up to 63% of total forest emissions. If this is the case, a significant portion of total forest monoterpene emission rates would be controlled by factors that affect soil/litter emissions rather than factors that affect plant emissions.

  20. A review on factors affecting microcystins production by algae in aquatic environments.

    PubMed

    Dai, Ruihua; Wang, Pinfei; Jia, Peili; Zhang, Yi; Chu, Xincheng; Wang, Yifei

    2016-03-01

    Microcystins, a toxin produced by Microcystis aeruginosa have become a global environmental issue in recent years. As a consequence of eutrophication, microcystins have become widely disseminated in drinking water sources, seriously impairing drinking water quality. This review focuses on the relationship between microcystins synthesis and physical, chemical, and biological environmental factors that are significant in controlling their production. Light intensity and temperature are the more important physical factors, and in many cases, an optimum level for these two factors has been observed. Nitrogen and phosphorus are the key chemical factors causing frequent occurrence of harmful algal blooms and microcystins production. The absorption of nutrients and metabolic activities of algae are affected by different concentrations and forms of nitrogen and phosphorus, leading to variations in microcystins production Metal ions and emerging pollutants are other significant chemical factors, whose comprehensive impact is still being studied. Algae can also interact with biological agents like predators and competitors in aquatic environments, and such interactions are suggested to promote MCs production and release. This review further highlights areas that require further research in order to gain a better understanding of microcystins production. It provides a theoretical basis for the control of microcystins production and releasing into aquatic environments.

  1. Factors Affecting the Hydrogen Environment Assisted Cracking Resistance of an AL-Zn-Mg-(Cu) Alloy

    SciTech Connect

    Young, G A; Scully, J R

    2002-04-09

    Precipitation hardenable Al-Zn-Mg alloys are susceptible to hydrogen environment assisted cracking (HEAC) when exposed to aqueous environments. In Al-Zn-Mg-Cu alloys, overaged tempers are used to increase HEAC resistance at the expense of strength but overaging has little benefit in low copper alloys. However, the mechanism or mechanisms by which overaging imparts HEAC resistance is poorly understood. The present research investigated hydrogen uptake, diffusion, and crack growth rate in 90% relative humidity (RH) air for both a commercial copper bearing Al-Zn-Mg-Cu alloy (AA 7050) and a low copper variant of this alloy in order to better understand the factors which affect HEAC resistance. Experimental methods used to evaluate hydrogen concentrations local to a surface and near a crack tip include nuclear reaction analysis (NRA), focused ion beam, secondary ion mass spectroscopy (FIB/SIMS) and thermal desorption spectroscopy (TDS). Results show that overaging the copper bearing alloys both inhibits hydrogen ingress from oxide covered surfaces and decreases the apparent hydrogen diffusion rates in the metal.

  2. Second-hand eating? Maternal perception of the food environment affects reproductive investment in mice.

    PubMed

    Schwartz, Tonia S; Gainer, Renee; Dohm, Erik D; Johnson, Maria S; Wyss, J Michael; Allison, David B

    2015-05-01

    Little information exists on how perception of the food (or "energetic") environment affects body composition and reproductive investment. The hypothesis was tested that female mice, who are themselves consuming standard chow diets but who are exposed to conspecifics eating a rich "cafeteria diet," will exhibit altered weight gain and reproductive investment. Female C57BL/6 mice were raised on a cafeteria diet. At maturity, subjects were switched to a standard chow diet, and their cage-mates were assigned to consume either a cafeteria diet (treatment, n = 20) or standard chow (control, n = 20). Subjects were mated and pups raised to weaning. Subjects and pups were analyzed for body composition. Treatment had no discernable effect on dam body weight or composition but caused pups to have lower body weight (P = 0.036) and less fat mass (P = 0.041). A nearly significant treatment effect on "time to successful reproduction" (avg. 55 versus 44 days), likely due to increased failed first pregnancies, (14/19 versus 8/19, P = 0.099) was found. These data indicate that perceived food environment (independent of the diet actually consumed) can produce small pups with less body fat and possibly induce difficulties in pregnancy for dams. Replication and mechanistic studies should follow. © 2015 The Obesity Society.

  3. The geomagnetic environment in which sea turtle eggs incubate affects subsequent magnetic navigation behaviour of hatchlings

    PubMed Central

    Fuxjager, Matthew J.; Davidoff, Kyla R.; Mangiamele, Lisa A.; Lohmann, Kenneth J.

