Science.gov

Sample records for live single red

  1. A Micro-Raman Study of Live, Single Red Blood Cells (RBCs) Treated with AgNO3 Nanoparticles

    PubMed Central

    Bankapur, Aseefhali; Barkur, Surekha; Chidangil, Santhosh; Mathur, Deepak

    2014-01-01

    Silver nanoparticles (Ag NPs) are known to exhibit broad antimicrobial activity. However, such activity continues to raise concerns in the context of the interaction of such NPs with biomolecules. In a physiological environment NPs interact with individual biological cells either by penetrating through the cell membrane or by adhering to the membrane. We have explored the interaction of Ag NPs with single optically-trapped, live erythrocytes (red blood cells, RBCs) using Raman Tweezers spectroscopy. Our experiments reveal that Ag NPs induce modifications within an RBC that appear to be irreversible. In particular we are able to identify that the heme conformation in an RBC transforms from the usual R-state (oxy-state) to the T-state (deoxy-state). We rationalize our observations by proposing a model for the nanoparticle cytotoxicity pathway when the NP size is larger than the membrane pore size. We propose that the interaction of Ag NPs with the cell surface induces damage brought about by alteration of intracellular pH caused by the blockage of the cell membrane transport. PMID:25057913

  2. Endosymbiotic bacteria living inside the poultry red mite (Dermanyssus gallinae).

    PubMed

    De Luna, Carlos J; Moro, Claire Valiente; Guy, Jonathan H; Zenner, Lionel; Sparagano, Olivier A E

    2009-06-01

    This study investigated the endosymbiotic bacteria living inside the poultry red mite collected from five samples of one commercial farm from the UK and 16 farms from France using genus-specific PCR, PCR-TTGE and DNA sequencing. Endosymbiotic bacteria are intracellular obligate organisms that can cause several phenotypic and reproductive anomalies to their host and they are found widespread living inside arthropods. The farm sampled from the UK was positive for bacteria of the genera Cardinium sp. and Spiroplasma sp. From France, 7 farms were positive for Cardinium sp., 1 farm was positive for Spiroplasma sp., 1 farm was positive for Rickettsiella sp. and 2 farms were positive for Schineria sp. However, it was not possible to detect the presence of the genus Wolbachia sp. which has been observed in other ectoparasites. This study is the first report of the presence of endosymbionts living inside the poultry red mite. The results obtained suggest that it may be possible that these bacterial endosymbionts cause biological modifications to the poultry red mite. PMID:19145467

  3. Single-Molecule Studies in Live Cells

    NASA Astrophysics Data System (ADS)

    Yu, Ji

    2016-05-01

    Live-cell single-molecule experiments are now widely used to study complex biological processes such as signal transduction, self-assembly, active trafficking, and gene regulation. These experiments' increased popularity results in part from rapid methodological developments that have significantly lowered the technical barriers to performing them. Another important advance is the development of novel statistical algorithms, which, by modeling the stochastic behaviors of single molecules, can be used to extract systemic parameters describing the in vivo biochemistry or super-resolution localization of biological molecules within their physiological environment. This review discusses recent advances in experimental and computational strategies for live-cell single-molecule studies, as well as a selected subset of biological studies that have utilized these new technologies.

  4. [Visualizing single fluorophores in live cells].

    PubMed

    Nenasheva, T A; Mashanov, G I

    2006-01-01

    The methods have been described that can be used to visualize single fluorescent molecules in live cells: laser epifluorescent, confocal, near-field, two-photon, and total internal reflection microscopy. Each method has its own advantages and limitations. We showed that total internal reflection microscopy is a method of choice for single fluorophore visualisation near substrate-medium interface. It can be used to study receptors, ion channels, and many cytoskeleton or signalling molecules located at or in close proximity to basal cell membrane. It was shown that it is very important to use rigorous criteria for single fluorophore identification since these objects emit a limited number of photons before irreversible photo-bleaching, and their fluorescence is often obscured by cell auto-fluorescence and out-of-focus fluorescence. Methods used for lateral mobility studies of single molecules floating on cell membrane were also described.

  5. Strengths and Weaknesses of Recently Engineered Red Fluorescent Proteins Evaluated in Live Cells Using Fluorescence Correlation Spectroscopy

    PubMed Central

    Siegel, Amanda P.; Baird, Michelle A.; Davidson, Michael W.; Day, Richard N.

    2013-01-01

    The scientific community is still looking for a bright, stable red fluorescent protein (FP) as functional as the current best derivatives of green fluorescent protein (GFP). The red FPs exploit the reduced background of cells imaged in the red region of the visible spectrum, but photophysical short comings have limited their use for some spectroscopic approaches. Introduced nearly a decade ago, mCherry remains the most often used red FP for fluorescence correlation spectroscopy (FCS) and other single molecule techniques, despite the advent of many newer red FPs. All red FPs suffer from complex photophysics involving reversible conversions to a dark state (flickering), a property that results in fairly low red FP quantum yields and potential interference with spectroscopic analyses including FCS. The current report describes assays developed to determine the best working conditions for, and to uncover the shortcoming of, four recently engineered red FPs for use in FCS and other diffusion and spectroscopic studies. All five red FPs assayed had potential shortcomings leading to the conclusion that the current best red FP for FCS is still mCherry. The assays developed here aim to enable the rapid evaluation of new red FPs and their smooth adaptation to live cell spectroscopic microscopy and nanoscopy. PMID:24129172

  6. Single scattering by red blood cells.

    PubMed

    Hammer, M; Schweitzer, D; Michel, B; Thamm, E; Kolb, A

    1998-11-01

    A highly diluted suspension of red blood cells (hematocrit 0.01) was illuminated with an Ar or a dye laser in the wavelength range of 458-660 nm. The extinction and the angle-resolved intensity of scattered light were measured and compared with the predictions of Mie theory, the Rayleigh-Gans approximation, and the anomalous diffraction approximation. Furthermore, empirical phase functions were fitted to the measurements. The measurements were in satisfactory agreement with the predictions of Mie theory. However, better agreement was found with the anomalous diffraction model. In the Rayleigh-Gans approximation, only small-angle scattering is described appropriately. The scattering phase function of erythrocytes may be represented by the Gegenbauer kernel phase function. PMID:18301575

  7. Time-Resolved Imaging of Single HIV-1 Uncoating In Vitro and in Living Cells.

    PubMed

    Francis, Ashwanth C; Marin, Mariana; Shi, Jiong; Aiken, Christopher; Melikyan, Gregory B

    2016-06-01

    Disassembly of the cone-shaped HIV-1 capsid in target cells is a prerequisite for establishing a life-long infection. This step in HIV-1 entry, referred to as uncoating, is critical yet poorly understood. Here we report a novel strategy to visualize HIV-1 uncoating using a fluorescently tagged oligomeric form of a capsid-binding host protein cyclophilin A (CypA-DsRed), which is specifically packaged into virions through the high-avidity binding to capsid (CA). Single virus imaging reveals that CypA-DsRed remains associated with cores after permeabilization/removal of the viral membrane and that CypA-DsRed and CA are lost concomitantly from the cores in vitro and in living cells. The rate of loss is modulated by the core stability and is accelerated upon the initiation of reverse transcription. We show that the majority of single cores lose CypA-DsRed shortly after viral fusion, while a small fraction remains intact for several hours. Single particle tracking at late times post-infection reveals a gradual loss of CypA-DsRed which is dependent on reverse transcription. Uncoating occurs both in the cytoplasm and at the nuclear membrane. Our novel imaging assay thus enables time-resolved visualization of single HIV-1 uncoating in living cells, and reveals the previously unappreciated spatio-temporal features of this incompletely understood process. PMID:27322072

  8. Time-Resolved Imaging of Single HIV-1 Uncoating In Vitro and in Living Cells

    PubMed Central

    Francis, Ashwanth C.; Marin, Mariana; Shi, Jiong; Aiken, Christopher; Melikyan, Gregory B.

    2016-01-01

    Disassembly of the cone-shaped HIV-1 capsid in target cells is a prerequisite for establishing a life-long infection. This step in HIV-1 entry, referred to as uncoating, is critical yet poorly understood. Here we report a novel strategy to visualize HIV-1 uncoating using a fluorescently tagged oligomeric form of a capsid-binding host protein cyclophilin A (CypA-DsRed), which is specifically packaged into virions through the high-avidity binding to capsid (CA). Single virus imaging reveals that CypA-DsRed remains associated with cores after permeabilization/removal of the viral membrane and that CypA-DsRed and CA are lost concomitantly from the cores in vitro and in living cells. The rate of loss is modulated by the core stability and is accelerated upon the initiation of reverse transcription. We show that the majority of single cores lose CypA-DsRed shortly after viral fusion, while a small fraction remains intact for several hours. Single particle tracking at late times post-infection reveals a gradual loss of CypA-DsRed which is dependent on reverse transcription. Uncoating occurs both in the cytoplasm and at the nuclear membrane. Our novel imaging assay thus enables time-resolved visualization of single HIV-1 uncoating in living cells, and reveals the previously unappreciated spatio-temporal features of this incompletely understood process. PMID:27322072

  9. Red photoluminescence of living systems at the room temperature : measurements and results

    NASA Astrophysics Data System (ADS)

    Kudryashova, I. S.; Rud, V. Yu; Shpunt, V. Ch; Rud, Yu V.; Glinushkin, A. P.

    2016-08-01

    Presents results of a study of the red luminescence of living plants at room temperature. The analysis of obtained results allows to conclude that the photoluminescence spectra for green leaves in all cases represent the two closely spaced bands.

  10. Imaging Single Cells in the Living Retina

    PubMed Central

    Williams, David R.

    2011-01-01

    A quarter century ago, we were limited to a macroscopic view of the retina inside the living eye. Since then, new imaging technologies, including confocal scanning laser ophthalmoscopy, optical coherence tomography, and adaptive optics fundus imaging, transformed the eye into a microscope in which individual cells can now be resolved noninvasively. These technologies have enabled a wide range of studies of the retina that were previously impossible. PMID:21596053

  11. Imaging gene expression in single living cells

    PubMed Central

    Shav-Tal, Yaron; Singer, Robert H.; Darzacq, Xavier

    2016-01-01

    Technical advances in the field of live-cell imaging have introduced the cell biologist to a new, dynamic, subcellular world. The static world of molecules in fixed cells has now been extended to the time dimension. This allows the visualization and quantification of gene expression and intracellular trafficking events of the studied molecules and the associated enzymatic processes in individual cells, in real time. PMID:15459666

  12. Monomeric Garnet, a far-red fluorescent protein for live-cell STED imaging.

    PubMed

    Hense, Anika; Prunsche, Benedikt; Gao, Peng; Ishitsuka, Yuji; Nienhaus, Karin; Nienhaus, G Ulrich

    2015-12-09

    The advancement of far-red emitting variants of the green fluorescent protein (GFP) is crucially important for imaging live cells, tissues and organisms. Despite notable efforts, far-red marker proteins still need further optimization to match the performance of their green counterparts. Here we present mGarnet, a robust monomeric marker protein with far-red fluorescence peaking at 670 nm. Thanks to its large extinction coefficient of 95,000 M(-1)cm(-1), mGarnet can be efficiently excited with 640-nm light on the red edge of its 598-nm excitation band. A large Stokes shift allows essentially the entire fluorescence emission to be collected even with 640-nm excitation, counterbalancing the lower fluorescence quantum yield of mGarnet, 9.1%, that is typical of far-red FPs. We demonstrate an excellent performance as a live-cell fusion marker in STED microscopy, using 640 nm excitation and 780 nm depletion wavelengths.

  13. Creep Function of a Single Living Cell

    PubMed Central

    Desprat, Nicolas; Richert, Alain; Simeon, Jacqueline; Asnacios, Atef

    2005-01-01

    We used a novel uniaxial stretching rheometer to measure the creep function J(t) of an isolated living cell. We show, for the first time at the scale of the whole cell, that J(t) behaves as a power-law J(t) = Atα. For N = 43 mice myoblasts (C2-7), we find α = 0.24 ± 0.01 and A = (2.4 ± 0.3) 10−3 Pa−1 s−α. Using Laplace Transforms, we compare A and α to the parameters G0 and β of the complex modulus G*(ω) = G0ωβ measured by other authors using magnetic twisting cytometry and atomic force microscopy. Excellent agreement between A and G0 on the one hand, and between α and β on the other hand, indicated that the power-law is an intrinsic feature of cell mechanics and not the signature of a particular technique. Moreover, the agreement between measurements at very different size scales, going from a few tens of nanometers to the scale of the whole cell, suggests that self-similarity could be a central feature of cell mechanical structure. Finally, we show that the power-law behavior could explain previous results first interpreted as instantaneous elasticity. Thus, we think that the living cell must definitely be thought of as a material with a large and continuous distribution of relaxation time constants which cannot be described by models with a finite number of springs and dash-pots. PMID:15596508

  14. INTERIOR VIEW OF THE LIVING ROOM. SHOWING THE SINGLE PANEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF THE LIVING ROOM. SHOWING THE SINGLE PANEL DOOR TO THE BEDROOM AND THE FRONT ENTRY DOOR WITH VISION PANEL. VIEW FACING SOUTH. - Hickam Field, NCO Housing Type 6, 212 Eleventh Street, Honolulu, Honolulu County, HI

  15. Live single-cell laser tag

    PubMed Central

    Binan, Loïc; Mazzaferri, Javier; Choquet, Karine; Lorenzo, Louis-Etienne; Wang, Yu Chang; Affar, El Bachir; De Koninck, Yves; Ragoussis, Jiannis; Kleinman, Claudia L.; Costantino, Santiago

    2016-01-01

    The ability to conduct image-based, non-invasive cell tagging, independent of genetic engineering, is key to cell biology applications. Here we introduce cell labelling via photobleaching (CLaP), a method that enables instant, specific tagging of individual cells based on a wide array of criteria such as shape, behaviour or positional information. CLaP uses laser illumination to crosslink biotin onto the plasma membrane, coupled with streptavidin conjugates to label individual cells for genomic, cell-tracking, flow cytometry or ultra-microscopy applications. We show that the incorporated mark is stable, non-toxic, retained for several days, and transferred by cell division but not to adjacent cells in culture. To demonstrate the potential of CLaP for genomic applications, we combine CLaP with microfluidics-based single-cell capture followed by transcriptome-wide next-generation sequencing. Finally, we show that CLaP can also be exploited for inducing transient cell adhesion to substrates for microengineering cultures with spatially patterned cell types. PMID:27198043

  16. A photoactivatable push-pull fluorophore for single-molecule imaging in live cells.

    PubMed

    Lord, Samuel J; Conley, Nicholas R; Lee, Hsiao-lu D; Samuel, Reichel; Liu, Na; Twieg, Robert J; Moerner, W E

    2008-07-23

    We have reengineered a red-emitting dicyanomethylenedihydrofuran push-pull fluorophore so that it is dark until photoactivated with a short burst of low-intensity violet light. Photoactivation of the dark fluorogen leads to conversion of an azide to an amine, which shifts the absorption to long wavelengths. After photoactivation, the fluorophore is bright and photostable enough to be imaged on the single-molecule level in living cells. This proof-of-principle demonstration provides a new class of bright photoactivatable fluorophores, as are needed for super-resolution imaging schemes that require active control of single molecule emission.

  17. Single-cell measurement of red blood cell oxygen affinity

    PubMed Central

    Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M.; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen–Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2–3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability. PMID:26216973

  18. SiR–Hoechst is a far-red DNA stain for live-cell nanoscopy

    PubMed Central

    Lukinavičius, Gražvydas; Blaukopf, Claudia; Pershagen, Elias; Schena, Alberto; Reymond, Luc; Derivery, Emmanuel; Gonzalez-Gaitan, Marcos; D'Este, Elisa; Hell, Stefan W.; Wolfram Gerlich, Daniel; Johnsson, Kai

    2015-01-01

    Cell-permeable DNA stains are popular markers in live-cell imaging. Currently used DNA stains for live-cell imaging are either toxic, require illumination with blue light or are not compatible with super-resolution microscopy, thereby limiting their utility. Here we describe a far-red DNA stain, SiR–Hoechst, which displays minimal toxicity, is applicable in different cell types and tissues, and is compatible with super-resolution microscopy. The combination of these properties makes this probe a powerful tool for live-cell imaging. PMID:26423723

  19. SiR-Hoechst is a far-red DNA stain for live-cell nanoscopy.

    PubMed

    Lukinavičius, Gražvydas; Blaukopf, Claudia; Pershagen, Elias; Schena, Alberto; Reymond, Luc; Derivery, Emmanuel; Gonzalez-Gaitan, Marcos; D'Este, Elisa; Hell, Stefan W; Gerlich, Daniel Wolfram; Johnsson, Kai

    2015-10-01

    Cell-permeable DNA stains are popular markers in live-cell imaging. Currently used DNA stains for live-cell imaging are either toxic, require illumination with blue light or are not compatible with super-resolution microscopy, thereby limiting their utility. Here we describe a far-red DNA stain, SiR-Hoechst, which displays minimal toxicity, is applicable in different cell types and tissues, and is compatible with super-resolution microscopy. The combination of these properties makes this probe a powerful tool for live-cell imaging.

  20. Monomeric Garnet, a far-red fluorescent protein for live-cell STED imaging

    PubMed Central

    Hense, Anika; Prunsche, Benedikt; Gao, Peng; Ishitsuka, Yuji; Nienhaus, Karin; Ulrich Nienhaus, G.

    2015-01-01

    The advancement of far-red emitting variants of the green fluorescent protein (GFP) is crucially important for imaging live cells, tissues and organisms. Despite notable efforts, far-red marker proteins still need further optimization to match the performance of their green counterparts. Here we present mGarnet, a robust monomeric marker protein with far-red fluorescence peaking at 670 nm. Thanks to its large extinction coefficient of 95,000 M−1cm−1, mGarnet can be efficiently excited with 640-nm light on the red edge of its 598-nm excitation band. A large Stokes shift allows essentially the entire fluorescence emission to be collected even with 640-nm excitation, counterbalancing the lower fluorescence quantum yield of mGarnet, 9.1%, that is typical of far-red FPs. We demonstrate an excellent performance as a live-cell fusion marker in STED microscopy, using 640 nm excitation and 780 nm depletion wavelengths. PMID:26648024

  1. Single-Molecule Ion Channel Conformational Dynamics in Living Cells

    NASA Astrophysics Data System (ADS)

    Lu, H. Peter

    2014-03-01

    Stochastic and inhomogeneous conformational changes regulate the function and dynamics of ion channels that are crucial for cell functions, neuronal signaling, and brain functions. Such complexity makes it difficult, if not impossible, to characterize ion channel dynamics using conventional electrical recording alone since that the measurement does not specifically interrogate the associated conformational changes but rather the consequences of the conformational changes. Recently, new technology developments on single-molecule spectroscopy, and especially, the combined approaches of using single ion channel patch-clamp electrical recording and single-molecule fluorescence imaging have provided us the capability of probing ion channel conformational changes simultaneously with the electrical single channel recording. By combining real-time single-molecule fluorescence imaging measurements with real-time single-channel electric current measurements in artificial lipid bilayers and in living cell membranes, we were able to probe single ion-channel-protein conformational changes simultaneously, and thus providing an understanding the dynamics and mechanism of ion-channel proteins at the molecular level. The function-regulating and site-specific conformational changes of ion channels are now measurable under physiological conditions in real-time, one molecule at a time. We will focus our discussion on the new development and results of real-time imaging of the dynamics of gramicidin, colicin, and NMDA receptor ion channels in lipid bilayers and living cells. Our results shed light on new perspectives of the intrinsic interplay of lipid membrane dynamics, solvation dynamics, and the ion channel functions.

  2. Living cantilever arrays’ for characterization of mass of single live cells in fluids†

    PubMed Central

    Park, Kidong; Jang, Jaesung; Irimia, Daniel; Sturgis, Jennifer; Lee, James; Robinson, J. Paul; Toner, Mehmet; Bashir, Rashid

    2013-01-01

    The size of a cell is a fundamental physiological property and is closely regulated by various environmental and genetic factors. Optical or confocal microscopy can be used to measure the dimensions of adherent cells, and Coulter counter or flow cytometry (forward scattering light intensity) can be used to estimate the volume of single cells in a flow. Although these methods could be used to obtain the mass of single live cells, no method suitable for directly measuring the mass of single adherent cells without detaching them from the surface is currently available. We report the design, fabrication, and testing of ‘living cantilever arrays’, an approach to measure the mass of single adherent live cells in fluid using silicon cantilever mass sensor. HeLa cells were injected into microfluidic channels with a linear array of functionalized silicon cantilevers and the cells were subsequently captured on the cantilevers with positive dielectrophoresis. The captured cells were then cultured on the cantilevers in a microfluidic environment and the resonant frequencies of the cantilevers were measured. The mass of a single HeLa cell was extracted from the resonance frequency shift of the cantilever and was found to be close to the mass value calculated from the cell density from the literature and the cell volume obtained from confocal microscopy. This approach can provide a new method for mass measurement of a single adherent cell in its physiological condition in a non-invasive manner, as well as optical observations of the same cell. We believe this technology would be very valuable for single cell time-course studies of adherent live cells. PMID:18584076

  3. Single-Molecule Tracking in Living Cells Using Single Quantum Dot Applications

    PubMed Central

    Baba, Koichi; Nishida, Kohji

    2012-01-01

    Revealing the behavior of single molecules in living cells is very useful for understanding cellular events. Quantum dot probes are particularly promising tools for revealing how biological events occur at the single molecule level both in vitro and in vivo. In this review, we will introduce how single quantum dot applications are used for single molecule tracking. We will discuss how single quantum dot tracking has been used in several examples of complex biological processes, including membrane dynamics, neuronal function, selective transport mechanisms of the nuclear pore complex, and in vivo real-time observation. We also briefly discuss the prospects for single molecule tracking using advanced probes. PMID:22896768

  4. Light Sheet Microscopy for Single Molecule Tracking in Living Tissue

    PubMed Central

    Ritter, Jörg Gerhard; Veith, Roman; Veenendaal, Andreas; Siebrasse, Jan Peter; Kubitscheck, Ulrich

    2010-01-01

    Single molecule observation in cells and tissue allows the analysis of physiological processes with molecular detail, but it still represents a major methodological challenge. Here we introduce a microscopic technique that combines light sheet optical sectioning microscopy and ultra sensitive high-speed imaging. By this approach it is possible to observe single fluorescent biomolecules in solution, living cells and even tissue with an unprecedented speed and signal-to-noise ratio deep within the sample. Thereby we could directly observe and track small and large tracer molecules in aqueous solution. Furthermore, we demonstrated the feasibility to visualize the dynamics of single tracer molecules and native messenger ribonucleoprotein particles (mRNPs) in salivary gland cell nuclei of Chironomus tentans larvae up to 200 µm within the specimen with an excellent signal quality. Thus single molecule light sheet based fluorescence microscopy allows analyzing molecular diffusion and interactions in complex biological systems. PMID:20668517

  5. Single-photon ultrashort-lived radionuclides: symposium proceedings

    SciTech Connect

    Paras, P.; Thiessen, J.W.

    1985-01-01

    The purpose was to define the current role and state-of-the-art regarding the development, clinical applications, and usefulness of generator-produced single-photon ultrashort-lived radionuclides (SPUSLR's) and to predict their future impact on medicine. Special emphasis was placed on the generator production of iridium-191, gold-195, and krypton-81. This report contains expanded summaries of the included papers. (ACR)

  6. Exploring dynamics in living cells by tracking single particles.

    PubMed

    Levi, Valeria; Gratton, Enrico

    2007-01-01

    In the last years, significant advances in microscopy techniques and the introduction of a novel technology to label living cells with genetically encoded fluorescent proteins revolutionized the field of Cell Biology. Our understanding on cell dynamics built from snapshots on fixed specimens has evolved thanks to our actual capability to monitor in real time the evolution of processes in living cells. Among these new tools, single particle tracking techniques were developed to observe and follow individual particles. Hence, we are starting to unravel the mechanisms driving the motion of a wide variety of cellular components ranging from organelles to protein molecules by following their way through the cell. In this review, we introduce the single particle tracking technology to new users. We briefly describe the instrumentation and explain some of the algorithms commonly used to locate and track particles. Also, we present some common tools used to analyze trajectories and illustrate with some examples the applications of single particle tracking to study dynamics in living cells. PMID:17703064

  7. Tracking single mRNA molecules in live cells

    NASA Astrophysics Data System (ADS)

    Moon, Hyungseok C.; Lee, Byung Hun; Lim, Kiseong; Son, Jae Seok; Song, Minho S.; Park, Hye Yoon

    2016-06-01

    mRNAs inside cells interact with numerous RNA-binding proteins, microRNAs, and ribosomes that together compose a highly heterogeneous population of messenger ribonucleoprotein (mRNP) particles. Perhaps one of the best ways to investigate the complex regulation of mRNA is to observe individual molecules. Single molecule imaging allows the collection of quantitative and statistical data on subpopulations and transient states that are otherwise obscured by ensemble averaging. In addition, single particle tracking reveals the sequence of events that occur in the formation and remodeling of mRNPs in real time. Here, we review the current state-of-the-art techniques in tagging, delivery, and imaging to track single mRNAs in live cells. We also discuss how these techniques are applied to extract dynamic information on the transcription, transport, localization, and translation of mRNAs. These studies demonstrate how single molecule tracking is transforming the understanding of mRNA regulation in live cells.

  8. Living with a Red Dwarf Star: Radiation and Plasma Environments of Hosted Planets

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.; Engle, S. G.; Ribas, I.; Schulze-Makuch, D.; McCook, G. P.

    2007-05-01

    Red Dwarf (dM) stars are the most numerous stars in our Galaxy. These cool, faint and low mass stars make up > 75% of all stars. Also dM stars have extremely long life times >50-100 Gyr. Determining the number of red dwarfs with planets and assessing planetary habitability (a planet’s potential to develop and sustain life) is critically important because such studies would indicate how common life is in the universe. Our program - Living with a Red Dwarf - addresses these questions by investigating the long-term nuclear evolution and magnetic-dynamo coronal and chromospheric X-ray to Ultraviolet properties of red dwarf stars with widely different ages. The major focus of the program is to study the magnetic-dynamo generated coronal and chromospheric X-ray-Ultraviolet emissions and flare properties. Also studied is how the stellar emissions and winds affect hosted planets and impact on their habitability. For this program we have selected 15 nearby dM0-5 star as proxies for dM-stars of different ages to characterize their radiation and high energy plasma properties. We are constructing irradiance tables (X-UV fluxes) that are used to model the effects of XUV radiation on planetary atmospheres and on possible life on planetary surfaces. Despite the earlier pessimistic view that red dwarfs stars are not suitable environments for habitable planets mainly because their low luminosities require a host planet to orbit quite close (r <0.3 AU) to be warm enough to support life. Our initial study shows that red dwarf stars (at least stars hotter than dM5) can be suitable as hosts for habitable planets. This research is supported by grants from NASA/FUSE (NNX06AD38G) and NSF (AST-0507542 & AST-0507536) which we gratefully acknowledge. The “Living with a Red Dwarf Star” Program is on the web at: http://astronomy.villanova.edu/livingwithareddwarf/Opener.htm

  9. Red fluorescent chitosan nanoparticles grafted with poly(2-methacryloyloxyethyl phosphorylcholine) for live cell imaging.

    PubMed

    Wang, Ke; Fan, Xingliang; Zhang, Xiaoyong; Zhang, Xiqi; Chen, Yi; Wei, Yen

    2016-08-01

    Poly(2-methacryloyloxyethyl phosphorylcholine) conjugated red fluorescent chitosan nanoparticles (GCC-pMPC) were facilely fabricated by "grafting from" method via surface initiated atom transfer radical polymerization (ATRP). Firstly, glutaraldehyde crosslinked red fluorescent chitosan nanoparticles (GCC NPs) with many amino groups and hydroxyl groups on their surface were prepared, which were then reacted with 2-bromoisobutyryl bromide to form GCC-Br; subsequently, poly(MPC) (pMPC) brushes were grafted onto GCC NPs surface using GCC-Br as initiator via ATRP. Compared with PEGylated nanoparticles, zwitterionic polymers modified nanoparticles demonstrated better performance in their cellular uptake. Moreover, the obtained GCC-pMPC demonstrated excellent water-dispersibility, biocompatibility, and photostability, which made them highly potential for long-term tracing applications. Importantly, the successful live cell imaging of GCC-pMPC would remarkably advance the research of their further bioapplications.

  10. Single-Molecule Imaging of RNA Splicing in Live Cells.

    PubMed

    Rino, José; Martin, Robert M; Carvalho, Célia; de Jesus, Ana C; Carmo-Fonseca, Maria

    2015-01-01

    Expression of genetic information in eukaryotes involves a series of interconnected processes that ultimately determine the quality and amount of proteins in the cell. Many individual steps in gene expression are kinetically coupled, but tools are lacking to determine how temporal relationships between chemical reactions contribute to the output of the final gene product. Here, we describe a strategy that permits direct measurements of intron dynamics in single pre-mRNA molecules in live cells. This approach reveals that splicing can occur much faster than previously proposed and opens new avenues for studying how kinetic mechanisms impact on RNA biogenesis.

  11. Determinants of Pair-Living in Red-Tailed Sportive Lemurs (Lepilemur ruficaudatus)

    PubMed Central

    Hilgartner, Roland; Fichtel, Claudia; Kappeler, Peter M; Zinner, Dietmar

    2012-01-01

    Pair-living and a monogamous mating strategy are rare and theoretically unexpected among mammals. Nevertheless, about 10% of primate species exhibit such a social system, which is difficult to explain in the absence of paternal care. In this study, we investigated the two major hypotheses proposed to explain the evolution of monogamy in mammals, the female defence hypothesis (FDH) and the resource defence hypothesis (RDH), in red-tailed sportive lemurs (Lepilemur ruficaudatus), a nocturnal primate from Madagascar. We analysed behavioural data from eight male–female pairs collected during a 24-mo field study to illuminate the determinants of pair-living in this species. Male and female L. ruficaudatus were found to live in dispersed pairs, which are characterised by low cohesion and low encounter rates within a common home range. Social interactions between pair partners were mainly agonistic and characterised by a complete absence of affiliative interactions – body contact was only observed during mating. During the short annual mating season, males exhibited elevated levels of aggression towards mates, as well as extensive mate guarding and increased locomotor activity. In addition, males were exclusively responsible for the maintenance of proximity between pair partners during this period, and they defended their territories against neighbouring males but not against females. Together, these results point towards the importance of female defence in explaining pair-living in L. ruficaudatus. We discuss the spatial and temporal distribution of receptive females in relation to the female defence strategies of males and suggest possible costs that prevent male red-tailed sportive lemurs from defending more than one female. PMID:23144523

  12. Quantifying the transcriptional output of single alleles in single living mammalian cells

    PubMed Central

    Yunger, Sharon; Rosenfeld, Liat; Garini, Yuval; Shav-Tal, Yaron

    2013-01-01

    Transcription kinetics of actively transcribing genes in vivo have generally been measured using tandem gene arrays. However, tandem arrays do not reflect the endogenous state of genome organization where genes appear as single alleles. We present here a robust technique for the quantification of mRNA synthesis from a single allele in real-time, in single living mammalian cells. The protocol describes how to generate cell clones harboring a tagged allele and how to detect in vivo transcription from this tagged allele at high spatial and temporal resolution throughout the cell cycle. Quantification of nascent mRNAs produced from the single tagged allele is performed using RNA fluorescence in situ hybridization (FISH) and live-cell imaging. Subsequent analyses and data modeling detailed in the protocol include measurements of: transcription rates of RNA polymerase II; determining the number of polymerases recruited to the tagged allele; and measuring the spacing between polymerases. Generating the cells containing the single tagged alleles should take up to a month; RNA FISH or live-cell imaging will require an additional week. PMID:23424748

  13. Bioluminescence microscopy: application to ATP measurements in single living cells

    NASA Astrophysics Data System (ADS)

    Brau, Frederic; Helle, Pierre; Bernengo, Jean C.

    1997-12-01

    Bioluminescence microscopy can be used to measure intracellular cofactors and ionic concentrations (Ca2+, K+, ATP, NADH), as an alternative to micro- spectrophotometry and micro-fluorimetry, due to the development of sensitive detectors (cooled photomultipliers tubes and CCD). The main limitation comes from the very small and brief intensity of the emitted light. Our instrumentation based on an inverted microscope, equipped with high aperture immersion lenses is presented. Light intensity measurements are carried out through a photomultiplier sorted for low dark current and cooled at -5 degree(s)C to reduce thermal noise. Our first aim is to quantify ATP on single living cells using the firefly luciferin-luciferase couple. Experimental and kinetic aspects are presented to emphasize the potentialities of the technique.

  14. Single Electron Transfer Living Radical Polymerization via a New Initiator

    NASA Astrophysics Data System (ADS)

    Bai, Xiongxiong; Hu, Ying; Zhang, Xu; Ai, Lingling; Cheng, Chuanjie

    2014-08-01

    Research and development of novel initiating system such as single electron transfer living radical polymerization (SET-LRP) is of high importance in polymer chemistry. A new SET-LRP initiator was synthesized and applied to prepare end-functionalized poly(methyl methacrylate) (PMMA) in this study. α-Trichloromethyl benzyl alcohol was firstly synthesized, followed by preparation of PMMA under SET-LRP conditions. Conversion of MMA was 81.9%, and the molecular weight of PMMA was about 2.5 kDa at 60 °C for 1 h. Consistency of the number-average molecular weight of PMMA from NMR, GPC and theoretical calculation indicated that the polymerization featured controllable property. Broad molecular weight distribution (MWD) may be ascribed to branched polymers formed by initiation and chain transfer.

  15. Direct visualization of de novo lipogenesis in single living cells.

    PubMed

    Li, Junjie; Cheng, Ji-Xin

    2014-01-01

    Increased de novo lipogenesis is being increasingly recognized as a hallmark of cancer. Despite recent advances in fluorescence microscopy, autoradiography and mass spectrometry, direct observation of de novo lipogenesis in living systems remains to be challenging. Here, by coupling stimulated Raman scattering (SRS) microscopy with isotope labeled glucose, we were able to trace the dynamic metabolism of glucose in single living cells with high spatial-temporal resolution. As the first direct visualization, we observed that glucose was largely utilized for lipid synthesis in pancreatic cancer cells, which occurs at a much lower rate in immortalized normal pancreatic epithelial cells. By inhibition of glycolysis and fatty acid synthase (FAS), the key enzyme for fatty acid synthesis, we confirmed the deuterium labeled lipids in cancer cells were from de novo lipid synthesis. Interestingly, we also found that prostate cancer cells exhibit relatively lower level of de novo lipogenesis, but higher fatty acid uptake compared to pancreatic cancer cells. Together, our results demonstrate a valuable tool to study dynamic lipid metabolism in cancer and other disorders. PMID:25351207

  16. Direct Visualization of De novo Lipogenesis in Single Living Cells

    NASA Astrophysics Data System (ADS)

    Li, Junjie; Cheng, Ji-Xin

    2014-10-01

    Increased de novo lipogenesis is being increasingly recognized as a hallmark of cancer. Despite recent advances in fluorescence microscopy, autoradiography and mass spectrometry, direct observation of de novo lipogenesis in living systems remains to be challenging. Here, by coupling stimulated Raman scattering (SRS) microscopy with isotope labeled glucose, we were able to trace the dynamic metabolism of glucose in single living cells with high spatial-temporal resolution. As the first direct visualization, we observed that glucose was largely utilized for lipid synthesis in pancreatic cancer cells, which occurs at a much lower rate in immortalized normal pancreatic epithelial cells. By inhibition of glycolysis and fatty acid synthase (FAS), the key enzyme for fatty acid synthesis, we confirmed the deuterium labeled lipids in cancer cells were from de novo lipid synthesis. Interestingly, we also found that prostate cancer cells exhibit relatively lower level of de novo lipogenesis, but higher fatty acid uptake compared to pancreatic cancer cells. Together, our results demonstrate a valuable tool to study dynamic lipid metabolism in cancer and other disorders.

  17. Block-Cell-Printing for live single-cell printing

    PubMed Central

    Zhang, Kai; Chou, Chao-Kai; Xia, Xiaofeng; Hung, Mien-Chie; Qin, Lidong

    2014-01-01

    A unique live-cell printing technique, termed “Block-Cell-Printing” (BloC-Printing), allows for convenient, precise, multiplexed, and high-throughput printing of functional single-cell arrays. Adapted from woodblock printing techniques, the approach employs microfluidic arrays of hook-shaped traps to hold cells at designated positions and directly transfer the anchored cells onto various substrates. BloC-Printing has a minimum turnaround time of 0.5 h, a maximum resolution of 5 µm, close to 100% cell viability, the ability to handle multiple cell types, and efficiently construct protrusion-connected single-cell arrays. The approach enables the large-scale formation of heterotypic cell pairs with controlled morphology and allows for material transport through gap junction intercellular communication. When six types of breast cancer cells are allowed to extend membrane protrusions in the BloC-Printing device for 3 h, multiple biophysical characteristics of cells—including the protrusion percentage, extension rate, and cell length—are easily quantified and found to correlate well with their migration levels. In light of this discovery, BloC-Printing may serve as a rapid and high-throughput cell protrusion characterization tool to measure the invasion and migration capability of cancer cells. Furthermore, primary neurons are also compatible with BloC-Printing. PMID:24516129

  18. Real-time Imaging of Single Engineered RNA Transcripts in Living Cells Using Ratiometric Bimolecular Beacons

    PubMed Central

    Huang, Lingyan; Behlke, Mark A.; Tsourkas, Andrew

    2014-01-01

    The growing realization that both the temporal and spatial regulation of gene expression can have important consequences on cell function has led to the development of diverse techniques to visualize individual RNA transcripts in single living cells. One promising technique that has recently been described utilizes an oligonucleotide-based optical probe, ratiometric bimolecular beacon (RBMB), to detect RNA transcripts that were engineered to contain at least four tandem repeats of the RBMB target sequence in the 3’-untranslated region. RBMBs are specifically designed to emit a bright fluorescent signal upon hybridization to complementary RNA, but otherwise remain quenched. The use of a synthetic probe in this approach allows photostable, red-shifted, and highly emissive organic dyes to be used for imaging. Binding of multiple RBMBs to the engineered RNA transcripts results in discrete fluorescence spots when viewed under a wide-field fluorescent microscope. Consequently, the movement of individual RNA transcripts can be readily visualized in real-time by taking a time series of fluorescent images. Here we describe the preparation and purification of RBMBs, delivery into cells by microporation and live-cell imaging of single RNA transcripts. PMID:25146531

  19. Real-time imaging of single engineered RNA transcripts in living cells using ratiometric bimolecular beacons.

    PubMed

    Song, Yang; Zhang, Xuemei; Huang, Lingyan; Behlke, Mark A; Tsourkas, Andrew

    2014-01-01

    The growing realization that both the temporal and spatial regulation of gene expression can have important consequences on cell function has led to the development of diverse techniques to visualize individual RNA transcripts in single living cells. One promising technique that has recently been described utilizes an oligonucleotide-based optical probe, ratiometric bimolecular beacon (RBMB), to detect RNA transcripts that were engineered to contain at least four tandem repeats of the RBMB target sequence in the 3'-untranslated region. RBMBs are specifically designed to emit a bright fluorescent signal upon hybridization to complementary RNA, but otherwise remain quenched. The use of a synthetic probe in this approach allows photostable, red-shifted, and highly emissive organic dyes to be used for imaging. Binding of multiple RBMBs to the engineered RNA transcripts results in discrete fluorescence spots when viewed under a wide-field fluorescent microscope. Consequently, the movement of individual RNA transcripts can be readily visualized in real-time by taking a time series of fluorescent images. Here we describe the preparation and purification of RBMBs, delivery into cells by microporation and live-cell imaging of single RNA transcripts.

  20. Collapse of a new living species of giant clam in the Red Sea.

    PubMed

    Richter, Claudio; Roa-Quiaoit, Hilly; Jantzen, Carin; Al-Zibdah, Mohammad; Kochzius, Marc

    2008-09-01

    Giant clams are among the most spectacular but also the most endangered marine invertebrates. Their large size and easy accessibility has caused overfishing and collapse of the natural stocks in many places and local extinction in some of the species [1, 2]. The diversity of giant clams is extremely low because of reliction in this Tethyan group [3, 4]. The latest additions of living species date back almost two decades [5-7], fixing the number of extant Tridacna at seven species [3]. Here, we report the discovery of a new species of giant clam: Tridacna costata sp. nov. features characteristic shells with pronounced vertical folds, is genetically distinct, and shows an earlier and abbreviated reproduction than its Red Sea congeners. This species represents less than 1% of the present stocks but up to >80% of the fossil shells. The decline in proportion and shell size (20x) indicates overharvesting [8] dating back to the early human occupation of the Red Sea >125,000 years ago [9]. This earliest depletion reported so far of a shallow-water megafaunal invertebrate has important ramifications for human dispersal out of Africa [10]. Its oversight in one of the best-investigated reef provinces [11-13] illustrates the dearth of knowledge on marine biodiversity.

  1. FluoroMyelin™ Red is a bright, photostable and non-toxic fluorescent stain for live imaging of myelin.

    PubMed

    Monsma, Paula C; Brown, Anthony

    2012-08-15

    FluoroMyelin™ Red is a commercially available water-soluble fluorescent dye that has selectivity for myelin. This dye is marketed for the visualization of myelin in brain cryosections, though it is also used widely to stain myelin in chemically fixed tissue. Here we have investigated the suitability of FluoroMyelin™ Red as a vital stain for live imaging of myelin in myelinating co-cultures of Schwann cells and dorsal root ganglion neurons. We show that addition of FluoroMyelin™ Red to the culture medium results in selective staining of myelin sheaths, with an optimal staining time of 2h, and has no apparent adverse effect on the neurons, their axons, or the myelinating cells at the light microscopic level. The fluorescence is bright and photostable, permitting long-term time-lapse imaging. After rinsing the cultures with medium lacking FluoroMyelin™ Red, the dye diffuses out of the myelin with a half life of about 130 min resulting in negligible fluorescence remaining after 18-24h. In addition, the large Stokes shift exhibited by FluoroMyelin™ Red makes it possible to readily distinguish it from popular and widely used green and red fluorescent probes such as GFP and mCherry. Thus FluoroMyelin™ Red is a useful reagent for live fluorescence imaging studies on myelinated axons.

  2. Red, green, and blue lasing enabled by single-exciton gain in colloidal quantum dot films

    DOEpatents

    Nurmikko, Arto V.; Dang, Cuong

    2016-06-21

    The methods and materials described herein contemplate the use films of colloidal quantum dots as a gain medium in a vertical-cavity surface-emitting laser. The present disclosure demonstrates a laser with single-exciton gain in the red, green, and blue wavelengths. Leveraging this nanocomposite gain, the results realize a significant step toward full-color single-material lasers.

  3. Bilateral microphthalmia and aphakia associated with multiple eye abnormalities in a free-living European red deer calf (Cervus elaphus).

    PubMed

    Mutinelli, Franco; Vercelli, Antonella; Carminato, Antonio; Luchesa, Lucio; Pasolli, Claudio; Cova, Mariapia; Marchioro, Wendy; Melchiotti, Erica; Vascellari, Marta

    2012-04-01

    A free-living European red deer calf (Cervus elaphus) was euthanized due to bilateral microphthalmia. Lens was missing, replaced by proliferating squamous epithelial cells; hyperplastic squamous cells, sebaceous and mucinous glands were observed within the cornea with the characteristics of inclusion cyst. Findings were consistent with congenital microphthalmia/aphakia, with multiple eye abnormalities.

  4. Ultrasonic Scattering Measurements of a Live Single Cell at 86 MHz

    PubMed Central

    Lee, Changyang; Jung, Hayong; Lam, Kwok Ho; Yoon, Changhan; Shung, K. Kirk

    2016-01-01

    Cell separation and sorting techniques have been employed biomedical applications such as cancer diagnosis and cell gene expression analysis. The capability to accurately measure ultrasonic scattering properties from cells is crucial in making an ultrasonic cell sorter a reality if ultrasound scattering is to be used as the sensing mechanism as well. To assess the performance of sensing and identifying live single cells with high-frequency ultrasound, an 86-MHz lithium niobate press-focused single-element acoustic transducer was used in a high-frequency ultrasound scattering measurement system that was custom designed and developed for minimizing noise and allowing better mobility. Peak-to-peak echo amplitude, integrated backscatter (IB) coefficient, spectral parameters including spectral slope and intercept, and midband fit from spectral analysis of the backscattered echoes were measured and calculated from a live single cell of two different types on an agar surface: leukemia cells (K562 cells) and red blood cells (RBCs). The amplitudes of echo signals from K562 cells and RBCs were 48.25 ± 11.98 mVpp and 56.97 ± 7.53 mVpp, respectively. The IB coefficient was −89.39 ± 2.44 dB for K562 cells and −89.00 ± 1.19 dB for RBCs. The spectral slope and intercept were 0.30 ± 0.19 dB/MHz and −56.07 ± 17.17 dB, respectively, for K562 cells and 0.78 ± 0.092 dB/MHz and −98.18 ± 8.80 dB, respectively, for RBCs. Midband fits of K562 cells and RBCs were −31.02 ± 3.04 dB and −33.51 ± 1.55 dB, respectively. Acoustic cellular discrimination via these parameters was tested by Student’s t-test. Their values, except for the IB value, showed statistically significant difference (p < 0.001). This paper reports for the first time that ultrasonic scattering measurements can be made on a live single cell with a highly focused high-frequency ultrasound microbeam at 86 MHz. These results also suggest the feasibility of ultrasonic scattering as a sensing mechanism in

  5. Determination of Dissociation Constants in Living Zebrafish Embryos with Single Wavelength Fluorescence Cross-Correlation Spectroscopy

    PubMed Central

    Shi, Xianke; Foo, Yong Hwee; Sudhaharan, Thankiah; Chong, Shang-Wei; Korzh, Vladimir; Ahmed, Sohail; Wohland, Thorsten

    2009-01-01

    Abstract The quantification of biological interactions is very important in life sciences. Here we report for the first time, to our knowledge, the determination of a biomolecular dissociation constant (KD) in living zebrafish embryos at physiological protein expression levels. For that purpose, we extend the application of single wavelength fluorescence cross-correlation spectroscopy into small organisms and measure the interaction of Cdc42, a small Rho-GTPase, and IQGAP1, an actin-binding scaffolding protein. Cdc42 and IQGAP1 were labeled with monomeric red fluorescent protein and enhanced green fluorescent protein, respectively. Both fluorophores were excited at a single wavelength of 514 nm, simplifying the fluorescence spectroscopy measurements and allowing quantification. For the determination of the interaction, we used two Cdc42 mutants, the constitutively active Cdc42G12V which is in a predominantly GTP-bound form and the dominant-negative GDP-bound Cdc42T17N. While Cdc42G12V binds to IQGAP1 with an apparent KD of ∼100 nM, Cdc42T17N has at least a one-order-of-magnitude lower affinity for the same protein. As a comparison, we measure the same protein-protein interactions in Chinese hamster ovary cell cultures but observe significant differences in protein mobility and KD from the zebrafish measurements, supporting the notion that bimolecular interactions depend on the biological system under investigation and are best performed under physiologically relevant conditions. PMID:19619483

  6. Green Fluorescence of Cytaeis Hydroids Living in Association with Nassarius Gastropods in the Red Sea.

    PubMed

    Prudkovsky, Andrey A; Ivanenko, Viatcheslav N; Nikitin, Mikhail A; Lukyanov, Konstantin A; Belousova, Anna; Reimer, James D; Berumen, Michael L

    2016-01-01

    Green Fluorescent Proteins (GFPs) have been reported from a wide diversity of medusae, but only a few observations of green fluorescence have been reported for hydroid colonies. In this study, we report on fluorescence displayed by hydroid polyps of the genus Cytaeis Eschscholtz, 1829 (Hydrozoa: Anthoathecata: Filifera) found at night time in the southern Red Sea (Saudi Arabia) living on shells of the gastropod Nassarius margaritifer (Dunker, 1847) (Neogastropoda: Buccinoidea: Nassariidae). We examined the fluorescence of these polyps and compare with previously reported data. Intensive green fluorescence with a spectral peak at 518 nm was detected in the hypostome of the Cytaeis polyps, unlike in previous reports that reported fluorescence either in the basal parts of polyps or in other locations on hydroid colonies. These results suggest that fluorescence may be widespread not only in medusae, but also in polyps, and also suggests that the patterns of fluorescence localization can vary in closely related species. The fluorescence of polyps may be potentially useful for field identification of cryptic species and study of geographical distributions of such hydroids and their hosts. PMID:26840497

  7. Green Fluorescence of Cytaeis Hydroids Living in Association with Nassarius Gastropods in the Red Sea.

    PubMed

    Prudkovsky, Andrey A; Ivanenko, Viatcheslav N; Nikitin, Mikhail A; Lukyanov, Konstantin A; Belousova, Anna; Reimer, James D; Berumen, Michael L

    2016-01-01

    Green Fluorescent Proteins (GFPs) have been reported from a wide diversity of medusae, but only a few observations of green fluorescence have been reported for hydroid colonies. In this study, we report on fluorescence displayed by hydroid polyps of the genus Cytaeis Eschscholtz, 1829 (Hydrozoa: Anthoathecata: Filifera) found at night time in the southern Red Sea (Saudi Arabia) living on shells of the gastropod Nassarius margaritifer (Dunker, 1847) (Neogastropoda: Buccinoidea: Nassariidae). We examined the fluorescence of these polyps and compare with previously reported data. Intensive green fluorescence with a spectral peak at 518 nm was detected in the hypostome of the Cytaeis polyps, unlike in previous reports that reported fluorescence either in the basal parts of polyps or in other locations on hydroid colonies. These results suggest that fluorescence may be widespread not only in medusae, but also in polyps, and also suggests that the patterns of fluorescence localization can vary in closely related species. The fluorescence of polyps may be potentially useful for field identification of cryptic species and study of geographical distributions of such hydroids and their hosts.

  8. Green Fluorescence of Cytaeis Hydroids Living in Association with Nassarius Gastropods in the Red Sea

    PubMed Central

    Prudkovsky, Andrey A.; Ivanenko, Viatcheslav N.; Nikitin, Mikhail A.; Lukyanov, Konstantin A.; Belousova, Anna; Reimer, James D.; Berumen, Michael L.

    2016-01-01

    Green Fluorescent Proteins (GFPs) have been reported from a wide diversity of medusae, but only a few observations of green fluorescence have been reported for hydroid colonies. In this study, we report on fluorescence displayed by hydroid polyps of the genus Cytaeis Eschscholtz, 1829 (Hydrozoa: Anthoathecata: Filifera) found at night time in the southern Red Sea (Saudi Arabia) living on shells of the gastropod Nassarius margaritifer (Dunker, 1847) (Neogastropoda: Buccinoidea: Nassariidae). We examined the fluorescence of these polyps and compare with previously reported data. Intensive green fluorescence with a spectral peak at 518 nm was detected in the hypostome of the Cytaeis polyps, unlike in previous reports that reported fluorescence either in the basal parts of polyps or in other locations on hydroid colonies. These results suggest that fluorescence may be widespread not only in medusae, but also in polyps, and also suggests that the patterns of fluorescence localization can vary in closely related species. The fluorescence of polyps may be potentially useful for field identification of cryptic species and study of geographical distributions of such hydroids and their hosts. PMID:26840497

  9. Correlates of Living Alone among Single Elderly Chinese Immigrants in Canada

    ERIC Educational Resources Information Center

    Lai, Daniel W. L.; Leonenko, Wendy L.

    2007-01-01

    According to traditional Chinese culture, families will care for their elderly. Therefore, it appears to be uncommon for elderly Chinese to live alone. This study examines the correlates for single elderly Chinese immigrants in Canada to live alone. Using a probability sample of single elderly Chinese immigrants (N = 660) in seven urban centers,…

  10. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries.

    PubMed

    Zhu, Yujie; Wen, Yang; Fan, Xiulin; Gao, Tao; Han, Fudong; Luo, Chao; Liou, Sz-Chian; Wang, Chunsheng

    2015-03-24

    Sodium ion batteries (SIBs) have been considered as a top alternative to lithium ion batteries due to the earth abundance and low cost of sodium compared with lithium. Among all proposed anode materials for SIBs, red phosphorus (P) is a very promising candidate because it has the highest theoretical capacity (∼2600 mAh/g). In this study, a red P-single-walled carbon nanotube (denoted as red P-SWCNT) composite, in which red P is uniformly distributed between tangled SWCNTs bundles, is fabricated by a modified vaporization-condensation method. Benefiting from the nondestructive preparation process, the highly conductive and mechanically strong SWCNT network is preserved, which enhances the conductivity of the composite and stabilizes the solid electrolyte interphase. As a result, the red P-SWCNT composite presents a high overall sodium storage capacity (∼700 mAh/gcomposite at 50 mA/gcomposite), fast rate capability (∼300 mAh/gcomposite at 2000 mA/gcomposite), and stable long-term cycling performance with 80% capacity retention after 2000 sodiation-desodiation cycles. The red P-SWCNT composite fabricated by the vaporization-condensation method significantly extends the cycling stability of P/carbon composite from current ∼100 cycles to ∼2000 cycles.

  11. Structural relaxation of acridine orange dimer in bulk water and inside a single live lung cell

    NASA Astrophysics Data System (ADS)

    Chowdhury, Rajdeep; Nandi, Somen; Halder, Ritaban; Jana, Biman; Bhattacharyya, Kankan

    2016-02-01

    Structural relaxation of the acridine orange (AO) dimer in bulk water and inside a single live lung cell is studied using time resolved confocal microscopy and molecular dynamics (MD) simulations. The emission maxima ( λem max ˜ 630 nm) of AO in a lung cancer cell (A549) and a non-cancer lung fibroblast cell (WI38) suggest that AO exists as a dimer inside the cell. Time-dependent red shift in emission maximum indicates dynamic relaxation of the AO dimer (in the excited state) with a time constant of 500-600 ps, both in bulk water and inside the cell. We have calculated the equilibrium relaxation dynamics of the AO dimer in the ground state using MD simulations and found a slow component of time scale ˜350 ps. The intra- and inter-molecular components of the total relaxation dynamics of the AO dimer reveal the presence of a slow component of the order of a few hundred picoseconds. Upon restricting intra-molecular dye dynamics by harmonic constraint between AO monomers, the slow component vanishes. Combining the experimental observations and MD simulation results, we ascribe the slow component of the dynamic relaxation of the AO dimer to the structural relaxation, namely, fluctuations in the distance between the two monomers and associated fluctuation in the number of water molecules.

  12. Trypanosoma cruzi: single cell live imaging inside infected tissues

    PubMed Central

    Ferreira, Bianca Lima; Orikaza, Cristina Mary; Cordero, Esteban Mauricio

    2016-01-01

    Summary Although imaging the live Trypanosoma cruzi parasite is a routine technique in most laboratories, identification of the parasite in infected tissues and organs has been hindered by their intrinsic opaque nature. We describe a simple method for in vivo observation of live single‐cell Trypanosoma cruzi parasites inside mammalian host tissues. BALB/c or C57BL/6 mice infected with DsRed‐CL or GFP‐G trypomastigotes had their organs removed and sectioned with surgical blades. Ex vivo organ sections were observed under confocal microscopy. For the first time, this procedure enabled imaging of individual amastigotes, intermediate forms and motile trypomastigotes within infected tissues of mammalian hosts. PMID:26639617

  13. New Red-Emitting Tetrazine-Phenoxazine Fluorogenic Labels for Live-Cell Intracellular Bioorthogonal Labeling Schemes.

    PubMed

    Knorr, Gergely; Kozma, Eszter; Herner, András; Lemke, Edward A; Kele, Péter

    2016-06-20

    The synthesis of a set of tetrazine-bearing fluorogenic dyes suitable for intracellular labeling of proteins in live cells is presented. The red excitability and emission properties ensure minimal autofluorescence, while through-bond energy-transfer-based fluorogenicity reduces nonspecific background fluorescence of unreacted dyes. The tetrazine motif efficiently quenches fluorescence of the phenoxazine core, which can be selectively turned on chemically upon bioorthogonal inverse-electron-demand Diels-Alder reaction with proteins modified genetically with strained trans-cyclooctenes.

  14. Green Synthesis of Red-Emitting Carbon Nanodots as a Novel "Turn-on" Nanothermometer in Living Cells.

    PubMed

    Wang, Chuanxi; Jiang, Kaili; Wu, Qian; Wu, Jiapeng; Zhang, Chi

    2016-10-01

    Temperature measurements in biology and medical diagnostics, along with sensitive temperature probing of living cells, is of great importance; however, it still faces significant challenges. Herein, a novel "turn-on" carbon-dot-based fluorescent nanothermometry device for spatially resolved temperature measurements in living cells is presented. The carbon nanodots (CNDs) are prepared by a green microwave-assisted method and exhibit red fluorescence (λem =615 nm) with high quantum yields (15 %). Then, an on-off fluorescent probe is prepared for detecting glutathione (GSH) based on aggregation-induced fluorescence quenching. Interestingly, the quenched fluorescence could be recovered by increasing temperature and the CNDs-GSH mixture could behave as an off-on fluorescent probe for temperature. Thus, red-emitting CNDs can be utilized for "turn-on" fluorescent nanothermometry through the fluorescence quenching and recovery processes, respectively. We employ MC3T3-E1 cells as an example model to demonstrate the red-emitting CNDs can function as "non-contact" tools for the accurate measurement of temperature and its gradient inside a living cell.

  15. Do Children in Single-Parent Households Fare Better Living with Same-Sex Parents?

    ERIC Educational Resources Information Center

    Downey, Douglas B.; Powell, Brian

    1993-01-01

    Used data from National Educational Longitudinal Study (with 3,483 and 409 eighth graders living in mother-only and father-only homes, respectively) to test whether children in single-parent homes fare better living with same-sex parent. Of 35 social psychological and educational outcomes studied, found none in which both males and females…

  16. Evaluation of fluorophores to label SNAP-tag fused proteins for multicolor single-molecule tracking microscopy in live cells.

    PubMed

    Bosch, Peter J; Corrêa, Ivan R; Sonntag, Michael H; Ibach, Jenny; Brunsveld, Luc; Kanger, Johannes S; Subramaniam, Vinod

    2014-08-19

    Single-molecule tracking has become a widely used technique for studying protein dynamics and their organization in the complex environment of the cell. In particular, the spatiotemporal distribution of membrane receptors is an active field of study due to its putative role in the regulation of signal transduction. The SNAP-tag is an intrinsically monovalent and highly specific genetic tag for attaching a fluorescent label to a protein of interest. Little information is currently available on the choice of optimal fluorescent dyes for single-molecule microscopy utilizing the SNAP-tag labeling system. We surveyed 6 green and 16 red excitable dyes for their suitability in single-molecule microscopy of SNAP-tag fusion proteins in live cells. We determined the nonspecific binding levels and photostability of these dye conjugates when bound to a SNAP-tag fused membrane protein in live cells. We found that only a limited subset of the dyes tested is suitable for single-molecule tracking microscopy. The results show that a careful choice of the dye to conjugate to the SNAP-substrate to label SNAP-tag fusion proteins is very important, as many dyes suffer from either rapid photobleaching or high nonspecific staining. These characteristics appear to be unpredictable, which motivated the need to perform the systematic survey presented here. We have developed a protocol for evaluating the best dyes, and for the conditions that we evaluated, we find that Dy 549 and CF 640 are the best choices tested for single-molecule tracking. Using an optimal dye pair, we also demonstrate the possibility of dual-color single-molecule imaging of SNAP-tag fusion proteins. This survey provides an overview of the photophysical and imaging properties of a range of SNAP-tag fluorescent substrates, enabling the selection of optimal dyes and conditions for single-molecule imaging of SNAP-tagged fusion proteins in eukaryotic cell lines.

  17. Evaluation of Fluorophores to Label SNAP-Tag Fused Proteins for Multicolor Single-Molecule Tracking Microscopy in Live Cells

    PubMed Central

    Bosch, Peter J.; Corrêa, Ivan R.; Sonntag, Michael H.; Ibach, Jenny; Brunsveld, Luc; Kanger, Johannes S.; Subramaniam, Vinod

    2014-01-01

    Single-molecule tracking has become a widely used technique for studying protein dynamics and their organization in the complex environment of the cell. In particular, the spatiotemporal distribution of membrane receptors is an active field of study due to its putative role in the regulation of signal transduction. The SNAP-tag is an intrinsically monovalent and highly specific genetic tag for attaching a fluorescent label to a protein of interest. Little information is currently available on the choice of optimal fluorescent dyes for single-molecule microscopy utilizing the SNAP-tag labeling system. We surveyed 6 green and 16 red excitable dyes for their suitability in single-molecule microscopy of SNAP-tag fusion proteins in live cells. We determined the nonspecific binding levels and photostability of these dye conjugates when bound to a SNAP-tag fused membrane protein in live cells. We found that only a limited subset of the dyes tested is suitable for single-molecule tracking microscopy. The results show that a careful choice of the dye to conjugate to the SNAP-substrate to label SNAP-tag fusion proteins is very important, as many dyes suffer from either rapid photobleaching or high nonspecific staining. These characteristics appear to be unpredictable, which motivated the need to perform the systematic survey presented here. We have developed a protocol for evaluating the best dyes, and for the conditions that we evaluated, we find that Dy 549 and CF 640 are the best choices tested for single-molecule tracking. Using an optimal dye pair, we also demonstrate the possibility of dual-color single-molecule imaging of SNAP-tag fusion proteins. This survey provides an overview of the photophysical and imaging properties of a range of SNAP-tag fluorescent substrates, enabling the selection of optimal dyes and conditions for single-molecule imaging of SNAP-tagged fusion proteins in eukaryotic cell lines. PMID:25140415

  18. The Living with a Red Dwarf Program: Observing the Decline in dM Star FUV Emissions With Age

    NASA Astrophysics Data System (ADS)

    Engle, Scott G.; Guinan, Edward F.; Mizusawa, Trisha

    2009-05-01

    Red Dwarf (dM) stars are overwhelmingly the most numerous stars in our Galaxy. These cool, faint and low mass stars make up >80% of all stars. Also dM stars have extremely long life times (>50-100 Gyr). Determining the number of red dwarfs with planets and assessing planetary habitability (a planet's potential to develop and sustain life) is critically important because such studies would indicate how common life is in the universe. Our program-``Living with a Red Dwarf''-addresses these questions by investigating the long-term nuclear evolution and the coronal and chromospheric properties of red dwarf stars with widely different ages (~50 Myr-12 Gyr). One major focus of the program is to study the magnetic-dynamo generated coronal and chromospheric X-ray-FUV/UV emissions and flare properties of a sample of dM0-5 stars. Observations carried out by FUSE of a number of young to old dM stars provide important data for understanding transition region heating in these stars with deep convective zones as well as providing measures of FUV irradiances. Also studied are the effects of X-ray-FUV emissions on possible hosted planets and impacts of this radiation on their habitability. Using these data we are constructing irradiance tables (X-UV irradiances) that can be used to model the effects of XUV radiation on planetary atmospheres and possible life on planetary surfaces. The initial results of this program are discussed.

  19. Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing.

    PubMed

    Calabuig, Alejandro; Micó, Vicente; Garcia, Javier; Zalevsky, Zeev; Ferreira, Carlos

    2011-03-15

    We present single-exposure super-resolved interferometric microscopy (SESRIM) as a novel approach capable of providing one-dimensional (1-D) super-resolution (SR) imaging in holographic microscopy using a single illumination shot. The single-exposure SR working principle is achieved by combining angular and wavelength multiplexing incoming from a set of tilted beams with different wavelengths where each wavelength is tuned with the red-green-blue (RGB) channels of a color CCD. Thus, the information included in each color channel is retrieved by holographic recording using a single-color CCD capture and by analyzing the RGB channels. Finally, 1-D SR imaging is obtained after the digital postprocessing stage yielding the generation of a synthetic aperture. Experimental results are reported validating the proposed SESRIM approach while an extension of the proposed approach to the two-dimensional case is considered.

  20. Red emission fluorescent probes for visualization of monoamine oxidase in living cells

    PubMed Central

    Li, Ling-Ling; Li, Kun; Liu, Yan-Hong; Xu, Hao-Ran; Yu, Xiao-Qi

    2016-01-01

    Here we report two novel red emission fluorescent probes for the highly sensitive and selective detection of monoamine oxidase (MAO) with large Stokes shift (227 nm). Both of the probes possess solid state fluorescence and can accomplish the identification of MAO on test papers. The probe MAO-Red-1 exhibited a detection limit down to 1.2 μg mL−1 towards MAO-B. Moreover, the cleavage product was unequivocally conformedby HPLC and LCMS and the result was in accordance with the proposed oxidative deamination mechanism. The excellent photostability of MAO-Red-1 was proved both in vitro and in vivo through fluorescent kinetic experiment and laser exposure experiment of confocal microscopy, respectively. Intracellular experiments also confirmed the low cytotoxity and exceptional cell imaging abilities of MAO-Red-1. It was validated both in HeLa and HepG2 cells that MAO-Red-1 was capable of reporting MAO activity through the variation of fluorescence intensity. PMID:27499031

  1. Red emission fluorescent probes for visualization of monoamine oxidase in living cells.

    PubMed

    Li, Ling-Ling; Li, Kun; Liu, Yan-Hong; Xu, Hao-Ran; Yu, Xiao-Qi

    2016-01-01

    Here we report two novel red emission fluorescent probes for the highly sensitive and selective detection of monoamine oxidase (MAO) with large Stokes shift (227 nm). Both of the probes possess solid state fluorescence and can accomplish the identification of MAO on test papers. The probe MAO-Red-1 exhibited a detection limit down to 1.2 μg mL(-1) towards MAO-B. Moreover, the cleavage product was unequivocally conformedby HPLC and LCMS and the result was in accordance with the proposed oxidative deamination mechanism. The excellent photostability of MAO-Red-1 was proved both in vitro and in vivo through fluorescent kinetic experiment and laser exposure experiment of confocal microscopy, respectively. Intracellular experiments also confirmed the low cytotoxity and exceptional cell imaging abilities of MAO-Red-1. It was validated both in HeLa and HepG2 cells that MAO-Red-1 was capable of reporting MAO activity through the variation of fluorescence intensity. PMID:27499031

  2. Red emission fluorescent probes for visualization of monoamine oxidase in living cells.

    PubMed

    Li, Ling-Ling; Li, Kun; Liu, Yan-Hong; Xu, Hao-Ran; Yu, Xiao-Qi

    2016-08-08

    Here we report two novel red emission fluorescent probes for the highly sensitive and selective detection of monoamine oxidase (MAO) with large Stokes shift (227 nm). Both of the probes possess solid state fluorescence and can accomplish the identification of MAO on test papers. The probe MAO-Red-1 exhibited a detection limit down to 1.2 μg mL(-1) towards MAO-B. Moreover, the cleavage product was unequivocally conformedby HPLC and LCMS and the result was in accordance with the proposed oxidative deamination mechanism. The excellent photostability of MAO-Red-1 was proved both in vitro and in vivo through fluorescent kinetic experiment and laser exposure experiment of confocal microscopy, respectively. Intracellular experiments also confirmed the low cytotoxity and exceptional cell imaging abilities of MAO-Red-1. It was validated both in HeLa and HepG2 cells that MAO-Red-1 was capable of reporting MAO activity through the variation of fluorescence intensity.

  3. Role Demands in the Lives of Employed Single Mothers with Preschoolers.

    ERIC Educational Resources Information Center

    Goldberg, Wendy A.; And Others

    1992-01-01

    Examined single mothers' well-being and perceptions of their preschoolers' behavior. Findings from 76 single, employed mothers indicated that variables reflecting interface between work and family roles were important for well-being and perceptions of children's behavior. Depression appeared allied with stability and resources in mothers' lives;…

  4. "Living My Native Life Deadly": Red Lake, Ward Churchill, and the Discourses of Competing Genocides

    ERIC Educational Resources Information Center

    Byrd, Jodi A.

    2007-01-01

    In an attempt to understand how rival narratives of genocide compete even at the cost of disavowing other historical experiences, this article considers how the U.S. national media represented and framed Red Lake in the wake of Ward Churchill's emergence on the national radar. The first section of this article examines how nineteenth-century…

  5. Translation dynamics of single mRNAs in live cells and neurons.

    PubMed

    Wu, Bin; Eliscovich, Carolina; Yoon, Young J; Singer, Robert H

    2016-06-17

    Translation is the fundamental biological process converting mRNA information into proteins. Single-molecule imaging in live cells has illuminated the dynamics of RNA transcription; however, it is not yet applicable to translation. Here, we report single-molecule imaging of nascent peptides (SINAPS) to assess translation in live cells. The approach provides direct readout of initiation, elongation, and location of translation. We show that mRNAs coding for endoplasmic reticulum (ER) proteins are translated when they encounter the ER membrane. Single-molecule fluorescence recovery after photobleaching provides direct measurement of elongation speed (5 amino acids per second). In primary neurons, mRNAs are translated in proximal dendrites but repressed in distal dendrites and display "bursting" translation. This technology provides a tool with which to address the spatiotemporal translation mechanism of single mRNAs in living cells. PMID:27313041

  6. Translation dynamics of single mRNAs in live cells and neurons

    PubMed Central

    Wu, Bin; Eliscovich, Carolina; Yoon, Young J.; Singer, Robert H.

    2016-01-01

    Translation is the fundamental biological process converting mRNA information into proteins. Single-molecule imaging in live cells has illuminated the dynamics of RNA transcription; however, it is not yet applicable to translation. Here, we report single-molecule imaging of nascent peptides (SINAPS) to assess translation in live cells. The approach provides direct readout of initiation, elongation, and location of translation. We show that mRNAs coding for endoplasmic reticulum (ER) proteins are translated when they encounter the ER membrane. Single-molecule fluorescence recovery after photobleaching provides direct measurement of elongation speed (5 amino acids per second). In primary neurons, mRNAs are translated in proximal dendrites but repressed in distal dendrites and display “bursting” translation. This technology provides a tool with which to address the spatiotemporal translation mechanism of single mRNAs in living cells. PMID:27313041

  7. Prevalence and genetic diversity of simian immunodeficiency virus infection in wild-living red colobus monkeys (Piliocolobus badius badius) from the Taï forest, Côte d'Ivoire SIVwrc in wild-living western red colobus monkeys.

    PubMed

    Locatelli, Sabrina; Liegeois, Florian; Lafay, Bénédicte; Roeder, Amy D; Bruford, Michael W; Formenty, Pierre; Noë, Ronald; Delaporte, Eric; Peeters, Martine

    2008-01-01

    Numerous African primates are infected with simian immunodeficiency viruses (SIVs). It is now well established that the clade of SIVs infecting west-central African chimpanzees (Pan troglodytes troglodytes) and western gorillas (Gorilla gorilla gorilla) represent the progenitors of human immunodeficiency virus type 1 (HIV-1), whereas HIV-2 results from different cross-species transmissions of SIVsmm from sooty mangabeys (Cercocebus atys atys). We present here the first molecular epidemiological survey of simian immunodeficiency virus (SIVwrc) in wild-living western red colobus monkeys (Piliocolobus badius badius) which are frequently hunted by the human population and represent a favourite prey of western chimpanzees (Pan troglodytes verus). We collected faecal samples (n=88) and we assessed individual discrimination by microsatellite analyses and visual observation. We tested the inferred 53 adult individuals belonging to two neighbouring habituated groups for presence of SIVwrc infection by viral RNA (vRNA) detection. We amplified viral polymerase (pol) (650 bp) and/or envelope (env) (570 bp) sequences in 14 individuals, resulting in a minimal prevalence of 26% among the individuals sampled, possibly reaching 50% when considering the relatively low sensitivity of viral RNA detection in faecal samples. With a few exceptions, phylogenetic analysis of pol and env sequences revealed a low degree of intragroup genetic diversity and a general viral clustering related to the social group of origin. However, we found a higher intergroup diversity. Behavioural and demographic data collected previously from these communities indicate that red colobus monkeys live in promiscuous multi-male societies, where females leave their natal group at the sub-adult stage of their lives and where extra-group copulations or male immigration have been rarely observed. The phylogenetic data we obtained seem to reflect these behavioural characteristics. Overall, our results indicate that

  8. Return to Being Black, Living in the Red: a race gap in wealth that goes beyond social origins.

    PubMed

    Killewald, Alexandra

    2013-08-01

    In the United States, racial disparities in wealth are vast, yet their causes are only partially understood. In Being Black, Living in the Red, Conley (1999) argued that the sociodemographic traits of young blacks and their parents, particularly parental wealth, wholly explain their wealth disadvantage. Using data from the 1980-2009 waves of the Panel Study of Income Dynamics, I show that this conclusion hinges on the specific sample considered and the treatment of debtors in the sample. I further document that prior research has paid insufficient attention to the possibility of variation in the association between wealth and race at different points of the net worth distribution. Among wealth holders, blacks remain significantly disadvantaged in assets compared with otherwise similar whites. Among debtors, however, young whites hold more debt than otherwise similar blacks. The results suggest that, among young adults, debt may reflect increased access to credit, not simply the absence of assets. The asset disadvantage for black net wealth holders also indicates that research and policy attention should not be focused only on young blacks "living in the red."

