Science.gov

Sample records for live-attenuated simian-human immunodeficiency

  1. A genetically engineered live-attenuated simian-human immunodeficiency virus that co-expresses the RANTES gene improves the magnitude of cellular immunity in rhesus macaques

    SciTech Connect

    Shimizu, Yuya; Inaba, Katsuhisa; Kaneyasu, Kentaro; Ibuki, Kentaro; Himeno, Ai; Okoba, Masashi; Goto, Yoshitaka; Hayami, Masanori; Miura, Tomoyuki; Haga, Takeshi . E-mail: a0d518u@cc.miyazaki-u.ac.jp

    2007-04-25

    Regulated-on-activation-normal-T-cell-expressed-and-secreted (RANTES), a CC-chemokine, enhances antigen-specific T helper (Th) type-1 responses against HIV-1. To evaluate the adjuvant effects of RANTES against HIV vaccine candidate in SHIV-macaque models, we genetically engineered a live-attenuated SHIV to express the RANTES gene (SHIV-RANTES) and characterized the virus's properties in vivo. After the vaccination, the plasma viral loads were same in the SHIV-RANTES-inoculated monkeys and the parental nef-deleted SHIV (SHIV-NI)-inoculated monkeys. SHIV-RANTES provided some immunity in monkeys by remarkably increasing the antigen-specific CD4{sup +} Th cell-proliferative response and by inducing an antigen-specific IFN-{gamma} ELISpot response. The magnitude of the immunity in SHIV-RANTES-immunized animals, however, failed to afford greater protection against a heterologous pathogenic SHIV (SHIV-C2/1) challenge compared to control SHIV-NI-immunized animals. SHIV-RANTES immunized monkeys, elicited robust cellular CD4{sup +} Th responses and IFN-{gamma} ELISpot responses after SHIV-C2/1 challenge. These findings suggest that the chemokine RANTES can augment vaccine-elicited, HIV-specific CD4{sup +} T cell responses.

  2. BST-2 Mediated Restriction of Simian-Human Immunodeficiency Virus

    PubMed Central

    Ruiz, Autumn; Lau, David; Mitchell, Richard S.; Hill, M. Sarah; Schmitt, Kimberly; Guatelli, John C.; Stephens, Edward B.

    2014-01-01

    Pathogenic simian-human immunodeficiency viruses (SHIV)contain HIV-1 Vpu and SIV Nef, both shown to counteract BST-2 (HM1.24; CD317; tetherin) inhibition of virus release in a species-specific manner. We show that human and pig-tailed BST-2 (ptBST-2) restrict SHIV. We found that sequential “humanize” of the transmembrane domain (TMD) of the pig-tailed BST-2 (ptBST-2) protein resulted in a fluctuation in sensitivity to HIV-1 Vpu. Our results also show that the length of the TMD in human and ptBST-2 proteins is important for BST-2 restriction and susceptibility to Vpu. Taken together, our results emphasize the importance of tertiary structure in BST-2 antagonism and suggests that the HIV-1 Vpu transmembrane domain may have additional functions in vivo unrelated to BST-2 antagonism. PMID:20708210

  3. BST-2 mediated restriction of simian-human immunodeficiency virus.

    PubMed

    Ruiz, Autumn; Lau, David; Mitchell, Richard S; Hill, M Sarah; Schmitt, Kimberly; Guatelli, John C; Stephens, Edward B

    2010-10-25

    Pathogenic simian-human immunodeficiency viruses (SHIV) contain HIV-1 Vpu and SIV Nef, both shown to counteract BST-2 (HM1.24; CD317; tetherin) inhibition of virus release in a species-specific manner. We show that human and pig-tailed BST-2 (ptBST-2) restrict SHIV. We found that sequential "humanization" of the transmembrane domain (TMD) of the pig-tailed BST-2 (ptBST-2) protein resulted in a fluctuation in sensitivity to HIV-1 Vpu. Our results also show that the length of the TMD in human and ptBST-2 proteins is important for BST-2 restriction and susceptibility to Vpu. Taken together, our results emphasize the importance of tertiary structure in BST-2 antagonism and suggests that the HIV-1 Vpu transmembrane domain may have additional functions in vivo unrelated to BST-2 antagonism.

  4. Persistent infection of macaques with simian-human immunodeficiency viruses.

    PubMed Central

    Li, J T; Halloran, M; Lord, C I; Watson, A; Ranchalis, J; Fung, M; Letvin, N L; Sodroski, J G

    1995-01-01

    Chimeric simian-human immunodeficiency viruses (SHIV) containing the human immunodeficiency virus type 1 (HIV-1) tat, rev, env, and, in some cases, vpu genes were inoculated into eight cynomolgus monkeys. Viruses could be consistently recovered from the CD8-depleted peripheral blood lymphocytes of all eight animals for at least 2 months. After this time, virus isolation varied among the animals, with viruses continuing to be isolated from some animals beyond 600 days after inoculation. The level of viral RNA in plasma during acute infection and the frequency of virus isolation after the initial 2-month period were higher for the Vpu-positive viruses. All of the animals remained clinically healthy, and the absolute numbers of CD4-positive lymphocytes were stable. Antibodies capable of neutralizing HIV-1 were generated at high titers in animals exhibiting the greatest consistency of virus isolation. Strain-specific HIV-1-neutralizing antibodies were initially elicited, and then more broadly neutralizing antibodies were elicited. env sequences from two viruses isolated more than a year after infection were analyzed. In the Vpu-negative SHIV, for which virus loads were lower, a small amount of env variation, which did not correspond to that found in natural HIV-1 variants, was observed. By contrast, in the Vpu-positive virus, which was consistently isolated from the host animal, extensive variation of the envelope glycoproteins in the defined variable gp120 regions was observed. Escape from neutralization by CD4 binding site monoclonal antibodies was observed for the viruses with the latter envelope glycoproteins, and the mechanism of escape appears to involve decreased binding of the antibody to the monomeric gp120 glycoproteins. The consistency with which SHIV infection of cynomolgus monkeys is initiated and the similarities in the neutralizing antibody response to SHIV and HIV-1 support the utility of this model system for the study of HIV-1 prophylaxis. PMID

  5. C5A Protects Macaques from Vaginal Simian-Human Immunodeficiency Virus Challenge.

    PubMed

    Veazey, Ronald S; Chatterji, Udayan; Bobardt, Michael; Russell-Lodrigue, Kasi E; Li, Jian; Wang, Xiaolei; Gallay, Philippe A

    2015-11-09

    A safe and effective vaginal microbicide could decrease human immunodeficiency virus (HIV) transmission in women. Here, we evaluated the safety and microbicidal efficacy of a short amphipathic peptide, C5A, in a rhesus macaque model. We found that a vaginal application of C5A protects 89% of the macaques from a simian-human immunodeficiency virus (SHIV-162P3) challenge. We observed no signs of lesions or inflammation in animals vaginally treated with repeated C5A applications. With its noncellular cytotoxic activity and rare mechanism of action, C5A represents an attractive microbicidal candidate.

  6. Autologous Stem Cell Transplantation Disrupts Adaptive Immune Responses during Rebound Simian/Human Immunodeficiency Virus Viremia.

    PubMed

    Reeves, Daniel B; Peterson, Christopher W; Kiem, Hans-Peter; Schiffer, Joshua T

    2017-07-01

    Primary HIV-1 infection induces a virus-specific adaptive/cytolytic immune response that impacts the plasma viral load set point and the rate of progression to AIDS. Combination antiretroviral therapy (cART) suppresses plasma viremia to undetectable levels that rebound upon cART treatment interruption. Following cART withdrawal, the memory component of the virus-specific adaptive immune response may improve viral control compared to primary infection. Here, using primary infection and treatment interruption data from macaques infected with simian/human immunodeficiency virus (SHIV), we observe a lower peak viral load but an unchanged viral set point during viral rebound. The addition of an autologous stem cell transplant before cART withdrawal alters viral dynamics: we found a higher rebound set point but similar peak viral loads compared to the primary infection. Mathematical modeling of the data that accounts for fundamental immune parameters achieves excellent fit to heterogeneous viral loads. Analysis of model output suggests that the rapid memory immune response following treatment interruption does not ultimately lead to better viral containment. Transplantation decreases the durability of the adaptive immune response following cART withdrawal and viral rebound. Our model's results highlight the impact of the endogenous adaptive immune response during primary SHIV infection. Moreover, because we capture adaptive immune memory and the impact of transplantation, this model will provide insight into further studies of cure strategies inspired by the Berlin patient.IMPORTANCE HIV patients who interrupt combination antiretroviral therapy (cART) eventually experience viral rebound, the return of viral loads to pretreatment levels. However, the "Berlin patient" remained free of HIV rebound over a decade after stopping cART. His cure is attributed to leukemia treatment that included an HIV-resistant stem cell transplant. Inspired by this case, we studied the impact

  7. A noninfectious simian/human immunodeficiency virus DNA vaccine that protects macaques against AIDS.

    PubMed

    Singh, Dinesh K; Liu, Zhenqian; Sheffer, Darlene; Mackay, Glenn A; Smith, Marilyn; Dhillon, Sukhbir; Hegde, Ramakrishna; Jia, Fenglan; Adany, Istvan; Narayan, Opendra

    2005-03-01

    Simian/human immunodeficiency virus SHIV(KU2) replicates with extremely high titers in macaques. In order to determine whether the DNA of the viral genome could be used as a vaccine if the DNA were rendered noninfectious, we deleted the reverse transcriptase gene from SHIVKU2 and inserted this DNA (DeltartSHIVKU2) into a plasmid that was then used to test gene expression and immunogenicity. Transfection of Jurkat and human embryonic kidney epithelial (HEK 293) cells with the DNA resulted in production of all of the major viral proteins and their precursors and transient export of a large quantity of the Gag p27 into the supernatant fluid. As expected, no infectious virus was produced in these cultures. Four macaques were injected intradermally with 2 mg of the DNA at 0, 8, and 18 weeks. The animals developed neutralizing antibodies and low enzyme-linked immunospot assay (E-SPOT) titers against SHIVKU2. These four animals and two unvaccinated control animals were then challenged with heterologous SHIV89.6P administered into their rectums. The two control animals developed viral RNA titers exceeding 10(6) copies/ml of plasma, and these titers were accompanied by the loss of CD4+ T cells by 2 weeks after challenge. The two control animals died at weeks 8 and 16, respectively. All four of the immunized animals became infected with the challenge virus but developed lower titers of viral RNA in plasma than the control animals, and the titers decreased over time in three of the four macaques. The fourth animal remained viremic and died at week 47. Whereas the control animals failed to develop E-SPOT responses, all four of the immunized animals developed anamnestic E-SPOT responses after challenge. The animal that died developed the highest E-SPOT response and was the only one that produced neutralizing antibodies against the challenge virus. These results established that noninfectious DNA of pathogenic SHIV could be used as a vaccine to prevent AIDS, even though the

  8. With minimal systemic T-cell expansion, CD8+ T Cells mediate protection of rhesus macaques immunized with attenuated simian-human immunodeficiency virus SHIV89.6 from vaginal challenge with simian immunodeficiency virus.

    PubMed

    Genescà, Meritxell; Skinner, Pamela J; Hong, Jung Joo; Li, Jun; Lu, Ding; McChesney, Michael B; Miller, Christopher J

    2008-11-01

    The presence, at the time of challenge, of antiviral effector T cells in the vaginal mucosa of female rhesus macaques immunized with live-attenuated simian-human immunodeficiency virus 89.6 (SHIV89.6) is associated with consistent and reproducible protection from pathogenic simian immunodeficiency virus (SIV) vaginal challenge (18). Here, we definitively demonstrate the protective role of the SIV-specific CD8(+) T-cell response in SHIV-immunized monkeys by CD8(+) lymphocyte depletion, an intervention that abrogated SHIV-mediated control of challenge virus replication and largely eliminated the SIV-specific T-cell responses in blood, lymph nodes, and genital mucosa. While in the T-cell-intact SHIV-immunized animals, polyfunctional and degranulating SIV-specific CD8(+) T cells were present in the genital tract and lymphoid tissues from the day of challenge until day 14 postchallenge, strikingly, expansion of SIV-specific CD8(+) T cells in the immunized monkeys was minimal and limited to the vagina. Thus, protection from uncontrolled SIV replication in animals immunized with attenuated SHIV89.6 is primarily mediated by CD8(+) T cells that do not undergo dramatic systemic expansion after SIV challenge. These findings demonstrate that despite, and perhaps because of, minimal systemic expansion of T cells at the time of challenge, a stable population of effector-cytotoxic CD8(+) T cells can provide significant protection from vaginal SIV challenge.

  9. Infection of monkeys by simian-human immunodeficiency viruses with transmitted/founder clade C HIV-1 envelopes.

    PubMed

    Asmal, Mohammed; Luedemann, Corinne; Lavine, Christy L; Mach, Linh V; Balachandran, Harikrishnan; Brinkley, Christie; Denny, Thomas N; Lewis, Mark G; Anderson, Hanne; Pal, Ranajit; Sok, Devin; Le, Khoa; Pauthner, Matthias; Hahn, Beatrice H; Shaw, George M; Seaman, Michael S; Letvin, Norman L; Burton, Dennis R; Sodroski, Joseph G; Haynes, Barton F; Santra, Sampa

    2015-01-15

    Simian-human immunodeficiency viruses (SHIVs) that mirror natural transmitted/founder (T/F) viruses in man are needed for evaluation of HIV-1 vaccine candidates in nonhuman primates. Currently available SHIVs contain HIV-1 env genes from chronically-infected individuals and do not reflect the characteristics of biologically relevant HIV-1 strains that mediate human transmission. We chose to develop clade C SHIVs, as clade C is the major infecting subtype of HIV-1 in the world. We constructed 10 clade C SHIVs expressing Env proteins from T/F viruses. Three of these ten clade C SHIVs (SHIV KB9 C3, SHIV KB9 C4 and SHIV KB9 C5) replicated in naïve rhesus monkeys. These three SHIVs are mucosally transmissible and are neutralized by sCD4 and several HIV-1 broadly neutralizing antibodies. However, like natural T/F viruses, they exhibit low Env reactivity and a Tier 2 neutralization sensitivity. Of note, none of the clade C T/F SHIVs elicited detectable autologous neutralizing antibodies in the infected monkeys, even though antibodies that neutralized a heterologous Tier 1 HIV-1 were generated. Challenge with these three new clade C SHIVs will provide biologically relevant tests for vaccine protection in rhesus macaques.

  10. Infection of Monkeys by Simian-human Immunodeficiency Viruses with Transmitted/ founder Clade C HIV-1 Envelopes

    PubMed Central

    Asmal, Mohammed; Luedemann, Corinne; Lavine, Christy L.; Mach, Linh V.; Balachandran, Harikrishnan; Brinkley, Christie; Denny, Thomas N.; Lewis, Mark G.; Anderson, Hanne; Pal, Ranajit; Sok, Devin; Le, Khoa; Pauthner, Matthias; Hahn, Beatrice H.; Shaw, George M.; Seaman, Michael S.; Letvin, Norman L.; Burton, Dennis R.; Sodroski, Joseph G.; Haynes, Barton F.; Santra, Sampa

    2014-01-01

    Simian-human immunodeficiency viruses (SHIVs) that mirror natural transmitted/founder (T/F) viruses in man are needed for evaluation of HIV-1 vaccine candidates in nonhuman primates. Currently available SHIVs contain HIV-1 env genes from chronically-infected individuals and do not reflect the characteristics of biologically relevant HIV-1 strains that mediate human transmission. We chose to develop clade C SHIVs, as clade C is the major infecting subtype of HIV-1 in the world. We constructed ten clade C SHIVs expressing Env proteins from T/F viruses. Three of these ten clade C SHIVs (SHIV KB9 C3, SHIV KB9 C4 and SHIV KB9 C5) replicated in naïve rhesus monkeys. These three SHIVs are mucosally transmissible and are neutralized by sCD4 and several HIV-1 broadly neutralizing antibodies. However, like natural T/F viruses, they exhibit low Env reactivity and a Tier 2 neutralization sensitivity. Of note, none of the clade C T/F SHIVs elicited detectable autologous neutralizing antibodies in the infected monkeys, even though antibodies that neutralized a heterologous Tier 1 HIV-1 were generated. Challenge with these three new clade C SHIVs will provide biologically relevant tests for vaccine protection in rhesus macaques. PMID:25462344

  11. Neutralizing IgG at the portal of infection mediates protection against vaginal simian/human immunodeficiency virus challenge.

    PubMed

    Klein, Katja; Veazey, Ronald S; Warrier, Ranjit; Hraber, Peter; Doyle-Meyers, Lara A; Buffa, Viviana; Liao, Hua-Xin; Haynes, Barton F; Shaw, George M; Shattock, Robin J

    2013-11-01

    Neutralizing antibodies may have critical importance in immunity against human immunodeficiency virus type 1 (HIV-1) infection. However, the amount of protective antibody needed at mucosal surfaces has not been fully established. Here, we evaluated systemic and mucosal pharmacokinetics (PK) and pharmacodynamics (PD) of 2F5 IgG and 2F5 Fab fragments with respect to protection against vaginal challenge with simian-human immunodeficiency virus-BaL in macaques. Antibody assessment demonstrated that 2F5 IgG was more potent than polymeric forms (IgM and IgA) across a range of cellular and tissue models. Vaginal challenge studies demonstrated a dose-dependent protection for 2F5 IgG and no protection with 2F5 Fab despite higher vaginal Fab levels at the time of challenge. Animals receiving 50 or 25 mg/kg of body weight 2F5 IgG were completely protected, while 3/5 animals receiving 5 mg/kg were protected. In the control animals, infection was established by a minimum of 1 to 4 transmitted/founder (T/F) variants, similar to natural human infection by this mucosal route; in the two infected animals that had received 5 mg 2F5 IgG, infection was established by a single T/F variant. Serum levels of 2F5 IgG were more predictive of sterilizing protection than measured vaginal levels. Fc-mediated antiviral activity did not appear to influence infection of primary target cells in cervical explants. However, PK studies highlighted the importance of the Fc portion in tissue biodistribution. Data presented in this study may be important in modeling serum levels of neutralizing antibodies that need to be achieved by either vaccination or passive infusion to prevent mucosal acquisition of HIV-1 infection in humans.

  12. Protection of Macaques against Pathogenic Simian/Human Immunodeficiency Virus 89.6PD by Passive Transfer of Neutralizing Antibodies

    PubMed Central

    Mascola, John R.; Lewis, Mark G.; Stiegler, Gabriela; Harris, Dawn; VanCott, Thomas C.; Hayes, Deborah; Louder, Mark K.; Brown, Charles R.; Sapan, Christine V.; Frankel, Sarah S.; Lu, Yichen; Robb, Merlin L.; Katinger, Hermann; Birx, Deborah L.

    1999-01-01

    The role of antibody in protection against human immunodeficiency virus (HIV-1) has been difficult to study in animal models because most primary HIV-1 strains do not infect nonhuman primates. Using a chimeric simian/human immunodeficiency virus (SHIV) based on the envelope of a primary isolate (HIV-89.6), we performed passive-transfer experiments in rhesus macaques to study the role of anti-envelope antibodies in protection. Based on prior in vitro data showing neutralization synergy by antibody combinations, we evaluated HIV immune globulin (HIVIG), and human monoclonal antibodies (MAbs) 2F5 and 2G12 given alone, compared with the double combination 2F5/2G12 and the triple combination HIVIG/2F5/2G12. Antibodies were administered 24 h prior to intravenous challenge with the pathogenic SHIV-89.6PD. Six control monkeys displayed high plasma viremia, rapid CD4+-cell decline, and clinical AIDS within 14 weeks. Of six animals given HIVIG/2F5/2G12, three were completely protected; the remaining three animals became SHIV infected but displayed reduced plasma viremia and near normal CD4+-cell counts. One of three monkeys given 2F5/2G12 exhibited only transient evidence of infection; the other two had marked reductions in viral load. All monkeys that received HIVIG, 2F5, or 2G12 alone became infected and developed high-level plasma viremia. However, compared to controls, monkeys that received HIVIG or MAb 2G12 displayed a less profound drop in CD4+ T cells and a more benign clinical course. These data indicate a general correlation between in vitro neutralization and protection and suggest that a vaccine that elicits neutralizing antibody should have a protective effect against HIV-1 infection or disease. PMID:10196297

  13. Protection of Macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies.

    PubMed

    Mascola, J R; Lewis, M G; Stiegler, G; Harris, D; VanCott, T C; Hayes, D; Louder, M K; Brown, C R; Sapan, C V; Frankel, S S; Lu, Y; Robb, M L; Katinger, H; Birx, D L

    1999-05-01

    The role of antibody in protection against human immunodeficiency virus (HIV-1) has been difficult to study in animal models because most primary HIV-1 strains do not infect nonhuman primates. Using a chimeric simian/human immunodeficiency virus (SHIV) based on the envelope of a primary isolate (HIV-89.6), we performed passive-transfer experiments in rhesus macaques to study the role of anti-envelope antibodies in protection. Based on prior in vitro data showing neutralization synergy by antibody combinations, we evaluated HIV immune globulin (HIVIG), and human monoclonal antibodies (MAbs) 2F5 and 2G12 given alone, compared with the double combination 2F5/2G12 and the triple combination HIVIG/2F5/2G12. Antibodies were administered 24 h prior to intravenous challenge with the pathogenic SHIV-89.6PD. Six control monkeys displayed high plasma viremia, rapid CD4(+)-cell decline, and clinical AIDS within 14 weeks. Of six animals given HIVIG/2F5/2G12, three were completely protected; the remaining three animals became SHIV infected but displayed reduced plasma viremia and near normal CD4(+)-cell counts. One of three monkeys given 2F5/2G12 exhibited only transient evidence of infection; the other two had marked reductions in viral load. All monkeys that received HIVIG, 2F5, or 2G12 alone became infected and developed high-level plasma viremia. However, compared to controls, monkeys that received HIVIG or MAb 2G12 displayed a less profound drop in CD4(+) T cells and a more benign clinical course. These data indicate a general correlation between in vitro neutralization and protection and suggest that a vaccine that elicits neutralizing antibody should have a protective effect against HIV-1 infection or disease.

  14. Envelope residue 375 substitutions in simian-human immunodeficiency viruses enhance CD4 binding and replication in rhesus macaques.

    PubMed

    Li, Hui; Wang, Shuyi; Kong, Rui; Ding, Wenge; Lee, Fang-Hua; Parker, Zahra; Kim, Eunlim; Learn, Gerald H; Hahn, Paul; Policicchio, Ben; Brocca-Cofano, Egidio; Deleage, Claire; Hao, Xingpei; Chuang, Gwo-Yu; Gorman, Jason; Gardner, Matthew; Lewis, Mark G; Hatziioannou, Theodora; Santra, Sampa; Apetrei, Cristian; Pandrea, Ivona; Alam, S Munir; Liao, Hua-Xin; Shen, Xiaoying; Tomaras, Georgia D; Farzan, Michael; Chertova, Elena; Keele, Brandon F; Estes, Jacob D; Lifson, Jeffrey D; Doms, Robert W; Montefiori, David C; Haynes, Barton F; Sodroski, Joseph G; Kwong, Peter D; Hahn, Beatrice H; Shaw, George M

    2016-06-14

    Most simian-human immunodeficiency viruses (SHIVs) bearing envelope (Env) glycoproteins from primary HIV-1 strains fail to infect rhesus macaques (RMs). We hypothesized that inefficient Env binding to rhesus CD4 (rhCD4) limits virus entry and replication and could be enhanced by substituting naturally occurring simian immunodeficiency virus Env residues at position 375, which resides at a critical location in the CD4-binding pocket and is under strong positive evolutionary pressure across the broad spectrum of primate lentiviruses. SHIVs containing primary or transmitted/founder HIV-1 subtype A, B, C, or D Envs with genotypic variants at residue 375 were constructed and analyzed in vitro and in vivo. Bulky hydrophobic or basic amino acids substituted for serine-375 enhanced Env affinity for rhCD4, virus entry into cells bearing rhCD4, and virus replication in primary rhCD4 T cells without appreciably affecting antigenicity or antibody-mediated neutralization sensitivity. Twenty-four RMs inoculated with subtype A, B, C, or D SHIVs all became productively infected with different Env375 variants-S, M, Y, H, W, or F-that were differentially selected in different Env backbones. Notably, SHIVs replicated persistently at titers comparable to HIV-1 in humans and elicited autologous neutralizing antibody responses typical of HIV-1. Seven animals succumbed to AIDS. These findings identify Env-rhCD4 binding as a critical determinant for productive SHIV infection in RMs and validate a novel and generalizable strategy for constructing SHIVs with Env glycoproteins of interest, including those that in humans elicit broadly neutralizing antibodies or bind particular Ig germ-line B-cell receptors.

  15. Evaluation of -2 RANTES vaginal microbicide formulations in a nonhuman primate simian/human immunodeficiency virus (SHIV) challenge model.

    PubMed

    Kish-Catalone, Tina; Pal, Ranajit; Parrish, John; Rose, Nicholas; Hocker, Lindsey; Hudacik, Lauren; Reitz, Marvin; Gallo, Robert; Devico, Anthony

    2007-01-01

    A potential strategy to combat the worldwide AIDS epidemic is to develop a vaginal microbicide that prevents the sexual transmission of HIV-1. One approach for preventing vaginal HIV transmission is to block the viral coreceptor CCR5 with naturally occurring chemokine ligands. In this study, we used a cynomolgus macaque model to evaluate whether a variant of the CCR5 ligand RANTES (-2 RANTES), tested alone or in a nonphospholipid liposome carrier (Novasomes 7474), blocks vaginal challenge with a CCR5-tropic simian/human immunodeficiency virus (SHIV(162P3)). When tested in vitro, the synthetic chemokine potently inhibited SHIV(162P3) infection of cynomolgus macaque peripheral blood mononuclear cells (PBMC). Colposcopic examinations of treated animals and histological examination of cervicovaginal biopsies showed minimal signs of tissue inflammation following vaginal application of Novasomes 7474, -2 RANTES formulated in Novasomes 7474, or -2 RANTES alone. Following vaginal challenge with SHIV(162P3), complete protection was observed in four of six animals treated vaginally with -2 RANTES (0.13 mM) formulated in Novasomes 7474. However, the same proportion of animals was protected by treatment with Novasomes 7474 carrier alone. Two of five animals treated with 0.5 mM -2 RANTES in PBS were protected from infection. Further, all animals were infected when treated with lower chemokine concentrations. These findings indicate that natural CCR5 ligands may have limited efficacy in stringent nonhuman primate models for vaginal infection. In comparison, liposomal agents such as Novasomes 7474 provide comparatively robust protection against vaginal transmission.

  16. Molecular Evolution Analysis of the Human Immunodeficiency Virus Type 1 Envelope in Simian/Human Immunodeficiency Virus-Infected Macaques: Implications for Challenge Dose Selection ▿

    PubMed Central

    Varela, Mariana; Landskron, Lisa; Lai, Rachel P. J.; McKinley, Trevelyan J.; Bogers, Willy M.; Verschoor, Ernst J.; Dubbes, Rob; Barnett, Susan W.; Frost, Simon D. W.; Heeney, Jonathan L.

    2011-01-01

    Since the demonstration that almost 80% of human immunodeficiency virus type 1 (HIV-1) infections result from the transmission of a single variant from the donor, biological features similar to those of HIV mucosal transmission have been reported for macaques inoculated with simian immunodeficiency virus (SIV). Here we describe the early diversification events and the impact of challenge doses on viral kinetics and on the number of variants transmitted in macaques infected with the chimeric simian/human immunodeficiency virus SHIVsf162p4. We show that there is a correlation between the dose administered and the number of variants transmitted and that certain inoculum variants are preferentially transmitted. This could provide insight into the viral determinants of transmission and could aid in vaccine development. Challenge through the mucosal route with high doses results in the transmission of multiple variants in all the animals. Such an unrealistic scenario could underestimate potential intervention measures. We thus propose the use of molecular evolution analysis to aid in the determination of challenge doses that better mimic the transmission dynamics seen in natural HIV-1 infection. PMID:21795341

  17. Topically applied recombinant chemokine analogues fully protect macaques from vaginal simian-human immunodeficiency virus challenge.

    PubMed

    Veazey, Ronald S; Ling, Binhua; Green, Linda C; Ribka, Erin P; Lifson, Jeffrey D; Piatak, Michael; Lederman, Michael M; Mosier, Donald; Offord, Robin; Hartley, Oliver

    2009-05-15

    Effective strategies for preventing human immunodeficiency virus infection are urgently needed, but recent failures in key clinical trials of vaccines and microbicides highlight the need for new approaches validated in relevant animal models. Here, we show that 2 new chemokine (C-C motif) receptor 5 inhibitors, 5P12-RANTES (regulated on activation, normal T cell expressed and secreted) and 6P4-RANTES, fully protect against infection in the rhesus vaginal challenge model. These highly potent molecules, which are amenable to low-cost production, represent promising new additions to the microbicides pipeline.

  18. Understanding the Failure of CD8+ T-Cell Vaccination against Simian/Human Immunodeficiency Virus▿

    PubMed Central

    De Boer, Rob J.

    2007-01-01

    Although CD8+ T cells play an important role in controlling viral infections, boosting specific CD8+ T cells by prophylactic vaccination with simian immunodeficiency virus (SIV) epitopes fails to provide sterilizing immunity. Viral replication rates and viral contraction rates after the peak viremia hardly depend on the presence of memory CD8+ T cells. To study these paradoxical findings, we parameterize novel mathematical models for acute SIV and human immunodeficiency virus infection. These models explain that failure of vaccination is due to the fact that effector/target ratios are too low during the viral expansion phase. Because CD8+ T cells require cell-to-cell contacts, immune protection requires high effector/target ratios at the primary site of infection. Effector/target ratios become favorable for immune control at the time of the peak in the viral load when the virus becomes limited by other factors, such as the availability of uninfected target cells. At the viral set point, effector/target ratios are much higher, and perturbations of the number of CD8+ effector cells have a large impact on the viral load. Such protective effector/target ratios are difficult to achieve with nucleic acid- or protein-based vaccines. PMID:17202215

  19. Selection of a Simian-Human Immunodeficiency Virus Strain Resistant to a Vaginal Microbicide in Macaques▿ †

    PubMed Central

    Dudley, Dawn M.; Wentzel, Jennifer L.; Lalonde, Matthew S.; Veazey, Ronald S.; Arts, Eric J.

    2009-01-01

    PSC-RANTES binds to CCR5, inhibits human immunodeficiency virus type 1 (HIV-1) entry, and has been shown as a vaginal microbicide to protect rhesus macaques from a simian-human immunodeficiency virus chimera (SHIVSF162-p3) infection in a dose-dependent manner. In this study, env gene sequences from SHIVSF162-p3-infected rhesus macaques treated with PSC-RANTES were analyzed for possible drug escape variants. Two specific mutations located in the V3 region of gp120 (K315R) and C-helical domain of gp41 (N640D) were identified in a macaque (m584) pretreated with a 100 μM dose of PSC-RANTES. These two env mutations were found throughout infection (through week 77) but were found at only low frequencies in the inoculating SHIVSF162-p3 stock and in the other SHIVSF162-p3-infected macaques. HIV-1 env genes from macaque m584 (envm584) and from inoculating SHIVSF162-p3 (envp3) were cloned into an HIV-1 backbone. Increases in 50% inhibitory concentrations to PSC-RANTES with envm584 were modest (sevenfold) and most pronounced in cells expressing rhesus macaque CCR5 as compared to human CCR5. Nonetheless, virus harboring envm584, unlike inoculating virus envp3, could replicate even at the highest tissue culture PSC-RANTES concentrations (100 nM). Dual-virus competitions revealed a dramatic increase in fitness of chimeric virus containing envm584 (K315R/N640D) over that containing envp3, but again, only in rhesus CCR5-expressing cells. This study is the first to describe the immediate selection and infection of a drug-resistant SHIV variant in the face of a protective vaginal microbicide, PSC-RANTES. This rhesus CCR5-specific/PSC- RANTES resistance selection is particularly alarming given the relative homogeneity of the SHIVSF162-p3 stock compared to the potential exposure to a heterogeneous HIV-1 population in human transmission. PMID:19279098

  20. Pentavalent HIV-1 vaccine protects against simian-human immunodeficiency virus challenge

    PubMed Central

    Bradley, Todd; Pollara, Justin; Santra, Sampa; Vandergrift, Nathan; Pittala, Srivamshi; Bailey-Kellogg, Chris; Shen, Xiaoying; Parks, Robert; Goodman, Derrick; Eaton, Amanda; Balachandran, Harikrishnan; Mach, Linh V.; Saunders, Kevin O.; Weiner, Joshua A.; Scearce, Richard; Sutherland, Laura L.; Phogat, Sanjay; Tartaglia, Jim; Reed, Steven G.; Hu, Shiu-Lok; Theis, James F.; Pinter, Abraham; Montefiori, David C.; Kepler, Thomas B.; Peachman, Kristina K.; Rao, Mangala; Michael, Nelson L.; Suscovich, Todd J.; Alter, Galit; Ackerman, Margaret E.; Moody, M. Anthony; Liao, Hua-Xin; Tomaras, Georgia; Ferrari, Guido; Korber, Bette T.; Haynes, Barton F.

    2017-01-01

    The RV144 Thai trial HIV-1 vaccine of recombinant poxvirus (ALVAC) and recombinant HIV-1 gp120 subtype B/subtype E (B/E) proteins demonstrated 31% vaccine efficacy. Here we design an ALVAC/Pentavalent B/E/E/E/E vaccine to increase the diversity of gp120 motifs in the immunogen to elicit a broader antibody response and enhance protection. We find that immunization of rhesus macaques with the pentavalent vaccine results in protection of 55% of pentavalent-vaccine-immunized macaques from simian–human immunodeficiency virus (SHIV) challenge. Systems serology of the antibody responses identifies plasma antibody binding to HIV-infected cells, peak ADCC antibody titres, NK cell-mediated ADCC and antibody-mediated activation of MIP-1β in NK cells as the four immunological parameters that best predict decreased infection risk that are improved by the pentavalent vaccine. Thus inclusion of additional gp120 immunogens to a pox-prime/protein boost regimen can augment antibody responses and enhance protection from a SHIV challenge in rhesus macaques. PMID:28593989

  1. Broadly Neutralizing Human Immunodeficiency Virus Type 1 Antibody Gene Transfer Protects Nonhuman Primates from Mucosal Simian-Human Immunodeficiency Virus Infection.

    PubMed

    Saunders, Kevin O; Wang, Lingshu; Joyce, M Gordon; Yang, Zhi-Yong; Balazs, Alejandro B; Cheng, Cheng; Ko, Sung-Youl; Kong, Wing-Pui; Rudicell, Rebecca S; Georgiev, Ivelin S; Duan, Lijie; Foulds, Kathryn E; Donaldson, Mitzi; Xu, Ling; Schmidt, Stephen D; Todd, John-Paul; Baltimore, David; Roederer, Mario; Haase, Ashley T; Kwong, Peter D; Rao, Srinivas S; Mascola, John R; Nabel, Gary J

    2015-08-01

    Broadly neutralizing antibodies (bnAbs) can prevent lentiviral infection in nonhuman primates and may slow the spread of human immunodeficiency virus type 1 (HIV-1). Although protection by passive transfer of human bnAbs has been demonstrated in monkeys, durable expression is essential for its broader use in humans. Gene-based expression of bnAbs provides a potential solution to this problem, although immune responses to the viral vector or to the antibody may limit its durability and efficacy. Here, we delivered an adeno-associated viral vector encoding a simianized form of a CD4bs bnAb, VRC07, and evaluated its immunogenicity and protective efficacy. The expressed antibody circulated in macaques for 16 weeks at levels up to 66 g/ml, although immune suppression with cyclosporine (CsA) was needed to sustain expression. Gene-delivered simian VRC07 protected against simian-human immunodeficiency virus (SHIV) infection in monkeys 5.5 weeks after treatment. Gene transfer of an anti-HIV antibody can therefore protect against infection by viruses that cause AIDS in primates when the host immune responses are controlled.

  2. Protective Efficacy of Broadly Neutralizing Antibodies with Incomplete Neutralization Activity against Simian-Human Immunodeficiency Virus in Rhesus Monkeys.

    PubMed

    Julg, Boris; Sok, Devin; Schmidt, Stephen D; Abbink, Peter; Newman, Ruchi M; Broge, Thomas; Linde, Caitlyn; Nkolola, Joseph; Le, Khoa; Su, David; Torabi, Julia; Pack, Melissa; Pegu, Amarendra; Allen, Todd M; Mascola, John R; Burton, Dennis R; Barouch, Dan H

    2017-10-15

    HIV broadly neutralizing antibodies (bnAbs) have been shown to occasionally display unusual virus neutralization profiles with nonsigmoidal slopes and plateaus at <100% neutralization against a variety of viruses. The significance of incomplete neutralization for the ability of bnAbs to mediate protective effects in vivo, however, is undetermined. In the current study, we selected two bnAbs, PGT121 and 3BNC117, as they incompletely neutralize the clade C simian-human immunodeficiency virus (SHIV) stock (SHIV-327c) at 85% and 70%, respectively, and performed a protection study in rhesus macaques. The animals were intravenously (i.v.) administered PGT121 or 3BNC117 at 10 and 2 mg/kg of body weight before being rectally challenged with a single high dose of SHIV-327c. PGT121 protected 6 out of 7 monkeys, while 6 out of 7 3BNC117-pretreated animals became infected, although with significantly delayed plasma viremia compared to the control animals. These data suggest that complete neutralization is not imperative for bnAbs to prevent infection but that with increasing levels of incomplete neutralization the sterilizing activity diminishes.IMPORTANCE Multiple antibodies have been identified that potently neutralize a broad range of circulating HIV strains. However, not every virus-antibody combination results in complete neutralization of the input virus, suggesting that a fraction of virus particles are resistant to antibody neutralization despite high antibody concentrations. This observation of "incomplete neutralization" is associated with nonsigmoidal neutralization curves plateauing below 100% neutralization, but the significance of the phenomenon for the ability of neutralizing antibodies to mediate protective effects in vivo is undetermined. In this study, we show that the broadly neutralizing antibody PGT121, which neutralized only up to 85% of the SHIV-327c challenge stock in vitro, protected 6 out of 7 rhesus macaques against infection while the antibody 3BNC

  3. Combination Emtricitabine and Tenofovir Disoproxil Fumarate Prevents Vaginal Simian/Human Immunodeficiency Virus Infection in Macaques Harboring Chlamydia trachomatis and Trichomonas vaginalis.

    PubMed

    Radzio, Jessica; Henning, Tara; Jenkins, Leecresia; Ellis, Shanon; Farshy, Carol; Phillips, Christi; Holder, Angela; Kuklenyik, Susan; Dinh, Chuong; Hanson, Debra; McNicholl, Janet; Heneine, Walid; Papp, John; Kersh, Ellen N; García-Lerma, J Gerardo

    2016-05-15

    Genital inflammation associated with sexually transmitted infections increases susceptibility to human immunodeficiency virus (HIV), but it is unclear whether the increased risk can reduce the efficacy of pre-exposure prophylaxis (PrEP). We investigated whether coinfection of macaques with Chlamydia trachomatis and Trichomonas vaginalis decreases the prophylactic efficacy of oral emtricitabine (FTC)/tenofovir disoproxil fumarate (TDF). Macaques were exposed to simian/human immunodeficiency virus (SHIV) vaginally each week for up to 16 weeks and received placebo or FTC/TDF pericoitally. All animals in the placebo group were infected with SHIV, while 4 of 6 PrEP recipients remained uninfected (P= .03). Oral FTC/TDF maintains efficacy in a macaque model of sexually transmitted coinfection, although the infection of 2 macaques signals a modest loss of PrEP activity.

  4. Short communication: a repeated simian human immunodeficiency virus reverse transcriptase/herpes simplex virus type 2 cochallenge macaque model for the evaluation of microbicides.

    PubMed

    Kenney, Jessica; Derby, Nina; Aravantinou, Meropi; Kleinbeck, Kyle; Frank, Ines; Gettie, Agegnehu; Grasperge, Brooke; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D; Zydowsky, Thomas M; Robbiani, Melissa

    2014-11-01

    Epidemiological studies suggest that prevalent herpes simplex virus type 2 (HSV-2) infection increases the risk of HIV acquisition, underscoring the need to develop coinfection models to evaluate promising prevention strategies. We previously established a single high-dose vaginal coinfection model of simian human immunodeficiency virus (SHIV)/HSV-2 in Depo-Provera (DP)-treated macaques. However, this model does not appropriately mimic women's exposure. Repeated limiting dose SHIV challenge models are now used routinely to test prevention strategies, yet, at present, there are no reports of a repeated limiting dose cochallenge model in which to evaluate products targeting HIV and HSV-2. Herein, we show that 20 weekly cochallenges with 2-50 TCID50 simian human immunodeficiency virus reverse transcriptase (SHIV-RT) and 10(7) pfu HSV-2 results in infection with both viruses (4/6 SHIV-RT, 6/6 HSV-2). The frequency and level of vaginal HSV-2 shedding were significantly greater in the repeated exposure model compared to the single high-dose model (p<0.0001). We used this new model to test the Council's on-demand microbicide gel, MZC, which is active against SHIV-RT in DP-treated macaques and HSV-2 and human papillomavirus (HPV) in mice. While MZC reduced SHIV and HSV-2 infections in our repeated limiting dose model when cochallenging 8 h after each gel application, a barrier effect of carrageenan (CG) that was not seen in DP-treated animals precluded evaluation of the significance of the antiviral activity of MZC. Both MZC and CG significantly (p<0.0001) reduced the frequency and level of vaginal HSV-2 shedding compared to no gel treatment. This validates the use of this repeated limiting dose cochallenge model for testing products targeting HIV and HSV-2.

  5. Chimeric adenovirus type 5/35 vector encoding SIV gag and HIV env genes affords protective immunity against the simian/human immunodeficiency virus in monkeys.

    PubMed

    Someya, Kenji; Xin, Ke-Qin; Ami, Yasushi; Izumi, Yasuyuki; Mizuguchi, Hiroyuki; Ohta, Shinrai; Yamamoto, Naoki; Honda, Mitsuo; Okuda, Kenji

    2007-10-25

    Replication-defective adenovirus type 5 (Ad5) vector-based vaccines are widely known to induce strong immunity against immunodeficiency viruses. To exploit this immunogenicity while overcoming the potential problem of preexisting immunity against human adenoviruses type 5, we developed a recombinant chimeric adenovirus type 5 with type 35 fiber vector (rAd5/35). We initially produced a simian immunodeficiency virus (SIV) gag DNA plasmid (rDNA-Gag), a human immunodeficiency virus type 1 (HIV-1) 89.6 env DNA plasmid (rDNA-Env) and a recombinant Ad5/35 vector encoding the SIV gag and HIV env gene (rAd5/35-Gag and rAd5/35-Env). Prime-boost vaccination with rDNA-Gag and -Env followed by high doses of rAd5/35-Gag and -Env elicited higher levels of cellular immune responses than did rDNAs or rAd5/35s alone. When challenged with a pathogenic simian human immunodeficiency virus (SHIV), animals receiving a prime-boost regimen or rAd5/35s alone maintained a higher number of CD4(+) T cells and remarkably suppressed plasma viral RNA loads. These findings suggest the clinical promise of an rAd5/35 vector-based vaccine.

  6. Human Immunodeficiency Virus Type 1 Monoclonal Antibodies Suppress Acute Simian-Human Immunodeficiency Virus Viremia and Limit Seeding of Cell-Associated Viral Reservoirs

    PubMed Central

    Pegu, Amarendra; Wang, Keyun; McGinnis, Kathleen; Nason, Martha; Foulds, Kathryn; Letukas, Valerie; Schmidt, Stephen D.; Chen, Xuejun; Todd, John Paul; Lifson, Jeffrey D.; Rao, Srinivas; Michael, Nelson L.; Robb, Merlin L.; Mascola, John R.; Koup, Richard A.

    2015-01-01

    ABSTRACT Combination antiretroviral therapy (cART) administered shortly after human immunodeficiency virus type 1 (HIV-1) infection can suppress viremia and limit seeding of the viral reservoir, but lifelong treatment is required for the majority of patients. Highly potent broadly neutralizing HIV-1 monoclonal antibodies (MAbs) can reduce plasma viremia when administered during chronic HIV-1 infection, but the therapeutic potential of these antibodies during acute infection is unknown. We tested the ability of HIV-1 envelope glycoprotein-specific broadly neutralizing MAbs to suppress acute simian-human immunodeficiency virus (SHIV) replication in rhesus macaques. Four groups of macaques were infected with SHIV-SF162P3 and received (i) the CD4-binding-site MAb VRC01; (ii) a combination of a more potent clonal relative of VRC01 (VRC07-523) and a V3 glycan-dependent MAb (PGT121); (iii) daily cART, all on day 10, just prior to expected peak plasma viremia; or (iv) no treatment. Daily cART was initiated 11 days after MAb administration and was continued for 13 weeks in all treated animals. Over a period of 11 days after a single administration, MAb treatment significantly reduced peak viremia, accelerated the decay slope, and reduced total viral replication compared to untreated controls. Proviral DNA in lymph node CD4 T cells was also diminished after treatment with the dual MAb. These data demonstrate the virological effect of potent MAbs and support future clinical trials that investigate HIV-1-neutralizing MAbs as adjunctive therapy with cART during acute HIV-1 infection. IMPORTANCE Treatment of chronic HIV-1 infection with potent broadly neutralizing HIV-1 MAbs has been shown to significantly reduce plasma viremia. However, the antiviral effect of MAb treatment during acute HIV-1 infection is unknown. Here, we demonstrate that MAbs targeting the HIV-1 envelope glycoprotein both suppress acute SHIV plasma viremia and limit CD4 T cell-associated viral DNA. These

  7. Small intestine CD4+ cell reduction and enteropathy in simian/human immunodeficiency virus KS661-infected rhesus macaques in the presence of low viral load.

    PubMed

    Inaba, Katsuhisa; Fukazawa, Yoshinori; Matsuda, Kenta; Himeno, Ai; Matsuyama, Megumi; Ibuki, Kentaro; Miura, Yoshiharu; Koyanagi, Yoshio; Nakajima, Atsushi; Blumberg, Richard S; Takahashi, Hidemi; Hayami, Masanori; Igarashi, Tatsuhiko; Miura, Tomoyuki

    2010-03-01

    Human immunodeficiency virus type 1, simian immunodeficiency virus and simian/human immunodeficiency virus (SHIV) infection generally lead to death of the host accompanied by high viraemia and profound CD4(+) T-cell depletion. SHIV clone KS661-infected rhesus macaques with a high viral load set point (HVL) ultimately experience diarrhoea and wasting at 6-12 months after infection. In contrast, infected macaques with a low viral load set point (LVL) usually live asymptomatically throughout the observation period, and are therefore referred to as asymptomatic LVL (Asym LVL) macaques. Interestingly, some LVL macaques exhibit diarrhoea and wasting similar to the symptoms of HVL macaques and are termed symptomatic LVL (Sym LVL) macaques. This study tested the hypothesis that Sym LVL macaques have the same degree of intestinal abnormalities as HVL macaques. The proviral DNA loads in lymphoid tissue and the intestines of Sym LVL and Asym LVL macaques were comparable and all infected monkeys showed villous atrophy. Notably, the CD4(+) cell frequencies of lymphoid tissues and intestines in Sym LVL macaques were remarkably lower than those in Asym LVL and uninfected macaques. Furthermore, Sym LVL and HVL macaques exhibited an increased number of activated macrophages. In conclusion, intestinal disorders including CD4(+) cell reduction and abnormal immune activation can be observed in SHIV-KS661-infected macaques independent of virus replication levels.

  8. Oral Immunization with Recombinant Vaccinia Virus Prime and Intramuscular Protein Boost Provides Protection against Intrarectal Simian-Human Immunodeficiency Virus Challenge in Macaques.

    PubMed

    Thippeshappa, Rajesh; Tian, Baoping; Cleveland, Brad; Guo, Wenjin; Polacino, Patricia; Hu, Shiu-Lok

    2015-12-30

    Human immunodeficiency virus type 1 (HIV-1) acquisition occurs predominantly through mucosal transmission. We hypothesized that greater mucosal immune responses and protective efficacy against mucosal HIV-1 infection may be achieved by prime-boost immunization at mucosal sites. We used a macaque model to determine the safety, immunogenicity, and protective efficacy of orally delivered, replication-competent but attenuated recombinant vaccinia viruses expressing full-length HIV-1 SF162 envelope (Env) or simian immunodeficiency virus (SIV) Gag-Pol proteins. We examined the dose and route that are suitable for oral immunization with recombinant vaccinia viruses. We showed that sublingual inoculation of two vaccinia virus-naive pigtailed macaques with 5 × 10(8) PFU of recombinant vaccinia viruses was safe. However, sublingual inoculation with a higher dose or tonsillar inoculation resulted in secondary oral lesions, indicating the need to optimize the dose and route for oral immunization with replication-competent vaccinia virus vectors. Oral priming alone elicited antibody responses to vaccinia virus and to the SF162 Env protein. Intramuscular immunization with the SF162 gp120 protein at either 20 or 21 weeks postpriming resulted in a significant boost in antibody responses in both systemic and mucosal compartments. Furthermore, we showed that immune responses induced by recombinant vaccinia virus priming and intramuscular protein boosting provided protection against intrarectal challenge with the simian-human immunodeficiency virus SHIV-SF162-P4.

  9. Complete protection from repeated vaginal simian-human immunodeficiency virus exposures in macaques by a topical gel containing tenofovir alone or with emtricitabine.

    PubMed

    Parikh, Urvi M; Dobard, Charles; Sharma, Sunita; Cong, Mian-er; Jia, Hongwei; Martin, Amy; Pau, Chou-Pong; Hanson, Debra L; Guenthner, Patricia; Smith, James; Kersh, Ellen; Garcia-Lerma, J Gerardo; Novembre, Francis J; Otten, Ron; Folks, Thomas; Heneine, Walid

    2009-10-01

    New-generation gels that deliver potent antiretroviral drugs against human immunodeficiency virus type 1 have renewed hopes for topical prophylaxis as a prevention strategy. Previous preclinical research with monkey models suggested that high concentrations and drug combinations are needed for high efficacy. We evaluated two long-acting reverse transcriptase inhibitors, tenofovir (TFV) and emtricitabine (FTC), by using a twice-weekly repeat challenge macaque model and showed that a preexposure vaginal application of gel with 1% TFV alone or in combination with 5% FTC fully protected macaques from a total of 20 exposures to simian-human immunodeficiency virus SF162p3. FTC and TFV were detected in plasma 30 min after vaginal application, suggesting rapid absorption. FTC was detected more frequently than TFV and showed higher levels, reflecting the fivefold-higher concentration of this drug than of TFV. Two of 12 repeatedly exposed but protected macaques showed limited T-cell priming, which did not induce resistance to infection when macaques were rechallenged. Thus, single drugs with durable antiviral activity can provide highly effective topical prophylaxis and overcome the need for noncoital use or for drug combinations which are more complex and costly to formulate and approve.

  10. Complete Protection from Repeated Vaginal Simian-Human Immunodeficiency Virus Exposures in Macaques by a Topical Gel Containing Tenofovir Alone or with Emtricitabine▿

    PubMed Central

    Parikh, Urvi M.; Dobard, Charles; Sharma, Sunita; Cong, Mian-er; Jia, Hongwei; Martin, Amy; Pau, Chou-Pong; Hanson, Debra L.; Guenthner, Patricia; Smith, James; Kersh, Ellen; Garcia-Lerma, J. Gerardo; Novembre, Francis J.; Otten, Ron; Folks, Thomas; Heneine, Walid

    2009-01-01

    New-generation gels that deliver potent antiretroviral drugs against human immunodeficiency virus type 1 have renewed hopes for topical prophylaxis as a prevention strategy. Previous preclinical research with monkey models suggested that high concentrations and drug combinations are needed for high efficacy. We evaluated two long-acting reverse transcriptase inhibitors, tenofovir (TFV) and emtricitabine (FTC), by using a twice-weekly repeat challenge macaque model and showed that a preexposure vaginal application of gel with 1% TFV alone or in combination with 5% FTC fully protected macaques from a total of 20 exposures to simian-human immunodeficiency virus SF162p3. FTC and TFV were detected in plasma 30 min after vaginal application, suggesting rapid absorption. FTC was detected more frequently than TFV and showed higher levels, reflecting the fivefold-higher concentration of this drug than of TFV. Two of 12 repeatedly exposed but protected macaques showed limited T-cell priming, which did not induce resistance to infection when macaques were rechallenged. Thus, single drugs with durable antiviral activity can provide highly effective topical prophylaxis and overcome the need for noncoital use or for drug combinations which are more complex and costly to formulate and approve. PMID:19656878

  11. Live-Attenuated Lentivirus Immunization Modulates Innate Immunity and Inflammation while Protecting Rhesus Macaques from Vaginal Simian Immunodeficiency Virus Challenge

    PubMed Central

    Genescà, Meritxell; Ma, Zhong-Min; Wang, Yichuan; Assaf, Basel; Qureshi, Huma; Fritts, Linda; Huang, Ying; McChesney, Michael B.

    2012-01-01

    Immunization with attenuated lentiviruses is the only reliable method of protecting rhesus macaques (RM) from vaginal challenge with pathogenic simian immunodeficiency virus (SIV). CD8+ lymphocyte depletion prior to SIVmac239 vaginal challenge demonstrated that a modest, Gag-specific CD8+ T cell response induced by immunization with simian-human immunodeficiency virus 89.6 (SHIV89.6) protects RM. Although CD8+ T cells are required for protection, there is no anamnestic expansion of SIV-specific CD8+ T cells in any tissues except the vagina after challenge. Further, SHIV immunization increased the number of viral target cells in the vagina and cervix, suggesting that the ratio of target cells to antiviral CD8+ T cells was not a determinant of protection. We hypothesized that persistent replication of the attenuated vaccine virus modulates inflammatory responses and limits T cell activation and expansion by inducing immunoregulatory T cell populations. We found that attenuated SHIV infection decreased the number of circulating plasmacytoid dendritic cells, suppressed T cell activation, decreased mRNA levels of proinflammatory mediators, and increased mRNA levels of immunoregulatory molecules. Three days after SIV vaginal challenge, SHIV-immunized RM had significantly more T regulatory cells in the vagina than the unimmunized RM. By day 14 postchallenge, immune activation and inflammation were characteristic of unimmunized RM but were minimal in SHIV-immunized RM. Thus, a modest vaccine-induced CD8+ T cell response in the context of immunoregulatory suppression of T cell activation may protect against vaginal HIV transmission. PMID:22696662

  12. Live-attenuated lentivirus immunization modulates innate immunity and inflammation while protecting rhesus macaques from vaginal simian immunodeficiency virus challenge.

    PubMed

    Genescà, Meritxell; Ma, Zhong-Min; Wang, Yichuan; Assaf, Basel; Qureshi, Huma; Fritts, Linda; Huang, Ying; McChesney, Michael B; Miller, Christopher J

    2012-09-01

    Immunization with attenuated lentiviruses is the only reliable method of protecting rhesus macaques (RM) from vaginal challenge with pathogenic simian immunodeficiency virus (SIV). CD8(+) lymphocyte depletion prior to SIVmac239 vaginal challenge demonstrated that a modest, Gag-specific CD8(+) T cell response induced by immunization with simian-human immunodeficiency virus 89.6 (SHIV89.6) protects RM. Although CD8(+) T cells are required for protection, there is no anamnestic expansion of SIV-specific CD8(+) T cells in any tissues except the vagina after challenge. Further, SHIV immunization increased the number of viral target cells in the vagina and cervix, suggesting that the ratio of target cells to antiviral CD8(+) T cells was not a determinant of protection. We hypothesized that persistent replication of the attenuated vaccine virus modulates inflammatory responses and limits T cell activation and expansion by inducing immunoregulatory T cell populations. We found that attenuated SHIV infection decreased the number of circulating plasmacytoid dendritic cells, suppressed T cell activation, decreased mRNA levels of proinflammatory mediators, and increased mRNA levels of immunoregulatory molecules. Three days after SIV vaginal challenge, SHIV-immunized RM had significantly more T regulatory cells in the vagina than the unimmunized RM. By day 14 postchallenge, immune activation and inflammation were characteristic of unimmunized RM but were minimal in SHIV-immunized RM. Thus, a modest vaccine-induced CD8(+) T cell response in the context of immunoregulatory suppression of T cell activation may protect against vaginal HIV transmission.

  13. MIV-150/Zinc Acetate Gel Inhibits Cell-Associated Simian-Human Immunodeficiency Virus Reverse Transcriptase Infection in a Macaque Vaginal Explant Model

    PubMed Central

    Barnable, Patrick; Calenda, Giulia; Bonnaire, Thierry; Menon, Radhika; Levendosky, Keith; Gettie, Agegnehu; Blanchard, James; Cooney, Michael L.; Fernández-Romero, José A.; Zydowsky, Thomas M.

    2015-01-01

    The transmission of both cell-free and cell-associated immunodeficiency viruses has been demonstrated directly in multiple animal species and possibly occurs in humans, as suggested by genotyping of the infecting human immunodeficiency virus (HIV) in acutely infected women and in semen from their partners. Therefore, a microbicide may need to block both mechanisms of HIV transmission to achieve maximum efficacy. To date, most of the preclinical evaluation of candidate microbicides has been performed using cell-free HIV. New models of mucosal transmission of cell-associated HIV are needed to evaluate candidate microbicide performance. The MIV-150/zinc acetate/carrageenan (MZC) gel protects Depo-Provera-treated macaques against cell-free simian-human immunodeficiency virus reverse transcriptase (SHIV-RT) infection when applied vaginally up to 8 h before challenge. We recently demonstrated the potent activity of MZC gel against cell-free SHIV-RT in macaque vaginal explants. In the current study, we established a cell-associated SHIV-RT infection model of macaque vaginal tissues and tested the activity of MZC gel in this model. MZC gel protected tissues against cell-associated SHIV-RT infection when present at the time of viral exposure or when applied up to 4 days prior to viral challenge. These data support clinical testing of the MZC gel. Overall, our ex vivo model of cell-associated SHIV-RT infection in macaque vaginal mucosa complements the cell-free infection models, providing tools for prioritization of products that block both modes of HIV transmission. PMID:25870063

  14. Pathogenicity and mucosal transmissibility of the R5-tropic simian/human immunodeficiency virus SHIV(AD8) in rhesus macaques: implications for use in vaccine studies.

    PubMed

    Gautam, Rajeev; Nishimura, Yoshiaki; Lee, Wendy R; Donau, Olivia; Buckler-White, Alicia; Shingai, Masashi; Sadjadpour, Reza; Schmidt, Stephen D; LaBranche, Celia C; Keele, Brandon F; Montefiori, David; Mascola, John R; Martin, Malcolm A

    2012-08-01

    There is an urgent need to develop new pathogenic R5 simian/human immunodeficiency viruses (SHIVs) for the evaluation of candidate anti-HIV vaccines in nonhuman primates. Here, we characterize swarm SHIV(AD8) stocks, prepared from three infected rhesus macaques with documented immunodeficiency at the time of euthanasia, for their capacity to establish durable infections in macaques following inoculation by the intravenous (i.v.) or intrarectal (i.r.) route. All three viral stocks (SHIV(AD8-CE8J), SHIV(AD8-CK15), and SHIV(AD8-CL98)) exhibited robust replication in vivo and caused marked depletion of CD4(+) T cells affecting both memory and naïve CD4(+) T lymphocyte subsets following administration by either route. Eleven of 22 macaques inoculated with the new SHIV(AD8) stocks were euthanized with clinical symptoms of immunodeficiency and evidence of opportunistic infections (Pneumocystis, Candida, and Mycobacterium). A single but unique founder virus, also present in the SHIV(AD8-CE8J) swarm stock, was transmitted to two animals following a single i.r. inoculation of approximately 3 50% animal infectious doses, which is close to the threshold required to establish infection in all exposed animals. Because the three new SHIV(AD8) viruses are mucosally transmissible, exhibited tier 2 sensitivity to anti-HIV-1 neutralizing antibodies, deplete CD4(+) T lymphocytes in vivo, and induce AIDS in macaques, they are eminently suitable as challenge viruses in vaccine experiments.

  15. The Selection of Low Envelope Glycoprotein Reactivity to Soluble CD4 and Cold during Simian-Human Immunodeficiency Virus Infection of Rhesus Macaques

    PubMed Central

    McGee, Kathleen; Haim, Hillel; Korioth-Schmitz, Birgit; Espy, Nicole; Javanbakht, Hassan; Letvin, Norman

    2014-01-01

    Envelope glycoprotein (Env) reactivity (ER) describes the propensity of human immunodeficiency virus type 1 (HIV-1) Env to change conformation from the metastable unliganded state in response to the binding of ligands (antibodies and soluble CD4 [sCD4]) or incubation in the cold. To investigate Env properties that favor in vivo persistence, we inoculated rhesus macaques with three closely related CCR5-tropic simian-human immunodeficiency viruses (SHIVs) that differ in ER to cold (ERcold) and ER to sCD4 (ERsCD4); these SHIVs were neutralized by antibodies equivalently and thus were similar in ERantibody. All three SHIVs achieved high levels of acute viremia in the monkeys without alteration of their Env sequences, indicating that neither ERcold nor ERsCD4 significantly influences the establishment of infection. Between 14 and 100 days following infection, viruses with high ERcold and ERsCD4 were counterselected. Remarkably, the virus variant with low ERcold and low ERsCD4 did not elicit a neutralizing antibody response against the infecting virus, despite the generation of high levels of anti-Env antibodies in the infected monkeys. All viruses that achieved persistent viremia escaped from any autologous neutralizing antibodies and exhibited low ERcold and low ERsCD4. One set of gp120 changes determined the decrease in ERcold and ERsCD4, and a different set of gp120 changes determined resistance to autologous neutralizing antibodies. Each set of changes contributed to a reduction in Env-mediated entry. During infection of monkeys, any Env replication fitness costs associated with decreases in ERcold and ERsCD4 may be offset by minimizing the elicitation of autologous neutralizing antibodies. PMID:24131720

  16. Generation of a neutralization-resistant CCR5 tropic simian/human immunodeficiency virus (SHIV-MK38) molecular clone, a derivative of SHIV-89.6.

    PubMed

    Ishida, Yuki; Yoneda, Mai; Otsuki, Hiroyuki; Watanabe, Yuji; Kato, Fumihiro; Matsuura, Kanako; Kikukawa, Minako; Matsushita, Shuzo; Hishiki, Takayuki; Igarashi, Tatsuhiko; Miura, Tomoyuki

    2016-05-01

    Previously, we reported that a new genetically diverse CCR5 (R5) tropic simian/human immunodeficiency virus (SHIV-MK38) adapted to rhesus monkeys became more neutralization resistant to SHIV-infected plasma than did the parental SHIV-KS661 clone. Here, to clarify the significance of the neutralization-resistant phenotype of SHIV in a macaque model, we initially investigated the precise neutralization phenotype of the SHIVs, including SHIV-MK38 molecular clones, using SHIV-MK38-infected plasma, a pooled plasma of human immunodeficiency virus (HIV)-infected individuals, soluble CD4 and anti-HIV-1 neutralizing mAbs, the epitopes of which were known. The results show that SHIV-KS661 had tier 1 neutralization sensitivity, but monkey-adapted R5 tropic SHIV-MK38 acquired neutralization resistance similar to that of tier 2 or 3 as a clone virus. Sequence analysis of the env gene suggested that the neutralization-resistant phenotype of SHIV-MK38 was acquired by conformational changes in Env associated with the net charge and potential N-linked glycosylation sites. To examine the relationship between neutralization phenotype and stably persistent infection in monkeys, we performed in vivo rectal inoculation experiments using a SHIV-MK38 molecular clone. The results showed that one of three rhesus monkeys exhibited durable infection with a plasma viral load of 105 copies ml- 1 despite the high antibody responses that occurred in the host. Whilst further improvements are required in the development of a challenge virus, it will be useful to generate a neutralization-resistant R5 tropic molecular clone of the SHIV-89.6 lineage commonly used for vaccine development - a result that can be used to explore the foundation of AIDS pathogenesis.

  17. The selection of low envelope glycoprotein reactivity to soluble CD4 and cold during simian-human immunodeficiency virus infection of rhesus macaques.

    PubMed

    McGee, Kathleen; Haim, Hillel; Korioth-Schmitz, Birgit; Espy, Nicole; Javanbakht, Hassan; Letvin, Norman; Sodroski, Joseph

    2014-01-01

    Envelope glycoprotein (Env) reactivity (ER) describes the propensity of human immunodeficiency virus type 1 (HIV-1) Env to change conformation from the metastable unliganded state in response to the binding of ligands (antibodies and soluble CD4 [sCD4]) or incubation in the cold. To investigate Env properties that favor in vivo persistence, we inoculated rhesus macaques with three closely related CCR5-tropic simian-human immunodeficiency viruses (SHIVs) that differ in ER to cold (ERcold) and ER to sCD4 (ERsCD4); these SHIVs were neutralized by antibodies equivalently and thus were similar in ERantibody. All three SHIVs achieved high levels of acute viremia in the monkeys without alteration of their Env sequences, indicating that neither ERcold nor ERsCD4 significantly influences the establishment of infection. Between 14 and 100 days following infection, viruses with high ERcold and ERsCD4 were counterselected. Remarkably, the virus variant with low ERcold and low ERsCD4 did not elicit a neutralizing antibody response against the infecting virus, despite the generation of high levels of anti-Env antibodies in the infected monkeys. All viruses that achieved persistent viremia escaped from any autologous neutralizing antibodies and exhibited low ERcold and low ERsCD4. One set of gp120 changes determined the decrease in ERcold and ERsCD4, and a different set of gp120 changes determined resistance to autologous neutralizing antibodies. Each set of changes contributed to a reduction in Env-mediated entry. During infection of monkeys, any Env replication fitness costs associated with decreases in ERcold and ERsCD4 may be offset by minimizing the elicitation of autologous neutralizing antibodies.

  18. The nonnucleoside reverse transcription inhibitor MIV-160 delivered from an intravaginal ring, but not from a carrageenan gel, protects against simian/human immunodeficiency virus-RT Infection.

    PubMed

    Aravantinou, Meropi; Singer, Rachel; Derby, Nina; Calenda, Giulia; Mawson, Paul; Abraham, Ciby J; Menon, Radhika; Seidor, Samantha; Goldman, Daniel; Kenney, Jessica; Villegas, Guillermo; Gettie, Agegnehu; Blanchard, James; Lifson, Jeffrey D; Piatak, Michael; Fernández-Romero, José A; Zydowsky, Thomas M; Teleshova, Natalia; Robbiani, Melissa

    2012-11-01

    We previously showed that a carrageenan (CG) gel containing 50 μM MIV-150 (MIV-150/CG) reduced vaginal simian/human immunodeficiency virus (SHIV)-RT infection of macaques (56%, p>0.05) when administered daily for 2 weeks with the last dose given 8 h before challenge. Additionally, when 100 mg of MIV-150 was loaded into an intravaginal ring (IVR) inserted 24 h before challenge and removed 2 weeks after challenge, >80% protection was observed (p<0.03). MIV-160 is a related NNRTI with a similar IC(50), greater aqueous solubility, and a shorter synthesis. To objectively compare MIV-160 with MIV-150, herein we evaluated the antiviral effects of unformulated MIV-160 in vitro as well as the in vivo protection afforded by MIV-160 delivered in CG (MIV-160/CG gel) and in an IVR under regimens used with MIV-150 in earlier studies. Like MIV-150, MIV-160 exhibited potent antiviral activity against SHIV-RT in macaque vaginal explants. However, formulated MIV-160 exhibited divergent effects in vivo. The MIV-160/CG gel offered no protection compared to CG alone, whereas the MIV-160 IVRs protected significantly. Importantly, the results of in vitro release studies of the MIV-160/CG gel and the MIV-160 IVR suggested that in vivo efficacy paralleled the amount of MIV-160 released in vitro. Hundreds of micrograms of MIV-160 were released daily from IVRs while undetectable amounts of MIV-160 were released from the CG gel. Our findings highlight the importance of testing different modalities of microbicide delivery to identify the optimal formulation for efficacy in vivo.

  19. Durable protection from vaginal simian-human immunodeficiency virus infection in macaques by tenofovir gel and its relationship to drug levels in tissue.

    PubMed

    Dobard, Charles; Sharma, Sunita; Martin, Amy; Pau, Chou-Pong; Holder, Angela; Kuklenyik, Zsuzsanna; Lipscomb, Jonathan; Hanson, Debra L; Smith, James; Novembre, Francis J; García-Lerma, J Gerardo; Heneine, Walid

    2012-01-01

    A vaginal gel containing 1% tenofovir (TFV) was found to be safe and effective in reducing HIV infection in women when used pericoitally. Because of the long intracellular half-life of TFV and high drug exposure in vaginal tissues, we hypothesized that a vaginal gel containing TFV may provide long-lasting protection. Here, we performed delayed-challenge experiments and showed that vaginal 1% TFV gel protected 4/6 macaques against vaginal simian-human immunodeficiency virus (SHIV) exposures occurring 3 days after gel application, demonstrating long-lasting protection. Despite continued gel dosing postinfection, neither breakthrough infection had evidence of drug resistance by ultrasensitive testing of SHIV in plasma and vaginal lavage. Analysis of the active intracellular tenofovir diphosphate (TFV-DP) in vaginal lymphocytes collected 4 h to 3 days after gel dosing persistently showed high TFV-DP levels (median, 1,810 fmol/10(6) cells) between 4 and 24 h that exceed the 95% inhibitory concentration (IC(95)), reflecting rapid accumulation and long persistence. In contrast to those in peripheral blood mononuclear cells (PBMCs) following oral dosing, TFV-DP levels in vaginal lymphocytes decreased approximately 7-fold by 3 days, exhibiting a much higher rate of decay. We observed a strong correlation between intracellular TFV-DP in vaginal lymphocytes, in vitro antiviral activity, and in vivo protection, suggesting that TFV-DP above the in vitro IC(95) in vaginal lymphocytes is a good predictor of high efficacy. Data from this model reveal an extended window of protection by TFV gel that supports coitus-independent use. The identification of protective TFV-DP concentrations in vaginal lymphocytes may facilitate the evaluation of improved delivery methods of topical TFV and inform clinical studies.

  20. Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro.

    PubMed

    Parren, P W; Marx, P A; Hessell, A J; Luckay, A; Harouse, J; Cheng-Mayer, C; Moore, J P; Burton, D R

    2001-09-01

    A major unknown in human immunodeficiency virus (HIV-1) vaccine design is the efficacy of antibodies in preventing mucosal transmission of R5 viruses. These viruses, which use CCR5 as a coreceptor, appear to have a selective advantage in transmission of HIV-1 in humans. Hence R5 viruses predominate during primary infection and persist throughout the course of disease in most infected people. Vaginal challenge of macaques with chimeric simian/human immunodeficiency viruses (SHIV) is perhaps one of the best available animal models for human HIV-1 infection. Passive transfer studies are widely used to establish the conditions for antibody protection against viral challenge. Here we show that passive intravenous transfer of the human neutralizing monoclonal antibody b12 provides dose-dependent protection to macaques vaginally challenged with the R5 virus SHIV(162P4). Four of four monkeys given 25 mg of b12 per kg of body weight 6 h prior to challenge showed no evidence of viral infection (sterile protection). Two of four monkeys given 5 mg of b12/kg were similarly protected, whereas the other two showed significantly reduced and delayed plasma viremia compared to control animals. In contrast, all four monkeys treated with a dose of 1 mg/kg became infected with viremia levels close to those for control animals. Antibody b12 serum concentrations at the time of virus challenge corresponded to approximately 400 (25 mg/kg), 80 (5 mg/kg), and 16 (1 mg/kg) times the in vitro (90%) neutralization titers. Therefore, complete protection against mucosal challenge with an R5 SHIV required essentially complete neutralization of the infecting virus. This suggests that a vaccine based on antibody alone would need to sustain serum neutralizing antibody titers (90%) of the order of 1:400 to achieve sterile protection but that lower titers, around 1:100, could provide a significant benefit. The significance of such substerilizing neutralizing antibody titers in the context of a potent

  1. Some human immunodeficiency virus type 1 Vpu proteins are able to antagonize macaque BST-2 in vitro and in vivo: Vpu-negative simian-human immunodeficiency viruses are attenuated in vivo.

    PubMed

    Shingai, Masashi; Yoshida, Takeshi; Martin, Malcolm A; Strebel, Klaus

    2011-10-01

    Human immunodeficiency virus type 1 (HIV-1) Vpu enhances the release of viral particles from infected cells by targeting BST-2/tetherin, a cellular protein inhibiting virus release. The widely used HIV-1(NL4-3) Vpu functionally inactivates human BST-2 but not murine or monkey BST-2, leading to the notion that Vpu antagonism is species specific. Here we investigated the properties of the CXCR4-tropic simian-human immunodeficiency virus DH12 (SHIV(DH12)) and the CCR5-tropic SHIV(AD8), each of which carries vpu genes derived from different primary HIV-1 isolates. We found that virion release from infected rhesus peripheral blood mononuclear cells was enhanced to various degrees by the Vpu present in both SHIVs. Transfer of the SHIV(DH12) Vpu transmembrane domain to the HIV-1(NL4-3) Vpu conferred antagonizing activity against macaque BST-2. Inactivation of the SHIV(DH12) and SHIV(AD8) vpu genes impaired virus replication in 6 of 8 inoculated rhesus macaques, resulting in lower plasma viral RNA loads, slower losses of CD4(+) T cells, and delayed disease progression. The expanded host range of the SHIV(DH12) Vpu was not due to adaptation during passage in macaques but was an intrinsic property of the parental HIV-1(DH12) Vpu protein. These results demonstrate that the species-specific inhibition of BST-2 by HIV-1(NL4-3) Vpu is not characteristic of all HIV-1 Vpu proteins; some HIV-1 isolates encode a Vpu with a broader host range.

  2. Live, attenuated simian immunodeficiency virus vaccines elicit potent resistance against a challenge with a human immunodeficiency virus type 1 chimeric virus.

    PubMed Central

    Shibata, R; Siemon, C; Czajak, S C; Desrosiers, R C; Martin, M A

    1997-01-01

    Three rhesus macaques, previously immunized with SIVdelta3 or SIVdelta2, each an attenuated derivative of SIVmac239, and two naive monkeys were challenged with 30,000 50% tissue culture infective doses of SHIV, an SIV/human immunodeficiency virus type 1 (HIV-1) chimeric virus bearing the dual-tropic envelope of HIV-1DH12. By several criteria, including virus isolation, serological assays, and PCR (both DNA and reverse transcriptase), SHIV levels were reduced to barely detectable levels in the circulating blood of vaccinated animals. The resistant SIV-vaccinated macaques had no preexisting neutralizing antibodies directed against SHIV, nor did they produce neutralizing antibodies at any time over a 14-month observation period following SHIV challenge. Interestingly, SIV sequences, derived from the vaccine, could be amplified from numerous tissue samples collected at the conclusion of the experiment, 60 weeks postchallenge, but SHIV-specific sequences (viz., HIV-1 env) could not. These results demonstrate that live attenuated SIV vaccines provide strong long-term protection even against challenge strains with highly divergent envelope sequences. PMID:9343164

  3. Superior Efficacy of a Human Immunodeficiency Virus Vaccine Combined with Antiretroviral Prevention in Simian-Human Immunodeficiency Virus-Challenged Nonhuman Primates

    PubMed Central

    Le Grand, Roger; Dereuddre-Bosquet, Nathalie; Dispinseri, Stefania; Gosse, Leslie; Desjardins, Delphine; Shen, Xiaoying; Tolazzi, Monica; Ochsenbauer, Christina; Saidi, Hela; Tomaras, Georgia; Prague, Mélanie; Barnett, Susan W.; Thiebaut, Rodolphe; Scarlatti, Gabriella

    2016-01-01

    ABSTRACT Although vaccines and antiretroviral (ARV) prevention have demonstrated partial success against human immunodeficiency virus (HIV) infection in clinical trials, their combined introduction could provide more potent protection. Furthermore, combination approaches could ameliorate the potential increased risk of infection following vaccination in the absence of protective immunity. We used a nonhuman primate model to determine potential interactions of combining a partially effective ARV microbicide with an envelope-based vaccine. The vaccine alone provided no protection from infection following 12 consecutive low-dose intravaginal challenges with simian-HIV strain SF162P3, with more animals infected compared to naive controls. The microbicide alone provided a 68% reduction in the risk of infection relative to that of the vaccine group and a 45% reduction relative to that of naive controls. The vaccine-microbicide combination provided an 88% reduction in the per-exposure risk of infection relative to the vaccine alone and a 79% reduction relative to that of the controls. Protected animals in the vaccine-microbicide group were challenged a further 12 times in the absence of microbicide and demonstrated a 98% reduction in the risk of infection. A total risk reduction of 91% was observed in this group over 24 exposures (P = 0.004). These important findings suggest that combined implementation of new biomedical prevention strategies may provide significant gains in HIV prevention. IMPORTANCE There is a pressing need to maximize the impact of new biomedical prevention tools in the face of the 2 million HIV infections that occur each year. Combined implementation of complementary biomedical approaches could create additive or synergistic effects that drive improved reduction of HIV incidence. Therefore, we assessed a combination of an untested vaccine with an ARV-based microbicide in a nonhuman primate vaginal challenge model. The vaccine alone provided no

  4. A single amino acid substitution within the transmembrane domain of the human immunodeficiency virus type 1 Vpu protein renders simian-human immunodeficiency virus (SHIV{sub KU-1bMC33}) susceptible to rimantadine

    SciTech Connect

    Hout, David R.; Gomez, Lisa M.; Pacyniak, Erik; Miller, Jean-Marie; Hill, M. Sarah; Stephens, Edward B. . E-mail: estephen@kumc.edu

    2006-05-10

    Previous studies from our laboratory have shown that the transmembrane domain (TM) of the Vpu protein of human immunodeficiency virus type 1 (HIV-1) contributes to the pathogenesis of SHIV{sub KU-1bMC33} in macaques and that the TM domain of Vpu could be replaced with the M2 protein viroporin from influenza A virus. Recently, we showed that the replacement of the TM domain of Vpu with that of the M2 protein of influenza A virus resulted in a virus (SHIV{sub M2}) that was sensitive to rimantadine [Hout, D.R., Gomez, M.L., Pacyniak, E., Gomez, L.M., Inbody, S.H., Mulcahy, E.R., Culley, N., Pinson, D.M., Powers, M.F., Wong, S.W., Stephens, E.B., 2006. Substitution of the transmembrane domain of Vpu in simian human immunodeficiency virus (SHIV{sub KU-1bMC33}) with that of M2 of influenza A results in a virus that is sensitive to inhibitors of the M2 ion channel and is pathogenic for pig-tailed macaques. Virology 344, 541-558]. Based on previous studies of the M2 protein which have shown that the His-X-X-X-Trp motif within the M2 is essential to the function of the M2 proton channel, we have constructed a novel SHIV in which the alanine at position 19 of the TM domain was replaced with a histidine residue resulting in the motif His-Ile-Leu-Val-Trp. The SHIV{sub VpuA19H} replicated with similar kinetics as the parental SHIV{sub KU-1bMC33} and pulse-chase analysis revealed that the processing of viral proteins was similar to SHIV{sub KU-1bMC33}. This SHIV{sub VpuA19H} virus was found to be more sensitive to the M2 ion channel blocker rimantadine than SHIV{sub M2}. Electron microscopic examination of SHIV{sub VpuA19H}-infected cells treated with rimantadine revealed an accumulation of viral particles at the cell surface and within intracellular vesicles, which was similar to that previously observed to SHIV{sub M2}-infected cells treated with rimantadine. These data indicate that the Vpu protein of HIV-1 can be converted into a rimantadine-sensitive ion channel with the

  5. Suppressing active replication of a live attenuated simian immunodeficiency virus vaccine does not abrogate protection from challenge

    SciTech Connect

    Gabriel, Benjamin; Fiebig, Uwe; Hohn, Oliver; Plesker, Roland; Coulibaly, Cheick; Cichutek, Klaus; Mühlebach, Michael D.; Bannert, Norbert; Kurth, Reinhard; Norley, Stephen

    2016-02-15

    Although safety concerns preclude the use of live attenuated HIV vaccines in humans, they provide a useful system for identifying the elusive correlates of protective immunity in the SIV/macaque animal model. However, a number of pieces of evidence suggest that protection may result from prior occupancy of susceptible target cells by the vaccine virus rather than the immune response. To address this, we developed a Nef-deletion variant of an RT-SHIV whose active replication could be shut off by treatment with RT-inhibitors. Groups of macaques were inoculated with the ∆Nef-RT-SHIV and immune responses allowed to develop before antiretroviral treatment and subsequent challenge with wild-type SIVmac239. Vaccinated animals either resisted infection fully or significantly controlled the subsequent viremia. However, there was no difference between animals undergoing replication of the vaccine virus and those without. This strongly suggests that competition for available target cells does not play a role in protection. - Highlights: • A Nef-deleted RT-SHIV was used as a live attenuated vaccine in macaques. • Vaccine virus replication was shut down to investigate its role in protection. • Ongoing vaccine virus replication did not appear to be necessary for protection. • An analysis of T- and B-cell responses failed to identify a correlate of protection.

  6. Induction of Simian AIDS in Infant Rhesus Macaques Infected with CCR5- or CXCR4-Utilizing Simian-Human Immunodeficiency Viruses Is Associated with Distinct Lesions of the Thymus

    PubMed Central

    Reyes, R. A.; Canfield, Don R.; Esser, Ursula; Adamson, Lourdes A.; Brown, Charles R.; Cheng-Mayer, Cecilia; Gardner, Murray B.; Harouse, Janet M.; Luciw, Paul A.

    2004-01-01

    Newborn rhesus macaques were infected with two chimeric simian-human immunodeficiency virus (SHIV) strains which contain unique human immunodeficiency virus type 1 (HIV-1) env genes and exhibit distinct phenotypes. Infection with either the CCR5-specific SHIVSF162P3 or the CXCR4-utilizing SHIVSF33A resulted in clinical manifestations consistent with simian AIDS. Most prominent in this study was the detection of severe thymic involution in all SHIVSF33A-infected infants, which is very similar to HIV-1-induced thymic dysfunction in children who exhibit a rapid pattern of disease progression. In contrast, SHIVSF162P3 induced only a minor disruption in thymic morphology. Consistent with the distribution of the coreceptors CXCR4 and CCR5 within the thymus, the expression of SHIVSF162P3 was restricted to the thymic medulla, whereas SHIVSF33A was preferentially detected in the cortex. This dichotomy of tissue tropism is similar to the differential tropism of HIV-1 isolates observed in the reconstituted human thymus in SCID-hu mice. Accordingly, our results show that the SHIV-monkey model can be used for the molecular dissection of cell and tissue tropisms controlled by the HIV-1 env gene and for the analysis of mechanisms of viral immunopathogenesis in AIDS. Furthermore, these findings could help explain the rapid progression of disease observed in some HIV-1-infected children. PMID:14747577

  7. Simian-Human immunodeficiency viruses expressing chimeric subtype B/C Vpu proteins demonstrate the importance of the amino terminal and transmembrane domains in the rate of CD4(+) T cell loss in macaques.

    PubMed

    Ruiz, Autumn; Schmitt, Kimberly; Culley, Nathan; Stephens, Edward B

    2013-01-20

    Previously, we reported that simian-human immunodeficiency viruses expressing either the lab adapted subtype B (SHIV(KU-1bMC33)) or subtype C (SHIV(SCVpu)) Vpu proteins of human immunodeficiency virus type 1 (HIV-1) had different rates of CD4(+) T cell loss following inoculation into macaques. In this study, we have generated SHIVs that express either the subtype B or subtype C N-terminal (NTD) and transmembrane (TMD) domains and the opposing cytoplasmic domain (SHIV(VpuBC), SHIV(VpuCB)). In culture systems, SHIV(VpuBC) replicated faster than SHIV(VpuCB) while both proteins exhibited similar ability to down-modulate CD4 surface expression. Following inoculation into macaques, SHIV(VpuBC) resulted in rapid CD4(+) T cell loss similar to the parental SHIV(KU-1bMC33), while the rate of CD4(+) T cell loss in those inoculated with SHIV(VpuCB) was intermediate of SHIV(SCVpu) and SHIV(KU-1bMC33). These results emphasize the importance of the Vpu NTD/TMD region in the rate of CD4(+) T cell loss in the pathogenic X4 SHIV/macaque model.