    2014-01-01

    Loggerhead sea turtle hatchlings (Caretta caretta) use regional magnetic fields as open-ocean navigational markers during trans-oceanic migrations. Little is known, however, about the ontogeny of this behaviour. As a first step towards investigating whether the magnetic environment in which hatchlings develop affects subsequent magnetic orientation behaviour, eggs deposited by nesting female loggerheads were permitted to develop in situ either in the natural ambient magnetic field or in a magnetic field distorted by magnets placed around the nest. In orientation experiments, hatchlings that developed in the normal ambient field oriented approximately south when exposed to a field that exists near the northern coast of Portugal, a direction consistent with their migratory route in the northeastern Atlantic. By contrast, hatchlings that developed in a distorted magnetic field had orientation indistinguishable from random when tested in the same north Portugal field. No differences existed between the two groups in orientation assays involving responses to orbital movements of waves or sea-finding, neither of which involves magnetic field perception. These findings, to our knowledge, demonstrate for the first time that the magnetic environment present during early development can influence the magnetic orientation behaviour of a neonatal migratory animal. PMID:25100699

  4. The geomagnetic environment in which sea turtle eggs incubate affects subsequent magnetic navigation behaviour of hatchlings.

    PubMed

    Fuxjager, Matthew J; Davidoff, Kyla R; Mangiamele, Lisa A; Lohmann, Kenneth J

    2014-09-22

    Loggerhead sea turtle hatchlings (Caretta caretta) use regional magnetic fields as open-ocean navigational markers during trans-oceanic migrations. Little is known, however, about the ontogeny of this behaviour. As a first step towards investigating whether the magnetic environment in which hatchlings develop affects subsequent magnetic orientation behaviour, eggs deposited by nesting female loggerheads were permitted to develop in situ either in the natural ambient magnetic field or in a magnetic field distorted by magnets placed around the nest. In orientation experiments, hatchlings that developed in the normal ambient field oriented approximately south when exposed to a field that exists near the northern coast of Portugal, a direction consistent with their migratory route in the northeastern Atlantic. By contrast, hatchlings that developed in a distorted magnetic field had orientation indistinguishable from random when tested in the same north Portugal field. No differences existed between the two groups in orientation assays involving responses to orbital movements of waves or sea-finding, neither of which involves magnetic field perception. These findings, to our knowledge, demonstrate for the first time that the magnetic environment present during early development can influence the magnetic orientation behaviour of a neonatal migratory animal.

  5. Allelopathy of Bracken Fern (Pteridium arachnoideum): New Evidence from Green Fronds, Litter, and Soil

    PubMed Central

    Juliano Gualtieri, Sonia Cristina; Rodrigues-Filho, Edson; Macías, Francisco Antonio

    2016-01-01

    The neotropical bracken fern Pteridium arachnoideum (Kaulf.) Maxon. (Dennstaedtiaceae) is described as an aggressive pioneer plant species. It invades abandoned or newly burned areas and represents a management challenge at these invaded sites. Native to the Atlantic Forest and Cerrado (Tropical Savanna) Brazilian biomes, P. arachnoideum has nevertheless become very problematic in these conservation hotspots. Despite some reports suggesting a possible role of allelopathy in this plant’s dominance, until now there has been little evidence of isolated and individually identified compounds with phytotoxic activities present in its tissues or in the surrounding environment. Thus, the aim of this study was to investigate the allelopathic potential of P. arachnoideum by isolating and identifying any secondary metabolites with phytotoxic activity in its tissues, litter, and soil. Bioguided phytochemical investigation led to the isolation and identification of the proanthocyanidin selligueain A as the major secondary compound in the green fronds and litter of this fern. It is produced by P. arachnoideum in its green fronds, remains unaltered during the senescence process, and is the major secondary compound present in litter. Selligueain A showed phytotoxic activity against the selected target species sesame (Sesamum indicum) early development. In particular, the compound inhibited root and stem growth, and root metaxylem cell size but did not affect chlorophyll content. This compound can be considered as an allelochemical because it is present in the soil under P. arachnoideum patches as one of the major compounds in the soil solution. This is the first report of the presence of selligueain A in any member of the Dennstaedtiaceae family and the first time an isolated and identified allelochemical produced by members of the Pteridium species complex has been described. This evidence of selligueain A as a putative allelochemical of P. arachnoideum reinforces the role of

  6. Allelopathy of Bracken Fern (Pteridium arachnoideum): New Evidence from Green Fronds, Litter, and Soil.

    PubMed

    de Jesus Jatoba, Luciana; Varela, Rosa Maria; Molinillo, José Maria Gonzalez; Ud Din, Zia; Juliano Gualtieri, Sonia Cristina; Rodrigues-Filho, Edson; Macías, Francisco Antonio

    2016-01-01

    The neotropical bracken fern Pteridium arachnoideum (Kaulf.) Maxon. (Dennstaedtiaceae) is described as an aggressive pioneer plant species. It invades abandoned or newly burned areas and represents a management challenge at these invaded sites. Native to the Atlantic Forest and Cerrado (Tropical Savanna) Brazilian biomes, P. arachnoideum has nevertheless become very problematic in these conservation hotspots. Despite some reports suggesting a possible role of allelopathy in this plant's dominance, until now there has been little evidence of isolated and individually identified compounds with phytotoxic activities present in its tissues or in the surrounding environment. Thus, the aim of this study was to investigate the allelopathic potential of P. arachnoideum by isolating and identifying any secondary metabolites with phytotoxic activity in its tissues, litter, and soil. Bioguided phytochemical investigation led to the isolation and identification of the proanthocyanidin selligueain A as the major secondary compound in the green fronds and litter of this fern. It is produced by P. arachnoideum in its green fronds, remains unaltered during the senescence process, and is the major secondary compound present in litter. Selligueain A showed phytotoxic activity against the selected target species sesame (Sesamum indicum) early development. In particular, the compound inhibited root and stem growth, and root metaxylem cell size but did not affect chlorophyll content. This compound can be considered as an allelochemical because it is present in the soil under P. arachnoideum patches as one of the major compounds in the soil solution. This is the first report of the presence of selligueain A in any member of the Dennstaedtiaceae family and the first time an isolated and identified allelochemical produced by members of the Pteridium species complex has been described. This evidence of selligueain A as a putative allelochemical of P. arachnoideum reinforces the role of