  9. Detection of LacZ-Positive Cells in Living Tissue with Single-Cell Resolution.

    PubMed

    Doura, Tomohiro; Kamiya, Mako; Obata, Fumiaki; Yamaguchi, Yoshifumi; Hiyama, Takeshi Y; Matsuda, Takashi; Fukamizu, Akiyoshi; Noda, Masaharu; Miura, Masayuki; Urano, Yasuteru

    2016-08-01

    The LacZ gene, which encodes Escherichia coli β-galactosidase, is widely used as a marker for cells with targeted gene expression or disruption. However, it has been difficult to detect lacZ-positive cells in living organisms or tissues at single-cell resolution, limiting the utility of existing lacZ reporters. Herein we present a newly developed fluorogenic β-galactosidase substrate suitable for labeling live cells in culture, as well as in living tissues. This precisely functionalized fluorescent probe exhibited dramatic activation of fluorescence upon reaction with the enzyme, remained inside cells by anchoring itself to intracellular proteins, and provided single-cell resolution. Neurons labeled with this probe preserved spontaneous firing, which was enhanced by application of ligands of receptors expressed in the cells, suggesting that this probe would be applicable to investigate functions of targeted cells in living tissues and organisms. PMID:27400827

  10. Red-emitting π-conjugated oligomers infused single-wall carbon nanotube sheets

    NASA Astrophysics Data System (ADS)

    Fujimori, Toshihiko; Urita, Koki

    2016-04-01

    We demonstrate the one-step thermal fusion and infusion of pyrene molecules inside single-wall carbon nanotubes (SWCNTs). Despite the presence of metallic-SWCNTs, which behave as a quencher due to gapless electronic states, the nanohybrids consisting of pyrene and/or azupyrene oligomers infused SWCNT sheets exhibit red fluorescence by the ultraviolet, blue, and green light excitations. The wavelength-independent light-emitting behavior is explained by (1) infused PAH oligomers inside semiconducting-SWCNTs and (2) the peculiar π-π interaction through mixed π-conjugated state between the π-conjugated oligomers and non-armchair metallic-SWCNTs.

  11. Label-Free Detection of Single Living Bacteria via Electrochemical Collision Event.

    PubMed

    Lee, Ji Young; Kim, Byung-Kwon; Kang, Mijeong; Park, Jun Hui

    2016-01-01

    We detected single living bacterial cells on ultramicroelectrode (UME) using a single-particle collision method and optical microscopic methods. The number of collision events involving the bacterial cells indicated in current-time (i-t) curves corresponds to the number of bacterial cells (i.e., Escherichia coli) on the UME surface, as observed visually. Simulations were performed to determine the theoretical current response (75 pA) and frequency (0.47 pM(-1) s(-1)) of single Escherichia coli collisions. The experimental current response (83 pA) and frequency (0.26 pM(-1) s(-1)) were on the same order of magnitude as the theoretical values. This single-particle collision approach facilitates detecting living bacteria and determining their concentration in solution and could be widely applied to studying other bacteria and biomolecules. PMID:27435527

  12. Label-Free Detection of Single Living Bacteria via Electrochemical Collision Event

    NASA Astrophysics Data System (ADS)

    Lee, Ji Young; Kim, Byung-Kwon; Kang, Mijeong; Park, Jun Hui

    2016-07-01

    We detected single living bacterial cells on ultramicroelectrode (UME) using a single-particle collision method and optical microscopic methods. The number of collision events involving the bacterial cells indicated in current-time (i-t) curves corresponds to the number of bacterial cells (i.e., Escherichia coli) on the UME surface, as observed visually. Simulations were performed to determine the theoretical current response (75 pA) and frequency (0.47 pM‑1 s‑1) of single Escherichia coli collisions. The experimental current response (83 pA) and frequency (0.26 pM‑1 s‑1) were on the same order of magnitude as the theoretical values. This single-particle collision approach facilitates detecting living bacteria and determining their concentration in solution and could be widely applied to studying other bacteria and biomolecules.

  13. Label-Free Detection of Single Living Bacteria via Electrochemical Collision Event

    PubMed Central

    Lee, Ji Young; Kim, Byung-Kwon; Kang, Mijeong; Park, Jun Hui

    2016-01-01

    We detected single living bacterial cells on ultramicroelectrode (UME) using a single-particle collision method and optical microscopic methods. The number of collision events involving the bacterial cells indicated in current-time (i-t) curves corresponds to the number of bacterial cells (i.e., Escherichia coli) on the UME surface, as observed visually. Simulations were performed to determine the theoretical current response (75 pA) and frequency (0.47 pM−1 s−1) of single Escherichia coli collisions. The experimental current response (83 pA) and frequency (0.26 pM−1 s−1) were on the same order of magnitude as the theoretical values. This single-particle collision approach facilitates detecting living bacteria and determining their concentration in solution and could be widely applied to studying other bacteria and biomolecules. PMID:27435527

  14. Living with a Red Dwarf: Rotation and X-Ray and Ultraviolet Properties of the Halo Population Kapteyn's Star

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.; Engle, Scott G.; Durbin, Allyn

    2016-04-01

    As part of Villanova's Living with a Red Dwarf program, we have obtained UV, X-ray, and optical data of the Population II red dwarf -- Kapteyn's Star. Kapteyn's Star is noteworthy for its large proper motions and high radial velocity of ∼+245 km s-1. As the nearest Pop II red dwarf, it serves as an old age anchor for calibrating activity/irradiance-rotation-age relations, and an important test bed for stellar dynamos and the resulting X-ray-UV emissions of slowly rotating, near-fully convective red dwarf stars. Adding to the notoriety, Kapteyn's Star has recently been reported to host two super-Earth candidates, one of which (Kapteyn b) is orbiting within the habitable zone. However, Robertson et al. questioned the planet's existence since its orbital period may be an artifact of activity, related to the star's rotation period. Because of its large Doppler-shift, measures of the important, chromospheric H i Lyα 1215.67 Å emission line can be reliably made, because it is mostly displaced from ISM and geo-coronal sources. Lyα emission dominates the FUV region of cool stars. Our measures can help determine the X-ray-UV effects on planets hosted by Kapteyn's Star, and planets hosted by other old red dwarfs. Stellar X-ray and Lyα emissions have strong influences on the heating and ionization of upper planetary atmospheres and can (with stellar winds and flares) erode or even eliminate planetary atmospheres. Using our program stars, we have reconstructed the past exposures of Kapteyn's Star's planets to coronal - chromospheric XUV emissions over time. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13020. This work is also based on observations obtained with the Chandra X-ray Observatory, a NASA science mission, program #13200633.

  15. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

    DOE PAGES

    Liu, Daniel S.; Nivon, Lucas G.; Richter, Florian; Goldman, Peter J.; Deerinck, Thomas J.; Yao, Jennifer Z.; Richardson, Douglas; Phipps, William S.; Ye, Anne Z.; Ellisman, Mark H.; et al

    2014-10-13

    In this study, chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of themore » intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies.« less

  16. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

    SciTech Connect

    Liu, Daniel S.; Nivon, Lucas G.; Richter, Florian; Goldman, Peter J.; Deerinck, Thomas J.; Yao, Jennifer Z.; Richardson, Douglas; Phipps, William S.; Ye, Anne Z.; Ellisman, Mark H.; Drennan, Catherine L.; Baker, David; Ting, Alice Y.

    2014-10-13

    In this study, chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of the intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies.

  17. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

    PubMed Central

    Liu, Daniel S.; Nivón, Lucas G.; Richter, Florian; Goldman, Peter J.; Deerinck, Thomas J.; Yao, Jennifer Z.; Richardson, Douglas; Phipps, William S.; Ye, Anne Z.; Ellisman, Mark H.; Drennan, Catherine L.; Baker, David; Ting, Alice Y.

    2014-01-01

    Chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of the intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies. PMID:25313043

  18. Localized electroporation and molecular delivery into single living cells by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Nawarathna, D.; Unal, K.; Wickramasinghe, H. Kumar

    2008-10-01

    We present an efficient and fast method for selective and localized electroporation of a single living cell from a population of millions to tens of cells using the modified tip of an atomic force microscope. Electroporation was observed in real time using an inverted microscope. This technique is proposed as a tool for efficient and controlled delivery of biomolecules, proteins, drugs, and genes.

  19. Efficient two-photon fluorescent probe with red emission for imaging of thiophenols in living cells and tissues.

    PubMed

    Liu, Hong-Wen; Zhang, Xiao-Bing; Zhang, Jing; Wang, Qian-Qian; Hu, Xiao-Xiao; Wang, Peng; Tan, Weihong

    2015-09-01

    Thiophenols, a class of highly toxic and pollutant compounds, are widely used in industrial production. Some aliphatic thiols play important roles in living organisms. Therefore, the development of efficient methods to discriminate thiophenols from aliphatic thiols is of great importance. Although several one-photon fluorescent probes have been reported for thiophenols, two-photon fluorescent probes are more favorable for biological imaging due to its low background fluorescence, deep penetration depth, and so on. In this work, a two-photon fluorescent probe for thiophenols, termed NpRb1, has been developed for the first time by employing 2,4-dinitrobenzene-sulfonate (DNBS) as a recognition unit (also a fluorescence quencher) and a naphthalene-BODIPY-based through-bond energy transfer (TBET) cassette as a fluorescent reporter. The TBET system consists of a D-π-A structured two-photon naphthalene fluorophore and a red-emitting BODIPY. It displayed highly energy transfer efficiency (93.5%), large pseudo-Stokes shifts upon one-photon excitation, and red fluorescence emission (λem = 586 nm), which is highly desirable for bioimaging applications. The probe exhibited a 163-fold thiophenol-triggered two-photon excited fluorescence enhancement at 586 nm. It showed a high selectivity and excellent sensitivity to thiophenols, with a detection limit of 4.9 nM. Moreover, it was successfully applied for practical detection of thiophenol in water samples with a good recovery, two-photon imaging of thiophenol in living cells, and tissues with tissue-imaging depths of 90-220 μm, demonstrating its practical application in environmental samples and biological systems.

  20. Efficient two-photon fluorescent probe with red emission for imaging of thiophenols in living cells and tissues.

    PubMed

    Liu, Hong-Wen; Zhang, Xiao-Bing; Zhang, Jing; Wang, Qian-Qian; Hu, Xiao-Xiao; Wang, Peng; Tan, Weihong

    2015-09-01

    Thiophenols, a class of highly toxic and pollutant compounds, are widely used in industrial production. Some aliphatic thiols play important roles in living organisms. Therefore, the development of efficient methods to discriminate thiophenols from aliphatic thiols is of great importance. Although several one-photon fluorescent probes have been reported for thiophenols, two-photon fluorescent probes are more favorable for biological imaging due to its low background fluorescence, deep penetration depth, and so on. In this work, a two-photon fluorescent probe for thiophenols, termed NpRb1, has been developed for the first time by employing 2,4-dinitrobenzene-sulfonate (DNBS) as a recognition unit (also a fluorescence quencher) and a naphthalene-BODIPY-based through-bond energy transfer (TBET) cassette as a fluorescent reporter. The TBET system consists of a D-π-A structured two-photon naphthalene fluorophore and a red-emitting BODIPY. It displayed highly energy transfer efficiency (93.5%), large pseudo-Stokes shifts upon one-photon excitation, and red fluorescence emission (λem = 586 nm), which is highly desirable for bioimaging applications. The probe exhibited a 163-fold thiophenol-triggered two-photon excited fluorescence enhancement at 586 nm. It showed a high selectivity and excellent sensitivity to thiophenols, with a detection limit of 4.9 nM. Moreover, it was successfully applied for practical detection of thiophenol in water samples with a good recovery, two-photon imaging of thiophenol in living cells, and tissues with tissue-imaging depths of 90-220 μm, demonstrating its practical application in environmental samples and biological systems. PMID:26228351

  1. Real-time monitoring of intracellular mRNA hybridization inside single living cells.

    PubMed

    Perlette, J; Tan, W

    2001-11-15

    A molecular beacon, an oligonucleotide probe with inherent signal transduction mechanisms, is an optimal tool for visualizing real-time mRNA hybridization in single living cells. Each molecular beacon (MB) consists of a single-stranded DNA molecule in a stem-loop conformation with a fluorophore linked to the 5' end and a quencher at the 3' end. In this study, we demonstrate real-time monitoring of mRNA-DNA hybridization inside living cells using molecular beacons. A MB specific for beta-actin mRNA has been designed and synthesized. After microinjection into the cytoplasm of single living kangaroo rat kidney cells (PtK2 cells), the MB hybridizes with beta-actin mRNA as shown by fluorescence measurements over time. Hybridization dynamics have been followed. Strict control experiments have been carried out to confirm that the fluorescence signal increase is indeed due to the hybridization of mRNA inside single living cells. Variation in the MB/mRNA hybridization fluorescent signal has been observed for different PtK2 cells, which indicates the amount of mRNA in different cells is different. We have also monitored the beta-1 andrenergic receptor mRNA inside the PtK2 cells. These studies demonstrate the feasibility of using MBs and the ultrasensitivity achieved in our fluorescence imaging system for real-time detection of mRNA hybridization and for the visualization of oligonucleotide/mRNA interactions inside single living cells.

  2. Experimental approaches for addressing fundamental biological questions in living, functioning cells with single molecule precision

    PubMed Central

    Lenn, Tchern; Leake, Mark C.

    2012-01-01

    In recent years, single molecule experimentation has allowed researchers to observe biological processes at the sensitivity level of single molecules in actual functioning, living cells, thereby allowing us to observe the molecular basis of the key mechanistic processes in question in a very direct way, rather than inferring these from ensemble average data gained from traditional molecular and biochemical techniques. In this short review, we demonstrate the impact that the application of single molecule bioscience experimentation has had on our understanding of various cellular systems and processes, and the potential that this approach has for the future to really address very challenging and fundamental questions in the life sciences. PMID:22773951

  3. Optical trapping and surgery of living yeast cells using a single laser

    NASA Astrophysics Data System (ADS)

    Ando, Jun; Bautista, Godofredo; Smith, Nicholas; Fujita, Katsumasa; Daria, Vincent Ricardo

    2008-10-01

    We present optical trapping and surgery of living yeast cells using two operational modes of a single laser. We used a focused laser beam operating in continuous-wave mode for noninvasive optical trapping and manipulation of single yeast cell. We verified that such operational mode of the laser does not cause any destructive effect on yeast cell wall. By changing the operation of the laser to femtosecond-pulsed mode, we show that a tightly focused beam dissects the yeast cell walls via nonlinear absorption. Lastly, using the combined technique of optical microsurgery and trapping, we demonstrate intracellular organelle extraction and manipulation from a yeast cell. The technique established here will be useful as an efficient method for both surgery and manipulation of living cells using a single laser beam.

  4. Dynamics and Interactions of Individual Proteins in the Membrane of Single, Living Cells.

    PubMed

    Anthony, Stephen; Carroll-Portillo, Amanda; Timlin, Jerilyn

    2015-01-01

    Total internal reflection fluorescence (TIRF) microscopy is a powerful technique for interrogating protein dynamics in the membranes of living single cells. Receptor-ligand interactions are of particular interest for improving our understanding of cell signaling networks in a variety of applications. Here, we describe methods for fluorescently labeling individual receptors and their ligands, conducting single-molecule TIRF microscopy of receptors and ligands in single, living cells, and importantly, performing image analysis on the resulting time sequence of images to extract quantitative dynamics. While we use Toll-like receptor 4 and its ligand lipopolysaccharide as a specific example, the methods are general and readily extendable to other receptor-ligand systems of importance in cellular biology.

  5. Tracking living decapod larvae: mass staining of eggs with neutral red prior to hatching.

    PubMed

    Øresland, V; Horobin, R W

    2012-04-01

    Mass staining of decapod females carrying eggs, with subsequent identification of hatched larvae in the environment, is a research tool with great potential for field ecologists wishing to track the movements of larvae. For this to be achieved, however, numerous requirements must be met. These include adequate dye solubility, short staining time, dye penetration through different tissues, dye retention within the organism, absence of toxic and behavioral effects, low visibility to predators of stained larvae, no loss of staining owing to preservatives and low cost. The dye, neutral red, appears to meet most of these requirements. This dye was used in aliquots of 0.7 g/770 ml seawater applied to the females of Norway lobster (Nephrops norvegicus) and European lobster (Homarus gammarus) for 10 min. This procedure stained lobster eggs and embryos so that hatched larvae could be distinguished easily by fluorescence microscopy from larvae that hatched from unstained eggs. Stained larvae that were preserved in 4% formaldehyde in seawater were still stained after 1 year. Larvae should not come in contact with ethanol, because it extracts the dye rapidly.

  6. Tracking living decapod larvae: mass staining of eggs with neutral red prior to hatching.

    PubMed

    Øresland, V; Horobin, R W

    2012-04-01

    Mass staining of decapod females carrying eggs, with subsequent identification of hatched larvae in the environment, is a research tool with great potential for field ecologists wishing to track the movements of larvae. For this to be achieved, however, numerous requirements must be met. These include adequate dye solubility, short staining time, dye penetration through different tissues, dye retention within the organism, absence of toxic and behavioral effects, low visibility to predators of stained larvae, no loss of staining owing to preservatives and low cost. The dye, neutral red, appears to meet most of these requirements. This dye was used in aliquots of 0.7 g/770 ml seawater applied to the females of Norway lobster (Nephrops norvegicus) and European lobster (Homarus gammarus) for 10 min. This procedure stained lobster eggs and embryos so that hatched larvae could be distinguished easily by fluorescence microscopy from larvae that hatched from unstained eggs. Stained larvae that were preserved in 4% formaldehyde in seawater were still stained after 1 year. Larvae should not come in contact with ethanol, because it extracts the dye rapidly. PMID:22149046

  7. Shape quantification of single red blood cells based on their scattering patterns from microscopic images

    NASA Astrophysics Data System (ADS)

    Schneider, Gert; Artmann, Gerhard

    1995-02-01

    The differentiation between discocytic and stomatocytic red blood cell (RBC) shape using conventional microscopic imaging and image analysis tools is still on a very poor level. A procedure to differentiate the degree of stomatocytic shape changes was developed. We obtained multiple microscopic images of the same RBCs settled on a human albumin coated cover slip. The images were acquired when the microscope objective was subsequently focused through the cell layer. At equidistant horizontal planes (z-axis) below, within, and above the microscopic focal plane the light intensity distribution was considered. Using a model based on light refraction, we calculated the intensity distribution of the planes which are out of focus. Using this tool we are able to differentiate RBC shapes precisely. On the other hand, using this model from and the light intensity distributions of different focal planes, we are able to reconstruct the shape of one single RBC located in the optical axis of the microscope.

  8. Deformation of a single red blood cell in bounded Poiseuille flows

    NASA Astrophysics Data System (ADS)

    Shi, Lingling; Pan, Tsorng-Whay; Glowinski, Roland

    2012-11-01

    An immersed boundary method (IBM) combined with the elastic spring model is applied to investigate the deformation of a single red blood cell (RBC) in two-dimensional bounded Poiseuille flows. The equilibrium shape of the cell under flow depends on the swelling ratio ((s*)), the initial angle of the long axis of the cell at the centerline (ϕ), the maximum velocity of the flow (umax), the membrane bending stiffness of the RBC (kb), and the height of the microchannel(H). Two motions of oscillation and vacillating breathing of the RBC are observed in narrow channel considered here. The strength of the vacillating-breathing motion depends on degree of confinement and umax. For the different kb, the RBC obtains the same equilibrium shape for the same capillary number. Parachute shape and bullet-like shape, depending on the angle ϕ, coexist for the elliptic shape cell with lower umax in a narrower channel. NSF Grant No. DMS-0914788.

  9. Gas Exchange and Phytoluminography of Single Red Kidney Bean Leaves during Periods of Induced Stomatal Oscillations

    PubMed Central

    Ellenson, James L.; Raba, Richard M.

    1983-01-01

    This report examines the capabilities of a new approach to the study of gas exchange and electron transport properties of single, intact leaves. The method combines conventional aspects of analysis with an image intensification system that records the spatial distribution of delayed light emission (DLE) over single leaf surfaces. The combined system was used to investigate physiological perturbations induced by exposure of single leaves of Phaseolus vulgaris cv `California Light Red' to a combination of SO2 (0.5 microliters per liter) and ozone (0.1 microliters per liter). Exposure of one-half of a leaf to this combination induced DLE and stomatal oscillations, but only in the half of the leaf exposed to the combined gases. Examination of phytoluminographs taken during these oscillations revealed distinct leaf patches where the greatest changes in DLE intensity occurred. This phenomenon is interpreted to be evidence that control of stomatal activity of intact plant leaves occurs within discrete leaf areas defined within the vascular network. Images Fig. 6 PMID:16662989

  10. A model for oxygen-dependent backscattering spectroscopic contrast from single red blood cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Rongrong; Yi, Ji; Chen, Siyu; Zhang, Hao F.; Backman, Vadim

    2016-03-01

    The oxygen-dependent absorption of hemoglobin provides the fundamental contrast for all label-free techniques measuring blood oxygenation. When hemoglobin is packaged into red blood cells (RBCs), the structure of the cells creates light scattering which also depends on the absorption based on the Kramers-Kronig relationship. Thus a proper characterization of the optical behaviors of blood has been a key to any accurate measurement of blood oxygenation, particularly at the capillary level where RBCs are dispersed individually in contrast to a densely packed whole blood. Here we provided a theoretical model under Born Approximation to characterize the oxygen dependent backscattering spectroscopic contrast from single RBCs. Using this theoretical model, we conducted simulations on both oxygenated and deoxygenated single RBCs with different sizes for standard and possible deformed cell geometries in blood flow, all which suggested similar backscattering spectroscopic contrast and were confirmed by Mie Theory and experiments using visible Optical Coherence Tomography (visOCT). As long as the cell size satisfies Gaussian distribution with a coefficient variance (C.V.) large enough, there is clear absorption contrast between the backscattering spectra of oxygenated and deoxygenated single RBCs calculated by this model, so oxygen saturation can then be characterized. Thus, this theoretical model can be extended to extract absorption features of other scattering particles as long as they satisfy Born Approximation.

  11. Four-Dimensional Spatial Nanometry of Single Particles in Living Cells Using Polarized Quantum Rods

    PubMed Central

    Watanabe, Tomonobu M.; Fujii, Fumihiko; Jin, Takashi; Umemoto, Eiji; Miyasaka, Masayuki; Fujita, Hideaki; Yanagida, Toshio

    2013-01-01

    Single particle tracking is widely used to study protein movement with high spatiotemporal resolution both in vitro and in cells. Quantum dots, which are semiconductor nanoparticles, have recently been employed in single particle tracking because of their intense and stable fluorescence. Although single particles inside cells have been tracked in three spatial dimensions (X, Y, Z), measurement of the angular orientation of a molecule being tracked would significantly enhance our understanding of the molecule’s function. In this study, we synthesized highly polarized, rod-shaped quantum dots (Qrods) and developed a coating method that optimizes the Qrods for biological imaging. We describe a Qrod-based single particle tracking technique that blends optical nanometry with nanomaterial science to simultaneously measure the three-dimensional and angular movements of molecules. Using Qrods, we spatially tracked a membrane receptor in living cells in four dimensions with precision close to the single-digit range in nanometers and degrees. PMID:23931303

  12. An automated tool for 3D tracking of single molecules in living cells

    NASA Astrophysics Data System (ADS)

    Gardini, L.; Capitanio, M.; Pavone, F. S.

    2015-03-01

    Since the behaviour of proteins and biological molecules is tightly related to cell's environment, more and more microscopy techniques are moving from in vitro to in living cells experiments. Looking at both diffusion and active transportation processes inside a cell requires three-dimensional localization over a few microns range, high SNR images and high temporal resolution. Since protein dynamics inside a cell involve all three dimensions, we developed an automated routine for 3D tracking of single fluorescent molecules inside living cells with nanometer accuracy, by exploiting the properties of the point-spread-function of out-of-focus Quantum Dots bound to the protein of interest.

  13. Living on the edge: Space use of Eurasian red squirrels in marginal high-elevation habitat

    NASA Astrophysics Data System (ADS)

    Romeo, Claudia; Wauters, Lucas A.; Preatoni, Damiano; Tosi, Guido; Martinoli, Adriano

    2010-11-01

    In marginal habitats located at the edge of a species' range, environmental conditions are frequently extreme and individuals may be subject to different selective pressures compared to central populations. These so-called edge or marginal populations tend to have lower densities and reproductive rates than populations located in more suitable habitats, but little is known about local adaptations in spacing behavior. We studied space use and social organization in a population of Eurasian red squirrels ( Sciurus vulgaris) in a high-elevation marginal habitat of dwarf mountain pine ( Pinus mugo) and compared it with spacing patterns in high-quality Scots pine ( Pinus sylvestris) forest at lower-elevation. Home ranges and core areas were larger in the marginal habitat. In both habitats, males used larger home ranges than females, but sex differences in core area size were significant only in the edge population. Patterns of core area overlap were similar in both habitats with intra-sexual territoriality among adult females and higher degrees of inter-sexual overlap, typical for the species throughout its range. However, low densities in the edge population resulted in higher female by males overlap in spring-summer, suggesting males increased home ranges and core areas during mating season to augment access to estrus females. Thus, in the marginal habitat, with low food abundance and low population densities, linked with extreme winter conditions, squirrels, especially males, used large home ranges. Finally, squirrels responded more strongly to variation in food availability (inverse relation between home range size and seed abundance), and even to fluctuations in density (inverse relation between core area size and density of animals of the same sex), in the marginal than in the high-quality habitat, suggesting high behavioral plasticity to respond to the ecological constraints in marginal habitats.

  14. High efficient white organic light-emitting diodes with single emissive layer using phosphorescent red, green, and blue dopants

    NASA Astrophysics Data System (ADS)

    Kim, You-Hyun; Wai Cheah, Kok; Young Kim, Woo

    2013-07-01

    Phosphorescent white organic light-emitting diodes (PHWOLEDs) with single emissive layer were fabricated by co-doping phosphorescent blue, green, and red emitters with different concentrations. WOLEDs using Ir(piq)3 and Ir(ppy)3 as red and green dopants along with 8% of Firpic as blue dopant with host materials of 4CzPBP in the emissive layer were compared under various doping ratio between Ir(piq)3 and Ir(ppy)3. Triplet-triplet Dexter energy transfer in single emissive PHWOLEDs including three primary colors was saturated from higher triplet energy levels to lower triplet energy levels directly.

  15. An automated tool for 3D tracking of single molecules in living cells

    NASA Astrophysics Data System (ADS)

    Gardini, L.; Capitanio, M.; Pavone, F. S.

    2015-07-01

    Recently, tremendous improvements have been achieved in the precision of localization of single fluorescent molecules, allowing localization and tracking of biomolecules at the nm level. Since the behaviour of proteins and biological molecules is tightly influenced by the cell's environment, a growing number of microscopy techniques are moving from in vitro to live cell experiments. Looking at both diffusion and active transportation processes inside a cell requires three-dimensional localization over a few microns range, high SNR images and high temporal resolution (ms order of magnitude). To satisfy these requirements we developed an automated routine that allow 3D tracking of single fluorescent molecules in living cells with nanometer accuracy, by exploiting the properties of the point-spread-function of out-of-focus Quantum Dots bound to the protein of interest.

  16. The motion of a single red blood cell in a capillary

    NASA Astrophysics Data System (ADS)

    Savin, Thierry; Mahadevan, L.

    2009-11-01

    The collective vaso-occlusive event in sickle cell disease induced by multiple red blood cells (RBC's) has recently been evoked and controlled in vitro using a microfluidic platform [1]. The increase in the cells' stiffness in this disease is believed to be a predominant factor at the onset of the occlusion. We report here the motion of a single swollen RBC in a capillary. We use a tapered glass capillary with inner diameter as low as 3 microns, and track the squeezed cell driven by a controlled pressure drop. This allows us to simultaneously measure the variations of the RBC velocity as a function of the pressure gradient and of the local capillary diameter in a single experiment. We show that under certain regimes of confinement, the velocity increases with the pressure head with a characteristic power-law. We analyze our findings in terms of a elasto-hydrodynamical model for soft lubrication.[4pt] [1] Higgins et al., Proc. Natl. Acad. Sci. U.S.A. 104: 20496 (2007).

  17. Yb-fiber laser pumped high-power, broadly tunable, single-frequency red source based on a singly resonant optical parametric oscillator.

    PubMed

    Shukla, Mukesh Kumar; Maji, Partha Sona; Das, Ritwick

    2016-07-01

    We present an efficient and tunable source generating multi-watt single-frequency red radiation by intra-cavity frequency doubling of the signal in a MgO-doped periodically poled LiNbO3 (MgO:PPLN)-based singly resonant optical parametric oscillator (SRO). By optimally designing the SRO cavity in a six-mirror configuration, we generate ≈276  nm tunable idler radiation in mid-infrared with a maximum power of Pi=2.05  W at a pump power of Pp=14.0  W. The resonant signal is frequency doubled using a 10 mm-long BiB3O6 (BiBO) crystal which resulted in tunability of a red beam from ≈753 to 780 nm band with maximum power Pr≈4.0  W recorded at λr≈756  nm. The deployment of a six-mirror SRO ensures single-frequency generation of red across the entire tuning range by inducing additional losses to Raman modes of LiNbO3 and, thus, inhibiting their oscillation. Using a scanning Fabry-Perot interferometer (FPI), nominal linewidth of the red beam is measured to ≈3  MHz which changes marginally over the entire tuning range. Long-term (over 1 h) peak-to-peak frequency fluctuation of the generated red beam is estimated to be about 3.3 GHz under free-running conditions at Pp=14.0  W. The generated red beam is delivered in a TEM00 mode profile with M2≤1.32 at maximum power in a red beam.

  18. Yb-fiber laser pumped high-power, broadly tunable, single-frequency red source based on a singly resonant optical parametric oscillator.

    PubMed

    Shukla, Mukesh Kumar; Maji, Partha Sona; Das, Ritwick

    2016-07-01

    We present an efficient and tunable source generating multi-watt single-frequency red radiation by intra-cavity frequency doubling of the signal in a MgO-doped periodically poled LiNbO3 (MgO:PPLN)-based singly resonant optical parametric oscillator (SRO). By optimally designing the SRO cavity in a six-mirror configuration, we generate ≈276  nm tunable idler radiation in mid-infrared with a maximum power of Pi=2.05  W at a pump power of Pp=14.0  W. The resonant signal is frequency doubled using a 10 mm-long BiB3O6 (BiBO) crystal which resulted in tunability of a red beam from ≈753 to 780 nm band with maximum power Pr≈4.0  W recorded at λr≈756  nm. The deployment of a six-mirror SRO ensures single-frequency generation of red across the entire tuning range by inducing additional losses to Raman modes of LiNbO3 and, thus, inhibiting their oscillation. Using a scanning Fabry-Perot interferometer (FPI), nominal linewidth of the red beam is measured to ≈3  MHz which changes marginally over the entire tuning range. Long-term (over 1 h) peak-to-peak frequency fluctuation of the generated red beam is estimated to be about 3.3 GHz under free-running conditions at Pp=14.0  W. The generated red beam is delivered in a TEM00 mode profile with M2≤1.32 at maximum power in a red beam. PMID:27367094

  19. Real-time visualization of intracellular hydrodynamics in single living cells.

    PubMed

    Potma, E; de Boeij, W P; van Haastert, P J; Wiersma, D A

    2001-02-13

    Intracellular water concentrations in single living cells were visualized by nonlinear coherent anti-Stokes Raman scattering (CARS) microscopy. In combination with isotopic exchange measurements, CARS microscopy allowed the real-time observation of transient intracellular hydrodynamics at a high spatial resolution. Studies of the hydrodynamics in the microorganism Dictyostelium discoideum indicated the presence of a microscopic region near the plasma membrane where the mobility of water molecules is severely restricted. Modeling the transient hydrodynamics eventuated in the determination of cell-specific cytosolic diffusion and plasma membrane permeability constants. Our experiments demonstrate that CARS microscopy offers an invaluable tool for probing single-cell water dynamics. PMID:11171993

  20. Mode of Myosin Transportation in Living Cells Studied by Single Particle Tracking

    NASA Astrophysics Data System (ADS)

    Liang, Zhang-yi; Xu, Ning; Guan, Ying-hua; Zhang, You-yi; Zhao, Xin-sheng

    2007-08-01

    The transport of internalized α1A-adrenergic receptor (α1A-AR) by myosin protein in live cells was studied. The technique of single particle tracking by fluorescence imaging with high temporal and spatial resolution was used. The endosomes of α1A-AR were transported along actin filaments in a step-by-step mode. The average step-size in different time resolutions is consistent with the step-size of myosin assay in vitro. With the simulation of the stepwise traces in different time resolutions, we found that the kinetic process of each step is in coherence with the single myosin assay in vitro.

  1. Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Qin, Yejun; Zheng, Feng; Sun, Menghong; Shi, Daren

    2006-07-01

    A single-cell diagnostic technique for epithelial cancers is developed by utilizing laser trapping and Raman spectroscopy to differentiate cancerous and normal epithelial cells. Single-cell suspensions were prepared from surgically removed human colorectal tissues following standard primary culture protocols and examined in a near-infrared laser-trapping Raman spectroscopy system, where living epithelial cells were investigated one by one. A diagnostic model was built on the spectral data obtained from 8 patients and validated by the data from 2 new patients. Our technique has potential applications from epithelial cancer diagnosis to the study of cell dynamics of carcinogenesis.

  2. Blurring the boundaries of space: shaping nursing lives at the Red Cross outposts in Ontario, 1922-1945.

    PubMed

    Elliott, Jayne

    2004-01-01

    Historians and other scholars interested in the history of hospitals have investigated the links between medical architecture and the organization of space with the evolution of modern medicine. The transformation over time in the architectural for of medical institutions has tended to reflect developments in medical science and therapeutic efficiency as well as elements in the broader social climate. Some authors, however, have argued for the agency of structure and spatial organization, to consider that they are not just containers with which human activities take place, but which also actively construct or constitute social practices and relations. Most studies of this nature have centred on large medical buildings especially in urban areas, and have examined the impact of architectural arrangement in relation to administrators and architects, physicians and patients. Fe have considered the interconnections of form and space with nurses, despite the prominence of institutional nursing labour since the late 19th-century. The following discussion begins an exploration of these concepts within the rural environment. Between 1922 and 1984, the Ontario Division of the Canadian Red Cross Society administered an outpost program in which it operated small hospitals and nursing stations in isolated communities throughout the northern reaches of the province. This article will focus primarily o n the one-nurse stations that the Division managed during the interwar years and the nurses that it hired to staff them. The interior spatial organization of these outposts, which led in particular to their multiple functions as tiny hospitals, community health centres and nurses' homes, not only shaped both the professional practice and the social or private lives of the Red Cross nurses but also contributed to the diffusion of contemporary precepts in health and medical care throughout a remote population.

  3. Single-Molecule Studies of Integrins by AFM-Based Force Spectroscopy on Living Cells

    NASA Astrophysics Data System (ADS)

    Eibl, Robert H.

    The characterization of cell adhesion between two living cells at the single-molecule level, i.e., between one adhesion receptor and its counter-receptor, appears to be an experimental challenge. Atomic force microscopy (AFM) can be used in its force spectroscopy mode to determine unbinding forces of a single pair of adhesion receptors, even with a living cell as a probe. This chapter provides an overview of AFM force measurements of the integrin family of cell adhesion receptors and their ligands. A focus is given to major integrins expressed on leukocytes, such as lymphocyte function-associated antigen 1 (LFA-1) and very late antigen 4 (VLA-4). These receptors are crucial for leukocyte trafficking in health and disease. LFA-1 and VLA-1 can be activated within the bloodstream from a low-affinity to a high-affinity receptor by chemokines in order to adhere strongly to the vessel wall before the receptor-bearing leukocytes extravasate. The experimental considerations needed to provide near-physiological conditions for a living cell and to be able to measure adequate forces at the single-molecule level are discussed in detail. AFM technology has been developed into a modern and extremely sensitive tool in biomedical research. It appears now that AFM force spectroscopy could enter, within a few years, medical applications in diagnosis and therapy of cancer and autoimmune diseases.

  4. Studying the mechanism of CD47-SIRPα interactions on red blood cells by single molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Pan, Yangang; Wang, Feng; Liu, Yanhou; Jiang, Junguang; Yang, Yong-Guang; Wang, Hongda

    2014-08-01

    The interaction forces and binding kinetics between SIRPα and CD47 were investigated by single-molecule force spectroscopy (SMFS) on both fresh and experimentally aged human red blood cells (hRBCs). We found that CD47 experienced a conformation change after oxidation, which influenced the interaction force and the position of the energy barrier between SIRPα and CD47. Our results are significant for understanding the mechanism of phagocytosis of red blood cells at the single molecule level.The interaction forces and binding kinetics between SIRPα and CD47 were investigated by single-molecule force spectroscopy (SMFS) on both fresh and experimentally aged human red blood cells (hRBCs). We found that CD47 experienced a conformation change after oxidation, which influenced the interaction force and the position of the energy barrier between SIRPα and CD47. Our results are significant for understanding the mechanism of phagocytosis of red blood cells at the single molecule level. Electronic supplementary information (ESI) available: Experimental section. See DOI: 10.1039/c4nr02889a

  5. Microscale consolidation analysis of relaxation behavior of single living chondrocytes subjected to varying strain-rates.

    PubMed

    Nguyen, Trung Dung; Oloyede, Adekunle; Singh, Sanjleena; Gu, YuanTong

    2015-09-01

    Besides the elastic stiffness, the relaxation behavior of single living cells is also of interest of various researchers when studying cell mechanics. It is hypothesized that the relaxation response of the cells is governed by both intrinsic viscoelasticity of the solid phase and fluid-solid interactions mechanisms. There are a number of mechanical models have been developed to investigate the relaxation behavior of single cells. However, there is lack of model enable to accurately capture both of the mechanisms. Therefore, in this study, the porohyperelastic (PHE) model, which is an extension of the consolidation theory, combined with inverse Finite Element Analysis (FEA) technique was used at the first time to investigate the relaxation response of living chondrocytes. This model was also utilized to study the dependence of relaxation behavior of the cells on strain-rates. The stress-relaxation experiments under the various strain-rates were conducted with the Atomic Force Microscopy (AFM). The results have demonstrated that the PHE model could effectively capture the stress-relaxation behavior of the living chondrocytes, especially at intermediate to high strain-rates. Although this model gave some errors at lower strain-rates, its performance was acceptable. Therefore, the PHE model is properly a promising model for single cell mechanics studies. Moreover, it has been found that the hydraulic permeability of living chondrocytes reduced with decreasing of strain-rates. It might be due to the intracellular fluid volume fraction and the fluid pore pressure gradients of chondrocytes were higher when higher strain-rates applied. PMID:26093345

  6. Nile Blue-based nanosized pH sensors for simultaneous far-red and near-infrared live bioimaging.

    PubMed

    Madsen, Jeppe; Canton, Irene; Warren, Nicholas J; Themistou, Efrosyni; Blanazs, Adam; Ustbas, Burcin; Tian, Xiaohe; Pearson, Russell; Battaglia, Giuseppe; Lewis, Andrew L; Armes, Steven P

    2013-10-01

    Diblock copolymer vesicles are tagged with pH-responsive Nile Blue-based labels and used as a new type of pH-responsive colorimetric/fluorescent biosensor for far-red and near-infrared imaging of live cells. The diblock copolymer vesicles described herein are based on poly(2-(methacryloyloxy)ethyl phosphorylcholine-block-2-(diisopropylamino)ethyl methacrylate) [PMPC-PDPA]: the biomimetic PMPC block is known to facilitate rapid cell uptake for a wide range of cell lines, while the PDPA block constitutes the pH-responsive component that enables facile vesicle self-assembly in aqueous solution. These biocompatible vesicles can be utilized to detect interstitial hypoxic/acidic regions in a tumor model via a pH-dependent colorimetric shift. In addition, they are also useful for selective intracellular staining of lysosomes and early endosomes via subtle changes in fluorescence emission. Such nanoparticles combine efficient cellular uptake with a pH-responsive Nile Blue dye label to produce a highly versatile dual capability probe. This is in marked contrast to small molecule dyes, which are usually poorly uptaken by cells, frequently exhibit cytotoxicity, and are characterized by intracellular distributions invariably dictated by their hydrophilic/hydrophobic balance.

  7. Life situation and identity among single older home-living people: A phenomenological–hermeneutic study

    PubMed Central

    Söderhamn, Ulrika; Söderhamn, Olle

    2012-01-01

    Being able to continue living in their own home as long as possible is the general preference for many older people, and this is also in line with the public policy in the Nordic countries. The aim of this study was to elucidate the meaning of self-care and health for perception of life situation and identity among single-living older individuals in rural areas in southern Norway. Eleven older persons with a mean age of 78 years were interviewed and encouraged to narrate their self-care and health experiences. The interviews were audio taped, transcribed verbatim and analysed using a phenomenological–hermeneutic method inspired by the philosophy of Ricoeur. The findings are presented as a naïve reading, an inductive structural analysis characterized by two main themes; i.e., “being able to do” and “being able to be”, and a comprehensive interpretation. The life situation of the interviewed single-living older individuals in rural areas in southern Norway was interpreted as inevitable, appropriate and meaningful. Their identity was constituted by their freedom and self-chosen actions in their personal contexts. The overall impression was that independence and the ability to control and govern their own life in accordance with needs and preferences were ultimate goals for the study participants. PMID:22848230

  8. Life situation and identity among single older home-living people: a phenomenological-hermeneutic study.

    PubMed

    Dale, Bjørg; Söderhamn, Ulrika; Söderhamn, Olle

    2012-01-01

    Being able to continue living in their own home as long as possible is the general preference for many older people, and this is also in line with the public policy in the Nordic countries. The aim of this study was to elucidate the meaning of self-care and health for perception of life situation and identity among single-living older individuals in rural areas in southern Norway. Eleven older persons with a mean age of 78 years were interviewed and encouraged to narrate their self-care and health experiences. The interviews were audio taped, transcribed verbatim and analysed using a phenomenological-hermeneutic method inspired by the philosophy of Ricoeur. The findings are presented as a naïve reading, an inductive structural analysis characterized by two main themes; i.e., "being able to do" and "being able to be", and a comprehensive interpretation. The life situation of the interviewed single-living older individuals in rural areas in southern Norway was interpreted as inevitable, appropriate and meaningful. Their identity was constituted by their freedom and self-chosen actions in their personal contexts. The overall impression was that independence and the ability to control and govern their own life in accordance with needs and preferences were ultimate goals for the study participants. PMID:22848230

  9. Wolf-Rayet, Yellow and Red Supergiant in the single massive stars perspective

    NASA Astrophysics Data System (ADS)

    Georgy, Cyril; Hirschi, R.; Ekstrom, S.; Meynet, G.

    2013-06-01

    Rotation and mass loss are the key ingredients determining the fate of single massive stars. In recent years, a large effort has been made to compute whole grids of stellar models at different metallicities, including or not the effects of rotation, with the Geneva evolution code. In this talk, I will focus on the evolved stages of massive star evolution (red and yellow supergiants, Wolf-Rayet stars), in the framework of these new grids of models. I will highlight the effects of rotation and mass loss on the post-main sequence evolution of massive stars at solar and lower metallicity. In particular, I will discuss their impact on the maximum mass for a star to end its life as a RSG (leading to a type IIP supernova), on the possibility for a star to finish as a YSG, and on the initial mass ranges leading to various WR star subtypes. I will then compare the results predicted by our code with observed populations of evolved massive stars, bringing constraints on our computations, as well as some indications on the binary star fraction needed to reproduce them.

  10. Deformation of a single red blood cell in bounded Poiseuille flows

    NASA Astrophysics Data System (ADS)

    Shi, Lingling; Pan, Tsorng-Whay; Glowinski, Roland

    2012-01-01

    Deformation of a red blood cell (RBC) in bounded two-dimensional Poiseuille flows is studied by using an immersed boundary method (IBM). An elastic spring model is applied to simulate the skeleton structure of a RBC membrane. As a benchmarking test, the dynamical behavior of a single RBC under a simple shear flow has been validated. Then we focus on investigating the motion and the deformation of a single RBC in Poiseuille flows by varying the swelling ratio (s*), the initial angle of the long axis of the cell at the centerline (ϕ), the maximum velocity at the centerline of fluid flow (umax), the membrane bending stiffness of a RBC (kb), and the height of the microchannel (H). Two motions of oscillation and vacillating breathing (swing) of a RBC are observed in both narrow and wide channels. The strength of the vacillating-breathing motion depends on the degree of confinement and the value of umax. A RBC exhibits a strong vacillating-breathing motion as the degree of confinement is larger or the value of umax is higher. For the same degree of confinement, the vacillating-breathing motion appears to be relatively weaker but persists longer as the value of umax is lower. The continuation of shape change from the slippery to the parachute by varying the value of umax is obtained for the biconcave shape cell in a narrower channel. In particular, parachute shape and bulletlike shape, depending on the angle ϕ, coexist for the elliptic shape cell given initially with lower umax in a narrower channel.

  11. Rapid Measurement of Molecular Transport and Interaction inside Living Cells Using Single Plane Illumination

    PubMed Central

    Hedde, Per Niklas; Stakic, Milka; Gratton, Enrico

    2014-01-01

    The ability to measure biomolecular dynamics within cells and tissues is very important to understand fundamental physiological processes including cell adhesion, signalling, movement, division or metabolism. Usually, such information is obtained using particle tracking methods or single point fluctuation spectroscopy. We show that image mean square displacement analysis, applied to single plane illumination microscopy data, is a faster and more efficient way of unravelling rapid, three-dimensional molecular transport and interaction within living cells. From a stack of camera images recorded in seconds, the type of dynamics such as free diffusion, flow or binding can be identified and quantified without being limited by current camera frame rates. Also, light exposure levels are very low and the image mean square displacement method does not require calibration of the microscope point spread function. To demonstrate the advantages of our approach, we quantified the dynamics of several different proteins in the cyto- and nucleoplasm of living cells. For example, from a single measurement, we were able to determine the diffusion coefficient of free clathrin molecules as well as the transport velocity of clathrin-coated vesicles involved in endocytosis. Used in conjunction with dual view detection, we further show how protein-protein interactions can be quantified. PMID:25394360

  12. Live Single-Cell Plant Hormone Analysis by Video-Mass Spectrometry.

    PubMed

    Shimizu, Takafumi; Miyakawa, Shinya; Esaki, Tsuyoshi; Mizuno, Hajime; Masujima, Tsutomu; Koshiba, Tomokazu; Seo, Mitsunori

    2015-07-01

    Studies have indicated that endogenous concentrations of plant hormones are regulated very locally within plants. To understand the mechanisms underlying hormone-mediated physiological processes, it is indispensable to know the exact hormone concentrations at cellular levels. In the present study, we established a system to determine levels of ABA and jasmonoyl-isoleucine (JA-Ile) from single cells. Samples taken from a cell of Vicia faba leaves using nano-electrospray ionization (ESI) tips under a microscope were directly introduced into mass spectrometers by infusion and subjected to tandem mass spectrometry (MS/MS) analysis. Stable isotope-labeled [D(6)]ABA or [(13)C(6)]JA-Ile was used as an internal standard to compensate ionization efficiencies, which determine the amount of ions introduced into mass spectrometers. We detected ABA and JA-Ile from single cells of water- and wound-stressed leaves, whereas they were almost undetectable in non-stressed single cells. The levels of ABA and JA-Ile found in the single-cell analysis were compared with levels found by analysis of purified extracts with liquid chromatography-tandem mass spectrometry (LC-MS/MS). These results demonstrated that stress-induced accumulation of ABA and JA-Ile could be monitored from living single cells.

  13. Single Stance Stability and Proprioceptive Control in Older Adults Living at Home: Gender and Age Differences

    PubMed Central

    Riva, Dario; Mamo, Carlo; Fanì, Mara; Saccavino, Patrizia; Rocca, Flavio; Momenté, Manuel; Fratta, Marianna

    2013-01-01

    In developed countries, falls in older people represent a rising problem. As effective prevention should start before the risk becomes evident, an early predictor is needed. Single stance instability would appear as a major risk factor. Aims of the study were to describe single stance stability, its sensory components, and their correlation with age and gender. A random sample of 597 older adults (319 men, 278 women) living at home, aged 65–84, was studied. Stability tests were performed with an electronic postural station. The single stance test showed the impairment of single stance stability in older individuals (75–84 yrs). The significant decline of stability in the older subjects may be explained by the impairment of proprioceptive control together with the decrease in compensatory visual stabilization and emergency responses. Younger subjects (65–74 yrs) exhibited better, but still inadequate, proprioceptive control with compensatory visual stabilization. Gender differences appeared in older subjects: women were significantly less stable than men. The measurement of the sensory components of single stance stability could aid in the early detection of a decay in antigravity movements many years before the risk of falling becomes evident. Adequate proprioceptive control could mitigate the effects of all other risks of falling. PMID:23984068

  14. Simultaneous Live Cell Imaging Using Dual FRET Sensors with a Single Excitation Light

    PubMed Central

    Niino, Yusuke; Hotta, Kohji; Oka, Kotaro

    2009-01-01

    Fluorescence resonance energy transfer (FRET) between fluorescent proteins is a powerful tool for visualization of signal transduction in living cells, and recently, some strategies for imaging of dual FRET pairs in a single cell have been reported. However, these necessitate alteration of excitation light between two different wavelengths to avoid the spectral overlap, resulting in sequential detection with a lag time. Thus, to follow fast signal dynamics or signal changes in highly motile cells, a single-excitation dual-FRET method should be required. Here we reported this by using four-color imaging with a single excitation light and subsequent linear unmixing to distinguish fluorescent proteins. We constructed new FRET sensors with Sapphire/RFP to combine with CFP/YFP, and accomplished simultaneous imaging of cAMP and cGMP in single cells. We confirmed that signal amplitude of our dual FRET measurement is comparable to of conventional single FRET measurement. Finally, we demonstrated to monitor both intracellular Ca2+ and cAMP in highly motile cardiac myocytes. To cancel out artifacts caused by the movement of the cell, this method expands the applicability of the combined use of dual FRET sensors for cell samples with high motility. PMID:19551140

  15. Cell compressibility studies utilizing noncontact hydrostatic pressure measurements on single living cells in a microchamber

    NASA Astrophysics Data System (ADS)

    Lin, L. A. G.; Liu, A. Q.; Yu, Y. F.; Zhang, C.; Lim, C. S.; Ng, S. H.; Yap, P. H.; Gao, H. J.

    2008-06-01

    A micro-optical-fluidic system (MOFS), which integrates a force generating device and an optical detector, is designed to measure the bulk modulus of a single living cell in real time under a controlled hydrostatic pressure. In this design, the accuracy of the bulk modulus measurement is improved because neither the force generating device nor the optical detector needs to be in contact with the cells. The MOFS device has been used to investigate the mechanotransduction of THP-1 human acute monocytic leukemia cells and the effects of the toxin lipopolysaccharide and colchicine on various properties of these cells.

  16. Hepatic cavernous hemangioma: diagnosis with /sup 99m/Tc-labeled red cells and single-photon emission CT

    SciTech Connect

    Brodsky, R.I.; Friedman, A.C.; Maurer, A.H.; Radecki, P.D.; Caroline, D.F.

    1987-01-01

    During the performance of high-resolution real-time abdominal sonography, small echogenic hepatic masses are frequently discovered. A second imaging test to confirm the suspected diagnosis of hemangioma is often required. Planar labeled red-cell imaging will often not detect hemangiomas smaller than 3 cm. We studied 14 patients with labeled red-cell scintigraphy and single-photon emission CT (SPECT). Six hemangiomas were diagnosed by SPECT that would have been missed by planar imaging alone. All six were smaller than 2.5 cm. With the addition of SPECT, labeled red-cell scintigraphy has specificity and sensitivity that make it at least as reliable as dynamic CT for the noninvasive diagnosis of hepatic cavernous hemangioma.

  17. The lived experiences of single Taiwanese mothers being resilient after divorce.

    PubMed

    Hong, Rei-Mei; Welch, Anthony

    2013-01-01

    The lived experiences of being resilient as described by 13 single Taiwanese mothers after divorce was the focus of this study. A descriptive phenomenological approach to inquiry was the theoretical framework underpinning the study. Information was gathered through two in-depth face-to-face digitally recorded interviews with each participant. Each of the participants had suffered from depression. For the analysis of the participants' transcripts of interview the authors used Colaizzi's method. Four themes emerged from the analysis process: having faith in God, bending with the ebb and flow of daily life, finding strength in the support and friendship of others, and new found freedom and hope for the future. Findings of this study have the potential to enhance understanding of the mental health needs of single mothers and their children in the provision of holistic health care delivery.

  18. Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells.

    PubMed

    König, Iwo; Zarrine-Afsar, Arash; Aznauryan, Mikayel; Soranno, Andrea; Wunderlich, Bengt; Dingfelder, Fabian; Stüber, Jakob C; Plückthun, Andreas; Nettels, Daniel; Schuler, Benjamin

    2015-08-01

    Single-molecule methods have become widely used for quantifying the conformational heterogeneity and structural dynamics of biomolecules in vitro. Their application in vivo, however, has remained challenging owing to shortcomings in the design and reproducible delivery of labeled molecules, the range of applicable analysis methods, and suboptimal cell culture conditions. By addressing these limitations in an integrated approach, we demonstrate the feasibility of probing protein dynamics from milliseconds down to the nanosecond regime in live eukaryotic cells with confocal single-molecule Förster resonance energy transfer (FRET) spectroscopy. We illustrate the versatility of the approach by determining the dimensions and submicrosecond chain dynamics of an intrinsically disordered protein; by detecting even subtle changes in the temperature dependence of protein stability, including in-cell cold denaturation; and by quantifying the folding dynamics of a small protein. The methodology opens possibilities for assessing the effect of the cellular environment on biomolecular conformation, dynamics and function.

  19. Aptamer-based single-molecule imaging of insulin receptors in living cells

    NASA Astrophysics Data System (ADS)

    Chang, Minhyeok; Kwon, Mijin; Kim, Sooran; Yunn, Na-Oh; Kim, Daehyung; Ryu, Sung Ho; Lee, Jong-Bong

    2014-05-01

    We present a single-molecule imaging platform that quantitatively explores the spatiotemporal dynamics of individual insulin receptors in living cells. Modified DNA aptamers that specifically recognize insulin receptors (IRs) with a high affinity were selected through the SELEX process. Using quantum dot-labeled aptamers, we successfully imaged and analyzed the diffusive motions of individual IRs in the plasma membranes of a variety of cell lines (HIR, HEK293, HepG2). We further explored the cholesterol-dependent movement of IRs to address whether cholesterol depletion interferes with IRs and found that cholesterol depletion of the plasma membrane by methyl-β-cyclodextrin reduces the mobility of IRs. The aptamer-based single-molecule imaging of IRs will provide better understanding of insulin signal transduction through the dynamics study of IRs in the plasma membrane.

  20. A single cyanobacterial ribotype is associated with both red and black bands on diseased corals from Palau.

    PubMed

    Sussman, Meir; Bourne, David G; Willis, Bette L

    2006-03-23

    Filamentous cyanobacteria forming red and black bands (black band disease, BBD) on 3 scleractinian corals from Palau were molecularly identified as belonging to a single ribotype. Red cyanobacterial mats sampled from infections on Pachyseris speciosa and a massive Porites sp. yielded red strains RMS1 and RMS2 respectively; the black cyanobacterial mat sampled from an infection on Montipora sp. yielded black strain BMS1. Following trials of a range of specialized media and culture conditions, 2 media, Grund and ASN-III, were identified as the best for successful isolation and culturing. Cultured cyanobacteria were examined under a light microscope to establish purity, color and morphological appearance. DNA extraction and partial sequencing of the 16S rDNA gene of both red and black cyanobacterial isolates demonstrated 100% sequence identity. These isolated strains were also found to have 99% sequence identity with an uncultured cyanobacterial strain previously identified by molecular techniques as belonging to a cyanobacterial ribotype associated with BBD-infected corals in the Caribbean. This is the first report of the successful isolation and culture of cyanobacterial strains derived from both red bands and BBD. Based on these findings, it is suggested that the classification of these 2 syndromes as separate coral diseases be postponed until further evidence is collected.

  1. Temporal structure of red jungle fowl crow sequences: single-case analysis.

    PubMed

    Koene, P

    1996-11-01

    Vocalisations can be indicators of the physical state or condition of an animal, for instance the crow of a rooster. There are no published data on the temporal structure of crow sequences. In this paper 536 crows in 22 sequences of one red jungle fowl rooster (rooster 1) were recorded and analysed. Calls were very characteristic and there was little variation between the calls. Rooster 1 crowed with a mean latency of 287 s after onset of a light in the early morning. The average crow sequence consisted of 29 calls which lasted for 1416 ms on average. A gradual increase in pre-call interval was characteristic of each sequence. The variation in note durations is systematic and especially the last note correlated highly with the total call duration. Both the pre-call interval and the duration of the 4th note (doooo) may be parameters of fatigue and thus of physical condition. The number of crows in a sequence was positively related to air pressure outdoors. An experiment is done in which the physical condition of a rooster (rooster 2) is manipulated by food deprivation. The results are analysed with single case randomisation tests. The number of crows in a sequence is significantly reduced after food deprivation, while the pre-call intervals are significantly increased. Prediction of the number of crows in the sequence can be done on base of the pre-call interval of the second call: both rooster 1 and 2 showed long pre-call intervals in short call sequences. Food deprivation and the possible loss of condition have a significant effect on the temporal structure of crow sequences and cause a decrease in the number of crows in a call sequence. PMID:24896081

  2. Ratiometric bimolecular beacons for the sensitive detection of RNA in single living cells.

    PubMed

    Chen, Antony K; Davydenko, Olga; Behlke, Mark A; Tsourkas, Andrew

    2010-08-01

    Numerous studies have utilized molecular beacons (MBs) to image RNA expression in living cells; however, there is growing evidence that the sensitivity of RNA detection is significantly hampered by their propensity to emit false-positive signals. To overcome these limitations, we have developed a new RNA imaging probe called ratiometric bimolecular beacon (RBMB), which combines functional elements of both conventional MBs and siRNA. Analogous to MBs, RBMBs elicit a fluorescent reporter signal upon hybridization to complementary RNA. In addition, an siRNA-like double-stranded domain is used to facilitate nuclear export. Accordingly, live-cell fluorescent imaging showed that RBMBs are localized predominantly in the cytoplasm, whereas MBs are sequestered into the nucleus. The retention of RBMBs within the cytoplasmic compartment led to >15-fold reduction in false-positive signals and a significantly higher signal-to-background compared with MBs. The RBMBs were also designed to possess an optically distinct reference fluorophore that remains unquenched regardless of probe confirmation. This reference dye not only provided a means to track RBMB localization, but also allowed single cell measurements of RBMB fluorescence to be corrected for variations in probe delivery. Combined, these attributes enabled RBMBs to exhibit an improved sensitivity for RNA detection in living cells.

  3. Successful comeback of the single-dose live oral cholera vaccine CVD 103-HgR.

    PubMed

    Herzog, Christian

    2016-01-01

    Effective and easy to administer cholera vaccines are in need more than ever, for at risk populations and travellers alike. In many parts of the world cholera is still endemic, causing outbreaks and constituting repeatedly serious public health problems. The oral live cholera vaccine CVD 103-HgR (Orochol, Mutachol), the first genetically modified organism (GMO) used as vaccine, was in its time (launched 1993, Switzerland) the ideal cholera vaccine: single-dose, protective efficacy of 80-100% against moderate to severe cholera, acting within 8 days and exhibiting excellent safety, indiscernible from placebo. However, there were strong headwinds: In the 1990s the indication for cholera vaccines was generally downplayed by experts and in 1997 the European Commission called for a moratorium of GMOs which blocked the registration in the European Union. Thus, demand for this vaccine remained low and in 2003 it was taken off the market for economic reasons. After a decade in obscurity it (Vaxchora) has resurfaced again, now produced in the U.S. and equipped with a U.S. FDA license (June 10, 2016). What had happened? This commentary gives a critical account of an almost unbelievable string of misadventures, emerging adverse circumstances and man-made failures which nearly killed this single-dose live oral cholera vaccine. The good news is that patience and persistence lead to success in the end, allowing good science to prevail for the benefit of those in need. PMID:27425792

  4. Imaging Single mRNA Dynamics in Live Neurons and Brains.

    PubMed

    Moon, H C; Park, H Y

    2016-01-01

    RNA is a key player in the process of gene expression. Whereas fluorescence in situ hybridization allows single mRNA imaging in fixed cells, the MS2-GFP labeling technique enables the observation of mRNA dynamics in living cells. Recently, two genetically engineered mouse models have been developed for the application of the MS2-GFP system in live animals. First, the Actb-MBS mouse was generated by knocking in 24 repeats of the MS2 stem-loop sequence in the 3' untranslated region of the β-actin gene. Second, the MCP mouse was made to express the NLS-HA-MCP-GFP transgene in all cell types. By crossing Actb-MBS and MCP mice, a double homozygous mouse line, MCP×MBS, was established to visualize endogenous β-actin mRNA labeled with multiple green fluorescent proteins. By imaging hippocampal neurons or brain slices from MCP×MBS mice, the dynamics of mRNA, such as transcription, transport, and localization, can be studied at single mRNA resolution. In this chapter, we explain the basics of MCP×MBS mice and describe methods for utilizing these animals. PMID:27241749

  5. Live cell and immuno-labeling techniques to study gravitational effects on single plant cells.

    PubMed

    Chebli, Youssef; Geitmann, Anja

    2015-01-01

    The constant force of gravity plays a primordial role in the ontogeny of all living organisms. Plants, for example, develop their roots and shoots in accordance with the direction of the gravitational vector. Any change in the magnitude and/or the direction of gravity has an important impact on the development of tissues and cells. In order to understand how the gravitational force affects plant cell growth and differentiation, we established two complementary experimental procedures with which the effect of hyper-gravity on single plant cell development can be assessed. The single model cell system we used is the pollen tube or male gametophyte which, because of its rapid growth behavior, is known for its instant response to external stresses. The physiological response of the pollen tube can be assessed in a quantitative manner based on changes in the composition and spatial distribution of its cell wall components and in the precisely defined pattern of its very dynamic cytoplasmic streaming. Here, we provide a detailed description of the steps required for the immuno-localization of various cell wall components using microwave-assisted techniques and we explain how live imaging of the intracellular traffic can be achieved under hyper-gravity conditions.

  6. Successful comeback of the single-dose live oral cholera vaccine CVD 103-HgR.

    PubMed

    Herzog, Christian

    2016-01-01

    Effective and easy to administer cholera vaccines are in need more than ever, for at risk populations and travellers alike. In many parts of the world cholera is still endemic, causing outbreaks and constituting repeatedly serious public health problems. The oral live cholera vaccine CVD 103-HgR (Orochol, Mutachol), the first genetically modified organism (GMO) used as vaccine, was in its time (launched 1993, Switzerland) the ideal cholera vaccine: single-dose, protective efficacy of 80-100% against moderate to severe cholera, acting within 8 days and exhibiting excellent safety, indiscernible from placebo. However, there were strong headwinds: In the 1990s the indication for cholera vaccines was generally downplayed by experts and in 1997 the European Commission called for a moratorium of GMOs which blocked the registration in the European Union. Thus, demand for this vaccine remained low and in 2003 it was taken off the market for economic reasons. After a decade in obscurity it (Vaxchora) has resurfaced again, now produced in the U.S. and equipped with a U.S. FDA license (June 10, 2016). What had happened? This commentary gives a critical account of an almost unbelievable string of misadventures, emerging adverse circumstances and man-made failures which nearly killed this single-dose live oral cholera vaccine. The good news is that patience and persistence lead to success in the end, allowing good science to prevail for the benefit of those in need.

  7. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging.

    PubMed

    Yan, Jing; Sharo, Andrew G; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2016-09-01

    Biofilms are surface-associated bacterial communities that are crucial in nature and during infection. Despite extensive work to identify biofilm components and to discover how they are regulated, little is known about biofilm structure at the level of individual cells. Here, we use state-of-the-art microscopy techniques to enable live single-cell resolution imaging of a Vibrio cholerae biofilm as it develops from one single founder cell to a mature biofilm of 10,000 cells, and to discover the forces underpinning the architectural evolution. Mutagenesis, matrix labeling, and simulations demonstrate that surface adhesion-mediated compression causes V. cholerae biofilms to transition from a 2D branched morphology to a dense, ordered 3D cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture in V. cholerae biofilms, and this growth pattern is controlled by a single gene, rbmA Competition analyses reveal that the dense growth mode has the advantage of providing the biofilm with superior mechanical properties. Our single-cell technology can broadly link genes to biofilm fine structure and provides a route to assessing cell-to-cell heterogeneity in response to external stimuli. PMID:27555592

  8. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging.

    PubMed

    Yan, Jing; Sharo, Andrew G; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2016-09-01

    Biofilms are surface-associated bacterial communities that are crucial in nature and during infection. Despite extensive work to identify biofilm components and to discover how they are regulated, little is known about biofilm structure at the level of individual cells. Here, we use state-of-the-art microscopy techniques to enable live single-cell resolution imaging of a Vibrio cholerae biofilm as it develops from one single founder cell to a mature biofilm of 10,000 cells, and to discover the forces underpinning the architectural evolution. Mutagenesis, matrix labeling, and simulations demonstrate that surface adhesion-mediated compression causes V. cholerae biofilms to transition from a 2D branched morphology to a dense, ordered 3D cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture in V. cholerae biofilms, and this growth pattern is controlled by a single gene, rbmA Competition analyses reveal that the dense growth mode has the advantage of providing the biofilm with superior mechanical properties. Our single-cell technology can broadly link genes to biofilm fine structure and provides a route to assessing cell-to-cell heterogeneity in response to external stimuli.

  9. Ultrafast Tracking of a Single Live Virion During the Invagination of a Cell Membrane.

    PubMed

    Pan, Yangang; Wang, Shaowen; Shan, Yuping; Zhang, Dinglin; Gao, Jing; Zhang, Min; Liu, Shuheng; Cai, Mingjun; Xu, Haijiao; Li, Guohui; Qin, Qiwei; Wang, Hongda

    2015-06-01

    The first step in most viral infections is the penetration of the cell membrane via endocytosis. However, the underlying mechanism of this important process has not been quantitatively characterized; for example, the velocity and force of a single virion during invagination remain unknown. Here, the endocytosis of a single live virion (Singapore grouper iridovirus, SGIV) through the apical membranes of a host cell is monitored by developing and using a novel ultrafast (at the microsecond level) tracking technique: force tracing. For the first time, these results unambiguously reveal that the maximum velocity during the cell entry of a single SGIV by membrane invagination is approximately 200 nm s(-1), the endocytic force is approximately 60.8 ± 18.5 pN, and the binding energy density increases with the engulfment depth. This report utilizing high temporospatial resolution (subnanometer and microsecond levels) approaches provides new insight into the dynamic process of viral infection via endocytosis and the mechanism of membrane invagination at the single-particle level.

  10. Monitoring Dynamic Protein Expression in Single Living E. Coli. Bacterial Cells by Laser Tweezers Raman Spectroscopy

    SciTech Connect

    Chan, J W; Winhold, H; Corzett, M H; Ulloa, J M; Cosman, M; Balhorn, R; Huser, T

    2007-01-09

    Laser tweezers Raman spectroscopy (LTRS) is a novel, nondestructive, and label-free method that can be used to quantitatively measure changes in cellular activity in single living cells. Here, we demonstrate its use to monitor changes in a population of E. coli cells that occur during overexpression of a protein, the extracellular domain of myelin oligodendrocyte glycoprotein (MOG(1-120)) Raman spectra were acquired of individual E. coli cells suspended in solution and trapped by a single tightly focused laser beam. Overexpression of MOG(1-120) in transformed E. coli Rosetta-Gami (DE3)pLysS cells was induced by addition of isopropyl thiogalactoside (IPTG). Changes in the peak intensities of the Raman spectra from a population of cells were monitored and analyzed over a total duration of three hours. Data was also collected for concentrated purified MOG(1-120) protein in solution, and the spectra compared with that obtained for the MOG(1-120) expressing cells. Raman spectra of individual, living E. coli cells exhibit signatures due to DNA and protein molecular vibrations. Characteristic Raman markers associated with protein vibrations, such as 1257 cm{sup -1}, 1340 cm{sup -1}, 1453 cm{sup -1} and 1660 cm{sup -1}, are shown to increase as a function of time following the addition of IPTG. Comparison of these spectra and the spectra of purified MOG protein indicates that the changes are predominantly due to the induction of MOG protein expression. Protein expression was found to occur mostly within the second hour, with a 470% increase relative to the protein expressed in the first hour. A 230% relative increase between the second and third hour indicates that protein expression begins to level off within the third hour. It is demonstrated that LTRS has sufficient sensitivity for real-time, nondestructive, and quantitative monitoring of biological processes, such as protein expression, in single living cells. Such capabilities, which are not currently available in

  11. Single Molecule Detection in Living Biological Cells using Carbon Nanotube Optical Probes

    NASA Astrophysics Data System (ADS)

    Strano, Michael

    2009-03-01

    Nanoscale sensing elements offer promise for single molecule analyte detection in physically or biologically constrained environments. Molecular adsorption can be amplified via modulation of sharp singularities in the electronic density of states that arise from 1D quantum confinement [1]. Single-walled carbon nanotubes (SWNT), as single molecule optical sensors [2-3], offer unique advantages such as photostable near-infrared (n-IR) emission for prolonged detection through biological media, single-molecule sensitivity and, nearly orthogonal optical modes for signal transduction that can be used to identify distinct classes of analytes. Selective binding to the SWNT surface is difficult to engineer [4]. In this lecture, we will briefly review the immerging field of fluorescent diagnostics using band gap emission from SWNT. In recent work, we demonstrate that even a single pair of SWNT provides at least four optical modes that can be modulated to uniquely fingerprint chemical agents by the degree to which they alter either the emission band intensity or wavelength. We validate this identification method in vitro by demonstrating detection and identification of six genotoxic analytes, including chemotherapeutic drugs and reactive oxygen species (ROS), which are spectroscopically differentiated into four distinct classes. We also demonstrate single-molecule sensitivity in detecting hydrogen peroxide, one of the most common genotoxins and an important cellular signal. Finally, we employ our sensing and fingerprinting method of these analytes in real time within live 3T3 cells, demonstrating the first multiplexed optical detection from a nanoscale biosensor and the first label-free tool to optically discriminate between genotoxins. We will also discuss our recent efforts to fabricate biomedical sensors for real time detection of glucose and other important physiologically relevant analytes in-vivo. The response of embedded SWNT in a swellable hydrogel construct to

  12. Using the dog genome to find single nucleotide polymorphisms in red foxes and other distantly related members of the Canidae.

    PubMed

    Sacks, Benjamin N; Louie, Susan

    2008-01-01

    Single nucleotide polymorphisms (SNP) are the ideal marker for characterizing genomic variation but can be difficult to find in nonmodel species. We explored the usefulness of the dog genome for finding SNPs in distantly related nonmodel canids and evaluated so-ascertained SNPs. Using 40 primer pairs designed from randomly selected bacterial artificial chromosome clones from the dog genome, we successfully sequenced 80-88% of loci in a coyote (Canis latrans), grey fox (Urocyon cinereoargenteus), and red fox (Vulpes vulpes), which compared favourably to a 60% success rate for each species using 10 primer pairs conserved across mammals. Loci were minimally heterogeneous with respect to SNP density, which was similar, overall, in a discovery panel of nine red foxes to that previously reported for a panel of eight wolves (Canis lupus). Additionally, individual heterozygosity was similar across the three canids in this study. However, the proportion of SNP sites shared with the dog decreased with phylogenetic divergence, with no SNPs shared between red foxes and dogs. Density of interspecific SNPs increased approximately linearly with divergence time between species. Using red foxes from three populations, we estimated F(ST) based on each of 42 SNPs and 14 microsatellites and simulated null distributions conditioned on each marker type. Relative to SNPs, microsatellites systematically underestimated F(ST) and produced biased null distributions, indicating that SNPs are superior markers for these functions. By reconstituting the frequency spectrum of SNPs discovered in nine red foxes, we discovered an estimated 77-89% of all SNPs (within the region screened) present in North American red foxes. In sum, these findings indicate that information from the dog genome enables easy ascertainment of random and gene-linked SNPs throughout the Canidae and illustrate the value of SNPs in ecological and evolutionary genetics.

  13. Diffusion dynamics of the Keap1–Cullin3 interaction in single live cells

    SciTech Connect

    Baird, Liam; Dinkova-Kostova, Albena T.

    2013-03-29

    Highlights: ► We developed a quantitative FRAP-based system to study the Keap1–Cul3 interaction. ► We show that Keap1–EGFP and mCherry–Cul3 interact in single live cells. ► We used inducers which target distinct cysteine sensors of Keap1 and differ 4000-fold in potency. ► Inducers cause Nrf2 stabilization, nuclear translocation, and target gene expression. ► Inducers of four different types do not dissociate the Keap1–EGFP:mCherry–Cul3 complex. -- Abstract: Transcription factor NF-E2 p45-related factor 2 (Nrf2) regulates the expression of a network of genes encoding drug-detoxification, anti-inflammatory, and metabolic enzymes, as well as proteins involved in the regulation of cellular redox homeostasis. Under basal conditions, Kelch-like ECH associated protein 1 (Keap1) targets Nrf2 for ubiquitination and proteasomal degradation via association with Cullin3 (Cul3)-based Rbx1 E3 ubiquitin ligase. Various small molecules (inducers) activate Nrf2 leading to upregulation of cytoprotective gene expression. Inducers chemically modify specific cysteine residues of Keap1 which ultimately loses its ability to target Nrf2 for degradation. Dissociation of the Keap1–Cul3 complex by inducers is one possible mechanism, but evidence in single live cells is lacking. To investigate the diffusion dynamics of the Keap1–Cul3 interaction and the effect of inducers, we developed a quantitative fluorescence recovery after photobleaching (FRAP)-based system using Keap1–EGFP and mCherry–Cul3 fusion proteins. We show that Keap1–EGFP and mCherry–Cul3 interact in single live cells. Exposure for 1 h to small-molecule inducers of 4 different types, the oleanane triterpenoid CDDO, the isothiocyanate sulforaphane, the sulfoxythiocarbamate STCA, and the oxidant hydrogen peroxide which target distinct cysteine sensors within Keap1 with potencies which differ by nearly 4000-fold, does not dissociate the Keap1–Cul3 complex. As inducers cause conformational changes

  14. Photothermal monitoring of respiratory chain redox state in single live cells

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitry; Romanovskaya, Tat'yana; Gordiyko, Elena

    2002-06-01

    Due to the central role of respiratory chain (RC) in the metabolism of the cell, much attention has been directed at developing efficient techniques for diagnostics of RC at cell level. Proposed method of direct monitoring of the redox state of RC in single live cells is based on photothermal (PT) measurement of photo-induced thermal phenomena in mitochondrial hemoproteins. Thermal output of absorbed light energy depends upon their redox state (oxidized/reduced). PT microscopy method was applied for experimental studies of two in vitro models: (1) solutions of RC component - cytochrome c - and (2) for mice hepatocytes in suspension. Parameters of PT responses obtained from solution and from single cells after their irradiation with laser pulse (532 nm, 8 ns) were found to be different for oxidized and reduced forms for cytochrome c solutions and for KCN and Antimicine A treated cells in comparison to intact ones. This difference may be caused by alteration of the quantum yields of thermal (non-radiative) relaxation for light absorbing molecules - RC components - as they undergo redox state change under influence of RC inhibitors. Obtained results allow to suggest new approach for monitoring of functional activity of RC in single cell through the measurement of PT response at specific wavelengths.