  8. Antibody-Mediated Protection against Mucosal Simian-Human Immunodeficiency Virus Challenge of Macaques Immunized with Alphavirus Replicon Particles and Boosted with Trimeric Envelope Glycoprotein in MF59 Adjuvant▿

    PubMed Central

    Barnett, Susan W.; Burke, Brian; Sun, Yide; Kan, Elaine; Legg, Harold; Lian, Ying; Bost, Kristen; Zhou, Fengmin; Goodsell, Amanda; zur Megede, Jan; Polo, John; Donnelly, John; Ulmer, Jeffrey; Otten, Gillis R.; Miller, Christopher J.; Vajdy, Michael; Srivastava, Indresh K.

    2010-01-01

    We have previously shown that rhesus macaques were partially protected against high-dose intravenous challenge with simian-human immunodeficiency virus SHIVSF162P4 following sequential immunization with alphavirus replicon particles (VRP) of a chimeric recombinant VEE/SIN alphavirus (derived from Venezuelan equine encephalitis virus [VEE] and the Sindbis virus [SIN]) encoding human immunodeficiency virus type 1 HIV-1SF162 gp140ΔV2 envelope (Env) and trimeric Env protein in MF59 adjuvant (R. Xu, I. K. Srivastava, C. E. Greer, I. Zarkikh, Z. Kraft, L. Kuller, J. M. Polo, S. W. Barnett, and L. Stamatatos, AIDS Res. Hum. Retroviruses 22:1022-1030, 2006). The protection did not require T-cell immune responses directed toward simian immunodeficiency virus (SIV) Gag. We extend those findings here to demonstrate antibody-mediated protection against mucosal challenge in macaques using prime-boost regimens incorporating both intramuscular and mucosal routes of delivery. The macaques in the vaccination groups were primed with VRP and then boosted with Env protein in MF59 adjuvant, or they were given VRP intramuscular immunizations alone and then challenged with SHIVSF162P4 (intrarectal challenge). The results demonstrated that these vaccines were able to effectively protect the macaques to different degrees against subsequent mucosal SHIV challenge, but most noteworthy, all macaques that received the intramuscular VRP prime plus Env protein boost were completely protected. A statistically significant association was observed between the titer of virus neutralizing and binding antibodies as well as the avidity of anti-Env antibodies measured prechallenge and protection from infection. These results highlight the merit of the alphavirus replicon vector prime plus Env protein boost vaccine approach for the induction of protective antibody responses and are of particular relevance to advancing our understanding of the potential correlates of immune protection against HIV

  9. Antibody-mediated protection against mucosal simian-human immunodeficiency virus challenge of macaques immunized with alphavirus replicon particles and boosted with trimeric envelope glycoprotein in MF59 adjuvant.

    PubMed

    Barnett, Susan W; Burke, Brian; Sun, Yide; Kan, Elaine; Legg, Harold; Lian, Ying; Bost, Kristen; Zhou, Fengmin; Goodsell, Amanda; Zur Megede, Jan; Polo, John; Donnelly, John; Ulmer, Jeffrey; Otten, Gillis R; Miller, Christopher J; Vajdy, Michael; Srivastava, Indresh K

    2010-06-01

    We have previously shown that rhesus macaques were partially protected against high-dose intravenous challenge with simian-human immunodeficiency virus SHIV(SF162P4) following sequential immunization with alphavirus replicon particles (VRP) of a chimeric recombinant VEE/SIN alphavirus (derived from Venezuelan equine encephalitis virus [VEE] and the Sindbis virus [SIN]) encoding human immunodeficiency virus type 1 HIV-1(SF162) gp140DeltaV2 envelope (Env) and trimeric Env protein in MF59 adjuvant (R. Xu, I. K. Srivastava, C. E. Greer, I. Zarkikh, Z. Kraft, L. Kuller, J. M. Polo, S. W. Barnett, and L. Stamatatos, AIDS Res. Hum. Retroviruses 22:1022-1030, 2006). The protection did not require T-cell immune responses directed toward simian immunodeficiency virus (SIV) Gag. We extend those findings here to demonstrate antibody-mediated protection against mucosal challenge in macaques using prime-boost regimens incorporating both intramuscular and mucosal routes of delivery. The macaques in the vaccination groups were primed with VRP and then boosted with Env protein in MF59 adjuvant, or they were given VRP intramuscular immunizations alone and then challenged with SHIV(SF162P4) (intrarectal challenge). The results demonstrated that these vaccines were able to effectively protect the macaques to different degrees against subsequent mucosal SHIV challenge, but most noteworthy, all macaques that received the intramuscular VRP prime plus Env protein boost were completely protected. A statistically significant association was observed between the titer of virus neutralizing and binding antibodies as well as the avidity of anti-Env antibodies measured prechallenge and protection from infection. These results highlight the merit of the alphavirus replicon vector prime plus Env protein boost vaccine approach for the induction of protective antibody responses and are of particular relevance to advancing our understanding of the potential correlates of immune protection against

  10. Critical Role for Env as well as Gag-Pol in Control of a Simian-Human Immunodeficiency Virus 89.6P Challenge by a DNA Prime/Recombinant Modified Vaccinia Virus Ankara Vaccine

    PubMed Central

    Amara, Rama Rao; Smith, James M.; Staprans, Silvija I.; Montefiori, David C.; Villinger, Francois; Altman, John D.; O'Neil, Shawn P.; Kozyr, Natalia L.; Xu, Yan; Wyatt, Linda S.; Earl, Patricia L.; Herndon, James G.; McNicholl, Janet M.; McClure, Harold M.; Moss, Bernard; Robinson, Harriet L.

    2002-01-01

    Cellular immune responses against epitopes in conserved Gag and Pol sequences of human immunodeficiency virus type 1 have become popular targets for candidate AIDS vaccines. Recently, we used a simian-human immunodeficiency virus model (SHIV 89.6P) with macaques to demonstrate the control of a pathogenic mucosal challenge by priming with Gag-Pol-Env-expressing DNA and boosting with Gag-Pol-Env-expressing recombinant modified vaccinia virus Ankara (rMVA). Here we tested Gag-Pol DNA priming and Gag-Pol rMVA boosting to evaluate the contribution of anti-Env immune responses to viral control. The Gag-Pol vaccine raised frequencies of Gag-specific T cells similar to those raised by the Gag-Pol-Env vaccine. Following challenge, these rapidly expanded to counter the challenge infection. Despite this, the control of the SHIV 89.6P challenge was delayed and inconsistent in the Gag-Pol-vaccinated group and all of the animals underwent severe and, in most cases, sustained loss of CD4+ cells. Interestingly, most of the CD4+ cells that were lost in the Gag-Pol-vaccinated group were uninfected cells. We suggest that the rapid appearance of binding antibody for Env in Gag-Pol-Env-vaccinated animals helped protect uninfected CD4+ cells from Env-induced apoptosis. Our results highlight the importance of immune responses to Env, as well as to Gag-Pol, in the control of immunodeficiency virus challenges and the protection of CD4+ cells. PMID:12021347

  11. Development of Broadly Neutralizing Antibodies and Their Mapping by Monomeric gp120 in Human Immunodeficiency Virus Type 1-Infected Humans and Simian-Human Immunodeficiency Virus SHIVSF162P3N-Infected Macaques.

    PubMed

    Jia, Manxue; Lu, Hong; Markowitz, Martin; Cheng-Mayer, Cecilia; Wu, Xueling

    2016-04-01

    To improve our understanding of the similarities and differences between neutralizing antibodies elicited by simian-human immunodeficiency virus (SHIV)-infected rhesus macaques and human immunodeficiency virus type 1 (HIV-1)-infected humans, we examined the plasma of 13 viremic macaques infected with SHIVSF162P3Nand 85 HIV-1-infected humans with known times of infection. We identified 5 macaques (38%) from 1 to 2 years postinfection (p.i.) with broadly neutralizing antibodies (bnAbs) against tier 2 HIV-1. In comparison, only 2 out of 42 (5%) human plasma samples collected in a similar time frame of 1 to 3 years p.i. exhibited comparable neutralizing breadths and potencies, with the number increasing to 7 out of 21 (30%) after 3 years p.i. Plasma mapping with monomeric gp120 identified only 2 out of 9 humans and 2 out of 4 macaques that contained gp120-reactive neutralizing antibodies, indicating distinct specificities in these plasma samples, with most of them recognizing the envelope trimer (including gp41) rather than the gp120 monomer. Indeed, a total of 20 gp120-directed monoclonal antibodies (MAbs) isolated from a human subject (AD358) and a Chinese rhesus macaque (GB40) displayed no or limited neutralizing activity against tier 2 strains. These isolated MAbs, mapped to the CD4-binding site, the V3 loop, the inner domain, and the C5 region of gp120, revealed genetic similarity between the human and macaque immunoglobulin genes used to encode some V3-directed MAbs. These results also support the use of envelope trimer probes for efficient isolation of HIV-1 bnAbs. HIV-1 vaccine research can benefit from understanding the development of broadly neutralizing antibodies (bnAbs) in rhesus macaques, commonly used to assess vaccine immunogenicity and efficacy. Here, we examined 85 HIV-1-infected humans and 13 SHIVSF162P3N-infected macaques for bnAbs and found that, similar to HIV-1-infected humans, bnAbs in SHIV-infected macaques are also rare, but their development

  12. Generation of lineage-related, mucosally transmissible subtype C R5 simian-human immunodeficiency viruses capable of AIDS development, induction of neurological disease, and coreceptor switching in rhesus macaques.

    PubMed

    Ren, Wuze; Mumbauer, Alexandra; Gettie, Agegnehu; Seaman, Michael S; Russell-Lodrigue, Kasi; Blanchard, James; Westmoreland, Susan; Cheng-Mayer, Cecilia

    2013-06-01

    Most human immunodeficiency virus (HIV) transmissions are initiated with CCR5 (R5)-using viruses across mucosal surfaces, with the majority in regions where HIV type 1 (HIV-1) clade C predominates. Mucosally transmissible, highly replication competent, pathogenic R5 simian-human immunodeficiency viruses (SHIVs) encoding biologically relevant clade C envelopes are therefore needed as challenge viruses in vaccine efficacy studies with nonhuman primates. Here we describe the generation of three lineage-related subtype C SHIVs through four successive rapid transfers in rhesus macaques of SHIVC109F.PB4, a molecular clone expressing the soluble-CD4 (sCD4)-sensitive CCR5-tropic clade C envelope of a recently infected subject in Zambia. The viruses differed in their monkey passage histories and neutralization sensitivities but remained R5 tropic. SHIVC109P3 and SHIVC109P3N were recovered from a passage-3 rapid-progressor animal during chronic infection (24 weeks postinfection [wpi]) and at end-stage disease (34 wpi), respectively, and are classified as tier 1B strains, whereas SHIVC109P4 was recovered from a passage-4 normal-progressor macaque at 22 wpi and is a tier 2 virus, more difficult to neutralize. All three viruses were transmitted efficiently via intrarectal inoculation, reaching peak viral loads of 10(7) to 10(9) RNA copies/ml plasma and establishing viremia at various set points. Notably, one of seven (GC98) and two of six (CL31, FI08) SHIVC109P3- and SHIVC109P3N-infected macaques, respectively, progressed to AIDS, with neuropathologies observed in GC98 and FI08, as well as coreceptor switching in the latter. These findings support the use of these new SHIVC109F.PB4-derived viruses to study the immunopathology of HIV-1 clade C infection and to evaluate envelope-based AIDS vaccines in nonhuman primates.

  13. A combination microbicide gel protects macaques against vaginal simian human immunodeficiency virus-reverse transcriptase infection, but only partially reduces herpes simplex virus-2 infection after a single high-dose cochallenge.

    PubMed

    Hsu, Mayla; Aravantinou, Meropi; Menon, Radhika; Seidor, Samantha; Goldman, Daniel; Kenney, Jessica; Derby, Nina; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D; Fernández-Romero, Jose A; Zydowsky, Thomas M; Robbiani, Melissa

    2014-02-01

    Herpes simplex virus-2 (HSV-2) infection increases HIV susceptibility. We previously established a rhesus macaque model of vaginal HSV-2 preexposure followed by cochallenge with HSV-2 and simian/human immunodeficiency virus-reverse transcriptase (SHIV-RT). Using this model, we showed that a gel containing the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 in carrageenan (CG) reduced SHIV-RT infection. To evaluate the efficacy of new generation microbicides against both viruses, we first established dual infection after single vaginal cochallenge with SHIV-RT and HSV-2 in HSV-2-naive macaques. All animals (6/6) became HSV-2 infected, with 4/6 coinfected with SHIV-RT. In a control group cochallenged with SHIV-RT and UV-inactivated HSV-2, 2/4 became SHIV-RT infected, and none had detectable HSV-2. Low-level HSV-2-specific antibody and T cell responses were detected in some HSV-2-infected animals. To test a CG gel containing MIV-150 and zinc acetate (MZC), which provided naive animals full protection from SHIV-RT for at least 8 h, MZC (vs. CG) was applied daily for 14 days followed by cochallenge 8 h later. MZC prevented SHIV-RT infection (0/9 infected, p=0.04 vs. 3/6 in CG controls), but only reduced HSV-2 infection by 20% (6/9 infected vs. 5/6 in CG, p=0.6). In HSV-2-infected animals, none of the gel-treated animals seroconverted, and only the CG controls had measurable HSV-2-specific T cell responses. This study shows the promise of MZC to prevent immunodeficiency virus infection (even in the presence of HSV-2) and reduce HSV-2 infection after exposure to a high-dose inoculum. Additionally, it demonstrates the potential of a macaque coinfection model to evaluate broad-spectrum microbicides.

  14. A Combination Microbicide Gel Protects Macaques Against Vaginal Simian Human Immunodeficiency Virus-Reverse Transcriptase Infection, But Only Partially Reduces Herpes Simplex Virus-2 Infection After a Single High-Dose Cochallenge

    PubMed Central

    Hsu, Mayla; Aravantinou, Meropi; Menon, Radhika; Seidor, Samantha; Goldman, Daniel; Kenney, Jessica; Derby, Nina; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D.; Fernández-Romero, Jose A.; Zydowsky, Thomas M.

    2014-01-01

    Abstract Herpes simplex virus-2 (HSV-2) infection increases HIV susceptibility. We previously established a rhesus macaque model of vaginal HSV-2 preexposure followed by cochallenge with HSV-2 and simian/human immunodeficiency virus-reverse transcriptase (SHIV-RT). Using this model, we showed that a gel containing the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 in carrageenan (CG) reduced SHIV-RT infection. To evaluate the efficacy of new generation microbicides against both viruses, we first established dual infection after single vaginal cochallenge with SHIV-RT and HSV-2 in HSV-2-naive macaques. All animals (6/6) became HSV-2 infected, with 4/6 coinfected with SHIV-RT. In a control group cochallenged with SHIV-RT and UV-inactivated HSV-2, 2/4 became SHIV-RT infected, and none had detectable HSV-2. Low-level HSV-2-specific antibody and T cell responses were detected in some HSV-2-infected animals. To test a CG gel containing MIV-150 and zinc acetate (MZC), which provided naive animals full protection from SHIV-RT for at least 8 h, MZC (vs. CG) was applied daily for 14 days followed by cochallenge 8 h later. MZC prevented SHIV-RT infection (0/9 infected, p=0.04 vs. 3/6 in CG controls), but only reduced HSV-2 infection by 20% (6/9 infected vs. 5/6 in CG, p=0.6). In HSV-2-infected animals, none of the gel-treated animals seroconverted, and only the CG controls had measurable HSV-2-specific T cell responses. This study shows the promise of MZC to prevent immunodeficiency virus infection (even in the presence of HSV-2) and reduce HSV-2 infection after exposure to a high-dose inoculum. Additionally, it demonstrates the potential of a macaque coinfection model to evaluate broad-spectrum microbicides. PMID:24117013

  15. Trivalent live attenuated influenza-simian immunodeficiency virus vaccines: efficacy and evolution of cytotoxic T lymphocyte escape in macaques.

    PubMed

    Reece, Jeanette C; Alcantara, Sheilajen; Gooneratne, Shayarana; Jegaskanda, Sinthujan; Amaresena, Thakshila; Fernandez, Caroline S; Laurie, Karen; Hurt, Aeron; O'Connor, Shelby L; Harris, Max; Petravic, Janka; Martyushev, Alexey; Grimm, Andrew; Davenport, Miles P; Stambas, John; De Rose, Robert; Kent, Stephen J

    2013-04-01

    There is an urgent need for a human immunodeficiency virus (HIV) vaccine that induces robust mucosal immunity. CD8(+) cytotoxic T lymphocytes (CTLs) apply substantial antiviral pressure, but CTLs to individual epitopes select for immune escape variants in both HIV in humans and SIV in macaques. Inducing multiple simian immunodeficiency virus (SIV)-specific CTLs may assist in controlling viremia. We vaccinated 10 Mane-A1*08401(+) female pigtail macaques with recombinant influenza viruses expressing three Mane-A1*08401-restricted SIV-specific CTL epitopes and subsequently challenged the animals, along with five controls, intravaginally with SIV(mac251). Seroconversion to the influenza virus vector resulted and small, but detectable, SIV-specific CTL responses were induced. There was a boost in CTL responses after challenge but no protection from high-level viremia or CD4 depletion was observed. All three CTL epitopes underwent a coordinated pattern of immune escape during early SIV infection. CTL escape was more rapid in the vaccinees than in the controls at the more dominant CTL epitopes. Although CTL escape can incur a "fitness" cost to the virus, a putative compensatory mutation 20 amino acids upstream from an immunodominant Gag CTL epitope also evolved soon after the primary CTL escape mutation. We conclude that vaccines based only on CTL epitopes will likely be undermined by rapid evolution of both CTL escape and compensatory mutations. More potent and possibly broader immune responses may be required to protect pigtail macaques from SIV.

  16. A Single Dose of a MIV-150/Zinc Acetate Gel Provides 24 h of Protection Against Vaginal Simian Human Immunodeficiency Virus Reverse Transcriptase Infection, with More Limited Protection Rectally 8–24 h After Gel Use

    PubMed Central

    Kenney, Jessica; Singer, Rachel; Derby, Nina; Aravantinou, Meropi; Abraham, Ciby J.; Menon, Radhika; Seidor, Samantha; Zhang, Shimin; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D.; Fernández-Romero, José A.; Zydowsky, Thomas M.

    2012-01-01

    Abstract Previously we showed that repeated vaginal application of a MIV-150/zinc acetate carrageenan (MIV-150/ZA/CG) gel and a zinc acetate carrageenan (ZA/CG) gel significantly protected macaques from vaginal simian human immunodeficiency virus reverse transcriptase (SHIV-RT) infection. Gels were applied either daily for 2 weeks or every other day for 4 weeks, and the animals were challenged 4–24 h later. Herein, we examined the effects of a single vaginal dose administered either before or after virus challenge. Encouraged by the vaginal protection seen with MIV-150/ZA/CG, we also tested it rectally. Vaginal applications of MIV-150/ZA/CG, ZA/CG, and CG gel were performed once 8–24 h before, 1 h after, or 24 h before and 1 h after vaginal challenge. Rectal applications of MIV-150/ZA/CG and CG gel were performed once 8 or 24 h before rectal challenge. While vaginal pre-challenge and pre/post-challenge application of MIV-150/ZA/CG gel offered significant protection (88%, p<0.002), post-challenge application alone did not significantly protect. ZA/CG gel reduced infection prechallenge, but not significantly, and the effect was completely lost post-challenge. Rectal application of MIV-150/ZA/CG gel afforded limited protection against rectal challenge when applied 8–24 h before challenge. Thus, MIV-150/ZA/CG gel is a highly effective vaginal microbicide that demonstrates 24 h of protection from vaginal infection and may demonstrate efficacy against rectal infection when given close to the time of HIV exposure. PMID:22737981

  17. Peru-15 (Choleragarde(®)), a live attenuated oral cholera vaccine, is safe and immunogenic in human immunodeficiency virus (HIV)-seropositive adults in Thailand.

    PubMed

    Ratanasuwan, W; Kim, Y H; Sah, B K; Suwanagool, S; Kim, D R; Anekthananon, A; Lopez, A L; Techasathit, W; Grahek, S L; Clemens, J D; Wierzba, T F

    2015-09-11

    Many areas with endemic and epidemic cholera report significant levels of HIV transmission. According to the World Health Organization (WHO), over 95% of reported cholera cases occur in Africa, which also accounts for nearly 70% of people living with HIV/AIDS globally. Peru-15, a promising single dose live attenuated oral cholera vaccine (LA-OCV), was previously found to be safe and immunogenic in cholera endemic areas. However, no data on the vaccine's safety among HIV-seropositive adults had been collected. This study was a double-blinded, individually randomized, placebo-controlled trial enrolling HIV-seropositive adults, 18-45 years of age, conducted in Bangkok, Thailand, to assess the safety of Peru-15 in a HIV-seropositive cohort. 32 HIV infected subjects were randomized to receive either a single oral dose of the Peru-15 vaccine with a buffer or a placebo (buffer only). No serious adverse events were reported during the follow-up period in either group. The geometric mean fold (GMF) rise in V. cholerae O1 El Tor specific antibody titers between baseline and 7 days after dosing was 32.0 (p<0.001) in the vaccine group compared to 1.6 (p<0.14) in the placebo group. Among the 16 vaccinees,14 vaccinees (87.5%) had seroconversion compared to 1 of 16 placebo recipients (6.3%). V. cholerae was isolated from the stool of one vaccinee, and found to be genetically identical to the Peru-15 vaccine strain. There were no significant changes in HIV viral load or CD4 T-cell counts between vaccine and placebo groups. Peru-15 was shown to be safe and immunogenic in HIV-seropositive Thai adults. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Vaccine Protection by Live, Attenuated Simian Immunodeficiency Virus in the Absence of High-Titer Antibody Responses and High-Frequency Cellular Immune Responses Measurable in the Periphery▿

    PubMed Central

    Mansfield, Keith; Lang, Sabine M.; Gauduin, Marie-Claire; Sanford, Hannah B.; Lifson, Jeffrey D.; Johnson, R. Paul; Desrosiers, Ronald C.

    2008-01-01

    An attenuated derivative of simian immunodeficiency virus strain 239 deleted of V1-V2 sequences in the envelope gene (SIV239ΔV1-V2) was used for vaccine/challenge experiments in rhesus monkeys. Peak levels of viral RNA in plasma of 104 to 106.5 copies/ml in the weeks immediately following inoculation of SIV239ΔV1-V2 were 10- to 1,000-fold lower than those observed with parental SIV239 (∼107.3 copies/ml). Viral loads consistently remained below 200 copies/ml after 8 weeks of infection by the attenuated SIV239ΔV1-V2 strain. Viral localization experiments revealed large numbers of infected cells within organized lymphoid nodules of the colonic gut-associated lymphoid tissue at 14 days; double-labeling experiments indicated that 93.5% of the virally infected cells at this site were positive for the macrophage marker CD68. Cellular and humoral immune responses measured principally by gamma interferon enzyme-linked immunospot and neutralization assays were variable in the five vaccinated monkeys. One monkey had responses in these assays comparable to or only slightly less than those observed in monkeys infected with parental, wild-type SIV239. Four of the vaccinated monkeys, however, had low, marginal, or undetectable responses in these same assays. These five vaccinated monkeys and three naïve control monkeys were subsequently challenged intravenously with wild-type SIV239. Three of the five vaccinated monkeys, including the one with strong anti-SIV immune responses, were strongly protected against the challenge on the basis of viral load measurements. Surprisingly, two of the vaccinated monkeys were strongly protected against SIV239 challenge despite the presence of cellular anti-SIV responses of low-frequency and low-titer anti-SIV antibody responses. These results indicate that high-titer anti-SIV antibody responses and high-frequency anti-SIV cellular immune responses measurable by standard assays from the peripheral blood are not needed to achieve strong

  19. A simian-human immunodeficiency virus carrying the rt gene from Chinese CRF01_AE strain of HIV is sensitive to nucleoside reverse transcriptase inhibitors and has a highly genetic stability in vivo.

    PubMed

    Wang, Wei; Yao, Nan; Ju, Bin; Dong, Zhihui; Cong, Zhe; Jiang, Hong; Qin, Chuan; Wei, Qiang

    2014-06-01

    Human immunodeficiency virus (HIV)-1 subtype CRF01_AE is one of the major HIV-1 subtypes that dominate the global epidemic. However, its drug resistance, associated mutations, and viral fitness have not been systemically studied, because available chimeric simian-HIVs (SHIVs) usually express the HIV-1 reverse transcriptase (rt) gene of subtype B HIV-1, which is different from subtype CRF01_AE HIV-1. In this study, a recombinant plasmid, pRT-SHIV/AE, was constructed to generate a chimeric RT-SHIV/AE by replacing the rt gene of simian immunodeficiency virus (SIVmac239) with the counterpart of Chinese HIV-1 subtype CRF01_AE. The infectivity, replication capacity, co-receptor tropism, drug sensitivity, and genetic stability of RT-SHIV/AE were characterized. The new chimeric RT-SHIV/AE effectively infected and replicated in human T cell line and rhesus peripheral blood mononuclear cells (rhPBMC). The rt gene of RT-SHIV/AE lacked the common mutation (T215I) associated with drug resistance. RT-SHIV-AE retained infectivity and immunogenicity, similar to that of its counterpart RT-SHIV/TC virus following intravenous inoculation in Chinese rhesus macaque. RT-SHIV-AE was more sensitive to nucleoside reverse transcriptase inhibitors (NRTIs) than the RT-SHIV/TC. RT-SHIV/AE was genetically stable in Chinese rhesus macaque. The new chimeric RT-SHIV/AE may be a valuable tool for evaluating the efficacy of the rt-based antiviral drugs against the subtype CRF01_AE HIV-1.

  20. Different Patterns of Immune Responses but Similar Control of a Simian-Human Immunodeficiency Virus 89.6P Mucosal Challenge by Modified Vaccinia Virus Ankara (MVA) and DNA/MVA Vaccines

    PubMed Central

    Amara, Rama Rao; Villinger, Francois; Staprans, Silvija I.; Altman, John D.; Montefiori, David C.; Kozyr, Natalia L.; Xu, Yan; Wyatt, Linda S.; Earl, Patricia L.; Herndon, James G.; McClure, Harold M.; Moss, Bernard; Robinson, Harriet L.

    2002-01-01

    Recently we demonstrated the control of a mucosal challenge with a pathogenic chimera of simian and human immunodeficiency virus (SHIV-89.6P) by priming with a Gag-Pol-Env-expressing DNA and boosting with a Gag-Pol-Env-expressing recombinant modified vaccinia virus Ankara (DNA/MVA) vaccine. Here we evaluate the ability of the MVA component of this vaccine to serve as both a prime and a boost for an AIDS vaccine. The same immunization schedule, MVA dose, and challenge conditions were used as in the prior DNA/MVA vaccine trial. Compared to the DNA/MVA vaccine, the MVA-only vaccine raised less than 1/10 the number of vaccine-specific T cells but 10-fold-higher titers of binding antibody for Env. Postchallenge, the animals vaccinated with MVA alone increased their CD8 cell numbers to levels that were similar to those seen in DNA/MVA-vaccinated animals. However, they underwent a slower emergence and contraction of antiviral CD8 T cells and were slower to generate neutralizing antibodies than the DNA/MVA-vaccinated animals. Despite this, by 5 weeks postchallenge, the MVA-only-vaccinated animals had achieved as good control of the viral infection as the DNA/MVA group, a situation that has held up to the present time in the trial (48 weeks postchallenge). Thus, MVA vaccines, as well as DNA/MVA vaccines, merit further evaluation for their ability to control the current AIDS pandemic. PMID:12097576

  1. Substitution of the transmembrane domain of Vpu in simian-human immunodeficiency virus (SHIV{sub KU1bMC33}) with that of M2 of influenza A results in a virus that is sensitive to inhibitors of the M2 ion channel and is pathogenic for pig-tailed macaques

    SciTech Connect

    Hout, David R.; Gomez, Melissa L.; Pacyniak, Erik; Gomez, Lisa M.; Fegley, Barbara; Mulcahy, Ellyn R.; Hill, M. Sarah; Culley, Nathan; Pinson, David M.; Nothnick, Warren; Powers, Michael F.; Wong, Scott W.; Stephens, Edward B. . E-mail: estephen@kumc.edu

    2006-01-20

    The Vpu protein of human immunodeficiency virus type 1 has been shown to shunt the CD4 receptor molecule to the proteasome for degradation and to enhance virus release from infected cells. The exact mechanism by which the Vpu protein enhances virus release is currently unknown but some investigators have shown that this function is associated with the transmembrane domain and potential ion channel properties. In this study, we determined if the transmembrane domain of Vpu could be functionally substituted with that of the prototypical viroporin, the M2 protein of influenza A virus. We constructed chimeric vpu gene in which the transmembrane domain of Vpu was replaced with that of the M2 protein of influenza. This chimeric vpu gene was substituted for the vpu gene in the genome of a pathogenic simian human immunodeficiency virus, SHIV{sub KU-1bMC33}. The resulting virus, SHIV{sub M2}, synthesized a Vpu protein that had a slightly different M{sub r} compared to the parental SHIV{sub KU-1bMC33}, reflecting the different sizes of the two Vpu proteins. The SHIV{sub M2} was shown to replicate with slightly reduced kinetics when compared to the parental SHIV{sub KU-1bMC33} but electron microscopy revealed that the site of maturation was similar to the parental virus SHIV{sub KU1bMC33}. We show that the replication and spread of SHIV{sub M2} could be blocked with the antiviral drug rimantadine, which is known to target the M2 ion channel. Our results indicate a dose dependent inhibition of SHIV{sub M2} with 100 {mu}M rimantadine resulting in a >95% decrease in p27 released into the culture medium. Rimantadine did not affect the replication of the parental SHIV{sub KU-1bMC33}. Examination of SHIV{sub M2}-infected cells treated with 50 {mu}M rimantadine revealed numerous viral particles associated with the cell plasma membrane and within intracytoplasmic vesicles, which is similar to HIV-1 mutants lacking a functional vpu. To determine if SHIV{sub M2} was as pathogenic as

  2. Live attenuated vaccines against pertussis.

    PubMed

    Locht, Camille; Mielcarek, Nathalie

    2014-09-01

    The intensive use of pertussis vaccines has dramatically reduced the incidence of whooping cough during the 20th century. However, recent outbreaks in countries with high vaccination coverage illustrate the shortcomings of current vaccination regimens, and immunity induced by the most recent, acellular vaccines wanes much faster than anticipated. As an alternative, live attenuated vaccine candidates have recently been developed in order to mimic natural infection, which induces long-lasting immunity. One of them has successfully completed a Phase I trial in humans and is now undergoing further product and clinical developments. This article describes the development of such vaccines, discusses their advantages over existing vaccines and their interesting bystander properties as powerful anti-inflammatory agents, which widens their potential use far beyond that for protection against whooping cough.

  3. Controlling Multicycle Replication of Live-Attenuated HIV-1 Using an Unnatural Genetic Switch.

    PubMed

    Yuan, Zhe; Wang, Nanxi; Kang, Guobin; Niu, Wei; Li, Qingsheng; Guo, Jiantao

    2017-04-21

    A safe and effective human immunodeficiency virus type 1 (HIV-1) vaccine is urgently needed, but remains elusive. While HIV-1 live-attenuated vaccine can provide potent protection as demonstrated in rhesus macaque-simian immunodeficiency virus model, the potential pathogenic consequences associated with the uncontrolled virus replication preclude such vaccine from clinical applications. We investigated a novel approach to address this problem by controlling live-attenuated HIV-1 replication through an unnatural genetic switch that was based on the amber suppression strategy. Here we report the construction of all-in-one live-attenuated HIV-1 mutants that contain genomic copy of the amber suppression system. This genetic modification resulted in viruses that were capable of multicycle replication in vitro and could be switched on and off using an unnatural amino acid as the cue. This stand-alone, replication-controllable attenuated HIV-1 virus represents an important step toward the generation of a safe and efficacious live-attenuated HIV-1 vaccine. The strategy reported in this work can be adopted for the development of other live-attenuated vaccines.

  4. Vaccination of rhesus macaques with a vif-deleted simian immunodeficiency virus proviral DNA vaccine

    SciTech Connect

    Sparger, Ellen E. Dubie, Robert A.; Shacklett, Barbara L.; Cole, Kelly S.; Chang, W.L.; Luciw, Paul A.

    2008-05-10

    Studies in non-human primates, with simian immunodeficiency virus (SIV) and simian/human immunodeficiency virus (SHIV) have demonstrated that live-attenuated viral vaccines are highly effective; however these vaccine viruses maintain a low level of pathogenicity. Lentivirus attenuation associated with deletion of the viral vif gene carries a significantly reduced risk for pathogenicity, while retaining the potential for virus replication of low magnitude in the host. This report describes a vif-deleted simian immunodeficiency virus (SIV)mac239 provirus that was tested as an attenuated proviral DNA vaccine by inoculation of female rhesus macaques. SIV-specific interferon-{gamma} enzyme-linked immunospot responses of low magnitude were observed after immunization with plasmid containing the vif-deleted SIV provirus. However, vaccinated animals displayed strong sustained virus-specific T cell proliferative responses and increasing antiviral antibody titers. These immune responses suggested either persistent vaccine plasmid expression or low level replication of vif-deleted SIV in the host. Immunized and unvaccinated macaques received a single high dose vaginal challenge with pathogenic SIVmac251. A transient suppression of challenge virus load and a greater median survival time was observed for vaccinated animals. However, virus loads for vaccinated and unvaccinated macaques were comparable by twenty weeks after challenge and overall survival curves for the two groups were not significantly different. Thus, a vif-deleted SIVmac239 proviral DNA vaccine is immunogenic and capable of inducing a transient suppression of pathogenic challenge virus, despite severe attenuation of the vaccine virus.

  5. Live attenuated vaccines for invasive Salmonella infections.

    PubMed

    Tennant, Sharon M; Levine, Myron M

    2015-06-19

    Salmonella enterica serovar Typhi produces significant morbidity and mortality worldwide despite the fact that there are licensed Salmonella Typhi vaccines available. This is primarily due to the fact that these vaccines are not used in the countries that most need them. There is growing recognition that an effective invasive Salmonella vaccine formulation must also prevent infection due to other Salmonella serovars. We anticipate that a multivalent vaccine that targets the following serovars will be needed to control invasive Salmonella infections worldwide: Salmonella Typhi, Salmonella Paratyphi A, Salmonella Paratyphi B (currently uncommon but may become dominant again), Salmonella Typhimurium, Salmonella Enteritidis and Salmonella Choleraesuis (as well as other Group C Salmonella). Live attenuated vaccines are an attractive vaccine formulation for use in developing as well as developed countries. Here, we describe the methods of attenuation that have been used to date to create live attenuated Salmonella vaccines and provide an update on the progress that has been made on these vaccines.

  6. Live attenuated vaccines for invasive Salmonella infections

    PubMed Central

    Tennant, Sharon M.; Levine, Myron M.

    2015-01-01

    Salmonella enterica serovar Typhi produces significant morbidity and mortality worldwide despite the fact that there are licensed S. Typhi vaccines available. This is primarily due to the fact that these vaccines are not used in the countries that most need them. There is growing recognition that an effective invasive Salmonella vaccine formulation must also prevent infection due to other Salmonella serovars. We anticipate that a multivalent vaccine that targets the following serovars will be needed to control invasive Salmonella infections worldwide: S. Typhi, S. Paratyphi A, S. Paratyphi B (currently uncommon but may become dominant again), S. Typhimurium, S. Enteritidis and S. Choleraesuis (as well as other Group C Salmonella). Live attenuated vaccines are an attractive vaccine formulation for use in developing as well as developed countries. Here, we describe the methods of attenuation that have been used to date to create live attenuated Salmonella vaccines and provide an update on the progress that has been made on these vaccines. PMID:25902362

  7. Immunity and protection by live attenuated HIV/SIV vaccines

    PubMed Central

    Wodarz, Dominik

    2008-01-01

    Live attenuated virus vaccines have shown the greatest potential to protect against simian immunodeficiency virus (SIV) infection, a model for human immunodeficiency virus (HIV). Immunity against the vaccine virus is thought to mediate protection. However, it is shown computationally that the opposite might be true. According to the model, the initial growth of the challenge strain, its peak load, and its potential to be pathogenic is higher if immunity against the vaccine virus is stronger. This is because the initial growth of the challenge strain is mainly determined by virus competition rather than immune suppression. The stronger the immunity against the vaccine strain, the weaker its competitive ability relative to the challenge strain, and the lower the level of protection. If the vaccine virus does protect the host against a challenge, it is because the competitive interactions between the viruses inhibit the initial growth of the challenge strain. According to these arguments, an inverse correlation between the level of attenuation and the level of protection is expected, and this has indeed been observed in experimental data. PMID:18586297

  8. Brucellosis: the case for live, attenuated vaccines.

    PubMed

    Ficht, Thomas A; Kahl-McDonagh, Melissa M; Arenas-Gamboa, Angela M; Rice-Ficht, Allison C

    2009-11-05

    The successful control of animal brucellosis and associated reduction in human exposure has limited the development of human brucellosis vaccines. However, the potential use of Brucella in bioterrorism or biowarfare suggests that direct intervention strategies are warranted. Although the dominant approach has explored the use of live attenuated vaccines, side effects associated with their use has prevented widespread use in humans. Development of live, attenuated Brucella vaccines that are safe for use in humans has focused on the deletion of important genes required for survival. However, the enhanced safety of deletion mutants is most often associated with reduced efficacy. For this reason recent efforts have sought to combine the optimal features of a attenuated live vaccine that is safe, free of side effects and efficacious in humans with enhanced immune stimulation through microencapsulation. The competitive advantages and innovations of this approach are: (1) use of highly attenuated, safe, gene knockout, live Brucella mutants; (2) manufacturing with unique disposable closed system technologies, and (3) oral/intranasal delivery in a novel microencapsulation-mediated controlled release formula to optimally provide the long term mucosal immunostimulation required for protective immunity. Based upon preliminary data, it is postulated that such vaccine delivery systems can be storage stable, administered orally or intranasally, and generally applicable to a number of agents.

  9. Immune responses after live attenuated influenza vaccination.

    PubMed

    Mohn, Kristin G-I; Smith, Ingrid; Sjursen, Haakon; Cox, Rebecca

    2017-09-21

    Since 2003 (US) and 2012 (Europe) the live attenuated influenza vaccine (LAIV) has been used as an alternative to the traditional inactivated influenza vaccines (IIV). The immune responses elicted by LAIV mimic natural infection and have been found to provide broader clinical protection in children compared to the IIVs. However, our knowledge of the detailed immunological mechanisims induced by LAIV remain to be fully elucidated, and despite 14 years on the global market, there exists no correlate of protection. Recently, matters are further complicated by differing efficacy data from the US and Europe which are not understood. Better understanding of the immune responses after LAIV may aid in achieving the ultimate goal of a future "universal influenza vaccine". In this review we aim to cover the current understanding of the immune responses induced after LAIV.

  10. Envelope exchange for the generation of live-attenuated arenavirus vaccines.

    PubMed

    Bergthaler, Andreas; Gerber, Nicolas U; Merkler, Doron; Horvath, Edit; de la Torre, Juan Carlos; Pinschewer, Daniel D

    2006-06-01

    Arenaviruses such as Lassa fever virus cause significant mortality in endemic areas and represent potential bioterrorist weapons. The occurrence of arenaviral hemorrhagic fevers is largely confined to Third World countries with a limited medical infrastructure, and therefore live-attenuated vaccines have long been sought as a method of choice for prevention. Yet their rational design and engineering have been thwarted by technical limitations. In addition, viral genes had not been identified that are needed to cause disease but can be deleted or substituted to generate live-attenuated vaccine strains. Lymphocytic choriomeningitis virus, the prototype arenavirus, induces cell-mediated immunity against Lassa fever virus, but its safety for humans is unclear and untested. Using this virus model, we have developed the necessary methodology to efficiently modify arenavirus genomes and have exploited these techniques to identify an arenaviral Achilles' heel suitable for targeting in vaccine design. Reverse genetic exchange of the viral glycoprotein for foreign glycoproteins created attenuated vaccine strains that remained viable although unable to cause disease in infected mice. This phenotype remained stable even after extensive propagation in immunodeficient hosts. Nevertheless, the engineered viruses induced T cell-mediated immunity protecting against overwhelming systemic infection and severe liver disease upon wild-type virus challenge. Protection was established within 3 to 7 d after immunization and lasted for approximately 300 d. The identification of an arenaviral Achilles' heel demonstrates that the reverse genetic engineering of live-attenuated arenavirus vaccines is feasible. Moreover, our findings offer lymphocytic choriomeningitis virus or other arenaviruses expressing foreign glycoproteins as promising live-attenuated arenavirus vaccine candidates.

  11. DNA-launched live-attenuated vaccines for biodefense applications.

    PubMed

    Pushko, Peter; Lukashevich, Igor S; Weaver, Scott C; Tretyakova, Irina

    2016-09-01

    A novel vaccine platform uses DNA immunization to launch live-attenuated virus vaccines in vivo. This technology has been applied for vaccine development against positive-strand RNA viruses with global public health impact including alphaviruses and flaviviruses. The DNA-launched vaccine represents the recombinant plasmid that encodes the full-length genomic RNA of live-attenuated virus downstream from a eukaryotic promoter. When administered in vivo, the genomic RNA of live-attenuated virus is transcribed. The RNA initiates limited replication of a genetically defined, live-attenuated vaccine virus in the tissues of the vaccine recipient, thereby inducing a protective immune response. This platform combines the strengths of reverse genetics, DNA immunization and the advantages of live-attenuated vaccines, resulting in a reduced chance of genetic reversions, increased safety, and improved immunization. With this vaccine technology, the field of DNA vaccines is expanded from those that express subunit antigens to include a novel type of DNA vaccines that launch live-attenuated viruses.

  12. DNA-launched live-attenuated vaccines for biodefense applications

    PubMed Central

    Pushko, Peter; Lukashevich, Igor S.; Weaver, Scott C.; Tretyakova, Irina

    2016-01-01

    Summary A novel vaccine platform uses DNA immunization to launch live-attenuated virus vaccines in vivo. This technology has been applied for vaccine development against positive-strand RNA viruses with global public health impact including alphaviruses and flaviviruses. The DNA-launched vaccine represents the recombinant plasmid that encodes the full-length genomic RNA of live-attenuated virus downstream from a eukaryotic promoter. When administered in vivo, the genomic RNA of live-attenuated virus is transcribed. The RNA initiates limited replication of a genetically defined, live-attenuated vaccine virus in the tissues of the vaccine recipient, thereby inducing a protective immune response. This platform combines the strengths of reverse genetics, DNA immunization and the advantages of live-attenuated vaccines, resulting in a reduced chance of genetic reversions, increased safety, and improved immunization. With this vaccine technology, the field of DNA vaccines is expanded from those that express subunit antigens to include a novel type of DNA vaccines that launch live-attenuated viruses. PMID:27055100

  13. Urgent challenges in implementing live attenuated influenza vaccine.

    PubMed

    Singanayagam, Anika; Zambon, Maria; Lalvani, Ajit; Barclay, Wendy

    2017-08-02

    Conflicting reports have emerged about the effectiveness of the live attenuated influenza vaccine. The live attenuated influenza vaccine appears to protect particularly poorly against currently circulating H1N1 viruses that are derived from the 2009 pandemic H1N1 viruses. During the 2015-16 influenza season, when pandemic H1N1 was the predominant virus, studies from the USA reported a complete lack of effectiveness of the live vaccine in children. This finding led to a crucial decision in the USA to recommend that the live vaccine not be used in 2016-17 and to switch to the inactivated influenza vaccine. Other countries, including the UK, Canada, and Finland, however, have continued to recommend the use of the live vaccine. This policy divergence and uncertainty has far reaching implications for the entire global community, given the importance of the production capabilities of the live attenuated influenza vaccine for pandemic preparedness. In this Personal View, we discuss possible explanations for the observed reduced effectiveness of the live attenuated influenza vaccine and highlight the underpinning scientific questions. Further research to understand the reasons for these observations is essential to enable informed public health policy and commercial decisions about vaccine production and development in coming years. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Human Immunodeficiency Virus (HIV) Research (AIDS)

    DTIC Science & Technology

    1993-07-15

    human TO cells, but peak expression was only 1 /10- 1 /100th that of human cells. Semi-quantitative PCR analyses indicated that the low virus expression... human TO cells, but peak expression was only 1 /101/100th that of human cells. Semi-quantitative PCR analyses indicated that the low virus expression...vaccine development, t~e study of selected simian- human immunodeficiency virus (SHIV) chiaeric viruses ; the refinement of diagnostic strategies for

  15. Molecular basis of live-attenuated influenza virus.

    PubMed

    He, Wen; Wang, Wei; Han, Huamin; Wang, Lei; Zhang, Ge; Gao, Bin

    2013-01-01

    Human influenza is a seasonal disease associated with significant morbidity and mortality. The most effective means for controlling infection and thereby reducing morbidity and mortality is vaccination with a three inactivated influenza virus strains mixture, or by intranasal administration of a group of three different live attenuated influenza vaccine strains. Comparing to the inactivated vaccine, the attenuated live viruses allow better elicitation of a long-lasting and broader immune (humoral and cellular) response that represents a naturally occurring transient infection. The cold-adapted (ca) influenza A/AA/6/60 (H2N2) (AA ca) virus is the backbone for the live attenuated trivalent seasonal influenza vaccine licensed in the United States. Similarly, the influenza A components of live-attenuated vaccines used in Russia have been prepared as reassortants of the cold-adapted (ca) H2N2 viruses, A/Leningrad/134/17/57-ca (Len/17) and A/Leningrad/134/47/57-ca (Len/47) along with virulent epidemic strains. However, the mechanism of temperature-sensitive attenuation is largely elusive. To understand how modification at genetic level of influenza virus would result in attenuation of human influenza virus A/PR/8/34 (H1N1,A/PR8), we investigated the involvement of key mutations in the PB1 and/or PB2 genes in attenuation of influenza virus in vitro and in vivo. We have demonstrated that a few of residues in PB1 and PB2 are critical for the phenotypes of live attenuated, temperature sensitive influenza viruses by minigenome assay and real-time PCR. The information of these mutation loci could be used for elucidation of mechanism of temperature-sensitive attenuation and as a new strategy for influenza vaccine development.

  16. Immunodeficiencies

    PubMed Central

    Ballow, M; Notarangelo, L; Grimbacher, B; Cunningham-Rundles, C; Stein, M; Helbert, M; Gathmann, B; Kindle, G; Knight, A K; Ochs, H D; Sullivan, K; Franco, J L

    2009-01-01

    Primary immunodeficiencies (PIDs) are uncommon, chronic and severe disorders of the immune system in which patients cannot mount a sufficiently protective immune response, leading to an increased susceptibility to infections. The treatment of choice for PID patients with predominant antibody deficiency is intravenous immunoglobulin (Ig) replacement therapy. Despite major advances over the last 20 years in the molecular characterization of PIDs, many patients remain undiagnosed or are diagnosed too late, with severe consequences. Various strategies to ensure timely diagnosis of PIDs are in place, and novel approaches are being developed. In recent years, several patient registries have been established. Such registries shed light on the pathology and natural history of these varied disorders. Analyses of the registry data may also reveal which patients are likely to respond well to higher Ig infusion rates and may help to determine the optimal dosing of Ig products. Faster infusion rates may lead to improved convenience for patients and thus increase patient compliance, and may reduce nursing time and the need for hospital resources. Data from two recent studies suggest that Gamunex® and Privigen® are well tolerated at high infusion rates. Nevertheless, careful selection of patients for high infusion rates, based on co-morbid conditions and tolerance of the current infusion rate, is advisable. Based on the available data, intravenous Ig offers broad protection against encapsulated organisms. As vaccine trends change, careful monitoring of specific antibody levels in the general population, such as those against pneumococcal and meningococcal bacteria, should be implemented. PMID:19883420

  17. Research progress in live attenuated Brucella vaccine development.

    PubMed

    Wang, Zhen; Wu, Qingmin

    2013-01-01

    Brucella spp. are facultative intracellular bacteria that cause brucellosis, which is a globally occurring zoonotic disease that is characterized by abortion in domestic animals and undulant fever, arthritis, endocarditis, and meningitis in humans. There are currently no licensed vaccines against brucellosis for human use, and only a few licensed live Brucella vaccines are available for use in animals. However, the available animal vaccines may cause abortion and are associated with lower protection rates in animals and higher virulence in humans. Much research has been performed recently to develop novel Brucella vaccines for the prevention and control of animal brucellosis. This article discusses the approaches and strategies for novel live attenuated vaccine development.

  18. Clinical evaluation strategies for a live attenuated tetravalent dengue vaccine.

    PubMed

    Precioso, Alexander Roberto; Palacios, Ricardo; Thomé, Beatriz; Mondini, Gabriella; Braga, Patrícia; Kalil, Jorge

    2015-12-10

    Butantan Institute is a public Brazilian biomedical research-manufacturer center affiliated to the São Paulo State Secretary of Health. Currently, Butantan is one of the main public producers of vaccines, antivenoms, and antitoxins in Latin America. The partnership between Butantan and the National Institutes of Health (NIH) of the United Sates has been one of the longest and most successful partnerships in the development and manufacturing of new vaccines. Recently, Butantan Institute has developed and manufactured a lyophilized tetravalent live attenuated dengue vaccine with the four dengue viruses attenuated and licensed from the Laboratory of Infectious Diseases at The National Institutes of Allergy and Infectious Diseases (LID/NIAID/NIH). The objective of this paper is to describe the clinical evaluation strategies of a live attenuated tetravalent dengue vaccine (Butantan-DV) developed and manufactured by Butantan Institute. These clinical strategies will be used to evaluate the Butantan-DV Phase III trial to support the Butantan-DV licensure for protection against any symptomatic dengue caused by any serotype in people aged 2 to 59 years.

  19. Safety of a live attenuated Erysipelothrix rhusiopathiae vaccine for swine.

    PubMed

    Neumann, Eric J; Grinberg, Alex; Bonistalli, Kathryn N; Mack, Hamish J; Lehrbach, Philip R; Gibson, Nicole

    2009-03-30

    Infection with Erysipelothrix rhusiopathiae has a significant economic impact on pig production systems worldwide. Both inactivated and attenuated vaccines are available to prevent development of clinical signs of swine erysipelas. The ability of a live attenuated E. rhusiopathiae strain to become persistently established in pigs after intranasal exposure and its potential to cause clinical signs consistent with swine erysipelas after being administered directly into the nasopharynx of healthy pigs was evaluated. Five, E. rhusiopathiae-negative pigs were vaccinated by deep intranasal inoculation then followed for 14 days. Nasal swabs were collected daily for 5 days and clinical observations were made daily for 14 days post-vaccination. Nasal swabs were cultured for E. rhusiopathiae with the intent of back-passaging any recovered organisms into subsequent replicates. No organism was recovered from nasal swabs in the first vaccination replicate. A second replicate including 10 pigs was initiated and followed in an identical manner to that described above. Again, no E. rhusiopathiae was recovered from any pigs. No pigs in either replicate showed any signs of clinical swine erysipelas. The live attenuated E. rhusiopathiae strain evaluated in this study did not appear to become persistently established in pigs post-vaccination, did not cause any local or systemic signs consistent with swine erysipelas, and was therefore unlikely to revert to a virulent state when used in a field setting.

  20. A Novel Live-Attenuated Vaccine Candidate for Mayaro Fever

    PubMed Central

    Weise, William J.; Hermance, Meghan E.; Forrester, Naomi; Adams, A. Paige; Langsjoen, Rose; Gorchakov, Rodion; Wang, Eryu; Alcorn, Maria D. H.; Tsetsarkin, Konstantin; Weaver, Scott C.

    2014-01-01

    Mayaro virus (MAYV) is an emerging, mosquito-borne alphavirus that causes a dengue-like illness in many regions of South America, and which has the potential to urbanize. Because no specific treatment or vaccine is available for MAYV infection, we capitalized on an IRES-based approach to develop a live-attenuated MAYV vaccine candidate. Testing in infant, immunocompetent as well as interferon receptor-deficient mice demonstrated a high degree of attenuation, strong induction of neutralizing antibodies, and efficacy against lethal challenge. This vaccine strain was also unable to infect mosquito cells, a major safety feature for a live vaccine derived from a mosquito-borne virus. Further preclinical development of this vaccine candidate is warranted to protect against this important emerging disease. PMID:25101995

  1. Development of live attenuated influenza vaccines against pandemic influenza strains.

    PubMed

    Coelingh, Kathleen L; Luke, Catherine J; Jin, Hong; Talaat, Kawsar R

    2014-07-01

    Avian and animal influenza viruses can sporadically transmit to humans, causing outbreaks of varying severity. In some cases, further human-to-human virus transmission does not occur, and the outbreak in humans is limited. In other cases, sustained human-to-human transmission occurs, resulting in worldwide influenza pandemics. Preparation for future pandemics is an important global public health goal. A key objective of preparedness is to gain an understanding of how to design, test, and manufacture effective vaccines that could be stockpiled for use in a pandemic. This review summarizes results of an ongoing collaboration to produce, characterize, and clinically test a library of live attenuated influenza vaccine strains (based on Ann Arbor attenuated Type A strain) containing protective antigens from influenza viruses considered to be of high pandemic potential.

  2. A novel live-attenuated vaccine candidate for mayaro Fever.

    PubMed

    Weise, William J; Hermance, Meghan E; Forrester, Naomi; Adams, A Paige; Langsjoen, Rose; Gorchakov, Rodion; Wang, Eryu; Alcorn, Maria D H; Tsetsarkin, Konstantin; Weaver, Scott C

    2014-08-01

    Mayaro virus (MAYV) is an emerging, mosquito-borne alphavirus that causes a dengue-like illness in many regions of South America, and which has the potential to urbanize. Because no specific treatment or vaccine is available for MAYV infection, we capitalized on an IRES-based approach to develop a live-attenuated MAYV vaccine candidate. Testing in infant, immunocompetent as well as interferon receptor-deficient mice demonstrated a high degree of attenuation, strong induction of neutralizing antibodies, and efficacy against lethal challenge. This vaccine strain was also unable to infect mosquito cells, a major safety feature for a live vaccine derived from a mosquito-borne virus. Further preclinical development of this vaccine candidate is warranted to protect against this important emerging disease.

  3. Promises and pitfalls of live attenuated pneumococcal vaccines.

    PubMed

    Rosch, Jason W

    2014-01-01

    The pneumococcus is a remarkably adaptable pathogen whose disease manifestations range from mucosal surface infections such as acute otitis media and pneumonia to invasive infections such as sepsis and meningitis. Currently approved vaccines target the polysaccharide capsule, of which there are over 90 distinct serotypes, leading to rapid serotype replacement in vaccinated populations. Substantial progress has been made in the development of a universal pneumococcal vaccine, with efforts focused on broadly conserved and protective protein antigens. An area attracting considerable attention is the potential application of live attenuated vaccines to confer serotype-independent protection against mucosal and systemic infection. On the basis of recent work to understand the mucosal and systemic responses to nasal administration of pneumococci and to develop novel attenuation strategies, the prospect of a practical and protective live vaccine remains promising.

  4. Live attenuated herpes zoster vaccine for HIV-infected adults.

    PubMed

    Shafran, S D

    2016-04-01

    Multiple guidelines exist for the use of live viral vaccines for measles-mumps-rubella (MMR), varicella and yellow fever in people with HIV infections, but these guidelines do not make recommendations regarding live attenuated herpes zoster vaccine (LAHZV), which is approved for people over 50 years in the general population. LAHZV is made with the same virus used in varicella vaccine. The incidence of herpes zoster remains increased in people with HIV infection, even when on suppressive antiretroviral therapy, and a growing proportion of HIV-infected patients are over 50 years of age. The purpose of this article is to review the use of varicella vaccine and LAHZV in people with HIV infection and to make recommendations about the use of LAHZV in adults with HIV infection. A PubMed search was undertaken using the terms 'herpes zoster AND HIV' and 'varicella AND HIV'. Reference lists were also reviewed for pertinent citations. Varicella vaccine is recommended in varicella-susceptible adults, as long as they have a CD4 count > 200 cells/μL, the same CD4 threshold used for MMR and yellow fever vaccines. No transmission of vaccine strain Varicella zoster virus has been documented in people with HIV infections with a CD4 count above this threshold. LAHZV was administered to 295 HIV-infected adults with a CD4 count > 200 cells/μL, and was safe and immunogenic with no cases of vaccine strain infection. It is recommended that LAHZV be administered to HIV-infected adults with a CD4 count above 200 cells/μL, the same CD4 threshold used for other live attenuated viral vaccines. © 2015 British HIV Association.

  5. Antibody Response to Live Attenuated Vaccines in Adults in Japan

    PubMed Central

    Uchiyama-Nakamura, Fukumi; Sugata-Tsubaki, Aiko; Yamada, Yutaka; Uno, Kenji; Kasahara, Kei; Maeda, Koichi; Konishi, Mitsuru; Mikasa, Keiichi

    2016-01-01

    Abstract The purpose of this study was to examine the efficacy rendered with a single dose of live attenuated measles, rubella, mumps, and varicella containing vaccine. We inoculated healthcare workers (HCWs) with a single dose of vaccine to a disease lacking in antibody titer for those not meeting the criteria of our hospital (measles: <16.0 (IgG enzyme immunoassay (EIA)), rubella: ≤1:32 (hemagglutination-inhibition), mumps: <4.0 (IgG EIA), and varicella: <4.0 (IgG EIA)). At 28–60 days after vaccination, the antibody titer was tested again. We included 48 HCWs. A total of 32, 15, 31, and 10 individuals were inoculated with a single dose of measles-containing, rubella-containing, mumps, or varicella vaccine, respectively, and showed significant antibody elevation (9.2 ± 12.3 to 27.6 ± 215.6, p<0.001; 8 ± 1.2 to 32 ± 65.5, p<0.001; 3.0 ± 1.0 to 13.1 ± 8.6, p<0.05; and 2.6 ± 1.3 to 11.8 ± 8.1, p<0.001, respectively). Major side effects were not observed. In a limited population, a single dose of live attenuated vaccine showed elevation of antibody titer without any severe adverse reactions. However, whether the post-vaccination response rate criteria of our university was fulfilled could not be determined owing to limited sample size. PMID:28352840

  6. Live attenuated hepatitis A vaccines developed in China

    PubMed Central

    Xu, Zhi-Yi; Wang, Xuan-Yi

    2014-01-01

    Two live, attenuated hepatitis A vaccines, H2 and LA-1 virus strains, were developed through serial passages of the viruses in cell cultures at 32 °C and 35 °C respectively. Both vaccines were safe and immunogenic, providing protection against clinical hepatitis A in 95% of the vaccinees, with a single dose by subcutaneous injection. The vaccine recipients were not protected from asymptomatic, subclinical hepatitis A virus (HAV) infection, which induced a similar antibody response as for unvaccinated subjects. A second dose caused anamnestic response and can be used for boosting. Oral immunization of human with H2 vaccine or of marmoset with LA-1 vaccine failed, and no evidence was found for person-to-person transmission of H2 strain or for marmoset-to-marmoset transmission of LA-1 strain by close contact. H2 strain was genetically stable when passaged in marmosets, humans or cell cultures at 37 °C; 3 consecutive passages of the virus in marmosets did not cause virulence mutation. The live vaccines offer the benefits of low cost, single dose injection, long- term protection, and increased duration of immunity through subclinical infection. Improved sanitation and administration of 150 million doses of the live vaccines to children had led to a 90% reduction in the annual national incidence rate of hepatitis A in China during the 16-year period, from 1991 to 2006. Hepatitis A (HA) immunization with both live and inactivated HA vaccines was implemented in the national routine childhood immunization program in 2008 and around 92% of the 16 million annual births received the affordable live, attenuated vaccines at 18 months of age. Near elimination of the disease was achieved in a county of China for 14 years following introduction of the H2 live vaccine into the Expanded Immunization Program (EPI) in 1992. PMID:24280971

  7. Live attenuated hepatitis A vaccines developed in China.

    PubMed

    Xu, Zhi-Yi; Wang, Xuan-Yi

    2014-01-01

    Two live, attenuated hepatitis A vaccines, H 2 and LA-1 virus strains, were developed through serial passages of the viruses in cell cultures at 32 °C and 35 °C respectively. Both vaccines were safe and immunogenic, providing protection against clinical hepatitis A in 95% of the vaccinees, with a single dose by subcutaneous injection. The vaccine recipients were not protected from asymptomatic, subclinical hepatitis A virus (HAV) infection, which induced a similar antibody response as for unvaccinated subjects. A second dose caused anamnestic response and can be used for boosting. Oral immunization of human with H 2 vaccine or of marmoset with LA-1 vaccine failed, and no evidence was found for person-to-person transmission of the H 2 strain or for marmoset-to-marmoset transmission of LA-1 strain, by close contact. H 2 strain was genetically stable when passaged in marmosets, humans or cell cultures at 37 °C; 3 consecutive passages of the virus in marmosets did not cause virulence mutation. The live vaccines offer the benefits of low cost, single dose injection, long- term protection, and increased duration of immunity through subclinical infection. Improved sanitation and administration of 150 million doses of the live vaccines to children had led to a 90% reduction in the annual national incidence rate of hepatitis A in China during the 16-year period, from 1991 to 2006. Hepatitis A immunization with both live and inactivated HA vaccines was implemented in the national routine childhood immunization program in 2008 and around 92% of the 16 million annual births received the affordable live, attenuated vaccines at 18 months of age. Near elimination of the disease was achieved in China for 14 years following introduction of the H 2 live vaccine into the Expanded Immunization Program (EPI) in 1992.

  8. Yellow fever live attenuated vaccine: A very successful live attenuated vaccine but still we have problems controlling the disease.

    PubMed

    Barrett, Alan D T

    2017-10-20

    Yellow fever (YF) is regarded as the original hemorrhagic fever and has been a major public health problem for at least 250years. A very effective live attenuated vaccine, strain 17D, was developed in the 1930s and this has proved critical in the control of the disease. There is little doubt that without the vaccine, YF virus would be considered a biosafety level 4 pathogen. Significantly, YF is currently the only disease where an international vaccination certificate is required under the International Health Regulations. Despite having a very successful vaccine, there are occasional issues of supply and demand, such as that which occurred in Angola and Democratic Republic of Congo in 2016 when there was insufficient vaccine available. For the first time fractional dosing of the vaccine was approved on an emergency basis. Thus, continued vigilance and improvements in supply and demand are needed in the future. Copyright © 2017. Published by Elsevier Ltd.

  9. Early Potent Protection against Heterologous SIVsmE660 Challenge Following Live Attenuated SIV Vaccination in Mauritian Cynomolgus Macaques

    PubMed Central

    Berry, Neil; Ham, Claire; Mee, Edward T.; Rose, Nicola J.; Mattiuzzo, Giada; Jenkins, Adrian; Page, Mark; Elsley, William; Robinson, Mark; Smith, Deborah; Ferguson, Deborah; Towers, Greg; Almond, Neil; Stebbings, Richard

    2011-01-01

    Background Live attenuated simian immunodeficiency virus (SIV) vaccines represent the most effective means of vaccinating macaques against pathogenic SIV challenge. However, thus far, protection has been demonstrated to be more effective against homologous than heterologous strains. Immune correlates of vaccine-induced protection have also been difficult to identify, particularly those measurable in the peripheral circulation. Methodology/Principal Findings Here we describe potent protection in 6 out of 8 Mauritian-derived cynomolgus macaques (MCM) against heterologous virus challenge with the pathogenic, uncloned SIVsmE660 viral stock following vaccination with live attenuated SIVmac251/C8. MCM provided a characterised host genetic background with limited Major Histocompatibility Complex (MHC) and TRIM5α allelic diversity. Early protection, observed as soon as 3 weeks post-vaccination, was comparable to that of 20 weeks vaccination. Recrudescence of vaccine virus was most pronounced in breakthrough cases where simultaneous identification of vaccine and challenge viruses by virus-specific PCR was indicative of active co-infection. Persistence of the vaccine virus in a range of lymphoid tissues was typified by a consistent level of SIV RNA positive cells in protected vaccinates. However, no association between MHC class I /II haplotype or TRIM5α polymorphism and study outcome was identified. Conclusion/Significance This SIV vaccine study, conducted in MHC-characterised MCM, demonstrated potent protection against the pathogenic, heterologous SIVsmE660 challenge stock after only 3 weeks vaccination. This level of protection against this viral stock by intravenous challenge has not been hitherto observed. The mechanism(s) of protection by vaccination with live attenuated SIV must account for the heterologous and early protection data described in this study, including those which relate to the innate immune system. PMID:21853072

  10. Live attenuated rubella vectors expressing SIV and HIV vaccine antigens replicate and elicit durable immune responses in rhesus macaques

    PubMed Central

    2013-01-01

    Background Live attenuated viruses are among our most potent and effective vaccines. For human immunodeficiency virus, however, a live attenuated strain could present substantial safety concerns. We have used the live attenuated rubella vaccine strain RA27/3 as a vector to express SIV and HIV vaccine antigens because its safety and immunogenicity have been demonstrated in millions of children. One dose protects for life against rubella infection. In previous studies, rubella vectors replicated to high titers in cell culture while stably expressing SIV and HIV antigens. Their viability in vivo, however, as well as immunogenicity and antibody persistence, were unknown. Results This paper reports the first successful trial of rubella vectors in rhesus macaques, in combination with DNA vaccines in a prime and boost strategy. The vectors grew robustly in vivo, and the protein inserts were highly immunogenic. Antibody titers elicited by the SIV Gag vector were greater than or equal to those elicited by natural SIV infection. The antibodies were long lasting, and they were boosted by a second dose of replication-competent rubella vectors given six months later, indicating the induction of memory B cells. Conclusions Rubella vectors can serve as a vaccine platform for safe delivery and expression of SIV and HIV antigens. By presenting these antigens in the context of an acute infection, at a high level and for a prolonged duration, these vectors can stimulate a strong and persistent immune response, including maturation of memory B cells. Rhesus macaques will provide an ideal animal model for demonstrating immunogenicity of novel vectors and protection against SIV or SHIV challenge. PMID:24041113

  11. Live attenuated vaccines: Historical successes and current challenges

    SciTech Connect

    Minor, Philip D.

    2015-05-15

    Live attenuated vaccines against human viral diseases have been amongst the most successful cost effective interventions in medical history. Smallpox was declared eradicated in 1980; poliomyelitis is nearing global eradication and measles has been controlled in most parts of the world. Vaccines function well for acute diseases such as these but chronic infections such as HIV are more challenging for reasons of both likely safety and probable efficacy. The derivation of the vaccines used has in general not been purely rational except in the sense that it has involved careful clinical trials of candidates and subsequent careful follow up in clinical use; the identification of the candidates is reviewed. - Highlights: • Live vaccines against human diseases caused by viruses have been very successful. • They have been developed by empirical clinical studies and problems identified in later use. • It can be difficult to balance ability to cause disease and ability to immunise for a strain. • There is currently no reliable basis for predicting success from pure virological studies. • Vaccinia, which eradicated smallpox, is the paradigm for all successes and issues.

  12. Preerythrocytic, live-attenuated Plasmodium falciparum vaccine candidates by design.

    PubMed

    VanBuskirk, Kelley M; O'Neill, Matthew T; De La Vega, Patricia; Maier, Alexander G; Krzych, Urszula; Williams, Jack; Dowler, Megan G; Sacci, John B; Kangwanrangsan, Niwat; Tsuboi, Takafumi; Kneteman, Norman M; Heppner, Donald G; Murdock, Brant A; Mikolajczak, Sebastian A; Aly, Ahmed S I; Cowman, Alan F; Kappe, Stefan H I

    2009-08-04

    Falciparum malaria is initiated when Anopheles mosquitoes transmit the Plasmodium sporozoite stage during a blood meal. Irradiated sporozoites confer sterile protection against subsequent malaria infection in animal models and humans. This level of protection is unmatched by current recombinant malaria vaccines. However, the live-attenuated vaccine approach faces formidable obstacles, including development of accurate, reproducible attenuation techniques. We tested whether Plasmodium falciparum could be attenuated at the early liver stage by genetic engineering. The P. falciparum genetically attenuated parasites (GAPs) harbor individual deletions or simultaneous deletions of the sporozoite-expressed genes P52 and P36. Gene deletions were done by double-cross-over recombination to avoid genetic reversion of the knockout parasites. The gene deletions did not affect parasite replication throughout the erythrocytic cycle, gametocyte production, mosquito infections, and sporozoite production rates. However, the deletions caused parasite developmental arrest during hepatocyte infection. The double-gene deletion line exhibited a more severe intrahepatocytic growth defect compared with the single-gene deletion lines, and it did not persist. This defect was assessed in an in vitro liver-stage growth assay and in a chimeric mouse model harboring human hepatocytes. The strong phenotype of the double knockout GAP justifies its human testing as a whole-organism vaccine candidate using the established sporozoite challenge model. GAPs might provide a safe and reproducible platform to develop an efficacious whole-cell malaria vaccine that prevents infection at the preerythrocytic stage.

  13. Potential Consequences of Not Using Live Attenuated Influenza Vaccine.

    PubMed

    Smith, Kenneth J; Nowalk, Mary Patricia; Wateska, Angela; Brown, Shawn T; DePasse, Jay V; Raviotta, Jonathan M; Shim, Eunha; Zimmerman, Richard K

    2017-10-01

    Decreased live attenuated influenza vaccine (LAIV) effectiveness in the U.S. prompted the Advisory Committee on Immunization Practices in August 2016 to recommend against this vaccine's use. However, overall influenza uptake increases when LAIV is available and, unlike the U.S., LAIV has retained its effectiveness in other countries. These opposing countercurrents create a dilemma. To examine the potential consequences of the decision to not recommend LAIV, which may result in decreased influenza vaccination coverage in the U.S. population, a Markov decision analysis model was used to examine influenza vaccination options in U.S. children aged 2-8 years. Data were compiled and analyzed in 2016. Using recently observed low LAIV effectiveness values, fewer influenza cases will occur if LAIV is not used compared with having LAIV as a vaccine option. However, having the option to use LAIV may be favored if LAIV effectiveness returns to prior levels or if the absence of vaccine choice substantially decreases overall vaccine uptake. Continued surveillance of LAIV effectiveness and influenza vaccine uptake is warranted, given their importance in influenza vaccination policy decisions. Copyright © 2017 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Seasonal Effectiveness of Live Attenuated and Inactivated Influenza Vaccine

    PubMed Central

    Flannery, Brendan; Thompson, Mark G.; Gaglani, Manjusha; Jackson, Michael L.; Monto, Arnold S.; Nowalk, Mary Patricia; Talbot, H. Keipp; Treanor, John J.; Belongia, Edward A.; Murthy, Kempapura; Jackson, Lisa A.; Petrie, Joshua G.; Zimmerman, Richard K.; Griffin, Marie R.; McLean, Huong Q.; Fry, Alicia M.

    2016-01-01

    BACKGROUND: Few observational studies have evaluated the relative effectiveness of live attenuated (LAIV) and inactivated (IIV) influenza vaccines against medically attended laboratory-confirmed influenza. METHODS: We analyzed US Influenza Vaccine Effectiveness Network data from participants aged 2 to 17 years during 4 seasons (2010–2011 through 2013–2014) to compare relative effectiveness of LAIV and IIV against influenza-associated illness. Vaccine receipt was confirmed via provider/electronic medical records or immunization registry. We calculated the ratio (odds) of influenza-positive to influenza-negative participants among those age-appropriately vaccinated with either LAIV or IIV for the corresponding season. We examined relative effectiveness of LAIV and IIV by using adjusted odds ratios (ORs) and 95% confidence intervals (CIs) from logistic regression. RESULTS: Of 6819 participants aged 2 to 17 years, 2703 were age-appropriately vaccinated with LAIV (n = 637) or IIV (n = 2066). Odds of influenza were similar for LAIV and IIV recipients during 3 seasons (2010–2011 through 2012–2013). In 2013–2014, odds of influenza were significantly higher among LAIV recipients compared with IIV recipients 2 to 8 years old (OR 5.36; 95% CI, 2.37 to 12.13). Participants vaccinated with LAIV or IIV had similar odds of illness associated with influenza A/H3N2 or B. LAIV recipients had greater odds of illness due to influenza A/H1N1pdm09 in 2010–2011 and 2013–2014. CONCLUSIONS: We observed lower effectiveness of LAIV compared with IIV against influenza A/H1N1pdm09 but not A(H3N2) or B among children and adolescents, suggesting poor performance related to the LAIV A/H1N1pdm09 viral construct. PMID:26738884

  15. Live Attenuated and Inactivated Influenza Vaccines in Children

    PubMed Central

    Ilyushina, Natalia A.; Haynes, Brenda C.; Hoen, Anne G.; Khalenkov, Alexey M.; Housman, Molly L.; Brown, Eric P.; Ackerman, Margaret E.; Treanor, John J.; Luke, Catherine J.; Subbarao, Kanta; Wright, Peter F.

    2015-01-01

    Background. Live attenuated influenza vaccine (LAIV) and inactivated influenza vaccine (IIV) are available for children. Local and systemic immunity induced by LAIV followed a month later by LAIV and IIV followed by LAIV were investigated with virus recovery after LAIV doses as surrogates for protection against influenza on natural exposure. Methods. Fifteen children received IIV followed by LAIV, 13 an initial dose of LAIV, and 11 a second dose of LAIV. The studies were done during autumn 2009 and autumn 2010 with the same seasonal vaccine (A/California/07/09 [H1N1], A/Perth/16/09 [H3N2], B/Brisbane/60/08). Results. Twenty-eight of 39 possible influenza viral strains were recovered after the initial dose of LAIV. When LAIV followed IIV, 21 of 45 viral strains were identified. When compared to primary LAIV infection, the decreased frequency of shedding with the IIV-LAIV schedule was significant (P = .023). With LAIV-LAIV, the fewest viral strains were recovered (3/33)—numbers significantly lower (P < .001) than shedding after initial LAIV and after IIV-LAIV (P < .001). Serum hemagglutination inhibition antibody responses were more frequent after IIV than LAIV (P = .02). In contrast, more mucosal immunoglobulin A responses were seen with LAIV. Conclusions. LAIV priming induces greater inhibition of virus recovery on LAIV challenge than IIV priming. The correlate(s) of protection are the subject of ongoing analysis. Clinical Trials Registration. NCT01246999. PMID:25165161

  16. Live attenuated and inactivated influenza vaccines in children.

    PubMed

    Ilyushina, Natalia A; Haynes, Brenda C; Hoen, Anne G; Khalenkov, Alexey M; Housman, Molly L; Brown, Eric P; Ackerman, Margaret E; Treanor, John J; Luke, Catherine J; Subbarao, Kanta; Wright, Peter F

    2015-02-01

    Live attenuated influenza vaccine (LAIV) and inactivated influenza vaccine (IIV) are available for children. Local and systemic immunity induced by LAIV followed a month later by LAIV and IIV followed by LAIV were investigated with virus recovery after LAIV doses as surrogates for protection against influenza on natural exposure. Fifteen children received IIV followed by LAIV, 13 an initial dose of LAIV, and 11 a second dose of LAIV. The studies were done during autumn 2009 and autumn 2010 with the same seasonal vaccine (A/California/07/09 [H1N1], A/Perth/16/09 [H3N2], B/Brisbane/60/08). Twenty-eight of 39 possible influenza viral strains were recovered after the initial dose of LAIV. When LAIV followed IIV, 21 of 45 viral strains were identified. When compared to primary LAIV infection, the decreased frequency of shedding with the IIV-LAIV schedule was significant (P = .023). With LAIV-LAIV, the fewest viral strains were recovered (3/33)--numbers significantly lower (P < .001) than shedding after initial LAIV and after IIV-LAIV (P < .001). Serum hemagglutination inhibition antibody responses were more frequent after IIV than LAIV (P = .02). In contrast, more mucosal immunoglobulin A responses were seen with LAIV. LAIV priming induces greater inhibition of virus recovery on LAIV challenge than IIV priming. The correlate(s) of protection are the subject of ongoing analysis. NCT01246999. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Hypertrophy, hyperplasia, and infectious virus in gut-associated lymphoid tissue of mice after oral inoculation with simian-human or bovine-human reassortant rotaviruses.

    PubMed

    Moser, C A; Dolfi, D V; Di Vietro, M L; Heaton, P A; Offit, P A; Clark, H F

    2001-04-01

    Oral inoculation of infants with a vaccine that contains simian-human reassortant rotaviruses has been found to be a rare cause of intussusception. Because intussusception can be associated with enlargement of gut-associated lymphoid tissue, we studied the capacity of simian-human and bovine-human reassortant rotaviruses to cause lymphoid hypertrophy and hyperplasia of Peyer's patches (PP) of adult BALB/c mice. Neither hypertrophy nor hyperplasia was detected in PP after oral inoculation with simian-human or bovine-human reassortant rotaviruses. However, infectious virus was detected in PP and mesenteric lymph nodes after oral inoculation with simian, but not bovine, reassortant rotaviruses. Implications of these findings on the pathogenesis of intussusception are discussed.

  18. Genetic Imprint of Vaccination on Simian/Human Immunodeficiency Virus Type 1 Transmitted Viral Genomes in Rhesus Macaques

    PubMed Central

    Varela, Mariana; Verschoor, Ernst; Lai, Rachel P. J.; Hughes, Joseph; Mooj, Petra; McKinley, Trevelyan J.; Fitzmaurice, Timothy J.; Landskron, Lisa; Willett, Brian J.; Frost, Simon D. W.; Bogers, Willy M.; Heeney, Jonathan L.

    2013-01-01

    Understanding the genetic, antigenic and structural changes that occur during HIV-1 infection in response to pre-existing immunity will facilitate current efforts to develop an HIV-1 vaccine. Much is known about HIV-1 variation at the population level but little with regard to specific changes occurring in the envelope glycoprotein within a host in response to immune pressure elicited by antibodies. The aim of this study was to track and map specific early genetic changes occurring in the viral envelope gene following vaccination using a highly controlled viral challenge setting in the SHIV macaque model. We generated 449 full-length env sequences from vaccinees, and 63 from the virus inoculum. Analysis revealed a different pattern in the distribution and frequency of mutations in the regions of the envelope gene targeted by the vaccine as well as different patterns of diversification between animals in the naïve control group and vaccinees. Given the high stringency of the model it is remarkable that we were able to identify genetic changes associated with the vaccination. This work provides insight into the characterization of breakthrough viral populations in less than fully efficacious vaccines and illustrates the value of HIV-1 Env SHIV challenge model in macaques to unravel the mechanisms driving HIV-1 envelope genetic diversity in the presence of vaccine induced-responses. PMID:23967111

  19. Chimeric human papilloma virus-simian/human immunodeficiency virus virus-like-particle vaccines: immunogenicity and protective efficacy in macaques.

    PubMed

    Dale, C Jane; Liu, Xiaosong Song; De Rose, Robert; Purcell, Damian F J; Anderson, Jenny; Xu, Yan; Leggatt, Graham R; Frazer, Ian H; Kent, Stephen J

    2002-09-15

    Vaccines to efficiently block or limit sexual transmission of both HIV and human papilloma virus (HPV) are urgently needed. Chimeric virus-like-particle (VLP) vaccines consisting of both multimerized HPV L1 proteins and fragments of SIV gag p27, HIV-1 tat, and HIV-1 rev proteins (HPV-SHIV VLPs) were constructed and administered to macaques both systemically and mucosally. An additional group of macaques first received a priming vaccination with DNA vaccines expressing the same SIV and HIV-1 antigens prior to chimeric HPV-SHIV VLP boosting vaccinations. Although HPV L1 antibodies were induced in all immunized macaques, weak antibody or T cell responses to the chimeric SHIV antigens were detected only in animals receiving the DNA prime/HPV-SHIV VLP boost vaccine regimen. Significant but partial protection from a virulent mucosal SHIV challenge was also detected only in the prime/boosted macaques and not in animals receiving the HPV-SHIV VLP vaccines alone, with three of five prime/boosted animals retaining some CD4+ T cells following challenge. Thus, although some immunogenicity and partial protection was observed in non-human primates receiving both DNA and chimeric HPV-SHIV VLP vaccines, significant improvements in vaccine design are required before we can confidently proceed with this approach to clinical trials.

  20. Efficacy and effectiveness of live attenuated influenza vaccine in school-age children.

    PubMed

    Coelingh, Kathleen; Olajide, Ifedapo Rosemary; MacDonald, Peter; Yogev, Ram

    2015-01-01

    Evidence of high efficacy of live attenuated influenza vaccine (LAIV) from randomized controlled trials is strong for children 2-6 years of age, but fewer data exist for older school-age children. We reviewed the published data on efficacy and effectiveness of LAIV in children ≥5 years. QUOSA (Elsevier database) was searched for articles published from January 1990 to June 2014 that included 'FluMist', 'LAIV', 'CAIV', 'cold adapted influenza vaccine', 'live attenuated influenza vaccine', 'live attenuated cold adapted' or 'flu mist'. Studies evaluated included randomized controlled trials, effectiveness and indirect protection studies. This review demonstrates that LAIV has considerable efficacy and effectiveness in school-age children.

  1. Engineering temperature sensitive live attenuated influenza vaccines from emerging viruses.

    PubMed

    Zhou, Bin; Li, Yan; Speer, Scott D; Subba, Anju; Lin, Xudong; Wentworth, David E

    2012-05-21

    The licensed live attenuated influenza A vaccine (LAIV) in the United States is created by making a reassortant containing six internal genes from a cold-adapted master donor strain (ca A/AA/6/60) and two surface glycoprotein genes from a circulating/emerging strain (e.g., A/CA/7/09 for the 2009/2010 H1N1 pandemic). Technologies to rapidly create recombinant viruses directly from patient specimens were used to engineer alternative LAIV candidates that have genomes composed entirely of vRNAs from pandemic or seasonal strains. Multiple mutations involved in the temperature-sensitive (ts) phenotype of the ca A/AA/6/60 master donor strain were introduced into a 2009 H1N1 pandemic strain rA/New York/1682/2009 (rNY1682-WT) to create rNY1682-TS1, and additional mutations identified in other ts viruses were added to rNY1682-TS1 to create rNY1682-TS2. Both rNY1682-TS1 and rNY1682-TS2 replicated efficiently at 30°C and 33°C. However, rNY1682-TS1 was partially restricted, and rNY1682-TS2 was completely restricted at 39°C. Additionally, engineering the TS1 or TS2 mutations into a distantly related human seasonal H1N1 influenza A virus also resulted pronounced restriction of replication in vitro. Clinical symptoms and virus replication in the lungs of mice showed that although rNY1682-TS2 and the licensed FluMist(®)-H1N1pdm LAIV that was used to combat the 2009/2010 pandemic were similarly attenuated, the rNY1682-TS2 was more protective upon challenge with a virulent mutant of pandemic H1N1 virus or a heterologous H1N1 (A/PR/8/1934) virus. This study demonstrates that engineering key temperature sensitive mutations (PB1-K391E, D581G, A661T; PB2-P112S, N265S, N556D, Y658H) into the genomes of influenza A viruses attenuates divergent human virus lineages and provides an alternative strategy for the generation of LAIVs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Spray application of live attenuated F Strain-derived Mycoplasma gallisepticum vaccines

    USDA-ARS?s Scientific Manuscript database

    Live attenuated vaccines (LAVs) are commonly utilized to protect commercial table egg producers from economic losses associated with challenges by the respiratory pathogen Mycoplasma gallisepticum (MG). Currently there are four MG LAVs commercially available within the United States. Consistent am...

  3. A live attenuated Bordetella pertussis candidate vaccine does not cause disseminating infection in gamma interferon receptor knockout mice.

    PubMed

    Skerry, Ciaran M; Cassidy, Joseph P; English, Karen; Feunou-Feunou, Pascal; Locht, Camille; Mahon, Bernard P

    2009-09-01

    Bordetella pertussis is the cause of whooping cough and responsible for 300,000 infant deaths per annum. Current vaccines require 6 months to confer optimal immunity on infants, the population at highest risk. Recently, an attenuated strain of B. pertussis (BPZE1) has been developed to be used as a low-cost, live, intranasal, single-dose vaccine for newborns. Preclinical proof of concept has been established; however, it is necessary to evaluate the safety of BPZE1, especially in immunodeficient models, prior to human clinical trials. Here, the preclinical safety of BPZE1 was examined in well-characterized murine models. Immunocompetent and gamma interferon (IFN-gamma) receptor knockout mice were challenged by aerosol with either virulent B. pertussis or BPZE1. The two strains colonized the lung at equal levels, but inflammation was associated with carriage of only virulent bacteria. Virulent bacteria disseminated to the liver of IFN-gamma receptor-deficient mice, resulting in atypical pathology. In contrast, attenuated BPZE1 did not disseminate in either immunocompetent or immunodeficient mice and did not induce atypical pathology. In neonatal challenge models, virulent B. pertussis infection resulted in significant mortality of both immunodeficient and immunocompetent mice, whereas no mortality was observed for any neonatal mice challenged with BPZE1. BPZE1 was shown to elicit strong IFN-gamma responses in mice, equivalent to those elicited by the virulent streptomycin-resistant B. pertussis Tohama I derivative BPSM, also inducing immunoglobulin G2a, a process requiring TH1 cytokines in mice. These data indicate that a live attenuated whooping cough vaccine candidate shows no signs of disseminating infection in preclinical models but rather evokes an immunological profile associated with optimal protection against disease.