  7. Nest Bacterial Environment Affects Microbiome of Hoopoe Eggshells, but Not That of the Uropygial Secretion.

    PubMed

    Martínez-García, Ángela; Martín-Vivaldi, Manuel; Rodríguez-Ruano, Sonia M; Peralta-Sánchez, Juan Manuel; Valdivia, Eva; Soler, Juan J

    2016-01-01

    The study of associations between symbiotic bacterial communities of hosts and those of surrounding environments would help to understand how bacterial assemblages are acquired, and how they are transmitted from one to another location (i.e. symbiotic bacteria acquisition by hosts). Hoopoes (Upupa epops) smear their eggshells with uropygial secretion (oily secretion produced in their uropygial gland) that harbors antibiotic producing bacteria. Trying to elucidate a possible role of nest material and cloaca microbiota in determining the bacterial community of the uropygial gland and the eggshells of hoopoes, we characterized bacterial communities of nest material, cloaca, uropygial gland and eggshells by the ARISA fingerprinting. Further, by adding material with scarce bacteria and antimicrobial properties, we manipulated the bacterial community of nest material and thus tested experimentally its effects on the microbiomes of the uropygial secretion and of the eggshells. The experiment did not influence the microbiome of the uropygial secretion of females, but affected the community established on eggshells. This is the first experimental evidence indicating that nest material influences the bacterial community of the eggshells and, therefore, probability of embryo infection. Some of the bacterial strains detected in the secretion were also in the bacterial communities of the nest material and of cloaca, but their occurrence within nests was not associated, which suggests that bacterial environments of nest material and cloaca are not sources of symbiotic bacteria for the gland. These results do not support a role of nest environments of hoopoes as reservoirs of symbiotic bacteria. We discuss possible scenarios explaining bacterial acquisition by hoopoes that should be further explored.

  8. Nest Bacterial Environment Affects Microbiome of Hoopoe Eggshells, but Not That of the Uropygial Secretion

    PubMed Central

    Martínez-García, Ángela; Martín-Vivaldi, Manuel; Rodríguez-Ruano, Sonia M.; Peralta-Sánchez, Juan Manuel; Valdivia, Eva; Soler, Juan J.

    2016-01-01

    The study of associations between symbiotic bacterial communities of hosts and those of surrounding environments would help to understand how bacterial assemblages are acquired, and how they are transmitted from one to another location (i.e. symbiotic bacteria acquisition by hosts). Hoopoes (Upupa epops) smear their eggshells with uropygial secretion (oily secretion produced in their uropygial gland) that harbors antibiotic producing bacteria. Trying to elucidate a possible role of nest material and cloaca microbiota in determining the bacterial community of the uropygial gland and the eggshells of hoopoes, we characterized bacterial communities of nest material, cloaca, uropygial gland and eggshells by the ARISA fingerprinting. Further, by adding material with scarce bacteria and antimicrobial properties, we manipulated the bacterial community of nest material and thus tested experimentally its effects on the microbiomes of the uropygial secretion and of the eggshells. The experiment did not influence the microbiome of the uropygial secretion of females, but affected the community established on eggshells. This is the first experimental evidence indicating that nest material influences the bacterial community of the eggshells and, therefore, probability of embryo infection. Some of the bacterial strains detected in the secretion were also in the bacterial communities of the nest material and of cloaca, but their occurrence within nests was not associated, which suggests that bacterial environments of nest material and cloaca are not sources of symbiotic bacteria for the gland. These results do not support a role of nest environments of hoopoes as reservoirs of symbiotic bacteria. We discuss possible scenarios explaining bacterial acquisition by hoopoes that should be further explored. PMID:27409772

  9. Biochemical Composition Suggests Different Roles of Leaf Litter and Fine Roots in Soil Carbon Formation

    NASA Astrophysics Data System (ADS)

    Xia, M.; Pregitzer, K. S.; Talhelm, A. F.