  15. Visualization of single endogenous polysomes reveals the dynamics of translation in live human cells.

    PubMed

    Pichon, Xavier; Bastide, Amandine; Safieddine, Adham; Chouaib, Racha; Samacoits, Aubin; Basyuk, Eugenia; Peter, Marion; Mueller, Florian; Bertrand, Edouard

    2016-09-12

    Translation is an essential step in gene expression. In this study, we used an improved SunTag system to label nascent proteins and image translation of single messenger ribonucleoproteins (mRNPs) in human cells. Using a dedicated reporter RNA, we observe that translation of single mRNPs stochastically turns on and off while they diffuse through the cytoplasm. We further measure a ribosome density of 1.3 per kilobase and an elongation rate of 13-18 amino acids per second. Tagging the endogenous POLR2A gene revealed similar elongation rates and ribosomal densities and that nearly all messenger RNAs (mRNAs) are engaged in translation. Remarkably, tagging of the heavy chain of dynein 1 (DYNC1H1) shows this mRNA accumulates in foci containing three to seven RNA molecules. These foci are translation sites and thus represent specialized translation factories. We also observe that DYNC1H1 polysomes are actively transported by motors, which may deliver the mature protein at appropriate cellular locations. The SunTag should be broadly applicable to study translational regulation in live single cells. PMID:27597760

  16. Single-Cell, Time-Resolved Antimicrobial Effects of a Highly Cationic, Random Nylon-3 Copolymer on Live Escherichia coli.

    PubMed

    Choi, Heejun; Chakraborty, Saswata; Liu, Runhui; Gellman, Samuel H; Weisshaar, James C

    2016-01-15

    Synthetic random copolymers based on the nylon-3 (β-peptide) backbone show promise as inexpensive antimicrobial agents resistant to proteolysis. We present a time-resolved observational study of the attack of a particular copolymer MM63:CHx37 on single, live Escherichia coli cells. The composition and chain length of MM63:CHx37 (63% cationic subunits, 37% hydrophobic subunits, 35-subunit average length) were optimized to enhance antibacterial activity while minimizing lysis of human red blood cells. For E. coli cells that export GFP to the periplasm, we obtain alternating phase-contrast and green fluorescence images with a time resolution of 12 s over 60 min following initiation of copolymer flow. Within seconds, cells shrink and exhibit the same plasmolysis spaces that occur following abrupt external osmotic upshift. The osmoprotection machinery attempts to replenish cytoplasmic water, but recovery is interrupted by permeabilization of the cytoplasmic membrane (CM) to GFP. Evidently, the highly cationic copolymer and its counterions rapidly translocate across the outer membrane without permeabilizing it to GFP. The CM permeabilization event is spatially localized. Cells whose CM has been permeabilized never recover growth. The minimum inhibitory concentration (MIC) for cells lacking the osmolyte importer ProP is 4-fold smaller than for normal cells, suggesting that osmoprotection is an important survival strategy. In addition, at the time of CM permeabilization, we observe evidence of oxidative stress. The MIC under anaerobic conditions is at least 8-fold larger than under aerobic conditions, further implicating oxidative damage as an important bacteriostatic effect. Once the copolymer reaches the periplasm, multiple growth-halting mechanisms proceed in parallel. PMID:26493221

  17. Single-molecule imaging reveals modulation of cell wall synthesis dynamics in live bacterial cells

    PubMed Central

    Lee, Timothy K.; Meng, Kevin; Shi, Handuo; Huang, Kerwyn Casey

    2016-01-01

    The peptidoglycan cell wall is an integral organelle critical for bacterial cell shape and stability. Proper cell wall construction requires the interaction of synthesis enzymes and the cytoskeleton, but it is unclear how the activities of individual proteins are coordinated to preserve the morphology and integrity of the cell wall during growth. To elucidate this coordination, we used single-molecule imaging to follow the behaviours of the two major peptidoglycan synthases in live, elongating Escherichia coli cells and after perturbation. We observed heterogeneous localization dynamics of penicillin-binding protein (PBP) 1A, the synthase predominantly associated with cell wall elongation, with individual PBP1A molecules distributed between mobile and immobile populations. Perturbations to PBP1A activity, either directly through antibiotics or indirectly through PBP1A's interaction with its lipoprotein activator or other synthases, shifted the fraction of mobile molecules. Our results suggest that multiple levels of regulation control the activity of enzymes to coordinate peptidoglycan synthesis. PMID:27774981

  18. Raman sorting and identification of single living micro-organisms with optical tweezers

    NASA Astrophysics Data System (ADS)

    Xie, Changan; Chen, De; Li, Yong-Qing

    2005-07-01

    We report on a novel technique for sorting and identification of single biological cells and food-borne bacteria based on laser tweezers and Raman spectroscopy (LTRS). With this technique, biological cells of different physiological states in a sample chamber were identified by their Raman spectral signatures and then they were selectively manipulated into a clean collection chamber with optical tweezers through a microchannel. As an example, we sorted the live and dead yeast cells into the collection chamber and validated this with a standard staining technique. We also demonstrated that bacteria existing in spoiled foods could be discriminated from a variety of food particles based on their characteristic Raman spectra and then isolated with laser manipulation. This label-free LTRS sorting technique may find broad applications in microbiology and rapid examination of food-borne diseases.

  19. Tracking surface glycans on live cancer cells with single molecule sensitivity**

    PubMed Central

    Jiang, Hao; English, Brian P.; Hazan, Rachel B.; Wu, Peng

    2015-01-01

    Using a combination of metabolically labeled glycans, bioorthogonal Cu(I)-catalyzed azide-alkyne cycloaddition and controlled bleaching of fluorescent probes conjugated to azide or alkyne tagged glycans, we achieve a sufficiently low spatial density of dye labeled glycans enabling dynamic single-molecule tracking and super-resolution imaging of N-linked sialic acids and O-linked GalNAc on the membrane of live cells. Analysis of the trajectories of these dye labeled glycans in mammary cancer cells reveal constrained diffusion of both N- and O-linked glycans which we interpret as reflecting the mobility of the glycan rather than caused by transient immobilization due to spatial inhomogeneities on the plasma membrane. Stochastic optical reconstruction microscopy (STORM) imaging reveals the structure of dynamic membrane nanotubes. PMID:25515330

  20. Intracellular uptake, trafficking and subcellular distribution of folate conjugated single walled carbon nanotubes within living cells

    NASA Astrophysics Data System (ADS)

    Kang, Bin; Yu, De-cai; Chang, Shu-quan; Chen, Da; Dai, Yao-dong; Ding, Yitao

    2008-09-01

    Herein we studied the uptake, trafficking and distribution of folate conjugated single walled carbon nanotubes (SWNTs) within living cells. SWNTs were noncovalently functionalized with chitosan and then linked with folate acid and fluorescence dye Alexa Fluor 488 (denoted FA-SWNTs). Hep G2 cells were cultured in vitro and incubated with FA-SWNTs at different levels. The FA-SWNTs exhibited a concentration-dependent uptake within Hep G2 cells, and Hep G2 cells were able to internalize FA-SWNTs via a folate receptor-mediated pathway. The distribution of nanotubes inside cells demonstrated that the FA-SWNTs only locate in the cytoplasm and not in nuclei, indicating the failure of transporting through the nuclear envelope. Transmission electron microscope (TEM) results showed the presence of FA-SWNTs in lysosomes and the discharge to extracellular space after incubation with nanotubes for 5 h. No obvious cellular death rate was observed when the concentration of nanotubes was below 50 µg ml-1. However, cells with FA-SWNT uptake showed a concentration-dependent apoptosis. These discoveries might be helpful for understanding the interaction of SWNTs and living cells.

  1. Quantitative imaging of single mRNA splice variants in living cells

    NASA Astrophysics Data System (ADS)

    Lee, Kyuwan; Cui, Yi; Lee, Luke P.; Irudayaraj, Joseph

    2014-06-01

    Alternative messenger RNA (mRNA) splicing is a fundamental process of gene regulation, and errors in RNA splicing are known to be associated with a variety of different diseases. However, there is currently a lack of quantitative technologies for monitoring mRNA splice variants in cells. Here, we show that a combination of plasmonic dimer probes and hyperspectral imaging can be used to detect and quantify mRNA splice variants in living cells. The probes are made from gold nanoparticles functionalized with oligonucleotides and can hybridize to specific mRNA sequences, forming nanoparticle dimers that exhibit distinct spectral shifts due to plasmonic coupling. With this approach, we show that the spatial and temporal distribution of three selected splice variants of the breast cancer susceptibility gene, BRCA1, can be monitored at single-copy resolution by measuring the hybridization dynamics of the nanoplasmonic dimers. Our study provides insights into RNA and its transport in living cells, which could improve our understanding of cellular protein complexes, pharmacogenomics, genetic diagnosis and gene therapies.

  2. Live cell imaging combined with high-energy single-ion microbeam

    NASA Astrophysics Data System (ADS)

    Guo, Na; Du, Guanghua; Liu, Wenjing; Guo, Jinlong; Wu, Ruqun; Chen, Hao; Wei, Junzhe

    2016-03-01

    DNA strand breaks can lead to cell carcinogenesis or cell death if not repaired rapidly and efficiently. An online live cell imaging system was established at the high energy microbeam facility at the Institute of Modern Physics to study early and fast cellular response to DNA damage after high linear energy transfer ion radiation. The HT1080 cells expressing XRCC1-RFP were irradiated with single high energy nickel ions, and time-lapse images of the irradiated cells were obtained online. The live cell imaging analysis shows that strand-break repair protein XRCC1 was recruited to the ion hit position within 20 s in the cells and formed bright foci in the cell nucleus. The fast recruitment of XRCC1 at the ion hits reached a maximum at about 200 s post-irradiation and then was followed by a slower release into the nucleoplasm. The measured dual-exponential kinetics of XRCC1 protein are consistent with the proposed consecutive reaction model, and the measurements obtained that the reaction rate constant of the XRCC1 recruitment to DNA strand break is 1.2 × 10-3 s-1 and the reaction rate constant of the XRCC1 release from the break-XRCC1 complex is 1.2 × 10-2 s-1.

  3. Face liveness detection from a single image via diffusion speed model.

    PubMed

    Wonjun Kim; Sungjoo Suh; Jae-Joon Han

    2015-08-01

    Spoofing using photographs or videos is one of the most common methods of attacking face recognition and verification systems. In this paper, we propose a real-time and nonintrusive method based on the diffusion speed of a single image to address this problem. In particular, inspired by the observation that the difference in surface properties between a live face and a fake one is efficiently revealed in the diffusion speed, we exploit antispoofing features by utilizing the total variation flow scheme. More specifically, we propose defining the local patterns of the diffusion speed, the so-called local speed patterns, as our features, which are input into the linear SVM classifier to determine whether the given face is fake or not. One important advantage of the proposed method is that, in contrast to previous approaches, it accurately identifies diverse malicious attacks regardless of the medium of the image, e.g., paper or screen. Moreover, the proposed method does not require any specific user action. Experimental results on various data sets show that the proposed method is effective for face liveness detection as compared with previous approaches proposed in studies in the literature. PMID:25879944

  4. Live cell imaging combined with high-energy single-ion microbeam.

    PubMed

    Guo, Na; Du, Guanghua; Liu, Wenjing; Guo, Jinlong; Wu, Ruqun; Chen, Hao; Wei, Junzhe

    2016-03-01

    DNA strand breaks can lead to cell carcinogenesis or cell death if not repaired rapidly and efficiently. An online live cell imaging system was established at the high energy microbeam facility at the Institute of Modern Physics to study early and fast cellular response to DNA damage after high linear energy transfer ion radiation. The HT1080 cells expressing XRCC1-RFP were irradiated with single high energy nickel ions, and time-lapse images of the irradiated cells were obtained online. The live cell imaging analysis shows that strand-break repair protein XRCC1 was recruited to the ion hit position within 20 s in the cells and formed bright foci in the cell nucleus. The fast recruitment of XRCC1 at the ion hits reached a maximum at about 200 s post-irradiation and then was followed by a slower release into the nucleoplasm. The measured dual-exponential kinetics of XRCC1 protein are consistent with the proposed consecutive reaction model, and the measurements obtained that the reaction rate constant of the XRCC1 recruitment to DNA strand break is 1.2 × 10(-3) s(-1) and the reaction rate constant of the XRCC1 release from the break-XRCC1 complex is 1.2 × 10(-2) s(-1). PMID:27036791

  5. Dynamics of Chikungunya Virus Cell Entry Unraveled by Single-Virus Tracking in Living Cells

    PubMed Central

    Hoornweg, Tabitha E.; van Duijl-Richter, Mareike K. S.; Ayala Nuñez, Nilda V.; Albulescu, Irina C.; van Hemert, Martijn J.

    2016-01-01

    ABSTRACT Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne human pathogen causing major outbreaks in Africa, Asia, and the Americas. The cell entry pathway hijacked by CHIKV to infect a cell has been studied previously using inhibitory compounds. There has been some debate on the mechanism by which CHIKV enters the cell: several studies suggest that CHIKV enters via clathrin-mediated endocytosis, while others show that it enters independently of clathrin. Here we applied live-cell microscopy and monitored the cell entry behavior of single CHIKV particles in living cells transfected with fluorescent marker proteins. This approach allowed us to obtain detailed insight into the dynamic events that occur during CHIKV entry. We observed that almost all particles fused within 20 min after addition to the cells. Of the particles that fused, the vast majority first colocalized with clathrin. The average time from initial colocalization with clathrin to the moment of membrane fusion was 1.7 min, highlighting the rapidity of the cell entry process of CHIKV. Furthermore, these results show that the virus spends a relatively long time searching for a receptor. Membrane fusion was observed predominantly from within Rab5-positive endosomes and often occurred within 40 s after delivery to endosomes. Furthermore, we confirmed that a valine at position 226 of the E1 protein enhances the cholesterol-dependent membrane fusion properties of CHIKV. To conclude, our work confirms that CHIKV enters cells via clathrin-mediated endocytosis and shows that fusion occurs from within acidic early endosomes. IMPORTANCE Since its reemergence in 2004, chikungunya virus (CHIKV) has spread rapidly around the world, leading to millions of infections. CHIKV often causes chikungunya fever, a self-limiting febrile illness with severe arthralgia. Currently, no vaccine or specific antiviral treatment against CHIKV is available. A potential antiviral strategy is to interfere with the cell

  6. Single-Chromophore-Based Photoswitchable Nanoparticles Enable Dual-Alternating-Color Fluorescence for Unambiguous Live Cell Imaging

    PubMed Central

    Tian, Zhiyuan; Wu, Wuwei; Wan, Wei; Li, Alexander D. Q.

    2009-01-01

    We have developed a class of spiropyran dyes and their fluorescence colors can be reversibly photoswitched from red color to green, blue, or nearly dark, thus alternating between two colors. Such individual dyes emit either one color or the other, but not both simultaneously. These photoswitchable dyes-enabled nanoparticles, however, emit either one pure color or a combination of both colors because the nanoparticle fluorescence originates from multiple dyes therein. As a result, the nanoparticle shines >30 times brighter than the state-of-the-art organic dyes such as fluorescein. Interestingly, these copolymer nanoparticles exhibit tunable non-specific interactions with live cells and nanoparticles containing properly balanced butyl acrylate and acrylamide monomers render essentially very little non-specific binding to live cells. Decorated with HMGA1 protein, these optically switchable dual-color nanoparticles undergo endocytosis and unambiguously identify themselves from fluorescence interference including autofluorescence, thus enabling a new tool for live cell imaging. PMID:19275146

  7. In situ observation of photo-bleaching in human single living cell excited by a NIR femtosecond laser

    NASA Astrophysics Data System (ADS)

    Cho, Sung-Hak; Chang, Won-Seok; Kim, Jae-Goo; Whang, Kyoung-Hyun; Choi, Kyeong-Sook; Sohn, Seong-Hyang

    2008-03-01

    The photo-bleaching of single living cells excited by femtosecond laser irradiation was observed in situ to study the nonlinear interaction between ultrafast laser pulses and living human breast MDA-MB-231 cells. We conducted a systematic study of the energy dependence of plasma-mediated photo-disruption of fluorescently labeled subcellular structures in the nucleus of living cells using near-infrared (NIR) femtosecond laser pulses through a numerical aperture objective lens (0.75 NA). The behavior of photo-bleached living cells with fluorescently labeled nuclei was observed for 18 h after femtosecond laser irradiation under a fluorescence microscope. The photo-bleaching of single living cells without cell disruption occurred at between 470 and 630 nJ. To study the photo-disruption of subcellular organelles in single living cells using the nonlinear absorption excited by a NIR femtosecond laser pulse, the process of photo-bleaching without photo-disruption provides key information for clarifying the nonlinear interaction between NIR ultrashort, high-intensity laser light and transparent fluorescently labeled living cells.

  8. Hemoglobin Aggregation in Single Red Blood Cells of Sickle Cell Anemia

    NASA Astrophysics Data System (ADS)

    Nishio, Izumi; Tanaka, Toyoichi; Sun, Shao-Tang; Imanishi, Yuri; Tsuyoshi Ohnishi, S.

    1983-06-01

    A laser light scattering technique was used to observe the extent of hemoglobin aggregation in solitary red blood cells of sickle cell anemia. Hemoglobin aggregation was confirmed in deoxygenated cells. The light scattering technique can also be applied to cytoplasmic studies of any biological cell.

  9. Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band.

    PubMed

    Zaske, Sebastian; Lenhard, Andreas; Becher, Christoph

    2011-06-20

    We report on single photon frequency downconversion from the red part of the spectrum (738 nm) to the telecommunications C-band. By mixing attenuated laser pulses with an average photon number per pulse < 1 with a strong continuous light field at 1403 nm in a periodically poled Zn:LiNbO3 ridge waveguide an internal conversion efficiency of ∼ 73% is achieved. We further investigate the noise properties of the process by measuring the output spectrum. Our results indicate that by narrow spectral filtering a quantum interface should be feasible which bridges the wavelength gap between quantum emitters like color centers in diamond emitting in the red part of the spectrum and low-loss fiber-optic telecommunications wavelengths.

  10. In Silico Model-Driven Assessment of the Effects of Single Nucleotide Polymorphisms (SNPs) on Human Red Blood Cell Metabolism

    PubMed Central

    Jamshidi, Neema; Wiback, Sharon J.; Palsson, Bernhard Ø.

    2002-01-01

    The completion of the human genome project and the construction of single nucleotide polymorphism (SNP) maps have lead to significant efforts to find SNPs that can be linked to pathophysiology. In silico models of complete biochemical reaction networks relate a cell's individual reactions to the function of the entire network. Sequence variations can in turn be related to kinetic properties of individual enzymes, thus allowing an in silico model-driven assessment of the effects of defined SNPs on overall cellular functions. This process is applied to defined SNPs in two key enzymes of human red blood cell metabolism: glucose-6-phosphate dehydrogenase and pyruvate kinase. The results demonstrate the utility of in silico models in providing insight into differences between red cell function in patients with chronic and nonchronic anemia. In silico models of complex cellular processes are thus likely to aid in defining and understanding key SNPs in human pathophysiology. PMID:12421755

  11. Spectroscopic study of red-light-emitting centers in K2Al2B2O7: Fe single crystals

    NASA Astrophysics Data System (ADS)

    Ogorodnikov, I. N.; Pustovarov, V. A.; Yakovlev, S. A.; Isaenko, L. I.

    2013-04-01

    We report on spectroscopic study of red-light-emitting centers in K2Al2B2O7 (KABO) single crystals containing ca. 2 ppm of Fe3+. Owing to the low Fe3+-concentration, KABO does not show noticeable absorption due to Fe3+d-d-transitions in the visible spectral region, but it exhibits the charge-transfer (CT) UV-absorption bands O-Fe at 4.7, 5.7 and 6.5 eV. The red photoluminescence at 1.675 eV (FWHM = 0.173 eV) is due to intracenter 4T1 (4G) → 6A1 (6S) transitions in Fe3+ ions. Because of partial overlapping of the fundamental absorption edge of the crystal, where mobile excitons are created, and a broad CT absorption band at 6.5 eV, the most intensive red emission occurs at 7 K upon excitation in the excitonic energy region. The presence of two nonequivalent Al2O7 clusters in KABO lattice provides two different types of red-light-emitting centers in the form of Fe3+ ion occupied the Al3+ tetrahedral site. Superposition of their luminescence bands determines both the spectrum and temperature dependence of red emission in KABO at T = 7-80 K: two bands with the ratio of intensities of ca. 2:1 are 20 meV-shifted relative to each other; two-stage thermal quenching obeys the Mott law with ET = 9 and 20 meV.

  12. Revealing nonergodic dynamics in living cells from a single particle trajectory.

    PubMed

    Lanoiselée, Yann; Grebenkov, Denis S

    2016-05-01

    We propose the improved ergodicity and mixing estimators to identify nonergodic dynamics from a single particle trajectory. The estimators are based on the time-averaged characteristic function of the increments and can thus capture additional information on the process as compared to the conventional time-averaged mean-square displacement. The estimators are first investigated and validated for several models of anomalous diffusion, such as ergodic fractional Brownian motion and diffusion on percolating clusters, and nonergodic continuous-time random walks and scaled Brownian motion. The estimators are then applied to two sets of earlier published trajectories of mRNA molecules inside live Escherichia coli cells and of Kv2.1 potassium channels in the plasma membrane. These statistical tests did not reveal nonergodic features in the former set, while some trajectories of the latter set could be classified as nonergodic. Time averages along such trajectories are thus not representative and may be strongly misleading. Since the estimators do not rely on ensemble averages, the nonergodic features can be revealed separately for each trajectory, providing a more flexible and reliable analysis of single-particle tracking experiments in microbiology.

  13. Single-molecule imaging of electroporated dye-labelled CheY in live Escherichia coli

    PubMed Central

    Di Paolo, Diana; Afanzar, Oshri; Armitage, Judith P.; Berry, Richard M.

    2016-01-01

    For the past two decades, the use of genetically fused fluorescent proteins (FPs) has greatly contributed to the study of chemotactic signalling in Escherichia coli including the activation of the response regulator protein CheY and its interaction with the flagellar motor. However, this approach suffers from a number of limitations, both biological and biophysical: for example, not all fusions are fully functional when fused to a bulky FP, which can have a similar molecular weight to its fused counterpart; they may interfere with the native interactions of the protein and the chromophores of FPs have low brightness and photostability and fast photobleaching rates. A recently developed technique for the electroporation of fluorescently labelled proteins in live bacteria has enabled us to bypass these limitations and study the in vivo behaviour of CheY at the single-molecule level. Here we show that purified CheY proteins labelled with organic dyes can be internalized into E. coli cells in controllable concentrations and imaged with video fluorescence microscopy. The use of this approach is illustrated by showing single CheY molecules diffusing within cells and interacting with the sensory clusters and the flagellar motors in real time. This article is part of the themed issue ‘The new bacteriology’. PMID:27672145

  14. Revealing nonergodic dynamics in living cells from a single particle trajectory

    NASA Astrophysics Data System (ADS)

    Lanoiselée, Yann; Grebenkov, Denis S.

    2016-05-01

    We propose the improved ergodicity and mixing estimators to identify nonergodic dynamics from a single particle trajectory. The estimators are based on the time-averaged characteristic function of the increments and can thus capture additional information on the process as compared to the conventional time-averaged mean-square displacement. The estimators are first investigated and validated for several models of anomalous diffusion, such as ergodic fractional Brownian motion and diffusion on percolating clusters, and nonergodic continuous-time random walks and scaled Brownian motion. The estimators are then applied to two sets of earlier published trajectories of mRNA molecules inside live Escherichia coli cells and of Kv2.1 potassium channels in the plasma membrane. These statistical tests did not reveal nonergodic features in the former set, while some trajectories of the latter set could be classified as nonergodic. Time averages along such trajectories are thus not representative and may be strongly misleading. Since the estimators do not rely on ensemble averages, the nonergodic features can be revealed separately for each trajectory, providing a more flexible and reliable analysis of single-particle tracking experiments in microbiology.

  15. Single-molecule imaging of electroporated dye-labelled CheY in live Escherichia coli.

    PubMed

    Di Paolo, Diana; Afanzar, Oshri; Armitage, Judith P; Berry, Richard M

    2016-11-01

    For the past two decades, the use of genetically fused fluorescent proteins (FPs) has greatly contributed to the study of chemotactic signalling in Escherichia coli including the activation of the response regulator protein CheY and its interaction with the flagellar motor. However, this approach suffers from a number of limitations, both biological and biophysical: for example, not all fusions are fully functional when fused to a bulky FP, which can have a similar molecular weight to its fused counterpart; they may interfere with the native interactions of the protein and the chromophores of FPs have low brightness and photostability and fast photobleaching rates. A recently developed technique for the electroporation of fluorescently labelled proteins in live bacteria has enabled us to bypass these limitations and study the in vivo behaviour of CheY at the single-molecule level. Here we show that purified CheY proteins labelled with organic dyes can be internalized into E. coli cells in controllable concentrations and imaged with video fluorescence microscopy. The use of this approach is illustrated by showing single CheY molecules diffusing within cells and interacting with the sensory clusters and the flagellar motors in real time.This article is part of the themed issue 'The new bacteriology'. PMID:27672145

  16. Opto-injection into single living cells by femtosecond near-infrared laser

    NASA Astrophysics Data System (ADS)

    Peng, Cheng

    This dissertation presents a novel technique to deliver membrane impermeable molecules into single living cells with the assistance of femtosecond (fs) near-infrared (NIR) laser pulses. This approach merges ultrafast laser technology with key biological, biomedical, and medical applications, such as gene transfection, gene therapy and drug delivery. This technique promises several major advantages, namely, very high transfection efficiency, high cell survival rate (≈100%) and fully preserved cell viabilities. It is also a promising method to deliver molecules into cells that are difficult or even completely resistant to established physical methods, such as microinjection by glass pipettes, electroporation, and biolistics. In this work, the system for fs NIR opto-injection was designed and built. Successful fs NIR opto-injection has been performed on several cell systems including single mammalian cells (bovine aortic endothelial cells), marine animal eggs (Spisula solidissima oocytes), and human cancer cells (fibrosarcoma HT1080) cultured in a tissue-like environment. The connections between laser parameters and cell responses were explored through further experiments and in-depth analyses, especially the relationship between dye uptake rate and incident laser intensity, and the relationship between pore size created on cell membranes and incident laser intensity. Dye uptake rate of the target cells was observed to depend on incident laser intensity. Pore size was found dependent on incident laser intensity. The conclusion was made that laser-induced breakdown and plasma-induced ablation in cell membrane are the physical principles that govern the process of fs NIR opto-injection.

  17. Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Claude Boccara, A.; Bourdieu, Laurent

    2011-11-01

    Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.

  18. Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy.

    PubMed

    Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Boccara, A Claude; Bourdieu, Laurent

    2011-11-01

    Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.

  19. Developing new optical imaging techniques for single particle and molecule tracking in live cells

    SciTech Connect

    Sun, Wei

    2010-01-01

    Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of phase contrast and dark field microscopies. In this work, DIC was utilized to study dynamic biological processes including endocytosis and intracellular transport in live cells. The suitability of DIC microscopy for single particle tracking in live cells was first demonstrated by using DIC to monitor the entire endocytosis process of one mesoporous silica nanoparticle (MSN) into a live mammalian cell. By taking advantage of the optical sectioning ability of DIC, we recorded the depth profile of the MSN during the endocytosis process. The shape change around the nanoparticle due to the formation of a vesicle was also captured. DIC microscopy was further modified that the sample can be illuminated and imaged at two wavelengths simultaneously. By using the new technique, noble metal nanoparticles with different shapes and sizes were selectively imaged. Among all the examined metal nanoparticles, gold nanoparticles in rod shapes were found to be especially useful. Due to their anisotropic optical properties, gold nanorods showed as diffraction-limited spots with disproportionate bright and dark parts that are strongly dependent on their orientation in the 3D space. Gold nanorods were developed as orientation nanoprobes and were successfully used to report the self-rotation of gliding microtubules on kinesin coated substrates. Gold nanorods were further used to study the rotational motions of cargoes during the endocytosis and intracellular transport processes in live mammalian

  20. Single-molecule motions and interactions in live cells reveal target search dynamics in mismatch repair

    PubMed Central

    Liao, Yi; Schroeder, Jeremy W.; Gao, Burke; Simmons, Lyle A.; Biteen, Julie S.

    2015-01-01

    MutS is responsible for initiating the correction of DNA replication errors. To understand how MutS searches for and identifies rare base-pair mismatches, we characterized the dynamic movement of MutS and the replisome in real time using superresolution microscopy and single-molecule tracking in living cells. We report that MutS dynamics are heterogeneous in cells, with one MutS population exploring the nucleoid rapidly, while another MutS population moves to and transiently dwells at the replisome region, even in the absence of appreciable mismatch formation. Analysis of MutS motion shows that the speed of MutS is correlated with its separation distance from the replisome and that MutS motion slows when it enters the replisome region. We also show that mismatch detection increases MutS speed, supporting the model for MutS sliding clamp formation after mismatch recognition. Using variants of MutS and the replication processivity clamp to impair mismatch repair, we find that MutS dynamically moves to and from the replisome before mismatch binding to scan for errors. Furthermore, a block to DNA synthesis shows that MutS is only capable of binding mismatches near the replisome. It is well-established that MutS engages in an ATPase cycle, which is necessary for signaling downstream events. We show that a variant of MutS with a nucleotide binding defect is no longer capable of dynamic movement to and from the replisome, showing that proper nucleotide binding is critical for MutS to localize to the replisome in vivo. Our results provide mechanistic insight into the trafficking and movement of MutS in live cells as it searches for mismatches. PMID:26575623

  1. Resonance Raman study of the oxygenation cycle of optically trapped single red blood cells in a microfluidic system

    NASA Astrophysics Data System (ADS)

    Ramser, Kerstin; Logg, Katarina; Enger, Jonas; Goksor, Mattias; Kall, Mikael; Hanstorp, Dag

    2004-10-01

    The average environmental response of red blood cells (RBCs) is routinely measured in ensemble studies, but in such investigations valuable information on the single cell level is obscured. In order to elucidate this hidden information is is important to enable the selection of single cells with certain properties while subsequent dynamics triggered by environmental stimulation are recorded in real time. It is also desirable to manipulate and control the cells under phsyiological conditions. As shown here, this can be achieved by combining optical tweezers with a confocal Raman set-up equipped with a microfluidic system. A micro-Raman set-up is combined with an optical trap with separate optical paths, lasers and objectives, which enables the acquisition of resonance Raman profils of single RBCs. The microfluidic system, giving full control over the media surrounding the cell, consists of a pattern of channels and reservoirs produced by electron beam lithography and moulded in PDMS. Fresh Hepes buffer or buffer containing sodium dithionite are transported through the channels using electro-osmotic flow, while the direct Raman response of the single optically trapped RBC is registered in another reservoir in the middle of the channel. Thus, it is possible to monitor the oxygenation cycle in a single cell and to study photo-induced chemistry. This experimental set-up has high potential for monitoring the drug response or conformational changes caused by other environmental stimuli for many types of single functional cells since "in vivo" conditions can be created.

  2. Photochromic conversion in a red/green cyanobacteriochrome from Synechocystis PCC6803: quantum yields in solution and photoswitching dynamics in living E. coli cells.

    PubMed

    Pennacchietti, Francesca; Losi, Aba; Xu, Xiu-ling; Zhao, Kai-hong; Gärtner, Wolfgang; Viappiani, Cristiano; Cella, Francesca; Diaspro, Alberto; Abbruzzetti, Stefania

    2015-02-01

    The protein encoded by the gene slr1393 from the cyanobacterium Synechocystis sp. PCC6803 (Slr1393) is composed of three GAF domains, a PAS domain, and a histidine kinase motif. The third GAF domain (referred to as GAF3) was previously characterized as the sole domain in this protein, being able to carry phycocyanobilin (PCB) as the chromophore and to accomplish photochemistry. GAF3 shows photochromicity, and is able to switch between a red-absorbing parental state (GAF3R, λmax = 649 nm) and a green-absorbing photoproduct state (GAF3G, λmax = 536 nm) upon appropriate irradiation. In this study we have determined the photochemical quantum yields for the interconversion between both forms using two methods: an "absolute" method and a reference-based control. The latter is a comparative procedure which exploits a well-characterized blue-light photoreceptor, YtvA from Bacillus subtilis, and the cyanobacterial phytochrome Cph1 as actinometers. The former is an ad hoc developed, four laser-based setup where two cw lasers provide the pump beams to induce photoswitching (red to green and green to red, respectively) and two cw lasers simultaneously monitor the appearance and disappearance of the two species. Interestingly, fit analysis of the recorded transient absorbance changes provided a quantum yield for the green → red conversion (≈0.3) at least three times larger than for the red → green conversion (≈0.08). These data are in agreement with the results from the comparative method documenting the usefulness of the 'direct' method developed here for quantum yields' determination. The light-induced switching capability of this photochromic protein allowed measuring the kinetics of GAF3 immobilized on a glass plate, and within living, overexpressing Escherichia coli cells. PMID:25358617

  3. Origin of the red sites and energy transfer rates in single MEH-PPV chains at low temperature.

    PubMed

    Feist, Florian A; Zickler, Martin F; Basché, Thomas

    2011-06-01

    Single poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) molecules dispersed in thin poly(methylmethacrylate) films have been investigated by fluorescence emission, excitation and time-resolved spectroscopy at 1.2 K. For the molecular weight studied (∼200 kDa) a bimodal distribution of emission maxima is observed. Based on a comparison of the spectroscopic properties of blue and red sites and on polarisation-resolved measurements, we argue in agreement with recent quantum-chemical calculations that the red subpopulation most probably does not arise from interchromophoric excitation delocalisation but is to be attributed to longer chromophoric units originating from ordered regions of a polymer chain, where due to constraints on the chain conformation larger conjugation lengths can be realised. In excitation spectra within the red spectral region we can identify multiple chromophoric units, among them chromophores without correspondence in the emission spectrum-donors of the intramolecular energy transfer. Zero-phonon lines of donor chromophores proved to be significantly broadened, indicating fast excited-state population decay due to energy transfer. Thus, a distribution of energy transfer times within MEH-PPV chains could be determined from donor zero-phonon line widths, with an average value of 3.9 ps. Our study represents the first direct measurement of energy transfer times in conjugated polymers, parameters that are crucial for the performance of many technical applications based on this class of material. PMID:21472962

  4. Genome Sequences of Polyomaviruses from the Wild-Living Red Colobus (Piliocolobus badius) and Western Chimpanzee (Pan troglodytes verus)

    PubMed Central

    Ben Salem, Nicole; Leendertz, Fabian H.

    2016-01-01

    We identified with PCR and sequencing the full genomes of the recently discovered Pan troglodytes verus polyomavirus 8 and Piliocolobus badius polyomavirus 2 in a western chimpanzee and a western red colobus free-ranging in Taï National Park of Côte d’Ivoire. PMID:27738028

  5. Imaging of single mRNA molecules moving within a living cell nucleus

    SciTech Connect

    Tadakuma, Hisashi; Ishihama, Yo; Shibuya, Toshiharu; Tani, Tokio; Funatsu, Takashi . E-mail: funatsu@mail.ecc.u-tokyo.ac.jp

    2006-06-09

    In eukaryotic cells, pre-mRNAs are transcribed in the nucleus, processed by 5' capping, 3'-polyadenylation, and splicing, and exported to the cytoplasm for translation. To examine the nuclear mRNA transport mechanism, intron-deficient mRNAs of truncated {beta}-globin and EGFP were synthesized, fluorescently labeled in vitro, and injected into the nucleus of living Xenopus A6 cells. The trajectories of single mRNA molecules in the nucleus were visualized using video-rate confocal microscopy. Approximately half the mRNAs moved by Brownian motion in the nucleoplasm, except the nucleoli, with an apparent diffusion coefficient of 0.2 {mu}m{sup 2}/s, about 1/150 of that in water. The slow diffusion could not be explained by simple diffusion obeying the Stokes-Einstein equation, suggesting interactions of the mRNAs with nuclear components. The remaining mRNAs were stationary with an average residence time of about 30 s, comparable to the time required for mRNA diffusion from the site of synthesis to nuclear pores.

  6. Quasi-elastic light scattering studies of membrane motion in single red blood cells.

    PubMed Central

    Tishler, R B; Carlson, F D

    1987-01-01

    Studies of red blood cells (RBCs) and RBC ghosts, using a quasi-elastic light scattering (QELS) microscope spectrometer, have identified the membrane as the primary source of the light scattering signal. This is the first report in which motion of the cell membrane has been demonstrated to be the primary source of the QELS signal from a cell. Cytoplasmic changes induced in the RBC by varying the osmotic strength of the medium were also detected using this technique. Comparison of the data from white blood cells (WBCs) with the RBC data demonstrated significant differences between different types of cells. PMID:3607216

  7. Duration of immunity in red wolves (Canis rufus) following vaccination with a modified live parvovirus and canine distemper vaccine.

    PubMed

    Anderson, Kadie; Case, Allison; Woodie, Kathleen; Waddell, William; Reed, Holly H

    2014-09-01

    There is growing information available regarding duration of immunity for core vaccines in both domestic and nondomestic species. Vaccination protocols in nondomestic canids have frequently followed guidelines developed for the domestic dog; however, these protocols can be inappropriate for nondomestic canids such as the African wild dog (Lycaon pictus), leaving some animals susceptible to infectious disease and others at risk for contracting vaccine-induced disease. In this study, red wolves (Canis rufus) were vaccinated against canine distemper virus (CDV) and canine parvovirus (CPV) and vaccination titers were followed annually for 3 yr. One hundred percent of wolves developed and maintained a positive titer to CDV for 3 yr and 96.9% of wolves developed and maintained a positive titer to CPV for 3 yr. Seroconversion for canine adenovirus was sporadic. The results of this study support decreasing the frequency of vaccine administration in the red wolf population to a triennial basis. PMID:25314821

  8. Duration of immunity in red wolves (Canis rufus) following vaccination with a modified live parvovirus and canine distemper vaccine.

    PubMed

    Anderson, Kadie; Case, Allison; Woodie, Kathleen; Waddell, William; Reed, Holly H

    2014-09-01

    There is growing information available regarding duration of immunity for core vaccines in both domestic and nondomestic species. Vaccination protocols in nondomestic canids have frequently followed guidelines developed for the domestic dog; however, these protocols can be inappropriate for nondomestic canids such as the African wild dog (Lycaon pictus), leaving some animals susceptible to infectious disease and others at risk for contracting vaccine-induced disease. In this study, red wolves (Canis rufus) were vaccinated against canine distemper virus (CDV) and canine parvovirus (CPV) and vaccination titers were followed annually for 3 yr. One hundred percent of wolves developed and maintained a positive titer to CDV for 3 yr and 96.9% of wolves developed and maintained a positive titer to CPV for 3 yr. Seroconversion for canine adenovirus was sporadic. The results of this study support decreasing the frequency of vaccine administration in the red wolf population to a triennial basis.

  9. Biocompatible photoresistant far-red emitting, fluorescent polymer probes, with near-infrared two-photon absorption, for living cell and zebrafish embryo imaging.

    PubMed

    Adjili, Salim; Favier, Arnaud; Fargier, Guillaume; Thomas, Audrey; Massin, Julien; Monier, Karine; Favard, Cyril; Vanbelle, Christophe; Bruneau, Sylvia; Peyriéras, Nadine; Andraud, Chantal; Muriaux, Delphine; Charreyre, Marie-Thérèse

    2015-04-01

    Exogenous probes with far-red or near-infrared (NIR) two-photon absorption and fluorescence emission are highly desirable for deep tissue imaging while limiting autofluorescence. However, molecular probes exhibiting such properties are often hydrophobic. As an attractive alternative, we synthesized water-soluble polymer probes carrying multiple far-red fluorophores and demonstrated here their potential for live cell and zebrafish embryo imaging. First, at concentrations up to 10 μm, these polymer probes were not cytotoxic. They could efficiently label living HeLa cells, T lymphocytes and neurons at an optimal concentration of 0.5 μm. Moreover, they exhibited a high resistance to photobleaching in usual microscopy conditions. In addition, these polymer probes could be successfully used for in toto labeling and in vivo two-photon microscopy imaging of developing zebrafish embryos, with remarkable properties in terms of biocompatibility, internalization, diffusion, stability and wavelength emission range. The near-infrared two-photon absorption peak at 910 nm is particularly interesting since it does not excite the zebrafish endogenous fluorescence and is likely to enable long-term time-lapse imaging with limited photodamage.

  10. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting.

    PubMed

    Bajar, Bryce T; Wang, Emily S; Lam, Amy J; Kim, Bongjae B; Jacobs, Conor L; Howe, Elizabeth S; Davidson, Michael W; Lin, Michael Z; Chu, Jun

    2016-01-01

    Many genetically encoded biosensors use Förster resonance energy transfer (FRET) to dynamically report biomolecular activities. While pairs of cyan and yellow fluorescent proteins (FPs) are most commonly used as FRET partner fluorophores, respectively, green and red FPs offer distinct advantages for FRET, such as greater spectral separation, less phototoxicity, and lower autofluorescence. We previously developed the green-red FRET pair Clover and mRuby2, which improves responsiveness in intramolecular FRET reporters with different designs. Here we report the engineering of brighter and more photostable variants, mClover3 and mRuby3. mClover3 improves photostability by 60% and mRuby3 by 200% over the previous generation of fluorophores. Notably, mRuby3 is also 35% brighter than mRuby2, making it both the brightest and most photostable monomeric red FP yet characterized. Furthermore, we developed a standardized methodology for assessing FP performance in mammalian cells as stand-alone markers and as FRET partners. We found that mClover3 or mRuby3 expression in mammalian cells provides the highest fluorescence signals of all jellyfish GFP or coral RFP derivatives, respectively. Finally, using mClover3 and mRuby3, we engineered an improved version of the CaMKIIα reporter Camuiα with a larger response amplitude. PMID:26879144

  11. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting

    PubMed Central

    Bajar, Bryce T.; Wang, Emily S.; Lam, Amy J.; Kim, Bongjae B.; Jacobs, Conor L.; Howe, Elizabeth S.; Davidson, Michael W.; Lin, Michael Z.; Chu, Jun

    2016-01-01

    Many genetically encoded biosensors use Förster resonance energy transfer (FRET) to dynamically report biomolecular activities. While pairs of cyan and yellow fluorescent proteins (FPs) are most commonly used as FRET partner fluorophores, respectively, green and red FPs offer distinct advantages for FRET, such as greater spectral separation, less phototoxicity, and lower autofluorescence. We previously developed the green-red FRET pair Clover and mRuby2, which improves responsiveness in intramolecular FRET reporters with different designs. Here we report the engineering of brighter and more photostable variants, mClover3 and mRuby3. mClover3 improves photostability by 60% and mRuby3 by 200% over the previous generation of fluorophores. Notably, mRuby3 is also 35% brighter than mRuby2, making it both the brightest and most photostable monomeric red FP yet characterized. Furthermore, we developed a standardized methodology for assessing FP performance in mammalian cells as stand-alone markers and as FRET partners. We found that mClover3 or mRuby3 expression in mammalian cells provides the highest fluorescence signals of all jellyfish GFP or coral RFP derivatives, respectively. Finally, using mClover3 and mRuby3, we engineered an improved version of the CaMKIIα reporter Camuiα with a larger response amplitude. PMID:26879144

  12. A Single-center Experience in Splenic Diffuse Red Pulp Lymphoma Diagnosis.

    PubMed

    Julhakyan, Hunan L; Al-Radi, L S; Moiseeva, T N; Danishyan, K I; Kovrigina, A M; Glebova, S M; Lugovskaya, S A; Dvirnik, V N; Khvastunova, A N; Yakutik, I A; Savchenko, V G

    2016-08-01

    The World Health Organization 2008 classification highlighted a new nosology-splenic diffuse red pulp lymphoma (SDRPL) with clinical and laboratory features similar to both splenic marginal zone lymphoma and hairy cell leukemia (HCL) and variant form of HCL. Experience of hematologists on the diagnosis and differential diagnosis of SDRPL is extremely limited. The aim of our report was to characterize the clinical and immunomorphologic features of SDRPL on our own observations. During 2013-2014, in National Research Center for Hematology, 87 spleen specimens removed from various B-cell lymphomas were analyzed. In four (4.6%) cases, the diagnosis SDRPL was made based on morphologic, immunohistochemical, immunophenotypic, molecular examination of spleen biopsies, blood and bone marrow samples. In all cases of SDRPL were observed significant splenomegaly, lymphocytosis from 56% to 94% (in two cases with leukocytosis 55.000 and 75.000 109/l). The circulating "villous" lymphocytes phenotype was CD20+ (bright), CD11c+/±, CD103 (weakly)+/±, LAIR-1+, CD25-, CD5-, CD10-, and CD23-. Mutation BRAFV600E was not detected. Bone marrow with minor lymphoid CD20+, CD25-, Annexin1-, Cyclin D1- cell infiltration. The average weight of the spleen was 3900 g (1450-9500 g), and morphologically, there was revealed lymphoid infiltration of red pulp with phenotype CD20+, DBA.44+, CD25-, Annexin1-, Cyclin D1-, CD103-, CD123-, CD27-, focal SD11c± and TRAP±. Now patients are observed in remission: two patients after splenectomy, two after splenectomy and cladribine+rituximab chemotherapy. SRDPL-a rare lymphoma that is suspected in the cases with significant splenomegaly and lymphocytosis with villous lymphocytes forms that have only a part of the classic markers HCL, with minor bone marrow infiltration. The standard diagnosis and treatment is splenectomy. Differential diagnosis of SMZL and HCL has clear criteria, but criteria of differentiation with variant HCL are still unknown. PMID

  13. Intracellular Calcium Gradients in Single Living Cells: Measurement and Analysis by Optical and Digital Techniques

    NASA Astrophysics Data System (ADS)

    Yelamarty, Rao Viswanadha

    Intracellular calcium (Ca^{2+ }) has been considered as a regulator of many cellular processes. In addition, Ca^{2+ } also plays a key role in mediating actions of many hormones, growth factors, and drugs. This thesis describes two general approaches, digital video and photomultiplier (PMT) based fluorescence microscopic systems, to measure such Ca^{2+} changes throughout the cell. They reveal the heterogeneous spatial and fast temporal changes of Ca^{2+} within a single isolated living cell. In order to measure spatial Ca^ {2+} in three dimensions (3-D), optical section microscopy (OSM) coupled to digital video imaging is introduced. With this approach, an increase in nuclear Ca^{2+} compared to cytosolic Ca^{2+} is detected in human erythroblasts and rat hepatocytes under the addition of growth factors: erythropoietin and epidermal growth factor respectively. In addition, the primary effect of non growth-promoting hormone vasopressin, raise in cytosolic Ca^{2+}, is also observed. These observations are the first to underscore the importance of nuclear Ca^{2+} increase in cell growth and differentiation. On the other hand, to track fast Ca^ {2+} transients (mesc) during excitation -contraction (EC) cycle and then examine alterations in Ca^{2+} transients in healthy and diseased (hypertensive) heart cells, a PMT based system is implemented. Significant alterations in Ca^{2+} transients in hypertensive heart cells were observed. This finding is compatible with the clinical finding that patients with hypertensive cardiomyopathy suffer a lack of adequate relaxation. Finally, to correlate the Ca^{2+} dynamics in an EC cycle with mechanical activity, a hybrid optical digital processor was developed. The performance of the hybrid processor is analyzed and applied simultaneously with the PMT based system. The mechanical contraction and relaxation of a single cardiac cell closely paralleled that of Ca^{2+} dynamics during an EC cycle. In summary, this thesis illustrates

  14. Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation.

    PubMed

    Hayot, Céline M; Forouzesh, Elham; Goel, Ashwani; Avramova, Zoya; Turner, Joseph A

    2012-04-01

    Plant development results from controlled cell divisions, structural modifications, and reorganizations of the cell wall. Thereby, regulation of cell wall behaviour takes place at multiple length scales involving compositional and architectural aspects in addition to various developmental and/or environmental factors. The physical properties of the primary wall are largely determined by the nature of the complex polymer network, which exhibits time-dependent behaviour representative of viscoelastic materials. Here, a dynamic nanoindentation technique is used to measure the time-dependent response and the viscoelastic behaviour of the cell wall in single living cells at a micron or sub-micron scale. With this approach, significant changes in storage (stiffness) and loss (loss of energy) moduli are captured among the tested cells. The results reveal hitherto unknown differences in the viscoelastic parameters of the walls of same-age similarly positioned cells of the Arabidopsis ecotypes (Col 0 and Ws 2). The technique is also shown to be sensitive enough to detect changes in cell wall properties in cells deficient in the activity of the chromatin modifier ATX1. Extensive computational modelling of the experimental measurements (i.e. modelling the cell as a viscoelastic pressure vessel) is used to analyse the influence of the wall thickness, as well as the turgor pressure, at the positions of our measurements. By combining the nanoDMA technique with finite element simulations quantifiable measurements of the viscoelastic properties of plant cell walls are achieved. Such techniques are expected to find broader applications in quantifying the influence of genetic, biological, and environmental factors on the nanoscale mechanical properties of the cell wall.

  15. Measurement of Separase Proteolytic Activity in Single Living Cells by a Fluorogenic Flow Cytometry Assay

    PubMed Central

    Haaß, Wiltrud; Kleiner, Helga; Müller, Martin C.; Hofmann, Wolf-Karsten; Fabarius, Alice; Seifarth, Wolfgang

    2015-01-01

    ESPL1/Separase, an endopeptidase, is required for centrosome duplication and separation of sister-chromatides in anaphase of mitosis. Overexpression and deregulated proteolytic activity of Separase as frequently observed in human cancers is associated with the occurrence of supernumerary centrosomes, chromosomal missegregation and aneuploidy. Recently, we have hypothesized that increased Separase proteolytic activity in a small subpopulation of tumor cells may serve as driver of tumor heterogeneity and clonal evolution in chronic myeloid leukemia (CML). Currently, there is no quantitative assay to measure Separase activity levels in single cells. Therefore, we have designed a flow cytometry-based assay that utilizes a Cy5- and rhodamine 110 (Rh110)-biconjugated Rad21 cleavage site peptide ([Cy5-D-R-E-I-M-R]2-Rh110) as smart probe and intracellular substrate for detection of Separase enzyme activity in living cells. As measured by Cy5 fluorescence the cellular uptake of the fluorogenic peptide was fast and reached saturation after 210 min of incubation in human histiocytic lymphoma U937 cells. Separase activity was recorded as the intensity of Rh110 fluorescence released after intracellular peptide cleavage providing a linear signal gain within a 90–180 min time slot. Compared to conventional cell extract-based methods the flow cytometric assay delivers equivalent results but is more reliable, bypasses the problem of vague loading controls and unspecific proteolysis associated with whole cell extracts. Especially suited for the investigaton of blood- and bone marrow-derived hematopoietic cells the flow cytometric Separase assay allows generation of Separase activity profiles that tell about the number of Separase positive cells within a sample i.e. cells that currently progress through mitosis and about the range of intercellular variation in Separase activity levels within a cell population. The assay was used to quantify Separase proteolytic activity in leukemic

  16. Wear Fast, Die Young: More Worn Teeth and Shorter Lives in Iberian Compared to Scottish Red Deer

    PubMed Central

    Pérez-Barbería, F. J.; Carranza, J.; Sánchez-Prieto, C.

    2015-01-01

    Teeth in Cervidae are permanent structures that are not replaceable or repairable; consequently their rate of wear, due to the grinding effect of food and dental attrition, affects their duration and can determine an animal's lifespan. Tooth wear is also a useful indicator of accumulative life energy investment in intake and mastication and their interactions with diet. Little is known regarding how natural and sexual selection operate on dental structures within a species in contrasting environments and how these relate to life history traits to explain differences in population rates of tooth wear and longevity. We hypothesised that populations under harsh environmental conditions should be selected for more hypsodont teeth while sexual selection may maintain similar sex differences within different populations. We investigated the patterns of tooth wear in males and females of Iberian red deer (Cervus elaphus hispanicus) in Southern Spain and Scottish red deer (C. e. scoticus) across Scotland, that occur in very different environments, using 10343 samples from legal hunting activities. We found higher rates of both incisor and molar wear in the Spanish compared to Scottish populations. However, Scottish red deer had larger incisors at emergence than Iberian red deer, whilst molars emerged at a similar size in both populations and sexes. Iberian and Scottish males had earlier tooth depletion than females, in support of a similar sexual selection process in both populations. However, whilst average lifespan for Iberian males was 4 years shorter than that for Iberian females and Scottish males, Scottish males only showed a reduction of 1 year in average lifespan with respect to Scottish females. More worn molars were associated with larger mandibles in both populations, suggesting that higher intake and/or greater investment in food comminution may have favoured increased body growth, before later loss of tooth efficiency due to severe wear. These results

  17. Wear Fast, Die Young: More Worn Teeth and Shorter Lives in Iberian Compared to Scottish Red Deer.

    PubMed

    Pérez-Barbería, F J; Carranza, J; Sánchez-Prieto, C

    2015-01-01

    Teeth in Cervidae are permanent structures that are not replaceable or repairable; consequently their rate of wear, due to the grinding effect of food and dental attrition, affects their duration and can determine an animal's lifespan. Tooth wear is also a useful indicator of accumulative life energy investment in intake and mastication and their interactions with diet. Little is known regarding how natural and sexual selection operate on dental structures within a species in contrasting environments and how these relate to life history traits to explain differences in population rates of tooth wear and longevity. We hypothesised that populations under harsh environmental conditions should be selected for more hypsodont teeth while sexual selection may maintain similar sex differences within different populations. We investigated the patterns of tooth wear in males and females of Iberian red deer (Cervus elaphus hispanicus) in Southern Spain and Scottish red deer (C. e. scoticus) across Scotland, that occur in very different environments, using 10343 samples from legal hunting activities. We found higher rates of both incisor and molar wear in the Spanish compared to Scottish populations. However, Scottish red deer had larger incisors at emergence than Iberian red deer, whilst molars emerged at a similar size in both populations and sexes. Iberian and Scottish males had earlier tooth depletion than females, in support of a similar sexual selection process in both populations. However, whilst average lifespan for Iberian males was 4 years shorter than that for Iberian females and Scottish males, Scottish males only showed a reduction of 1 year in average lifespan with respect to Scottish females. More worn molars were associated with larger mandibles in both populations, suggesting that higher intake and/or greater investment in food comminution may have favoured increased body growth, before later loss of tooth efficiency due to severe wear. These results

  18. Humoral immune responses are maintained with age in a long-lived ectotherm, the red-eared slider turtle.

    PubMed

    Zimmerman, Laura M; Clairardin, Sandrine G; Paitz, Ryan T; Hicke, Justin W; LaMagdeleine, Katie A; Vogel, Laura A; Bowden, Rachel M

    2013-02-15

    Aging is typically associated with a decrease in immune function. However, aging does not affect each branch of the immune system equally. Because of these varying effects of age on immune responses, aging could affect taxa differently based on how the particular taxon employs its resources towards different components of immune defense. An example of this is found in the humoral immune system. Specific responses tend to decrease with age while non-specific, natural antibody responses increase with age. Compared with mammals, reptiles of all ages have a slower and less robust humoral immune system. Therefore, they may invest more in non-specific responses and thus avoid the negative consequences of age on the immune system. We examined how the humoral immune system of reptiles is affected by aging and investigated the roles of non-specific, natural antibody responses and specific responses by examining several characteristics of antibodies against lipopolysaccharide (LPS) in the red-eared slider turtle. We found very little evidence of immunosenescence in the humoral immune system of the red-eared slider turtle, Trachemys scripta, which supports the idea that non-specific, natural antibody responses are an important line of defense in reptiles. Overall, this demonstrates that a taxon's immune strategy can influence how the immune system is affected by age.

  19. Voriconazole Disposition After Single and Multiple, Oral Doses in Healthy, Adult Red-tailed Hawks ( Buteo jamaicensis ).

    PubMed

    Gentry, Jordan; Montgerard, Christy; Crandall, Elizabeth; Cruz-Espindola, Crisanta; Boothe, Dawn; Bellah, Jamie

    2014-09-01

    Voriconazole is effective for treatment of aspergillosis, a common disease in captive red-tailed hawks ( Buteo jamaicensis ). To determine the disposition and safety of voriconazole after single and multiple, oral doses, 12 adult red-tailed hawks were studied in 2 phases. In phase 1, each bird received a single dose of voriconazole solution (10 mg/kg) by gavage. Blood samples were collected at 0, 0.5, 1, 3, 6, 9, 12, 16, 24, and 36 hours after treatment. In phase 2, each of 8 birds received voriconazole oral solution at 10 mg/kg PO q12h for 14 days. Plasma samples were collected on days 0, 5, and 10 and after the final dose and were processed as in phase 1. Plasma samples were submitted for analysis of voriconazole levels by high-performance liquid chromatography and ultraviolet spectrophotometry and for measurement of selected plasma biochemical parameters. After single dosing, voriconazole concentrations reached a (mean ± SD) peak (Cmax) of 4.7 ± 1.3 μg/mL at 2.0 ± 1.2 hours. The disappearance half-life (t1/2) was 2.8 ± 0.7 hours, and the mean residence time (MRT) was 4.6 ± 0.9 hours. After the last dose at 14 days, the mean Cmax of voriconazole was 4.5 ± 2.7 μg/mL at 2.4 ± 1.1 hours. The t1/2 was 2.1 ± 0.8 hours, and the MRT was 3.5 ± 1.1 hours. Although concentrations of several plasma biochemical parameters were significantly different at study end compared with prestudy concentrations, only plasma creatine kinase activity was outside the reference range. No adverse reactions were observed in any of the birds. After both single and multiple dosing at 10 mg/kg, voriconazole concentrations exceeded the minimum inhibitory concentration to inhibit 90% (MIC90) of Aspergillus species (1 μg/mL) by at least fourfold and remained above the MIC90 for 8.8 ± 1.1 hours after single dosing versus 6.5 ± 1.5 hours after multiple dosing (P = .003). This difference suggests that more frequent dosing (eg, up to q8h) may be necessary to maintain target

  20. [Growth and red luminescence suppression of gamma-Cu I single crystal].

    PubMed

    Cai, Zu-Xu; Gu, Mu; Liu, Xiao-Lin; Liu, Bo; Huang, Shi-Ming; Ni, Chen

    2013-02-01

    Transparent gamma-Cu I crystal with size about 9 mm x 9 mm x 1 mm was grown by using optimized solvent evaporation method with gamma-Cu I powders as raw material and acetonitrile as solvent. The results of Rutherford backscattering spectrometry (RBS) showed that the proportions of copper and iodine in as-grown gamma-Cu I crystal were 53.1 and 46.9 mol%, respectively. By iodine doping into growth solution, the proportions of copper and iodine were adjusted to 50.4 and 49.6 mol%, respectively. Photoluminescence (PL) showed that the as-grown gamma-Cu I crystal had an emission at 410 nm and an emission band around 720 nm. After iodine doping, the emission band around 720 nm was suppressed while other two weak emissions at 424 and 474 nm appeared. X-ray excited luminescence (XEL) showed that the as-grown gamma-Cu I crystal had an emission at 435 nm and an emission band around 720 nm. After iodine doping, the emission band around 720 nm was suppressed. Comparing the emission spectra before and after iodine doping, it is clear that red luminescence in gamma-Cu I crystal could be suppressed by iodine doping. The effect originated from the reduction of iodine vacancy in the crystal, but not from the iodine adsorbtion on the surface.

  1. Raman spectroscopic monitoring of the bioeffects of nitroglycerin on Hb-O II in single red blood cell

    NASA Astrophysics Data System (ADS)

    Chiang, Huihua Kenny; Ruan, Hung-Shiang; Cheng, Hung-You; Fang, Tung-Ting

    2007-02-01

    Raman spectroscopy has been shown to have the potential for providing oxygenated ability of erythrocytes. Raman line at 1638 cm-1 has also been reported as one significant oxygenic indicator for erythrocytes. In this research, we develop the Raman spectroscopic monitoring of the bioeffects of Nitroglycerin on hemoglobin oxygen saturation in a single red blood cell (RBC). Nitroglycerin has been frequently used in the management of angina pectoris. Nitroglycerin liberates nitric oxide (NO) to blood vessels. NO is an oxidizer that easily converts hemoglobin to methemoglobin. The conversion may cause the decrease of oxygenated ability of erythrocytes. In this study, we observed the oxidize state of erythrocytes caused by the over dosage of Nitroglycerin. When the dose of Nitroglycerin exceeds 2x10 -4 M, the oxygenic state of erythrocytes decreases significantly. The Raman spectroscopic results demonstrate the observation of the bioeffects of Nitroglycerin on hemoglobin.

  2. A single enhancer regulating the differential expression of duplicated red-sensitive opsin genes in zebrafish.

    PubMed

    Tsujimura, Taro; Hosoya, Tomohiro; Kawamura, Shoji

    2010-12-16

    A fundamental step in the evolution of the visual system is the gene duplication of visual opsins and differentiation between the duplicates in absorption spectra and expression pattern in the retina. However, our understanding of the mechanism of expression differentiation is far behind that of spectral tuning of opsins. Zebrafish (Danio rerio) have two red-sensitive cone opsin genes, LWS-1 and LWS-2. These genes are arrayed in a tail-to-head manner, in this order, and are both expressed in the long member of double cones (LDCs) in the retina. Expression of the longer-wave sensitive LWS-1 occurs later in development and is thus confined to the peripheral, especially ventral-nasal region of the adult retina, whereas expression of LWS-2 occurs earlier and is confined to the central region of the adult retina, shifted slightly to the dorsal-temporal region. In this study, we employed a transgenic reporter assay using fluorescent proteins and P1-artificial chromosome (PAC) clones encompassing the two genes and identified a 0.6-kb "LWS-activating region" (LAR) upstream of LWS-1, which regulates expression of both genes. Under the 2.6-kb flanking upstream region containing the LAR, the expression pattern of LWS-1 was recapitulated by the fluorescent reporter. On the other hand, when LAR was directly conjugated to the LWS-2 upstream region, the reporter was expressed in the LDCs but also across the entire outer nuclear layer. Deletion of LAR from the PAC clones drastically lowered the reporter expression of the two genes. These results suggest that LAR regulates both LWS-1 and LWS-2 by enhancing their expression and that interaction of LAR with the promoters is competitive between the two genes in a developmentally restricted manner. Sharing a regulatory region between duplicated genes could be a general way to facilitate the expression differentiation in duplicated visual opsins.

  3. Measurement of ethanol formation in single living cells of Chlamydomonas reinhardtii using synchrotron Fourier Transform Infrared spectromicroscopy

    SciTech Connect

    Goff, Kira L.; Quaroni, Luca; Pedersen, Tor; Wilson, Kenneth E.

    2010-02-03

    We demonstrate the capability of Fourier-Transform Infra-Red (FITR) spectroscopy to detect metabolite formation by the unicellular algae Chlamydomonas reinhardtii in solution. We show that using a synchrotron source in the microscopy configuration provides a sufficient s/n ratio to detect small molecular species accumulating at a single cell, allowing an increased sensitivity relative to measurements of bulk cultures. The formation of small molecular species, including ethanol and at least one carbonyl containing compound, can be detected with a time resolution of the order of one minute.

  4. Understanding subcellular function on the nanometer scale in real time: Single-molecule imaging in living bacteria

    NASA Astrophysics Data System (ADS)

    Biteen, Julie

    It has long been recognized that microorganisms play a central role in our lives. By beating the diffraction limit that restricts traditional light microscopy, single-molecule fluorescence imaging is a precise, noninvasive way to sensitively probe position and dynamics, even in living cells. We are pioneering this super-resolution imaging method for unraveling important biological processes in live bacteria, and I will discuss how we infer function from subcellular dynamics (Tuson and Biteen, Analytical Chemistry 2015). In particular, we have understood the mechanism of membrane-bound transcription regulation in the pathogenic Vibrio cholerae, revealed an intimate and dynamic coupling between DNA mismatch recognition and DNA replication, and measured starch utilization in an important member of the human gut microbiome.

  5. Retrospective detection by negative contrast electron microscopy of faecal viral particles in free-living wild red squirrels (Sciurus vulgaris) with suspected enteropathy in Great Britain.

    PubMed

    Everest, D J; Stidworthy, M F; Milne, E M; Meredith, A L; Chantrey, J; Shuttleworth, C; Blackett, T; Butler, H; Wilkinson, M; Sainsbury, A W

    2010-12-25

    Transmission electron microscopy identified adenovirus particles in 10 of 70 (14.3 per cent) samples of large intestinal content collected at postmortem examination from free-living wild red squirrels (Sciurus vulgaris) across Great Britain between 2000 and 2009. Examination was limited to cases in which an enteropathy was suspected on the basis of predetermined macroscopic criteria such as semi-solid or diarrhoeic faeces, suspected enteritis or the presence of intussusception. In most cases, meaningful histological examination of enteric tissue was not possible due to pronounced autolysis. Two (2.9 per cent) of the samples were negative for adenovirus but were found to contain rotavirus particles, a novel finding in this species.

  6. Properties of 62x nm red-emitting single-mode diode lasers

    NASA Astrophysics Data System (ADS)

    Paschke, K.; Pohl, J.; Feise, D.; Blume, G.; Erbert, G.

    2014-02-01

    Single-mode lasers in the spectral region between 620 nm and 630 nm are still realized using complex laser systems, such as ring-dye laser or using non-linear frequency shifted lasers, when used in applications such as laser cooling of beryllium ions or spectroscopy on rare earth elements. Direct emitting AlGaInP based diode lasers offer a much simpler approach to this wavelength range, but so far lack a suitable beam quality and spectral purity. Recently distributed Bragg reflector (DBR) ridge waveguide lasers (RWL) were developed for the 630 nm to 640 nm region. Building on this knowledge CAMFR simulations were performed to find suitable grating periods and duty cycles to obtain emission wavelengths below 630 nm. The grating itself was then introduced by stepper lithography and reactive ion etching into the laser structure. The manufactured DBR-RWLs show laser emission at 628.5 nm and 626.5 nm at a temperature of 15°C with threshold currents below 150 mA. The spectral emission shows single-mode operation with side mode suppression ratios > 20 dB. Two DBR-RWLs with the shorter wavelength were packaged into sealed TO-3 housings to provide a small-sized non-condensing environment with temperatures down to -25°C. When cooled internally to about 0°C, an emitted power of more than 50 mW was measured at a wavelength of 626.0 nm. At this operation point a diffraction-limited single longitudinal mode was observed that allowed a heterodyne measurement where a spectral width below 1 MHz was obtained. These new diode lasers have the potential to drastically miniaturize existing set-ups for quantum information processing.

  7. Essential Role of an Unusually Long-lived Tyrosyl Radical in the Response to Red Light of the Animal-like Cryptochrome aCRY.

    PubMed

    Oldemeyer, Sabine; Franz, Sophie; Wenzel, Sandra; Essen, Lars-Oliver; Mittag, Maria; Kottke, Tilman

    2016-07-01

    Cryptochromes constitute a group of flavin-binding blue light receptors in bacteria, fungi, plants, and insects. Recently, the response of cryptochromes to light was extended to nearly the entire visible spectral region on the basis of the activity of the animal-like cryptochrome aCRY in the green alga Chlamydomonas reinhardtii This finding was explained by the absorption of red light by the flavin neutral radical as the dark state of the receptor, which then forms the anionic fully reduced state. In this study, time-resolved UV-visible spectroscopy on the full-length aCRY revealed an unusually long-lived tyrosyl radical with a lifetime of 2.6 s, which is present already 1 μs after red light illumination of the flavin radical. Mutational studies disclosed the tyrosine 373 close to the surface to form the long-lived radical and to be essential for photoreduction. This residue is conserved exclusively in the sequences of other putative aCRY proteins distinguishing them from conventional (6-4) photolyases. Size exclusion chromatography showed the full-length aCRY to be a dimer in the dark at 0.5 mm injected concentration with the C-terminal extension as the dimerization site. Upon illumination, partial oligomerization was observed via disulfide bridge formation at cysteine 482 in close proximity to tyrosine 373. The lack of any light response in the C-terminal extension as evidenced by FTIR spectroscopy differentiates aCRY from plant and Drosophila cryptochromes. These findings imply that aCRY might have evolved a different signaling mechanism via a light-triggered redox cascade culminating in photooxidation of a yet unknown substrate or binding partner. PMID:27189948

  8. Using bespoke fluorescence microscopy to study the soft condensed matter of living cells at the single molecule level

    NASA Astrophysics Data System (ADS)

    Xue, Q.; Harriman, O.; Leake, M. C.

    2011-03-01

    The use of bespoke imaging tools and analysis can offer significant insight into the living counterpart of soft condensed matter. The soft matter of biological systems consists of molecular building blocks, a staple of which is protein. Protein molecules, so small that 1 billion would fit on the full-stop at the end of this sentence, carry out most of the vital activities in living cells. Many of these processes require the assembly of multiple proteins into remarkable biological machines. Obtaining the blueprints for the architecture of these machines is essential for understanding the workings of the cell. Here, we discuss recent biological physics experiments on functional single-celled organisms in which one can apply bespoke fluorescence microscopy imaging and analysis to monitor the number and dynamics of several different proteins at the nanometre length scale to a precision of single molecules.

  9. Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light

    PubMed Central

    Ooi, Amanda; Wong, Aloysius; Ng, Tien Khee; Marondedze, Claudius; Gehring, Christoph; Ooi, Boon S.

    2016-01-01

    Indoor horticulture offers a sensible solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available horticultural lighting is suboptimal, and therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. They are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Furthermore, laser beams can be tailored to match the absorption profiles of different plant species. We have developed a prototype laser growth chamber and demonstrate that plants grown under laser illumination can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs reported previously. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteome data show that the single-wavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture. PMID:27659906

  10. Imaging Live Cells at the Nanometer-Scale with Single-Molecule Microscopy: Obstacles and Achievements in Experiment Optimization for Microbiology

    PubMed Central

    Haas, Beth L.; Matson, Jyl S.; DiRita, Victor J.; Biteen, Julie S.

    2015-01-01

    Single-molecule fluorescence microscopy enables biological investigations inside living cells to achieve millisecond- and nanometer-scale resolution. Although single-molecule-based methods are becoming increasingly accessible to non-experts, optimizing new single-molecule experiments can be challenging, in particular when super-resolution imaging and tracking are applied to live cells. In this review, we summarize common obstacles to live-cell single-molecule microscopy and describe the methods we have developed and applied to overcome these challenges in live bacteria. We examine the choice of fluorophore and labeling scheme, approaches to achieving single-molecule levels of fluorescence, considerations for maintaining cell viability, and strategies for detecting single-molecule signals in the presence of noise and sample drift. We also discuss methods for analyzing single-molecule trajectories and the challenges presented by the finite size of a bacterial cell and the curvature of the bacterial membrane. PMID:25123183

  11. Exploring transduction mechanisms of protein transduction domains (PTDs) in living cells utilizing single-quantum dot tracking (SQT) technology.

    PubMed

    Suzuki, Yasuhiro

    2012-01-01

    Specific protein domains known as protein transduction domains (PTDs) can permeate cell membranes and deliver proteins or bioactive materials into living cells. Various approaches have been applied for improving their transduction efficacy. It is, therefore, crucial to clarify the entry mechanisms and to identify the rate-limiting steps. Because of technical limitations for imaging PTD behavior on cells with conventional fluorescent-dyes, how PTDs enter the cells has been a topic of much debate. Utilizing quantum dots (QDs), we recently tracked the behavior of PTD that was derived from HIV-1 Tat (TatP) in living cells at the single-molecule level with 7-nm special precision. In this review article, we initially summarize the controversy on TatP entry mechanisms; thereafter, we will focus on our recent findings on single-TatP-QD tracking (SQT), to identify the major sequential steps of intracellular delivery in living cells and to discuss how SQT can easily provide direct information on TatP entry mechanisms. As a primer for SQT study, we also discuss the latest findings on single particle tracking of various molecules on the plasma membrane. Finally, we discuss the problems of QDs and the challenges for the future in utilizing currently available QD probes for SQT. In conclusion, direct identification of the rate-limiting steps of PTD entry with SQT should dramatically improve the methods for enhancing transduction efficiency. PMID:22368485

  12. Transverse mechanical properties of cell walls of single living plant cells probed by laser-generated acoustic waves.

