Terai, Shuji; Tsuchiya, Atsunori
2017-02-01
The treatment of liver cirrhosis is currently being standardized and developed specifically to reduce activation of hepatic stellate cells (HSCs), inhibit fibrosis, increase degradation of matrix components, and reduce activated myofibroblasts. Cell therapy can be applied in the treatment of liver cirrhosis; however, the characteristic features of this therapy differ from those of other treatments because of the involvement of a living body origin and production of multiple cytokines, chemokines, matrix metalloproteinases (MMPs), and growth factors. Thus, cell therapies can potentially have multiple effects on the damaged liver, including alleviating liver cirrhosis and stimulating liver regeneration with affecting the host cells. Cell therapies initially involved autologous bone marrow cell infusion, and have recently developed to include the use of specific cells such as mesenchymal stem cells and macrophages. The associated molecular mechanisms, routes of administration, possibility of allogeneic cell therapy, and host conditions appropriate for cell therapies are now being extensively analyzed. In this review, we summarize the status and future prospects of cell therapy for liver cirrhosis.
Pathogenesis of liver cirrhosis.
Zhou, Wen-Ce; Zhang, Quan-Bao; Qiao, Liang
2014-06-21
Liver cirrhosis is the final pathological result of various chronic liver diseases, and fibrosis is the precursor of cirrhosis. Many types of cells, cytokines and miRNAs are involved in the initiation and progression of liver fibrosis and cirrhosis. Activation of hepatic stellate cells (HSCs) is a pivotal event in fibrosis. Defenestration and capillarization of liver sinusoidal endothelial cells are major contributing factors to hepatic dysfunction in liver cirrhosis. Activated Kupffer cells destroy hepatocytes and stimulate the activation of HSCs. Repeated cycles of apoptosis and regeneration of hepatocytes contribute to pathogenesis of cirrhosis. At the molecular level, many cytokines are involved in mediation of signaling pathways that regulate activation of HSCs and fibrogenesis. Recently, miRNAs as a post-transcriptional regulator have been found to play a key role in fibrosis and cirrhosis. Robust animal models of liver fibrosis and cirrhosis, as well as the recently identified critical cellular and molecular factors involved in the development of liver fibrosis and cirrhosis will facilitate the development of more effective therapeutic approaches for these conditions.
Pathogenesis of liver cirrhosis
Zhou, Wen-Ce; Zhang, Quan-Bao; Qiao, Liang
2014-01-01
Liver cirrhosis is the final pathological result of various chronic liver diseases, and fibrosis is the precursor of cirrhosis. Many types of cells, cytokines and miRNAs are involved in the initiation and progression of liver fibrosis and cirrhosis. Activation of hepatic stellate cells (HSCs) is a pivotal event in fibrosis. Defenestration and capillarization of liver sinusoidal endothelial cells are major contributing factors to hepatic dysfunction in liver cirrhosis. Activated Kupffer cells destroy hepatocytes and stimulate the activation of HSCs. Repeated cycles of apoptosis and regeneration of hepatocytes contribute to pathogenesis of cirrhosis. At the molecular level, many cytokines are involved in mediation of signaling pathways that regulate activation of HSCs and fibrogenesis. Recently, miRNAs as a post-transcriptional regulator have been found to play a key role in fibrosis and cirrhosis. Robust animal models of liver fibrosis and cirrhosis, as well as the recently identified critical cellular and molecular factors involved in the development of liver fibrosis and cirrhosis will facilitate the development of more effective therapeutic approaches for these conditions. PMID:24966602
Estep, J Michael; O'Reilly, Linda; Grant, Geraldine; Piper, James; Jonsson, Johann; Afendy, Arian; Chandhoke, Vikas; Younossi, Zobair M
2010-02-01
Hepatic stellate cells (HSC) are involved in hepatic fibrogenesis. Cell signaling associated with an insult to the liver affects an HSC transdifferentiation to fibrogenic myofibroblast-like cells. To investigate the transcriptional expression distinguishing HSC and myofibroblast-like cells between livers with and without cirrhosis. Tissue from ten cirrhotic livers (undergoing transplant) and four non-cirrhotic livers from the National Disease Research Interchange underwent cell separation to extract HSC and myofibroblast-like cell populations. Separated cell types as well as LI-90 cells were subjected to microarray analysis. Selected microarray results were verified by quantitative real-time PCR. Differential expression of some genes, such as IL-1beta, IL-1alpha, and IL-6, was associated with both transdifferentiation and disease. Other genes, such as fatty acid 2-hydroxylase only show differential expression in association with disease. Functional analysis supported these findings, indicating some signal transduction pathways (IL-6) are involved in disease and activation, whereas retinoid X receptor signaling in HSC from cirrhotic and non-cirrhotic livers varies in scope and quality. These findings indicate distinct phenotypes for HSC from cirrhotic and non-cirrhotic livers. Furthermore, coordinated differential expression between genes involved in the same signal transduction pathways provides some insight into the mechanisms that may control the balance between fibrogenesis and fibrolysis.
Liver involvement in Langerhans' cell histiocytosis. Case report.
Dina, Ion; Copaescu, Catalin; Herlea, Vlad; Wrba, Fritz; Iacobescu, Claudia
2006-03-01
Langerhans'cell histiocytosis (Histiocytosis X) is a rare disease of unknown cause characterized by oligoclonal proliferation of Langerhans cells. It occurs mostly in children and young adults and involves one or more body systems such as bone, hypothalamus, posterior pituitary gland, lymph nodes, liver or various soft tissues. The diagnosis is always made by a histological approach. We report a case of Langerhans'cell histiocytosis in a young patient with clinical signs of diabetes insipidus and hepatic involvement in whom the immunohistochemical analysis of the liver tissue led to the definitive diagnosis.
Potential involvement of leptin in carcinogenesis of hepatocellular carcinoma.
Wang, Xiu-Jie; Yuan, Shu-Lan; Lu, Qing; Lu, Yan-Rong; Zhang, Jie; Liu, Yan; Wang, Wen-Dong
2004-09-01
To investigate the potential involvement of leptin in carcinogenesis of hepatocellular carcinoma (HCC) and to elucidate the etiology, carcinogenesis and progress of HCC. Expressions of Ob gene product, leptin and its receptor, Ob-R were investigated in 36 cases of HCC specimens and corresponding adjacent non-tumorous liver tissues with immunohistochemical staining. The effect of leptin on proliferation of Chang liver cell line and liver cancer cell line SMMC-7721 was studied with cell proliferation assay (MTT). Leptin expression was detected in 36 cases of adjacent non-tumorous liver tissues (36/36, 100%) with moderate (++) to strong (+++) intensity; and in 72.22%(26/36) of HCC with weaker (+) intensity (P<0.05). Thirty of 36 (83.33%) cases of adjacent non-tumorous liver tissues were positive for Ob-R, with moderate (++) to strong (+++) intensity. In HCC, 11/36 (30.56%) cases were positive, with weak (+) intensity (P<0.05). In cell proliferation assay, leptin inhibited the proliferation of Chang liver cells. The cell survival rate was 10-13% lower than that of the untreated cells (P>0.05). Leptin had little effect on the proliferation of liver cancer cells (P>0.05). High level expression and decreased or absent expression of leptin and its receptor in adjacent non-tumorous liver cells and HCC cells, inhibitory effect of leptin on the proliferation of normal Chang liver cells and no effect of leptin on proliferation of liver cancer cells, may provide new insights into the carcinogenesis and progression of human HCC. It could be assumed that leptin acting as an inhibitor and/or promoter, is involved in the process of carcinogenesis and progress of human HCC. Copyright 2004 The WJG Press ISSN
Is the iron regulatory hormone hepcidin a risk factor for alcoholic liver disease?
Harrison-Findik, Duygu Dee
2009-01-01
Despite heavy consumption over a long period of time, only a small number of alcoholics develop alcoholic liver disease. This alludes to the possibility that other factors, besides alcohol, may be involved in the progression of the disease. Over the years, many such factors have indeed been identified, including iron. Despite being crucial for various important biological processes, iron can also be harmful due to its ability to catalyze Fenton chemistry. Alcohol and iron have been shown to interact synergistically to cause liver injury. Iron-mediated cell signaling has been reported to be involved in the pathogenesis of experimental alcoholic liver disease. Hepcidin is an iron-regulatory hormone synthesized by the liver, which plays a pivotal role in iron homeostasis. Both acute and chronic alcohol exposure suppress hepcidin expression in the liver. The sera of patients with alcoholic liver disease, particularly those exhibiting higher serum iron indices, have also been reported to display reduced prohepcidin levels. Alcohol-mediated oxidative stress is involved in the inhibition of hepcidin promoter activity and transcription in the liver. This in turn leads to an increase in intestinal iron transport and liver iron storage. Hepcidin is expressed primarily in hepatocytes. It is noteworthy that both hepatocytes and Kupffer cells are involved in the progression of alcoholic liver disease. However, the activation of Kupffer cells and TNF-α signaling has been reported not to be involved in the down-regulation of hepcidin expression by alcohol in the liver. Alcohol acts within the parenchymal cells of the liver to suppress the synthesis of hepcidin. Due to its crucial role in the regulation of body iron stores, hepcidin may act as a secondary risk factor in the progression of alcoholic liver disease. The clarification of the mechanisms by which alcohol disrupts iron homeostasis will allow for further understanding of the pathogenesis of alcoholic liver disease. PMID:19291818
Th17 involvement in nonalcoholic fatty liver disease progression to non-alcoholic steatohepatitis.
Chackelevicius, Carla Melisa; Gambaro, Sabrina Eliana; Tiribelli, Claudio; Rosso, Natalia
2016-11-07
The nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. NAFLD encompasses a wide histological spectrum ranging from benign simple steatosis to non-alcoholic steatohepatitis (NASH). Sustained inflammation in the liver is critical in this process. Hepatic macrophages, including liver resident macropaghes (Kupffer cells), monocytes infiltrating the injured liver, as well as specific lymphocytes subsets play a pivotal role in the initiation and perpetuation of the inflammatory response, with a major deleterious impact on the progression of fatty liver to fibrosis. During the last years, Th17 cells have been involved in the development of inflammation not only in liver but also in other organs, such as adipose tissue or lung. Differentiation of a naïve T cell into a Th17 cell leads to pro-inflammatory cytokine and chemokine production with subsequent myeloid cell recruitment to the inflamed tissue. Th17 response can be mitigated by T regulatory cells that secrete anti-inflammatory cytokines. Both T cell subsets need TGF-β for their differentiation and a characteristic plasticity in their phenotype may render them new therapeutic targets. In this review, we discuss the role of the Th17 pathway in NAFLD progression to NASH and to liver fibrosis analyzing different animal models of liver injury and human studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obara, Akio; Fujita, Yoshihito; Abudukadier, Abulizi
Metformin, one of the most commonly used drugs for patients with type 2 diabetes, recently has received much attention regarding its anti-cancer action. It is thought that the suppression of mTOR signaling is involved in metformin's anti-cancer action. Although liver cancer is one of the most responsive types of cancer for reduction of incidence by metformin, the molecular mechanism of the suppression of mTOR in liver remains unknown. In this study, we investigated the mechanism of the suppressing effect of metformin on mTOR signaling and cell proliferation using human liver cancer cells. Metformin suppressed phosphorylation of p70-S6 kinase, and ribosomemore » protein S6, downstream targets of mTOR, and suppressed cell proliferation. We found that DEPTOR, an endogenous substrate of mTOR suppression, is involved in the suppressing effect of metformin on mTOR signaling and cell proliferation in human liver cancer cells. Metformin increases the protein levels of DEPTOR, intensifies binding to mTOR, and exerts a suppressing effect on mTOR signaling. This increasing effect of DEPTOR by metformin is regulated by the proteasome degradation system; the suppressing effect of metformin on mTOR signaling and cell proliferation is in a DEPTOR-dependent manner. Furthermore, metformin exerts a suppressing effect on proteasome activity, DEPTOR-related mTOR signaling, and cell proliferation in an AMPK-dependent manner. We conclude that DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in liver, and could be a novel target for anti-cancer therapy. - Highlights: • We elucidated a novel pathway of metformin's anti-cancer action in HCC cells. • DEPTOR is involved in the suppressing effect of metformin on mTOR signaling. • Metformin increases DEPTOR protein levels via suppression of proteasome activity. • DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action.« less
Hepatosplenic Gamma Delta T-Cell Lymphoma (HSGDTCL): Two Rare Case Reports from Western India.
Madabhavi, Irappa; Modi, Gaurang; Panchal, Harsha; Patel, Apurva; Revannasiddaiah, Swaroop; Anand, Asha; Parikh, Sonia; Joshi, Kshitij; Sarkar, Malay
2017-10-01
Peripheral T cell lymphomas are a heterogeneous group of post-thymic, mature lymphoid malignancies, accounting for approximately 10-15% of all non-Hodgkin's lymphomas. Hepatosplenic T-cell lymphoma (HSGDTCL) is a rare entity, which is characterized by primary extra nodal disease with typical sinusoidal or sinusal infiltration of the liver and the spleen, respectively by expression of the T-cell receptor γδ chain, and by a number of other frequent clinicopathologic features, including aggressive course of disease. Secondary involvement of liver by hematopoietic malignancies is much more common as compared to primary liver involvement. Primary involvement of liver by non- Hodgkin's lymphoma (NHL) is documented and mostly DLBCL (diffuse large B cell lymphoma) type. But, T cell lymphoma primarily arising from liver is very rare. It occurred commonly in immunocompromised patients and prognosis is very poor. Here, we present two case reports of Hepatosplenic gamma-delta T-cell lymphoma (HSGDTCL) and both are immunocompetent patients. Liver biopsy from the mass and subsequent IHC (immunohistochemistry) were performed for the purpose of diagnosis, which were positive for LCA (leukocyte common antigen), CD2 and negative for CD5, CD20 and CD79a. First patient was a 63-year-old female with hepatitis C virus seropositivity presented with liver mass simulating hepatocellular carcinoma. Second patient was a 60-year- old male, chronic alcoholic patient, presented with liver mass and lytic bony lesion in pelvis. Both patients were managed with conventional CHOP (cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisolone) and showed complete response after 4 cycles of chemotherapy. After completion of 6 cycles of chemotherapy, both patients remained under 6-month surveillance period for any recurrence of the disease.
Identification and differentiation of hepatic stem cells during liver development.
Kamiya, Akihide; Gonzalez, Frank J; Nakauchi, Hiromitsu
2006-05-01
Stem cells responsible for maintenance and repair of tissues are found in a number of organs. The liver's remarkable capacity to regenerate after hepatectomy or chemical-induced injury does not involve proliferation of stem cells. However, recent studies suggest that liver stem cells exist in both embryonic and adult livers. Using fluorescence-activated cell sorting and a culture system in which primitive hepatic progenitor cells form colonies, a novel class of cells with the marker profile c-Met(+)CD49f(+/low)c-Kit(-)CD45(-)TER119(-) was found in the developing liver. This class apparently represents the population of cells that form colonies containing distinct hepatocytes and cholangiocytes. When cells in this class are transplanted into the spleen or liver of mice subjected to liver injury, the cells migrate and differentiate into liver parenchymal cells and cholangiocytes that are morphologically and functionally indistinguishable from their native counterparts. During mid-gestation, hematopoietic cells migrate into the liver from a region bounded by aorta, gonad, and mesonephros and produce oncostatin M (OSM). In combination with glucocorticoid hormones, OSM induces maturation of liver stem and progenitor cells, including those of the c-Met(+)CD49f(+/low)c-Kit(-)CD45(-)TER119(-) class. The ability to manipulate the proliferation and differentiation of liver stem cells in vitro will greatly aid in analyzing mechanisms of liver development and offers promise in stem cell therapy of liver diseases.
Role of liver progenitors in liver regeneration
Best, Jan; Manka, Paul; Syn, Wing-Kin; Dollé, Laurent; van Grunsven, Leo A.
2015-01-01
During massive liver injury and hepatocyte loss, the intrinsic regenerative capacity of the liver by replication of resident hepatocytes is overwhelmed. Treatment of this condition depends on the cause of liver injury, though in many cases liver transplantation (LT) remains the only curative option. LT for end stage chronic and acute liver diseases is hampered by shortage of donor organs and requires immunosuppression. Hepatocyte transplantation is limited by yet unresolved technical difficulties. Since currently no treatment is available to facilitate liver regeneration directly, therapies involving the use of resident liver stem or progenitor cells (LPCs) or non-liver stem cells are coming to fore. LPCs are quiescent in the healthy liver, but may be activated under conditions where the regenerative capacity of mature hepatocytes is severely impaired. Non-liver stem cells include embryonic stem cells (ES cells) and mesenchymal stem cells (MSCs). In the first section, we aim to provide an overview of the role of putative cytokines, growth factors, mitogens and hormones in regulating LPC response and briefly discuss the prognostic value of the LPC response in clinical practice. In the latter section, we will highlight the role of other (non-liver) stem cells in transplantation and discuss advantages and disadvantages of ES cells, induced pluripotent stem cells (iPS), as well as MSCs. PMID:25713804
Role of liver progenitors in liver regeneration.
Best, Jan; Manka, Paul; Syn, Wing-Kin; Dollé, Laurent; van Grunsven, Leo A; Canbay, Ali
2015-02-01
During massive liver injury and hepatocyte loss, the intrinsic regenerative capacity of the liver by replication of resident hepatocytes is overwhelmed. Treatment of this condition depends on the cause of liver injury, though in many cases liver transplantation (LT) remains the only curative option. LT for end stage chronic and acute liver diseases is hampered by shortage of donor organs and requires immunosuppression. Hepatocyte transplantation is limited by yet unresolved technical difficulties. Since currently no treatment is available to facilitate liver regeneration directly, therapies involving the use of resident liver stem or progenitor cells (LPCs) or non-liver stem cells are coming to fore. LPCs are quiescent in the healthy liver, but may be activated under conditions where the regenerative capacity of mature hepatocytes is severely impaired. Non-liver stem cells include embryonic stem cells (ES cells) and mesenchymal stem cells (MSCs). In the first section, we aim to provide an overview of the role of putative cytokines, growth factors, mitogens and hormones in regulating LPC response and briefly discuss the prognostic value of the LPC response in clinical practice. In the latter section, we will highlight the role of other (non-liver) stem cells in transplantation and discuss advantages and disadvantages of ES cells, induced pluripotent stem cells (iPS), as well as MSCs.