    2012-12-01

    stimulate the decay of lignin by providing required energy. Therefore, fine roots of Acer saccharum have a relatively recalcitrant nature based on their distinct biochemical composition, suggesting fine roots may be the major driver of soil carbon formation in the ecosystems we studied. Litter type and N addition had significant interactions on lignin, holocellulose, and NSC (P< 0.05), indicating these traits of different litter types respond differently to N addition. In leaf litter, the concentrations of lignin, NSC, and bound CT were affected by N addition (P< 0.05). By contrast, N addition only reduced the soluble protein concentration in fine roots (P< 0.05). Hence, substrate quality of leaf litter and fine roots responds differently to the simulated N deposition, and may eventually lead to different responses in decomposition pattern. This is one of few studies comparing the detailed biochemical profile of leaf litter and fine roots in a dominant tree species. Different biochemical traits of fine roots and leaf litter may reflect the different specializations for their physiological functions. This work highlights the importance of fine root in the soil carbon formation due to its recalcitrant nature, and emphasizes the necessity of differentiating the responses of leaf litter and fine root decompositions to environmental changes when modeling biogeochemical cycles.

  10. Enhancement of broiler litter to improve the fertilizer quality of litter

    SciTech Connect

    Ransom, J.M.; Strickland, R.C.

    1992-12-01

    This document presents efforts to utilize poultry litter for feed, fertilizer, and soil amendments. Historical and programmatic efforts by TVA are discussed. Current methods of drying and pelleting the litter, along with more direct methods of composting are reported.

  11. Enhancement of broiler litter to improve the fertilizer quality of litter

    SciTech Connect

    Ransom, J.M.; Strickland, R.C.

    1992-01-01

    This document presents efforts to utilize poultry litter for feed, fertilizer, and soil amendments. Historical and programmatic efforts by TVA are discussed. Current methods of drying and pelleting the litter, along with more direct methods of composting are reported.

  12. Electrostatics in the environment: How they may affect health and productivity

    NASA Astrophysics Data System (ADS)

    Jamieson, K. S.; Simon, H. M. Ap; Bell, J. N. B.

    2008-12-01

    Lifestyles and the built environment have changed considerably during the past century and have greatly influenced the electric field, small air ion and charged submicron aerosol regimes to which individuals are often exposed. In particular the use of electrical items, synthetic materials/finishes and low humidity levels that can lead to the generation of high electrostatic charges, along with inadequate grounding protocols and building techniques which create 'Faraday cage'-like conditions, have all greatly altered the electromagnetic nature of the microclimates many people occupy for prolonged periods of time. It is suggested that the type, polarity and strengths of electric fields individuals are exposed to may affect their likelihood of succumbing to ill-health through influencing biological functioning, oxygen-uptake and retention rates of inhaled submicron contaminants to a far greater degree than previously realised. These factors can also influence the degree of local surface contamination and adhesion that occurs. It is further suggested that both health and work productivity can be affected by such factors, and that improved 'best practice' electro-hygiene/productivity protocols should be adopted wherever practical.

  13. Crack growth rates of irradiated austenitic stainless steel weld heat affected zone in BWR environments.

    SciTech Connect

    Chopra, O. K.; Alexandreanu, B.; Gruber, E. E.; Daum, R. S.; Shack, W. J.; Energy Technology

    2006-01-31

    Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of reactor pressure vessels because of their superior fracture toughness. However, exposure to high levels of neutron irradiation for extended periods can exacerbate the corrosion fatigue and stress corrosion cracking (SCC) behavior of these steels by affecting the material microchemistry, material microstructure, and water chemistry. Experimental data are presented on crack growth rates of the heat affected zone (HAZ) in Types 304L and 304 SS weld specimens before and after they were irradiated to a fluence of 5.0 x 10{sup 20} n/cm{sup 2} (E > 1 MeV) ({approx} 0.75 dpa) at {approx}288 C. Crack growth tests were conducted under cycling loading and long hold time trapezoidal loading in simulated boiling water reactor environments on Type 304L SS HAZ of the H5 weld from the Grand Gulf reactor core shroud and on Type 304 SS HAZ of a laboratory-prepared weld. The effects of material composition, irradiation, and water chemistry on growth rates are discussed.

  14. Effects of natural and anthropogenic processes in the distribution of marine litter in the deep Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Ramirez-Llodra, Eva; De Mol, Ben; Company, Joan B.; Coll, Marta; Sardà, Francesc

    2013-11-01

    The distribution, type and quantity of marine litter accumulated on the bathyal and abyssal Mediterranean seafloor has been studied in the framework of the Spanish national projects PROMETEO and DOS MARES and the ESF-EuroDEEP project BIOFUN. Litter was collected with an otter trawl and Agassiz trawl while sampling for megafauna on the Blanes canyon and adjacent slope (Catalan margin, north-western Mediterranean) between 900 and 2700 m depth, and on the western, central and eastern Mediterranean basins at 1200, 2000 and 3000 m depth. All litter was sorted into 8 categories (hard plastic, soft plastic, glass, metal, clinker, fabric, longlines and fishing nets) and weighed. The distribution of litter was analysed in relation to depth, geographic area and natural (bathymetry, currents and rivers) and anthropogenic (population density and shipping routes) processes. The most abundant litter types were plastic, glass, metal and clinker. Lost or discarded fishing gear was also commonly found. On the Catalan margin, although the data indicated an accumulation of litter with increasing depth, mean weight was not significantly different between depths or between the open slope and the canyon. We propose that litter accumulated in the canyon, with high proportions of plastics, has predominantly a coastal origin, while litter collected on the open slope, dominated by heavy litter, is mostly ship-originated, especially at sites under major shipping routes. Along the trans-Mediterranean transect, although a higher amount of litter seemed to be found on the Western Mediterranean, differences of mean weight were not significant between the 3 geographic areas and the 3 depths. Here, the shallower sites, also closer to the coast, had a higher proportion of plastics than the deeper sites, which had a higher proportion of heavy litter and were often affected by shipping routes. The weight of litter was also compared to biomass of megafauna from the same samples. On the Blanes slope