    PubMed

    Gadalla, Atef; Dehoux, Thomas; Audoin, Bertrand

    2014-05-01

    Probing the mechanical properties of plant cell wall is crucial to understand tissue dynamics. However, the exact symmetry of the mechanical properties of this anisotropic fiber-reinforced composite remains uncertain. For this reason, biologically relevant measurements of the stiffness coefficients on individual living cells are a challenge. For this purpose, we have developed the single-cell optoacoustic nanoprobe (SCOPE) technique, which uses laser-generated acoustic waves to probe the stiffness, thickness and viscosity of live single-cell subcompartments. This all-optical technique offers a sub-micrometer lateral resolution, nanometer in-depth resolution, and allows the non-contact measurement of the mechanical properties of live turgid tissues without any assumption of mechanical symmetry. SCOPE experiments reveal that single-cell wall transverse stiffness in the direction perpendicular to the epidermis layer of onion cells is close to that of cellulose. This observation demonstrates that cellulose microfibrils are the main load-bearing structure in this direction, and suggests strong bonding of microfibrils by hemicelluloses. Altogether our measurement of the viscosity at high frequencies suggests that the rheology of the wall is dominated by glass-like dynamics. From a comparison with literature, we attribute this behavior to the influence of the pectin matrix. SCOPE's ability to unravel cell rheology and cell anisotropy defines a new class of experiments to enlighten cell nano-mechanics.

  13. Transverse mechanical properties of cell walls of single living plant cells probed by laser-generated acoustic waves.

    PubMed

    Gadalla, Atef; Dehoux, Thomas; Audoin, Bertrand

    2014-05-01

    Probing the mechanical properties of plant cell wall is crucial to understand tissue dynamics. However, the exact symmetry of the mechanical properties of this anisotropic fiber-reinforced composite remains uncertain. For this reason, biologically relevant measurements of the stiffness coefficients on individual living cells are a challenge. For this purpose, we have developed the single-cell optoacoustic nanoprobe (SCOPE) technique, which uses laser-generated acoustic waves to probe the stiffness, thickness and viscosity of live single-cell subcompartments. This all-optical technique offers a sub-micrometer lateral resolution, nanometer in-depth resolution, and allows the non-contact measurement of the mechanical properties of live turgid tissues without any assumption of mechanical symmetry. SCOPE experiments reveal that single-cell wall transverse stiffness in the direction perpendicular to the epidermis layer of onion cells is close to that of cellulose. This observation demonstrates that cellulose microfibrils are the main load-bearing structure in this direction, and suggests strong bonding of microfibrils by hemicelluloses. Altogether our measurement of the viscosity at high frequencies suggests that the rheology of the wall is dominated by glass-like dynamics. From a comparison with literature, we attribute this behavior to the influence of the pectin matrix. SCOPE's ability to unravel cell rheology and cell anisotropy defines a new class of experiments to enlighten cell nano-mechanics. PMID:24615232

  14. Phenotypic and Genotypic Comparison of Symbiotic and Free-Living Cyanobacteria from a Single Field Site

    PubMed Central

    West, N. J.; Adams, D. G.

    1997-01-01

    PCR amplification techniques were used to compare cyanobacterial symbionts from a cyanobacterium-bryophyte symbiosis and free-living cyanobacteria from the same field site. Thirty-one symbiotic cyanobacteria were isolated from the hornwort Phaeoceros sp. at several closely spaced locations, and 40 free-living cyanobacteria were isolated from the immediate vicinity of the same plants. One of the symbiotic isolates was a species of Calothrix, a genus not previously known to form bryophyte symbioses, and the remainder were Nostoc spp. Of the free-living strains, two were Calothrix spp., three were Chlorogloeopsis spp. and the rest were Nostoc spp. All of the symbiotic and all but one of the free-living strains were able to reconstitute the symbiosis with axenic cultures of both Phaeoceros and the liverwort Blasia sp. Axenic cyanobacterial strains were compared by DNA amplification using PCR with either short arbitrary primers or primers specific for the regions flanking the 16S-23S rRNA internal transcribed spacer. With one exception, the two techniques produced complementary results and confirmed for the first time that a diversity of symbiotic cyanobacteria infect Phaeoceros in the field. Symbionts from adjacent colonies were different as often as they were the same, showing that the same thallus could be infected with many different cyanobacterial strains. Strains found to be identical by the techniques employed here were often found as symbionts in different thalli at the same locale but were never found free-living. Only one of the free-living strains, and none of the symbiotic strains, was found at more than one sample site, implying a highly localized distribution of strains. PMID:16535734

  15. Novel method of laparoendoscopic single-site and natural orifice specimen extraction for live donor nephrectomy: single-port laparoscopic donor nephrectomy and transvaginal graft extraction

    PubMed Central

    Jeong, Won Jun; Choi, Byung Jo; Hwang, Jeong Kye; Yuk, Seung Mo; Song, Min Jong

    2016-01-01

    Laparoscopic live donor nephrectomy (DN) has been established as a useful alternative to the traditional open methods of procuring kidneys. To maximize the advantages of the laparoendoscopic single-site (LESS) method, we applied natural orifice specimen extraction to LESS-DN. A 46-year-old woman with no previous abdominal surgery history volunteered to donate her left kidney to her husband and underwent single-port laparoscopic DN with transvaginal extraction. The procedure was completed without intraoperative complications. The kidney functioned well immediately after transplantation, and the donor and recipient were respectively discharged 2 days and 2 weeks postoperatively. Single-port laparoscopic DN and transvaginal graft extraction is feasible and safe. PMID:26878020

  16. Nanoscale Label-free Bioprobes to Detect Intracellular Proteins in Single Living Cells

    PubMed Central

    Hong, Wooyoung; Liang, Feng; Schaak, Diane; Loncar, Marko; Quan, Qimin

    2014-01-01

    Fluorescent labeling techniques have been widely used in live cell studies; however, the labeling processes can be laborious and challenging for use in non-transfectable cells, and labels can interfere with protein functions. While label-free biosensors have been realized by nanofabrication, a method to track intracellular protein dynamics in real-time, in situ and in living cells has not been found. Here we present the first demonstration of label-free detection of intracellular p53 protein dynamics through a nanoscale surface plasmon-polariton fiber-tip-probe (FTP). PMID:25154394

  17. Nanoscale Label-free Bioprobes to Detect Intracellular Proteins in Single Living Cells

    NASA Astrophysics Data System (ADS)

    Hong, Wooyoung; Liang, Feng; Schaak, Diane; Loncar, Marko; Quan, Qimin

    2014-08-01

    Fluorescent labeling techniques have been widely used in live cell studies; however, the labeling processes can be laborious and challenging for use in non-transfectable cells, and labels can interfere with protein functions. While label-free biosensors have been realized by nanofabrication, a method to track intracellular protein dynamics in real-time, in situ and in living cells has not been found. Here we present the first demonstration of label-free detection of intracellular p53 protein dynamics through a nanoscale surface plasmon-polariton fiber-tip-probe (FTP).

  18. Surface Shear Stress Around a Single Flexible Live Plant and a Rigid Cylinder

    NASA Astrophysics Data System (ADS)

    Walter, B. A.; Gromke, C.; Leonard, K. C.; Clifton, A.; Lehning, M.

    2010-12-01

    The sheltering effect of vegetation against soil erosion and snow transport has direct implications on land degradation and local water storage as snow in many arid and semi arid regions. Plants influence the erosion, transport and redeposition of soil and snow by the wind through momentum absorption, local stress concentration, trapping particles in motion and reducing the area of sediment exposed to the wind. The shear stress distributions on the ground beneath plant canopies determine the onset and magnitude of differential soil and snow erosion on rough or vegetated surfaces, but this has been studied exclusively with artificial and rigid vegetation elements thus far. Real plants have highly irregular structures that can be extremely flexible and porous. They align with the flow at higher wind speeds, resulting in considerable changes to the drag and flow regimes relative to rigid imitations of comparable size. We present measurements in the SLF atmospheric boundary layer wind tunnel of the surface shear stress distribution around a live grass plant (Lolium Perenne) and a solid cylinder of comparable size. Irwin sensors are used to measure pressure differences close to the surface which can be calibrated with surface shear stress velocities. The basal to frontal area index of the plant and the cylinder as well as the Reynolds number of the two experimental setups have been checked for similarity and show good agreement. Distinctive differences between the shear stress pattern around the plant and the cylinder can be attributed to the influence of the plant’s porosity and flexibility. The sheltered zone behind the plant is narrower in cross-stream and longer in streamwise direction than that of the cylinder. For the plant, the lowest shear stresses in the sheltered zone are 50% lower than the mean surface shear stress (τ = 0.15 N/m2) in the undisturbed flow. The sheltering was higher behind the cylinder with values reduced by 70% relative to background.

  19. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow

    NASA Astrophysics Data System (ADS)

    Yazdani, Alireza Z. K.; Bagchi, Prosenjit

    2011-08-01

    We present phase diagrams of the single red blood cell and biconcave capsule dynamics in dilute suspension using three-dimensional numerical simulations. The computational geometry replicates an in vitro linear shear flow apparatus. Our model includes all essential properties of the cell membrane, namely, the resistance against shear deformation, area dilatation, and bending, as well as the viscosity difference between the cell interior and suspending fluids. By considering a wide range of shear rate and interior-to-exterior fluid viscosity ratio, it is shown that the cell dynamics is often more complex than the well-known tank-treading, tumbling, and swinging motion and is characterized by an extreme variation of the cell shape. As a result, it is often difficult to clearly establish whether the cell is swinging or tumbling. Identifying such complex shape dynamics, termed here as “breathing” dynamics, is the focus of this article. During the breathing motion at moderate bending rigidity, the cell either completely aligns with the flow direction and the membrane folds inward, forming two cusps, or it undergoes large swinging motion while deep, craterlike dimples periodically emerge and disappear. At lower bending rigidity, the breathing motion occurs over a wider range of shear rates, and is often characterized by the emergence of a quad-concave shape. The effect of the breathing dynamics on the tank-treading-to-tumbling transition is illustrated by detailed phase diagrams which appear to be more complex and richer than those of vesicles. In a remarkable departure from the vesicle dynamics, and from the classical theory of nondeformable cells, we find that there exists a critical viscosity ratio below which the transition is independent of the viscosity ratio, and dependent on shear rate only. Further, unlike the reduced-order models, the present simulations do not predict any intermittent dynamics of the red blood cells.

  20. Fluorescence resonance energy transfer (FRET) imaging of a single living cell using green fluorescent protein

    NASA Astrophysics Data System (ADS)

    Periasamy, Ammasi; Kay, Steve A.; Day, Richard N.

    1997-05-01

    Fluorescence resonance energy transfer (FRET) imaging microscopy is a unique tool to visualize the spatiotemporal dynamics of protein interactions in living cells. Genetic vectors that encode protein fusions with green fluorescent protein (GFP) provide a method for imaging protein localization in living cells. We used FRET to study dimerization of the pituitary-specific transcription factor Pit-1 fused to GFP and BFP. A fusion protein containing GFP separated from BFP by 29 amino acids served as a positive control for FRET. Transcriptional activity of the GFP- and BFP-Pit-1 fusion proteins was demonstrated by their ability to activate the prolactin gene promoter. Using optimized excitation and emission filters, cells expressing the fluorescently-tagged Pit-1 proteins were imaged with a back- thinned, back-illuminated CCD chip that has about 50% quantum efficiency in the blue range. 2D FRET images acquired at the focal plane demonstrated Pit-1 protein associations in the nucleus of living cells. The significance of 2- and 3-D energy transfer imaging from these living cells is discussed.

  1. The impact of reproduction on the stress axis of free-living male northern red backed voles (Myodes rutilus).

    PubMed

    Fletcher, Quinn E; Dantzer, Ben; Boonstra, Rudy

    2015-12-01

    Activation of the hypothalamic-pituitary-adrenal (HPA) axis culminates in the release of glucocorticoids (henceforth CORT), which have wide-reaching physiological effects. Three hypotheses potentially explain seasonal variation in CORT. The enabling hypothesis predicts that reproductive season CORT exceeds post-reproductive season CORT because CORT enables reproductive investment. The inhibitory hypothesis predicts the opposite because CORT can negatively affect reproductive function. The costs of reproduction hypothesis predicts that HPA axis condition declines over and following the reproductive season. We tested these hypotheses in wild male red-backed voles (Myodes rutilus) during the reproductive and post-reproductive seasons. We quantified CORT levels in response to restraint stress tests consisting of three blood samples (initial, stress-induced, and recovery). Mineralocorticoid (MR) and glucocorticoid (GR) receptor mRNA levels in the brain were also quantified over the reproductive season. Total CORT (tCORT) in the initial and stress-induced samples were greater in the post-reproductive than in the reproductive season, which supported the inhibitory hypothesis. Conversely, free CORT (fCORT) did not differ between the reproductive and post-reproductive seasons, which was counter to both the enabling and inhibitory hypotheses. Evidence for HPA axis condition decline in CORT as well as GR and MR mRNA over the reproductive season (i.e. costs of reproduction hypothesis) was mixed. Moreover, all of the parameters that showed signs of declining condition over the reproductive season did not also show signs of declining condition over the post-reproductive season suggesting that the costs resulting from reproductive investment had subsided. In conclusion, our results suggest that different aspects of the HPA axis respond differently to seasonal changes and reproductive investment.

  2. The impact of reproduction on the stress axis of free-living male northern red backed voles (Myodes rutilus).

    PubMed

    Fletcher, Quinn E; Dantzer, Ben; Boonstra, Rudy

    2015-12-01

    Activation of the hypothalamic-pituitary-adrenal (HPA) axis culminates in the release of glucocorticoids (henceforth CORT), which have wide-reaching physiological effects. Three hypotheses potentially explain seasonal variation in CORT. The enabling hypothesis predicts that reproductive season CORT exceeds post-reproductive season CORT because CORT enables reproductive investment. The inhibitory hypothesis predicts the opposite because CORT can negatively affect reproductive function. The costs of reproduction hypothesis predicts that HPA axis condition declines over and following the reproductive season. We tested these hypotheses in wild male red-backed voles (Myodes rutilus) during the reproductive and post-reproductive seasons. We quantified CORT levels in response to restraint stress tests consisting of three blood samples (initial, stress-induced, and recovery). Mineralocorticoid (MR) and glucocorticoid (GR) receptor mRNA levels in the brain were also quantified over the reproductive season. Total CORT (tCORT) in the initial and stress-induced samples were greater in the post-reproductive than in the reproductive season, which supported the inhibitory hypothesis. Conversely, free CORT (fCORT) did not differ between the reproductive and post-reproductive seasons, which was counter to both the enabling and inhibitory hypotheses. Evidence for HPA axis condition decline in CORT as well as GR and MR mRNA over the reproductive season (i.e. costs of reproduction hypothesis) was mixed. Moreover, all of the parameters that showed signs of declining condition over the reproductive season did not also show signs of declining condition over the post-reproductive season suggesting that the costs resulting from reproductive investment had subsided. In conclusion, our results suggest that different aspects of the HPA axis respond differently to seasonal changes and reproductive investment. PMID:26188715

  3. Live fast, die small: compact SFGs at z=2-3, the building blocks of the red-sequence

    NASA Astrophysics Data System (ADS)

    Barro, Guillermo; Faber, S. M.; Perez-Gonzalez, P.; Pacifici, C.; Trump, J. R.; Koo, D. C.; Guo, Y.; CANDELS Collaboration

    2014-01-01

    The mechanisms responsible for the remarkably small sizes of quiescent galaxies at 2 are poorly understood. Partly because the nature of their progenitors is still unknown. In Barro et al. 2013, we used the deepest CANDELS WFC3/F160W data to identify, for the first time, a population of compact star-forming galaxies (cSFGs) at 2 < z < 3, whose structural properties and number densities suggest that they could be the progenitors of such population. Now we present a detailed analysis of 45 massive (log(M)>10) cSFGs to verify that hypothesis. We find that cSFGs present heavily obscured star-formation, evidenced by their colors in the optical/NIR (UVJ) and far-IR (with 71% and 44% detected in Spitzer/MIPS and Herschel/PACS. Structurally, they present smooth spheroidal morphologies, high Sersic indices (n>3), and centrally-concentrated mass profiles similar to those of quiescent galaxies, but strikingly different from other massive SFGs which are typically disky (n<2), and sometimes clumpy or irregular. The majority of compact SFGs are either on the main-sequence (62%) or below it (33%), in agreement with the notion that they are on an evolutionary path towards the red sequence. Using a novel approach, we analyze the stellar populations of these galaxies using physically motivated star-formation histories (SFHs) drawn from semianalytic models (SAMs) of galaxy formation. Overall, we find that these galaxies are in intermediate-to-late evolutionary stages, with ages ranging between t = 1.6 - 2.3 Gyr. This implies they began to form at redshifts as high as z = 5 - 6. We also find that the least massive galaxies have shorter formation histories, contrary to the usual downsizing intuition. Finally, we compare possible formation scenarios for compact SFGs in the context of recent SAMs and hydrodynamic simulations. In both cases, gas-rich disk instabilities (DI) in more extended SFGs appear to be the dominant mechanism. DIs cause a rapid gas infall, building up a central mass

  4. Imaging single cells in a beam of live cyanobacteria with an X-ray laser.

    PubMed

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R N C; Hantke, Max; DePonte, Daniel P; Seibert, M Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard; Liang, Mengning; Stellato, Francesco; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Westphal, Daniel; Almeida, F Nunes; Odic, Dusko; Hasse, Dirk; Carlsson, Gunilla H; Larsson, Daniel S D; Barty, Anton; Martin, Andrew V; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D; Rolles, Daniel; Rudenko, Artem; Epp, Sascha; Foucar, Lutz; Rudek, Benedikt; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Duane Loh, Ne-Te; Chapman, Henry N; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2015-02-11

    There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.

  5. Post-Operative Complications in Living Liver Donors: A Single-Center Experience in China

    PubMed Central

    Yu, Songfeng; Chen, Jihao; Wang, Jingqiao; Yang, Cheng; Jin, Mengmeng; Yan, Sheng; Zhang, Mangli; Zhang, Min; Zheng, Shusen

    2015-01-01

    The gap between the growing demand for available organs and the cadaveric organs facilitates the adoption of living donor liver transplantation. We retrospectively identified and evaluated the post-operative complications as per the modified Clavien classification system in 152 living liver donors at at the First Affiliated Hospital, College of Medicine, Zhejiang University between December, 2006 and June, 2014. Post-operative complications were observed in 61 patients (40.1%) in the present study, but no mortality was reported. Complications developed in 58 (40.0%) right, 1 (33.3%) left, and 2 (66.7%) lateral left hepatectomy donors. The prevalence of re-operation was 1.3%. Grade I and II complications were observed in 38 (25.0%) and 11 (7.2%) donors, respectively. Grade IIIa complications developed in 9 (5.9%) donors and only 3 (2.0%) patients reported grade IIIb complications. The most common complication was pleural effusion that occurred in 31 (20.4%) donors. No significant prognostic baseline factor was identified in this study. In conclusion, living donors experienced various complications, which were usually mild and had a good prognosis. PMID:26270475

  6. Ultrafast nanolaser device for detecting cancer in a single live cell.

    SciTech Connect

    Gourley, Paul Lee; McDonald, Anthony Eugene

    2007-11-01

    Emerging BioMicroNanotechnologies have the potential to provide accurate, realtime, high throughput screening of live tumor cells without invasive chemical reagents when coupled with ultrafast laser methods. These optically based methods are critical to advancing early detection, diagnosis, and treatment of disease. The first year goals of this project are to develop a laser-based imaging system integrated with an in- vitro, live-cell, micro-culture to study mammalian cells under controlled conditions. In the second year, the system will be used to elucidate the morphology and distribution of mitochondria in the normal cell respiration state and in the disease state for normal and disease states of the cell. In this work we designed and built an in-vitro, live-cell culture microsystem to study mammalian cells under controlled conditions of pH, temp, CO2, Ox, humidity, on engineered material surfaces. We demonstrated viability of cell culture in the microsystem by showing that cells retain healthy growth rates, exhibit normal morphology, and grow to confluence without blebbing or other adverse influences of the material surfaces. We also demonstrated the feasibility of integrating the culture microsystem with laser-imaging and performed nanolaser flow spectrocytometry to carry out analysis of the cells isolated mitochondria.

  7. Imaging single cells in a beam of live cyanobacteria with an X-ray laser.

    PubMed

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R N C; Hantke, Max; DePonte, Daniel P; Seibert, M Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard; Liang, Mengning; Stellato, Francesco; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Westphal, Daniel; Almeida, F Nunes; Odic, Dusko; Hasse, Dirk; Carlsson, Gunilla H; Larsson, Daniel S D; Barty, Anton; Martin, Andrew V; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D; Rolles, Daniel; Rudenko, Artem; Epp, Sascha; Foucar, Lutz; Rudek, Benedikt; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Duane Loh, Ne-Te; Chapman, Henry N; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2015-01-01

    There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential. PMID:25669616

  8. Imaging single cells in a beam of live cyanobacteria with an X-ray laser

    NASA Astrophysics Data System (ADS)

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R. N. C.; Hantke, Max; Deponte, Daniel P.; Seibert, M. Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard; Liang, Mengning; Stellato, Francesco; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Westphal, Daniel; Almeida, F. Nunes; Odic, Dusko; Hasse, Dirk; Carlsson, Gunilla H.; Larsson, Daniel S. D.; Barty, Anton; Martin, Andrew V.; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D.; Rolles, Daniel; Rudenko, Artem; Epp, Sascha; Foucar, Lutz; Rudek, Benedikt; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Duane Loh, Ne-Te; Chapman, Henry N.; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2015-02-01

    There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.

  9. A microfluidic systems biology approach for live single-cell mitochondrial ROS imaging.

    PubMed

    Kniss, Ariel; Lu, Hang; Jones, Dean P; Kemp, Melissa L

    2013-01-01

    Most current studies of reactive oxygen species (ROS) production report globally averaged measurements within the cell; however, ROS can be produced in distinct subcellular locations and have local effects in their immediate vicinity. A microfluidic platform for high-throughput single-cell imaging allows mitochondrial ROS production to be monitored as varying in both space and time. Using this systems biology approach, single-cell variability can be viewed within a population. We discuss single-cell monitoring of contributors to mitochondrial redox state-mitochondrial hydrogen peroxide or superoxide-through the use of a small molecule probe or targeted fluorescent reporter protein. Jurkat T lymphoma cells were stimulated with antimycin A and imaged in an arrayed microfluidic device over time. Differences in single-cell responses were observed as a function of both inhibitor concentration and type of ROS measurement used.

  10. TRICK: A Single-Molecule Method for Imaging the First Round of Translation in Living Cells and Animals.

    PubMed

    Halstead, J M; Wilbertz, J H; Wippich, F; Lionnet, T; Ephrussi, A; Chao, J A

    2016-01-01

    The life of an mRNA is dynamic within a cell. The development of quantitative fluorescent microscopy techniques to image single molecules of RNA has allowed many aspects of the mRNA lifecycle to be directly observed in living cells. Recent advances in live-cell multicolor RNA imaging, however, have now made it possible to investigate RNA metabolism in greater detail. In this chapter, we present an overview of the design and implementation of the translating RNA imaging by coat protein knockoff RNA biosensor, which allows untranslated mRNAs to be distinguished from ones that have undergone a round of translation. The methods required for establishing this system in mammalian cell lines and Drosophila melanogaster oocytes are described here, but the principles may be applied to any experimental system. PMID:27241753

  11. TRICK: A Single-Molecule Method for Imaging the First Round of Translation in Living Cells and Animals.

    PubMed

    Halstead, J M; Wilbertz, J H; Wippich, F; Lionnet, T; Ephrussi, A; Chao, J A

    2016-01-01

    The life of an mRNA is dynamic within a cell. The development of quantitative fluorescent microscopy techniques to image single molecules of RNA has allowed many aspects of the mRNA lifecycle to be directly observed in living cells. Recent advances in live-cell multicolor RNA imaging, however, have now made it possible to investigate RNA metabolism in greater detail. In this chapter, we present an overview of the design and implementation of the translating RNA imaging by coat protein knockoff RNA biosensor, which allows untranslated mRNAs to be distinguished from ones that have undergone a round of translation. The methods required for establishing this system in mammalian cell lines and Drosophila melanogaster oocytes are described here, but the principles may be applied to any experimental system.

  12. A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells.

    PubMed

    Ramser, Kerstin; Enger, Jonas; Goksör, Mattias; Hanstorp, Dag; Logg, Katarina; Käll, Mikael

    2005-04-01

    Using a lab-on-a-chip approach we demonstrate the possibility of selecting a single cell with certain properties and following its dynamics after an environmental stimulation in real time using Raman spectroscopy. This is accomplished by combining a micro Raman set-up with optical tweezers and a microfluidic system. The latter gives full control over the media surrounding the cell, and it consists of a pattern of channels and reservoirs defined by electron beam lithography that is moulded into rubber silicon (PDMS). Different buffers can be transported through the channels using electro-osmotic flow, while the resonance Raman response of an optically trapped red blood cell (RBC) is simultaneously registered. This makes it possible to monitor the oxygenation cycle of the cell in real time and to investigate effects like photo-induced chemistry caused by the illumination. The experimental set-up has high potential for in vivo monitoring of cellular drug response using a variety of spectroscopic probes. PMID:15791341

  13. Gene targeting in the red alga Cyanidioschyzon merolae: single- and multi-copy insertion using authentic and chimeric selection markers.

    PubMed

    Fujiwara, Takayuki; Ohnuma, Mio; Yoshida, Masaki; Kuroiwa, Tsuneyoshi; Hirano, Tatsuya

    2013-01-01

    The unicellular red alga Cyanidioschyzon merolae is an emerging model organism for studying organelle division and inheritance: the cell is composed of an extremely simple set of organelles (one nucleus, one mitochondrion and one chloroplast), and their genomes are completely sequenced. Although a fruitful set of cytological and biochemical methods have now been developed, gene targeting techniques remain to be fully established in this organism. Thus far, only a single selection marker, URA Cm-Gs , has been available that complements the uracil-auxotrophic mutant M4. URA Cm-Gs , a chimeric URA5.3 gene of C. merolae and the related alga Galdieria sulphuraria, was originally designed to avoid gene conversion of the mutated URA5.3 allele in the parental strain M4. Although an early example of targeted gene disruption by homologous recombination was reported using this marker, the genome structure of the resultant transformants had never been fully characterized. In the current study, we showed that the use of the chimeric URA Cm-Gs selection marker caused multicopy insertion at high frequencies, accompanied by undesired recombination events at the targeted loci. The copy number of the inserted fragments was variable among the transformants, resulting in high yet uneven levels of transgene expression. In striking contrast, when the authentic URA5.3 gene (URA Cm-Cm ) was used as a selection marker, efficient single-copy insertion was observed at the targeted locus. Thus, we have successfully established a highly reliable and reproducible method for gene targeting in C. merolae. Our method will be applicable to a number of genetic manipulations in this organism, including targeted gene disruption, replacement and tagging.

  14. Lateral migration and equilibrium shape and position of a single red blood cell in bounded Poiseuille flows

    NASA Astrophysics Data System (ADS)

    Shi, Lingling; Pan, Tsorng-Whay; Glowinski, Roland

    2012-11-01

    Lateral migration and equilibrium shape and position of a single red blood cell (RBC) in bounded two-dimensional Poiseuille flows are investigated by using an immersed boundary method. An elastic spring model is applied to simulate the skeleton structure of a RBC membrane. We focus on studying the properties of lateral migration of a single RBC in Poiseuille flows by varying the initial position, the initial angle, the swelling ratio (s*), the membrane bending stiffness of RBC (kb), the maximum velocity of fluid flow (umax), and the degree of confinement. The combined effect of the deformability, the degree of confinement, and the shear gradient of the Poiseuille flow make the RBCs migrate toward a certain cross-sectional equilibrium position, which lies either on the center line of the channel or off center line. For s*>0.8, the speed of the migration at the beginning decreases as one increases the swelling ratio s*. But for s*<0.8, the speed of the migration at the beginning is an increasing function of the swelling ratio s*. Two motions of oscillation and vacillating breathing (swing) of RBCs are observed. The distance Yd between the cell mass center of the equilibrium position and the center line of the channel increases with increasing the Reynolds number Re and reaches a peak, then decreases with increasing Re. The peak of Re is a decreasing function of the swelling ratio (s*<1.0). The cell membrane energy of the equilibrium position is an increasing function as Re increases. The slipper-shaped cell is more stable than the parachute-shaped one in the sense that the energy stored in the former is lower than that in the latter. For a given Re, the bigger the swelling ratio (s*<1.0), the lower the cell membrane energy.

  15. Gold nanoaggregates for probing single-living cell based on surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Peng; Wang, Jing; Lin, Jinyong; Lin, Juqiang; Liu, Nenrong; Huang, Zufang; Li, Buhong; Zeng, Haishan; Chen, Rong

    2015-05-01

    Gold nanoparticles are delivered into living cells by transient electroporation method to obtain intracellular surface-enhanced Raman spectroscopy (SERS). The subcellular localization of gold nanoparticles is characterized by transmission electron microscopy, and the forming large gold nanoaggregates are mostly found in the cytoplasm. The SERS detection of cells indicates that this kind of gold nanostructures induces a high signal enhancement of cellular chemical compositions, in addition to less cellular toxicity than that of silver nanoparticles. These results demonstrate that rapid incorporation of gold nanoparticles by electroporation into cells has great potential applications in the studies of cell biology and biomedicine.

  16. Direct observation of a long-lived single-atom catalyst chiseling atomic structures in graphene.

    PubMed

    Wang, Wei Li; Santos, Elton J G; Jiang, Bin; Cubuk, Ekin Dogus; Ophus, Colin; Centeno, Alba; Pesquera, Amaia; Zurutuza, Amaia; Ciston, Jim; Westervelt, Robert; Kaxiras, Efthimios

    2014-02-12

    Fabricating stable functional devices at the atomic scale is an ultimate goal of nanotechnology. In biological processes, such high-precision operations are accomplished by enzymes. A counterpart molecular catalyst that binds to a solid-state substrate would be highly desirable. Here, we report the direct observation of single Si adatoms catalyzing the dissociation of carbon atoms from graphene in an aberration-corrected high-resolution transmission electron microscope (HRTEM). The single Si atom provides a catalytic wedge for energetic electrons to chisel off the graphene lattice, atom by atom, while the Si atom itself is not consumed. The products of the chiseling process are atomic-scale features including graphene pores and clean edges. Our experimental observations and first-principles calculations demonstrated the dynamics, stability, and selectivity of such a single-atom chisel, which opens up the possibility of fabricating certain stable molecular devices by precise modification of materials at the atomic scale.

  17. Monolithic integration of InGaN segments emitting in the blue, green, and red spectral range in single ordered nanocolumns

    SciTech Connect

    Albert, S.; Bengoechea-Encabo, A.; Sanchez-Garcia, M. A.; Calleja, E.

    2013-05-06

    This work reports on the selective area growth by plasma-assisted molecular beam epitaxy and characterization of InGaN/GaN nanocolumnar heterostructures. The optimization of the In/Ga and total III/V ratios, as well as the growth temperature, provides control on the emission wavelength, either in the blue, green, or red spectral range. An adequate structure tailoring and monolithic integration in a single nanocolumnar heterostructure of three InGaN portions emitting in the red-green-blue colors lead to white light emission.

  18. Live Imaging, Identifying, and Tracking Single Cells in Complex Populations In Vivo and Ex Vivo

    PubMed Central

    Kang, Minjung; Xenopoulos, Panagiotis; Muñoz-Descalzo, Silvia; Lou, Xinghua; Hadjantonakis, Anna-Katerina

    2014-01-01

    Advances in optical imaging technologies combined with the use of genetically encoded fluorescent proteins have enabled the visualization of stem cells over extensive periods of time in vivo and ex vivo. The generation of genetically encoded fluorescent protein reporters that are fused with subcellularly localized proteins, such as human histone H2B, has made it possible to direct fluorescent protein reporters to specific subcellular structures and identify single cells in complex populations. This facilitates the visualization of cellular behaviors such as division, movement, and apoptosis at a single-cell resolution and, in principle, allows the prospective and retrospective tracking towards determining the lineage of each cell. PMID:23640250

  19. A single-cell scraper based on an atomic force microscope for detaching a living cell from a substrate

    SciTech Connect

    Iwata, Futoshi; Adachi, Makoto; Hashimoto, Shigetaka

    2015-10-07

    We describe an atomic force microscope (AFM) manipulator that can detach a single, living adhesion cell from its substrate without compromising the cell's viability. The micrometer-scale cell scraper designed for this purpose was fabricated from an AFM micro cantilever using focused ion beam milling. The homemade AFM equipped with the scraper was compact and standalone and could be mounted on a sample stage of an inverted optical microscope. It was possible to move the scraper using selectable modes of operation, either a manual mode with a haptic device or a computer-controlled mode. The viability of the scraped single cells was evaluated using a fluorescence dye of calcein-acetoxymethl ester. Single cells detached from the substrate were collected by aspiration into a micropipette capillary glass using an electro-osmotic pump. As a demonstration, single HeLa cells were selectively detached from the substrate and collected by the micropipette. It was possible to recultivate HeLa cells from the single cells collected using the system.

  20. Survival of living donor renal transplant recipients in Sri Lanka: a single-center study.

    PubMed

    Galabada, Dinith Prasanna; Nazar, Abdul L M; Ariyaratne, Prasad

    2014-11-01

    Chronic kidney disease is one of the main public health concerns in Sri Lanka. In comparison with dialysis, successful kidney transplantation improves both patient survival and quality of life, relieves the burden of dialysis in patients suffering from end-stage renal disease and decreases the cost of healthcare to the society and government. The objective of this retrospective cohort study was to evaluate graft and patient survival rates in patients who were transplanted from living donors at the Nephrology Unit of the National Hospital of Sri Lanka from January 2005 to January 2011. Data were collected using an interviewer-administered questionnaire and through a review of past medical records. The Kaplan-Meier method was used to determine the survival rate, the log rank test was used to compare survival curves and the Cox proportional hazard model was used for multivariate analysis. Mean follow-up was 26.44±16.6 months. The five-year death-censored graft survival of kidney transplant recipients from living donors in our center was 93.5% and the five-year patient survival was 82.2%, which is comparable with other transplant programs around the world. The number of acute rejection episodes was an independent risk factor for graft survival. Delayed graft function, younger recipient age and unknown cause of end-stage renal disease were found to be risk factors for graft failure but after adjusting for confounding factors, and the difference was not apparent.

  1. Tracking epigenetic histone modifications in single cells using Fab-based live endogenous modification labeling

    PubMed Central

    Hayashi-Takanaka, Yoko; Yamagata, Kazuo; Wakayama, Teruhiko; Stasevich, Timothy J.; Kainuma, Takashi; Tsurimoto, Toshiki; Tachibana, Makoto; Shinkai, Yoichi; Kurumizaka, Hitoshi; Nozaki, Naohito; Kimura, Hiroshi

    2011-01-01

    Histone modifications play an important role in epigenetic gene regulation and genome integrity. It remains largely unknown, however, how these modifications dynamically change in individual cells. By using fluorescently labeled specific antigen binding fragments (Fabs), we have developed a general method to monitor the distribution and global level of endogenous histone H3 lysine modifications in living cells without disturbing cell growth and embryo development. Fabs produce distinct nuclear patterns that are characteristic of their target modifications. H3K27 trimethylation-specific Fabs, for example, are concentrated on inactive X chromosomes. As Fabs bind their targets transiently, the ratio of bound and free molecules depends on the target concentration, allowing us to measure changes in global modification levels. High-affinity Fabs are suitable for mouse embryo imaging, so we have used them to monitor H3K9 and H3K27 acetylation levels in mouse preimplantation embryos produced by in vitro fertilization and somatic cell nuclear transfer. The data suggest that a high level of H3K27 acetylation is important for normal embryo development. As Fab-based live endogenous modification labeling (FabLEM) is broadly useful for visualizing any modification, it should be a powerful tool for studying cell signaling and diagnosis in the future. PMID:21576221

  2. Direct Lipido-Metabolomics of Single Floating Cells for Analysis of Circulating Tumor Cells by Live Single-cell Mass Spectrometry.

    PubMed

    Hiyama, Eiso; Ali, Ahmed; Amer, Sara; Harada, Takanori; Shimamoto, Kazumi; Furushima, Rie; Abouleila, Yasmine; Emara, Samy; Masujima, Tsutomu

    2015-01-01

    Direct trapping of a single floating cell, i.e. a white blood cell from a drop of blood, within a nanospray tip was followed by super-sonication after the addition of ionization solvent. Molecular detection of an increased number of peaks with a higher intensity and a wider m/z range, which extends from metabolites to lipids, was acquired than of that without sonication. This method was applied to a few separated circulating tumor cells (CTC) from a neuroblastoma patient's blood to obtain their lipido-metabolomic molecular profile at the single cell level. In addition to vital molecules such as amino acids, catechol amine metabolites, which are specific to neuroblastoma, and drugs included in the patient's course of therapy were detected. This established "direct single-cell lipido-metabolomic method" seems to be useful for direct and wide range molecular detection not only for many live single-cells, but also for rare cells, such as CTCs, for future molecular diagnosis.

  3. Pharmacokinetics of meloxicam in red-eared slider turtles (Trachemys scripta elegans) after single intravenous and intramuscular injections.

    PubMed

    Uney, Kamil; Altan, Feray; Aboubakr, Mohammed; Cetin, Gul; Dik, Burak

    2016-05-01

    OBJECTIVE To determine the pharmacokinetics of meloxicam after single IV and IM injections in red-eared slider turtles (Trachemys scripta elegans). ANIMALS 8 healthy red-eared slider turtles. PROCEDURES Turtles received 1 dose of meloxicam (0.2 mg/kg) IV or IM (4 turtles/route), a 30-day washout period was provided, and then turtles received the same dose by the opposite route. Blood samples were collected at predetermined times for measurement of plasma meloxicam concentration. Pharmacokinetic values for each administration route were determined with a 2-compartment open model approach. RESULTS For IV administration, mean ± SD values of major pharmacokinetic variables were 1.02 ± 0.41 hours for distribution half-life, 9.78 ± 2.23 hours for elimination half-life, 215 ± 32 mL/kg for volume of distribution at steady state, 11.27 ± 1.44 μg•h/mL for area under the plasma concentration versus time curve, and 18.00 ± 2.32 mL/h/kg for total body clearance. For IM administration, mean values were 0.35 ± 0.06 hours for absorption half-life, 0.72 ± 0.06 μg/mL for peak plasma concentration, 1.5 ± 0.0 hours for time to peak concentration, 3.73 ± 2.41 hours for distribution half-life, 13.53 ± 1.95 hours for elimination half-life, 11.33 ± 0.92 μg•h/mL for area under the plasma concentration versus time curve, and 101 ± 6% for bioavailability. No adverse reactions were detected. CONCLUSIONS AND CLINICAL RELEVANCE Long half-life, high bioavailability, and lack of immediate adverse reactions of meloxicam administered IM at 0.2 mg/kg suggested the possibility of safe and effective clinical use in turtles. Additional studies are needed to establish appropriate administration frequency and clinical efficacy. PMID:27111010

  4. Living the Possible Dream: The Single Parent's Guide to College Success.

    ERIC Educational Resources Information Center

    Riley, Julia

    This book contains practical information, suggestions, and resources to help single parents begin and continue their college education. It is organized in 17 chapters that cover the following topics: planning for the college experiences, time management, child rearing, study skills, finding support, stress, staying healthy, overcoming computer…

  5. Noninvasive Pigment Identification in Single Cells from Living Phototrophic Biofilms by Confocal Imaging Spectrofluorometry

    PubMed Central

    Roldán, M.; Thomas, F.; Castel, S.; Quesada, A.; Hernández-Mariné, M.

    2004-01-01

    A new imaging technique for the analysis of fluorescent pigments from a single cell is reported. It is based on confocal scanning laser microscopy coupled with spectrofluorometric methods. The setup allows simultaneous establishment of the relationships among pigment analysis in vivo, morphology, and three-dimensional localization inside thick intact microbial assemblages. PMID:15184183

  6. Energy, water and space use by free-living red kangaroos Macropus rufus and domestic sheep Ovis aries in an Australian rangeland.

    PubMed

    Munn, A J; Dawson, T J; McLeod, S R; Dennis, T; Maloney, S K

    2013-08-01

    We used doubly labelled water to measure field metabolic rates (FMR) and water turnover rates (WTR) in one of Australia's largest native herbivores, the red kangaroo (Macropus rufus) and one of Australia's dominant livestock species, the wool-breed Merino sheep, under free-living conditions in a typical Australian rangeland. Also, we used GPS technology to examine animal space use, along with the comparisons of urine concentration, diet, diet digestibility, and subsequent grazing pressures. We found smaller space-use patterns than previously reported for kangaroos, which were between 14 and 25 % those of sheep. The FMR of a 25-kg kangaroo was 30 % that of a 45-kg sheep, while WTR was 15 % and both were associated with smaller travel distances, lower salt intakes, and higher urine concentration in kangaroos than sheep. After accounting for differences in dry matter digestibility of food eaten by kangaroos (51 %) and sheep (58 %), the relative grazing pressure of a standard (mature, non-reproductive) 25-kg kangaroo was 35 % that of a 45-kg sheep. Even for animals of the same body mass (35 kg), the relative grazing pressure of the kangaroo was estimated to be only 44 % that of the sheep. After accounting for the energetic costs of wool growth by sheep, the FMRs of our sheep and kangaroos were 2-3 times their expected BMRs, which is typical for mammalian FMR:BMRs generally. Notably, data collected from our free-living animals were practically identical to those from animals confined to a semi-natural enclosure (collected in an earlier study under comparable environmental conditions), supporting the idea that FMRs are relatively constrained within species.

  7. Estimating service lives of organic vapor cartridges II: a single vapor at all humidities.

    PubMed

    Wood, Gerry O

    2004-07-01

    A widely used equation model for estimating service lives of organic vapor air-purifying respirator cartridges has been updated with more recent research results. It has been expanded to account for effects of high relative humidities. Adsorption capacity competition between water vapor and organic vapor is largely explained by mutual exclusion of adsorption volume of the activated carbon. The Dubinin/Radushkevich equation is used to describe the adsorption isotherms of both water and organic vapors. Effects of relative humidity and adsorbed water on adsorption rates are described by an empirical correlation with breakthrough times. The dynamic natures of adsorption and competition are incorporated using an expanding zone model with displaced water rollup. The complete model has been tested and verified with published and unpublished data from many sources. PMID:15238318

  8. Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria

    NASA Astrophysics Data System (ADS)

    Alsteens, David; Trabelsi, Heykel; Soumillion, Patrice; Dufrêne, Yves F.

    2013-12-01

    Force-distance (FD) curve-based atomic force microscopy is a valuable tool to simultaneously image the structure and map the biophysical properties of biological samples at the nanoscale. Traditionally, FD-based atomic force microscopy has been severely limited by its poor temporal and lateral resolutions. Here we report the use of advanced FD-based technology combined with biochemically sensitive tips to image filamentous bacteriophages extruding from living bacteria at unprecedented speed and resolution. Directly correlated multiparametric images of the structure, adhesion and elasticity of infected bacteria demonstrate that the sites of assembly and extrusion localize at the bacterial septum in the form of soft nanodomains surrounded by stiff cell wall material. The quantitative nano-bio-imaging method presented here offers a wealth of opportunities for mapping the physical properties and molecular interactions of complex biosystems, from viruses to tissues.

  9. Real-time visualization of prion transport in single live cells using quantum dots

    SciTech Connect

    Luo, Kan; Li, Shu; Xie, Min; Wu, Di; Wang, WenXi; Chen, Rui; Huang, Liqin; Huang, Tao; Pang, Daiwen; Xiao, Gengfu

    2010-04-09

    Prion diseases are fatal neurodegenerative disorders resulting from structural conversion of the cellular isoform of PrP{sup C} to the infectious scrapie isoform PrP{sup Sc}. It is believed that such structural alteration may occur within the internalization pathway. However, there is no direct evidence to support this hypothesis. Employing quantum dots (QDs) as a probe, we have recorded a real-time movie demonstrating the process of prion internalization in a living cell for the first time. The entire internalization process can be divided into four discrete but connected stages. In addition, using methyl-beta-cyclodextrin to disrupt cell membrane cholesterol, we show that lipid rafts play an important role in locating cellular PrP{sup C} to the cell membrane and in initiating PrP{sup C} endocytosis.

  10. Single-molecule level analysis of the subunit composition of the T cell receptor on live T cells

    PubMed Central

    James, John R.; White, Samuel S.; Clarke, Richard W.; Johansen, Adam M.; Dunne, Paul D.; Sleep, David L.; Fitzgerald, William J.; Davis, Simon J.; Klenerman, David

    2007-01-01

    The T cell receptor (TCR) expressed on most T cells is a protein complex consisting of TCRαβ heterodimers that bind antigen and cluster of differentiation (CD) 3εδ, εγ, and ζζ dimers that initiate signaling. A long-standing controversy concerns whether there is one, or more than one, αβ heterodimer per complex. We used a form of single-molecule spectroscopy to investigate this question on live T cell hybridomas. The method relies on detecting coincident fluorescence from single molecules labeled with two different fluorophores, as the molecules diffuse through a confocal volume. The fraction of events that are coincident above the statistical background is defined as the “association quotient,” Q. In control experiments, Q was significantly higher for cells incubated with wheat germ agglutinin dual-labeled with Alexa488 and Alexa647 than for cells incubated with singly labeled wheat germ agglutinin. Similarly, cells expressing the homodimer, CD28, gave larger values of Q than cells expressing the monomer, CD86, when incubated with mixtures of Alexa488- and Alexa647-labeled antibody Fab fragments. T cell hybridomas incubated with mixtures of anti-TCRβ Fab fragments labeled with each fluorophore gave a Q value indistinguishable from the Q value for CD86, indicating that the dominant form of the TCR comprises single αβ heterodimers. The values of Q obtained for CD86 and the TCR were low but nonzero, suggesting that there is transient or nonrandom confinement, or diffuse clustering of molecules at the T cell surface. This general method for analyzing the subunit composition of protein complexes could be extended to other cell surface or intracellular complexes, and other living cells. PMID:17971442

  11. Hematologic and Total Plasma Protein Values in Free-Living Red-tailed Amazon Parrot Nestlings (Amazona brasiliensis) in Paraná State, Brazil.

    PubMed

    Vaz, Frederico F; Locatelli-Dittrich, Rosangela; Sipinski, Elenise A B; Abbud, Maria C; Sezerban, Rafael M; Schmidt, Elizabeth M S; Dittrich, Jaqueline; Cavalheiro, Maria L

    2015-09-01

    The red-tailed Amazon parrot (Amazona brasiliensis) is an endangered psittacid species that is endemic in the south and southeast Brazilian Atlantic coastal region. Hematologic evaluation is important to monitor the health of these birds, and information about laboratory values for this species is scarce. Hematologic and total plasma protein profiles were determined for 33 free-living nestling parrots in Paraná state, Brazil. Parrots were temporarily removed from the nest and manually restrained to record body weight and collect blood samples. Mean body weight was <400 g in 13 birds (group 1) and >400 g in 20 birds (group 2). Significantly higher levels of mean corpuscular hemoglobin concentrations, white blood cell counts, monocytes, and basophils were observed in younger birds (group 1). A stress leukogram (high white blood cell and heterophil count) was found in all nestlings, suggesting stress induced by capture and restraint. Parameters obtained in this study will be essential to assess the physiologic and pathologic condition of wild parrots, to evaluate the effects of environmental changes on their health, and to contribute to conservation efforts of this endangered species. PMID:26378664

  12. Hematologic and Total Plasma Protein Values in Free-Living Red-tailed Amazon Parrot Nestlings (Amazona brasiliensis) in Paraná State, Brazil.

    PubMed

    Vaz, Frederico F; Locatelli-Dittrich, Rosangela; Sipinski, Elenise A B; Abbud, Maria C; Sezerban, Rafael M; Schmidt, Elizabeth M S; Dittrich, Jaqueline; Cavalheiro, Maria L

    2015-09-01

    The red-tailed Amazon parrot (Amazona brasiliensis) is an endangered psittacid species that is endemic in the south and southeast Brazilian Atlantic coastal region. Hematologic evaluation is important to monitor the health of these birds, and information about laboratory values for this species is scarce. Hematologic and total plasma protein profiles were determined for 33 free-living nestling parrots in Paraná state, Brazil. Parrots were temporarily removed from the nest and manually restrained to record body weight and collect blood samples. Mean body weight was <400 g in 13 birds (group 1) and >400 g in 20 birds (group 2). Significantly higher levels of mean corpuscular hemoglobin concentrations, white blood cell counts, monocytes, and basophils were observed in younger birds (group 1). A stress leukogram (high white blood cell and heterophil count) was found in all nestlings, suggesting stress induced by capture and restraint. Parameters obtained in this study will be essential to assess the physiologic and pathologic condition of wild parrots, to evaluate the effects of environmental changes on their health, and to contribute to conservation efforts of this endangered species.

  13. Molecular extraction in single live cells by sneaking in and out magnetic nanomaterials

    PubMed Central

    Yang, Zhen; Deng, Liangzi; Lan, Yucheng; Zhang, Xiaoliu; Gao, Zhonghong; Chu, Ching-Wu; Cai, Dong; Ren, Zhifeng

    2014-01-01

    Extraction of intracellular molecules is crucial to the study of cellular signal pathways. Disruption of the cellular membrane remains the established method to release intracellular contents, which inevitably terminates the time course of biological processes. Also, conventional laboratory extractions mostly use bulky materials that ignore the heterogeneity of each cell. In this work, we developed magnetized carbon nanotubes that can be sneaked into and out of cell bodies under a magnetic force. Using a testing model with overexpression of GFP, the nanotubes successfully transported the intracellular GFP out at the single-cell level. The confined nanoscale invasiveness did not change cell viability or proliferation. This study presents the proof of concept of a previously unidentified real-time and single-cell approach to investigate cellular biology, signal messengers, and therapeutic effects with nanomaterials. PMID:25030447

  14. Real-time quantification of single RNA translation dynamics in living cells.

    PubMed

    Morisaki, Tatsuya; Lyon, Kenneth; DeLuca, Keith F; DeLuca, Jennifer G; English, Brian P; Zhang, Zhengjian; Lavis, Luke D; Grimm, Jonathan B; Viswanathan, Sarada; Looger, Loren L; Lionnet, Timothee; Stasevich, Timothy J

    2016-06-17

    Although messenger RNA (mRNA) translation is a fundamental biological process, it has never been imaged in real time in vivo with single-molecule precision. To achieve this, we developed nascent chain tracking (NCT), a technique that uses multi-epitope tags and antibody-based fluorescent probes to quantify protein synthesis dynamics at the single-mRNA level. NCT reveals an elongation rate of ~10 amino acids per second, with initiation occurring stochastically every ~30 seconds. Polysomes contain ~1 ribosome every 200 to 900 nucleotides and are globular rather than elongated in shape. By developing multicolor probes, we showed that most polysomes act independently; however, a small fraction (~5%) form complexes in which two distinct mRNAs can be translated simultaneously. The sensitivity and versatility of NCT make it a powerful new tool for quantifying mRNA translation kinetics. PMID:27313040

  15. Single Particle Tracking reveals two distinct environments for CD4 receptors at the surface of living T lymphocytes

    SciTech Connect

    Mascalchi, Patrice; Lamort, Anne Sophie; Salome, Laurence; Dumas, Fabrice

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer We studied the diffusion of single CD4 receptors on living lymphocytes. Black-Right-Pointing-Pointer This study reveals that CD4 receptors have either a random or confined diffusion. Black-Right-Pointing-Pointer The dynamics of unconfined CD4 receptors was accelerated by a temperature raise. Black-Right-Pointing-Pointer The dynamics of confined CD4 receptors was unchanged by a temperature raise. Black-Right-Pointing-Pointer Our results suggest the existence of two different environments for CD4 receptors. -- Abstract: We investigated the lateral diffusion of the HIV receptor CD4 at the surface of T lymphocytes at 20 Degree-Sign C and 37 Degree-Sign C by Single Particle Tracking using Quantum Dots. We found that the receptors presented two major distinct behaviors that were not equally affected by temperature changes. About half of the receptors showed a random diffusion with a diffusion coefficient increasing upon raising the temperature. The other half of the receptors was permanently or transiently confined with unchanged dynamics on raising the temperature. These observations suggest that two distinct subpopulations of CD4 receptors with different environments are present at the surface of living T lymphocytes.

  16. In vitro imaging of single living human umbilical vein endothelial cells with a clinical 3.0-T MRI scanner.

    PubMed

    Zhang, Z; van den Bos, E J; Wielopolski, P A; de Jong-Popijus, M; Bernsen, M R; Duncker, D J; Krestin, G P

    2005-09-01

    Iron oxide-labelled, single, living human umbilical vein endothelial cells (HUVECs) were imaged over time in vitro using a clinical 3.0-T magnetic resonance (MR) microscopy system. Labelling efficiency, toxicity, cell viability, proliferation and differentiation were assessed using flow cytometry, magnetic cell sorting and a phenanthroline assay. MR images were compared with normal light and fluorescence microscopy. Efficient uptake of iron oxide into HUVECs was shown, although with higher label uptake dose-dependent cytotoxic effects were observed, affecting cell viability. For MR imaging, a T2* weighted three-dimensional protocol was used with in-plane resolution of 39 x 48 microm2 and 100-microm slices with a scan time of 13 min. MRI could detect living cells in standard culture dishes at single-cell resolution, although label loss was observed that corresponded with the intracellular iron measurements. MR microscopy using iron oxide labels is a promising tool for studying HUVEC migration and cell biology in vitro and in vivo, but possible toxic effects of label uptake and loss of label over time should be taken into account. PMID:16096808

  17. A "green" phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates.

    PubMed

    Petersen, Jörn; Teich, René; Brinkmann, Henner; Cerff, Rüdiger

    2006-02-01

    Phosphoribulokinase (PRK) is an essential enzyme of photosynthetic eukaryotes which is active in the plastid-located Calvin cycle and regenerates the substrate for ribulose-bisphosphate carboxylase/oxygenase (Rubisco). Rhodophytes and chlorophytes (red and green algae) recruited their nuclear-encoded PRK from the cyanobacterial ancestor of plastids. The plastids of these organisms can be traced back to a single primary endosymbiosis, whereas, for example, haptophytes, dinoflagellates, and euglenophytes obtained their "complex" plastids through secondary endosymbioses, comprising the engulfment of a unicellular red or green alga by a eukaryotic host cell. We have cloned eight new PRK sequences from complex algae as well as a rhodophyte in order to investigate their evolutionary origin. All available PRK sequences were used for phylogenetic analyses and the significance of alternative topologies was estimated by the approximately unbiased test. Our analyses led to several astonishing findings. First, the close relationship of PRK genes of haptophytes, heterokontophytes, cryptophytes, and dinophytes (complex red lineage) supports a monophyletic origin of their sequences and hence their plastids. Second, based on PRK genes the complex red lineage forms a highly supported assemblage together with chlorophytes and land plants, to the exclusion of the rhodophytes. This green affinity is in striking contrast to the expected red algal origin and our analyses suggest that the PRK gene was acquired once via lateral transfer from a green alga. Third, surprisingly the complex green lineages leading to Bigelowiella and Euglena probably also obtained their PRK genes via lateral gene transfers from a red alga and a complex alga with red plastids, respectively.

  18. Functioning nanomachines seen in real-time in living bacteria using single-molecule and super-resolution fluorescence imaging.

    PubMed

    Chiu, Sheng-Wen; Leake, Mark C

    2011-01-01

    Molecular machines are examples of "pre-established" nanotechnology, driving the basic biochemistry of living cells. They encompass an enormous range of function, including fuel generation for chemical processes, transport of molecular components within the cell, cellular mobility, signal transduction and the replication of the genetic code, amongst many others. Much of our understanding of such nanometer length scale machines has come from in vitro studies performed in isolated, artificial conditions. Researchers are now tackling the challenges of studying nanomachines in their native environments. In this review, we outline recent in vivo investigations on nanomachines in model bacterial systems using state-of-the-art genetics technology combined with cutting-edge single-molecule and super-resolution fluorescence microscopy. We conclude that single-molecule and super-resolution fluorescence imaging provide powerful tools for the biochemical, structural and functional characterization of biological nanomachines. The integrative spatial, temporal, and single-molecule data obtained simultaneously from fluorescence imaging open an avenue for systems-level single-molecule cellular biophysics and in vivo biochemistry.

  19. Living together: behavior and welfare in single and mixed species groups of capuchin (Cebus apella) and squirrel monkeys (Saimiri sciureus).

    PubMed

    Leonardi, Rebecca; Buchanan-Smith, Hannah M; Dufour, Valérie; MacDonald, Charlotte; Whiten, Andrew

    2010-01-01

    There are potential advantages of housing primates in mixed species exhibits for both the visiting public and the primates themselves. If the primates naturally associate in the wild, it may be more educational and enjoyable for the public to view. Increases in social complexity and stimulation may be enriching for the primates. However, mixed species exhibits might also create welfare problems such as stress from interspecific aggression. We present data on the behavior of single and mixed species groups of capuchin monkeys (Cebus apella) and squirrel monkeys (Saimiri sciureus) housed at the Living Links to Human Evolution Research Centre in the Royal Zoological Society of Scotland's Edinburgh Zoo. These species associate in the wild, gaining foraging benefits and decreased predation. But Cebus are also predators themselves with potential risks for the smaller Saimiri. To study their living together we took scan samples at > or =15 min intervals on single (n=109) and mixed species groups (n=152), and all occurrences of intraspecific aggression and interspecific interactions were recorded. We found no evidence of chronic stress and Saimiri actively chose to associate with Cebus. On 79% of scans, the two species simultaneously occupied the same part of their enclosure. No vertical displacement was observed. Interspecific interactions were common (>2.5/hr), and equally divided among mildly aggressive, neutral, and affiliative interactions such as play. Only one aggressive interaction involved physical contact and was non-injurious. Aggressive interactions were mostly (65%) displacements and vocal exchanges, initiated almost equally by Cebus and Saimiri. Modifications to the enclosure were successful in reducing these mildly aggressive interactions with affiliative interactions increasing in frequency and diversity. Our data suggest that in carefully designed, large enclosures, naturally associating monkeys are able to live harmoniously and are enriched by each other

  20. Biochemical measurements on single erythroid progenitor cells shed light on the combinatorial regulation of red blood cell production.

    PubMed

    Wang, Weijia; Akbarian, Vahe; Audet, Julie

    2013-02-01

    Adult bone marrow (BM) erythrocyte colony-forming units (CFU-Es) are important cellular targets for the treatment of anemia and also for the manufacture of red blood cells (RBCs) ex vivo. We obtained quantitative biochemical measurements from single and small numbers of CFU-Es by isolating and analyzing c-Kit(+)CD71(high)Ter119(-) cells from adult mouse BM and this allowed us to identify two mechanisms that can be manipulated to increase RBC production. As expected, maximum RBC output was obtained when CFU-Es were stimulated with a combination of Stem Cell Factor (SCF) and Erythropoietin (EPO) mainly because SCF supports a transient CFU-E expansion and EPO promotes the survival and terminal differentiation of erythroid progenitors. However, we found that one of the main factors limiting the output in RBCs was that EPO induces a downregulation of c-Kit expression which limits the transient expansion of CFU-Es. In the presence of SCF, the EPO-mediated downregulation of c-Kit on CFU-Es is delayed but still significant. Moreover, treatment of CFU-Es with 1-Naphthyl PP1 could partially inhibit the downregulation of c-Kit induced by EPO, suggesting that this process is dependent on a Src family kinase, v-Src and/or c-Fyn. We also found that CFU-E survival and proliferation was dependent on the level of time-integrated extracellular-regulated kinase (ERK) activation in these cells, all of which could be significantly increased when SCF and EPO were combined with mouse fetal liver-derived factors. Taken together, these results suggest two novel molecular strategies to increase RBC production and regeneration. PMID:23168618

  1. Real-Time Visualization and Quantification of Contractile Ring Proteins in Single Living Cells.

    PubMed

    Davidson, Reshma; Liu, Yajun; Gerien, Kenneth S; Wu, Jian-Qiu

    2016-01-01

    Single-cell microscopy provides a powerful tool to visualize cellular and subcellular processes in wild-type and mutant cells by observing fluorescently tagged proteins. Here, we describe three simple methods to visualize fission yeast cells: gelatin slides, coverslip-bottom dishes, and tetrad fluorescence microscopy. These imaging methods and data analysis using free software make it possible to quantify protein localization, dynamics, and concentration with high spatial and temporal resolution. In fission yeast, the actomyosin contractile ring is essential for cytokinesis. We use the visualization and quantification of contractile ring proteins as an example to demonstrate how to use these methods.

  2. Tuberculosis screening among homeless persons with AIDS living in single-room-occupancy hotels.

    PubMed

    Layton, M C; Cantwell, M F; Dorsinville, G J; Valway, S E; Onorato, I M; Frieden, T R

    1995-11-01

    Congregate facilities for homeless persons with the acquired immunodeficiency syndrome (AIDS) are often endemic for tuberculosis. We evaluated tuberculosis screening methods at single-room-occupancy hotels housing persons with AIDS. Residents were screened by cross matching the New York City Tuberculosis Registry, interviewing for tuberculosis history, skin testing, and chest radiography. Cases were classified as either previously or newly diagnosed. Among the 106 participants, 16 (15%) previously diagnosed tuberculosis cases were identified. Participants' tuberculosis histories were identified by the questionnaire (100%) or by registry match (69%). Eight participants (50%) were noncompliant with therapy. These findings prompted the establishment of a directly observed therapy program on site.

  3. Patient-Reported Outcomes Following Living Kidney Donation: A Single Center Experience

    PubMed Central

    Rodrigue, James R.; Vishnevsky, Tanya; Fleishman, Aaron; Brann, Tracy; Evenson, Amy R.; Pavlakis, Martha; Mandelbrot, Didier A.

    2015-01-01

    This article describes the development and implementation of an initiative at one transplant center to annually assess psychosocial outcomes of living kidney donors. The current analysis focuses on a cohort of adults (n=208) who donated a kidney at BIDMC between September 2005 and August 2012, in which two post-donation annual assessments could be examined. One and two year post-donation surveys were returned by 59% (n=123) and 47% (n=98) of LKDs, respectively. Those who did not complete any survey were more likely to be younger (p=0.001), minority race/ethnicity (p<0.001), and uninsured at the time of donation (p=0.01) compared to those who returned at least one of the two annual surveys. The majority of donors reported no adverse physical or psychosocial consequences of donation, high satisfaction with the donation experience, and no donation decision regret. However, a sizable minority of donors felt more pain intensity than expected and recovery time was much slower than expected, and experienced a clinically significant decline in vitality. We describe how these outcomes are used to inform clinical practice at our transplant center as well as highlight challenges in donor surveillance over time. PMID:26123551

  4. Tracking Single Cells in Live Animals Using a Photoconvertible Near-Infrared Cell Membrane Label

    PubMed Central

    Wu, Juwell; Runnels, Judith M.; Turcotte, Raphaël; Celso, Cristina Lo; Scadden, David T.; Strom, Terry B.; Lin, Charles P.

    2013-01-01

    We describe a novel photoconversion technique to track individual cells in vivo using a commercial lipophilic membrane dye, DiR. We show that DiR exhibits a permanent fluorescence emission shift (photoconversion) after light exposure and does not reacquire the original color over time. Ratiometric imaging can be used to distinguish photoconverted from non-converted cells with high sensitivity. Combining the use of this photoconvertible dye with intravital microscopy, we tracked the division of individual hematopoietic stem/progenitor cells within the calvarium bone marrow of live mice. We also studied the peripheral differentiation of individual T cells by tracking the gain or loss of FoxP3-GFP expression, a marker of the immune suppressive function of CD4+ T cells. With the near-infrared photoconvertible membrane dye, the entire visible spectral range is available for simultaneous use with other fluorescent proteins to monitor gene expression or to trace cell lineage commitment in vivo with high spatial and temporal resolution. PMID:23990881

  5. Non-invasive single-cell biomechanical analysis using live-imaging datasets.

    PubMed

    Pearson, Yanthe E; Lund, Amanda W; Lin, Alex W H; Ng, Chee P; Alsuwaidi, Aysha; Azzeh, Sara; Gater, Deborah L; Teo, Jeremy C M

    2016-09-01

    The physiological state of a cell is governed by a multitude of processes and can be described by a combination of mechanical, spatial and temporal properties. Quantifying cell dynamics at multiple scales is essential for comprehensive studies of cellular function, and remains a challenge for traditional end-point assays. We introduce an efficient, non-invasive computational tool that takes time-lapse images as input to automatically detect, segment and analyze unlabeled live cells; the program then outputs kinematic cellular shape and migration parameters, while simultaneously measuring cellular stiffness and viscosity. We demonstrate the capabilities of the program by testing it on human mesenchymal stem cells (huMSCs) induced to differentiate towards the osteoblastic (huOB) lineage, and T-lymphocyte cells (T cells) of naïve and stimulated phenotypes. The program detected relative cellular stiffness differences in huMSCs and huOBs that were comparable to those obtained with studies that utilize atomic force microscopy; it further distinguished naïve from stimulated T cells, based on characteristics necessary to invoke an immune response. In summary, we introduce an integrated tool to decipher spatiotemporal and intracellular dynamics of cells, providing a new and alternative approach for cell characterization. PMID:27422102

  6. Localization of bleomycin in a single living cell using three-photon excitation microscopy

    NASA Astrophysics Data System (ADS)

    Abraham, Anil T.; Brautigan, David L.; Hecht, Sidney M.; Periasamy, Ammasi

    2001-04-01

    Bleomycin has been used in the clinic as a chemotherapeutic agent for the treatment of several neoplasms, including non-Hodgkins lymphomas, squamous cell carcinomas, and testicular tumors. The effectiveness of bleomycin is believed to be derived from its ability to bind and oxidatively cleave DNA in the presence of a iron cofactor in vivo. A substantial amount of data on BLM has been collected, there is little information concerning the effects of bleomycin in living cells. In order to obtain data pertinent to the effects of BLM in intact cells, we have exploited the intrinsic fluorescence property of bleomycin to monitor the uptake of the drug in mammalian cells. We employed two light microscopy techniques, a wide-field and three-photon excitation (760 nm) fluorescence microscopy. Treatment of HeLa cells with bleomycin resulted in rapid to localization within the cells. In addition data collected from the wide field experiments, three-photon excitation of BLM which considerably reduced the phototoxic effect compared with UV light excitation in the wide-field microscopy indicated co-localization of the drug to regions of the cytoplasm occupied by the endoplasmic reticulum probe, DiOC5. The data clearly indicates that the cellular uptake of bleomycin after one minute includes the nucleus as well as in cytoplasm. Contrary to previous studies, which indicate chromosomal DNA as the target of bleomycin, the current findings suggest that the drug is distributed to many areas within the cell, including the endoplasmic reticulum, an organelle that is known to contain ribonucleic acids.

  7. Direct observation of specific messenger RNA in a single living cell under a fluorescence microscope.

    PubMed Central

    Tsuji, A; Koshimoto, H; Sato, Y; Hirano, M; Sei-Iida, Y; Kondo, S; Ishibashi, K

    2000-01-01

    We observed the expression of human c-fos mRNA in a living transfected Cos7 cell under a fluorescence microscope by detecting hybrid formed with two fluorescently labeled oligodeoxynucleotides (oligoDNAs) and c-fos mRNA in the cytoplasm. Two fluorescent oligoDNAs were prepared, each labeled with a fluorescence molecule different from the other. When two oligoDNAs hybridized to an adjacent sequence on the target mRNA, the distance between the two fluorophores became very close and fluorescence resonance energy transfer (FRET) occurred, resulting in changes in fluorescence spectra. To find sequences of high accessibility of c-fos RNA to oligoDNAs, several sites that included loop structures on the simulated secondary structure were selected. Each site was divided into two halves, and the pair of fluorescent oligoDNAs complementary to the sequence was synthesized. Each site was examined for the efficiency of hybridization to c-fos RNA by measuring changes in fluorescence spectra when c-fos RNA was added to the pair of oligoDNAs in solution. A 40 mer specific site was found, and the pair of oligoDNAs for the site were microinjected into Cos7 cells that expressed c-fos mRNA. To block oligoDNAs from accumulating in the nucleus, oligoDNA was bound to a macromolecule (streptavidin) to prevent passage of nuclear pores. Hybridization of the pair of oligoDNAs to c-fos mRNA in the cytoplasm was detected in fluorescence images indicating FRET. PMID:10828002

  8. Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yang, Yunze; Wang, Shaopeng; Nagaraj, Vinay J.; Liu, Qiang; Wu, Jie; Tao, Nongjian

    2012-10-01

    Membrane proteins mediate a variety of cellular responses to extracellular signals. Although membrane proteins are studied intensively for their values as disease biomarkers and therapeutic targets, in situ investigation of the binding kinetics of membrane proteins with their ligands has been a challenge. Traditional approaches isolate membrane proteins and then study them ex situ, which does not reflect accurately their native structures and functions. We present a label-free plasmonic microscopy method to map the local binding kinetics of membrane proteins in their native environment. This analytical method can perform simultaneous plasmonic and fluorescence imaging, and thus make it possible to combine the strengths of both label-based and label-free techniques in one system. Using this method, we determined the distribution of membrane proteins on the surface of single cells and the local binding kinetic constants of different membrane proteins. Furthermore, we studied the polarization of the membrane proteins on the cell surface during chemotaxis.

  9. Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition.

    PubMed Central

    Di Lisa, F; Blank, P S; Colonna, R; Gambassi, G; Silverman, H S; Stern, M D; Hansford, R G

    1995-01-01

    1. The relation between mitochondrial membrane potential (delta psi m) and cell function was investigated in single adult rat cardiac myocytes during anoxia and reoxygenation. delta psi m was studied by loading myocytes with JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'- tetra-ethylbenzimidazolylcarbocyanine iodide), a fluorescent probe characterized by two emission peaks (539 and 597 nm with excitation at 490 nm) corresponding to monomer and aggregate forms of the dye. 2. De-energizing conditions applied to mitochondria, cell suspensions or single cells decreased the aggregate emission and increased the monomer emission. This latter result cannot be explained by changes of JC-1 concentration in the aqueous mitochondrial matrix phase indicating that hydrophobic interaction of the probe with membranes has to be taken into account to explain JC-1 fluorescence properties in isolated mitochondria or intact cells. 3. A different sensitivity of the two JC-1 forms to delta psi m changes was shown in isolated mitochondria by the effects of ADP and FCCP and the calibration with K+ diffusion potentials. The monomer emission was responsive to values of delta psi m below 140 mV, which hardly modified the aggregate emission. Thus JC-1 represents a unique double sensor which can provide semi-quantitative information in both low and high potential ranges. 4. At the onset of glucose-free anoxia the epifluorescence of individual myocytes studied in the single excitation (490 nm)-double emission (530 and 590 nm) mode showed a gradual decline of the aggregate emission, which reached a plateau while electrically stimulated (0.2 Hz) contraction was still retained. The subsequent failure of contraction was followed by the rise of the emission at 530 nm, corresponding to the monomer form of the dye, concomitantly with the development of rigor contracture. 5. The onset of the rigor was preceded by the increase in intracellular Mg2+ concentration ([Mg2+]i) monitored by mag-indo-1 epifluorescence

  10. Tracking single Kv2.1 channels in live cells reveals anomalous subdiffusion and ergodicity breaking

    NASA Astrophysics Data System (ADS)

    Weigel, Aubrey; Simon, Blair; Tamkun, Michael; Krapf, Diego

    2011-03-01

    The dynamic organization of the plasma membrane is responsible for essential cellular processes, such as receptor trafficking and signaling. By studying the dynamics of transmembrane proteins a greater understanding of these processes as a whole can be achieved. It is broadly observed that the diffusion pattern of membrane protein displays anomalous subdiffusion. However, the mechanisms responsible for this behavior are not yet established. We explore the dynamics of the voltage gated potassium channel Kv2.1 by using single-particle tracking. We analyze Kv2.1 channel trajectories in terms of the time and ensemble distributions of square displacements. Our results reveal that all Kv2.1 channels experience anomalous subdiffusion and we observe that the Kv2.1 diffusion pattern is non-ergodic. We further investigated the role of the actin cytoskeleton in these channel dynamics by applying actin depolymerizing drugs. It is seen that with the breakdown of the actin cytoskeleton the Kv2.1 channel trajectories recover ergodicity.

  11. Label-free imaging of gold nanoparticles in single live cells by photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Tian, Chao; Qian, Wei; Shao, Xia; Xie, Zhixing; Cheng, Xu; Liu, Shengchun; Cheng, Qian; Liu, Bing; Wang, Xueding

    2016-03-01

    Gold nanoparticles (AuNPs) have been extensively explored as a model nanostructure in nanomedicine and have been widely used to provide advanced biomedical research tools in diagnostic imaging and therapy. Due to the necessity of targeting AuNPs to individual cells, evaluation and visualization of AuNPs in the cellular level is critical to fully understand their interaction with cellular environment. Currently imaging technologies, such as fluorescence microscopy and transmission electron microscopy all have advantages and disadvantages. In this paper, we synthesized AuNPs by femtosecond pulsed laser ablation, modified their surface chemistry through sequential bioconjugation, and targeted the functionalized AuNPs with individual cancer cells. Based on their high optical absorption contrast, we developed a novel, label-free imaging method to evaluate and visualize intracellular AuNPs using photoacoustic microscopy (PAM). Preliminary study shows that the PAM imaging technique is capable of imaging cellular uptake of AuNPs in vivo at single-cell resolution, which provide an important tool for the study of AuNPs in nanomedicine.