  4. Development of a Mouse-Adapted Live Attenuated Influenza Virus That Permits In Vivo Analysis of Enhancements to the Safety of Live Attenuated Influenza Virus Vaccine

    PubMed Central

    Cox, Andrew; Baker, Steven F.; Nogales, Aitor

    2014-01-01

    The live attenuated influenza virus vaccine (LAIV) is preferentially recommended for use in persons 2 through 49 years of age but has not been approved for children under 2 or asthmatics due to safety concerns. Therefore, increasing safety is desirable. Here we describe a murine LAIV with reduced pathogenicity that retains lethality at high doses and further demonstrate that we can enhance safety in vivo through mutations within NS1. This model may permit preliminary safety analysis of improved LAIVs. PMID:25552727

  5. Using recombinant DNA technology for the development of live-attenuated dengue vaccines.

    PubMed

    Lee, Hsiang-Chi; Butler, Michael; Wu, Suh-Chin

    2012-07-15

    Dramatic increases in dengue (DEN) incidence and disease severity have been reported, in great part due to the geographic expansion of Aedes aegypti and Aedes albopictus mosquitoes. One result is the expanded co-circulation of all dengue 1-4 serotype viruses (DENV) in urban areas worldwide, especially in South and South-East Asia, and South America. DEN disease severity ranges from asymptomatic infections to febrile dengue fevers (DF) to life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). There is an urgent need for a safe and effective tetravalent DEN vaccine. Several live attenuated, tetravalent DEN vaccine candidates have been generated by recombinant DNA technology; these candidates are capable of providing immunity to all four DENV serotypes. In this paper we review (a) recombinant live-attenuated DEN vaccine candidates in terms of deletion, antigen chimerization, and the introduction of adaptive mutations; (b) strategies for improving tetravalent vaccine attenuation; and (c) live-attenuated DENV vaccine development.

  6. Experimental evaluation of inactivated and live attenuated vaccines against Mycoplasma mycoides subsp. mycoides.

    PubMed

    Mwirigi, Martin; Nkando, Isabel; Aye, Racheal; Soi, Reuben; Ochanda, Horace; Berberov, Emil; Potter, Andrew; Gerdts, Volker; Perez-Casal, Jose; Naessens, Jan; Wesonga, Hezron

    2016-01-01

    The current control method for contagious bovine pleuropneumonia (CBPP) in Africa is vaccination with a live, attenuated strain of Mycoplasma mycoides subsp. mycoides (Mmm). However, this method is not very efficient and often causes serious adverse reactions. Several studies have attempted to induce protection using inactivated mycoplasma, but with widely contradictory results. Therefore, we compared the protective capacity of the live T1/44 vaccine with two inactivated preparations of Mmm strain Afadé, inoculated with an adjuvant. Protection was measured after a challenge with Afadé. The protection levels were 31%, 80.8% and 74.1% for the formalin-inactivated, heat-inactivated and live attenuated preparations, respectively. These findings indicate that low doses of heat-inactivated Mmm can offer protection to a level similar to the current live attenuated (T1/44) vaccine formulation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Long-term immunogenicity of single dose of live attenuated hepatitis A vaccine in Indian children.

    PubMed

    Bhave, Sheila; Sapru, Amita; Bavdekar, Ashish; Kapatkar, Vaibhavi; Mane, Amey

    2015-08-01

    To assess immunogenicity of a single dose of live attenuated hepatitis A vaccine in Indian children, ten years after immunization. Of 143 children vaccinated in 2004, 121 children were evaluated in 2014, clinically and for anti-HAV antibodies. 13 children were early vaccine failures who received two doses of HAV vaccine subsequently. 106 (98%) of 108 remaining children had seroprotective levels with a geometric mean titer of 100.5 mIU/mL. On analysis of all 121 children, the immunogenicity was 87.6%. Single dose of live attenuated hepatitis A vaccine provides long-term immunity in Indian children.

  8. Mucosal correlates of cross-protection for live-attenuated influenza virus vaccines in pigs.

    USDA-ARS?s Scientific Manuscript database

    Controlling influenza A virus (IAV) in swine has become increasingly difficult with the emergence of novel reassorted strains and introduction of human seasonal IAV into pigs. In North America there are six antigenically distinct H1 subtypes currently circulating in pigs. Live-attenuated influenza v...

  9. Novel vaccine against Venezuelan equine encephalitis combines advantages of DNA immunization and a live attenuated vaccine.

    PubMed

    Tretyakova, Irina; Lukashevich, Igor S; Glass, Pamela; Wang, Eryu; Weaver, Scott; Pushko, Peter

    2013-02-04

    DNA vaccines combine remarkable genetic and chemical stability with proven safety and efficacy in animal models, while remaining less immunogenic in humans. In contrast, live-attenuated vaccines have the advantage of inducing rapid, robust, long-term immunity after a single-dose vaccination. Here we describe novel iDNA vaccine technology that is based on an infectious DNA platform and combines advantages of DNA and live attenuated vaccines. We applied this technology for vaccination against infection with Venezuelan equine encephalitis virus (VEEV), an alphavirus from the Togaviridae family. The iDNA vaccine is based on transcription of the full-length genomic RNA of the TC-83 live-attenuated virus from plasmid DNA in vivo. The in vivo-generated viral RNA initiates limited replication of the vaccine virus, which in turn leads to efficient immunization. This technology allows the plasmid DNA to launch a live-attenuated vaccine in vitro or in vivo. Less than 10 ng of pTC83 iDNA encoding the full-length genomic RNA of the TC-83 vaccine strain initiated replication of the vaccine virus in vitro. In order to evaluate this approach in vivo, BALB/c mice were vaccinated with a single dose of pTC83 iDNA. After vaccination, all mice seroconverted with no adverse reactions. Four weeks after immunization, animals were challenged with the lethal epidemic strain of VEEV. All iDNA-vaccinated mice were protected from fatal disease, while all unvaccinated controls succumbed to infection and died. To our knowledge, this is the first example of launching a clinical live-attenuated vaccine from recombinant plasmid DNA in vivo.

  10. Development of a mouse-adapted live attenuated influenza virus that permits in vivo analysis of enhancements to the safety of live attenuated influenza virus vaccine.

    PubMed

    Cox, Andrew; Baker, Steven F; Nogales, Aitor; Martínez-Sobrido, Luis; Dewhurst, Stephen

    2015-03-01

    The live attenuated influenza virus vaccine (LAIV) is preferentially recommended for use in persons 2 through 49 years of age but has not been approved for children under 2 or asthmatics due to safety concerns. Therefore, increasing safety is desirable. Here we describe a murine LAIV with reduced pathogenicity that retains lethality at high doses and further demonstrate that we can enhance safety in vivo through mutations within NS1. This model may permit preliminary safety analysis of improved LAIVs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. A review of immunogenicity and tolerability of live attenuated Hepatitis A vaccine in children.

    PubMed

    Rao, Sameer; Mao, J S; Motlekar, Salman; Fangcheng, Zhuang; Kadhe, Ganesh

    2016-12-01

    Changing epidemiology of Hepatitis A virus (HAV) has led to an increased susceptibility of adolescents and adults to the infection. Vaccination can remarkably reduce the incidence and associated morbidity of HAV infection. This review is focused on the safety and efficacy of H2 strain derived live attenuated Hepatitis A vaccine. We found the vaccine to be highly immunogenic with minimal or negligible safety issues. Moreover, a single dose of live attenuated vaccine persists a long term immune response and can be a preferred option for developing countries. In 2014, Indian Academy of Paediatrics (IAP) also updated their recommendations for H2 vaccine as a single dose as against the previous 2 dose schedule. A focused approach to include the vaccine in national immunization program should be explored.

  12. A review of immunogenicity and tolerability of live attenuated Hepatitis A vaccine in children

    PubMed Central

    Rao, Sameer; Mao, J. S.; Motlekar, Salman; Fangcheng, Zhuang; Kadhe, Ganesh

    2016-01-01

    ABSTRACT Changing epidemiology of Hepatitis A virus (HAV) has led to an increased susceptibility of adolescents and adults to the infection. Vaccination can remarkably reduce the incidence and associated morbidity of HAV infection. This review is focused on the safety and efficacy of H2 strain derived live attenuated Hepatitis A vaccine. We found the vaccine to be highly immunogenic with minimal or negligible safety issues. Moreover, a single dose of live attenuated vaccine persists a long term immune response and can be a preferred option for developing countries. In 2014, Indian Academy of Paediatrics (IAP) also updated their recommendations for H2 vaccine as a single dose as against the previous 2 dose schedule. A focused approach to include the vaccine in national immunization program should be explored. PMID:27532370

  13. The Case for Live Attenuated Vaccines against the Neglected Zoonotic Diseases Brucellosis and Bovine Tuberculosis

    PubMed Central

    Pandey, Aseem; Cabello, Ana; Akoolo, Lavoisier; Rice-Ficht, Allison; Arenas-Gamboa, Angela; McMurray, David; Ficht, Thomas A.; de Figueiredo, Paul

    2016-01-01

    Vaccination of humans and animals with live attenuated organisms has proven to be an effective means of combatting some important infectious diseases. In fact, the 20th century witnessed tremendous improvements in human and animal health worldwide as a consequence of large-scale vaccination programs with live attenuated vaccines (LAVs). Here, we use the neglected zoonotic diseases brucellosis and bovine tuberculosis (BTb) caused by Brucella spp. and Mycobacterium bovis (M. bovis), respectively, as comparative models to outline the merits of LAV platforms with emphasis on molecular strategies that have been pursued to generate LAVs with enhanced vaccine safety and efficacy profiles. Finally, we discuss the prospects of LAV platforms in the fight against brucellosis and BTb and outline new avenues for future research towards developing effective vaccines using LAV platforms. PMID:27537413

  14. Safety and Immunogenicity of a Live-Attenuated Junin (Argentine Hemorrhagic Fever) Vaccine in Rhesus Macaques

    DTIC Science & Technology

    1993-01-01

    virus from animals in every dose group. vetted 1-2.5 weeks after initial virus recovery. That the viruses recovered were Junin virus is certain: all...wild-type strains (LI 1.25). When vivo neutralization and virus clearance are com- we used this system to examine viruses recovered plex and multi...Fredertcktfarniand Abstract. The safety and immunogenicity of Candid #1. a live-attenuated Junin- virus vaccine, were evaluated in rhesus macaques. Candid #1 was

  15. Generation of a Live Attenuated Influenza Vaccine that Elicits Broad Protection in Mice and Ferrets.

    PubMed

    Wang, Lulan; Liu, Su-Yang; Chen, Hsiang-Wen; Xu, Juan; Chapon, Maxime; Zhang, Tao; Zhou, Fan; Wang, Yao E; Quanquin, Natalie; Wang, Guiqin; Tian, Xiaoli; He, Zhanlong; Liu, Longding; Yu, Wenhai; Sanchez, David Jesse; Liang, Yuying; Jiang, Taijiao; Modlin, Robert; Bloom, Barry R; Li, Qihan; Deng, Jane C; Zhou, Paul; Qin, F Xiao-Feng; Cheng, Genhong

    2017-03-08

    New influenza vaccines that provide effective and broad protection are desperately needed. Live attenuated viruses are attractive vaccine candidates because they can elicit both humoral and cellular immune responses. However, recent formulations of live attenuated influenza vaccines (LAIVs) have not been protective. We combined high-coverage transposon mutagenesis of influenza virus with a rapid high-throughput screening for attenuation to generate W7-791, a live attenuated mutant virus strain. W7-791 produced only a transient asymptomatic infection in adult and neonatal mice even at doses 100-fold higher than the LD50 of the parent strain. A single administration of W7-791 conferred full protection to mice against lethal challenge with H1N1, H3N2, and H5N1 strains, and improved viral clearance in ferrets. Adoptive transfer of T cells from W7-791-immunized mice conferred heterologous protection, indicating a role for T cell-mediated immunity. These studies present an LAIV development strategy to rapidly generate and screen entire libraries of viral clones.

  16. Herpes Simplex Vaccines: Prospects of Live-attenuated HSV Vaccines to Combat Genital and Ocular infections.

    PubMed

    Stanfield, Brent; Kousoulas, Konstantin Gus

    2015-09-01

    Herpes simplex virus type-1 (HSV-1) and its closely related type-2 (HSV-2) viruses cause important clinical manifestations in humans including acute ocular disease and genital infections. These viruses establish latency in the trigeminal ganglionic and dorsal root neurons, respectively. Both viruses are widespread among humans and can frequently reactivate from latency causing disease. Currently, there are no vaccines available against herpes simplex viral infections. However, a number of promising vaccine approaches are being explored in pre-clinical investigations with few progressing to early phase clinical trials. Consensus research findings suggest that robust humoral and cellular immune responses may partially control the frequency of reactivation episodes and reduce clinical symptoms. Live-attenuated viral vaccines have long been considered as a viable option for generating robust and protective immune responses against viral pathogens. Varicella zoster virus (VZV) belongs to the same alphaherpesvirus subfamily with herpes simplex viruses. A live-attenuated VZV vaccine has been extensively used in a prophylactic and therapeutic approach to combat primary and recurrent VZV infection indicating that a similar vaccine approach may be feasible for HSVs. In this review, we summarize pre-clinical approaches to HSV vaccine development and current efforts to test certain vaccine approaches in human clinical trials. Also, we discuss the potential advantages of using a safe, live-attenuated HSV-1 vaccine strain to protect against both HSV-1 and HSV-2 infections.

  17. Herpes Simplex Vaccines: Prospects of Live-attenuated HSV Vaccines to Combat Genital and Ocular infections

    PubMed Central

    Stanfield, Brent; Kousoulas, Konstantin Gus

    2015-01-01

    Herpes simplex virus type-1 (HSV-1) and its closely related type-2 (HSV-2) viruses cause important clinical manifestations in humans including acute ocular disease and genital infections. These viruses establish latency in the trigeminal ganglionic and dorsal root neurons, respectively. Both viruses are widespread among humans and can frequently reactivate from latency causing disease. Currently, there are no vaccines available against herpes simplex viral infections. However, a number of promising vaccine approaches are being explored in pre-clinical investigations with few progressing to early phase clinical trials. Consensus research findings suggest that robust humoral and cellular immune responses may partially control the frequency of reactivation episodes and reduce clinical symptoms. Live-attenuated viral vaccines have long been considered as a viable option for generating robust and protective immune responses against viral pathogens. Varicella zoster virus (VZV) belongs to the same alphaherpesvirus subfamily with herpes simplex viruses. A live-attenuated VZV vaccine has been extensively used in a prophylactic and therapeutic approach to combat primary and recurrent VZV infection indicating that a similar vaccine approach may be feasible for HSVs. In this review, we summarize pre-clinical approaches to HSV vaccine development and current efforts to test certain vaccine approaches in human clinical trials. Also, we discuss the potential advantages of using a safe, live-attenuated HSV-1 vaccine strain to protect against both HSV-1 and HSV-2 infections. PMID:27114893

  18. Comparative genomics of the Mycobacterium signaling architecture and implications for a novel live attenuated Tuberculosis vaccine.

    PubMed

    Zhou, Peifu; Xie, Jianping

    2014-01-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), remains a major threat to global public health. A new TB vaccine affording superior immune protection to M. bovis Bacillus Calmette-Guérin (BCG) is imperative. The advantage of a live attenuated vaccine is that it can mimic the bona fide pathogen, elicit immune responses similar to natural infection, and potentially provide more protection than other vaccines. BCG, the only vaccine and a live attenuated vaccine that is the result of cumulative mutations by serial passage of M. bovis, has provided clues for the construction of novel improved vaccines. A strategy is put forward for identifying a new live attenuated TB vaccine generated by cumulative mutation based on M.tb. Given the important role of the M.tb signaling network consisting of a two-component system, eukaryotic-like Ser/Thr protein kinase system and sigma factor system based on comparisons among M.tb H37Rv, M. bovis, and BCG, we have put a premium on this signaling circuit as the starting point for the generation of an attenuated TB vaccine.

  19. Characterization of an intracellular ATP assay for evaluating the viability of live attenuated mycobacterial vaccine preparations.

    PubMed

    Kolibab, Kristopher; Derrick, Steven C; Jacobs, William R; Morris, Sheldon L

    2012-09-01

    The viability of BCG vaccine has traditionally been monitored using a colony-forming unit (CFU) assay. Despite its widespread use, results from the CFU assay can be highly variable because of the characteristic clumping of mycobacteria, their requirement for complex growth media, and the three week incubation period needed to cultivate slow-growing mycobacteria. In this study, we evaluated whether an ATP luminescence assay (which measures intracellular ATP content) could be used to rapidly estimate the viability of lyophilized and/or frozen preparations of six different BCG vaccine preparations - Danish, Tokyo, Russia, Brazil, Tice, and Pasteur - and two live attenuated mycobacterial vaccine candidates - a ΔlysAΔpanCD M. tuberculosis strain and a ΔmmaA4 BCG vaccine mutant. For every vaccine tested, a significant correlation was observed between intracellular ATP concentrations and the number of viable attenuated bacilli. However, the extractable intracellular ATP levels detected per cell among the different live vaccines varied suggesting that validated ATP luminescence assays with specific appropriate standards must be developed for each individual live attenuated vaccine preparation. Overall, these data indicate that the ATP luminescence assay is a rapid, sensitive, and reliable alternative method for quantifying the viability of varying live attenuated mycobacterial vaccine preparations.

  20. Immunogenicity of a Live Attenuated Chimeric Japanese Encephalitis Vaccine as a Booster Dose After Primary Vaccination With Live Attenuated SA14-14-2 Vaccine: A Phase IV Study in Thai Children.

    PubMed

    Sricharoenchai, Sirintip; Lapphra, Keswadee; Chuenkitmongkol, Sunate; Phongsamart, Wanatpreeya; Bouckenooghe, Alain; Wittawatmongkol, Orasri; Rungmaitree, Supattra; Chokephaibulkit, Kulkanya

    2017-02-01

    This single-group study investigated the immunogenicity and safety of a booster dose of the recently licensed live attenuated chimeric Japanese encephalitis vaccine in 50 healthy children (1-5 years old) who were primed with the live attenuated SA14-14-2 vaccine. A strong anamnestic response was induced 28 days postbooster: geometric mean titer, 9144 (95% confidence interval: 7365-11353); and seroprotection rate, 49 of 49 (100%) children.

  1. Immunization with Eimeria ninakohlyakimovae-live attenuated oocysts protect goat kids from clinical coccidiosis.

    PubMed

    Ruiz, Antonio; Muñoz, María Carmen; Molina, José Manuel; Hermosilla, Carlos; Andrada, Marisa; Lara, Pedro; Bordón, Elisa; Pérez, Davinia; López, Adassa María; Matos, Lorena; Guedes, Aránzazu Carmen; Falcón, Soraya; Falcón, Yaiza; Martín, Sergio; Taubert, Anja

    2014-01-17

    Caprine coccidiosis, affecting mainly young goat kids around the weaning period, is worldwide the most important disease in the goat industry. Control of caprine coccidiosis is increasingly hampered by resistances developed against coccidiostatic drugs leading to an enhanced need for anticoccidial vaccines. In the current study we conducted an oral immunization trial with live attenuated sporulated Eimeria ninakohlyakimovae oocysts. Sporulated E. ninakohlyakimovae oocysts were attenuated by X-irradiation technique. The experimental design included a total of 18 goat kids divided into the following groups: (i) animals immunized with attenuated E. ninakohlyakimovae oocysts at 5 weeks of age and challenged 3 weeks later with non-irradiated homologous oocysts (group 1); (ii) animals infected with non-attenuated E. ninakohlyakimovae oocysts at 5 weeks of age and challenged 3 weeks later with non-attenuated homologous oocysts (group 2); (iii) animals primary-infected with untreated E. ninakohlyakimovae oocysts at 8 weeks of age (control of the challenge infection, group 3); (iv) non-infected control animals (group 4). Goat kids immunized with live attenuated E. ninakohlyakimovae oocysts (group 1) excreted significantly less oocysts in the faeces (95.3% reduction) than kids infected with non-attenuated ones (group 2). Furthermore, immunization with live but attenuated oocysts resulted in ameliorated clinical coccidiosis compared to goat kids infected with untreated oocysts (group 2) and resulted in equally reduced signs of coccidiosis after challenge infection compared to acquired immunity driven by non-attenuated oocysts. Overall, the present study demonstrates for the first time that live attenuated E. ninakohlyakimovae oocysts orally administered showed almost no pathogenicity but enough immunogenicity in terms of immunoprotection. Importantly, vaccinated animals still shed low amounts of oocysts, guaranteeing environmental contamination and consecutive booster

  2. Live Attenuated S. Typhimurium Vaccine with Improved Safety in Immuno-Compromised Mice

    PubMed Central

    Periaswamy, Balamurugan; Maier, Lisa; Vishwakarma, Vikalp; Slack, Emma; Kremer, Marcus; Andrews-Polymenis, Helene L.; McClelland, Michael; Grant, Andrew J.; Suar, Mrutyunjay; Hardt, Wolf-Dietrich

    2012-01-01

    Live attenuated vaccines are of great value for preventing infectious diseases. They represent a delicate compromise between sufficient colonization-mediated adaptive immunity and minimizing the risk for infection by the vaccine strain itself. Immune defects can predispose to vaccine strain infections. It has remained unclear whether vaccine safety could be improved via mutations attenuating a vaccine in immune-deficient individuals without compromising the vaccine's performance in the normal host. We have addressed this hypothesis using a mouse model for Salmonella diarrhea and a live attenuated Salmonella Typhimurium strain (ssaV). Vaccination with this strain elicited protective immunity in wild type mice, but a fatal systemic infection in immune-deficient cybb−/−nos2−/− animals lacking NADPH oxidase and inducible NO synthase. In cybb−/−nos2−/− mice, we analyzed the attenuation of 35 ssaV strains carrying one additional mutation each. One strain, Z234 (ssaV SL1344_3093), was >1000-fold attenuated in cybb−/−nos2−/− mice and ≈100 fold attenuated in tnfr1−/− animals. However, in wt mice, Z234 was as efficient as ssaV with respect to host colonization and the elicitation of a protective, O-antigen specific mucosal secretory IgA (sIgA) response. These data suggest that it is possible to engineer live attenuated vaccines which are specifically attenuated in immuno-compromised hosts. This might help to improve vaccine safety. PMID:23029007

  3. Intranasal live attenuated seasonal influenza vaccine: does not challenge current practice.

    PubMed

    2013-09-01

    Influenza vaccination of children is only justified when there is a risk of serious influenza complications. In 2012, a live attenuated vaccine for intranasal administration was authorised in the European Union for influenza prevention in individuals aged from 2 to less than 18 years. This type of vaccine has been available in the United States since 2003. Clinical evaluation of this live vaccine is based on three non-inferiority trials versus an injected inactivated vaccine. There are no specific trials in children at risk of serious influenza complications. Only one of these trials was double-blinded. Two trials involved children with a history of respiratory problems. Symptomatic influenza confirmed by viral culture was less frequent in these three trials after intranasal vaccination than after injection of the conventional vaccine (about 3 to 5% and 6 to 10%, respectively). There was no difference between the vaccines in terms of clinical complications of influenza, especially asthma exacerbations. Adverse effects attributed to the intranasal vaccine mainly consisted of local reactions such as rhinorrhoea and nasal congestion, as well as flu-like syndromes. Wheezing, respiratory tract infections and hospitalisation were more frequent with the intranasal vaccine than with the injected vaccine in children aged less than 1 year and in children with a history of severe respiratory illness. The intranasal vaccine is contraindicated in these children. The intranasal vaccine contains live attenuated virus strains and is therefore contraindicated in immunocompromised patients. US pharmacovigilance data suggest that severe allergic reactions to the intranasal vaccine, Guillain-Barré syndrome, and transmission of vaccine viruses to contacts are very rare. Intranasal administration seems to be more practical, especially for children. In practice, there is no firm evidence that this live attenuated influenza vaccine has any clinical advantages over injected vaccines

  4. An overview of live attenuated recombinant pseudorabies viruses for use as novel vaccines.

    PubMed

    Dong, Bo; Zarlenga, Dante S; Ren, Xiaofeng

    2014-01-01

    Pseudorabies virus (PRV) is a double-stranded, DNA-based swine virus with a genome approximating 150 kb in size. PRV has many nonessential genes which can be replaced with genes encoding heterologous antigens but without deleterious effects on virus propagation. Recombinant PRVs expressing both native and foreign antigens are able to stimulate immune responses. In this paper, we review the current status of live attenuated recombinant PRVs and live PRV-based vector vaccines with potential for controlling viral infections in animals.

  5. Nebulized Live-Attenuated Influenza Vaccine Provides Protection in Ferrets at a Reduced Dose

    PubMed Central

    Smith, Jennifer Humberd; Papania, Mark; Knaus, Darin; Brooks, Paula; Haas, Debra L.; Mair, Raydel; Barry, James; Tompkins, S. Mark; Tripp, Ralph A.

    2011-01-01

    Live-attenuated influenza vaccine (LAIV) is delivered to vaccine recipients using a nasal spray syringe. LAIV delivered by this method is immunogenic at current doses; however, improvements in nasal delivery might allow for significant dose reduction. We investigated LAIV vaccination in ferrets using a high efficiency nebulizer designed for nasal delivery. LAIV nasal aerosol elicited high levels of serum neutralizing antibodies and protected ferrets from homologous virus challenge at conventional (107 TCID50) and significantly reduced (103 TCID50) doses. Aerosol LAIV also provided a significant level of subtype-specific cross protection. These results demonstrate the dose-sparing potential of nebulizer-based nasal aerosol LAIV delivery. PMID:22075083

  6. Cross-protection against Salmonella Typhimurium infection conferred by a live attenuated Salmonella Enteritidis vaccine

    PubMed Central

    Nandre, Rahul M.; Lee, Dajeong; Lee, John Hwa

    2015-01-01

    In this study, a genetically engineered live attenuated Salmonella Enteritidis (SE) vaccine was evaluated for its ability to protect against Salmonella Typhimurium (ST) infection in chickens. The birds were orally primed with the vaccine on the 1st day of life and given an oral booster at 5 wk of age. Control birds were orally inoculated with phosphate-buffered saline. Both groups of birds were orally challenged with a virulent ST strain at 9 wk of age. Compared with the control chickens, the vaccinated chickens had significantly higher levels of systemic IgG and mucosal IgA against specific ST antigens and a significantly greater lymphoproliferative response to ST antigens. The excretion of ST into the feces was significantly lower in the vaccinated group than in the control group on days 9 and 13 d after challenge. In addition, the vaccinated group had significantly fewer pronounced gross lesions in the liver and spleen and lower bacterial counts in the internal organs than the control group after challenge. These data indicate that genetically engineered live attenuated SE may induce humoral and cellular immune responses against ST antigens and may confer protection against virulent ST challenge. PMID:25673904

  7. Titration of individual strains in trivalent live-attenuated influenza vaccine without neutralization.

    PubMed

    Sirinonthanawech, Naraporn; Surichan, Somchaiya; Namsai, Aphinya; Puthavathana, Pilaipan; Auewarakul, Prasert; Kongchanagul, Alita

    2016-11-01

    Formulation and quality control of trivalent live-attenuated influenza vaccine requires titration of infectivity of individual strains in the trivalent mix. This is usually performed by selective neutralization of two of the three strains and titration of the un-neutralized strain in cell culture or embryonated eggs. This procedure requires standard sera with high neutralizing titer against each of the three strains. Obtaining standard sera, which can specifically neutralize only the corresponding strain of influenza viruses and is able to completely neutralize high concentration of virus in the vaccine samples, can be a problem for many vaccine manufacturers as vaccine stocks usually have very high viral titers and complete neutralization may not be obtained. Here an alternative approach for titration of individual strain in trivalent vaccine without the selective neutralization is presented. This was done by detecting individual strains with specific antibodies in an end-point titration of a trivalent vaccine in cell culture. Similar titers were observed in monovalent and trivalent vaccines for influenza A H3N2 and influenza B strains, whereas the influenza A H1N1 strain did not grow well in cell culture. Viral interference among the vaccine strains was not observed. Therefore, providing that vaccine strains grow well in cell culture, this assay can reliably determine the potency of individual strains in trivalent live-attenuated influenza vaccines.

  8. Live attenuated influenza virus increases pneumococcal translocation and persistence within the middle ear.

    PubMed

    Mina, Michael J; Klugman, Keith P; Rosch, Jason W; McCullers, Jonathan A

    2015-07-15

    Infection with influenza A virus (IAV) increases susceptibility to respiratory bacterial infections, resulting in increased bacterial carriage and complications such acute otitis media, pneumonia, bacteremia, and meningitis. Recently, vaccination with live attenuated influenza virus (LAIV) was reported to enhance subclinical bacterial colonization within the nasopharynx, similar to IAV. Although LAIV does not predispose to bacterial pneumonia, whether it may alter bacterial transmigration toward the middle ear, where it could have clinically relevant implications, has not been investigated. BALB/c mice received LAIV or phosphate-buffered saline 1 or 7 days before or during pneumococcal colonization with either of 2 clinical isolates, 19F or 7F. Middle ear bacterial titers were monitored daily via in vivo imaging. LAIV increased bacterial transmigration to and persistence within the middle ear. When colonization followed LAIV inoculation, a minimum LAIV incubation period of 4 days was required before bacterial transmigration commenced. While LAIV vaccination is safe and effective at reducing IAV and coinfection with influenza virus and bacteria, LAIV may increase bacterial transmigration to the middle ear and could thus increase the risk of clinically relevant acute otitis media. These data warrant further investigations into interactions between live attenuated viruses and naturally colonizing bacterial pathogens. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Superior Protection from Live-Attenuated Vaccines Directed against Johne's Disease

    PubMed Central

    Shippy, Daniel C.; Lemke, Justin J.; Berry, Aubrey; Nelson, Kathryn; Hines, Murray E.

    2016-01-01

    ABSTRACT Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis) is the etiological agent of Johne's disease in ruminants. Johne's disease is an important enteric infection causing large economic losses associated with infected herds. In an attempt to fight this infection, we created two novel live-attenuated vaccine candidates with mutations in sigH and lipN (pgsH and pgsN, respectively). Earlier reports in mice suggested these vaccines are promising candidates to fight Johne's disease in ruminants. In this study, we tested the performances of the two constructs as vaccine candidates using the goat model of Johne's disease. Both vaccines appeared to provide significant immunity to goats against challenge from wild-type M. paratuberculosis. The pgsH and pgsN constructs showed a significant reduction in histopathological lesions and tissue colonization compared to nonvaccinated goats and those vaccinated with an inactivated vaccine. Unlike the inactivated vaccine, the pgsN construct was able to eliminate fecal shedding from challenged animals, a feature that is highly desirable to control Johne's disease in infected herds. Furthermore, strong initial cell-mediated immune responses were elicited in goats vaccinated with pgsN that were not demonstrated in other vaccine groups. Overall, the results indicate the potential use of live-attenuated vaccines to control intracellular pathogens, including M. paratuberculosis, and warrant further testing in cattle, the main target for Johne's disease control programs. PMID:27806993

  10. A single-dose live-attenuated vaccine prevents Zika virus pregnancy transmission and testis damage.

    PubMed

    Shan, Chao; Muruato, Antonio E; Jagger, Brett W; Richner, Justin; Nunes, Bruno T D; Medeiros, Daniele B A; Xie, Xuping; Nunes, Jannyce G C; Morabito, Kaitlyn M; Kong, Wing-Pui; Pierson, Theodore C; Barrett, Alan D; Weaver, Scott C; Rossi, Shannan L; Vasconcelos, Pedro F C; Graham, Barney S; Diamond, Michael S; Shi, Pei-Yong

    2017-09-22

    Zika virus infection during pregnancy can cause congenital abnormities or fetal demise. The persistence of Zika virus in the male reproductive system poses a risk of sexual transmission. Here we demonstrate that live-attenuated Zika virus vaccine candidates containing deletions in the 3' untranslated region of the Zika virus genome (ZIKV-3'UTR-LAV) prevent viral transmission during pregnancy and testis damage in mice, as well as infection of nonhuman primates. After a single-dose vaccination, pregnant mice challenged with Zika virus at embryonic day 6 and evaluated at embryonic day 13 show markedly diminished levels of viral RNA in maternal, placental, and fetal tissues. Vaccinated male mice challenged with Zika virus were protected against testis infection, injury, and oligospermia. A single immunization of rhesus macaques elicited a rapid and robust antibody response, conferring complete protection upon challenge. Furthermore, the ZIKV-3'UTR-LAV vaccine candidates have a desirable safety profile. These results suggest that further development of ZIKV-3'UTR-LAV is warranted for humans.Zika virus infection can result in congenital disorders and cause disease in adults, and there is currently no approved vaccine. Here Shan et al. show that a single dose of a live-attenuated Zika vaccine prevents infection, testis damage and transmission to the fetus during pregnancy in different animal models.

  11. Live-Attenuated Bacterial Vectors: Tools for Vaccine and Therapeutic Agent Delivery

    PubMed Central

    Lin, Ivan Y. C.; Van, Thi Thu Hao; Smooker, Peter M.

    2015-01-01

    Genetically attenuated microorganisms, including pathogenic and commensal bacteria, can be engineered to carry and deliver heterologous antigens to elicit host immunity against both the vector as well as the pathogen from which the donor gene is derived. These live attenuated bacterial vectors have been given much attention due to their capacity to induce a broad range of immune responses including localized mucosal, as well as systemic humoral and/or cell-mediated immunity. In addition, the unique tumor-homing characteristics of these bacterial vectors has also been exploited for alternative anti-tumor vaccines and therapies. In such approach, tumor-associated antigen, immunostimulatory molecules, anti-tumor drugs, or nucleotides (DNA or RNA) are delivered. Different potential vectors are appropriate for specific applications, depending on their pathogenic routes. In this review, we survey and summarize the main features of the different types of live bacterial vectors and discussed the clinical applications in the field of vaccinology. In addition, different approaches for using live attenuated bacterial vectors for anti-cancer therapy is discussed, and some promising pre-clinical and clinical studies in this field are outlined. PMID:26569321

  12. Safety, Tolerability, and Immunogenicity of a Recombinant, Genetically Engineered, Live-Attenuated Vaccine against Canine Blastomycosis▿

    PubMed Central

    Wüthrich, Marcel; Krajaejun, Theerapong; Shearn-Bochsler, Valerie; Bass, Chris; Filutowicz, Hanna I.; Legendre, Alfred M.; Klein, Bruce S.

    2011-01-01

    Blastomycosis is a severe, commonly fatal infection caused by the dimorphic fungus Blastomyces dermatitidis in dogs that live in the United States, Canada, and parts of Africa. The cost of treating an infection can be expensive, and no vaccine against this infection is commercially available. A genetically engineered live-attenuated strain of B. dermatitidis lacking the major virulence factor BAD-1 successfully vaccinates against lethal experimental infection in mice. Here we studied the safety, toxicity, and immunogenicity of this strain as a vaccine in dogs, using 25 beagles at a teaching laboratory and 78 foxhounds in a field trial. In the beagles, escalating doses of live vaccine ranging from 2 × 104 to 2 × 107 yeast cells given subcutaneously were safe and did not disseminate to the lung or induce systemic illness, but a dose of <2 × 106 yeast cells induced less fever and local inflammation. A vaccine dose of 105 yeast cells was also well tolerated in vaccinated foxhounds who had never had blastomycosis; however, vaccinated dogs with prior infection had more local reactions at the vaccine site. The draining lymph node cells and peripheral blood lymphocytes from vaccinated dogs demonstrated gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and granulocyte-macrophage colony-stimulating factor (GM-CSF) specifically in response to stimulation with Blastomyces antigens. Thus, the live-attenuated vaccine against blastomycosis studied here proved safe, well tolerated, and immunogenic in dogs and merits further studies of vaccine efficacy. PMID:21367980

  13. Correlates of Immunity to Influenza as Determined by Challenge of Children with Live, Attenuated Influenza Vaccine

    PubMed Central

    Wright, Peter F.; Hoen, Anne G.; Ilyushina, Natalia A.; Brown, Eric P.; Ackerman, Margaret E.; Wieland-Alter, Wendy; Connor, Ruth I.; Jegaskanda, Sinthujan; Rosenberg-Hasson, Yael; Haynes, Brenda C.; Luke, Catherine J.; Subbarao, Kanta; Treanor, John J.

    2016-01-01

    Background. The efficacy of live, attenuated live attenuated influenza vaccine(LAIV) and inactivated influenza vaccine(IIV) is poorly explained by either single or composite immune responses to vaccination. Protective biomarkers were therefore studied in response to LAIV or IIV followed by LAIV challenge in children. Methods. Serum and mucosal responses to LAIV or IIV were analyzed using immunologic assays to assess both quantitative and functional responses. Cytokines and chemokines were measured in nasal washes collected before vaccination, on days 2, 4, and 7 after initial LAIV, and again after LAIV challenge using a 63-multiplex Luminex panel. Results. Patterns of immunity induced by LAIV and IIV were significantly different. Serum responses induced by IIV, including hemagglutination inhibition, did not correlate with detection or quantitation of LAIV on subsequent challenge. Modalities that induced sterilizing immunity seen after LAIV challenge could not be defined by any measurements of mucosal or serum antibodies induced by the initial LAIV immunization. No single cytokine or chemokine was predictive of protection. Conclusions. The mechanism of protective immunity observed after LAIV could not be defined, and traditional measurements of immunity to IIV did not correlate with protection against an LAIV challenge. PMID:27419180

  14. Stabilization of Live Attenuated Influenza Vaccines by Freeze Drying, Spray Drying, and Foam Drying.

    PubMed

    Lovalenti, Phillip M; Anderl, Jeff; Yee, Luisa; Nguyen, Van; Ghavami, Behnaz; Ohtake, Satoshi; Saxena, Atul; Voss, Thomas; Truong-Le, Vu

    2016-05-01

    The goal of this research is to develop stable formulations for live attenuated influenza vaccines (LAIV) by employing the drying methods freeze drying, spray drying, and foam drying. Formulated live attenuated Type-A H1N1 and B-strain influenza vaccines with a variety of excipient combinations were dried using one of the three drying methods. Process and storage stability at 4, 25 and 37°C of the LAIV in these formulations was monitored using a TCID50 potency assay. Their immunogenicity was also evaluated in a ferret model. The thermal stability of H1N1 vaccine was significantly enhanced through application of unique formulation combinations and drying processes. Foam dried formulations were as much as an order of magnitude more stable than either spray dried or freeze dried formulations, while exhibiting low process loss and full retention of immunogenicity. Based on long-term stability data, foam dried formulations exhibited a shelf life at 4, 25 and 37°C of >2, 1.5 years and 4.5 months, respectively. Foam dried LAIV Type-B manufactured using the same formulation and process parameters as H1N1 were imparted with a similar level of stability. Foam drying processing methods with appropriate selection of formulation components can produce an order of magnitude improvement in LAIV stability over other drying methods.

  15. Oncolytic virotherapy for human bone and soft tissue sarcomas using live attenuated poliovirus.

    PubMed

    Atsumi, Satoru; Matsumine, Akihiko; Toyoda, Hidemi; Niimi, Rui; Iino, Takahiro; Nakamura, Tomoki; Matsubara, Takao; Asanuma, Kunihiro; Komada, Yoshihiro; Uchida, Atsumasa; Sudo, Akihiro

    2012-09-01

    The poliovirus receptor CD155, is essential for poliovirus to infect and induce death in neural cells. Recently, CD155 has been shown to be selectively expressed on certain types of tumor cells originating from the neural crest, including malignant glioma and neuroblastoma. However, the expression pattern of CD155 in soft tissue sarcoma has not been examined. Therefore, we first examined CD155 expression in sarcoma cell lines, and found the expression of both CD155 mRNA and protein in 12 soft and bone tissue sarcoma cell lines. Furthermore, we examined the effect of live attenuated poliovirus (LAPV) on 6 bone and soft tissue sarcoma cell lines in vitro, and found that LAPV induced apoptosis by activating caspases 7 and 3 in all of these cell lines. Furthermore, in BALB/c nu/nu mice xenotransplanted with HT1080 fibrosarcoma cells, administration of live attenuated poliovirus caused growth suppression of the tumors. These results suggest that oncolytic therapy using a LAPV may represent a new option for the treatment of bone and soft tissue sarcomas.

  16. Reverse genetic platform for inactivated and live-attenuated influenza vaccine.

    PubMed

    Jung, Eun Ju; Lee, Kwang Hee; Seong, Baik Lin

    2010-02-28

    Influenza vaccine strains have been traditionally developed by annual reassortment between vaccine donor strain and the epidemic virulent strains. The classical method requires screening and genotyping of the vaccine strain among various reassortant viruses, which are usually laborious and time-consuming. Here we developed an efficient reverse genetic system to generate the 6:2 reassortant vaccine virus from cDNAs derived from the influenza RNAs. Thus, cDNAs of the two RNAs coding for surface antigens, haemagglutinin and neuraminidase from the epidemic virus and the 6 internal genes from the donor strain were transfected into cells and the infectious viruses of 6:2 defined RNA ratio were rescued. X-31 virus (a high- growth virus in embryonated eggs) and its cold-adapted strain X-31 ca were judiciously chosen as donor strains for the generation of inactivated vaccine and live-attenuated vaccine, respectively. The growth properties of these recombinant viruses in embryonated chicken eggs and MDCK cell were indistinguishable as compared to those generated by classical reassortment process. Based on the reverse genetic system, we generated 6+2 reassortant avian influenza vaccine strains corresponding to the A/Chicken/Korea/ MS96 (H9N2) and A/Indonesia/5/2005 (H5N1). The results would serve as technical platform for the generation of both injectable inactivated vaccine and the nasal spray live attenuated vaccine for the prevention of influenza epidemics and pandemics.

  17. Reverse genetic platform for inactivated and live-attenuated influenza vaccine

    PubMed Central

    Jung, Eun-Ju; Lee, Kwang-Hee

    2010-01-01

    Influenza vaccine strains have been traditionally developed by annual reassortment between vaccine donor strain and the epidemic virulent strains. The classical method requires screening and genotyping of the vaccine strain among various reassortant viruses, which are usually laborious and time-consuming. Here we developed an efficient reverse genetic system to generate the 6:2 reassortant vaccine virus from cDNAs derived from the influenza RNAs. Thus, cDNAs of the two RNAs coding for surface antigens, haemagglutinin and neuraminidase from the epidemic virus and the 6 internal genes from the donor strain were transfected into cells and the infectious viruses of 6:2 defined RNA ratio were rescued. X-31 virus (a high-growth virus in embryonated eggs) and its cold-adapted strain X-31 ca were judiciously chosen as donor strains for the generation of inactivated vaccine and live-attenuated vaccine, respectively. The growth properties of these recombinant viruses in embryonated chicken eggs and MDCK cell were indistinguishable as compared to those generated by classical reassortment process. Based on the reverse genetic system, we generated 6 + 2 reassortant avian influenza vaccine strains corresponding to the A/Chicken/Korea/MS96 (H9N2) and A/Indonesia/5/2005 (H5N1). The results would serve as technical platform for the generation of both injectable inactivated vaccine and the nasal spray live attenuated vaccine for the prevention of influenza epidemics and pandemics. PMID:20054235

  18. Cross-protection against Salmonella Typhimurium infection conferred by a live attenuated Salmonella Enteritidis vaccine.

    PubMed

    Nandre, Rahul M; Lee, Dajeong; Lee, John Hwa

    2015-01-01

    In this study, a genetically engineered live attenuated Salmonella Enteritidis (SE) vaccine was evaluated for its ability to protect against Salmonella Typhimurium (ST) infection in chickens. The birds were orally primed with the vaccine on the 1st day of life and given an oral booster at 5 wk of age. Control birds were orally inoculated with phosphate-buffered saline. Both groups of birds were orally challenged with a virulent ST strain at 9 wk of age. Compared with the control chickens, the vaccinated chickens had significantly higher levels of systemic IgG and mucosal IgA against specific ST antigens and a significantly greater lymphoproliferative response to ST antigens. The excretion of ST into the feces was significantly lower in the vaccinated group than in the control group on days 9 and 13 d after challenge. In addition, the vaccinated group had significantly fewer pronounced gross lesions in the liver and spleen and lower bacterial counts in the internal organs than the control group after challenge. These data indicate that genetically engineered live attenuated SE may induce humoral and cellular immune responses against ST antigens and may confer protection against virulent ST challenge.

  19. Live attenuated varicella-zoster vaccine in hematopoietic stem cell transplantation recipients.

    PubMed

    Issa, Nicolas C; Marty, Francisco M; Leblebjian, Houry; Galar, Alicia; Shea, Margaret M; Antin, Joseph H; Soiffer, Robert J; Baden, Lindsey R

    2014-02-01

    Hematopoietic stem cell transplantation (HSCT) recipients are at risk for varicella-zoster virus (VZV) reactivation. Vaccination may help restore VZV immunity; however, the available live attenuated VZV vaccine (Zostavax) is contraindicated in immunocompromised hosts. We report our experience with using a single dose of VZV vaccine in 110 adult autologous and allogeneic HSCT recipients who were about 2 years after transplantation, free of graft-versus-host disease, and not receiving immunosuppression. One hundred eight vaccine recipients (98.2%) had no clinically apparent adverse events with a median follow-up period of 9.5 months (interquartile range, 6 to 16; range, 2 to 28). Two vaccine recipients (1.8%) developed a skin rash (one zoster-like rash with associated pain, one varicella-like) within 42 days post-vaccination that resolved with antiviral therapy. We could not confirm if these rashes were due to vaccine (Oka) or wild-type VZV. No other possible cases of VZV reactivation have occurred with about 1178 months of follow-up. Live attenuated zoster vaccine appears generally safe in this population when vaccinated as noted; the overall vaccination risk needs to be weighed against the risk of wild-type VZV disease in this high-risk population.

  20. Alternative methods to compare safety of live-attenuated respiratory Newcastle disease vaccines in young chicks.

    PubMed

    Malo, Aris; de Wit, Sjaak; Swart, Wim A J M; Cook, Jane K A

    2017-09-02

    The work reported here is an initial attempt to find an alternative method by which the safety of live-attenuated Newcastle disease virus (NDV) vaccines for the respiratory tract of young chickens can be assessed. The current recommended methods involve either the subjective assessment of respiratory signs, or raise ethical concerns, as in the case of the intracerebral pathogenicity index. The two methods considered here were the use of tracheal organ cultures to assess the level of ciliostasis which the vaccines caused to the ciliated epithelium of the trachea and the incorporation of a pathogenic strain of Escherichia coli in the inoculum in order to induce colibacillosis. Both methods were successful in confirming the safety of the two vaccines. However, these results are only preliminary and more studies need to be performed to determine whether one or both methods have potential, either to replace the existing statutory tests, or provide a test which might be useful during the development stages of a new live-attenuated NDV vaccine. © British Veterinary Association (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Five-year antibody persistence in children after one dose of inactivated or live attenuated hepatitis A vaccine.

    PubMed

    Zhang, Zhilun; Zhu, Xiangjun; Hu, Yuansheng; Liang, Miao; Sun, Jin; Song, Yufei; Yang, Qi; Ji, Haiquan; Zeng, Gang; Song, Lifei; Chen, Jiangting

    2017-02-14

    In China, both inactivated hepatitis A (HA) vaccine and live attenuated HA vaccine are available. We conducted a trial to evaluate 5-year immune persistence induced by one dose of inactivated or live attenuated HA vaccines in children. Subjects with no HA vaccination history had randomly received one dose of inactivated or live attenuated HA vaccine at 18-60 months of age. Anti-HAV antibody concentrations were measured before vaccination and at the first, second, and fifth year after vaccination. Suspected cases of hepatitis A were monitored during the study period. A total of 332 subjects were enrolled and 182 provided evaluable serum samples at all planned time points. seropositive rate at 5 y was 85.9% in the inactivated HA vaccine group and 90.7% in the live attenuated HA vaccine group. GMCs were 76.3% mIU/ml (95% CI: 61.7 - 94.4) and 66.8mIU/ml (95% CI: 57.8 - 77.3), respectively. No significant difference in antibody persistence between 2 groups was found. No clinical hepatitis A case was reported. A single dose of an inactivated or live attenuated HA vaccine at 18-60 months of age resulted in high HAV seropositive rate and anti-HAV antibody concentrations that lasted for at least 5 y.

  2. Characterization of immune responses induced by inactivated, live attenuated and DNA vaccines against Japanese encephalitis virus in mice.

    PubMed

    Li, Jieqiong; Chen, Hui; Wu, Na; Fan, Dongying; Liang, Guodong; Gao, Na; An, Jing

    2013-08-28

    Vaccination is the most effective countermeasure for protecting individuals from Japanese encephalitis virus (JEV) infection. There are two types of JEV vaccines currently used in China: the Vero cell-derived inactivated vaccine and the live attenuated vaccine. In this study, we characterized the immune response and protective efficacy induced in mice by the inactivated vaccine, live attenuated vaccine and the DNA vaccine candidate pCAG-JME, which expresses JEV prM-E proteins. We found that the live attenuated vaccine conferred 100% protection and resulted in the generation of high levels of specific anti-JEV antibodies and cytokines. The pCAG-JME vaccine induced protective immunity as well as the live attenuated vaccine. Unexpectedly, immunization with the inactivated vaccine only induced a limited immune response and partial protection, which may be due to the decreased activity of dendritic cells and the expansion of CD4+CD25+Foxp3+ regulatory T cells observed in these mice. Altogether, our results suggest that the live attenuated vaccine is more effective in providing protection against JEV infection than the inactivated vaccine and that pCAG-JME will be a potential JEV vaccine candidate.

  3. Development of live-attenuated arenavirus vaccines based on codon deoptimization.

    PubMed

    Cheng, Benson Yee Hin; Ortiz-Riaño, Emilio; Nogales, Aitor; de la Torre, Juan Carlos; Martínez-Sobrido, Luis

    2015-04-01

    Arenaviruses have a significant impact on public health and pose a credible biodefense threat, but the development of safe and effective arenavirus vaccines has remained elusive, and currently, no Food and Drug Administration (FDA)-licensed arenavirus vaccines are available. Here, we explored the use of a codon deoptimization (CD)-based approach as a novel strategy to develop live-attenuated arenavirus vaccines. We recoded the nucleoprotein (NP) of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) with the least frequently used codons in mammalian cells, which caused lower LCMV NP expression levels in transfected cells that correlated with decreased NP activity in cell-based functional assays. We used reverse-genetics approaches to rescue a battery of recombinant LCMVs (rLCMVs) encoding CD NPs (rLCMV/NP(CD)) that showed attenuated growth kinetics in vitro. Moreover, experiments using the well-characterized mouse model of LCMV infection revealed that rLCMV/NP(CD1) and rLCMV/NP(CD2) were highly attenuated in vivo but, upon a single immunization, conferred complete protection against a subsequent lethal challenge with wild-type (WT) recombinant LCMV (rLCMV/WT). Both rLCMV/NP(CD1) and rLCMV/NP(CD2) were genetically and phenotypically stable during serial passages in FDA vaccine-approved Vero cells. These results provide proof of concept of the safety, efficacy, and stability of a CD-based approach for developing live-attenuated vaccine candidates against human-pathogenic arenaviruses. Several arenaviruses cause severe hemorrhagic fever in humans and pose a credible bioterrorism threat. Currently, no FDA-licensed vaccines are available to combat arenavirus infections, while antiarenaviral therapy is limited to the off-label use of ribavirin, which is only partially effective and is associated with side effects. Here, we describe the generation of recombinant versions of the prototypic arenavirus LCMV encoding codon-deoptimized viral nucleoproteins (r

  4. Development of Live-Attenuated Arenavirus Vaccines Based on Codon Deoptimization

    PubMed Central

    Cheng, Benson Yee Hin; Ortiz-Riaño, Emilio; Nogales, Aitor

    2015-01-01

    ABSTRACT Arenaviruses have a significant impact on public health and pose a credible biodefense threat, but the development of safe and effective arenavirus vaccines has remained elusive, and currently, no Food and Drug Administration (FDA)-licensed arenavirus vaccines are available. Here, we explored the use of a codon deoptimization (CD)-based approach as a novel strategy to develop live-attenuated arenavirus vaccines. We recoded the nucleoprotein (NP) of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) with the least frequently used codons in mammalian cells, which caused lower LCMV NP expression levels in transfected cells that correlated with decreased NP activity in cell-based functional assays. We used reverse-genetics approaches to rescue a battery of recombinant LCMVs (rLCMVs) encoding CD NPs (rLCMV/NPCD) that showed attenuated growth kinetics in vitro. Moreover, experiments using the well-characterized mouse model of LCMV infection revealed that rLCMV/NPCD1 and rLCMV/NPCD2 were highly attenuated in vivo but, upon a single immunization, conferred complete protection against a subsequent lethal challenge with wild-type (WT) recombinant LCMV (rLCMV/WT). Both rLCMV/NPCD1 and rLCMV/NPCD2 were genetically and phenotypically stable during serial passages in FDA vaccine-approved Vero cells. These results provide proof of concept of the safety, efficacy, and stability of a CD-based approach for developing live-attenuated vaccine candidates against human-pathogenic arenaviruses. IMPORTANCE Several arenaviruses cause severe hemorrhagic fever in humans and pose a credible bioterrorism threat. Currently, no FDA-licensed vaccines are available to combat arenavirus infections, while antiarenaviral therapy is limited to the off-label use of ribavirin, which is only partially effective and is associated with side effects. Here, we describe the generation of recombinant versions of the prototypic arenavirus LCMV encoding codon-deoptimized viral

  5. Duration of protective immunity after a single vaccination with a live attenuated bivalent bluetongue vaccine.

    PubMed

    Zhugunissov, Kuandyk; Yershebulov, Zakir; Barakbayev, Kainar; Bulatov, Yerbol; Taranov, Dmitriy; Amanova, Zhanat; Abduraimov, Yergali

    2015-12-01

    The prevention of bluetongue is typically achieved with mono- or polyvalent modified- live-attenuated virus (MLV) vaccines. MLV vaccines typically elicit a strong antibody response that correlates directly with their ability to replicate in the vaccinated animal. They are inexpensive, stimulate protective immunity after a single inoculation, and have been proven effective in preventing clinical bluetongue disease. In this study, we evaluated the safety, immunogenicity, and efficacy of a bluetongue vaccine against Bluetongue virus serotypes 4 and 16 in sheep. All the animals remained clinically healthy during the observation period. The vaccinated animals showed no clinical signs except fever (>40.8 °C) for 2-4 days. Rapid seroconversion was observed in the sheep, with the accumulation of high antibody titers in the vaccinated animals. No animal became ill after the challenge, indicating that effective protection was achieved. Therefore, this vaccine, prepared from attenuated bluetongue virus strains, is safe, immunogenic, and efficacious.

  6. The yellow fever 17D virus as a platform for new live attenuated vaccines.

    PubMed

    Bonaldo, Myrna C; Sequeira, Patrícia C; Galler, Ricardo

    2014-01-01

    The live-attenuated yellow fever 17D virus is one of the most outstanding human vaccines ever developed. It induces efficacious immune responses at a low production cost with a well-established manufacture process. These advantages make the YF17D virus attractive as a vector for the development of new vaccines. At the beginning of vector development studies, YF17D was genetically manipulated to express other flavivirus prM and E proteins, components of the viral envelope. While these 17D recombinants are based on the substitution of equivalent YF17D genes, other antigens from unrelated pathogens have also been successfully expressed and delivered by recombinant YF17D viruses employing alternative strategies for genetic manipulation of the YF17D genome. Herein, we discuss these strategies in terms of possibilities of single epitope or larger sequence expression and the main properties of these replication-competent viral platforms.

  7. Protective efficacy of a live attenuated vaccine against Argentine hemorrhagic fever. AHF Study Group.

    PubMed

    Maiztegui, J I; McKee, K T; Barrera Oro, J G; Harrison, L H; Gibbs, P H; Feuillade, M R; Enria, D A; Briggiler, A M; Levis, S C; Ambrosio, A M; Halsey, N A; Peters, C J

    1998-02-01

    Argentine hemorrhagic fever (AHF), caused by the arenavirus Junin, is a major public health problem among agricultural workers in Argentina. A prospective, randomized, double-blind, placebo-controlled, efficacy trial of Candid 1, a live attenuated Junin virus vaccine, was conducted over two consecutive epidemic seasons among 6500 male agricultural workers in the AHF-endemic region. Twenty-three men developed laboratory-confirmed AHF during the study; 22 received placebo and 1 received vaccine (vaccine efficacy 95%; 95% confidence interval [CI], 82%-99%). Three additional subjects in each group developed laboratory-confirmed Junin virus infection associated with mild illnesses that did not fulfill the clinical case definition for AHF, yielding a protective efficacy for prevention of any illness associated with Junin virus infection of 84% (95% CI, 60%-94%). No serious adverse events were attributed to vaccination. Candid 1, the first vaccine for the prevention of illness caused by an arenavirus, is safe and highly efficacious.

  8. Safety and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (IMOJEV®) in children.

    PubMed

    Chokephaibulkit, K; Houillon, G; Feroldi, E; Bouckenooghe, A

    2016-01-01

    JE-CV (IMOJEV®, Sanofi Pasteur, France) is a live attenuated virus vaccine constructed by inserting coding sequences of the prM and E structural proteins of the Japanese encephalitis SA14-14-2 virus into the genome of yellow fever 17D virus. Primary immunization with JE-CV requires a single dose of the vaccine. This article reviews clinical trials of JE-CV in children aged up to 6 years conducted in countries across South-East Asia. Strong and persistent antibody responses were observed after single primary and booster doses, with 97% of children seroprotected up to five years after booster vaccination. Models of long-term antibody persistence predict a median duration of protection of approximately 30 years after a booster dose. The safety and reactogenicity profiles of JE-CV primary and booster doses are comparable to other widely used childhood vaccines.

  9. Development of live-attenuated arenavirus vaccines based on codon deoptimization of the viral glycoprotein.

    PubMed

    Cheng, Benson Y H; Nogales, Aitor; de la Torre, Juan Carlos; Martínez-Sobrido, Luis

    2017-01-15

    Several arenaviruses, chiefly Lassa (LASV) in West Africa, cause hemorrhagic fever (HF) disease in humans and pose important public health problems in their endemic regions. To date, there are no FDA-approved arenavirus vaccines and current anti-arenaviral therapy is limited to the use of ribavirin that has very limited efficacy. In this work we document that a recombinant prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) with a codon deoptimized (CD) surface glycoprotein (GP), rLCMV/CD, exhibited wild type (WT)-like growth properties in cultured cells despite barely detectable GP expression levels in rLCMV/CD-infected cells. Importantly, rLCMV/CD was highly attenuated in vivo but able to induce complete protection against a subsequent lethal challenge with rLCMV/WT. Our findings support the feasibility of implementing an arenavirus GP CD-based approach for the development of safe and effective live-attenuated vaccines (LAVs) to combat diseases caused by human pathogenic arenaviruses.

  10. Is a booster dose necessary in children after immunization with live attenuated Japanese encephalitis vaccine?

    PubMed

    Choi, Ui Yoon; Lee, Soo Young; Kim, Ki Hwan; Kim, Dong Soo; Choi, Kyong Min; Cha, Sung Ho; Kang, Jin Han

    2013-10-01

    Japanese encephalitis virus is a common cause of encephalitis in Asian children; therefore, maintenance of immunity against Japanese encephalitis virus is essential. Although many countries recommend booster vaccination, some trials have concluded that administration of one or two vaccinations is sufficient. The current study was conducted to evaluate immunogenicity and safety after a booster vaccination with live attenuated vaccine. For 68 study subjects, measurement of antibody titer was performed before and at 4-6 weeks after administration of a booster dose. Adverse reactions occurring at the injection site and systemic adverse reactions were documented. The percentages of subjects with seroprotective neutralizing antibody titers was 100% before and after booster vaccination, and the geometric mean titer increased after booster vaccination. Thus, we predict that immunity will be maintained for a long time by an amnestic response. Low percentages of adverse reactions indicated the safety of the immunizations.

  11. Live Attenuated Yellow Fever 17D Vaccine: A Legacy Vaccine Still Controlling Outbreaks In Modern Day.

    PubMed

    Collins, Natalie D; Barrett, Alan D T

    2017-03-01

    Live attenuated 17D vaccine is considered one of the safest and efficacious vaccines developed to date. This review highlights what is known and the gaps in knowledge of vaccine-induced protective immunity. Recently, the World Health Organization modifying its guidance from 10-year booster doses to one dose gives lifelong protection in most populations. Nonetheless, there are some data suggesting immunity, though protective, may wane over time in certain populations and more research is needed to address this question. Despite having an effective vaccine to control yellow fever, vaccine shortages were identified during outbreaks in 2016, eventuating the use of a fractional-dosing campaign in the Democratic Republic of the Congo. Limited studies hinder identification of the underlying mechanism(s) of vaccine longevity; however, concurrent outbreaks during 2016 provide an opportunity to evaluate vaccine immunity following fractional dosing and insights into vaccine longevity in populations where there is limited information.

  12. Robustness testing of live attenuated rubella vaccine potency assay using fractional factorial design of experiments.

    PubMed

    Kutle, Leonida; Pavlović, Nediljko; Dorotić, Marko; Zadro, Ivana; Kapustić, Marijana; Halassy, Beata

    2010-07-26

    The potency assay for the freeze-dried live attenuated rubella vaccine is a cell culture based biological assay. The aim of our study was to perform the robustness testing of the rubella vaccine potency assay prior to validation. Seven intra-assay operating conditions that could have an effect on the assay performance were identified and their influence on the overall assay variability investigated by fractional factorial design of experiments (DoE). The robustness testing through DoE showed that the rubella vaccine potency assay is a robust assay. Critical operating conditions can be identified using DoE, which indicates that it is a suitable approach in bioassay robustness studies. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Superior protection elicited by live-attenuated vaccines in the murine model of paratuberculosis.

    PubMed

    Ghosh, Pallab; Shippy, Daniel C; Talaat, Adel M

    2015-12-16

    Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) causes Johne's disease, a chronic enteric infection in ruminants with severe economic impact on the dairy industry in the USA and worldwide. Currently, available vaccines have limited protective efficacy against disease progression and does not prevent spread of the infection among animals. Because of their ability to elicit wide-spectrum immune responses, we adopted a live-attenuated vaccine approach based on a sigH knock-out strain of M. paratuberculosis (ΔsigH). Earlier analysis of the ΔsigH mutant in mice indicated their inadequate ability to colonize host tissues, unlike the isogenic wild-type strain, validating the role of this sigma factor in M. paratuberculosis virulence. In the present study, we evaluated the performance of the ΔsigH mutant compared to inactivated vaccine constructs in a vaccine/challenge model of murine paratuberculosis. The presented analysis indicated that ΔsigH mutant with or without QuilA adjuvant is capable of eliciting strong immune responses (such as interferon gamma-γ, IFN-γ) suggesting their immunogenicity and ability to potentially initiate effective vaccine-induced immunity. Following a challenge with virulent strains of M. paratuberculosis, ΔsigH conferred protective immunity as indicated by the reduced bacterial burden accompanied with reduced lesions in main body organs (liver, spleen and intestine) usually infected with M. paratuberculosis. More importantly, our data indicated better ability of the ΔsigH vaccine to confer protection compared to the inactivated vaccine constructs even with the presence of oil-adjuvant. Overall, our approach provides a rational basis for using live-attenuated mutant strains to develop improved vaccines that elicit robust immunity against this chronic infection.

  14. A genetically engineered live attenuated vaccine of Coccidioides posadasii protects BALB/c mice against coccidioidomycosis.

    PubMed

    Xue, Jianmin; Chen, Xia; Selby, Dale; Hung, Chiung-Yu; Yu, Jieh-Juen; Cole, Garry T

    2009-08-01

    Coccidioidomycosis (also known as San Joaquin Valley fever) is an occupational disease. Workers exposed to outdoor dust which contains spores of the soil-inhabiting fungus have a significantly increased risk of respiratory infection. In addition, people with compromised T-cell immunity, the elderly, and certain racial groups, particularly African-Americans and Filipinos, who live in regions of endemicity in the southwestern United States have an elevated incidence of symptomatic infection caused by inhalation of spores of Coccidioides posadasii or Coccidioides immitis. Recurring epidemics and escalation of medical costs have helped to motivate production of a vaccine against valley fever. The major focus has been the development of a defined, T-cell-reactive, recombinant protein vaccine. However, none of the products described to date have provided full protection to coccidioidal disease-susceptible BALB/c mice. Here we describe the first genetically engineered, live, attenuated vaccine that protects both BALB/c and C57BL/6 mice against coccidioidomycosis. Two chitinase genes (CTS2 and CTS3) were disrupted to yield the attenuated strain, which was unable to endosporulate and was no longer infectious. Vaccinated survivors mounted an immune response characterized by production of both T-helper-1- and T-helper-2-type cytokines. Histology revealed well-formed granulomas and markedly diminished inflammation. Significantly fewer organisms were observed in the lungs of survivors than in those of nonvaccinated mice. Additional investigations are required to further define the nature of the live, attenuated vaccine-induced immunity against Coccidioides infection.

  15. Vaccination using live attenuated Leishmania donovani centrin deleted parasites induces protection in dogs against Leishmania infantum.

    PubMed

    Fiuza, Jacqueline Araújo; Gannavaram, Sreenivas; Santiago, Helton da Costa; Selvapandiyan, Angamuthu; Souza, Daniel Menezes; Passos, Lívia Silva Araújo; de Mendonça, Ludmila Zanandreis; Lemos-Giunchetti, Denise da Silveira; Ricci, Natasha Delaqua; Bartholomeu, Daniella Castanheira; Giunchetti, Rodolfo Cordeiro; Bueno, Lilian Lacerda; Correa-Oliveira, Rodrigo; Nakhasi, Hira L; Fujiwara, Ricardo Toshio

    2015-01-03

    Live attenuated Leishmania donovani parasites such as LdCen(-/-) have been shown elicit protective immunity against leishmanial infection in mice and hamster models. Previously, we have reported on the induction of strong immunogenicity in dogs upon vaccination with LdCen(-/-) including an increase in immunoglobulin isotypes, higher lymphoproliferative response, higher frequencies of activated CD4(+) and CD8(+) T cells, IFN-γ production by CD8(+) T cells, increased secretion of TNF-α and IL-12/IL-23p40 and, finally, decreased secretion of IL-4. To further explore the potential of LdCen(-/-) parasites as vaccine candidates, we performed a 24-month follow up of LdCen(-/-) immunized dogs after challenge with virulent Leishmania infantum, aiming determination of parasite burden by qPCR, antibody production (ELISA) and cellular responses (T cell activation and cytokine production) by flow cytometry and sandwich ELISA. Our data demonstrated that vaccination with a single dose of LdCen(-/-) (without any adjuvant) resulted in the reduction of up to 87.3% of parasite burden after 18 months of virulent challenge. These results are comparable to those obtained with commercially available vaccine in Brazil (Leishmune(®)). The protection was associated with antibody production and CD4(+) and CD8(+) proliferative responses, as well as T cell activation and significantly higher production of IFN-γ, IL-12/IL-23p40 and TNF-α, which was comparable to responses induced by immunization with Leishmune(®), with significant differences when compared to control animals (Placebo). Moreover, only animals immunized with LdCen(-/-) expressed lower levels of IL-4 when compared to animals vaccinated either with Leishmune(®) or PBS. Our results support further studies aiming to demonstrate the potential of genetically modified live attenuated L. donovani vaccine to control L. infantum transmission in endemic areas for CVL.

  16. A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models.

    PubMed

    Shan, Chao; Muruato, Antonio E; Nunes, Bruno T D; Luo, Huanle; Xie, Xuping; Medeiros, Daniele B A; Wakamiya, Maki; Tesh, Robert B; Barrett, Alan D; Wang, Tian; Weaver, Scott C; Vasconcelos, Pedro F C; Rossi, Shannan L; Shi, Pei-Yong

    2017-06-01

    Zika virus (ZIKV) infection of pregnant women can cause a wide range of congenital abnormalities, including microcephaly, in the infant, a condition now collectively known as congenital ZIKV syndrome. A vaccine to prevent or significantly attenuate viremia in pregnant women who are residents of or travelers to epidemic or endemic regions is needed to avert congenital ZIKV syndrome, and might also help to suppress epidemic transmission. Here we report on a live-attenuated vaccine candidate that contains a 10-nucleotide deletion in the 3' untranslated region of the ZIKV genome (10-del ZIKV). The 10-del ZIKV is highly attenuated, immunogenic, and protective in type 1 interferon receptor-deficient A129 mice. Crucially, a single dose of 10-del ZIKV induced sterilizing immunity with a saturated neutralizing antibody titer, which no longer increased after challenge with an epidemic ZIKV, and completely prevented viremia. The immunized mice also developed a robust T cell response. Intracranial inoculation of 1-d-old immunocompetent CD-1 mice with 1 × 10(4) infectious focus units (IFU) of 10-del ZIKV caused no mortality, whereas infections with 10 IFU of wild-type ZIKV were lethal. Mechanistically, the attenuated virulence of 10-del ZIKV may be due to decreased viral RNA synthesis and increased sensitivity to type-1-interferon inhibition. The attenuated 10-del ZIKV was incapable of infecting mosquitoes after oral feeding of spiked-blood meals, representing an additional safety feature. Collectively, the safety and efficacy results suggest that further development of this promising, live-attenuated ZIKV vaccine candidate is warranted.

  17. Safety, tolerability, and immunogenicity of a recombinant, genetically engineered, live-attenuated vaccine against canine blastomycosis.

    PubMed

    Wüthrich, Marcel; Krajaejun, Theerapong; Shearn-Bochsler, Valerie; Bass, Chris; Filutowicz, Hanna I; Legendre, Alfred M; Klein, Bruce S

    2011-05-01

    Blastomycosis is a severe, commonly fatal infection caused by the dimorphic fungus Blastomyces dermatitidis in dogs that live in the United States, Canada, and parts of Africa. The cost of treating an infection can be expensive, and no vaccine against this infection is commercially available. A genetically engineered live-attenuated strain of B. dermatitidis lacking the major virulence factor BAD-1 successfully vaccinates against lethal experimental infection in mice. Here we studied the safety, toxicity, and immunogenicity of this strain as a vaccine in dogs, using 25 beagles at a teaching laboratory and 78 foxhounds in a field trial. In the beagles, escalating doses of live vaccine ranging from 2 × 10⁴ to 2 × 10⁷ yeast cells given subcutaneously were safe and did not disseminate to the lung or induce systemic illness, but a dose of < 2 × 10⁶ yeast cells induced less fever and local inflammation. A vaccine dose of 10⁵ yeast cells was also well tolerated in vaccinated foxhounds who had never had blastomycosis; however, vaccinated dogs with prior infection had more local reactions at the vaccine site. The draining lymph node cells and peripheral blood lymphocytes from vaccinated dogs demonstrated gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and granulocyte-macrophage colony-stimulating factor (GM-CSF) specifically in response to stimulation with Blastomyces antigens. Thus, the live-attenuated vaccine against blastomycosis studied here proved safe, well tolerated, and immunogenic in dogs and merits further studies of vaccine efficacy.

  18. The double-edged sword: How evolution can make or break a live-attenuated virus vaccine

    PubMed Central

    Hanley, Kathryn A.

    2012-01-01

    Even students who reject evolution are often willing to consider cases in which evolutionary biology contributes to, or undermines, biomedical interventions. Moreover the intersection of evolutionary biology and biomedicine is fascinating in its own right. This review offers an overview of the ways in which evolution has impacted the design and deployment of live-attenuated virus vaccines, with subsections that may be useful as lecture material or as the basis for case studies in classes at a variety of levels. Live- attenuated virus vaccines have been modified in ways that restrain their replication in a host, so that infection (vaccination) produces immunity but not disease. Applied evolution, in the form of serial passage in novel host cells, is a “classical” method to generate live-attenuated viruses. However many live-attenuated vaccines exhibit reversion to virulence through back-mutation of attenuating mutations, compensatory mutations elsewhere in the genome, recombination or reassortment, or changes in quasispecies diversity. Additionally the combination of multiple live-attenuated strains may result in competition or facilitation between individual vaccine viruses, resulting in undesirable increases in virulence or decreases in immunogenicity. Genetic engineering informed by evolutionary thinking has led to a number of novel approaches to generate live-attenuated virus vaccines that contain substantial safeguards against reversion to virulence and that ameliorate interference among multiple vaccine strains. Finally, vaccines have the potential to shape the evolution of their wild type counterparts in counter-productive ways; at the extreme vaccine-driven eradication of a virus may create an empty niche that promotes the emergence of new viral pathogens. PMID:22468165

  19. Induction of immune response in macaque monkeys infected with simian-human immunodeficiency virus having the TNF-{alpha} gene at an early stage of infection

    SciTech Connect

    Shimizu, Yuya; Miyazaki, Yasuyuki; Ibuki, Kentaro; Suzuki, Hajime; Kaneyasu, Kentaro; Goto, Yoshitaka; Hayami, Masanori; Miura, Tomoyuki; Haga, Takeshi . E-mail: a0d518u@cc.miyazaki-u.ac.jp

    2005-12-20

    TNF-{alpha} has been implicated in the pathogenesis of, and the immune response against, HIV-1 infection. To clarify the roles of TNF-{alpha} against HIV-1-related virus infection in an SHIV-macaque model, we genetically engineered an SHIV to express the TNF-{alpha} gene (SHIV-TNF) and characterized the virus's properties in vivo. After the acute viremic stage, the plasma viral loads declined earlier in the SHIV-TNF-inoculated monkeys than in the parental SHIV (SHIV-NI)-inoculated monkeys. SHIV-TNF induced cell death in the lymph nodes without depletion of circulating CD4{sup +} T cells. SHIV-TNF provided some immunity in monkeys by increasing the production of the chemokine RANTES and by inducing an antigen-specific proliferation of lymphocytes. The monkeys immunized with SHIV-TNF were partly protected against a pathogenic SHIV (SHIV-C2/1) challenge. These findings suggest that TNF-{alpha} contributes to the induction of an effective immune response against HIV-1 rather than to the progression of disease at the early stage of infection.

  20. Disseminated Bacille Calmette-Guerin (BCG) disease in an infant with severe combined immunodeficiency.

    PubMed

    Sohail, Shagufta; Afzal, Muhammad; Anwar, Vaqas; Shama, Quratulain

    2014-11-01

    Bacille Calmette-Guerin (BCG) vaccine is administered to all newborns in countries where tuberculosis is still endemic. It is a live attenuated vaccine and considered quite safe in immunocompetent children. Disseminated BCG disease is the most serious complication seen only in individuals with underlying primary or secondary immunodeficiencies. We report a case of disseminated BCG disease in an infant with Severe Combined Immunodeficiency (SCID) who received BCG administration prior to diagnosis of SCID.

  1. A reassortment-incompetent live attenuated influenza virus vaccine for use in protection against pandemic virus strains

    USDA-ARS?s Scientific Manuscript database

    Although live-attenuated influenza vaccines (LAIV) are safe for use in protection against seasonal influenza strains, concerns over their potential to reassort with wild-type virus strains have been voiced. LAIVs have been demonstrated to induce enhanced mucosal and cell-mediated immunity over inac...

  2. Temperature-Sensitive Live-Attenuated Canine Influenza Virus H3N8 Vaccine

    PubMed Central

    Nogales, Aitor; Rodriguez, Laura; Chauché, Caroline; Huang, Kai; Reilly, Emma C.

    2016-01-01

    ABSTRACT Canine influenza is a respiratory disease of dogs caused by canine influenza virus (CIV). CIV subtypes responsible for influenza in dogs include H3N8, which originated from the transfer of H3N8 equine influenza virus to dogs; and the H3N2 CIV, which is an avian-origin virus that adapted to infect dogs. Influenza infections are most effectively prevented through vaccination to reduce transmission and future infection. Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIV in dogs. However, the efficacy of IIVs is suboptimal, and novel approaches are necessary for the prevention of disease caused by this canine respiratory pathogen. Using reverse genetics techniques, we have developed a live-attenuated CIV vaccine (LACIV) for the prevention of H3N8 CIV. The H3N8 LACIV replicates efficiently in canine cells at 33°C but is impaired at temperatures of 37 to 39°C and was attenuated compared to wild-type H3N8 CIV in vivo and ex vivo. The LACIV was able to induce protection against H3N8 CIV challenge with a single intranasal inoculation in mice. Immunogenicity and protection efficacy were better than that observed with a commercial CIV H3N8 IIV but provided limited cross-reactive immunity and heterologous protection against H3N2 CIV. These results demonstrate the feasibility of implementing a LAIV approach for the prevention and control of H3N8 CIV in dogs and suggest the need for a new LAIV for the control of H3N2 CIV. IMPORTANCE Two influenza A virus subtypes has been reported in dogs in the last 16 years: the canine influenza viruses (CIV) H3N8 and H3N2 of equine and avian origins, respectively. To date, only inactivated influenza vaccines (IIVs) are available to prevent CIV infections. Here, we report the generation of a recombinant, temperature-sensitive H3N8 CIV as a live-attenuated influenza vaccine (LAIV), which was attenuated in mice and dog tracheal, explants compared to CIV H3N8 wild type. A single dose of H3N8

  3. General Molecular Strategy for Development of Arenavirus Live-Attenuated Vaccines

    PubMed Central

    Iwasaki, Masaharu; Ngo, Nhi; Cubitt, Beatrice; Teijaro, John R.

    2015-01-01

    ABSTRACT Hemorrhagic fever arenaviruses (HFA) pose important public health problems in regions where they are endemic. Thus, Lassa virus (LASV) infects several hundred thousand individuals yearly in West Africa, causing a large number of Lassa fever cases associated with high morbidity and mortality. Concerns about human-pathogenic arenaviruses are exacerbated because of the lack of FDA-licensed arenavirus vaccines and because current antiarenaviral therapy is limited to an off-label use of ribavirin that is only partially effective. The Mopeia virus (MOPV)/LASV reassortant (ML29) is a LASV candidate live-attenuated vaccine (LAV) that has shown promising results in animal models. Nevertheless, the mechanism of ML29 attenuation remains unknown, which raises concerns about the phenotypic stability of ML29 in response to additional mutations. Development of LAVs based on well-defined molecular mechanisms of attenuation will represent a major step in combatting HFA. We used the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) to develop a general molecular strategy for arenavirus attenuation. Our approach involved replacement of the noncoding intergenic region (IGR) of the L genome segment with the IGR of the S genome segment to generate a recombinant LCMV, rLCMV(IGR/S-S), that was highly attenuated in vivo but induced protection against a lethal challenge with wild-type LCMV. Attenuation of rLCMV(IGR/S-S) was associated with a stable reorganization of the control of viral gene expression. This strategy can facilitate the rapid development of LAVs with the antigenic composition of the parental HFA and a mechanism of attenuation that minimizes concerns about increased virulence that could be caused by genetic changes in the LAV. IMPORTANCE Hemorrhagic fever arenaviruses (HFA) cause high morbidity and mortality, and pose important public health problems in the regions where they are endemic. Implementation of live-attenuated vaccines (LAV) will represent a

  4. Reversion of Cold-Adapted Live Attenuated Influenza Vaccine into a Pathogenic Virus.

    PubMed

    Zhou, Bin; Meliopoulos, Victoria A; Wang, Wei; Lin, Xudong; Stucker, Karla M; Halpin, Rebecca A; Stockwell, Timothy B; Schultz-Cherry, Stacey; Wentworth, David E

    2016-10-01

    The only licensed live attenuated influenza A virus vaccines (LAIVs) in the United States (FluMist) are created using internal protein-coding gene segments from the cold-adapted temperature-sensitive master donor virus A/Ann Arbor/6/1960 and HA/NA gene segments from circulating viruses. During serial passage of A/Ann Arbor/6/1960 at low temperatures to select the desired attenuating phenotypes, multiple cold-adaptive mutations and temperature-sensitive mutations arose. A substantial amount of scientific and clinical evidence has proven that FluMist is safe and effective. Nevertheless, no study has been conducted specifically to determine if the attenuating temperature-sensitive phenotype can revert and, if so, the types of substitutions that will emerge (i.e., compensatory substitutions versus reversion of existing attenuating mutations). Serial passage of the monovalent FluMist 2009 H1N1 pandemic vaccine at increasing temperatures in vitro generated a variant that replicated efficiently at higher temperatures. Sequencing of the variant identified seven nonsynonymous mutations, PB1-E51K, PB1-I171V, PA-N350K, PA-L366I, NP-N125Y, NP-V186I, and NS2-G63E. None occurred at positions previously reported to affect the temperature sensitivity of influenza A viruses. Synthetic genomics technology was used to synthesize the whole genome of the virus, and the roles of individual mutations were characterized by assessing their effects on RNA polymerase activity and virus replication kinetics at various temperatures. The revertant also regained virulence and caused significant disease in mice, with severity comparable to that caused by a wild-type 2009 H1N1 pandemic virus. The live attenuated influenza vaccine FluMist has been proven safe and effective and is widely used in the United States. The phenotype and genotype of the vaccine virus are believed to be very stable, and mutants that cause disease in animals or humans have never been reported. By propagating the virus under

  5. Genetic stability of live attenuated vaccines against potentially pandemic influenza viruses.

    PubMed

    Kiseleva, Irina; Dubrovina, Irina; Fedorova, Ekaterina; Larionova, Natalie; Isakova-Sivak, Irina; Bazhenova, Ekaterina; Pisareva, Maria; Kuznetsova, Victoria; Flores, Jorge; Rudenko, Larisa

    2015-12-08

    Ensuring genetic stability is a prerequisite for live attenuated influenza vaccine (LAIV). This study describes the results of virus shedding and clinical isolates' testing of Phase I clinical trials of Russian LAIVs against potentially pandemic influenza viruses in healthy adults. Three live attenuated vaccines against potentially pandemic influenza viruses, H2N2 LAIV, H5N2 LAIV and H7N3 LAIV, generated by classical reassortment in eggs, were studied. For each vaccine tested, subjects were randomly distributed into two groups to receive two doses of either LAIV or placebo at a 3:1 vaccine/placebo ratio. Nasal swabs were examined for vaccine virus shedding by culturing in eggs and by PCR. Vaccine isolates were tested for temperature sensitivity and cold-adaptation (ts/ca phenotypes) and for nucleotide sequence. The majority of nasal wash positive specimens were detected on the first day following vaccination. PCR method demonstrated higher sensitivity than routine virus isolation in eggs. None of the placebo recipients had detectable vaccine virus replication. All viruses isolated from the immunized subjects retained the ts/ca phenotypic characteristics of the master donor virus (MDV) and were shown to preserve all attenuating mutations described for the MDV. These data suggest high level of vaccine virus genetic stability after replication in humans. During manufacture process, no additional mutations occurred in the genome of H2N2 LAIV. In contrast, one amino acid change in the HA of H7N3 LAIV and two additional mutations in the HA of H5N2 LAIV manufactured vaccine lot were detected, however, they did not affect their ts/ca phenotypes. Our clinical trials revealed phenotypic and genetic stability of the LAIV viruses recovered from the immunized volunteers. In addition, no vaccine virus was detected in the placebo groups indicating the lack of person-to-person transmission. LAIV TRIAL REGISTRATION at ClinicalTrials.gov: H7N3-NCT01511419; H5N2-NCT01719783; H2N2-NCT

  6. Optimization of efficacy of a live attenuated Flavobacterium psychrophilum immersion vaccine.

    PubMed

    Sudheesh, Ponnerassery S; Cain, Kenneth D

    2016-09-01

    This study was aimed at optimizing the efficacy of a recently developed live attenuated immersion vaccine (B.17-ILM) as a promising vaccine against bacterial coldwater disease (BCWD) caused by Flavobacterium psychrophilum in salmonids. Rainbow trout (RBT) fry were vaccinated by immersion, and different parameters affecting vaccination such as fish size, vaccine delivery time, dose, duration of protection, booster regimes and vaccine growth incubation time were optimized. Specific anti-F. psychrophilum immune response was determined by ELISA. Protective efficacy was determined by challenging with a virulent strain of F. psychrophilum (CSF-259-93) and calculating cumulative percent mortality (CPM) and relative percent survival (RPS). All vaccinated fish developed significantly higher levels of serum antibody titers by week 8 when compared to their respective controls. Immersion vaccination for 3, 6 and 30 min produced significant protection with comparable RPS values of 47%, 53% and 52%, respectively. This vaccine provided significant protection for fish as small as 0.5 g with an RPS of 55%; larger fish of 1 g and 2 g yielded slightly higher RPS values of 59% and 60%, respectively. Fish vaccinated with higher vaccine doses of ∼10(10) and 10(8) colony forming units mL(-1) (cfu ml(-1)) were strongly protected out to at least 24 weeks with RPS values up to 70%. Fish vaccinated with lower doses (∼10(6) and 10(5) cfu mL(-1)) had good protection out to 12 weeks, but RPS values dropped to 36% and 34%, respectively by 24 weeks. Vaccine efficacy was optimum when the primary vaccination was followed by a single booster (week 12 challenge RPS = 61%) rather than two boosters (week 12 challenge RPS = 48%). Vaccination without a booster resulted in a lower RPS (13%) indicating the necessity of a single booster vaccination to maximize efficacy. This study presents key findings that demonstrate the efficacy and commercial potential for this live attenuated BCWD

  7. Reversion of Cold-Adapted Live Attenuated Influenza Vaccine into a Pathogenic Virus

    PubMed Central

    Meliopoulos, Victoria A.; Wang, Wei; Lin, Xudong; Stucker, Karla M.; Halpin, Rebecca A.; Stockwell, Timothy B.; Schultz-Cherry, Stacey

    2016-01-01

    ABSTRACT The only licensed live attenuated influenza A virus vaccines (LAIVs) in the United States (FluMist) are created using internal protein-coding gene segments from the cold-adapted temperature-sensitive master donor virus A/Ann Arbor/6/1960 and HA/NA gene segments from circulating viruses. During serial passage of A/Ann Arbor/6/1960 at low temperatures to select the desired attenuating phenotypes, multiple cold-adaptive mutations and temperature-sensitive mutations arose. A substantial amount of scientific and clinical evidence has proven that FluMist is safe and effective. Nevertheless, no study has been conducted specifically to determine if the attenuating temperature-sensitive phenotype can revert and, if so, the types of substitutions that will emerge (i.e., compensatory substitutions versus reversion of existing attenuating mutations). Serial passage of the monovalent FluMist 2009 H1N1 pandemic vaccine at increasing temperatures in vitro generated a variant that replicated efficiently at higher temperatures. Sequencing of the variant identified seven nonsynonymous mutations, PB1-E51K, PB1-I171V, PA-N350K, PA-L366I, NP-N125Y, NP-V186I, and NS2-G63E. None occurred at positions previously reported to affect the temperature sensitivity of influenza A viruses. Synthetic genomics technology was used to synthesize the whole genome of the virus, and the roles of individual mutations were characterized by assessing their effects on RNA polymerase activity and virus replication kinetics at various temperatures. The revertant also regained virulence and caused significant disease in mice, with severity comparable to that caused by a wild-type 2009 H1N1 pandemic virus. IMPORTANCE The live attenuated influenza vaccine FluMist has been proven safe and effective and is widely used in the United States. The phenotype and genotype of the vaccine virus are believed to be very stable, and mutants that cause disease in animals or humans have never been reported. By

  8. Distinct Cross-reactive B-Cell Responses to Live Attenuated and Inactivated Influenza Vaccines

    PubMed Central

    Sasaki, Sanae; Holmes, Tyson H.; Albrecht, Randy A.; García-Sastre, Adolfo; Dekker, Cornelia L.; He, Xiao-Song; Greenberg, Harry B.