Heymann, Felix; Niemietz, Patricia M; Peusquens, Julia; Ergen, Can; Kohlhepp, Marlene; Mossanen, Jana C; Schneider, Carlo; Vogt, Michael; Tolba, Rene H; Trautwein, Christian; Martin, Christian; Tacke, Frank
2015-03-24
Liver inflammation as a response to injury is a highly dynamic process involving the infiltration of distinct subtypes of leukocytes including monocytes, neutrophils, T cell subsets, B cells, natural killer (NK) and NKT cells. Intravital microscopy of the liver for monitoring immune cell migration is particularly challenging due to the high requirements regarding sample preparation and fixation, optical resolution and long-term animal survival. Yet, the dynamics of inflammatory processes as well as cellular interaction studies could provide critical information to better understand the initiation, progression and regression of inflammatory liver disease. Therefore, a highly sensitive and reliable method was established to study migration and cell-cell-interactions of different immune cells in mouse liver over long periods (about 6 hr) by intravital two-photon laser scanning microscopy (TPLSM) in combination with intensive care monitoring. The method provided includes a gentle preparation and stable fixation of the liver with minimal perturbation of the organ; long term intravital imaging using multicolor multiphoton microscopy with virtually no photobleaching or phototoxic effects over a time period of up to 6 hr, allowing tracking of specific leukocyte subsets; and stable imaging conditions due to extensive monitoring of mouse vital parameters and stabilization of circulation, temperature and gas exchange. To investigate lymphocyte migration upon liver inflammation CXCR6.gfp knock-in mice were subjected to intravital liver imaging under baseline conditions and after acute and chronic liver damage induced by intraperitoneal injection(s) of carbon tetrachloride (CCl4). CXCR6 is a chemokine receptor expressed on lymphocytes, mainly on Natural Killer T (NKT)-, Natural Killer (NK)- and subsets of T lymphocytes such as CD4 T cells but also mucosal associated invariant (MAIT) T cells1. Following the migratory pattern and positioning of CXCR6.gfp+ immune cells allowed a detailed insight into their altered behavior upon liver injury and therefore their potential involvement in disease progression.
Stock, Peggy; Bielohuby, Maximilian; Staege, Martin S; Hsu, Mei-Ju; Bidlingmaier, Martin; Christ, Bruno
2017-03-01
Hepatocyte transplantation is an alternative to whole liver transplantation. Yet, efficient liver repopulation by transplanted hepatocytes is low in livers of old animals. This restraint might be because of the poor proliferative capacity of aged donor hepatocytes or the regenerative impairment of the recipient livers. The age-dependent liver repopulation by transplanted wild-type hepatocytes was investigated in juvenile and senescent rats deficient in dipeptidyl-peptidase IV. Repopulation was quantified by flow cytometry and histochemical estimation of dipeptidyl-peptidase IV enzyme activity of donor cells in the negative host liver. As a potential pathway involved, expression of cell cycle proteins was assessed. Irrespective of the age of the donor hepatocytes, large cell clusters appeared in juvenile, but only small clusters in senescent host livers. Because juvenile and senescent donor hepatocytes were likewise functional, host-derived factor(s) impaired senescent host liver repopulation. Growth hormone levels were significantly higher in juvenile than in senescent rats, suggesting that growth hormone might promote host liver repopulation. Indeed, short-term treatment with growth hormone augmented senescent host liver repopulation involving the growth hormone-mediated release of the transcriptional blockade of genes associated with cell cycle progression. Short-term growth hormone substitution might improve liver repopulation by transplanted hepatocytes, thus augmenting the therapeutic benefit of clinical hepatocyte transplantation in older patients. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
CHLORAL HYDRATE DECREASES GAP JUNCTION COMMUNICATION IN RAT LIVER EPITHELIAL CELLS
Chloral hydrate decreases gap junction communication in rat liver epithelial cells
Gap junction communication (GJC) is involved in controlling cell proliferation and differentiation. Connexins (Cx) that make up these junctions are composed of a closely related group of m...
Fagg, W. Samuel; Liu, Naiyou; Yang, Ming-Jim; Cheng, Ke; Chung, Eric; Kim, Jae-Sung; Wu, Gordon
2018-01-01
Attaining consistent robust engraftment in the structurally normal liver is an obstacle for cellular transplantation. Most experimental approaches to increase transplanted cells’ engraftment involve recipient-centered deleterious methods such as partial hepatectomy or irradiation which may be unsuitable in the clinic. Here, we present a cell-based strategy that increases engraftment into the structurally normal liver using a combination of magnetic targeting and proliferative endoderm progenitor (EPs) cells. Magnetic labeling has little effect on cell viability and differentiation, but in the presence of magnetic targeting, it increases the initial dwell time of transplanted EPs into the undamaged liver parenchyma. Consequently, greater cell retention in the liver is observed concomitantly with fewer transplanted cells in the lungs. These highly proliferative cells then significantly increase their biomass over time in the liver parenchyma, approaching nearly 4% of total liver cells 30 d after transplant. Therefore, the cell-based mechanisms of increased initial dwell time through magnetic targeting combined with high rate of proliferation in situ yield significant engraftment in the undamaged liver. PMID:29390880
The CD8 T-cell response during tolerance induction in liver transplantation
Wong, Yik Chun; McCaughan, Geoffrey W; Bowen, David G; Bertolino, Patrick
2016-01-01
Both experimental and clinical studies have shown that the liver possesses unique tolerogenic properties. Liver allografts can be spontaneously accepted across complete major histocompatibility mismatch in some animal models. In addition, some liver transplant patients can be successfully withdrawn from immunosuppressive medications, developing ‘operational tolerance'. Multiple mechanisms have been shown to be involved in inducing and maintaining alloimmune tolerance associated with liver transplantation. Here, we focus on CD8 T-cell tolerance in this setting. We first discuss how alloreactive cytotoxic T-cell responses are generated against allografts, before reviewing how the liver parenchyma, donor passenger leucocytes and the host immune system function together to attenuate alloreactive CD8 T-cell responses to promote the long-term survival of liver transplants. PMID:27867515
Li, Xinyang; Shen, Jun; Ran, Zhihua
2017-02-01
Inflammatory bowel disease (IBD) is an autoimmune disorder characterized by chronic, relapsing intestinal inflammation. Autoimmune liver disease (AILD) may be involved in IBD as an extra-intestinal manifestation (EIM). Epidemiologic and anatomic evidence have demonstrated an intimate crosstalk between the gut and the liver. In this review, we briefly introduced nine groups of susceptibility loci shared by inflammatory bowel and autoimmune liver disease for the first time. The genome-wide association studies (GWAS) evidence of pathways involving crosstalk between the gut and the liver is clarified and explained. It has been found that HNF4-α, GPR35, MST1R, CARD9, IL2/IL21/IL2R, BACH2, TNFRSF14, MAdCAM-1, and FUT2 are the genes involved in tight junction formation, macrophage function, T helper cell or T reg cell cycle and function, TNF secretion, lymphocyte homing or intestinal dysbiosis, respectively. The intimate crosstalk between the gut and liver in immunity is also highlighted and discussed in this review. Copyright © 2016 Elsevier Inc. All rights reserved.
Extract of Ginkgo biloba exacerbates liver metastasis in a mouse colon cancer Xenograft model.
Wang, Huan; Wu, Xia; Lezmi, Stephane; Li, Qian; Helferich, William G; Xu, Yueqing; Chen, Hong
2017-12-02
Metastasis refers to the spread of a primary tumor cell from the primary site to other locations in the body and it is generally associated with the severity of a tumor. Extract of Ginkgo biloba (EGb) contains various bioactive compounds and it exerts beneficial effects including improvements in brain function and reduced risk of cardiovascular diseases. On the other hand, increased risk of thyroid and liver cancers by EGb have been reported in animals. A colon cancer metastasis model was established using intrasplenic injection of a human colon cancer cell line, SW620-luc in athymic mice to investigate the potential impact of EGb on colon cancer progression. After tumor establishment, EGb was intraperitonically injected daily for 5 wks. EGb significantly increased the rate of metastasis in mouse liver and decreased the number of necrotic and apoptotic cells in the metastatic liver when compared to the control. Meanwhile, EGb significantly induced proliferation of tumor cells in the metastatic liver, indicated by increased staining of Ki67 and H3S10p. mRNA expression of genes involved in cell cycle, metastasis, apoptosis, and oxidative stress were altered by EGb treatment in livers with tumors. Moreover, EGb activated the stress-responsive MAPK pathways in the liver with metastatic tumors. EGb exacerbated liver metastasis in a mouse colon cancer metastasis model. This is potentially due to the increased tumor cell proliferation involving stimulated MAPK pathways.
Kakinuma, Yuki; Kimura, Takuya
2017-01-01
Liver resident macrophages designated Kupffer cells (KCs) form the largest subpopulation of tissue macrophages. KCs are involved in the pathogenesis of liver inflammation. However, the role of KCs in the systemic inflammation is still elusive. In this study, we examined whether KCs are involved in not only intrahepatic inflammation but also extrahepatic systemic inflammation. Administration of clodronate liposomes resulted in the KC deletion and in the suppression of liver injury in T cell-mediated hepatitis by ConA as a local acute inflammation model, while the treatment did not influence dextran sulfate sodium- (DSS-) induced colitis featured by weight loss, intestinal shrink, and pathological observation as an ectopic local acute inflammation model. In contrast, KC deletion inhibited collagen-induced arthritis as a model of extrahepatic, systemic chronical inflammation. KC deleted mice showed weaker arthritic scores, less joint swelling, and more joint space compared to arthritis-induced control mice. These results strongly suggest that KCs are involved in not only intrahepatic inflammatory response but also systemic (especially) chronic inflammation. PMID:28804705
Kakinuma, Yuki; Kimura, Takuya; Watanabe, Yoshifumi
2017-01-01
Liver resident macrophages designated Kupffer cells (KCs) form the largest subpopulation of tissue macrophages. KCs are involved in the pathogenesis of liver inflammation. However, the role of KCs in the systemic inflammation is still elusive. In this study, we examined whether KCs are involved in not only intrahepatic inflammation but also extrahepatic systemic inflammation. Administration of clodronate liposomes resulted in the KC deletion and in the suppression of liver injury in T cell-mediated hepatitis by ConA as a local acute inflammation model, while the treatment did not influence dextran sulfate sodium- (DSS-) induced colitis featured by weight loss, intestinal shrink, and pathological observation as an ectopic local acute inflammation model. In contrast, KC deletion inhibited collagen-induced arthritis as a model of extrahepatic, systemic chronical inflammation. KC deleted mice showed weaker arthritic scores, less joint swelling, and more joint space compared to arthritis-induced control mice. These results strongly suggest that KCs are involved in not only intrahepatic inflammatory response but also systemic (especially) chronic inflammation.
Chickenpox encephalitis and encephalopathy: evidence for differing pathogenesis.
Shope, T. C.
1982-01-01
Retrospective assessment of hepatic and central nervous system involvement associated with chickenpox cases at a large metropolitan medical center reveals that 28 of 58 patients had biochemical, but not inflammatory, evidence of liver involvement. An additional 18 patients had biochemical liver abnormalities along with non-inflammatory encephalopathy (Reye syndrome) and 12 had clear evidence of central nervous system inflammatory involvement (encephalitis). There were no cases of solitary inflammatory liver involvement. Reviewed evidence suggests that the pathogenesis of hepatopathy and hepatoencephalopathy (Reye syndrome) is not caused by replication of virus in the involved organs, but instead is mediated through a cytotoxic mechanism and that the inflammatory brain disease is also not caused by viral replication in brain tissue, but appears to be tissue damage associated with immune cell responses (post-infectious encephalitis). The concept put forth in this essay is that a virus replicating in one organ (skin) could affect the macromolecular function of cells in another organ (liver, brain) bringing about both hepatopathy and hepatoencephalopathy. PMID:6295009
Pinheiro, Daphne; Leirós, Luana; Dáu, Juliana Barbosa Torreão; Stumbo, Ana Carolina; Thole, Alessandra Alves; Cortez, Erika Afonso Costa; Mandarim-de-Lacerda, Carlos Alberto; de Carvalho, Lais
2017-01-01
Bone marrow cells (BMC) migrate to the injured liver after transplantation, contributing to regeneration through multiple pathways, but mechanisms involved are unclear. This work aimed to study BMC migration, characterize cytokine profile, cell populations and proliferation in mice with liver fibrosis transplanted with GFP+ BMC. Confocal microscopy analysis showed GFP+ BMC near regions expressing HGF and SDF-1 in the fibrotic liver. Impaired liver cell proliferation in fibrotic groups was restored after BMC transplantation. Regarding total cell populations, there was a significant reduction in CD68+ cells and increased Ly6G+ cells in transplanted fibrotic group. BMC contributed to the total populations of CD144, CD11b and Ly6G cells in the fibrotic liver, related to an increment of anti-fibrotic cytokines (IL-10, IL-13, IFN-γ and HGF) and reduction of pro-inflammatory cytokines (IL-17A and IL-6). Therefore, HGF and SDF-1 may represent important chemoattractants for transplanted BMC in the injured liver, where these cells can give rise to populations of extrahepatic macrophages, neutrophils and endothelial progenitor cells that can interact synergistically with other liver cells towards the modulation of an anti-fibrotic cytokine profile promoting the onset of liver regeneration. PMID:29176797
Liver cell-targeted delivery of therapeutic molecules.
Kang, Jeong-Hun; Toita, Riki; Murata, Masaharu
2016-01-01
The liver is the largest internal organ in mammals and is involved in metabolism, detoxification, synthesis of proteins and lipids, secretion of cytokines and growth factors and immune/inflammatory responses. Hepatitis, alcoholic or non-alcoholic liver disease, hepatocellular carcinoma, hepatic veno-occlusive disease, and liver fibrosis and cirrhosis are the most common liver diseases. Safe and efficient delivery of therapeutic molecules (drugs, genes or proteins) into the liver is very important to increase the clinical efficacy of these molecules and to reduce their side effects in other organs. Several liver cell-targeted delivery systems have been developed and tested in vivo or ex vivo/in vitro. In this review, we discuss the literature concerning liver cell-targeted delivery systems, with a particular emphasis on the results of in vivo studies.
Application of Induced Pluripotent Stem Cells in Liver Diseases
Yu, Yue; Wang, Xuehao; Nyberg, Scott L.
2014-01-01
Tens of millions of patients are affected by liver disease worldwide. Many of these patients can benefit from therapy involving hepatocyte transplantation. Liver transplantation is presently the only proven treatment for many medically refractory liver diseases including end-stage liver failure and inherited metabolic liver disease. However, the shortage in transplantable livers prevents over 40% of listed patients per year from receiving a liver transplant; many of these patients die before receiving an organ offer or become too sick to transplant. Therefore, new therapies are needed to supplement whole-organ liver transplantation and reduce mortality on waiting lists worldwide. Furthermore, the remarkable regenerative capacity of hepatocytes in vivo is exemplified by the increasing number of innovative cell-based therapies and animal models of human liver disorders. Induced pluripotent stem cells (iPSCs) have similar properties to those of embryonic stem cells (ESCs) but bypass the ethical concerns of embryo destruction. Therefore, generation of hepatocyte-like cells (HLCs) using iPSC technology may be beneficial for the treatment of severe liver diseases, screening of drug toxicities, basic research of several hepatocytic disorders, and liver transplantation. Here we briefly summarize the growing number of potential applications of iPSCs for treatment of liver disease. PMID:26858888
Heparanase and macrophage interplay in the onset of liver fibrosis.
Secchi, Maria Francesca; Crescenzi, Marika; Masola, Valentina; Russo, Francesco Paolo; Floreani, Annarosa; Onisto, Maurizio
2017-11-02
The heparan sulfate endoglycosidase heparanase (HPSE) is involved in tumor growth, chronic inflammation and fibrosis. Since a role for HPSE in chronic liver disease has not been demonstrated to date, the current study was aimed at investigating the involvement of HPSE in the pathogenesis of chronic liver injury. Herein, we revealed that HPSE expression increased in mouse livers after carbon tetrachloride (CCl 4 )-mediated chronic induction of fibrosis, but with a trend to decline during progression of the disease. In mouse fibrotic liver tissues HPSE immunostaining was restricted in necro-inflammatory areas, co-localizing with F4/80 macrophage marker and TNF-α. TNF-α treatment induced HPSE expression as well as HPSE secretion in U937 macrophages. Moreover, macrophage-secreted HPSE regulated the expression of α-SMA and fibronectin in hepatic stellate LX-2 cells. Finally, HPSE activity increased in the plasma of patients with liver fibrosis but it inversely correlated with liver stiffness. Our results suggest the involvement of HPSE in early phases of reaction to liver damage and inflammatory macrophages as an important source of HPSE. HPSE seems to play a key role in the macrophage-mediated activation of hepatic stellate cells (HSCs), thus suggesting that HPSE targeting could be a new therapeutic option in the treatment of liver fibrosis.
Relevance of Endoplasmic Reticulum Stress Cell Signaling in Liver Cold Ischemia Reperfusion Injury
Folch-Puy, Emma; Panisello, Arnau; Oliva, Joan; Lopez, Alexandre; Castro Benítez, Carlos; Adam, René; Roselló-Catafau, Joan
2016-01-01
The endoplasmic reticulum (ER) is involved in calcium homeostasis, protein folding and lipid biosynthesis. Perturbations in its normal functions lead to a condition called endoplasmic reticulum stress (ERS). This can be triggered by many physiopathological conditions such as alcoholic steatohepatitis, insulin resistance or ischemia-reperfusion injury. The cell reacts to ERS by initiating a defensive process known as the unfolded protein response (UPR), which comprises cellular mechanisms for adaptation and the safeguarding of cell survival or, in cases of excessively severe stress, for the initiation of the cell death program. Recent experimental data suggest the involvement of ERS in ischemia/reperfusion injury (IRI) of the liver graft, which has been considered as one of major problems influencing outcome after liver transplantation. The purpose of this review is to summarize updated data on the molecular mechanisms of ERS/UPR and the consequences of this pathology, focusing specifically on solid organ preservation and liver transplantation models. We will also discuss the potential role of ERS, beyond the simple adaptive response and the regulation of cell death, in the modification of cell functional properties and phenotypic changes. PMID:27231901
Liver cell therapy and tissue engineering for transplantation.
Vacanti, Joseph P; Kulig, Katherine M
2014-06-01
Liver transplantation remains the only definitive treatment for liver failure and is available to only a tiny fraction of patients with end-stage liver diseases. Major limitations for the procedure include donor organ shortage, high cost, high level of required expertise, and long-term consequences of immune suppression. Alternative cell-based liver therapies could potentially greatly expand the number of patients provided with effective treatment. Investigative research into augmenting or replacing liver function extends into three general strategies. Bioartificial livers (BALs) are extracorporeal devices that utilize cartridges of primary hepatocytes or cell lines to process patient plasma. Injection of liver cell suspensions aims to foster organ regeneration or provide a missing metabolic function arising from a genetic defect. Tissue engineering recreates the organ in vitro for subsequent implantation to augment or replace patient liver function. Translational models and clinical trials have highlighted both the immense challenges involved and some striking examples of success. Copyright © 2014. Published by Elsevier Inc.
Characteristics of hepatic stem/progenitor cells in the fetal and adult liver.