  12. Live Cell Reporter Systems for Positive-Sense Single Strand RNA Viruses.

    PubMed

    Ren, Linzhu; Peng, Zhiyuan; Chen, Xinrong; Ouyang, Hongsheng

    2016-04-01

    Cell-based reporter systems have facilitated studies of viral replication and pathogenesis, virus detection, and drug susceptibility testing. There are three types of cell-based reporter systems that express certain reporter protein for positive-sense single strand RNA virus infections. The first type is classical reporter system, which relies on recombinant virus, reporter virus particle, or subgenomic replicon. During infection with the recombinant virus or reporter virus particle, the reporter protein is expressed and can be detected in real time in a dose-dependent manner. Using subgenomic replicon, which are genetically engineered viral RNA molecules that are capable of replication but incapable of producing virions, the translation and replication of the replicon could be tracked by the accumulation of reporter protein. The second type of reporter system involves genetically engineered cells bearing virus-specific protease cleavage sequences, which can sense the incoming viral protease. The third type is based on viral replicase, which can report the specific virus infection via detection of the incoming viral replicase. This review specifically focuses on the major technical breakthroughs in the design of cell-based reporter systems and the application of these systems to the further understanding and control of viruses over the past few decades. PMID:26728654

  13. Three-dimensional single-particle tracking in live cells: news from the third dimension

    NASA Astrophysics Data System (ADS)

    Dupont, A.; Gorelashvili, M.; Schüller, V.; Wehnekamp, F.; Arcizet, D.; Katayama, Y.; Lamb, D. C.; Heinrich, D.

    2013-07-01

    Single-particle tracking (SPT) is of growing importance in the biophysical community. It is used to investigate processes such as drug and gene delivery, viral uptake, intracellular trafficking or membrane-bound protein mobility. Traditionally, SPT is performed in two dimensions (2D) because of its technical simplicity. However, life occurs in three dimensions (3D) and many methods have been recently developed to track particles in 3D. Now, is the third dimension worth the effort? Here we investigate the differences between the 2D and 3D analyses of intracellular transport with the 3D development of a time-resolved mean square displacement (MSD) analysis introduced previously. The 3D trajectories, and the 2D projections, of fluorescent nanoparticles were obtained with an orbital tracking microscope in two different cell types: in Dictyostelium discoideum ameba and in adherent, more flattened HuH-7 human cells. As expected from the different 3D organization of both cells’ cytoskeletons, a third of the active transport was lost upon projection in the ameba whereas the identification of the active phases was barely affected in the HuH-7 cells. In both cell types, we found intracellular diffusion to be anisotropic and the diffusion coefficient values derived from the 2D analysis were therefore biased.

  14. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging

    NASA Astrophysics Data System (ADS)

    Ritsma, Laila; Ellenbroek, Saskia I. J.; Zomer, Anoek; Snippert, Hugo J.; de Sauvage, Frederic J.; Simons, Benjamin D.; Clevers, Hans; van Rheenen, Jacco

    2014-03-01

    The rapid turnover of the mammalian intestinal epithelium is supported by stem cells located around the base of the crypt. In addition to the Lgr5 marker, intestinal stem cells have been associated with other markers that are expressed heterogeneously within the crypt base region. Previous quantitative clonal fate analyses have led to the proposal that homeostasis occurs as the consequence of neutral competition between dividing stem cells. However, the short-term behaviour of individual Lgr5+ cells positioned at different locations within the crypt base compartment has not been resolved. Here we establish the short-term dynamics of intestinal stem cells using the novel approach of continuous intravital imaging of Lgr5-Confetti mice. We find that Lgr5+ cells in the upper part of the niche (termed `border cells') can be passively displaced into the transit-amplifying domain, after the division of proximate cells, implying that the determination of stem-cell fate can be uncoupled from division. Through quantitative analysis of individual clonal lineages, we show that stem cells at the crypt base, termed `central cells', experience a survival advantage over border stem cells. However, through the transfer of stem cells between the border and central regions, all Lgr5+ cells are endowed with long-term self-renewal potential. These findings establish a novel paradigm for stem-cell maintenance in which a dynamically heterogeneous cell population is able to function long term as a single stem-cell pool.

  15. Red antenna states of photosystem I from cyanobacteria Synechocystis PCC 6803 and Thermosynechococcus elongatus: single-complex spectroscopy and spectral hole-burning study.

    PubMed

    Riley, Kerry J; Reinot, Tõnu; Jankowiak, Ryszard; Fromme, Petra; Zazubovich, Valter

    2007-01-11

    Hole-burning and single photosynthetic complex spectroscopy were used to study the excitonic structure and excitation energy-transfer processes of cyanobacterial trimeric Photosystem I (PS I) complexes from Synechocystis PCC 6803 and Thermosynechococcus elongatus at low temperatures. It was shown that individual PS I complexes of Synechocystis PCC 6803 (which have two red antenna states, i.e., C706 and C714) reveal only a broad structureless fluorescence band with a maximum near 720 nm, indicating strong electron-phonon coupling for the lowest energy C714 red state. The absence of zero-phonon lines (ZPLs) belonging to the C706 red state in the emission spectra of individual PS I complexes from Synechocystis PCC 6803 suggests that the C706 and C714 red antenna states of Synechocystis PCC 6803 are connected by efficient energy transfer with a characteristic transfer time of approximately 5 ps. This finding is in agreement with spectral hole-burning data obtained for bulk samples of Synechocystis PCC 6803. The importance of comparing the results of ensemble (spectral hole burning) and single-complex measurements was demonstrated. The presence of narrow ZPLs near 710 nm in addition to the broad fluorescence band at approximately 730 nm in Thermosynechococcus elongatus (Jelezko et al. J. Phys. Chem. B 2000, 104, 8093-8096) has been confirmed. We also demonstrate that high-quality samples obtained by dissolving crystals of PS I of Thermosynechococcus elongatus exhibit stronger absorption in the red antenna region than any samples studied so far by us and other groups.

  16. QUANTITATION OF INTRACELLULAR NAD(P)H IN LIVING CELLS CAN MONITOR AN IMBALANCE OF DNA SINGLE STRAND BREAK REPAIR IN REAL TIME

    EPA Science Inventory

    Quantitation of intracellular NAD(P)H in living cells can monitor an imbalance of DNA single strand break repair in real time.

    ABSTRACT

    DNA single strand breaks (SSBs) are one of the most frequent DNA lesions in genomic DNA generated either by oxidative stress or du...

  17. Mapping Cd²⁺-induced membrane permeability changes of single live cells by means of scanning electrochemical microscopy.

    PubMed

    Filice, Fraser P; Li, Michelle S M; Henderson, Jeffrey D; Ding, Zhifeng

    2016-02-18

    Scanning Electrochemical Microscopy (SECM) is a powerful, non-invasive, analytical methodology that can be used to investigate live cell membrane permeability. Depth scan SECM imaging allowed for the generation of 2D current maps of live cells relative to electrode position in the x-z or y-z plane. Depending on resolution, one depth scan image can contain hundreds of probe approach curves (PACs). Individual PACs were obtained by simply extracting vertical cross-sections from the 2D image. These experimental PACs were overlaid onto theoretically generated PACs simulated at specific geometry conditions. Simulations were carried out using 3D models in COMSOL Multiphysics to determine the cell membrane permeability coefficients at different locations on the surface of the cells. Common in literature, theoretical PACs are generated using a 2D axially symmetric geometry. This saves on both compute time and memory utilization. However, due to symmetry limitations of the model, only one experimental PAC right above the cell can be matched with simulated PAC data. Full 3D models in this article were developed for the SECM system of live cells, allowing all experimental PACs over the entire cell to become usable. Cd(2+)-induced membrane permeability changes of single human bladder (T24) cells were investigated at several positions above the cell, displaced from the central axis. The experimental T24 cells under study were incubated with Cd(2+) in varying concentrations. It is experimentally observed that 50 and 100 μM Cd(2+) caused a decrease in membrane permeability, which was uniform across all locations over the cell regardless of Cd(2+) concentration. The Cd(2+) was found to have detrimental effects on the cell, with cells shrinking in size and volume, and the membrane permeability decreasing. A mapping technique for the analysis of the cell membrane permeability under the Cd(2+) stress is realized by the methodology presented. PMID:26826690

  18. Super-resolution imaging-based single particle tracking reveals dynamics of nanoparticle internalization by live cells.

    PubMed

    Li, Yiming; Shang, Li; Nienhaus, G Ulrich

    2016-04-14

    By combining super-resolution photoactivation localization microscopy with single particle tracking, we have visualized the endocytic process in the live-cell environment with nanoparticles (NPs) of different size and surface functionalization. This allowed us to analyze the dynamics of NPs interacting with cells with high spatial and temporal resolution. We identified two distinctly different types of pathways by which NPs are internalized via clathrin-coated pits (CCPs). Predominantly, NPs first bind to the membrane and, subsequently, CCPs form at this site. However, there are also instances where a NP diffuses on the membrane and utilizes a preformed CCP. Moreover, we have applied this new method to further explore the effects of size and surface functionalization on the NP dynamics on the plasma membrane and the ensuing endocytosis. PMID:27001905

  19. Hyperspectral multiplex single-particle tracking of different receptor subtypes labeled with quantum dots in live neurons

    NASA Astrophysics Data System (ADS)

    Labrecque, Simon; Sylvestre, Jean-Philippe; Marcet, Stephane; Mangiarini, Francesca; Bourgoin, Brice; Verhaegen, Marc; Blais-Ouellette, Sébastien; De Koninck, Paul

    2016-04-01

    The efficacy of existing therapies and the discovery of innovative treatments for central nervous system (CNS) diseases have been limited by the lack of appropriate methods to investigate complex molecular processes at the synaptic level. To improve our capability to investigate complex mechanisms of synaptic signaling and remodeling, we designed a fluorescence hyperspectral imaging platform to simultaneously track different subtypes of individual neurotransmitter receptors trafficking in and out of synapses. This imaging platform allows simultaneous image acquisition of at least five fluorescent markers in living neurons with a high-spatial resolution. We used quantum dots emitting at different wavelengths and functionalized to specifically bind to single receptors on the membrane of living neurons. The hyperspectral imaging platform enabled the simultaneous optical tracking of five different synaptic proteins, including subtypes of glutamate receptors (mGluR and AMPAR) and postsynaptic signaling proteins. It also permitted the quantification of their mobility after treatments with various pharmacological agents. This technique provides an efficient method to monitor several synaptic proteins at the same time, which could accelerate the screening of effective compounds for treatment of CNS disorders.

  20. Super-resolution imaging-based single particle tracking reveals dynamics of nanoparticle internalization by live cells

    NASA Astrophysics Data System (ADS)

    Li, Yiming; Shang, Li; Nienhaus, G. Ulrich

    2016-03-01

    By combining super-resolution photoactivation localization microscopy with single particle tracking, we have visualized the endocytic process in the live-cell environment with nanoparticles (NPs) of different size and surface functionalization. This allowed us to analyze the dynamics of NPs interacting with cells with high spatial and temporal resolution. We identified two distinctly different types of pathways by which NPs are internalized via clathrin-coated pits (CCPs). Predominantly, NPs first bind to the membrane and, subsequently, CCPs form at this site. However, there are also instances where a NP diffuses on the membrane and utilizes a preformed CCP. Moreover, we have applied this new method to further explore the effects of size and surface functionalization on the NP dynamics on the plasma membrane and the ensuing endocytosis.By combining super-resolution photoactivation localization microscopy with single particle tracking, we have visualized the endocytic process in the live-cell environment with nanoparticles (NPs) of different size and surface functionalization. This allowed us to analyze the dynamics of NPs interacting with cells with high spatial and temporal resolution. We identified two distinctly different types of pathways by which NPs are internalized via clathrin-coated pits (CCPs). Predominantly, NPs first bind to the membrane and, subsequently, CCPs form at this site. However, there are also instances where a NP diffuses on the membrane and utilizes a preformed CCP. Moreover, we have applied this new method to further explore the effects of size and surface functionalization on the NP dynamics on the plasma membrane and the ensuing endocytosis. Electronic supplementary information (ESI) available: Experimental section, supporting figures and videos. See DOI: 10.1039/c6nr01495j

  1. Single molecule resolution of the antimicrobial action of quantum dot-labeled sushi peptide on live bacteria

    PubMed Central

    Leptihn, Sebastian; Har, Jia Yi; Chen, Jianzhu; Ho, Bow; Wohland, Thorsten; Ding, Jeak Ling

    2009-01-01

    Background Antimicrobial peptides are found in all kingdoms of life. During the evolution of multicellular organisms, antimicrobial peptides were established as key elements of innate immunity. Most antimicrobial peptides are thought to work by disrupting the integrity of cell membranes, causing pathogen death. As antimicrobial peptides target the membrane structure, pathogens can only acquire resistance by a fundamental change in membrane composition. Hence, the evolution of pathogen resistance has been a slow process. Therefore antimicrobial peptides are valuable alternatives to classical antibiotics against which multiple drug-resistant bacteria have emerged. For potential therapeutic applications as antibiotics a thorough knowledge of their mechanism of action is essential. Despite the increasingly comprehensive understanding of the biochemical properties of these peptides, the actual mechanism by which antimicrobial peptides lyse microbes is controversial. Results Here we investigate how Sushi 1, an antimicrobial peptide derived from the horseshoe crab (Carcinoscorpius rotundicauda), induces lysis of Gram-negative bacteria. To follow the entire process of antimicrobial action, we performed a variety of experiments including transmission electron microscopy and fluorescence correlation spectroscopy as well as single molecule tracking of quantum dot-labeled antimicrobial peptides on live bacteria. Since in vitro measurements do not necessarily correlate with the in vivo action of a peptide we developed a novel fluorescent live bacteria lysis assay. Using fully functional nanoparticle-labeled Sushi 1, we observed the process of antimicrobial action at the single-molecule level. Conclusion Recently the hypothesis that many antimicrobial peptides act on internal targets to kill the bacterium has been discussed. Here, we demonstrate that the target sites of Sushi 1 are outer and inner membranes and are not cytosolic. Further, our findings suggest four successive

  2. Highly Informative Single-Copy Nuclear Microsatellite DNA Markers Developed Using an AFLP-SSR Approach in Black Spruce (Picea mariana) and Red Spruce (P. rubens)

    PubMed Central

    Shi, Yong-Zhong; Forneris, Natascha; Rajora, Om P.

    2014-01-01

    Background Microsatellites or simple sequence repeats (SSRs) are highly informative molecular markers for various biological studies in plants. In spruce (Picea) and other conifers, the development of single-copy polymorphic genomic microsatellite markers is quite difficult, owing primarily to the large genome size and predominance of repetitive DNA sequences throughout the genome. We have developed highly informative single-locus genomic microsatellite markers in black spruce (Picea mariana) and red spruce (Picea rubens) using a simple but efficient method based on a combination of AFLP and microsatellite technologies. Principal Findings A microsatellite-enriched library was constructed from genomic AFLP DNA fragments of black spruce. Sequencing of the 108 putative SSR-containing clones provided 94 unique sequences with microsatellites. Twenty-two of the designed 34 primer pairs yielded scorable amplicons, with single-locus patterns. Fourteen of these microsatellite markers were characterized in 30 black spruce and 30 red spruce individuals drawn from many populations. The number of alleles at a polymorphic locus ranged from 2 to 18, with a mean of 9.3 in black spruce, and from 3 to 15, with a mean of 6.2 alleles in red spruce. The polymorphic information content or expected heterozygosity ranged from 0.340 to 0.909 (mean = 0.67) in black spruce and from 0.161 to 0.851 (mean = 0.62) in red spruce. Ten SSR markers showing inter-parental polymorphism inherited in a single-locus Mendelian mode, with two cases of distorted segregation. Primer pairs for almost all polymorphic SSR loci resolved microsatellites of comparable size in Picea glauca, P. engelmannii, P. sitchensis, and P. abies. Significance The AFLP-based microsatellite-enriched library appears to be a rapid, cost-effective approach for isolating and developing single-locus informative genomic microsatellite markers in black spruce. The markers developed should be useful in black spruce, red spruce

  3. Continuous spectroscopic measurements of photo-stimulated release of molecules by nanomachines in a single living cell.

    PubMed

    Lau, Yuen A; Henderson, Bryana L; Lu, Jie; Ferris, Daniel P; Tamanoi, Fuyuhiko; Zink, Jeffrey I

    2012-06-01

    The first continuous, real-time spectroscopic monitoring of a photo-driven cargo delivery event from a mesoporous silica-based nanocarrier inside a single living cell is reported. By chemically attaching azobenzene molecules inside the 3 nm pore channels of mesoporous silica nanoparticles (∼70 nm diameter), the escape of the cargo molecule [propidium iodide (PI)] from the pore is prevented in the dark but is facilitated by the light-driven isomerization motion. Real-time spectroscopic measurements of a single cell uncover intermediate processes that occur during this intracellular delivery event, from nanomachine activation to the release of PI into the cytosol and to PI's eventual intercalation with nuclear DNA. Changes in PI's fluorescence intensity and the hypsochromic shift of the band maxima are used to identify the local environment of the fluorophore that is being observed in the cell. The ability to precisely initiate a chemical event inside an individual cell and continuously monitor the subsequent biological responses will enhance our understanding of intracellular process upon drug, protein and nucleic acid delivery.

  4. Living With A Red Dwarf: Rotation, Starspots, Activity Cycles, Coronal X-ray Activity And X-uv Irradiances Of Proxima Centauri

    NASA Astrophysics Data System (ADS)

    Jason, Merritt; Guinan, E.; Engle, S.; Pojmanski, G.

    2007-12-01

    As part of our Living with a Red Dwarf Program, we have carried out a detailed study of the radiative and plasma properties of the nearby dM5.5e star Proxima Centauri. Proxima Cen is noteworthy as the nearest star to the Sun. Because of its proximity ( 4.3 L.Y.) and membership in the α Cen system, Proxima Cen is an important star to use as a surrogate for solar-aged mid-dM stars. It is relatively bright (V = 11-mag) and has well determined observational and physical properties (MV, Teff, [Fe/H], angular diameter, mass and age). Importantly for our purposes, Proxima Cen has a reliable age of 5.5-6.0 Gyr from its association with the α Cen system in which α Cen A (G2 V) has a reliable isochronal age determination. We have analyzed 5 years of ASAS-3, V-band photometry to search for evidence of short- and long-term variations in brightness that could arise from magnetically related phenomenon (star spots, faculae, and possible UV flares). We also examine its coronal X-ray emission and variations as well as the stars chromospheric and transition regions in the UV from IUE and FUSE observations. The X-UV/optical data are combined and irradiances are calculated for use in extrasolar planet studies. From the photometry we find a rotational modulation of Prot = 83.5 days, in excellent agreement with the earlier HST/FGS study of Benedict et al. (1998). The character of its light variations indicates possible differential rotation as well as a probable long-term activity cycle of 6.9 +/- 0.5 yrs. Although Proxima Cen should be a fully convective star with a different magnetic dynamo (α2) than our Sun (αΩ), its overall magnetic behavior appears to be solar-like. This research is supported by grants from NSF/RUI AST-507536 and NASA Grants NNX06AD386 and NNG04G038G. We are grateful for this support.

  5. Red single-photon emission from an InP /GaInP quantum dot embedded in a planar monolithic microcavity

    NASA Astrophysics Data System (ADS)

    Roßbach, Robert; Reischle, Matthias; Beirne, Gareth J.; Jetter, Michael; Michler, Peter

    2008-02-01

    Using micro-photoluminescence, we demonstrate single-photon emission in the visible (red) spectral range using self-assembled InP quantum dots embedded in a planar microcavity realized by monolithically grown high reflectivity AlGaAs distributed Bragg reflectors. A full width at half maximum of 130μeV at 5K was observed from a single quantum dot coupled to the fundamental cavity resonance. Photon correlation measurements performed under continuous wave excitation show a clear antibunching behavior [g(2)(0)=0.13] as expected for a single-photon emitter. Saturation count rates up to 1.5MHz (8.1MHz into the first lens, with an extraction efficiency of 4.1%) were observed.

  6. Peptide-coated semiconductor quantum dots and their applications in biological imaging of single molecules in live cells and organisms

    NASA Astrophysics Data System (ADS)

    Pinaud, Fabien Florent

    2007-12-01

    A new surface chemistry has been developed for the solubilization and biofunctionalization of inorganic semiconductor nanocrystals fluorescent probes, also known as quantum dots. This chemistry is based on the surface coating of quantum dots with custom-designed polycysteine peptides and yields water-soluble, small, monodispersed and colloidally stable probes that remain bright and photostable in complex biological milieus. This peptide coating strategy was successfully tested on several types of core and core-shell quantum dots emitting from the visible (e.g. CdSe/ZnS) to the NIR spectrum range (e.g. CdTe/CdSe/ZnS). By taking advantage of the versatile physico-chemical properties of peptides, a peptide "toolkit" was designed and employed to impart several biological functions to individual quantum dots and control their biochemical activity at the nanometer scale. These biofunctionalized peptide-coated quantum dots were exploited in very diverse biological applications. Near-infrared emitting quantum dot probes were engineered with optimized blood circulation and biodistribution properties for in vivo animal imaging. Visible emitting quantum dots were used for single molecule tracking of raft-associated GPI-anchored proteins in live cells. This last application revealed the presence of discrete and non-caveolar lipid microdomains capable of impeding free lateral diffusions in the plasma membrane of Hela cells. Imaging and tracking of peptide-coated quantum dots provided the first direct evidence that microdomains having the composition and behavior expected for lipid rafts can induce molecular compartmentalization in the membrane of living cells.

  7. Optical control and study of biological processes at the single-cell level in a live organism

    NASA Astrophysics Data System (ADS)

    Feng, Zhiping; Zhang, Weiting; Xu, Jianmin; Gauron, Carole; Ducos, Bertrand; Vriz, Sophie; Volovitch, Michel; Jullien, Ludovic; Weiss, Shimon; Bensimon, David

    2013-07-01

    Living organisms are made of cells that are capable of responding to external signals by modifying their internal state and subsequently their external environment. Revealing and understanding the spatio-temporal dynamics of these complex interaction networks is the subject of a field known as systems biology. To investigate these interactions (a necessary step before understanding or modelling them) one needs to develop means to control or interfere spatially and temporally with these processes and to monitor their response on a fast timescale (< minute) and with single-cell resolution. In 2012, an EMBO workshop on ‘single-cell physiology’ (organized by some of us) was held in Paris to discuss those issues in the light of recent developments that allow for precise spatio-temporal perturbations and observations. This review will be largely based on the investigations reported there. We will first present a non-exhaustive list of examples of cellular interactions and developmental pathways that could benefit from these new approaches. We will review some of the novel tools that have been developed for the observation of cellular activity and then discuss the recent breakthroughs in optical super-resolution microscopy that allow for optical observations beyond the diffraction limit. We will review the various means to photo-control the activity of biomolecules, which allow for local perturbations of physiological processes. We will end up this review with a report on the current status of optogenetics: the use of photo-sensitive DNA-encoded proteins as sensitive reporters and efficient actuators to perturb and monitor physiological processes.

  8. Nature of red luminescence band in research-grade ZnO single crystals: A “self-activated” configurational transition

    SciTech Connect

    Chen, Y. N.; Xu, S. J. Zheng, C. C.; Ning, J. Q.; Ling, F. C. C.; Anwand, W.; Brauer, G.; Skorupa, W.

    2014-07-28

    By implanting Zn{sup +} ions into research-grade intentionally undoped ZnO single crystal for facilitating Zn interstitials (Zn{sub i}) and O vacancies (V{sub O}) which is revealed by precise X-Ray diffraction rocking curves, we observe an apparent broad red luminescence band with a nearly perfect Gaussian lineshape. This red luminescence band has the zero phonon line at ∼2.4 eV and shows distinctive lattice temperature dependence which is well interpreted with the configurational coordinate model. It also shows a low “kick out” thermal energy and small thermal quenching energy. A “self-activated” optical transition between a shallow donor and the defect center of Zn{sub i}-V{sub O} complex or V{sub Zn}V{sub O} di-vacancies is proposed to be responsible for the red luminescence band. Accompanied with the optical transition, large lattice relaxation simultaneously occurs around the center, as indicated by the generation of multiphonons.

  9. Single-molecule imaging of UvrA and UvrB recruitment to DNA lesions in living Escherichia coli

    PubMed Central

    Stracy, Mathew; Jaciuk, Marcin; Uphoff, Stephan; Kapanidis, Achillefs N.; Nowotny, Marcin; Sherratt, David J.; Zawadzki, Pawel

    2016-01-01

    Nucleotide excision repair (NER) removes chemically diverse DNA lesions in all domains of life. In Escherichia coli, UvrA and UvrB initiate NER, although the mechanistic details of how this occurs in vivo remain to be established. Here, we use single-molecule fluorescence imaging to provide a comprehensive characterization of the lesion search, recognition and verification process in living cells. We show that NER initiation involves a two-step mechanism in which UvrA scans the genome and locates DNA damage independently of UvrB. Then UvrA recruits UvrB from solution to the lesion. These steps are coordinated by ATP binding and hydrolysis in the ‘proximal' and ‘distal' UvrA ATP-binding sites. We show that initial UvrB-independent damage recognition by UvrA requires ATPase activity in the distal site only. Subsequent UvrB recruitment requires ATP hydrolysis in the proximal site. Finally, UvrA dissociates from the lesion complex, allowing UvrB to orchestrate the downstream NER reactions. PMID:27562541

  10. Fluorescent Protein-Tagged Sindbis Virus E2 Glycoprotein Allows Single Particle Analysis of Virus Budding from Live Cells.

    PubMed

    Jose, Joyce; Tang, Jinghua; Taylor, Aaron B; Baker, Timothy S; Kuhn, Richard J

    2015-12-01

    Sindbis virus (SINV) is an enveloped, mosquito-borne alphavirus. Here we generated and characterized a fluorescent protein-tagged (FP-tagged) SINV and found that the presence of the FP-tag (mCherry) affected glycoprotein transport to the plasma membrane whereas the specific infectivity of the virus was not affected. We examined the virions by transmission electron cryo-microscopy and determined the arrangement of the FP-tag on the surface of the virion. The fluorescent proteins are arranged icosahedrally on the virus surface in a stable manner that did not adversely affect receptor binding or fusion functions of E2 and E1, respectively. The delay in surface expression of the viral glycoproteins, as demonstrated by flow cytometry analysis, contributed to a 10-fold reduction in mCherry-E2 virus titer. There is a 1:1 ratio of mCherry to E2 incorporated into the virion, which leads to a strong fluorescence signal and thus facilitates single-particle tracking experiments. We used the FP-tagged virus for high-resolution live-cell imaging to study the spatial and temporal aspects of alphavirus assembly and budding from mammalian cells. These processes were further analyzed by thin section microscopy. The results demonstrate that SINV buds from the plasma membrane of infected cells and is dispersed into the surrounding media or spread to neighboring cells facilitated by its close association with filopodial extensions.

  11. Temperature-Dependent Model of Multi-step Transcription Initiation in Escherichia coli Based on Live Single-Cell Measurements

    PubMed Central

    Lloyd-Price, Jason; Tran, Huy; Ribeiro, Andre S.

    2016-01-01

    Transcription kinetics is limited by its initiation steps, which differ between promoters and with intra- and extracellular conditions. Regulation of these steps allows tuning both the rate and stochasticity of RNA production. We used time-lapse, single-RNA microscopy measurements in live Escherichia coli to study how the rate-limiting steps in initiation of the Plac/ara-1 promoter change with temperature and induction scheme. For this, we compared detailed stochastic models fit to the empirical data in maximum likelihood sense using statistical methods. Using this analysis, we found that temperature affects the rate limiting steps unequally, as nonlinear changes in the closed complex formation suffice to explain the differences in transcription dynamics between conditions. Meanwhile, a similar analysis of the PtetA promoter revealed that it has a different rate limiting step configuration, with temperature regulating different steps. Finally, we used the derived models to explore a possible cause for why the identified steps are preferred as the main cause for behavior modifications with temperature: we find that transcription dynamics is either insensitive or responds reciprocally to changes in the other steps. Our results suggests that different promoters employ different rate limiting step patterns that control not only their rate and variability, but also their sensitivity to environmental changes. PMID:27792724

  12. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators.

    PubMed

    Imamura, Hiromi; Nhat, Kim P Huynh; Togawa, Hiroko; Saito, Kenta; Iino, Ryota; Kato-Yamada, Yasuyuki; Nagai, Takeharu; Noji, Hiroyuki

    2009-09-15

    Adenosine 5'-triphosphate (ATP) is the major energy currency of cells and is involved in many cellular processes. However, there is no method for real-time monitoring of ATP levels inside individual living cells. To visualize ATP levels, we generated a series of fluorescence resonance energy transfer (FRET)-based indicators for ATP that were composed of the epsilon subunit of the bacterial F(o)F(1)-ATP synthase sandwiched by the cyan- and yellow-fluorescent proteins. The indicators, named ATeams, had apparent dissociation constants for ATP ranging from 7.4 muM to 3.3 mM. By targeting ATeams to different subcellular compartments, we unexpectedly found that ATP levels in the mitochondrial matrix of HeLa cells are significantly lower than those of cytoplasm and nucleus. We also succeeded in measuring changes in the ATP level inside single HeLa cells after treatment with inhibitors of glycolysis and/or oxidative phosphorylation, revealing that glycolysis is the major ATP-generating pathway of the cells grown in glucose-rich medium. This was also confirmed by an experiment using oligomycin A, an inhibitor of F(o)F(1)-ATP synthase. In addition, it was demonstrated that HeLa cells change ATP-generating pathway in response to changes of nutrition in the environment.

  13. Rapid isolation of nuclei from living immune cells by a single centrifugation through a multifunctional lysis gradient.

    PubMed

    Poglitsch, Marko; Katholnig, Karl; Säemann, Marcus D; Weichhart, Thomas

    2011-10-28

    Due to their low protein content and limited nuclear detergent stability, primary human immune cells such as monocytes or T lymphocytes represent a great challenge for standard nuclear isolation protocols. Nuclei clumping during the multiple centrifugation steps or contamination of isolated nuclei with cytoplasmic proteins due to membrane lysis is a frequently observed problem. Here we describe a versatile and novel method for the isolation of clean and intact nuclei from primary human monocytes, which can be applied for virtually any cell type. Living cells were applied on an iso-osmolar discontinuous iodixanol-based density gradient including a detergent-containing lysis layer. Mild cell lysis as well as efficient washing of the nuclei was performed during the course of one single low g-force centrifugation step. The isolation procedure, which we call lysis gradient centrifugation (LGC), results in the recovery of 90-95% of highly pure nuclei. This easy and highly reproducible procedure allows an effective preparation of nuclei and the cytoplasm in only 15 min with the ability to handle as little as one million cells per sample and easy parallel processing of multiple samples.

  14. Grafting Poly(ethylene glycol) Onto Single-Walled Carbon Nanotubes by Living Anionic Ring-Opening Polymerization.

    PubMed

    Li, Wei; Zhang, Guoxiang; Sheng, Wenbo; Liu, Zhiyong; Jia, Xin

    2016-01-01

    Recent years, many methods have been developed to widen the practical application of single-walled carbon nanotubes (SWCNTs). Among them, PEGylation is a general strategy to endow functionality, biocompatibility as well as its good solubility. In this paper, poly(ethylene glycol) (PEG) is successfully grafted onto SWCNTs through living anionic ring-opening polymerization of ethylene oxide (EO). By controlling the amount of monomer and initiator, a series of PEGylated SWCNTs with different PEG molecular weight and density are prepared. Then, the as-prepared SWCNTs have been verified by thermogravimetric analyses (TGA), Raman spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS). Finally, the protein resistance property of the PEGylated SWCNTs is investigated. It is found that these PEGylated SWCNTs have a good protein resistance property and the higher the content of PEG grafted on the SWCNTs, the less adsorption amount of BSA and the larger capacity to resist protein absorption. This work provides a novel method to prepare PEGylated SWCNTs. PMID:27398490

  15. Single-molecule imaging of UvrA and UvrB recruitment to DNA lesions in living Escherichia coli.

    PubMed

    Stracy, Mathew; Jaciuk, Marcin; Uphoff, Stephan; Kapanidis, Achillefs N; Nowotny, Marcin; Sherratt, David J; Zawadzki, Pawel

    2016-01-01

    Nucleotide excision repair (NER) removes chemically diverse DNA lesions in all domains of life. In Escherichia coli, UvrA and UvrB initiate NER, although the mechanistic details of how this occurs in vivo remain to be established. Here, we use single-molecule fluorescence imaging to provide a comprehensive characterization of the lesion search, recognition and verification process in living cells. We show that NER initiation involves a two-step mechanism in which UvrA scans the genome and locates DNA damage independently of UvrB. Then UvrA recruits UvrB from solution to the lesion. These steps are coordinated by ATP binding and hydrolysis in the 'proximal' and 'distal' UvrA ATP-binding sites. We show that initial UvrB-independent damage recognition by UvrA requires ATPase activity in the distal site only. Subsequent UvrB recruitment requires ATP hydrolysis in the proximal site. Finally, UvrA dissociates from the lesion complex, allowing UvrB to orchestrate the downstream NER reactions. PMID:27562541

  16. Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface.

    PubMed Central

    Iino, R; Koyama, I; Kusumi, A

    2001-01-01

    Single green fluorescent protein (GFP) molecules were successfully imaged for the first time in living cells. GFP linked to the cytoplasmic carboxyl terminus of E-cadherin (E-cad-GFP) was expressed in mouse fibroblast L cells, and observed using an objective-type total internal reflection fluorescence microscope. Based on the fluorescence intensity of individual fluorescent spots, the majority of E-cad-GFP molecules on the free cell surface were found to be oligomers of various sizes, many of them greater than dimers, suggesting that oligomerization of E-cadherin takes place before its assembly at cell-cell adhesion sites. The translational diffusion coefficient of E-cad-GFP is reduced by a factor of 10 to 40 upon oligomerization. Because such large decreases in translational mobility cannot be explained solely by increases in radius upon oligomerization, an oligomerization-induced trapping model is proposed in which, when oligomers are formed, they are trapped in place due to greatly enhanced tethering and corralling effects of the membrane skeleton on oligomers (compared with monomers). The presence of many oligomers greater than dimers on the free surface suggests that these greater oligomers are the basic building blocks for the two-dimensional cell adhesion structures (adherens junctions). PMID:11371443

  17. Significance of Semiquantitative Assessment of Preformed Donor-Specific Antibody Using Luminex Single Bead Assay in Living Related Liver Transplantation

    PubMed Central

    Yoshizawa, Atsushi; Egawa, Hiroto; Yurugi, Kimiko; Hishida, Rie; Tsuji, Hiroaki; Ashihara, Eiji; Miyagawa-Hayashino, Aya; Teramukai, Satoshi; Maekawa, Taira; Haga, Hironori; Uemoto, Sinji

    2013-01-01

    Aim. To analyze the risks of preoperatively produced donor-specific antibody (DSA) in liver transplantation. Methods. DSA was assessed using direct complement-dependent cytotoxicity (CDC) and anti-human globulin- (AHG-) CDC tests, as well as the Luminex Single Antigen assay. Among 616 patients undergoing blood type identical or compatible living donor liver transplantation (LDLT), 21 patients were positive for CDC or AHG-CDC tests, and the preserved serum from 18 patients was examined to determine targeted Class I and II antigens. The relationships between the mean fluorescence intensity (MFI) of DSA and the clinical outcomes were analyzed. Results. Patients were divided into 3 groups according to the MFI of anti-Class I DSA: high (11 patients with MFI > 10,000), low (2 patients with MFI < 10,000), and negative (5 patients) MFI groups. Six of 11 patients with high Class-I DSA showed positive Class-II DSA. Hospital death occurred in 7 patients of the high MFI group. High MFI was a significant risk factor for mortality (P = 0.0155). Univariate analysis showed a significant correlation between MFI strength and C4d deposition (P = 0.0498). Conclusions. HLA Class I DSA with MFI > 10,000 had a significant negative effect on the clinical outcome of patients with preformed DSA in LDLT. PMID:23818917

  18. Live Attenuated Tetravalent Dengue Virus Host Range Vaccine Is Immunogenic in African Green Monkeys following a Single Vaccination

    PubMed Central

    Smith, Katherine M.; Piper, Amanda; Huitt, Emerson; Spears, Carla J.; Quiles, Michelle; Ribeiro, Mariana; Thomas, Malcolm E.; Brown, Dennis T.; Hernandez, Raquel

    2014-01-01

    ABSTRACT The causative agent of dengue fever, dengue virus (DENV), is transmitted by mosquitoes, and as distribution of these insects has expanded, so has dengue-related disease. DENV is a member of the Flaviviridae family and has 4 distinct serotypes (DENV-1, -2, -3, and -4). No lasting cross protection is afforded to heterologous serotypes following infection by any one of the individual serotypes. The presence of nonneutralizing antibodies to one serotype can facilitate the occurrence of more-severe dengue hemorrhagic fever through immune enhancement upon infection with a second serotype. For this reason, the development of a safe, tetravalent vaccine to produce a balanced immune response to all four serotypes is critical. We have developed a novel approach to produce safe and effective live-attenuated vaccines for DENV and other insect-borne viruses. Host range (HR) mutants of each DENV serotype were created by truncating transmembrane domain 1 of the E protein and selecting for strains of DENV that replicated well in insect cells but not mammalian cells. These vaccine strains were tested for immunogenicity in African green monkeys (AGMs). No vaccine-related adverse events occurred. The vaccine strains were confirmed to be attenuated in vivo by infectious center assay (ICA). Analysis by 50% plaque reduction neutralization test (PRNT50) established that by day 62 postvaccination, 100% of animals seroconverted to DENV-1, -2, -3, and -4. Additionally, the DENV HR tetravalent vaccine (HR-Tet) showed a tetravalent anamnestic immune response in 100% (16/16) of AGMs after challenge with wild-type (WT) DENV strains. IMPORTANCE We have generated a live attenuated viral (LAV) vaccine capable of eliciting a strong immune response in African green monkeys (AGMs) in a single dose. This vaccine is delivered by injecting one of four attenuated serotypes into each limb of the animal. 100% of animals given the vaccine generated antibodies against all 4 serotypes, and this

  19. Classification and evolutionary history of the single-strand annealing proteins, RecT, Redβ, ERF and RAD52

    PubMed Central

    Iyer, Lakshminarayan M; Koonin, Eugene V; Aravind, L

    2002-01-01

    Background The DNA single-strand annealing proteins (SSAPs), such as RecT, Redβ, ERF and Rad52, function in RecA-dependent and RecA-independent DNA recombination pathways. Recently, they have been shown to form similar helical quaternary superstructures. However, despite the functional similarities between these diverse SSAPs, their actual evolutionary affinities are poorly understood. Results Using sensitive computational sequence analysis, we show that the RecT and Redβ proteins, along with several other bacterial proteins, form a distinct superfamily. The ERF and Rad52 families show no direct evolutionary relationship to these proteins and define novel superfamilies of their own. We identify several previously unknown members of each of these superfamilies and also report, for the first time, bacterial and viral homologs of Rad52. Additionally, we predict the presence of aberrant HhH modules in RAD52 that are likely to be involved in DNA-binding. Using the contextual information obtained from the analysis of gene neighborhoods, we provide evidence of the interaction of the bacterial members of each of these SSAP superfamilies with a similar set of DNA repair/recombination protein. These include different nucleases or Holliday junction resolvases, the ABC ATPase SbcC and the single-strand-binding protein. We also present evidence of independent assembly of some of the predicted operons encoding SSAPs and in situ displacement of functionally similar genes. Conclusions There are three evolutionarily distinct superfamilies of SSAPs, namely the RecT/Redβ, ERF, and RAD52, that have different sequence conservation patterns and predicted folds. All these SSAPs appear to be primarily of bacteriophage origin and have been acquired by numerous phylogenetically distant cellular genomes. They generally occur in predicted operons encoding one or more of a set of conserved DNA recombination proteins that appear to be the principal functional partners of the SSAPs. PMID

  20. 3D tracking of single nanoparticles and quantum dots in living cells by out-of-focus imaging with diffraction pattern recognition

    PubMed Central

    Gardini, Lucia; Capitanio, Marco; Pavone, Francesco S.

    2015-01-01

    Live cells are three-dimensional environments where biological molecules move to find their targets and accomplish their functions. However, up to now, most single molecule investigations have been limited to bi-dimensional studies owing to the complexity of 3d-tracking techniques. Here, we present a novel method for three-dimensional localization of single nano-emitters based on automatic recognition of out-of-focus diffraction patterns. Our technique can be applied to track the movements of single molecules in living cells using a conventional epifluorescence microscope. We first demonstrate three-dimensional localization of fluorescent nanobeads over 4 microns depth with accuracy below 2 nm in vitro. Remarkably, we also establish three-dimensional tracking of Quantum Dots, overcoming their anisotropic emission, by adopting a ligation strategy that allows rotational freedom of the emitter combined with proper pattern recognition. We localize commercially available Quantum Dots in living cells with accuracy better than 7 nm over 2 microns depth. We validate our technique by tracking the three-dimensional movements of single protein-conjugated Quantum Dots in living cell. Moreover, we find that important localization errors can occur in off-focus imaging when improperly calibrated and we give indications to avoid them. Finally, we share a Matlab script that allows readily application of our technique by other laboratories. PMID:26526410

  1. 3D tracking of single nanoparticles and quantum dots in living cells by out-of-focus imaging with diffraction pattern recognition.

    PubMed

    Gardini, Lucia; Capitanio, Marco; Pavone, Francesco S

    2015-01-01

    Live cells are three-dimensional environments where biological molecules move to find their targets and accomplish their functions. However, up to now, most single molecule investigations have been limited to bi-dimensional studies owing to the complexity of 3d-tracking techniques. Here, we present a novel method for three-dimensional localization of single nano-emitters based on automatic recognition of out-of-focus diffraction patterns. Our technique can be applied to track the movements of single molecules in living cells using a conventional epifluorescence microscope. We first demonstrate three-dimensional localization of fluorescent nanobeads over 4 microns depth with accuracy below 2 nm in vitro. Remarkably, we also establish three-dimensional tracking of Quantum Dots, overcoming their anisotropic emission, by adopting a ligation strategy that allows rotational freedom of the emitter combined with proper pattern recognition. We localize commercially available Quantum Dots in living cells with accuracy better than 7 nm over 2 microns depth. We validate our technique by tracking the three-dimensional movements of single protein-conjugated Quantum Dots in living cell. Moreover, we find that important localization errors can occur in off-focus imaging when improperly calibrated and we give indications to avoid them. Finally, we share a Matlab script that allows readily application of our technique by other laboratories.

  2. Demonstration of specific binding of heparin to Plasmodium falciparum-infected vs. non-infected red blood cells by single-molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Valle-Delgado, Juan José; Urbán, Patricia; Fernàndez-Busquets, Xavier

    2013-04-01

    Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force ranging between 28 and 46 pN depending on the loading rate. No significant binding of heparin to non-infected RBCs has been observed in control experiments. This work represents the first approach to quantitatively evaluate GAG-pRBC molecular interactions at the individual molecule level.Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force

  3. Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping

    NASA Astrophysics Data System (ADS)

    Arbabzadah, E. A.; Damzen, M. J.

    2016-06-01

    We report the investigation of an Alexandrite laser end-pumped by a fibre-coupled red diode laser module. Power, efficiency, spatial, spectral, and wavelength tuning performance are studied as a function of pump and laser cavity parameters. It is the first demonstration, to our knowledge, of greater than 1 W power and also highest laser slope efficiency (44.2%) in a diode-pumped Alexandrite laser with diffraction-limited TEM00 mode operation. Spatial quality was excellent with beam propagation parameter M 2 ~ 1.05. Wavelength tuning from 737–796 nm was demonstrated using an intracavity birefringent tuning filter. Using a novel double pass end-pumping scheme to get efficient absorption of both polarisation states of the scrambled fibre-delivered diode pump, a total output coupled power of 1.66 W is produced in TEM00 mode with 40% slope efficiency.

  4. Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping

    NASA Astrophysics Data System (ADS)

    Arbabzadah, E. A.; Damzen, M. J.

    2016-06-01

    We report the investigation of an Alexandrite laser end-pumped by a fibre-coupled red diode laser module. Power, efficiency, spatial, spectral, and wavelength tuning performance are studied as a function of pump and laser cavity parameters. It is the first demonstration, to our knowledge, of greater than 1 W power and also highest laser slope efficiency (44.2%) in a diode-pumped Alexandrite laser with diffraction-limited TEM00 mode operation. Spatial quality was excellent with beam propagation parameter M 2 ~ 1.05. Wavelength tuning from 737-796 nm was demonstrated using an intracavity birefringent tuning filter. Using a novel double pass end-pumping scheme to get efficient absorption of both polarisation states of the scrambled fibre-delivered diode pump, a total output coupled power of 1.66 W is produced in TEM00 mode with 40% slope efficiency.

  5. Determination of single and repeated red cell volumes by the indicator dilution method using carbon monoxide as the indicator

    SciTech Connect

    Fukui, M.; Shigemi, K. )

    1989-11-01

    The use of radioactive isotopes limits clinical applications of blood volume measurement in the ICU. We measured red cell volumes with carbon monoxide-labeled RBC in six dogs and five human volunteers. The measured values obtained on the dogs were compared with the simultaneous measurements with the {sup 51}Cr method; the ratio of the carbon monoxide to {sup 51}Cr values ranged from 0.86 to 1.17, and the mean ratio was 1.0 +/- 0.1 (SD), r = .93. We infer from these results that the carbon monoxide method has several advantages over the {sup 51}Cr method: (a) the short labeling time (about 1 min), (b) rapidly decreasing background levels of carbon monoxide with FIO2 1.0, and (c) repeatability at intervals of several hours.

  6. A single phase, red emissive Mg2SiO4:Sm3+ nanophosphor prepared via rapid propellant combustion route

    NASA Astrophysics Data System (ADS)

    Naik, Ramachandra; Prashantha, S. C.; Nagabhushana, H.; Sharma, S. C.; Nagaswarupa, H. P.; Anantharaju, K. S.; Nagabhushana, B. M.; Premkumar, H. B.; Girish, K. M.

    2015-04-01

    Mg2SiO4:Sm3+ (1-11 mol%) nanoparticles were prepared by a rapid low temperature solution combustion route. The powder X-ray diffraction (PXRD) patterns exhibit orthorhombic structure with α-phase. The average crystallite size estimated using Scherer's method, W-H plot and strain-size plots were found to be in the range 25-50 nm and the same was confirmed by Transmission Electron Microscopy (TEM). Scanning electron microscopy (SEM) pictures show porous structure and crystallites were agglomerated. The effect of Sm3+ cations on luminescence of Mg2SiO4 was well studied. Interestingly the samples could be effectively excited with 315 nm and emitted light in the red region, which was suitable for the demands of high efficiency WLEDs. The emission spectra consists of four main peaks which can be assigned to the intra 4-f orbital transitions of Sm3+ ions 4G5/2 → 6H5/2 (576 nm), 4G5/2 → 6H7/2 (611 nm), 4G5/2 → 6H9/2 (656 nm) and 4G5/2 → 6H11/2 (713 nm). The optimal luminescence intensity was obtained for 5 mol% Sm3+ ions. The CIE (Commission International de I'Eclairage) chromaticity co-ordinates were calculated from emission spectra, the values (0.588, 0.386) were close to the NTSC (National Television Standard Committee) standard value of red emission. Coordinated color temperature (CCT) was found to be 1756 K. Therefore optimized Mg2SiO4:Sm3+ (5 mol%) phosphor was quite useful for solid state lighting.

  7. Improved "optical highlighter" probes derived from discosoma red fluorescent protein.

    PubMed

    Robinson, Lisbeth C; Marchant, Jonathan S

    2005-02-01

    The tetrameric red fluorescent protein, DsRed, undergoes a rapid red to green color change evoked by short wavelength (lambda < 760 nm) femtosecond irradiation--a phenomenon that underpins the application of DsRed as an "optical highlighter" probe for tracking live cells, organelles, and fusion proteins. This color change results from selective bleaching of the "mature" red-emitting species of DsRed and an enhancement of emission from the "immature" green species, likely caused by dequenching of fluorescence resonance energy transfer occurring within the protein tetramer. Here, we have examined the role of residues known to influence the rate and completeness of chromophore maturation on the cellular and biophysical properties of DsRed mutants. Surprisingly, a single amino acid mutation (N42Q) with increased basal green emission yet rapid chromophore maturation displayed a multiphoton-evoked color change that was brighter, more consistent, more vivid, and easier to evoke than DsRed, despite the larger proportion of green chromophores. Rapidly maturing mutants with more complete chromophore maturation, exhibited little color change and increased resistance to multiphoton bleaching. We describe improved optical and cell biological properties for two DsRed-derived variants which we showcase in photolabeling studies, and discuss these data in terms of implications for fluorescence resonance energy transfer-based probes.

  8. Fracture mechanical behavior of red sandstone containing a single fissure and two parallel fissures after exposure to different high temperature treatments

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Qi; Jing, Hong-Wen; Huang, Yan-Hua; Ranjith, P. G.; Jiao, Yu-Yong

    2014-12-01

    A detailed understanding of the brittle deformation behavior of sandstone containing pre-existing flaws at elevated temperatures is a key concern in underground engineering. In this research, uniaxial compression tests were performed to evaluate the effect of high temperature treatments (300, 600 or 900 °C) on the strength, deformability and fracture coalescence behavior of a sandstone containing either a single fissure or two parallel fissures. All experiments focused on rectangular prismatic (80 × 160 × 30 mm) specimens of red sandstone. Constant strain rate experiments were performed on either: (1) specimens that contained a single 2 mm-wide fissure or (2) specimens that contained two 2 mm-wide parallel fissures. The specimens containing either one or two fissures were either left at room temperature (i.e., no heat treatment), or heat treated to 300, 600 or 900 °C prior to experimentation. The results demonstrated that, in all cases, the strength and stiffness of red sandstone was increased at 300 °C, before decreasing up to our maximum temperature of 900 °C. However, the peak strain at failure always showed an increase when the temperature was increased. The crack initiation, propagation and coalescence process were monitored during the deformation using both photographic monitoring and acoustic emission (AE) monitoring techniques. The monitoring results showed that the cracking process depended on both the fissure geometry and the heat treatment temperature. The potential mechanisms causing the differences in the mechanical behavior observed with increasing temperature are discussed, as is the influence of the single fissure and the two parallel fissures on the crack evolution process. These results are important and valuable to understand the fracture mechanism of rock engineering in deep underground mining excavations and nuclear waste depositories.

  9. Clade-Specific 16S Ribosomal DNA Oligonucleotides Reveal the Predominance of a Single Marine Synechococcus Clade throughout a Stratified Water Column in the Red Sea

    PubMed Central

    Fuller, Nicholas J.; Marie, Dominique; Partensky, Frédéric; Vaulot, Daniel; Post, Anton F.; Scanlan, David J.

    2003-01-01

    Phylogenetic relationships among members of the marine Synechococcus genus were determined following sequencing of the 16S ribosomal DNA (rDNA) from 31 novel cultured isolates from the Red Sea and several other oceanic environments. This revealed a large genetic diversity within the marine Synechococcus cluster consistent with earlier work but also identified three novel clades not previously recognized. Phylogenetic analyses showed one clade, containing halotolerant isolates lacking phycoerythrin (PE) and including strains capable, or not, of utilizing nitrate as the sole N source, which clustered within the MC-A (Synechococcus subcluster 5.1) lineage. Two copies of the 16S rRNA gene are present in marine Synechococcus genomes, and cloning and sequencing of these copies from Synechococcus sp. strain WH 7803 and genomic information from Synechococcus sp. strain WH 8102 reveal these to be identical. Based on the 16S rDNA sequence information, clade-specific oligonucleotides for the marine Synechococcus genus were designed and their specificity was optimized. Using dot blot hybridization technology, these probes were used to determine the in situ community structure of marine Synechococcus populations in the Red Sea at the time of a Synechococcus maximum during April 1999. A predominance of genotypes representative of a single clade was found, and these genotypes were common among strains isolated into culture. Conversely, strains lacking PE, which were also relatively easily isolated into culture, represented only a minor component of the Synechococcus population. Genotypes corresponding to well-studied laboratory strains also appeared to be poorly represented in this stratified water column in the Red Sea. PMID:12732508

  10. Comparison of the urinary excretion of quercetin glycosides from red onion and aglycone from dietary supplements in healthy subjects: a randomized, single-blinded, cross-over study.

    PubMed

    Shi, Yuanlu; Williamson, Gary

    2015-05-01

    Some intervention studies have shown that quercetin supplementation can regulate certain biomarkers, but it is not clear how the doses given relate to dietary quercetin (e.g. from onion). We conducted a two-period, two-sequence crossover study to compare the bioavailability of quercetin when administered in the form of a fresh red onion meal (naturally glycosylated quercetin) or dietary supplement (aglycone quercetin) under fasting conditions. Six healthy, non-smoking, adult males with BMI 22.7 ± 4.0 kg m(-2) and age 35.3 ± 12.3 y were grouped to take the two study meals in random order. In each of the 2 study periods, one serving of onion soup (made from 100 g fresh red onion, providing 156.3 ± 3.4 μmol (47 mg) quercetin) or a single dose of a quercetin dihydrate tablet (1800 ± 150 μmol (544 mg) of quercetin) were administered following 3 d washout. Urine samples were collected up to 24 h, and after enzyme deconjugation, quercetin was quantified by LC-MS. The 24 h urinary excretion of quercetin (1.69 ± 0.79 μmol) from red onion in soup was not significantly different to that (1.17 ± 0.44 μmol) for the quercetin supplement tablet (P = 0.065, paired t-test). This means that, in practice, 166 mg of quercetin supplement would be comparable to about 10 mg of quercetin aglycone equivalents from onion. These data allow intervention studies on quercetin giving either food or supplements to be more effectively compared.

  11. Warm-white light-emitting diode with high color rendering index fabricated by combining trichromatic InGaN emitter with single red phosphor.

    PubMed

    Sheu, Jinn-Kong; Chen, Fu-Bang; Wang, Yen-Chin; Chang, Chih-Chiang; Huang, Shih-Hsien; Liu, Chun-Nan; Lee, Ming-Lun

    2015-04-01

    We present a trichromatic GaN-based light-emitting diode (LED) that emits near-ultraviolet (n-UV) blue and green peaks combined with red phosphor to generate white light with a low correlated color temperature (CCT) and high color rendering index (CRI). The LED structure, blue and green unipolar InGaN/GaN multiple quantum wells (MQWs) stacked with a top p-i-n structure containing an InGaN/GaN MQW emitting n-UV light, was grown epitaxially on a single substrate. The trichromatic LED chips feature a vertical conduction structure on a silicon substrate fabricated through wafer bonding and laser lift-off techniques. The blue and green InGaN/GaN MQWs were pumped with n-UV light to re-emit low-energy photons when the LEDs were electrically driven with a forward current. The emission spectrum included three peaks at approximately 405, 468, and 537 nm. Furthermore, the trichromatic LED chips were combined with red phosphor to generate white light with a CCT and CRI of approximately 2900 and 92, respectively. PMID:25968789

  12. Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation.

    PubMed

    Liu, Zhicheng; Yin, Leijun; Ning, Hao; Yang, Zongyin; Tong, Limin; Ning, Cun-Zheng

    2013-10-01

    Multicolor lasing and dynamic color-tuning in a wide spectrum range are challenging to realize but critically important in many areas of technology and daily life, such as general lighting, display, multicolor detection, and multiband communication. By exploring nanoscale growth and manipulation, we have demonstrated the first active dynamical color control of multicolor lasing, continuously tunable between red and green colors separated by 107 nm in wavelength. This is achieved in a purposely engineered single CdSSe alloy nanowire with composition varied along the wire axis. By looping the wide-gap end of the alloy nanowire through nanoscale manipulation, two largely independent (only weakly coupled) laser cavities are formed respectively for the green and red color modes. Our approach simultaneously overcomes the two fundamental challenges for multicolor lasing in material growth and cavity design. Such multicolor lasing and continuous color tuning in a wide spectral range represents a new paradigm shift and would eventually enable color-by-design and white-color lasers for lighting, illumination, and many other applications.

  13. Efficacy of Korean Red Ginseng by Single Nucleotide Polymorphism in Obese Women: Randomized, Double-blind, Placebo-controlled Trial

    PubMed Central

    Kwon, Dong Hyun; Bose, Shambhunath; Song, Mi Young; Lee, Myeong Jong; Lim, Chi Yeon; Kwon, Bum Sun; Kim, Ho Jun

    2012-01-01

    This study examined the effects of Korean red ginseng (KRG) on obese women and aimed to confirm that the effects of KRG on obesity differ dependently on a gene. Fifty obese women were recruited and randomized to receive KRG (n=24) or placebo (n=26) for 8 wk. Measurements of blood pressure, height, weight, waist circumference, waist-hip ratio (WHR), total fat mass, percentage of body fat, resting metabolic rate, basal body temperature, and daily food intake (FI), blood test (serum lipid, liver and renal function), Korean version of obesity-related quality of life scale (KOQOL), and a gene examination were performed. Comparisons of subjects before and after the administration of KRG revealed significant improvements of obesity in terms of weight, body mass index (BMI), WHR, FI, and KOQOL. However, in the comparison between KRG group and placebo group, only KOQOL was significantly different. KRG displayed significant efficacy on BMI and KOQOL in the CT genotype of the G protein beta 3 gene, but not in the CC genotype, on blood sugar test in the Trp64/Arg genotype of the beta 3 adrenergic receptor gene, but not in Trp64/ Trp genotype, on KOQOL in the DD genotype of the angiotensin I converting enzyme gene, but not in the ID and DD genotypes. The effects of KRG on obesity were confirmed to some extent. However, a distinct effect compared to placebo was not confirmed. KRG is more effective for improving the secondary issues of the quality of life derived from obesity rather than having direct effects on the obesity-related anthropometric assessment and blood test indices. PMID:23717118

  14. Scan-Free Absorbance Spectral Imaging A(x, y, λ) of Single Live Algal Cells for Quantifying Absorbance of Cell Suspensions

    PubMed Central

    Isono, Takumi; Yamashita, Kyohei; Momose, Daisuke; Kobayashi, Hiroki; Kitamura, Masashi; Nishiyama, Yusuke; Hosoya, Takahiro; Kanda, Hiroaki; Kudo, Ayane; Okada, Norihide; Yagi, Takafumi; Nakata, Kazuaki; Mineki, Shigeru; Tokunaga, Eiji

    2015-01-01

    Label-free, non-invasive, rapid absorbance spectral imaging A(x,y,λ) microscopy of single live cells at 1.2 μm × 1.2 μm resolution with an NA = 0.85 objective was developed and applied to unicellular green algae Chlamydomonas reinhardtii. By introducing the fiber assembly to rearrange a two-dimensional image to the one-dimensional array to fit the slit of an imaging spectrograph equipped with a CCD detector, scan-free acquisition of three-dimensional information of A(x,y,λ) was realized. The space-resolved absorbance spectra of the eyespot, an orange organelle about 1 μm, were extracted from the green-color background in a chlorophyll-rich single live cell absorbance image. Characteristic absorbance change in the cell suspension after hydrogen photoproduction in C. reinhardtii was investigated to find a single 715-nm absorption peak was locally distributed within single cells. The formula to calculate the absorbance of cell suspensions from that of single cells was presented to obtain a quantitative, parameter-free agreement with the experiment. It is quantitatively shown that the average number of chlorophylls per cell is significantly underestimated when it is evaluated from the absorbance of the cell suspensions due to the package effect. PMID:26061268

  15. Scan-Free Absorbance Spectral Imaging A(x, y, λ) of Single Live Algal Cells for Quantifying Absorbance of Cell Suspensions.

    PubMed

    Isono, Takumi; Yamashita, Kyohei; Momose, Daisuke; Kobayashi, Hiroki; Kitamura, Masashi; Nishiyama, Yusuke; Hosoya, Takahiro; Kanda, Hiroaki; Kudo, Ayane; Okada, Norihide; Yagi, Takafumi; Nakata, Kazuaki; Mineki, Shigeru; Tokunaga, Eiji

    2015-01-01

    Label-free, non-invasive, rapid absorbance spectral imaging A(x,y,λ) microscopy of single live cells at 1.2 μm × 1.2 μm resolution with an NA = 0.85 objective was developed and applied to unicellular green algae Chlamydomonas reinhardtii. By introducing the fiber assembly to rearrange a two-dimensional image to the one-dimensional array to fit the slit of an imaging spectrograph equipped with a CCD detector, scan-free acquisition of three-dimensional information of A(x,y,λ) was realized. The space-resolved absorbance spectra of the eyespot, an orange organelle about 1 μm, were extracted from the green-color background in a chlorophyll-rich single live cell absorbance image. Characteristic absorbance change in the cell suspension after hydrogen photoproduction in C. reinhardtii was investigated to find a single 715-nm absorption peak was locally distributed within single cells. The formula to calculate the absorbance of cell suspensions from that of single cells was presented to obtain a quantitative, parameter-free agreement with the experiment. It is quantitatively shown that the average number of chlorophylls per cell is significantly underestimated when it is evaluated from the absorbance of the cell suspensions due to the package effect. PMID:26061268

  16. Scan-Free Absorbance Spectral Imaging A(x, y, λ) of Single Live Algal Cells for Quantifying Absorbance of Cell Suspensions.

    PubMed

    Isono, Takumi; Yamashita, Kyohei; Momose, Daisuke; Kobayashi, Hiroki; Kitamura, Masashi; Nishiyama, Yusuke; Hosoya, Takahiro; Kanda, Hiroaki; Kudo, Ayane; Okada, Norihide; Yagi, Takafumi; Nakata, Kazuaki; Mineki, Shigeru; Tokunaga, Eiji

    2015-01-01

    Label-free, non-invasive, rapid absorbance spectral imaging A(x,y,λ) microscopy of single live cells at 1.2 μm × 1.2 μm resolution with an NA = 0.85 objective was developed and applied to unicellular green algae Chlamydomonas reinhardtii. By introducing the fiber assembly to rearrange a two-dimensional image to the one-dimensional array to fit the slit of an imaging spectrograph equipped with a CCD detector, scan-free acquisition of three-dimensional information of A(x,y,λ) was realized. The space-resolved absorbance spectra of the eyespot, an orange organelle about 1 μm, were extracted from the green-color background in a chlorophyll-rich single live cell absorbance image. Characteristic absorbance change in the cell suspension after hydrogen photoproduction in C. reinhardtii was investigated to find a single 715-nm absorption peak was locally distributed within single cells. The formula to calculate the absorbance of cell suspensions from that of single cells was presented to obtain a quantitative, parameter-free agreement with the experiment. It is quantitatively shown that the average number of chlorophylls per cell is significantly underestimated when it is evaluated from the absorbance of the cell suspensions due to the package effect.

  17. Quantitative assessment of ratiometric bimolecular beacons as a tool for imaging single engineered RNA transcripts and measuring gene expression in living cells.

    PubMed

    Zhang, Xuemei; Song, Yang; Shah, Akash Y; Lekova, Virzhiniya; Raj, Arjun; Huang, Ling; Behlke, Mark A; Tsourkas, Andrew

    2013-08-01

    Recently, we developed an oligonucleotide-based probe, ratiometric bimolecular beacon (RBMB), which generates a detectable fluorescent signal in living cells that express the target RNA. Here, we show that RBMBs can also be used to image single RNA transcripts in living cells, when the target RNA is engineered to contain as few as four hybridization sites. Moreover, comparison with single-molecule fluorescence in situ hybridization confirmed that RBMBs could be used to accurately quantify the number of RNA transcripts within individual cells. Measurements of gene expression could be acquired within 30 min and using a wide range of RBMB concentrations. The ability to acquire accurate measurements of RNA copy number in both HT-1080 cells and CHO cells also suggests that RBMBs can be used to image and quantify single RNA transcripts in a wide range of cell lines. Overall, these findings highlight the robustness and versatility of RBMBs as a tool for imaging RNA in live cells. We envision that the unique capabilities of RBMBs will open up new avenues for RNA research.

  18. Imaging single cells in a beam of live cyanobacteria with an X-ray laser (CXIDB ID 27)

    DOE Data Explorer

    Schot, Gijs, vander

    2015-02-10

    Diffraction pattern of a micron-sized S. elongatus cell at 1,100 eV photon energy (1.13 nm wavelength) with ~10^11 photons per square micron on the sample in ~70 fs. The signal to noise ratio at 4 nm resolution is 3.7 with 0.24 photons per Nyquist pixel. The cell was alive at the time of the exposure. The central region of the pattern (dark red) is saturated and this prevented reliable image reconstruction.

  19. Public and Private Lives: Institutional Structures and Personal Supports in Low-Income Single Mothers' Educational Pursuits

    ERIC Educational Resources Information Center

    Cerven, Christine

    2013-01-01

    Drawing on a case study of 60 low-income single mothers in California, I present a grounded account of the barriers and supports single mothers encounter in their pursuit of postsecondary education (PSE) and detail what the women themselves attributed to their success. I highlight the role both significant others (peers, family, friends) and…

  20. A low temperature X-ray single-crystal diffraction and polarised infra-red study of epidote

    NASA Astrophysics Data System (ADS)

    Gatta, G. Diego; Alvaro, Matteo; Bromiley, Geoffrey

    2012-01-01

    The effects of low-temperature on the crystal structure of a natural epidote [Ca1.925Fe0.745Al2.265Ti0.004Si3.037O12(OH), a = 8.8924(7), b = 5.6214(3), c = 10.1547(6)Å and β = 115.396(8)° at room conditions, Sp. Gr. P21 /m] have been investigated with a series of structure refinements down to 100 K on the basis of X-ray single-crystal diffraction data. The reflection conditions confirm that the space group is maintained within the T-range investigated. Structural refinements at all temperatures show the presence of Fe3+ at the octahedral M(3) site only [%Fe(M3) = 70.6(4)% at 295 K]. Only one independent proton site was located and two possible H-bonds occur, with O(10) as donor and O(4) and O(2) as acceptors. The H-bonding scheme is maintained down to 100 K and is supported by single crystal room- T polarised FTIR data. FTIR Spectra over the region 4,000-2,500 cm-1 are dominated by the presence of a strongly pleochroic absorption feature which can be assigned to protonation of O(10)-O(4). Previously unobserved splitting of this absorption features is consistent with a NNN influence due to the presence of Al and Fe3+ on the nearby M(3) site. An additional relatively minor absorption feature in FTIR spectra can be tentatively assigned to protonation of O(10)-O(2). Low- T does not affect significantly the tetrahedral and octahedral bond distances and angles, even when distances are corrected for "rigid body motions". A more significant effect is observed for the bond distances of the distorted Ca(1)- and Ca(2)-polyhedra, especially when corrected for "non-correlated motion". The main low- T effect is observed on the vibrational regime of the atomic sites, and in particular for the two Ca-sites. A significant reduction of the magnitude of the thermal displacement ellipsoids, with a variation of U eq (defined as one-third of the trace of the orthogonalised U ij tensor) by ~40% is observed for the Ca-sites between 295 and 100 K. Within the same T-range, the U eq of

  1. Mining a database of single amplified genomes from Red Sea brine pool extremophiles-improving reliability of gene function prediction using a profile and pattern matching algorithm (PPMA).

    PubMed

    Grötzinger, Stefan W; Alam, Intikhab; Ba Alawi, Wail; Bajic, Vladimir B; Stingl, Ulrich; Eppinger, Jörg

    2014-01-01

    Reliable functional annotation of genomic data is the key-step in the discovery of novel enzymes. Intrinsic sequencing data quality problems of single amplified genomes (SAGs) and poor homology of novel extremophile's genomes pose significant challenges for the attribution of functions to the coding sequences identified. The anoxic deep-sea brine pools of the Red Sea are a promising source of novel enzymes with unique evolutionary adaptation. Sequencing data from Red Sea brine pool cultures and SAGs are annotated and stored in the Integrated Data Warehouse of Microbial Genomes (INDIGO) data warehouse. Low sequence homology of annotated genes (no similarity for 35% of these genes) may translate into false positives when searching for specific functions. The Profile and Pattern Matching (PPM) strategy described here was developed to eliminate false positive annotations of enzyme function before progressing to labor-intensive hyper-saline gene expression and characterization. It utilizes InterPro-derived Gene Ontology (GO)-terms (which represent enzyme function profiles) and annotated relevant PROSITE IDs (which are linked to an amino acid consensus pattern). The PPM algorithm was tested on 15 protein families, which were selected based on scientific and commercial potential. An initial list of 2577 enzyme commission (E.C.) numbers was translated into 171 GO-terms and 49 consensus patterns. A subset of INDIGO-sequences consisting of 58 SAGs from six different taxons of bacteria and archaea were selected from six different brine pool environments. Those SAGs code for 74,516 genes, which were independently scanned for the GO-terms (profile filter) and PROSITE IDs (pattern filter). Following stringent reliability filtering, the non-redundant hits (106 profile hits and 147 pattern hits) are classified as reliable, if at least two relevant descriptors (GO-terms and/or consensus patterns) are present. Scripts for annotation, as well as for the PPM algorithm, are available

  2. Pharmacokinetics of a single dose of intravenous and oral meloxicam in red-tailed hawks (Buteo jamaicensis) and great horned owls (Bubo virginianus).

    PubMed

    Lacasse, Claude; Gamble, Kathryn C; Boothe, Dawn M

    2013-09-01

    Pharmacokinetic data were determined after a single dose of meloxicam in red-tailed hawks (RTH; Buteo jamaicensis) and great horned owls (GHO; Bubo virginianus). In a nonrandomized crossover design, individual birds of each species received 1 dose of intravenous meloxicam (0.5 mg/kg i.v.; n = 7 for each species) followed by a 2-week washout period, and then each received 1 dose of oral meloxicam (0.5 mg/kg PO; n = 5 for each species). Blood samples were collected intermittently after administration, and meloxicam was detected in plasma by high-performance liquid chromatography. Time versus plasma concentration data were subjected to noncompartmental analysis. Red-tailed hawks were determined to have the shortest elimination half-life for meloxicam (0.49 +/- 0.5 hours) of any species documented. Great horned owls also eliminated meloxicam very rapidly (0.78 +/- 0.52 hours). Great horned owls achieved higher plasma concentrations (368 +/- 87 ng/mL) of meloxicam than RTH (182 +/- 167 ng/mL) after oral administration, although RTH had a markedly higher volume of distribution (832 +/- 711 mL/kg) than GHO (137.6 +/- 62.7 mL/kg). The differences in meloxicam pharmacokinetics between these 2 raptor species supports the need for species-dependent studies and underlines the challenges of extrapolating drug dosages between species. Results of this study suggest that the current recommended once-daily dosing interval of oral meloxicam is unlikely to maintain plasma concentrations anticipated to be therapeutic in either RTH or GHO, and practical dosing options are questionable for this nonsteriodal anti-inflammatory drug in these raptor species.

  3. Pharmacokinetics of a single dose of intravenous and oral meloxicam in red-tailed hawks (Buteo jamaicensis) and great horned owls (Bubo virginianus).

    PubMed

    Lacasse, Claude; Gamble, Kathryn C; Boothe, Dawn M

    2013-09-01

    Pharmacokinetic data were determined after a single dose of meloxicam in red-tailed hawks (RTH; Buteo jamaicensis) and great horned owls (GHO; Bubo virginianus). In a nonrandomized crossover design, individual birds of each species received 1 dose of intravenous meloxicam (0.5 mg/kg i.v.; n = 7 for each species) followed by a 2-week washout period, and then each received 1 dose of oral meloxicam (0.5 mg/kg PO; n = 5 for each species). Blood samples were collected intermittently after administration, and meloxicam was detected in plasma by high-performance liquid chromatography. Time versus plasma concentration data were subjected to noncompartmental analysis. Red-tailed hawks were determined to have the shortest elimination half-life for meloxicam (0.49 +/- 0.5 hours) of any species documented. Great horned owls also eliminated meloxicam very rapidly (0.78 +/- 0.52 hours). Great horned owls achieved higher plasma concentrations (368 +/- 87 ng/mL) of meloxicam than RTH (182 +/- 167 ng/mL) after oral administration, although RTH had a markedly higher volume of distribution (832 +/- 711 mL/kg) than GHO (137.6 +/- 62.7 mL/kg). The differences in meloxicam pharmacokinetics between these 2 raptor species supports the need for species-dependent studies and underlines the challenges of extrapolating drug dosages between species. Results of this study suggest that the current recommended once-daily dosing interval of oral meloxicam is unlikely to maintain plasma concentrations anticipated to be therapeutic in either RTH or GHO, and practical dosing options are questionable for this nonsteriodal anti-inflammatory drug in these raptor species. PMID:24344511

  4. Mining a database of single amplified genomes from Red Sea brine pool extremophiles—improving reliability of gene function prediction using a profile and pattern matching algorithm (PPMA)

    PubMed Central

    Grötzinger, Stefan W.; Alam, Intikhab; Ba Alawi, Wail; Bajic, Vladimir B.; Stingl, Ulrich; Eppinger, Jörg

    2014-01-01

    Reliable functional annotation of genomic data is the key-step in the discovery of novel enzymes. Intrinsic sequencing data quality problems of single amplified genomes (SAGs) and poor homology of novel extremophile's genomes pose significant challenges for the attribution of functions to the coding sequences identified. The anoxic deep-sea brine pools of the Red Sea are a promising source of novel enzymes with unique evolutionary adaptation. Sequencing data from Red Sea brine pool cultures and SAGs are annotated and stored in the Integrated Data Warehouse of Microbial Genomes (INDIGO) data warehouse. Low sequence homology of annotated genes (no similarity for 35% of these genes) may translate into false positives when searching for specific functions. The Profile and Pattern Matching (PPM) strategy described here was developed to eliminate false positive annotations of enzyme function before progressing to labor-intensive hyper-saline gene expression and characterization. It utilizes InterPro-derived Gene Ontology (GO)-terms (which represent enzyme function profiles) and annotated relevant PROSITE IDs (which are linked to an amino acid consensus pattern). The PPM algorithm was tested on 15 protein families, which were selected based on scientific and commercial potential. An initial list of 2577 enzyme commission (E.C.) numbers was translated into 171 GO-terms and 49 consensus patterns. A subset of INDIGO-sequences consisting of 58 SAGs from six different taxons of bacteria and archaea were selected from six different brine pool environments. Those SAGs code for 74,516 genes, which were independently scanned for the GO-terms (profile filter) and PROSITE IDs (pattern filter). Following stringent reliability filtering, the non-redundant hits (106 profile hits and 147 pattern hits) are classified as reliable, if at least two relevant descriptors (GO-terms and/or consensus patterns) are present. Scripts for annotation, as well as for the PPM algorithm, are available

  5. Infra-red spectral microscopy of standing-wave resonances in single metal-dielectric-metal thin-film cavity

    NASA Astrophysics Data System (ADS)

    Nath, Janardan; Panjwani, Deep; Khalilzadeh-Rezaie, Farnood; Yesiltas, Mehmet; Smith, Evan M.; Ginn, James C.; Shelton, David J.; Hirschmugl, Carol; Cleary, Justin W.; Peale, Robert E.