  15. Environmental fate of roxarsone in poultry litter. I. Degradation of roxarsone during composting

    USGS Publications Warehouse

    Garbarino, J.R.; Bednar, A.J.; Rutherford, D.W.; Beyer, R.S.; Wershaw, R. L.

    2003-01-01

    Roxarsone, 3-nitro-4-hydroxyphenylarsonic acid, is an organoarsenic compound that is used extensively in the feed of broiler poultryto control coccidial intestinal parasites, improve feed efficiency, and promote rapid growth. Nearly all the roxarsone in the feed is excreted unchanged in the manure. Poultry litter composed of the manure and bedding material has a high nutrient content and is used routinely as a fertilizer on cropland and pasture. Investigations were conducted to determine the fate of poultrylitter roxarsone in the environment. Experiments indicated that roxarsone was stable in fresh dried litter; the primary arsenic species extracted with water from dried litter was roxarsone. However, when water was added to litter at about 50 wt % and the mixture was allowed to compost at 40oC, the speciation of arsenic shifted from roxarsone to primarily arsenate in about 30 days. Increasing the amount of water increased the rate of degradation. Experiments also suggested that the degradation process most likely was biotic in nature. The rate of degradation was directly proportional to the incubation temperature; heat sterilization eliminated the degradation. Biotic degradation also was supported by results from enterobacteriaceae growth media that were inoculated with litter slurry to enhance the biotic processes and to reduce the concomitant abiotic effects from the complex litter solution. Samples collected from a variety of litter windrows in Arkansas, Oklahoma, and Maryland also showed that roxarsone originally present had been converted to arsenate.

  16. Statistical analyses of the results of 25 years of beach litter surveys on the south-eastern North Sea coast.

    PubMed

    Schulz, Marcus; Clemens, Thomas; Förster, Harald; Harder, Thorsten; Fleet, David; Gaus, Silvia; Grave, Christel; Flegel, Imme; Schrey, Eckart; Hartwig, Eike

    2015-08-01

    In the North Sea, the amount of litter present in the marine environment represents a severe environmental problem. In order to assess the magnitude of the problem and measure changes in abundance, the results of two beach litter monitoring programmes were compared and analysed for long-term trends applying multivariate techniques. Total beach litter pollution was persistently high. Spatial differences in litter abundance made it difficult to identify long-term trends: Partly more than 8000 litter items year(-1) were recorded on a 100 m long survey site on the island of Scharhörn, while the survey site on the beach on the island of Amrum revealed abundances lower by two orders of magnitude. Beach litter was dominated by plastic with mean proportions of 52%-91% of total beach litter. Non-parametric time series analyses detected many significant trends, which, however, did not show any systematic spatial patterns. Cluster analyses partly led to groupings of beaches according to their expositions to sources of litter, wind and currents. Surveys in short intervals of one to two weeks were found to give higher annual sums of beach litter than the quarterly surveys of the OSPAR method. Surveys at regular intervals of four weeks to five months would make monitoring results more reliable.

  17. Beach litter occurrence in sandy littorals: The potential role of urban areas, rivers and beach users in central Italy

    NASA Astrophysics Data System (ADS)

    Poeta, Gianluca; Conti, Luisa; Malavasi, Marco; Battisti, Corrado; Acosta, Alicia Teresa Rosario

    2016-11-01

    Litter washed ashore on the coastline, also called beach litter, constitutes one of the most obvious signs of marine litter pollution. Surveys of beach litter represent a fundamental tool for monitoring pollution in the marine environment and have been used world-wide to classify and quantify marine litter. Identifying the sources of marine and beach litter is, together with education, the prime weapon in combating this type of pollution. This work investigates the impact of three main potential land sources on litter occurrence: urban areas, rivers and beach users. Three sources were analyzed simultaneously on a broad scale (Lazio region, central Italy) using a random sampling design and fitting a generalized linear mixed-effect model. The results show that urban areas are the main drivers for the occurrence of marine litter along central Italy's coastal ecosystems, suggesting that the presence of such litter on Lazio beaches could be effectively reduced by identifying failings in recycling and waste collection procedures and by improving waste processing systems and sewage treatment in urban areas.