Koike, Hiroyuki; Taniguchi, Hideki
2012-11-01
The liver is an essential organ that maintains vital activity through its numerous important functions. It has a unique capability of fully regenerating after injury. Regulating a balance between self-renewal and differentiation of hepatic stem cells that are resources for functional mature liver cells is required for maintenance of tissue homeostasis. This review describes the characteristics of hepatic stem/progenitor cells and the regulatory mechanism of their self-renewal and differentiation capacity. In liver organogenesis, undifferentiated hepatic stem/progenitor cells expand their pool by repeated self-renewal in the early stage of liver development and then differentiate into two different types of cell lineage, namely hepatocytes and cholangiocytes. Liver development is regulated by expression of stem cell transcription factors in a complex multistep process. Recent studies suggest that stem cells are maintained by integrative regulation of gene expression patterns related to self-renewal and differentiation by epigenetic mechanisms such as histone modification and DNA methylation. Analysis of the proper regulatory mechanism of hepatic stem/progenitor cells is important for regenerative medicine that utilizes hepatic stem cells and for preventing liver cancer through clarification of the carcinogenetic mechanism involved in stem cell system failure.
Acute and chronic T cell dynamics in the livers of simian immunodeficiency virus-infected macaques.
Ahsan, Muhammad H; Gill, Amy F; Lackner, Andrew A; Veazey, Ronald S
2012-05-01
The mucosal immune system, particularly the gastrointestinal tract, is critically involved in the pathogenesis of human immunodeficiency virus (HIV) infection. Since the liver drains most of the substances coming from the intestinal tract, it may also play a role in the pathogenesis of HIV infection. Here we examined the percentages and absolute numbers of T cell subsets in the liver in normal and simian immunodeficiency virus (SIV)-infected macaques. Most of the T cells in the liver were CD8(+) memory cells, and most of these had an effector memory (CD95(+) CD28(-)) phenotype. CD4(+) T cells constituted approximately 20% of the liver T cell population, but the vast majority of these were also memory (CD95(+)) CCR5(+) cells, suggesting they were potential targets for viral infection. After SIV infection, CD4(+) T cells were markedly reduced, and increased proliferation and absolute numbers of CD8(+) T cells were detected in the liver. These data suggest that the liver is a major source of antigenic stimulation for promoting CD8(+) T cells and possibly a source for early CD4(+) T cell infection and destruction.
Acute and Chronic T Cell Dynamics in the Livers of Simian Immunodeficiency Virus-Infected Macaques
Ahsan, Muhammad H.; Gill, Amy F.; Lackner, Andrew A.
2012-01-01
The mucosal immune system, particularly the gastrointestinal tract, is critically involved in the pathogenesis of human immunodeficiency virus (HIV) infection. Since the liver drains most of the substances coming from the intestinal tract, it may also play a role in the pathogenesis of HIV infection. Here we examined the percentages and absolute numbers of T cell subsets in the liver in normal and simian immunodeficiency virus (SIV)-infected macaques. Most of the T cells in the liver were CD8+ memory cells, and most of these had an effector memory (CD95+ CD28−) phenotype. CD4+ T cells constituted approximately 20% of the liver T cell population, but the vast majority of these were also memory (CD95+) CCR5+ cells, suggesting they were potential targets for viral infection. After SIV infection, CD4+ T cells were markedly reduced, and increased proliferation and absolute numbers of CD8+ T cells were detected in the liver. These data suggest that the liver is a major source of antigenic stimulation for promoting CD8+ T cells and possibly a source for early CD4+ T cell infection and destruction. PMID:22379078
Di Martino, Julie; Ruiz, Mathias; Garin, Roman; Restier, Lioara; Belmalih, Abdelouahed; Marchal, Christelle; Cullin, Christophe; Arveiler, Benoit; Fergelot, Patricia; Gitler, Aaron D.; Lachaux, Alain; Couthouis, Julien
2017-01-01
Background The most common and severe disease causing allele of Alpha 1-Antitrypsin Deficiency (1ATD) is Z-1AT. This protein aggregates in the endoplasmic reticulum, which is the main cause of liver disease in childhood. Based on recent evidences and on the frequency of liver disease occurrence in Z-1AT patients, it seems that liver disease progression is linked to still unknown genetic factors. Methods We used an innovative approach combining yeast genetic screens with next generation exome sequencing to identify and functionally characterize the genes involved in 1ATD associated liver disease. Results Using yeast genetic screens, we identified HRD1, an Endoplasmic Reticulum Associated Degradation (ERAD) associated protein, as an inducer of Z-mediated toxicity. Whole exome sequencing of 1ATD patients resulted in the identification of two variants associated with liver damages in Z-1AT homozygous cases: HFE H63D and HERPUD1 R50H. Functional characterization in Z-1AT model cell lines demonstrated that impairment of the ERAD machinery combined with the HFE H63D variant expression decreased both cell proliferation and cell viability, while Unfolded Protein Response (UPR)-mediated cell death was hyperstimulated. Conclusion This powerful experimental pipeline allowed us to identify and functionally validate two genes involved in Z-1AT-mediated severe liver toxicity. This pilot study moves forward our understanding on genetic modifiers involved in 1ATD and highlights the UPR pathway as a target for the treatment of liver diseases associated with 1ATD. Finally, these findings support a larger scale screening for HERPUD1 R50H and HFE H63D variants in the sub-group of 1ATD patients developing significant chronic hepatic injuries (hepatomegaly, chronic cholestasis, elevated liver enzymes) and at risk developing liver cirrhosis. PMID:28617828
Role of the autonomic nervous system in rat liver regeneration.
Xu, Cunshuan; Zhang, Xinsheng; Wang, Gaiping; Chang, Cuifang; Zhang, Lianxing; Cheng, Qiuyan; Lu, Ailing
2011-05-01
To study the regulatory role of autonomic nervous system in rat regenerating liver, surgical operations of rat partial hepatectomy (PH) and its operation control (OC), sympathectomy combining partial hepatectomy (SPH), vagotomy combining partial hepatectomy (VPH), and total liver denervation combining partial hepatectomy (TDPH) were performed, then expression profiles of regenerating livers at 2 h after operation were detected using Rat Genome 230 2.0 array. It was shown that the expressions of 97 genes in OC, 230 genes in PH, 253 genes in SPH, 187 genes in VPH, and 177 genes in TDPH were significantly changed in biology. The relevance analysis showed that in SPH, genes involved in stimulus response, immunity response, amino acids and K(+) transport, amino acid catabolism, cell adhesion, cell proliferation mediated by JAK-STAT, Ca(+), and platelet-derived growth factor receptor, cell growth and differentiation through JAK-STAT were up-regulated, while the genes involved in chromatin assembly and disassembly, and cell apoptosis mediated by MAPK were down-regulated. In VPH, the genes associated with chromosome modification-related transcription factor, oxygen transport, and cell apoptosis mediated by MAPK pathway were up-regulated, but the genes associated with amino acid catabolism, histone acetylation-related transcription factor, and cell differentiation mediated by Wnt pathway were down-regulated. In TDPH, the genes related to immunity response, growth and development of regenerating liver, cell growth by MAPK pathway were up-regulated. Our data suggested that splanchnic and vagal nerves could regulate the expressions of liver regeneration-related genes.
Ernst, Thomas; Ittrich, Harald; Jacobs, Thomas; Heeren, Joerg; Tacke, Frank; Tannich, Egbert; Lotter, Hannelore
2013-01-01
Amebic liver abscess (ALA) is a focal destruction of liver tissue due to infection by the protozoan parasite Entamoeba histolytica (E. histolytica). Host tissue damage is attributed mainly to parasite pathogenicity factors, but massive early accumulation of mononuclear cells, including neutrophils, inflammatory monocytes and macrophages, at the site of infection raises the question of whether these cells also contribute to tissue damage. Using highly selective depletion strategies and cell-specific knockout mice, the relative contribution of innate immune cell populations to liver destruction during amebic infection was investigated. Neutrophils were not required for amebic infection nor did they appear to be substantially involved in tissue damage. In contrast, Kupffer cells and inflammatory monocytes contributed substantially to liver destruction during ALA, and tissue damage was mediated primarily by TNFα. These data indicate that besides direct antiparasitic drugs, modulating innate immune responses may potentially be beneficial in limiting ALA pathogenesis. PMID:23300453
Wu, Shengru; Liu, Yanli; Guo, Wei; Cheng, Xi; Ren, Xiaochun; Chen, Si; Li, Xueyuan; Duan, Yongle; Sun, Qingzhu; Yang, Xiaojun
2018-06-27
The liver is mainly hematopoietic in the embryo, and converts into a major metabolic organ in the adult. Therefore, it is intensively remodeled after birth to adapt and perform adult functions. Long non-coding RNAs (lncRNAs) are involved in organ development and cell differentiation, likely they have potential roles in regulating postnatal liver development. Herein, in order to understand the roles of lncRNAs in postnatal liver maturation, we analyzed the lncRNAs and mRNAs expression profiles in immature and mature livers from one-day-old and adult (40 weeks of age) breeder roosters by Ribo-Zero RNA-Sequencing. Around 21,939 protein-coding genes and 2220 predicted lncRNAs were expressed in livers of breeder roosters. Compared to protein-coding genes, the identified chicken lncRNAs shared fewer exons, shorter transcript length, and significantly lower expression levels. Notably, in comparison between the livers of newborn and adult breeder roosters, a total of 1570 mRNAs and 214 lncRNAs were differentially expressed with the criteria of log 2 fold change > 1 or < - 1 and P values < 0.05, which were validated by qPCR using randomly selected five mRNAs and five lncRNAs. Further GO and KEGG analyses have revealed that the differentially expressed mRNAs were involved in the hepatic metabolic and immune functional changes, as well as some biological processes and pathways including cell proliferation, apoptotic and cell cycle that are implicated in the development of liver. We also investigated the cis- and trans- regulatory effects of differentially expressed lncRNAs on its target genes. GO and KEGG analyses indicated that these lncRNAs had their neighbor protein coding genes and trans-regulated genes associated with adapting of adult hepatic functions, as well as some pathways involved in liver development, such as cell cycle pathway, Notch signaling pathway, Hedgehog signaling pathway, and Wnt signaling pathway. This study provides a catalog of mRNAs and lncRNAs related to postnatal liver maturation of chicken, and will contribute to a fuller understanding of biological processes or signaling pathways involved in significant functional transition during postnatal liver development that differentially expressed genes and lncRNAs could take part in.
Primary porcine Kupffer cell phagocytosis of human platelets involves the CD18 receptor.
Chihara, Ray K; Paris, Leela L; Reyes, Luz M; Sidner, Richard A; Estrada, Jose L; Downey, Susan M; Wang, Zheng-Yu; Tector, A Joseph; Burlak, Christopher
2011-10-15
Hepatic failure has been treated successfully with clinical extracorporeal perfusions of porcine livers. However, dog-to-pig and pig-to-baboon liver xenotransplant models have resulted in severe bleeding secondary to liver xenograft-induced thrombocytopenia. Kupffer cells (KC) are abundant phagocytic cells in the liver. KC express the CD11b/CD18 receptor, which has been implicated in chilled platelet binding and phagocytosis through interaction with platelet surface proteins and carbohydrates. We sought to identify the role of KC CD18 in liver xenograft-induced thrombocytopenia. Primary pig KC were characterized by flow cytometry, immunoblots, and quantitative polymerase chain reaction. Pig KC were used in inhibition assays with fluorescently labeled human platelets. The CD18 receptor was targeted for siRNA knockdown. Domestic and α1,3-galactosyltransferase double knockout porcine KC cultures were approximately 92% positive for CD18 as detected by quantitative polymerase chain reaction and flow cytometry. Use of CD18 blocking antibodies resulted in reduction of human platelet binding and phagocytosis. Additionally, asialofetuin, not fetuin, inhibited platelet phagocytosis suggesting the involvement of an oligosaccharide-binding site. Furthermore, reduced CD18 expression by siRNA resulted in decreased human platelet binding. Our data suggest that primary pig KC bind and phagocytose human platelets with involvement of CD18. Further understanding and modification of CD18 expression in pigs may result in a liver xenograft with reduced thrombocytopenic effects, which could be used as a bridge to allogeneic liver transplantation.
Ştefănescu, Eugen Horaţiu; Balica, Nicolae Constantin; Horhat, Ioana Delia; Baderca, Flavia; Pricop, Marius Octavian; Urechescu, Horaţiu Constantin; Lighezan, Daniel Florin; Sarău, Cristian Andrei
2017-01-01
Extranodal natural killer (NK)÷T-cell lymphomas, nasal type are rare and aggressive non-Hodgkin's lymphomas (NHLs), with unknown etiology, rapid evolution and poor prognosis, due to midline tissue destruction and rapid spreading of the tumor. These lymphomas occur commonly in the nasal cavity and upper aerodigestive tract, but can also present involvement of the skin, salivary gland, and testis. We describe a case of nasal type T-cell NHL involving the nasal cavity and determining right thigh cutaneous metastases in a 47-year-old female associated with liver comorbidities and occupational dust exposure. The patient was suffering from chronic type C hepatitis and cirrhosis and she has been occupationally exposed to metal dust for 10 years. Clinical and laboratory investigations were performed. Essential for diagnosis and treatment protocol was nasal endoscopy and biopsy of nasal and cutaneous lesions. The histopathological exam was consistent with NK÷T-cell lymphoma. Patient was diagnosed in Ann Arbor stage IVA. Chemotherapy was initiated with Bleomycin, Etoposide, Adriamycin (Doxorubicin), Cyclophosphamide, Oncovin (Vincristine), Procarbazine and Prednisone, but it was stopped after two cycles because of the liver condition. The treatment plan also included radiotherapy, but soon after initiation, the patient died because of a liver complication. We present a rare case of extranodal NK÷T-cell lymphoma, nasal type, with cutaneous involvement to which the treatment could not be properly applied because of the late diagnosis and liver comorbidities.
Wehr, Alexander; Baeck, Christer; Heymann, Felix; Niemietz, Patricia Maria; Hammerich, Linda; Martin, Christian; Zimmermann, Henning W; Pack, Oliver; Gassler, Nikolaus; Hittatiya, Kanishka; Ludwig, Andreas; Luedde, Tom; Trautwein, Christian; Tacke, Frank
2013-05-15
Chronic liver injury characteristically results in hepatic inflammation, which represents a prerequisite for organ fibrosis. Although NKT cells are abundantly present in liver and involved in hepatic inflammation, molecular mechanisms of their recruitment in liver fibrosis remained elusive. We hypothesized that chemokine receptor CXCR6 and its ligand CXCL16 control NKT cell migration and functionality in liver fibrosis. In patients with chronic liver diseases (n = 58), CXCR6 and CXCL16 expression was intrahepatically upregulated compared with controls. In murine liver, Cxcl16 was strongly expressed by endothelium and macrophages, whereas lymphocyte populations (NKT, NK, CD4 T, CD8 T cells) expressed CXCR6. Intravital two-photon microscopy imaging of Cxcr6(+/gfp) and Cxcr6(gfp/gfp) mice and chemotaxis studies in vitro revealed that CXCR6 specifically controls hepatic NKT cell accumulation during the early response upon experimental liver damage. Hepatic invariant NKT cells expressed distinct proinflammatory cytokines including IFN-γ and IL-4 upon injury. CXCR6-deficient mice were protected from liver fibrosis progression in two independent experimental models. Macrophage infiltration and protein levels of inflammatory cytokines IFN-γ, TNF-α, and IL-4 were also reduced in fibrotic livers of Cxcr6(-/-) mice, corroborating that hepatic NKT cells provide essential cytokine signals perpetuating hepatic inflammation and fibrogenesis. Adoptive transfer of NKT cells, but not CD4 T cells, isolated from wild type livers restored hepatic fibrosis in Cxcr6(-/-) mice upon experimental steatohepatitis. Our results demonstrate that hepatic NKT cells accumulate CXCR6-dependent early upon injury, thereby accentuating the inflammatory response in the liver and promoting hepatic fibrogenesis. Interfering with CXCR6/CXCL16 might therefore bear therapeutic potential in liver fibrosis.
2010-01-01
Background Cell scattering is a physiological process executed by stem and progenitor cells during embryonic liver development and postnatal organ regeneration. Here, we investigated the genomic events occurring during this process induced by functional blockade of α5β1 integrin in liver progenitor cells. Results Cells treated with a specific antibody against α5β1 integrin exhibited cell spreading and scattering, over-expression of liver stem/progenitor cell markers and activation of the ERK1/2 and p38 MAPKs signaling cascades, in a similar manner to the process triggered by HGF/SF1 stimulation. Gene expression profiling revealed marked transcriptional changes of genes involved in cell adhesion and migration, as well as genes encoding chromatin remodeling factors. These responses were accompanied by conspicuous spatial reorganization of centromeres, while integrin genes conserved their spatial positioning in the interphase nucleus. Conclusion Collectively, our results demonstrate that α5β1 integrin functional blockade induces cell migration of hepatic progenitor cells, and that this involves a dramatic remodeling of the nuclear landscape. PMID:20958983
Wang, Yan; Sun, ZhongSheng; Szyf, Moshe
2017-01-01
S-adenosyl methionine (SAM) is a ubiquitous methyl donor that was reported to have chemo- protective activity against liver cancer, however the molecular footprint of SAM is unknown. We show here that SAM selectively inhibits growth, transformation and invasiveness of hepatocellular carcinoma cell lines but not normal primary liver cells. Analysis of the transcriptome of SAM treated and untreated liver cancer cell lines HepG2 and SKhep1 and primary liver cells reveals pathways involved in cancer and metastasis that are upregulated in cancer cells and are downregulated by SAM. Analysis of the methylome using bisulfite mapping of captured promoters and enhancers reveals that SAM hyper-methylates and downregulates genes in pathways of growth and metastasis that are upregulated in liver cancer cells. Depletion of two SAM downregulated genes STMN1 and TAF15 reduces cellular transformation and invasiveness, providing evidence that SAM targets are genes important for cancer growth and invasiveness. Taken together these data provide a molecular rationale for SAM as an anticancer agent. PMID:29340097
Wang, Yan; Sun, ZhongSheng; Szyf, Moshe
2017-12-19
S-adenosyl methionine (SAM) is a ubiquitous methyl donor that was reported to have chemo- protective activity against liver cancer, however the molecular footprint of SAM is unknown. We show here that SAM selectively inhibits growth, transformation and invasiveness of hepatocellular carcinoma cell lines but not normal primary liver cells. Analysis of the transcriptome of SAM treated and untreated liver cancer cell lines HepG2 and SKhep1 and primary liver cells reveals pathways involved in cancer and metastasis that are upregulated in cancer cells and are downregulated by SAM. Analysis of the methylome using bisulfite mapping of captured promoters and enhancers reveals that SAM hyper-methylates and downregulates genes in pathways of growth and metastasis that are upregulated in liver cancer cells. Depletion of two SAM downregulated genes STMN1 and TAF15 reduces cellular transformation and invasiveness, providing evidence that SAM targets are genes important for cancer growth and invasiveness. Taken together these data provide a molecular rationale for SAM as an anticancer agent.