    2015-09-01

    Resonantly absorbing thin films comprising periodically sub-wavelength structured metal surface, dielectric spacer, and metal ground plane are a topic of current interest with important applications. These structures are frequently described as "metamaterials", where effective permittivity and permeability with dispersion near electric and magnetic resonances allow impedance matching to free space for maximum absorption. In this paper, we compare synchrotron-based infrared spectral microscopy of a single isolated unit cell and a periodic array, and we show that the resonances have little to do with periodicity. Instead, the observed absorption spectra of usual periodically structured thin films are best described as due to standing-wave resonances within each independent unit cell, rather than as due to effective optical constants of a metamaterial. The effect of having arrays of unit cells is mainly to strengthen the absorption by increasing the fill factor, and such arrays need not be periodic. Initial work toward applying the subject absorbers to room-temperature bolometer arrays is presented.

  6. Microbead encapsulation of living plant protoplasts: A new tool for the handling of single plant cells1

    PubMed Central

    Grasso, Matthew S.; Lintilhac, Philip M.

    2016-01-01

    Premise of the study: Understanding plant cell biomechanics has been hampered by a lack of appropriate experimental tools. Here we introduce a protocol for the incorporation of individual plant protoplasts into precisely sized agarose microbeads. This technology may lead to new ways to manipulate the physical and chemical microenvironment of individual plant cells. Methods and Results: Living protoplasts obtained from BY-2 tobacco suspension cultures were continuously incorporated into a stream of agarose microdroplets, collected in cooled mineral oil as gelled microbeads, and then transferred into liquid MS medium for culture. In this first report, we show that spherical microbeads containing living protoplasts can be easily generated in quantity and that these encapsulated cells continue to grow and divide. Conclusions: Microbead encapsulation of protoplasts affords the opportunity to precisely control the physical microenvironment of individual plant cells. Ultimately, this method may help facilitate novel studies in plant biomechanics. PMID:27213126

  7. Single-particle tracking uncovers dynamics of glutamate-induced retrograde transport of NF-κB p65 in living neurons.

    PubMed

    Widera, Darius; Klenke, Christin; Nair, Deepak; Heidbreder, Meike; Malkusch, Sebastian; Sibarita, Jean-Baptiste; Choquet, Daniel; Kaltschmidt, Barbara; Heilemann, Mike; Kaltschmidt, Christian

    2016-10-01

    Retrograde transport of NF-κB from the synapse to the nucleus in neurons is mediated by the dynein/dynactin motor complex and can be triggered by synaptic activation. The caliber of axons is highly variable ranging down to 100 nm, aggravating the investigation of transport processes in neurites of living neurons using conventional light microscopy. We quantified for the first time the transport of the NF-κB subunit p65 using high-density single-particle tracking in combination with photoactivatable fluorescent proteins in living mouse hippocampal neurons. We detected an increase of the mean diffusion coefficient ([Formula: see text]) in neurites from [Formula: see text] to [Formula: see text] after stimulation with glutamate. We further observed that the relative amount of retrogradely transported p65 molecules is increased after stimulation. Glutamate treatment resulted in an increase of the mean retrograde velocity from [Formula: see text] to [Formula: see text], whereas a velocity increase from [Formula: see text] to [Formula: see text] was observed for anterogradely transported p65. This study demonstrates for the first time that glutamate stimulation leads to an increased mobility of single NF-κB p65 molecules in neurites of living hippocampal neurons. PMID:27226975

  8. Single-particle tracking uncovers dynamics of glutamate-induced retrograde transport of NF-κB p65 in living neurons.

    PubMed

    Widera, Darius; Klenke, Christin; Nair, Deepak; Heidbreder, Meike; Malkusch, Sebastian; Sibarita, Jean-Baptiste; Choquet, Daniel; Kaltschmidt, Barbara; Heilemann, Mike; Kaltschmidt, Christian

    2016-10-01

    Retrograde transport of NF-κB from the synapse to the nucleus in neurons is mediated by the dynein/dynactin motor complex and can be triggered by synaptic activation. The caliber of axons is highly variable ranging down to 100 nm, aggravating the investigation of transport processes in neurites of living neurons using conventional light microscopy. We quantified for the first time the transport of the NF-κB subunit p65 using high-density single-particle tracking in combination with photoactivatable fluorescent proteins in living mouse hippocampal neurons. We detected an increase of the mean diffusion coefficient ([Formula: see text]) in neurites from [Formula: see text] to [Formula: see text] after stimulation with glutamate. We further observed that the relative amount of retrogradely transported p65 molecules is increased after stimulation. Glutamate treatment resulted in an increase of the mean retrograde velocity from [Formula: see text] to [Formula: see text], whereas a velocity increase from [Formula: see text] to [Formula: see text] was observed for anterogradely transported p65. This study demonstrates for the first time that glutamate stimulation leads to an increased mobility of single NF-κB p65 molecules in neurites of living hippocampal neurons.

  9. Imaging single cells in a beam of live cyanobacteria with an X-ray laser (CXIDB ID 26)

    DOE Data Explorer

    Schot, Gijs, vander

    2015-02-10

    This entry contains ten diffraction patterns, and reconstructions images, of individual living Cyanobium gracile cells, imaged using 517 eV X-rays from the LCLS XFEL. The Hawk software package was used for phasing. The Uppsala aerosol injector was used for sample injection, assuring very low noise levels. The cells come from various stages of the cell cycle, and were imaged in random orientations.

  10. Molecular-level investigation of the structure, transformation, and bioactivity of single living fission yeast cells by time- and space-resolved Raman spectroscopy.

    PubMed

    Huang, Yu-San; Karashima, Takeshi; Yamamoto, Masayuki; Hamaguchi, Hiro-o

    2005-08-01

    The structure, transformation, and bioactivity of single living Schizosaccharomyces pombe cells at the molecular level have been studied in vivo by time- and space-resolved Raman spectroscopy. A time resolution of 100 s and a space resolution of 250 nm have been achieved with the use of a confocal Raman microspectrometer. The space-resolved Raman spectra of living S. pombe cells at different cell cycle stages were recorded in an effort to elucidate the molecular compositions of organelles, including nuclei, cytoplasm, mitochondria, and septa. The time- and space-resolved measurement of the central part of a dividing yeast cell showed continuous spectral evolution from that of the nucleus to those of the cytoplasm and mitochondria and finally to that of the septum, in accordance with the transformation during the cell cycle. A strong Raman band was observed at 1602 cm(-)(1) only when cells were under good nutrient conditions. The effect of a respiration inhibitor, KCN, on a living yeast cell was studied by measuring the Raman spectra of its mitochondria. A sudden disappearance of the 1602 cm(-)(1) band followed by the change in the shape and intensity of the phospholipid bands was observed, indicating a strong relationship between the cell activity and the intensity of this band. We therefore call this band "the Raman spectroscopic signature of life". The Raman mapping of a living yeast cell was also carried out. Not only the distributions of molecular species but also those of active mitochondria in the cell were successfully visualized in vivo.

  11. Single molecule super-resolution imaging of proteins in living Salmonella enterica using self-labelling enzymes.

    PubMed

    Barlag, Britta; Beutel, Oliver; Janning, Dennis; Czarniak, Frederik; Richter, Christian P; Kommnick, Carina; Göser, Vera; Kurre, Rainer; Fabiani, Florian; Erhardt, Marc; Piehler, Jacob; Hensel, Michael

    2016-01-01

    The investigation of the subcellular localization, dynamics and interaction of proteins and protein complexes in prokaryotes is complicated by the small size of the cells. Super-resolution microscopy (SRM) comprise various new techniques that allow light microscopy with a resolution that can be up to ten-fold higher than conventional light microscopy. Application of SRM techniques to living prokaryotes demands the introduction of suitable fluorescent probes, usually by fusion of proteins of interest to fluorescent proteins with properties compatible to SRM. Here we describe an approach that is based on the genetically encoded self-labelling enzymes HaloTag and SNAP-tag. Proteins of interest are fused to HaloTag or SNAP-tag and cell permeable substrates can be labelled with various SRM-compatible fluorochromes. Fusions of the enzyme tags to subunits of a type I secretion system (T1SS), a T3SS, the flagellar rotor and a transcription factor were generated and analysed in living Salmonella enterica. The new approach is versatile in tagging proteins of interest in bacterial cells and allows to determine the number, relative subcellular localization and dynamics of protein complexes in living cells. PMID:27534893

  12. Single molecule super-resolution imaging of proteins in living Salmonella enterica using self-labelling enzymes

    PubMed Central

    Barlag, Britta; Beutel, Oliver; Janning, Dennis; Czarniak, Frederik; Richter, Christian P.; Kommnick, Carina; Göser, Vera; Kurre, Rainer; Fabiani, Florian; Erhardt, Marc; Piehler, Jacob; Hensel, Michael

    2016-01-01

    The investigation of the subcellular localization, dynamics and interaction of proteins and protein complexes in prokaryotes is complicated by the small size of the cells. Super-resolution microscopy (SRM) comprise various new techniques that allow light microscopy with a resolution that can be up to ten-fold higher than conventional light microscopy. Application of SRM techniques to living prokaryotes demands the introduction of suitable fluorescent probes, usually by fusion of proteins of interest to fluorescent proteins with properties compatible to SRM. Here we describe an approach that is based on the genetically encoded self-labelling enzymes HaloTag and SNAP-tag. Proteins of interest are fused to HaloTag or SNAP-tag and cell permeable substrates can be labelled with various SRM-compatible fluorochromes. Fusions of the enzyme tags to subunits of a type I secretion system (T1SS), a T3SS, the flagellar rotor and a transcription factor were generated and analysed in living Salmonella enterica. The new approach is versatile in tagging proteins of interest in bacterial cells and allows to determine the number, relative subcellular localization and dynamics of protein complexes in living cells. PMID:27534893

  13. Role of ICAM-1 polymorphisms (G241R, K469E) in mediating its single-molecule binding ability: Atomic force microscopy measurements on living cells

    SciTech Connect

    Bai, Rui; Yi, Shaoqiong; Zhang, Xuejie; Liu, Huiliang; Fang, Xiaohong

    2014-06-13

    Highlights: • We evaluated both single molecule binding ability and expression level of 4 ICAM-1 mutations. • AFM was used to measure single-molecule binding ability on living cells. • The SNP of ICAM-1 may induce changes in expressions rather than single-molecule binding ability. - Abstract: Atherosclerosis (As) is characterized by chronic inflammation and is a major cause of human mortality. ICAM-1-mediated adhesion of leukocytes in vessel walls plays an important role in the pathogenesis of atherosclerosis. Two single nucleotide polymorphisms (SNPs) of human intercellular adhesion molecule-1 (ICAM-1), G241R and K469E, are associated with a number of inflammatory diseases. SNP induced changes in ICAM-1 function rely not only on the expression level but also on the single-molecule binding ability which may be affected by single molecule conformation variations such as protein splicing and folding. Previous studies have shown associations between G241R/K469E polymorphisms and ICAM-1 gene expression. Nevertheless, few studies have been done that focus on the single-molecule forces of the above SNPs and their ligands. In the current study, we evaluated both single molecule binding ability and expression level of 4 ICAM-1 mutations – GK (G241/K469), GE (G241/E469), RK (R241/K469) and RE (R241/E469). No difference in adhesion ability was observed via cell adhesion assay or atomic force microscopy (AFM) measurement when comparing the GK, GE, RK, or RE genotypes of ICAM-1 to each other. On the other hand, flow cytometry suggested that there was significantly higher expression of GE genotype of ICAM-1 on transfected CHO cells. Thus, we concluded that genetic susceptibility to diseases related to ICAM-1 polymorphisms, G241R or K469E, might be due to the different expressions of ICAM-1 variants rather than to the single-molecule binding ability of ICAM-1.

  14. iSBatch: a batch-processing platform for data analysis and exploration of live-cell single-molecule microscopy images and other hierarchical datasets.

    PubMed

    Caldas, Victor E A; Punter, Christiaan M; Ghodke, Harshad; Robinson, Andrew; van Oijen, Antoine M

    2015-10-01

    Recent technical advances have made it possible to visualize single molecules inside live cells. Microscopes with single-molecule sensitivity enable the imaging of low-abundance proteins, allowing for a quantitative characterization of molecular properties. Such data sets contain information on a wide spectrum of important molecular properties, with different aspects highlighted in different imaging strategies. The time-lapsed acquisition of images provides information on protein dynamics over long time scales, giving insight into expression dynamics and localization properties. Rapid burst imaging reveals properties of individual molecules in real-time, informing on their diffusion characteristics, binding dynamics and stoichiometries within complexes. This richness of information, however, adds significant complexity to analysis protocols. In general, large datasets of images must be collected and processed in order to produce statistically robust results and identify rare events. More importantly, as live-cell single-molecule measurements remain on the cutting edge of imaging, few protocols for analysis have been established and thus analysis strategies often need to be explored for each individual scenario. Existing analysis packages are geared towards either single-cell imaging data or in vitro single-molecule data and typically operate with highly specific algorithms developed for particular situations. Our tool, iSBatch, instead allows users to exploit the inherent flexibility of the popular open-source package ImageJ, providing a hierarchical framework in which existing plugins or custom macros may be executed over entire datasets or portions thereof. This strategy affords users freedom to explore new analysis protocols within large imaging datasets, while maintaining hierarchical relationships between experiments, samples, fields of view, cells, and individual molecules.

  15. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells.

    PubMed

    Grecco, H E; Lidke, K A; Heintzmann, R; Lidke, D S; Spagnuolo, C; Martinez, O E; Jares-Erijman, E A; Jovin, T M

    2004-11-01

    In this work, we characterized streptavidin-conjugated quantum dots (QDs) manufactured by Quantum Dot Corporation. We present data on: (1) two-photon excitation; (2) fluorescence lifetimes; (3) ensemble and single QD emission anisotropy; (4) QDs as donors for Forster resonance energy transfer (FRET); and (5) spectral conversion of QDs exposed to high-intensity illumination. We also demonstrate the utility of QDs for (1) imaging the binding and uptake of biotinylated transferrin on living cells, and (2) resolving by fluorescence lifetime imaging microscopy (FLIM) signals originating from QDs from those of spatially and spectrally overlapping visible fluorescent proteins (VFPs). PMID:15630694

  16. Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level

    PubMed Central

    Kinnunen, Matti; Kauppila, Antti; Karmenyan, Artashes; Myllylä, Risto

    2011-01-01

    We demonstrate the use of a double-beam optical tweezers system to stabilize red blood cell (RBC) orientation in the optical tweezers during measurements of elastic light scattering from the trapped cells in an angle range of 5-30 degrees. Another laser (He-Ne) was used to illuminate the cell and elastic light scattering distribution from the single cell was measured with a goniometer and a photomultiplier tube. Moreover, CCD camera images of RBCs with and without laser illumination are presented as complementary information. Light scattering from a RBC was measured in different fixed orientations. Light scattering from cells was also measured when the length of the cell was changed in two different orientations. Light scattering measurements from spherical and crenate RBCs are described and the results are compared with other cell orientations. Analysis shows that the measured elastic light scattering distributions reveal changes in the RBC’s orientation and shape. The effect of stretching on the changes in scattering is larger in the case of face-on incidence of He-Ne laser light than in rim-on incidence. The scattering patterns from RBCs in different orientations as well as from a spherical RBC were compared with numerical results found in literature. Good correlation was found. PMID:21750759

  17. Two-color RESOLFT nanoscopy with green and red fluorescent photochromic proteins.

    PubMed

    Lavoie-Cardinal, Flavie; Jensen, Nickels A; Westphal, Volker; Stiel, Andre C; Chmyrov, Andriy; Bierwagen, Jakob; Testa, Ilaria; Jakobs, Stefan; Hell, Stefan W

    2014-03-17

    Up to now, all demonstrations of reversible saturable optical fluorescence transitions (RESOLFT) superresolution microscopy of living cells have relied on the use of reversibly switchable fluorescent proteins (RSFP) emitting in the green spectral range. Here we show RESOLFT imaging with rsCherryRev1.4, a new red-emitting RSFP enabling a spatial resolution up to four times higher than the diffraction barrier. By co-expressing green and red RSFPs in living cells we demonstrate two-color RESOLFT imaging both for single ("donut") beam scanning and for parallelized versions of RESOLFT nanoscopy where an array of >23,000 "donut-like" minima are scanned simultaneously.

  18. Red Sea

    Atmospheric Science Data Center

    2013-04-16

    article title:  The Red Sea     View Larger Image ... Imaging SpectroRadiometer (MISR) image of the Red Sea was acquired on August 13, 2000. Located between the East African coast and the Saudi Arabian peninsula, the Red Sea got its name because the blooms of a type of algae,  Trichodesmium ...

  19. Children in Single-Parent Families Living in Poverty Have Fewer Supports after Welfare Reform. IWPR Research in Brief.

    ERIC Educational Resources Information Center

    Lyter, Deanna M.; Sills, Melissa; Oh, Gi-Taik

    Since the 1996 passage of the Personal Responsibility and Work Opportunity Act (welfare reform), impoverished children in single-parent families receive less aid than under the previous system, and the most disadvantaged of these children have slipped deeper into poverty. This research brief summarizes a study that explored the economic well-being…

  20. African American Single Mothers: Understanding Their Lives and Families. Sage Series on Race and Ethnic Relations, Volume 10.

    ERIC Educational Resources Information Center

    Dickerson, Bette J.

    Past research on African American single mothers and their families has been conducted using conventional paradigms based upon models of the dominant culture. This practice has resulted in the creation of stereotypes and misconceptions about "the Black family." In this collection of original work by an interdisciplinary group of scholars, the…

  1. Determination of the stoichiometry, structure, and distribution in living cells of protein complexes from analysis of single-molecular-complexes FRET

    NASA Astrophysics Data System (ADS)

    Stoneman, Michael R.; Patowary, S.; Roesch, M. T.; Singh, D. R.; Strogolov, V.; Oliver, J. A.; Raicu, V.

    2011-03-01

    Advances in two-photon microscopy with spectral resolution (TPM-SR) and the development of a simple theory of Förster Resonance Energy Transfer (FRET) for single molecular complexes recently lead to the development of a novel method for the determination of structure and localization in living cells of membrane protein complexes (Raicu et al., Nature Photon., 3, 2009). An appealing feature of this method is its ability to provide such important information while being unaffected by spurious signals originating from stochastic FRET (Singh and Raicu, Biophys. J., 98, 2010). We will present the results obtained from our recent studies of trimeric FRET calibration standards expressed in the cytoplasm of Chinese hamster ovary (CHO) cells, as well as a model G protein-coupled receptor expressed in the membrane of yeast. Emphasis will be placed on the measurement and analysis of single-molecular-complex FRET data for determination of the quaternary structure of some proteins (or the protein complex structure).

  2. A Microfluidic-Enabled Mechanical Microcompressor for the Immobilization of Live Single- and Multi-Cellular Specimens

    PubMed Central

    Yan, Yingjun; Jiang, Liwei; Aufderheide, Karl J.; Wright, Gus A.; Terekhov, Alexander; Costa, Lino; Qin, Kevin; McCleery, W. Tyler; Fellenstein, John J.; Ustione, Alessandro; Robertson, J. Brian; Johnson, Carl Hirschie; Piston, David W.; Hutson, M. Shane; Wikswo, John P.; Hofmeister, William; Janetopoulos, Chris

    2014-01-01

    A microcompressor is a precision mechanical device that flattens and immobilizes living cells and small organisms for optical microscopy, allowing enhanced visualization of sub-cellular structures and organelles. We have developed an easily fabricated device, which can be equipped with microfluidics, permitting the addition of media or chemicals during observation. This device can be used on both upright and inverted microscopes. The apparatus permits micrometer precision flattening for nondestructive immobilization of specimens as small as a bacterium, while also accommodating larger specimens, such as Caenorhabditis elegans, for long-term observations. The compressor mount is removable and allows easy specimen addition and recovery for later observation. Several customized specimen beds can be incorporated into the base. To demonstrate the capabilities of the device, we have imaged numerous cellular events in several protozoan species, in yeast cells, and in Drosophila melanogaster embryos. We have been able to document previously unreported events, and also perform photobleaching experiments, in conjugating Tetrahymena thermophila. PMID:24444078

  3. Optical Methods to Study Protein-DNA Interactions in Vitro and in Living Cells at the Single-Molecule Level

    PubMed Central

    Monico, Carina; Capitanio, Marco; Belcastro, Gionata; Vanzi, Francesco; Pavone, Francesco S.

    2013-01-01

    The maintenance of intact genetic information, as well as the deployment of transcription for specific sets of genes, critically rely on a family of proteins interacting with DNA and recognizing specific sequences or features. The mechanisms by which these proteins search for target DNA are the subject of intense investigations employing a variety of methods in biology. A large interest in these processes stems from the faster-than-diffusion association rates, explained in current models by a combination of 3D and 1D diffusion. Here, we present a review of the single-molecule approaches at the forefront of the study of protein-DNA interaction dynamics and target search in vitro and in vivo. Flow stretch, optical and magnetic manipulation, single fluorophore detection and localization as well as combinations of different methods are described and the results obtained with these techniques are discussed in the framework of the current facilitated diffusion model. PMID:23429188

  4. A three-camera imaging microscope for high-speed single-molecule tracking and super-resolution imaging in living cells

    NASA Astrophysics Data System (ADS)

    English, Brian P.; Singer, Robert H.

    2015-08-01

    Our aim is to develop quantitative single-molecule assays to study when and where molecules are interacting inside living cells and where enzymes are active. To this end we present a three-camera imaging microscope for fast tracking of multiple interacting molecules simultaneously, with high spatiotemporal resolution. The system was designed around an ASI RAMM frame using three separate tube lenses and custom multi-band dichroics to allow for enhanced detection efficiency. The frame times of the three Andor iXon Ultra EMCCD cameras are hardware synchronized to the laser excitation pulses of the three excitation lasers, such that the fluorophores are effectively immobilized during frame acquisitions and do not yield detections that are motion-blurred. Stroboscopic illumination allows robust detection from even rapidly moving molecules while minimizing bleaching, and since snapshots can be spaced out with varying time intervals, stroboscopic illumination enables a direct comparison to be made between fast and slow molecules under identical light dosage. We have developed algorithms that accurately track and co-localize multiple interacting biomolecules. The three-color microscope combined with our co-movement algorithms have made it possible for instance to simultaneously image and track how the chromosome environment affects diffusion kinetics or determine how mRNAs diffuse during translation. Such multiplexed single-molecule measurements at a high spatiotemporal resolution inside living cells will provide a major tool for testing models relating molecular architecture and biological dynamics.

  5. A three-camera imaging microscope for high-speed single-molecule tracking and super-resolution imaging in living cells

    PubMed Central

    English, Brian P.; Singer, Robert H.

    2016-01-01

    Our aim is to develop quantitative single-molecule assays to study when and where molecules are interacting inside living cells and where enzymes are active. To this end we present a three-camera imaging microscope for fast tracking of multiple interacting molecules simultaneously, with high spatiotemporal resolution. The system was designed around an ASI RAMM frame using three separate tube lenses and custom multi-band dichroics to allow for enhanced detection efficiency. The frame times of the three Andor iXon Ultra EMCCD cameras are hardware synchronized to the laser excitation pulses of the three excitation lasers, such that the fluorophores are effectively immobilized during frame acquisitions and do not yield detections that are motion-blurred. Stroboscopic illumination allows robust detection from even rapidly moving molecules while minimizing bleaching, and since snapshots can be spaced out with varying time intervals, stroboscopic illumination enables a direct comparison to be made between fast and slow molecules under identical light dosage. We have developed algorithms that accurately track and co-localize multiple interacting biomolecules. The three-color microscope combined with our co-movement algorithms have made it possible for instance to simultaneously image and track how the chromosome environment affects diffusion kinetics or determine how mRNAs diffuse during translation. Such multiplexed single-molecule measurements at a high spatiotemporal resolution inside living cells will provide a major tool for testing models relating molecular architecture and biological dynamics. PMID:26819489

  6. Authenticity control of game meat products--a single method to detect and quantify adulteration of fallow deer (Dama dama), red deer (Cervus elaphus) and sika deer (Cervus nippon) by real-time PCR.

    PubMed

    Druml, Barbara; Grandits, Stephanie; Mayer, Walter; Hochegger, Rupert; Cichna-Markl, Margit

    2015-03-01

    This contribution presents a single real-time PCR assay allowing the determination of the deer content (the sum of fallow deer (Dama dama), red deer (Cervus elaphus) and sika deer (Cervus nippon)) in meat products to detect food adulteration. The PCR assay does not show cross-reactivity with 20 animal species and 43 botanical species potentially contained in game meat products. The limit of quantification is 0.5% for fallow deer and red deer and 0.1% for sika deer. The deer content in meat products is determined by relating the concentration obtained with the deer PCR assay to that obtained with a reference system which amplifies mammals and poultry DNA. The analysis of binary meat mixtures with pork, a meat mixture containing equal amounts of fallow deer, red deer and sika deer in pork and a model game sausage showed that the quantification approach is very accurate (systematic error generally <25%).

  7. Authenticity control of game meat products--a single method to detect and quantify adulteration of fallow deer (Dama dama), red deer (Cervus elaphus) and sika deer (Cervus nippon) by real-time PCR.

    PubMed

    Druml, Barbara; Grandits, Stephanie; Mayer, Walter; Hochegger, Rupert; Cichna-Markl, Margit

    2015-03-01

    This contribution presents a single real-time PCR assay allowing the determination of the deer content (the sum of fallow deer (Dama dama), red deer (Cervus elaphus) and sika deer (Cervus nippon)) in meat products to detect food adulteration. The PCR assay does not show cross-reactivity with 20 animal species and 43 botanical species potentially contained in game meat products. The limit of quantification is 0.5% for fallow deer and red deer and 0.1% for sika deer. The deer content in meat products is determined by relating the concentration obtained with the deer PCR assay to that obtained with a reference system which amplifies mammals and poultry DNA. The analysis of binary meat mixtures with pork, a meat mixture containing equal amounts of fallow deer, red deer and sika deer in pork and a model game sausage showed that the quantification approach is very accurate (systematic error generally <25%). PMID:25306377

  8. Effect of size and temperature at vaccination on immunization and protection conferred by a live attenuated Francisella noatunensis immersion vaccine in red hybrid tilapia.

    PubMed

    Soto, Esteban; Brown, Nicholas; Gardenfors, Zackarias O; Yount, Shaun; Revan, Floyd; Francis, Stewart; Kearney, Michael T; Camus, Alvin

    2014-12-01

    Francisella noatunensis subsp. orientalis (Fno) is a pleomorphic, facultative intracellular, Gram-negative, emerging bacterial pathogen of marine and fresh water fish with worldwide distribution. In this study, the efficacy of an attenuated Fno intracellular growth locus C (iglC) mutant was evaluated for use as a live immersion vaccine, when administered to hybrid tilapia at two different stages of growth (5 g fry and 10 g fingerlings) and at two temperatures (25 °C and 30 °C). To determine vaccine efficacy, mortality, days to first death, and Fno genome equivalents (GE) in the spleens of survivors, as well as serum and mucus antibody levels, were evaluated after 30 d in fish challenged with a wild type virulent strain. Both size and temperature at vaccination played an important role in immunization and protection. Fry vaccinated at 25 °C were not protected when compared to non-vaccinated fry at 25 °C (p = 0.870). In contrast, 5 g fry vaccinated at 30 °C were significantly protected compared to non-vaccinated fry at 30 °C (p = 0.038). Although lower mortalities occurred, 10 g fingerlings vaccinated at 25 °C were not protected, compared to non-vaccinated fingerlings at 25 °C (p = 0.328), while, 10 g fingerlings vaccinated at 30 °C were significantly protected, compared to non-vaccinated fingerlings at 30 °C (p = 0.038). Additionally, overall mortality of 5 g fish was significantly higher than in 10 g fish. Mortality was also significantly higher in fish subjected to a 30 to 25 °C temperature change one week prior to challenge, than in fish maintained at the same temperature during vaccination and challenge. This information demonstrates that both temperature and size at vaccination are important factors when implementing immunization prophylaxis in cultured tilapia.

  9. Health-seeking behavior and social networks of the aged living in single-room occupancy hotels.

    PubMed

    Cohen, C I; Sokolovsky, J

    1979-06-01

    The elderly who reside in single-room occupancy (SRO) hotels often have been depicted as "isolates," lacking the interest or ability to engage primary or secondary support systems. This characterization has not enhanced understanding of how the SRO aged are able to survive in the community. With the use of network analysis techniques, this study demonstrates the inaccuracy of the assertion that these old persons lack significant social support. The data pointed to differences in network size, complexity, intensity, connectedness, and directionality in relation to varying degrees of physical and psychiatric health.

  10. Bias-corrected diagnostic performance of the naked-eye single-tube red-cell osmotic fragility test (NESTROFT): an effective screening tool for beta-thalassemia.

    PubMed

    Mamtani, Manju; Jawahirani, Anil; Das, Kishor; Rughwani, Vinky; Kulkarni, Hemant

    2006-08-01

    It is being increasingly recognized that a majority of the countries in the thalassemia-belt need a cost-effective screening program as the first step towards control of thalassemia. Although the naked eye single tube red cell osmotic fragility test (NESTROFT) has been considered to be a very effective screening tool for beta-thalassemia trait, assessment of its diagnostic performance has been affected with the reference test- and verification-bias. Here, we set out to provide estimates of sensitivity and specificity of NESTROFT corrected for these potential biases. We conducted a cross-sectional diagnostic test evaluation study using data from 1563 subjects from Central India with a high prevalence of beta-thalassemia. We used latent class modelling after ensuring its validity to account for the reference test bias and global sensitivity analysis to control the verification bias. We also compared the results of latent class modelling with those of five discriminant indexes. We observed that across a range of cut-offs for the mean corpuscular volume (MCV) and the hemoglobin A2 (HbA2) concentration the average sensitivity and specificity of NESTROFT obtained from latent class modelling was 99.8 and 83.7%, respectively. These estimates were comparable to those characterizing the diagnostic performance of HbA2, which is considered by many as the reference test to detect beta-thalassemia. After correction for the verification bias these estimates were 93.4 and 97.2%, respectively. Combined with the inexpensive and quick disposition of NESTROFT, these results strongly support its candidature as a screening tool-especially in the resource-poor and high-prevalence settings.

  11. Bias-corrected diagnostic performance of the naked-eye single-tube red-cell osmotic fragility test (NESTROFT): an effective screening tool for beta-thalassemia.

    PubMed

    Mamtani, Manju; Jawahirani, Anil; Das, Kishor; Rughwani, Vinky; Kulkarni, Hemant

    2006-08-01

    It is being increasingly recognized that a majority of the countries in the thalassemia-belt need a cost-effective screening program as the first step towards control of thalassemia. Although the naked eye single tube red cell osmotic fragility test (NESTROFT) has been considered to be a very effective screening tool for beta-thalassemia trait, assessment of its diagnostic performance has been affected with the reference test- and verification-bias. Here, we set out to provide estimates of sensitivity and specificity of NESTROFT corrected for these potential biases. We conducted a cross-sectional diagnostic test evaluation study using data from 1563 subjects from Central India with a high prevalence of beta-thalassemia. We used latent class modelling after ensuring its validity to account for the reference test bias and global sensitivity analysis to control the verification bias. We also compared the results of latent class modelling with those of five discriminant indexes. We observed that across a range of cut-offs for the mean corpuscular volume (MCV) and the hemoglobin A2 (HbA2) concentration the average sensitivity and specificity of NESTROFT obtained from latent class modelling was 99.8 and 83.7%, respectively. These estimates were comparable to those characterizing the diagnostic performance of HbA2, which is considered by many as the reference test to detect beta-thalassemia. After correction for the verification bias these estimates were 93.4 and 97.2%, respectively. Combined with the inexpensive and quick disposition of NESTROFT, these results strongly support its candidature as a screening tool-especially in the resource-poor and high-prevalence settings. PMID:17178668

  12. Seeing Red

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This New Horizons image of Jupiter's volcanic moon Io was taken at 13:05 Universal Time during the spacecraft's Jupiter flyby on February 28, 2007. It shows the reddish color of the deposits from the giant volcanic eruption at the volcano Tvashtar, near the top of the sunlit crescent, as well as the bluish plume itself and the orange glow of the hot lava at its source. The relatively unprocessed image on the left provides the best view of the volcanic glow and the plume deposits, while the version on the right has been brightened to show the much fainter plume, and the Jupiter-lit night side of Io.

    New Horizons' color imaging of Io's sunlit side was generally overexposed because the spacecraft's color camera, the super-sensitive Multispectral Visible Imaging Camera (MVIC), was designed for the much dimmer illumination at Pluto. However, two of MVIC's four color filters, the blue and 'methane' filter (a special filter designed to map methane frost on the surface of Pluto at an infrared wavelength of 0.89 microns), are less sensitive than the others, and thus obtained some well-exposed views of the surface when illumination conditions were favorable. Because only two color filters are used, rather than the usual three, and because one filter uses infrared light, the color is only a rough approximation to what the human eye would see.

    The red color of the Tvashtar plume fallout is typical of Io's largest volcanic plumes, including the previous eruption of Tvashtar seen by the Galileo and Cassini spacecraft in 2000, and the long-lived Pele plume on the opposite side of Io. The color likely results from the creation of reddish three-atom and four-atom sulfur molecules (S3 and S4) from plume gases rich in two-atom sulfur molecules (S2 After a few months or years, the S3 and S4 molecules recombine into the more stable and familiar yellowish form of sulfur consisting of eight-atom molecules (S8), so these red deposits are only seen around recently-active Io

  13. Donor Safety in Adult-Adult Living Donor Liver Transplantation: A Single-Center Experience of 356 Cases

    PubMed Central

    Meng, Haipeng; Yang, Jiayin; Yan, Lunan

    2016-01-01

    Background As an important means to tackle the worldwide shortage of liver grafts, adult-adult living donor liver transplantation (A-ALDLT) is the most massive operation a healthy person could undergo, so donor safety is of prime importance. However, most previous research focused on recipients, while complications in donors have not been fully described or investigated. Material/Methods To investigate donor safety in terms of postoperative complications, the clinical data of 356 A-ALDLT donors in our center from January 2002 to September 2015 were retrospectively analyzed. These patients were divided into a pre-2008 group (before January 2008) and a post-2008 group (after January 2008). Donor safety was evaluated with regard to the type, frequency, and severity of postoperative complications. Results There were no donor deaths in our center during this period. The overall complication rate was 23.0% (82/356). The proportion of Clavien I, II, III, and IV complications was 51.2% (42/82), 25.6% (21/82), 22.0% (18/82), and 1.2% (1/82), respectively. In all the donors, the incidence of Clavien I, II, III, and IV complications was 11.8% (42/356), 5.9% (21/356), 5.1% (18/356), and 0.3% (1/356), respectively. The overall complication rate in the post-2008 group was significantly lower than that in the pre-2008 group (18.1% (41/227) vs. 32.6% (42/129), P<0.01). Biliary complications were the most common, with an incidence of 8.4% (30/356). Conclusions The risk to A-ALDLT donors is controllable and acceptable with improvement in preoperative assessment and liver surgery. PMID:27178367

  14. Free-Living Species of Carnivorous Mammals in Poland: Red Fox, Beech Marten, and Raccoon as a Potential Reservoir of Salmonella, Yersinia, Listeria spp. and Coagulase-Positive Staphylococcus.

    PubMed

    Nowakiewicz, Aneta; Zięba, Przemysław; Ziółkowska, Grażyna; Gnat, Sebastian; Muszyńska, Marta; Tomczuk, Krzysztof; Majer Dziedzic, Barbara; Ulbrych, Łukasz; Trościańczyk, Aleksandra

    2016-01-01

    The objective of the study was to examine a population of free-living carnivorous mammals most commonly found in Poland (red fox, beech marten, and raccoon) for the occurrence of bacteria that are potentially pathogenic for humans and other animal species and to determine their virulence potential (the presence of selected virulence genes). From the total pool of isolates obtained (n = 328), we selected 90 belonging to species that pose the greatest potential threat to human health: Salmonella spp. (n = 19; 4.51%), Yersinia enterocolitica (n = 10; 2.37%), Listeria monocytogenes and L. ivanovii (n = 21), and Staphylococcus aureus (n = 40; 9.5%). The Salmonella spp. isolates represented three different subspecies; S. enterica subsp. enterica accounted for a significant proportion (15/19), and most of the serotypes isolated (S. Typhimurium, S. Infantis, S. Newport and S. Enteritidis) were among the 10 non-typhoidal Salmonella serotypes that are most often responsible for infections in Europe, including Poland. Y. enterococlitica was detected in the smallest percentage of animals, but 60% of strains among the isolates tested possessed the ail gene, which is responsible for attachment and invasion. Potentially pathogenic Listeria species were isolated from approx. 5% of the animals. The presence of all tested virulence genes was shown in 35% of L. monocytogenes strains, while in the case of the other strains, the genes occurred in varying numbers and configurations. The presence of the inlA, inlC, hlyA, and iap genes was noted in all strains, whereas the genes encoding PI-PLC, actin, and internalin Imo2821 were present in varying percentages (from 80% to 55%). S. aureus was obtained from 40 individuals. Most isolates possessed the hla, hld (95% for each), and hlb (32.5%) genes encoding hemolysins as well as the gene encoding leukotoxin lukED (70%). In a similar percentage of strains (77.5%), the presence of at least one gene encoding enterotoxin was found, with 12

  15. Free-Living Species of Carnivorous Mammals in Poland: Red Fox, Beech Marten, and Raccoon as a Potential Reservoir of Salmonella, Yersinia, Listeria spp. and Coagulase-Positive Staphylococcus

    PubMed Central

    Nowakiewicz, Aneta; Zięba, Przemysław; Ziółkowska, Grażyna; Gnat, Sebastian; Muszyńska, Marta; Tomczuk, Krzysztof; Majer Dziedzic, Barbara; Ulbrych, Łukasz; Trościańczyk, Aleksandra

    2016-01-01

    The objective of the study was to examine a population of free-living carnivorous mammals most commonly found in Poland (red fox, beech marten, and raccoon) for the occurrence of bacteria that are potentially pathogenic for humans and other animal species and to determine their virulence potential (the presence of selected virulence genes). From the total pool of isolates obtained (n = 328), we selected 90 belonging to species that pose the greatest potential threat to human health: Salmonella spp. (n = 19; 4.51%), Yersinia enterocolitica (n = 10; 2.37%), Listeria monocytogenes and L. ivanovii (n = 21), and Staphylococcus aureus (n = 40; 9.5%). The Salmonella spp. isolates represented three different subspecies; S. enterica subsp. enterica accounted for a significant proportion (15/19), and most of the serotypes isolated (S. Typhimurium, S. Infantis, S. Newport and S. Enteritidis) were among the 10 non-typhoidal Salmonella serotypes that are most often responsible for infections in Europe, including Poland. Y. enterococlitica was detected in the smallest percentage of animals, but 60% of strains among the isolates tested possessed the ail gene, which is responsible for attachment and invasion. Potentially pathogenic Listeria species were isolated from approx. 5% of the animals. The presence of all tested virulence genes was shown in 35% of L. monocytogenes strains, while in the case of the other strains, the genes occurred in varying numbers and configurations. The presence of the inlA, inlC, hlyA, and iap genes was noted in all strains, whereas the genes encoding PI-PLC, actin, and internalin Imo2821 were present in varying percentages (from 80% to 55%). S. aureus was obtained from 40 individuals. Most isolates possessed the hla, hld (95% for each), and hlb (32.5%) genes encoding hemolysins as well as the gene encoding leukotoxin lukED (70%). In a similar percentage of strains (77.5%), the presence of at least one gene encoding enterotoxin was found, with 12

  16. Free-Living Species of Carnivorous Mammals in Poland: Red Fox, Beech Marten, and Raccoon as a Potential Reservoir of Salmonella, Yersinia, Listeria spp. and Coagulase-Positive Staphylococcus.

    PubMed

    Nowakiewicz, Aneta; Zięba, Przemysław; Ziółkowska, Grażyna; Gnat, Sebastian; Muszyńska, Marta; Tomczuk, Krzysztof; Majer Dziedzic, Barbara; Ulbrych, Łukasz; Trościańczyk, Aleksandra

    2016-01-01

    The objective of the study was to examine a population of free-living carnivorous mammals most commonly found in Poland (red fox, beech marten, and raccoon) for the occurrence of bacteria that are potentially pathogenic for humans and other animal species and to determine their virulence potential (the presence of selected virulence genes). From the total pool of isolates obtained (n = 328), we selected 90 belonging to species that pose the greatest potential threat to human health: Salmonella spp. (n = 19; 4.51%), Yersinia enterocolitica (n = 10; 2.37%), Listeria monocytogenes and L. ivanovii (n = 21), and Staphylococcus aureus (n = 40; 9.5%). The Salmonella spp. isolates represented three different subspecies; S. enterica subsp. enterica accounted for a significant proportion (15/19), and most of the serotypes isolated (S. Typhimurium, S. Infantis, S. Newport and S. Enteritidis) were among the 10 non-typhoidal Salmonella serotypes that are most often responsible for infections in Europe, including Poland. Y. enterococlitica was detected in the smallest percentage of animals, but 60% of strains among the isolates tested possessed the ail gene, which is responsible for attachment and invasion. Potentially pathogenic Listeria species were isolated from approx. 5% of the animals. The presence of all tested virulence genes was shown in 35% of L. monocytogenes strains, while in the case of the other strains, the genes occurred in varying numbers and configurations. The presence of the inlA, inlC, hlyA, and iap genes was noted in all strains, whereas the genes encoding PI-PLC, actin, and internalin Imo2821 were present in varying percentages (from 80% to 55%). S. aureus was obtained from 40 individuals. Most isolates possessed the hla, hld (95% for each), and hlb (32.5%) genes encoding hemolysins as well as the gene encoding leukotoxin lukED (70%). In a similar percentage of strains (77.5%), the presence of at least one gene encoding enterotoxin was found, with 12

  17. Cytomegalovirus infection: its incidence and management in cytomegalovirus-seropositive living related liver transplant recipients: a single-center experience.

    PubMed

    Wadhawan, Manav; Gupta, Subash; Goyal, Neerav; Vasudevan, Karisangal R; Makki, Kausar; Dawar, Reetika; Sardana, Raman; Lal, Nand; Kumar, Ajay

    2012-12-01

    It is believed that antiviral prophylaxis decreases the incidence of cytomegalovirus (CMV) reactivation and disease. There are few data regarding weekly assays for CMV DNA after transplantation and the subsequent management of CMV. Here we report a cohort of living related liver transplantation (LRLT) patients who were treated for invasive CMV disease or for CMV infections if they were receiving steroids for rejection. Patients who underwent liver transplantation at our center between September 2006 and August 2010 and were recipient-positive/donor-positive (R(+) /D(+) ) were prospectively included. Patients were tested for CMV DNA 3 weeks after transplantation. CMV DNA-positive patients underwent weekly DNA monitoring until there were 2 consecutive negative reports. Those who developed CMV disease or had rising DNA titers while they were on treatment for rejection were treated. A Cox regression analysis was performed for factors predicting survival. Two hundred sixty-six of the 306 R(+) /D(+) patients were CMV DNA-negative 3 weeks after transplantation, and 40 had detectable DNA. One of the DNA-negative patients developed CMV disease after treatment for rejection with methylprednisolone. Thirty patients had <500 copies/mL, and 10 had ≥500 copies/mL. Two of the 30 patients with DNA levels < 500 copies/mL developed CMV disease. Six of the 10 patients with DNA levels ≥500 copies/mL developed disease. CMV disease occurred in 9 of the 306 patients (2.9%). One patient received treatment for a rise in DNA titers while he was receiving steroids. There was a significant correlation between steroid administration for acute cellular rejection (ACR) and CMV reactivation (P = 0.003) and disease (P = 0.002). A multivariate analysis showed that CMV reactivation/disease did not predict survival. There was no difference in survival between CMV DNA-positive patients and CMV DNA-negative patients (P = 0.68). In conclusion, CMV reactivation is common after LRLT (13%), but the

  18. Combining Single RNA Sensitive Probes with Subdiffraction-Limited and Live-Cell Imaging Enables the Characterization of Virus Dynamics in Cells

    PubMed Central

    2013-01-01

    The creation of fluorescently labeled viruses is currently limited by the length of imaging observation time (e.g., labeling an envelope protein) and the rescue of viral infectivity (e.g., encoding a GFP protein). Using single molecule sensitive RNA hybridization probes delivered to the cytoplasm of infected cells, we were able to isolate individual, infectious, fluorescently labeled human respiratory syncytial virus virions. This was achieved without affecting viral mRNA expression, viral protein expression, or infectivity. Measurements included the characterization of viral proteins and genomic RNA in a single virion using dSTORM, the development of a GFP fusion assay, and the development of a pulse-chase assay for viral RNA production that allowed for the detection of both initial viral RNA and nascent RNA production at designated times postinfection. Live-cell measurements included imaging and characterization of filamentous virion fusion and the quantification of virus replication within the same cell over an eight-hour period. Using probe-labeled viruses, individual viral particles can be characterized at subdiffraction-limited resolution, and viral infections can be quantified in single cells over an entire cycle of replication. The implication of this development is that MTRIP labeling of viral RNA during virus assembly has the potential to become a general methodology for the labeling and study of many important RNA viruses. PMID:24351207

  19. The molecular yo-yo method: Live jump detection improves throughput of single-molecule force spectroscopy for out-of-equilibrium transitions

    NASA Astrophysics Data System (ADS)

    Mack, A. H.; Schlingman, D. J.; Kamenetska, M.; Collins, R.; Regan, L.; Mochrie, S. G. J.

    2013-08-01

    By monitoring multiple molecular transitions, force-clamp, and trap-position-clamp methods have led to precise determinations of the free energies and free energy landscapes for molecular states populated in equilibrium at the same or similar forces. Here, we present a powerful new elaboration of the force-clamp and force-jump methods, applicable to transitions far from equilibrium. Specifically, we have implemented a live jump detection and force-clamp algorithm that intelligently adjusts and maintains the force on a single molecule in response to the measured state of that molecule. We are able to collect hundreds of individual molecular transitions at different forces, many times faster than previously, permitting us to accurately determine force-dependent lifetime distributions and reaction rates. Application of our method to unwinding and rewinding the nucleosome inner turn, using optical tweezers reveals experimental lifetime distributions that comprise a statistically meaningful number of transitions, and that are accurately single exponential. These measurements significantly reduce the error in the previously measured rates, and demonstrate the existence of a single, dominant free energy barrier at each force studied. A key benefit of the molecular yo-yo method for nucleosomes is that it reduces as far as possible the time spent in the tangentially bound state, which minimizes the loss of nucleosomes by dissociation.

  20. A G protein-coupled receptor (GPCR) in red: live cell imaging of the kappa opioid receptor-tdTomato fusion protein (KOPR-tdT) in neuronal cells

    PubMed Central

    Huang, Peng; Chiu, Yi-Ting; Chen, Chongguang; Wang, Yujun; Liu-Chen, Lee-Yuan

    2013-01-01

    Introduction In contrast to green fluorescent protein and variants (GFPs), red fluorescent proteins (RFPs) have rarely been employed for generation of GPCR fusion proteins, likely because of formation of aggregates and cell toxicity of some RFPs. Among all the RFPs available, tdTomato (tdT), one of the non-aggregating RFP, has the highest brightness score (about 3 times that of eGFP) and unsurpassed photostability. Methods We fused tdT to the KOPR C-terminus. The KOPR-tdT cDNA construct was transfected into Neuro2A mouse neuroblastoma cell line (Neuro2A cells) and rat cortical primary neurons for characterization of pharmacological properties and imaging studies on KOPR trafficking. Results KOPR-tdT retained KOPR properties (cell surface expression, ligand binding, agonist-induced signaling and internalization) when expressed in Neuro2A cells and rat primary cortical neurons. Live cell imaging of KOPR-tdT enables visualization of time course of agonist-induced internalization of KOPR in real time for 60 min, without photobleaching and apparent cell toxicity. U50,488H-induced KOPR internalization occurred as early as 4 min and plateaued at about 30 min. A unique pattern of internalized KOPR in processes of primary neurons was induced by U50,488H. Discussion tdT is an alternative to, or even a better tool than, GFPs for fusing to GPCR for trafficking studies, because tdT has higher brightness and thus better resolution and less photobleaching problems due to reduced laser power used. It also has advantages associated with its longer-wavelength emission including spectral separation from autofluorescence and GFPs, reduced cell toxicity the laser may impose, and greater tissue penetration. These advantages of tdT over GPFs may be critical for live cell imaging studies of GPCRs in vitro and for studying GPCRs in vivo because of their low abundance. PMID:23856011

  1. Longitudinal tracking of single live cancer cells to understand cell cycle effects of the nuclear export inhibitor, selinexor

    PubMed Central

    Marcus, Joshua M.; Burke, Russell T.; DeSisto, John A.; Landesman, Yosef; Orth, James D.

    2015-01-01

    Longitudinal tracking is a powerful approach to understand the biology of single cells. In cancer therapy, outcome is determined at the molecular and cellular scale, yet relationships between cellular response and cell fate are often unknown. The selective inhibitor of nuclear export, selinexor, is in development for the treatment of various cancers. Selinexor covalently binds exportin-1, causing nuclear sequestration of cargo proteins, including key regulators of the cell cycle and apoptosis. The cell cycle effects of selinexor and the relationships between cell cycle effects and cell fates, has not been described for individual cells. Using fluorescent cell cycle indicators we report the majority of cell death after selinexor treatment occurs from a protracted G1-phase and early S-phase. G1- or early S-phase treated cells show the strongest response and either die or arrest, while those treated in late S- or G2-phase progress to mitosis and divide. Importantly, the progeny of cell divisions also die or arrest, mostly in the next G1-phase. Cells that survive selinexor are negative for multiple proliferation biomarkers, indicating a penetrant, arrested state. Selinexor acts quickly, shows strong cell cycle selectivity, and is highly effective at arresting cell growth and inducing death in cancer-derived cells. PMID:26399741

  2. Single-molecule imaging of beta-actin mRNAs in the cytoplasm of a living cell.

    PubMed

    Yamagishi, Mai; Ishihama, Yo; Shirasaki, Yoshitaka; Kurama, Hideki; Funatsu, Takashi

    2009-04-15

    Beta-actin mRNA labeled with an MS2-EGFP fusion protein was expressed in chicken embryo fibroblasts and its localization and movement were analyzed by single-molecule imaging. Most beta-Actin mRNAs localized to the leading edge, while some others were observed in the perinuclear region. Singe-molecule tracking of individual mRNAs revealed that the majority of mRNAs were in unrestricted Brownian motion at the leading edge and in restricted Brownian motion in the perinuclear region. The macroscopic diffusion coefficient of mRNA (D(MACRO)) at the leading edge was 0.3 microm(2)/s. On the other hand, D(MACRO) in the perinuclear region was 0.02 microm(2)/s. The destruction of microfilaments with cytochalasin D, which is known to delocalize beta-actin mRNAs, led to an increase in D(MACRO) to 0.2 microm(2)/s in the perinuclear region. These results suggest that the microstructure, composed of microfilaments, serves as a barrier for the movement of beta-actin mRNA.

  3. Single-molecule imaging of {beta}-actin mRNAs in the cytoplasm of a living cell

    SciTech Connect

    Yamagishi, Mai; Ishihama, Yo; Shirasaki, Yoshitaka; Kurama, Hideki; Funatsu, Takashi

    2009-04-15

    {beta}-Actin mRNA labeled with an MS2-EGFP fusion protein was expressed in chicken embryo fibroblasts and its localization and movement were analyzed by single-molecule imaging. Most {beta}-Actin mRNAs localized to the leading edge, while some others were observed in the perinuclear region. Singe-molecule tracking of individual mRNAs revealed that the majority of mRNAs were in unrestricted Brownian motion at the leading edge and in restricted Brownian motion in the perinuclear region. The macroscopic diffusion coefficient of mRNA (D{sub MACRO}) at the leading edge was 0.3 {mu}m{sup 2}/s. On the other hand, D{sub MACRO} in the perinuclear region was 0.02 {mu}m{sup 2}/s. The destruction of microfilaments with cytochalasin D, which is known to delocalize {beta}-actin mRNAs, led to an increase in D{sub MACRO} to 0.2 {mu}m{sup 2}/s in the perinuclear region. These results suggest that the microstructure, composed of microfilaments, serves as a barrier for the movement of {beta}-actin mRNA.

  4. Live cell imaging analysis of the epigenetic regulation of the human endothelial cell migration at single-cell resolution.

    PubMed

    Zheng, Chunhong; Yu, Zhilong; Zhou, Ying; Tao, Louis; Pang, Yuhong; Chen, Tao; Zhang, Xiannian; Qiu, Haiwei; Zhou, Hongwei; Chen, Zitian; Huang, Yanyi

    2012-09-01

    Epigenetic regulation plays an important role in cell migration. Although many methods have been developed to measure the motility of mammalian cells, accurate quantitative assessments of the migration speed of individual cells remain a major challenge. It is difficult for conventional scratch assays to differentiate proliferation from migration during the so-called wound-healing processes because of the long experimental time required. In addition, it is also challenging to create identical conditions for evaluating cell migration by conventional methods. We developed a microfluidic device with precisely created blanks allowing for robust and reproducible cell migration inside accurately-controlled microenvironments to study the regulatory effect of the epigenetic regulator histone deacetylase 7 (HDAC7) on cell migration. Through analyzing time-lapse imaging of the cells migrating into individual blank regions, we can measure the migration speed parameter for human primary cells within a few hours, eliminating the confounding effect of cell proliferation. We also developed an automatic image analysis and a numeric model-based data fitting to set up an integrated cell migration analysis system at single-cell resolution. Using this system, we measured the motility of primary human umbilical vein endothelial cells (HUVECs) and the migration speed reduction due to the silencing of HDAC7 and various other genes. We showed that the migration behaviour of these human primary cells are clearly regulated by epigenetic mechanisms, demonstrating the great potential of this accurate and robust assay in the fields of quantitatively migration studies and high-throughput screening.

  5. Single-dose Live-attenuated Vesicular Stomatitis Virus-based Vaccine Protects African Green Monkeys from Nipah Virus Disease

    PubMed Central

    Prescott, Joseph; DeBuysscher, Blair L.; Feldmann, Friederike; Gardner, Donald J.; Haddock, Elaine; Martellaro, Cynthia; Scott, Dana; Feldmann, Heinz

    2015-01-01

    Nipah virus is a zoonotic paramyxovirus that causes severe respiratory and/or encephalitic disease in humans, often resulting in death. It is transmitted from pteropus fruit bats, which serve as the natural reservoir of the virus, and outbreaks occur on an almost annual basis in Bangladesh or India. Outbreaks are small and sporadic, and several cases of human-to-human transmission have been documented as an important feature of the epidemiology of Nipah virus disease. There are no approved countermeasures to combat infection and medical intervention is supportive. We recently generated a recombinant replication-competent vesicular stomatitis virus-based vaccine that encodes a Nipah virus glycoprotein as an antigen and is highly efficacious in the hamster model of Nipah virus disease. Herein, we show that this vaccine protects African green monkeys, a well-characterized model of Nipah virus disease, from disease one month after a single intramuscular administration of the vaccine. Vaccination resulted in a rapid and strong virus-specific immune response which inhibited virus shedding and replication. This vaccine platform provides a rapid means to afford protection from Nipah virus in an outbreak situation. PMID:25865472

  6. Single charged-particle damage to living cells: a new method based on track-etch detectors

    NASA Astrophysics Data System (ADS)

    Durante, M.; Grossi, G. F.; Pugliese, M.; Manti, L.; Nappo, M.; Gialanella, G.

    1994-11-01

    Biological effects of ionizing radiation are usually expressed as a function of the absorbed dose. Low doses of high-LET radiation correspond to one or few particle traversals through the cell. In order to study the biological effectiveness of single charged particles, we have developed a new method based on solid state nuclear track detectors. Cells are seeded on mylar and a LR-115 film is stuck below the mylar base. After irradiation, the LR-115 film is etched and cells observed at a phase contrast microscope connected to a video camera and an image analyzer. In this way, it is possible to measure the number of traversals through the cell nucleus or cytoplasm. Coordinates of each cell on the microscope bench are saved. After incubation for about one week, cells are fixed and stained and the colonies observed at the microscope. The fate of each irradiated cell is therefore correlated to the number of traversals. We have tested this method with two different rodent embryo fibroblast cell lines, C3H 10T1/2 and V79, exposed to 3.2 MeV accelerated α-particles (LET=124 keV/ μm). The studied endpoint was cell killing. Preliminary biological results suggest that few α-particle tracks in V79 hamster cells are sufficient to reduce surviving fraction.

  7. Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells.

    PubMed

    Agnarsson, Björn; Lundgren, Anders; Gunnarsson, Anders; Rabe, Michael; Kunze, Angelika; Mapar, Mokhtar; Simonsson, Lisa; Bally, Marta; Zhdanov, Vladimir P; Höök, Fredrik

    2015-12-22

    Advancement in the understanding of biomolecular interactions has benefited greatly from the development of surface-sensitive bioanalytical sensors. To further increase their broad impact, significant efforts are presently being made to enable label-free and specific biomolecule detection with high sensitivity, allowing for quantitative interpretation and general applicability at low cost. In this work, we have addressed this challenge by developing a waveguide chip consisting of a flat silica core embedded in a symmetric organic cladding with a refractive index matching that of water. This is shown to reduce stray light (background) scattering and thereby allow for label-free detection of faint objects, such as individual sub-20 nm gold nanoparticles as well as sub-100 nm lipid vesicles. Measurements and theoretical analysis revealed that light-scattering signals originating from single surface-bound lipid vesicles enable characterization of their sizes without employing fluorescent lipids as labels. The concept is also demonstrated for label-free measurements of protein binding to and enzymatic (phospholipase A2) digestion of individual lipid vesicles, enabling an analysis of the influence on the measured kinetics of the dye-labeling of lipids required in previous assays. Further, diffraction-limited imaging of cells (platelets) binding to a silica surface showed that distinct subcellular features could be visualized and temporally resolved during attachment, activation, and spreading. Taken together, these results underscore the versatility and general applicability of the method, which due to its simplicity and compatibility with conventional microscopy setups may reach a widespread in life science and beyond. PMID:26517791

  8. M2SR, a novel live single replication influenza virus vaccine, provides effective heterosubtypic protection in mice.

    PubMed

    Sarawar, Sally; Hatta, Yasuko; Watanabe, Shinji; Dias, Peter; Neumann, Gabriele; Kawaoka, Yoshihiro; Bilsel, Pamuk

    2016-09-30

    Despite the annual public health burden of seasonal influenza and the continuing threat of a global pandemic posed by the emergence of highly pathogenic/pandemic strains, conventional influenza vaccines do not provide universal protection, and exhibit suboptimal efficacy rates, even when they are well matched to circulating strains. To address the need for a highly effective universal influenza vaccine, we have developed a novel M2-deficient single replication vaccine virus (M2SR) that induces strong cross-protective immunity against multiple influenza strains in mice. M2SR is able to infect cells and expresses all viral proteins except M2, but is unable to generate progeny virus. M2SR generated from influenza A/Puerto Rico/8/34 (H1N1) protected mice against lethal challenge with influenza A/Puerto Rico/8/34 (H1N1, homosubtypic) and influenza A/Aichi/2/1968 (H3N2, heterosubtypic). The vaccine induced strong systemic and mucosal antibody responses of both IgA and IgG classes. Strong virus-specific T cell responses were also induced. Following heterologous challenge, significant numbers of IFN-γ-producing CD8 T cells, with effector or effector/memory phenotypes and specific for conserved viral epitopes, were observed in the lungs of vaccinated mice. A substantial proportion of the CD8 T cells expressed Granzyme B, suggesting that they were capable of killing virus-infected cells. Thus, our data suggest that M2-deficient influenza viruses represent a promising new approach for developing a universal influenza vaccine. PMID:27595896

  9. Deep Sequencing of Distinct Preparations of the Live Attenuated Varicella-Zoster Virus Vaccine Reveals a Conserved Core of Attenuating Single-Nucleotide Polymorphisms

    PubMed Central

    Yamanishi, Koichi; Gomi, Yasuyuki; Gershon, Anne A.; Breuer, Judith

    2016-01-01

    ABSTRACT The continued success of the live attenuated varicella-zoster virus vaccine in preventing varicella-zoster and herpes zoster is well documented, as are many of the mutations that contribute to the attenuation of the vOka virus for replication in skin. At least three different preparations of vOka are marketed. Here, we show using deep sequencing of seven batches of vOka vaccine (including ZostaVax, VariVax, VarilRix, and the Oka/Biken working seed) from three different manufacturers (VariVax, GSK, and Biken) that 137 single-nucleotide polymorphism (SNP) mutations are present in all vaccine batches. This includes six sites at which the vaccine allele is fixed or near fixation, which we speculate are likely to be important for attenuation. We also show that despite differences in the vaccine populations between preparations, batch-to-batch variation is minimal, as is the number and frequency of mutations unique to individual batches. This suggests that the vaccine manufacturing processes are not introducing new mutations and that, notwithstanding the mixture of variants present, VZV live vaccines are extremely stable. IMPORTANCE The continued success of vaccinations to prevent chickenpox and shingles, combined with the extremely low incidence of adverse reactions, indicates the quality of these vaccines. The vaccine itself is comprised of a heterogeneous live attenuated virus population and thus requires deep-sequencing technologies to explore the differences and similarities in the virus populations between different preparations and batches of the vaccines. Our data demonstrate minimal variation between batches, an important safety feature, and provide new insights into the extent of the mutations present in this attenuated virus. PMID:27440875

  10. On birth single dose live attenuated OPV and BCG vaccination induces gut cathelicidin LL37 responses at 6 week of age: a natural experiment.

    PubMed

    Alam, Md Jahangir; Rashid, Md Mamunur; Kabir, Yearul; Raqib, Rubhana; Ahmad, Shaikh Meshbahuddin

    2015-01-01

    In a cross sectional study, we show that infants who received single dose of live attenuated OPV and BCG vaccines within 48h of birth, have higher excretion of human cathelicidin LL37 (p<0.05) in stool at 6wk of age. This response remained unchanged in multivariate analysis after adjusting for sex, mode of delivery, infant age, mother age birth weight and breast milk feeding pattern. This analysis also reveals that irrespective of vaccination, girl infants have higher human-beta-defencin2 (HBD2) and exclusively breastfed infants have higher total and anti-polio specific IgA to all three subtypes in stool (p<0.05). However, vaccination induces anti-polio IgA responses only to infants who are exclusively breastfed. Thus on-birth live attenuated vaccination may provide non-specific beneficial effect against infections while exclusive breastfeeding enhance protection by boosting vaccine induced IgA. The result also suggests that in polio endemic area, exclusive breastfeeding may be sufficient for mucosal anti-polio responses during early infancy. PMID:25444792

  11. Live-cell single-molecule tracking reveals co-recognition of H3K27me3 and DNA targets polycomb Cbx7-PRC1 to chromatin

    PubMed Central

    Zhen, Chao Yu; Tatavosian, Roubina; Huynh, Thao Ngoc; Duc, Huy Nguyen; Das, Raibatak; Kokotovic, Marko; Grimm, Jonathan B; Lavis, Luke D; Lee, Jun; Mejia, Frances J; Li, Yang; Yao, Tingting; Ren, Xiaojun

    2016-01-01

    The Polycomb PRC1 plays essential roles in development and disease pathogenesis. Targeting of PRC1 to chromatin is thought to be mediated by the Cbx family proteins (Cbx2/4/6/7/8) binding to histone H3 with a K27me3 modification (H3K27me3). Despite this prevailing view, the molecular mechanisms of targeting remain poorly understood. Here, by combining live-cell single-molecule tracking (SMT) and genetic engineering, we reveal that H3K27me3 contributes significantly to the targeting of Cbx7 and Cbx8 to chromatin, but less to Cbx2, Cbx4, and Cbx6. Genetic disruption of the complex formation of PRC1 facilitates the targeting of Cbx7 to chromatin. Biochemical analyses uncover that the CD and AT-hook-like (ATL) motif of Cbx7 constitute a functional DNA-binding unit. Live-cell SMT of Cbx7 mutants demonstrates that Cbx7 is targeted to chromatin by co-recognizing of H3K27me3 and DNA. Our data suggest a novel hierarchical cooperation mechanism by which histone modifications and DNA coordinate to target chromatin regulatory complexes. DOI: http://dx.doi.org/10.7554/eLife.17667.001 PMID:27723458

  12. Phylogeny of Parasitic Parabasalia and Free-Living Relatives Inferred from Conventional Markers vs. Rpb1, a Single-Copy Gene

    PubMed Central

    Malik, Shehre-Banoo; Brochu, Cynthia D.; Bilic, Ivana; Yuan, Jing; Hess, Michael; Logsdon, John M.; Carlton, Jane M.

    2011-01-01

    Background Parabasalia are single-celled eukaryotes (protists) that are mainly comprised of endosymbionts of termites and wood roaches, intestinal commensals, human or veterinary parasites, and free-living species. Phylogenetic comparisons of parabasalids are typically based upon morphological characters and 18S ribosomal RNA gene sequence data (rDNA), while biochemical or molecular studies of parabasalids are limited to a few axenically cultivable parasites. These previous analyses and other studies based on PCR amplification of duplicated protein-coding genes are unable to fully resolve the evolutionary relationships of parabasalids. As a result, genetic studies of Parabasalia lag behind other organisms. Principal Findings Comparing parabasalid EF1α, α-tubulin, enolase and MDH protein-coding genes with information from the Trichomonas vaginalis genome reveals difficulty in resolving the history of species or isolates apart from duplicated genes. A conserved single-copy gene encodes the largest subunit of RNA polymerase II (Rpb1) in T. vaginalis and other eukaryotes. Here we directly sequenced Rpb1 degenerate PCR products from 10 parabasalid genera, including several T. vaginalis isolates and avian isolates, and compared these data by phylogenetic analyses. Rpb1 genes from parabasalids, diplomonads, Parabodo, Diplonema and Percolomonas were all intronless, unlike intron-rich homologs in Naegleria, Jakoba and Malawimonas. Conclusions/Significance The phylogeny of Rpb1 from parasitic and free-living parabasalids, and conserved Rpb1 insertions, support Trichomonadea, Tritrichomonadea, and Hypotrichomonadea as monophyletic groups. These results are consistent with prior analyses of rDNA and GAPDH sequences and ultrastructural data. The Rpb1 phylogenetic tree also resolves species- and isolate-level relationships. These findings, together with the relative ease of Rpb1 isolation, make it an attractive tool for evaluating more extensive relationships within

  13. Long term follow-up study to evaluate immunogenicity and safety of a single dose of live attenuated hepatitis a vaccine in children.

    PubMed

    Mitra, Monjori; Shah, Nitin; Faridi, Mma; Ghosh, Apurba; Sankaranarayanan, V S; Aggarwal, Anju; Chatterjee, Suparna; Bhattacharyya, Nisha; Kadhe, Ganesh; Vishnoi, Gaurav; Mane, Amey

    2015-01-01

    Worldwide, viral hepatitis continues to be a cause of considerable morbidity and mortality. Mass immunization with a single dose of live attenuated HAV has been shown to significantly reduce disease burden in the community. This was a phase IV, 5-year follow up study carried out at 4 centers (Kolkata, Delhi, Mumbai and Chennai) across India. The subjects with antibody titer <20 mIU/mL at baseline were evaluated for long term immunogenicity. Of the 503 subjects enrolled, 349 subjects were baseline seronegative with an anti-HAV antibody titer <20 mIU/mL. Overall, 343 subjects could be followed up at some point of time during this 5 y post vaccination period. In the last year (60 months) of follow-up, 108 subjects (97.3%) of 111 subjects (who came for follow-up at the end of 5 y) had a protective antibody titer (anti-HAV antibody titer >20 mIU/mL). The seroconversion rates considering seroprotection levels of anti-HAV antibody titer >20 mIU/mL, following vaccination starting from 6 weeks, 6 months, 12 months, 24 months, 36 months, 48 months and 60 months were 95.1%, 97.9%, 98.3%, 96.2%, 97.8%, 92.6% and 97.3%, respectively. The geometric mean concentration (GMC) over the years increased from 64.9 mIU/mL at 6 weeks to 38.1 mIU/mL and 135.2 mIU/mL at 6 months and 12 months, respectively and was maintained at 127.1 mIU/mL at 60 months. In conclusion, the result of this 5-year follow up study showed that the single dose of live attenuated vaccine is well tolerated and provides long-term immunogenicity in healthy Indian children.

  14. Long and short-term spatial processes analysis of an acacia tree population using a single aerial photograph with near infra-red band

    NASA Astrophysics Data System (ADS)

    Isaacson, Sivan; Blumberg, Dan G.; Rachmilevitch, Shimon; Ephrath, Jhonathan E.

    2014-05-01

    Hyper-arid zones are characterized by highly sparse vegetation cover. Monitoring vegetation dynamics in hyper-arid zones is important because any reduction in the vegetation cover in these areas can lead to a considerable reduction in the carrying capacity of the ecological system. Remote sensing expands the spatial and temporal database and is thus a powerful tool for long-term monitoring in arid zones, where access is limited and long-term ground data are rarely available. The main goal of this research was to study both the long-term and short-term spatial processes affecting the acacia population, by using information from a single, three bands color infrared (CIR) aerial photograph (green, red and near infrared). CIR images enable us to obtain information about photosynthetically active biomass by using vegetation indices such as NDVI. A map of individual acacia trees that was extracted from a CIR aerial photograph of Wadi Ktora allowed us to examine the distribution pattern of the trees size and foliage health status (NDVI). Tree size distribution was used as an indicator of long-term (decades) geo-hydrologic spatial processes effecting the acacia population. The tree health status distribution was used as an indicator for short-term (months to a few years) geo-hydrologic spatial processes, such as the paths of recent flashfloods events. Comparison of the tree size distribution and NDVI values distribution enabled us to differentiate between long-term and short-term processes that brought the population to its present state. The spatial analysis revealed that both the tree size and NDVI distribution patterns were significantly clustered, suggesting that the processes responsible for tree size and tree health status do have a spatial expression. Furthermore, each of the attributes has a different distribution and unique clustering location. We suggest that the lack of spatial correlation between tree size and health status is a result of spatial

  15. A living cell quartz crystal microbalance biosensor for continuous monitoring of cytotoxic responses of macrophages to single-walled carbon nanotubes

    PubMed Central

    2011-01-01

    Background Numerous engineered nanomaterials (ENMs) exist and new ENMs are being developed. A challenge to nanotoxicology and environmental health and safety is evaluating toxicity of ENMs before they become widely utilized. Cellular assays remain the predominant test platform yet these methods are limited by using discrete time endpoints and reliance on organic dyes, vulnerable to interference from ENMs. Label-free, continuous, rapid response systems with biologically meaningful endpoints are needed. We have developed a device to detect and monitor in real time responses of living cells to ENMs. The device, a living cell quartz crystal microbalance biosensor (QCMB), uses macrophages adherent to a quartz crystal. The communal response of macrophages to treatments is monitored continuously as changes in crystal oscillation frequency (Δf). We report the ability of this QCMB to distinguish benign from toxic exposures and reveal unique kinetic information about cellular responses to varying doses of single-walled carbon nanotubes (SWCNTs). Results We analyzed macrophage responses to additions of Zymosan A, polystyrene beads (PBs) (benign substances) or SWCNT (3-150 μg/ml) in the QCMB over 18 hrs. In parallel, toxicity was monitored over 24/48 hrs using conventional viability assays and histological stains to detect apoptosis. In the QCMB, a stable unchanging oscillation frequency occurred when cells alone, Zymosan A alone, PBs alone or SWCNTs without cells at the highest dose alone were used. With living cells in the QCMB, when Zymosan A, PBs or SWCNTs were added, a significant decrease in frequency occurred from 1-6 hrs. For SWCNTs, this Δf was dose-dependent. From 6-18 hrs, benign substances or low dose SWCNT (3-30 μg/ml) treatments showed a reversal of the decrease of oscillation frequency, returning to or exceeding pre-treatment levels. Cell recovery was confirmed in conventional assays. The lag time to see the Δf reversal in QCMB plots was linearly SWCNT

  16. Red Sky with Red Mesa

    ScienceCinema

    None

    2016-07-12

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  17. Red Sky with Red Mesa

    SciTech Connect

    2011-04-14

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  18. Development of a single ion hit facility at the Pierre Sue Laboratory: a collimated microbeam to study radiological effects on targeted living cells.

    PubMed

    Daudin, L; Carrière, M; Gouget, B; Hoarau, J; Khodja, H

    2006-01-01

    A single ion hit facility is being developed at the Pierre Süe Laboratory (LPS) since 2004. This set-up will be dedicated to the study of ionising radiation effects on living cells, which will complete current research conducted on uranium chemical toxicity on renal and osteoblastic cells. The study of the response to an exposure to alpha particles will allow us to distinguish radiological and chemical toxicities of uranium, with a special emphasis on the bystander effect at low doses. Designed and installed on the LPS Nuclear microprobe, up to now dedicated to ion beam microanalysis, this set-up will enable us to deliver an exact number of light ions accelerated by a 3.75 MV electrostatic accelerator. An 'in air' vertical beam permits the irradiation of cells in conditions compatible with cell culture techniques. Furthermore, cellular monolayer will be kept in controlled conditions of temperature and atmosphere in order to diminish stress. The beam is collimated with a fused silica capillary tubing to target pre-selected cells. Motorisation of the collimator with piezo-electric actuators should enable fast irradiation without moving the sample, thus avoiding mechanical stress. An automated epifluorescence microscope, mounted on an antivibration table, allows pre- and post-irradiation cell observation. An ultra thin silicon surface barrier detector has been developed and tested to be able to shoot a cell with a single alpha particle.