  18. Interaction of initial litter quality and thinning intensity on litter decomposition rate, nitrogen accumulation and release in a pine plantation

    Treesearch

    Xiao Chen; Deborah Page-Dumroese; Ruiheng Lv; Weiwei Wang; Guolei Li; Yong. Liu

    2014-01-01

    Thinning alters litter quality and microclimate under forests. Both of these two changes after thinning induce alterations of litter decomposition rates and nutrient cycling. However, a possible interaction between these two changes remains unclear. We placed two types of litter (LN, low N concentration litter; HN, high N concentration litter) in a Chinese pine (Pinus...

  19. McDonald's Litter Hunt: A Community Litter Control System for Youth.

    ERIC Educational Resources Information Center

    McNees, M. Patrick; And Others

    1979-01-01

    Describes a community litter control program. Special adhesive stickers were randomly placed on existing litter throughout a community and youth were rewarded with special prizes for participating in the program. Litter was reduced 32 percent across the city. (Author/MA)

  20. McDonald's Litter Hunt: A Community Litter Control System for Youth.

    ERIC Educational Resources Information Center

    McNees, M. Patrick; And Others

    1979-01-01

    Describes a community litter control program. Special adhesive stickers were randomly placed on existing litter throughout a community and youth were rewarded with special prizes for participating in the program. Litter was reduced 32 percent across the city. (Author/MA)

  1. Nitrogen addition, not initial phylogenetic diversity, increases litter decomposition by fungal communities

    PubMed Central

    Amend, Anthony S.; Matulich, Kristin L.; Martiny, Jennifer B. H.

    2015-01-01

    Fungi play a critical role in the degradation of organic matter. Because different combinations of fungi result in different rates of decomposition, determining how climate change will affect microbial composition and function is fundamental to predicting future environments. Fungal response to global change is patterned by genetic relatedness, resulting in communities with comparatively low phylogenetic diversity (PD). This may have important implications for the functional capacity of disturbed communities if lineages sensitive to disturbance also contain unique traits important for litter decomposition. Here we tested the relationship between PD and decomposition rates. Leaf litter fungi were isolated from the field and deployed in microcosms as mock communities along a gradient of initial PD, while species richness was held constant. Replicate communities were subject to nitrogen fertilization comparable to anthropogenic deposition levels. Carbon mineralization rates were measured over the course of 66 days. We found that nitrogen fertilization increased cumulative respiration by 24.8%, and that differences in respiration between fertilized and ambient communities diminished over the course of the experiment. Initial PD failed to predict respiration rates or their change in response to nitrogen fertilization, and there was no correlation between community similarity and respiration rates. Last, we detected no phylogenetic signal in the contributions of individual isolates to respiration rates. Our results suggest that the degree to which PD predicts ecosystem function will depend on environmental context. PMID:25741330

  2. Poultry litter-induced endocrine disruption in fathead minnow, sheepshead minnow, and mummichog laboratory exposures.

    PubMed

    Yonkos, Lance T; Fisher, Daniel J; Van Veld, Peter A; Kane, Andrew S; McGee, Beth L; Staver, Kenneth W

    2010-10-01

    Animal feeding operations in the United States produce more than 500 million tons of manure annually. Disposal of poultry waste via application as fertilizer results in substantial runoff of poultry litter-associated contaminants (PLAC). Of particular concern are sex steroids, 17β-estradiol, estrone and testosterone, responsible for sex differentiation and development of reproductive structures. In a series of laboratory assays, mature male and mixed-sex larval/juvenile fish were continuously exposed to environmentally relevant PLAC solutions. Effects on gonads were assessed histologically, and vitellogenin (VTG) induction was measured as a gauge of estrogenicity. Twenty-one-day exposures to laboratory-generated PLAC solutions routinely induced VTG in mature male Pimephales promelas. Vitellogenesis in Fundulus heteroclitus only occurred at the highest tested PLAC concentration, and Cyprinodon variegatus were unresponsive at any tested concentration. All species produced considerable VTG in response to a 17β-estradiol-positive control. A pronounced feminization was seen in P. promelas when exposed to PLAC as larvae but not when exposed as juveniles. Runoff from a poultry litter-amended field cropped under standard agronomic practices induced significant VTG in male P. promelas. Results indicate that environmentally relevant PLAC concentrations exhibit endocrine activity sufficient to induce VTG production in male fish and possibly affect sex ratios in resident fish populations. Environ. Toxicol. Chem. 2010;29:2328-2340. © 2010 SETAC.