Regulatory T Cells in Autoimmune and Viral Chronic Hepatitis
Lapierre, Pascal; Lamarre, Alain
2015-01-01
In both autoimmune liver disease and chronic viral hepatitis, the injury results from an immune-mediated cytotoxic T cell response to liver cells. As such, it is not surprising that CD4+ regulatory T cells, a key regulatory population of T cells able to curb immune responses, could be involved in both autoimmune hepatitis and chronic viral hepatitis. The liver can induce the conversion of naïve CD4+ T cells to CD4+ regulatory T cells and induce tolerance to locally expressed antigens. This tolerance mechanism is carefully regulated in physiological conditions but any imbalance could be pathological. An overly tolerant immune response can lead to chronic infections while an overreactive and unbridled immune response can lead to autoimmune hepatitis. With the recent advent of monoclonal antibodies able to target regulatory T cells (daclizumab) and improve immune responses and several ongoing clinical trials analysing the impact of regulatory T cell infusion on autoimmune liver disease or liver transplant tolerance, modulation of immunological tolerance through CD4+ regulatory T cells could be a key element of future immunotherapies for several liver diseases allowing restoring the balance between proper immune responses and tolerance. PMID:26106627
Dixon, Laura J.; Barnes, Mark; Tang, Hui; Pritchard, Michele T.; Nagy, Laura E.
2016-01-01
Kupffer cells are a critical component of the mononuclear phagocytic system and are central to both the hepatic and systemic response to pathogens. Kupffer cells are reemerging as critical mediators of both liver injury and repair. Kupffer cells exhibit a tremendous plasticity; depending on the local metabolic and immune environment, then can express a range of polarized phenotypes, from the proinflammatory M1 phenotype to the alternative/M2 phenotype. Multiple M2 phenotypes can be distinguished, each involved in the resolution of inflammation and wound healing. Here, we have provided an update on recent research that has contributed to the developing delineation of the contribution of Kupffer cells to different types of liver injury, with an emphasis on alcoholic and nonalcoholic liver diseases. These recent advances in our understanding of Kupffer cell function and regulation will likely provide new insights into the potential for therapeutic manipulation of Kupffer cells to promote the resolution of inflammation and enhance wound healing in liver disease. PMID:23720329
A Complex Interplay between Wnt/β-Catenin Signalling and the Cell Cycle in the Adult Liver.
Gougelet, Angélique; Colnot, Sabine
2012-01-01
Canonical Wnt signalling, governed by its effector β-catenin, is known for a long time as playing an important role in development, tissue homeostasis, and cancer. In the liver, it was unravelled as both an oncogenic pathway involved in a subset of liver cancers and a physiological signalling identified as the "zonation-keeper" of the quiescent liver lobule. This duality has encouraged to explore the role of canonical Wnt in liver regeneration and liver-cell proliferation mainly using murine genetic models of β-catenin overactivation or inactivation. These studies definitely integrate Wnt signalling within the hepatic network driving regeneration and proliferation. We will review here the current knowledge concerning the mitogenic effect of Wnt, to switch on its specific role in the liver, which is quiescent but with a great capacity to regenerate. The duality of β-catenin signalling, associated both with liver quiescence and liver-cell proliferation, will be brought forward.
Yang, Qing-Li; Shen, Ji-Qing; Xue, Yan; Cheng, Xiao-Bing; Jiang, Zhi-Hua; Yang, Yi-Chao; Chen, Ying-Dan; Zhou, Xiao-Nong
2015-12-01
The nitric oxide (NO) formation and intrinsic nitrosation may be involved in the possible mechanisms of liver fluke-associated carcinogenesis. We still do not know much about the responses of inducible NO synthase (iNOS) induced by Clonorchis sinensis infection. This study was conducted to explore the pathological lesions and iNOS expressions in the liver of mice with different infection intensity levels of C. sinensis. Extensive periductal inflammatory cell infiltration, bile duct hyperplasia, and fibrosis were commonly observed during the infection. The different pathological responses in liver tissues strongly correlated with the infection intensity of C. sinensis. Massive acute spotty necrosis occurred in the liver parenchyma after a severe infection. The iNOS activity in liver tissues increased, and iNOS-expressing cells with morphological differences were observed after a moderate or severe infection. The iNOS-expressing cells in liver tissues had multiple origins.
Hepatic inclusions during interferon therapy in chronic viral hepatitis.
Schaff, Z; Hoofnagle, J H; Grimley, P M
1986-01-01
Two types of cytomembranous abnormalities were identified for the first time in liver biopsies from patients with chronic active type B hepatitis during treatment with recombinant alpha-interferon. Tubuloreticular inclusions were present in the hepatic endothelial cells, Kupffer cells and perisinusoidal cells of liver biopsies from both patients, and they were absent in liver biopsies obtained before treatment. Cylindrical confronting lamellae, having "test tube" or "ring-shape" forms were observed in the cytoplasm both of Kupffer cells and macrophages in the second liver biopsy of one of the patients. The findings suggest that interferon can be involved in the pathogenesis of both cytomembranous abnormalities, but that additional biological factors may play a role in formation of the cylindrical confronting lamellae.
Liver macrophages: friend or foe during hepatitis B infection?
Faure-Dupuy, Suzanne; Durantel, David; Lucifora, Julie
2018-05-17
The Hepatitis B virus chronically infects the liver of 250 million people worldwide. Over the past decades, major advances have been made in the understanding of Hepatitis B virus life cycle in hepatocytes. Beside these parenchymal cells, the liver also contains resident and infiltrating myeloid cells involved in immune responses to pathogens and much less is known about their interplay with Hepatitis B virus. In this review, we summarized and discussed the current knowledge of the role of liver macrophages (including Kupffer cells and liver monocyte-derived macrophages), in HBV infection. While it is still unclear if liver macrophages play a role in the establishment and persistence of HBV infection, several studies disclosed data suggesting that HBV would favour liver macrophage anti-inflammatory phenotypes and thereby increase liver tolerance. In addition, alternatively activated liver macrophages might also play in the long term a key role in hepatitis B associated pathogenesis, especially through the activation of hepatic stellate cells. Therapies aiming at a transient activation of pro-inflammatory liver macrophages should therefore be considered for the treatment of chronic HBV infection. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Chen, Yixin; Wong, Philip P.; Sjeklocha, Lucas; Steer, Clifford J.; Sahin, M. Behnan
2011-01-01
Although there have been numerous reports describing the isolation of liver progenitor cells from adult liver, their exact origin has not been clearly defined; and the role played by mature hepatocytes as direct contributors to the hepatic progenitor cell pool has remained largely unknown. Here we report strong evidence that mature hepatocytes in culture have the capacity to dedifferentiate into a population of adult liver progenitors without genetic or epigenetic manipulations. By using highly-purified mature hepatocytes, which were obtained from untreated, healthy rat liver and labeled with fluorescent dye PKH2, we found that hepatocytes in culture gave rise to a population of PKH2-positive liver progenitor cells. These cells, Liver Derived Progenitor Cells or LDPCS, which share phenotypic similarities with oval cells, were previously reported to be capable of forming mature hepatocytes both in culture and in animals. Studies done at various time points during the course of dedifferentiation cultures revealed that hepatocytes rapidly transformed into liver progenitors within one week through a transient oval cell-like stage. This finding was supported by lineage-tracing studies involving double-transgenic AlbuminCreXRosa26 mice expressing β-galactosidase exclusively in hepatocytes. Cultures set up with hepatocytes obtained from these mice resulted in generation of β-galactosidase-positive liver progenitor cells demonstrating that they were a direct dedifferentiation product of mature hepatocytes. Additionally, these progenitors differentiated into hepatocytes in vivo when transplanted into rats that had undergone retrorsine pretreatment and partial hepatectomy. Conclusion Our studies provide strong evidence for the unexpected plasticity of mature hepatocytes to dedifferentiate into progenitor cells in culture; and this may potentially have a significant impact on the treatment of liver diseases requiring liver or hepatocyte transplantation. PMID:21953633
Lara-Diaz, V J; Castilla-Cortazar, I; Martín-Estal, I; García-Magariño, M; Aguirre, G A; Puche, J E; de la Garza, R G; Morales, L A; Muñoz, U
2017-05-01
Even though the liver synthesizes most of circulating IGF-1, it lacks its receptor under physiological conditions. However, according to previous studies, a damaged liver expresses the receptor. For this reason, herein, we examine hepatic histology and expression of genes encoding proteins of the cytoskeleton, extracellular matrix, and cell-cell molecules and inflammation-related proteins. A partial IGF-1 deficiency murine model was used to investigate IGF-1's effects on liver by comparing wild-type controls, heterozygous igf1 +/- , and heterozygous mice treated with IGF-1 for 10 days. Histology, microarray for mRNA gene expression, RT-qPCR, and lipid peroxidation were assessed. Microarray analyses revealed significant underexpression of igf1 in heterozygous mice compared to control mice, restoring normal liver expression after treatment, which then normalized its circulating levels. IGF-1 receptor mRNA was overexpressed in Hz mice liver, while treated mice displayed a similar expression to that of the controls. Heterozygous mice showed overexpression of several genes encoding proteins related to inflammatory and acute-phase proteins and underexpression or overexpression of genes which coded for extracellular matrix, cytoskeleton, and cell junction components. Histology revealed an altered hepatic architecture. In addition, liver oxidative damage was found increased in the heterozygous group. The mere IGF-1 partial deficiency is associated with relevant alterations of the hepatic architecture and expression of genes involved in cytoskeleton, hepatocyte polarity, cell junctions, and extracellular matrix proteins. Moreover, it induces hepatic expression of the IGF-1 receptor and elevated acute-phase and inflammation mediators, which all resulted in liver oxidative damage.
Ferrere, Gladys; Leroux, Anne; Wrzosek, Laura; Puchois, Virginie; Gaudin, Françoise; Ciocan, Dragos; Renoud, Marie-Laure; Naveau, Sylvie; Perlemuter, Gabriel; Cassard, Anne-Marie
2016-01-01
The increase consumption of fructose in diet is associated with liver inflammation. As a specific fructan substrate, fructose may modify the gut microbiota which is involved in obesity-induced liver disease. Here, we aimed to assess whether fructose-induced liver damage was associated with a specific dysbiosis, especially in mice fed a high fat diet (HFD). To this end, four groups of mice were fed with normal and HFD added or not with fructose. Body weight and glucose sensitivity, liver inflammation, dysbiosis and the phenotype of Kupffer cells were determined after 16 weeks of diet. Food intake was increased in the two groups of mice fed with the HFD. Mice fed with HFD and fructose showed a higher infiltration of lymphocytes into the liver and a lower inflammatory profile of Kupffer cells than mice fed with the HFD without fructose. The dysbiosis associated with diets showed that fructose specifically prevented the decrease of Mouse intestinal bacteria in HFD fed mice and increased Erysipelotrichi in mice fed with fructose, independently of the amount of fat. In conclusion, fructose, used as a sweetener, induced a dysbiosis which is different in presence of fat in the diet. Consequently, the activation of Kupffer cells involved in mice model of HFD-induced liver inflammation was not observed in an HFD/fructose combined diet. These data highlight that the complexity of diet composition could highly impact the development of liver lesions during obesity. Specific dysbiosis associated with the diet could explain that the progressions of liver damage are different. PMID:26731543
Bu, Pengcheng; Chen, Kai-Yuan; Xiang, Kun; Johnson, Christelle; Crown, Scott B; Rakhilin, Nikolai; Ai, Yiwei; Wang, Lihua; Xi, Rui; Astapova, Inna; Han, Yan; Li, Jiahe; Barth, Bradley B; Lu, Min; Gao, Ziyang; Mines, Robert; Zhang, Liwen; Herman, Mark; Hsu, David; Zhang, Guo-Fang; Shen, Xiling
2018-06-05
Cancer metastasis accounts for the majority of cancer-related deaths and remains a clinical challenge. Metastatic cancer cells generally resemble cells of the primary cancer, but they may be influenced by the milieu of the organs they colonize. Here, we show that colorectal cancer cells undergo metabolic reprogramming after they metastasize and colonize the liver, a key metabolic organ. In particular, via GATA6, metastatic cells in the liver upregulate the enzyme aldolase B (ALDOB), which enhances fructose metabolism and provides fuel for major pathways of central carbon metabolism during tumor cell proliferation. Targeting ALDOB or reducing dietary fructose significantly reduces liver metastatic growth but has little effect on the primary tumor. Our findings suggest that metastatic cells can take advantage of reprogrammed metabolism in their new microenvironment, especially in a metabolically active organ such as the liver. Manipulation of involved pathways may affect the course of metastatic growth. Copyright © 2018 Elsevier Inc. All rights reserved.
Mechanism of hard-nanomaterial clearance by the liver.
Tsoi, Kim M; MacParland, Sonya A; Ma, Xue-Zhong; Spetzler, Vinzent N; Echeverri, Juan; Ouyang, Ben; Fadel, Saleh M; Sykes, Edward A; Goldaracena, Nicolas; Kaths, Johann M; Conneely, John B; Alman, Benjamin A; Selzner, Markus; Ostrowski, Mario A; Adeyi, Oyedele A; Zilman, Anton; McGilvray, Ian D; Chan, Warren C W
2016-11-01
The liver and spleen are major biological barriers to translating nanomedicines because they sequester the majority of administered nanomaterials and prevent delivery to diseased tissue. Here we examined the blood clearance mechanism of administered hard nanomaterials in relation to blood flow dynamics, organ microarchitecture and cellular phenotype. We found that nanomaterial velocity reduces 1,000-fold as they enter and traverse the liver, leading to 7.5 times more nanomaterial interaction with hepatic cells relative to peripheral cells. In the liver, Kupffer cells (84.8 ± 6.4%), hepatic B cells (81.5 ± 9.3%) and liver sinusoidal endothelial cells (64.6 ± 13.7%) interacted with administered PEGylated quantum dots, but splenic macrophages took up less material (25.4 ± 10.1%) due to differences in phenotype. The uptake patterns were similar for two other nanomaterial types and five different surface chemistries. Potential new strategies to overcome off-target nanomaterial accumulation may involve manipulating intra-organ flow dynamics and modulating the cellular phenotype to alter hepatic cell interactions.
Eide, Marta; Rusten, Marte; Male, Rune; Jensen, Knut Helge Midtbø; Goksøyr, Anders
2014-02-01
The zebrafish (Danio rerio) is a widely used model species in biomedical research. The ZFL cell line, established from zebrafish liver, and freshly isolated primary hepatocytes from zebrafish have been used in several toxicological studies. However, no previous report has compared and characterized these two systems at the level of gene expression. The aim of this study was to evaluate the ZFL cell line in comparison to primary hepatocytes as in vitro models for studying effects of environmental contaminants in zebrafish liver. Using quantitative real-time PCR, the basal level and transcriptional induction potential of key genes involved in toxic responses in the ZFL cell line, primary hepatocytes and whole liver from zebrafish were compared. The study showed that the ZFL cells have lower levels of mRNA of most selected genes compared to zebrafish liver. The induced gene transcription following exposure to ligand was much lower in ZFL cells compared to zebrafish primary hepatocytes at the doses tested. Importantly, oestrogen receptor and vitellogenin genes showed low basal transcription and no induction response in the ZFL cell line. In conclusion, it appears that primary hepatocytes are well suited for studying environmental contaminants including xenoestrogens, but may show large sex-dependent differences in gene transcription. The ZFL cell line shows potential in toxicological studies involving the aryl hydrocarbon receptor pathway. However, low potential for transcriptional induction of genes in general should be expected, especially notable when studying estrogenic responses. Copyright © 2013 Elsevier B.V. All rights reserved.
Branches of NF-κb signaling pathway regulate hepatocyte proliferation in rat liver regeneration.
Chang, C F; Zhao, W M; Mei, J X; Zhou, Y; Pan, C Y; Xu, T T; Xu, C S
2015-07-13
Previous studies have demonstrated that the nuclear factor κB (NF-κB) pathway is involved in promoting cell proliferation. To further explore the regulatory branches and their sequence in the NF-κB pathway in the promotion of hepatocyte proliferation at the transcriptional level during rat liver regeneration, Rat Genome 230 2.0 array was used to detect the expression changes of the isolated hepatocytes. We found that many genes involved in the NF-κB pathway (including 73 known genes and 19 homologous genes) and cell proliferation (including 484 genes and 104 homologous genes) were associated with liver regeneration. Expression profile function (Ep) was used to analyze the biological processes. It was revealed that the NF-κB pathway promoted hepatocyte proliferation through three branches. Several methods of integrated statistics were applied to extract and screen key genes in liver regeneration, and it indicated that eight genes may play a vital role in rat liver regeneration. To confirm the above predicted results, Ccnd1, Jun and Myc were analyzed using qRT-PCR, and the results were generally consistent with that of microarray data. It is concluded that 3 branches and 8 key genes involved in the NF-κB pathway regulate hepatocyte proliferation during rat liver regeneration.
Cyclin D1 in the Liver: Role of Noncanonical Signaling in Liver Steatosis and Hormone Regulation
Núñez, Kelley G.; Gonzalez-Rosario, Janet; Thevenot, Paul T.; Cohen, Ari J.
2017-01-01
Background: Cyclin D1 is an important protein for cell cycle progression; however, functions independent of the cell cycle have been described in the liver. Cyclin D1 is also involved in DNA repair, is overexpressed in many cancers, and functions as a proto-oncogene. The lesser-known roles of Cyclin D1, specifically in hepatocytes, impact liver steatosis and hormone regulation in the liver. Methods: A comprehensive search of PubMed was conducted using the keywords Cyclin D1, steatosis, lipogenesis, and liver transplantation. In this article, we review the results from this literature search, with a focus on the role of Cyclin D1 in hepatic lipogenesis and gluconeogenesis, as well as the impact and function of this protein in hepatic steatosis. Results: Cyclin D1 represses carbohydrate response element binding protein (ChREBP) and results in a decrease in transcription of fatty acid synthase (FAS) and acetyl-coenzyme A carboxylase (ACC). Cyclin D1 also inhibits peroxisome proliferator-activated receptor gamma (PPARγ) which is involved in hepatic lipogenesis. Cyclin D1 inhibits both hepatocyte nuclear factor 4 alpha (HNF4α) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) and represses transcription of lipogenic genes FAS and liver-type pyruvate kinase (Pklr), along with the gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). Conclusion: Cyclin D1 represses multiple proteins involved in both lipogenesis and gluconeogenesis in the liver. Targeting Cyclin D1 to decrease hepatic steatosis in patients with nonalcoholic fatty liver disease or alcoholic fatty liver disease may help improve patient health and the quality of the donor liver pool. PMID:28331449
Gonçalves, Lígia Antunes; Rodrigues-Duarte, Lurdes; Rodo, Joana; Vieira de Moraes, Luciana; Marques, Isabel; Penha-Gonçalves, Carlos
2013-01-01
Plasmodium liver stage infection is a target of interest for the treatment of and vaccination against malaria. Here we used forward genetics to search for mechanisms underlying natural host resistance to infection and identified triggering receptor expressed on myeloid cells 2 (TREM2) and MHC class II molecules as determinants of Plasmodium berghei liver stage infection in mice. Locus belr1 confers resistance to malaria liver stage infection. The use of newly derived subcongenic mouse lines allowed to map belr1 to a 4-Mb interval on mouse chromosome 17 that contains the Trem2 gene. We show that Trem2 expression in the nonparenchymal liver cells closely correlates with resistance to liver stage infection, implicating TREM2 as a mediator of the belr1 genetic effect. Trem2-deficient mice are more susceptible to liver stage infection than their WT counterparts. We found that Kupffer cells are the principle cells expressing TREM2 in the liver, and that Trem2−/− Kupffer cells display altered functional activation on exposure to P. berghei sporozoites. TREM2 expression in Kupffer cells contributes to the limitation of parasite expansion in isolated hepatocytes in vitro, potentially explaining the increased susceptibility of Trem2−/− mice to liver stage infection. The MHC locus was also found to control liver parasite burden, possibly owing to the expression of MHC class II molecules in hepatocytes. Our findings implicate unexpected Kupffer–hepatocyte cross-talk in the control Plasmodium liver stage infection and demonstrate that TREM2 is involved in host responses against the malaria parasite. PMID:24218563
Gonçalves, Lígia Antunes; Rodrigues-Duarte, Lurdes; Rodo, Joana; Vieira de Moraes, Luciana; Marques, Isabel; Penha-Gonçalves, Carlos
2013-11-26
Plasmodium liver stage infection is a target of interest for the treatment of and vaccination against malaria. Here we used forward genetics to search for mechanisms underlying natural host resistance to infection and identified triggering receptor expressed on myeloid cells 2 (TREM2) and MHC class II molecules as determinants of Plasmodium berghei liver stage infection in mice. Locus belr1 confers resistance to malaria liver stage infection. The use of newly derived subcongenic mouse lines allowed to map belr1 to a 4-Mb interval on mouse chromosome 17 that contains the Trem2 gene. We show that Trem2 expression in the nonparenchymal liver cells closely correlates with resistance to liver stage infection, implicating TREM2 as a mediator of the belr1 genetic effect. Trem2-deficient mice are more susceptible to liver stage infection than their WT counterparts. We found that Kupffer cells are the principle cells expressing TREM2 in the liver, and that Trem2(-/-) Kupffer cells display altered functional activation on exposure to P. berghei sporozoites. TREM2 expression in Kupffer cells contributes to the limitation of parasite expansion in isolated hepatocytes in vitro, potentially explaining the increased susceptibility of Trem2(-/-) mice to liver stage infection. The MHC locus was also found to control liver parasite burden, possibly owing to the expression of MHC class II molecules in hepatocytes. Our findings implicate unexpected Kupffer-hepatocyte cross-talk in the control Plasmodium liver stage infection and demonstrate that TREM2 is involved in host responses against the malaria parasite.