  19. Red Capes, Red Herrings, and Red Flags.

    ERIC Educational Resources Information Center

    Fiske, Donald W.

    The argument that the personality structures obtained from retrospective ratings reflect semantic similarity structures has been as provocative as a red cape in the bull ring. High congruence between those two kinds of structures seems well established. What is less clear is how and why those structures differ from that for immediate judgments of…

  20. Birthmarks - red

    MedlinePlus

    Strawberry mark; Vascular skin changes; Angioma cavernosum; Capillary hemangioma; Hemangioma simplex ... There are two main categories of birthmarks: Red birthmarks are ... are called vascular birthmarks. Pigmented birthmarks are areas ...

  1. Living with a Single Parent

    MedlinePlus

    ... too. Other choices include going to an after-school program or staying with a neighbor or relative. During the summer, many schools and towns offer summer programs and camps. continue Time Troubles It can be ...

  2. Monomeric red fluorescent proteins with a large Stokes shift.

    PubMed

    Piatkevich, Kiryl D; Hulit, James; Subach, Oksana M; Wu, Bin; Abdulla, Arian; Segall, Jeffrey E; Verkhusha, Vladislav V

    2010-03-23

    Two-photon microscopy has advanced fluorescence imaging of cellular processes in living animals. Fluorescent proteins in the blue-green wavelength range are widely used in two-photon microscopy; however, the use of red fluorescent proteins is limited by the low power output of Ti-Sapphire lasers above 1,000 nm. To overcome this limitation we have developed two red fluorescent proteins, LSS-mKate1 and LSS-mKate2, which possess large Stokes shifts with excitation/emission maxima at 463/624 and 460/605 nm, respectively. These LSS-mKates are characterized by high pH stability, photostability, rapid chromophore maturation, and monomeric behavior. They lack absorbance in the green region, providing an additional red color to the commonly used red fluorescent proteins. Substantial overlap between the two-photon excitation spectra of the LSS-mKates and blue-green fluorophores enables multicolor imaging using a single laser. We applied this approach to a mouse xenograft model of breast cancer to intravitally study the motility and Golgi-nucleus alignment of tumor cells as a function of their distance from blood vessels. Our data indicate that within 40 mum the breast cancer cells show significant polarization towards vessels in living mice.

  3. Single and repeated moderate consumption of native or dealcoholized red wine show different effects on antioxidant parameters in blood and DNA strand breaks in peripheral leukocytes in healthy volunteers: a randomized controlled trial [ISRCTN68505294

    PubMed Central

    Arendt, Bianca M; Ellinger, Sabine; Kekic, Klaudia; Geus, Leonie; Fimmers, Rolf; Spengler, Ulrich; Müller, Wolfgang-Ulrich; Goerlich, Roland

    2005-01-01

    Background Red wine (RW) is rich in antioxidant polyphenols that might protect from oxidative stress related diseases, such as cardiovascular disease and cancer. Antioxidant effects after single ingestion of RW or dealcoholized RW (DRW) have been observed in several studies, but results after regular consumption are contradictory. Thus, we examined if single or repeated consumption of moderate amounts of RW or DRW exert antioxidant activity in vivo. Methods Total phenolic content and concentration of other antioxidants in plasma/serum, total antioxidant capacity (TEAC) in plasma as well as DNA strand breaks in peripheral leukocytes were measured in healthy non-smokers A) before, 90 and 360 min after ingestion of one glass of RW, DRW or water; B) before and after consumption of one glass of RW or DRW daily for 6 weeks. DNA strand breaks (SB) were determined by single cell gel electrophoresis (Comet Assay) in untreated cells and after induction of oxidative stress ex vivo with H2O2 (300 μM, 20 min). Results Both RW and DRW transiently increased total phenolic content in plasma after single consumption, but only RW lead to a sustained increase if consumed regularly. Plasma antioxidant capacity was not affected by single or regular consumption of RW or DRW. Effects of RW and DRW on DNA SB were conflicting. DNA strand breaks in untreated cells increased after a single dose of RW and DRW, whereas H2O2 induced SB were reduced after DRW. In contrast, regular RW consumption reduced SB in untreated cells but did not affect H2O2 induced SB. Conclusion The results suggest that consumption of both RW and DRW leads to an accumulation of phenolic compounds in plasma without increasing plasma antioxidant capacity. Red wine and DRW seem to affect the occurrence of DNA strand breaks, but this cannot be referred to antioxidant effects. PMID:16287499

  4. Single Probe for Imaging and Biosensing of pH, Cu(2+) Ions, and pH/Cu(2+) in Live Cells with Ratiometric Fluorescence Signals.

    PubMed

    Han, Yingying; Ding, Changqin; Zhou, Jie; Tian, Yang

    2015-01-01

    It is very essential to disentangle the complicated inter-relationship between pH and Cu in the signal transduction and homeostasis. To this end, reporters that can display distinct signals to pH and Cu are highly valuable. Unfortunately, there is still no report on the development of biosensors that can simultaneously respond to pH and Cu(2+), to the best of our knowledge. In this work, we developed a single fluorescent probe, AuNC@FITC@DEAC (AuNC, gold cluster; FITC, fluorescein isothiocyanate; DEAC, 7-diethylaminocoumarin-3-carboxylic acid), for biosensing of pH, Cu(2+), and pH/Cu(2+) with different ratiometric fluorescent signals. First, 2,2',2″-(2,2',2″-nitrilotris(ethane-2,1-diyl)tris((pyridin-2-yl-methyl)azanediyl))triethanethiol (TPAASH) was designed for specific recognition of Cu(2+), as well as for organic ligand to synthesize fluorescent AuNCs. Then, pH-sensitive molecule, FITC emitting at 518 nm, and inner reference molecule, DEAC with emission peak at 472 nm, were simultaneously conjugated on the surface of AuNCs emitting at 722 nm, thus, constructing a single fluorescent probe, AuNC@FITC@DEAC, to sensing pH, Cu(2+), and pH/Cu(2+) excited by 405 nm light. The developed probe exhibited high selectivity and accuracy for independent determination of pH and Cu(2+) against reactive oxygen species (ROS), other metal ions, amino acids, and even copper-containing proteins. The AuNC-based inorganic-organic probe with good cell-permeability and high biocompatibility was eventually applied in monitoring both pH and Cu(2+) and in understanding the interplaying roles of Cu(2+) and pH in live cells by ratiometric multicolor fluorescent imaging.

  5. Development of single shot soft x-ray contact microscopy system for nano-scale dynamics measurement of living biological specimen

    NASA Astrophysics Data System (ADS)

    Kishimoto, Maki; Kado, Masataka; Ishino, Masahiko; Tamotsu, Satoshi; Yasuda, Keiko; Shinohara, Kunio

    2012-07-01

    We have been developing a picosecond single shot soft x-ray contact microscopy system for observing the nanometer-scale inner structure of the living biological specimen in a hydrated condition. The microscopy system consists of an intense IR pump laser system for generating laser-induced plasma as a soft x-ray source and x-ray microscope chamber. The pump laser system employs OPCPA (Optical Parametric Chirped Pulse Amplification) technique to obtain a high contrast pump laser pulse, and we can generate water-window x-rays effectively by combining it to an ultra-thin metal target. The x-ray microscope chamber is composed of a vacuum chamber, a focusing lens, a metal film target, an in-vacuum type sample holder. The pump laser pulse is focused on the metal film target with a focusing lens. The soft x-rays from the laser-induced plasma illuminates bio-specimens on the PMMA photo resist set in the in-vacuum sample holder. The photo resist is developed and the x-ray transmission image recorded on the photo resist is read out by AFM. We took x-ray images of hydrated Leydig cells from mouse testicle and demonstrated that the developed x-ray microscopy system has a spatial resolution of about 100 nm.

  6. Improving the drug delivery characteristics of graphene oxide based polymer nanocomposites through the "one-pot" synthetic approach of single-electron-transfer living radical polymerization

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Liu, Meiying; Tian, Jianwen; Deng, Fengjie; Wang, Ke; Xu, Dazhuang; Liu, Liangji; Zhang, Xiaoyong; Wei, Yen

    2016-08-01

    Graphene oxide (GO) based polymer nanocomposites have attracted extensive research interest recently for their outstanding physicochemical properties and potential applications. However, surface modification of GO with synthetic polymers has demonstrated to be trouble for most polymerization procedures are occurred under non-aqueous solution, which will in turn lead to the restacking of GO. In this work, a facile and efficient "one-pot" strategy has been developed for surface modification of GO with synthetic polymers through single-electron-transfer living radical polymerization (SET-LRP). The GO based polymer nanocomposites were obtained via SET-LRP in aqueous solution using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as the monomer and 11-bromoundecanoic acid as the initiator, which could be effectively adsorbed on GO through hydrophobic interaction. The successful preparation of GO based polymer nanocomposites was confirmed by a series of characterization techniques such as 1H nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The resultant products exhibit high water disperisibility, excellent biocompatibility and high efficient drug loading capability, making these PEGylated GO nanocomposites promising candidates for biomedical applications.

  7. Imaging Fos-Jun Transcription Factor Mobility and Interaction in Live Cells by Single Plane Illumination-Fluorescence Cross Correlation Spectroscopy

    PubMed Central

    Pernuš, Agata; Langowski, Jörg

    2015-01-01

    We collected mobility and interaction maps of c-Fos-eGFP and c-Jun-mRFP1 transcription factors within living cell nuclei. c-Fos dimerizes with c-Jun to form the transcription activator protein-1 (AP-1) which binds to the specific recognition site. To monitor this process, we used fluorescence cross-correlation spectroscopy on a single plane illumination microscope (SPIM-FCCS), which provides diffusion coefficient and protein-protein interaction data in the whole image plane simultaneously, instead of just one point on conventional confocal FCS. We find a strong correlation between diffusional mobility and interaction: regions of strong interaction show slow mobility. Controls containing either an eGFP-mRFP dimer, separately expressing eGFP and mRPF, or c-Fos-eGFP and c-Jun-mRFP1 mutants lacking dimerization and DNA-binding domains, showed no such correlation. These results extend our earlier findings from confocal FCCS to include spatial information. PMID:25875593

  8. Development of TV003/TV005, a single dose, highly immunogenic live attenuated dengue vaccine; what makes this vaccine different from the Sanofi-Pasteur CYD™ vaccine?

    PubMed

    Whitehead, Stephen S

    2016-01-01

    Dengue is caused by four serotype-distinct dengue viruses (DENVs), and developing a multivalent vaccine against dengue has not been straightforward since partial immunity to DENV may predispose to more severe disease upon subsequent DENV infection. The vaccine that is furthest along in development is CYD™, a live attenuated tetravalent vaccine (LATV) produced by Sanofi Pasteur. Although the multi-dose vaccine demonstrated protection against severe dengue, its overall efficacy was limited by DENV serotype, serostatus at vaccination, region and age. The National Institute of Allergy and Infectious Diseases has developed the LATV dengue vaccines TV003/TV005. A single dose of either TV003 or TV005 induced seroconversion to four DENV serotypes in 74-92% (TV003) and 90% (TV005) of flavivirus seronegative adults and elicited near-sterilizing immunity to a second dose of vaccine administered 6-12 months later. The important differences in the structure, infectivity and immune responses to TV003/TV005 are compared with CYD™. PMID:26559731

  9. Benefits of combined preventive therapy with co-trimoxazole and isoniazid in adults living with HIV: time to consider a fixed-dose, single tablet coformulation.

    PubMed

    Harries, Anthony D; Lawn, Stephen D; Suthar, Amitabh B; Granich, Reuben

    2015-12-01

    Antiretroviral therapy (ART) is the main intervention needed to reduce morbidity and mortality and to prevent tuberculosis in adults living with HIV. However, in most resource-limited countries, especially in sub-Saharan Africa, ART is started too late to have an effect with substantial early morbidity and mortality, and in high tuberculosis burden settings ART does not reduce the tuberculosis risk to that reported in individuals not infected with HIV. Co-trimoxazole preventive therapy started before or with ART, irrespective of CD4 cell count, reduces morbidity and mortality with benefits that continue indefinitely. Isoniazid preventive therapy as an adjunct to ART prevents tuberculosis in high-exposure settings, with long-term treatment likely to be needed to sustain this benefit. Unfortunately, both preventive therapies are underused in low-income and high-burden settings. ART development has benefited from patient-centred simplification with several effective regimens now available as a one per day pill. We argue that co-trimoxazole and isoniazid should also be combined into a single fixed-dose pill, along with pyridoxine (vitamin B6), that would be taken once per day to help with individual uptake and national scale-up of therapies. PMID:26515525

  10. The house mouse (Mus musculus L.) exerts strong differential grain consumption preferences among hard red and white spring wheat (Triticum aestivum L.) varieties in a single-elimination tournament design.

    PubMed

    Morris, Craig F; Fuerst, E Patrick; McLean, Derek J; Momont, Kathleen; James, Caleb P

    2014-11-01

    Wheat (Triticum aestivum L.) plays a central role in the health and nutrition of humans. Yet, little is known about possible flavor differences among different varieties. We have developed a model system using the house mouse (Mus musculus L.) to determine feeding preferences as a prelude to extending results to human sensory analysis. Here, we examine the application of a single-elimination tournament design to the analysis of consumption preferences of a set of hard red and hard white spring wheat varieties. A single-elimination tournament design in this case pairs 2 wheat varieties and only 1 of the 2 is advanced to further tests. Preferred varieties were advanced until an overall "winner" was identified; conversely, less desirable varieties were advanced such that an overall "loser" was identified. Hollis and IDO702 were the winner and loser, respectively, for the hard red varieties, and Clear White 515 and WA8123 were the winner and loser, respectively, for the hard white varieties. When using the more powerful protocol of 14 mice and a 4-d trial, differences in mean daily consumption preferences of 2 varieties were separated at P-values as small as 2 × 10(-8) . The single-elimination tournament design is an efficient means of identifying the most and least desirable varieties among a larger set of samples. One application for identifying the 2 extremes in preference within a group of varieties would be to use them as parents of a population to identify quantitative trait loci for preference.

  11. Long-lived room-temperature deep-red-emissive intraligand triplet excited state of naphthalimide in cyclometalated Ir(III) complexes and its application in triplet-triplet annihilation-based upconversion.

    PubMed

    Sun, Jifu; Wu, Wanhua; Zhao, Jianzhang

    2012-06-25

    Cyclometalated Ir(III) complexes with acetylide ppy and bpy ligands were prepared (ppy = 2-phenylpyridine, bpy = 2,2'-bipyridine) in which naphthal (Ir-2) and naphthalimide (NI) were attached onto the ppy (Ir-3) and bpy ligands (Ir-4) through acetylide bonds. [Ir(ppy)(3)] (Ir-1) was also prepared as a model complex. Room-temperature phosphorescence was observed for the complexes; both neutral and cationic complexes Ir-3 and Ir-4 showed strong absorption in the visible range (ε=39,600  M(-1)  cm(-1) at 402 nm and ε=25,100  M(-1)  cm(-1) at 404 nm, respectively), long-lived triplet excited states (τ(T)=9.30 μs and 16.45 μs) and room-temperature red emission (λ(em)=640 nm, Φ(p)=1.4 % and λ(em)=627 nm, Φ(p)=0.3 %; cf. Ir-1: ε=16,600  M(-1)  cm(-1) at 382 nm, τ(em)=1.16 μs, Φ(p)=72.6 %). Ir-3 was strongly phosphorescent in non-polar solvent (i.e., toluene), but the emission was completely quenched in polar solvents (MeCN). Ir-4 gave an opposite response to the solvent polarity, that is, stronger phosphorescence in polar solvents than in non-polar solvents. Emission of Ir-1 and Ir-2 was not solvent-polarity-dependent. The T(1) excited states of Ir-2, Ir-3, and Ir-4 were identified as mainly intraligand triplet excited states ((3)IL) by their small thermally induced Stokes shifts (ΔE(s)), nanosecond time-resolved transient difference absorption spectroscopy, and spin-density analysis. The complexes were used as triplet photosensitizers for triplet-triplet annihilation (TTA) upconversion and quantum yields of 7.1 % and 14.4 % were observed for Ir-2 and Ir-3, respectively, whereas the upconversion was negligible for Ir-1 and Ir-4. These results will be useful for designing visible-light-harvesting transition-metal complexes and for their applications as triplet photosensitizers for photocatalysis, photovoltaics, TTA upconversion, etc.

  12. Insights into cell membrane microdomain organization from live cell single particle tracking of the IgE high affinity receptor FcϵRI of mast cells.

    PubMed

    Espinoza, Flor A; Wester, Michael J; Oliver, Janet M; Wilson, Bridget S; Andrews, Nicholas L; Lidke, Diane S; Steinberg, Stanly L

    2012-08-01

    Current models propose that the plasma membrane of animal cells is composed of heterogeneous and dynamic microdomains known variously as cytoskeletal corrals, lipid rafts and protein islands. Much of the experimental evidence for these membrane compartments is indirect. Recently, live cell single particle tracking studies using quantum dot-labeled IgE bound to its high affinity receptor FcϵRI, provided direct evidence for the confinement of receptors within micrometer-scale cytoskeletal corrals. In this study, we show that an innovative time-series analysis of single particle tracking data for the high affinity IgE receptor, FcϵRI, on mast cells provides substantial quantitative information about the submicrometer organization of the membrane. The analysis focuses on the probability distribution function of the lengths of the jumps in the positions of the quantum dots labeling individual IgE FcϵRI complexes between frames in movies of their motion. Our results demonstrate the presence, within the micrometer-scale cytoskeletal corrals, of smaller subdomains that provide an additional level of receptor confinement. There is no characteristic size for these subdomains; their size varies smoothly from a few tens of nanometers to a over a hundred nanometers. In QD-IGE labeled unstimulated cells, jumps of less than 70 nm predominate over longer jumps. Addition of multivalent antigen to crosslink the QD-IgE-FcϵRI complexes causes a rapid slowing of receptor motion followed by a long tail of mostly jumps less than 70 nm. The reduced receptor mobility likely reflects both the membrane heterogeneity revealed by the confined motion of the monomeric receptor complexes and the antigen-induced cross linking of these complexes into dimers and higher oligomers. In both cases, the probability distribution of the jump lengths is well fit, from 10 nm to over 100 nm, by a novel power law. The fit for short jumps suggests that the motion of the quantum dots can be modeled as

  13. A novel method for assessing adherent single-cell stiffness in tension: design and testing of a substrate-based live cell functional imaging device.

    PubMed

    Bartalena, Guido; Grieder, Reto; Sharma, Ram I; Zambelli, Tomaso; Muff, Roman; Snedeker, Jess G

    2011-04-01

    Various micro-devices have been used to assess single cell mechanical properties. Here, we designed and implemented a novel, mechanically actuated, two dimensional cell culture system that enables a measure of cell stiffness based on quantitative functional imaging of cell-substrate interaction. Based on parametric finite element design analysis, we fabricated a soft (5 kPa) polydimethylsiloxane (PDMS) cell substrate coated with collagen-I and fluorescent micro-beads, thus providing a favorable terrain for cell adhesion and for substrate deformation quantification, respectively. We employed a real-time tracking system that analyzes high magnification images of living cells under stretch, and compensates for gross substrate motions by dynamic adjustment of the microscope stage. Digital image correlation (DIC) was used to quantify substrate deformation beneath and surrounding the cell, leading to an estimate of cell stiffness based upon the ability of the cell to resist the applied substrate deformation. Sensitivity of the system was tested using chemical treatments to both "soften" and "stiffen" the cell cytoskeleton with either 0.5 μg/ml Cytochalasin-D or 3% Glutaraldehyde, respectively. Results indicate that untreated osteosarcoma cells (SAOS-2) exhibit a 1.5 ± 0.7% difference in strain from an applied target substrate strain of 8%. Compared to untreated cells, those treated with Cyochalasin-D passively followed the substrate (0.5 ± 0.5%, p < 0.001), whereas Glutaraldehyde enhanced cellular stiffness and the ability to resist the substrate deformation (2.9 ± 1.6%, p < 0.001). Nano-indentation testing showed differences in cell stiffness based on culture treatment, consistent with DIC findings. Our results indicate that mechanics and image analysis approaches do hold promise as a method to quantitatively assess tensile cell constitutive properties. PMID:21120698

  14. Effect of a Single Water Molecule on the Electronic Absorption by o- and p-Nitrophenolate: A Shift to the Red or to the Blue?

    PubMed

    Houmøller, Jørgen; Wanko, Marius; Rubio, Angel; Nielsen, Steen Brøndsted

    2015-11-25

    Many photoactive biomolecules are anions and exhibit ππ* optical transitions but with a degree of charge transfer (CT) character determined by the local environment. The phenolate moiety is a common structural motif among biochromophores and luminophores, and nitrophenolates are good model systems because the nitro substituent allows for CT-like transitions. Here we report gas-phase absorption spectra of o- and p-nitrophenolate·H2O complexes to decipher the effect of just one H2O and compare them with ab initio calculations of vertical excitation energies. The experimental band maximum is at 3.01 and 3.00 eV for ortho and para isomers, respectively, and is red-shifted by 0.10 and 0.13 eV relative to the bare ions, respectively. These shifts indicate that the transition has become more CT-like because of localization of negative charge on the phenolate oxygen, i.e., diminished delocalization of the negative excess charge. However, the transition bears less CT than that of m-nitrophenolate·H2O because this complex absorbs further to the red (2.56 eV). Our work emphasizes the importance of local perturbations: one water causes a larger shift than experienced in bulk for para isomer and almost the full shift for ortho isomer. Predicting microenvironmental effects in the boundary between CT and non-CT with high accuracy is nontrivial. However, in agreement with experiment, our calculations show a competition between the effects of electronic delocalization and electrostatic interaction with the solvent molecule. As a result, the excitation energy of ortho and para isomers is less sensitive to hydration than that of the meta isomer because donor and acceptor orbitals are only weakly coupled in the meta isomer. PMID:26549521

  15. Effect of a Single Water Molecule on the Electronic Absorption by o- and p-Nitrophenolate: A Shift to the Red or to the Blue?

    PubMed

    Houmøller, Jørgen; Wanko, Marius; Rubio, Angel; Nielsen, Steen Brøndsted

    2015-11-25

    Many photoactive biomolecules are anions and exhibit ππ* optical transitions but with a degree of charge transfer (CT) character determined by the local environment. The phenolate moiety is a common structural motif among biochromophores and luminophores, and nitrophenolates are good model systems because the nitro substituent allows for CT-like transitions. Here we report gas-phase absorption spectra of o- and p-nitrophenolate·H2O complexes to decipher the effect of just one H2O and compare them with ab initio calculations of vertical excitation energies. The experimental band maximum is at 3.01 and 3.00 eV for ortho and para isomers, respectively, and is red-shifted by 0.10 and 0.13 eV relative to the bare ions, respectively. These shifts indicate that the transition has become more CT-like because of localization of negative charge on the phenolate oxygen, i.e., diminished delocalization of the negative excess charge. However, the transition bears less CT than that of m-nitrophenolate·H2O because this complex absorbs further to the red (2.56 eV). Our work emphasizes the importance of local perturbations: one water causes a larger shift than experienced in bulk for para isomer and almost the full shift for ortho isomer. Predicting microenvironmental effects in the boundary between CT and non-CT with high accuracy is nontrivial. However, in agreement with experiment, our calculations show a competition between the effects of electronic delocalization and electrostatic interaction with the solvent molecule. As a result, the excitation energy of ortho and para isomers is less sensitive to hydration than that of the meta isomer because donor and acceptor orbitals are only weakly coupled in the meta isomer.

  16. Randomized, Controlled Human Challenge Study of the Safety, Immunogenicity, and Protective Efficacy of a Single Dose of Peru-15, a Live Attenuated Oral Cholera Vaccine

    PubMed Central

    Cohen, Mitchell B.; Giannella, Ralph A.; Bean, Judy; Taylor, David N.; Parker, Susan; Hoeper, Amy; Wowk, Stephen; Hawkins, Jennifer; Kochi, Sims K.; Schiff, Gilbert; Killeen, Kevin P.

    2002-01-01

    Peru-15 is a live attenuated oral vaccine derived from a Vibrio cholerae O1 El Tor Inaba strain by a series of deletions and modifications, including deletion of the entire CT genetic element. Peru-15 is also a stable, motility-defective strain and is unable to recombine with homologous DNA. We wished to determine whether a single oral dose of Peru-15 was safe and immunogenic and whether it would provide significant protection against moderate and severe diarrhea in a randomized, double-blind, placebo-controlled human volunteer cholera challenge model. A total of 59 volunteers were randomly allocated to groups to receive either 2 × 108 CFU of reconstituted, lyophilized Peru-15 vaccine diluted in CeraVacx buffer or placebo (CeraVacx buffer alone). Approximately 3 months after vaccination, 36 of these volunteers were challenged with approximately 105 CFU of virulent V. cholerae O1 El Tor Inaba strain N16961, prepared from a standardized frozen inoculum. Among vaccinees, 98% showed at least a fourfold increase in vibriocidal antibody titers. After challenge, 5 (42%) of the 12 placebo recipients and none (0%) of the 24 vaccinees had moderate or severe diarrhea (≥3,000 g of diarrheal stool) (P = 0.002; protective efficacy, 100%; lower one-sided 95% confidence limit, 75%). A total of 7 (58%) of the 12 placebo recipients and 1 (4%) of the 24 vaccinees had any diarrhea (P < 0.001; protective efficacy, 93%; lower one-sided 95% confidence limit, 62%). The total number of diarrheal stools, weight of diarrheal stools, incidence of fever, and peak stool V. cholerae excretion among vaccinees were all significantly lower than in placebo recipients. Peru-15 is a well-tolerated and immunogenic oral cholera vaccine that affords protective efficacy against life-threatening cholera diarrhea in a human volunteer challenge model. This vaccine may therefore be a safe and effective tool to prevent cholera in travelers and is a strong candidate for further evaluation to prevent cholera

  17. Assisted Living

    MedlinePlus

    ... but they don't need full-time nursing care. Some assisted living facilities are part of retirement ... change. Assisted living costs less than nursing home care. It is still fairly expensive. Older people or ...

  18. Itchy, Scaly Skin? Living with Psoriasis

    MedlinePlus

    ... exit disclaimer . Subscribe Itchy, Scaly Skin? Living With Psoriasis The thick, red, scaly skin of psoriasis can ... Diet Itchy, Scaly Skin? Wise Choices Links Treating Psoriasis Doctors often use a trial-and-error approach ...

  19. Light Phenomena over the ESO Observatories II: Red Sprites

    NASA Astrophysics Data System (ADS)

    Horálek, P.; Christensen, L. L.; Bór, J.; Setvák, M.

    2016-03-01

    A rare atmospheric phenomenon, known as red sprites, was observed and captured on camera from the La Silla Observatory. This event signalled the first time that these extremely short-lived flashes of red light, originating in the Earth’s upper atmosphere, were photographed from a major astronomical observatory. Further images of red sprites from the La Silla Paranal Observatory sites are presented and the nature of red sprites is discussed.

  20. Modeling and simulation of Red Teaming. Part 1, Why Red Team M&S?

    SciTech Connect

    Skroch, Michael J.

    2009-11-01

    Red teams that address complex systems have rarely taken advantage of Modeling and Simulation (M&S) in a way that reproduces most or all of a red-blue team exchange within a computer. Chess programs, starting with IBM's Deep Blue, outperform humans in that red-blue interaction, so why shouldn't we think computers can outperform traditional red teams now or in the future? This and future position papers will explore possible ways to use M&S to augment or replace traditional red teams in some situations, the features Red Team M&S should possess, how one might connect live and simulated red teams, and existing tools in this domain.

  1. Polarized infra-red and Raman spectra of monoclinic α-KLn(WO 4) 2 single crystals (Ln = Sm—Lu, Y)

    NASA Astrophysics Data System (ADS)

    Hanuza, J.; Macalik, L.

    The polarized i.r. and Raman spectra for single crystals of α-KLn(WO 4) 2 family were measured, where Ln = Y and lanthanides from Sm to Lu. The molecular and crystal structures were analysed in terms of C 2/ c = C62 h (Z = 4) monoclinic unit cell. A comparison of vibrational spectra measured for isomorphic crystals of several RE elements was used to describe the internal and external optic modes. On that basis the hexacoordination of tungsten atoms and polymeric (W 2O 10) n clusters with ? and ? bridge systems were discussed.

  2. Assisted Living

    MedlinePlus

    ... it, too. Back to top What is the Cost for Assisted Living? Although assisted living costs less than nursing home care, it is still ... of services an older person chooses, the price costs can range from less than $25,000 a ...

  3. [Frequencies of red cell enzyme polymorphisms acP, ADA, AK, EsD, 6-PGD, and PGM1 determined by parallel investigations of Turks and Germans living in the Lübeck area (author's transl)].

    PubMed

    Weissmann, J; Oepen, B; Pribilla, O

    1980-01-01

    Gene frequencies for enzyme polymorphisms in the acP, ADA, AK, EsD, 6-PGD, and PGM1 systems were determined by a random sample (n = 281-556-575) Turks living in Lübeck. The results were compared with those of a parallel inquiry on Germans from Lübeck. The following gene frequencies were detected: (table: see text).

  4. Definitive Differentiation between Single and Mixed Mycobacterial Infections in Red Deer (Cervus elaphus) by a Combination of Duplex Amplification of p34 and f57 Sequences and Hpy188I Enzymatic Restriction of Duplex Amplicons

    PubMed Central

    Godfroid, Jacques; Delcorps, Cathy; Irenge, Leonid M.; Walravens, Karl; Marché, Sylvie; Gala, Jean-Luc

    2005-01-01

    Severe emaciation and mortalities suggestive of mycobacterial infections were recently reported for both adult and young wild red deer (Cervus elaphus) in the southeastern part of Belgium. In deer, tuberculous lesions are not pathognomonic of Mycobacterium bovis infection due to gross and microscopic similarities with lesions caused by Mycobacterium avium subsp. paratuberculosis or M. avium subsp. avium. The aim of this study was to improve molecular methods for the species-specific identification of M. bovis, M. avium subsp. avium, and M. avium subsp. paratuberculosis in mycobacterial infections of deer. DNA banding patterns were assessed prior to and after Hpy188I restriction of f57-upstream (us)-p34 duplex amplicons. The duplex f57-us-p34 PCR differentiated M. bovis from M. avium subsp. paratuberculosis and M. avium subsp. avium infections, whereas the restriction step differentiated single M. avium subsp. paratuberculosis or M. avium subsp. avium infections from mixed M. avium subsp. paratuberculosis/M. avium subsp. avium infections. The endonuclease Hpy188I cleaves DNA between nucleotides N and G in the unique TCNGA sequence. This restriction site was found at position 168 upstream of the us-p34 initiation codon in all M. avium subsp. avium strains tested, regardless of their origin and the results of IS901 PCR. In contrast, the restriction site was abrogated in all M. avium subsp. paratuberculosis strains tested, independent of their origin, Mycobactin J dependency, and IS900 PCR results. Consequently, a two-step strategy, i.e., duplex us-p34-f57 PCR and Hpy188I restriction, allowed us to exclude M. bovis infection and to identify single (M. avium subsp. paratuberculosis or M. avium subsp. avium) or mixed (M. avium subsp. paratuberculosis/M. avium subsp. avium) infections in wild red deer in Belgium. Accordingly, we propose to integrate, in a functional molecular definition of M. avium subsp. paratuberculosis, the absence of the Hpy188I restriction site from

  5. Notes from the field: Multistate outbreak of Salmonella infantis, newport, and lille infections linked to live poultry from a single mail-order hatchery in Ohio--March-September, 2012.

    PubMed

    2013-03-22

    In early 2012, three clusters of human Salmonella infections were identified through PulseNet, a national network of public health and food regulatory agency laboratories coordinated by CDC that subtypes disease-causing organisms. Initial investigations indicated many of the ill persons in these three clusters had contact with live poultry (e.g., chicks and ducklings) from a single mail-order hatchery; therefore, the three investigations were merged. During March 1-September 24, 2012, a total of 195 persons infected with the outbreak strains of Salmonella serotypes Infantis, Newport, and Lille were reported from 27 states.

  6. Girl Talk: A Qualitative Study of Girls Talking about the Meaning of Their Lives in an Urban Single-Sex Elementary School

    ERIC Educational Resources Information Center

    Ridenour, Carolyn S.; Hassell Hughes, Sheila

    2016-01-01

    The suburban-urban achievement gap (diminishing until the 1980s) has stopped its narrowing trend, and single-sex schools are proliferating as a reform model, especially in urban areas. In this study researchers interviewed eight elementary school girls (in an all-girls school) three times over 2 years, and the resulting 23 transcripts were…

  7. The Lived Experiences of Single Hispanic Mothers Raising Gang-Affiliated Male Youth Released from Texas Juvenile Justice Department State Facilities: A Phenomenological Study

    ERIC Educational Resources Information Center

    Rodriguez-Almendarez, Ruby

    2013-01-01

    Purpose of the Study: The purpose of this transcendental phenomenological study (Moustakas, 1994) was to describe the experiences that single Hispanic mothers of gang-affiliated male juveniles face during their sons' reentry process after being released from a Texas Juvenile Justice Department state facility. Methods: After an extensive…

  8. Single Cell Quantification of Reporter Gene Expression in Live Adult Caenorhabditis elegans Reveals Reproducible Cell-Specific Expression Patterns and Underlying Biological Variation.

    PubMed

    Mendenhall, Alexander R; Tedesco, Patricia M; Sands, Bryan; Johnson, Thomas E; Brent, Roger

    2015-01-01

    In multicellular organisms such as Caenorhabditis elegans, differences in complex phenotypes such as lifespan correlate with the level of expression of particular engineered reporter genes. In single celled organisms, quantitative understanding of responses to extracellular signals and of cell-to-cell variation in responses has depended on precise measurement of reporter gene expression. Here, we developed microscope-based methods to quantify reporter gene expression in cells of Caenorhabditis elegans with low measurement error. We then quantified expression in strains that carried different configurations of Phsp-16.2-fluorescent-protein reporters, in whole animals, and in all 20 cells of the intestine tissue, which is responsible for most of the fluorescent signal. Some animals bore more recently developed single copy Phsp-16.2 reporters integrated at defined chromosomal sites, others, "classical" multicopy reporter gene arrays integrated at random sites. At the level of whole animals, variation in gene expression was similar: strains with single copy reporters showed the same amount of animal-to-animal variation as strains with multicopy reporters. At the level of cells, in animals with single copy reporters, the pattern of expression in cells within the tissue was highly stereotyped. In animals with multicopy reporters, the cell-specific expression pattern was also stereotyped, but distinct, and somewhat more variable. Our methods are rapid and gentle enough to allow quantification of expression in the same cells of an animal at different times during adult life. They should allow investigators to use changes in reporter expression in single cells in tissues as quantitative phenotypes, and link those to molecular differences. Moreover, by diminishing measurement error, they should make possible dissection of the causes of the remaining, real, variation in expression. Understanding such variation should help reveal its contribution to differences in complex

  9. Detection of endogenous K-ras mRNA in living cells at a single base resolution by a PNA molecular beacon.

    PubMed

    Kam, Yossi; Rubinstein, Abraham; Nissan, Aviram; Halle, David; Yavin, Eylon

    2012-03-01

    Detection of mRNA alterations is a promising approach for identifying biomarkers as means of differentiating benign from malignant lesions. By choosing the KRAS oncogene as a target gene, two types of molecular beacons (MBs) based on either phosphothioated DNA (PS-DNA-MB) or peptide nucleic acid (TO-PNA-MB, where TO = thiazole orange) were synthesized and compared in vitro and in vivo. Their specificity was examined in wild-type KRAS (HT29) or codon 12 point mutation (Panc-1, SW480) cells. Incubation of both beacons with total RNA extracted from the Panc-1 cell line (fully complementary sequence) showed a fluorescent signal for both beacons. Major differences were observed, however, for single mismatch mRNA transcripts in cell lines HT29 and SW480. PS-DNA-MB weakly discriminated such single mismatches in comparison to TO-PNA-MB, which was profoundly more sensitive. Cell transfection of TO-PNA-MB with the aid of PEI resulted in fluorescence in cells expressing the fully complementary RNA transcript (Panc-1) but undetectable fluorescence in cells expressing the K-ras mRNA that has a single mismatch to the designed TO-PNA-MB (HT29). A weaker fluorescent signal was also detected in SW480 cells; however, these cells express approximately one-fifth of the target mRNA of the designed TO-PNA-MB. In contrast, PS-DNA-MB showed no fluorescence in all cell lines tested post PEI transfection. Based on the fast hybridization kinetics and on the single mismatch discrimination found for TO-PNA-MB we believe that such molecular beacons are promising for in vivo real-time imaging of endogenous mRNA with single nucleotide polymorphism (SNP) resolution.

  10. The interaction of 193 nm excimer laser radiation with single-crystal zinc oxide: Generation of long lived highly excited particles with evidence of Zn Rydberg formation

    SciTech Connect

    Khan, Enamul H.; Langford, S. C.; Dickinson, J. T.; Boatner, L. A.

    2014-08-28

    In past studies, we have observed copious emissions of ionic and atomic Zn from single-crystal ZnO accompanying irradiation of single-crystal ZnO with 193-nm excimer laser irradiation at fluences below the onset of optical breakdown. The Zn{sup +} and ground state Zn° are studied using time-of-flight techniques and are mass selected using a quadrupole mass spectrometer. Simultaneously, we have observed emitted particles that are detectable with a Channeltron electron multiplier but cannot be mass selected. It is a reasonable hypothesis that these particles correspond to a neutral atom or molecule in highly excited long lived states. We provide strong evidence that they correspond to high lying Rydberg states of atomic Zn. We propose a production mechanism involving laser excitation via a two photon resonance excitation of Zn°.

  11. Polarization statistical properties of emission from single-mode vertical-cavity surface-emitting lasers with equally-lived laser levels

    NASA Astrophysics Data System (ADS)

    Golubev, Yu M.; Golubeva, T. Yu; Giacobino, E.

    2004-12-01

    The full quantum statistical theory of the vertical-cavity surface-emitting laser (VCSEL) is constructed for arbitrary relations between frequency parameters. In our approach we follow Hermier et al (2002 Phys. Rev. A 65 053825) and Golubev et al (2004 Phys. Rev. A at press; Preprint quant-ph/0407006) and formulate the theory in the form of quantum Langevin equations. For detailed analysis the theory is applied to lasers with equally-lived laser levels. Spectral densities of the Stokes parameter fluctuations are obtained in explicit analytical form. A role of physical phenomena such as spin-flip and optical anisotropy (linear birefringence and linear dichroism) in semiconductor crystals is discussed. It is shown that random sub-level electron distributions do not worsen shot noise reduction efficiency. Comparing our results with the phenomenological ones (Mulet et al 2001 Phys. Rev. A 64 023817), the serious differences are disclosed. The reasons for these differences are explained.

  12. Assisted Living

    MedlinePlus

    ... Recreational activities Security Transportation How to Choose a Facility A good match between a facility and a resident's needs depends as much on the philosophy and services of the assisted living facility as it does on the quality of care. ...

  13. Bachelor Living

    ERIC Educational Resources Information Center

    Germer, Sondra

    1974-01-01

    Male high school students in a Bachelor Living Class observed methods of child care including bottle feeding, spoon feeding, changing diapers, and method of holding. The purpose was for the students to grasp a better understanding of child development. (EK)

  14. Healthy Living

    MedlinePlus

    ... Environment Kids Health Kids Environment Kids Health Topics Environment & Health Healthy Living Pollution Reduce, Reuse, Recycle Science – How It Works The Natural World Games Brainteasers Puzzles Riddles Songs Activities Be ...

  15. Living Laboratories

    ERIC Educational Resources Information Center

    Mules, B. R.

    1976-01-01

    Presented is a review of various methods of keeping live animals, including scorpions, spiders, crabs, crayfish, shrimp, ants, fish, mice, and birds, as well as plants as a school science project/display. (SL)

  16. Assisted Living

    MedlinePlus

    ... premises. Adult foster care has the advantages of maintaining frail older adults in a more home-like ... pay to live in these communities, though some facilities have beds for skilled care that are funded ...

  17. Detection of the free living amoeba Naegleria fowleri by using conventional and real-time PCR based on a single copy DNA sequence.

    PubMed

    Régoudis, Estelle; Pélandakis, Michel

    2016-02-01

    The amoeba-flagellate Naegleria fowleri is a causative agent of primary amoebic meningoencephalitis (PAM). This thermophilic species occurs worldwide and tends to proliferate in warm aquatic environment. The PAM cases remain rare but this infection is mostly fatal. Here, we describe a single copy region which has been cloned and sequenced, and was used for both conventional and real-time PCR. Targeting a single-copy DNA sequence allows to directly quantify the N. fowleri cells. The real-time PCR results give a detection limit of 1 copy per reaction with high reproducibility without the need of a Taqman probe. This procedure is of interest as compared to other procedures which are mostly based on the detection of multi-copy DNA associated with a Taqman probe. PMID:26688582

  18. Detection of the free living amoeba Naegleria fowleri by using conventional and real-time PCR based on a single copy DNA sequence.

    PubMed

    Régoudis, Estelle; Pélandakis, Michel

    2016-02-01

    The amoeba-flagellate Naegleria fowleri is a causative agent of primary amoebic meningoencephalitis (PAM). This thermophilic species occurs worldwide and tends to proliferate in warm aquatic environment. The PAM cases remain rare but this infection is mostly fatal. Here, we describe a single copy region which has been cloned and sequenced, and was used for both conventional and real-time PCR. Targeting a single-copy DNA sequence allows to directly quantify the N. fowleri cells. The real-time PCR results give a detection limit of 1 copy per reaction with high reproducibility without the need of a Taqman probe. This procedure is of interest as compared to other procedures which are mostly based on the detection of multi-copy DNA associated with a Taqman probe.

  19. The Design of Simple Bacterial Microarrays: Development towards Immobilizing Single Living Bacteria on Predefined Micro-Sized Spots on Patterned Surfaces

    PubMed Central

    Arnfinnsdottir, Nina Bjørk; Ottesen, Vegar; Lale, Rahmi; Sletmoen, Marit

    2015-01-01

    In this paper we demonstrate a procedure for preparing bacterial arrays that is fast, easy, and applicable in a standard molecular biology laboratory. Microcontact printing is used to deposit chemicals promoting bacterial adherence in predefined positions on glass surfaces coated with polymers known for their resistance to bacterial adhesion. Highly ordered arrays of immobilized bacteria were obtained using microcontact printed islands of polydopamine (PD) on glass surfaces coated with the antiadhesive polymer polyethylene glycol (PEG). On such PEG-coated glass surfaces, bacteria were attached to 97 to 100% of the PD islands, 21 to 62% of which were occupied by a single bacterium. A viability test revealed that 99% of the bacteria were alive following immobilization onto patterned surfaces. Time series imaging of bacteria on such arrays revealed that the attached bacteria both divided and expressed green fluorescent protein, both of which indicates that this method of patterning of bacteria is a suitable method for single-cell analysis. PMID:26039378

  20. Cytotoxicity of red fluorescent protein DsRed is associated with the suppression of Bcl-xL translation.

    PubMed

    Zhou, Jun; Lin, Jian; Zhou, Cuihong; Deng, Xiaoyan; Xia, Bin

    2011-03-01

    Red fluorescent protein (RFP) DsRed and its variants are widely applied in live-cell imaging experiments. However, a major factor that restricts the application of DsRed is its cytotoxicity. Here, we report that DsRed and its variant DsRed-Express2 inhibit the expression of B-cell lymphoma-extra large (Bcl-xL) in HeLa cells by translational regulation. Over-expression of Bcl-xL can reduce the cytotoxicity of DsRed. Meanwhile, Turbo RFP, a mutant RFP from Entacmaea quadricolor, does not affect Bcl-xL expression, suggesting that cytotoxic mechanisms of RFP from different species may be varied. Our results reveal a possible mechanism for the cytotoxicity of DsRed, providing a potential strategy to improve the application of DsRed and its variants.

  1. Single-molecule tracking in live Vibrio cholerae reveals that ToxR recruits the membrane-bound virulence regulator TcpP to the toxT promoter.

    PubMed

    Haas, Beth L; Matson, Jyl S; DiRita, Victor J; Biteen, Julie S

    2015-04-01

    Vibrio cholerae causes the human disease cholera by producing a potent toxin. The V. cholerae virulence pathway involves an unusual transcription step: the bitopic inner-membrane proteins TcpP and ToxR activate toxT transcription. As ToxT is the primary direct transcription activator in V. cholerae pathogenicity, its regulation by membrane-localized activators is key in the disease process. However, the molecular mechanisms by which membrane-localized activators engage the transcription process have yet to be uncovered in live cells. Here we report the use of super-resolution microscopy, single-molecule tracking, and gene knockouts to examine the dynamics of individual TcpP proteins in live V. cholerae cells with < 40 nm spatial resolution on a 50 ms timescale. Single-molecule trajectory analysis reveals that TcpP diffusion is heterogeneous and can be described by three populations of TcpP motion: one fast, one slow, and one immobile. By comparing TcpP diffusion in wild-type V. cholerae to that in mutant strains lacking either toxR or the toxT promoter, we determine that TcpP mobility is greater in the presence of its interaction partners than in their absence. Our findings support a mechanism in which ToxR recruits TcpP to the toxT promoter for transcription activation.

  2. The response of single-walled carbon nanotubes to NO2 and the search for a long-living adsorbed species

    NASA Astrophysics Data System (ADS)

    Kroes, Jaap M. H.; Pietrucci, Fabio; Chikkadi, Kiran; Roman, Cosmin; Hierold, Christofer; Andreoni, Wanda

    2016-01-01

    Contact-passivated sensor devices allow one to measure the response of individual ultraclean single-walled carbon nanotubes to 1 ppm NO2, and show that the activation energies for desorption from nanotubes of diameters in the 1.5-3.5 nm range are of the order of 1 eV. DFT calculations based on several exchange-correlation functionals are presented and critically examined. The nature of the molecular binding is thus clarified for NO2, N2O4, and NO3, and also the dependence on the size of the nanotube. The binding strength of physisorbed NO3 is consistent with the experimental data on desorption.

  3. Compelling evidence that a single nucleotide substitution in TYRP1 is responsible for coat-colour polymorphism in a free-living population of Soay sheep

    PubMed Central

    Gratten, J; Beraldi, D; Lowder, B.V; McRae, A.F; Visscher, P.M; Pemberton, J.M; Slate, J

    2006-01-01

    Identifying the genes that underlie phenotypic variation in natural populations is a central objective of evolutionary genetics. Here, we report the identification of the gene and causal mutation underlying coat colour variation in a free-living population of Soay sheep (Ovis aries). We targeted tyrosinase-related protein 1 (TYRP1), a positional candidate gene based on previous work that mapped the Coat colour locus to an approximately 15 cM window on chromosome 2. We identified a non-synonymous substitution in exon IV that was perfectly associated with coat colour. This polymorphism is predicted to cause the loss of a cysteine residue that is highly evolutionarily conserved and likely to be of functional significance. We eliminated the possibility that this association is due to the presence of strong linkage disequilibrium with an unknown regulatory mutation by demonstrating that there is no difference in relative TYRP1 expression between colour morphs. Analysis of this putative causal mutation in a complex pedigree of more than 500 sheep revealed almost perfect co-segregation with coat colour (χ2-test, p<0.0001, LOD=110.20), and very tight linkage between Coat colour and TYRP1 (LOD=29.50). PMID:17254985

  4. Predicting small molecule fluorescent probe localization in living cells using QSAR modeling. 1. Overview and models for probes of structure, properties and function in single cells.

    PubMed

    Horobin, R W; Rashid-Doubell, F; Pediani, J D; Milligan, G

    2013-11-01

    Small molecule fluorochromes (synonyms: biosensors, chemosensors, fluorescent probes, vital stains) are widely used to investigate the structure, composition, physicochemical properties and biological functions of living cells, tissues and organisms. Selective entry and accumulation within particular cells and cellular structures are key processes for achieving these diverse objectives. Despite the complexities, probes routinely are applied using standard protocols, often without experimenter awareness of what factors that control accumulation and localization. The mechanisms of many such selective accumulations, however, now are known. Moreover, the influence of physicochemical properties of probes on their uptake and localization often can be defined numerically, hence predicted, using quantitative structure activity relations (QSAR) models with its required numerical structure parameters (or "descriptors"). The state of the art of this approach is described. Available QSAR models are summarized for uptake into cells and localization in the cytosol, endoplasmic reticulum, generic biomembranes, Golgi apparatus, lipid droplets, lysosomes/endosomes, mitochondria, eukaryotic nuclei (histones and DNA), plasma membrane, and ribosomal RNA (cytoplasmic and nucleolar). Integration of such core models to both aid understanding and troubleshooting of current fluorescent probes and to assist the design of novel probes is outlined and illustrated using case examples. Limitations and generic problems arising with this approach and comments on application of such approaches to xenobiotics other than probes, e.g., drugs and herbicides, together with a brief note about an alternative approach to prediction, are given.

  5. Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule

    NASA Astrophysics Data System (ADS)

    Sahu, Satyajit; Ghosh, Subrata; Fujita, Daisuke; Bandyopadhyay, Anirban

    2014-12-01

    As we bring tubulin protein molecules one by one into the vicinity, they self-assemble and entire event we capture live via quantum tunneling. We observe how these molecules form a linear chain and then chains self-assemble into 2D sheet, an essential for microtubule, --fundamental nano-tube in a cellular life form. Even without using GTP, or any chemical reaction, but applying particular ac signal using specially designed antenna around atomic sharp tip we could carry out the self-assembly, however, if there is no electromagnetic pumping, no self-assembly is observed. In order to verify this atomic scale observation, we have built an artificial cell-like environment with nano-scale engineering and repeated spontaneous growth of tubulin protein to its complex with and without electromagnetic signal. We used 64 combinations of plant, animal and fungi tubulins and several doping molecules used as drug, and repeatedly observed that the long reported common frequency region where protein folds mechanically and its structures vibrate electromagnetically. Under pumping, the growth process exhibits a unique organized behavior unprecedented otherwise. Thus, ``common frequency point'' is proposed as a tool to regulate protein complex related diseases in the future.

  6. Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule.

    PubMed

    Sahu, Satyajit; Ghosh, Subrata; Fujita, Daisuke; Bandyopadhyay, Anirban

    2014-12-03

    As we bring tubulin protein molecules one by one into the vicinity, they self-assemble and entire event we capture live via quantum tunneling. We observe how these molecules form a linear chain and then chains self-assemble into 2D sheet, an essential for microtubule, --fundamental nano-tube in a cellular life form. Even without using GTP, or any chemical reaction, but applying particular ac signal using specially designed antenna around atomic sharp tip we could carry out the self-assembly, however, if there is no electromagnetic pumping, no self-assembly is observed. In order to verify this atomic scale observation, we have built an artificial cell-like environment with nano-scale engineering and repeated spontaneous growth of tubulin protein to its complex with and without electromagnetic signal. We used 64 combinations of plant, animal and fungi tubulins and several doping molecules used as drug, and repeatedly observed that the long reported common frequency region where protein folds mechanically and its structures vibrate electromagnetically. Under pumping, the growth process exhibits a unique organized behavior unprecedented otherwise. Thus, "common frequency point" is proposed as a tool to regulate protein complex related diseases in the future.

  7. Novel super-resolution capable mitochondrial probe, MitoRed AIE, enables assessment of real-time molecular mitochondrial dynamics

    PubMed Central

    Lo, Camden Yeung-Wah; Chen, Sijie; Creed, Sarah Jayne; Kang, Miaomiao; Zhao, Na; Tang, Ben Zhong; Elgass, Kirstin Diana

    2016-01-01

    Mitochondria and mitochondrial dynamics play vital roles in health and disease. With the intricate nanometer-scale structure and rapid dynamics of mitochondria, super-resolution microscopy techniques possess great un-tapped potential to significantly contribute to understanding mitochondrial biology and kinetics. Here we present a novel mitochondrial probe (MitoRed AIE) suitable for live mitochondrial dynamics imaging and single particle tracking (SPT), together with a multi-dimensional data analysis approach to assess local mitochondrial (membrane) fluidity. The MitoRed AIE probe localizes primarily to mitochondrial membranes, with 95 ms fluorophore on-time delivering 106 photons/ms, characteristics which we exploit to demonstrate live cell 100 fps 3D time-lapse tracking of mitochondria. Combining our experimental and analytical approaches, we uncover mitochondrial dynamics at unprecedented time scales. This approach opens up a new regime into high spatio-temporal resolution dynamics in many areas of mitochondrial biology. PMID:27492961

  8. Unique and protective contributions of parenting and classroom processes to the adjustment of African American children living in single-parent families.

    PubMed

    Brody, Gene H; Dorsey, Shannon; Forehand, Rex; Armistead, Lisa

    2002-01-01

    The unique contributions that parenting processes (high levels of monitoring with a supportive, involved mother-child relationship) and classroom processes (high levels of organization, rule clarity, and student involvement) make to children's self-regulation and adjustment were examined with a sample of 277 single-parent African American families. A multi-informant design involving mothers, teachers, and 7- to 15-year-old children was used. Structural equation modeling indicated that parenting and classroom processes contributed uniquely to children's adjustment through the children's development of self-regulation. Additional analyses suggested that classroom processes can serve a protective-stabilizing function when parenting processes are compromised, and vice versa. Further research is needed to examine processes in both family and school contexts that promote child competence and resilience.

  9. Dramatic Change in Jupiter's Great Red Spot

    NASA Technical Reports Server (NTRS)

    Simon, A. A.; Wong, M. H.; Rogers, J. H.; Orton, G. S.; de Pater, I.; Asay-Davis, X.; Carlson, R. W.; Marcus, P. S.

    2015-01-01

    Jupiter's Great Red Spot (GRS) is one of its most distinct and enduring features, having been continuously observed since the 1800's. It currently spans the smallest latitude and longitude size ever recorded. Here we show analyses of 2014 Hubble spectral imaging data to study the color, structure and internal dynamics of this long-live storm.

  10. Single-cell gel electrophoresis assay in the ten spotted live-bearer fish, Cnesterodon decemmaculatus (Jenyns, 1842), as bioassay for agrochemical-induced genotoxicity.

    PubMed

    Vera-Candioti, Josefina; Soloneski, Sonia; Larramendy, Marcelo L

    2013-12-01

    The ability of two 48 percent chlorpyrifos-based insecticides (Lorsban* 48E® and CPF Zamba®), two 50 percent pirimicarb-based insecticides (Aficida® and Patton Flow®), and two 48 percent glyphosate-based herbicides (Panzer® and Credit®) to induce DNA single-strand breaks in peripheral blood erythrocytes of Cnesterodon decemmaculatus (Jenyns, 1842) (Pisces, Poeciliidae) exposed under laboratory conditions was evaluated by the single-cell gel electrophoresis (SCGE) assay. In those fish exposed to Lorsban* 48E®, CPF Zamba®, Aficida®, Patton Flow®, Credit®, and Panzer®, a significant increase of the genetic damage was observed for all formulations regardless of the harvesting time. This genotoxic effect was achieved by an enhancement of Type II-IV comets and a concomitant decrease of Type 0-I comets over control values. A regression analysis revealed that the damage varied as a negative function of the exposure time in those Lorsban* 48E®- and Aficida®-treated fish. On the other hand, a positive correlation between damage increase and exposure time was achieved after Patton Flow® and Credit® treatment. Finally, no correlation was observed between increase in the genetic damage and exposure time after treatment with CPF Zamba® or Panzer®. These results highlight that all agrochemicals inflict primary genotoxic damage at the DNA level at sublethal concentrations, regardless of the exposure time of the aquatic organisms under study, at least within a period of 96 h of treatment. PMID:24011534

  11. Single-cell gel electrophoresis assay in the ten spotted live-bearer fish, Cnesterodon decemmaculatus (Jenyns, 1842), as bioassay for agrochemical-induced genotoxicity.

    PubMed

    Vera-Candioti, Josefina; Soloneski, Sonia; Larramendy, Marcelo L

    2013-12-01

    The ability of two 48 percent chlorpyrifos-based insecticides (Lorsban* 48E® and CPF Zamba®), two 50 percent pirimicarb-based insecticides (Aficida® and Patton Flow®), and two 48 percent glyphosate-based herbicides (Panzer® and Credit®) to induce DNA single-strand breaks in peripheral blood erythrocytes of Cnesterodon decemmaculatus (Jenyns, 1842) (Pisces, Poeciliidae) exposed under laboratory conditions was evaluated by the single-cell gel electrophoresis (SCGE) assay. In those fish exposed to Lorsban* 48E®, CPF Zamba®, Aficida®, Patton Flow®, Credit®, and Panzer®, a significant increase of the genetic damage was observed for all formulations regardless of the harvesting time. This genotoxic effect was achieved by an enhancement of Type II-IV comets and a concomitant decrease of Type 0-I comets over control values. A regression analysis revealed that the damage varied as a negative function of the exposure time in those Lorsban* 48E®- and Aficida®-treated fish. On the other hand, a positive correlation between damage increase and exposure time was achieved after Patton Flow® and Credit® treatment. Finally, no correlation was observed between increase in the genetic damage and exposure time after treatment with CPF Zamba® or Panzer®. These results highlight that all agrochemicals inflict primary genotoxic damage at the DNA level at sublethal concentrations, regardless of the exposure time of the aquatic organisms under study, at least within a period of 96 h of treatment.

  12. Recent advancements in and views on the donor operation in living donor liver transplantation: a single-center study of 886 patients over 13 years.

    PubMed

    Suh, Kyung-Suk; Suh, Suk-Won; Lee, Jeong-Moo; Choi, YoungRok; Yi, Nam-Joon; Lee, Kwang-Woong

    2015-03-01

    Donor safety remains an important concern in living donor liver transplantation (LDLT). In the present study, we assessed recent advancements in the donor operation for LDLT through our experience with this procedure. A total of 886 donor hepatectomies performed between January 1999 and December 2012 were analyzed. Three chronological periods were investigated: the initial period (1999-2004, n = 239), the period in which the right liver with middle hepatic vein reconstruction was primarily used (2005-2010, n = 422), and the period in which the right liver with a standardized protocol, including a preoperative donor diet program, an evaluation of steatosis with magnetic resonance spectroscopy, no systemic heparin administration or central venous pressure monitoring, exact midplane dissection, and incremental application of minimal incisions, was exclusively used (2011-2012, n = 225). The proportion of patients > 50 years old increased (2.5% versus 4.7% versus 8.9%), whereas the proportion of patients with a remnant liver volume ≤ 30% (6.5% versus 13.9% versus 6.3%) and with macrosteatosis ≥ 10% (7.9% versus 11.1% versus 4.4%) decreased throughout the periods. The operative time (292.7 versus 290.0 versus 272.8 minutes), hospital stay (12.4 versus 11.2 versus 8.5 days), and overall morbidity rate (26.4% versus 13.3% versus 5.8%), including major complications (>grade 3; 1.7% versus 1.9% versus 0.9%) and biliary complications (7.9% versus 5.0% versus 0.9%), were markedly reduced in the most recent period. No intraoperative transfusion was required. No cases of irreversible disability or mortality were noted. In conclusion, the quality of the donor operation has recently been standardized through a large volume of experience, and the operation has been proven to have minimal risk. However, a constant evaluation of our experience is critical for remaining prepared for any unavoidable crisis.

  13. Picosecond-hetero-FRET microscopy to probe protein-protein interactions in live cells.

    PubMed Central

    Tramier, Marc; Gautier, Isabelle; Piolot, Tristan; Ravalet, Sylvie; Kemnitz, Klaus; Coppey, Jacques; Durieux, Christiane; Mignotte, Vincent; Coppey-Moisan, Maïté

    2002-01-01

    By using a novel time- and space-correlated single-photon counting detector, we show that fluorescence resonance energy transfer (FRET) between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) fused to herpes simplex virus thymidine kinase (TK) monomers can be used to reveal homodimerization of TK in the nucleus and cytoplasm of live cells. However, the quantification of energy transfer was limited by the intrinsic biexponential fluorescence decay of the donor CFP (lifetimes of 1.3 +/- 0.2 ns and 3.8 +/- 0.4 ns) and by the possibility of homodimer formation between two TK-CFP. In contrast, the heterodimerization of the transcriptional factor NF-E2 in the nucleus of live cells was quantified from the analysis of the fluorescence decays of GFP in terms of 1) FRET efficiency between GFP and DsRed chromophores fused to p45 and MafG, respectively, the two subunits of NF-E2 (which corresponds to an interchromophoric distance of 39 +/- 1 A); and 2) fractions of GFP-p45 bound to DsRed-MafG (constant in the nucleus, varying in the range of 20% to 70% from cell to cell). The picosecond resolution of the fluorescence kinetics allowed us to discriminate between very short lifetimes of immature green species of DsRed-MafG and that of GFP-p45 involved in FRET with DsRed-MafG. PMID:12496124

  14. Independent Living.

    ERIC Educational Resources Information Center

    Nathanson, Jeanne H., Ed.

    1994-01-01

    This issue of "OSERS" addresses the subject of independent living of individuals with disabilities. The issue includes a message from Judith E. Heumann, the Assistant Secretary of the Office of Special Education and Rehabilitative Services (OSERS), and 10 papers. Papers have the following titles and authors: "Changes in the Rehabilitation Act of…

  15. Healthy Living

    MedlinePlus

    ... health. Some you cannot control, such as your genetic makeup or your age. But you can make changes to your lifestyle. By taking steps toward healthy living, you can help reduce your risk of heart disease, cancer, stroke and other serious diseases: Get ...

  16. Retiring Lives

    ERIC Educational Resources Information Center

    Carnell, Eileen, Ed.; Lodge, Caroline, Ed.

    2009-01-01

    "Retiring Lives" presents fourteen personal real life stories from people at various stages of retiring. Each author recounts their own story about retiring, bringing together many aspects of the experiences: the social, psychological and practical. These inspirational and illustrated stories will encourage the reader to hold up these experiences…

  17. Outdoor Living.

    ERIC Educational Resources Information Center

    Cotter, Kathy

    Course objectives and learning activities are contained in this curriculum guide for a 16-week home economics course which teaches cooking and sewing skills applicable to outdoor living. The course goals include increasing male enrollment in the home economics program, developing students' self-confidence and ability to work in groups, and…

  18. Living History

    ERIC Educational Resources Information Center

    Walsh, Mark

    2005-01-01

    John Tinker and Mary Beth Tinker are back in a classroom in their hometown, once again wearing black armbands and drawing attention to a war. Now in their 50s, the siblings are living symbols of constitutional rights for secondary school students. In 1965, they and a handful of others were suspended for wearing black armbands to their public…

  19. Shape anisotropy induces rotations in optically trapped red blood cells

    NASA Astrophysics Data System (ADS)

    Bambardekar, Kapil; Dharmadhikari, Jayashree A.; Dharmadhikari, Aditya K.; Yamada, Toshihoro; Kato, Tsuyoshi; Kono, Hirohiko; Fujimura, Yuichi; Sharma, Shobhona; Mathur, Deepak

    2010-07-01

    A combined experimental and theoretical study is carried out to probe the rotational behavior of red blood cells (RBCs) in a single beam optical trap. We induce shape changes in RBCs by altering the properties of the suspension medium in which live cells float. We find that certain shape anisotropies result in the rotation of optically trapped cells. Indeed, even normal (healthy) RBCs can be made to rotate using linearly polarized trapping light by altering the osmotic stress the cells are subjected to. Hyperosmotic stress is found to induce shape anisotropies. We also probe the effect of the medium's viscosity on cell rotation. The observed rotations are modeled using a Langevin-type equation of motion that takes into account frictional forces that are generated as RBCs rotate in the medium. We observe good correlation between our measured data and calculated results.

  20. RED-LETTER DAYS

    EPA Science Inventory

    The word "red-letter" is an adjective meaning "of special significance." It's origin is from the practice of marking Christian holy days in red letters on calendars. The "red-letter days" to which I refer occurred while I was a graduate student of ...

  1. Red blood cell production

    MedlinePlus

    ... cells are an important element of blood. Their job is to transport oxygen to the body’s tissues in exchange for carbon dioxide, which is carried to and eliminated by the lungs. Red blood cells are formed in the red bone marrow of bones. Stem cells in the red bone marrow called hemocytoblasts ...

  2. Acaricidal activities of clove bud oil and red thyme oil using microencapsulation against HDMs.

    PubMed

    Kim, Joo Ran; Sharma, Suraj

    2011-01-01

    The purpose of this study was to produce a safer microcapsule loaded with clove bud oil and red thyme oil to reduce the population of house dust mites (HDMs). Gelatin-based microcapsules 4-85 µm in size were created, with agitation speed and type of oil playing a critical role in governing their size. Microcapsules made up of single spherical units less than 30 µm in diameter remained separate on the fibre, whereas larger microcapsules of over 30 µm ruptured or aggregated. Thermogravimetric analysis (TGA) demonstrated that microcapsules containing red thyme oil showed a more consistent range of oil loading, from 50 to 80%, than microcapsules containing clove bud oil, which ranged from 30 to 80% (more deviated). Mortality tests on Dermatophagoides farinae conducted on fabric with attached microcapsules showed that clove bud oil, containing a more phenolic monoterpenoid (eugenol), was more effective at reducing the live HDMs (94% mortality).

  3. The effect of red palm olein and refined palm olein on lipids and haemostatic factors in hyperfibrinogenaemic subjects.

    PubMed

    Scholtz, Susanna C; Pieters, Marlien; Oosthuizen, Welma; Jerling, Johann C; Bosman, Magdalena J C; Vorster, Hester H

    2004-01-01

    Little is known about the physiological effects of red palm olein (RPO). The effects of red palm olein and palm olein (POL) compared to sunflower oil (SFO), on lipids, haemostatic factors and fibrin network characteristics in hyperfibrinogenaemic volunteers were investigated. Fifty-nine free-living, hyperfibrinogenaemic volunteers participated in this randomized, controlled, single blind parallel study. After a 4-week run-in, during which subjects received sunflower oil products, they were paired and randomly assigned to one of three intervention groups receiving products containing 25 g/day ( approximately 12% of total energy intake) of either red palm olein, palm olein or sunflower oil for another 4 weeks. Anthropometric measurements, blood samples and dietary intakes were measured before run-in, and before and after intervention. The differences in changes in total serum cholesterol response between palm olein and red palm olein (+0.59 vs. +0.18 mmol/l; p=0.053), and between palm olein and sunflower oil (+0.59 vs. -0.003 mmol/l; p < or =0.01) were significant. The low-density lipoprotein cholesterol (LDLC) response in the palm olein-and sunflower oil-groups also differed significantly (+0.42 vs. -0.11 mmol/l; p < or =0.01). Tissue plasminogen activator antigen (tPA(ag)) decreased significantly in the red palm olein group compared to the palm olein-and sunflower oil-groups. No effects were found in other haemostatic variables. Palm olein and red palm olein had no independent effect on fibrin network characteristics. In conclusion, compared to palm olein, red palm olein had less detrimental effects on the lipid profile and decreased tissue plasminogen activator antigen. Studies in larger groups are advised for confirmation of results, elucidation of mechanisms and effects of nonglyceride constituents of red palm oil (PO).

  4. Safety and Immunogenicity of Escalating Dosages of a Single Oral Administration of Peru-15 pCTB, a Candidate Live, Attenuated Vaccine against Enterotoxigenic Escherichia coli and Vibrio cholerae

    PubMed Central

    Chen, Wilbur H.; Garza, Jose; Choquette, Monique; Hawkins, Jennifer; Hoeper, Amy; Bernstein, David I.

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC) organisms are a leading cause of infectious diarrhea in developing countries. A live, attenuated cholera strain that expresses high levels of the nontoxic B subunit of cholera toxin, which might also serve as an ETEC protective antigen, was evaluated for safety, excretion, and immunogenicity in healthy volunteers. We enrolled four inpatient dose-escalation cohorts of 15 to 16 eligible subjects to randomly (3:1) receive a single oral dose of vaccine or placebo (buffer alone), evaluating 1 ×107, 1 ×108, 1 ×109, and 1 ×1010 CFU of the vaccine. The vaccine was well tolerated, although some subjects experienced moderate diarrhea. The serum Inaba vibriocidal antibody response appeared to display a dose-response relationship with increasing dosages of vaccine, plateauing at the 109-CFU dosage. The serum antitoxin (cholera toxin and heat-labile enterotoxin) antibody seroconversion rate (4-fold increase over baseline) also appeared to display a dose-response relationship. The vaccine strain was excreted in stool cultures, displaying a dose-response relationship. A single oral dose of Peru-15 pCTB at dosages up to 1 ×1010 CFU was safe and immunogenic in this first-in-human trial. These encouraging data support the ongoing clinical development of this candidate combined cholera and ETEC vaccine. (This study has been registered at ClinicalTrials.gov under registration no. NCT00654108.) PMID:25410205

  5. Long-lived room temperature deep-red/near-IR emissive intraligand triplet excited state (3IL) of naphthalimide in cyclometalated platinum(II) complexes and its application in upconversion.

    PubMed

    Wu, Wenting; Guo, Huimin; Wu, Wanhua; Ji, Shaomin; Zhao, Jianzhang

    2011-11-21

    [C(^)NPt(acac)] (C(^)N = cyclometalating ligand; acac = acetylacetonato) complexes in which the naphthalimide (NI) moiety is directly cyclometalated (NI as the C donor of the C-Pt bond) were synthesized. With 4-pyrazolylnaphthalimide, isomers with five-membered (Pt-2) and six-membered (Pt-3) chelate rings were obtained. With 4-pyridinylnaphthalimide, only the complex with a five-membered chelate ring (Pt-4) was isolated. A model complex with 1-phenylpyrazole as the C(^)N ligand was prepared (Pt-1). Strong absorption of visible light (ε = 21,900 M(-1) cm(-1) at 443 nm for Pt-3) and room temperature (RT) phosphorescence at 630 nm (Pt-2 and Pt-3) or 674 nm (Pt-4) were observed. Long-lived phosphorescences were observed for Pt-2 (τ(P) = 12.8 μs) and Pt-3 (τ(P) = 61.9 μs). Pt-1 is nonphosphorescent at RT in solution because of the acac-localized T(1) excited state [based on density functional theory (DFT) calculations and spin density analysis], but a structured emission band centered at 415 nm was observed at 77 K. Time-resolved transient absorption spectra and spin density analysis indicated a NI-localized intraligand triplet excited state ((3)IL) for complexes Pt-2, Pt-3, and Pt-4. DFT calculations on the transient absorption spectra (T(1) → T(n) transitions, n > 1) also support the (3)IL assignment of the T(1) excited states of Pt-2, Pt-3, and Pt-4. The complexes were used as triplet sensitizers for triplet-triplet-annihilation (TTA) based upconversion, and the results show that Pt-3 is an efficient sensitizer with an upconversion quantum yield of up to 14.1%, despite its low phosphorescence quantum yield of 5.2%. Thus, we propose that the sensitizer molecules at the triplet excited state that are otherwise nonphosphorescent were involved in the TTA upconversion process, indicating that weakly phosphorescent or nonphosphorescent transition-metal complexes can be used as triplet sensitizers for TTA upconversion.

  6. Identification of Cyanobacteriochromes Detecting Far-Red Light.

    PubMed

    Rockwell, Nathan C; Martin, Shelley S; Lagarias, J Clark

    2016-07-19

    The opacity of mammalian tissue to visible light and the strong attenuation of infrared light by water at ≥900 nm have contributed to growing interest in the development of far-red and near-infrared absorbing tools for visualizing and actuating responses within live cells. Here we report the discovery of cyanobacteriochromes (CBCRs) responsive to light in this far-red window. CBCRs are linear tetrapyrrole (bilin)-based light sensors distantly related to plant phytochrome sensors. Our studies reveal far-red (λmax = 725-755 nm)/orange (λmax = 590-600 nm) and far-red/red (λmax = 615-685 nm) photoswitches that are small (<200 amino acids) and can be genetically reconstituted in living cells. Phylogenetic analysis and characterization of additional CBCRs demonstrated that far-red/orange CBCRs evolved after a complex transition from green/red CBCRs known for regulating complementary chromatic acclimation. Incorporation of different bilin chromophores demonstrated that tuning mechanisms responsible for red-shifted chromophore absorption act at the A-, B-, and/or C-rings, whereas photoisomerization occurs at the D-ring. Two such proteins exhibited detectable fluorescence extending well into the near-infrared region. This work extends the spectral window of CBCRs to the edge of the infrared, raising the possibility of using CBCRs in synthetic biology applications in the far-red region of the spectrum.

  7. The phylogeny of the red panda (Ailurus fulgens): evidence from the hindlimb.

    PubMed

    Fisher, Rebecca E; Adrian, Brent; Elrod, Clay; Hicks, Michelle

    2008-11-01

    The red panda (Ailurus fulgens) is an endangered carnivore living in the temperate forests of the Himalayas and southern China. The phylogeny of the red panda has been the subject of much debate. Morphological and molecular studies have supported a wide range of possible relationships, including close ties to procyonids, ursids, mustelids, and mephitids. This study provides additional morphological data, including muscle maps, for Ailurus. The hindlimbs of four cadavers from the National Zoological Park were dissected. Red pandas retain a number of muscles lost in other carnivore groups, including muscles and tendons related to their robust and weight-bearing hallux. Three features, including a single-bellied m. sartorius, a proximal insertion for m. abductor digiti V, and an absent m. articularis coxae, are found in all terrestrial arctoids, including Ailurus. In addition, red pandas are similar to ursids and canids in lacking a caudal belly of m. semitendinosus, while they resemble procyonids and mustelids in the degree of fusion observed between mm. gluteus medius and piriformis. Furthermore, Ailurus and procyonids are characterized by numerous subdivisions within the adductor compartment, while red pandas and raccoons share a variable m. semimembranosus, composed of one, two, or three bellies. Lastly, a deep plantar muscle inserting onto the metatarsophalangeal joint of the hallux is described for Ailurus. This muscle has not been previously described and is given the name m. flexor hallucis profundus. Additional dissections of the forelimb and axial musculature of red pandas may shed further light on the phylogeny of this species. In addition, the muscle maps presented here offer a valuable resource for interpreting the functional anatomy of fossil ailurids.