    2014-01-01

    Background. The immunological bases for the efficacies of the 2 currently licensed influenza vaccines, live attenuated influenza vaccine (LAIV) and inactivated influenza vaccine (IIV), are not fully understood. The goal of this study was to identify specific B-cell responses correlated with the known efficacies of these 2 vaccines. Methods. We compared the B-cell and antibody responses after immunization with 2010/2011 IIV or LAIV in young adults, focusing on peripheral plasmablasts 6–8 days after vaccination. Results. The quantities of vaccine-specific plasmablasts and plasmablast-derived polyclonal antibodies (PPAbs) in IIV recipients were significantly higher than those in LAIV recipients. No significant difference was detected in the avidity of vaccine-specific PPAbs between the 2 vaccine groups. Proportionally, LAIV induced a greater vaccine-specific immunoglobulin A plasmablast response, as well as a greater plasmablast response to the conserved influenza nuclear protein, than IIV. The cross-reactive plasmablast response to heterovariant strains, as indicated by the relative levels of cross-reactive plasmablasts and the cross-reactive PPAb binding reactivity, was also greater in the LAIV group. Conclusions. Distinct quantitative and qualitative patterns of plasmablast responses were induced by LAIV and IIV in young adults; a proportionally greater cross-reactive response was induced by LAIV. PMID:24676204

  9. A live-attenuated influenza vaccine for H3N2 canine influenza virus.

    PubMed

    Rodriguez, Laura; Nogales, Aitor; Reilly, Emma C; Topham, David J; Murcia, Pablo R; Parrish, Colin R; Martinez Sobrido, Luis

    2017-04-01

    Canine influenza is a contagious respiratory disease in dogs caused by two subtypes (H3N2 and H3N8) of canine influenza virus (CIV). Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIVs. Historically, live-attenuated influenza vaccines (LAIVs) have been shown to produce better immunogenicity and protection efficacy than IIVs. Here, we have engineered a CIV H3N2 LAIV by using the internal genes of a previously described CIV H3N8 LAIV as a master donor virus (MDV) and the surface HA and NA genes of a circulating CIV H3N2 strain. Our findings show that CIV H3N2 LAIV replicates efficiently at low temperature but its replication is impaired at higher temperatures. The CIV H3N2 LAIV was attenuated in vivo but induced better protection efficacy in mice against challenge with wild-type CIV H3N2 than a commercial CIV H3N2 IIV. This is the first description of a LAIV for the prevention of CIV H3N2 in dogs.

  10. Evaluation of YadC protein delivered by live attenuated Salmonella as a vaccine against plague.

    PubMed

    Sun, Wei; Olinzock, Joseph; Wang, Shifeng; Sanapala, Shilpa; Curtiss, Roy

    2014-03-01

    Yersinia pestis YadB and YadC are two new outer membrane proteins related to its pathogenicity. Here, codon-optimized yadC, yadC810 (aa 32-551), or yadBC antigen genes delivered by live attenuated Salmonella strains are evaluated in mice for induction of protective immune responses against Y. pestis CO92 through subcutaneous or intranasal challenge. Our findings indicate that mice immunized with Salmonella synthesizing YadC, YadC810, or YadBC develop significant serum IgG responses to purified recombinant YadC protein. For subcutaneous challenge (approximately 230 LD50 of Y. pestis CO92), mice immunized with Salmonella synthesizing YadC or YadC810 are afforded 50% protection, but no protection by immunization with the Salmonella strain synthesizing YadBC. None of these antigens provided protection against intranasal challenge (approximately 31 LD50 of Y. pestis CO92). In addition, subcutaneous immunization with purified YadC810 protein emulsified with alum adjuvant does not elicit a protective response against Y. pestis administered by either challenge route. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. Relaxation of purifying selection on the SAD lineage of live attenuated oral vaccines for rabies virus.

    PubMed

    Hughes, Austin L

    2009-09-01

    Analysis of patterns of nucleotide sequence diversity in wild-type rabies virus (RABV) genomes and in the SAD live attenuated oral vaccine lineage was used to test for the relaxation of purifying selection in the latter and provide evidence regarding the genomic regions where such relaxation of selection occurs. The wild-type sequences showed evidence of strong past and ongoing purifying selection both on nonsynonymous sites in coding regions and on non-coding regions, particularly the start, end and 5' UTR regions. SAD vaccine sequences showed a relaxation of purifying selection at nonsynonymous sites in coding regions, resulting a substantial number of amino acid sequence polymorphisms at sites that were invariant in the wild-type sequences. Moreover, SAD vaccine sequences showed high levels of mutation accumulation in the non-coding regions that were most conserved in the wild-type sequences. Understanding the biological effects of the unique mutations accumulated in the vaccine lineage is important because of their potential effects on antigenicity and effectiveness of the vaccine.

  12. Recurrent 6th nerve palsy in a child following different live attenuated vaccines: case report

    PubMed Central

    2012-01-01

    Background Recurrent benign 6th nerve palsy in the paediatric age group is uncommon, but has been described following viral and bacterial infections. It has also been temporally associated with immunization, but has not been previously described following two different live attenuated vaccines. Case presentation A case is presented of a 12 month old Caucasian boy with recurrent benign 6th nerve palsy following measles-mumps-rubella and varicella vaccines, given on separate occasions with complete recovery following each episode. No alternate underlying etiology was identified despite extensive investigations and review. Conclusions The majority of benign 6th nerve palsies do not have a sinister cause and have an excellent prognosis, with recovery expected in most cases. The exact pathophysiology is unknown, although hypotheses including autoimmune mechanisms and direct viral invasion could explain the pathophysiology behind immunization related nerve palsies. It is important to rule out other aetiologies with thorough history, physical examination and investigations. There is limited information in the literature regarding the safety of a repeat dose of a live vaccine in this setting. Future immunizations should be considered on a case-by-case basis. PMID:22545865

  13. A Low Gastric pH Mouse Model to Evaluate Live Attenuated Bacterial Vaccines

    PubMed Central

    Brenneman, Karen E.; Willingham, Crystal; Kilbourne, Jacquelyn A.; 3rd, Roy Curtiss; Roland, Kenneth L.

    2014-01-01

    The low pH of the stomach serves as a barrier to ingested microbes and must be overcome or bypassed when delivering live bacteria for vaccine or probiotic applications. Typically, the impact of stomach acidity on bacterial survival is evaluated in vitro, as there are no small animal models to evaluate these effects in vivo. To better understand the effect of this low pH barrier to live attenuated Salmonella vaccines, which are often very sensitive to low pH, we investigated the value of the histamine mouse model for this application. A low pH gastric compartment was transiently induced in mice by the injection of histamine. This resulted in a gastric compartment of approximately pH 1.5 that was capable of distinguishing between acid-sensitive and acid-resistant microbes. Survival of enteric microbes during gastric transit in this model directly correlated with their in vitro acid resistance. Because many Salmonella enterica serotype Typhi vaccine strains are sensitive to acid, we have been investigating systems to enhance the acid resistance of these bacteria. Using the histamine mouse model, we demonstrate that the in vivo survival of S. Typhi vaccine strains increased approximately 10-fold when they carried a sugar-inducible arginine decarboxylase system. We conclude that this model will be a useful for evaluating live bacterial preparations prior to clinical trials. PMID:24489912

  14. Biodistribution and safety of a live attenuated tetravalent dengue vaccine in the cynomolgus monkey.

    PubMed

    Ravel, Guillaume; Mantel, Nathalie; Silvano, Jeremy; Rogue, Alexandra; Guy, Bruno; Jackson, Nicholas; Burdin, Nicolas

    2017-10-13

    The first licensed dengue vaccine is a recombinant, live, attenuated, tetravalent dengue virus vaccine (CYD-TDV; Sanofi Pasteur). This study assessed the biodistribution, shedding, and toxicity of CYD-TDV in a non-human primate model as part of the nonclinical safety assessment program for the vaccine. Cynomolgus monkeys were given one subcutaneous injection of either one human dose (5log10 CCID50/serotype) of CYD-TDV or saline control. Study endpoints included clinical observations, body temperature, body weight, food consumption, clinical pathology, immunogenicity, and post-mortem examinations including histopathology. Viral load, distribution, persistence, and shedding in tissues and body fluids were evaluated by quantitative reverse transcriptase polymerase chain reaction. The subcutaneous administration of CYD-TDV was well tolerated. There were no toxicological findings other than expected minor local reactions at the injection site. A transient low level of CYD-TDV viral RNA was detected in blood and the viral genome was identified primarily at the injection site and in the draining lymph nodes following immunization. These results, together with other data from repeat-dose toxicity and neurovirulence studies, confirm the absence of toxicological concern with CYD-TDV and corroborate clinical study observations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Efficacy of a live attenuated vaccine in classical swine fever virus postnatally persistently infected pigs.

    PubMed

    Muñoz-González, Sara; Perez-Simó, Marta; Muñoz, Marta; Bohorquez, José Alejandro; Rosell, Rosa; Summerfield, Artur; Domingo, Mariano; Ruggli, Nicolas; Ganges, Llilianne

    2015-07-09

    Classical swine fever (CSF) causes major losses in pig farming, with various degrees of disease severity. Efficient live attenuated vaccines against classical swine fever virus (CSFV) are used routinely in endemic countries. However, despite intensive vaccination programs in these areas for more than 20 years, CSF has not been eradicated. Molecular epidemiology studies in these regions suggests that the virus circulating in the field has evolved under the positive selection pressure exerted by the immune response to the vaccine, leading to new attenuated viral variants. Recent work by our group demonstrated that a high proportion of persistently infected piglets can be generated by early postnatal infection with low and moderately virulent CSFV strains. Here, we studied the immune response to a hog cholera lapinised virus vaccine (HCLV), C-strain, in six-week-old persistently infected pigs following post-natal infection. CSFV-negative pigs were vaccinated as controls. The humoral and interferon gamma responses as well as the CSFV RNA loads were monitored for 21 days post-vaccination. No vaccine viral RNA was detected in the serum samples and tonsils from CSFV postnatally persistently infected pigs for 21 days post-vaccination. Furthermore, no E2-specific antibody response or neutralising antibody titres were shown in CSFV persistently infected vaccinated animals. Likewise, no of IFN-gamma producing cell response against CSFV or PHA was observed. To our knowledge, this is the first report demonstrating the absence of a response to vaccination in CSFV persistently infected pigs.

  16. Physiology, pathogenicity and immunogenicity of live, attenuated Salmonella enterica serovar Enteritidis mutants in chicks.

    PubMed

    Si, Wei; Wang, Xiumei; Liu, Huifang; Yu, Shenye; Li, Zhaoli; Chen, Liping; Zhang, Wanjiang; Liu, Siguo

    2015-01-01

    To construct a novel live, attenuated Salmonella vaccine, the lon, cpxR and cpdB genes were deleted from a wild-type Salmonella enterica serovar Enteritidis-6 (SM-6) strain using the phage λ Red homologous recombination system, resulting in SM-△CpxR, SM-△C/Lon and SM-△C/L/CpdB. The growth curves of strain SM-△C/Lon grew more rapidly than the other strains and had OD 600 values higher than the other strains starting at the 4 h time point. The growth curves of strain SM-△C/L/CpdB were relatively flat. The colonization time of SM-△C/L/CpdB is about 8-10 days. Deleting the lon/cpxR/cpdB (SM-6) genes resulted in an approximate 10(3)-fold attenuation in virulence assessed by the analysis of the LD50 of specific pathogen-free (SPF) chicks. This result indicated that the deletion of the lon, cpxR and cpdB genes induced significant virulence attenuation. The protective effects of SM-△C/L/CpdB vaccination in SPF chicks against 5 × 10(9) colony forming units (CFU) of S. Enteritidis were resulted from the induction of an effective immune response. These findings demonstrate the potential of mutant SM-△C/L/CpdB to be used as an effective vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Cross-protective Immunity Against Leptospirosis Elicited by a Live, Attenuated Lipopolysaccharide Mutant

    PubMed Central

    Srikram, Amporn; Zhang, Kunkun; Bartpho, Thanatchaporn; Lo, Miranda; Hoke, David E.; Sermswan, Rasana W.; Adler, Ben

    2011-01-01

    Background. Leptospira species cause leptospirosis, a zoonotic disease found worldwide. Current vaccines against leptospirosis provide protection only against closely related serovars. Methods. We evaluated an attenuated transposon mutant of Leptospira interrogans serovar Manilae (M1352, defective in lipopolysaccharide biosynthesis) as a live vaccine against leptospirosis. Hamsters received a single dose of vaccine and were challenged with the homologous serovar (Manilae) and a serologically unrelated heterologous serovar (Pomona). Comparisons were made with killed vaccines. Potential cross-protective antigens against leptospirosis were investigated. Results. Live M1352 vaccine induced superior protection in hamsters against homologous challenge. The live vaccine also stimulated cross-protection against heterologous challenge, with 100% survival (live M1352) versus 40% survival (killed vaccine). Hamsters receiving either vaccine responded to the dominant membrane proteins LipL32 and LipL41. Hamsters receiving the live vaccine additionally recognized LA3961/OmpL36 (unknown function), Loa22 (OmpA family protein, recognized virulence factor), LA2372 (general secretory protein G), and LA1939 (hypothetical protein). Manilae LigA was recognized by M1352 vaccinates, whereas LipL36 was detected in Pomona. Conclusion. This study demonstrated that a live, attenuated vaccine can stimulate cross-protective immunity to L. interrogans and has identified antigens that potentially confer cross-protection against leptospirosis. PMID:21220775

  18. Canine influenza viruses with modified NS1 proteins for the development of live-attenuated vaccines.

    PubMed

    Nogales, Aitor; Huang, Kai; Chauché, Caroline; DeDiego, Marta L; Murcia, Pablo R; Parrish, Colin R; Martínez-Sobrido, Luis

    2017-01-01

    Canine Influenza Virus (CIV) H3N8 is the causative agent of canine influenza, a common and contagious respiratory disease of dogs. Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIV H3N8. However, live-attenuated influenza vaccines (LAIVs) are known to provide better immunogenicity and protection efficacy than IIVs. Influenza NS1 is a virulence factor that offers an attractive target for the preparation of attenuated viruses as LAIVs. Here we generated recombinant H3N8 CIVs containing truncated or a deleted NS1 protein to test their potential as LAIVs. All recombinant viruses were attenuated in mice and showed reduced replication in cultured canine tracheal explants, but were able to confer complete protection against challenge with wild-type CIV H3N8 after a single intranasal immunization. Immunogenicity and protection efficacy was better than that observed with an IIV. This is the first description of a LAIV for the prevention of H3N8 CIV in dogs. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Safety and immunogenicity of live attenuated and inactivated influenza vaccines in children with cancer.

    PubMed

    Carr, Silvana; Allison, Kim J; Van De Velde, Lee-Ann; Zhang, Kelly; English, Elizabeth Y; Iverson, Amy; Daw, Najat C; Howard, Scott C; Navid, Fariba; Rodriguez-Galindo, Carlos; Yang, Jie; Adderson, Elisabeth E; McCullers, Jonathan A; Flynn, Patricia M

    2011-11-15

    The safety and immunogenicity of live, attenuated influenza vaccine (LAIV) has not been compared to that of the standard trivalent inactivated vaccine (TIV) in children with cancer. Randomized study of LAIV versus TIV in children with cancer, age 2-21 years, vaccinated according to recommendations based on age and prior vaccination. Data on reactogenicity and other adverse events and blood and nasal swab samples were obtained following vaccination. Fifty-five eligible subjects (mean age, 10.4 years) received vaccine (28 LAIV/27 TIV). Both vaccines were well tolerated. Rhinorrhea reported within 10 days of vaccination was similar in both groups (36% LAIV vs 33% TIV, P > .999). Ten LAIV recipients shed virus; the latest viral shedding was detected 7 days after vaccination. Immunogenicity data were available for 52 subjects, or 26 in each group. TIV induced significantly higher postvaccination geometric mean titers against influenza A viruses (P < .001), greater seroprotection against influenza A/H1N1 (P = .01), and greater seroconversion against A/H3N2 (P = .004), compared with LAIV. No differences after vaccination were observed against influenza B viruses. As expected, serum antibody response against influenza A strains were greater with TIV than with LAIV in children with cancer. Both vaccines were well tolerated, and prolonged viral shedding after LAIV was not detected. NCT00906750.

  20. African horse sickness in The Gambia: circulation of a live-attenuated vaccine-derived strain.

    PubMed

    Oura, C A L; Ivens, P A S; Bachanek-Bankowska, K; Bin-Tarif, A; Jallow, D B; Sailleau, C; Maan, S; Mertens, P C; Batten, C A

    2012-03-01

    African horse sickness virus serotype 9 (AHSV-9) has been known for some time to be circulating amongst equids in West Africa without causing any clinical disease in indigenous horse populations. Whether this is due to local breeds of horses being resistant to disease or whether the AHSV-9 strains circulating are avirulent is currently unknown. This study shows that the majority (96%) of horses and donkeys sampled across The Gambia were seropositive for AHS, despite most being unvaccinated and having no previous history of showing clinical signs of AHS. Most young horses (<3 years) were seropositive with neutralizing antibodies specific to AHSV-9. Eight young equids (<3 years) were positive for AHSV-9 by serotype-specific RT-PCR and live AHSV-9 was isolated from two of these horses. Sequence analysis revealed the presence of an AHSV-9 strain showing 100% identity to Seg-2 of the AHSV-9 reference strain, indicating that the virus circulating in The Gambia was highly likely to have been derived from a live-attenuated AHSV-9 vaccine strain.

  1. Possible outcomes of reassortment in vivo between wild type and live attenuated influenza vaccine strains.

    PubMed

    Kiseleva, Irina; Dubrovina, Irina; Bazhenova, Ekaterina; Fedorova, Ekaterina; Larionova, Natalie; Rudenko, Larisa

    2012-12-07

    Reassortment of influenza viruses in nature has been well documented. Genetic reassortment plays a key role in emergence of new influenza A strains, including pandemic viruses. Permissive host can be simultaneously coinfected with multiple influenza viruses. During genetic reassortment gene segments are exchanged between parental viruses that may lead to some enhancement of virulence of reassortant progeny. At present, vaccination with live attenuated cold-adapted (ca) reassortant vaccine (LAIV) is used as an effective public health measure for influenza prophylaxis. However, there are concerns about a potential of simultaneous infection of human host with ca and wild type (wt) influenza viruses which might produce progeny that contain novel, more virulent genotypes. The aim of this study was to investigate potential consequences of reassortment of wt with LAIV strains in vivo. We demonstrated that reassortment of wt viruses with ca strains in guinea pigs have resulted in progeny virus which caused reduced macroscopic lesions of chicken embryos. According to phenotypical data 95% (19 out of 20) isolated reassortants were restricted in replication at elevated temperature of 40°C. None of reassortants were more virulent than wt parents, or revealed significantly higher macroscopic lesions than wt parental viruses. Our results suggest that genetic reassortment between wt and vaccine strain is unlikely to lead to virulent reassortant progeny. These findings provide additional support of LAIV safety data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Room Temperature Stabilization of Oral, Live Attenuated Salmonella enterica serovar Typhi-Vectored Vaccines

    PubMed Central

    Ohtake, Satoshi; Martin, Russell; Saxena, Atul; Pham, Binh; Chiueh, Gary; Osorio, Manuel; Kopecko, Dennis; Xu, DeQi; Lechuga-Ballesteros, David; Truong-Le, Vu

    2011-01-01

    Foam drying, a modified freeze drying process, was utilized to produce a heat-stable, live attenuated Salmonella Typhi ‘Ty21a’ bacterial vaccine. Ty21a vaccine was formulated with pharmaceutically approved stabilizers, including sugars, plasticizers, amino acids, and proteins. Growth media and harvesting conditions of the bacteria were also studied to enhance resistance to desiccation stress encountered during processing as well as subsequent storage at elevated temperatures. The optimized Ty21a vaccine, formulated with trehalose, methionine, and gelatin, demonstrated stability for approximately 12 weeks at 37°C (i.e., time required for the vaccine to decrease in potency by 1log10 CFU) and no loss in titer at 4 and 25°C following storage for the same duration. Furthermore, the foam dried Ty21a elicited a similar immunogenic response in mice as well as protection in challenge studies compared to Vivotif™, the commercial Ty21a vaccine. The enhanced heat stability of the Ty21a oral vaccine, or Ty21a derivatives expressing foreign antigens (e.g. anthrax), could mitigate risks of vaccine potency loss during long term storage, shipping, delivery to geographical areas with warmer climates or during emergency distribution following a bioterrorist attack. Because the foam drying process is conducted using conventional freeze dryers and can be readily implemented at any freeze drying manufacturing facility, this technology appears ready and appropriate for large scale processing of foam dried vaccines. PMID:21300096

  3. Live attenuated B. pertussis as a single-dose nasal vaccine against whooping cough.

    PubMed

    Mielcarek, Nathalie; Debrie, Anne-Sophie; Raze, Dominique; Bertout, Julie; Rouanet, Carine; Younes, Amena Ben; Creusy, Colette; Engle, Jacquelyn; Goldman, William E; Locht, Camille

    2006-07-01

    Pertussis is still among the principal causes of death worldwide, and its incidence is increasing even in countries with high vaccine coverage. Although all age groups are susceptible, it is most severe in infants too young to be protected by currently available vaccines. To induce strong protective immunity in neonates, we have developed BPZE1, a live attenuated Bordetella pertussis strain to be given as a single-dose nasal vaccine in early life. BPZE1 was developed by the genetic inactivation or removal of three major toxins. In mice, BPZE1 was highly attenuated, yet able to colonize the respiratory tract and to induce strong protective immunity after a single nasal administration. Protection against B. pertussis was comparable to that induced by two injections of acellular vaccine (aPV) in adult mice, but was significantly better than two administrations of aPV in infant mice. Moreover, BPZE1 protected against Bordetella parapertussis infection, whereas aPV did not. BPZE1 is thus an attractive vaccine candidate to protect against whooping cough by nasal, needle-free administration early in life, possibly at birth.

  4. Live Attenuated B. pertussis as a Single-Dose Nasal Vaccine against Whooping Cough

    PubMed Central

    Mielcarek, Nathalie; Debrie, Anne-Sophie; Raze, Dominique; Bertout, Julie; Rouanet, Carine; Younes, Amena Ben; Creusy, Colette; Engle, Jacquelyn; Goldman, William E; Locht, Camille

    2006-01-01

    Pertussis is still among the principal causes of death worldwide, and its incidence is increasing even in countries with high vaccine coverage. Although all age groups are susceptible, it is most severe in infants too young to be protected by currently available vaccines. To induce strong protective immunity in neonates, we have developed BPZE1, a live attenuated Bordetella pertussis strain to be given as a single-dose nasal vaccine in early life. BPZE1 was developed by the genetic inactivation or removal of three major toxins. In mice, BPZE1 was highly attenuated, yet able to colonize the respiratory tract and to induce strong protective immunity after a single nasal administration. Protection against B. pertussis was comparable to that induced by two injections of acellular vaccine (aPV) in adult mice, but was significantly better than two administrations of aPV in infant mice. Moreover, BPZE1 protected against Bordetella parapertussis infection, whereas aPV did not. BPZE1 is thus an attractive vaccine candidate to protect against whooping cough by nasal, needle-free administration early in life, possibly at birth. PMID:16839199

  5. Inactivated and live, attenuated influenza vaccines protect mice against influenza:Streptococcus pyogenes super-infections

    PubMed Central

    Chaussee, Michael S.; Sandbulte, Heather R.; Schuneman, Margaret J.; DePaula, Frank P.; Addengast, Leslie A.; Schlenker, Evelyn H.; Huber, Victor C.

    2011-01-01

    Mortality associated with influenza virus super-infections is frequently due to secondary bacterial complications. To date, super-infections with Streptococcus pyogenes have been studied less extensively than those associated with S. pneumoniae. This is significant because a vaccine for S. pyogenes is not clinically available, leaving vaccination against influenza virus as our only means for preventing these super-infections. In this study, we directly compared immunity induced by two types of influenza vaccine, either inactivated influenza virus (IIV) or live, attenuated influenza virus (LAIV), for the ability to prevent super-infections. Our data demonstrate that both IIV and LAIV vaccines induce similar levels of serum antibodies, and that LAIV alone induces IgA expression at mucosal surfaces. Upon super-infection, both vaccines have the ability to limit the induction of pro-inflammatory cytokines within the lung, including IFN-γ which has been shown to contribute to mortality in previous models of super-infection. Limiting expression of these pro-inflammatory cytokines within the lungs subsequently limits recruitment of macrophages and neutrophils to pulmonary surfaces, and ultimately protects both IIV- and LAIV-vaccinated mice from mortality. Despite their overall survival, both IIV- and LAIV-vaccinated mice demonstrated levels of bacteria within the lung tissue to levels that are similar to those seen in unvaccinated mice. Thus, influenza virus:bacteria super-infections can be limited by vaccine-induced immunity against influenza virus, but the ability to prevent morbidity is not complete. PMID:21440037

  6. Serological response of foals to polyvalent and monovalent live-attenuated African horse sickness virus vaccines.

    PubMed

    Crafford, J E; Lourens, C W; Smit, T K; Gardner, I A; MacLachlan, N J; Guthrie, A J

    2014-06-17

    African horse sickness (AHS) is typically a highly fatal disease in susceptible horses and vaccination is currently used to prevent the occurrence of disease in endemic areas. Similarly, vaccination has been central to the control of incursions of African horse sickness virus (AHSV) into previously unaffected areas and will likely play a significant role in any future incursions. Horses in the AHSV-infected area in South Africa are vaccinated annually with a live-attenuated (modified-live virus [MLV]) vaccine, which includes a cocktail of serotypes 1, 3, 4 (bottle 1) and 2, 6-8 (bottle 2) delivered in two separate doses at least 21 days apart. In this study, the neutralising antibody response of foals immunized with this polyvalent MLV AHSV vaccine was evaluated and compared to the response elicited to monovalent MLV AHSV serotypes. Naïve foals were immunized with either the polyvalent MLV AHSV vaccine, or a combination of monovalent MLV vaccines containing individual AHSV serotypes 1, 4, 7 or 8. There was a marked and consistent difference in the immunogenicity of individual virus serotypes contained in the MLV vaccines. Specifically, foals most consistently seroconverted to AHSV-1 and responses to other serotypes were highly variable, and often weak or not detected. The serotype-specific responses of foals given the monovalent MLV vaccines were similar to those of foals given the polyvalent MLV preparation suggesting that there is no obvious enhanced immune response through the administration of a monovalent vaccine as opposed to the polyvalent vaccine.

  7. Development of live-attenuated arenavirus vaccines based on codon deoptimization of the viral glycoprotein

    PubMed Central

    Cheng, Benson Y.H.; Nogales, Aitor; de la Torre, Juan Carlos; Martínez-Sobrido, Luis

    2016-01-01

    Several arenaviruses, chiefly Lassa (LASV) in West Africa, cause hemorrhagic fever (HF) disease in humans and pose important public health problems in their endemic regions. To date, there are no FDA-approved arenavirus vaccines and current anti-arenaviral therapy is limited to the use of ribavirin that has very limited efficacy. In this work we dcument that a recombinant prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) with a codon deoptimized (CD) surface glycoprotein (GP), rLCMV/CD, exhibited wild type (WT)-like growth properties in cultured cells despite barely detectable GP expression levels in rLCMV/CD-infected cells. Importantly, rLCMV/CD was highly attenuated in vivo but able to induce complete protection against a subsequent lethal challenge with rLCMV/WT. Our findings support the feasibility of implementing an arenavirus GP CD-based approach for the development of safe and effective live-attenuated vaccines (LAVs) to combat diseases caused by human pathogenic arenaviruses. PMID:27855284

  8. Post-marketing surveillance of live-attenuated Japanese encephalitis vaccine safety in China.

    PubMed

    Wang, Yali; Dong, Duo; Cheng, Gang; Zuo, Shuyan; Liu, Dawei; Du, Xiaoxi

    2014-10-07

    Japanese encephalitis (JE) is the most severe form of viral encephalitis in Asia and no specific treatment is available. Vaccination provides an effective intervention to prevent JE. In this paper, surveillance data for adverse events following immunization (AEFI) related to SA-14-14-2 live-attenuated Japanese encephalitis vaccine (Chengdu Institute of Biological Products) was presented. This information has been routinely generated by the Chinese national surveillance system for the period 2009-2012. There were 6024 AEFI cases (estimated reported rate 96.55 per million doses). Most common symptoms of adverse events were fever, redness, induration and skin rash. There were 70 serious AEFI cases (1.12 per million doses), including 9 cases of meningoencephalitis and 4 cases of death. The post-marketing surveillance data add the evidence that the Chengdu institute live attenutated vaccine has a reasonable safety profile. The relationship between encephalitis and SA-14-14-2 vaccination should be further studied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Biomarkers of safety and immune protection for genetically modified live attenuated leishmania vaccines against visceral leishmaniasis - discovery and implications.

    PubMed

    Gannavaram, Sreenivas; Dey, Ranadhir; Avishek, Kumar; Selvapandiyan, Angamuthu; Salotra, Poonam; Nakhasi, Hira L

    2014-01-01

    Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood-borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, subunit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in Leishmania donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters, and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines, e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen(-/-) in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated in normal

  10. Biomarkers of Safety and Immune Protection for Genetically Modified Live Attenuated Leishmania Vaccines Against Visceral Leishmaniasis – Discovery and Implications

    PubMed Central

    Gannavaram, Sreenivas; Dey, Ranadhir; Avishek, Kumar; Selvapandiyan, Angamuthu; Salotra, Poonam; Nakhasi, Hira L.

    2014-01-01

    Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood-borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, subunit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in Leishmania donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters, and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines, e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen−/− in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated in normal

  11. H2N2 live attenuated influenza vaccine is safe and immunogenic for healthy adult volunteers

    PubMed Central

    Isakova-Sivak, Irina; Stukova, Marina; Erofeeva, Mariana; Naykhin, Anatoly; Donina, Svetlana; Petukhova, Galina; Kuznetsova, Victoria; Kiseleva, Irina; Smolonogina, Tatiana; Dubrovina, Irina; Pisareva, Maria; Nikiforova, Alexandra; Power, Maureen; Flores, Jorge; Rudenko, Larisa

    2015-01-01

    H2N2 influenza viruses have not circulated in the human population since 1968, but they are still being regularly detected in the animal reservoir, suggesting their high pandemic potential. To prepare for a possible H2N2 pandemic, a number of H2N2 vaccine candidates have been generated and tested in preclinical and clinical studies. Here we describe the results of a randomized, double-blind placebo-controlled phase 1 clinical trial of an H2N2 live attenuated influenza vaccine (LAIV) candidate prepared from a human influenza virus isolated in 1966. The vaccine candidate was safe and well-tolerated by healthy adults, and did not cause serious adverse events or an increased rate of moderate or severe reactogenicities. The H2N2 vaccine virus was infectious for Humans. It was shed by 78.6% and 74.1% volunteers after the first and second dose, respectively, most probably due to the human origin of the virus. Importantly, no vaccine virus transmission to unvaccinated subjects was detected during the study. We employed multiple immunological tests to ensure the adequate assessment of the H2N2 pandemic LAIV candidate and demonstrated that the majority (92.6%) of the vaccinated subjects responded to the H2N2 LAIV in one or more immunological tests, including 85.2% of subjects with antibody responses and 55.6% volunteers with cell-mediated immune responses. In addition, we observed strong correlation between the H2N2 LAIV virus replication in the upper respiratory tract and the development of antibody responses. PMID:25831405

  12. Extended Preclinical Safety, Efficacy and Stability Testing of a Live-attenuated Chikungunya Vaccine Candidate

    PubMed Central

    Plante, Kenneth S; Rossi, Shannan L.; Bergren, Nicholas A.; Seymour, Robert L.; Weaver, Scott C.

    2015-01-01

    We recently described a new, live-attenuated vaccine candidate for chikungunya (CHIK) fever, CHIKV/IRES. This vaccine was shown to be well attenuated, immunogenic and efficacious in protecting against CHIK virus (CHIKV) challenge of mice and nonhuman primates. To further evaluate its preclinical safety, we compared CHIKV/IRES distribution and viral loads in interferon-α/β receptor-incompetent A129 mice to another CHIK vaccine candidate, 181/clone25, which proved highly immunogenic but mildly reactive in human Phase I/II clinical trials. Compared to wild-type CHIK virus, (wt-CHIKV), both vaccines generated lower viral loads in a wide variety of tissues and organs, including the brain and leg muscle, but CHIKV/IRES exhibited marked restrictions in dissemination and viral loads compared to 181/clone25, and was never found outside the blood, spleen and muscle. Unlike wt-CHIKV, which caused disrupted splenic architecture and hepatic lesions, histopathological lesions were not observed in animals infected with either vaccine strain. To examine the stability of attenuation, both vaccines were passaged 5 times intracranially in infant A129 mice, then assessed for changes in virulence by comparing parental and passaged viruses for footpad swelling, weight stability and survival after subcutaneous infection. Whereas strain 181/clone25 p5 underwent a significant increase in virulence as measured by weight loss (from <10% to >30%) and mortality (from 0 to 100%), CHIKV/IRES underwent no detectible change in any measure of virulence (no significant weight loss and no mortality). These data indicate greater nonclinical safety of the CHIKV/IRES vaccine candidate compared to 181/clone25, further supporting its eligibility for human testing. PMID:26340754

  13. Live Attenuated Influenza Vaccine contains Substantial and Unexpected Amounts of Defective Viral Genomic RNA.

    PubMed

    Gould, Philip S; Easton, Andrew J; Dimmock, Nigel J

    2017-09-21

    The live attenuated influenza vaccine FluMist(®) was withdrawn in the USA by the Centers for Disease Control and Prevention after its failure to provide adequate protective immunity during 2013-2016. The vaccine uses attenuated core type A and type B viruses, reconfigured each year to express the two major surface antigens of the currently circulating viruses. Here Fluenz™ Tetra, the European version of this vaccine, was examined directly for defective-interfering (DI) viral RNAs. DI RNAs are deleted versions of the infectious virus genome, and have powerful biological properties including attenuation of infection, reduction of infectious virus yield, and stimulation of some immune responses. Reverse transcription polymerase chain reaction followed by cloning and sequencing showed that Fluenz™ vaccine contains unexpected and substantial amounts of DI RNA arising from both its influenza A and influenza B components, with 87 different DI RNA sequences identified. Flu A DI RNAs from segment 3 replaced the majority of the genomic full-length segment 3, thus compromising its infectivity. DI RNAs arise during vaccine production and non-infectious DI virus replaces infectious virus pro rata so that fewer doses of the vaccine can be made. Instead the vaccine carries a large amount of non-infectious but biologically active DI virus. The presence of DI RNAs could significantly reduce the multiplication in the respiratory tract of the vaccine leading to reduced immunizing efficacy and could also stimulate the host antiviral responses, further depressing vaccine multiplication. The role of DI viruses in the performance of this and other vaccines requires further investigation.

  14. Innate and adaptive immune control of genetically engineered live-attenuated arenavirus vaccine prototypes.

    PubMed

    Pinschewer, Daniel D; Flatz, Lukas; Steinborn, Ralf; Horvath, Edit; Fernandez, Marylise; Lutz, Hans; Suter, Mark; Bergthaler, Andreas

    2010-09-01

    Arenaviruses such as Lassa virus (LASV) cause significant morbidity and mortality in endemic areas. Using a glycoprotein (GP) exchange strategy, we have recently developed live-attenuated arenavirus vaccine prototypes (rLCMV/VSVG) based on lymphocytic choriomeningitis virus (LCMV), a close relative of LASV. rLCMV/VSVG induced long-term CD8(+) T cell immunity against wild-type virus challenge and exhibited a stably attenuated phenotype in vivo. Here we elucidated the innate and adaptive immune requirements for the control of rLCMV/VSVG. Infection of RAG(-/-) mice resulted in persisting viral RNA in blood but not in overt viremia. The latter was only found in mice lacking both RAG and IFN type I receptor. Conversely, absence of IFN type II signaling or NK cells on an RAG-deficient background had only minor effects on vaccine virus load or none at all. rLCMV/VSVG infection of wild-type mice induced less type I IFN than did wild-type LCMV, and type I as well as type II IFNs were dispensable for the induction of virus-specific memory CD8 T cells and virus-neutralizing antibodies by rLCMV/VSVG. In conclusion, the adaptive immune systems are essential for elimination of rLCMV/VSVG, and type I but not type II IFN plays a major contributive role in lowering rLCMV/VSVG loads in vivo, attesting to the attenuation profile of the vaccine. Nevertheless, IFNs are not required for the induction of potent vaccine responses. These results provide a better understanding of the immunobiology of rLCMV/VSVG and will contribute to the further development of GP exchange vaccines for combating arenaviral hemorrhagic fevers.

  15. Temperature-Sensitive Live-Attenuated Canine Influenza Virus H3N8 Vaccine.

    PubMed

    Nogales, Aitor; Rodriguez, Laura; Chauché, Caroline; Huang, Kai; Reilly, Emma C; Topham, David J; Murcia, Pablo R; Parrish, Colin R; Martínez-Sobrido, Luis

    2017-02-15

    Canine influenza is a respiratory disease of dogs caused by canine influenza virus (CIV). CIV subtypes responsible for influenza in dogs include H3N8, which originated from the transfer of H3N8 equine influenza virus to dogs; and the H3N2 CIV, which is an avian-origin virus that adapted to infect dogs. Influenza infections are most effectively prevented through vaccination to reduce transmission and future infection. Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIV in dogs. However, the efficacy of IIVs is suboptimal, and novel approaches are necessary for the prevention of disease caused by this canine respiratory pathogen. Using reverse genetics techniques, we have developed a live-attenuated CIV vaccine (LACIV) for the prevention of H3N8 CIV. The H3N8 LACIV replicates efficiently in canine cells at 33°C but is impaired at temperatures of 37 to 39°C and was attenuated compared to wild-type H3N8 CIV in vivo and ex vivo The LACIV was able to induce protection against H3N8 CIV challenge with a single intranasal inoculation in mice. Immunogenicity and protection efficacy were better than that observed with a commercial CIV H3N8 IIV but provided limited cross-reactive immunity and heterologous protection against H3N2 CIV. These results demonstrate the feasibility of implementing a LAIV approach for the prevention and control of H3N8 CIV in dogs and suggest the need for a new LAIV for the control of H3N2 CIV.

  16. CANINE DISTEMPER VIRUS ANTIBODY TITERS IN DOMESTIC CATS AFTER DELIVERY OF A LIVE ATTENUATED VIRUS VACCINE.

    PubMed

    Ramsay, Edward; Sadler, Ryan; Rush, Robert; Seimon, Tracie; Tomaszewicz, Ania; Fleetwood, Ellen A; McAloose, Denise; Wilkes, Rebecca P

    2016-06-01

    Three methods for delivering a live attenuated canine distemper virus (CDV) vaccine to domestic cats ( Felis catus ) were investigated, as models for developing vaccination protocols for tigers (Panthera tigris). Twenty domestic cats were randomly divided into four treatment groups: saline injection (negative controls); and oral, intranasal, and subcutaneous vaccinates. Cats were injected with saline or a CDV vaccine (Nobivac DP, Merck) at wk 0 and 4. Blood and nasal swabs were collected at wk 0 (prior to the initial vaccination) and weekly thereafter for 9 wk. Urine samples were collected on wk 1 to 9 after initial vaccination. Forty-nine weeks following the initial vaccination series, three cats from the subcutaneous group and three cats from the intranasal group were revaccinated. Blood was collected immediately prior, and 7 and 21 days subsequent to revaccination. Nasal swabs and urine samples were collected from each cat prior to wk 49 revaccination and daily for 7 days thereafter. Nasal swabs and urine were analyzed by quantitative PCR for vaccine virus presence. Sera were tested for CDV antibodies by virus neutralization. All cats were sero-negative for CDV antibodies at the beginning of the study, and saline-injected cats remained sero-negative throughout the study. A dramatic anamnestic response was seen following wk 4 subcutaneous vaccinations, with titers peaking at wk 6 (geometric mean = 2,435.5). Following wk 49 revaccination, subcutaneous vaccinates again mounted impressive titers (wk 52 geometric mean = 2,048). Revaccination of the intranasal group cats at wk 49 produced a small increase in titers (wk 52 geometric mean = 203). CDV viral RNA was detected in six nasal swabs but no urine samples, demonstrating low viral shedding postvaccination. The strong antibody response to subcutaneous vaccination and the lack of adverse effects suggest this vaccine is safe and potentially protective against CDV infection in domestic cats.

  17. Immunogenicity and Safety of a Live Attenuated Zoster Vaccine (ZOSTAVAX™) in Korean Adults.

    PubMed

    Choi, Won Suk; Choi, Jung-Hyun; Choi, Jun Yong; Eom, Joong Sik; Kim, Sang Il; Pai, Hyunjoo; Peck, Kyong Ran; Sohn, Jang Wook; Cheong, Hee Jin

    2016-01-01

    A live attenuated zoster vaccine (ZOSTAVAX™, Merck & Co., Inc.) was approved by the Korea Ministry of Food and Drug Safety in 2009. However, the immunogenicity and safety of the vaccine has not been assessed in Korean population. This is multi-center, open-label, single-arm study performed with 180 healthy Korean adults ≥ 50 yr of age. The geometric mean titer (GMT) and geometric mean fold rise (GMFR) of varicella zoster virus (VZV) antibodies were measured by glycoprotein enzyme-linked immunosorbent assay (gpELISA) at 4 weeks post-vaccination. Subjects were followed for exposure to varicella or herpes zoster (HZ), the development of any varicella/varicella-like or HZ/HZ-like rashes, and any other clinical adverse experiences (AEs) for 42 days post-vaccination. For the 166 subjects included in the per-protocol population, the GMT at Day 1 was 66.9. At 4 weeks post-vaccination, the GMT for this population was 185.4, with a GMFR of 2.8 (95% CI, 2.5-3.1). Of the 180 subjects vaccinated, 62.8% experienced ≥ 1 AE, with 53.3% of subjects reporting injection-site AEs. The most frequently reported injection-site AEs were erythema (45.0%) with the majority being mild in intensity. Overall, 44 (24.4%) subjects experienced ≥ 1 systemic AE, 10 (5.5%) subjects experienced a systemic vaccine-related AE, and 3 (1.7%) subjects experienced ≥ 1 serious AE not related to vaccine. No subjects reported a VZV-like rash. There was no subject of death and no subject discontinued due to an adverse event. A single dose of zoster vaccine induced VZV-specific gpELISA antibody response and was generally well-tolerated in healthy Korean adults ≥50 yr of age (registry at www.clinicaltrial.gov No. NCT01556451).

  18. A live attenuated vaccine prevents replication and transmission of H7N9 virus in mammals

    PubMed Central

    Kong, Huihui; Zhang, Qianyi; Gu, Chunyang; Shi, Jianzhong; Deng, Guohua; Ma, Shujie; Liu, Jinxiong; Chen, Pucheng; Guan, Yuntao; Jiang, Yongping; Chen, Hualan

    2015-01-01

    The continued spread of the newly emerged H7N9 viruses among poultry in China, together with the emergence of drug-resistant variants and the possibility of human-to-human transmission, has spurred attempts to develop an effective vaccine. An MF59-adjuvant H7N9 inactivated vaccine is reported to be well-tolerated and immunogenic in humans; however a study in ferrets indicated that while a single dose of the inactivated H7N9 vaccine reduced disease severity, it did not prevent virus replication and transmission. In this study, we used reverse genetics to produce a cold-adapted, live attenuated H7N9 vaccine (H7N9/AAca) that contains wild-type HA and NA genes from AH/1, and the backbone of the cold-adapted influenza H2N2 A/Ann Arbor/6/60 virus (AAca). H7N9/AAca was attenuated in mice and ferrets, and induced robust neutralizing antibody responses in rhesus mice, ferrets, and guinea pigs immunized once or twice intranasally. The animals immunized twice were completely protected from H7N9 virus challenge. Importantly, the animals vaccinated once were fully protected from transmission when exposed to or in contact with the H7N9 virus-inoculated animals. These results demonstrate that a cold-adapted H7N9 vaccine can prevent H7N9 virus transmission; they provide a compelling argument for further testing of this vaccine in human trials. PMID:26058711

  19. Inactivated and live, attenuated influenza vaccines protect mice against influenza: Streptococcus pyogenes super-infections.

    PubMed

    Chaussee, Michael S; Sandbulte, Heather R; Schuneman, Margaret J; Depaula, Frank P; Addengast, Leslie A; Schlenker, Evelyn H; Huber, Victor C

    2011-05-12

    Mortality associated with influenza virus super-infections is frequently due to secondary bacterial complications. To date, super-infections with Streptococcus pyogenes have been studied less extensively than those associated with Streptococcus pneumoniae. This is significant because a vaccine for S. pyogenes is not clinically available, leaving vaccination against influenza virus as our only means for preventing these super-infections. In this study, we directly compared immunity induced by two types of influenza vaccine, either inactivated influenza virus (IIV) or live, attenuated influenza virus (LAIV), for the ability to prevent super-infections. Our data demonstrate that both IIV and LAIV vaccines induce similar levels of serum antibodies, and that LAIV alone induces IgA expression at mucosal surfaces. Upon super-infection, both vaccines have the ability to limit the induction of pro-inflammatory cytokines within the lung, including IFN-γ which has been shown to contribute to mortality in previous models of super-infection. Limiting expression of these pro-inflammatory cytokines within the lungs subsequently limits recruitment of macrophages and neutrophils to pulmonary surfaces, and ultimately protects both IIV- and LAIV-vaccinated mice from mortality. Despite their overall survival, both IIV- and LAIV-vaccinated mice demonstrated levels of bacteria within the lung tissue that are similar to those seen in unvaccinated mice. Thus, influenza virus:bacteria super-infections can be limited by vaccine-induced immunity against influenza virus, but the ability to prevent morbidity is not complete. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Plasmid containing CpG motifs enhances the efficacy of porcine reproductive and respiratory syndrome live attenuated vaccine.

    PubMed

    Guo, Xiaoyu; Zhang, Quan; Hou, Shaohua; Zhai, Guoqin; Zhu, Hongfei; Sánchez-Vizcaíno, J M

    2011-12-15

    Porcine reproductive and respiratory syndrome (PRRS) is now among the most important swine diseases that affect the Chinese swine industry. Both killed and live attenuated vaccines are currently used against the disease, but neither of them could provide full protection after vaccination. In the present study, the adjuvanticity of a plasmid containing CpG motifs (pUC18-CpG) was introduced to enhance the efficacy of a commercial PRRS live attenuated vaccine. After vaccination, PRRSV-specific antibodies, PRRSV-specific cytokines, and clinical parameters were studied and compared between different vaccinated groups. During a following challenge study, co-administration of pUC18-CpG with the vaccine could confer higher protection rate. Our results have shown that co-administration of pUC18-CpG with the vaccine could elicit more potent adaptive immune response and provide better protection. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Safety of Japanese encephalitis live attenuated vaccination in post-marketing surveillance in Guangdong, China, 2005-2012.

    PubMed

    Liu, Yu; Lin, Hualiang; Zhu, Qi; Wu, Chenggang; Zhao, Zhanjie; Zheng, Huizhen

    2014-03-26

    We reviewed the adverse events following immunization of live attenuated Japanese encephalitis vaccine in Guangdong Province, China. During the period of 2005-2012, 23 million doses of live attenuated Japanese encephalitis vaccine were used and 1426 adverse events were reported (61.24 per million doses); of which, 570 (40%) were classified as allergic reactions (24.48 per million doses), 31 (2%) were neurologic events (1.33 per million doses), and 36 (2.5%) were diagnosed as serious adverse events (1.55 per million doses). This study suggests that the JEV-L has a reasonable safety profile, most adverse events are relatively mild, with relatively rare neurologic events being observed.

  2. [Evaluation on the effect of immunization and safety of live attenuated and inactivated hepatitis A vaccine in China].

    PubMed

    Li, Hui; Zhang, Xiao-shu; An, Jing

    2013-01-01

    To evaluate the safety of both domestic live attenuated and inactivated hepatitis A vaccines, and to provide reference for emergent vaccination after hepatitis A outbreaks. 493 children aged 6 - 9 with negative antibody to HAV (produced by Abbott) were randomly divided into four groups as vaccinated with domestic live attenuated hepatitis A vaccine (Group A), domestic inactivated hepatitis A vaccine (Group B), imported inactivated hepatitis A vaccine (Group C) and hepatitis B vaccine (Group D) respectively. Adverse events following the immunization were observed 30 minutes, 24, 48 and 72 hours after the vaccination, under double-blind method. The main AEFIs were: fever, local pain and scleroma but no other severe AEFIs were observed. The rates of AEFIs were 13.95% in Group A, 15.25% in group B, 16.80% in group C and 25.62% in group D, with no statistical differences between these groups (χ(2) = 6.953, P > 0.05). 2 weeks after the vaccination, the positive conversion rates of domestic live attenuated hepatitis A vaccine and domestic inactivated hepatitis A vaccine were 85.0% and 94.59% respectively. The rate of domestic inactivated hepatitis A vaccine reached 100% at 4 weeks after the vaccination. The antibody levels of HAV-IgG of Group A and B in 2, 4 and 12 weeks of vaccination and of Group C were higher than that of Group D. After 12 weeks of vaccination, the antibody level of group B became higher than it was Group C. There were no differences on safety among domestic live attenuated hepatitis A vaccine, domestic inactivated hepatitis A vaccine or imported inactivated hepatitis A vaccine under routine or emergency vaccination. All the vaccines showed satisfactory effects.

  3. Protection Against Dengue Virus by Non-Replicating and Live Attenuated Vaccines Used Together in a Prime Boost Vaccination Strategy

    DTIC Science & Technology

    2010-01-01

    Protection against dengue virus by non-replicating and live attenuated vaccines used together in a prime boost vaccination strategy Monika Simmons a...Dengue DNA Punfied inacdvared virus Uvc artenuatcd virus Jlnmc boost A new vaccination strategy for dengue virus (DENV) was eval uated in rhesus...region (TDNA) then boosting 2 months l,ltcr with a tetravalent live aucnuated virus (TLAV) vaccine . Both vaccine combinations elicited virus

  4. CD8+ T Cells Define an Unexpected Role in Live-Attenuated Vaccine Protective Immunity against Chlamydia trachomatis infection

    PubMed Central

    Olivares-Zavaleta, Norma; Whitmire, William M.; Kari, Laszlo; Sturdevant, Gail L.; Caldwell, Harlan D.

    2014-01-01

    Trachoma, caused by the obligate intracellular organism Chlamydia trachomatis, is the world’s leading cause of preventable blindness for which a vaccine is needed. We have previously shown that a plasmid-deficient live-attenuated trachoma vaccine delivered ocularly to macaques elicited either solid or partial protective immunity against a virulent ocular challenge. Solidly protected macaques shared the same MHC class II alleles implicating CD4+ T cells in superior protective immunity. Understandably, we sought to define T cell immune correlates in these animals to potentially improve vaccine efficacy. Here, following a two year resting period, these macaques were boosted intramuscularly with the live-attenuated trachoma vaccine and their peripheral T cell anamnestic responses studied. Both solidly and partially protected macaques exhibited a CD4+ and CD8+ T cell anamnestic response following booster immunization. CD8+ but not CD4+ T cells from solidly protected macaques proliferated against soluble chlamydial antigen. We observed a more rapid T cell inflammatory cytokine response in tears of solidly protected animals following ocular re-challenge. Most notably, depletion of CD8+ T cells in solidly protected macaques completely abrogated protective immunity. Collectively, our findings support the conclusion that CD8+ T cells play an important but unexpected role in live-attenuated trachoma vaccine mediated protective immunity. PMID:24711617

  5. DNA vaccine initiates replication of live attenuated chikungunya virus in vitro and elicits protective immune response in mice.

    PubMed

    Tretyakova, Irina; Hearn, Jason; Wang, Eryu; Weaver, Scott; Pushko, Peter

    2014-06-15

    Chikungunya virus (CHIKV) causes outbreaks of chikungunya fever worldwide and represents an emerging pandemic threat. Vaccine development against CHIKV has proved challenging. Currently there is no approved vaccine or specific therapy for the disease. To develop novel experimental CHIKV vaccine, we used novel immunization DNA (iDNA) infectious clone technology, which combines the advantages of DNA and live attenuated vaccines. Here we describe an iDNA vaccine composed of plasmid DNA that encode the full-length infectious genome of live attenuated CHIKV clone 181/25 downstream from a eukaryotic promoter. The iDNA approach was designed to initiate replication of live vaccine virus from the plasmid in vitro and in vivo. Experimental CHIKV iDNA vaccines were prepared and evaluated in cultured cells and in mice. Transfection with 10 ng of iDNA was sufficient to initiate replication of vaccine virus in vitro. Vaccination of BALB/c mice with a single 10 μg of CHIKV iDNA plasmid resulted in seroconversion, elicitation of neutralizing antibodies, and protection from experimental challenge with a neurovirulent CHIKV. Live attenuated CHIKV 181/25 vaccine can be delivered in vitro and in vivo by using DNA vaccination. The iDNA approach appears to represent a promising vaccination strategy for CHIK and other alphaviral diseases. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Stability of live attenuated rotavirus vaccine with selected preservatives and primary containers.

    PubMed

    Lal, Manjari; Jarrahian, Courtney; Zhu, Changcheng; Hosken, Nancy A; McClurkan, Chris L; Koelle, David M; Saxon, Eugene; Roehrig, Andrew; Zehrung, Darin; Chen, Dexiang

    2016-05-11

    Rotavirus infection, which can be prevented by vaccination, is responsible for a high burden of acute gastroenteritis disease in children, especially in low-income countries. An appropriate formulation, packaging, and delivery device for oral rotavirus vaccine has the potential to reduce the manufacturing cost of the vaccine and the logistical impact associated with introduction of a new vaccine, simplify the vaccination procedure, and ensure that the vaccine is safely and accurately delivered to children. Single-dose prefilled presentations can be easy to use; however, they are typically more expensive, can be a bottleneck during production, and occupy a greater volume per dose vis-à-vis supply chain storage and medical waste disposal, which is a challenge in low-resource settings. Multi-dose presentations used thus far have other issues, including increased wastage of vaccine and the need for separate delivery devices. In this study, the goals were to evaluate both the technical feasibility of using preservatives to develop a liquid multi-dose formulation and the primary packaging alternatives for orally delivered, liquid rotavirus vaccines. The feasibility evaluation included evaluation of commonly used preservatives for compatibility with rotavirus vaccines and stability testing of rotavirus vaccine in various primary containers, including Lameplast's plastic tubes, BD's oral dispenser version of Uniject™ (Uniject DP), rommelag's blow-fill-seal containers, and MEDInstill's multi-dose vial and pouch. These presentations were compared to a standard glass vial. The results showed that none of the preservatives tested were compatible with a live attenuated rotavirus vaccine because they had a detrimental effect on the viability of the virus. In the presence of preservatives, vaccine virus titers declined to undetectable levels within 1 month. The vaccine formulation without preservatives maintained a stability profile over 12 months in all primary containers

  7. Comparing live attenuated and inactivated hepatitis A vaccines: an immunogenicity study after one single dose.

    PubMed

    Zheng, Hui; Chen, Yuansheng; Wang, Fuzhen; Gong, Xiaohong; Wu, Zhenhua; Miao, Ning; Zhang, Xiaoshu; Li, Hui; Chen, Chao; Hou, Xiang; Cui, Fuqiang; Wang, Huaqing

    2011-11-08

    While three types of hepatitis A vaccines are available in China, little data are available to compare them in terms of early antibody response. We conducted a trial to compare antibody response at 7, 14 and 28 days. We randomized primary school children in Gansu and Jilin provinces into four groups to receive either (1) Chinese live attenuated hepatitis A vaccine (H2 strain), (2) domestic inactivated hepatitis A vaccine (Healive(®)), (3) imported inactivated hepatitis A vaccine (Havrix(®)) or (4) hepatitis B vaccine (Control group). We compared groups at 7, 14 and 28 days in terms of proportion of sero-conversions (≥10 mUI/ml), and Geometric Mean Concentration (GMC) of antibodies measured with a Microparticle Enzyme Immunoassay (MEIA). We compared rates of self-reported adverse events following immunization (AEFI) in the first three days. 204 children received the H2 vaccine, 208 received Healive(®), 214 received Havrix(®), and 215 received hepatitis B vaccine (no differences across groups in terms of age, sex, weight and height). At seven days, sero-conversion proportions were 25%, 35%, 27% and 2% (p<0.0001) with GMC of 6 mIU/ml, 8 mIU/ml, 6 mIU/ml and 3 mIU/ml, respectively for the four groups. At 28 days, sero-conversion proportions were 98%, 100%, 93% and 3% (p<0.0001) with GMC of 47 mIU/ml, 71 mIU/ml, 67 mIU/ml and 3 mIU/ml, respectively. AEFI were benign and did not differ across groups (p=0.94). While our study was not able to identify differences between Havrix(®), Healive(®) and H2 vaccine in terms of sero-conversion proportion and GMC between seven and 28 days, further studies should evaluate non-inferiority or equivalence of the Chinese vaccines, particularly with respect to the GMC concentration for the H2 vaccine since it could affect long-term protection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Development of live attenuated Streptococcus agalactiae vaccine for tilapia via continuous passage in vitro.

    PubMed

    Li, L P; Wang, R; Liang, W W; Huang, T; Huang, Y; Luo, F G; Lei, A Y; Chen, M; Gan, X

    2015-08-01

    Fish Streptococcus agalactiae (S. agalactiae) seriously harms the world's aquaculture industry and causes huge economic losses. This study aimed to develop a potential live attenuated vaccine of S. agalactiae. Pre-screened vaccine candidate strain S. agalactiae HN016 was used as starting material to generate an attenuated strain S. agalactiae YM001 by continuous passage in vitro. The biological characteristics, virulence, and stability of YM001 were detected, and the protective efficacy of YM001 immunization in tilapia was also determined. Our results indicated that the growth, staining, characteristics of pulsed-field gel electrophoresis (PFGE) genotype, and virulence of YM001 were changed significantly as compared to the parental strain HN016. High doses of YM001 by intraperitoneal (IP) injection (1.0 × 10(9) CFU/fish) and oral gavage (1.0 × 10(10) CFU/fish) respectively did not cause any mortality and morbidity in tilapia. The relative percent survivals (RPSs) of fishes immunized with YM001 (1.0 × 10(8) CFU/fish, one time) via injection, immersion, and oral administration were 96.88, 67.22, and 71.81%, respectively, at 15 days, and 93.61, 60.56, and 53.16%, respectively, at 30 days. In all tests with 1-3 times of immunization in tilapia, the dosages at 1 × 10(8) and 1 × 10(9) CFU/fish displayed the similar best results, whereas the immunoprotection of the dosages at 1 × 10(6) and 1 × 10(7) CFU/fish declined significantly (P < 0.01), and 1 × 10(5) CFU/fish hardly displayed any protective effect. In addition, the efficacy of 2-3 times of immunization was significantly higher than that of single immunization (P < 0.01) while no significant difference in the efficacy between twice and thrice of immunization was seen (P > 0.05). The level of protective antibody elicited by oral immunization was significantly higher compared to that of the control group (P < 0.01), and the antibody reached their maximum levels 14-21 days after the immunization but decreased

  9. Assessing Fever Frequency After Pediatric Live Attenuated Versus Inactivated Influenza Vaccination.

    PubMed

    Stockwell, Melissa S; Broder, Karen R; Lewis, Paige; Jakob, Kathleen; Iqbal, Shahed; Fernandez, Nadira; Sharma, Devindra; Barrett, Angela; LaRussa, Philip

    2017-09-01

    Some studies have found a higher frequency of fever with trivalent live attenuated influenza vaccine (LAIV) than with inactivated influenza vaccine (IIV), but quadrivalent LAIV has not been assessed. Understanding fever is important for safety reviews and for parents and providers. In addition, there have been only a limited number of studies in which text messaging was used for vaccine adverse-event (AE) surveillance. We conducted a prospective observational study in 3 community clinics in New York City to assess post-influenza vaccination fever in 24- to 59-month-olds during the 2013-2014 season. Enrolled families of children who received quadrivalent LAIV (LAIV4) or IIV (trivalent IIV3 or quadrivalent IIV4) replied to text messages that assessed their temperature on vaccination night and the next 10 nights (days 0 to 10); missing data were collected via telephone and a diary. We compared frequencies of fever (temperature ≥ 100.4°F) according to vaccine group on days 0 to 2 and 3 to 10 by using χ2 and multivariate log-binomial regression adjusted for age, previous influenza vaccination, and vaccine coadministration. We also assessed outcomes using all sources versus only text messages. Most (84.1% [n = 540]) eligible parents enrolled. Fever frequencies on days 0 to 2 did not differ between LAIV4 and any IIV (3.8% vs 5.7%, respectively; adjusted relative risk [aRR] [95% confidence interval], 0.60 [0.25-1.46]), between LAIV4 and IIV4 (4.2% vs 7.1%, respectively; aRR, 0.58 [0.19-1.72]), or between IIV4 and IIV3 (7.1% vs 6.0%, respectively; aRR, 1.02 [0.30-3.46]). The findings were similar when all data sources versus text-message data alone were used. There were no significant differences on days 3 to 10. Postvaccination fever frequencies were low overall and did not differ according to influenza vaccine type during the 2013-2014 influenza season. The similarity of results when data were limited to text messages lends support to its use for surveillance of

  10. Comparative Immunogenicities of Frozen and Refrigerated Formulations of Live Attenuated Influenza Vaccine in Healthy Subjects▿

    PubMed Central

    Block, Stan L.; Reisinger, Keith S.; Hultquist, Micki; Walker, Robert E.

    2007-01-01

    The frozen version of live attenuated influenza vaccine (LAIV; FluMist) was compared with a newly licensed, refrigerated formulation, the cold-adapted influenza vaccine, trivalent (CAIV-T), for their immunogenicity, safety, and tolerability in healthy subjects 5 to 49 years of age. Eligible subjects were randomized 1:1 to receive CAIV-T or frozen LAIV. Subjects 5 to 8 years of age received two doses of vaccine 46 to 60 days apart; subjects 9 to 49 years of age received one dose of vaccine. Equivalent immunogenicities were defined as serum hemagglutination inhibition (HAI) geometric mean titer (GMT) ratios >0.5 and <2.0 for each of the three vaccine-specific strains. A total of 376 subjects 5 to 8 years of age and 566 subjects 9 to 49 years of age were evaluable. Postvaccination HAI GMT ratios were equivalent for CAIV-T and LAIV. The GMT ratios of CAIV-T/LAIV for the H1N1, H3N2, and B strains were 1.24, 1.02, and 1.00, respectively, for the 5- to 8-year-old age group and 1.14, 1.12, and 0.96, respectively, for the 9- to 49-year-old age group. Seroresponse/seroconversion rates (fourfold or greater rise) were similar in both age groups for each of the three vaccine strains. Within 28 days, the most frequent reactogenicity event in the CAIV-T and LAIV groups was runny nose/nasal congestion, which occurred at higher rates after dose 1 (44% and 42%, respectively) than after dose 2 (41% and 29%, respectively) in the 5- to 8-year-old group. Otherwise, the rates of adverse events (AEs) were similar between the treatment groups and the two age cohorts, with no serious AEs related to the study vaccines. The immunogenicities, reactogenicity events, and AEs were comparable for refrigerated CAIV-T and frozen LAIV. PMID:17724151

  11. Construction of a live-attenuated HIV-1 vaccine through genetic code expansion.

    PubMed

    Wang, Nanxi; Li, Yue; Niu, Wei; Sun, Ming; Cerny, Ronald; Li, Qingsheng; Guo, Jiantao

    2014-05-05

    A safe and effective vaccine against human immunodeficiency virus type 1 (HIV-1) is urgently needed to combat the worldwide AIDS pandemic, but still remains elusive. The fact that uncontrolled replication of an attenuated vaccine can lead to regaining of its virulence creates safety concerns precluding many vaccines from clinical application. We introduce a novel approach to control HIV-1 replication, which entails the manipulation of essential HIV-1 protein biosynthesis through unnatural amino acid (UAA*)-mediated suppression of genome-encoded blank codon. We successfully demonstrate that HIV-1 replication can be precisely turned on and off in vitro.

  12. A Single Mutation at PB1 Residue 319 Dramatically Increases the Safety of PR8 Live Attenuated Influenza Vaccine in a Murine Model without Compromising Vaccine Efficacy

    PubMed Central

    Cox, Andrew

    2015-01-01

    The live attenuated influenza vaccine (LAIV) is preferentially recommended for use in most children yet remains unsafe for the groups most at risk. Here we have improved the safety of a mouse-adapted live attenuated influenza vaccine containing the same attenuating amino acid mutations as in human LAIV by adding an additional mutation at PB1 residue 319. This results in a vaccine with a 20-fold decrease in protective efficacy and a 10,000-fold increase in safety. PMID:26676793

  13. Updated data on effective and safe immunizations with live-attenuated vaccines for children after living donor liver transplantation.

    PubMed

    Shinjoh, Masayoshi; Hoshino, Ken; Takahashi, Takao; Nakayama, Tetsuo

    2015-01-29

    Although immunizations using live-attenuated vaccines are not recommended for children post-liver transplant due to their theoretical risks, they will inevitably encounter vaccine-preventable viral diseases upon returning to real-life situations. The window of opportunity for vaccination is usually limited prior to transplantation because these children often have unstable disease courses. Also, vaccine immunity does not always persist after transplantation. Beginning in 2002, subcutaneous immunizations with four individual live-attenuated vaccines (measles, rubella, varicella, and mumps) to pediatric patients following living donor liver transplantation (LDLT) were performed for those who fulfilled the clinical criteria, including humoral and cell-mediated immunity. Written informed consent was collected. We included the study on 70 immunizations for 18 cases that we reported in 2008 (Shinjoh et al., 2008). A total of 196 immunizations were administered to 48 pediatric post-LDLT recipients. Of these, 144 were first immunizations and 52 were repeated immunizations following LDLT. The seroconversion rates at the first dose for measles (AIK-C), rubella (TO-336), varicella (Oka), and mumps (Hoshino) were 100% (36/36), 100% (35/35), 70% (23/33), and 75% (24/32), respectively. Antibody levels did not fall over time in patients immunized with rubella vaccine. Three mild cases of breakthrough varicella were observed. Two cases with transient parotid gland swelling were observed after mumps immunization. Two admissions because of fever at 2-3 weeks after the measles vaccine were reported but the patients had no symptoms of measles. Immunizations using selected live-attenuated vaccines were safe and effective for post-LDLT children who were not severely immunosuppressed. However, with the exception of rubella, repeated immunization may be necessary. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Immune effects of the vaccine of live attenuated Aeromonas hydrophila screened by rifampicin on common carp (Cyprinus carpio L).

    PubMed

    Jiang, Xinyu; Zhang, Chao; Zhao, Yanjing; Kong, Xianghui; Pei, Chao; Li, Li; Nie, Guoxing; Li, Xuejun

    2016-06-08

    Aeromonas hydrophila, as a strong Gram-negative bacterium, can infect a wide range of freshwater fish, including common carp Cyprinus carpio, and cause the huge economic loss. To create the effective vaccine is the best way to control the outbreak of the disease caused by A. hydrophila. In this study, a live attenuated A. hydrophila strain, XX1LA, was screened from the pathogenic A. hydrophila strain XX1 cultured on medium containing the antibiotic rifampicin, which was used as a live attenuated vaccine candidate. The immune protection of XX1LA against the pathogen A. hydrophila in common carp was evaluated by the relative percent survival (RPS), the specific IgM antibody titers, serum lysozyme activity and the expression profiles of multiple immune-related genes at the different time points following immunization. The results showed that the variable up-regulations of the immune-related genes, such as the pro-inflammatory cytokine IL-1β, the chemokine IL-10 and IgM, were observed in spleen and liver of common carp injected in the vaccines with the formalin-killed A. hydrophila (FKA) and the live attenuated XX1LA. Specific antibody to A. hydrophila was found to gradually increase during 28 days post-vaccination (dpv), and the RPS (83.7%) in fish vaccinated with XX1LA, was significant higher than that (37.2%) in fish vaccinated with FKA (P<0.05) on Day 28 after challenged by pathogen. It was demonstrated that the remarkable immune protection presented in the group vaccinated with XX1LA. During the late stage of 4-week immunization phase, compared with FKA and the control, specific IgM antibody titers significantly increased (P<0.05) in the XX1LA group. The activity of the lysozyme in serum indicated no significant change among three groups. In summary, the live attenuated bacterial vaccine XX1LA, screened in this study, indicates the better protect effect on common carp against A. hydrophila, which can be applied in aquaculture of common carp to prevent from the

  15. Temperature-sensitive mutations for live-attenuated Rift Valley fever vaccines: implications from other RNA viruses

    PubMed Central

    Nishiyama, Shoko; Ikegami, Tetsuro

    2015-01-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to the African continent. RVF is characterized by high rate of abortions in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by the Rift Valley fever virus (RVFV: genus Phlebovirus, family Bunyaviridae). Vaccination is the only known effective strategy to prevent the disease, but there are no licensed RVF vaccines available for humans. A live-attenuated vaccine candidate derived from the wild-type pathogenic Egyptian ZH548 strain, MP-12, has been conditionally licensed for veterinary use in the U.S. MP-12 displays a temperature-sensitive (ts) phenotype and does not replicate at 41°C. The ts mutation limits viral replication at a specific body temperature and may lead to an attenuation of the virus. Here we will review well-characterized ts mutations for RNA viruses, and further discuss the potential in designing novel live-attenuated vaccines for RVF. PMID:26322023

  16. Temperature-sensitive mutations for live-attenuated Rift Valley fever vaccines: implications from other RNA viruses.

    PubMed

    Nishiyama, Shoko; Ikegami, Tetsuro

    2015-01-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to the African continent. RVF is characterized by high rate of abortions in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by the Rift Valley fever virus (RVFV: genus Phlebovirus, family Bunyaviridae). Vaccination is the only known effective strategy to prevent the disease, but there are no licensed RVF vaccines available for humans. A live-attenuated vaccine candidate derived from the wild-type pathogenic Egyptian ZH548 strain, MP-12, has been conditionally licensed for veterinary use in the U.S. MP-12 displays a temperature-sensitive (ts) phenotype and does not replicate at 41°C. The ts mutation limits viral replication at a specific body temperature and may lead to an attenuation of the virus. Here we will review well-characterized ts mutations for RNA viruses, and further discuss the potential in designing novel live-attenuated vaccines for RVF.

  17. Limited dissemination of pathogenic SIV after vaginal challenge of rhesus monkeys immunized with a live, attenuated lentivirus.

    PubMed

    Stone, Mars; Ma, Zhong-Min; Genescà, Meritxell; Fritts, Linda; Blozois, Shelley; McChesney, Michael B; Miller, Christopher J

    2009-09-30

    In non-human primate models of AIDS, attenuated lentiviruses provide the most reliable protection from challenge with pathogenic virus but the extent to which the vaccine virus replicates after challenge is unclear. At 7 and 14 days after vaginal challenge with pathogenic SIVmac239, plasma SIVenv RNA levels were significantly lower in female macaques immunized 6 months earlier with live, attenuated SHIV89.6 compared to unimmunized control animals. In 2 SHIV-immunized, unprotected macaques SIV replication produced moderate-level plasma viremia with dissemination of challenge virus to all tissues on day 14 after challenge. In protected, SHIV-immunized monkeys, SIV replication was controlled in all tissues, from the day of challenge through 14 days post-challenge. Further, in CD8(+) T cell-depleted SHIV-immunized animals, SIV replication and dissemination were more rapid than in control animals. These findings suggest that replication of a pathogenic AIDS virus can be controlled at the site of mucosal inoculation by live-attenuated lentivirus immunization.

  18. Live Attenuated Francisella novicida Vaccine Protects against Francisella tularensis Pulmonary Challenge in Rats and Non-human Primates

    PubMed Central

    Chu, Ping; Cunningham, Aimee L.; Yu, Jieh-Juen; Nguyen, Jesse Q.; Barker, Jeffrey R.; Lyons, C. Rick; Wilder, Julie; Valderas, Michelle; Sherwood, Robert L.; Arulanandam, Bernard P.; Klose, Karl E.

    2014-01-01

    Francisella tularensis causes the disease tularemia. Human pulmonary exposure to the most virulent form, F. tularensis subsp. tularensis (Ftt), leads to high morbidity and mortality, resulting in this bacterium being classified as a potential biothreat agent. However, a closely-related species, F. novicida, is avirulent in healthy humans. No tularemia vaccine is currently approved for human use. We demonstrate that a single dose vaccine of a live attenuated F. novicida strain (Fn iglD) protects against subsequent pulmonary challenge with Ftt using two different animal models, Fischer 344 rats and cynomolgus macaques (NHP). The Fn iglD vaccine showed protective efficacy in rats, as did a Ftt iglD vaccine, suggesting no disadvantage to utilizing the low human virulent Francisella species to induce protective immunity. Comparison of specific antibody profiles in vaccinated rat and NHP sera by proteome array identified a core set of immunodominant antigens in vaccinated animals. This is the first report of a defined live attenuated vaccine that demonstrates efficacy against pulmonary tularemia in a NHP, and indicates that the low human virulence F. novicida functions as an effective tularemia vaccine platform. PMID:25340543

  19. A live attenuated equine H3N8 influenza vaccine is highly immunogenic and efficacious in mice and ferrets.

    PubMed

    Baz, Mariana; Paskel, Myeisha; Matsuoka, Yumiko; Zengel, James; Cheng, Xing; Treanor, John J; Jin, Hong; Subbarao, Kanta

    2015-02-01

    Equine influenza viruses (EIV) are responsible for rapidly spreading outbreaks of respiratory disease in horses. Although natural infections of humans with EIV have not been reported, experimental inoculation of humans with these viruses can lead to a productive infection and elicit a neutralizing antibody response. Moreover, EIV have crossed the species barrier to infect dogs, pigs, and camels and therefore may also pose a threat to humans. Based on serologic cross-reactivity of H3N8 EIV from different lineages and sublineages, A/equine/Georgia/1/1981 (eq/GA/81) was selected to produce a live attenuated candidate vaccine by reverse genetics with the hemagglutinin and neuraminidase genes of the eq/GA/81 wild-type (wt) virus and the six internal protein genes of the cold-adapted (ca) A/Ann Arbor/6/60 (H2N2) vaccine donor virus, which is the backbone of the licensed seasonal live attenuated influenza vaccine. In both mice and ferrets, intranasal administration of a single dose of the eq/GA/81 ca vaccine virus induced neutralizing antibodies and conferred complete protection from homologous wt virus challenge in the upper respiratory tract. One dose of the eq/GA/81 ca vaccine also induced neutralizing antibodies and conferred complete protection in mice and nearly complete protection in ferrets upon heterologous challenge with the H3N8 (eq/Newmarket/03) wt virus. These data support further evaluation of the eq/GA/81 ca vaccine in humans for use in the event of transmission of an equine H3N8 influenza virus to humans. Equine influenza viruses have crossed the species barrier to infect other mammals such as dogs, pigs, and camels and therefore may also pose a threat to humans. We believe that it is important to develop vaccines against equine influenza viruses in the event that an EIV evolves, adapts, and spreads in humans, causing disease. We generated a live attenuated H3N8 vaccine candidate and demonstrated that the vaccine was immunogenic and protected mice and

  20. A Live Attenuated Equine H3N8 Influenza Vaccine Is Highly Immunogenic and Efficacious in Mice and Ferrets

    PubMed Central

    Baz, Mariana; Paskel, Myeisha; Matsuoka, Yumiko; Zengel, James; Cheng, Xing; Treanor, John J.; Jin, Hong

    2014-01-01

    ABSTRACT Equine influenza viruses (EIV) are responsible for rapidly spreading outbreaks of respiratory disease in horses. Although natural infections of humans with EIV have not been reported, experimental inoculation of humans with these viruses can lead to a productive infection and elicit a neutralizing antibody response. Moreover, EIV have crossed the species barrier to infect dogs, pigs, and camels and therefore may also pose a threat to humans. Based on serologic cross-reactivity of H3N8 EIV from different lineages and sublineages, A/equine/Georgia/1/1981 (eq/GA/81) was selected to produce a live attenuated candidate vaccine by reverse genetics with the hemagglutinin and neuraminidase genes of the eq/GA/81 wild-type (wt) virus and the six internal protein genes of the cold-adapted (ca) A/Ann Arbor/6/60 (H2N2) vaccine donor virus, which is the backbone of the licensed seasonal live attenuated influenza vaccine. In both mice and ferrets, intranasal administration of a single dose of the eq/GA/81 ca vaccine virus induced neutralizing antibodies and conferred complete protection from homologous wt virus challenge in the upper respiratory tract. One dose of the eq/GA/81 ca vaccine also induced neutralizing antibodies and conferred complete protection in mice and nearly complete protection in ferrets upon heterologous challenge with the H3N8 (eq/Newmarket/03) wt virus. These data support further evaluation of the eq/GA/81 ca vaccine in humans for use in the event of transmission of an equine H3N8 influenza virus to humans. IMPORTANCE Equine influenza viruses have crossed the species barrier to infect other mammals such as dogs, pigs, and camels and therefore may also pose a threat to humans. We believe that it is important to develop vaccines against equine influenza viruses in the event that an EIV evolves, adapts, and spreads in humans, causing disease. We generated a live attenuated H3N8 vaccine candidate and demonstrated that the vaccine was immunogenic and

  1. Recoding of the vesicular stomatitis virus L gene by computer-aided design provides a live, attenuated vaccine candidate.

    PubMed

    Wang, Bingyin; Yang, Chen; Tekes, Gergely; Mueller, Steffen; Paul, Aniko; Whelan, Sean P J; Wimmer, Eckard

    2015-03-31

    Codon pair bias (CPB), which has been observed in all organisms, is a neglected genomic phenomenon that affects gene expression. CPB results from synonymous codons that are paired more or less frequently in ORFeomes regardless of codon bias. The effect of an individual codon pair change is usually small, but when it is amplified by large-scale genome recoding, strikingly altered biological phenotypes are observed. The utility of codon pair bias in the development of live attenuated vaccines was recently demonstrated by recodings of poliovirus (a positive-strand RNA virus) and influenza virus (a negative-strand segmented RNA virus). Here, the L gene of vesicular stomatitis virus (VSV), a nonsegmented negative-sense RNA virus, was partially recoded based on codon pair bias. Totals of 858 and 623 silent mutations were introduced into a 5'-terminal segment of the viral L gene (designated L1) to create sequences containing either overrepresented or underrepresented codon pairs, designated L1(sdmax) and L1(min), respectively. Analysis revealed that recombinant VSV containing the L1(min) sequence could not be recovered, whereas the virus with the sdmax sequence showed a modest level of attenuation in cell culture. More strikingly, in mice the L1(sdmax) virus was almost as immunogenic as the parental strain but highly attenuated. Taken together, these results open a new road to attain a balance between VSV virulence and immunogenicity, which could serve as an example for the attenuation of other negative-strand, nonsegmented RNA viruses. Vesicular stomatitis virus (VSV) is the prototypic rhabdovirus in the order Mononegavirales. A wide range of human pathogens belong to this family. Using a unique computer algorithm and large-scale genome synthesis, we attempted to develop a live attenuated vaccine strain for VSV, which could be used as an antigen delivery platform for humans. Recombinant VSVs with distinct codon pair biases were rationally designed, constructed, and

  2. African Green Monkeys Recapitulate the Clinical Experience with Replication of Live Attenuated Pandemic Influenza Virus Vaccine Candidates

    PubMed Central

    Matsuoka, Yumiko; Suguitan, Amorsolo; Orandle, Marlene; Paskel, Myeisha; Boonnak, Kobporn; Gardner, Donald J.; Feldmann, Friederike; Feldmann, Heinz; Marino, Michael; Jin, Hong; Kemble, George

    2014-01-01

    ABSTRACT Live attenuated cold-adapted (ca) H5N1, H7N3, H6N1, and H9N2 influenza vaccine viruses replicated in the respiratory tract of mice and ferrets, and 2 doses of vaccines were immunogenic and protected these animals from challenge infection with homologous and heterologous wild-type (wt) viruses of the corresponding subtypes. However, when these vaccine candidates were evaluated in phase I clinical trials, there were inconsistencies between the observations in animal models and in humans. The vaccine viruses did not replicate well and immune responses were variable in humans, even though the study subjects were seronegative with respect to the vaccine viruses before vaccination. Therefore, we sought a model that would better reflect the findings in humans and evaluated African green monkeys (AGMs) as a nonhuman primate model. The distribution of sialic acid (SA) receptors in the respiratory tract of AGMs was similar to that in humans. We evaluated the replication of wt and ca viruses of avian influenza (AI) virus subtypes H5N1, H6N1, H7N3, and H9N2 in the respiratory tract of AGMs. All of the wt viruses replicated efficiently, while replication of the ca vaccine viruses was restricted to the upper respiratory tract. Interestingly, the patterns and sites of virus replication differed among the different subtypes. We also evaluated the immunogenicity and protective efficacy of H5N1, H6N1, H7N3, and H9N2 ca vaccines. Protection from wt virus challenge correlated well with the level of serum neutralizing antibodies. Immune responses were slightly better when vaccine was delivered by both intranasal and intratracheal delivery than when it was delivered intranasally by sprayer. We conclude that live attenuated pandemic influenza virus vaccines replicate similarly in AGMs and human subjects and that AGMs may be a useful model to evaluate the replication of ca vaccine candidates. IMPORTANCE Ferrets and mice are commonly used for preclinical evaluation of influenza

  3. Immunodeficiency disorders

    MedlinePlus

    ... that affect T cells may cause repeated Candida (yeast) infections. Inherited combined immunodeficiency affects both T cells ... infections (including some forms of pneumonia or repeated yeast infections) Symptoms depend on the disorder. For example, ...