Epigenetic Events in Liver Cancer Resulting From Alcoholic Liver Disease
French, Samuel W.
2013-01-01
Epigenetic mechanisms play an extensive role in the development of liver cancer (i.e., hepatocellular carcinoma [HCC]) associated with alcoholic liver disease (ALD) as well as in liver disease associated with other conditions. For example, epigenetic mechanisms, such as changes in the methylation and/or acetylation pattern of certain DNA regions or of the histone proteins around which the DNA is wrapped, contribute to the reversion of normal liver cells into progenitor and stem cells that can develop into HCC. Chronic exposure to beverage alcohol (i.e., ethanol) can induce all of these epigenetic changes. Thus, ethanol metabolism results in the formation of compounds that can cause changes in DNA methylation and interfere with other components of the normal processes regulating DNA methylation. Alcohol exposure also can alter histone acetylation/deacetylation and methylation patterns through a variety of mechanisms and signaling pathways. Alcohol also acts indirectly on another molecule called toll-like receptor 4 (TLR4) that is a key component in a crucial regulatory pathway in the cells and whose dysregulation is involved in the development of HCC. Finally, alcohol use regulates an epigenetic mechanism involving small molecules called miRNAs that control transcriptional events and the expression of genes important to ALD. PMID:24313165
Liver abscesses in dromedary camels: Pathological characteristics and aerobic bacterial aetiology
Aljameel, M.A.; Halima, M.O.; ElTigani-Asil, A.E.; Abdalla, A.S.; Abdellatif, M.M.
2014-01-01
The study was carried out at Nyala abattoirs, South Darfur State, Sudan during a period from 2009 to 2011. Slaughtered camels (822) were examined for pathological changes of liver abscesses and identification of the involved aerobic bacteria. Grossly, a total of 111 (13.5%) liver abscesses were recorded in different camel ages; 90 (81.1%) were less than seven years old and 21 (18.9%) were more than seven years old. Histopathology of sectioned tissues revealed necrotic abscesses with infiltration of inflammatory cells, hydropic degeneration with swelling of hepatocytes comprising the sinusoid and different size of vacuoles in the hepatic cells. Proliferation of bile ducts with fibrous tissue and infiltration of inflammatory cells was also recorded. Investigation of bacteria revealed 90 aerobic isolates; they were identified to 52 (57.8%) gram positive cocci, 20 (22.2%) gram positive rods and 18 (20.0%) gram negative rods. Staphylococcus spp. (41.1%), Corynebacterium spp. (17.9%) and Streptococcus spp. (13.3%) were the most frequently identified bacteria involved in liver abscesses of camels in the region. Further studies are required to assess the pathogenicity of bacterial isolates from camel livers. This is particularly important from a public health perspective, since some people of Sudan are known to consume raw camel liver. PMID:26623351
Jemail, Leila; Miyao, Masashi; Kotani, Hirokazu; Kawai, Chihiro; Minami, Hirozo; Abiru, Hitoshi; Tamaki, Keiji
2018-04-23
Kupffer cells (KCs) are key players in maintaining tissue homeostasis and are involved in various liver diseases. However, the roles of KCs in the pathogenesis of cholangiopathy are largely unknown. We aimed to investigate the precise roles of KCs in both the progression and regression phases of the 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced cholangiopathy model. In the early phase of DDC-induced cholangiopathy, the number of KCs significantly increased over time. Moreover, KCs were associated with abnormal phenotypic changes in other liver cells, such as hepatocytes, biliary epithelial cells, liver sinusoidal endothelial cells, and hepatic stellate cells. In contrast, KC depletion by clodronate administration suppressed the progression of the disease, and maintained the phenotypes of other cells. In the regression phase, the numbers of KCs significantly decreased, and the cells redifferentiated to their quiescent state. In contrast, KC depletion delayed the recovery of cells by maintaining other liver cells in an active state. These findings suggest that KCs play detrimental roles in the progression phase; however, they are beneficial in the regression phase by mediating interactions between other liver cells. Our data provide new insights into the roles of KCs in the pathogenesis of cholangiopathy.
Schmelzer, Eva; Mutig, Kerim; Schrade, Petra; Bachmann, Sebastian; Gerlach, Jörg C; Zeilinger, Katrin
2009-07-01
Cultivation of primary human liver cells in innovative 3D perfusion multi-compartment capillary membrane bioreactors using decentralized mass exchange and integral oxygenation provides in vitro conditions close to the physiologic environment in vivo. While a few scale-up bioreactors were used clinically, inoculated liver progenitors in these bioreactors were not investigated. Therefore, we characterized regenerative processes and expression patterns of auto- and paracrine mediators involved in liver regeneration in bioreactors after patient treatment. Primary human liver cells containing parenchymal and non-parenchymal cells co-cultivated in bioreactors were used for clinical extra-corporeal liver support to bridge to liver transplantation. 3D tissue re-structuring in bioreactors was studied; expression of proteins and genes related to regenerative processes and hepatic progenitors was analyzed. Formation of multiple bile ductular networks and colonies of putative progenitors were observed within parenchymal cell aggregates. HGF was detected in scattered cells located close to vascular-like structures, expression of HGFA and c-Met was assigned to biliary cells and hepatocytes. Increased expression of genes associated to hepatic progenitors was detected following clinical application. The results confirm auto- and paracrine interactions between co-cultured cells in the bioreactor. The 3D bioreactor provides a valuable tool to study mechanisms of progenitor activation and hepatic regeneration ex vivo under patient plasma treatment. (c) 2009 Wiley Periodicals, Inc.
Morita, Miwa; Joyce, Daniel; Miller, Charles; Fung, John J; Lu, Lina; Qian, Shiguang
2015-09-01
Liver tolerance was initially recognized by the spontaneous acceptance of liver allografts in many species. The underlying mechanisms are not completely understood. However, liver transplant (LT) tolerance absolutely requires interferon (IFN)-γ, a rejection-associated inflammatory cytokine. In this study, we investigated the rejection of liver allografts deficient in the IFN-γ receptor and reveal that the liver graft is equipped with machineries capable of counterattacking the host immune response through a mesenchyme-mediated immune control (MMIC) mechanism. MMIC is triggered by T effector (Tef) cell-derived IFN-γ that drives expression of B7-H1 on graft mesenchymal cells leading to Tef cell apoptosis. We describe the negative feedback loop between graft mesenchymal and Tef cells that ultimately results in LT tolerance. Comparable elevations of T-regulatory cells and myeloid-derived suppressor cells were observed in both rejection and tolerance groups and were not dependent on IFN-γ stimulation, suggesting a critical role of Tef cell elimination in tolerance induction. We identify potent MMIC activity in hepatic stellate cells and liver sinusoidal endothelial cells. MMIC is unlikely exclusive to the liver, given that spontaneous acceptance of kidney allografts has been reported, although less commonly, probably reflecting variance in MMIC activity. MMIC may represent an important homeostatic mechanism that supports peripheral tolerance and could be a target for the prevention and treatment of transplant rejection. This study highlights that the graft is an active participant in the equipoise between tolerance and rejection and warrants more attention in the search for tolerance biomarkers. © 2015 by the American Association for the Study of Liver Diseases.
Morita, Miwa; Joyce, Daniel; Miller, Charles; Fung, John J.; Lu, Lina; Qian, Shiguang
2015-01-01
Liver tolerance was initially recognized by the spontaneous acceptance of liver allograft in many species. The underlying mechanisms are not completely understood. We have been inspired by an unexpected phenomenon that the liver transplant tolerance absolutely requires interferon (IFN)-γ, a rejection-associated inflammatory cytokine. In this study, we investigate the rejection of liver allografts deficient in IFN-γ receptor and reveal that the liver graft is equipped with machineries capable of counterattacking the host immune response through a mesenchyme-mediated immune control (MMIC) mechanism. MMIC is triggered by T effectors (Tef) cell-derived IFN-γ to drive the expression of B7-H1 on graft mesenchymal cells leading to Tef cell apoptosis. We describe the negative feedback loop between graft mesenchymal and Tef cells that ultimately results in liver transplant tolerance. Comparable elevations of T regulatory cells and myeloid-derived suppressor cells are seen in both rejection and tolerance groups, and are not dependent on IFN-γ stimulation, suggesting a critical role of Tef cell elimination in tolerance induction. We identify potent MMIC activity in hepatic stellate cells and liver sinusoidal endothelial cells. MMIC is unlikely exclusive to the liver, as spontaneous acceptance of kidney allografts has been reported, although less commonly, probably reflecting variance in MMIC activity. MMCI may represent an important homeostatic mechanism that supports peripheral tolerance, and could be a target for the prevention and treatment of transplant rejection. This study highlights that the graft is actively participant in the equipoise between tolerance and rejection and warrants more attention in the search for tolerance biomarkers. PMID:25998530
Guillot, Adrien; Gasmi, Imène; Brouillet, Arthur; Ait-Ahmed, Yeni; Calderaro, Julien; Ruiz, Isaac; Gao, Bin; Lotersztajn, Sophie; Pawlotsky, Jean-Michel; Lafdil, Fouad
2018-03-01
Liver progenitor cells (LPCs)/ductular reactions (DRs) are associated with inflammation and implicated in the pathogenesis of chronic liver diseases. However, how inflammation regulates LPCs/DRs remains largely unknown. Identification of inflammatory processes that involve LPC activation and expansion represent a key step in understanding the pathogenesis of liver diseases. In the current study, we found that diverse types of chronic liver diseases are associated with elevation of infiltrated interleukin (IL)-17-positive (+) cells and cytokeratin 19 (CK19) + LPCs, and both cell types colocalized and their numbers positively correlated with each other. The role of IL-17 in the induction of LPCs was examined in a mouse model fed a choline-deficient and ethionine-supplemented (CDE) diet. Feeding of wild-type mice with the CDE diet markedly elevated CK19 + Ki67 + proliferating LPCs and hepatic inflammation. Disruption of the IL-17 gene or IL-27 receptor, alpha subunit (WSX-1) gene abolished CDE diet-induced LPC expansion and inflammation. In vitro treatment with IL-17 promoted proliferation of bipotential murine oval liver cells (a liver progenitor cell line) and markedly up-regulated IL-27 expression in macrophages. Treatment with IL-27 favored the differentiation of bipotential murine oval liver cells and freshly isolated LPCs into hepatocytes. Conclusion : The current data provide evidence for a collaborative role between IL-17 and IL-27 in promoting LPC expansion and differentiation, respectively, thereby contributing to liver regeneration. ( Hepatology Communications 2018;2:329-343).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shibata, Ayano; Tanabe, Eriko; Inoue, Serina
2013-04-12
Highlights: •Hydrogen peroxide stimulates cell motility of WB-F344 cells. •LPA{sub 3} is induced by hydrogen peroxide in WB-F344 cells. •Cell motility by hydrogen peroxide is inhibited in LPA{sub 3} knockdown cells. •LPA signaling is involved in cell migration by hydrogen peroxide. -- Abstract: Hydrogen peroxide which is one of reactive oxygen species (ROS) mediates a variety of biological responses, including cell proliferation and migration. In the present study, we investigated whether lysophosphatidic acid (LPA) signaling is involved in cell motile activity stimulated by hydrogen peroxide. The rat liver epithelial WB-F344 cells were treated with hydrogen peroxide at 0.1 or 1more » μM for 48 h. In cell motility assays, hydrogen peroxide treated cells showed significantly high cell motile activity, compared with untreated cells. To measure the expression levels of LPA receptor genes, quantitative real time RT-PCR analysis was performed. The expressions of LPA receptor-3 (Lpar3) in hydrogen peroxide treated cells were significantly higher than those in control cells, but not Lpar1 and Lpar2 genes. Next, to assess the effect of LPA{sub 3} on cell motile activity, the Lpar3 knockdown cells from WB-F344 cells were also treated with hydrogen peroxide. The cell motile activity of the knockdown cells was not stimulated by hydrogen peroxide. Moreover, in liver cancer cells, hydrogen peroxide significantly activated cell motility of Lpar3-expressing cells, but not Lpar3-unexpressing cells. These results suggest that LPA signaling via LPA{sub 3} may be mainly involved in cell motile activity of WB-F344 cells stimulated by hydrogen peroxide.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soeda, Junpei; Morgan, Maelle; McKee, Chad
Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells inmore » the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by mecamylamine. {alpha}1 and {alpha}3-nAChR mRNA expression was significantly upregulated in NASH fibrosis compared to normal livers. Conclusion: Nicotine at levels in smokers' blood is pro-fibrogenic, through actions on hHSCs expressed nAChRs. Therefore, CS, via its nicotine content, may worsen liver fibrosis. Moreover, nicotinic receptor antagonists may have utility as novel anti-fibrotic agents.« less
Fiore, Esteban J.; Bayo, Juan M.; Garcia, Mariana G.; Malvicini, Mariana; Lloyd, Rodrigo; Piccioni, Flavia; Rizzo, Manglio; Peixoto, Estanislao; Sola, M. Beatriz; Atorrasagasti, Catalina; Alaniz, Laura; Camilletti, María A.; Enguita, Mónica; Prieto, Jesús; Aquino, Jorge B.
2015-01-01
Liver cirrhosis involves chronic wound healing and fibrotic processes. Mesenchymal stromal cells (MSCs) are multipotent adult progenitor cells that are used as vehicles of therapeutic genes. Insulin growth factor like-I (IGF-I) was shown to counteract liver fibrosis. We aimed at analyzing the effect of applying IGF-I overexpressing mouse bone marrow-derived MSCs on hepatic fibrosis. Fibrosis was induced by chronic thioacetamide application or bile duct ligation. MSCs engineered to produce green fluorescent protein (GFP) (AdGFP-MSCs) or IGF-I (AdIGF-I-MSCs) were applied systemically, and changes in collagen deposition and in the expression of key pro-fibrogenic and pro-regenerative genes/proteins were assessed. In addition, immunogenicity of transduced cells was analyzed. Liver fibrosis was further ameliorated after a single-dose application of AdIGF-I-MSCs when compared with AdGFP-MSCs and/or recombinant IGF-I treatments. Interestingly, an early and transitory upregulation in IGF-I and hepatocyte growth factor (HGF) mRNA expression was found in the liver of MSC-treated animals, which was more pronounced in AdIGF-I-MSCs condition. A reduction in hepatic stellate cell activation status was found after incubation with MSCs conditioned media. In addition, the AdIGF-I-MSCs cell-free supernatant induced the expression of IGF-I and HGF in primary cultured hepatocytes. From day 1 after transplantation, the proliferation marker proliferating cell nuclear antigen was upregulated in the liver of AdIGF-I-MSCs group, mainly in hepatocytes. MSCs were in vivo traced till day 14 after injection. In addition, multiple doses of Ad-IGF-I-MSCs likely suppressed antiviral immune response and it further reduced collagen deposition. Our results uncover early events that are likely involved in the anti-fibrogenic effect of genetically modified MSCs and overall would support the use of AdIGF-I-MSCs in treatment of liver fibrosis. PMID:25315017
In vivo genotoxicity of furan in F344 rats at cancer bioassay doses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Wei, E-mail: Wei.Ding@fda.hhs.gov; Petibone, Dayton M.; Latendresse, John R.
2012-06-01
Furan, a potent rodent liver carcinogen, is found in many cooked food items and thus represents a human cancer risk. Mechanisms for furan carcinogenicity were investigated in male F344 rats using the in vivo Comet and micronucleus assays, combined with analysis of histopathological and gene expression changes. In addition, formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III (EndoIII)-sensitive DNA damage was monitored as a measure of oxidative DNA damage. Rats were treated by gavage on four consecutive days with 2, 4, and 8 mg/kg bw furan, doses that were tumorigenic in 2-year cancer bioassays, and with two higher doses, 12 andmore » 16 mg/kg. Rats were killed 3 h after the last dose, a time established as producing maximum levels of DNA damage in livers of furan-treated rats. Liver Comet assays indicated that both DNA strand breaks and oxidized purines and pyrimidines increased in a near-linear dose-responsive fashion, with statistically significant increases detected at cancer bioassay doses. No DNA damage was detected in bone marrow, a non-target tissue for cancer, and peripheral blood micronucleus assays were negative. Histopathological evaluation of liver from furan-exposed animals produced evidence of inflammation, single-cell necrosis, apoptosis, and cell proliferation. In addition, genes related to apoptosis, cell-cycle checkpoints, and DNA-repair were expressed at a slightly lower level in the furan-treated livers. Although a mixed mode of action involving direct DNA binding cannot be ruled out, the data suggest that furan induces cancer in rat livers mainly through a secondary genotoxic mechanism involving oxidative stress, accompanied by inflammation, cell proliferation, and toxicity. -- Highlights: ► Furan is a potent rodent liver carcinogen and represents a human cancer risk. ► Furan induces DNA damage in rat liver at cancer bioassay doses. ► Furan induces oxidative stress, inflammation and cell proliferation in rat liver. ► Expression of DNA damage repair-related genes is reduced in furan-treated rat livers. ► Furan induces rat liver cancer mainly through a secondary genotoxic mechanism.« less
Measurement of Blood Coagulation Factor Synthesis in Cultures of Human Hepatocytes.