  3. Nitrogen addition, not initial phylogenetic diversity, increases litter decomposition by fungal communities.

    PubMed

    Amend, Anthony S; Matulich, Kristin L; Martiny, Jennifer B H

    2015-01-01

    Fungi play a critical role in the degradation of organic matter. Because different combinations of fungi result in different rates of decomposition, determining how climate change will affect microbial composition and function is fundamental to predicting future environments. Fungal response to global change is patterned by genetic relatedness, resulting in communities with comparatively low phylogenetic diversity (PD). This may have important implications for the functional capacity of disturbed communities if lineages sensitive to disturbance also contain unique traits important for litter decomposition. Here we tested the relationship between PD and decomposition rates. Leaf litter fungi were isolated from the field and deployed in microcosms as mock communities along a gradient of initial PD, while species richness was held constant. Replicate communities were subject to nitrogen fertilization comparable to anthropogenic deposition levels. Carbon mineralization rates were measured over the course of 66 days. We found that nitrogen fertilization increased cumulative respiration by 24.8%, and that differences in respiration between fertilized and ambient communities diminished over the course of the experiment. Initial PD failed to predict respiration rates or their change in response to nitrogen fertilization, and there was no correlation between community similarity and respiration rates. Last, we detected no phylogenetic signal in the contributions of individual isolates to respiration rates. Our results suggest that the degree to which PD predicts ecosystem function will depend on environmental context.

  4. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions.

    PubMed

    Schneider, Thomas; Keiblinger, Katharina M; Schmid, Emanuel; Sterflinger-Gleixner, Katja; Ellersdorfer, Günther; Roschitzki, Bernd; Richter, Andreas; Eberl, Leo; Zechmeister-Boltenstern, Sophie; Riedel, Kathrin

    2012-09-01

    Leaf-litter decomposition is a central process in carbon cycling; however, our knowledge about the microbial regulation of this process is still scarce. Metaproteomics allows us to link the abundance and activity of enzymes during nutrient cycling to their phylogenetic origin based on proteins, the 'active building blocks' in the system. Moreover, we employed metaproteomics to investigate the influence of environmental factors and nutrients on the decomposer structure and function during beech litter decomposition. Litter was collected at forest sites in Austria with different litter nutrient content. Proteins were analyzed by 1-D-SDS-PAGE followed by liquid-chromatography and tandem mass-spectrometry. Mass spectra were assigned to phylogenetic and functional groups by a newly developed bioinformatics workflow, assignments being validated by complementary approaches. We provide evidence that the litter nutrient content and the stoichiometry of C:N:P affect the decomposer community structure and activity. Fungi were found to be the main producers of extracellular hydrolytic enzymes, with no bacterial hydrolases being detected by our metaproteomics approach. Detailed investigation of microbial succession suggests that it is influenced by litter nutrient content. Microbial activity was stimulated at higher litter nutrient contents via a higher abundance and activity of extracellular enzymes.

  5. Inhibitory and toxic effects of extracellular self-DNA in litter: a mechanism for negative plant-soil feedbacks?

    PubMed

    Mazzoleni, Stefano; Bonanomi, Giuliano; Incerti, Guido; Chiusano, Maria Luisa; Termolino, Pasquale; Mingo, Antonio; Senatore, Mauro; Giannino, Francesco; Cartenì, Fabrizio; Rietkerk, Max; Lanzotti, Virginia

    2015-02-01

    Plant-soil negative feedback (NF) is recognized as an important factor affecting plant communities. The objectives of this work were to assess the effects of litter phytotoxicity and autotoxicity on root proliferation, and to test the hypothesis that DNA is a driver of litter autotoxicity and plant-soil NF. The inhibitory effect of decomposed litter was studied in different bioassays. Litter biochemical changes were evaluated with nuclear magnetic resonance (NMR) spectroscopy. DNA accumulation in litter and soil was measured and DNA toxicity was assessed in laboratory experiments. Undecomposed litter caused nonspecific inhibition of root growth, while autotoxicity was produced by aged litter. The addition of activated carbon (AC) removed phytotoxicity, but was ineffective against autotoxicity. Phytotoxicity was related to known labile allelopathic compounds. Restricted (13) C NMR signals related to nucleic acids were the only ones negatively correlated with root growth on conspecific substrates. DNA accumulation was observed in both litter decomposition and soil history experiments. Extracted total DNA showed evident species-specific toxicity. Results indicate a general occurrence of litter autotoxicity related to the exposure to fragmented self-DNA. The evidence also suggests the involvement of accumulated extracellular DNA in plant-soil NF. Further studies are needed to further investigate this unexpected function of extracellular DNA at the ecosystem level and related cellular and molecular mechanisms. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  6. Short-term facilitation of microbial litter decomposition by ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Lin, Y.; King, J. Y.

    2015-12-01

    In arid and semi-arid ecosystems, solar radiation plays an important role in C cycling by increasing the decomposition rate of plant litter and soil organic matter (i.e. photodegradation). Recent studies suggest that exposure to solar radiation can facilitate microbial decomposition of litter by altering litter chemistry and consequently litter degradability. However, it remains unclear at what time scale this facilitation mechanism operates. Does radiation exposure during the day facilitate microbial decomposition at night? In a laboratory jar incubation experiment, a common grass litter was exposed to either a cycle of alternating ultraviolet (UV) radiation and dark phases (2 days in UV phase and 2 days in dark phase) or a continuous dark treatment in order to examine the impacts of UV radiation on CO2 production. The litter samples were also incubated under either wet or dry conditions to separate the contributions of abiotic photochemical and microbial processes to CO2 production. Under wet conditions, radiation regime did not affect CO2 production for the first half of the 4-month experiment; interestingly, in the second half of the experiment, wet litter in the alternating treatment produced at least 15% more CO2, regardless of UV or dark phase, than wet litter in the continuous dark treatment. This difference in CO2 production was significant even after accounting for higher temperature in the alternating treatment that may have stimulated microbial respiration or generated thermal CO2 production. Under dry conditions, litter in the alternating treatment produced 1.6 times more CO2 than litter in the continuous dark treatment, which we interpret to be abiotic photochemical CO2 production. However, this abiotic flux was minimal compared to the microbial respiration flux, as cumulative CO2 production from dry litter was less than 1% of that from wet litter. Overall, these results confirm that UV radiation does facilitate microbial decomposition at a diel scale