  4. Development of a human live attenuated West Nile infectious DNA vaccine: conceptual design of the vaccine candidate.

    PubMed

    Yamshchikov, Vladimir

    2015-10-01

    West Nile virus has become an important epidemiological problem attracting significant attention of health authorities, mass media, and the public. Although there are promising advancements toward addressing the vaccine need, the perspectives of the commercial availability of the vaccine remain uncertain. To a large extent this is due to lack of a sustained interest for further commercial development of the vaccines already undergoing the preclinical and clinical development, and a predicted insignificant cost effectiveness of mass vaccination. There is a need for a safe, efficacious and cost effective vaccine, which can improve the feasibility of a targeted vaccination program. In the present report, we summarize the background, the rationale, and the choice of the development pathway that we selected for the design of a live attenuated human West Nile vaccine in a novel infectious DNA format.

  5. WHO working group on the quality, safety and efficacy of japanese encephalitis vaccines (live attenuated) for human use, Bangkok, Thailand, 21-23 February 2012.

    PubMed

    Trent, Dennis W; Minor, Philip; Jivapaisarnpong, Teeranart; Shin, Jinho

    2013-11-01

    Japanese encephalitis (JE) is one of the most important viral encephalitides in Asia. Two live-attenuated vaccines have been developed and licensed for use in countries in the region. Given the advancement of immunization of humans with increasing use of live-attenuated vaccines to prevent JE, there is increased interest to define quality standards for their manufacture, testing, nonclinical studies, and clinical studies to assess their efficacy and safety in humans. To this end, WHO convened a meeting with a group of international experts in February 2012 to develop guidelines for evaluating the quality, safety and efficacy of live-attenuated JE virus vaccines for prevention of human disease. This report summarizes collective views of the participants on scientific and technical issues that need to be considered in the guidelines.

  6. Effectiveness and safety of immunization with live-attenuated and inactivated vaccines for pediatric liver transplantation recipients.

    PubMed

    Kawano, Yoshihiko; Suzuki, Michio; Kawada, Jun-ichi; Kimura, Hiroshi; Kamei, Hideya; Ohnishi, Yasuharu; Ono, Yasuyuki; Uchida, Hiroo; Ogura, Yasuhiro; Ito, Yoshinori

    2015-03-17

    Liver transplantation recipients are at high risk for severe complications due to infections because of being treated with immunosuppressive drugs that affect the immune system. Vaccination for liver transplantation candidates is generally recommended before surgery, but the opportunities for vaccination prior to transplantation in pediatric candidates are often limited by severe disease conditions. The participants in this study comprised 39 pediatric recipients of living donor liver transplantation performed between 2005 and 2013. Criteria for administering live-attenuated (measles, rubella, mumps, and varicella) and inactivated (hepatitis B, pertussis, and Japanese encephalitis) vaccines were as follows: (1) >1 year after transplantation; (2) no use of systemic steroids to treat acute rejection within the last 6 months; (3) serum trough concentration of tacrolimus <5 ng/mL; (4) no severe immunosuppression according to blood examinations; and (5) provision of written informed consent. Median age at transplantation was 17 months, and median period from transplantation to the beginning of immunization was 18 months. Seroprotection rates for measles, rubella, mumps, varicella, hepatitis B, pertussis, and Japanese encephalitis after post-transplant immunization were 44% (11/25), 70% (19/27), 48% (12/25), 32% (6/19), 83% (19/23), 87% (13/15), and 88% (7/8), respectively. Seroprotection rates for measles, rubella, mumps, and varicella after second vaccination for recipients with primary vaccine failure after first vaccination were 100% (8/8), 50% (1/2), 71% (5/7), and 50% (5/10), respectively. While four recipients contracted mumps and eight contracted varicella before immunization, one recipient developed varicella after immunization. No serious systemic adverse events were observed in vaccinated recipients. Seroprotection rates for measles, mumps, and varicella appeared low in children after the first post-transplantation vaccination. Immunizations with four live-attenuated

  7. Cross-clade protective immune responses of NS1-truncated live attenuated H5N1 avian influenza vaccines.

    PubMed

    Shi, Shaohua; Chen, Sujuan; Han, Weizhou; Wu, Bai; Zhang, Xiaojian; Tang, Ying; Wang, Xiao; Zhu, Yinbiao; Peng, Daxin; Liu, Xiufan

    2016-01-12

    H5N1 highly pathogenic avian influenza (HPAI) has raised global concern for causing huge economic losses in poultry industry, and an effective vaccine against HPAI is highly desirable. Live attenuated influenza vaccine with trunctated NS1 protein as a potential strategy will be extremely useful for improving immune efficacy. A series of H5N1 avian influenza virus reassortants harboring amino-terminal 48, 70, 73, and 99 aa in NS1 proteins, along with a modified low pathogenic HA protein was generated, and named as S-HALo/NS48, S-HALo/NS70, S-HALo/NS73, and S-HALo/NS99, respectively. In addition, their biological and immunological characteristics were further analyzed. The viruses S-HALo/NS70, S-HALo/NS73, and S-HALo/NS99, but not S-HALo/NS48, had a comparable growth property with the full-length NS1 virus, S-HALo/NSFu. Mice and chickens studies demonstrated that the viruses with truncated NS1 protein were further attenuated when compared to the virus S-HALo/NSFu. Vaccination with the virus S-HALo/NS73 in chickens induced significant cross-protection against homologous clade 2.3.4 H5 virus and heterologous clade 7.2, 2.3.2.1, and 2.3.4.4 H5 viruses. A 70-aa amino-terminal fragment of NS1 protein may be long enough for viral replication. The recombinant virus S-HALo/NS73 is a broad-spectrum live attenuated H5N1 avian influenza vaccine candidate in chickens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Live-attenuated tetravalent dengue vaccines: The needs and challenges of post-licensure evaluation of vaccine safety and effectiveness.

    PubMed

    Wichmann, Ole; Vannice, Kirsten; Asturias, Edwin J; de Albuquerque Luna, Expedito José; Longini, Ira; Lopez, Anna Lena; Smith, Peter G; Tissera, Hasitha; Yoon, In-Kyu; Hombach, Joachim

    2017-10-09

    Since December 2015, the first dengue vaccine has been licensed in several Asian and Latin American countries for protection against disease from all four dengue virus serotypes. While the vaccine demonstrated an overall good safety and efficacy profile in clinical trials, some key research questions remain which make risk-benefit-assessment for some populations difficult. As for any new vaccine, several questions, such as very rare adverse events following immunization, duration of vaccine-induced protection and effectiveness when used in public health programs, will be addressed by post-licensure studies and by data from national surveillance systems after the vaccine has been introduced. However, the complexity of dengue epidemiology, pathogenesis and population immunity, as well as some characteristics of the currently licensed vaccine, and potentially also future, live-attenuated dengue vaccines, poses a challenge for evaluation through existing monitoring systems, especially in low and middle-income countries. Most notable are the different efficacies of the currently licensed vaccine by dengue serostatus at time of first vaccination and by dengue virus serotype, as well as the increased risk of dengue hospitalization among young vaccinated children observed three years after the start of vaccination in one of the trials. Currently, it is unknown if the last phenomenon is restricted to younger ages or could affect also seronegative individuals aged 9years and older, who are included in the group for whom the vaccine has been licensed. In this paper, we summarize scientific and methodological considerations for public health surveillance and targeted post-licensure studies to address some key research questions related to live-attenuated dengue vaccines. Countries intending to introduce a dengue vaccine should assess their capacities to monitor and evaluate the vaccine's effectiveness and safety and, where appropriate and possible, enhance their surveillance

  9. Systematic annotation and analysis of “virmugens” - virulence factors whose mutants can be used as live attenuated vaccines

    PubMed Central

    Racz, Rebecca; Chung, Monica; Xiang, Zuoshuang; He, Yongqun

    2012-01-01

    Live attenuated vaccines are usually generated by mutation of genes encoding virulence factors. “Virmugen” is coined here to represent a gene that encodes for a virulent factor of a pathogen and has been proven feasible in animal models to make a live attenuated vaccine by knocking out this gene. Not all virulence factors are virmugens. VirmugenDB is a web-based virmugen database (http://www.violinet.org/virmugendb). Currently, VirmugenDB includes 225 virmugens that have been verified to be valuable for vaccine development against 57 bacterial, viral, and protozoan pathogens. Bioinformatics analysis has revealed significant patterns in virmugens. For example, 10 Gram-negative and one Gram-positive bacterial aroA genes are virmugens. A sequence analysis has revealed at least 50% of identities in the protein sequences of the 10 Gram-negative bacterial aroA virmugens. As a pathogen case study, Brucella virmugens were analyzed. Out of 15 verified Brucella virmugens, six are related to carbohydrate or nucleotide transport and metabolism, and two involving cell membrane biogenesis. In addition, 54 virmugens from 24 viruses and 12 virmugens from 4 parasites are also stored in VirmugenDB. Virmugens tend to involve metabolism of nutrients (e.g., amino acids, carbohydrates, and nucleotides) and cell membrane formation. Host genes whose expressions were regulated by virmugen mutation vaccines or wild type virulent pathogens have also been annotated and systematically compared. The bioinformatics annotation and analysis of virmugens helps elucidate enriched virmugen profiles and the mechanisms of protective immunity, and further supports rational vaccine design. PMID:23219434

  10. The administration of intranasal live attenuated influenza vaccine induces changes in the nasal microbiota and nasal epithelium gene expression profiles.

    PubMed

    Tarabichi, Y; Li, K; Hu, S; Nguyen, C; Wang, X; Elashoff, D; Saira, K; Frank, Bryan; Bihan, Monika; Ghedin, E; Methé, Barbara A; Deng, Jane C

    2015-12-15

    Viral infections such as influenza have been shown to predispose hosts to increased colonization of the respiratory tract by pathogenic bacteria and secondary bacterial pneumonia. To examine how viral infections and host antiviral immune responses alter the upper respiratory microbiota, we analyzed nasal bacterial composition by 16S ribosomal RNA (rRNA) gene sequencing in healthy adults at baseline and at 1 to 2 weeks and 4 to 6 weeks following instillation of live attenuated influenza vaccine or intranasal sterile saline. A subset of these samples was submitted for microarray host gene expression profiling. We found that live attenuated influenza vaccination led to significant changes in microbial community structure, diversity, and core taxonomic membership as well as increases in the relative abundances of Staphylococcus and Bacteroides genera (both p < 0.05). Hypergeometric testing for the enrichment of gene ontology terms in the vaccinated group reflected a robust up-regulation of type I and type II interferon-stimulated genes in the vaccinated group relative to controls. Translational murine studies showed that poly I:C administration did in fact permit greater nasal Staphylococcus aureus persistence, a response absent in interferon alpha/beta receptor deficient mice. Collectively, our findings demonstrate that although the human nasal bacterial community is heterogeneous and typically individually robust, activation of a type I interferon (IFN)-mediated antiviral response may foster the disproportionate emergence of potentially pathogenic species such as S. aureus. This study was registered with Clinicaltrials.gov on 11/3/15, NCT02597647 .

  11. A Single Mutation at PB1 Residue 319 Dramatically Increases the Safety of PR8 Live Attenuated Influenza Vaccine in a Murine Model without Compromising Vaccine Efficacy.

    PubMed

    Cox, Andrew; Dewhurst, Stephen

    2015-12-16

    The live attenuated influenza vaccine (LAIV) is preferentially recommended for use in most children yet remains unsafe for the groups most at risk. Here we have improved the safety of a mouse-adapted live attenuated influenza vaccine containing the same attenuating amino acid mutations as in human LAIV by adding an additional mutation at PB1 residue 319. This results in a vaccine with a 20-fold decrease in protective efficacy and a 10,000-fold increase in safety. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Immunodeficiency disorders.

    PubMed

    Cooper, Max D; Lanier, Lewis L; Conley, Mary Ellen; Puck, Jennifer M

    2003-01-01

    Hematological complications occur frequently in patients with both primary and secondary immunodeficiency disorders. Anemia, thrombocytopenia or leukopenias may bring these individuals to the attention of hematologists. Conversely, evidence suggesting a lymphoproliferative disorder may be the cause for referral. This session will provide an update on the diagnosis and treatment of immunodeficiency diseases ranging from isolated defects in antibody production to the severe combined immunodeficiencies (SCID). Immunodeficiency diseases have traditionally been defined as defects in the development and function of T and B cells, the primary effector cells of specific cellular and humoral immunity. However, it has become increasingly evident that innate immune mechanisms contribute greatly to host defense, either through acting alone or by enhancing specific T and B cell responses. In Section I, Dr. Lewis Lanier reviews the burgeoning information on the extensive families of activating and inhibitory immunoreceptors that are expressed on NK cells, dendritic cells, T and B cells, and phagocytic cells. He provides an overview on the biological functions of these receptors in host defense. In Section II, Dr. Mary Ellen Conley defines the spectrum of antibody deficiency disorders, the most frequently occurring types of primary immunodeficiencies. She covers the different defects in B-cell development and function that lead to antibody deficiencies, and includes diagnosis and therapy of these disorders. In Section III, Dr. Jennifer Puck discusses the diagnosis and treatment of the different types of SCID. She describes the genetic basis for SCID, and the benefits, pitfalls, and complications of gene therapy and bone marrow transplantation in SCID patients.

  13. The use of live attenuated influenza vaccine (LAIV) in healthcare personnel (HCP): guidance from the Society for Healthcare Epidemiology of America (SHEA).

    PubMed

    Talbot, Thomas R; Babcock, Hilary; Cotton, Deborah; Maragakis, Lisa L; Poland, Gregory A; Septimus, Edward J; Tapper, Michael L; Weber, David J

    2012-10-01

    Because of the live viral backbone of live attenuated influenza vaccine (LAIV), questions have arisen regarding infection control precautions and restrictions surrounding its use in healthcare personnel (HCP). This document provides guidance from the Society for Healthcare Epidemiology of America regarding use of LAIV in HCP and the infection control precautions that are recommended with its use in this population.

  14. Immune responses elicited to a live-attenuated influenza virus vaccine compared to a traditional whole-inactivated virus vaccine for pandemic H1N1in pigs

    USDA-ARS?s Scientific Manuscript database

    In the United States there are currently two influenza vaccine platforms approved for use in humans - conventional inactivated virus and live-attenuated influenza virus (LAIV). One of the major challenges for influenza vaccination is designing a platform that provides cross-protection across strains...

  15. Heightened adaptive immune responses following vaccination with a temperature-sensitive, live-attenuated influenza virus compared to adjuvanted, whole-inactivated virus in pigs

    USDA-ARS?s Scientific Manuscript database

    In the United States there are currently two influenza vaccine platforms approved for use in humans - conventional inactivated virus and live-attenuated influenza virus (LAIV). One of the major challenges for influenza A virus (IAV) vaccination is designing a platform that provides protection across...

  16. Early protection events in swine immunized with an experimental live attenuated classical swine fever marker vaccine, FlagT4G

    USDA-ARS?s Scientific Manuscript database

    Prophylactic vaccination using live attenuated classical swine fever (CSF) vaccines has been a very effective method to control disease in endemic regions and during outbreaks in previously disease-free areas. These vaccines confer effective protection against the disease at early times post-vaccina...

  17. Vaccination of full-sib channel catfish families against enteric septicemia of catfish with an oral live attenuated Edwardsiella ictaluri vaccine

    USDA-ARS?s Scientific Manuscript database

    The study evaluated the efficacy of an oral live-attenuated Edwardsiella ictaluri vaccine against enteric septicemia of catfish in 20 full-sib fingerling channel catfish families. Each family was split into vaccinated and non-vaccinated groups. The vaccine was delivered orally by feeding fish diet...

  18. A live attenuated Salmonella enterica serovar Typhimurium vaccine provides cross-protection against Salmonella serovars to reduce disease severity and pathogen transmission

    USDA-ARS?s Scientific Manuscript database

    A live attenuated Salmonella enterica serovar Typhimurium vaccine was developed to confer broad protection against multiple Salmonella serovars to prevent disease and reduce pathogen colonization and shedding. Two vaccine trials were performed in swine to determine the protection afforded by the vac...

  19. Infection-enhancing lipopeptides do not improve intranasal immunization of cotton rats with a delta-G candidate live-attenuated human respiratory syncytial virus vaccine.

    PubMed

    Tien Nguyen, D; Boes, Jolande; van Amerongen, Geert; van Remmerden, Yvonne; Yüksel, Selma; Guichelaar, Teun; Osterhaus, Albert D M E; de Swart, Rik L

    2013-12-01

    Development of live-attenuated human respiratory syncytial virus (HRSV) vaccines has proven to be difficult. Several vaccine candidates were found to be over-attenuated and displayed limited immunogenicity. Recently, we identified three synthetic cationic lipopeptides that enhanced paramyxovirus infections in vitro. The infection enhancement proved to be mediated by enhanced virus binding to target cells. We hypothesized that these lipopeptides can be used as adjuvants to promote immune responses induced by live-attenuated paramyxovirus vaccines. This hypothesis was tested in a vaccination and challenge model in cotton rats, using a previously described recombinant live-attenuated candidate HRSV vaccine lacking the gene encoding the G glycoprotein (rHRSVΔG). Surprisingly, intranasal vaccination of cotton rats with rHRSVΔG formulated in infection-enhancing lipopeptides resulted in reduced virus loads in nasopharyngeal lavages, reduced seroconversion levels and reduced protection from wild-type HRSV challenge. In conclusion, we were unable to demonstrate the feasibility of lipopeptides as adjuvants for a candidate live-attenuated HRSV vaccine in the cotton rat model.

  20. A live attenuated cold adapted influenza A H7N3 virus vaccine provides protection against homologous and heterologous H7 viruses in mice and ferrets

    USDA-ARS?s Scientific Manuscript database

    The appearance of human infections caused by avian influenza A H7 subtype viruses underscore their pandemic potential and the need to develop vaccines to protect humans from viruses of this subtype. A live attenuated H7N3 virus vaccine was generated by reverse genetics using the HA and NA genes of ...

  1. Efficacy of a Russian-backbone live attenuated influenza vaccine among children in Senegal: a randomised, double-blind, placebo-controlled trial.

    PubMed

    Victor, John C; Lewis, Kristen D C; Diallo, Aldiouma; Niang, Mbayame N; Diarra, Bou; Dia, Ndongo; Ortiz, Justin R; Widdowson, Marc-Alain; Feser, Jodi; Hoagland, Rebecca; Emery, Shannon L; Lafond, Kathryn E; Neuzil, Kathleen M

    2016-12-01

    Live attenuated influenza vaccines have been shown to significantly reduce influenza in diverse populations of children, but no efficacy studies have been done in resource-poor tropical settings. In Senegal, we assessed the efficacy and safety of a live attenuated influenza vaccine based on Russian-derived master donor viruses and licensed as a single dose. In this double-blind, placebo-controlled, parallel group, single-centre trial done near Niakhar, Senegal, generally healthy children aged 2-5 years were randomly allocated (2:1) to receive a single intranasal dose of masked trivalent live attenuated influenza vaccine or placebo. The allocation sequence was computer-generated by PATH with block sizes of three. The manufacturer provided vaccine and placebo in coded vials to preserve blinding. Participants were monitored through the predictable influenza season in Senegal for adverse events and signs and symptoms of influenza using weekly home visits and surveillance in clinics. The primary outcome was symptomatic laboratory-confirmed influenza caused by any strain and occurring from 15 days post-vaccination to the end of the study. The primary analysis was per protocol. This study is registered with ClinicalTrials.gov, number NCT01854632. Between May 23, and July 1, 2013, 1761 children were randomly assigned, 1174 to receive live attenuated influenza vaccine and 587 to receive placebo. The per-protocol set included 1173 vaccinees and 584 placebo recipients followed up to Dec 20, 2013. Symptomatic influenza was laboratory-confirmed in 210 (18%) of 1173 recipients of live attenuated influenza vaccine and 105 (18%) of placebo recipients, giving a vaccine efficacy of 0·0% (95% CI -26·4 to 20·9). Adverse events were balanced between the study groups. Two girls who had received live attenuated influenza vaccine died, one due to anasarca 12 days postvaccination and one due to malnutrition 70 days postvaccination. Live attenuated influenza vaccine was well tolerated in

  2. Cost of production of live attenuated dengue vaccines: a case study of the Instituto Butantan, Sao Paulo, Brazil.

    PubMed

    Mahoney, R T; Francis, D P; Frazatti-Gallina, N M; Precioso, A R; Raw, I; Watler, P; Whitehead, P; Whitehead, S S

    2012-07-06

    A vaccine to prevent dengue disease is urgently needed. Fortunately, a few tetravalent candidate vaccines are in the later stages of development and show promise. But, if the cost of these candidates is too high, their beneficial potential will not be realized. The price of a vaccine is one of the most important factors affecting its ultimate application in developing countries. In recent years, new vaccines such as those for human papilloma virus and pneumococcal disease (conjugate vaccine) have been introduced with prices in developed countries exceeding $50 per dose. These prices are above the level affordable by developing countries. In contrast, other vaccines such as those against Japanese encephalitis (SA14-14-2 strain vaccine) and meningitis type A have prices in developing countries below one dollar per dose, and it is expected that their introduction and use will proceed more rapidly. Because dengue disease is caused by four related viruses, vaccines must be able to protect against all four. Although there are several live attenuated dengue vaccine candidates under clinical evaluation, there remains uncertainty about the cost of production of these tetravalent vaccines, and this uncertainty is an impediment to rapid progress in planning for the introduction and distribution of dengue vaccines once they are licensed. We have undertaken a detailed economic analysis, using standard industrial methodologies and applying generally accepted accounting practices, of the cost of production of a live attenuated vaccine, originally developed at the US National Institutes of Health (National Institute of Allergy and Infectious Diseases), to be produced at the Instituto Butantan in Sao Paulo, Brazil. We determined direct costs of materials, direct costs of personnel and labor, indirect costs, and depreciation. These were analyzed assuming a steady-state production of 60 million doses per year. Although this study does not seek to compute the price of the final

  3. Streptococcus iniae M-Like Protein Contributes to Virulence in Fish and Is a Target for Live Attenuated Vaccine Development

    PubMed Central

    Locke, Jeffrey B.; Aziz, Ramy K.; Vicknair, Mike R.; Nizet, Victor; Buchanan, John T.

    2008-01-01

    Background Streptococcus iniae is a significant pathogen in finfish aquaculture, though knowledge of virulence determinants is lacking. Through pyrosequencing of the S. iniae genome we have identified two gene homologues to classical surface-anchored streptococcal virulence factors: M-like protein (simA) and C5a peptidase (scpI). Methodology/Principal Findings S. iniae possesses a Mga-like locus containing simA and a divergently transcribed putative mga-like regulatory gene, mgx. In contrast to the Mga locus of group A Streptococcus (GAS, S. pyogenes), scpI is located distally in the chromosome. Comparative sequence analysis of the Mgx locus revealed only one significant variant, a strain with an insertion frameshift mutation in simA and a deletion mutation in a region downstream of mgx, generating an ORF which may encode a second putative mga-like gene, mgx2. Allelic exchange mutagenesis of simA and scpI was employed to investigate the potential role of these genes in S. iniae virulence. Our hybrid striped bass (HSB) and zebrafish models of infection revealed that M-like protein contributes significantly to S. iniae pathogenesis whereas C5a peptidase-like protein does not. Further, in vitro cell-based analyses indicate that SiMA, like other M family proteins, contributes to cellular adherence and invasion and provides resistance to phagocytic killing. Attenuation in our virulence models was also observed in the S. iniae isolate possessing a natural simA mutation. Vaccination of HSB with the ΔsimA mutant provided 100% protection against subsequent challenge with a lethal dose of wild-type (WT) S. iniae after 1,400 degree days, and shows promise as a target for live attenuated vaccine development. Conclusions/Significance Analysis of M-like protein and C5a peptidase through allelic replacement revealed that M-like protein plays a significant role in S. iniae virulence, and the Mga-like locus, which may regulate expression of this gene, has an unusual arrangement

  4. Evaluation of two live attenuated cold-adapted H5N1 influenza virus vaccines in healthy adults

    PubMed Central

    Karron, Ruth A.; Talaat, Kawsar; Luke, Catherine; Callahan, Karen; Thumar, Bhagvanji; DiLorenzo, Susan; McAuliffe, Josephine; Schappell, Elizabeth; Suguitan, Amorsolo; Mills, Kimberly; Chen, Grace; Lamirande, Elaine; Coelingh, Kathleen; Jin, Hong; Murphy, Brian R.; Kemble, George; Subbarao, Kanta

    2016-01-01

    Background Development of live attenuated influenza vaccines (LAIV) against avian viruses with pandemic potential is an important public health strategy. Methods and Findings We performed open-label trials to evaluate the safety, infectivity, and immunogenicity of H5N1 VN 2004 AA ca and H5N1 HK 2003 AA ca. Each of these vaccines contains a modified H5 hemagglutinin and unmodified N1 neuraminidase from the respective wild-type (wt) parent virus and the six internal protein gene segments of the A/Ann Arbor/6/60 cold-adapted (ca) master donor virus. The H5N1 VN 2004 AA ca vaccine virus was evaluated at dosages of 106.7 TCID50 and 107.5 TCID50, and the H5N1 HK 2003 AA ca vaccine was evaluated at a dosage of 107.5 TCID50. Two doses were administered intranasally to healthy adults in isolation at 4 to 8 week intervals. Vaccine safety was assessed through daily examinations and infectivity was assessed by viral culture and by realtime reverse transcription-polymerase chain reaction testing of nasal wash (NW) specimens. Immunogenicity was assessed by measuring hemagglutination-inhibition (HI) antibodies, neutralizing antibodies, and IgG or IgA antibodies to recombinant (r)H5 VN 2004 hemagglutinin (HA) in serum or NW. Fifty-nine participants were enrolled: 21 received 106.7 TCID50 and 21 received 107.5 TCID50 of H5N1 VN 2004 AA ca and 17 received H5N1 HK 2003 AA ca. Shedding of vaccine virus was minimal, as were HI and neutralizing antibody responses. Fifty-two percent of recipients of 107.5 TCID50 of H5N1 VN 2004 AA ca developed a serum IgA response to rH5 VN 2004 HA. Conclusions The live attenuated H5N1 VN 2004 and HK 2003 AA ca vaccines bearing avian H5 HA antigens were very restricted in replication and were more attenuated than seasonal LAIV bearing human H1, H3 or B HA antigens. The H5N1 AA ca LAIV elicited serum ELISA antibody but not HI or neutralizing antibody responses in healthy adults. (ClinicalTrials.gov Identifiers: NCT00347672 and NCT00488046). PMID:19540952

  5. The Matrix Gene Segment Destabilizes the Acid and Thermal Stability of the Hemagglutinin of Pandemic Live Attenuated Influenza Virus Vaccines

    PubMed Central

    O'Donnell, Christopher D.; Vogel, Leatrice; Matsuoka, Yumiko; Jin, Hong

    2014-01-01

    ABSTRACT The threat of future influenza pandemics and their potential for rapid spread, morbidity, and mortality has led to the development of pandemic vaccines. We generated seven reassortant pandemic live attenuated influenza vaccines (pLAIVs) with the hemagglutinin (HA) and neuraminidase (NA) genes derived from animal influenza viruses on the backbone of the six internal protein gene segments of the temperature sensitive, cold-adapted (ca) A/Ann Arbor/60 (H2N2) virus (AA/60 ca) of the licensed seasonal LAIV. The pLAIV viruses were moderately to highly restricted in replication in seronegative adults; we sought to determine the biological basis for this restriction. Avian influenza viruses generally replicate at higher temperatures than human influenza viruses and, although they shared the same backbone, the pLAIV viruses had a lower shutoff temperature than seasonal LAIV viruses, suggesting that the HA and NA influence the degree of temperature sensitivity. The pH of HA activation of highly pathogenic avian influenza viruses was greater than human and low-pathogenicity avian influenza viruses, as reported by others. However, pLAIV viruses had a consistently higher pH of HA activation and reduced HA thermostability compared to the corresponding wild-type parental viruses. From studies with single-gene reassortant viruses bearing one gene segment from the AA/60 ca virus in recombinant H5N1 or pH1N1 viruses, we found that the lower HA thermal stability and increased pH of HA activation were associated with the AA/60 M gene. Together, the impaired HA acid and thermal stability and temperature sensitivity likely contributed to the restricted replication of the pLAIV viruses we observed in seronegative adults. IMPORTANCE There is increasing evidence that the HA stability of influenza viruses depends on the virus strain and host species and that HA stability can influence replication, virulence, and transmission of influenza A viruses in different species. We

  6. Comparison of the trivalent live attenuated vs. inactivated influenza vaccines among U.S. military service members.

    PubMed

    Eick, Angelia A; Wang, Zhong; Hughes, Hayley; Ford, Stephen M; Tobler, Steven K

    2009-06-02

    Limited effectiveness data are available comparing live attenuated influenza vaccine (LAIV) to inactivated influenza vaccine (TIV) among adults. To compare the incidence of influenza-like illness following immunization of adults with LAIV vs. TIV, we conducted a retrospective cohort analysis of active component U.S. military personnel for the 2005-2006 and 2006-2007 influenza seasons. Recruits experienced a much higher burden of disease compared to non-recruits, with crude incidence rates of influenza-like illness 2-16 times higher than non-recruits depending on the season and cohort. For both seasons, a slightly greater protection from influenza-like illness was found for non-recruits who received TIV compared to LAIV (adjusted incidence rate ratio, 1.17 (95% CI, 1.14-1.20) and 1.33 (95% CI, 1.30-1.36), 2005-2006 and 2006-2007 influenza seasons, respectively). However, for Army and Air Force recruits, LAIV was found to provide significantly greater protection from influenza-like illnesses compared to TIV, with adjusted incidence rates of influenza-like illness 22-51% and 18-47% lower among LAIV compared to TIV recipients for the 2005-2006 and 2006-2007 influenza seasons, respectively. Possible reasons for differences in recruit and non-recruit findings include differences in pre-existing influenza antibody levels, differing respiratory disease burden, and/or unmeasured confounding. Consideration of these findings should be made when developing influenza immunization policies.

  7. Long-term safety assessment of live attenuated tetravalent dengue vaccines: deliberations from a WHO technical consultation.

    PubMed

    Bentsi-Enchill, Adwoa D; Schmitz, Julia; Edelman, Robert; Durbin, Anna; Roehrig, John T; Smith, Peter G; Hombach, Joachim; Farrar, Jeremy

    2013-05-28

    Dengue is a rapidly growing public health threat with approximately 2.5 billion people estimated to be at risk. Several vaccine candidates are at various stages of pre-clinical and clinical development. Thus far, live dengue vaccine candidates have been administered to several thousands of volunteers and were well-tolerated, with minimal short-term safety effects reported in Phase I and Phase II clinical trials. Based on the natural history of dengue, a theoretical possibility of an increased risk of severe dengue as a consequence of vaccination has been hypothesized but not yet observed. In October 2011, the World Health Organization (WHO) convened a consultation of experts in dengue, vaccine regulation and vaccine safety to review the current scientific evidence regarding safety concerns associated with live attenuated dengue vaccines and, in particular, to consider methodological approaches for their long-term evaluation. In this paper we summarize the scientific background and methodological considerations relevant to the safety assessment of these vaccines. Careful planning and a coordinated approach to safety assessment are recommended to ensure adequate long-term evaluation of dengue vaccines that will support their introduction and continued use.

  8. Genetic variations of live attenuated plague vaccine strains (Yersinia pestis EV76 lineage) during laboratory passages in different countries.

    PubMed

    Cui, Yujun; Yang, Xianwei; Xiao, Xiao; Anisimov, Andrey P; Li, Dongfang; Yan, Yanfeng; Zhou, Dongsheng; Rajerison, Minoarisoa; Carniel, Elisabeth; Achtman, Mark; Yang, Ruifu; Song, Yajun

    2014-08-01

    Plague, one of the most devastating infectious diseases in human history, is caused by the bacterial species Yersinia pestis. A live attenuated Y. pestis strain (EV76) has been widely used as a plague vaccine in various countries around the world. Here we compared the whole genome sequence of an EV76 strain used in China (EV76-CN) with the genomes of Y. pestis wild isolates to identify genetic variations specific to the EV76 lineage. We identified 6 SNPs and 6 Indels (insertions and deletions) differentiating EV76-CN from its counterparts. Then, we screened these polymorphic sites in 28 other strains of EV76 lineage that were stored in different countries. Based on the profiles of SNPs and Indels, we reconstructed the parsimonious dissemination history of EV76 lineage. This analysis revealed that there have been at least three independent imports of EV76 strains into China. Additionally, we observed that the pyrE gene is a mutation hotspot in EV76 lineages. The fine comparison results based on whole genome sequence in this study provide better understanding of the effects of laboratory passages on the accumulation of genetic polymorphisms in plague vaccine strains. These variations identified here will also be helpful in discriminating different EV76 derivatives. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. In vitro analysis of virus particle subpopulations in candidate live-attenuated influenza vaccines distinguishes effective from ineffective vaccines.

    PubMed

    Marcus, Philip I; Ngunjiri, John M; Sekellick, Margaret J; Wang, Leyi; Lee, Chang-Won

    2010-11-01

    Two effective (vac+) and two ineffective (vac-) candidate live-attenuated influenza vaccines (LAIVs) derived from naturally selected genetically stable variants of A/TK/OR/71-delNS1[1-124] (H7N3) that differed only in the length and kind of amino acid residues at the C terminus of the nonstructural NS1 protein were analyzed for their content of particle subpopulations. These subpopulations included total physical particles (measured as hemagglutinating particles [HAPs]) with their subsumed biologically active particles of infectious virus (plaque-forming particles [PFPs]) and different classes of noninfectious virus, namely, interferon-inducing particles (IFPs), noninfectious cell-killing particles (niCKPs), and defective interfering particles (DIPs). The vac+ variants were distinguished from the vac- variants on the basis of their content of viral subpopulations by (i) the capacity to induce higher quantum yields of interferon (IFN), (ii) the generation of an unusual type of IFN-induction dose-response curve, (iii) the presence of IFPs that induce IFN more efficiently, (iv) reduced sensitivity to IFN action, and (v) elevated rates of PFP replication that resulted in larger plaques and higher PFP and HAP titers. These in vitro analyses provide a benchmark for the screening of candidate LAIVs and their potential as effective vaccines. Vaccine design may be improved by enhancement of attributes that are dominant in the effective (vac+) vaccines.

  10. Generation of growth arrested Leishmania amastigotes: a tool to develop live attenuated vaccine candidates against visceral leishmaniasis.

    PubMed

    Selvapandiyan, Angamuthu; Dey, Ranadhir; Gannavaram, Sreenivas; Solanki, Sumit; Salotra, Poonam; Nakhasi, Hira L

    2014-06-30

    Visceral leishmaniasis (VL) is fatal if not treated and is prevalent widely in the tropical and sub-tropical regions of world. VL is caused by the protozoan parasite Leishmania donovani or Leishmania infantum. Although several second generation vaccines have been licensed to protect dogs against VL, there are no effective vaccines against human VL [1]. Since people cured of leishmaniasis develop lifelong protection, development of live attenuated Leishmania parasites as vaccines, which can have controlled infection, may be a close surrogate to leishmanization. This can be achieved by deletion of genes involved in the regulation of growth and/or virulence of the parasite. Such mutant parasites generally do not revert to virulence in animal models even under conditions of induced immune suppression due to complete deletion of the essential gene(s). In the Leishmania life cycle, the intracellular amastigote form is the virulent form and causes disease in the mammalian hosts. We developed centrin gene deleted L. donovani parasites that displayed attenuated growth only in the amastigote stage and were found safe and efficacious against virulent challenge in the experimental animal models. Thus, targeting genes differentially expressed in the amastigote stage would potentially attenuate only the amastigote stage and hence controlled infectivity may be effective in developing immunity. This review lays out the strategies for attenuation of the growth of the amastigote form of Leishmania for use as live vaccine against leishmaniasis, with a focus on visceral leishmaniasis.

  11. Rational design of genetically stable, live-attenuated poliovirus vaccines of all three serotypes: relevance to poliomyelitis eradication.

    PubMed

    Macadam, Andrew J; Ferguson, Geraldine; Stone, David M; Meredith, Janet; Knowlson, Sarah; Auda, Ghazi; Almond, Jeffrey W; Minor, Philip D

    2006-09-01

    The global eradication of poliomyelitis caused by wild-type virus is likely to be completed within the next few years, despite immense logistic and political difficulties, and may ultimately be followed by the cessation of vaccination. However, the existing live-attenuated vaccines have the potential to revert to virulence, causing occasional disease, and viruses can be shed by immunocompromised individuals for prolonged periods of time. Moreover, several outbreaks of poliomyelitis have been shown to be caused by viruses derived from the Sabin vaccine strains. The appearance of such strains depends on the prevailing circumstances but poses a severe obstacle to strategies for stopping vaccination. Vaccine strains that are incapable of reversion at a measurable rate would provide a possible solution. Here, we describe the constructions of strains of type 3 poliovirus that are stabilized by the introduction of four mutations in the 5' noncoding region compared to the present vaccine. The strains are genetically and phenotypically stable under conditions where the present vaccine loses the attenuating mutation in the 5' noncoding region completely. Type 1 and type 2 strains in which the entire 5' noncoding regions of Sabin 1 and Sabin 2 were replaced exactly with that of one of the type 3 strains were also constructed. The genetic stability of 5' noncoding regions of these viruses matched that of the type 3 strains, but significant phenotypic reversion occurred, illustrating the potential limitations of a rational approach to the genetic stabilization of live RNA virus vaccines.

  12. Boosting of Cross-Reactive and Protection-Associated T Cells in Children After Live Attenuated Influenza Vaccination.

    PubMed

    Mohn, Kristin G I; Zhou, Fan; Brokstad, Karl A; Sridhar, Saranya; Cox, Rebecca J

    2017-05-15

    Live attenuated influenza vaccines (LAIVs) stimulate a multifaceted immune response including cellular immunity, which may provide protection against newly emerging strains. This study shows proof of concept that LAIVs boost preexisting, cross-reactive T cells in children to genetically diverse influenza A virus (IAV) strains to which the children had not been exposed. We studied the long-term cross-reactive T-cell response in 14 trivalent LAIV-vaccinated children using the fluorescent immunospot assay (FluoroSpot) with heterologous H1N1 and H3N2 IAVs and CD8+ peptides from the internal proteins (matrix protein 1 [M1], nucleoprotein [NP], polymerase basic protein 1 [PB1]). Serum antibody responses were determined by means of hemagglutination inhibition assay. Blood samples were collected before vaccination and up to 1 year after vaccination. Preexisting cross-reactive T cells to genetically diverse IAV strains were found in the majority of the children, which were further boosted in 50% of them after receipt of LAIV. Further analyses of these T cells showed significant increases in CD8+ T cells, mainly dominated by NP-specific responses. After vaccination with LAIV, the youngest children showed the highest increase in T-cell responses. LAIV boosts durable, cross-reactive T-cell responses in children and may have a clinically protective effect at the population level. LAIV may be a first step toward the desired universal influenza vaccine.

  13. Recent advances in the study of live attenuated cell-cultured smallpox vaccine LC16m8.

    PubMed

    Eto, Akiko; Saito, Tomoya; Yokote, Hiroyuki; Kurane, Ichiro; Kanatani, Yasuhiro

    2015-11-09

    LC16m8 is a live, attenuated, cell-cultured smallpox vaccine that was developed and licensed in Japan in the 1970s, but was not used in the campaign to eradicate smallpox. In the early 2000s, the potential threat of bioterrorism led to reconsideration of the need for a smallpox vaccine. Subsequently, LC16m8 production was restarted in Japan in 2002, requiring re-evaluation of its safety and efficacy. Approximately 50,000 children in the 1970s and about 3500 healthy adults in the 2000s were vaccinated with LC16m8 in Japan, and 153 adults have been vaccinated with LC16m8 or Dryvax in phase I/II clinical trials in the USA. These studies confirmed the safety and efficacy of LC16m8, while several studies in animal models have shown that LC16m8 protects the host against viral challenge. The World Health Organization Strategic Advisory Group of Experts on Immunization recommended LC16m8, together with ACAM2000, as a stockpile vaccine in 2013. In addition, LC16m8 is expected to be a viable alternative to first-generation smallpox vaccines to prevent human monkeypox.

  14. Development of one-step real-time PCR assay for titrating trivalent live attenuated influenza vaccines

    PubMed Central

    Zang, Yang; Du, Dongchuan; Ge, Peng; Xu, Yongqing; Liu, Xintao; Zhang, Yan; Su, Weiheng; Kiseleva, Irina; Rudenko, Larisa; Xu, Fei; Kong, Wei; Jiang, Chunlai

    2014-01-01

    Traditionally, infectivity of a trivalent live attenuated influenza vaccines (LAIVs) is titrated by determining the 50% egg infectious dose assay (EID50) or plaque forming units (PFU), which requires specific monoclonal antibodies to neutralize 2 strains while estimating the titer of the non-neutralized strain. Compared to this time-consuming, laborious, subjective and variable process, reverse transcription-quantitative real-time PCR (RT-qPCR) technology has advantages of rapidity, sensitivity, reproducibility and reduced contamination, thus has been applied widely for detecting pathogens and measuring viral titers. In this study, the critical harvest time was determined to be 18 h post-infection (hpi) for type A influenza and 12 hpi for type B influenza, but no significant difference between titers at 12 hpi and 18 hpi for the type B strain was observed. In conclusion, trivalent LAIVs can be titrated simultaneously within 24 h by this one-step RT-qPCR assay, which yielded titers comparable to those obtained by the traditional EID50 assay. Therefore, the RT-qPCR assay may be used as a highly specific, sensitive, precise and rapid alternative to the EID50 assay for titering LAIVs. PMID:25483696

  15. Revaccination of Guinea Pigs With the Live Attenuated Mycobacterium tuberculosis Vaccine MTBVAC Improves BCG's Protection Against Tuberculosis.

    PubMed

    Clark, Simon; Lanni, Faye; Marinova, Dessislava; Rayner, Emma; Martin, Carlos; Williams, Ann

    2017-09-01

    The need for an effective vaccine against human tuberculosis has driven the development of different candidates and vaccination strategies. Novel live attenuated vaccines are being developed that promise greater safety and efficacy than BCG against tuberculosis. We combined BCG with the vaccine MTBVAC to evaluate whether the efficacy of either vaccine would be affected upon revaccination. In a well-established guinea pig model of aerosol infection with Mycobacterium tuberculosis, BCG and MTBVAC delivered via various prime-boost combinations or alone were compared. Efficacy was determined by a reduction in bacterial load 4 weeks after challenge. Efficacy data suggests MTBVAC-associated immunity is longer lasting than that of BCG when given as a single dose. Long and short intervals between BCG prime and MTBVAC boost resulted in improved efficacy in lungs, compared with BCG given alone. A shorter interval between MTBVAC prime and BCG boost resulted in improved efficacy in lungs, compared with BCG given alone. A longer interval resulted in protection equivalent to that of BCG given alone. These data indicate that, rather than boosting the waning efficacy of BCG, a vaccination schedule involving a combination of the 2 vaccines yielded stronger immunity to M. tuberculosis infection. This work supports development of MTBVAC use as a revaccination strategy to improve on the effects of BCG in vaccinated people living in tuberculosis-endemic countries.

  16. Rift Valley fever vaccines: an overview of the safety and efficacy of the live-attenuated MP-12 vaccine candidate.

    PubMed

    Ikegami, Tetsuro

    2017-06-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic viral disease endemic to Africa and the Arabian Peninsula. High rates of abortion among infected ruminants and hemorrhagic fever in infected humans are major public health concerns. Commercially available veterinary RVF vaccines are important for preventing the spread of the Rift Valley fever virus (RVFV) in endemic countries; however, RVFV outbreaks continue to occur frequently in endemic countries in the 21st century. In the U.S., the live-attenuated MP-12 vaccine has been developed for both animal and human vaccination. This vaccine strain is well attenuated, and a single dose induces neutralizing antibodies in both ruminants and humans. Areas covered: This review describes scientific evidences of MP-12 vaccine efficacy and safety, as well as MP-12 variants recently developed by reverse genetics, in comparison with other RVF vaccines. Expert commentary: The containment of active RVF outbreaks and long-term protection from RVF exposure to infected mosquitoes are important goals for RVF vaccination. MP-12 vaccine will allow immediate vaccination of susceptible animals in case of an unexpected RVF outbreak in the U.S., whereas MP-12 vaccine may be also useful for the RVF control in endemic regions.

  17. Clinical and serologic effects of live attenuated serum inhibitor-resistant influenza B vaccine in seronegative adults.

    PubMed

    Miller, L W; Togo, Y; Hornick, R B

    1977-01-01

    The clinical effects, nasal and serum antibody responses, and virus excretion of a live attenuated serum inhibitor-resistant influenza B virus vaccine, R75, was evaluated in 43 seronegative healthy adults by a random double-blind study. Symptom responses were minimal and were not significantly different between vaccine and placebo groups. No fevers, abnormalities in physical examination or laboratory testing developed during 4 weeks of observation. Among vaccinees, 10 (48%) developed serum hemagglutination-inhibition (HI) antibodies, 16 (76%) developed serum neutralization (N) antibodies and 4 (19%) developed nasal N antibodies. The GMT responses from study day 0 to day 28 were 4.0 to 10.4 for serum HI, 1.8 to 9.8 for serum N, and 1.0 to 1.4 for nasal N. There were no significant titer changes in the placebo group. No virus excretion was detected. Although there are some questions concerning the relationship of antibody levels to protection, the low antibody responses in this study are an indication that R75 is not sufficiently immunogenic.

  18. Use of RapidChek® SELECT™ Salmonella to detect shedding of live attenuated Salmonella enterica serovar Typhi vaccine strains.

    PubMed

    Brenneman, Karen E; McDonald, Caitlin; Kelly-Aehle, Sandra M; Roland, Kenneth L; Curtiss, Roy

    2012-05-01

    Identification of individuals shedding Salmonella enterica serovar Typhi in stool is imperative during clinical trial safety evaluations. Recovery of live attenuated S. Typhi vaccine strains can be difficult because the mutations necessary for safety in humans often compromise survival in stringent selective enrichment media. RapidChek® SELECT™ Salmonella is a highly sensitive detection method for S. enterica species which utilizes a bacteriophage cocktail designed to reduce the growth of competitor microbes in mildly selective enrichment medium. Detection of Salmonella is enhanced by means of a Salmonella-specific antibody strip targeted to lipopolysaccharide. The RapidChek® SELECT™ Salmonella method was compared to conventional enrichment and plating methods to determine the most sensitive method for detecting attenuated S. Typhi strains in human stool samples. Although traditional enrichment strategies were more sensitive to the presence of wild-type S. Typhi, RapidChek® SELECT™ Salmonella was superior at detecting attenuated strains of S. Typhi. Strains containing a wide variety of attenuating mutations were detected with equal sensitivity as the wild type by RapidChek® SELECT™ Salmonella. The presence of Vi capsule or mutations which affected O-antigen synthesis (Δpmi, ΔgalE) did not decrease the sensitivity of the RapidChek® SELECT™ Salmonella assay.

  19. Development and approval of live attenuated influenza vaccines based on Russian master donor viruses: Process challenges and success stories.

    PubMed

    Rudenko, Larisa; Yeolekar, Leena; Kiseleva, Irina; Isakova-Sivak, Irina

    2016-10-26

    Influenza is a viral infection that affects much of the global population each year. Vaccination remains the most effective tool for preventing the disease. Live attenuated influenza vaccine (LAIV) has been used since the 1950s to protect humans against seasonal influenza. LAIVs developed by the Institute of Experimental Medicine (IEM), Saint Petersburg, Russia, have been successfully used in Russia since 1987. In 2006, the World Health Organization (WHO) announced a Global action plan for influenza vaccines (GAP). WHO, recognizing potential advantages of LAIV over the inactivated influenza vaccine in a pandemic situation, included LAIV in the GAP. BioDiem Ltd., a vaccine development company based in Melbourne, Australia which held the rights for the Russian LAIV, licensed this technology to WHO in 2009. WHO was permitted to grant sub-licenses to vaccine manufacturers in newly industrialized and developing countries to use the Russian LAIV for the development, manufacture, use and sale of pandemic and seasonal LAIVs. To date, WHO has granted sub-licenses to vaccine manufacturers in China (Changchun BCHT Biotechnology Co., Ltd.), India (Serum Institute of India Pvt. Ltd.) and Thailand (Government Pharmaceutical Organization). In parallel, in 2009, IEM signed an agreement with WHO, under which IEM committed to supply pandemic and seasonal candidate vaccine viruses to the sub-licensees. This paper describes the progress made by collaborators from China, India, Russia and Thailand in developing preventive measures, including LAIV against pandemic influenza.

  20. Human immunodeficiency virus, herpes virus infections, and pulmonary vascular disease.

    PubMed

    Flores, Sonia C; Almodovar, Sharilyn

    2013-01-01

    The following state-of-the-art seminar was delivered as part of the Aspen Lung Conference on Pulmonary Hypertension and Vascular Diseases held in Aspen, Colorado in June 2012. This paper will summarize the lecture and present results from a nonhuman primate model of infection with Simian (Human) Immunodeficiency Virus - nef chimeric virions as well as the idea that polymorphisms in the HIV-1 nef gene may be driving the immune response that results in exuberant inflammation and aberrant endothelial cell (EC) function. We will present data gathered from primary HIV nef isolates where we tested the biological consequences of these polymorphisms and how their presence in human populations may predict patients at risk for developing this disease. In this article, we also discuss how a dysregulated immune system, in conjunction with a viral infection, could contribute to pulmonary arterial hypertension (PAH). Both autoimmune diseases and some viruses are associated with defects in the immune system, primarily in the function of regulatory T cells. These T-cell defects may be a common pathway in the formation of plexiform lesions. Regardless of the route by which viruses may lead to PAH, it is important to recognize their role in this rare disease.

  1. Human immunodeficiency virus, herpes virus infections, and pulmonary vascular disease

    PubMed Central

    Flores, Sonia C.; Almodovar, Sharilyn

    2013-01-01

    The following state-of-the-art seminar was delivered as part of the Aspen Lung Conference on Pulmonary Hypertension and Vascular Diseases held in Aspen, Colorado in June 2012. This paper will summarize the lecture and present results from a nonhuman primate model of infection with Simian (Human) Immunodeficiency Virus - nef chimeric virions as well as the idea that polymorphisms in the HIV-1 nef gene may be driving the immune response that results in exuberant inflammation and aberrant endothelial cell (EC) function. We will present data gathered from primary HIV nef isolates where we tested the biological consequences of these polymorphisms and how their presence in human populations may predict patients at risk for developing this disease. In this article, we also discuss how a dysregulated immune system, in conjunction with a viral infection, could contribute to pulmonary arterial hypertension (PAH). Both autoimmune diseases and some viruses are associated with defects in the immune system, primarily in the function of regulatory T cells. These T-cell defects may be a common pathway in the formation of plexiform lesions. Regardless of the route by which viruses may lead to PAH, it is important to recognize their role in this rare disease. PMID:23662195

  2. Genetically Modified Live Attenuated Leishmania donovani Parasites Induce Innate Immunity through Classical Activation of Macrophages That Direct the Th1 Response in Mice

    PubMed Central

    Bhattacharya, Parna; Dey, Ranadhir; Dagur, Pradeep K.; Kruhlak, Michael; Ismail, Nevien; Debrabant, Alain; Joshi, Amritanshu B.; Akue, Adovi; Kukuruga, Mark; Takeda, Kazuyo; Selvapandiyan, Angamuthu; McCoy, John Philip

    2015-01-01

    Visceral leishmaniasis (VL) causes significant mortality and there is no effective vaccine. Previously, we have shown that genetically modified Leishmania donovani parasites, here described as live attenuated parasites, induce a host protective adaptive immune response in various animal models. In this study, we demonstrate an innate immune response upon infection with live attenuated parasites in macrophages from BALB/c mice both in vitro and in vivo. In vitro infection of macrophages with live attenuated parasites (compared to that with wild-type [WT] L. donovani parasites) induced significantly higher production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-12 [IL-12], gamma interferon [IFN-γ], and IL-6), chemokines (monocyte chemoattractant protein 1/CCL-2, macrophage inflammatory protein 1α/CCL-3, and IP-10), reactive oxygen species (ROS), and nitric oxide, while concomitantly reducing anti-inflammatory cytokine IL-10 and arginase-1 activities, suggesting a dominant classically activated/M1 macrophage response. The classically activated response in turn helps in presenting antigen to T cells, as observed with robust CD4+ T cell activation in vitro. Similarly, parasitized splenic macrophages from live attenuated parasite-infected mice also demonstrated induction of an M1 macrophage phenotype, indicated by upregulation of IL-1β, TNF-α, IL-12, and inducible nitric oxide synthase 2 and downregulation of genes associated with the M2 phenotype, i.e., the IL-10, YM1, Arg-1, and MRC-1 genes, compared to WT L. donovani-infected mice. Furthermore, an ex vivo antigen presentation assay showed macrophages from live attenuated parasite-infected mice induced higher IFN-γ and IL-2 but significantly less IL-10 production by ovalbumin-specific CD4+ T cells, resulting in proliferation of Th1 cells. These data suggest that infection with live attenuated parasites promotes a state of classical activation (M1 dominant) in macrophages that

  3. Genetically Modified Live Attenuated Leishmania donovani Parasites Induce Innate Immunity through Classical Activation of Macrophages That Direct the Th1 Response in Mice.

    PubMed

    Bhattacharya, Parna; Dey, Ranadhir; Dagur, Pradeep K; Kruhlak, Michael; Ismail, Nevien; Debrabant, Alain; Joshi, Amritanshu B; Akue, Adovi; Kukuruga, Mark; Takeda, Kazuyo; Selvapandiyan, Angamuthu; McCoy, John Philip; Nakhasi, Hira L

    2015-10-01

    Visceral leishmaniasis (VL) causes significant mortality and there is no effective vaccine. Previously, we have shown that genetically modified Leishmania donovani parasites, here described as live attenuated parasites, induce a host protective adaptive immune response in various animal models. In this study, we demonstrate an innate immune response upon infection with live attenuated parasites in macrophages from BALB/c mice both in vitro and in vivo. In vitro infection of macrophages with live attenuated parasites (compared to that with wild-type [WT] L. donovani parasites) induced significantly higher production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-12 [IL-12], gamma interferon [IFN-γ], and IL-6), chemokines (monocyte chemoattractant protein 1/CCL-2, macrophage inflammatory protein 1α/CCL-3, and IP-10), reactive oxygen species (ROS), and nitric oxide, while concomitantly reducing anti-inflammatory cytokine IL-10 and arginase-1 activities, suggesting a dominant classically activated/M1 macrophage response. The classically activated response in turn helps in presenting antigen to T cells, as observed with robust CD4(+) T cell activation in vitro. Similarly, parasitized splenic macrophages from live attenuated parasite-infected mice also demonstrated induction of an M1 macrophage phenotype, indicated by upregulation of IL-1β, TNF-α, IL-12, and inducible nitric oxide synthase 2 and downregulation of genes associated with the M2 phenotype, i.e., the IL-10, YM1, Arg-1, and MRC-1 genes, compared to WT L. donovani-infected mice. Furthermore, an ex vivo antigen presentation assay showed macrophages from live attenuated parasite-infected mice induced higher IFN-γ and IL-2 but significantly less IL-10 production by ovalbumin-specific CD4(+) T cells, resulting in proliferation of Th1 cells. These data suggest that infection with live attenuated parasites promotes a state of classical activation (M1 dominant) in macrophages that

  4. Development of Clade-Specific and Broadly Reactive Live Attenuated Influenza Virus Vaccines against Rapidly Evolving H5 Subtype Viruses.

    PubMed

    Boonnak, Kobporn; Matsuoka, Yumiko; Wang, Weijia; Suguitan, Amorsolo L; Chen, Zhongying; Paskel, Myeisha; Baz, Mariana; Moore, Ian; Jin, Hong; Subbarao, Kanta

    2017-08-01

    We have developed pandemic live attenuated influenza vaccines (pLAIVs) against clade 1 H5N1 viruses on an Ann Arbor cold-adapted (ca) backbone that induced long-term immune memory. In 2015, many human infections caused by a new clade (clade 2.2.1.1) of goose/Guangdong (gs/GD) lineage H5N1 viruses were reported in Egypt, which prompted updating of the H5N1 pLAIV. We explored two strategies to generate suitable pLAIVs. The first approach was to modify the hemagglutinin gene of a highly pathogenic wild-type (wt) clade 2.2.1.1 virus, A/Egypt/N03434/2009 (Egy/09) (H5N1), with its unmodified neuraminidase (NA) gene; this virus was designated Egy/09 ca The second approach was to select a low-pathogenicity avian influenza H5 virus that elicited antibodies that cross-reacted with a broad range of H5 viruses, including the Egypt H5N1 viruses, and contained a novel NA subtype for humans. We selected the low-pathogenicity A/duck/Hokkaido/69/2000 (H5N3) (dk/Hok/00) virus for this purpose. Both candidate vaccines were attenuated and immunogenic in ferrets, inducing antibodies that neutralized homologous and heterologous H5 viruses with different degrees of cross-reactivity; Egy/09 ca vaccine antisera were more specific for the gs/GD lineage viruses but did not neutralize recent North American isolates (clade 2.3.4.4), whereas antisera from dk/Hok/69 ca-vaccinated ferrets cross-reacted with clade 2.3.4.4 and 2.2.1 viruses but not clade 1 or 2.1 viruses. When vaccinated ferrets were challenged with homologous and heterologous H5 viruses, challenge virus replication was reduced in the respiratory tract. Thus, the two H5 pLAIV candidates are suitable for clinical development to protect humans from infection with different clades of H5 viruses.IMPORTANCE In response to the continuing evolution of H5N1 avian influenza viruses and human infections, new candidate H5 live attenuated vaccines were developed by using two different approaches: one targeted a specific circulating strain in

  5. Type III Interferon-Mediated Signaling Is Critical for Controlling Live Attenuated Yellow Fever Virus Infection In Vivo.

    PubMed

    Douam, Florian; Soto Albrecht, Yentli E; Hrebikova, Gabriela; Sadimin, Evita; Davidson, Christian; Kotenko, Sergei V; Ploss, Alexander

    2017-08-15

    Yellow fever virus (YFV) is an arthropod-borne flavivirus, infecting ~200,000 people worldwide annually and causing about 30,000 deaths. The live attenuated vaccine strain, YFV-17D, has significantly contributed in controlling the global burden of yellow fever worldwide. However, the viral and host contributions to YFV-17D attenuation remain elusive. Type I interferon (IFN-α/β) signaling and type II interferon (IFN-γ) signaling have been shown to be mutually supportive in controlling YFV-17D infection despite distinct mechanisms of action in viral infection. However, it remains unclear how type III IFN (IFN-λ) integrates into this antiviral system. Here, we report that while wild-type (WT) and IFN-λ receptor knockout (λR(-/-)) mice were largely resistant to YFV-17D, deficiency in type I IFN signaling resulted in robust infection. Although IFN-α/β receptor knockout (α/βR(-/-)) mice survived the infection, mice with combined deficiencies in both type I signaling and type III IFN signaling were hypersusceptible to YFV-17D and succumbed to the infection. Mortality was associated with viral neuroinvasion and increased permeability of the blood-brain barrier (BBB). α/βR(-/-) λR(-/-) mice also exhibited distinct changes in the frequencies of multiple immune cell lineages, impaired T-cell activation, and severe perturbation of the proinflammatory cytokine balance. Taken together, our data highlight that type III IFN has critical immunomodulatory and neuroprotective functions that prevent viral neuroinvasion during active YFV-17D replication. Type III IFN thus likely represents a safeguard mechanism crucial for controlling YFV-17D infection and contributing to shaping vaccine immunogenicity.IMPORTANCE YFV-17D is a live attenuated flavivirus vaccine strain recognized as one of the most effective vaccines ever developed. However, the host and viral determinants governing YFV-17D attenuation and its potent immunogenicity are still unknown. Here, we analyzed the

  6. BA71ΔCD2: A new recombinant live attenuated African swine fever virus with cross-protective capabilities.

    PubMed

    Monteagudo, Paula L; Lacasta, Anna; López, Elisabeth; Bosch, Laia; Collado, Javier; Pina-Pedrero, Sonia; Correa-Fiz, Florencia; Accensi, Francesc; Navas, María Jesús; Vidal, Enric; Bustos, María J; Rodríguez, Javier M; Gallei, Andreas; Nikolin, Veljko; Salas, María L; Rodríguez, Fernando

    2017-08-16

    African swine fever is a highly contagious viral disease of mandatory declaration to the World Organization for Animal Health (OIE). Lack of available vaccines make its control difficult and thus ASFV represents a major threat to the swine industry. Inactivated vaccines do not confer solid protection against African swine fever virus (ASFV). Conversely, live attenuated viruses (LAV), either naturally isolated or obtained by genetic manipulation, have demonstrated reliable protection against homologous ASFV strains, albeit little or no protection has been demonstrated against heterologous viruses. Safety concerns are a major issue for the use of ASFV attenuated vaccine candidates, and has hampered their implementation in the field so far. While trying to develop safer and efficient ASFV vaccines, we found and demonstrate here that the deletion of the viral CD2v (EP402R) gene, highly attenuated the virulent BA71 strain in vivo. Inoculation of pigs with the deletion mutant virus BA71ΔCD2 conferred protection not only against the lethal challenge with the parental BA71 but also against the heterologous E75 (both genotype I strains). The protection induced was dose-dependent and the cross-protection observed in vivo correlated with the ability of BA71ΔCD2 to induce specific CD8(+) T-cells capable of recognizing both BA71 and E75 viruses in vitro Interestingly, 100% of the pigs immunized with BA71ΔCD2 also survived lethal challenge with Georgia 2007/1, the genotype II strain of ASFV currently circulating in Continental Europe. These results open new avenues to design ASFV cross-protective vaccines, essential to fight ASFV in endemic areas where multiple viruses are circulating.Importance African swine fever virus (ASFV) remains endemic in most countries of Sub-Saharan Africa, today representing a major threat for the development of their swine industry. The uncontrolled presence of ASFV has favored its periodic exportation to other countries, the last event being

  7. Live attenuated influenza viruses produced in a suspension process with avian AGE1.CR.pIX cells.

    PubMed

    Lohr, Verena; Genzel, Yvonne; Jordan, Ingo; Katinger, Dietmar; Mahr, Stefan; Sandig, Volker; Reichl, Udo

    2012-10-30

    Current influenza vaccines are trivalent or quadrivalent inactivated split or subunit vaccines administered intramuscularly, or live attenuated influenza vaccines (LAIV) adapted to replicate at temperatures below body temperature and administered intranasally. Both vaccines are considered safe and efficient, but due to differences in specific properties may complement each other to ensure reliable vaccine coverage. By now, licensed LAIV are produced in embryonated chicken eggs. In the near future influenza vaccines for human use will also be available from adherent MDCK or Vero cell cultures, but a scalable suspension process may facilitate production and supply with vaccines. We evaluated the production of cold-adapted human influenza virus strains in the duck suspension cell line AGE1.CR.pIX using a chemically-defined medium. One cold-adapted A (H1N1) and one cold-adapted B virus strain was tested, as well as the reference strain A/PR/8/34 (H1N1). It is shown that a medium exchange is not required for infection and that maximum virus titers are obtained for 1 × 10⁻⁶ trypsin units per cell. 1 L bioreactor cultivations showed that 4 × 10⁶ cells/mL can be infected without a cell density effect achieving titers of 1 × 10⁸ virions/mL after 24 h. Overall, this study demonstrates that AGE1.CR.pIX cells support replication of LAIV strains in a chemically-defined medium using a simple process without medium exchanges. Moreover, the process is fast with peak titers obtained 24 h post infection and easily scalable to industrial volumes as neither microcarriers nor medium replacements are required.

  8. The live attenuated dengue vaccine TV003 elicits complete protection against dengue in a human challenge model.

    PubMed

    Kirkpatrick, Beth D; Whitehead, Stephen S; Pierce, Kristen K; Tibery, Cecilia M; Grier, Palmtama L; Hynes, Noreen A; Larsson, Catherine J; Sabundayo, Beulah P; Talaat, Kawsar R; Janiak, Anna; Carmolli, Marya P; Luke, Catherine J; Diehl, Sean A; Durbin, Anna P

    2016-03-16

    A dengue human challenge model can be an important tool to identify candidate dengue vaccines that should be further evaluated in large efficacy trials in endemic areas. Dengue is responsible for about 390 million infections annually. Protective efficacy results for the most advanced dengue vaccine candidate (CYD) were disappointing despite its ability to induce neutralizing antibodies against all four dengue virus (DENV) serotypes. TV003 is a live attenuated tetravalent DENV vaccine currently in phase 2 evaluation. To better assess the protective efficacy of TV003, a randomized double-blind, placebo-controlled trial in which recipients of TV003 or placebo were challenged 6 months later with a DENV-2 strain, rDEN2Δ30, was conducted. The primary endpoint of the trial was protection against dengue infection, defined as rDEN2Δ30 viremia. Secondary endpoints were protection against rash and neutropenia. All 21 recipients of TV003 who were challenged with rDEN2Δ30 were protected from infection with rDEN2Δ30. None developed viremia, rash, or neutropenia after challenge. In contrast, 100% of the 20 placebo recipients who were challenged with rDEN2Δ30 developed viremia, 80% developed rash, and 20% developed neutropenia. TV003 induced complete protection against challenge with rDEN2Δ30 administered 6 months after vaccination. TV003 will be further evaluated in dengue-endemic areas. The controlled dengue human challenge model can accelerate vaccine development by evaluating the protection afforded by the vaccine, thereby eliminating poor candidates from further consideration before the initiation of large efficacy trials.

  9. Human transcriptome response to immunization with live-attenuated Venezuelan equine encephalitis virus vaccine (TC-83): Analysis of whole blood

    PubMed Central

    Erwin-Cohen, Rebecca A.; Porter, Aimee I.; Pittman, Phillip R.; Rossi, Cynthia A.; DaSilva, Luis

    2017-01-01

    ABSTRACT Venezuelan equine encephalitis virus (VEEV) is an important human and animal alphavirus pathogen transmitted by mosquitoes. The virus is endemic in Central and South America, but has also caused equine outbreaks in southwestern areas of the United States. In an effort to better understand the molecular mechanisms of the development of immunity to this important pathogen, we performed transcriptional analysis from whole, unfractionated human blood of patients who had been immunized with the live-attenuated vaccine strain of VEEV, TC-83. We compared changes in the transcriptome between naïve individuals who were mock vaccinated with saline to responses of individuals who received TC-83. Significant transcriptional changes were noted at days 2, 7, and 14 following vaccination. The top canonical pathways revealed at early and intermediate time points (days 2 and 7) included the involvement of the classic interferon response, interferon-response factors, activation of pattern recognition receptors, and engagement of the inflammasome. By day 14, the top canonical pathways included oxidative phosphorylation, the protein ubiquitination pathway, natural killer cell signaling, and B-cell development. Biomarkers were identified that differentiate between vaccinees and control subjects, at early, intermediate, and late stages of the development of immunity as well as markers which were common to all 3 stages following vaccination but distinct from the sham-vaccinated control subjects. The study represents a novel examination of molecular processes that lead to the development of immunity against VEEV in humans and which may be of value as diagnostic targets, to enhance modern vaccine design, or molecular correlates of protection. PMID:27870591

  10. Inoculation of Balb/c mice with live attenuated tachyzoites protects against a lethal challenge of Neospora caninum.

    PubMed

    Bartley, P M; Wright, S; Chianini, F; Buxton, D; Innes, E A

    2008-01-01

    Neospora caninum tachyzoites attenuated through passage in tissue culture were tested for their ability to induce protective immunity against a lethal challenge dose of parasites. Balb/c mice were each inoculated with either 1x10(6) live virulent tachyzoites (Group 1) or 1x10(6) live attenuated tachyzoites (Group 2), while (Group 3) received a control inoculum. All mice were each challenged 28 days later with 5x10(6) virulent parasites. Histopathological lesions in the brains including necrosis and microgliosis were observed following post-mortem on day 28 post-challenge (p.c.) in 71% of Group 1 and 56% of Group 2. Immunohistochemistry (IHC) of these lesions showed tachyzoites and Neospora antigens to be associated with moderate brain lesions in 17% of Group 1, while in 11% of Group 2 N. caninum tissue cysts were detected, but these were not associated with lesions, Parasite DNA was detected by PCR in the brains of 86% of mice in Group 1 and 56% of mice in Group 2. Following challenge the mice in Group 3 showed high morbidity and 100% mortality within 17 days p.c. Positive IHC for N. caninum was seen in 88% of the Group 3 mice and parasite DNA was detected in all brain samples. This study shows that it is possible to protect against a lethal challenge of N. caninum through inoculation with attenuated or virulent tachyzoites. However, more severe pathology developed in mice initially inoculated with virulent parasites following a secondary challenge, compared to mice initially inoculated with attenuated parasites.

  11. Experience with live attenuated varicella vaccine (Oka strain) in healthy Japanese subjects; 10-year survey at pediatric clinic.

    PubMed

    Ozaki, T; Nishimura, N; Kajita, Y

    2000-05-08

    Live attenuated varicella vaccine (Oka strain, Biken Institute, Osaka, Japan) was administered to 973 healthy individuals over a 10-year period (1987-1997) at the pediatric clinic of Showa Hospital in Japan. We evaluated the relevant serological and clinical data, which were collected by questionnaire. Seroconversion by the immune adherence hemagglutination method was documented in 94% (805/860) of the initially seronegative subjects. Of the initially seropositive subjects, 56% (63/113) showed enhancement of antibody after vaccination. Reactions to the vaccine were generally insignificant, except for a rash at the injection site, seen in the first 3 days post-administration in 17% (41/241) of the recently vaccinated subjects. In March 1998, we conducted a survey of 559 of the initially seronegative subjects who had received the vaccine 0.6-10. 8 (mean 5.4) years earlier. Of these subjects, 21% (119/559) contracted breakthrough varicella. However, their symptoms were milder than those caused by natural varicella seen in unvaccinated children. Seroconversion was demonstrated in 92% (109/119) of these cases. The incidence of breakthrough disease decreased with a rise in postvaccination antibody titer to >==32. Four of the subjects (0.7% of 559) developed herpes zoster following vaccination, two of whom had earlier exhibited breakthrough varicella. Lesions in one case of zoster, without breakthrough varicella, appeared on the cervical dermatome at the injection site. The vaccine was safe and effective. However, there was a relatively high incidence of rash at the injection site with certain lot numbers used in recent years which warrants investigation.

  12. Taxa of the Nasal Microbiome Are Associated with Influenza-Specific IgA Response to Live Attenuated Influenza Vaccine

    PubMed Central

    Salk, Hannah M.; Simon, Whitney L.; Lambert, Nathaniel D.; Kennedy, Richard B.; Grill, Diane E.; Kabat, Brian F.; Poland, Gregory A.

    2016-01-01

    Live attenuated influenza vaccine (LAIV) has demonstrated varying levels of efficacy against seasonal influenza; however, LAIV may be used as a tool to measure interactions between the human microbiome and a live, replicating virus. To increase our knowledge of this interaction, we measured changes to the nasal microbiome in subjects who received LAIV to determine if associations between influenza-specific IgA production and the nasal microbiome exist after immunization with a live virus vaccine. The anterior nares of 47 healthy subjects were swabbed pre- (Day 0) and post- (Days 7 and 28) LAIV administration, and nasal washes were conducted on Days 0 and 28. We performed next-generation sequencing on amplified 16s rRNA genes and measured mucosal influenza-specific IgA titers via enzyme-linked immunosorbent assay (ELISA). A significant increase in alpha diversity was identified (Observed, CHAO, and ACE) between Days 7 vs 0 (p-values = 0.017, 0.005, 0.005, respectively) and between Days 28 vs 0 (p-values = 0.054, 0.030, 0.050, respectively). Several significant associations between the presence of different microbial species, including Lactobacillus helveticus, Prevotella melaninogenica, Streptococcus infantis, Veillonella dispar, and Bacteroides ovatus, and influenza-specific H1 and H3 IgA antibody response were demonstrated. These data suggest that LAIV alters the nasal microbiome, allowing several less-abundant OTUs to establish a community niche. Additionally, specific alterations in the nasal microbiome are significantly associated with variations in influenza-specific IgA antibody production and could be clinically relevant. PMID:27643883

  13. Orally administered live attenuated Salmonella Typhimurium protects mice against lethal infection with H1N1 influenza virus.

    PubMed

    Kamble, Nitin Machindra; Hajam, Irshad Ahmed; Lee, John Hwa

    2017-03-01

    Pre-stimulation of toll-like receptors (TLRs) by agonists has been shown to increase protection against influenza virus infection. In this study, we evaluated the protective response generated against influenza A/Puerto Rico/8/1934 (PR8; H1N1) virus by oral and nasal administration of live attenuated Salmonella enterica serovar Typhimurium, JOL911 strain, in mice. Oral and nasal inoculation of JOL911 significantly increased the mRNA copy number of TLR-2, TLR4 and TLR5, and downstream type I interferon (IFN) molecules, IFN-α and IFN-β, both in peripheral blood mononuclear cells (PBMCs) and in lung tissue. Similarly, the mRNA copy number of interferon-inducible genes (ISGs), Mx and ISG15, were significantly increased in both the orally and the nasally inoculated mice. Post PR8 virus lethal challenge, the nasal JOL911 and the PBS control group mice showed significant loss of body weight with 70% and 100% mortality, respectively, compared to only 30% mortality in the oral JOL911 group mice. Post sub-lethal challenge, the significant reduction in PR8 virus copy number in lung tissue was observed in oral [on day 4 and 6 post-challenge (dpc)] and nasal (on 4dpc) than the PBS control group mice. The lethal and sub-lethal challenge showed that the generated stimulated innate resistance (StIR) in JOL911 inoculated mice conferred resistance to acute and initial influenza infection but might not be sufficient to prevent the PR8 virus invasion and replication in the lung. Overall, the present study indicates that oral administration of attenuated S. Typhimurium can pre-stimulate multiple TLR pathways in mice to provide immediate early StIR against a lethal H1N1 virus challenge.

  14. Effect of Broccoli Sprouts on Nasal Response to Live Attenuated Influenza Virus in Smokers: A Randomized, Double-Blind Study

    PubMed Central

    Noah, Terry L.; Zhang, Hongtao; Zhou, Haibo; Glista-Baker, Ellen; Müller, Loretta; Bauer, Rebecca N.; Meyer, Megan; Murphy, Paula C.; Jones, Shannon; Letang, Blanche; Robinette, Carole; Jaspers, Ilona

    2014-01-01

    Background Smokers have increased susceptibility and altered innate host defense responses to influenza virus infection. Broccoli sprouts are a source of the Nrf2 activating agentsulforaphane, and short term ingestion of broccoli sprout homogenates (BSH) has been shown to reduce nasal inflammatory responses to oxidant pollutants. Objectives Assess the effects of BSH on nasal cytokines, virus replication, and Nrf2-dependent enzyme expression in smokers and nonsmokers. Methods We conducted a randomized, double-blind, placebo-controlled trial comparing the effects of BSH on serially sampled nasal lavage fluid (NLF) cytokines, viral sequence quantity, and Nrf2-dependent enzyme expression in NLF cells and biopsied epithelium. Healthy young adult smokers and nonsmokers ingested BSH or placebo (alfalfa sprout homogenate) for 4 days, designated Days -1, 0, 1, 2. On Day 0 they received standard vaccine dose of live attenuated influenza virus (LAIV) intranasally. Nasal lavage fluids and nasal biopsies were collected serially to assess response to LAIV. Results In area under curve analyses, post-LAIV IL-6 responses (P = 0.03) and influenza sequences (P = 0.01) were significantly reduced in NLF from BSH-treated smokers, whileNAD(P)H: quinoneoxidoreductasein NLF cells was significantly increased. In nonsmokers, a similar trend for reduction in virus quantity with BSH did not reach statistical significance. Conclusions In smokers, short term ingestion of broccoli sprout homogenates appears to significantly reduce some virus-induced markers of inflammation, as well as reducing virus quantity. Nutritional antioxidant interventions have promise as a safe, low-cost strategy for reducing influenza risk among smokers and other at risk populations. Trial Registration ClinicalTrials.gov NCT01269723 PMID:24910991

  15. Attempt to develop live attenuated bacterial vaccines by selecting resistance to gossypol, proflavine hemisulfate, novobiocin, or ciprofloxacin.

    PubMed

    Pridgeon, Julia W; Klesius, Phillip H; Yildirim-Aksoy, Mediha

    2013-04-26

    In an attempt to develop attenuated bacteria as potential live vaccines, four chemicals (gossypol, proflavine hemisulfate, novobiocin, and ciprofloxacin) were used to modify the following four genera of bacteria through chemical-resistance strategy: (1) Aeromonas hydrophila (9 isolates); (2) Edwardsiella tarda (9 isolates); (3) Streptococcus iniae (9 isolates); and (4) S. agalactiae (11 isolates). All bacteria used in this study were able to develop high resistance to gossypol. However, only some bacteria were able to develop resistance to proflavine hemisulfate, novobiocin, or ciprofloxacin. When the virulence of resistant bacteria was tested in tilapia or catfish, none of the gossypol-resistant isolate was attenuated, whereas majority of the proflavine hemisulfate-resistant isolates were attenuated. However, all proflavine hemisulfate-attenuated bacteria failed to provide significant protection to fish. Eight novobiocin- or ciprofloxacin-resistant Gram-positive bacteria (S. agalactiae and S. inaie) were found to be attenuated. However, none of them offered protection higher than 70%. Of seven attenuated novobiocin- or ciprofloxacin-resistant Gram-negative isolates (A. hydrophila and E. tarda), only one (novobiocin-resistant E. tarda 30305) was found to safe and highly efficacious. When E. tarda 30305-novo vaccinated Nile tilapia were challenged by its virulent E. tarda 30305, relative percent of survival of vaccinated fish at 14- and 28-days post vaccination (dpv) was 100% and 92%, respectively. Similarly, E. tarda 30305-novo offered 100% protection to channel catfish against challenges with virulent parent isolate E. tarda 30305 at both 14- and 28-dpv. Our results suggest that the development of live attenuated bacterial vaccines that are safe and efficacious is challenging, although it is feasible.

  16. Evaluation of the Salmonella enterica Serovar Pullorum Pathogenicity Island 2 Mutant as a Candidate Live Attenuated Oral Vaccine

    PubMed Central

    Yin, Junlei; Cheng, Zhao; Wang, Xiaochun; Xu, Lijuan; Li, Qiuchun; Geng, Shizhong

    2015-01-01

    Salmonella enterica serovar Pullorum (S. Pullorum) is a highly adapted pathogen that causes pullorum disease (PD), an important systemic disease of poultry that causes severe economic losses in developing countries. In the interests of developing a safe and immunogenic oral vaccine, the efficacy of a Salmonella pathogenicity island 2 (SPI2)-deleted mutant of S. Pullorum (S06004ΔSPI2) was evaluated in chickens. S06004ΔSPI2 was severely less virulent than the parental wild-type strain S06004 as determined by the 50% lethal dose (LD50) for 3-day-old chickens when injected intramuscularly. Two-day-old chickens immunized with a single oral dose of S06004ΔSPI2 showed no differences in body weight or clinical symptoms compared with those in the negative-control group. S06004ΔSPI2 bacteria were not isolated from livers or spleens of immunized chickens after a short period of time, and specific humoral and cellular immune responses were significantly induced. Immunized chickens were challenged with S. Pullorum strain S06004 and Salmonella enterica serovar Gallinarum (S. Gallinarum) strain SG9 at 10 days postimmunization (dpi), and efficient protection against the challenges was observed. None of the immunized chickens died, the clinical symptoms were slight and temporary following challenge in immunized chickens compared with those in the control group, and these chickens recovered by 3 to 5 dpi. Overall, these results demonstrate that S06004ΔSPI2 can be used as a live attenuated oral vaccine. PMID:25924763

  17. Live attenuated influenza viruses produced in a suspension process with avian AGE1.CR.pIX cells

    PubMed Central

    2012-01-01

    Background Current influenza vaccines are trivalent or quadrivalent inactivated split or subunit vaccines administered intramuscularly, or live attenuated influenza vaccines (LAIV) adapted to replicate at temperatures below body temperature and administered intranasally. Both vaccines are considered safe and efficient, but due to differences in specific properties may complement each other to ensure reliable vaccine coverage. By now, licensed LAIV are produced in embryonated chicken eggs. In the near future influenza vaccines for human use will also be available from adherent MDCK or Vero cell cultures, but a scalable suspension process may facilitate production and supply with vaccines. Results We evaluated the production of cold-adapted human influenza virus strains in the duck suspension cell line AGE1.CR.pIX using a chemically-defined medium. One cold-adapted A (H1N1) and one cold-adapted B virus strain was tested, as well as the reference strain A/PR/8/34 (H1N1). It is shown that a medium exchange is not required for infection and that maximum virus titers are obtained for 1 × 10-6 trypsin units per cell. 1 L bioreactor cultivations showed that 4 × 106 cells/mL can be infected without a cell density effect achieving titers of 1 × 108 virions/mL after 24 h. Conclusions Overall, this study demonstrates that AGE1.CR.pIX cells support replication of LAIV strains in a chemically-defined medium using a simple process without medium exchanges. Moreover, the process is fast with peak titers obtained 24 h post infection and easily scalable to industrial volumes as neither microcarriers nor medium replacements are required. PMID:23110398

  18. Public health impact and cost-effectiveness of intranasal live attenuated influenza vaccination of children in Germany.

    PubMed

    Damm, Oliver; Eichner, Martin; Rose, Markus Andreas; Knuf, Markus; Wutzler, Peter; Liese, Johannes Günter; Krüger, Hagen; Greiner, Wolfgang

    2015-06-01

    In 2011, intranasally administered live attenuated influenza vaccine (LAIV) was approved in the EU for prophylaxis of seasonal influenza in 2-17-year-old children. Our objective was to estimate the potential epidemiological impact and cost-effectiveness of an LAIV-based extension of the influenza vaccination programme to healthy children in Germany. An age-structured dynamic model of influenza transmission was developed and combined with a decision-tree to evaluate different vaccination strategies in the German health care system. Model inputs were based on published literature or were derived by expert consulting using the Delphi technique. Unit costs were drawn from German sources. Under base-case assumptions, annual routine vaccination of children aged 2-17 years with LAIV assuming an uptake of 50% would prevent, across all ages, 16 million cases of symptomatic influenza, over 600,000 cases of acute otitis media, nearly 130,000 cases of community-acquired pneumonia, nearly 1.7 million prescriptions of antibiotics and over 165,000 hospitalisations over 10 years. The discounted incremental cost-effectiveness ratio was 1,228 per quality-adjusted life year gained from a broad third-party payer perspective (including reimbursed direct costs and specific transfer payments), when compared with the current strategy of vaccinating primarily risk groups with the conventional trivalent inactivated vaccine. Inclusion of patient co-payments and indirect costs in terms of productivity losses resulted in discounted 10-year cost savings of 3.4 billion. In conclusion, adopting universal influenza immunisation of healthy children and adolescents would lead to a substantial reduction in influenza-associated disease at a reasonable cost to the German statutory health insurance system. On the basis of the epidemiological and health economic simulation results, a recommendation of introducing annual routine influenza vaccination of children 2-17 years of age might be

  19. Single-dose live-attenuated Nipah virus vaccines confer complete protection by eliciting antibodies directed against surface glycoproteins

    PubMed Central

    DeBuysscher, Blair L.; Scott, Dana; Marzi, Andrea; Prescott, Joseph; Feldmann, Heinz

    2016-01-01

    Background Nipah virus (NiV), a zoonotic pathogen causing severe respiratory illness and encephalitis in humans, emerged in Malaysia in 1998 with subsequent outbreaks on an almost annual basis since 2001 in parts of the Indian subcontinent. The high case fatality rate, human-to-human transmission, wide-ranging reservoir distribution and lack of licensed intervention options are making NiV a serious regional and potential global public health problem. The objective of this study was to develop a fast-acting, single-dose NiV vaccine that could be implemented in a ring vaccination approach during outbreaks. Methods In this study we have designed new live-attenuated vaccine vectors based on recombinant vesicular stomatitis viruses (rVSV) expressing NiV glycoproteins (G or F) or nucleoprotein (N) and evaluated their protective efficacy in Syrian hamsters, an established NiV animal disease model. We further characterized the humoral immune response to vaccination in hamsters using ELISA and neutralization assays and performed serum transfer studies. Results Vaccination of Syrian hamsters with a single dose of the rVSV vaccine vectors resulted in strong humoral immune responses with neutralizing activities found only in those animals vaccinated with rVSV expressing NiV G or F proteins. Vaccinated animals with neutralizing antibody responses were completely protected from lethal NiV disease, whereas animals vaccinated with rVSV expressing NiV N showed only partial protection. Protection of NiV G or F vaccinated animals was conferred by antibodies, most likely the neutralizing fraction, as demonstrated by serum transfer studies. Protection of N-vaccinated hamsters was not antibody-dependent indicating a role of adaptive cellular responses for protection. Conclusions The rVSV vectors expressing Nipah virus G or F are prime candidates for new ‘emergency vaccines’ to be utilized for NiV outbreak management. PMID:24631094

  20. Comparative efficacy of various chemical stabilizers on the thermostability of a live-attenuated peste des petits ruminants (PPR) vaccine.