Heinz, Stefan; Braspenning, Joris
2015-01-01
An important function of the liver is the synthesis and secretion of blood coagulation factors. Within the liver, hepatocytes are involved in the synthesis of most blood coagulation factors, such as fibrinogen, prothrombin, factor V, VII, IX, X, XI, XII, as well as protein C and S, and antithrombin, whereas liver sinusoidal endothelial cells produce factor VIII and von Willebrand factor. Here, we describe methods for the detection and quantification of most blood coagulation factors in hepatocytes in vitro. Hepatocyte cultures indeed provide a valuable tool to study blood coagulation factors. In addition, the generation and expansion of hepatocytes or hepatocyte-like cells may be used in future for cell-based therapies of liver diseases, including blood coagulation factor deficiencies.
Rho GTPase Involvement in Breast Cancer Migration and Invasion
2005-03-01
we did not observe any dissemination of cells to predicted lung, liver or bone sites as determined by pan-keratin and vimentin staining. We did...significant splenomegaly and myeloid cells in the liver , whilst mice bearing RhoA siRNA tumours were only mildly affected. This could be accounted for by 1...R. Stable suipiression of tumliorigecaicits bxto eten ou stdiesto rth opc inviv moelsto etabishthe virus-mediated RNA initeiference, Canicer Cell 2(X
Are hematopoietic stem cells involved in hepatocarcinogenesis?
Facciorusso, Antonio; Antonino, Matteo; Del Prete, Valentina; Neve, Viviana; Scavo, Maria Principia; Barone, Michele
2014-08-01
THE LIVER HAS THREE CELL LINEAGES ABLE TO PROLIFERATE AFTER A HEPATIC INJURY: the mature hepatocyte, the ductular "bipolar" progenitor cell termed "oval cell" and the putative periductular stem cell. Hepatocytes can only produce other hepatocytes whereas ductular progenitor cells are considerate bipolar since they can give rise to biliary cells or hepatocytes. Periductular stem cells are rare in the liver, have a very long proliferation potential and may be multipotent, being this aspect still under investigation. They originate in the bone marrow since their progeny express genetic markers of donor hematopoietic cells after bone marrow transplantation. Since the liver is the hematopoietic organ of the fetus, it is possible that hematopoietic stem cells may reside in the liver of the adult. This assumption is proved by the finding that oval cells express hematopoietic markers like CD34, CD45, CD 109, Thy-1, c-kit, and others, which are also expressed by bone marrow-derived hematopoietic stem cells (BMSCs). Few and discordant studies have evaluated the role of BMSC in hepatocarcinogenesis so far and further studies in vitro and in vivo are warranted in order to definitively clarify such an issue.
Innate Immune Regulations and Liver Ischemia Reperfusion Injury
Lu, Ling; Zhou, Haoming; Ni, Ming; Wang, Xuehao; Busuttil, Ronald; Kupiec-Weglinski, Jerzy; Zhai, Yuan
2016-01-01
Liver ischemia reperfusion activates innate immune system to drive the full development of inflammatory hepatocellular injury. Damage-associated molecular patterns (DAMPs) stimulate myeloid and dendritic cells via pattern recognition receptors (PRRs) to initiate the immune response. Complex intracellular signaling network transduces inflammatory signaling to regulate both innate immune cell activation and parenchymal cell death. Recent studies have revealed that DAMPs may trigger not only proinflammatory, but also immune regulatory responses by activating different PRRs or distinctive intracellular signaling pathways or in special cell populations. Additionally, tissue injury milieu activates PRR-independent receptors which also regulate inflammatory disease processes. Thus, the innate immune mechanism of liver IRI involves diverse molecular and cellular interactions, subjected to both endogenous and exogenous regulation in different cells. A better understanding of these complicated regulatory pathways/network is imperative for us in designing safe and effective therapeutic strategy to ameliorate liver IRI in patients. PMID:27861288
Shibata, Ayano; Tanabe, Eriko; Inoue, Serina; Kitayoshi, Misaho; Okimoto, Souta; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi
2013-04-12
Hydrogen peroxide which is one of reactive oxygen species (ROS) mediates a variety of biological responses, including cell proliferation and migration. In the present study, we investigated whether lysophosphatidic acid (LPA) signaling is involved in cell motile activity stimulated by hydrogen peroxide. The rat liver epithelial WB-F344 cells were treated with hydrogen peroxide at 0.1 or 1 μM for 48 h. In cell motility assays, hydrogen peroxide treated cells showed significantly high cell motile activity, compared with untreated cells. To measure the expression levels of LPA receptor genes, quantitative real time RT-PCR analysis was performed. The expressions of LPA receptor-3 (Lpar3) in hydrogen peroxide treated cells were significantly higher than those in control cells, but not Lpar1 and Lpar2 genes. Next, to assess the effect of LPA3 on cell motile activity, the Lpar3 knockdown cells from WB-F344 cells were also treated with hydrogen peroxide. The cell motile activity of the knockdown cells was not stimulated by hydrogen peroxide. Moreover, in liver cancer cells, hydrogen peroxide significantly activated cell motility of Lpar3-expressing cells, but not Lpar3-unexpressing cells. These results suggest that LPA signaling via LPA3 may be mainly involved in cell motile activity of WB-F344 cells stimulated by hydrogen peroxide. Copyright © 2013 Elsevier Inc. All rights reserved.
Roderburg, Christoph; Mollnow, Tobias; Bongaerts, Brenda; Elfimova, Natalia; Vargas Cardenas, David; Berger, Katharina; Zimmermann, Henning; Koch, Alexander; Vucur, Mihael; Luedde, Mark; Hellerbrand, Claus; Odenthal, Margarete; Trautwein, Christian; Tacke, Frank; Luedde, Tom
2012-01-01
Background and Aims Micro-RNAs (miRNAs) have recently emerged as crucial modulators of molecular processes involved in chronic liver diseases. The few miRNAs with previously proposed roles in liver cirrhosis were identified in screening approaches on liver parenchyma, mostly in rodent models. Therefore, in the present study we performed a systematic screening approach in order to identify miRNAs with altered levels in the serum of patients with chronic liver disease and liver cirrhosis. Methods We performed a systematic, array-based miRNA expression analysis on serum samples from patients with liver cirrhosis. In functional experiments we evaluated the relationship between alterations of miRNA serum levels and their role in distinct cellular compartments involved in hepatic cirrhosis. Results The array analysis and the subsequent confirmation by qPCR in a larger patient cohort identified significant alterations in serum levels of miR-513-3p, miR-571 and miR-652, three previously uncharacterized miRNAs, in patients with alcoholic or hepatitis C induced liver cirrhosis. Of these, miR-571 serum levels closely correlated with disease stages, thus revealing potential as a novel biomarker for hepatic cirrhosis. Further analysis revealed that up-regulation of miR-571 in serum reflected a concordant regulation in cirrhotic liver tissue. In isolated primary human liver cells, miR-571 was up-regulated in human hepatocytes and hepatic stellate cells in response to the pro-fibrogenic cytokine TGF-β. In contrast, alterations in serum levels of miR-652 were stage-independent, reflecting a concordant down-regulation of this miRNA in circulating monocytes of patients with liver cirrhosis, which was inducible by proinflammatory stimuli like bacterial lipopolysaccharide. Conclusion Alterations of miR571 and miR-652 serum levels in patients with chronic liver disease reflect their putative roles in the mediation of fibrogenic and inflammatory processes in distinct cellular compartments involved in the pathogenesis of liver cirrhosis. PMID:22412969
Cheng, Chiung-Chi; Chao, Wei-Ting; Liao, Chen-Chun; Tseng, Yu-Hui; Lai, Yen-Chang Clark; Lai, Yih-Shyong; Hsu, Yung-Hsiang; Liu, Yi-Hsiang
2018-01-02
Plectin involved in activation of kinases in cell signaling pathway and plays important role in cell morphology and migration. Plectin knockdown promotes cell migration by activating focal adhesion kinase and Rac1-GTPase activity in liver cells. Sorafenib is a multi-targeting tyrosine kinase inhibitor that improves patient survival on hepatocellular carcinoma. The aim of this study is to investigate the correlation between the expression of plectin and cell migration as well as the sensitivity of hepatoma cell lines exposing to sorafenib. Hepatoma cell lines PLC/PRF/5 and HepG2 were used to examine the level of plectin expression and cell migration in comparison with Chang liver cell line. In addition, sensitivity of the 3 cell lines to sorafenib treatment was also measured. Expression of plectin was lower in PLC/PRF/5 and HepG2 hepatoma cells than that of Chang liver cells whereas HepG2 and PLC/PRF/5 cells exhibit higher rate of cell migration in trans-well migration assay. Immunohistofluorecent staining on E-cadherin revealed the highest rate of collective cell migration in HepG2 cells and the lowest was found in Chang liver cells. Likewise, HepG2 cell line was most sensitive to sorafenib treatment and Chang liver cells exhibited the least sensitivity. The drug sensitivity to sorafenib treatment showed inverse correlation with the expression of plectin. We suggest that plectin deficiency and increased E-cadherin in hepatoma cells were associated with higher rates of cell motility, collective cell migration as well as higher drug sensitivity to sorafenib treatment.
THE EFFECT OF SAMe AND BETAINE ON HEPA 1-6, C34 AND E47 LIVER CELL SURVIVAL IN VITRO
Oliva, Joan; Zhong, Jin; Buslon, Virgil S.; French, Samuel W.
2011-01-01
In recent years, methyl one-carbon metabolism has received a great deal of attention because the disruption of methyl balance in a variety of genetically modified mice is associated with the development of various forms of liver injury, namely fatty liverdisease and hepatocellular carcinoma (HCC). In addition, patients with liver disease often have an abnormal expression of key genes involved in methionine metabolism as well as elevated serum levels of methionine and homocysteine (Hcy). S-adenosylmethionine (SAMe) has rapidly moved from being a methyl donor to a key metabolite that regulates hepatocyte proliferation, necrosis and differentiation. Biosynthesis of SAMe occurs in all mammalian cells as the first step in methionine catabolism in a reaction catalyzed by methionine adenosyltransferase (MAT). Decreased hepatic SAMe biosynthesis is a consequence of numerous forms of chronic liver injury. In an animal model of chronic liver SAMe deficiency, the liver is predisposed to further injury and develops spontaneous steatohepatitis and HCC. SAMe treatment in experimental animal models of liver injury shows that its hepatoprotective properties. Meta-analyses also showed that it is effective in the treatment of patients with cholestatic liver diseases. We studied the survival of liver cells treated with SAMe and betaine using Hepa 1–6 and E47/C34 cell lines. We showed that exogenous SAMe decreased the number of Hepa 1–6 and E47/C34 cells, and increased the number of dead cells in vitro. Betaine had no significant effect on the number of surviving cells and the number of dead cells. The combination of both methyl donors significantly increased the survival of liver cells and reduced necrosis, compare to SAMe alone. This study showed the inhibition of the proliferatino and increased necrosis in response to SAMe on liver cancer cell lines Hepa 1–6 and C34. PMID:22032937
Potential mechanisms of hepatitis B virus induced liver injury
Suhail, Mohd; Abdel-Hafiz, Hany; Ali, Ashraf; Fatima, Kaneez; Damanhouri, Ghazi A; Azhar, Esam; Chaudhary, Adeel GA; Qadri, Ishtiaq
2014-01-01
Chronic active hepatitis (CAH) is acknowledged as an imperative risk factor for the development of liver injury and hepatocellular carcinoma. The histological end points of CAH are chronic inflammation, fibrosis and cirrhosis which are coupled with increased DNA synthesis in cirrhotic vs healthy normal livers. The potential mechanism involved in CAH includes a combination of processes leading to liver cell necrosis, inflammation and cytokine production and liver scaring (fibrosis). The severity of liver damage is regulated by Hepatitis B virus genotypes and viral components. The viral and cellular factors that contribute to liver injury are discussed in this article. Liver injury caused by the viral infection affects many cellular processes such as cell signaling, apoptosis, transcription, DNA repair which in turn induce radical effects on cell survival, growth, transformation and maintenance. The consequence of such perturbations is resulted in the alteration of bile secretion, gluconeogenesis, glycolysis, detoxification and metabolism of carbohydrates, proteins, fat and balance of nutrients. The identification and elucidation of the molecular pathways perturbed by the viral proteins are important in order to design effective strategy to minimize and/or restore the hepatocytes injury. PMID:25253946
Funken, Dominik; Ishikawa-Ankerhold, Hellen; Uhl, Bernd; Lerchenberger, Maximilian; Rentsch, Markus; Mayr, Doris; Massberg, Steffen; Werner, Jens; Khandoga, Andrej
2017-11-01
CD4 + T cells recruited to the liver play a key role in the pathogenesis of ischemia/reperfusion (I/R) injury. The mechanism of their activation during alloantigen-independent I/R is not completely understood. We hypothesized that liver-resident dendritic cells (DCs) interact with CD4 + T cells in the postischemic liver and that modulation of DCs or T-cell-DC interactions attenuates liver inflammation. In mice, warm hepatic I/R (90/120-240 min) was induced. Tolerogenic DCs were generated in situ by pretreatment of animals with the vitamin D analog paricalcitol. A mAb-CD44 was used for blockade of CD4 + T-cell-DC interactions. As shown by 2-photon in vivo microscopy as well as confocal microscopy, CD4 + T cells were closely colocalized with DCs in the postischemic liver. Pretreatment with paricalcitol attenuated I/R-induced maturation of DCs (flow cytometry), CD4 + T-cell recruitment into the liver (intravital microscopy), and hepatocellular/microvascular damage (intravital microscopy, alanine aminotransferase/aspartate aminotransferase, histology). However, interruption of T-cell-DC interaction increased proinflammatory DC maturation and even enhanced tissue damage. Simultaneous treatment with an anti-CD44mAb completely abolished the beneficial effect of paricalcitol on T-cell migration and tissue injury. Our study demonstrates for the first time that hepatic DCs interact with CD4 + T cells in the postischemic liver in vivo ; modulation of DCs and/or generation of tolerogenic DCs attenuates intrahepatic CD4 + T-cell recruitment and reduces I/R injury; and interruption of CD44-dependent CD4 + T-cell-DC interactions enhances tissue injury by preventing the modulatory effect of hepatic DCs on T cells, especially type 1 T helper effector cells. Thus, hepatic DCs are strongly involved in the promotion of CD4 + T-cell-dependent postischemic liver inflammation.-Funken, D., Ishikawa-Ankerhold, H., Uhl, B., Lerchenberger, M., Rentsch, M., Mayr, D., Massberg, S., Werner, J., Khandoga, A. In situ targeting of dendritic cells sets tolerogenic environment and ameliorates CD4 + T-cell response in the postischemic liver. © FASEB.
FXR blocks the growth of liver cancer cells through inhibiting mTOR-s6K pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xiongfei, E-mail: xiongfeihuang@hotmail.com; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian; Zeng, Yeting
The nuclear receptor Farnesoid X Receptor (FXR) is likely a tumor suppressor in liver tissue but its molecular mechanism of suppression is not well understood. In this study, the gene expression profile of human liver cancer cells was investigated by microarray. Bioinformatics analysis of these data revealed that FXR might regulate the mTOR/S6K signaling pathway. This was confirmed by altering the expression level of FXR in liver cancer cells. Overexpression of FXR prevented the growth of cells and induced cell cycle arrest, which was enhanced by the mTOR/S6K inhibitor rapamycin. FXR upregulation also intensified the inhibition of cell growth bymore » rapamycin. Downregulation of FXR produced the opposite effect. Finally, we found that ectopic expression of FXR in SK-Hep-1 xenografts inhibits tumor growth and reduces expression of the phosphorylated protein S6K. Taken together, our data provide the first evidence that FXR suppresses proliferation of human liver cancer cells via the inhibition of the mTOR/S6K signaling pathway. FXR expression can be used as a biomarker of personalized mTOR inhibitor treatment assessment for liver cancer patients. -- Highlights: •FXR inhibits the proliferation of liver cancer cells by prolonging G0/G1 phase. •Microarray results indicate that mTOR-S6k signaling is involved in cellular processes in which FXR plays an important role. •FXR blocks the growth of liver cancer cells via the inhibition of the mTOR/S6K signaling pathway in vitro and in vivo.« less
Mwangi, Simon Musyoka; Peng, Sophia; Nezami, Behtash Ghazi; Thorn, Natalie; Farris, Alton B; Jain, Sanjay; Laroui, Hamed; Merlin, Didier; Anania, Frank; Srinivasan, Shanthi
2016-01-15
Glial cell line-derived neurotrophic factor (GDNF) protects against high-fat diet (HFD)-induced hepatic steatosis in mice, however, the mechanisms involved are not known. In this study we investigated the effects of GDNF overexpression and nanoparticle delivery of GDNF in mice on hepatic steatosis and fibrosis and the expression of genes involved in the regulation of hepatic lipid uptake and de novo lipogenesis. Transgenic overexpression of GDNF in liver and other metabolically active tissues was protective against HFD-induced hepatic steatosis. Mice overexpressing GDNF had significantly reduced P62/sequestosome 1 protein levels suggestive of accelerated autophagic clearance. They also had significantly reduced peroxisome proliferator-activated receptor-γ (PPAR-γ) and CD36 gene expression and protein levels, and lower expression of mRNA coding for enzymes involved in de novo lipogenesis. GDNF-loaded nanoparticles were protective against short-term HFD-induced hepatic steatosis and attenuated liver fibrosis in mice with long-standing HFD-induced hepatic steatosis. They also suppressed the liver expression of steatosis-associated genes. In vitro, GDNF suppressed triglyceride accumulation in Hep G2 cells through enhanced p38 mitogen-activated protein kinase-dependent signaling and inhibition of PPAR-γ gene promoter activity. These results show that GDNF acts directly in the liver to protect against HFD-induced cellular stress and that GDNF may have a role in the treatment of nonalcoholic fatty liver disease.