  7. Marine litter on deep Arctic seafloor continues to increase and spreads to the North at the HAUSGARTEN observatory

    NASA Astrophysics Data System (ADS)

    Tekman, Mine B.; Krumpen, Thomas; Bergmann, Melanie

    2017-02-01

    The increased global production of plastics has been mirrored by greater accumulations of plastic litter in marine environments worldwide. Global plastic litter estimates based on field observations account only for 1% of the total volumes of plastic assumed to enter the marine ecosystem from land, raising again the question 'Where is all the plastic? '. Scant information exists on temporal trends on litter transport and litter accumulation on the deep seafloor. Here, we present the results of photographic time-series surveys indicating a strong increase in marine litter over the period of 2002-2014 at two stations of the HAUSGARTEN observatory in the Arctic (2500 m depth). Plastic accounted for the highest proportion (47%) of litter recorded at HAUSGARTEN for the whole study period. When the most southern station was considered separately, the proportion of plastic items was even higher (65%). Increasing quantities of small plastics raise concerns about fragmentation and future microplastic contamination. Analysis of litter types and sizes indicate temporal and spatial differences in the transport pathways to the deep sea for different categories of litter. Litter densities were positively correlated with the counts of ship entering harbour at Longyearbyen, the number of active fishing vessels and extent of summer sea ice. Sea ice may act as a transport vehicle for entrained litter, being released during periods of melting. The receding sea ice coverage associated with global change has opened hitherto largely inaccessible environments to humans and the impacts of tourism, industrial activities including shipping and fisheries, all of which are potential sources of marine litter.

  8. Surface coating affects behavior of metallic nanoparticles in a biological environment

    PubMed Central

    Jurašin, Darija Domazet; Ćurlin, Marija; Capjak, Ivona; Crnković, Tea; Lovrić, Marija; Babič, Michal; Horák, Daniel; Gajović, Srećko

    2016-01-01

    Summary Silver (AgNPs) and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs) are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW), biological cell culture medium without addition of protein (BM), and BM supplemented with common serum protein (BMP). The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl) and blood plasma (BlPl), revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible. PMID:26977382

  9. Earthworms and legumes control litter decomposition in a plant diversity gradient.

    PubMed

    Milcu, Alexandru; Partsch, Stephan; Scherber, Christoph; Weisser, Wolfgang W; Scheu, Stefan

    2008-07-01

    The role of species and functional group diversity of primary producers for decomposers and decomposition processes is little understood. We made use of the "Jena Biodiversity Experiment" and tested the hypothesis that increasing plant species (1, 4, and 16 species) and functional group diversity (1, 2, 3, and 4 groups) beneficially affects decomposer density and activity and therefore the decomposition of plant litter material. Furthermore, by manipulating the densities of decomposers (earthworms and springtails) within the plant diversity gradient we investigated how the interactions between plant diversity and decomposer densities affect the decomposition of litter belonging to different plant functional groups (grasses, herbs, and legumes). Positive effects of increasing plant species or functional group diversity on earthworms (biomass and density) and microbial biomass were mainly due to the increased incidence of legumes with increasing diversity. Neither plant species diversity nor functional group diversity affected litter decomposition, However, litter decomposition varied with decomposer and plant functional group identity (of both living plants and plant litter). While springtail removal generally had little effect on decomposition, increased earthworm density accelerated the decomposition of nitrogen-rich legume litter, and this was more pronounced at higher plant diversity. The results suggest that earthworms (Lumbricus terrestris L.) and legumes function as keystone organisms for grassland decomposition processes and presumably contribute to the recorded increase in primary productivity with increasing plant diversity.

  10. The Importance of Social Learning Environment Factors for Affective Well-Being among Students

    ERIC Educational Resources Information Center

    Idsoe, Ella Maria Cosmovici

    2016-01-01

    We investigated whether perceived inclusion and exclusion with peers at school, as well as self-reported bullying exposure, affected positive and negative affect among 1161 students from grades five through seven. Positive affect was significantly, but only weakly, affected by perceived exclusion and inclusion. Negative affect was not related to…

  11. The Importance of Social Learning Environment Factors for Affective Well-Being among Students

    ERIC Educational Resources Information Center

    Idsoe, Ella Maria Cosmovici