    PubMed

    Sarkar, J; Sreenivasa, B P; Singh, R P; Dhar, P; Bandyopadhyay, S K

    2003-12-01

    Thermostability of a live-attenuated peste des petits ruminants (PPR) vaccine recently developed at Indian Veterinary Research Institute was studied using conventional lyophilization conditions. A total of four stabilizers viz., lactalbumin hydrolysate-sucrose (LS), Weybridge medium (WBM), buffered gelatin-sorbitol (BUGS) and trehalose dihydrate (TD) were used to prepare the lyophilized vaccine. The study revealed that the PPR vaccine lyophilized with either LS or TD is more stable than rest of the stabilizers having an expiry period of at least 45 days (so far studied) at 4 degrees C, 15-19 days at 25 degrees C and 1-2 days at 37 degrees C. However, at a temperature of 45 degrees C, BUGS had a marginal superiority, although lasted for few hours, followed by TD and LS with respect to shelf-life, LS and TD with respect to half-life. On the basis of half-life also LS followed by TD appeared superior at a temperature of 4, 25 and 37 degrees C. Reconstitution of vaccine with distilled water or 1M MgSO(4) or 0.85% NaCl maintained the required virus titre (2.5log(10)TCID(50) per dose) up to 8h at 37 degrees C and 7h at 45 degrees C. Among the three diluents, 1M MgSO(4) appeared to be the better diluent for reconstitution of lyophilized PPR vaccine, as the loss on dilution was lowest and maintain the required virus titre for a longer period. Investigation suggests for using LS as stabilizer for lyophilization and 1M MgSO(4) as vaccine diluent for the newly developed PPR vaccine.

  1. Protection induced by commercially available live-attenuated and recombinant viral vector vaccines against infectious laryngotracheitis virus in broiler chickens.

    PubMed

    Vagnozzi, Ariel; Zavala, Guillermo; Riblet, Sylva M; Mundt, Alice; García, Maricarmen

    2012-01-01

    Viral vector vaccines using fowl poxvirus (FPV) and herpesvirus of turkey (HVT) as vectors and carrying infectious laryngotracheitis virus (ILTV) genes are commercially available to the poultry industry in the USA. Different sectors of the broiler industry have used these vaccines in ovo or subcutaneously, achieving variable results. The objective of the present study was to determine the efficacy of protection induced by viral vector vaccines as compared with live-attenuated ILTV vaccines. The HVT-LT vaccine was more effective than the FPV-LT vaccine in mitigating the disease and reducing levels of challenge virus when applied in ovo or subcutaneously, particularly when the challenge was performed at 57 days rather than 35 days of age. While the FPV-LT vaccine mitigated clinical signs more effectively when administered subcutaneously than in ovo, it did not reduce the concentration of challenge virus in the trachea by either application route. Detection of antibodies against ILTV glycoproteins expressed by the viral vectors was a useful criterion to assess the immunogenicity of the vectors. The presence of glycoprotein I antibodies detected pre-challenge and post challenge in chickens vaccinated with HVT-LT indicated that the vaccine induced a robust antibody response, which was paralleled by significant reduction of clinical signs. The chicken embryo origin vaccine provided optimal protection by significantly mitigating the disease and reducing the challenge virus in chickens vaccinated via eye drop. The viral vector vaccines, applied in ovo and subcutaneously, provided partial protection, reducing to some degree clinical signs, and challenge VIRUS replication in the trachea.

  2. Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in viral pathogenesis and immune protection.

    PubMed

    Lacasta, Anna; Monteagudo, Paula L; Jiménez-Marín, Ángeles; Accensi, Francesc; Ballester, María; Argilaguet, Jordi; Galindo-Cardiel, Iván; Segalés, Joaquim; Salas, María L; Domínguez, Javier; Moreno, Ángela; Garrido, Juan J; Rodríguez, Fernando

    2015-11-20

    African swine fever virus (ASFV) is the causal agent of African swine fever, a hemorrhagic and often lethal porcine disease causing enormous economical losses in affected countries. Endemic for decades in most of the sub-Saharan countries and Sardinia, the risk of ASFV-endemicity in Europe has increased since its last introduction into Europe in 2007. Live attenuated viruses have been demonstrated to induce very efficient protective immune responses, albeit most of the time protection was circumscribed to homologous ASFV challenges. However, their use in the field is still far from a reality, mainly due to safety concerns. In this study we compared the course of the in vivo infection caused by two homologous ASFV strains: the virulent E75 and the cell cultured adapted strain E75CV1, obtained from adapting E75 to grow in the CV1 cell-line. Interestingly, the kinetics of both viruses not only differed on the clinical signs that they caused and in the virus loads found, but also in the immunological pathways activated throughout the infections. Furthermore, E75CV1 confirmed its protective potential against the homologous E75 virus challenge and allowed the demonstration of poor cross-protection against BA71, thus defining it as heterologous. The in vitro specificity of the CD8(+) T-cells present at the time of lethal challenge showed a clear activation against the homologous virus (E75) but not against BA71. These findings will be of utility for a better understanding of ASFV pathogenesis and for the rational designing of safe and efficient vaccines against this virus.

  3. Alternative live-attenuated influenza vaccines based on modifications in the polymerase genes protect against epidemic and pandemic flu.

    PubMed

    Solórzano, Alicia; Ye, Jianqiang; Pérez, Daniel R

    2010-05-01

    Human influenza is a seasonal disease associated with significant morbidity and mortality. Influenza vaccination is the most effective means for disease prevention. We have previously shown that mutations in the PB1 and PB2 genes of the live-attenuated influenza vaccine (LAIV) from the cold-adapted (ca) influenza virus A/Ann Arbor/6/60 (H2N2) could be transferred to avian influenza viruses and produce partially attenuated viruses. We also demonstrated that avian influenza viruses carrying the PB1 and PB2 mutations could be further attenuated by stably introducing a hemagglutinin (HA) epitope tag in the PB1 gene. In this work, we wanted to determine whether these modifications would also result in attenuation of a so-called triple reassortant (TR) swine influenza virus (SIV). Thus, the TR influenza A/swine/Wisconsin/14094/99 (H3N2) virus was generated by reverse genetics and subsequently mutated in the PB1 and PB2 genes. Here we show that a combination of mutations in this TR backbone results in an attenuated virus in vitro and in vivo. Furthermore, we show the potential of our TR backbone as a vaccine that provides protection against the 2009 swine-origin pandemic influenza H1N1 virus (S-OIV) when carrying the surface of a classical swine strain. We propose that the availability of alternative backbones to the conventional ca A/Ann Arbor/6/60 LAIV strain could also be useful in epidemic and pandemic influenza and should be considered for influenza vaccine development. In addition, our data provide evidence that the use of these alternative backbones could potentially circumvent the effects of original antigenic sin (OAS) in certain circumstances.

  4. Comparison of Immunogenicity Between Inactivated and Live Attenuated Hepatitis A Vaccines Among Young Adults: A 3-Year Follow-up Study.

    PubMed

    Liu, Xue-en; Chen, Hai-ying; Liao, Zheng; Zhou, Yisheng; Wen, Hairong; Peng, Shihui; Liu, Yan; Li, Rui; Li, Jie; Zhuang, Hui

    2015-10-15

    A randomized clinical trial of hepatitis A vaccines (1 or 2 doses of inactivated vaccine [Healive] or 1 dose of live attenuated vaccine [Biovac]) was conducted among adults to evaluate seroprotection rates and geometric mean concentrations of antibody against hepatitis A virus for 36 months. High rates of seroprotection persisted for at least 36 months among adults who received 1 or 2 doses of inactivated hepatitis A vaccine but not among adults who received 1 dose of live attenuated hepatitis A vaccine. The long-term serial monitoring of immunogenicity induced by 1 dose of inactivated hepatitis A vaccine is needed to determine an effective alternative to a 2-dose schedule. NCT01865968. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. A live attenuated H7N7 candidate vaccine virus induces neutralizing antibody that confers protection from challenge in mice, ferrets and monkeys

    USDA-ARS?s Scientific Manuscript database

    A live attenuated H7N7 candidate vaccine virus was generated by reverse genetics using the modified hemagglutinin (HA) and neuraminidase (NA) genes of HP A/Netherlands/219/03 (NL/03) (H7N7) wild-type (wt) virus and the six internal protein genes of the cold-adapted (ca) A/Ann Arbor/6/60 ca (AA ca) (...

  6. Phase-I study MEDI-534, of a live, attenuated intranasal vaccine against respiratory syncytial virus and parainfluenza-3 virus in seropositive children.

    PubMed

    Gomez, Margarita; Mufson, Maurice A; Dubovsky, Filip; Knightly, Conor; Zeng, Wen; Losonsky, Genevieve

    2009-07-01

    A live, attenuated respiratory syncytial virus and parainfluenza virus type 3 vaccine was evaluated in healthy respiratory syncytial virus/parainfluenza virus type 3 seropositive children aged 1 to 9 years. Three cohorts of 40 children were randomized 1:1 to receive 10, 10, or 10 median tissue culture infectious dose50 MEDI-534 vaccine or placebo. The vaccine's safety profile was similar to placebo, no viral shedding was detected, and the vaccine was minimally immunogenic.

  7. Genetically Engineered, Live Attenuated Vaccines Protect Nonhuman Primates Against Aerosol Challenge with a Virulent IE Strain of Venezuelan Equine Encephalitis Virus

    DTIC Science & Technology

    2005-01-21

    Vaccine 23 (2005) 3139–3147 Genetically engineered, live, attenuated vaccines protect nonhuman primates against aerosol challenge with a virulent IE...Prattb, Michael D. Parkerb a Center for Aerobiological Sciences, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort...Received 27 August 2004; received in revised form 22 December 2004; accepted 23 December 2004 Available online 21 January 2005 Abstract d w h o a w s f P

  8. Immunization of children with secondary immunodeficiency

    PubMed Central

    Esposito, Susanna; Prada, Elisabetta; Lelii, Mara; Castellazzi, Luca

    2015-01-01

    ABSTRACT The main causes of secondary immunodeficiency at a pediatric age include infectious diseases (mainly HIV infection), malignancies, haematopoietic stem cell or solid organ transplantation and autoimmune diseases. Children with secondary immunodeficiency have an increased risk of severe infectious diseases that could be prevented by adequate vaccination coverage, but vaccines administration can be associated with reduced immune response and an increased risk of adverse reactions. The immunogenicity of inactivated and recombinant vaccines is comparable to that of healthy children at the moment of vaccination, but it undergoes a progressive decline over time, and in the absence of a booster, the patients remain at risk of developing vaccine-preventable infections. However, the administration of live attenuated viral vaccines is controversial because of the risk of the activation of vaccine viruses. A specific immunization program should be administered according to the clinical and immunological status of each of these conditions to ensure a sustained immune response without any risks to the patients' health. PMID:26176360

  9. Combined semi-empirical screening and design of experiments (DOE) approach to identify candidate formulations of a lyophilized live attenuated tetravalent viral vaccine candidate.

    PubMed

    Patel, Ashaben; Erb, Steven M; Strange, Linda; Shukla, Ravi S; Kumru, Ozan S; Smith, Lee; Nelson, Paul; Joshi, Sangeeta B; Livengood, Jill A; Volkin, David B

    2017-05-12

    A combination experimental approach, utilizing semi-empirical excipient screening followed by statistical modeling using design of experiments (DOE), was undertaken to identify stabilizing candidate formulations for a lyophilized live attenuated Flavivirus vaccine candidate. Various potential pharmaceutical compounds used in either marketed or investigative live attenuated viral vaccine formulations were first identified. The ability of additives from different categories of excipients, either alone or in combination, were then evaluated for their ability to stabilize virus against freeze-thaw, freeze-drying, and accelerated storage (25°C) stresses by measuring infectious virus titer. An exploratory data analysis and predictive DOE modeling approach was subsequently undertaken to gain a better understanding of the interplay between the key excipients and stability of virus as well as to determine which combinations were interacting to improve virus stability. The lead excipient combinations were identified and tested for stabilizing effects using a tetravalent mixture of viruses in accelerated and real time (2-8°C) stability studies. This work demonstrates the utility of combining semi-empirical excipient screening and DOE experimental design strategies in the formulation development of lyophilized live attenuated viral vaccine candidates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Live attenuated measles vaccine expressing HIV-1 Gag virus like particles covered with gp160DELTAV1V2 is strongly immunogenic

    SciTech Connect

    Guerbois, Mathilde; Moris, Arnaud; Combredet, Chantal; Najburg, Valerie; Ruffie, Claude; Fevrier, Michele; Cayet, Nadege; Brandler, Samantha; Schwartz, Olivier; Tangy, Frederic

    2009-05-25

    Although a live attenuated HIV vaccine is not currently considered for safety reasons, a strategy inducing both T cells and neutralizing antibodies to native assembled HIV-1 particles expressed by a replicating virus might mimic the advantageous characteristics of live attenuated vaccine. To this aim, we generated a live attenuated recombinant measles vaccine expressing HIV-1 Gag virus-like particles (VLPs) covered with gp160DELTAV1V2 Env protein. The measles-HIV virus replicated efficiently in cell culture and induced the intense budding of HIV particles covered with Env. In mice sensitive to MV infection, this recombinant vaccine stimulated high levels of cellular and humoral immunity to both MV and HIV with neutralizing activity. The measles-HIV virus infected human professional antigen-presenting cells, such as dendritic cells and B cells, and induced efficient presentation of HIV-1 epitopes and subsequent activation of human HIV-1 Gag-specific T cell clones. This candidate vaccine will be next tested in non-human primates. As a pediatric vaccine, it might protect children and adolescents simultaneously from measles and HIV.

  11. Live attenuated Salmonella displaying HIV-1 10E8 epitope on fimbriae: systemic and mucosal immune responses in BALB/c mice by mucosal administration

    PubMed Central

    Li, Qing-Hai; Jin, Gang; Wang, Jia-Ye; Li, Hai-Ning; Liu, Huidi; Chang, Xiao-Yun; Wang, Fu-Xiang; Liu, Shu-Lin

    2016-01-01

    The HIV-1 membrane proximal external region (MPER) that is targeted by several broadly neutralizing antibodies (BNAbs) has been considered a potential immunogen for vaccine development. However, to date the immunogenicity of these BNAb epitopes has not been made sufficiently adequate. In the present work, we used live attenuated Salmonella as a platform to present the HIV-1 MPER 10E8 epitope in the fimbriae. The insertion of the 10E8 epitope into the fimbriae had no significant influence on the expression and the absorption capacity of bacterial fimbriae, nor on the virulence and invasiveness of the attenuated Salmonella. After oral administration of the vaccine construct to mice followed by 10E8 epitope peptide boost, specific antibody responses in serum and mucosa as well as memory lymphocytes in spleen and plasma cells in bone marrow were induced. We also found that the live attenuated Salmonella vector directed the immunity toward Th1 bias, induced Th1 and Th2 cytokine responses and stimulated significant B cell differentiation into GC B, memory B and plasma cells. Therefore, we propose that the live attenuated Salmonella constitutively expressing HIV-1 BNAb epitopes on the fimbriae will be an effective approach to improving immune microenvironment and enhancing the immunogenicity of HIV-1 epitope vaccines. PMID:27411313

  12. Comparison of the immune responses in BALB/c mice following immunization with DNA-based and live attenuated vaccines delivered via different routes.

    PubMed

    Cai, Ming-sheng; Deng, Shu-xuan; Li, Mei-li

    2013-02-18

    The objective of this study was to compare immune responses induced in BALB/c mice following immunization with pcDNA-GPV-VP2 DNA by gene gun bombardment (6 μg) or by intramuscular (im) injection (100 μg) with the responses to live attenuated vaccine by im injection (100 μl). pcDNA3.1 (+) and physiological saline were used as controls. Peripheral blood samples were collected at 3, 7, 14, 21, 28, 35, 49, 63, 77 and 105 d after immunization. T lymphocyte proliferation was analyzed by MTT assay and enumeration of CD4(+), and CD8(+) T cell populations in peripheral blood was performed by flow cytometric analysis. Indirect ELISA was used to detect IgG levels. Cellular and humoral responses were induced by pcDNA-GPV-VP2 DNA and live virus vaccines. No differences were observed in T cell proliferation and CD8(+) T cell responses induced by the genetic vaccine regardless of the route of delivery. However, CD4(+) T cell responses and humoral immunity were enhanced in following gene gun immunization compared with im injection of the genetic vaccine. Cellular and humoral immunity was enhanced in following gene gun delivery of the genetic vaccine compared with the live attenuated vaccine. In conclusion, the pcDNA-GPV-VP2 DNA vaccine induced enhanced cellular and humoral immunity compared with that induced by the live attenuated vaccine.

  13. Enhanced expression of HIV and SIV vaccine antigens in the structural gene region of live attenuated rubella viral vectors and their incorporation into virions.

    PubMed

    Virnik, Konstantin; Ni, Yisheng; Berkower, Ira

    2013-04-19

    Despite the urgent need for an HIV vaccine, its development has been hindered by virus variability, weak immunogenicity of conserved epitopes, and limited durability of the immune response. For other viruses, difficulties with immunogenicity were overcome by developing live attenuated vaccine strains. However, there is no reliable method of attenuation for HIV, and an attenuated strain would risk reversion to wild type. We have developed rubella viral vectors, based on the live attenuated vaccine strain RA27/3, which are capable of expressing important HIV and SIV vaccine antigens. The rubella vaccine strain has demonstrated safety, immunogenicity, and long lasting protection in millions of children. Rubella vectors combine the growth and immunogenicity of live rubella vaccine with the antigenicity of HIV or SIV inserts. This is the first report showing that live attenuated rubella vectors can stably express HIV and SIV vaccine antigens at an insertion site located within the structural gene region. Unlike the Not I site described previously, the new site accommodates a broader range of vaccine antigens without interfering with essential viral functions. In addition, antigens expressed at the structural site were controlled by the strong subgenomic promoter, resulting in higher levels and longer duration of antigen expression. The inserts were expressed as part of the structural polyprotein, processed to free antigen, and incorporated into rubella virions. The rubella vaccine strain readily infects rhesus macaques, and these animals will be the model of choice for testing vector growth in vivo and immunogenicity.

  14. An open‐label phase I trial of a live attenuated H2N2 influenza virus vaccine in healthy adults

    PubMed Central

    Talaat, Kawsar R.; Karron, Ruth A.; Liang, Philana H.; McMahon, Bridget A.; Luke, Catherine J.; Thumar, Bhagvanji; Chen, Grace L.; Min, Ji‐Young; Lamirande, Elaine W.; Jin, Hong; Coelingh, Kathy L.; Kemble, George W.; Subbarao, Kanta

    2012-01-01

    Please cite this paper as: Talaat et al. (2012) An open‐label phase I trial of a live attenuated H2N2 influenza virus vaccine in healthy adults. Influenza and Other Respiratory Viruses DOI: 10.1111/j.1750‐2659.2012.00350.x. Background  Live attenuated influenza vaccines (LAIV) against a variety of strains of pandemic potential are being developed and tested. We describe the results of an open‐label phase I trial of a live attenuated H2N2 virus vaccine. Objectives  To evaluate the safety, infectivity, and immunogenicity of a live attenuated H2N2 influenza virus vaccine. Participants/methods  The A/Ann Arbor/6/60 (H2N2) virus used in this study is the attenuated, cold‐adapted, temperature‐sensitive strain that provides the genetic backbone of seasonal LAIV (MedImmune). We evaluated the safety, infectivity, and immunogenicity of two doses of 107 TCID50 of this vaccine administered by nasal spray 4 weeks apart to normal healthy seronegative adults. Results  Twenty‐one participants received a first dose of the vaccine; 18 participants received a second dose. No serious adverse events occurred during the trial. The most common adverse events after vaccination were headache and musculoskeletal pain. The vaccine was restricted in replication: 24% and 17% had virus detectable by culture or rRT‐PCR after the first and second dose, respectively. Antibody responses to the vaccine were also restricted: 24% of participants developed an antibody response as measured by either hemagglutination‐inhibition assay (10%), or ELISA for H2 HA‐specific serum IgG (24%) or IgA (16%) after either one or two doses. None of the participants had a neutralizing antibody response. Vaccine‐specific IgG‐secreting cells as measured by enzyme‐linked immunospot increased from a mean of 0·5 to 2·0/106 peripheral blood mononuclear cells (PBMCs); vaccine‐specific IgA‐secreting cells increased from 0·1 to 0·5/106 PBMCs. Conclusions  The live attenuated H2N2

  15. Role of Occult and Post-acute Phase Replication in Protective Immunity Induced with a Novel Live Attenuated SIV Vaccine

    PubMed Central

    Ham, Claire; Ferguson, Deborah; Tudor, Hannah; Mattiuzzo, Giada; Klaver, Bep; Page, Mark; Stebbings, Richard; Das, Atze T.; Berkhout, Ben; Almond, Neil; Cranage, Martin P.

    2016-01-01

    In order to evaluate the role of persisting virus replication during occult phase immunisation in the live attenuated SIV vaccine model, a novel SIVmac239Δnef variant (SIVrtTA) genetically engineered to replicate in the presence of doxycycline was evaluated for its ability to protect against wild-type SIVmac239. Indian rhesus macaques were vaccinated either with SIVrtTA or with SIVmac239Δnef. Doxycycline was withdrawn from 4 of 8 SIVrtTA vaccinates before challenge with wild-type virus. Unvaccinated challenge controls exhibited ~107 peak plasma viral RNA copies/ml persisting beyond the acute phase. Six vaccinates, four SIVmac239Δnef and two SIVrtTA vaccinates exhibited complete protection, defined by lack of wild-type viraemia post-challenge and virus-specific PCR analysis of tissues recovered post-mortem, whereas six SIVrtTA vaccinates were protected from high levels of viraemia. Critically, the complete protection in two SIVrtTA vaccinates was associated with enhanced SIVrtTA replication in the immediate post-acute vaccination period but was independent of doxycycline status at the time of challenge. Mutations were identified in the LTR promoter region and rtTA gene that do not affect doxycycline-control but were associated with enhanced post-acute phase replication in protected vaccinates. High frequencies of total circulating CD8+T effector memory cells and a higher total frequency of SIV-specific CD8+ mono and polyfunctional T cells on the day of wild-type challenge were associated with complete protection but these parameters were not predictive of outcome when assessed 130 days after challenge. Moreover, challenge virus-specific Nef CD8+ polyfunctional T cell responses and antigen were detected in tissues post mortem in completely-protected macaques indicating post-challenge control of infection. Within the parameters of the study design, on-going occult-phase replication may not be absolutely required for protective immunity. PMID:28002473

  16. Safety Overview of a Recombinant Live-Attenuated Tetravalent Dengue Vaccine: Pooled Analysis of Data from 18 Clinical Trials

    PubMed Central

    Gailhardou, Sophia; Skipetrova, Anna; Dayan, Gustavo H.; Jezorwski, John; Saville, Melanie; Van der Vliet, Diane; Wartel, T. Anh

    2016-01-01

    A recombinant live attenuated tetravalent dengue vaccine (CYD-TDV) has been shown to be efficacious in preventing virologically-confirmed dengue disease, severe dengue disease and dengue hospitalization in children aged 2–16 years in Asia and Latin America. We analyzed pooled safety data from 18 phase I, II and III clinical trials in which the dengue vaccine was administered to participants aged 2–60 years, including long-term safety follow-up in three efficacy trials. The participants were analyzed according to their age at enrollment. The percentage of participants aged 2–60 years reporting ≥1 solicited injection-site or systemic reactions was slightly higher in the CYD-TDV group than in the placebo group. The most common solicited injection-site reactions were pain. Headache and malaise were the most common solicited systemic reactions. In both groups 0.3% of participants discontinued for safety reasons. The most common unsolicited adverse events were injection-site reactions, gastrointestinal disorders, and infections. Reactogenicity did not increase with successive doses of CYD-TDV. The frequency and nature of SAEs occurring within 28 days of any dose were similar in the CYD-TDV and placebo groups and were common medical conditions that could be expected as a function of age. Baseline dengue virus serostatus did not appear to influence the safety profile. No vaccine-related anaphylactic reactions, neurotropic events or viscerotropic events were reported. In year 3 after dose 1, an imbalance for dengue hospitalization, including for severe dengue, observed in participants aged <9 years in the CYD-TDV group compared with the placebo group was not observed for participants aged ≥9 years. In Year 4, this imbalance in participants aged <9 years was less marked, giving an overall lower risk of dengue hospitalization or severe dengue from dose 1 to Year 4 in the CYD-TDV group. These results have contributed to the definition of the target population for

  17. Replication of live attenuated cold-adapted H2N2 influenza virus vaccine candidates in non human primates.

    PubMed

    Broadbent, Andrew J; Santos, Celia P; Paskel, Myeisha; Matsuoka, Yumiko; Lu, Janine; Chen, Zhongying; Jin, Hong; Subbarao, Kanta

    2015-01-01

    The development of an H2N2 vaccine is a priority in pandemic preparedness planning. We previously showed that a single dose of a cold-adapted (ca) H2N2 live attenuated influenza vaccine (LAIV) based on the influenza A/Ann Arbor/6/60 (AA ca) virus was immunogenic and efficacious in mice and ferrets. However, in a Phase I clinical trial, viral replication was restricted and immunogenicity was poor. In this study, we compared the replication of four H2N2 LAIV candidate viruses, AA ca, A/Tecumseh/3/67 (TEC67 ca), and two variants of A/Japan/305/57 (JAP57 ca) in three non-human primate (NHP) species: African green monkeys (AGM), cynomolgus macaques (CM) and rhesus macaques (RM). One JAP57 ca virus had glutamine and glycine at HA amino acid positions 226 and 228 (Q-G) that binds to α2-3 linked sialic acids, and one had leucine and serine that binds to α2-3 and α2-6 linked residues (L-S). The replication of all ca viruses was restricted, with low titers detected in the upper respiratory tract of all NHP species, however replication was detected in significantly more CMs than AGMs. The JAP57 ca Q-G and TEC67 ca viruses replicated in a significantly higher percentage of NHPs than the AA ca virus, with the TEC67 ca virus recovered from the greatest percentage of animals. Altering the receptor specificity of the JAP57 ca virus from α2-3 to both α2-3 and α2-6 linked sialic acid residues did not significantly increase the number of animals infected or the titer to which the virus replicated. Taken together, our data show that in NHPs the AA ca virus more closely reflects the human experience than mice or ferret studies. We suggest that CMs and RMs may be the preferred species for evaluating H2N2 LAIV viruses, and the TEC67 ca virus may be the most promising H2N2 LAIV candidate for further evaluation.

  18. Replication of live attenuated cold-adapted H2N2 influenza virus vaccine candidates in non human primates

    PubMed Central

    Broadbent, Andrew J.; Santos, Celia P.; Paskel, Myeisha; Matsuoka, Yumiko; Lu, Janine; Chen, Zhongying; Jin, Hong; Subbarao, Kanta

    2014-01-01

    The development of an H2N2 vaccine is a priority in pandemic preparedness planning. We previously showed that a single dose of a cold-adapted (ca) H2N2 live attenuated influenza vaccine (LAIV) based on the influenza A/Ann Arbor/6/60 (AA ca) virus was immunogenic and efficacious in mice and ferrets. However, in a Phase I clinical trial, viral replication was restricted and immunogenicity was poor. In this study, we compared the replication of four H2N2 LAIV candidate viruses, AA ca, A/Tecumseh/3/67 (TEC67 ca), and two variants of A/Japan/305/57 (JAP57 ca) in three non-human primate (NHP) species: African green monkeys (AGM), cynomolgus macaques (CM) and rhesus macaques (RM). One JAP57 ca virus had glutamine and glycine at HA amino acid positions 226 and 228 (Q-G) that binds to α2-3 linked sialic acids, and one had leucine and serine that binds to α2-3 and α2-6 linked residues (L-S). The replication of all ca viruses was restricted, with low titers detected in the upper respiratory tract of all NHP species, however replication was detected in significantly more CMs than AGMs. The JAP57 ca Q-G and TEC67 ca viruses replicated in a significantly higher percentage of NHPs than the AA ca virus, with the TEC67 ca virus recovered from the greatest percentage of animals. Altering the receptor specificity of the JAP57 ca virus from α2-3 to both α2-3 and α2-6 linked sialic acid residues did not significantly increase the number of animals infected or the titer to which the virus replicated. Taken together, our data show that in NHPs the AA ca virus more closely reflects the human experience than mice or ferret studies. We suggest that CMs and RMs may be the preferred species for evaluating H2N2 LAIV viruses, and the TEC67 ca virus may be the most promising H2N2 LAIV candidate for further evaluation. PMID:25444799

  19. Immune mechanisms associated with protection from vaginal SIV challenge in rhesus monkeys infected with virulence-attenuated SHIV 89.6.

    PubMed

    Miller, Christopher J; Abel, Kristina

    2005-10-01

    Although live-attenuated human immunodeficiency virus-1 (HIV) vaccines may never be used clinically, these vaccines have provided the most durable protection from intravenous (IV) challenge in the simian immunodeficiency virus (SIV)/rhesus macaque model. Systemic infection with virulence attenuated-simian-human immunodeficiency virus (SHIV) 89.6 provides protection against vaginal SIV challenge. This paper reviews the findings related to the innate and adaptive immune responses and the role of inflammation associated with protection in the SHIV 89.6/SIVmac239 model. By an as yet undefined mechanism, most monkeys vaccinated with live-attenuated SHIV 89.6 mounted effective anti-viral CD8+ T cell responses while avoiding the self-destructive inflammatory cycle found in the lymphoid tissues of unprotected and unvaccinated monkeys.

  20. A polyvalent Clade B virus-like particle HIV vaccine combined with partially protective oral preexposure prophylaxis prevents simian-human immunodeficiency virus Infection in macaques and primes for virus-amplified immunity.

    PubMed

    Ross, Ted M; Pereira, Lara E; Luckay, Amara; McNicholl, Janet M; García-Lerma, J Gerardo; Heneine, Walid; Eugene, Hermancia S; Pierce-Paul, Brooke R; Zhang, Jining; Hendry, R Michael; Smith, James M

    2014-11-01

    Vaccination and preexposure prophylaxis (PrEP) with antiretrovirals have shown only partial protection from HIV-1 infection in human trials. Oral Truvada (emtricitabine/tenofovir disoproxil fumarate) is FDA approved as PrEP but partial adherence reduces efficacy. If combined as biomedical preventions (CBP), an HIV vaccine could protect when PrEP adherence is low and PrEP could prevent vaccine breakthroughs. The efficacy of combining oral PrEP with an HIV vaccine has not been evaluated in humans. We determined the efficacy of combining a DNA/virus-like particle (VLP) vaccine with partially effective intermittent PrEP in Indian rhesus macaques (RM). Eight RM received intramuscular inoculations of five DNA plasmids encoding four HIV-1 Clade B primary isolate Envs and SIVmac239 Gag (at weeks 0 and 4), followed by intramuscular and intranasal inoculations of homologous Gag VLPs and four Env VLPs (at weeks 12, 16, and 53). At week 61, we initiated weekly rectal exposures with heterologous SHIV162p3 (10 TCID50) along with oral Truvada (TDF, 22 mg/kg; FTC 20 mg/kg) dosing 2 h before and 22 h after each exposure. This PrEP regimen previously demonstrated 50% efficacy. Five controls (no vaccine, no PrEP) received weekly SHIV162p3. All controls were infected after a median of four exposures; the mean peak plasma viral load (VL) was 3.9×10(7) vRNA copies/ml. CBP protected seven of eight (87.5%) RM. The one infected CBP RM had a reduced peak VL of 8.8×10(5) copies/ml. SHIV exposures during PrEP amplified Gag and Env antibody titers in protected RM. These results suggest that combining oral PrEP with HIV vaccines could enhance protection against HIV-1 infection.

  1. Ultrasensitive allele-specific PCR reveals rare preexisting drug-resistant variants and a large replicating virus population in macaques infected with a simian immunodeficiency virus containing human immunodeficiency virus reverse transcriptase.

    PubMed

    Boltz, Valerie F; Ambrose, Zandrea; Kearney, Mary F; Shao, Wei; Kewalramani, Vineet N; Maldarelli, Frank; Mellors, John W; Coffin, John M

    2012-12-01

    It has been proposed that most drug-resistant mutants, resulting from a single-nucleotide change, exist at low frequency in human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) populations in vivo prior to the initiation of antiretroviral therapy (ART). To test this hypothesis and to investigate the emergence of resistant mutants with drug selection, we developed a new ultrasensitive allele-specific PCR (UsASP) assay, which can detect drug resistance mutations at a frequency of ≥0.001% of the virus population. We applied this assay to plasma samples obtained from macaques infected with an SIV variant containing HIV-1 reverse transcriptase (RT) (RT-simian-human immunodeficiency [SHIV](mne)), before and after they were exposed to a short course of efavirenz (EFV) monotherapy. We detected RT inhibitor (RTI) resistance mutations K65R and M184I but not K103N in 2 of 2 RT-SHIV-infected macaques prior to EFV exposure. After three doses over 4 days of EFV monotherapy, 103N mutations (AAC and AAT) rapidly emerged and increased in the population to levels of ∼20%, indicating that they were present prior to EFV exposure. The rapid increase of 103N mutations from <0.001% to 20% of the viral population indicates that the replicating virus population size in RT-SHIV-infected macaques must be 10(6) or more infected cells per replication cycle.

  2. Evaluation of synthetic infection-enhancing lipopeptides as adjuvants for a live-attenuated canine distemper virus vaccine administered intra-nasally to ferrets.

    PubMed

    Nguyen, D Tien; Ludlow, Martin; van Amerongen, Geert; de Vries, Rory D; Yüksel, Selma; Verburgh, R Joyce; Osterhaus, Albert D M E; Duprex, W Paul; de Swart, Rik L

    2012-07-20

    Inactivated paramyxovirus vaccines have been associated with hypersensitivity responses upon challenge infection. For measles and canine distemper virus (CDV) safe and effective live-attenuated virus vaccines are available, but for human respiratory syncytial virus and human metapneumovirus development of such vaccines has proven difficult. We recently identified three synthetic bacterial lipopeptides that enhance paramyxovirus infections in vitro, and hypothesized these could be used as adjuvants to promote immune responses induced by live-attenuated paramyxovirus vaccines. Here, we tested this hypothesis using a CDV vaccination and challenge model in ferrets. Three groups of six animals were intra-nasally vaccinated with recombinant (r) CDV(5804P)L(CCEGFPC) in the presence or absence of the infection-enhancing lipopeptides Pam3CSK4 or PHCSK4. The recombinant CDV vaccine virus had previously been described to be over-attenuated in ferrets. A group of six animals was mock-vaccinated as control. Six weeks after vaccination all animals were challenged with a lethal dose of rCDV strain Snyder-Hill expressing the red fluorescent protein dTomato. Unexpectedly, intra-nasal vaccination of ferrets with rCDV(5804P)L(CCEGFPC) in the absence of lipopeptides resulted in good immune responses and protection against lethal challenge infection. However, in animals vaccinated with lipopeptide-adjuvanted virus significantly higher vaccine virus loads were detected in nasopharyngeal lavages and peripheral blood mononuclear cells. In addition, these animals developed significantly higher CDV neutralizing antibody titers compared to animals vaccinated with non-adjuvanted vaccine. This study demonstrates that the synthetic cationic lipopeptides Pam3CSK4 and PHCSK4 not only enhance paramyxovirus infection in vitro, but also in vivo. Given the observed enhancement of immunogenicity their potential as adjuvants for other live-attenuated paramyxovirus vaccines should be considered

  3. tRNA modification by GidA/MnmE is necessary for Streptococcus pyogenes virulence: a new strategy to make live attenuated strains.

    PubMed

    Cho, Kyu Hong; Caparon, Michael G

    2008-07-01

    Studies directed at vaccine development and mucosal immunity against Streptococcus pyogenes would benefit from the availability of live attenuated strains. Our approach for production of candidate live attenuated strains was to identify mutations that did not alter growth in vitro and did not alter the overall complement of virulence factors produced but did result in reduced levels of expression of multiple secreted virulence factors. A global reduction but not elimination of expression would likely lead to attenuation while maximizing the number of antigenic targets available for stimulation of immunity. Adaptation of Tn5-based transposome mutagenesis to S. pyogenes with initial screening for reduced expression of the SpeB protease resulted in identification of mutations in gidA, which encodes an enzyme involved in tRNA modification. Reduced SpeB expression was due to delayed onset of speB transcription resulting from reduced translation efficiency of the message for RopB, a transcriptional activator. Overall, GidA(-) mutants had a nearly normal global transcription profile but expressed significantly reduced levels of multiple virulence factors due to impaired translation efficiencies. A translation defect was supported by the observation that mutants lacking MnmE, which functions in the same tRNA modification pathway as GidA, phenocopied GidA deficiency. The mutants stimulated a cytokine response in cultured macrophages identical to that in the wild type, with the exception of reduced levels of tumor necrosis factor alpha and interleukin-23. Significantly, GidA(-) mutants were highly attenuated in the murine ulcer model of soft tissue infection. These characteristics suggest that GidA pathway tRNA modification mutants are attractive candidates for further evaluation as live attenuated strains.

  4. Impact of Type I Interferon on the Safety and Immunogenicity of an Experimental Live-Attenuated Herpes Simplex Virus 1 Vaccine in Mice.

    PubMed

    Royer, Derek J; Carr, Meghan M; Chucair-Elliott, Ana J; Halford, William P; Carr, Daniel J J

    2017-04-01

    Viral fitness dictates virulence and capacity to evade host immune defenses. Understanding the biological underpinnings of such features is essential for rational vaccine development. We have previously shown that the live-attenuated herpes simplex virus 1 (HSV-1) mutant lacking the nuclear localization signal (NLS) on the ICP0 gene (0ΔNLS) is sensitive to inhibition by interferon beta (IFN-β) in vitro and functions as a highly efficacious experimental vaccine. Here, we characterize the host immune response and in vivo pathogenesis of HSV-1 0ΔNLS relative to its fully virulent parental strain in C57BL/6 mice. Additionally, we explore the role of type 1 interferon (IFN-α/β) signaling on virulence and immunogenicity of HSV-1 0ΔNLS and uncover a probable sex bias in the induction of IFN-α/β in the cornea during HSV-1 infection. Our data show that HSV-1 0ΔNLS lacks neurovirulence even in highly immunocompromised mice lacking the IFN-α/β receptor. These studies support the translational viability of the HSV-1 0ΔNLS vaccine strain by demonstrating that, while it is comparable to a virulent parental strain in terms of immunogenicity, HSV-1 0ΔNLS does not induce significant tissue pathology.IMPORTANCE HSV-1 is a common human pathogen associated with a variety of clinical presentations ranging in severity from periodic "cold sores" to lethal encephalitis. Despite the consistent failures of HSV subunit vaccines in clinical trials spanning the past 28 years, opposition to live-attenuated HSV vaccines predicated on unfounded safety concerns currently limits their widespread acceptance. Here, we demonstrate that a live-attenuated HSV-1 vaccine has great translational potential. Copyright © 2017 American Society for Microbiology.

  5. A Live Attenuated H7N3 Influenza Virus Vaccine is Well-tolerated and Immunogenic in a Phase I Trial in Healthy Adults

    PubMed Central

    Talaat, Kawsar R.; Karron, Ruth A.; Callahan, Karen A.; Luke, Catherine J.; DiLorenzo, Susan C.; Chen, Grace L.; Lamirande, Elaine W.; Jin, Hong; Coelingh, Kathy L.; Murphy, Brian R.; Kemble, George; Subbarao, Kanta

    2009-01-01

    Background Live attenuated influenza vaccines (LAIV) are being developed and tested against a variety of influenza viruses with pandemic potential. We describe the results of an open label Phase I trial of a live attenuated H7N3 virus vaccine. Methods and Findings The H7N3 BC 2004/AA ca virus is a live attenuated, cold-adapted, temperature-sensitive influenza virus derived by reverse genetics from the wild-type low pathogenicity avian influenza virus A/chicken/British Columbia/CN-6/2004 (H7N3) and the A/AA/6/60 ca (H2N2) virus that is the Master Donor Virus of the live, intranasal seasonal influenza vaccine. We evaluated the safety, infectivity, and immunogenicity of two doses of 107.5 TCID50 of the vaccine administered by nasal spray 5 weeks apart to normal healthy seronegative adult volunteers in an inpatient isolation unit. The subjects were followed for 2 months after 1 dose of vaccine or for 4 weeks after the second dose. Twenty-one subjects received the first dose of the vaccine, and 17 subjects received two doses. The vaccine was generally well tolerated. No serious adverse events occurred during the trial. The vaccine was highly restricted in replication: 6 (29%) subjects had virus recoverable by culture or by rRT-PCR after the first dose. Replication of vaccine virus was not detected following the second dose. Despite the restricted replication of the vaccine, 90% of the subjects developed an antibody response as measured by any assay: 62% by hemagglutination inhibition assay, 48% by microneutralization assay, 48% by ELISA for H7 HA-specific serum IgG or 71% by ELISA for H7 HA-specific serum IgA, after either one or two doses. Following the first dose, vaccine-specific IgG secreting cells as measured by ELISPOT increased from a mean of 0.1 to 41.6/106 PBMCs; vaccine specific IgA secreting cells increased from 2 to 16.4/106 PBMCs. The antibody secreting cell response after the second dose was less vigorous, which is consistent with the observed low

  6. Shedding of Live Vaccine Virus, Comparative Safety, and Influenza-Specific Antibody Responses after Administration of Live Attenuated and Inactivated Trivalent Influenza Vaccines to HIV-Infected Children

    PubMed Central

    Levin, Myron J.; Song, Lin-Ye; Fenton, Terrence; Nachman, Sharon; Patterson, Julie; Walker, Robert; Kemble, George; Allende, Maria; Hultquist, Micki; Yi, Tingting; Nowak, Barbara; Weinberg, Adriana

    2008-01-01

    HIV-infected children (n = 243), ≥5 to <18 years old, receiving stable antiretroviral therapy, were stratified by immunologic status and randomly assigned to receive intranasal live attenuated influenza vaccine (LAIV) or intramuscular trivalent inactivated influenza vaccine (TIV). The safety profile after LAIV or TIV closely resembled the previously reported tolerability to these vaccines in children without HIV infection. Post-vaccination hemagglutination inhibition (HAI) antibody responses and shedding of LAIV virus were also similar, regardless of immunological stratum, to antibody responses and shedding previously reported for children without HIV infection. LAIV should be further evaluated for a role in immunizing HIV-infected children. PMID:18597900

  7. Mucosal Immunization with the Live Attenuated Vaccine SPY1 Induces Humoral and Th2-Th17-Regulatory T Cell Cellular Immunity and Protects against Pneumococcal Infection

    PubMed Central

    Xu, Xiuyu; Wang, Hong; Liu, Yusi; Wang, Yiping; Zeng, Lingbing; Wu, Kaifeng; Wang, Jianmin; Ma, Feng; Xu, Wenchun; Yin, Yibing

    2014-01-01

    Mucosal immunization with attenuated vaccine can protect against pneumococcal invasion infection, but the mechanism was unknown. Our study found that mucosal delivery with the live attenuated SPY1 vaccine strain can confer T cell- and B cell-dependent protection against pneumococcal colonization and invasive infection; yet it is still unclear which cell subsets contribute to the protection, and their roles in pneumococcal colonization and invasion remain elusive. Adoptive transfer of anti-SPY1 antibody conferred protection to naive μMT mice, and immune T cells were indispensable to protection examined in nude mice. A critical role of interleukin 17A (IL-17A) in colonization was demonstrated in mice lacking IL-17A, and a vaccine-specific Th2 immune subset was necessary for systemic protection. Of note, we found that SPY1 could stimulate an immunoregulatory response and that SPY1-elicited regulatory T cells participated in protection against colonization and lethal infection. The data presented here aid our understanding of how live attenuated strains are able to function as effective vaccines and may contribute to a more comprehensive evaluation of live vaccines and other mucosal vaccines. PMID:25312946

  8. Generation and preclinical evaluation of a DENV-1/2 prM+E chimeric live attenuated vaccine candidate with enhanced prM cleavage.

    PubMed

    Keelapang, Poonsook; Nitatpattana, Narong; Suphatrakul, Amporn; Punyahathaikul, Surat; Sriburi, Rungtawan; Pulmanausahakul, Rojjanaporn; Pichyangkul, Sathit; Malasit, Prida; Yoksan, Sutee; Sittisombut, Nopporn

    2013-10-17

    In the absence of a vaccine or sustainable vector control measures, illnesses caused by dengue virus infection remain an important public health problem in many tropical countries. During the export of dengue virus particles, furin-mediated cleavage of the prM envelope protein is usually incomplete, thus generating a mixture of immature, partially mature and mature extracellular particles. Variations in the arrangement and conformation of the envelope proteins among these particles may be associated with their different roles in shaping the antibody response. In an attempt to improve upon live, attenuated dengue vaccine approaches, a mutant chimeric virus, with enhanced prM cleavage, was generated by introducing a cleavage-enhancing substitution into a chimeric DENV-1/2 virus genome, encoding the prM+E sequence of a recent DENV-1 isolate under an attenuated DENV-2 genetic background. A modest increase in virus specific infectivity observed in the mutant chimeric virus affected neither the attenuation phenotype, when assessed in the suckling mouse neurovirulence model, nor multiplication in mosquitoes. The two chimeric viruses induced similar levels of anti-DENV-1 neutralizing antibody response in mice and rhesus macaques, but more efficient control of viremia during viral challenge was observed in macaques immunized with the mutant chimeric virus. These results indicate that the DENV-1/2 chimeric virus, with enhanced prM cleavage, could be useful as an alternative live, attenuated vaccine candidate for further tests in humans.

  9. Early protection events in swine immunized with an experimental live attenuated classical swine fever marker vaccine, FlagT4G.

    PubMed

    Holinka, Lauren G; O'Donnell, Vivian; Risatti, Guillermo R; Azzinaro, Paul; Arzt, Jonathan; Stenfeldt, Carolina; Velazquez-Salinas, Lauro; Carlson, Jolene; Gladue, Douglas P; Borca, Manuel V

    2017-01-01

    Prophylactic vaccination using live attenuated classical swine fever (CSF) vaccines has been a very effective method to control the disease in endemic regions and during outbreaks in previously disease-free areas. These vaccines confer effective protection against the disease at early times post-vaccination although the mechanisms mediating the protection are poorly characterized. Here we present the events occurring after the administration of our in-house developed live attenuated marker vaccine, FlagT4Gv. We previously reported that FlagT4Gv intramuscular (IM) administered conferred effective protection against intranasal challenge with virulent CSFV (BICv) as early as 7 days post-vaccination. Here we report that FlagT4Gv is able to induce protection against disease as early as three days post-vaccination. Immunohistochemical testing of tissues from FlagT4Gv-inoculated animals showed that tonsils were colonized by the vaccine virus by day 3 post-inoculation. There was a complete absence of BICv in tonsils of FlagT4Gv-inoculated animals which had been intranasal (IN) challenged with BICv 3 days after FlagT4Gv infection, confirming that FlagT4Gv inoculation confers sterile immunity. Analysis of systemic levels of 19 different cytokines in vaccinated animals demonstrated an increase of IFN-α three days after FlagT4Gv inoculation compared with mock infected controls.

  10. Development and identification of a new Vero cell-based live attenuated influenza B vaccine by a modified classical reassortment method.

    PubMed

    Yang, Fan; Ma, Lei; Zhou, Jian; Wu, Yinjie; Gao, Jingxia; Song, Shaohui; Geng, Xingliang; Guo, Qi; Li, Zhuofan; Li, Weidong; Liao, Guoyang; Li, Yufeng

    2017-08-01

    It was to generate a new Vero and cold-adapted live attenuated influenza B vaccine with enough safety and immunogenicity. According to modified classical reassortment method, the donor strain was B/Yunnan/2/2005Vca(B), and the parental virus strain was B/Brisbane/60/2008wt. After co-infection in Vero cells, the prepared antibody serum inhibited the donor strain growth, and screening conditions inhibited the parental virus growth, which induced the growth of the new reassortant virus B/Brisbane/60/2008Vca(B) grow. Through intraperitoneal injection (i.j.) and intranasal injection (n.j.) we evaluated the safety and immunogenicity of the vaccine. A high-yield of the reassortant virus was produced in Vero cells at 25°C, similar to the donor strains. After sequencing, it was found that B/Brisbane/60/2008Vca(B) Hemagglutinin (HA) and Neuraminidase (NA) gene fragments were from B/Brisbane/60/2008wt, while the other 6 gene fragments were from B/Yunnan/2/2005Vca(B). The n.j. immune pathway experiments showed no significant differences between the treatment and the PBS control group with respect to weight changes (P > 0.5). Furthermore, the new strain had a sufficient geometric mean titter (GMT) against B/Brisbane/60/2008wt. The new reassortant live attenuated influenza B vaccine was safe and having enough immune stimulating ability.

  11. Immunogenicity and protective efficacy of a live attenuated vaccine against the 2009 pandemic A H1N1 in mice and ferrets.

    PubMed

    Yang, PengHui; Duan, YueQiang; Wang, Cheng; Xing, Li; Gao, Xiao; Tang, Chong; Luo, DeYan; Zhao, ZhongPeng; Jia, Weihong; Peng, Daxin; Liu, Xiufan; Wang, Xiliang

    2011-01-17

    A novel 2009 influenza A (H1N1) virus was transmitted from humans to humans worldwide. The live attenuated monovalent A H1N1 vaccine (LAMV) for intranasal administration has shown promising immunogenicity and safety in clinical trials and for human use, but the experimental data based on LAMV is incomplete. In this study, using reverse genetic technology, we produced a cold-adapted (ca), live attenuated BJ/AA ca that contained hemagglutinin (HA) and neuraminidase (NA) genes from a 2009 pandemic A H1N1 isolate, A/Beijing/501/2009 virus (BJ501), and the remaining six internal gene segments from the cold-adapted influenza H2N2 A/Ann Arbor/6/60 virus (AA virus). BJ/AA ca exhibited phenotypes of temperature sensitivity (ts), ca, and attenuation (att). The candidate BJ/AA ca was immunogenic in mice and induced strong mucosal secretory IgA (sIgA) in the respiratory tract. Two dosages of intranasal immunization induced robust HI antibodies and offered efficient protection against challenge by the wild-type (wt) 2009 pandemic A H1N1 (A/Beijing/501/2009 or A/California/07/2009) in mice and ferrets. These results support the evaluation of this vaccine made from a wt strain isolated in China for clinical trials. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  12. Early protection events in swine immunized with an experimental live attenuated classical swine fever marker vaccine, FlagT4G

    PubMed Central

    Risatti, Guillermo R.; Azzinaro, Paul; Arzt, Jonathan; Stenfeldt, Carolina; Velazquez-Salinas, Lauro; Carlson, Jolene; Gladue, Douglas P.

    2017-01-01

    Prophylactic vaccination using live attenuated classical swine fever (CSF) vaccines has been a very effective method to control the disease in endemic regions and during outbreaks in previously disease-free areas. These vaccines confer effective protection against the disease at early times post-vaccination although the mechanisms mediating the protection are poorly characterized. Here we present the events occurring after the administration of our in-house developed live attenuated marker vaccine, FlagT4Gv. We previously reported that FlagT4Gv intramuscular (IM) administered conferred effective protection against intranasal challenge with virulent CSFV (BICv) as early as 7 days post-vaccination. Here we report that FlagT4Gv is able to induce protection against disease as early as three days post-vaccination. Immunohistochemical testing of tissues from FlagT4Gv-inoculated animals showed that tonsils were colonized by the vaccine virus by day 3 post-inoculation. There was a complete absence of BICv in tonsils of FlagT4Gv-inoculated animals which had been intranasal (IN) challenged with BICv 3 days after FlagT4Gv infection, confirming that FlagT4Gv inoculation confers sterile immunity. Analysis of systemic levels of 19 different cytokines in vaccinated animals demonstrated an increase of IFN-α three days after FlagT4Gv inoculation compared with mock infected controls. PMID:28542321

  13. Improved hatchability and efficient protection after in ovo vaccination with live-attenuated H7N2 and H9N2 avian influenza viruses

    PubMed Central

    2011-01-01

    Mass in ovo vaccination with live attenuated viruses is widely used in the poultry industry to protect against various infectious diseases. The worldwide outbreaks of low pathogenic and highly pathogenic avian influenza highlight the pressing need for the development of similar mass vaccination strategies against avian influenza viruses. We have previously shown that a genetically modified live attenuated avian influenza virus (LAIV) was amenable for in ovo vaccination and provided optimal protection against H5 HPAI viruses. However, in ovo vaccination against other subtypes resulted in poor hatchability and, therefore, seemed impractical. In this study, we modified the H7 and H9 hemagglutinin (HA) proteins by substituting the amino acids at the cleavage site for those found in the H6 HA subtype. We found that with this modification, a single dose in ovo vaccination of 18-day old eggs provided complete protection against homologous challenge with low pathogenic virus in ≥70% of chickens at 2 or 6 weeks post-hatching. Further, inoculation of 19-day old egg embryos with 106 EID50 of LAIVs improved hatchability to ≥90% (equivalent to unvaccinated controls) with similar levels of protection. Our findings indicate that the strategy of modifying the HA cleavage site combined with the LAIV backbone could be used for in ovo vaccination against avian influenza. Importantly, with protection conferred as early as 2 weeks post-hatching, with this strategy birds would be protected prior to or at the time of delivery to a farm or commercial operation. PMID:21255403

  14. Improved hatchability and efficient protection after in ovo vaccination with live-attenuated H7N2 and H9N2 avian influenza viruses.

    PubMed

    Cai, Yibin; Song, Haichen; Ye, Jianqiang; Shao, Hongxia; Padmanabhan, Rangarajan; Sutton, Troy C; Perez, Daniel R

    2011-01-21

    Mass in ovo vaccination with live attenuated viruses is widely used in the poultry industry to protect against various infectious diseases. The worldwide outbreaks of low pathogenic and highly pathogenic avian influenza highlight the pressing need for the development of similar mass vaccination strategies against avian influenza viruses. We have previously shown that a genetically modified live attenuated avian influenza virus (LAIV) was amenable for in ovo vaccination and provided optimal protection against H5 HPAI viruses. However, in ovo vaccination against other subtypes resulted in poor hatchability and, therefore, seemed impractical. In this study, we modified the H7 and H9 hemagglutinin (HA) proteins by substituting the amino acids at the cleavage site for those found in the H6 HA subtype. We found that with this modification, a single dose in ovo vaccination of 18-day old eggs provided complete protection against homologous challenge with low pathogenic virus in ≥ 70% of chickens at 2 or 6 weeks post-hatching. Further, inoculation of 19-day old egg embryos with 10⁶ EID₅₀ of LAIVs improved hatchability to ≥ 90% (equivalent to unvaccinated controls) with similar levels of protection. Our findings indicate that the strategy of modifying the HA cleavage site combined with the LAIV backbone could be used for in ovo vaccination against avian influenza. Importantly, with protection conferred as early as 2 weeks post-hatching, with this strategy birds would be protected prior to or at the time of delivery to a farm or commercial operation.

  15. Immunodeficiency disorders in horses.

    PubMed

    Crisman, Mark V; Scarratt, W Kent

    2008-08-01

    Immunodeficiencies are characterized as primary (genetic) or secondary (acquired). Primary immunodeficiencies are relatively uncommon; however, clinically, they present a significant challenge to the practitioner, especially if the underlying disorder goes unrecognized. Secondary immunodeficiencies may present at any age, but failure of passive transfer in neonatal foals is most commonly encountered. This article provides a general overview of clinical signs and diagnosis of primary and secondary immunodeficiencies currently recognized in horses.

  16. Dengue type 4 live-attenuated vaccine viruses passaged in vero cells affect genetic stability and dengue-induced hemorrhaging in mice.

    PubMed

    Lee, Hsiang-Chi; Yen, Yu-Ting; Chen, Wen-Yu; Wu-Hsieh, Betty A; Wu, Suh-Chin

    2011-01-01

    Most live-attenuated tetravalent dengue virus vaccines in current clinical trials are produced from Vero cells. In a previous study we demonstrated that an infectious cDNA clone-derived dengue type 4 (DEN-4) virus retains higher genetic stability in MRC-5 cells than in Vero cells. For this study we investigated two DEN-4 viruses: the infectious cDNA clone-derived DEN-4 2A and its derived 3' NCR 30-nucleotide deletion mutant DEN-4 2AΔ30, a vaccine candidate. Mutations in the C-prM-E, NS2B-NS3, and NS4B-NS5 regions of the DEN genome were sequenced and compared following cell passages in Vero and MRC-5 cells. Our results indicate stronger genetic stability in both viruses following MRC-5 cell passages, leading to significantly lower RNA polymerase error rates when the DEN-4 virus is used for genome replication. Although no significant increases in virus titers were observed following cell passages, DEN-4 2A and DEN-4 2AΔ30 virus titers following Vero cell passages were 17-fold to 25-fold higher than titers following MRC-5 cell passages. Neurovirulence for DEN-4 2A and DEN-4 2AΔ30 viruses increased significantly following passages in Vero cells compared to passages in MRC-5 cells. In addition, more severe DEN-induced hemorrhaging in mice was noted following DEN-4 2A and DEN-4 2AΔ30 passages in Vero cells compared to passages in MRC-5 cells. Target mutagenesis performed on the DEN-4 2A infectious clone indicated that single point mutation of E-Q(438)H, E-V(463)L, NS2B-Q(78)H, and NS2B-A(113)T imperatively increased mouse hemorrhaging severity. The relationship between amino acid mutations acquired during Vero cell passage and enhanced DEN-induced hemorrhages in mice may be important for understanding DHF pathogenesis, as well as for the development of live-attenuated dengue vaccines. Taken together, the genetic stability, virus yield, and DEN-induced hemorrhaging all require further investigation in the context of live-attenuated DEN vaccine development.

  17. Dengue Type 4 Live-Attenuated Vaccine Viruses Passaged in Vero Cells Affect Genetic Stability and Dengue-Induced Hemorrhaging in Mice

    PubMed Central

    Lee, Hsiang-Chi; Yen, Yu-Ting; Chen, Wen-Yu; Wu-Hsieh, Betty A.; Wu, Suh-Chin

    2011-01-01

    Most live-attenuated tetravalent dengue virus vaccines in current clinical trials are produced from Vero cells. In a previous study we demonstrated that an infectious cDNA clone-derived dengue type 4 (DEN-4) virus retains higher genetic stability in MRC-5 cells than in Vero cells. For this study we investigated two DEN-4 viruses: the infectious cDNA clone-derived DEN-4 2A and its derived 3′ NCR 30-nucleotide deletion mutant DEN-4 2AΔ30, a vaccine candidate. Mutations in the C-prM-E, NS2B-NS3, and NS4B-NS5 regions of the DEN genome were sequenced and compared following cell passages in Vero and MRC-5 cells. Our results indicate stronger genetic stability in both viruses following MRC-5 cell passages, leading to significantly lower RNA polymerase error rates when the DEN-4 virus is used for genome replication. Although no significant increases in virus titers were observed following cell passages, DEN-4 2A and DEN-4 2AΔ30 virus titers following Vero cell passages were 17-fold to 25-fold higher than titers following MRC-5 cell passages. Neurovirulence for DEN-4 2A and DEN-4 2AΔ30 viruses increased significantly following passages in Vero cells compared to passages in MRC-5 cells. In addition, more severe DEN-induced hemorrhaging in mice was noted following DEN-4 2A and DEN-4 2AΔ30 passages in Vero cells compared to passages in MRC-5 cells. Target mutagenesis performed on the DEN-4 2A infectious clone indicated that single point mutation of E-Q438H, E-V463L, NS2B-Q78H, and NS2B-A113T imperatively increased mouse hemorrhaging severity. The relationship between amino acid mutations acquired during Vero cell passage and enhanced DEN-induced hemorrhages in mice may be important for understanding DHF pathogenesis, as well as for the development of live-attenuated dengue vaccines. Taken together, the genetic stability, virus yield, and DEN-induced hemorrhaging all require further investigation in the context of live-attenuated DEN vaccine development. PMID:22053180

  18. Elevated Plasma Viral Loads in Romidepsin-Treated Simian Immunodeficiency Virus-Infected Rhesus Macaques on Suppressive Combination Antiretroviral Therapy

    PubMed Central

    Del Prete, Gregory Q.; Oswald, Kelli; Lara, Abigail; Shoemaker, Rebecca; Smedley, Jeremy; Macallister, Rhonda; Coalter, Vicky; Wiles, Adam; Wiles, Rodney; Li, Yuan; Fast, Randy; Kiser, Rebecca; Lu, Bing; Zheng, Jim; Alvord, W. Gregory; Trubey, Charles M.; Piatak, Michael; Deleage, Claire; Keele, Brandon F.; Estes, Jacob D.; Hesselgesser, Joseph; Geleziunas, Romas

    2015-01-01

    Replication-competent human immunodeficiency virus (HIV) persists in infected people despite suppressive combination antiretroviral therapy (cART), and it represents a major obstacle to HIV functional cure or eradication. We have developed a model of cART-mediated viral suppression in simian human immunodeficiency virus (SIV) mac239-infected Indian rhesus macaques and evaluated the impact of the histone deacetylase inhibitor (HDACi) romidepsin (RMD) on viremia in vivo. Eight macaques virologically suppressed to clinically relevant levels (<30 viral RNA copies/ml of plasma), using a three-class five-drug cART regimen, received multiple intravenous infusions of either RMD (n = 5) or saline (n = 3) starting 31 to 54 weeks after cART initiation. In vivo RMD treatment resulted in significant transient increases in acetylated histone levels in CD4+ T cells. RMD-treated animals demonstrated plasma viral load measurements for each 2-week treatment cycle that were significantly higher than those in saline control-treated animals during periods of treatment, suggestive of RMD-induced viral reactivation. However, plasma virus rebound was indistinguishable between RMD-treated and control-treated animals for a subset of animals released from cART. These findings suggest that HDACi drugs, such as RMD, can reactivate residual virus in the presence of suppressive antiviral therapy and may be a valuable component of a comprehensive HIV functional cure/eradication strategy. PMID:26711758

  19. A Live Attenuated Chimeric West Nile Virus Vaccine, rWN/DEN4Δ30, Is Well Tolerated and Immunogenic in Flavivirus-Naive Older Adult Volunteers.

    PubMed

    Pierce, Kristen K; Whitehead, Stephen S; Kirkpatrick, Beth D; Grier, Palmtama L; Jarvis, Adrienne; Kenney, Heather; Carmolli, Marya P; Reynolds, Cynthia; Tibery, Cecilia M; Lovchik, Janece; Janiak, Anna; Luke, Catherine J; Durbin, Anna P; Pletnev, Alexander G

    2017-01-01

    West Nile virus (WNV) is a major cause of mosquito-borne illness in the United States. Human disease ranges from mild febrile illness to severe fatal neurologic infection. Adults aged >60 years are more susceptible to neuroinvasive disease accompanied by a high mortality rate or long-lasting neurologic sequelae. A chimeric live attenuated West Nile virus vaccine, rWN/DEN4Δ30, was shown to be safe and immunogenic in healthy adults aged 18-50 years. This study evaluated rWN/DEN4Δ30 in flavivirus-naive adults aged 50-65 years and found it to be safe and immunogenic. Outbreaks of WNV infection tend to be unpredictable, and a safe and effective vaccine will be an important public health tool.

  20. Risks associated with the use of live-attenuated vaccine poliovirus strains and the strategies for control and eradication of paralytic poliomyelitis.

    PubMed

    Pliaka, Vaia; Kyriakopoulou, Zaharoula; Markoulatos, Panayotis

    2012-05-01

    The Global Polio Eradication Initiative was launched in 1988 with the aim to eliminate paralytic poliomyelitis. Two effective vaccines are available: inactivated polio vaccine (IPV) and oral polio vaccine (OPV). Since 1964, OPV has been used instead of IPV in most countries due to several economic and biological advantages. However, in rare cases, the live-attenuated Sabin strains of OPV revert to neurovirulence and cause vaccine-associated paralytic poliomyelitis in vaccinees or lead to emergence of vaccine-derived poliovirus strains. Attenuating mutations and recombination events have been associated with the reversion of vaccine strains to neurovirulence. The substitution of OPV with an improved new-generation IPV and the availability of new specific drugs against polioviruses are considered as future strategies for outbreak control and the eradication of paralytic poliomyelitis worldwide.

  1. Safety, dose, immunogenicity, and transmissibility of an oral live attenuated Shigella flexneri 2a vaccine candidate (SC602) among healthy adults and school children in Matlab, Bangladesh.

    PubMed

    Rahman, Kazi Mizanur; Arifeen, Shams El; Zaman, K; Rahman, Mahbubur; Raqib, Rubhana; Yunus, Mohammad; Begum, Nazma; Islam, Md Shaheenul; Sohel, Badrul Munir; Rahman, Muntasirur; Venkatesan, Malabi; Hale, Thomas L; Isenbarger, Daniel W; Sansonetti, Philippe J; Black, Robert E; Baqui, Abdullah H

    2011-02-01

    In double-blind trials in Bangladesh, 88 adults, and 79 children (8-10 years) were randomized to receive either a single oral dose of 1 × 10(4), 1 × 10(5) or 1 × 10(6)CFU of SC602 (a live, attenuated Shigella flexneri 2a strain vaccine) or placebo. In the adult outpatient 1 × 10(6) CFU group, severe joint pain and body aches were reported by one and two vaccinees respectively. In the adult inpatient trial, SC602 was isolated from 3 volunteers, pre-vaccination antibody titers were high, and fourfold increases in serum IgG anti-LPS responses were observed in 2 of 5 subjects of the 1 × 10(6)CFU group. None of the volunteers developed diarrhea. Overall, SC602 was found to be associated with minimal vaccine shedding, minimal reactogenicity, no transmission risk, and low immune stimulation.

  2. African Horse Sickness Caused by Genome Reassortment and Reversion to Virulence of Live, Attenuated Vaccine Viruses, South Africa, 2004–2014

    PubMed Central

    Weyer, Camilla T.; Grewar, John D.; Burger, Phillippa; Rossouw, Esthea; Lourens, Carina; Joone, Christopher; le Grange, Misha; Coetzee, Peter; Venter, Estelle; Martin, Darren P.; MacLachlan, N. James

    2016-01-01

    African horse sickness (AHS) is a hemorrhagic viral fever of horses. It is the only equine disease for which the World Organization for Animal Health has introduced specific guidelines for member countries seeking official recognition of disease-free status. Since 1997, South Africa has maintained an AHS controlled area; however, sporadic outbreaks of AHS have occurred in this area. We compared the whole genome sequences of 39 AHS viruses (AHSVs) from field AHS cases to determine the source of 3 such outbreaks. Our analysis confirmed that individual outbreaks were caused by virulent revertants of AHSV type 1 live, attenuated vaccine (LAV) and reassortants with genome segments derived from AHSV types 1, 3, and 4 from a LAV used in South Africa. These findings show that despite effective protection of vaccinated horses, polyvalent LAV may, paradoxically, place susceptible horses at risk for AHS. PMID:27442883

  3. Clinical and serologic effects of Alice strain live attenuated influenza A (H3N2) virus vaccine in an adult population.

    PubMed

    Miller, L W; Togo, Y; Hornick, R B

    1975-12-30

    Alice strain live attenuated influenza A (H3N2) virus was evaluated in prison volunteers. By random double blind allocation, 94 volunteers received Alice strain vaccine (AS) intranasally and 97 received placebo. The vaccine was well tolerated, and there was no serious morbidity. The number, type, duration, and severity of symptoms was not significantly different between the vaccine and placebo groups. Seventy-five per cent of vaccines with initial HAI titers less than or equal to 1:8 had 4 fold or greater titer responses on day 30. Placebo recipients experienced no titer changes. The GMT among vaccinees increased from 23.5 prior to vaccination 59.7 30 days later. Surveillance activities failed to document influenza A (H3N2) infection in the volunteer population during a 6 month follow-up period. Additional studies on the protective effects of the vaccine are required before efficacy can be determined.

  4. Growth restriction of an experimental live attenuated human parainfluenza virus type 2 vaccine in human ciliated airway epithelium in vitro parallels attenuation in African green monkeys

    PubMed Central

    Schaap-Nutt, Anne; Scull, Margaret A.; Schmidt, Alexander C.; Murphy, Brian R.; Pickles, Raymond J.

    2010-01-01

    Human parainfluenza viruses (HPIVs) are common causes of severe pediatric respiratory viral disease. We characterized wild-type HPIV2 infection in an in vitro model of human airway epithelium (HAE) and found that the virus replicates to high titer, sheds apically, targets ciliated cells, and induces minimal cytopathology. Replication of an experimental, live attenuated HPIV2 vaccine strain, containing both temperature sensitive (ts) and non-ts attenuating mutations, was restricted >30-fold compared to rHPIV2-WT in HAE at 32°C and exhibited little productive replication at 37°C. This restriction paralleled attenuation in the upper and lower respiratory tract of African green monkeys, supporting the HAE model as an appropriate and convenient system for characterizing HPIV2 vaccine candidates. PMID:20139039

  5. Development and clinical evaluation of multiple investigational monovalent DENV vaccines to identify components for inclusion in a live attenuated tetravalent DENV vaccine.

    PubMed

    Durbin, Anna P; Kirkpatrick, Beth D; Pierce, Kristen K; Schmidt, Alexander C; Whitehead, Stephen S

    2011-09-23

    The Laboratory of Infectious Diseases at the National Institute of Allergy and Infectious Diseases, National Institutes of Health has been engaged in an effort to develop a safe, efficacious, and affordable live attenuated tetravalent dengue vaccine (LATV) for more than ten years. Numerous recombinant monovalent DENV vaccine candidates have been evaluated in the SCID-HuH-7 mouse and in rhesus macaques to identify those candidates with a suitable attenuation phenotype. In addition, the ability of these candidates to infect and disseminate in Aedes mosquitoes had also been determined. Those candidates that were suitably attenuated in SCID-HuH-7 mice, rhesus macaques, and mosquitoes were selected for further evaluation in humans. This review will describe the generation of multiple candidate vaccines directed against each DENV serotype, the preclinical and clinical evaluation of these candidates, and the process of selecting suitable candidates for inclusion in a LATV dengue vaccine.

  6. Nonhuman primate models for cell-associated simian immunodeficiency virus transmission: the need to better understand the complexity of HIV mucosal transmission.

    PubMed

    Bernard-Stoecklin, Sibylle; Gommet, Céline; Cavarelli, Mariangela; Le Grand, Roger

    2014-12-15

    Nonhuman primates are extensively used to assess strategies to prevent infection from sexual exposure to human immunodeficiency virus (HIV) and to study mechanisms of mucosal transmission. However, although semen represents one of the most important vehicles for the virus, the vast majority of preclinical challenge studies have used cell-free simian immunodeficiency virus (SIV) or simian/human immunodeficiency virus (SHIV) viral particles inoculated as diluted culture supernatants. Semen is a complex body fluid containing many factors that may facilitate or decrease HIV infectiousness. The virus in semen is present in different forms: as free virus particles or as cell-associated virus (ie, within infected leukocytes). Although cell-to-cell transmission of HIV is highly efficient, the role of cell-associated virus in semen has been surprisingly poorly investigated in nonhuman primate models. Mucosal exposure of macaques to cell-associated SIV by using infected peripheral blood mononuclear cells or spleen cells has been shown to be an efficient means of infection; however, it has yet to be shown that SIV- or SHIV-infected seminal leukocytes can transmit infection in vivo. Improvement of animal models to better recapitulate the complex microenvironment at portals of HIV entry is needed for testing candidate antiretrovirals, microbicides, and vaccines.

  7. Evaluating the effectiveness, impact and safety of live attenuated and seasonal inactivated influenza vaccination: protocol for the Seasonal Influenza Vaccination Effectiveness II (SIVE II) study

    PubMed Central

    Lone, Nazir I; Kavanagh, Kimberley; Robertson, Chris; McMenamin, Jim; von Wissmann, Beatrix; Vasileiou, Eleftheria; Butler, Chris; Ritchie, Lewis D; Gunson, Rory; Schwarze, Jürgen; Sheikh, Aziz

    2017-01-01

    Introduction Seasonal (inactivated) influenza vaccination is recommended for all individuals aged 65+ and in individuals under 65 who are at an increased risk of complications of influenza infection, for example, people with asthma. Live attenuated influenza vaccine (LAIV) was recommended for children as they are thought to be responsible for much of the transmission of influenza to the populations at risk of serious complications from influenza. A phased roll-out of the LAIV pilot programme began in 2013/2014. There is limited evidence for vaccine effectiveness (VE) in the populations targeted for influenza vaccination. The aim of this study is to examine the safety and effectiveness of the live attenuated seasonal influenza vaccine programme in children and the inactivated seasonal influenza vaccination programme among different age and at-risk groups of people. Methods and analysis Test negative and cohort study designs will be used to estimate VE. A primary care database covering 1.25 million people in Scotland for the period 2000/2001 to 2015/2016 will be linked to the Scottish Immunisation Recall Service (SIRS), Health Protection Scotland virology database, admissions to Scottish hospitals and the Scottish death register. Vaccination status (including LAIV uptake) will be determined from the primary care and SIRS database. The primary outcome will be influenza-positive real-time PCR tests carried out in sentinel general practices and other healthcare settings. Secondary outcomes include influenza-like illness and asthma-related general practice consultations, hospitalisations and death. An instrumental variable analysis will be carried out to account for confounding. Self-controlled study designs will be used to estimate the risk of adverse events associated with influenza vaccination. Ethics and dissemination We obtained approval from the National Research Ethics Service Committee, West Midlands—Edgbaston. The study findings will be presented at

  8. Virus recovery rates for wild-type and live-attenuated vaccine strains of African horse sickness virus serotype 7 in orally infected South African Culicoides species.

    PubMed

    Venter, G J; Paweska, J T

    2007-12-01

    Previously reported virus recovery rates from Culicoides (Avaritia) imicola Kieffer and Culicoides (Avaritia) bolitinos Meiswinkel (Diptera, Ceratopogonidae) orally infected with vaccine strain of African horse sickness virus serotype 7 (AHSV-7) were compared with results obtained from concurrently conducted oral infections with five recent AHSV-7 isolates from naturally infected horses from various localities in South Africa. Culicoides were fed sheep bloods spiked with 10(7.6) TCID(50)/mL of a live-attenuated vaccine strain AHSV-7, and with five field isolates in which virus titre in the bloodmeals ranged from 10(7.1) to 10(8.2) TCID(50)/mL). After an extrinsic incubation of 10 days at 23.5 degrees C, virus recovery rates were significantly higher in C. imicola (13.3%) and C. bolitinos (4.2%) infected with the live-attenuated virus than in midges infected with any of the field isolates. The virus recovery rates for the latter groups ranged from 0% to 9.5% for C. imicola and from 0% to 1.5% for C. bolitinos. The C. imicola population at Onderstepoort was significantly more susceptible to infection with AHSV-7 isolated at Onderstepoort than to the virus strains isolated from other localities. Results of this study suggest that tissue culture attenuation of AHSV-7 does not reduce its ability to orally infect competent Culicoides species and may even lead to enhanced replication in the vector. Furthermore, oral susceptibility in a midge population appears to vary for geographically distinct isolates of AHSV-7.

  9. Live attenuated measles and mumps viral strain-containing vaccines and hearing loss: Vaccine Adverse Event Reporting System (VAERS), United States, 1990--2003.

    PubMed

    Asatryan, Armenak; Pool, Vitali; Chen, Robert T; Kohl, Katrin S; Davis, Robert L; Iskander, John K

    2008-02-26

    Hearing loss (HL) is a known complication of wild measles and mumps viral infections. As vaccines against measles and mumps contain live attenuated viral strains, it is biologically plausible that in some individuals HL could develop as a complication of vaccination against measles and/or mumps. Our objectives for this study were: to find and describe all cases of HL reported in the scientific literature and to the US Vaccine Adverse Events Reporting System (VAERS) for the period 1990--2003; and to determine reporting rate of HL after live attenuated measles and/or mumps viral strain-containing vaccines (MMCV) administration. We searched published reports for cases of HL identified after vaccination with MMCV. We also searched for reports of HL after MMCV administration submitted to VAERS from 1990 through 2003 and determined the dose-adjusted reporting rate of HL. Our main outcome measure was reported cases of HL after immunization with MMCV which were classified as idiopathic. We found 11 published case reports of HL following MMCV. The review of the VAERS reports identified 44 cases of likely idiopathic sensorineural HL after MMCV administration. The onset of HL in the majority of VAERS and published cases was consistent with the incubation periods of wild measles and mumps viruses. Based on the annual usage of measles-mumps-rubella (MMR) vaccine, we estimated the reporting rate of HL to be 1 case per 6-8 million doses. Thus, HL following MMCV has been reported in the literature and to the VAERS. Further studies are needed to better understand if there is a causal relationship between MMCV and HL.

  10. Safety and immunogenicity of a mutagenized, live attenuated Rift Valley fever vaccine, MP-12, in a Phase 1 dose escalation and route comparison study in humans.

    PubMed

    Pittman, Phillip R; McClain, David; Quinn, Xiaofei; Coonan, Kevin M; Mangiafico, Joseph; Makuch, Richard S; Morrill, John; Peters, Clarence J

    2016-01-20

    Rift Valley fever (RVF) poses a risk as a potential agent in bioterrorism or agroterrorism. A live attenuated RVF vaccine (RVF MP-12) has been shown to be safe and protective in animals and showed promise in two initial clinical trials. In the present study, healthy adult human volunteers (N=56) received a single injection of (a) RVF MP-12, administered subcutaneously (SQ) at a concentration of 10(4.7) plaque-forming units (pfu) (SQ Group); (b) RVF MP-12, administered intramuscularly (IM) at 10(3.4)pfu (IM Group 1); (c) RVF MP-12, administered IM at 10(4.4)pfu (IM Group 2); or (d) saline (Placebo Group). The vaccine was well tolerated by volunteers in all dose and route groups. Infrequent and minor adverse events were seen among recipients of both placebo and RVF MP-12. One subject had viremia detectable by direct plaque assay, and six subjects from IM Group 2 had transient low-titer viremia detectable only by nucleic acid amplification. Of the 43 vaccine recipients, 40 (93%) achieved neutralizing antibodies (measured as an 80% plaque reduction neutralization titer [PRNT80]) as well as RVF-specific IgM and IgG. The highest peak geometric mean PRNT80 titers were observed in IM Group 2. Of 34 RVF MP-12 recipients available for testing 1 year following inoculation, 28 (82%) remained seropositive (PRNT80≥1:20); this included 20 of 23 vaccinees (87%) from IM Group 2. The live attenuated RVF MP-12 vaccine was safe and immunogenic at the doses and routes studied. Given the need for an effective vaccine against RVF virus, further evaluation in humans is warranted.

  11. Safety and immunogenicity of single dose live attenuated varicella vaccine (VR 795 Oka strain) in healthy Indian children: A randomized controlled study

    PubMed Central

    Mitra, Monjori; Faridi, Mma; Ghosh, Apurba; Shah, Nitin; Shah, Raju; Chaterjee, Suparna; Narang, Manish; Bhattacharya, Nisha; Bhat, Gandhali; Choudhury, Harish; Kadhe, Ganesh; Mane, Amey; Roy, Sucheta

    2015-01-01

    Varicella, an acute viral systemic infection that may cause lifelong latent infection with the potential for causing clinical reactivation, may be prevented by immunization. The present study was an open label, randomized, controlled, phase III, multicentre trial, conducted to evaluate and compare the safety, tolerability and immunogenicity of a freeze dried live attenuated Oka strain Varicella Vaccine (VR 795 Oka strain) with Varilrix (Oka-RIT strain) in children. A total of 268 healthy Indian children aged 12 months to 12 y with baseline VZV IgG antibody (<100 mIU/ mL) were enrolled, and 256 children completed the study. The extent of rise of VZV IgG antibody titer assessed as 3-fold and 4-fold rise from baseline was found to be significantly higher (89.1% and 85.2%) in the test group as compared to control group (73.4% and 61.7%). The post-vaccination GMT of the test group was significantly higher (112.5 mIU/mL) as compared with the control group (67.8 mIU/mL) (P < 0.001). The seroconversion rate considering the 5 gp ELISA units/ml equivalent to 10mIU/ml were similar in the control (96.5%) and the test (98.3%) groups. The adverse events were not different in the control and test groups (P > 0.05). The test live attenuated vaccine was found to be highly immunogenic, safe and comparable to Varilrix used in control arm. PMID:25692656

  12. A Live-Attenuated HSV-2 ICP0− Virus Elicits 10 to 100 Times Greater Protection against Genital Herpes than a Glycoprotein D Subunit Vaccine

    PubMed Central

    Halford, William P.; Püschel, Ringo; Gershburg, Edward; Wilber, Andrew; Gershburg, Svetlana; Rakowski, Brandon

    2011-01-01

    Glycoprotein D (gD-2) is the entry receptor of herpes simplex virus 2 (HSV-2), and is the immunogen in the pharmaceutical industry's lead HSV-2 vaccine candidate. Efforts to prevent genital herpes using gD-2 subunit vaccines have been ongoing for 20 years at a cost in excess of $100 million. To date, gD-2 vaccines have yielded equivocal protection in clinical trials. Therefore, using a small animal model, we sought to determine if a live-attenuated HSV-2 ICP0− virus would elicit better protection against genital herpes than a gD-2 subunit vaccine. Mice immunized with gD-2 and a potent adjuvant (alum+monophosphoryl lipid A) produced high titers of gD-2 antibody. While gD-2-immunized mice possessed significant resistance to HSV-2, only 3 of 45 gD-2-immunized mice survived an overwhelming challenge of the vagina or eyes with wild-type HSV-2 (MS strain). In contrast, 114 of 115 mice immunized with a live HSV-2 ICP0− virus, 0ΔNLS, survived the same HSV-2 MS challenges. Likewise, 0ΔNLS-immunized mice shed an average 125-fold less HSV-2 MS challenge virus per vagina relative to gD-2-immunized mice. In vivo imaging demonstrated that a luciferase-expressing HSV-2 challenge virus failed to establish a detectable infection in 0ΔNLS-immunized mice, whereas the same virus readily infected naïve and gD-2-immunized mice. Collectively, these results suggest that a HSV-2 vaccine might be more likely to prevent genital herpes if it contained a live-attenuated HSV-2 virus rather than a single HSV-2 protein. PMID:21412438

  13. [Long-term immunogenicity and effectiveness of live attenuated hepatitis A vaccine (H2-strain)-a study on the result of 15 years' follow up].

    PubMed

    Zhuang, Fang-cheng; Mao, Zi-an; Jiang, Li-min; Wu, Jie; Chen, Yue-qing; Jiang, Qi; Chen, Nian-liang; Chai, Shao-ai; Mao, Jiang-sen

    2010-12-01

    To evaluate the long-term immunogenicity and effectiveness of live attenuated hepatitis A (HA) vaccine (H2 strain) after one dose injection, through a 15 years' follow up observation. A total of 220 children with negative anti-HAV antibody (aged 1-3 y) were involved and followed up in Jiaojiang district, Taizhou city, Zhejiang province. Indicators would include seroconversion and geometric mean titer (GMT) levels after inoculation the vaccine with single dose at 2 m, 12 m, 6 years, 10 years and 15 years. Epidemiological observation was carried out within the 15 years to evaluate the relationship between vaccine coverage, the incidence of HA and the overall effectiveness. In the studied population, serum was tested by ELISA (calibrated by WHO international reference) and ABBOTT Axsym HAVAB mEIA. Seroconversion rates were found to be 98.6% and 81.3% after 2 months and 15 years of inoculation and slowly decreased. GMT level was 128 mIU/ml after 15 years, significantly higher than the required protective level of 20 mIU/ml, recommended by WHO experts. Effectiveness through the 15-year follow up program showed a significant correlation between vaccine coverage and incidence of HA in 1-15 years aged group (Kendall-Rank test, τ =-0.931, P<0.01). There was no HA case seen among the observed accumulated 236 413 person-year vaccines, compared to 4 HA cases discovered in the 27 206 person-year of the non-vaccinees. The overall protective rate reached 100%. Through a mass vaccination program on children, the whole population established an immune-defence to enable the incidence of HA decreased by 96.7%. The long-term immunogenicity and effectiveness of live attenuated hepatitis A vaccine (H2 strain) after one dose injection could last as long as 15 years.