CXCR7/CXCL12 axis is involved in lymph node and liver metastasis of gastric carcinoma
Xin, Qi; Zhang, Na; Yu, Hai-Bo; Zhang, Qin; Cui, Yan-Fen; Zhang, Chuan-Shan; Ma, Zhe; Yang, Yan; Liu, Wei
2017-01-01
AIM To investigate the role of CXC chemokine receptor (CXCR)-7 and CXCL12 in lymph node and liver metastasis of gastric carcinoma. METHODS In 160 cases of gastric cancer, the expression of CXCR7 and CXCL12 in tumor and matched tumor-adjacent non-cancer tissues, in the lymph nodes around the stomach and in the liver was detected using immunohistochemistry to analyze the relationship between CXCR7/CXCL12 expression and clinicopathological features and to determine whether CXCR7 and CXCL12 constitute a biological axis to promote lymph node and liver metastasis of gastric cancer. Furthermore, the CXCR7 gene was silenced and overexpressed in human gastric cancer SGC-7901 cells, and cell proliferation, migration and invasiveness were measured by the MTT, wound healing and Transwell assays, respectively. RESULTS CXCR7 expression was up-regulated in gastric cancer tissues (P = 0.011). CXCR7/CXCL12 expression was significantly related to high tumor stage and lymph node (r = 0.338, P = 0.000) and liver metastasis (r = 0.629, P = 0.000). The expression of CXCL12 in lymph node and liver metastasis was higher than that in primary gastric cancer tissues (χ2 = 6.669, P = 0.010; χ2 = 25379, P = 0.000), and the expression of CXCL12 in lymph node and liver metastasis of gastric cancer was consistent with the positive expression of CXCR7 in primary gastric cancer (r = 0.338, P = 0.000; r = 0.629, P = 0.000). Overexpression of the CXCR7 gene promoted cell proliferation, migration and invasion. Silencing of the CXCR7 gene suppressed SGC-7901 cell proliferation, migration and invasion. Human gastric cancer cell lines expressed CXCR7 and showed vigorous proliferation and migratory responses to CXCL12. CONCLUSION The CXCR7/CXCL12 axis is involved in lymph node and liver metastasis of gastric cancer. CXCR7 is considered a potential therapeutic target for the treatment of gastric cancer. PMID:28533662
The potential of induced pluripotent stem cell derived hepatocytes.
Hannoun, Zara; Steichen, Clara; Dianat, Noushin; Weber, Anne; Dubart-Kupperschmitt, Anne
2016-07-01
Orthotopic liver transplantation remains the only curative treatment for liver disease. However, the number of patients who die while on the waiting list (15%) has increased in recent years as a result of severe organ shortages; furthermore the incidence of liver disease is increasing worldwide. Clinical trials involving hepatocyte transplantation have provided encouraging results. However, transplanted cell function appears to often decline after several months, necessitating liver transplantation. The precise aetiology of the loss of cell function is not clear, but poor engraftment and immune-mediated loss appear to be important factors. Also, primary human hepatocytes (PHH) are not readily available, de-differentiate, and die rapidly in culture. Hepatocytes are available from other sources, such as tumour-derived human hepatocyte cell lines and immortalised human hepatocyte cell lines or porcine hepatocytes. However, all these cells suffer from various limitations such as reduced or differences in functions or risk of zoonotic infections. Due to their significant potential, one possible inexhaustible source of hepatocytes is through the directed differentiation of human induced pluripotent stem cells (hiPSCs). This review will discuss the potential applications and existing limitations of hiPSC-derived hepatocytes in regenerative medicine, drug screening, in vitro disease modelling and bioartificial livers. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Crisp, D. M.; Pogson, C. I.
1972-01-01
1. Parenchymal cells have been prepared from mouse liver by enzymic and mechanical means. 2. The dry weights, protein and DNA contents of these cells have been determined. 3. Mouse liver `M-' and `L-type' pyruvate kinases have been prepared free of contamination with each other; their kinetic properties have been examined and a method has been developed for their assay in total liver homogenates. 4. Recoveries of phosphoglycerate kinase, lactate dehydrogenase and phosphofructokinase in enzymically prepared cells indicate that little, if any, cytoplasmic protein is lost during preparation. 5. Parenchymal cells exhibit a very substantial increase in the activity ratio of glucokinase to hexokinase over that in total liver homogenate; in three out of eight experiments, hexokinase activity was undetectable. 6. `L-type' pyruvate kinase alone occurs in the parenchymal cell. Non-parenchymal cells are characterized by the presence of `M-type' activity only. 7. Parenchymal cells contain both glucose 6-phosphatase and fructose 1,6-diphosphatase. The non-parenchymal fraction appears to contain fructose 1,6-diphosphatase, but is devoid of glucose 6-phosphatase. 8. No aldolase A was detectable in the whole liver. Aldolase B occurs in both parenchymal and non-parenchymal tissue. 9. Parenchymal cells prepared by mechanical disruption of mouse liver with 20% polyvinyl alcohol exhibit a similar enzyme profile to those prepared enzymically. 10. The methodology involved in the preparation of isolated liver cells is discussed. The importance of the measurement of several parameters as criteria for establishing the viability of parenchymal cells is stressed. 11. The metabolic implications of the results in the present study are discussed. PMID:4262895
Inflammatory pseudotumor of the liver: ferumoxide-enhanced MR imaging as a tiebreaker.
Kato, Hiroki; Kanematsu, Masayuki; Kondo, Hiroshi; Osada, Shinji; Goshima, Satoshi; Yamada, Tetsuya; Yamada, Yasuhiro; Yokoyama, Ryujiro; Hoshi, Hiroaki; Moriyama, Noriyuki
2004-09-01
We examined a 70-year-old male patient with an inflammatory pseudotumor of the liver mimicking a peripheral-type cholangiocellular carcinoma. Ferumoxide-enhanced magnetic resonance (MR) imaging revealed residual Kupffer cell function in liver parenchyma in and surrounding the inflammatory pseudotumor involvement, which suggested the diagnosis of inflammatory pseudotumor of the liver. We correlate the MR imaging and pathologic findings in this report. Copyright 2004 Wiley-Liss, Inc.
Whither prometheus' liver? Greek myth and the science of regeneration.
Power, Carl; Rasko, John E J
2008-09-16
Stem-cell biologists and those involved in regenerative medicine are fascinated by the story of Prometheus, the Greek god whose immortal liver was feasted on day after day by Zeus' eagle. This myth invariably provokes the question: Did the ancient Greeks know about the liver's amazing capacity for self-repair? The authors address this question by exploring the origins of Greek myth and medicine, adopting a 2-fold strategy. First, the authors consider what opportunities the ancient Greeks had to learn about the liver's structure and function. This involves a discussion of early battlefield surgery, the beginnings of anatomical research, and the ancient art of liver augury. In addition, the authors consider how the Greeks understood Prometheus' immortal liver. Not only do the authors examine the general theme of regeneration in Greek mythology, they survey several scholarly interpretations of Prometheus' torture.
A Portal Vein Injection Model to Study Liver Metastasis of Breast Cancer.
Goddard, Erica T; Fischer, Jacob; Schedin, Pepper
2016-12-26
Breast cancer is the leading cause of cancer-related mortality in women worldwide. Liver metastasis is involved in upwards of 30% of cases with breast cancer metastasis, and results in poor outcomes with median survival rates of only 4.8 - 15 months. Current rodent models of breast cancer metastasis, including primary tumor cell xenograft and spontaneous tumor models, rarely metastasize to the liver. Intracardiac and intrasplenic injection models do result in liver metastases, however these models can be confounded by concomitant secondary-site metastasis, or by compromised immunity due to removal of the spleen to avoid tumor growth at the injection site. To address the need for improved liver metastasis models, a murine portal vein injection method that delivers tumor cells firstly and directly to the liver was developed. This model delivers tumor cells to the liver without complications of concurrent metastases in other organs or removal of the spleen. The optimized portal vein protocol employs small injection volumes of 5 - 10 μl, ≥ 32 gauge needles, and hemostatic gauze at the injection site to control for blood loss. The portal vein injection approach in Balb/c female mice using three syngeneic mammary tumor lines of varying metastatic potential was tested; high-metastatic 4T1 cells, moderate-metastatic D2A1 cells, and low-metastatic D2.OR cells. Concentrations of ≤ 10,000 cells/injection results in a latency of ~ 20 - 40 days for development of liver metastases with the higher metastatic 4T1 and D2A1 lines, and > 55 days for the less aggressive D2.OR line. This model represents an important tool to study breast cancer metastasis to the liver, and may be applicable to other cancers that frequently metastasize to the liver including colorectal and pancreatic adenocarcinomas.
Ju, Cynthia; Tacke, Frank
2016-01-01
Macrophages represent a major cell type of innate immunity and have emerged as a critical player and therapeutic target in many chronic inflammatory diseases. Hepatic macrophages consist of Kupffer cells, which are originated from the fetal yolk-sack, and infiltrated bone marrow-derived monocytes/macrophages. Hepatic macrophages play a central role in maintaining homeostasis of the liver and in the pathogenesis of liver injury, making them an attractive therapeutic target for liver diseases. However, the various populations of hepatic macrophages display different phenotypes and exert distinct functions. Thus, more research is required to better understand these cells to guide the development of macrophage-based therapeutic interventions. This review article will summarize the current knowledge on the origins and composition of hepatic macrophages, their functions in maintaining hepatic homeostasis, and their involvement in both promoting and resolving liver inflammation, injury, and fibrosis. Finally, the current strategies being developed to target hepatic macrophages for the treatment of liver diseases will be reviewed. PMID:26908374
Microfluidic Gut-liver chip for reproducing the first pass metabolism.
Choe, Aerim; Ha, Sang Keun; Choi, Inwook; Choi, Nakwon; Sung, Jong Hwan
2017-03-01
After oral intake of drugs, drugs go through the first pass metabolism in the gut and the liver, which greatly affects the final outcome of the drugs' efficacy and side effects. The first pass metabolism is a complex process involving the gut and the liver tissue, with transport and reaction occurring simultaneously at various locations, which makes it difficult to be reproduced in vitro with conventional cell culture systems. In an effort to tackle this challenge, here we have developed a microfluidic gut-liver chip that can reproduce the dynamics of the first pass metabolism. The microfluidic chip consists of two separate layers for gut epithelial cells (Caco-2) and the liver cells (HepG2), and is designed so that drugs go through a sequential absorption in the gut chamber and metabolic reaction in the liver chamber. We fabricated the chip and showed that the two different cell lines can be successfully co-cultured on chip. When the two cells are cultured on chip, changes in the physiological function of Caco-2 and HepG2 cells were noted. The cytochrome P450 metabolic activity of both cells were significantly enhanced, and the absorptive property of Caco-2 cells on chip also changed in response to the presence of flow. Finally, first pass metabolism of a flavonoid, apigenin, was evaluated as a model compound, and co-culture of gut and liver cells on chip resulted in a metabolic profile that is closer to the reported profile than a monoculture of gut cells. This microfluidic gut-liver chip can potentially be a useful platform to study the complex first pass metabolism of drugs in vitro.
Stefanovic-Racic, Maja; Yang, Xiao; Turner, Michael S.; Mantell, Benjamin S.; Stolz, Donna B.; Sumpter, Tina L.; Sipula, Ian J.; Dedousis, Nikolaos; Scott, Donald K.; Morel, Penelope A.; Thomson, Angus W.; O’Doherty, Robert M.
2012-01-01
Obesity-associated increases in adipose tissue (AT) CD11c+ cells suggest that dendritic cells (DC), which are involved in the tissue recruitment and activation of macrophages, may play a role in determining AT and liver immunophenotype in obesity. This study addressed this hypothesis. With the use of flow cytometry, electron microscopy, and loss-and-gain of function approaches, the contribution of DC to the pattern of immune cell alterations and recruitment in obesity was assessed. In AT and liver there was a substantial, high-fat diet (HFD)–induced increase in DC. In AT, these increases were associated with crown-like structures, whereas in liver the increase in DC constituted an early and reversible response to diet. Notably, mice lacking DC had reduced AT and liver macrophages, whereas DC replacement in DC-null mice increased liver and AT macrophage populations. Furthermore, delivery of bone marrow–derived DC to lean wild-type mice increased AT and liver macrophage infiltration. Finally, mice lacking DC were resistant to the weight gain and metabolic abnormalities of an HFD. Together, these data demonstrate that DC are elevated in obesity, promote macrophage infiltration of AT and liver, contribute to the determination of tissue immunophenotype, and play a role in systemic metabolic responses to an HFD. PMID:22851575
Han, Yantao; Xie, Jing; Gao, Hui; Xia, Yunqiu; Chen, Xuehong; Wang, Chunbo
2015-03-01
The objective of this study was to investigate the hepatoprotective effect of cod skin collagen peptides (CSCP), isolated from fishing industrial by-products, in vitro and in vivo. Effect of CSCP on cell proliferation of normal and H2O2-damaged Chang liver cells was determined by MTT assay in vitro. Two animal models, CCl4-induced and acetaminophenum-induced acute hepatotoxicity, were established to assess the hepatoprotective effect of CSCP. Liver weight index, serum ALT and AST, antioxidant enzymes, and lipid peroxidation product were used as the markers of liver toxicity. The cell viability in the H2O2-treated Chang liver cells was remarkably increased when pretreated with CSCP from 100 to 1,000 µg/ml in a dose-dependent manner. CSCP pretreatment also alleviated the CCL4-induced liver index loss, while no marked changes were found in acetaminophenum-treated mice. Furthermore, CSCP pulled down serum ALT and AST level, increased the activities of SOD and CAT, and decreased MDA in both murine models of acute liver toxicity. Pretreatment with CSCP protected liver tissue against oxidative injure in vivo and in vitro. The underlying mechanism might involve enhancement in the activities of antioxidant enzymes and reduction in the lipid peroxidation.
A microfluidically perfused three dimensional human liver model.
Rennert, Knut; Steinborn, Sandra; Gröger, Marko; Ungerböck, Birgit; Jank, Anne-Marie; Ehgartner, Josef; Nietzsche, Sandor; Dinger, Julia; Kiehntopf, Michael; Funke, Harald; Peters, Frank T; Lupp, Amelie; Gärtner, Claudia; Mayr, Torsten; Bauer, Michael; Huber, Otmar; Mosig, Alexander S
2015-12-01
Within the liver, non-parenchymal cells (NPCs) are critically involved in the regulation of hepatocyte polarization and maintenance of metabolic function. We here report the establishment of a liver organoid that integrates NPCs in a vascular layer composed of endothelial cells and tissue macrophages and a hepatic layer comprising stellate cells co-cultured with hepatocytes. The three-dimensional liver organoid is embedded in a microfluidically perfused biochip that enables sufficient nutrition supply and resembles morphological aspects of the human liver sinusoid. It utilizes a suspended membrane as a cell substrate mimicking the space of Disse. Luminescence-based sensor spots were integrated into the chip to allow online measurement of cellular oxygen consumption. Application of microfluidic flow induces defined expression of ZO-1, transferrin, ASGPR-1 along with an increased expression of MRP-2 transporter protein within the liver organoids. Moreover, perfusion was accompanied by an increased hepatobiliary secretion of 5(6)-carboxy-2',7'-dichlorofluorescein and an enhanced formation of hepatocyte microvilli. From this we conclude that the perfused liver organoid shares relevant morphological and functional characteristics with the human liver and represents a new in vitro research tool to study human hepatocellular physiology at the cellular level under conditions close to the physiological situation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Phosphatase of Regenerating Liver-3 Promotes Motility and Metastasis of Mouse Melanoma Cells
Wu, Xiaopeng; Zeng, Hu; Zhang, Xianming; Zhao, Ying; Sha, Haibo; Ge, Xiaomei; Zhang, Minyue; Gao, Xiang; Xu, Qiang
2004-01-01
Recent reports suggested that phosphatase of regenerating liver (PRL)-3 might be involved in colorectal carcinoma metastasis with an unknown mechanism. Here we demonstrated that PRL-3 expression was up-regulated in human liver carcinoma compared with normal liver. PRL-3 was also highly expressed in metastatic melanoma B16-BL6 cells but not in its lowly metastatic parental cell line, B16 cells. B16 cells transfected with PRL-3 cDNA displayed morphological transformation from epithelial-like shape to fibroblast-like shape. PRL-3-overexpressed cells showed much higher migratory ability, which could be reversed by specific anti-sense oligodeoxynucleotide and the phosphatase inhibitors sodium orthovanadate or potassium bisperoxo oxovanadate V. Meanwhile, the expression of the catalytically inactive PRL-3 mutations (D72A or C104S) significantly reduced the cell migratory capability. In addition, PRL-3 transfectants demonstrated altered extracellular matrix adhesive property and up-regulated integrin-mediated cell spreading efficiency. Furthermore, we confirmed that PRL-3 could facilitate lung and liver metastasis of B16 cells in an experimental metastasis model in mice, consistent with accelerated proliferation and growth rate both in vitro and in vivo. Together, these observations provide convincing evidence that PRL-3 truly plays a causal role in tumor metastasis. PMID:15161639
Bahde, Ralf; Kapoor, Sorabh; Gupta, Sanjeev
2014-01-01
The rising prevalence of hepatic injury due to toxins, metabolites, viruses, etc., necessitates development of further mechanisms for protecting the liver and for treating acute or chronic liver diseases. To examine whether inhibition of inflammation directed by cyclo-oxygenase pathways, we performed animal studies with naproxen, which inhibits prostaglandin-endoperoxide synthases 1 and 2 and is in extensive clinical use. We administered carbon tetrachloride to induce acute liver injury and ligated the common bile duct to induce chronic liver injury in adult rats. These experimental manipulations produced abnormalities in liver tests, tissue necrosis, compensatory hepatocyte or biliary proliferation, and onset of fibrosis, particularly after bile duct ligation. After carbon tetrachloride-induced acute injury, naproxen decreased liver test abnormalities, tissue necrosis and compensatory hepatocellular proliferation. After bile duct ligation-induced chronic injury, naproxen decreased liver test abnormalities, tissue injury and compensatory biliary hyperplasia. Moreover, after bile duct ligation, naproxen-treated rats showed more periductular oval liver cells, which have been classified as hepatic progenitor cells. In naproxen-treated rats, we found greater expression in hepatic stellate cells and mononuclear cells of cytoprotective factors, such as vascular endothelial growth factor. The ability of naproxen to induce expression of vascular endothelial growth factor was verified in cell culture studies with CFSC-8B clone of rat hepatic stellate cells. Whereas assays for carbon tetrachloride toxicity using cultured primary hepatocytes established that naproxen was not directly cytoprotective, we found conditioned medium containing vascular endothelial growth factor from naproxen-treated CFSC-8B cells protected hepatocytes from carbon tetrachloride toxicity. Therefore, naproxen was capable of ameliorating toxic liver injury, which involved naproxen-induced release of physiological cytoprotective factors in nonparenchymal liver cells. Such drug-induced release of endogenous cytoprotectants will advance therapeutic development for hepatic injury. PMID:24220607
Jiao, Yang; Ye, Diana Z.; Li, Zhaoyu; Teta-Bissett, Monica; Peng, Yong; Taub, Rebecca; Greenbaum, Linda E.