  8. The phylogeny of the red panda (Ailurus fulgens): evidence from the hindlimb

    PubMed Central

    Fisher, Rebecca E; Adrian, Brent; Elrod, Clay; Hicks, Michelle

    2008-01-01

    The red panda (Ailurus fulgens) is an endangered carnivore living in the temperate forests of the Himalayas and southern China. The phylogeny of the red panda has been the subject of much debate. Morphological and molecular studies have supported a wide range of possible relationships, including close ties to procyonids, ursids, mustelids, and mephitids. This study provides additional morphological data, including muscle maps, for Ailurus. The hindlimbs of four cadavers from the National Zoological Park were dissected. Red pandas retain a number of muscles lost in other carnivore groups, including muscles and tendons related to their robust and weight-bearing hallux. Three features, including a single-bellied m. sartorius, a proximal insertion for m. abductor digiti V, and an absent m. articularis coxae, are found in all terrestrial arctoids, including Ailurus. In addition, red pandas are similar to ursids and canids in lacking a caudal belly of m. semitendinosus, while they resemble procyonids and mustelids in the degree of fusion observed between mm. gluteus medius and piriformis. Furthermore, Ailurus and procyonids are characterized by numerous subdivisions within the adductor compartment, while red pandas and raccoons share a variable m. semimembranosus, composed of one, two, or three bellies. Lastly, a deep plantar muscle inserting onto the metatarsophalangeal joint of the hallux is described for Ailurus. This muscle has not been previously described and is given the name m. flexor hallucis profundus. Additional dissections of the forelimb and axial musculature of red pandas may shed further light on the phylogeny of this species. In addition, the muscle maps presented here offer a valuable resource for interpreting the functional anatomy of fossil ailurids. PMID:19014366

  9. The phylogeny of the red panda (Ailurus fulgens): evidence from the hindlimb.

    PubMed

    Fisher, Rebecca E; Adrian, Brent; Elrod, Clay; Hicks, Michelle

    2008-11-01

    The red panda (Ailurus fulgens) is an endangered carnivore living in the temperate forests of the Himalayas and southern China. The phylogeny of the red panda has been the subject of much debate. Morphological and molecular studies have supported a wide range of possible relationships, including close ties to procyonids, ursids, mustelids, and mephitids. This study provides additional morphological data, including muscle maps, for Ailurus. The hindlimbs of four cadavers from the National Zoological Park were dissected. Red pandas retain a number of muscles lost in other carnivore groups, including muscles and tendons related to their robust and weight-bearing hallux. Three features, including a single-bellied m. sartorius, a proximal insertion for m. abductor digiti V, and an absent m. articularis coxae, are found in all terrestrial arctoids, including Ailurus. In addition, red pandas are similar to ursids and canids in lacking a caudal belly of m. semitendinosus, while they resemble procyonids and mustelids in the degree of fusion observed between mm. gluteus medius and piriformis. Furthermore, Ailurus and procyonids are characterized by numerous subdivisions within the adductor compartment, while red pandas and raccoons share a variable m. semimembranosus, composed of one, two, or three bellies. Lastly, a deep plantar muscle inserting onto the metatarsophalangeal joint of the hallux is described for Ailurus. This muscle has not been previously described and is given the name m. flexor hallucis profundus. Additional dissections of the forelimb and axial musculature of red pandas may shed further light on the phylogeny of this species. In addition, the muscle maps presented here offer a valuable resource for interpreting the functional anatomy of fossil ailurids. PMID:19014366

  10. Fluorescence enhancement of single-phase red-blue emitting Ba3MgSi2O8:Eu2+,Mn2+ phosphors via Dy3+ addition for plant cultivation

    NASA Astrophysics Data System (ADS)

    Liu, Ling-Yun; Wang, Da-Jian; Mao, Zhi-Yong; Liu, Yan-Hua; Li, Xue-Zheng; Lu, Qi-Fei

    2009-01-01

    Fluorescence enhancement of red and blue concurrently emitting Ba3MgSi2O8:Eu2+,Mn2+ phosphors for plant cultivation has been investigated by Dy3+ addition. The Ba3MgSi2O8:Eu2+,Mn2+,Dy3+(BMS-EMD) phosphors have two-color emissions at the wavelength peak values of 437 nm and 620 nm at the excitation of 350 nm. The two emission bands are coincident with the absorption spectrum for photosynthesis of plants. An obvious enhancement effect has been observed upon addition of Dy3+ with amount of 0.03 mol%, in which the intensities of both blue and red bands reach a maximum. The origin of red and blue emission bands is analysed. The photochromic parameters of the samples at the nearly UV excitation are tested. This fluoresence enhancement is of great significance for special solid state lighting equipment used in plant cultivation.

  11. Hidden values in bauxite residue (red mud): Recovery of metals

    SciTech Connect

    Liu, Yanju; Naidu, Ravi

    2014-12-15

    Highlights: • Current iron recovery techniques using red mud are depicted. • Advantages and disadvantages exist in different recovering processes. • Economic and environmental friendly integrated usage of red mud is promising. - Abstract: Bauxite residue (red mud) is a hazardous waste generated from alumina refining industries. Unless managed properly, red mud poses significant risks to the local environment due to its extreme alkalinity and its potential impacts on surface and ground water quality. The ever-increasing generation of red mud poses significant challenges to the aluminium industries from management perspectives given the low proportion that are currently being utilized beneficially. Red mud, in most cases, contains elevated concentrations of iron in addition to aluminium, titanium, sodium and valuable rare earth elements. Given the scarcity of iron supply globally, the iron content of red mud has attracted increasing research interest. This paper presents a critical overview of the current techniques employed for iron recovery from red mud. Information on the recovery of other valuable metals is also reviewed to provide an insight into the full potential usage of red mud as an economic resource rather than a waste. Traditional hydrometallurgy and pyrometallurgy are being investigated continuously. However, in this review several new techniques are introduced that consider the process of iron recovery from red mud. An integrated process which can achieve multiple additional values from red mud is much preferred over the single process methods. The information provided here should help to improve the future management and utilization of red mud.

  12. Self-Folding Single Cell Grippers

    PubMed Central

    2015-01-01

    Given the heterogeneous nature of cultures, tumors, and tissues, the ability to capture, contain, and analyze single cells is important for genomics, proteomics, diagnostics, therapeutics, and surgery. Moreover, for surgical applications in small conduits in the body such as in the cardiovascular system, there is a need for tiny tools that approach the size of the single red blood cells that traverse the blood vessels and capillaries. We describe the fabrication of arrayed or untethered single cell grippers composed of biocompatible and bioresorbable silicon monoxide and silicon dioxide. The energy required to actuate these grippers is derived from the release of residual stress in 3–27 nm thick films, did not require any wires, tethers, or batteries, and resulted in folding angles over 100° with folding radii as small as 765 nm. We developed and applied a finite element model to predict these folding angles. Finally, we demonstrated the capture of live mouse fibroblast cells in an array of grippers and individual red blood cells in untethered grippers which could be released from the substrate to illustrate the potential utility for in vivo operations. PMID:24937214

  13. Deciphering and dating the red panda's ancestry and early adaptive radiation of Musteloidea.

    PubMed

    Sato, Jun J; Wolsan, Mieczyslaw; Minami, Shinji; Hosoda, Tetsuji; Sinaga, Martua H; Hiyama, Kozue; Yamaguchi, Yasunori; Suzuki, Hitoshi

    2009-12-01

    Few species have been of more disputed affinities than the red or lesser panda (Ailurus fulgens), an endangered endemic Southeast Asian vegetarian member of the placental mammalian order Carnivora. This peculiar carnivoran has mostly been classified with raccoons (Procyonidae) or bears (Ursidae), grouped with the giant panda (Ailuropoda melanoleuca) in their own family, or considered a separate lineage of equivocal ancestry. Recent molecular studies have indicated a close affinity of the red panda to a clade of procyonids and mustelids (weasels, otters, martens, badgers, and allies), but have failed to unambiguously resolve the position of this species relative to mephitids (skunks and stink badgers). We examined the relationship of the red panda to other extant species of the carnivoran suborder Caniformia using a set of concatenated approximately 5.5-kb sequences from protein-coding exons of five nuclear genes. Bayesian, maximum likelihood, and parsimony phylogenetic analyses strongly supported the red panda as the closest living relative of a clade containing Procyonidae and Mustelidae to the exclusion of Mephitidae. These three families together with the red panda (which is classified here as a single extant species of a distinct family, Ailuridae) compose the superfamily Musteloidea, a clade strongly supported by all our phylogenetic analyses as sister to the monophyletic Pinnipedia (seals, sea lions, walruses). The approximately unbiased, Kishino-Hasegawa, and Templeton topology tests rejected (P<0.05) each of all possible alternative hypotheses about the relationships among the red panda and mephitids, procyonids, and mustelids. We also estimated divergence times for the red panda's lineage and ones of other caniform taxa, as well as the ages of the first appearance datums for the crown and total clades of musteloids and the total clades of the red panda, mephitids, procyonids, and mustelids. Bayesian relaxed molecular-clock analysis using combined

  14. Deciphering and dating the red panda's ancestry and early adaptive radiation of Musteloidea.

    PubMed

    Sato, Jun J; Wolsan, Mieczyslaw; Minami, Shinji; Hosoda, Tetsuji; Sinaga, Martua H; Hiyama, Kozue; Yamaguchi, Yasunori; Suzuki, Hitoshi

    2009-12-01

    Few species have been of more disputed affinities than the red or lesser panda (Ailurus fulgens), an endangered endemic Southeast Asian vegetarian member of the placental mammalian order Carnivora. This peculiar carnivoran has mostly been classified with raccoons (Procyonidae) or bears (Ursidae), grouped with the giant panda (Ailuropoda melanoleuca) in their own family, or considered a separate lineage of equivocal ancestry. Recent molecular studies have indicated a close affinity of the red panda to a clade of procyonids and mustelids (weasels, otters, martens, badgers, and allies), but have failed to unambiguously resolve the position of this species relative to mephitids (skunks and stink badgers). We examined the relationship of the red panda to other extant species of the carnivoran suborder Caniformia using a set of concatenated approximately 5.5-kb sequences from protein-coding exons of five nuclear genes. Bayesian, maximum likelihood, and parsimony phylogenetic analyses strongly supported the red panda as the closest living relative of a clade containing Procyonidae and Mustelidae to the exclusion of Mephitidae. These three families together with the red panda (which is classified here as a single extant species of a distinct family, Ailuridae) compose the superfamily Musteloidea, a clade strongly supported by all our phylogenetic analyses as sister to the monophyletic Pinnipedia (seals, sea lions, walruses). The approximately unbiased, Kishino-Hasegawa, and Templeton topology tests rejected (P<0.05) each of all possible alternative hypotheses about the relationships among the red panda and mephitids, procyonids, and mustelids. We also estimated divergence times for the red panda's lineage and ones of other caniform taxa, as well as the ages of the first appearance datums for the crown and total clades of musteloids and the total clades of the red panda, mephitids, procyonids, and mustelids. Bayesian relaxed molecular-clock analysis using combined

  15. Anterior Chamber Live Loa loa: Case Report.

    PubMed

    Kagmeni, G; Cheuteu, R; Bilong, Y; Wiedemann, P

    2016-01-01

    We reported a case of unusual intraocular Loa loa in a 27-year-old patient who presented with painful red eye. Biomicroscopy revealed a living and active adult worm in the anterior chamber of the right eye. After surgical extraction under local anesthesia, parasitological identification confirmed L. loa filariasis. PMID:27441005

  16. Anterior Chamber Live Loa loa: Case Report

    PubMed Central

    Kagmeni, G.; Cheuteu, R.; Bilong, Y.; Wiedemann, P.

    2016-01-01

    We reported a case of unusual intraocular Loa loa in a 27-year-old patient who presented with painful red eye. Biomicroscopy revealed a living and active adult worm in the anterior chamber of the right eye. After surgical extraction under local anesthesia, parasitological identification confirmed L. loa filariasis. PMID:27441005

  17. Occupational dermatitis from Synacril Red 3b liquid (CI Basic Red 22).

    PubMed

    Sadhra, S; Duhra, P; Foulds, I S

    1989-11-01

    A carpet factory worker, exposed to a number of different dyes, developed a severe hand dermatitis. The handling of warm, wet and freshly-dyed yarn with unprotected hands was thought to have caused the onset of dermatitis. Patch testing indicated that the patient was sensitive to only one of the dyes handled, namely Synacril Red 3B liquid, which is based on the single dyestuff Basic Red 22 (CI 11055). Chemical analysis revealed the dyestuff to be of high purity (greater than 95%), suggesting that sensitization was caused by the Basic Red 22 dyestuff itself and not by an avoidable impurity.

  18. Cobb's Red Cabbage Indicator.

    ERIC Educational Resources Information Center

    Cobb, Vicki

    1998-01-01

    Describes the use of an indicator made from the pigment in red cabbage. Cabbage is grated then soaked in water. When the water is a strong red, the cabbage is strained out. The cabbage-juice indicator is then used to test for acids and bases. Includes a list of good foods to test for acidity and alkalinity. (PVD)

  19. A nucleic acid dependent chemical photocatalysis in live human cells.

    PubMed

    Arian, Dumitru; Cló, Emiliano; Gothelf, Kurt V; Mokhir, Andriy

    2010-01-01

    Only two nucleic acid directed chemical reactions that are compatible with live cells have been reported to date. Neither of these processes generate toxic species from nontoxic starting materials. Reactions of the latter type could be applied as gene-specific drugs, for example, in the treatment of cancer. We report here the first example of a chemical reaction that generates a cytotoxic drug from a nontoxic prodrug in the presence of a specific endogeneous ribonucleic acid in live mammalian cells. In this case, the prodrug is triplet oxygen and the drug is singlet oxygen. The key component of this reaction is an inert molecule (InP-2'-OMe-RNA/Q-2'-OMe-RNA; P: photosensitizer; Q: quencher), which becomes an active photosensitizer (InP-2'-OMe-RNA) in the presence of single-stranded nucleic acid targets. Upon irradiation with red light, the photosensitizer produces over 6000 equivalents of toxic singlet oxygen per nucleic acid target. This reaction is highly sequence specific. To detect the generation of singlet oxygen in live cells, we prepared a membrane-permeable and water-soluble fluorescent scavenger, a derivative of 2,5-diphenylisobenzofurane. The scavenger decomposes upon reaction with singlet oxygen and this is manifested in a decrease in the fluorescence intensity. This effect can be conveniently monitored by flow cytometry.

  20. ISS Live!

    NASA Technical Reports Server (NTRS)

    Price, Jennifer; Harris, Philip; Hochstetler, Bruce; Guerra, Mark; Mendez, Israel; Healy, Matthew; Khan, Ahmed

    2013-01-01

    International Space Station Live! (ISSLive!) is a Web application that uses a proprietary commercial technology called Lightstreamer to push data across the Internet using the standard http port (port 80). ISSLive! uses the push technology to display real-time telemetry and mission timeline data from the space station in any common Web browser or Internet- enabled mobile device. ISSLive! is designed to fill a unique niche in the education and outreach areas by providing access to real-time space station data without a physical presence in the mission control center. The technology conforms to Internet standards, supports the throughput needed for real-time space station data, and is flexible enough to work on a large number of Internet-enabled devices. ISSLive! consists of two custom components: (1) a series of data adapters that resides server-side in the mission control center at Johnson Space Center, and (2) a set of public html that renders the data pushed from the data adapters. A third component, the Lightstreamer server, is commercially available from a third party and acts as an intermediary between custom components (1) and (2). Lightstreamer also provides proprietary software libraries that are required to use the custom components. At the time of this reporting, this is the first usage of Web-based, push streaming technology in the aerospace industry.

  1. 7X performance results - final report : ASCI Red vs Red Storm.

    SciTech Connect

    Dinge, Dennis C.; Davis, Michael E.; Haskell, Karen H.; Ballance, Robert A.; Gardiner, Thomas Anthony; Stevenson, Joel O.; Noe, John P.

    2011-04-01

    The goal of the 7X performance testing was to assure Sandia National Laboratories, Cray Inc., and the Department of Energy that Red Storm would achieve its performance requirements which were defined as a comparison between ASCI Red and Red Storm. Our approach was to identify one or more problems for each application in the 7X suite, run those problems at multiple processor sizes in the capability computing range, and compare the results between ASCI Red and Red Storm. The first part of this report describes the two computer systems, the applications in the 7X suite, the test problems, and the results of the performance tests on ASCI Red and Red Storm. During the course of the testing on Red Storm, we had the opportunity to run the test problems in both single-core mode and dual-core mode and the second part of this report describes those results. Finally, we reflect on lessons learned in undertaking a major head-to-head benchmark comparison.

  2. Aspergillosis in a red-crowned crane

    USGS Publications Warehouse

    Stroud, R.K.; Duncan, R.M.

    1983-01-01

    An unusual form of pulmonary aspergillosis in a red-crowned crane (Grus japonensis) is described in this report. The major lesion is unique because it closely resembles a lesion referred to as an aspergilloma. An aspergilloma is a single large granulomatous lesion that resembles a tumor and is caused by fungi of the genus Aspergillus.

  3. Live Virus Smallpox Vaccine

    MedlinePlus

    ... Index SMALLPOX FACT SHEET The Live Virus Smallpox Vaccine The vaccinia virus is the "live virus" used ... cannot cause smallpox. What is a "live virus" vaccine? A "live virus" vaccine is a vaccine that ...

  4. High-Contrast Fluorescence Imaging in Fixed and Living Cells Using Optimized Optical Switches

    PubMed Central

    Wu, Liangxing; Dai, Yingrui; Jiang, Xiaoli; Petchprayoon, Chutima; Lee, Jessie E.; Jiang, Tao; Yan, Yuling; Marriott, Gerard

    2013-01-01

    We present the design, synthesis and characterization of new functionalized fluorescent optical switches for rapid, all-visible light-mediated manipulation of fluorescence signals from labelled structures within living cells, and as probes for high-contrast optical lock-in detection (OLID) imaging microscopy. A triazole-substituted BIPS (TzBIPS) is identified from a rational synthetic design strategy that undergoes robust, rapid and reversible, visible light-driven transitions between a colorless spiro- (SP) and a far-red absorbing merocyanine (MC) state within living cells. The excited MC-state of TzBIPS may also decay to the MC-ground state emitting near infra-red fluorescence, which is used as a sensitive and quantitative read-out of the state of the optical switch in living cells. The SP to MC transition for a membrane-targeted TzBIPS probe (C12-TzBIPS) is triggered at 405 nm at an energy level compatible with studies in living cells, while the action spectrum of the reverse transition (MC to SP) has a maximum at 650 nm. The SP to MC transition is complete within the 790 ns pixel dwell time of the confocal microscope, while a single cycle of optical switching between the SP and MC states in a region of interest is complete within 8 ms (125 Hz) within living cells, the fastest rate attained for any optical switch probe in a biological sample. This property can be exploited for real-time correction of background signals in living cells. A reactive form of TzBIPS is linked to secondary antibodies and used, in conjunction with an enhanced scope-based analysis of the modulated MC-fluorescence in immuno-stained cells, for high-contrast immunofluorescence microscopic analysis of the actin cytoskeleton. PMID:23755140

  5. Blood Banking in Living Droplets

    PubMed Central

    Shao, Lei; Zhang, Xiaohui; Xu, Feng; Song, YoungSeok; Keles, Hasan Onur; Matloff, Laura; Markel, Jordan; Demirci, Utkan

    2011-01-01

    Blood banking has a broad public health impact influencing millions of lives daily. It could potentially benefit from emerging biopreservation technologies. However, although vitrification has shown advantages over traditional cryopreservation techniques, it has not been incorporated into transfusion medicine mainly due to throughput challenges. Here, we present a scalable method that can vitrify red blood cells in microdroplets. This approach enables the vitrification of large volumes of blood in a short amount of time, and makes it a viable and scalable biotechnology tool for blood cryopreservation. PMID:21412411

  6. Living Nanomachines

    NASA Astrophysics Data System (ADS)

    Carlier, M.-F.; Helfer, E.; Wade, R.; Haraux, F.

    The living cell is a kind of factory on the microscopic scale, in which an assembly of modular machines carries out, in a spatially and temporally coordinated way, a whole range of activities internal to the cell, including the synthesis of substances essential to its survival, intracellular traffic, waste disposal, and cell division, but also activities related to intercellular communication and exchanges with the outside world, i.e., the ability of the cell to change shape, to move within a tissue, or to organise its own defence against attack by pathogens, injury, and so on. These nanomachines are made up of macromolecular assemblies with varying degrees of complexity, forged by evolution, within which work is done as a result of changes in interactions between proteins, or between proteins and nucleic acids, or between proteins and membrane components. All these cell components measure a few nanometers across, so the mechanical activity of these nanomachines all happens on the nanometric scale. The directional nature of the work carried out by biological nanomachines is associated with a dissipation of energy. As examples of protein assemblies, one could mention the proteasome, which is responsible for the degradation of proteins, and linear molecular motors such as actomyosin, responsible for muscle contraction, the dynein-microtubule system, responsible for flagellar motility, and the kinesin-microtubule system, responsible for transport of vesicles, which transform chemical energy into motion. Nucleic acid-protein assemblies include the ribosome, responsible for synthesising proteins, polymerases, helicases, elongation factors, and the machinery of DNA replication and repair; the mitotic spindle is an integrated system involving several of these activities which drive chromosome segregation. The machinery coupling membranes and proteins includes systems involved in the energy metabolism, such as the ATP synthase rotary motor, signalling cascades, endocytosis

  7. Living with Gout

    MedlinePlus Videos and Cool Tools

    ... purines -- those foods include liver, seafood and red meat. Historically gout has been seen as a disease ... affluent -- those who could afford large quantities of meats and red wine. The popular comic image was ...

  8. Living with Heart Disease

    MedlinePlus

    ... followup visits. Rate This Content: NEXT >> Featured Video All of Our Stories Are Red: Yaskary's Story 04/ ... part of the National Institutes of Health (NIH). All of Our Stories Are Red: Eileen's Story 04/ ...

  9. Fluorogenic Probes for Multicolor Imaging in Living Cells.

    PubMed

    Lukinavičius, Gražvydas; Reymond, Luc; Umezawa, Keitaro; Sallin, Olivier; D'Este, Elisa; Göttfert, Fabian; Ta, Haisen; Hell, Stefan W; Urano, Yasuteru; Johnsson, Kai

    2016-08-01

    Here we present a far-red, silicon-rhodamine-based fluorophore (SiR700) for live-cell multicolor imaging. SiR700 has excitation and emission maxima at 690 and 715 nm, respectively. SiR700-based probes for F-actin, microtubules, lysosomes, and SNAP-tag are fluorogenic, cell-permeable, and compatible with superresolution microscopy. In conjunction with probes based on the previously introduced carboxy-SiR650, SiR700-based probes permit multicolor live-cell superresolution microscopy in the far-red, thus significantly expanding our capacity for imaging living cells. PMID:27420907

  10. Inhibition of Neutral red photolysis with different antioxidants.

    PubMed

    Rimpapa, Zlatan; Sofić, Emin; Sapcanin, Aida; Toromanović, Jasmin; Tahirović, Ismet

    2007-02-01

    Neutral red is a dye the azine structure which has been used as an acido-base indicator and a dye in histochemistry. In 1960 Goldhaber introduced Neutral red into the medium of resorbing bone cultures to localize the osteoclast in the living cultures. Using time-lapse microcinematography in order to follow the osteoclasts, he reported excellent contrast could be obtained with Neutral red due to the avidity of osteoclasts for this dye. Unfortunately, however, the photodynamic effect resulting from subsequent exposure of these cultures to light precluded this approach, and again in 1963. it was observed that the death of the osteoclasts was probably due to a photodynamic effect related to the dye in the cell, the presence of oxygen and the frequent exposure of light by our time-lapse photography. VIS and UV irradiation induced photolysis of Neutral red, and from Neutral red cation produced with photons a Neutral red radical. This Neutral red radical can be inhibited with action of an antioxidant, such as melatonin, glutathione, ascorbic acid, E vitamin, etc. We developed an assay with Neutral red photolysis which utilizes a VIS and UV irradiation technique for quantification the inhibition of photolysis with action of an antioxidant. In this method Neutral red acts double, as a free radical generator and as a photosensitizer.

  11. Effects of regularly consuming dietary fibre rich soluble cocoa products on bowel habits in healthy subjects: a free-living, two-stage, randomized, crossover, single-blind intervention

    PubMed Central

    2012-01-01

    Background Dietary fibre is both preventive and therapeutic for bowel functional diseases. Soluble cocoa products are good sources of dietary fibre that may be supplemented with this dietary component. This study assessed the effects of regularly consuming two soluble cocoa products (A and B) with different non-starch polysaccharides levels (NSP, 15.1 and 22.0% w/w, respectively) on bowel habits using subjective intestinal function and symptom questionnaires, a daily diary and a faecal marker in healthy individuals. Methods A free-living, two-stage, randomized, crossover, single-blind intervention was carried out in 44 healthy men and women, between 18-55 y old, who had not taken dietary supplements, laxatives, or antibiotics six months before the start of the study. In the four-week-long intervention stages, separated by a three-week-wash-out stage, two servings of A and B, that provided 2.26 vs. 6.60 g/day of NSP respectively, were taken. In each stage, volunteers' diet was recorded using a 72-h food intake report. Results Regularly consuming cocoa A and B increased fibre intake, although only cocoa B significantly increased fibre intake (p < 0.001) with respect to the non-cocoa stage. No changes in body weight were observed in either of the 4 week interventions. With cocoa product B, the number of daily bowel movements increased (p = 0.002), the frequency of having a bowel movement once a day increased (p = 0.009), the time to have a bowel movement was lower (p = 0.016) as well as the feeling of constipation (p = 0.046) without inducing adverse gastrointestinal symptoms, only flatulence increased (p = 0.019). Conclusions Regular consumption of the cocoa products increases dietary fibre intake to recommended levels and product B improves bowel habits. The use of both objective and subjective assessments to evaluate the effects of food on bowel habits is recommended. PMID:22512838

  12. Room temperature microspectrofluorimetry as a useful tool for studying the assembly of the PSII chlorophyll-protein complexes in single living cells of etiolated Euglena gracilis Klebs during the greening process.

    PubMed

    Pancaldi, Simonetta; Baldisserotto, Costanza; Ferroni, Lorenzo; Bonora, Angelo; Fasulo, Maria Palmira

    2002-08-01

    The assembly kinetics of the PSII chlorophyll-protein complexes was followed during the greening of Euglena gracilis by microspectrofluorimetry in vivo, at room temperature, on single living cells. The study was correlated to micro- and submicroscopic events accompanying the proplastid to chloroplast transformation and with the immunolocalization of the LHCPII. Etiolated cells of Euglena gracilis were grown in darkness in Mego's heterotrophic liquid medium under shaking at 25+/-1 degrees C. At the stationary phase of growth, they were exposed to continuous light (330 micromol m(-2) s(-1)) for 72 h. The analyses were carried out on samples collected at different times of illumination. Microspectrofluorimetric data were recorded in the 620-780 nm range (excitation at 436 nm) and were resolved into Gaussian components corresponding to the reaction centres (RCII) and the inner antennae (CP(43-47)) of the PSII and LHCPII. From the RCII/CP(43-47) and LHCPII/PSII ratios, it was inferred that (1) a disconnection between RCII and CP(43-47) syntheses occurs during the lag phase of chloroplast differentiation, RCII being synthesized before the inner antennae. This results in the accumulation of uncoupled PSII Chl-protein complexes; (2) after lag phase, the RCII and CP(43-47) syntheses are connected one to another; (3) the freshly synthesized LHCPII complexes are immediately assembled with the PSII, suggesting that the outer antennae always maintain the form bound to PSII. Micro- and submicroscopical observations and LHCPII immunolocalization were in agreement. These data suggest that microspectrofluorimetry may constitute a useful non-destructive tool for studying the assembly kinetics of PSII, under fully physiological life conditions.

  13. Red Bull Stratos Presentation

    NASA Video Gallery

    Red Bull Stratos High Performance Director Andy Walshe & Technical Project Director Art Thompson share the Stratos story with JSC. Supported by a team of experts, Felix Baumgartner reached 128,100 ...

  14. Whence the red panda?

    PubMed

    Flynn, J J; Nedbal, M A; Dragoo, J W; Honeycutt, R L

    2000-11-01

    The evolutionary history of the red panda (Ailurus fulgens) plays a pivotal role in the higher-level phylogeny of the "bear-like" arctoid carnivoran mammals. Characters from morphology and molecules have provided inconsistent evidence for placement of the red panda. Whereas it certainly is an arctoid, there has been major controversy about whether it should be placed with the bears (ursids), ursids plus pinnipeds (seals, sea lions, walrus), raccoons (procyonids), musteloids (raccoons plus weasels, skunks, otters, and badgers [mustelids]), or as a monotypic lineage of uncertain phylogenetic affinities. Nucleotide sequence data from three mitochondrial genes and one nuclear intron were analyzed, with more complete taxonomic sampling of relevant taxa (arctoids) than previously available in analyses of primary molecular data, to clarify the phylogenetic relationships of the red panda to other arctoid carnivorans. This study provides detailed phylogenetic analyses (both parsimony and maximum-likelihood) of primary character data for arctoid carnivorans, including bootstrap and decay indices for all arctoid nodes, and three statistical tests of alternative phylogenetic hypotheses for the placement of the red panda. Combined phylogenetic analyses reject the hypotheses that the red panda is most closely related to the bears (ursids) or to the raccoons (procyonids). Rather, evidence from nucleotide sequences strongly support placement of the red panda within a broad Musteloidea (sensu lato) clade, including three major lineages (the red panda, the skunks [mephitids], and a clearly monophyletic clade of procyonids plus mustelids [sensu stricto, excluding skunks]). Within the Musteloidea, interrelationships of the three major lineages are unclear and probably are best considered an unresolved trichotomy. These data provide compelling evidence for the relationships of the red panda and demonstrate that small taxonomic sample sizes can result in misleading or possibly erroneous

  15. Whence the red panda?

    PubMed

    Flynn, J J; Nedbal, M A; Dragoo, J W; Honeycutt, R L

    2000-11-01

    The evolutionary history of the red panda (Ailurus fulgens) plays a pivotal role in the higher-level phylogeny of the "bear-like" arctoid carnivoran mammals. Characters from morphology and molecules have provided inconsistent evidence for placement of the red panda. Whereas it certainly is an arctoid, there has been major controversy about whether it should be placed with the bears (ursids), ursids plus pinnipeds (seals, sea lions, walrus), raccoons (procyonids), musteloids (raccoons plus weasels, skunks, otters, and badgers [mustelids]), or as a monotypic lineage of uncertain phylogenetic affinities. Nucleotide sequence data from three mitochondrial genes and one nuclear intron were analyzed, with more complete taxonomic sampling of relevant taxa (arctoids) than previously available in analyses of primary molecular data, to clarify the phylogenetic relationships of the red panda to other arctoid carnivorans. This study provides detailed phylogenetic analyses (both parsimony and maximum-likelihood) of primary character data for arctoid carnivorans, including bootstrap and decay indices for all arctoid nodes, and three statistical tests of alternative phylogenetic hypotheses for the placement of the red panda. Combined phylogenetic analyses reject the hypotheses that the red panda is most closely related to the bears (ursids) or to the raccoons (procyonids). Rather, evidence from nucleotide sequences strongly support placement of the red panda within a broad Musteloidea (sensu lato) clade, including three major lineages (the red panda, the skunks [mephitids], and a clearly monophyletic clade of procyonids plus mustelids [sensu stricto, excluding skunks]). Within the Musteloidea, interrelationships of the three major lineages are unclear and probably are best considered an unresolved trichotomy. These data provide compelling evidence for the relationships of the red panda and demonstrate that small taxonomic sample sizes can result in misleading or possibly erroneous

  16. Child Living Arrangements by Race and Income: A Supplementary Analysis.

    ERIC Educational Resources Information Center

    Primus, Wendell E.

    This supplementary analysis to "Declining Share of Children Lived with Single Mothers in the Late 1990s" employs an alternative methodology to provide a clearer picture of changes in living arrangements within different income groups. The original study concluded that children were significantly less likely to live with single mothers in 2000 than…

  17. Bioavailability and Biokinetics of Anthocyanins From Red Grape Juice and Red Wine

    PubMed Central

    Bitsch, Roland

    2004-01-01

    In a comparative study, 9 healthy volunteers ingested a single oral dose of 400 mL red grape juice or red wine with dose-adjusted anthocyanin content (283.5 mg or 279.6 mg, resp) in crossover. The content of anthocyanin glucosides was detected in plasma and urinary excretion. Additionally, the plasmatic antioxidant activity was assessed after intake. Based on the plasma content, biokinetic criteria of the single anthocyanins were calculated, such as AUC, cmax, tmax, and the elimination rate t1/2. The urinary excretion of total anthocyanins differed significantly and amounted to 0.18% (red wine) and 0.23% (red grape juice) of the administered dose. Additionally, the plasmatic antioxidant activity increased to higher levels after juice ingestion compared to wine. The intestinal absorption of the anthocyanins of red grape juice seemed to be improved compared to red wine, suggesting a possible synergistic effect of the glucose content of the juice. The improved absorption resulted in an enhanced plasmatic bioactivity. PMID:15577192

  18. Red cell metabolism in red and grey kangaroos.

    PubMed

    Agar, N S

    1977-12-15

    Glucose utilization, lactate production and glutathione regeneration were measured in the red blood cells of 2 species of Australian Marsupials, Eastern grey Kangaroo (Macropus gigantus) and red kangaroo (Macropus rufus), and were found to be significantly lower in the red blood cells from grey than that of red kangaroos.

  19. Contemporary Single Mothers.

    ERIC Educational Resources Information Center

    Eiduson, Bernice T.

    Fifty Caucasian, never-married single mothers aged 18-30, who had opted to keep their babies, were studied longitudinally from the last trimester of pregnancy through the first three years of their children's lives in order to learn the extent to which they had reinterpreted traditional roles and responsibilities and had restructured their lives.…

  20. Hidden values in bauxite residue (red mud): recovery of metals.

    PubMed

    Liu, Yanju; Naidu, Ravi

    2014-12-01

    Bauxite residue (red mud) is a hazardous waste generated from alumina refining industries. Unless managed properly, red mud poses significant risks to the local environment due to its extreme alkalinity and its potential impacts on surface and ground water quality. The ever-increasing generation of red mud poses significant challenges to the aluminium industries from management perspectives given the low proportion that are currently being utilized beneficially. Red mud, in most cases, contains elevated concentrations of iron in addition to aluminium, titanium, sodium and valuable rare earth elements. Given the scarcity of iron supply globally, the iron content of red mud has attracted increasing research interest. This paper presents a critical overview of the current techniques employed for iron recovery from red mud. Information on the recovery of other valuable metals is also reviewed to provide an insight into the full potential usage of red mud as an economic resource rather than a waste. Traditional hydrometallurgy and pyrometallurgy are being investigated continuously. However, in this review several new techniques are introduced that consider the process of iron recovery from red mud. An integrated process which can achieve multiple additional values from red mud is much preferred over the single process methods. The information provided here should help to improve the future management and utilization of red mud.

  1. New red phosphor for near-ultraviolet light-emitting diodes with high color-purity

    SciTech Connect

    Wang, Zhengliang; He, Pei; Wang, Rui; Zhao, Jishou; Gong, Menglian

    2010-02-15

    New red phosphors, Na{sub 5}Eu(MoO{sub 4}){sub 4} doped with boron oxide were prepared by the solid-state reaction. Their structure and photo-luminescent properties were investigated. With the introduction of boron oxide, the red emission intensity of the phosphors under 395 nm excitation is strengthened, with high color-purity (x = 0.673, y = 0.327). The single red light-emitting diode was obtained by combining InGaN chip with the red phosphor, bright red light can be observed by naked eyes from the red light-emitting diodes under a forward bias of 20 mA.

  2. Common fluorescent proteins for single-molecule localization microscopy

    NASA Astrophysics Data System (ADS)

    Klementieva, Natalia V.; Bozhanova, Nina G.; Mishina, Natalie M.; Zagaynova, Elena V.; Lukyanov, Konstantin A.; Mishin, Alexander S.

    2015-07-01

    Super-resolution techniques for breaking the diffraction barrier are spread out over multiple studies nowadays. Single-molecule localization microscopy such as PALM, STORM, GSDIM, etc allow to get super-resolved images of cell ultrastructure by precise localization of individual fluorescent molecules via their temporal isolation. However, these methods are supposed the use of fluorescent dyes and proteins with special characteristics (photoactivation/photoconversion). At the same time, there is a need for retaining high photostability of fluorophores during long-term acquisition. Here, we first showed the potential of common red fluorescent protein for single-molecule localization microscopy based on spontaneous intrinsic blinking. Also, we assessed the effect of different imaging media on photobleaching of these fluorescent proteins. Monomeric orange and red fluorescent proteins were examined for stochastic switching from a dark state to a bright fluorescent state. We studied fusions with cytoskeletal proteins in NIH/3T3 and HeLa cells. Imaging was performed on the Nikon N-STORM system equipped with EMCCD camera. To define the optimal imaging conditions we tested several types of cell culture media and buffers. As a result, high-resolution images of cytoskeleton structure were obtained. Essentially, low-intensity light was sufficient to initiate the switching of tested red fluorescent protein reducing phototoxicity and provide long-term live-cell imaging.

  3. Red cell enzymes.

    PubMed

    Paniker, N V

    1975-03-01

    As compared to other cells of the body, the mammalian red cell has one of the simplest structural organizations. As a result, this cell has been extensively used in studies involving the structure, function, and integrity of cell membranes as well as cytoplasmic events. Additionally, the metabolic activities of the red blood cell are also relatively simple. During the past quarter century or so, an ocean of knowledge has been gathered on various aspects of red cell metabolism and function. The fields of enzymes, hemoglobin, membrane, and metabolic products comprise the major portion of this knowledge. These advances have made valuable contributions to biochemistry and medicine. Despite these favorable aspects of this simple, anucleated cell, it must be conceded that our knowledge about the red cell is far from complete. We are still in the dark concerning the mechanism involved in several aspects of its membrane, hemoglobin, enzymes, and a large number of other constituents. For example, a large number of enzymes with known catalytic activity but with unknown function have eluded investigators despite active pursuit. This review will be a consolidation of our present knowledge of human red cell enzymes, with particular reference to their usefulness in the diagnosis and therapy of disease. Owing to the multitude of publications by prominent investigators on each of the approximately 50 enzymes discussed in this review, it was impossible to cite a majority of them.

  4. Opening Minds: Using Language to Change Lives

    ERIC Educational Resources Information Center

    Johnston, Peter H.

    2012-01-01

    Sometimes a single word changes everything. In his groundbreaking book "Choice Words", Peter Johnston demonstrated how the things teachers say (and don't say) have surprising consequences for the literate lives of students. Now, in "Opening Minds: Using Language to Change Lives", Peter shows how the words teachers choose affect the worlds students…

  5. [Health effects of living habits].

    PubMed

    Vuori, Ilkka

    2015-01-01

    Single healthy living habits such as non-smoking and regular physical activity decrease the risk of common non-communicable diseases, unsuccessful aging and premature death to a small to moderate degree. Their cumulative effects are, however, large. Only a small minority of people adhere well to all healthy living habits or even the healthiest ones. Consequently, the population attributable fractions of major public health problems due to unhealthy lifestyles are large. Substantial improvement of public health calls for policies and programs to influence the root causes of the lifestyles in the multiple environments and systems where they are developed, maintained, and changed.

  6. Reviving red snapper.

    PubMed

    Estabrook, Barry

    2010-01-01

    Red snappers in the Gulf of Mexico once hovered on the brink of extinction, their population having dropped to 2 percent of what had historically swum in the Gulf. But thanks to a recently introduced plan that turns the conventional wisdom of fisheries management on its head, the picture has begun to change. Called Individual Fishing Quotas (IFQs), the new regulations, which give a guaranteed allotment of fish to each participant instead of applying industry-wide quotas, went into effect for Gulf of Mexico Red Snapper (Lutjanus campechanus) in early 2007. The results were immediate and so profound that the Gulf Fishery Management Council voted earlier this year to increase the annual limit on red snapper to nearly 7 million pounds from 5 million.

  7. Red-based cumulus.

    PubMed

    Gedzelman, Stanley David

    2015-02-01

    Observations and model simulations of cumulus clouds whose bases are tinted red when the Sun is well above the horizon are presented. Conditions for seeing red bases include (1) a red underlying surface (which may consist of dust clouds, as from haboobs) with high albedo, (2) small fractional cloud cover when the Sun is far enough below the zenith for direct sunlight to illuminate much of the surface directly below and around cloud base, (3) optically thick clouds so that the bases are dark, and (4) clouds with bases that are near enough to the observer to appear high in the sky so that the admixture of scattered light from the intervening atmosphere is minimized.

  8. Demonstration project cuts red tape

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    Results from a demonstration project aimed at cutting red tape in federal grants for basic research at universities are "very encouraging" so far, according to Don I. Phillips, executive director of the Government-University-Industry Research Roundtable. The roundtable is coordinating the experimental effort, with the participation of five major federal agencies as well as the Florida state university system and the University of Miami (a private institution in Coral Gables, Fla.).Under the project, special conditions apply to grants from the participating agencies to individual researchers at the participating universities: Investigators do not have to ask the agency's permission for changes in budget allocations, purchases of permanent equipment, or foreign travel. Grant money can be spent up to a year after the grant ends without a special request. Under this plan, researchers, with agency approval, can also ask to have their entire research program covered as a single administrative entity, rather than as several individual projects.

  9. Chemical toxicity of red cells.

    PubMed Central

    Piomelli, S

    1981-01-01

    Exposure to toxic chemicals may result in alterations of red cell function. In certain cases, the toxic effect requires a genetic predisposition and thus affects only a restricted number of individuals; in other instances, the toxic effect is exerted on the hematopoietic system of every person. Glucose-6-phosphate dehydrogenase deficiency is probably the most widespread genetic disorder. It is observed at highest frequency in populations from subtropical countries as a result of its selective advantage vis à vis falciparum malaria. The gene controlling this enzyme is located on the X-chromosome; thus, the defect is sex-linked. Individuals with a genetic defect of this enzyme are extremely susceptible to hemolysis, when exposed to oxidant drugs (such as certain antimalarials and sulfonamides) because of the inability of their red cells to regenerate NADPH. Lead poisoning result in profound effects on the process of heme synthesis. Among the steps most sensitive to lead toxicity are the enzyme delta-aminolevulinic acid dehydratase and the intramitochondrial step that leads to the incorporation of iron into protoporphyrin. By these mechanisms, in severe lead intoxication there is an accumulation of large amounts of delta-aminolevulinic acid (a compound with inherent neurotoxicity), and there are abnormalities of mitochondrial function in all cells of the body. Individuals living in an industrialized society are unavoidably exposed to some environmental lead. Recent evidence indicates that, even at levels of exposure which do not increase the blood lead level above values presently considered normal, abnormalities of heme synthesis are clearly detectable. PMID:7016524

  10. The IOC consensus statement: beyond the Female Athlete Triad--Relative Energy Deficiency in Sport (RED-S).

    PubMed

    Mountjoy, Margo; Sundgot-Borgen, Jorunn; Burke, Louise; Carter, Susan; Constantini, Naama; Lebrun, Constance; Meyer, Nanna; Sherman, Roberta; Steffen, Kathrin; Budgett, Richard; Ljungqvist, Arne

    2014-04-01

    Protecting the health of the athlete is a goal of the International Olympic Committee (IOC). The IOC convened an expert panel to update the 2005 IOC Consensus Statement on the Female Athlete Triad. This Consensus Statement replaces the previous and provides guidelines to guide risk assessment, treatment and return-to-play decisions. The IOC expert working group introduces a broader, more comprehensive term for the condition previously known as 'Female Athlete Triad'. The term 'Relative Energy Deficiency in Sport' (RED-S), points to the complexity involved and the fact that male athletes are also affected. The syndrome of RED-S refers to impaired physiological function including, but not limited to, metabolic rate, menstrual function, bone health, immunity, protein synthesis, cardiovascular health caused by relative energy deficiency. The cause of this syndrome is energy deficiency relative to the balance between dietary energy intake and energy expenditure required for health and activities of daily living, growth and sporting activities. Psychological consequences can either precede RED-S or be the result of RED-S. The clinical phenomenon is not a 'triad' of the three entities of energy availability, menstrual function and bone health, but rather a syndrome that affects many aspects of physiological function, health and athletic performance. This Consensus Statement also recommends practical clinical models for the management of affected athletes. The 'Sport Risk Assessment and Return to Play Model' categorises the syndrome into three groups and translates these classifications into clinical recommendations.

  11. The IOC consensus statement: beyond the Female Athlete Triad--Relative Energy Deficiency in Sport (RED-S).

    PubMed

    Mountjoy, Margo; Sundgot-Borgen, Jorunn; Burke, Louise; Carter, Susan; Constantini, Naama; Lebrun, Constance; Meyer, Nanna; Sherman, Roberta; Steffen, Kathrin; Budgett, Richard; Ljungqvist, Arne

    2014-04-01

    Protecting the health of the athlete is a goal of the International Olympic Committee (IOC). The IOC convened an expert panel to update the 2005 IOC Consensus Statement on the Female Athlete Triad. This Consensus Statement replaces the previous and provides guidelines to guide risk assessment, treatment and return-to-play decisions. The IOC expert working group introduces a broader, more comprehensive term for the condition previously known as 'Female Athlete Triad'. The term 'Relative Energy Deficiency in Sport' (RED-S), points to the complexity involved and the fact that male athletes are also affected. The syndrome of RED-S refers to impaired physiological function including, but not limited to, metabolic rate, menstrual function, bone health, immunity, protein synthesis, cardiovascular health caused by relative energy deficiency. The cause of this syndrome is energy deficiency relative to the balance between dietary energy intake and energy expenditure required for health and activities of daily living, growth and sporting activities. Psychological consequences can either precede RED-S or be the result of RED-S. The clinical phenomenon is not a 'triad' of the three entities of energy availability, menstrual function and bone health, but rather a syndrome that affects many aspects of physiological function, health and athletic performance. This Consensus Statement also recommends practical clinical models for the management of affected athletes. The 'Sport Risk Assessment and Return to Play Model' categorises the syndrome into three groups and translates these classifications into clinical recommendations. PMID:24620037

  12. Red giants: then and now

    NASA Astrophysics Data System (ADS)

    Faulkner, John

    Fred Hoyle's work on the structure and evolution of red giants, particularly his pathbreaking contribution with Martin Schwarzschild (Hoyle and Schwarzschild 1955), is both lauded and critically assessed. In his later lectures and work with students in the early 1960s, Hoyle presented more physical ways of understanding some of the approximations used, and results obtained, in that seminal paper. Although later ideas by other investigators will be touched upon, Hoyle's viewpoint - that low-mass red giants are essentially white dwarfs with a serious mass-storage problem - is still extremely fruitful. Over the years, I have further developed his method of attack. Relatively recently, I have been able to deepen and broaden the approach, finally extending the theory to provide a unifying treatment of the structure of low-mass stars from the main sequence though both the red-giant and horizontal-branch phases of evolution. Many aspects of these stars that had remained puzzling, even mysterious, for decades have now fallen into place, and some questions have been answered that were not even posed before. With low-mass red giants as the simplest example, this recent work emphasizes that stars, in general, may have at least two distinct but very important centres: (I) a geometrical centre, and (II) a separate nuclear centre, residing in a shell outside a zero-luminosity dense core for example. This two-centre perspective leads to an explicit, analytical, asymptotic theory of low-mass red-giant structure. It enables one to appreciate that the problem of understanding why such stars become red giants is one of anticipating a remarkable yet natural structural bifurcation that occurs in them. This bifurcation occurs because of a combination of known and understandable facts just summarized namely that, following central hydrogen exhaustion, a thin nuclear-burning shell does develop outside a more-or-less dense core. In the resulting theory, both ρsh/ρolinec and

  13. 'Vintage' Red Raspberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Vintage' is a new primocane-fruiting red raspberry (Rubus idaeus L.) from the U.S. Dept. of Agriculture–Agricultural Research Service (USDA–ARS) breeding program in Corvallis, OR released in cooperation with the Oregon State Agricultural Experiment Station and the Washington State University Agricu...

  14. Clover, Red (Trifolium pretense)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic modification of plants by the insertion of transgenes can be a powerful experimental approach to answer basic questions about gene product function. This technology can also be used to make improved crop varieties for use in the field. To apply this powerful tool to red clover, an important ...

  15. Red mud product development

    SciTech Connect

    Kirkpatrick, D.B.

    1996-10-01

    Kaiser Alumina and Chemical Co. impounds red mud, the byproduct of alumina production, behind levees. Kaiser recognizes that this action cannot be maintained indefinitely. Therefore, a project is in progress to produce useful products from red mud that increase the profitability of the Gramercy facility. Before products could be developed, an obstacle had to be overcome. The annual rainfall in South Louisiana prevents evaporative drying of the mud lakes. Innovative methods were applied to dry the lake mud. Two products have been developed. A daily landfill cover and an absorbant, which are marketed under the Cajunite{trademark} banner. Both products are currently being tested by potential customers at their sites. Environmental concerns were addressed during development. Extensive TCLP results show no metal leachate problems. All pilot tests and plant trials received LADEQ approval. Products that are under development include levee core, road base, fertilizer fillers and synthetic soils. State and Federal agencies are interested in using red mud to remediate coastal erosion. Kaiser is also pursuing the recovery of metals from red mud.

  16. Red Cross Swimming Update.

    ERIC Educational Resources Information Center

    Vlasich, Cynthia

    1989-01-01

    Six new aquatic courses, developed by the Red Cross, are described. They are: Infant and Preschool Aquatics, Longfellow's Whale Tales (classroom water safety lessons for K-Six), Basic Water Safety, Emergency Water Safety, Lifeguard Training, and Safety Training for Swim Coaches. (IAH)

  17. Red sea drillings.

    PubMed

    Ross, D A; Whitmarsh, R B; Ali, S A; Boudreaux, J E; Coleman, R; Fleisher, R L; Girdler, R; Manheim, F; Matter, A; Nigrini, C; Stoffers, P; Supko, P R

    1973-01-26

    Recent drilling in the Red Sea has shown that much of the basin is underlain by evaporites of a similar age to that of evaporites found in the Mediterranean Sea. These evaporites and their structural positions indicate that other brine areas are present-and, indeed, several others have been discovered. PMID:17843766

  18. Red sea drillings.

    PubMed

    Ross, D A; Whitmarsh, R B; Ali, S A; Boudreaux, J E; Coleman, R; Fleisher, R L; Girdler, R; Manheim, F; Matter, A; Nigrini, C; Stoffers, P; Supko, P R

    1973-01-26

    Recent drilling in the Red Sea has shown that much of the basin is underlain by evaporites of a similar age to that of evaporites found in the Mediterranean Sea. These evaporites and their structural positions indicate that other brine areas are present-and, indeed, several others have been discovered.

  19. Live Imaging of the Lung

    PubMed Central

    Looney, Mark R.; Bhattacharya, Jahar

    2015-01-01

    Live lung imaging has spanned the discovery of capillaries in the frog lung by Malpighi to the current use of single and multiphoton imaging of intravital and isolated perfused lung preparations incorporating fluorescent molecular probes and transgenic reporter mice. Along the way, much has been learned about the unique microcirculation of the lung, including immune cell migration and the mechanisms by which cells at the alveolar-capillary interface communicate with each other. In this review, we highlight live lung imaging techniques as applied to the role of mitochondria in lung immunity, mechanisms of signal transduction in lung compartments, studies on the composition of alveolar wall liquid, and neutrophil and platelet trafficking in the lung under homeostatic and inflammatory conditions. New applications of live lung imaging and the limitations of current techniques are discussed. PMID:24245941

  20. Macroparasite community of the Eurasian red squirrel (Sciurus vulgaris): poor species richness and diversity.

    PubMed

    Romeo, Claudia; Pisanu, Benoît; Ferrari, Nicola; Basset, Franck; Tillon, Laurent; Wauters, Lucas A; Martinoli, Adriano; Saino, Nicola; Chapuis, Jean-Louis

    2013-10-01

    The Eurasian red squirrel (Sciurus vulgaris) is the only naturally occurring tree squirrel throughout its range. We aim at improving current knowledge on its macroparasite fauna, expecting that it will have a poor parasite diversity because in species that have no sympatric congeners parasite richness should be lower than in hosts sharing their range with several closely related species, where host-switching events and lateral transmission are promoted. We examined gastro-intestinal helminth and ectoparasite communities (excluding mites) of, respectively, 147 and 311 red squirrel roadkills collected in four biogeographic regions in Italy and France. As expected, the macroparasite fauna was poor: we found five species of nematodes and some unidentified cestodes, three fleas, two sucking lice and two hard ticks. The helminth community was dominated by a single species, the oxyurid Trypanoxyuris (Rodentoxyuris) sciuri (prevalence, 87%; mean abundance, 373 ± 65 worms/host). Its abundance varied among seasons and biogeographic regions and increased with body mass in male hosts while decreased in females. The most prevalent ectoparasites were the flea Ceratophyllus (Monopsyllus) sciurorum (28%), whose presence was affected by season, and the generalist tick Ixodes (Ixodes) ricinus that was found only in France (34%). All the other helminths and arthropod species were rare, with prevalence below 10%. However, the first record of Strongyloides robustus, a common nematode of North American Eastern grey squirrels (S. carolinensis), in two red squirrels living in areas where this alien species co-inhabits, deserves further attention, since low parasite richness could result in native red squirrels being particularly vulnerable to parasite spillover.

  1. Transcription Dynamics in Living Cells.

    PubMed

    Lenstra, Tineke L; Rodriguez, Joseph; Chen, Huimin; Larson, Daniel R

    2016-07-01

    The transcription cycle can be roughly divided into three stages: initiation, elongation, and termination. Understanding the molecular events that regulate all these stages requires a dynamic view of the underlying processes. The development of techniques to visualize and quantify transcription in single living cells has been essential in revealing the transcription kinetics. They have revealed that (a) transcription is heterogeneous between cells and (b) transcription can be discontinuous within a cell. In this review, we discuss the progress in our quantitative understanding of transcription dynamics in living cells, focusing on all parts of the transcription cycle. We present the techniques allowing for single-cell transcription measurements, review evidence from different organisms, and discuss how these experiments have broadened our mechanistic understanding of transcription regulation.

  2. Holographic analysis on deformation and restoration of malaria-infected red blood cells by antimalarial drug

    NASA Astrophysics Data System (ADS)

    Byeon, Hyeokjun; Ha, Young-Ran; Lee, Sang Joon

    2015-11-01

    Malaria parasites induce morphological, biochemical, and mechanical changes in red blood cells (RBCs). Mechanical variations are closely related to the deformability of individual RBCs. The deformation of various RBCs, including healthy and malaria-infected RBCs (iRBCs), can be directly observed through quantitative phase imaging (QPI). The effects of chloroquine treatment on the mechanical property variation of iRBCs were investigated using time-resolved holographic QPI of single live cells on a millisecond time scale. The deformabilities of healthy RBCs, iRBCs, and drug-treated iRBCs were compared, and the effect of chloroquine on iRBC restoration was experimentally examined. The present results are beneficial to elucidate the dynamic characteristics of iRBCs and the effect of the antimalarial drug on iRBCs.

  3. Synthetic biology as red herring.

    PubMed

    Preston, Beth

    2013-12-01

    It has become commonplace to say that with the advent of technologies like synthetic biology the line between artifacts and living organisms, policed by metaphysicians since antiquity, is beginning to blur. But that line began to blur 10,000 years ago when plants and animals were first domesticated; and has been thoroughly blurred at least since agriculture became the dominant human subsistence pattern many millennia ago. Synthetic biology is ultimately only a late and unexceptional offshoot of this prehistoric development. From this perspective, then, synthetic biology is a red herring, distracting us from more thorough philosophical consideration of the most truly revolutionary human practice-agriculture. In the first section of this paper I will make this case with regard to ontology, arguing that synthetic biology crosses no ontological lines that were not crossed already in the Neolithic. In the second section I will construct a parallel case with regard to cognition, arguing that synthetic biology as biological engineering represents no cognitive advance over what was required for domestication and the new agricultural subsistence pattern it grounds. In the final section I will make the case with regard to human existence, arguing that synthetic biology, even if wildly successful, is not in a position to cause significant existential change in what it is to be human over and above the massive existential change caused by the transition to agriculture. I conclude that a longer historical perspective casts new light on some important issues in philosophy of technology and environmental philosophy.

  4. Red spruce dynamics in an old southern Appalachian forest

    USGS Publications Warehouse

    Busing, R.T.

    2004-01-01

    By the late 1980s the composition and structure of forest stands in the southern Appalachian spruce-fir zone were altered by insect infestations to Fraser fir. The response of red spruce, the sole remaining coniferous forest dominant, to this disturbance was followed over twenty years (1983-2003) in an old spruce-fir forest at Mt. Collins, Great Smoky Mountains National Park. Although diameter growth of canopy red spruce (>30 cm dbh) at six plot sites was considerable (mean 10-yr increment 2.1 cm; 1993-2003), red spruce mortality increased sharply (mean 4% yr-1; 1993-2003). Wind-related mortality of canopy red spruce was substantial after the loss of Fraser fir from the canopy circa 1985 (>70% of the dead spruce had broken or uprooted boles; 1983-2003). Wind damage to red spruce was observed at most plot sites, but it was most pronounced on exposed topographic positions, where canopy gap expansion was extensive. The elevated mortality of red spruce at Mt. Collins was not associated with reduced diameter growth. Altered canopy structure has left large red spruce vulnerable to high winds. With the loss of canopy fir and the subsequent increase in mortality of canopy spruce, total live basal area has declined to about half of its pre-disturbance level.

  5. Registration of 'Red Ruby' Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red Ruby’ soft red winter wheat (Triticum aestivum L.) was developed by the Michigan Agricultural Experiment Station and released in 2007 via an exclusive licensing agreement through Michigan State University (MSU) Technologies. Red Ruby was selected from the cross Pioneer ‘2552’/Pioneer ‘2737W’ ma...

  6. Lipopolysaccharide induced acute red eye and corneal ulcers.

    PubMed

    Schultz, C L; Morck, D W; McKay, S G; Olson, M E; Buret, A

    1997-01-01

    Using a new animal model, the aims of this study were to assess the role played by purified lipopolysaccharide (LPS) and neutrophils in the pathogenesis of acute red-eye reactions (ARE) and corneal ulcers. In addition, IL-1 alpha was assessed for its implications in the formation of corneal ulcers. Following corneal abrasion, eyes of rabbits underwent single or double exposures to various doses of LPS from Pseudomonas aeruginosa or Serratia marcescens. This protocol induced ARE symptoms, and their severity depended on the dosage, number of LPS exposures, and type of LPS used (LPS from S. marcescens showing highest virulence). Corneal ulcers were induced by delivering a high dose of Serratia LPS (100 micrograms) followed by a low dose (10 micrograms). Histopathological examination revealed that both ARE and corneal ulceration were associated with prominent neutrophil infiltration. In addition, many lymphocytes and other monocytic cells infiltrated ulcerated ocular tissue. Tear fluids obtained from ulcerated eyes contained high concentrations of a protein recognized by anti-rabbit IL-1 alpha antibodies as demonstrated by immunoblotting studies. The results indicate that LPS can induce ARE and corneal ulceration in the absence of any live bacteria. Moreover, the findings implicate the accumulation of neutrophils and IL-1 alpha-related proteins in the pathogenesis of ARE and corneal ulcers.

  7. A spring aerial census of red foxes in North Dakota

    USGS Publications Warehouse

    Sargeant, A.B.; Pfeifer, W.K.; Allen, S.H.

    1975-01-01

    Systematic aerial searches were flown on transects to locate adult red foxes (Vulpes vulpes), pups, and rearing dens on 559.4 km2 (six townships) in eastern North Dakota during mid-May and mid-June each year from 1969 through 1973 and during mid-April 1969 and early May 1970. The combined sightings of foxes and fox dens from the mid-May and mid-June searches were used to identify individual fox families. The number of fox families was used as the measurement of density. Dens, highly visible during the mid-May searches, were the most reliable family indicator; 84 percent of 270 families identified during the study were represented by dens. Adult foxes second in importance, were most observable during the mid-May searches when 20 to 35 percent of those estimated to be available were sighted. Adult sightings during other search periods ranged from 4 to 17 percent of those available. Pup sightings were the most variable family indicator, but they led to the discovery of some dens. Sources of error for which adjustment factors were determined are: den moves exceeding criterion established for the spacing of dens in a single family, overestimation of the number of fox families living near township boundaries, and the percentage of fox families overlooked during the aerial searches. These adjustment factors appeared to be largely compensatory.

  8. Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus.

    PubMed

    Lew, Matthew D; Lee, Steven F; Ptacin, Jerod L; Lee, Marissa K; Twieg, Robert J; Shapiro, Lucy; Moerner, W E

    2011-11-15

    Recently, single-molecule imaging and photocontrol have enabled superresolution optical microscopy of cellular structures beyond Abbe's diffraction limit, extending the frontier of noninvasive imaging of structures within living cells. However, live-cell superresolution imaging has been challenged by the need to image three-dimensional (3D) structures relative to their biological context, such as the cellular membrane. We have developed a technique, termed superresolution by power-dependent active intermittency and points accumulation for imaging in nanoscale topography (SPRAIPAINT) that combines imaging of intracellular enhanced YFP (eYFP) fusions (SPRAI) with stochastic localization of the cell surface (PAINT) to image two different fluorophores sequentially with only one laser. Simple light-induced blinking of eYFP and collisional flux onto the cell surface by Nile red are used to achieve single-molecule localizations, without any antibody labeling, cell membrane permeabilization, or thiol-oxygen scavenger systems required. Here we demonstrate live-cell 3D superresolution imaging of Crescentin-eYFP, a cytoskeletal fluorescent protein fusion, colocalized with the surface of the bacterium Caulobacter crescentus using a double-helix point spread function microscope. Three-dimensional colocalization of intracellular protein structures and the cell surface with superresolution optical microscopy opens the door for the analysis of protein interactions in living cells with excellent precision (20-40 nm in 3D) over a large field of view (12 12 μm).

  9. Great Red Spot (GRS)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A huge permanent anticyclone in Jupiter's southern hemisphere, visible as a reddish oval at just over 20 °S. The earliest unequivocal observation was by Heinrich Schwabe in 1831 (the often-quoted sighting by Robert Hooke in 1664 now seems to have been of a similar but different spot). The GRS became a striking feature around 1880, when it developed a deep red coloration. It was also prominent in ...

  10. Living with Sarcoidosis

    MedlinePlus

    ... page from the NHLBI on Twitter. Living With Sarcoidosis Sarcoidosis has no cure, but you can take ... Content: NEXT >> Featured Video Living With and Managing Sarcoidosis 05/18/2011 This video—presented by the ...

  11. Administration for Community Living

    MedlinePlus

    ... Information for Current Grantees About ACL Organization Why Community Living? Authorizing Statutes Budget Mandatory Grant Allocations Strategic ... Final Rule Get ACL Updates OAA Reauthorization Why Community Living? FEATURES #InclusionWorks IL Final Rule Get ACL ...

  12. Genetic Map-Based Location of the Red Clover (Trifolium pratense L.) Gametophytic Self-incompatibility Locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red clover is a hermaphadidic allogamous diploid (2n = 2x = 14) with a homomorphic gametophytic self-incompatibility (GSI) system red clover (Trifolium pratense L.). Red clover GSI has long been studied and it is thought that the genetic control of GSI constitutes a single locus. Although GSI gene...

  13. Living With Lupus

    MedlinePlus

    ... Low blood count Depression, trouble thinking, and/or memory problems. Other signs are mouth sores, unexplained seizures ( ... 8, 10/23, 11/15 Red rash or color change Painful or swollen joints Unexplained fever Chest ...

  14. Exact law of live nature

    NASA Astrophysics Data System (ADS)

    Azbel, Mark Ya.

    2005-07-01

    Exact law of mortality dynamics in changing populations and environment is derived. It includes no explicit characteristics of animal- environment interactions (metabolism etc) which are a must for life; it is universal for all animals, from single cell yeast to humans, with their drastically different biology, evolutionary history, and complexity; it is rapidly (within few percent of life span) reversible. Such law is unique for live systems with their homeostatic self-adjustment to environment (cf. thermodynamics of liquids and glasses). The law which is valid for all live, and only live, systems is their specific natural law. Mortality is an instrument of natural selection and biological diversity. Its law, which is preserved in evolution of all species, is a conservation law of mortality, selection, evolution, biology. The law implies new kind of intrinsic mortality and adaptation which dominate in evolutionary unprecedented protected populations and, in contrast to species specific natural selection, proceed via universal stepwise rungs and reduce to universal cellular mechanism. The law demonstrates that intrinsic mortality and at least certain aspects of aging are disposable evolutionary byproducts, and directed genetic and/or biological changes may yield healthy and vital Methuselah lifespan. This is consistent with experiments. Universality implies that single cell yeast may provide a master key to the cellular mechanism of universal mortality, aging, selection, evolution, and its regulation in all animals. One may look for its manifestations in animal cells also, e.g., in their replicative senescence and cancer. Evolutionary origin and genetic nature of universality are suggested.

  15. Red Spot Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This brief movie shows counterclockwise atmospheric motion around Jupiter's Great Red Spot. The clip was made from blue-filter images taken with the narrow-angle camera on NASA's Cassini spacecraft during seven separate rotations of Jupiter between Oct. 1 and Oct. 5, 2000.

    The clip also shows the eastward and westward motion of the zonal jets, seen as the horizontal stripes flowing in opposite directions. The zonal jets circle the planet. As far as can be determined from both Earth-based and spacecraft measurements, the positions and speeds of the jets have not changed for 100 years. Since Jupiter is a fluid planet without a solid boundary, the jet speeds are measured relative to Jupiter's magnetic field, which rotates, wobbling like a top because of its tilt, every 9 hours 55.5 minutes. The movie shows motions in the magnetic reference frame, so winds to the west correspond to features that are rotating a little slower than the magnetic field, and eastward winds correspond to features rotating a little faster.

    Because the Red Spot is in the southern hemisphere, the direction of motion indicates it is a high-pressure center. Small bright clouds appear suddenly to the west of the Great Red Spot. Scientists suspect these small white features are lightning storms. The storms eventually merge with the Red Spot and surrounding jets, and may be the main energy source for the large-scale features.

    The smallest features in the movie are about 500 kilometers (about 300 miles) across. The spacing of the movie frames in time is not uniform; some consecutive images are separated by two Jupiter rotations, and some by one. The images have been re-projected using a simple cylindrical map projection. They show an area from 50 degrees north of Jupiter's equator to 50 degrees south, extending 100 degrees east-west, about one quarter of Jupiter's circumference.

    Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet

  16. Fire ant-detecting canines: a complementary method in detecting red imported fire ants.

    PubMed

    Lin, Hui-Min; Chi, Wei-Lien; Lin, Chung-Chi; Tseng, Yu-Ching; Chen, Wang-Ting; Kung, Yu-Ling; Lien, Yi-Yang; Chen, Yang-Yuan

    2011-02-01

    In this investigation, detection dogs are trained and used in identifying red imported fire ants, Solenopsis invicta Buren, and their nests. The methodology could assist in reducing the frequency and scope of chemical treatments for red imported fire ant management and thus reduce labor costs and chemical use as well as improve control and quarantine efficiency. Three dogs previously trained for customs quarantine were retrained to detect the scents of red imported fire ants. After passing tests involving different numbers of live red imported fire ants and three other ant species--Crematogaster rogenhoferi Mayr, Paratrechina longicornis Latreille, and Pheidole megacephala F.--placed in containers, ajoint field survey for red imported fire ant nests by detection dogs and bait traps was conducted to demonstrate their use as a supplement to conventional detection methods. The most significant findings in this report are (1) with 10 or more red imported fire ants in scent containers, the dogs had >98% chance in tracing the red imported fire ant. Upon the introduction of other ant species, the dogs still achieved on average, a 93% correct red imported fire ant indication rate. Moreover, the dogs demonstrated great competence in pinpointing emerging and smaller red imported fire ant nests in red imported fire ant-infested areas that had been previously confirmed by bait trap stations. (2) Along with the bait trap method, we also discovered that approximately 90% of red imported fire ants foraged within a distance of 14 m away from their nests. The results prove detection dogs to be most effective for red imported fire ant control in areas that have been previously treated with pesticides and therefore containing a low density of remaining red imported fire ant nests. Furthermore, as a complement to other red imported fire ant monitoring methods, this strategy will significantly increase the efficacy of red imported fire ant control in cases of individual mount treatment.

  17. Construction and characterization of a red-emitting luciferase

    NASA Astrophysics Data System (ADS)

    Eames, Brian F.; Benaron, David A.; Stevenson, David K.; Contag, Christopher H.

    1999-07-01

    Red light is transmitted through live tissue more efficiently than other wavelengths of visible light, thus by red-shifting the emission of bioluminescent reporters, we may enhance their utility for in vivo monitoring of biological processes. Codon changes at positions that may shift the yellow-green emission to red, based on studies of a related luciferase, were introduced into a variant of the North American firefly luciferase. Clones containing the desired mutation were selected based on the introduction of unique restriction enzyme sites and transfected into NIH 3T3 cells. Expression levels were evaluated using an intensified charge coupled device camera. Upon spectral analysis, all mutant luciferases demonstrated red-orange emission. Two emission peaks were detected in each spectrum, each clone with different peak heights at 560 nm and 610 nm. Sequence analyses of the compete coding region of several clones confirmed the presence of the target mutations, although sequence variation was observed at several secondary sites, likely resulting from the infidelity of Taq polymerase used in the mutagenesis protocol. A clone that demonstrated a strong 610 nm peak with a minimum shoulder at 560 nm was selected for use in animals. In summary, a red-shifted mutant of a well-characterized luciferase reporter gene was generated. Red light from this enzyme may both penetrate mammalian tissues to a greater extent and provide a tool for multicolor biological assays.

  18. The red ear syndrome

    PubMed Central

    2013-01-01

    Red Ear Syndrome (RES) is a very rare disorder, with approximately 100 published cases in the medical literature. Red ear (RE) episodes are characterised by unilateral or bilateral attacks of paroxysmal burning sensations and reddening of the external ear. The duration of these episodes ranges from a few seconds to several hours. The attacks occur with a frequency ranging from several a day to a few per year. Episodes can occur spontaneously or be triggered, most frequently by rubbing or touching the ear, heat or cold, chewing, brushing of the hair, neck movements or exertion. Early-onset idiopathic RES seems to be associated with migraine, whereas late-onset idiopathic forms have been reported in association with trigeminal autonomic cephalalgias (TACs). Secondary forms of RES occur with upper cervical spine disorders or temporo-mandibular joint dysfunction. RES is regarded refractory to medical treatments, although some migraine preventative treatments have shown moderate benefit mainly in patients with migraine-related attacks. The pathophysiology of RES is still unclear but several hypotheses involving peripheral or central nervous system mechanisms have been proposed. PMID:24093332

  19. Red - Take a Closer Look

    PubMed Central

    Buechner, Vanessa L.; Maier, Markus A.; Lichtenfeld, Stephanie; Schwarz, Sascha

    2014-01-01

    Color research has shown that red is associated with avoidance of threat (e.g., failure) or approach of reward (e.g., mating) depending on the context in which it is perceived. In the present study we explored one central cognitive process that might be involved in the context dependency of red associations. According to our theory, red is supposed to highlight the relevance (importance) of a goal-related stimulus and correspondingly intensifies the perceivers’ attentional reaction to it. Angry and happy human compared to non-human facial expressions were used as goal-relevant stimuli. The data indicate that the color red leads to enhanced attentional engagement to angry and happy human facial expressions (compared to neutral ones) - the use of non-human facial expressions does not bias attention. The results are discussed with regard to the idea that red induced attentional biases might explain the red-context effects on motivation. PMID:25254380

  20. Protein import and the origin of red complex plastids.

    PubMed

    Gould, Sven B; Maier, Uwe-G; Martin, William F

    2015-06-15

    The number and nature of endosymbioses involving red algal endosymbionts are debated. Gene phylogenies have become the most popular tool to untangle this issue, but they deliver conflicting results. As gene and lineage sampling has increased, so have both the number of conflicting trees and the number of suggestions in the literature for multiple tertiary, and even quaternary, symbioses that might reconcile the tree conflicts. Independent lines of evidence that can address the issue are needed. Here we summarize the mechanism and machinery of protein import into complex red plastids. The process involves protein translocation machinery, known as SELMA, that arose once in evolution, that facilitates protein import across the second outermost of the four plastid membranes, and that is always targeted specifically to that membrane, regardless of where it is encoded today. It is widely accepted that the unity of protein import across the two membranes of primary plastids is strong evidence for their single cyanobacterial origin. Similarly, the unity of SELMA-dependent protein import across the second outermost plastid membrane constitutes strong evidence for the existence of a single red secondary endosymbiotic event at the common origin of all red complex plastids. We furthermore propose that the two outer membranes of red complex plastids are derived from host endoplasmic reticulum in the initial red secondary endosymbiotic event. PMID:26079086