  14. Long term follow-up study to evaluate immunogenicity and safety of a single dose of live attenuated hepatitis a vaccine in children.

    PubMed

    Mitra, Monjori; Shah, Nitin; Faridi, Mma; Ghosh, Apurba; Sankaranarayanan, V S; Aggarwal, Anju; Chatterjee, Suparna; Bhattacharyya, Nisha; Kadhe, Ganesh; Vishnoi, Gaurav; Mane, Amey

    2015-01-01

    Worldwide, viral hepatitis continues to be a cause of considerable morbidity and mortality. Mass immunization with a single dose of live attenuated HAV has been shown to significantly reduce disease burden in the community. This was a phase IV, 5-year follow up study carried out at 4 centers (Kolkata, Delhi, Mumbai and Chennai) across India. The subjects with antibody titer <20 mIU/mL at baseline were evaluated for long term immunogenicity. Of the 503 subjects enrolled, 349 subjects were baseline seronegative with an anti-HAV antibody titer <20 mIU/mL. Overall, 343 subjects could be followed up at some point of time during this 5 y post vaccination period. In the last year (60 months) of follow-up, 108 subjects (97.3%) of 111 subjects (who came for follow-up at the end of 5 y) had a protective antibody titer (anti-HAV antibody titer >20 mIU/mL). The seroconversion rates considering seroprotection levels of anti-HAV antibody titer >20 mIU/mL, following vaccination starting from 6 weeks, 6 months, 12 months, 24 months, 36 months, 48 months and 60 months were 95.1%, 97.9%, 98.3%, 96.2%, 97.8%, 92.6% and 97.3%, respectively. The geometric mean concentration (GMC) over the years increased from 64.9 mIU/mL at 6 weeks to 38.1 mIU/mL and 135.2 mIU/mL at 6 months and 12 months, respectively and was maintained at 127.1 mIU/mL at 60 months. In conclusion, the result of this 5-year follow up study showed that the single dose of live attenuated vaccine is well tolerated and provides long-term immunogenicity in healthy Indian children.

  15. Deep Sequencing of Distinct Preparations of the Live Attenuated Varicella-Zoster Virus Vaccine Reveals a Conserved Core of Attenuating Single-Nucleotide Polymorphisms

    PubMed Central

    Yamanishi, Koichi; Gomi, Yasuyuki; Gershon, Anne A.; Breuer, Judith

    2016-01-01

    ABSTRACT The continued success of the live attenuated varicella-zoster virus vaccine in preventing varicella-zoster and herpes zoster is well documented, as are many of the mutations that contribute to the attenuation of the vOka virus for replication in skin. At least three different preparations of vOka are marketed. Here, we show using deep sequencing of seven batches of vOka vaccine (including ZostaVax, VariVax, VarilRix, and the Oka/Biken working seed) from three different manufacturers (VariVax, GSK, and Biken) that 137 single-nucleotide polymorphism (SNP) mutations are present in all vaccine batches. This includes six sites at which the vaccine allele is fixed or near fixation, which we speculate are likely to be important for attenuation. We also show that despite differences in the vaccine populations between preparations, batch-to-batch variation is minimal, as is the number and frequency of mutations unique to individual batches. This suggests that the vaccine manufacturing processes are not introducing new mutations and that, notwithstanding the mixture of variants present, VZV live vaccines are extremely stable. IMPORTANCE The continued success of vaccinations to prevent chickenpox and shingles, combined with the extremely low incidence of adverse reactions, indicates the quality of these vaccines. The vaccine itself is comprised of a heterogeneous live attenuated virus population and thus requires deep-sequencing technologies to explore the differences and similarities in the virus populations between different preparations and batches of the vaccines. Our data demonstrate minimal variation between batches, an important safety feature, and provide new insights into the extent of the mutations present in this attenuated virus. PMID:27440875

  16. Use of the live attenuated Japanese Encephalitis vaccine SA 14-14-2 in children: A review of safety and tolerability studies.

    PubMed

    Ginsburg, Amy Sarah; Meghani, Ankita; Halstead, Scott B; Yaich, Mansour

    2017-08-25

    Japanese encephalitis (JE) is the leading cause of viral neurological disease and disability in Asia. Some 50-80% of children with clinical JE die or have long-term neurologic sequelae. Since there is no cure, human vaccination is the only effective long-term control measure, and the World Health Organization recommends that at-risk populations receive a safe and effective vaccine. Four different types of JE vaccines are currently available: inactivated mouse brain-derived vaccines, inactivated Vero cell vaccines, live attenuated SA 14-14-2 vaccines and a live recombinant (chimeric) vaccine. With the rapidly increasing demand for and availability and use of JE vaccines, countries face an important decision in the selection of a JE vaccine. This article provides a comprehensive review of the available safety literature for the live attenuated SA 14-14-2 JE vaccine (LAJEV), the most widely used new generation JE vaccine. With well-established effectiveness data, a single dose of LAJEV protects against clinical JE disease for at least 5 years, providing a long duration of protection compared with inactivated mouse brain-derived vaccines. Since 1988, about 700 million doses of the LAJEV have been distributed globally. Our review found that LAJEV is well tolerated across a wide age range and can safely be given to children as young as 8 months of age. While serious adverse events attributable to LAJEV have been reported, independent experts have not found sufficient evidence for causality based on the available data.

  17. Application of real time RT-PCR for the genetic homogeneity and stability tests of the seed candidates for live attenuated influenza vaccine production.

    PubMed

    Shcherbik, Svetlana; Sergent, Sheila B; Davis, William G; Shu, Bo; Barnes, John; Kiseleva, Irina; Larionova, Natalie; Klimov, Alexander; Bousse, Tatiana

    2014-01-01

    Development and improvement of quality control tests for live attenuated vaccines are a high priority because of safety concerns. Live attenuated influenza vaccine (LAIV) viruses are 6:2 reassortants containing the hemagglutinin (HA) and neuraminidase (NA) gene segments from circulating influenza viruses to induce protective immune responses, and the six internal gene segments from a cold-adapted Master Donor Virus (MDV). LAIV candidate viruses for the 2012-2013 seasons, A/Victoria/361/2011-CDC-LV1 (LV1) and B/Texas/06/2011-CDC-LV2B (LV2B), were created by classical reassortment of A/Victoria/361/2011 and MDV-A A/Leningrad/134/17/57 (H2N2) or B/Texas/06/2011 and MDV-B B/USSR/60/69. In an attempt to provide better identity and stability testing for quality control of LV1 and LV2B, sensitive real-time RT-PCR assays (rRT-PCR) were developed to detect the presence of undesired gene segments (HA and NA from MDV and the six internal genes from the seasonal influenza viruses). The sensitivity of rRT-PCR assays designed for each gene segment ranged from 0.08 to 0.8EID50 (50% of Egg Infectious Dose) per reaction for the detection of undesired genes in LV1 and from 0.1 to 1EID50 per reaction for the detection of undesired genes in LV2B. No undesired genes were detected either before or after five passages of LV1 or LV2B in eggs. The complete genome sequencing of LV1 and LV2B confirmed the results of rRT-PCR, demonstrating the utility of the new rRT-PCR assays to provide the evidence for the homogeneity of the prepared vaccine candidate. Published by Elsevier B.V.

  18. Safety and immunogenicity of single dose live attenuated varicella vaccine (VR 795 Oka strain) in healthy Indian children: a randomized controlled study.

    PubMed

    Mitra, Monjori; Faridi, Mma; Ghosh, Apurba; Shah, Nitin; Shah, Raju; Chaterjee, Suparna; Narang, Manish; Bhattacharya, Nisha; Bhat, Gandhali; Choudhury, Harish; Kadhe, Ganesh; Mane, Amey; Roy, Sucheta

    2015-01-01

    Varicella, an acute viral systemic infection that may cause lifelong latent infection with the potential for causing clinical reactivation, may be prevented by immunization. The present study was an open label, randomized, controlled, phase III, multicentre trial, conducted to evaluate and compare the safety, tolerability and immunogenicity of a freeze dried live attenuated Oka strain Varicella Vaccine (VR 795 Oka strain) with Varilrix (Oka-RIT strain) in children. A total of 268 healthy Indian children aged 12 months to 12 y with baseline VZV IgG antibody (<100 mIU/ mL) were enrolled, and 256 children completed the study. The extent of rise of VZV IgG antibody titer assessed as 3-fold and 4-fold rise from baseline was found to be significantly higher (89.1% and 85.2%) in the test group as compared to control group (73.4% and 61.7%). The post-vaccination GMT of the test group was significantly higher (112.5 mIU/mL) as compared with the control group (67.8 mIU/mL) (P < 0.001). The seroconversion rate considering the 5 gp ELISA units/ml equivalent to 10mIU/ml were similar in the control (96.5%) and the test (98.3%) groups. The adverse events were not different in the control and test groups (P > 0.05). The test live attenuated vaccine was found to be highly immunogenic, safe and comparable to Varilrix used in control arm.

  19. Recursion-based depletion of human immunodeficiency virus-specific naive CD4(+) T cells may facilitate persistent viral replication and chronic viraemia leading to acquired immunodeficiency syndrome.

    PubMed

    Tsukamoto, Tetsuo; Yamamoto, Hiroyuki; Okada, Seiji; Matano, Tetsuro

    2016-09-01

    Although antiretroviral therapy has made human immunodeficiency virus (HIV) infection a controllable disease, it is still unclear how viral replication persists in untreated patients and causes CD4(+) T-cell depletion leading to acquired immunodeficiency syndrome (AIDS) in several years. Theorists tried to explain it with the diversity threshold theory in which accumulated mutations in the HIV genome make the virus so diverse that the immune system will no longer be able to recognize all the variants and fail to control the viraemia. Although the theory could apply to a number of cases, macaque AIDS models using simian immunodeficiency virus (SIV) have shown that failed viral control at the set point is not always associated with T-cell escape mutations. Moreover, even monkeys without a protective major histocompatibility complex (MHC) allele can contain replication of a super infected SIV following immunization with a live-attenuated SIV vaccine, while those animals are not capable of fighting primary SIV infection. Here we propose a recursion-based virus-specific naive CD4(+) T-cell depletion hypothesis through thinking on what may happen in individuals experiencing primary immunodeficiency virus infection. This could explain the mechanism for impairment of virus-specific immune response in the course of HIV infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Testing for Human Immunodeficiency Virus

    MedlinePlus

    ... education Fact Sheet PFS005: Testing for Human Immunodeficiency Virus AUGUST 2015 • Reasons for Getting Tested • Who Should ... For More Information • Glossary Testing for Human Immunodeficiency Virus Human immunodeficiency virus (HIV) is the virus that ...

  1. Efficacy of inactivated and live-attenuated influenza virus vaccines in pigs against infection and transmission of emerging H3N2 similar to the 2011-2012 H3N2v

    USDA-ARS?s Scientific Manuscript database

    Vaccines provide a primary means to limit disease but may not be effective at blocking infection and pathogen transmission. The objective of the current study was to evaluate the efficacy of commercial inactivated swine influenza A virus (IAV) vaccines and experimental live-attenuated influenza viru...

  2. Protection induced by a glycoprotein E-deleted bovine herpesvirus type 1 marker strain used either as an inactivated or live attenuated vaccine in cattle

    PubMed Central

    2014-01-01

    Background Bovine herpesvirus type 1 (BoHV-1) is the causative agent of respiratory and genital tract infections; causing a high economic loss in all continents. Use of marker vaccines in IBR eradication programs is widely accepted since it allows for protection of the animals against the disease while adding the possibility of differentiating vaccinated from infected animals. The aim of the present study was the development and evaluation of safety and efficacy of a glycoprotein E-deleted (gE-) BoHV-1 marker vaccine strain (BoHV-1ΔgEβgal) generated by homologous recombination, replacing the viral gE gene with the β-galactosidase (βgal) gene. Results In vitro growth kinetics of the BoHV-1ΔgEβgal virus was similar to BoHV-1 LA. The immune response triggered by the new recombinant strain in cattle was characterized both as live attenuated vaccine (LAV) and as an inactivated vaccine. BoHV-1ΔgEβgal was highly immunogenic in both formulations, inducing specific humoral and cellular immune responses. Antibody titers found in animals vaccinated with the inactivated vaccine based on BoHV-1ΔgEβgal was similar to the titers found for the control vaccine (BoHV-1 LA). In the same way, titers of inactivated vaccine groups were significantly higher than any of the LAV immunized groups, independently of the inoculation route (p < 0.001). Levels of IFN-γ were significantly higher (p < 0.001) in those animals that received the LAV compared to those that received the inactivated vaccine. BoHV-1ΔgEβgal exhibited an evident attenuation when administered as a LAV; no virus was detected in nasal secretions of vaccinated or sentinel animals during the post-vaccination period. BoHV-1ΔgEβgal, when used in either formulation, elicited an efficient immune response that protected animals against challenge with virulent wild-type BoHV-1. Also, the deletion of the gE gene served as an immunological marker to differentiate vaccinated animals from infected animals. All

  3. The Human CD8+ T Cell Responses Induced by a Live Attenuated Tetravalent Dengue Vaccine Are Directed against Highly Conserved Epitopes

    PubMed Central

    Angelo, Michael A.; Bangs, Derek J.; Sidney, John; Paul, Sinu; Peters, Bjoern; de Silva, Aruna D.; Lindow, Janet C.; Diehl, Sean A.; Whitehead, Stephen; Durbin, Anna; Kirkpatrick, Beth; Sette, Alessandro

    2014-01-01

    ABSTRACT The incidence of infection with any of the four dengue virus serotypes (DENV1 to -4) has increased dramatically in the last few decades, and the lack of a treatment or vaccine has contributed to significant morbidity and mortality worldwide. A recent comprehensive analysis of the human T cell response against wild-type DENV suggested an human lymphocyte antigen (HLA)-linked protective role for CD8+ T cells. We have collected one-unit blood donations from study participants receiving the monovalent or tetravalent live attenuated DENV vaccine (DLAV), developed by the U.S. National Institutes of Health. Peripheral blood mononuclear cells from these donors were screened in gamma interferon enzyme-linked immunosorbent spot assays with pools of predicted, HLA-matched, class I binding peptides covering the entire DENV proteome. Here, we characterize for the first time CD8+ T cell responses after live attenuated dengue vaccination and show that CD8+ T cell responses in vaccinees were readily detectable and comparable to natural dengue infection. Interestingly, whereas broad responses to structural and nonstructural (NS) proteins were observed after monovalent vaccination, T cell responses following tetravalent vaccination were, dramatically, focused toward the highly conserved NS proteins. Epitopes were highly conserved in a vast variety of field isolates and able to elicit multifunctional T cell responses. Detailed knowledge of the T cell response will contribute to the identification of robust correlates of protection in natural immunity and following vaccination against DENV. IMPORTANCE The development of effective vaccination strategies against dengue virus (DENV) infection and clinically significant disease is a task of high global public health value and significance, while also being a challenge of significant complexity. A recent efficacy trial of the most advanced dengue vaccine candidate, demonstrated only partial protection against all four DENV

  4. Modifications in the polymerase genes of a swine-like triple-reassortant influenza virus to generate live attenuated vaccines against 2009 pandemic H1N1 viruses.

    PubMed

    Pena, Lindomar; Vincent, Amy L; Ye, Jianqiang; Ciacci-Zanella, Janice R; Angel, Matthew; Lorusso, Alessio; Gauger, Philip C; Janke, Bruce H; Loving, Crystal L; Perez, Daniel R

    2011-01-01

    On 11 June 2009, the World Health Organization (WHO) declared that the outbreaks caused by novel swine-origin influenza A (H1N1) virus had reached pandemic proportions. The pandemic H1N1 (H1N1pdm) virus is the predominant influenza virus strain in the human population. It has also crossed the species barriers and infected turkeys and swine in several countries. Thus, the development of a vaccine that is effective in multiple animal species is urgently needed. We have previously demonstrated that the introduction of temperature-sensitive mutations into the PB2 and PB1 genes of an avian H9N2 virus, combined with the insertion of a hemagglutinin (HA) tag in PB1, resulted in an attenuated (att) vaccine backbone for both chickens and mice. Because the new pandemic strain is a triple-reassortant (TR) virus, we chose to introduce the double attenuating modifications into a swine-like TR virus isolate, A/turkey/OH/313053/04 (H3N2) (ty/04), with the goal of producing live attenuated influenza vaccines (LAIV). This genetically modified backbone had impaired polymerase activity and restricted virus growth at elevated temperatures. In vivo characterization of two H1N1 vaccine candidates generated using the ty/04 att backbone demonstrated that this vaccine is highly attenuated in mice, as indicated by the absence of signs of disease, limited replication, and minimum histopathological alterations in the respiratory tract. A single immunization with the ty/04 att-based vaccines conferred complete protection against a lethal H1N1pdm virus infection in mice. More importantly, vaccination of pigs with a ty/04 att-H1N1 vaccine candidate resulted in sterilizing immunity upon an aggressive intratracheal challenge with the 2009 H1N1 pandemic virus. Our studies highlight the safety of the ty/04 att vaccine platform and its potential as a master donor strain for the generation of live attenuated vaccines for humans and livestock.

  5. Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene.

    PubMed

    Choi, Eun-hye; Song, Min-Suk; Park, Su-Jin; Pascua, Philippe Noriel Q; Baek, Yun Hee; Kwon, Hyeok-il; Kim, Eun-Ha; Kim, Semi; Jang, Hyung-Kwan; Poo, Haryoung; Kim, Chul-Joong; Choi, Young Ki

    2015-07-01

    An increasing number of outbreaks of avian influenza H5N1 and H9N2 viruses in poultry have caused serious economic losses and raised concerns for human health due to the risk of zoonotic transmission. However, licensed H5N1 and H9N2 vaccines for animals and humans have not been developed. Thus, to develop a dual H5N1 and H9N2 live-attenuated influenza vaccine (LAIV), the HA and NA genes from a virulent mouse-adapted avian H5N2 (A/WB/Korea/ma81/06) virus and a recently isolated chicken H9N2 (A/CK/Korea/116/06) virus, respectively, were introduced into the A/Puerto Rico/8/34 backbone expressing truncated NS1 proteins (NS1-73, NS1-86, NS1-101, NS1-122) but still possessing a full-length NS gene. Two H5N2/NS1-LAIV viruses (H5N2/NS1-86 and H5N2/NS1-101) were highly attenuated compared with the full-length and remaining H5N2/NS-LAIV viruses in a mouse model. Furthermore, viruses containing NS1 modifications were found to induce more IFN-β activation than viruses with full-length NS1 proteins and were correspondingly attenuated in mice. Intranasal vaccination with a single dose (10(4.0) PFU/ml) of these viruses completely protected mice from a lethal challenge with the homologous A/WB/Korea/ma81/06 (H5N2), heterologous highly pathogenic A/EM/Korea/W149/06 (H5N1), and heterosubtypic highly virulent mouse-adapted H9N2 viruses. This study clearly demonstrates that the modified H5N2/NS1-LAIV viruses attenuated through the introduction of mutations in the NS1 coding region display characteristics that are desirable for live attenuated vaccines and hold potential as vaccine candidates for mammalian hosts.

  6. Cellular Immune Responses to Live Attenuated Japanese Encephalitis (JE) Vaccine SA14-14-2 in Adults in a JE/Dengue Co-Endemic Area

    PubMed Central

    Tatullo, Filippo; Bali, Tanushka; Ravi, Vasanthapuram; Soni, Mohammed; Chan, Sajesh; Chib, Savita; Venkataswamy, Manjunatha M.; Fadnis, Prachi; Yaïch, Mansour; Fernandez, Stefan; Klenerman, Paul; Satchidanandam, Vijaya; Solomon, Tom

    2017-01-01

    Background Japanese encephalitis (JE) virus (JEV) causes severe epidemic encephalitis across Asia, for which the live attenuated vaccine SA14-14-2 is being used increasingly. JEV is a flavivirus, and is closely related to dengue virus (DENV), which is co-endemic in many parts of Asia, with clinically relevant interactions. There is no information on the human T cell response to SA14-14-2, or whether responses to SA14-14-2 cross-react with DENV. We used live attenuated JE vaccine SA14-14-2 as a model for studying T cell responses to JEV infection in adults, and to determine whether these T cell responses are cross-reactive with DENV, and other flaviviruses. Methods We conducted a single arm, open label clinical trial (registration: clinicaltrials.gov NCT01656200) to study T cell responses to SA14-14-2 in adults in South India, an area endemic for JE and dengue. Results Ten out of 16 (62.5%) participants seroconverted to JEV SA14-14-2, and geometric mean neutralising antibody (NAb) titre was 18.5. Proliferation responses were commonly present before vaccination in the absence of NAb, indicating a likely high degree of previous flavivirus exposure. Thirteen of 15 (87%) participants made T cell interferon-gamma (IFNγ) responses against JEV proteins. In four subjects tested, at least some T cell epitopes mapped cross-reacted with DENV and other flaviviruses. Conclusions JEV SA14-14-2 was more immunogenic for T cell IFNγ than for NAb in adults in this JE/DENV co-endemic area. The proliferation positive, NAb negative combination may represent a new marker of long term immunity/exposure to JE. T cell responses can cross-react between JE vaccine and DENV in a co-endemic area, illustrating a need for greater knowledge on such responses to inform the development of next-generation vaccines effective against both diseases. Trial Registration clinicaltrials.gov (NCT01656200) PMID:28135273

  7. Cellular Immune Responses to Live Attenuated Japanese Encephalitis (JE) Vaccine SA14-14-2 in Adults in a JE/Dengue Co-Endemic Area.

    PubMed

    Turtle, Lance; Tatullo, Filippo; Bali, Tanushka; Ravi, Vasanthapuram; Soni, Mohammed; Chan, Sajesh; Chib, Savita; Venkataswamy, Manjunatha M; Fadnis, Prachi; Yaïch, Mansour; Fernandez, Stefan; Klenerman, Paul; Satchidanandam, Vijaya; Solomon, Tom

    2017-01-01

    Japanese encephalitis (JE) virus (JEV) causes severe epidemic encephalitis across Asia, for which the live attenuated vaccine SA14-14-2 is being used increasingly. JEV is a flavivirus, and is closely related to dengue virus (DENV), which is co-endemic in many parts of Asia, with clinically relevant interactions. There is no information on the human T cell response to SA14-14-2, or whether responses to SA14-14-2 cross-react with DENV. We used live attenuated JE vaccine SA14-14-2 as a model for studying T cell responses to JEV infection in adults, and to determine whether these T cell responses are cross-reactive with DENV, and other flaviviruses. We conducted a single arm, open label clinical trial (registration: clinicaltrials.gov NCT01656200) to study T cell responses to SA14-14-2 in adults in South India, an area endemic for JE and dengue. Ten out of 16 (62.5%) participants seroconverted to JEV SA14-14-2, and geometric mean neutralising antibody (NAb) titre was 18.5. Proliferation responses were commonly present before vaccination in the absence of NAb, indicating a likely high degree of previous flavivirus exposure. Thirteen of 15 (87%) participants made T cell interferon-gamma (IFNγ) responses against JEV proteins. In four subjects tested, at least some T cell epitopes mapped cross-reacted with DENV and other flaviviruses. JEV SA14-14-2 was more immunogenic for T cell IFNγ than for NAb in adults in this JE/DENV co-endemic area. The proliferation positive, NAb negative combination may represent a new marker of long term immunity/exposure to JE. T cell responses can cross-react between JE vaccine and DENV in a co-endemic area, illustrating a need for greater knowledge on such responses to inform the development of next-generation vaccines effective against both diseases. clinicaltrials.gov (NCT01656200).

  8. Glycosylation of Simian Immunodeficiency Virus Influences Immune-Tissue Targeting during Primary Infection, Leading to Immunodeficiency or Viral Control

    PubMed Central

    Sugimoto, Chie; Nakamura, Shinichiro; Hagen, Shoko I.; Tsunetsugu-Yokota, Yasuko; Villinger, Francois; Ansari, Aftab A.; Suzuki, Yasuo; Nagai, Yoshiyuki; Picker, Louis J.

    2012-01-01

    Glycans of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) play pivotal roles in modulating virus-target cell interactions. We have previously reported that, whereas SIVmac239 is pathogenic, its deglycosylated essentially nonpathogenic mutant (Δ5G) serves as a live-attenuated vaccine, although both replicate similarly during primary infection. These findings prompted us to determine whether such a polarized clinical outcome was due to differences in the immune tissues targeted by these viruses, where functionally and phenotypically different memory CD4+ T cells reside. The results showed that Δ5G replicates in secondary lymphoid tissue (SLT) at 1- to 2-log-lower levels than SIVmac239, whereas SIVmac239-infected but not Δ5G-infected animals deplete CXCR3+ CCR5+ transitional memory (TrM) CD4+ T cells. An early robust Δ5G replication was localized to small intestinal tissue, especially the lamina propria (effector site) rather than isolated lymphoid follicles (inductive site) and was associated with the induction and depletion of CCR6+ CXCR3− CCR5+ effector memory CD4+ T cells. These results suggest that differential glycosylation of Env dictates the type of tissue-resident CD4+ T cells that are targeted, which leads to pathogenic infection of TrM-Th1 cells in SLT and nonpathogenic infection of Th17 cells in the small intestine, respectively. PMID:22718828

  9. Evaluation of the humoral and cellular immune responses elicited by the live attenuated and inactivated influenza vaccines and their roles in heterologous protection in ferrets.

    PubMed

    Cheng, Xing; Zengel, James R; Suguitan, Amorsolo L; Xu, Qi; Wang, Weijia; Lin, Jim; Jin, Hong

    2013-08-15

    The humoral and cellular immune responses elicited by the trivalent live attenuated influenza vaccine (LAIV) and the trivalent inactivated influenza vaccine (TIV) were evaluated in the ferret model, using newly developed ferret immunological reagents and assays. In contrast to the TIV, which only induced immune responses in primed animals, LAIV induced strong influenza virus-specific serum antibody and T-cell responses in both naive and influenza-seropositive animals. The LAIV offered significant protection against a heterologous H1N1 virus challenge infection in the upper respiratory tract. Influenza virus-specific immunoglobulin A (IgA) and immunoglobulin G (IgG) antibody-secreting cells (ASCs) and influenza virus-specific CD4(+) and CD8(+) T cells were detected in the circulation and local paratracheal draining lymph nodes. The frequency of the influenza-specific ASCs in the local lymph nodes appeared to correlate with the degree of protection in the upper respiratory tract. The protection conferred by the LAIV could be attributed not only to the antibody response but also to the cell-mediated and local mucosal immune responses, particularly in naive ferrets. These findings may explain why the LAIV is immunologically superior and offers immediate protection after a single dose in children.

  10. Comparison of the immunogenicity and safety of measles vaccine administered alone or with live, attenuated Japanese encephalitis SA 14-14-2 vaccine in Philippine infants.

    PubMed

    Gatchalian, Salvacion; Yao, Yafu; Zhou, Benli; Zhang, Lei; Yoksan, Sutee; Kelly, Kim; Neuzil, Kathleen M; Yaïch, Mansour; Jacobson, Julie

    2008-04-24

    Japanese encephalitis (JE) virus is a major cause of disease, disability, and death in Asia. An effective, live, attenuated JE vaccine (LJEV) is available; however, its use in routine immunization schedules is hampered by lack of data on concomitant administration with measles vaccine (MV). This study evaluated the immunogenicity and reactogenicity of LJEV and MV when administered at the same or separate study visits in infants younger than 1 year of age. Three groups of healthy infants were randomized to receive LJEV at age of 8 months and MV at 9 months (Group 1; n=100); MV and LJEV together at 9 months (Group 2; n=236); or MV and LJEV at 9 and 10 months, respectively (Group 3; n=235). Blood was obtained 4 weeks after each vaccine administration to determine antibody levels for measles and JE. Reactogenicity was assessed by parental diaries and clinic visits. Four weeks after immunization, measles seroprotection rates (defined as > or =340 mIU/ml) were high and comparable in all three groups and specifically, rates in the combined MV-LJEV (Group 2) were not statistically inferior to those in Group 3 receiving MV separately (96% versus 100%, respectively). Likewise, the LJEV seroprotection rates were high and similar between the three groups. The reactogenicity profiles of the three vaccine schedules were also analogous. LJEV and MV administered together are well tolerated and immunogenic in infants younger than 1 year. These results should facilitate incorporation of LJEV into routine immunization schedules with MV.

  11. Transient Loss of Protection Afforded by a Live Attenuated Non-typhoidal Salmonella Vaccine in Mice Co-infected with Malaria

    PubMed Central

    Lokken, Kristen L.; Nanton, Minelva R.; Nuccio, Sean-Paul; McSorley, Stephen J.; Tsolis, Renée M.

    2015-01-01

    In immunocompetent individuals, non-typhoidal Salmonella serovars (NTS) are associated with gastroenteritis, however, there is currently an epidemic of NTS bloodstream infections in sub-Saharan Africa. Plasmodium falciparum malaria is an important risk factor for invasive NTS bloodstream in African children. Here we investigated whether a live, attenuated Salmonella vaccine could be protective in mice, in the setting of concurrent malaria. Surprisingly, mice acutely infected with the nonlethal malaria parasite Plasmodium yoelii 17XNL exhibited a profound loss of protective immunity to NTS, but vaccine-mediated protection was restored after resolution of malaria. Absence of protective immunity during acute malaria correlated with maintenance of antibodies to NTS, but a marked reduction in effector capability of Salmonella-specific CD4 and CD8 T cells. Further, increased expression of the inhibitory molecule PD1 was identified on memory CD4 T cells induced by vaccination. Blockade of IL-10 restored protection against S. Typhimurium, without restoring CD4 T cell effector function. Simultaneous blockade of CTLA-4, LAG3, and PDL1 restored IFN-γ production by vaccine-induced memory CD4 T cells but was not sufficient to restore protection. Together, these data demonstrate that malaria parasite infection induces a temporary loss of an established adaptive immune response via multiple mechanisms, and suggest that in the setting of acute malaria, protection against NTS mediated by live vaccines may be interrupted. PMID:26366739

  12. Next-Generation Bacillus anthracis Live Attenuated Spore Vaccine Based on the htrA(-) (High Temperature Requirement A) Sterne Strain.

    PubMed

    Chitlaru, Theodor; Israeli, Ma'ayan; Bar-Haim, Erez; Elia, Uri; Rotem, Shahar; Ehrlich, Sharon; Cohen, Ofer; Shafferman, Avigdor

    2016-01-06

    Anthrax is a lethal disease caused by the gram-positive spore-producing bacterium Bacillus anthracis. Live attenuated vaccines, such as the nonencapsulated Sterne strain, do not meet the safety standards mandated for human use in the Western world and are approved for veterinary purposes only. Here we demonstrate that disrupting the htrA gene, encoding the chaperone/protease HtrA (High Temperature Requirement A), in the virulent Bacillus anthracis Vollum strain results in significant virulence attenuation in guinea pigs, rabbits and mice, underlying the universality of the attenuated phenotype associated with htrA knockout. Accordingly, htrA disruption was implemented for the development of a Sterne-derived safe live vaccine compatible with human use. The novel B. anthracis SterneΔhtrA strain secretes functional anthrax toxins but is 10-10(4)-fold less virulent than the Sterne vaccine strain depending on animal model (mice, guinea pigs, or rabbits). In spite of this attenuation, double or even single immunization with SterneΔhtrA spores elicits immune responses which target toxaemia and bacteremia resulting in protection from subcutaneous or respiratory lethal challenge with a virulent strain in guinea pigs and rabbits. The efficacy of the immune-protective response in guinea pigs was maintained for at least 50 weeks after a single immunization.

  13. Development of TV003/TV005, a single dose, highly immunogenic live attenuated dengue vaccine; what makes this vaccine different from the Sanofi-Pasteur CYD™ vaccine?

    PubMed

    Whitehead, Stephen S

    2016-01-01

    Dengue is caused by four serotype-distinct dengue viruses (DENVs), and developing a multivalent vaccine against dengue has not been straightforward since partial immunity to DENV may predispose to more severe disease upon subsequent DENV infection. The vaccine that is furthest along in development is CYD™, a live attenuated tetravalent vaccine (LATV) produced by Sanofi Pasteur. Although the multi-dose vaccine demonstrated protection against severe dengue, its overall efficacy was limited by DENV serotype, serostatus at vaccination, region and age. The National Institute of Allergy and Infectious Diseases has developed the LATV dengue vaccines TV003/TV005. A single dose of either TV003 or TV005 induced seroconversion to four DENV serotypes in 74-92% (TV003) and 90% (TV005) of flavivirus seronegative adults and elicited near-sterilizing immunity to a second dose of vaccine administered 6-12 months later. The important differences in the structure, infectivity and immune responses to TV003/TV005 are compared with CYD™.

  14. Safety and protective efficacy of a spiC and crp deletion mutant of Salmonella gallinarum as a live attenuated vaccine for fowl typhoid.

    PubMed

    Cheng, Zhao; Yin, Junlei; Kang, Xilong; Geng, Shizhong; Hu, Maozhi; Pan, Zhiming; Jiao, Xinan

    2016-08-01

    With an aim to develop a safe, immunogenic fowl typhoid (FT) vaccine, the safety and efficacy of 1009ΔspiCΔcrp, a spiC and crp deletion mutant of Salmonella gallinarum, were evaluated in chickens. Three-day-old chickens were intramuscularly immunized with 1009ΔspiCΔcrp (1×10(7)CFU) and boosted 7days later (at 10-days old) with the same dose and via the same route (vaccinated group). The vaccinated group showed no clinical symptoms and no differences in body weight compared to the unvaccinated control group. 1009ΔspiCΔcrp bacteria colonized and persisted in the liver and spleen of vaccinated chickens for >14days, and significant specific humoral and cellular immune responses were induced. Vaccinated chickens were challenged with S. gallinarum strain SG9 at 21days post-immunization (24-day-old chickens), and efficient protection was observed based on the mortality and clinical symptoms, as compared to those in the control group. These results demonstrate that 1009ΔspiCΔcrp can be used as a live attenuated vaccine.

  15. Comparison between Immunization Routes of Live Attenuated Salmonella Typhimurium Strains Expressing BCSP31, Omp3b, and SOD of Brucella abortus in Murine Model

    PubMed Central

    Kim, Won K.; Moon, Ja Y.; Kim, Suk; Hur, Jin

    2016-01-01

    Live, attenuated Salmonella Typhimurium vaccine candidate expressing BCSP31, Omp3b, and SOD proteins of Brucella abortus was constructed. Thirty BALB/c mice were divided equally into three groups, Group A, were intraperitoneally (IP) inoculated with 100 μl of approximately 1.2 × 106 colony-forming units (CFUs)/ml of the Salmonella containing vector only in 100 μl as a control. And groups B and C mice were orally and IP immunized with approximately 1.2 × 109 CFU/ml of the mixture of three delivery strains in 10 μl and IP immunized with approximately 1.2 × 106 CFU/ml of the mixture in 100 μl, respectively. The serum IgG, TNF-α and IFN-γ concentrations in groups B (except Omp3b) and C were significantly higher than those in group A. Following challenge with B. abortus strain 544; challenge strain was detected <103 CFU from the spleen of all mice of group C. These results suggest that IP immunization with the mixture of the vaccine candidate can induce immune responses, and can effectively protect mice against brucellosis. PMID:27148232

  16. Long-Term Safety and Immunogenicity of a Tetravalent Live-Attenuated Dengue Vaccine and Evaluation of a Booster Dose Administered to Healthy Thai Children.

    PubMed

    Watanaveeradej, Veerachai; Simasathien, Sriluck; Mammen, Mammen P; Nisalak, Ananda; Tournay, Elodie; Kerdpanich, Phirangkul; Samakoses, Rudiwilai; Putnak, Robert J; Gibbons, Robert V; Yoon, In-Kyu; Jarman, Richard G; De La Barrera, Rafael; Moris, Philippe; Eckels, Kenneth H; Thomas, Stephen J; Innis, Bruce L

    2016-06-01

    We evaluated the safety and immunogenicity of two doses of a live-attenuated, tetravalent dengue virus vaccine (F17/Pre formulation) and a booster dose in a dengue endemic setting in two studies. Seven children (7- to 8-year-olds) were followed for 1 year after dose 2 and then given a booster dose (F17/Pre formulation), and followed for four more years (Child study). In the Infant study, 49 2-year-olds, vaccinated as infants, were followed for approximately 3.5 years after dose 2 and then given a booster dose (F17) and followed for one additional year. Two clinically notable events were observed, both in dengue vaccine recipients in the Infant study: 1 case of dengue approximately 2.7 years after dose 2 and 1 case of suspected dengue after booster vaccinations. The booster vaccinations had a favorable safety profile in terms of reactogenicity and adverse events reported during the 1-month follow-up periods. No vaccine-related serious adverse events were reported during the studies. Neutralizing antibodies against dengue viruses 1-4 waned during the 1-3 years before boosting, which elicited a short-lived booster response but did not provide a long-lived, multivalent antibody response in most subjects. Overall, this candidate vaccine did not elicit a durable humoral immune response.

  17. A bivalent live-attenuated influenza vaccine for the control and prevention of H3N8 and H3N2 canine influenza viruses.

    PubMed

    Rodriguez, Laura; Nogales, Aitor; Murcia, Pablo R; Parrish, Colin R; Martínez-Sobrido, Luis

    2017-08-03

    Canine influenza viruses (CIVs) cause a contagious respiratory disease in dogs. CIV subtypes include H3N8, which originated from the transfer of H3N8 equine influenza virus (EIV) to dogs; and the H3N2, which is an avian-origin virus adapted to infect dogs. Only inactivated influenza vaccines (IIVs) are currently available against the different CIV subtypes. However, the efficacy of these CIV IIVs is not optimal and improved vaccines are necessary for the efficient prevention of disease caused by CIVs in dogs. Since live-attenuated influenza vaccines (LAIVs) induce better immunogenicity and protection efficacy than IIVs, we have combined our previously described H3N8 and H3N2 CIV LAIVs to create a bivalent vaccine against both CIV subtypes. Our findings show that, in a mouse model of infection, the bivalent CIV LAIV is safe and able to induce, upon a single intranasal immunization, better protection than that induced by a bivalent CIV IIV against subsequent challenge with H3N8 or H3N2 CIVs. These protection results also correlated with the ability of the bivalent CIV LAIV to induce better humoral immune responses. This is the first description of a bivalent LAIV for the control and prevention of H3N8 and H3N2 CIV infections in dogs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Longitudinal study to assess the safety and efficacy of a live-attenuated SHIV vaccine in long term immunized rhesus macaques

    SciTech Connect

    Yankee, Thomas M. Sheffer, Darlene; Liu Zhengian; Dhillon, Sukhbir; Jia Fenglan; Chebloune, Yahia; Stephens, Edward B.; Narayan, Opendra

    2009-01-05

    Live-attenuated viruses derived from SIV and SHIV have provided the most consistent protection against challenge with pathogenic viruses, but concerns regarding their long-term safety and efficacy have hampered their clinical usefulness. We report a longitudinal study in which we evaluated the long-term safety and efficacy of {delta}vpuSHIV{sub PPC}, a live virus vaccine derived from SHIV{sub PPC}. Macaques were administered two inoculations of {delta}vpuSHIV{sub PPC}, three years apart, and followed for eight years. None of the five vaccinated macaques developed an AIDS-like disease from the vaccine. At eight years, macaques were challenged with pathogenic SIV and SHIV. None of the four macaques with detectable cellular-mediated immunity prior to challenge had detectable viral RNA in the plasma. This study demonstrates that multiple inoculations of a live vaccine virus can be used safely and can significantly extend the efficacy of the vaccine, as compared to a single inoculation, which is efficacious for approximately three years.

  19. A live attenuated cold-adapted influenza A H7N3 virus vaccine provides protection against homologous and heterologous H7 viruses in mice and ferrets

    SciTech Connect

    Joseph, Tomy; McAuliffe, Josephine; Lu, Bin; Vogel, Leatrice; Swayne, David; Jin, Hong; Kemble, George; Subbarao, Kanta

    2008-08-15

    The appearance of human infections caused by avian influenza A H7 subtype viruses underscores their pandemic potential and the need to develop vaccines to protect humans from viruses of this subtype. A live attenuated H7N3 virus vaccine was generated by reverse genetics using the HA and NA genes of a low pathogenicity A/chicken/BC/CN-6/04 (H7N3) virus and the six internal protein genes of the cold-adapted A/Ann Arbor/6/60 ca (H2N2) virus. The reassortant H7N3 BC 04 ca vaccine virus was temperature sensitive and showed attenuation in mice and ferrets. Intranasal immunization with one dose of the vaccine protected mice and ferrets when challenged with homologous and heterologous H7 viruses. The reassortant H7N3 BC 04 ca vaccine virus showed comparable levels of attenuation, immunogenicity and efficacy in mice and ferret models. The safety, immunogenicity, and efficacy of this vaccine in mice and ferrets support the evaluation of this vaccine in clinical trials.

  20. A live attenuated cold-adapted influenza A H7N3 virus vaccine provides protection against homologous and heterologous H7 viruses in mice and ferrets.

    PubMed

    Joseph, Tomy; McAuliffe, Josephine; Lu, Bin; Vogel, Leatrice; Swayne, David; Jin, Hong; Kemble, George; Subbarao, Kanta

    2008-08-15

    The appearance of human infections caused by avian influenza A H7 subtype viruses underscores their pandemic potential and the need to develop vaccines to protect humans from viruses of this subtype. A live attenuated H7N3 virus vaccine was generated by reverse genetics using the HA and NA genes of a low pathogenicity A/chicken/BC/CN-6/04 (H7N3) virus and the six internal protein genes of the cold-adapted A/Ann Arbor/6/60 ca (H2N2) virus. The reassortant H7N3 BC 04 ca vaccine virus was temperature sensitive and showed attenuation in mice and ferrets. Intranasal immunization with one dose of the vaccine protected mice and ferrets when challenged with homologous and heterologous H7 viruses. The reassortant H7N3 BC 04 ca vaccine virus showed comparable levels of attenuation, immunogenicity and efficacy in mice and ferret models. The safety, immunogenicity, and efficacy of this vaccine in mice and ferrets support the evaluation of this vaccine in clinical trials.

  1. Phase 2 evaluation of parainfluenza type 3 cold passage mutant 45 live attenuated vaccine in healthy children 6-18 months old.

    PubMed

    Belshe, Robert B; Newman, Frances K; Tsai, Theodore F; Karron, Ruth A; Reisinger, Keith; Roberton, Don; Marshall, Helen; Schwartz, Richard; King, James; Henderson, Frederick W; Rodriguez, William; Severs, Joseph M; Wright, Peter F; Keyserling, Harry; Weinberg, Geoffrey A; Bromberg, Kenneth; Loh, Richard; Sly, Peter; McIntyre, Peter; Ziegler, John B; Hackell, Jill; Deatly, Anne; Georgiu, Alice; Paschalis, Maribel; Wu, Shin-Lu; Tatem, Joanne M; Murphy, Brian; Anderson, Edwin

    2004-02-01

    A phase 2 evaluation of live attenuated parainfluenza type 3 (PIV3)-cold passage mutant 45 (cp45) vaccine was conducted in 380 children 6-18 months old; 226 children (59%) were seronegative for PIV3. Of the 226 seronegative children, 114 received PIV3-cp45 vaccine, and 112 received placebo. No significant difference in the occurrence of adverse events (i.e., runny nose, cough, or temperature > or =38 degrees C) was noted during the 14 days after vaccination. There was no difference between groups in the occurrence of acute otitis media or serous otitis media. Paired serum samples were available for 109 of the seronegative vaccine recipients and for 110 of the seronegative placebo recipients; 84% of seronegative vaccine recipients developed a > or =4-fold increase in antibody titers. The geometric mean antibody titer after vaccination was 1 : 25 in the vaccine group and <1 : 4 in the placebo group. PIV3-cp45 vaccine was safe and immunogenic in seronegative children and should be evaluated for efficacy in a phase 3 field trial.

  2. Long-Term Safety and Immunogenicity of a Tetravalent Live-Attenuated Dengue Vaccine and Evaluation of a Booster Dose Administered to Healthy Thai Children

    PubMed Central

    Watanaveeradej, Veerachai; Simasathien, Sriluck; Mammen, Mammen P.; Nisalak, Ananda; Tournay, Elodie; Kerdpanich, Phirangkul; Samakoses, Rudiwilai; Putnak, Robert J.; Gibbons, Robert V.; Yoon, In-Kyu; Jarman, Richard G.; De La Barrera, Rafael; Moris, Philippe; Eckels, Kenneth H.; Thomas, Stephen J.; Innis, Bruce L.

    2016-01-01

    We evaluated the safety and immunogenicity of two doses of a live-attenuated, tetravalent dengue virus vaccine (F17/Pre formulation) and a booster dose in a dengue endemic setting in two studies. Seven children (7- to 8-year-olds) were followed for 1 year after dose 2 and then given a booster dose (F17/Pre formulation), and followed for four more years (Child study). In the Infant study, 49 2-year-olds, vaccinated as infants, were followed for approximately 3.5 years after dose 2 and then given a booster dose (F17) and followed for one additional year. Two clinically notable events were observed, both in dengue vaccine recipients in the Infant study: 1 case of dengue approximately 2.7 years after dose 2 and 1 case of suspected dengue after booster vaccinations. The booster vaccinations had a favorable safety profile in terms of reactogenicity and adverse events reported during the 1-month follow-up periods. No vaccine-related serious adverse events were reported during the studies. Neutralizing antibodies against dengue viruses 1–4 waned during the 1–3 years before boosting, which elicited a short-lived booster response but did not provide a long-lived, multivalent antibody response in most subjects. Overall, this candidate vaccine did not elicit a durable humoral immune response. PMID:27022153

  3. Effectiveness of the live attenuated and the inactivated influenza vaccine in two-year-olds - a nationwide cohort study Finland, influenza season 2015/16.

    PubMed

    Nohynek, Hanna; Baum, Ulrike; Syrjänen, Ritva; Ikonen, Niina; Sundman, Jonas; Jokinen, Jukka

    2016-09-22

    Although widely recommended, influenza vaccination of children is part of the national vaccination programme only in few countries. In addition to Canada and the United States (US), in Europe Finland and the United Kingdom have introduced live attenuated influenza vaccine (LAIV) for healthy children in their programmes. On 22 June 2016, the US Advisory Committee on Immunizations Practices, voted against further use of LAIV due to no observed vaccine effectiveness (VE) over three consecutive influenza seasons (2013/14 to 2015/16). We summarise the results of a nationwide, register-based cohort study (N=55,258 of whom 8,086 received LAIV and 4,297 TIV); all outcome (laboratory-confirmed influenza), exposure (vaccination) and confounding variable data were retrieved from four computerised national health registers, which were linked via a unique personal identity code assigned to all permanent Finnish residents regardless of nationality. Our study provides evidence of moderate effectiveness against any laboratory-confirmed influenza of the quadrivalent LAIV vaccine (VE: 51%; 95% confidence interval (CI): 28-66%) as well as the inactivated trivalent vaccine (VE: 61%; 95% CI: 31-78%) among two-year-olds during the influenza season 2015/16 in Finland. Based on these data, Finland will continue using LAIV for young children in its National Immunisation Programme this coming influenza season. This article is copyright of The Authors, 2016.

  4. Advantage of live attenuated cold-adapted influenza A virus over inactivated vaccine for A/Washington/80 (H3N2) wild-type virus infection.

    PubMed

    Clements, M L; Betts, R F; Murphy, B R

    1984-03-31

    The efficacy of live attenuated cold-adapted (ca) reassortant influenza virus vaccine against experimental challenge with homologous wild-type virus 5 to 8 weeks after vaccination was compared with that of licensed inactivated vaccine in 81 seronegative (haemagglutination-inhibition antibody titre less than or equal to 1:8) college students. At a dose of 10(7.5) 50% tissue culture infectious dose (TCID50) (70 HID50, human 50% infectious doses) the live virus vaccine, given intranasally, completely protected against illness caused by wild-type virus, whereas the inactivated vaccine, administered intramuscularly, provided 72% protection. Wild-type virus was recovered from only 13% of live virus vaccinees (10(7.5) TCID50 dose of ca virus) compared with 63% of inactivated virus vaccinees and the few infected live virus vaccinees shed 1000 times less wild-type virus than did infected inactivated virus vaccinees or unvaccinated controls. This striking reduction in virus shedding suggests that influenza transmission may be more efficiently interrupted with live than with inactivated virus vaccination.

  5. Live attenuated B. pertussis BPZE1 rescues the immune functions of Respiratory Syncytial virus infected human dendritic cells by promoting Th1/Th17 responses.

    PubMed

    Schiavoni, Ilaria; Fedele, Giorgio; Quattrini, Adriano; Bianco, Manuela; Schnoeller, Corinna; Openshaw, Peter J; Locht, Camille; Ausiello, Clara M

    2014-01-01

    Respiratory Syncytial virus (RSV) is the leading cause of acute lower respiratory tract viral infection in young children and a major cause of winter hospitalization. Bordetella pertussis is a common cause of bacterial lung disease, affecting a similar age group. Although vaccines are available for B. pertussis infection, disease rates have recently increased in many countries. We have therefore developed a novel live attenuated B. pertussis strain (BPZE1), which has recently undergone a successful clinical phase I trial. In mice, BPZE1 provides protection against disease caused by respiratory viral challenge. Here, we analyze the effect of BPZE1 on antiviral T cell responses induced by human monocyte-derived dendritic cells (MDDC). We found that BPZE1 influences antiviral immune responses at several levels, enhancing MDDC maturation, IL-12p70 production, and shifting T cell cytokine profile towards a Th1/Th17 pattern. These data were supported by the intracellular signaling analysis. RSV infection of MDDC caused MyD88-independent STAT1 phosphorylation, whereas BPZE1 activated MyD88-dependent signaling pathways; co-infection caused both pathways to be activated. These findings suggest that BPZE1 given during infancy might improve the course and outcome of viral lung disease in addition to providing specific protection against B. pertussis infection.

  6. Live Attenuated B. pertussis BPZE1 Rescues the Immune Functions of Respiratory Syncytial Virus Infected Human Dendritic Cells by Promoting Th1/Th17 Responses

    PubMed Central

    Bianco, Manuela; Schnoeller, Corinna; Openshaw, Peter J.; Locht, Camille; Ausiello, Clara M.

    2014-01-01

    Respiratory Syncytial virus (RSV) is the leading cause of acute lower respiratory tract viral infection in young children and a major cause of winter hospitalization. Bordetella pertussis is a common cause of bacterial lung disease, affecting a similar age group. Although vaccines are available for B. pertussis infection, disease rates have recently increased in many countries. We have therefore developed a novel live attenuated B. pertussis strain (BPZE1), which has recently undergone a successful clinical phase I trial. In mice, BPZE1 provides protection against disease caused by respiratory viral challenge. Here, we analyze the effect of BPZE1 on antiviral T cell responses induced by human monocyte-derived dendritic cells (MDDC). We found that BPZE1 influences antiviral immune responses at several levels, enhancing MDDC maturation, IL-12p70 production, and shifting T cell cytokine profile towards a Th1/Th17 pattern. These data were supported by the intracellular signaling analysis. RSV infection of MDDC caused MyD88-independent STAT1 phosphorylation, whereas BPZE1 activated MyD88-dependent signaling pathways; co-infection caused both pathways to be activated. These findings suggest that BPZE1 given during infancy might improve the course and outcome of viral lung disease in addition to providing specific protection against B. pertussis infection. PMID:24967823

  7. A Phase II, Randomized, Safety and Immunogenicity Trial of a Re-Derived, Live-Attenuated Dengue Virus Vaccine in Healthy Children and Adults Living in Puerto Rico

    PubMed Central

    Bauer, Kristen; Esquilin, Ines O.; Cornier, Alberto Santiago; Thomas, Stephen J.; Quintero del Rio, Ana I.; Bertran-Pasarell, Jorge; Morales Ramirez, Javier O.; Diaz, Clemente; Carlo, Simon; Eckels, Kenneth H.; Tournay, Elodie; Toussaint, Jean-Francois; De La Barrera, Rafael; Fernandez, Stefan; Lyons, Arthur; Sun, Wellington; Innis, Bruce L.

    2015-01-01

    This was a double-blind, randomized, controlled, phase II clinical trial, two dose study of re-derived, live-attenuated, tetravalent dengue virus (TDEN) vaccine (two formulations) or placebo in subjects 1–50 years of age. Among the 636 subjects enrolled, 331 (52%) were primed, that is, baseline seropositive to at least one dengue virus (DENV) type. Baseline seropositivity prevalence increased with age (10% [< 2 years], 26% [2–4 years], 60% [5–20 years], and 93% [21–50 years]). Safety profiles of TDEN vaccines were similar to placebo regardless of priming status. No vaccine-related serious adverse events (SAEs) were reported. Among unprimed subjects, immunogenicity (geometric mean antibody titers [GMT] and seropositivity rates) for each DENV increased substantially in both TDEN vaccine groups with at least 74.6% seropositive for four DENV types. The TDEN vaccine candidate showed an acceptable safety and immunogenicity profile in children and adults ranging from 1 to 50 years of age, regardless of priming status. ClinicalTrials.gov: NCT00468858. PMID:26175027

  8. Innate and adaptive cellular immunity in flavivirus-naïve human recipients of a live-attenuated dengue serotype 3 vaccine produced in Vero cells (VDV3).

    PubMed

    Sanchez, Violette; Gimenez, Sophie; Tomlinson, Brian; Chan, Paul K S; Thomas, G Neil; Forrat, Remi; Chambonneau, Laurent; Deauvieau, Florence; Lang, Jean; Guy, Bruno

    2006-06-05

    VDV3, a clonal derivative of the Mahidol live-attenuated dengue 3 vaccine was prepared in Vero cells. Despite satisfactory preclinical evaluation, VDV3 was reactogenic in humans. We explored whether immunological mechanisms contributed to this outcome by monitoring innate and adaptive cellular immune responses for 28 days after vaccination. While no variations were seen in serum IL12 or TNFalpha levels, a high IFNgamma secretion was detected from Day 8, concomitant to IFNalpha, followed by IL10. Specific Th1 and CD8 responses were detected on Day 28, with high IFNgamma/TNFalpha ratios. Vaccinees exhibited very homogeneous class I HLA profiles, and a new HLA B60-restricted CD8 epitope was identified in NS3. We propose that, among other factors, adaptive immunity may have contributed to reactogenicity, even after this primary vaccination. In addition, the unexpected discordance observed between preclinical results and clinical outcome in humans led us to reconsider some of our preclinical acceptance criteria. Lessons learned from these results will help us to pursue the development of safe and immunogenic vaccines.

  9. CD8+ T-cell Responses in Flavivirus-Naive Individuals Following Immunization with a Live-Attenuated Tetravalent Dengue Vaccine Candidate.

    PubMed

    Chu, Haiyan; George, Sarah L; Stinchcomb, Dan T; Osorio, Jorge E; Partidos, Charalambos D

    2015-11-15

    We are developing a live-attenuated tetravalent dengue vaccine (TDV) candidate based on an attenuated dengue 2 virus (TDV-2) and 3 chimeric viruses containing the premembrane and envelope genes of dengue viruses (DENVs) -1, -3, and -4 expressed in the context of the attenuated TDV-2 genome (TDV-1, TDV-3, and TDV-4, respectively). In this study, we analyzed and characterized the CD8(+) T-cell response in flavivirus-naive human volunteers vaccinated with 2 doses of TDV 90 days apart via the subcutaneous or intradermal routes. Using peptide arrays and intracellular cytokine staining, we demonstrated that TDV elicits CD8(+) T cells targeting the nonstructural NS1, NS3, and NS5 proteins of TDV-2. The cells were characterized by the production of interferon-γ, tumor necrosis factor-α, and to a lesser extent interleukin-2. Responses were highest on day 90 after the first dose and were still detectable on 180 days after the second dose. In addition, CD8(+) T cells were multifunctional, producing ≥2 cytokines simultaneously, and cross-reactive to NS proteins of the other 3 DENV serotypes. Overall, these findings describe the capacity of our candidate dengue vaccine to elicit cellular immune responses and support the further evaluation of T-cell responses in samples from future TDV clinical trials.

  10. Distinct transcriptome profiles of Gag-specific CD8+ T cells temporally correlated with the protection elicited by SIVΔnef live attenuated vaccine

    PubMed Central

    Lu, Wuxun; Wan, Yanmin; Ma, Fangrui; Johnson, R. Paul; Li, Qingsheng

    2017-01-01

    The live attenuated vaccine (LAV) SIVmac239Δnef (SIVΔnef) confers the best protection among all the vaccine modalities tested in rhesus macaque model of HIV-1 infection. This vaccine has a unique feature of time-dependent protection: macaques are not protected at 3–5 weeks post vaccination (WPV), whereas immune protection emerges between 15 and 20 WPV. Although the exact mechanisms of the time-dependent protection remain incompletely understood, studies suggested that both cellular and humoral immunities contribute to this time-dependent protection. To further elucidate the mechanisms of protection induced by SIVΔnef, we longitudinally compared the global gene expression profiles of SIV Gag-CM9+ CD8+ (Gag-specific CD8+) T cells from peripheral blood of Mamu-A*01+ rhesus macaques at 3 and 20 WPV using rhesus microarray. We found that gene expression profiles of Gag-specific CD8+ T cells at 20 WPV are qualitatively different from those at 3 WPV. At 20 WPV, the most significant transcriptional changes of Gag-specific CD8+ T cells were genes involved in TCR signaling, differentiation and maturation toward central memory cells, with increased expression of CCR7, TCRα, TCRβ, CD28 and decreased expression of CTLA-4, IFN-γ, RANTES, granzyme A and B. Our study suggests that a higher quality of SIV-specific CD8+ T cells elicited by SIVΔnef over time contributes to the maturation of time-dependent protection. PMID:28333940

  11. Transient Loss of Protection Afforded by a Live Attenuated Non-typhoidal Salmonella Vaccine in Mice Co-infected with Malaria.

    PubMed

    Mooney, Jason P; Lee, Seung-Joo; Lokken, Kristen L; Nanton, Minelva R; Nuccio, Sean-Paul; McSorley, Stephen J; Tsolis, Renée M

    2015-01-01

    In immunocompetent individuals, non-typhoidal Salmonella serovars (NTS) are associated with gastroenteritis, however, there is currently an epidemic of NTS bloodstream infections in sub-Saharan Africa. Plasmodium falciparum malaria is an important risk factor for invasive NTS bloodstream in African children. Here we investigated whether a live, attenuated Salmonella vaccine could be protective in mice, in the setting of concurrent malaria. Surprisingly, mice acutely infected with the nonlethal malaria parasite Plasmodium yoelii 17XNL exhibited a profound loss of protective immunity to NTS, but vaccine-mediated protection was restored after resolution of malaria. Absence of protective immunity during acute malaria correlated with maintenance of antibodies to NTS, but a marked reduction in effector capability of Salmonella-specific CD4 and CD8 T cells. Further, increased expression of the inhibitory molecule PD1 was identified on memory CD4 T cells induced by vaccination. Blockade of IL-10 restored protection against S. Typhimurium, without restoring CD4 T cell effector function. Simultaneous blockade of CTLA-4, LAG3, and PDL1 restored IFN-γ production by vaccine-induced memory CD4 T cells but was not sufficient to restore protection. Together, these data demonstrate that malaria parasite infection induces a temporary loss of an established adaptive immune response via multiple mechanisms, and suggest that in the setting of acute malaria, protection against NTS mediated by live vaccines may be interrupted.

  12. A Phase II, Randomized, Safety and Immunogenicity Trial of a Re-Derived, Live-Attenuated Dengue Virus Vaccine in Healthy Children and Adults Living in Puerto Rico.

    PubMed

    Bauer, Kristen; Esquilin, Ines O; Cornier, Alberto Santiago; Thomas, Stephen J; Quintero Del Rio, Ana I; Bertran-Pasarell, Jorge; Morales Ramirez, Javier O; Diaz, Clemente; Carlo, Simon; Eckels, Kenneth H; Tournay, Elodie; Toussaint, Jean-Francois; De La Barrera, Rafael; Fernandez, Stefan; Lyons, Arthur; Sun, Wellington; Innis, Bruce L

    2015-09-01

    This was a double-blind, randomized, controlled, phase II clinical trial, two dose study of re-derived, live-attenuated, tetravalent dengue virus (TDEN) vaccine (two formulations) or placebo in subjects 1-50 years of age. Among the 636 subjects enrolled, 331 (52%) were primed, that is, baseline seropositive to at least one dengue virus (DENV) type. Baseline seropositivity prevalence increased with age (10% [< 2 years], 26% [2-4 years], 60% [5-20 years], and 93% [21-50 years]). Safety profiles of TDEN vaccines were similar to placebo regardless of priming status. No vaccine-related serious adverse events (SAEs) were reported. Among unprimed subjects, immunogenicity (geometric mean antibody titers [GMT] and seropositivity rates) for each DENV increased substantially in both TDEN vaccine groups with at least 74.6% seropositive for four DENV types. The TDEN vaccine candidate showed an acceptable safety and immunogenicity profile in children and adults ranging from 1 to 50 years of age, regardless of priming status. ClinicalTrials.gov: NCT00468858.

  13. Safety and immunogenicity of a rederived, live-attenuated dengue virus vaccine in healthy adults living in Thailand: a randomized trial.

    PubMed

    Watanaveeradej, Veerachai; Gibbons, Robert V; Simasathien, Sriluck; Nisalak, Ananda; Jarman, Richard G; Kerdpanich, Angkool; Tournay, Elodie; De La Barrerra, Rafael; Dessy, Francis; Toussaint, Jean-François; Eckels, Kenneth H; Thomas, Stephen J; Innis, Bruce L

    2014-07-01

    Safety and immunogenicity of two formulations of a live-attenuated tetravalent dengue virus (TDEN) vaccine produced using rederived master seeds from a precursor vaccine were tested against a placebo control in a phase II, randomized, double blind trial (NCT00370682). Two doses were administered 6 months apart to 120 healthy, predominantly flavivirus-primed adults (87.5% and 97.5% in the two vaccine groups and 92.5% in the placebo group). Symptoms and signs reported after vaccination were mild to moderate and transient. There were no vaccine-related serious adverse events or dengue cases reported. Asymptomatic, low-level viremia (dengue virus type 2 [DENV-2], DENV-3, or DENV-4) was detected in 5 of 80 vaccine recipients. One placebo recipient developed a subclinical natural DENV-1 infection. All flavivirus-unprimed subjects and at least 97.1% of flavivirus-primed subjects were seropositive to antibodies against all four DENV types 1 and 3 months post-TDEN dose 2. The TDEN vaccine was immunogenic with an acceptable safety profile in flavivirus-primed adults.

  14. Glycosylation Disorders with Immunodeficiency

    MedlinePlus

    ... affected by these disorders and build upon our knowledge of harmful pathogens. Glycosylation disorders with immunodeficiency are ... Helps Researchers Explore Microbial Genomic Data Biological Materials Biological ... Clinical Sciences Support Center Vaccine and Treatment Evaluation Units Topical ...

  15. Post-licensure surveillance of trivalent live attenuated influenza vaccine in adults, United States, Vaccine Adverse Event Reporting System (VAERS), July 2005-June 2013.

    PubMed

    Haber, Penina; Moro, Pedro L; McNeil, Michael M; Lewis, Paige; Woo, Emily Jane; Hughes, Hayley; Shimabukuro, Tom T

    2014-11-12

    Trivalent live attenuated influenza vaccine (LAIV3) was licensed and recommended for use in 2003 in children and adults 2-49 years of age. Post-licensure safety data have been limited, particularly in adults. We searched Vaccine Adverse Event Reporting System (VAERS) for US reports after LAIV3 from July 1, 2005-June 30, 2013 (eight influenza seasons) in adults aged ≥ 18 years old. We conducted descriptive analyses and clinically reviewed serious reports (i.e., death, life-threatening illness, hospitalization, prolonged hospitalization, or permanent disability) and reports of selected conditions of interest. We used empirical Bayesian data mining to identify adverse events (AEs) that were reported more frequently than expected. We calculated crude AE reporting rates to VAERS by influenza season. During the study period, VAERS received 1207 LAIV3 reports in adults aged 18-49 years old; 107 (8.9%) were serious, including four death reports. The most commonly reported events were expired drug administered (n=207, 17%), headache (n=192, 16%), and fever (n=133, 11%). The most common diagnostic categories for non-fatal serious reports were neurological (n=40, 39%), cardiovascular (n=14, 14%), and other non-infectious conditions (n=20, 19%). We noted a higher proportion of Guillain-Barré syndrome (GBS) and cardiovascular reports in the Department of Defense (DoD) population compared to the civilian population. Data mining detected disproportional reporting of ataxia (n=15); clinical review revealed that ataxia was a component of diverse clinical entities including GBS. Review of VAERS reports are reassuring, the only unexpected safety concern for LAIV3 identified was a higher than expected number of GBS reports in the DoD population, which is being investigated. Reports of administration of expired LAIV3 represent administration errors and indicate the need for education, training and screening regarding the approved indications. Published by Elsevier Ltd.

  16. Neutralizing Antibody Responses to Antigenically Drifted Influenza A(H3N2) Viruses among Children and Adolescents following 2014-2015 Inactivated and Live Attenuated Influenza Vaccination

    PubMed Central

    Martin, Judith M.; Gross, F. Liaini; Jefferson, Stacie; Cole, Kelly Stefano; Archibald, Crystal Ann; Nowalk, Mary Patricia; Susick, Michael; Moehling, Krissy; Spencer, Sarah; Chung, Jessie R.; Flannery, Brendan; Zimmerman, Richard K.

    2016-01-01

    Human influenza A(H3N2) viruses that predominated during the moderately severe 2014-2015 influenza season differed antigenically from the vaccine component, resulting in reduced vaccine effectiveness (VE). To examine antibody responses to 2014-2015 inactivated influenza vaccine (IIV) and live-attenuated influenza vaccine (LAIV) among children and adolescents, we collected sera before and after vaccination from 150 children aged 3 to 17 years enrolled at health care facilities. Hemagglutination inhibition (HI) assays were used to assess the antibody responses to vaccine strains. We evaluated cross-reactive antibody responses against two representative A(H3N2) viruses that had antigenically drifted from the A(H3N2) vaccine component using microneutralization (MN) assays. Postvaccination antibody titers to drifted A(H3N2) viruses were higher following receipt of IIV (MN geometric mean titers [GMTs], 63 to 68; 38 to 45% achieved seroconversion) versus LAIV (MN GMT, 22; only 3 to 5% achieved seroconversion). In 9- to 17-year-olds, the highest MN titers were observed among IIV-vaccinated individuals who had received LAIV in the previous season. Among all IIV recipients aged 3 to 17 years, the strongest predictor of antibody responses to the drifted viruses was the prevaccination titers to the vaccine strain. The results of our study suggest that in an antigenically drifted influenza season, vaccination still induced cross-reactive antibody responses to drifted circulating A(H3N2) viruses, although higher antibody titers may be required for protection. Antibody responses to drifted A(H3N2) viruses following vaccination were influenced by multiple factors, including vaccine type and preexisting immunity from prior exposure. PMID:27558294

  17. Effect of Broccoli Sprouts and Live Attenuated Influenza Virus on Peripheral Blood Natural Killer Cells: A Randomized, Double-Blind Study

    PubMed Central

    Müller, Loretta; Meyer, Megan; Bauer, Rebecca N.; Zhou, Haibo; Zhang, Hongtao; Jones, Shannon; Robinette, Carole; Noah, Terry L.; Jaspers, Ilona

    2016-01-01

    Enhancing antiviral host defense responses through nutritional supplementation would be an attractive strategy in the fight against influenza. Using inoculation with live attenuated influenza virus (LAIV) as an infection model, we have recently shown that ingestion of sulforaphane-containing broccoli sprout homogenates (BSH) reduces markers of viral load in the nose. To investigate the systemic effects of short-term BSH supplementation in the context of LAIV-inoculation, we examined peripheral blood immune cell populations in non-smoking subjects from this study, with a particular focus on NK cells. We carried out a randomized, double-blinded, placebo-controlled study measuring the effects of BSH (N = 13) or placebo (alfalfa sprout homogenate, ASH; N = 16) on peripheral blood mononuclear cell responses to a standard nasal vaccine dose of LAIV in healthy volunteers. Blood was drawn prior to (day-1) and post (day2, day21) LAIV inoculation and analyzed for neutrophils, monocytes, macrophages, T cells, NKT cells, and NK cells. In addition, NK cells were enriched, stimulated, and assessed for surface markers, intracellular markers, and cytotoxic potential by flow cytometry. Overall, LAIV significantly reduced NKT (day2 and day21) and T cell (day2) populations. LAIV decreased NK cell CD56 and CD158b expression, while significantly increasing CD16 expression and cytotoxic potential (on day2). BSH supplementation further increased LAIV-induced granzyme B production (day2) in NK cells compared to ASH and in the BSH group granzyme B levels appeared to be negatively associated with influenza RNA levels in nasal lavage fluid cells. We conclude that nasal influenza infection may induce complex changes in peripheral blood NK cell activation, and that BSH increases virus-induced peripheral blood NK cell granzyme B production, an effect that may be important for enhanced antiviral defense responses. Trial Registration: ClinicalTrials.gov NCT01269723 PMID:26820305

  18. Live-attenuated, tetravalent dengue vaccine in children, adolescents and adults in a dengue endemic country: randomized controlled phase I trial in the Philippines.

    PubMed

    Capeding, Rosario Z; Luna, Imelda A; Bomasang, Emily; Lupisan, Socorro; Lang, Jean; Forrat, Remi; Wartel, Anh; Crevat, Denis

    2011-05-17

    A recombinant live attenuated tetravalent dengue vaccine (TDV) is safe and immunogenic in adults and children in dengue-naïve populations. Data are needed in dengue endemic populations. In a phase I, randomized, controlled, blind-observer study in the Philippines, groups of participants aged 2-5, 6-11, 12-17, and 18-45 years received either three TDV vaccinations at months 0, 3.5, and 12 (TDV-TDV-TDV group) or licensed typhoid vaccination at month 0 and TDV at months 3.5 and 12 (TyVi-TDV-TDV group) and were followed for safety (including biological safety and vaccine virus viremia) and immunogenicity. No serious adverse vaccine related events and no significant trends in biological safety parameters were reported. Injection site pain, headache, malaise, myalgia, fever, and asthenia were reported most frequently, as mild to moderate in most cases and transient. Reactogenicity did not increase with successive vaccinations and was no higher in children than in adults and adolescents. Low levels of vaccinal viremia were detected in both groups after each TDV vaccination. After three TDV vaccinations, the seropositivity rates against serotypes 1-4 were: 91%, 100%, 96%, 100%, respectively, in 2-5 year-olds; 88%, 96% 96%, 92% in 6-11 year-olds; 88%, 83%, 92%, 96% in adolescents; and 100% for all serotypes in adults. A similar response was observed after two doses for the TyVi-TDV-TDV group. The safety profile of TDV in a flavivirus endemic population was consistent with previous reports from flavivirus naïve populations. A vaccine regimen of either three TDV vaccinations administered over a year or two TDV vaccinations given more than 8 months apart resulted in a balanced antibody response to all four dengue serotypes in this flavivirus-exposed population, including children.

  19. Influenza Virus Detection Following Administration of Live-Attenuated Intranasal Influenza Vaccine in Children With Cystic Fibrosis and Their Healthy Siblings

    PubMed Central

    Boikos, Constantina; Joseph, Lawrence; Martineau, Christine; Papenburg, Jesse; Scheifele, David; Lands, Larry C.; De Serres, Gaston; Chilvers, Mark; Quach, Caroline

    2016-01-01

    Background. We aimed to explore the detection profile of influenza viruses following live-attenuated intranasal influenza vaccination (LAIV) in children aged 2–19 years with and without cystic fibrosis (CF). Methods. Before the 2013–2014 influenza season, flocked nasal swabs were obtained before vaccination and 4 times in the week of follow-up from 76 participants (nCF: 57; nhealthy: 19). Influenza was detected by reverse transcription polymerase chain reaction (RT-PCR) assays. A Bayesian hierarchical logistic regression model was used to estimate the effect of CF status and age on influenza detection. Results. Overall, 69% of the study cohort shed influenza RNA during follow-up. The mean duration of RT-PCR detection was 2.09 days (95% credible interval [CrI]: 1.73–2.48). The odds of influenza RNA detection on day 1 following vaccination decreased with age in years (odds ratio [OR]: 0.82 per year; 95% CrI: 0.70–0.95), and subjects with CF had higher odds of influenza RNA detection on day 1 of follow-up (OR: 5.09; 95% CrI: 1.02–29.9). Conclusion. Despite the small sample size, our results indicate that LAIV vaccine strains are detectable during the week after LAIV, mainly in younger individuals and vaccinees with CF. It remains unclear whether recommendations for avoiding contact with severely immunocompromised patients should differ for these groups. PMID:27747255

  20. Cost-effectiveness analysis of the direct and indirect impact of intranasal live attenuated influenza vaccination strategies in children: alternative country profiles

    PubMed Central

    Gibson, Edward; Begum, Najida; Martinón-Torres, Federico; Safadi, Marco Aurélio; Sackeyfio, Alfred; Hackett, Judith; Rajaram, Sankarasubramanian

    2016-01-01

    Background Influenza poses a significant burden on healthcare systems and society, with under-recognition in the paediatric population. Existing vaccination policies (largely) target the elderly and other risk groups where complications may arise. Objective The goal of this study was to evaluate the cost-effectiveness of annual paediatric vaccination (in 2–17-year-olds) with live attenuated influenza vaccination (LAIV), as well as the protective effect on the wider population in England and Wales (base). The study aimed to demonstrate broad applications of the model in countries where epidemiological and transmission data is limited and that have sophisticated vaccination policies (Brazil, Spain, and Taiwan). Methods The direct and indirect impact of LAIV in the paediatric cohort was simulated using an age-stratified dynamic transmission model over a 5-year time horizon of daily cycles and applying discounting of 3.5% in the base case. Pre-existing immunity structure was based on a 1-year model run. Sensitivity analyses were conducted. Results In the base case for England and Wales, the annual paediatric strategy with LAIV was associated with improvements in influenza-related events and quality-adjusted life years (QALYs) lost, yielding an incremental cost per QALY of £6,208. The model was robust to change in the key input parameters. The probabilistic analysis demonstrated LAIV to be cost effective in more than 99% of iterations, assuming a willingness-to-pay threshold of £30,000. Incremental costs per QALY for Brazil were £2,817, and for the cases of Spain and Taiwan the proposed strategy was dominant over the current practice. Conclusion In addition to existing policies, annual paediatric vaccination using LAIV provides a cost-effective strategy that offers direct and indirect protection in the wider community. Paediatric vaccination strategies using LAIV demonstrated clinical and economic benefits over alternative (current vaccination) strategies in

  1. In elderly persons live attenuated influenza A virus vaccines do not offer an advantage over inactivated virus vaccine in inducing serum or secretory antibodies or local immunologic memory.

    PubMed Central

    Powers, D C; Fries, L F; Murphy, B R; Thumar, B; Clements, M L

    1991-01-01

    In a double-blind, randomized trial, 102 healthy elderly subjects were inoculated with one of four preparations: (i) intranasal bivalent live attenuated influenza vaccine containing cold-adapted A/Kawasaki/86 (H1N1) and cold-adapted A/Bethesda/85 (H3N2) viruses; (ii) parenteral trivalent inactivated subvirion vaccine containing A/Taiwan/86 (H1N1), A/Leningrad/86 (H3N2), and B/Ann Arbor/86 antigens; (iii) both vaccines; or (iv) placebo. To determine whether local or systemic immunization augmented mucosal immunologic memory, all volunteers were challenged intranasally 12 weeks later with the inactivated virus vaccine. We used a hemagglutination inhibition assay to measure antibodies in sera and a kinetic enzyme-linked immunosorbent assay to measure immunoglobulin G (IgG) and IgA antibodies in sera and nasal washes, respectively. In comparison with the live virus vaccine, the inactivated virus vaccine elicited higher and more frequent rises of serum antibodies, while nasal wash antibody responses were similar. The vaccine combination induced serum and local antibodies slightly more often than the inactivated vaccine alone did. Coadministration of live influenza A virus vaccine did not alter the serum antibody response to the influenza B virus component of the inactivated vaccine. The anamnestic nasal antibody response elicited by intranasal inactivated virus challenge did not differ in the live, inactivated, or combined vaccine groups from that observed in the placebo group not previously immunized. These results suggest that in elderly persons cold-adapted influenza A virus vaccines offer little advantage over inactivated virus vaccines in terms of inducing serum or secretory antibody or local immunological memory. Studies are needed to determine whether both vaccines in combination are more efficacious than inactivated vaccine alone in people in this age group. PMID:2037667

  2. Efficacy of Live-Attenuated H9N2 Influenza Vaccine Candidates Containing NS1 Truncations against H9N2 Avian Influenza Viruses.

    PubMed

    Chen, Sujuan; Zhu, Yinbiao; Yang, Da; Yang, Yang; Shi, Shaohua; Qin, Tao; Peng, Daxin; Liu, Xiufan

    2017-01-01

    H9N2 avian influenza virus is a zoonotic agent with a broad host range that can contribute genetic information to H5 or H7N9 subtype viruses, which are significant threats to both humans and birds. Thus, there is a great need for a vaccine to control H9N2 avian influenza. Three mutant viruses of an H9N2 virus A/chicken/Taixing/10/2010 (rTX-NS1-73, rTX-NS1-100, and rTX-NS1-128) were constructed with different NS1 gene truncations and confirmed by western blot analysis. The genetic stability, pathogenicity, transmissibility, and host immune responses toward these mutants were evaluated. The mutant virus rTX-NS1-128 exhibited the most attenuated phenotype and lost transmissibility. The expression levels of interleukin 12 in the nasal and tracheal tissues from chickens immunized with rTX-NS1-128 were significantly upregulated on day 3 post-immunization and the IgA and IgG antibody levels were significantly increased on days 7, 14, and 21 post-immunization when compared to chickens that received an inactivated vaccine. rTX-NS1-128 also protected chickens from challenge by homologous and heterologous H9N2 avian influenza viruses. The results indicate that rTX-NS1-128 can be used as a potential live-attenuated vaccine against H9N2 avian influenza.

  3. Introduction of silent mutations into the NP gene of influenza A viruses as a possible strategy for the creation of a live attenuated vaccine.

    PubMed

    Anhlan, Darisuren; Hrincius, Eike-Roman; Scholtissek, Christoph; Ludwig, Stephan

    2012-06-22

    The nucleoprotein (NP) of influenza A virus (IAV) is associated with many different functions including host range restriction. Multiple sequence alignment analyses of 748 NP gene sequences from GenBank revealed a highly conserved region of 60 nucleotides within the ORF at the 3'-ends of the cRNA, in some codons even silent mutations were not found. This suggests that the RNA structure integrity within this region is crucial for IAV replication. To explore the impact of these conserved nucleotides for viral replication we created mutant viruses with one or more silent mutations in the respective region of the NP gene of the IAV strain A/WSN/33 (H1N1) (WSN). Assessment of viral replication of these WSN mutant viruses showed significant growth disadvantages when compared to the corresponding parental strain. On the basis of these findings we tested whether the attenuation of IAV by introduction of silent mutations into the NP gene may serve as a strategy to create a live attenuated vaccine. Mice vaccinated with the attenuated WSN mutant survived a lethal challenge dose of wild type WSN virus or the mouse adapted pandemic H1N1v strain A/Hamburg/4/2009. Thus, introduction of silent mutations in the NP of IAV is a feasible approach for a novel vaccination strategy allowing attenuation of the master strain but leaves the antigenicity of the gene product unaltered. This principle is potentially applicable for all viruses with segmented genomes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Vaccination of Volunteers with Low-Dose, Live-Attenuated, Dengue Viruses Leads to Serotype-specific Immunologic and Virologic Profiles

    PubMed Central

    Lindow, Janet C.; Durbin, Anna P.; Whitehead, Stephen S.; Pierce, Kristen K.; Carmolli, Marya P.; Kirkpatrick, Beth D.

    2013-01-01

    There are currently no vaccines or therapeutics to prevent dengue disease which ranges in severity from asymptomatic infections to life-threatening illness. The National Institute of Allergy and Infectious Diseases (NIAID) Division of Intramural Research has developed live, attenuated vaccines to each of the four dengue serotypes (DENV-1 – DENV-4). Two doses (10 PFU and 1000 PFU) of three monovalent vaccines were tested in human clinical trials to compare safety and immunogenicity profiles. DEN4Δ30 had been tested previously at multiple doses. The three dengue vaccine candidates tested (DEN1Δ30, DEN2/4Δ30, and DEN3Δ30/31) were very infectious, each with a Human Infectious Dose 50% ≤ 10 PFU. Further, infectivity rates ranged from 90 −100% regardless of dose, excepting DEN2/4Δ30 which dropped from 100% at the 1000 PFU dose to 60% at the 10 PFU dose. Mean geometric peak antibody titers did not differ significantly between doses for DEN1Δ30 (92 ± 19 vs. 214 ± 97, p = 0.08); however, significant differences were observed between the 10 PFU and 1000 PFU doses for DEN2/4Δ30, 19 ± 9 vs. 102 ± 25 (p = 0.001), and DEN3Δ30/31, 119 ± 135 vs. 50 ± 50 (p=0.046). No differences in the incidences of rash, neutropenia, or viremia were observed between doses for any vaccines, though the mean peak titer of viremia for DEN1Δ30 was higher at the 1000 PFU dose (0.5 ± 0 vs. 1.1 ± 0.1, p = 0.007). These data demonstrate that atarget dose of 1000 PFU for inclusion of each dengue serotype into a tetravalent vaccine is likely to be safe and generate a balanced immune response for all serotypes. PMID:23735680

  5. Efficient strategy for constructing duck enteritis virus-based live attenuated vaccine against homologous and heterologous H5N1 avian influenza virus and duck enteritis virus infection.

    PubMed

    Zou, Zhong; Hu, Yong; Liu, Zhigang; Zhong, Wei; Cao, Hangzhou; Chen, Huanchun; Jin, Meilin

    2015-04-16

    Duck is susceptible to many pathogens, such as duck hepatitis virus, duck enteritis virus (DEV), duck tembusu virus, H5N1 highly pathogenic avian influenza virus (HPAIV) in particular. With the significant role of duck in the evolution of H5N1 HPAIV, control and eradication of H5N1 HPAIV in duck through vaccine immunization is considered an effective method in minimizing the threat of a pandemic outbreak. Consequently, a practical strategy to construct a vaccine against these pathogens should be determined. In this study, the DEV was examined as a candidate vaccine vector to deliver the hemagglutinin (HA) gene of H5N1, and its potential as a polyvalent vaccine was evaluated. A modified mini-F vector was inserted into the gB and UL26 gene junction of the attenuated DEV vaccine strain C-KCE genome to generate an infectious bacterial artificial chromosome (BAC) of C-KCE (vBAC-C-KCE). The HA gene of A/duck/Hubei/xn/2007 (H5N1) was inserted into the C-KCE genome via the mating-assisted genetically integrated cloning (MAGIC) to generate the recombinant vector pBAC-C-KCE-HA. A bivalent vaccine C-KCE-HA was developed by eliminating the BAC backbone. Ducks immunized with C-KCE-HA induced both the cross-reactive antibodies and T cell response against H5. Moreover, C-KCE-HA-immunized ducks provided rapid and long-lasting protection against homologous and heterologous HPAIV H5N1 and DEV clinical signs, death, and primary viral replication. In conclusion, our BAC-C-KCE is a promising platform for developing a polyvalent live attenuated vaccine.

  6. Improving influenza vaccination in chronically ill children using a tertiary-care based vaccination clinic: Is there a role for the live-attenuated influenza vaccine (LAIV)?

    PubMed

    Merckx, Joanna; McCormack, Deirdre; Quach, Caroline

    2016-02-03

    Children with underlying medical conditions should receive influenza vaccine (IV) yearly; yet this remains sub-optimal. We aimed to describe our experience with a tertiary-care hospital-based influenza vaccination clinic for this at-risk population. From October to December 2012, 2013, and 2014, we ran an influenza vaccination clinic at the Montreal Children's Hospital, where children with high-risk conditions come for their follow-up. Both injectable IV (IIV) and live-attenuated IV (LAIV) were offered free of charge to patients and their household contacts. Upon vaccination, parents were asked to fill a pre-piloted questionnaire. We vaccinated a total of 2640 high-risk children and 1912 household members during the three influenza vaccination seasons. In 2012 and 2013, 631 and 630 patients with chronic illnesses were vaccinated, compared to 1379 in 2014. Caregivers preferred LAIV primarily because no needle was involved (49.0%) and because it was perceived as less painful (46.9%). LAIV was administered to 69% (2012), 55% (2013) and 47% (2014) of high-risk children. The main reason for not receiving LAIV was because it was contra-indicated. A small fraction of children previously vaccinated with LAIV who did not present any contraindication to LAIV opted for IIV: 12/101 (11.8%) in 2013 and 16/272 (5.9%) in 2014. In 2014, this was mainly due to a previous negative experience with LAIV (11/16). Having an influenza vaccination clinic on site at a tertiary care hospital, where children come for their scheduled visits, facilitates yearly influenza vaccination in children with chronic illnesses. LAIV is preferred by caregivers and patients, when not contraindicated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Immunogenicity and Cross Protection in Mice Afforded by Pandemic H1N1 Live Attenuated Influenza Vaccine Containing Wild-Type Nucleoprotein

    PubMed Central

    Isakova-Sivak, Irina; Petukhova, Galina; Korenkov, Daniil; Losev, Igor; Smolonogina, Tatiana; Tretiak, Tatiana; Donina, Svetlana; Shcherbik, Svetlana; Bousse, Tatiana; Rudenko, Larisa

    2017-01-01

    Since conserved viral proteins of influenza virus, such as nucleoprotein (NP) and matrix 1 protein, are the main targets for virus-specific CD8+ cytotoxic T-lymphocytes (CTLs), we hypothesized that introduction of the NP gene of wild-type virus into the genome of vaccine reassortants could lead to better immunogenicity and afford better protection. This paper describes in vitro and in vivo preclinical studies of two new reassortants of pandemic H1N1 live attenuated influenza vaccine (LAIV) candidates. One had the hemagglutinin (HA) and neuraminidase (NA) genes from A/South Africa/3626/2013 H1N1 wild-type virus on the A/Leningrad/134/17/57 master donor virus backbone (6 : 2 formulation) while the second had the HA, NA, and NP genes of the wild-type virus on the same backbone (5 : 3 formulation). Although both LAIVs induced similar antibody immune responses, the 5 : 3 LAIV provoked greater production of virus-specific CTLs than the 6 : 2 variant. Furthermore, the 5 : 3 LAIV-induced CTLs had higher in vivo cytotoxic activity, compared to 6 : 2 LAIV. Finally, the 5 : 3 LAIV candidate afforded greater protection against infection and severe illness than the 6 : 2 LAIV. Inclusion in LAIV of the NP gene from wild-type influenza virus is a new approach to inducing cross-reactive cell-mediated immune responses and cross protection against pandemic influenza. PMID:28210631

  8. Effect of Broccoli Sprouts and Live Attenuated Influenza Virus on Peripheral Blood Natural Killer Cells: A Randomized, Double-Blind Study.

    PubMed

    Müller, Loretta; Meyer, Megan; Bauer, Rebecca N; Zhou, Haibo; Zhang, Hongtao; Jones, Shannon; Robinette, Carole; Noah, Terry L; Jaspers, Ilona

    2016-01-01

    Enhancing antiviral host defense responses through nutritional supplementation would be an attractive strategy in the fight against influenza. Using inoculation with live attenuated influenza virus (LAIV) as an infection model, we have recently shown that ingestion of sulforaphane-containing broccoli sprout homogenates (BSH) reduces markers of viral load in the nose. To investigate the systemic effects of short-term BSH supplementation in the context of LAIV-inoculation, we examined peripheral blood immune cell populations in non-smoking subjects from this study, with a particular focus on NK cells. We carried out a randomized, double-blinded, placebo-controlled study measuring the effects of BSH (N = 13) or placebo (alfalfa sprout homogenate, ASH; N = 16) on peripheral blood mononuclear cell responses to a standard nasal vaccine dose of LAIV in healthy volunteers. Blood was drawn prior to (day-1) and post (day2, day21) LAIV inoculation and analyzed for neutrophils, monocytes, macrophages, T cells, NKT cells, and NK cells. In addition, NK cells were enriched, stimulated, and assessed for surface markers, intracellular markers, and cytotoxic potential by flow cytometry. Overall, LAIV significantly reduced NKT (day2 and day21) and T cell (day2) populations. LAIV decreased NK cell CD56 and CD158b expression, while significantly increasing CD16 expression and cytotoxic potential (on day2). BSH supplementation further increased LAIV-induced granzyme B production (day2) in NK cells compared to ASH and in the BSH group granzyme B levels appeared to be negatively associated with influenza RNA levels in nasal lavage fluid cells. We conclude that nasal influenza infection may induce complex changes in peripheral blood NK cell activation, and that BSH increases virus-induced peripheral blood NK cell granzyme B production, an effect that may be important for enhanced antiviral defense responses. ClinicalTrials.gov NCT01269723.

  9. The epidemiological impact of childhood influenza vaccination using live-attenuated influenza vaccine (LAIV) in Germany: predictions of a simulation study

    PubMed Central

    2014-01-01

    Background Routine annual influenza vaccination is primarily recommended for all persons aged 60 and above and for people with underlying chronic conditions in Germany. Other countries have already adopted additional childhood influenza immunisation programmes. The objective of this study is to determine the potential epidemiological impact of implementing paediatric influenza vaccination using intranasally administered live-attenuated influenza vaccine (LAIV) in Germany. Methods A deterministic age-structured model is used to simulate the population-level impact of different vaccination strategies on the transmission dynamics of seasonal influenza in Germany. In our base-case analysis, we estimate the effects of adding a LAIV-based immunisation programme targeting children 2 to 17 years of age to the existing influenza vaccination policy. The data used in the model is based on published evidence complemented by expert opinion. Results In our model, additional vaccination of children 2 to 17 years of age with LAIV leads to the prevention of 23.9 million influenza infections and nearly 16 million symptomatic influenza cases within 10 years. This reduction in burden of disease is not restricted to children. About one third of all adult cases can indirectly be prevented by LAIV immunisation of children. Conclusions Our results demonstrate that vaccinating children 2–17 years of age is likely associated with a significant reduction in the burden of paediatric influenza. Furthermore, annual routine childhood vaccination against seasonal influenza is expected to decrease the incidence of influenza among adults and older people due to indirect effects of herd protection. In summary, our model provides data supporting the introduction of a paediatric influenza immunisation programme in Germany. PMID:24450996

  10. [Effectiveness of Live Attenuated Influenza Vaccines and Trivalent Inactivated Influenza Vaccines against confirmed Influenza In Children and Adolescents in Saxony-Anhalt, 2012/13].

    PubMed

    Hermann, N

    2015-07-01

    Since 2012, there are not only trivalent inactivated influenza vaccines (TIV) but also live attenuated influenza vaccines (LAIV) available for children aged 2-17 years in Germany. The Saxony-Anhalt State Office for Consumer Protection conducted a test-negative case-control-study. The aim of the study was to identify the effectiveness of LAIV and TIV against a confirmed influenza diagnosis in children and adolescents in Saxony-Anhalt in the season 2012/13. The children had nasal swabs taken, which were further diagnosed in a laboratory using the PCR method. 834 patients of 15 voluntarily participating paediatric surgeries in Saxony-Anhalt were analysed by multivariate logistic regression with STATA 12. Controlling for age group, gender and month of the disease's onset showed an effectiveness of all vaccines amongst the 2-17 years old (38% with 95% CI: 0.8-61%; p=0.046). A differentiation according to LAIV and TIV demonstrated a significant effectiveness for LAIV (84%) in children of all ages (95% CI: 45-95%, p=0.004). After stratification for age groups LAIV was proven efficient in children aged 2-6 years (90% with 95% CI: 20-99%, p=0.03), whilst it led to a non-significant result in children aged 7-17 years (74% with 95% CI: -32-95%, p=0.106). There was no significant effectiveness of TIV seen in any age group.The Saxony-Anhalt State Office for Consumer Protection endorses the use of LAIV in children in accordance with the STIKO recommendations, as long as no contraindication is evident. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Live attenuated influenza vaccine strains elicit a greater innate immune response than antigenically-matched seasonal influenza viruses during infection of human nasal epithelial cell cultures.

    PubMed

    Fischer, William A; Chason, Kelly D; Brighton, Missy; Jaspers, Ilona

    2014-03-26

    Influenza viruses are global pathogens that infect approximately 10-20% of the world's population each year. Vaccines, including the live attenuated influenza vaccine (LAIV), are the best defense against influenza infections. The LAIV is a novel vaccine that actively replicates in the human nasal epithelium and elicits both mucosal and systemic protective immune responses. The differences in replication and innate immune responses following infection of human nasal epithelium with influenza seasonal wild type (WT) and LAIV viruses remain unknown. Using a model of primary differentiated human nasal epithelial cell (hNECs) cultures, we compared influenza WT and antigenically-matched cold adapted (CA) LAIV virus replication and the subsequent innate immune response including host cellular pattern recognition protein expression, host innate immune gene expression, secreted pro-inflammatory cytokine production, and intracellular viral RNA levels. Growth curves comparing virus replication between WT and LAIV strains revealed significantly less infectious virus production during LAIV compared with WT infection. Despite this disparity in infectious virus production the LAIV strains elicited a more robust innate immune response with increased expression of RIG-I, TLR-3, IFNβ, STAT-1, IRF-7, MxA, and IP-10. There were no differences in cytotoxicity between hNEC cultures infected with WT and LAIV strains as measured by basolateral levels of LDH. Elevated levels of intracellular viral RNA during LAIV as compared with WT virus infection of hNEC cultures at 33°C may explain the augmented innate immune response via the up-regulation of pattern recognition receptors and down-stream type I IFN expression. Taken together our results suggest that the decreased replication of LAIV strains in human nasal epithelial cells is associated with a robust innate immune response that differs from infection with seasonal influenza viruses, limits LAIV shedding and plays a role in the silent

  12. Immunogenicity and protective efficacy of cold-adapted X-31 live attenuated pre-pandemic H5N1 influenza vaccines.

    PubMed

    Jang, Yo Han; Jung, Eun-Ju; Byun, Young Ho; Lee, Kwang-Hee; Lee, Eun-Young; Lee, Yoon Jae; Seong, Baik Lin

    2013-07-18

    Despite global efforts to control influenza viruses, they have taken a heavy toll on human public health worldwide. Among particular threats is highly pathogenic avian H5N1 influenza virus (HPAI) due to not only its high mortality in humans but also possible human-to-human transmission either through reassortment with other human influenza viruses such as 2009 pandemic H1N1 influenza virus, or by genetic mutations. With the aim of developing effective vaccines against the H5N1 viruses, we generated two live attenuated H5N1 vaccine candidates against A/Indonesia/05/2005 (clade 2.1) and A/chicken/Korea/ES/2003 (clade 2.5) strains, in the genetic background of the cold-adapted donor strain of X-31. In mice, a single dose of immunization with each of the two vaccines was highly immunogenic inducing high titers of serum viral-neutralizing and hemagglutinin-inhibiting antibodies against the homologous H5N1 strain. Furthermore, significant levels of cross-clade antibody responses were induced by the vaccines, suggesting a broad-spectrum cross-reactivity against the heterologous H5N1 strains. The immunizations provided solid protections against heterologous lethal challenges with H5N2 virus, significantly reducing the morbidity and challenge virus replications in the respiratory tracts. The robustness of the antibody responses against both the homologous and heterologous strains, together with efficient protection against the lethal H5N2 challenge, strongly support the protection against wild type H5N1 infections. These results could serve as an experimental basis for the development of safe and effective H5N1 pre-pandemic vaccines while further addressing the biosecurity concerns associated with H5N1 HPAI.

  13. Dissecting Antibodies Induced by a Chimeric Yellow Fever-Dengue, Live-Attenuated, Tetravalent Dengue Vaccine (CYD-TDV) in Naive and Dengue-Exposed Individuals.

    PubMed

    Henein, Sandra; Swanstrom, Jesica; Byers, Anthony M; Moser, Janice M; Shaik, S Farzana; Bonaparte, Matthew; Jackson, Nicholas; Guy, Bruno; Baric, Ralph; de Silva, Aravinda M

    2017-02-01

    Sanofi Pasteur has developed a chimeric yellow fever-dengue, live-attenuated, tetravalent dengue vaccine (CYD-TDV) that is currently approved for use in several countries. In clinical trials, CYD-TDV was efficacious at reducing laboratory-confirmed cases of dengue disease. Efficacy varied by dengue virus (DENV) serotype and prevaccination dengue immune status. We compared the properties of antibodies in naive and DENV-exposed individuals who received CYD-TDV. We depleted specific populations of DENV-reactive antibodies from immune serum samples to estimate the contribution of serotype-cross-reactive and type-specific antibodies to neutralization. Subjects with no preexisting immunity to DENV developed neutralizing antibodies to all 4 serotypes of DENV. Further analysis demonstrated that DENV4 was mainly neutralized by type-specific antibodies whereas DENV1, DENV2, and DENV3 were mainly neutralized by serotype cross-reactive antibodies. When subjects with preexisting immunity to DENV were vaccinated, they developed higher levels of neutralizing antibodies than naive subjects who were vaccinated. In preimmune subjects, CYD-TDV boosted cross-reactive neutralizing antibodies while maintaining type-specific neutralizing antibodies acquired before vaccination. Our results demonstrate that the quality of neutralizing antibodies induced by CYD-TDV varies depending on DENV serotype and previous immune status. We discuss the implications of these results for understanding vaccine efficacy. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  14. Overview of Immunodeficiency Disorders

    PubMed Central

    Raje, Nikita; Dinakar, Chitra

    2015-01-01

    Synopsis The spectrum of primary immunodeficiency disorders (PID) is expanding. It includes typical disorders that primarily present with defective immunity as well as disorders that predominantly involve other systems and exhibit few features of impaired immunity. The rapidly growing list of new immunodeficiency disorders and treatment modalities makes it imperative for the provider to stay abreast of the latest and best management strategies. We present a brief overview of recent clinical advances in the field of PIDs. PMID:26454309

  15. Immunomodulation and immunodeficiency.

    PubMed

    Foster, Aiden P

    2004-04-01

    This article briefly reviews the concepts of immunodeficiency and immunomodulation as they relate to selected skin diseases in the dog and cat. Immunodeficiency states are uncommon and may be associated with a subnormal or down-regulated immune system, including humoral deficiencies, such as IgA, and abnormal lymphocyte or neutrophil function. Establishing a causal relationship between a skin disease and presumed immunodeficient state has been difficult due to the rarity of such conditions, and the limited nature of the techniques used to characterise the immune system response. Severe combined immunodeficiency in dogs is a well characterised primary immunodeficiency state involving lymphocytes; retrovirus infection in cats may lead to an acquired immunodeficient state with some association with certain dermatological conditions although it remains unclear that infection is causally linked with disease. Immunomodulation usually implies stimulating the immune system along a beneficial pathway. Such a therapeutic approach may involve a wide variety of agents, for example intravenous immunoglobulin. There are few randomised controlled trials with veterinary patients that unequivocally demonstrate beneficial responses to immunomodulatory agents. Interferons are cytokines of major interest in human and veterinary medicine for their antiviral, anti-tumour and immunomodulatory effects. The advent of veterinary-licensed products containing recombinant interferon may enable demonstration of the efficacy of interferons for conditions such as canine papillomatosis and feline eosinophilic granuloma complex. Canine pyoderma has been treated with a number of presumed immunomodulatory agents with limited success. With more detailed knowledge of the pathogenesis of pyoderma it may be possible to develop efficacious immunomodulators.

  16. The influence of the multi-basic cleavage site of the H5 hemagglutinin on the attenuation, immunogenicity and efficacy of a live attenuated influenza A h5N1 cold-adapted vaccine virus

    USDA-ARS?s Scientific Manuscript database

    A recombinant live attenuated influenza virus (LAIV) deltaH5N1 vaccine with a modified hemagglutinin (HA) and intact neuraminidase genes from A/Vietnam/1203/04 (H5N1) and the six remaining genome segments from A/Ann Arbor/6/60 (H2N2) cold-adapted (AA ca) virus was attenuated in chickens, mice and fe...

  17. Public health impact and cost effectiveness of mass vaccination with live attenuated human rotavirus vaccine (RIX4414) in India: model based analysis

    PubMed Central

    Hawthorn, Rachael L; Watts, Brook; Singer, Mendel E

    2009-01-01

    Objectives To examine the public health impact of mass vaccination with live attenuated human rotavirus vaccine (RIX4414) in a birth cohort in India, and to estimate the cost effectiveness and affordability of such a programme. Design Decision analytical Markov model encompassing all direct medical costs. Infection risk and severity depended on age, number of previous infections, and vaccination history; probabilities of use of inpatient and outpatient health services depended on symptom severity. Data sources Published clinical, epidemiological, and economic data. When possible, parameter estimates were based on data specific for India. Population Simulated Indian birth cohort followed for five years. Main outcome measures Decrease in rotavirus gastroenteritis episodes (non-severe and severe), deaths, outpatient visits, and admission to hospital; incremental cost effectiveness ratio of vaccination expressed as net cost in 2007 rupees per life year saved. Results In the base case, vaccination prevented 28 943 (29.7%) symptomatic episodes, 6981 (38.2%) severe episodes, 164 deaths (41.0%), 7178 (33.3%) outpatient visits, and 812 (34.3%) admissions to hospital per 100 000 children. Vaccination cost 8023 rupees (about £100, €113, $165) per life year saved, less than India’s per capita gross domestic product, a common criterion for cost effectiveness. The net programme cost would be equivalent to 11.6% of the 2006-7 budget of the Indian Department of Health and Family Welfare. Model results were most sensitive to variations in access to outpatient care for those with severe symptoms. If this parameter was increased to its upper limit, the incremental cost effectiveness ratio for vaccination still fell between one and three times the per capita gross domestic product, meeting the World Health Organization’s criterion for “cost effective” interventions. Uncertainty analysis indicated a 94.7% probability that vaccination would be cost effective according to

  18. H7N9 live attenuated influenza vaccine in healthy adults: a randomised, double-blind, placebo-controlled, phase 1 trial

    PubMed Central

    Rudenko, Larisa; Isakova-Sivak, Irina; Naykhin, Anatoly; Kiseleva, Irina; Stukova, Marina; Erofeeva, Mariana; Korenkov, Daniil; Matyushenko, Victoria; Sparrow, Erin; Kieny, Marie-Paule

    2017-01-01

    Summary Background Recently emerged H7N9 avian influenza viruses are characterized by enhanced virulence and presence of mammalian adaptation markers, suggesting their pandemic potential. Specific influenza vaccines remain the key defense against a possible H7N9 pandemic. We report here the safety and immunogenicity results from a phase 1 clinical trial of H7N9 live attenuated influenza vaccine (LAIV) candidate in healthy adult volunteers. Methods This study was a phase 1, double-blind, individually randomised, placebo-controlled trial of H7N9 LAIV conducted in Saint Petersburg, Russia. Eligible participants were healthy adults aged 18 to 49 years who provided informed consent and met eligibility criteria. The participants were randomised 3:1 to receive live vaccine or placebo using a computerized randomisation scheme generator. Two doses of vaccine or placebo were administered intranasally 28 days apart. After each administration, subjects remained as inpatients for seven days, to allow close observation of subject safety. To assess immune responses to H7N9 LAIV, nasal swab, saliva and serum specimens were collected prior to vaccination and at day 28 after each vaccine dose. This trial is registered with ClinicalTrials.gov, number NCT02480101, and is closed to new participants. Findings Between October 21, 2014, and October 31, 2014, we randomly assigned forty healthy adults to our study groups. Thirty-nine (97.5%) of the 40 subjects were included in the per-protocol analysis (29 – vaccine, 10 – placebo). No differences in the frequency of adverse events between vaccine and placebo groups were registered. Proportions of seroconversions measured by microneutralization assay were 14/29 (48.3%, 95% CI 31.4–65.6) after the first vaccine dose and 21/29 (72.4%, 95% CI 54.3–85.3) after the second vaccine dose. Cumulative analysis of the immune responses, which included hemagglutination inhibition and microneutralization assays, detection of serum IgA and IgG and

  19. Comparison of intramuscular and subcutaneous administration of a herpes zoster live-attenuated vaccine in adults aged ≥50 years: a randomised non-inferiority clinical trial.

    PubMed

    Diez-Domingo, Javier; Weinke, Thomas; Garcia de Lomas, Juan; Meyer, Claudius U; Bertrand, Isabelle; Eymin, Cécile; Thomas, Stéphane; Sadorge, Christine

    2015-02-04

    Zostavax(®) is a live, attenuated varicella zoster virus (VZV) vaccine developed specifically for the prevention of HZ and PHN in individuals aged ≥50 years. During the clinical development of Zostavax, which was mainly in the US, the vaccine was administrated by the subcutaneous (SC) route. In Europe, many healthcare professionals prefer administering vaccines by the intramuscular (IM) route. This was an open-label, randomised trial conducted in 354 subjects aged ≥50 years. The primary objectives were to demonstrate that IM administration is both non-inferior to SC administration in terms of 4-week post-vaccination geometric mean titres (GMTs), and elicits an acceptable geometric mean fold-rise (GMFR) of antibody titres measured by glycoprotein enzyme-linked immunosorbent assay. Pre-specified non-inferiority was set as the lower bound of the 95% confidence interval (CI) of the GMT ratio (IM/SC) being >0.67. An acceptable GMFR for the IM route was pre-specified as the lower bound of its 95% CI being >1.4. Description of the VZV immune response using the interferon-gamma enzyme-linked immunospot (IFN-γ ELISPOT) assay and of the safety were secondary objectives. Participants were randomised to IM or SC administration (1:1). The baseline demographics were comparable between groups; mean age: 62.6 years (range: 50.0-90.5). The primary immunogenicity objectives were met (per protocol analysis): GMT ratio (IM/SC): 1.05 (95% CI: 0.93-1.18); GMFR: 2.7 (2.4-3.0). VZV immune response using IFN-γ ELISPOT were comparable between groups. Frequencies of systemic adverse events were comparable between groups. Injection-site reactions were less frequent with IM than SC route: erythema (15.9% versus 52.5%), pain (25.6% versus 39.5%) and swelling (13.6% versus 37.3%), respectively. In adults aged ≥50 years, IM administration of Zostavax elicited similar immune responses to SC administration and was well tolerated, with fewer injection-site reactions than with SC

  20. Nucleotide sequence analysis of the respiratory syncytial virus subgroup A cold-passaged (cp) temperature sensitive (ts) cpts-248/404 live attenuated virus vaccine candidate.

    PubMed

    Firestone, C Y; Whitehead, S S; Collins, P L; Murphy, B R; Crowe, J E

    1996-11-15

    The complete nucleotide sequence of the RSV cpts-248/404 live attenuated vaccine candidate was determined from cloned cDNA and was compared to that of the RSV A2/HEK7 wild-type, cold-passaged cp-RSV, and cpts-248 virus, which constitute the series of progenitor viruses. RSV cpts-248/404 is more attenuated and more temperature sensitive (ts) (shut-off temperature 36 degrees) than its cpts-248 parent virus (shut-off temperature 38 degrees) and is currently being evaluated in phase I clinical trials in humans. Our ultimate goal is to identify the genetic basis for the host range attenuation phenotype exhibited by cp-RSV (i.e., efficient replication in tissue culture but decreased replication in chimpanzees and humans) and for the ts and attenuation phenotypes of its chemically mutagenized derivatives, cpts-248 and cpts-248/404. Compared with its cpts-248 parent, the cpts-248/404 virus possesses an amino acid change in the polymerase (L) protein and a single nucleotide substitution in the M2 gene start sequence. In total, the cpts-248/404 mutant differs from its wild-type RSV A2/HEK7 progenitor in seven amino acids [four in the polymerase (L) protein, two in the fusion (F) glycoprotein, and one in the (N) nucleoprotein] and one nucleotide difference in the M2 gene start sequence. Heterogeneity at nucleotide position 4 (G or C, negative sense, compared to G in the RSV A2/HEK7 progenitor) in the leader region of vRNA developed during passage of the cpts-248/404 in tissue culture. Biologically cloned derivatives of RSV cpts-248/404 virus that differed at position 4 possessed the same level of temperature sensitivity and exhibited the same level of replication in the upper and lower respiratory tract of mice, suggesting that heterogeneity at this position is not clinically relevant. The determination of the nucleotide sequence of the cpts-248/404 virus will allow evaluation of the stability of the eight mutations that are associated with the attenuation phenotype during

  1. Generation and Characterization of Live Attenuated Influenza A(H7N9) Candidate Vaccine Virus Based on Russian Donor of Attenuation.

    PubMed

    Shcherbik, Svetlana; Pearce, Nicholas; Balish, Amanda; Jones, Joyce; Thor, Sharmi; Davis, Charles Todd; Pearce, Melissa; Tumpey, Terrence; Cureton, David; Chen, Li-Mei; Villanueva, Julie; Bousse, Tatiana L

    2015-01-01

    Avian influenza A (H7N9) virus has emerged recently and continues to cause severe disease with a high mortality rate in humans prompting the development of candidate vaccine viruses. Live attenuated influenza vaccines (LAIV) are 6:2 reassortant viruses containing the HA and NA gene segments from wild type influenza viruses to induce protective immune responses and the six internal genes from Master Donor Viruses (MDV) to provide temperature sensitive, cold-adapted and attenuated phenotypes. LAIV candidate A/Anhui/1/2013(H7N9)-CDC-LV7A (abbreviated as CDC-LV7A), based on the Russian MDV, A/Leningrad/134/17/57 (H2N2), was generated by classical reassortment in eggs and retained MDV temperature-sensitive and cold-adapted phenotypes. CDC-LV7A had two amino acid substitutions N123D and N149D (H7 numbering) in HA and one substitution T10I in NA. To evaluate the role of these mutations on the replication capacity of the reassortants in eggs, the recombinant viruses A(H7N9)RG-LV1 and A(H7N9)RG-LV2 were generated by reverse genetics. These changes did not alter virus antigenicity as ferret antiserum to CDC-LV7A vaccine candidate inhibited hemagglutination by homologous A(H7N9) virus efficiently. Safety studies in ferrets confirmed that CDC-LV7A was attenuated compared to wild-type A/Anhui/1/2013. In addition, the genetic stability of this vaccine candidate was examined in eggs and ferrets by monitoring sequence changes acquired during virus replication in the two host models. No changes in the viral genome were detected after five passages in eggs. However, after ten passages additional mutations were detected in the HA gene. The vaccine candidate was shown to be stable in the ferret model; post-vaccination sequence data analysis showed no changes in viruses collected in nasal washes present at day 5 or day 7. Our data indicate that the A/Anhui/1/2013(H7N9)-CDC-LV7A reassortant virus is a safe and genetically stable candidate vaccine virus that is now available for

  2. Randomized, Controlled Human Challenge Study of the Safety, Immunogenicity, and Protective Efficacy of a Single Dose of Peru-15, a Live Attenuated Oral Cholera Vaccine

    PubMed Central

    Cohen, Mitchell B.; Giannella, Ralph A.; Bean, Judy; Taylor, David N.; Parker, Susan; Hoeper, Amy; Wowk, Stephen; Hawkins, Jennifer; Kochi, Sims K.; Schiff, Gilbert; Killeen, Kevin P.

    2002-01-01

    Peru-15 is a live attenuated oral vaccine derived from a Vibrio cholerae O1 El Tor Inaba strain by a series of deletions and modifications, including deletion of the entire CT genetic element. Peru-15 is also a stable, motility-defective strain and is unable to recombine with homologous DNA. We wished to determine whether a single oral dose of Peru-15 was safe and immunogenic and whether it would provide significant protection against moderate and severe diarrhea in a randomized, double-blind, placebo-controlled human volunteer cholera challenge model. A total of 59 volunteers were randomly allocated to groups to receive either 2 × 108 CFU of reconstituted, lyophilized Peru-15 vaccine diluted in CeraVacx buffer or placebo (CeraVacx buffer alone). Approximately 3 months after vaccination, 36 of these volunteers were challenged with approximately 105 CFU of virulent V. cholerae O1 El Tor Inaba strain N16961, prepared from a standardized frozen inoculum. Among vaccinees, 98% showed at least a fourfold increase in vibriocidal antibody titers. After challenge, 5 (42%) of the 12 placebo recipients and none (0%) of the 24 vaccinees had moderate or severe diarrhea (≥3,000 g of diarrheal stool) (P = 0.002; protective efficacy, 100%; lower one-sided 95% confidence limit, 75%). A total of 7 (58%) of the 12 placebo recipients and 1 (4%) of the 24 vaccinees had any diarrhea (P < 0.001; protective efficacy, 93%; lower one-sided 95% confidence limit, 62%). The total number of diarrheal stools, weight of diarrheal stools, incidence of fever, and peak stool V. cholerae excretion among vaccinees were all significantly lower than in placebo recipients. Peru-15 is a well-tolerated and immunogenic oral cholera vaccine that affords protective efficacy against life-threatening cholera diarrhea in a human volunteer challenge model. This vaccine may therefore be a safe and effective tool to prevent cholera in travelers and is a strong candidate for further evaluation to prevent cholera

  3. Generation and Characterization of Live Attenuated Influenza A(H7N9) Candidate Vaccine Virus Based on Russian Donor of Attenuation

    PubMed Central

    Shcherbik, Svetlana; Pearce, Nicholas; Balish, Amanda; Jones, Joyce; Thor, Sharmi; Davis, Charles Todd; Pearce, Melissa; Tumpey, Terrence; Cureton, David; Chen, Li-Mei; Villanueva, Julie; Bousse, Tatiana L.

    2015-01-01

    Background Avian influenza A (H7N9) virus has emerged recently and continues to cause severe disease with a high mortality rate in humans prompting the development of candidate vaccine viruses. Live attenuated influenza vaccines (LAIV) are 6:2 reassortant viruses containing the HA and NA gene segments from wild type influenza viruses to induce protective immune responses and the six internal genes from Master Donor Viruses (MDV) to provide temperature sensitive, cold-adapted and attenuated phenotypes. Methodology/Principal Findings LAIV candidate A/Anhui/1/2013(H7N9)-CDC-LV7A (abbreviated as CDC-LV7A), based on the Russian MDV, A/Leningrad/134/17/57 (H2N2), was generated by classical reassortment in eggs and retained MDV temperature-sensitive and cold-adapted phenotypes. CDC-LV7A had two amino acid substitutions N123D and N149D (H7 numbering) in HA and one substitution T10I in NA. To evaluate the role of these mutations on the replication capacity of the reassortants in eggs, the recombinant viruses A(H7N9)RG-LV1 and A(H7N9)RG-LV2 were generated by reverse genetics. These changes did not alter virus antigenicity as ferret antiserum to CDC-LV7A vaccine candidate inhibited hemagglutination by homologous A(H7N9) virus efficiently. Safety studies in ferrets confirmed that CDC-LV7A was attenuated compared to wild-type A/Anhui/1/2013. In addition, the genetic stability of this vaccine candidate was examined in eggs and ferrets by monitoring sequence changes acquired during virus replication in the two host models. No changes in the viral genome were detected after five passages in eggs. However, after ten passages additional mutations were detected in the HA gene. The vaccine candidate was shown to be stable in the ferret model; post-vaccination sequence data analysis showed no changes in viruses collected in nasal washes present at day 5 or day 7. Conclusions/Significance Our data indicate that the A/Anhui/1/2013(H7N9)-CDC-LV7A reassortant virus is a safe and

  4. Live attenuated Salmonella enterica serovar Choleraesuis vaccine vector displaying regulated delayed attenuation and regulated delayed antigen synthesis to confer protection against Streptococcus suis in mice.

    PubMed

    Ji, Zhenying; Shang, Jing; Li, Yuan; Wang, Shifeng; Shi, Huoying

    2015-09-11

    Salmonella enterica serotype Choleraesuis (S. Choleraesuis) and Streptococcus suis (S. suis) are important swine pathogens. Development of a safe and effective attenuated S. Choleraesuis vaccine vector would open a new window to prevent and control pig diseases. To achieve this goal, the mannose and arabinose regulated delayed attenuated systems (RDAS), Δpmi and ΔPcrp::TT araC PBADcrp, were introduced into the wild type S. Choleraesuis strain C78-3. We also introduced ΔrelA::araC PBADlacI TT to achieve regulated delayed antigen synthesis and ΔasdA to constitute a balanced-lethal plasmid system. The safety and immunogenicity of the resulted RDAS S. Choleraesuis strain rSC0011 carrying 6-phosphogluconate dehydrogenase (6-PGD) of S. suis serotype 2 (SS2) were evaluated in vitro and in vivo. Compared with the wild type parent strain C78-3 and vaccine strain C500, a live attenuated S. Choleraesuis vaccine licensed for piglet in China, the results showed that the survival curves of the vaccine strain rSC0011 were similar to those of strains C78-3 and C500 at the early stage of infection, but lower than those of C78-3 and higher than those of C500 at the later stage in both porcine alveolar macrophages and peripheral porcine monocytes. The LD50 of the RDAS strains rSC0011 by oral route in mice was close to that of C500 and 10,000-fold higher than that of C78-3. Similar results were achieved by intraperitoneal (i.p.) route, suggesting that the RDAS strains rSC0011 achieved similar attenuation as C500. However, the RDAS strain rSC0011 was superior to C500 in colonization of Peyer's patches. Adult mice orally immunized with strain rSC0011 carrying a plasmid expression 6-phosphogluconate dehydrogenase (6-PGD) gene from SS2 developed strong immune responses against 6-PGD and Salmonella antigens, and conferred high protection against i.p. challenge with SS2.

  5. Effects of the live attenuated measles-mumps-rubella booster vaccination on disease activity in patients with juvenile idiopathic arthritis: a randomized trial.

    PubMed

    Heijstek, Marloes W; Kamphuis, Sylvia; Armbrust, Wineke; Swart, Joost; Gorter, Simone; de Vries, Lara D; Smits, Gaby P; van Gageldonk, Pieter G; Berbers, Guy A M; Wulffraat, Nico M

    2013-06-19

    The immunogenicity and the effects of live attenuated measles-mumps-rubella (MMR) vaccination on disease activity in patients with juvenile idiopathic arthritis (JIA) are matters of concern, especially in patients treated with immunocompromising therapies. To assess whether MMR booster vaccination affects disease activity and to describe MMR booster immunogenicity in patients with JIA. Randomized, multicenter, open-label clinical equivalence trial including 137 patients with JIA aged 4 to 9 years who were recruited from 5 academic hospitals in The Netherlands between May 2008 and July 2011. Patients were randomly assigned to receive MMR booster vaccination (n=68) or no vaccination (control group; n=69). Among patients taking biologics, these treatments were discontinued at 5 times their half-lives prior to vaccination. Disease activity as measured by the Juvenile Arthritis Disease Activity Score (JADAS-27), ranging from 0 (no activity) to 57 (high activity). Disease activity in the year following randomization was compared between revaccinated patients and controls using a linear mixed model. A difference in JADAS-27 of 2.0 was the equivalence margin. Primary immunogenicity outcomes were seroprotection rates and MMR-specific antibody concentrations at 3 and 12 months. Of 137 randomized patients, 131 were analyzed in the modified intention-to-treat analysis, including 60 using methotrexate and 15 using biologics. Disease activity during complete follow-up did not differ between 63 revaccinated patients (JADAS-27, 2.8; 95% CI, 2.1-3.5) and 68 controls (JADAS-27, 2.4; 95% CI, 1.7-3.1), with a difference of 0.4 (95% CI, -0.5 to 1.2), within the equivalence margin of 2.0. At 12 months, seroprotection rates were higher in revaccinated patients vs controls (measles, 100% vs 92% [95% CI, 84%-99%]; mumps, 97% [95% CI, 95%-100%] vs 81% [95% CI, 72%-93%]; and rubella, 100% vs 94% [95% CI, 86%-100%], respectively), as were antibody concentrations against measles (1.63 vs 0

  6. Freeze-dried live attenuated smallpox vaccine prepared in cell culture "LC16-KAKETSUKEN": Post-marketing surveillance study on safety and efficacy compliant with Good Clinical Practice.

    PubMed

    Nishiyama, Yasumasa; Fujii, Tatsuya; Kanatani, Yasuhiro; Shinmura, Yasuhiko; Yokote, Hiroyuki; Hashizume, So

    2015-11-09

    In Japan, production of smallpox vaccine LC16m8 (named LC16-KAKETSUKEN) was restarted and was determined to be maintained as a national stockpile in March 2002. To conduct a post-marketing surveillance study of the vaccination of freeze-dried live attenuated smallpox vaccine prepared in cell culture LC16-KAKETSUKEN using attenuated vaccinia strain LC16m8. The study complied with Good Clinical Practice, focusing on a comparison between primary vaccinees and re-vaccinees. 268 personnel (261 males and 7 females) of the Japan Ground Self-Defense Force were inoculated with LC16-KAKETSUKEN and thereafter adverse events and efficacy were evaluated. Among 268 vaccinee participants, the following vaccinees showed adverse events, none serious: 53 of 196 primary vaccinees (without previous smallpox vaccination), 4 of 71 re-vaccinees (with previous smallpox vaccination) and 1 vaccinee with unknown previous vaccination history. A breakdown of adverse events observed in this study (total 268 vaccinees) showed the following minor or mild adverse events: 52 (19.4%) swelling of axillary lymph node, 4 (1.5%) fever, 2 (0.7%) fatigue, 1 (0.4%) of rash, 14 (5.2%) erythema at the inoculation site, 1 (0.4%) swelling at the inoculation site and 1 (0.4%) autoinoculation. The incidence of adverse events for primary vaccinees (53/196; 27.0%) was significantly higher than for re-vaccinees (4/71; 5.6%). However, the proportion of vaccine take was significantly higher for primary vaccinees (185/196; 94.4%) than for re-vaccinees (58/71; 81.7%). Although the proportion of vaccine take of re-vaccinees was significantly lower than for primary vaccinees due to preexisting immunity by previous vaccination, no significant difference was found in neutralizing antibody titers between primary vaccinees and re-vaccinees at 1, 4 and 7 months after LC16-KAKETSUKEN vaccination. The present post-marketing surveillance study compliant with Good Clinical Practice demonstrated the efficacy and safety of the

  7. Live Attenuated Leishmania donovani Centrin Knock Out Parasites Generate Non-inferior Protective Immune Response in Aged Mice against Visceral Leishmaniasis

    PubMed Central

    Bhattacharya, Parna; Dey, Ranadhir; Dagur, Pradeep K.; Joshi, Amritanshu B.; Ismail, Nevien; Gannavaram, Sreenivas; Debrabant, Alain; Akue, Adovi D.; KuKuruga, Mark A.; Selvapandiyan, Angamuthu; McCoy, John Philip; Nakhasi, Hira L.

    2016-01-01

    Background Visceral leishmaniasis (VL) caused by the protozoan parasite Leishmania donovani causes severe disease. Age appears to be critical in determining the clinical outcome of VL and at present there is no effective vaccine available against VL for any age group. Previously, we showed that genetically modified live attenuated L. donovani parasites (LdCen-/-) induced a strong protective innate and adaptive immune response in young mice. In this study we analyzed LdCen-/- parasite mediated modulation of innate and adaptive immune response in aged mice (18 months) and compared to young (2 months) mice. Methodology Analysis of innate immune response in bone marrow derived dendritic cells (BMDCs) from both young and aged mice upon infection with LdCen-/- parasites, showed significant enhancement of innate effector responses, which consequently augmented CD4+ Th1 cell effector function compared to LdWT infected BMDCs in vitro. Similarly, parasitized splenic dendritic cells from LdCen-/- infected young and aged mice also revealed induction of proinflammatory cytokines (IL-12, IL-6, IFN-γ and TNF) and subsequent down regulation of anti-inflammatory cytokine (IL-10) genes compared to LdWT infected mice. We also evaluated in vivo protection of the LdCen-/- immunized young and aged mice against virulent L. donovani challenge. Immunization with LdCen-/- induced higher IgG2a antibodies, lymphoproliferative response, pro- and anti-inflammatory cytokine responses and stimulated splenocytes for heightened leishmanicidal activity associated with nitric oxide production in young and aged mice. Furthermore, upon virulent L. donovani challenge, LdCen-/- immunized mice from both age groups displayed multifunctional Th1-type CD4 and cytotoxic CD8 T cells correlating to a significantly reduced parasite burden in the spleen and liver compared to naïve mice. It is interesting to note that even though there was no difference in the LdCen-/- induced innate response in dendritic cells

  8. Autoimmunity and Immunodeficiency.

    PubMed

    Dosanjh, Amrita

    2015-11-01

    The references provided include data from evidence A and B studies based on the relevant populations. Because many primary immunodeficiencies associated with autoimmune diseases are rare, illustrative cases (evidence D) also are referenced. On the basis of level A evidence, immunoglobulin A deficiency is the most common primary immunodeficiency and is associated with defective mucosal immunity and autoimmune disease. On the basis of strong evidence (level A), Wiskott Aldrich syndrome presents early in life and is associated with autoimmune arthritis and anemia. On the basis of strong evidence in the literature, a number of primary immunodeficiencies are associated with defects in T regulatory cell number and development, cytokine aberrancies, and, as a consequence, production of autoantibodies. On the basis of strong evidence (level A) and case reports (level D), complement deficiency can be associated with autoimmune disease, most notably systemic lupus erythematosus.

  9. Testing for Human Immunodeficiency Virus

    MedlinePlus

    ... incisions made in the mother’s abdomen and uterus. Human Immunodeficiency Virus (HIV): A virus that attacks certain cells of the body’s immune system and causes acquired immunodeficiency syndrome (AIDS). Immune System: ...

  10. Autoimmunity in Immunodeficiency

    PubMed Central

    Todoric, Krista; Koontz, Jessica B.; Mattox, Daniel; Tarrant, Teresa K.

    2013-01-01

    Primary immunodeficiencies (PID) comprise a diverse group of clinical disorders with varied genetic defects. Paradoxically, a substantial proportion of PID patients develop autoimmune phenomena in addition to having increased susceptibility to infections from their impaired immunity. Although much of our understanding comes from data gathered through experimental models, there are several well-characterized PID that have improved our knowledge of the pathways that drive autoimmunity. The goals of this review will be to discuss these immunodeficiencies and to review the literature with respect to the proposed mechanisms for autoimmunity within each put forth to date. PMID:23591608

  11. Severe Combined Immunodeficiency Disorders.

    PubMed

    Chinn, Ivan K; Shearer, William T

    2015-11-01

    Severe combined immunodeficiency disorders represent pediatric emergencies due to absence of adaptive immune responses to infections. The conditions result from either intrinsic defects in T-cell development (ie, severe combined immunodeficiency disease [SCID]) or congenital athymia (eg, complete DiGeorge anomaly). Hematopoietic stem cell transplant provides the only clinically approved cure for SCID, although gene therapy research trials are showing significant promise. For greatest survival, patients should undergo transplant before 3.5 months of age and before the onset of infections. Newborn screening programs have yielded successful early identification and treatment of infants with SCID and congenital athymia in the United States.

  12. Human immunodeficiency virus.

    PubMed

    Skinner, Anita

    2016-11-23

    What was the nature of the CPD activity, practice-related feedback and/or event and/or experience in your practice? The CPD article discussed the importance of human immunodeficiency virus (HIV) testing and diagnosing the condition as early as possible, so that antiretroviral treatment can be initiated and patient outcomes improved.

  13. Safety and immunogenicity of a recombinant live attenuated tetravalent dengue vaccine (DENVax) in flavivirus-naive healthy adults in Colombia: a randomised, placebo-controlled, phase 1 study

    PubMed Central

    Osorio, Jorge E; Velez, Ivan D; Thomson, Cynthia; Lopez, Liliana; Jimenez, Alejandra; Haller, Aurelia A; Silengo, Shawn; Scott, Jaclyn; Boroughs, Karen L; Stovall, Janae L; Luy, Betty E; Arguello, John; Beatty, Mark E; Santangelo, Joseph; Gordon, Gilad S; Huang, Claire Y-H; Stinchcomb, Dan T

    2015-01-01

    Summary Background Dengue virus is the most serious mosquito-borne viral threat to public health and no vaccines or antiviral therapies are approved for dengue fever. The tetravalent DENVax vaccine contains a molecularly characterised live attenuated dengue serotype-2 virus (DENVax-2) and three recombinant vaccine viruses expressing the prM and E structural genes for serotypes 1, 3, and 4 in the DENVax-2 genetic backbone. We aimed to assess the safety and immunogenicity of tetravalent DENVax formulations. Methods We undertook a randomised, double-blind, phase 1, dose-escalation trial between Oct 11, 2011, and Nov 9, 2011, in the Rionegro, Antioquia, Colombia. The first cohort of participants (aged 18–45 years) were randomly assigned centrally, via block randomisation, to receive a low-dose formulation of DENvax, or placebo, by either subcutaneous or intradermal administration. After a safety assessment, participants were randomly assigned to receive a high-dose DENVax formulation, or placebo, by subcutaneous or intradermal administration. Group assignment was not masked from study pharmacists, but allocation was concealed from participants, nurses, and investigators. Primary endpoints were frequency and severity of injection-site and systemic reactions within 28 days of each vaccination. Secondary endpoints were the immunogenicity of DENVax against all four dengue virus serotypes, and the viraemia due to each of the four vaccine components after immunisation. Analysis was by intention to treat for safety and per protocol for immunogenicity. Because of the small sample size, no detailed comparison of adverse event rates were warranted. The trial is registered with ClinicalTrials.gov, number NCT01224639. Findings We randomly assigned 96 patients to one of the four study groups: 40 participants (42%) received low-dose vaccine and eight participants (8%) received placebo in the low-dose groups; 39 participants (41%) received high-dose vaccine, with nine (9

  14. [Analysis of protective effect of using chickenpox live attenuated vaccine among 4-17 years old children in Minhang district, Shanghai].

    PubMed

    Du, Yan; Yu, Feng; Zhang, Liping; Wang, Xi; Jin, Baofang; Wang, Ye; Mei, Kewen; Lu, Jia; Jiang, Lufang

    2014-12-01

    To survey on the vaccination of varicella live attenuated vaccine among 4-17 children in Minhang District, and analyze the protective effect against varicella. We collected outbreak chickenpox cases reported from infectious disease report system and surveillance units in Minhang district from 1st May in 2012 to 30th Apr in 2013. The 1: 3 matched case-control study was conducted to questionnaire the legal guardian of the cases and control group, and calculate the protective effect and effective term of protection. The survey included vaccination, chickenpox exposure history, previous history of varicella illness, suffering from the symptoms of chickenpox, the vaccinations brand, etc. The criteria of accepted case were those healthy students who were in the same class with those chickenpox cases. The accepted matched controlling data were those children who were from the same class with outbreak chickenpox cases without varicelliform eruption, similar live condition, the closest house, the same gender, the closest age. This study investigated 390 cases of patients and the control group included 1 170 cases. Chi-square test was used to compare the vaccination of cases and controls, as well as the incidence of chickenpox vaccination different brands VarV, Mantel-Haenzel chi-square test was applied to compare the protective effect of the two groups. VarV overall vaccination rate was 68.3% (1 065/1 560), among them, the case group coverage was 45.1% (176/390), significantly lower than the control group (76.0% (889/1 170)) (χ² = 128.55, P < 0.01). The coverage in children of 4-10 years old group was 88.4% (375/424), significantly higher than the 11-17 years old group (60.7% (690/1 136)) (χ² = 109.40, P < 0.01). The overall protective effect of VarV was 78.10% (71.82%-82.98%).Vaccinated group incidence ratio was 16.5% (176/1 065), significantly lower than the unvaccinated group (43.2% (214/495)) (χ² = 128.55, P < 0.01). The chickenpox risk of the children who were

  15. The Long-Term Safety, Public Health Impact, and Cost-Effectiveness of Routine Vaccination with a Recombinant, Live-Attenuated Dengue Vaccine (Dengvaxia): A Model Comparison Study

    PubMed Central

    Longini, Ira; Lourenco, Jose; Pearson, Carl A. B.; Reiner, Robert C.; Mier-y-Terán-Romero, Luis; Vannice, Kirsten

    2016-01-01

    Background Large Phase III trials across Asia and Latin America have recently demonstrated the efficacy of a recombinant, live-attenuated dengue vaccine (Dengvaxia) over the first 25 mo following vaccination. Subsequent data collected in the longer-term follow-up phase, however, have raised concerns about a potential increase in hospitalization risk of subsequent dengue infections, in particular among young, dengue-naïve vaccinees. We here report predictions from eight independent modelling groups on the long-term safety, public health impact, and cost-effectiveness of routine vaccination with Dengvaxia in a range of transmission settings, as characterised by seroprevalence levels among 9-y-olds (SP9). These predictions were conducted for the World Health Organization to inform their recommendations on optimal use of this vaccine. Methods and Findings The models adopted, with small variations, a parsimonious vaccine mode of action that was able to reproduce quantitative features of the observed trial data. The adopted mode of action assumed that vaccination, similarly to natural infection, induces transient, heterologous protection and, further, establishes a long-lasting immunogenic memory, which determines disease severity of subsequent infections. The default vaccination policy considered was routine vaccination of 9-y-old children in a three-dose schedule at 80% coverage. The outcomes examined were the impact of vaccination on infections, symptomatic dengue, hospitalised dengue, deaths, and cost-effectiveness over a 30-y postvaccination period. Case definitions were chosen in accordance with the Phase III trials. All models predicted that in settings with moderate to high dengue endemicity (SP9 ≥ 50%), the default vaccination policy would reduce the burden of dengue disease for the population by 6%–25% (all simulations: –3%–34%) and in high-transmission settings (SP9 ≥ 70%) by 13%–25% (all simulations: 10%– 34%). These endemicity levels are

  16. The Long-Term Safety, Public Health Impact, and Cost-Effectiveness of Routine Vaccination with a Recombinant, Live-Attenuated Dengue Vaccine (Dengvaxia): A Model Comparison Study.

    PubMed

    Flasche, Stefan; Jit, Mark; Rodríguez-Barraquer, Isabel; Coudeville, Laurent; Recker, Mario; Koelle, Katia; Milne, George; Hladish, Thomas J; Perkins, T Alex; Cummings, Derek A T; Dorigatti, Ilaria; Laydon, Daniel J; España, Guido; Kelso, Joel; Longini, Ira; Lourenco, Jose; Pearson, Carl A B; Reiner, Robert C; Mier-Y-Terán-Romero, Luis; Vannice, Kirsten; Ferguson, Neil

    2016-11-01

    Large Phase III trials across Asia and Latin America have recently demonstrated the efficacy of a recombinant, live-attenuated dengue vaccine (Dengvaxia) over the first 25 mo following vaccination. Subsequent data collected in the longer-term follow-up phase, however, have raised concerns about a potential increase in hospitalization risk of subsequent dengue infections, in particular among young, dengue-naïve vaccinees. We here report predictions from eight independent modelling groups on the long-term safety, public health impact, and cost-effectiveness of routine vaccination with Dengvaxia in a range of transmission settings, as characterised by seroprevalence levels among 9-y-olds (SP9). These predictions were conducted for the World Health Organization to inform their recommendations on optimal use of this vaccine. The models adopted, with small variations, a parsimonious vaccine mode of action that was able to reproduce quantitative features of the observed trial data. The adopted mode of action assumed that vaccination, similarly to natural infection, induces transient, heterologous protection and, further, establishes a long-lasting immunogenic memory, which determines disease severity of subsequent infections. The default vaccination policy considered was routine vaccination of 9-y-old children in a three-dose schedule at 80% coverage. The outcomes examined were the impact of vaccination on infections, symptomatic dengue, hospitalised dengue, deaths, and cost-effectiveness over a 30-y postvaccination period. Case definitions were chosen in accordance with the Phase III trials. All models predicted that in settings with moderate to high dengue endemicity (SP9 ≥ 50%), the default vaccination policy would reduce the burden of dengue disease for the population by 6%-25% (all simulations: -3%-34%) and in high-transmission settings (SP9 ≥ 70%) by 13%-25% (all simulations: 10%- 34%). These endemicity levels are representative of the participating sites in

  17. Evaluation of replication, immunogenicity and protective efficacy of a live attenuated cold-adapted pandemic H1N1 influenza virus vaccine in non-human primates.

    PubMed

    Boonnak, Kobporn; Paskel, Myeisha; Matsuoka, Yumiko; Vogel, Leatrice; Subbarao, Kanta

    2012-08-17

    We studied the replication of influenza A/California/07/09 (H1N1) wild type (CA09wt) virus in two non-human primate species and used one of these models to evaluate the immunogenicity and protective efficacy of a live attenuated cold-adapted vaccine, which contains the hemagglutinin and neuraminidase from the H1N1 wild type (wt) virus and six internal protein gene segments of the A/Ann Arbor/6/60 cold-adapted (ca) master donor virus. We infected African green monkeys (AGMs) and rhesus macaques with 2×10(6) TCID(50) of CA09wt and CA09ca influenza viruses. The virus CA09wt replicated in the upper respiratory tract of all animals but the titers in upper respiratory tract tissues of rhesus macaques were significant higher than in AGMs (mean peak titers 10(4.5) TCID(50)/g and 10(2.0) TCID(50)/g on days 4 and 2 post-infection, respectively; p<0.01). Virus replication was observed in the lungs of all rhesus macaques (10(2.0)-10(5.4) TCID(50)/g) whereas only 2 out of 4 AGMs had virus recovered from the lungs (10(2.5)-10(3.5) TCID(50)/g). The CA09ca vaccine virus was attenuated and highly restricted in replication in both AGMs and rhesus macaques. We evaluated the immunogenicity and protective efficacy of the CA09ca vaccine in rhesus macaques because CA09wt virus replicated more efficiently in this species. One or two doses of vaccine were administered intranasally and intratracheally to rhesus macaques. For the two-dose group, the vaccine was administered 4-weeks apart. Immunogenicity was assessed by measuring hemagglutination-inhibiting (HAI) antibodies in the serum and specific IgA antibodies to CA09wt virus in the nasal wash. One or two doses of the vaccine elicited a significant rise in HAI titers (range 40-320). Two doses of CA09ca elicited higher pH1N1-specific IgA titers than in the mock-immunized group (p<0.01). Vaccine efficacy was assessed by comparing titers of CA09wt challenge virus in the respiratory tract of mock-immunized and CA09ca vaccinated monkeys

  18. Breakthrough Virus Neutralization Resistance as a Correlate of Protection in a Nonhuman Primate Heterologous Simian Immunodeficiency Virus Vaccine Challenge Study.

    PubMed

    Lee, Fang-Hua; Mason, Rosemarie; Welles, Hugh; Learn, Gerald H; Keele, Brandon F; Roederer, Mario; Bar, Katharine J

    2015-12-01

    Comprehensive assessments of immune correlates of protection in human immunodeficiency virus (HIV) vaccine trials are essential to vaccine design. Neutralization sieve analysis compares the neutralization sensitivity of the breakthrough transmitted/founder (TF) viruses from vaccinated and control animals to infer the molecular mechanisms of vaccine protection. Here, we report a robust neutralization sieve effect in a nonhuman primate simian immunodeficiency virus (SIV) vaccine trial (DNA prime/recombinant adenovirus type 5 [rAd5] boost) (VRC-10-332) that demonstrated substantial protective efficacy and revealed a genetic signature of neutralization resistance in the C1 region of env. We found significant enrichment for neutralization resistance in the vaccine compared to control breakthrough TF viruses when tested with plasma from vaccinated study animals, plasma from chronically SIV-infected animals, and a panel of SIV-specific monoclonal antibodies targeting six discrete Env epitopes (P < 0.008 for all comparisons). Neutralization resistance was significantly associated with the previously identified genetic signature of resistance (P < 0.0001), and together, the results identify virus neutralization as a correlate of protection. These findings further demonstrate the in vivo relevance of our previous in vitro analyses of the SIVsmE660 challenge stock, which revealed a broad range of neutralization sensitivities of its component viruses. In sum, this report demonstrates proof-of-concept that phenotypic sieve analyses can elucidate mechanistic correlates of immune protection following vaccination and raises a cautionary note for SIV and SHIV (simian-human immunodeficiency virus) vaccine studies that employ challenge strains with envelope glycoproteins that fail to exhibit neutralization resistance profiles typical of TF viruses. With more than 2 million new infections annually, the development of an effective vaccine against HIV-1 is a global health priority

  19. Breakthrough Virus Neutralization Resistance as a Correlate of Protection in a Nonhuman Primate Heterologous Simian Immunodeficiency Virus Vaccine Challenge Study

    PubMed Central

    Lee, Fang-Hua; Mason, Rosemarie; Welles, Hugh; Learn, Gerald H.; Keele, Brandon F.; Roederer, Mario

    2015-01-01

    ABSTRACT Comprehensive assessments of immune correlates of protection in human immunodeficiency virus (HIV) vaccine trials are essential to vaccine design. Neutralization sieve analysis compares the neutralization sensitivity of the breakthrough transmitted/founder (TF) viruses from vaccinated and control animals to infer the molecular mechanisms of vaccine protection. Here, we report a robust neutralization sieve effect in a nonhuman primate simian immunodeficiency virus (SIV) vaccine trial (DNA prime/recombinant adenovirus type 5 [rAd5] boost) (VRC-10-332) that demonstrated substantial protective efficacy and revealed a genetic signature of neutralization resistance in the C1 region of env. We found significant enrichment for neutralization resistance in the vaccine compared to control breakthrough TF viruses when tested with plasma from vaccinated study animals, plasma from chronically SIV-infected animals, and a panel of SIV-specific monoclonal antibodies targeting six discrete Env epitopes (P < 0.008 for all comparisons). Neutralization resistance was significantly associated with the previously identified genetic signature of resistance (P < 0.0001), and together, the results identify virus neutralization as a correlate of protection. These findings further demonstrate the in vivo relevance of our previous in vitro analyses of the SIVsmE660 challenge stock, which revealed a broad range of neutralization sensitivities of its component viruses. In sum, this report demonstrates proof-of-concept that phenotypic sieve analyses can elucidate mechanistic correlates of immune protection following vaccination and raises a cautionary note for SIV and SHIV (simian-human immunodeficiency virus) vaccine studies that employ challenge strains with envelope glycoproteins that fail to exhibit neutralization resistance profiles typical of TF viruses. IMPORTANCE With more than 2 million new infections annually, the development of an effective vaccine against HIV-1 is a global

  20. AIDS: acquired immunodeficiency syndrome.

    PubMed Central

    Gilmore, N. J.; Beaulieu, R.; Steben, M.; Laverdière, M.

    1983-01-01

    Acquired immunodeficiency syndrome, or AIDS, is a new illness that occurs in previously healthy individuals. It is characterized by immunodeficiency, opportunistic infections and unusual malignant diseases. Life-threatening single or multiple infections with viruses, mycobacteria, fungi or protozoa are common. A rare neoplasm, Kaposi's sarcoma, has developed in approximately one third of patients with AIDS. More than 800 cases of AIDS have been reported in North America, over 24 of them in Canada. The majority of patients are male homosexuals, although AIDS has also developed in abusers of intravenously administered drugs, Haitian immigrants, individuals with hemophilia, recipients of blood transfusions, prostitutes, and infants, spouses and partners of patients with AIDS. The cause of AIDS is unknown, but the features are consistent with an infectious process. Early diagnosis can be difficult owing to the nonspecific symptoms and signs of the infections and malignant diseases. Therefore, vigilance by physicians is of utmost importance. PMID:6342737

  1. AIDS: acquired immunodeficiency syndrome *

    PubMed Central

    Gilmore, N.J.; Beaulieu, R.; Steben, M.; Laverdière, M.

    1992-01-01

    Acquired immunodeficiency syndrome, or AIDS, is a new illness that occurs in previously healthy individuals. It is characterized by immunodeficiency, opportunistic infections and unusual malignant diseases. Life-threatening single or multiple infections with viruses, mycobacteria, fungi or protozoa are common. A rare neoplasm, Kaposi's sarcoma, has developed in approximately one third of patients with AIDS. More than 800 cases of AIDS have been reported in North America, over 24 of them in Canada. The majority of patients are male homosexuals, although AIDS has also developed in abusers of intravenously administered drugs, Haitian immigrants, individuals with hemophilia, recipients of blood transfusions, prostitutes, and infants, spouses and partners of patients with AIDS. The cause of AIDS is unknown, but the features are consistent with an infectious process. Early diagnosis can be difficult owing to the nonspecific symptoms and signs of the infections and malignant diseases. Therefore, vigilance by physicians is of the utmost importance. PMID:1544049

  2. Primary immunodeficiencies: 2009 update

    PubMed Central

    Notarangelo, Luigi D.; Fischer, Alain; Geha, Raif. S.; Casanova, Jean-Laurent; Chapel, Helen; Conley, Mary Ellen; Cunningham-Rundles, Charlotte; Etzioni, Amos; Hammartröm, Lennart; Nonoyama, Shigeaki; Ochs, Hans D.; Puck, Jennifer; Roifman, Chaim; Seger, Reinhard; Wedgwood, Josiah

    2009-01-01

    More than 50 years after Ogdeon Bruton’s discovery of congenital agammaglobulinemia, human primary immunodeficiencies (PIDs) continue to unravel novel molecular and cellular mechanisms that govern development and function of the human immune system. This report provides the updated classification of PIDs, that has been compiled by the International Union of Immunological Societies (IUIS) Expert Committee of Primary Immunodeficiencies after its biannual meeting, in Dublin (Ireland) in June 2009. Since the appearance of the last classification in 2007, novel forms of PID have been discovered, and additional pathophysiology mechanisms that account for PID in humans have been unraveled. Careful analysis and prompt recognition of these disorders is essential to prompt effective forms of treatment and thus to improve survival and quality of life in patients affected with PIDs. PMID:20004777

  3. [Basics of primary immunodeficiencies].

    PubMed

    Hernández-Martínez, Claudia; Espinosa-Rosales, Francisco; Espinosa-Padilla, Sara Elva; Hernández-Martínez, Ana Rosa; Blancas-Galicia, Lizbeth

    2016-01-01

    Primary immunodeficiencies (PID) are a heterogeneous group of inherited disorders, the etiology are the defects in the development or function of the immune system. The principal PID manifestations are the infections in early age, malignancy and diseases of immune dysregulation as autoimmunity and allergy. PIDs are genetics disorders and most of them are inherited as autosomal recessive, also this group of diseases is more prevalent in males and in childhood. The antibody immunodeficiency is the PID more common in adults. The more frequent disorders are the infections in the respiratory tract, abscesses, candidiasis, diarrhea, BCGosis etc. Initial approach included a complete blood count and quantification of immunoglobulins. The delay in diagnosis could be explained due to a perception that the recurrent infections are normal process or think that they are exclusively of childhood. The early diagnosis of PID by primary care physicians is important to opportune treatment and better prognosis.

  4. A Phase I Clinical Study of a Live Attenuated Bordetella pertussis Vaccine - BPZE1; A Single Centre, Double-Blind, Placebo-Controlled, Dose-Escalating Study of BPZE1 Given Intranasally to Healthy Adult Male Volunteers

    PubMed Central

    Thorstensson, Rigmor; Trollfors, Birger; Al-Tawil, Nabil; Jahnmatz, Maja; Bergström, Jakob; Ljungman, Margaretha; Törner, Anna; Wehlin, Lena; Van Broekhoven, Annie; Bosman, Fons; Debrie, Anne-Sophie; Mielcarek, Nathalie; Locht, Camille

    2014-01-01

    Background Acellular pertussis vaccines do not control pertussis. A new approach to offer protection to infants is necessary. BPZE1, a genetically modified Bordetella pertussis strain, was developed as a live attenuated nasal pertussis vaccine by genetically eliminating or detoxifying 3 toxins. Methods We performed a double-blind, placebo-controlled, dose-escalating study of BPZE1 given intranasally for the first time to human volunteers, the first trial of a live attenuated bacterial vaccine specifically designed for the respiratory tract. 12 subjects per dose group received 103, 105 or 107 colony-forming units as droplets with half of the dose in each nostril. 12 controls received the diluent. Local and systemic safety and immune responses were assessed during 6 months, and nasopharyngeal colonization with BPZE1 was determined with repeated cultures during the first 4 weeks after vaccination. Results Colonization was seen in one subject in the low dose, one in the medium dose and five in the high dose group. Significant increases in immune responses against pertussis antigens were seen in all colonized subjects. There was one serious adverse event not related to the vaccine. Other adverse events were trivial and occurred with similar frequency in the placebo and vaccine groups. Conclusions BPZE1 is safe in healthy adults and able to transiently colonize the nasopharynx. It induces immune responses in all colonized individuals. BPZE1 can thus undergo further clinical development, including dose optimization and trials in younger age groups. Trial Registration ClinicalTrials.gov NCT01188512 PMID:24421886

  5. Extended safety and efficacy studies of a live attenuated double leucine and pantothenate auxotroph of Mycobacterium tuberculosis as a vaccine candidate

    PubMed Central

    Sampson, Samantha L.; Mansfield, Keith G.; Carville, Angela; Magee, D. Mitchell; Quitugua, Teresa; Howerth, Elizabeth W.; Bloom, Barry R.; Hondalus, Mary K.

    2011-01-01

    We have previously described the development of a live, fully attenuated Mycobacterium tuberculosis (Mtb) vaccine candidate strain with two independent attenuating auxotrophic mutations in leucine and pantothenate biosynthesis. In the present work, those studies have been extended to include testing for protective efficacy in a long-term guinea pig survival model and safety testing in the highly tuberculosis susceptible Rhesus macaque. To model the safety of the ΔleuD ΔpanCD strain in HIV-infected human populations, a Simian Immunodeficiency Virus (SIV)-infected Rhesus macaque group was included. Immunization with the non-replicating ΔleuD ΔpanCD conferred long-term protection against challenge with virulent M. tuberculosis equivalent to that afforded by BCG as measured by guinea pig survival. In safety studies, clinical, hematological and bacteriological monitoring of both SIV-positive and SIV-negative Rhesus macaques immunized with ΔleuD ΔpanCD, revealed no vaccine-associated adverse effects. The results support the further development of the ΔleuD ΔpanCD strain as a viable tuberculosis (TB) vaccine candidate. PMID:21549795

  6. Effect of breastfeeding on immunogenicity of oral live-attenuated human rotavirus vaccine: a randomized trial in HIV-uninfected infants in Soweto, South Africa.

    PubMed

    Groome, Michelle J; Moon, Sung-Sil; Velasquez, Daniel; Jones, Stephanie; Koen, Anthonet; van Niekerk, Nadia; Jiang, Baoming; Parashar, Umesh D; Madhi, Shabir A

    2014-04-01

    To investigate the effect of abstention from breastfeeding, for an hour before and after each vaccination, on the immune responses of infants to two doses of rotavirus vaccine. In Soweto, South Africa, mother-infant pairs who were uninfected with human immunodeficiency virus (HIV) were enrolled as they presented for the "6-week" immunizations of the infants. Each infant was randomly assigned to Group 1 - in which breastfeeding was deferred for at least 1 h before and after each dose of rotavirus vaccine - or Group 2 - in which unrestricted breastfeeding was encouraged. Enzyme-linked immunosorbent assays were used to evaluate the titres of rotavirus-specific IgA in samples of serum collected from each infant immediately before each vaccine dose and 1 month after the second dose. Among the infants, a fourfold or greater increase in titres of rotavirus-specific IgA following vaccination was considered indicative of seroconversion. The evaluable infants in Group 1 (n=98) were similar to those in Group 2 (n=106) in their baseline demographic characteristics and their pre-vaccination titres of anti-rotavirus IgA. After the second vaccine doses, geometric mean titres of anti-rotavirus IgA in the sera of Group-1 infants were similar to those in the sera of Group-2 infants (P=0.685) and the frequency of seroconversion in the Group-1 infants was similar to that in the Group-2 infants (P=0.485). Among HIV-uninfected South African infants, abstention from breastfeeding for at least 1 h before and after each vaccination dose had no significant effect on the infants' immune response to a rotavirus vaccine.

  7. Development of a high-yield live attenuated H7N9 influenza virus vaccine that provides protection against homologous and heterologous H7 wild-type viruses in ferrets.

    PubMed

    Chen, Zhongying; Baz, Mariana; Lu, Janine; Paskel, Myeisha; Santos, Celia; Subbarao, Kanta; Jin, Hong; Matsuoka, Yumiko

    2014-06-01

    Live attenuated H7N9 influenza vaccine viruses that possess the hemagglutinin (HA) and neuraminidase (NA) gene segments from the newly emerged wild-type (wt) A/Anhui/1/2013 (H7N9) and six internal protein gene segments from the cold-adapted influenza virus A/Ann Arbor/6/60 (AA ca) were generated by reverse genetics. The reassortant virus containing the original wt A/Anhui/1/2013 HA and NA sequences replicated poorly in eggs. Multiple variants with amino acid substitutions in the HA head domain that improved viral growth were identified by viral passage in eggs and MDCK cells. The selected vaccine virus containing two amino acid changes (N133D/G198E) in the HA improved viral titer by more than 10-fold (reached a titer of 10(8.6) fluorescent focus units/ml) without affecting viral antigenicity. Introduction of these amino acid changes into an H7N9 PR8 reassortant virus also significantly improved viral titers and HA protein yield in eggs. The H7N9 ca vaccine virus was immunogenic in ferrets. A single dose of vaccine conferred complete protection of ferrets from homologous wt A/Anhui/1/2013 (H7N9) and nearly complete protection from heterologous wt A/Netherlands/219/2003 (H7N7) challenge infection. Therefore, this H7N9 live attenuated influenza vaccine (LAIV) candidate has been selected for vaccine manufacture and clinical evaluation to protect humans from wt H7N9 virus infection. In response to the recent avian H7N9 influenza virus infection in humans, we developed a live attenuated H7N9 influenza vaccine (LAIV) with two amino acid substitutions in the viral HA protein that improved vaccine yield by 10-fold in chicken embryonated eggs, the substrate for vaccine manufacture. The two amino acids also improved the antigen yield for inactivated H7N9 vaccines, demonstrating that this finding could great facilitate the efficiency of H7N9 vaccine manufacture. The candidate H7N9 LAIV was immunogenic and protected ferrets against homologous and heterologous wild-type H7 virus

  8. Development of a High-Yield Live Attenuated H7N9 Influenza Virus Vaccine That Provides Protection against Homologous and Heterologous H7 Wild-Type Viruses in Ferrets

    PubMed Central

    Baz, Mariana; Lu, Janine; Paskel, Myeisha; Santos, Celia; Subbarao, Kanta; Jin, Hong; Matsuoka, Yumiko

    2014-01-01

    ABSTRACT Live attenuated H7N9 influenza vaccine viruses that possess the hemagglutinin (HA) and neuraminidase (NA) gene segments from the newly emerged wild-type (wt) A/Anhui/1/2013 (H7N9) and six internal protein gene segments from the cold-adapted influenza virus A/Ann Arbor/6/60 (AA ca) were generated by reverse genetics. The reassortant virus containing the original wt A/Anhui/1/2013 HA and NA sequences replicated poorly in eggs. Multiple variants with amino acid substitutions in the HA head domain that improved viral growth were identified by viral passage in eggs and MDCK cells. The selected vaccine virus containing two amino acid changes (N133D/G198E) in the HA improved viral titer by more than 10-fold (reached a titer of 108.6 fluorescent focus units/ml) without affecting viral antigenicity. Introduction of these amino acid changes into an H7N9 PR8 reassortant virus also significantly improved viral titers and HA protein yield in eggs. The H7N9 ca vaccine virus was immunogenic in ferrets. A single dose of vaccine conferred complete protection of ferrets from homologous wt A/Anhui/1/2013 (H7N9) and nearly complete protection from heterologous wt A/Netherlands/219/2003 (H7N7) challenge infection. Therefore, this H7N9 live attenuated influenza vaccine (LAIV) candidate has been selected for vaccine manufacture and clinical evaluation to protect humans from wt H7N9 virus infection. IMPORTANCE In response to the recent avian H7N9 influenza virus infection in humans, we developed a live attenuated H7N9 influenza vaccine (LAIV) with two amino acid substitutions in the viral HA protein that improved vaccine yield by 10-fold in chicken embryonated eggs, the substrate for vaccine manufacture. The two amino acids also improved the antigen yield for inactivated H7N9 vaccines, demonstrating that this finding could great facilitate the efficiency of H7N9 vaccine manufacture. The candidate H7N9 LAIV was immunogenic and protected ferrets against homologous and heterologous

  9. Immunodeficiencies caused by infectious diseases.

    PubMed

    Sykes, Jane E

    2010-05-01

    Immunodeficiencies caused by infectious agents may result from disruption of normal host barriers or dysregulation of cellular immunity, the latter serving to promote survival of the infectious agent through immune evasion. Such infections may be followed by opportunistic infections with a variety of other microorganisms. Classic infectious causes of immunodeficiency in companion animals are the immunodeficiency retroviruses, including feline immunodeficiency virus and feline leukemia virus. Other important causes include canine distemper virus; canine parvovirus 2; feline infectious peritonitis virus; rickettsial organisms that infect leukocytes; Leishmania; and fungal pathogens, such as Cryptococcus. Considerable research effort has been invested in understanding the mechanisms of pathogen-induced immunosuppression, with the hope that effective therapies may be developed that reverse the immunodeficiencies developed and in turn assist the host to clear persistent or life-threatening infectious diseases.

  10. Space Flight Immunodeficiency

    NASA Technical Reports Server (NTRS)

    Shearer, William T.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) has had sufficient concern for the well-being of astronauts traveling in space to create the National Space Biomedical Research Institute (NSBRI), which is investigating several areas of biomedical research including those of immunology. As part of the Immunology, Infection, and Hematology Team, the co-investigators of the Space Flight Immunodeficiency Project began their research projects on April 1, 1998 and are now just into the second year of work. Two areas of research have been targeted: 1) specific immune (especially antibody) responses and 2) non-specific inflammation and adhesion. More precise knowledge of these two areas of research will help elucidate the potential harmful effects of space travel on the immune system, possibly sufficient to create a secondary state of immunodeficiency in astronauts. The results of these experiments are likely to lead to the delineation of functional alterations in antigen presentation, specific immune memory, cytokine regulation of immune responses, cell to cell interactions, and cell to endothelium interactions.

  11. Space Flight Immunodeficiency

    NASA Technical Reports Server (NTRS)

    Shearer, William T.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) has had sufficient concern for the well-being of astronauts traveling in space to create the National Space Biomedical Research Institute (NSBRI), which is investigating several areas of biomedical research including those of immunology. As part of the Immunology, Infection, and Hematology Team, the co-investigators of the Space Flight Immunodeficiency Project began their research projects on April 1, 1998 and are now just into the second year of work. Two areas of research have been targeted: 1) specific immune (especially antibody) responses and 2) non-specific inflammation and adhesion. More precise knowledge of these two areas of research will help elucidate the potential harmful effects of space travel on the immune system, possibly sufficient to create a secondary state of immunodeficiency in astronauts. The results of these experiments are likely to lead to the delineation of functional alterations in antigen presentation, specific immune memory, cytokine regulation of immune responses, cell to cell interactions, and cell to endothelium interactions.

  12. Neutropenia in primary immunodeficiency

    PubMed Central

    Sokolic, Robert

    2016-01-01

    Purpose of review Neutropenia is a feature of several primary immunodeficiency diseases (PIDDs). Because of the diverse pathophysiologies of the PIDDs and the rarity of each disorder, data are often lacking, leading to the necessity of empiric treatment. Recent developments in the understanding of neutropenia in several of the PIDDs make a review of the data timely. Recent findings The category of severe congenital neutropenia continues to expand. Mutations in G6PC3 have been identified as the cause of neutropenia in a minority of previously molecularly undefined cases. Recent advances have broadened our understanding of the pathophysiology and the clinical expression of this disorder. A possible function of the C16orf57 gene has been hypothesized that may explain the clinical overlap between Clerucuzio-type poikiloderma with neutropenia and other marrow diseases. Plerixafor has been shown to be a potentially useful treatment in the warts, hypogammaglobulinemia, infection, and myelokathexis syndrome. Investigations of patients with adenosine deaminase deficient severe combined immunodeficiency have identified neutropenia, and particularly susceptibility to myelotoxins, as a feature of this disorder. Granulocyte-colony stimulating factor is the treatment of choice for neutropenia in PIDD, whereas hematopoietic cell transplantation is the only curative option. Summary The number of PIDDs associated with neutropenia has increased, as has our understanding of the range of phenotypes. Additional data and hypotheses have been generated helping to explain the diversity of presentations of neutropenia in PIDDs. PMID:23196894

  13. Common Variable Immunodeficiency.

    PubMed

    Saikia, Biman; Gupta, Sudhir

    2016-04-01

    Common variable immunodeficiency (CVID) is the most common primary immunodeficiency of young adolescents and adults which also affects the children. The disease remains largely under-diagnosed in India and Southeast Asian countries. Although in majority of cases it is sporadic, disease may be inherited in a autosomal recessive pattern and rarely, in autosomal dominant pattern. Patients, in addition to frequent sino-pulmonary infections, are also susceptible to various autoimmune diseases and malignancy, predominantly lymphoma and leukemia. Other characteristic lesions include lymphocytic and granulomatous interstitial lung disease, and nodular lymphoid hyperplasia of gut. Diagnosis requires reduced levels of at least two immunoglobulin isotypes: IgG with IgA and/or IgM and impaired specific antibody response to vaccines. A number of gene mutations have been described in CVID; however, these genetic alterations account for less than 20% of cases of CVID. Flow cytometry aptly demonstrates a disturbed B cell homeostasis with reduced or absent memory B cells and increased CD21(low) B cells and transitional B cell populations. Approximately one-third of patients with CVID also display T cell functional defects. Immunoglobulin therapy remains the mainstay of treatment. Immunologists and other clinicians in India and other South East Asian countries need to be aware of CVID so that early diagnosis can be made, as currently, majority of these patients still go undiagnosed.

  14. The Live Attenuated Cholera Vaccine CVD 103-HgR Primes Responses to the Toxin-Coregulated Pilus Antigen TcpA in Subjects Challenged with Wild-Type Vibrio cholerae.

    PubMed

    Mayo-Smith, Leslie M; Simon, Jakub K; Chen, Wilbur H; Haney, Douglas; Lock, Michael; Lyon, Caroline E; Calderwood, Stephen B; Kirkpatrick, Beth D; Cohen, Mitchell; Levine, Myron M; Gurwith, Marc; Harris, Jason B

    2017-01-01

    One potential advantage of live attenuated bacterial vaccines is the ability to stimulate responses to antigens which are only expressed during the course of infection. To determine whether the live attenuated cholera vaccine CVD 103-HgR (Vaxchora) results in antibody responses to the in vivo-induced toxin-coregulated pilus antigen TcpA, we measured IgA and IgG responses to Vibrio cholerae O1 El Tor TcpA in a subset of participants in a recently reported experimental challenge study. Participants were challenged with V. cholerae O1 El Tor Inaba N16961 either 10 days or 90 days after receiving the vaccine or a placebo. Neither vaccination nor experimental infection with V. cholerae alone resulted in a robust TcpA IgG or IgA response, but each did elicit a strong response to cholera toxin. However, compared to placebo recipients, vaccinees had a marked increase in IgG TcpA antibodies following the 90-day challenge, suggesting that vaccination with CVD 103-HgR resulted in priming for a subsequent response to TcpA. No such difference between vaccine and placebo recipients was observed for volunteers challenged 10 days after vaccination, indicating that this was insufficient time for vaccine-induced priming of the TcpA response. The priming of the response to TcpA and potentially other antigens expressed in vivo by attenuated V. cholerae may have relevance to the maintenance of immunity in areas where cholera is endemic.

  15. Dengue virus-specific human CD4+ T-lymphocyte responses in a recipient of an experimental live-attenuated dengue virus type 1 vaccine: bulk culture proliferation, clonal analysis, and precursor frequency determination.

    PubMed Central

    Green, S; Kurane, I; Edelman, R; Tacket, C O; Eckels, K H; Vaughn, D W; Hoke, C H; Ennis, F A

    1993-01-01

    We analyzed the CD4+ T-lymphocyte responses to dengue, West Nile, and yellow fever viruses 4 months after immunization of a volunteer with an experimental live-attenuated dengue virus type 1 vaccine (DEN-1 45AZ5). We examined bulk culture proliferation to noninfectious antigens, determined the precursor frequency of specific CD4+ T cells by limiting dilution, and established and analyzed CD4+ T-cell clones. Bulk culture proliferation was predominantly dengue virus type 1 specific with a lesser degree of cross-reactive responses to other dengue virus serotypes, West Nile virus, and yellow fever virus. Precursor frequency determination by limiting dilution in the presence of noninfectious dengue virus antigens revealed a frequency of antigen-reactive cells of 1 in 1,686 peripheral blood mononuclear cells (PBMC) for dengue virus type 1, 1 in 9,870 PBMC for dengue virus type 3, 1 in 14,053 PBMC for dengue virus type 2, and 1 in 17,690 PBMC for dengue virus type 4. Seventeen CD4+ T-cell clones were then established by using infectious dengue virus type 1 as antigen. Two patterns of dengue virus specificity were found in these clones. Thirteen clones were dengue virus type 1 specific, and four clones recognized both dengue virus types 1 and 3. Analysis of human leukocyte antigen (HLA) restriction revealed that five clones are HLA-DRw52 restricted, one clone is HLA-DP3 restricted, and one clone is HLA-DP4 restricted. These results indicate that in this individual, the CD4+ T-lymphocyte responses to immunization with live-attenuated dengue virus type 1 vaccine are predominantly serotype specific and suggest that a multivalent vaccine may be necessary to elicit strong serotype-cross-reactive CD4+ T-lymphocyte responses in such individuals. PMID:8371350

  16. Concomitant or sequential administration of live attenuated Japanese encephalitis chimeric virus vaccine and yellow fever 17D vaccine: randomized double-blind phase II evaluation of safety and immunogenicity.

    PubMed

    Nasveld, Peter E; Marjason, Joanne; Bennett, Sonya; Aaskov, John; Elliott, Suzanne; McCarthy, Karen; Kanesa-Thasan, Niranjan; Feroldi, Emmanuel; Reid, Mark

    2010-11-01

    A randomized, double-blind, study was conducted to evaluate the safety, tolerability and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) co-administered with live attenuated yellow fever vaccine (YF-17D strain; Stamaril®, Sanofi Pasteur) or administered successively. Participants (n = 108) were randomized to receive: YF followed by JE-CV 30 days later, JE followed by YF 30 days later, or the co-administration of JE and YF followed or preceded by placebo 30 days later or earlier. Placebo was used in a double-dummy fashion to ensure masking. Neutralizing antibody titers against JE-CV, YF-17D and selected wild-type JE strains was determined using a 50% serum-dilution plaque reduction neutralization test. Seroconversion was defined as the appearance of a neutralizing antibody titer above the assay cut-off post-immunization when not present pre-injection at day 0, or a least a four-fold rise in neutralizing antibody titer measured before the pre-injection day 0 and later post vaccination samples. There were no serious adverse events. Most adverse events (AEs) after JE vaccination were mild to moderate in intensity, and similar to those reported following YF vaccination. Seroconversion to JE-CV was 100% and 91% in the JE/YF and YF/JE sequential vaccination groups, respectively, compared with 96% in the co-administration group. All participants seroconverted to YF vaccine and retained neutralizing titers above the assay cut-off at month six. Neutralizing antibodies against JE vaccine were detected in 82-100% of participants at month six. These results suggest that both vaccines may be successfully co-administered simultaneously or 30 days apart.

  17. Feline immunodeficiency virus latency

    PubMed Central

    2013-01-01

    Despite highly effective anti-retroviral therapy, HIV is thought to persist in patients within long-lived cellular reservoirs in the form of a transcriptionally inactive (latent) integrated provirus. Lentiviral latency has therefore come to the forefront of the discussion on the possibility of a cure for HIV infection in humans. Animal models of lentiviral latency provide an essential tool to study mechanisms of latency and therapeutic manipulation. Of the three animal models that have been described, the feline immunodeficiency virus (FIV)-infected cat is the most recent and least characterized. However, several aspects of this model make it attractive for latency research, and it may be complementary to other model systems. This article reviews what is known about FIV latency and chronic FIV infection and how it compares with that of other lentiviruses. It thereby offers a framework for the usefulness of this model in future research aimed at lentiviral eradication. PMID:23829177