2014-01-01
Protein tyrosine phosphatase of liver regeneration-1 (Prl-1) is an immediate-early gene that is significantly induced during liver regeneration. Several in vitro studies have suggested that Prl-1 is important for the regulation of cell cycle progression. To evaluate its function in liver regeneration, we ablated the Prl-1 gene specifically in mouse hepatocytes using the Cre-loxP system. Prl-1 mutant mice (Prl-1loxP/loxP;AlfpCre) appeared normal and fertile. Liver size and metabolic function in Prl-1 mutants were comparable to controls, indicating that Prl-1 is dispensable for liver development, postnatal growth, and hepatocyte differentiation. Mutant mice demonstrated a delay in DNA synthesis after 70% partial hepatectomy, although ultimate liver mass restoration was not affected. At 40 h posthepatectomy, reduced protein levels of the cell cycle regulators cyclin E, cyclin A2, cyclin B1, and cyclin-dependent kinase 1 were observed in Prl-1 mutant liver. Investigation of the major signaling pathways involved in liver regeneration demonstrated that phosphorylation of protein kinase B (AKT) and signal transducer and activator of transcription (STAT) 3 were significantly reduced at 40 h posthepatectomy in Prl-1 mutants. Taken together, this study provides evidence that Prl-1 is required for proper timing of liver regeneration after partial hepatectomy. Prl-1 promotes G1/S progression via modulating expression of several cell cycle regulators through activation of the AKT and STAT3 signaling pathway. PMID:25377314
Amino Acid Availability Controls TRB3 Transcription in Liver through the GCN2/eIF2α/ATF4 Pathway
Carraro, Valérie; Maurin, Anne-Catherine; Lambert-Langlais, Sarah; Averous, Julien; Chaveroux, Cédric; Parry, Laurent; Jousse, Céline; Örd, Daima; Örd, Tõnis; Fafournoux, Pierre; Bruhat, Alain
2010-01-01
In mammals, plasma amino acid concentrations are markedly affected by dietary or pathological conditions. It has been well established that amino acids are involved in the control of gene expression. Up to now, all the information concerning the molecular mechanisms involved in the regulation of gene transcription by amino acid availability has been obtained in cultured cell lines. The present study aims to investigate the mechanisms involved in transcriptional activation of the TRB3 gene following amino acid limitation in mice liver. The results show that TRB3 is up-regulated in the liver of mice fed a leucine-deficient diet and that this induction is quickly reversible. Using transient transfection and chromatin immunoprecipitation approaches in hepatoma cells, we report the characterization of a functional Amino Acid Response Element (AARE) in the TRB3 promoter and the binding of ATF4, ATF2 and C/EBPβ to this AARE sequence. We also provide evidence that only the binding of ATF4 to the AARE plays a crucial role in the amino acid-regulated transcription of TRB3. In mouse liver, we demonstrate that the GCN2/eIF2α/ATF4 pathway is essential for the induction of the TRB3 gene transcription in response to a leucine-deficient diet. Therefore, this work establishes for the first time that the molecular mechanisms involved in the regulation of gene transcription by amino acid availability are functional in mouse liver. PMID:21203563
YOSHIMOTO, KATSUHIRO; TAJIMA, HIDEHIRO; OHTA, TETSUO; OKAMOTO, KOICHI; SAKAI, SEISHO; KINOSHITA, JUN; FURUKAWA, HIROYUKI; MAKINO, ISAMU; HAYASHI, HIRONORI; NAKAMURA, KEISHI; OYAMA, KATSUNOBU; INOKUCHI, MASAFUMI; NAKAGAWARA, HISATOSHI; ITOH, HIROSHI; FUJITA, HIDETO; TAKAMURA, HIROYUKI; NINOMIYA, ITASU; KITAGAWA, HIROHISA; FUSHIDA, SACHIO; FUJIMURA, TAKASHI; WAKAYAMA, TOMOHIKO; ISEKI, SHOICHI; SHIMIZU, KOICHI
2012-01-01
Several recent studies have reported that selectins are produced during ischemia-reperfusion injury, and that selectin ligands play an important role in cell binding to the endothelium and in liver metastasis. Portal clamping during pancreaticoduodenectomy with vessel resection for pancreatic head cancer causes hepatic ischemia-reperfusion injury, which might promote liver metastasis. We investigated the liver colonization of pancreatic cancer cells under hepatic ischemia-reperfusion and examined the involvement of E-selectin and its ligands. A human pancreatic cancer cell line (Capan-1) was injected into the spleen of mice after hepatic ischemia-reperfusion (I/R group). In addition, to investigate the effect of an anti-E-selectin antibody on liver colonization in the IR group, mice received an intraperitoneal injection of the anti-E-selectin antibody following hepatic ischemia-reperfusion and tumor inoculation (IR+Ab group). Four weeks later, mice were sacrificed and the number of tumor nodules on the liver was compared to mice without hepatic ischemia-reperfusion (control group). The incidence of liver metastasis in the I/R group was significantly higher (16 of 20, 80%) than that in the control group (6 of 20, 30%) (P<0.01). Moreover, mice in the I/R group had significantly more tumor nodules compared to those in the control group (median, 9.9 vs. 2.7 nodules) (P<0.01). In the I/R+Ab group, only 2 of 5 (40%) mice developed liver metastases. RT-PCR and southern blotting of the liver extracts showed that the expression of IL-1 and E-selectin mRNA after hepatic ischemia-reperfusion was significantly higher than the basal levels. Hepatic ischemia-reperfusion increases liver metastases and E-selectin expression in pancreatic cancer. These results suggest that E-selectin produced due to hepatic ischemia-reperfusion is involved in liver metastasis. PMID:22766603
Hickey, Raymond D.; Mao, Shennen A.; Glorioso, Jaime; Lillegard, Joseph B.; Fisher, James E.; Amiot, Bruce; Rinaldo, Piero; Harding, Cary O.; Marler, Ronald; Finegold, Milton J.; Grompe, Markus; Nyberg, Scott L.
2014-01-01
Hereditary tyrosinemia type I (HT1) is caused by deficiency in fumarylacetoacetate hydrolase (FAH), an enzyme that catalyzes the last step of tyrosine metabolism. The most severe form of the disease presents acutely during infancy, and is characterized by severe liver involvement, most commonly resulting in death if untreated. Generation of FAH+/− pigs was previously accomplished by adeno-associated virus-mediated gene knockout in fibroblasts and somatic cell nuclear transfer. Subsequently, these animals were outbred and crossed to produce the first FAH−/− pigs. FAH-deficiency produced a lethal defect in utero that was corrected by administration of 2-(2-nitro-4-trifluoromethylbenzyol)-1,3 cyclohexanedione (NTBC) throughout pregnancy. Animals on NTBC were phenotypically normal at birth; however, animals were euthanized approximately four weeks after withdrawal of NTBC due to clinical decline and physical examination findings of severe liver injury and encephalopthy consistent with acute liver failure. Biochemical and histological analyses, characterized by diffuse and severe hepatocellular damage, confirmed the diagnosis of severe liver injury. FAH−/− pigs provide the first genetically engineered large animal model of a metabolic liver disorder. Future applications of FAH−/− pigs include discovery research as a large animal model of HT1 and spontaneous acute liver failure, and preclinical testing of efficacy of liver cell therapies, including transplantation of hepatocytes, liver stem cells, and pluripotent stem cell-derived hepatocytes. PMID:24879068
Natural killer cells mediate severe liver injury in a murine model of halothane hepatitis.
Dugan, Christine M; Fullerton, Aaron M; Roth, Robert A; Ganey, Patricia E
2011-04-01
Severe halothane (HAL)-induced hepatotoxicity occurs in one in 6000-30,000 patients by an unknown mechanism. Female sex is a risk factor in humans and rodents. We tested the hypothesis that a sex difference in natural killer (NK) cell activity contributes to HAL-induced liver injury. HAL (15 mmol/kg, ip) treatment resulted in severe liver injury by 12 h in female, wild-type BALB/cJ mice, and the magnitude of liver injury varied with stage of the estrous cycle. Ovariectomized (OVX) mice developed only mild liver injury. Plasma interferon-gamma (IFN-γ) was elevated 10-fold in HAL-treated females compared with similarly treated male mice or with OVX female mice. IFN-γ knockout mice were resistant to severe HAL-induced liver injury. The deactivation of NK cells with anti-asialo GM1 treatment attenuated liver injury and the increase in plasma IFN-γ compared with immunoglobulin G-treated control mice. Mice with a mutated form of perforin, a protein involved in granule-mediated cytotoxicity, were protected from severe liver injury. Furthermore, HAL increased the activity of NK cells in vivo, as indicated by increased surface expression of CD69, an early activation marker. In response to HAL, NK cell receptor ligands on the surface of hepatocytes were expressed in a manner that can activate NK cells. These results confirm the sexual dimorphic hepatotoxic response to HAL in mice and suggest that IFN-γ and NK cells have essential roles in the development of severe HAL-induced hepatotoxicity.
Natural Killer Cells Mediate Severe Liver Injury in a Murine Model of Halothane Hepatitis
Dugan, Christine M.; Fullerton, Aaron M.; Roth, Robert A.; Ganey, Patricia E.
2011-01-01
Severe halothane (HAL)-induced hepatotoxicity occurs in one in 6000–30,000 patients by an unknown mechanism. Female sex is a risk factor in humans and rodents. We tested the hypothesis that a sex difference in natural killer (NK) cell activity contributes to HAL-induced liver injury. HAL (15 mmol/kg, ip) treatment resulted in severe liver injury by 12 h in female, wild-type BALB/cJ mice, and the magnitude of liver injury varied with stage of the estrous cycle. Ovariectomized (OVX) mice developed only mild liver injury. Plasma interferon-gamma (IFN-γ) was elevated 10-fold in HAL-treated females compared with similarly treated male mice or with OVX female mice. IFN-γ knockout mice were resistant to severe HAL-induced liver injury. The deactivation of NK cells with anti-asialo GM1 treatment attenuated liver injury and the increase in plasma IFN-γ compared with immunoglobulin G–treated control mice. Mice with a mutated form of perforin, a protein involved in granule-mediated cytotoxicity, were protected from severe liver injury. Furthermore, HAL increased the activity of NK cells in vivo, as indicated by increased surface expression of CD69, an early activation marker. In response to HAL, NK cell receptor ligands on the surface of hepatocytes were expressed in a manner that can activate NK cells. These results confirm the sexual dimorphic hepatotoxic response to HAL in mice and suggest that IFN-γ and NK cells have essential roles in the development of severe HAL-induced hepatotoxicity. PMID:21245496
Role of intrahepatic innervation in regulating the activity of liver cells
Streba, Letitia Adela Maria; Vere, Cristin Constantin; Ionescu, Alin Gabriel; Streba, Costin Teodor; Rogoveanu, Ion
2014-01-01
Liver innervation comprises sympathetic, parasympathetic and peptidergic nerve fibers, organized as either afferent or efferent nerves with different origins and roles. Their anatomy and physiology have been studied in the past 30 years, with different results published over time. Hepatocytes are the main cell population of the liver, making up almost 80% of the total liver volume. The interaction between hepatocytes and nerve fibers is accomplished through a wealth of neurotransmitters and signaling pathways. In this short review, we have taken the task of condensing the most important data related to how the nervous system interacts with the liver and especially with the hepatocyte population, how it influences their metabolism and functions, and how different receptors and transmitters are involved in this complex process. PMID:24672643
Are hematopoietic stem cells involved in hepatocarcinogenesis?
Antonino, Matteo; Del Prete, Valentina; Neve, Viviana; Scavo, Maria Principia; Barone, Michele
2014-01-01
The liver has three cell lineages able to proliferate after a hepatic injury: the mature hepatocyte, the ductular “bipolar” progenitor cell termed “oval cell” and the putative periductular stem cell. Hepatocytes can only produce other hepatocytes whereas ductular progenitor cells are considerate bipolar since they can give rise to biliary cells or hepatocytes. Periductular stem cells are rare in the liver, have a very long proliferation potential and may be multipotent, being this aspect still under investigation. They originate in the bone marrow since their progeny express genetic markers of donor hematopoietic cells after bone marrow transplantation. Since the liver is the hematopoietic organ of the fetus, it is possible that hematopoietic stem cells may reside in the liver of the adult. This assumption is proved by the finding that oval cells express hematopoietic markers like CD34, CD45, CD 109, Thy-1, c-kit, and others, which are also expressed by bone marrow-derived hematopoietic stem cells (BMSCs). Few and discordant studies have evaluated the role of BMSC in hepatocarcinogenesis so far and further studies in vitro and in vivo are warranted in order to definitively clarify such an issue. PMID:25202697
Hunter, Stuart; Willcox, Carrie R; Davey, Martin S; Kasatskaya, Sofya A; Jeffery, Hannah C; Chudakov, Dmitriy M; Oo, Ye H; Willcox, Benjamin E
2018-05-18
γδ T-cells comprise a substantial proportion of tissue-associated lymphocytes. However, our current understanding of human γδ T-cells is primarily based on peripheral blood subsets, while the immunobiology of tissue-associated subsets remains largely unclear. To address this, we characterised the TCR diversity, immunophenotype and function of human liver infiltrating γδ T-cells, focussing on the predominant tissue-associated Vδ2 neg γδ subset, which is implicated in liver immunopathology. Intrahepatic Vδ2 neg γδ T-cells were highly clonally focussed, with single expanded clonotypes featuring complex, private TCR rearrangements frequently dominating the compartment. Such T-cells were predominantly CD27 lo/neg effector lymphocytes, whereas naïve CD27 hi , TCR diverse populations present in matched blood were generally absent in the liver. Furthermore, while a CD45RA hi Vδ2 neg γδ effector subset present in both liver and peripheral blood contained overlapping TCR clonotypes, the liver Vδ2 neg γδ T-cell pool also included a phenotypically distinct CD45RA lo effector compartment that was enriched for expression of the tissue tropism marker CD69, the hepatic homing chemokine receptors CXCR3 and CXCR6, and liver-restricted TCR clonotypes, suggestive of intrahepatic tissue residency. Liver infiltrating Vδ2 neg γδ cells were capable of polyfunctional cytokine secretion, and unlike peripheral blood subsets, were responsive to both TCR and innate stimuli. These findings suggest the ability of Vδ2 neg γδ T-cells to undergo clonotypic expansion and differentiation is crucial in permitting access to solid tissues such as the liver, and can result in functionally distinct peripheral and liver-resident memory γδ T-cell subsets. They highlight the inherent functional plasticity within the Vδ2 neg γδ T-cell compartment, and may inform design of cellular therapies involving intrahepatic trafficking of γδ T-cells to suppress liver inflammation or combat liver cancer. γδ T cells are frequently enriched in many solid tissues, however the immunobiology of such tissue-associated subsets in humans has remained unclear. We show that intrahepatic γδ T cells are enriched for clonally expanded effector T cells, whereas naïve γδ T cells are largely excluded; moreover, whereas a distinct proportion of circulating T cell clonotypes was present in both the liver tissue and peripheral blood, a functionally and clonotypically distinct population of liver-resident γδ T cells was also evident. Our findings suggest that factors triggering γδ T cell clonal selection and differentiation, such as infection, can drive enrichment of γδ T cells into liver tissue, allowing the development of functionally distinct tissue-restricted memory populations specialised in local hepatic immunosurveillance. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Fukuda, Tatsuya; Fukuchi, Tomokazu; Yagi, Shinomi; Shiojiri, Nobuyoshi
2016-05-20
The liver has a remarkable regeneration capacity, and, after surgical removal of its mass, the remaining tissue undergoes rapid regeneration through compensatory growth of its constituent cells. Although hepatocytes synchronously proliferate under the control of various signaling molecules from neighboring cells, there have been few detailed analyses on how biliary cells regenerate for their cell population after liver resection. The present study was undertaken to clarify how biliary cells regenerate after partial hepatectomy of mice through extensive analyses of their cell cycle progression and gene expression using immunohistochemical and RT-PCR techniques. When expression of PCNA, Ki67 antigen, topoisomerase IIα and phosphorylated histone H3, which are cell cycle markers, was immunohistochemically examined during liver regeneration, hepatocytes had a peak of the S phase and M phase at 48-72 h after resection. By contrast, biliary epithelial cells had much lower proliferative activity than that of hepatocytes, and their peak of the S phase was delayed. Mitotic figures were rarely detectable in biliary cells. RT-PCR analyses of gene expression of biliary markers such as Spp1 (osteopontin), Epcam and Hnf1b demonstrated that they were upregulated during liver regeneration. Periportal hepatocytes expressed some of biliary markers, including Spp1 mRNA and protein. Some periportal hepatocytes had downregulated expression of HNF4α and HNF1α. Gene expression of Notch signaling molecules responsible for cell fate decision of hepatoblasts to biliary cells during development was upregulated during liver regeneration. Notch signaling may be involved in biliary regeneration.
Saeki, Y; Ishiyama, K; Ishida, N; Tanaka, Y; Ohdan, H
Both liver natural killer (NK) and NK T cells of the innate immune system play a crucial role in islet graft loss after intraportal islet transplantation, although a relationship between NK and NK T cells in islet loss has not been proven. In this study, we investigated the role of NK cells in the innate immune system in islet graft loss after intraportal islet transplantation. To investigate the involvement of liver NK cells in islet destruction, we assessed the differences in graft survival after intraportal islet transplantation between CD1d -/- diabetic mice and NK cell-depleted CD1d -/- diabetic mice. The transplantation of 400 islets into the liver was sufficient to reverse hyperglycemia in wild-type diabetic mice (100%, 4/4). However, normoglycemia could not be achieved when 200 islets were transplanted (0%, 0/4). In contrast, intraportal transplantation of 200 islets in NK cell-depleted CD1d -/- diabetic mice ameliorated hyperglycemia in 71% of cases (5/7), whereas transplantation of the same number of islets in CD1d -/- diabetic mice did not (0%, 0/4). Histologic findings also confirmed that intact islets were observed in NK cell-depleted CD1d -/- diabetic mice, but were difficult to observe in CD1d -/- diabetic mice. The involvement of liver NK cells in the innate immune system related to islet graft loss after intraportal islet transplantation is revealed by improved graft survival and function in NK cell-depleted CD1d -/- diabetic mice. Our data reveal that regulation of NK cell activity is particularly important when insufficient islet numbers are used for transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.
Characterization of hepatic markers in human Wharton's Jelly-derived mesenchymal stem cells.
Buyl, Karolien; De Kock, Joery; Najar, Mehdi; Lagneaux, Laurence; Branson, Steven; Rogiers, Vera; Vanhaecke, Tamara
2014-02-01
Stem cell technology could offer a unique tool to develop human-based in vitro liver models that are applicable for testing of potential liver toxicity early during drug development. In this context, recent research has indicated that human Wharton's Jelly-derived mesenchymal stem cells (hWJs) represent an interesting stem cell population to develop human hepatocyte-like cells. Here, an in-depth analysis of the expression of liver-specific transcription factors and other key hepatic markers in hWJs is evaluated at both the mRNA and protein level. Our results reveal that transcription factors that are mandatory to acquire and maintain an adult hepatic phenotype (HNF4A and HNF1A), as well as adult hepatic markers (ALB, CX32, CYP1A1, CYP1A2, CYP2B6 and CYP3A4) are not expressed in hWJs with the exception of K18. On the contrary, transcription factors involved in liver development (GATA4, GATA6, SOX9 and SOX17) and liver progenitor markers (DKK1, DPP4, DSG2, CX43 and K19) were found to be highly expressed in hWJs. These findings provide additional indication that hWJs could be a promising stem cell source to generate hepatocyte-like cells necessary for the development of a functional human-based in vitro liver model. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cheng, Mingrong; Zhi, Kangkang; Gao, Xiaoyan; He, Bing; Li, Yingchun; Han, Jiang; Zhang, Zhiping; Wu, Yan
2013-12-18
Cancer is both a systemic and a genetic disease. The pathogenesis of cancer might be related to dampened immunity. Host immunity recognizes nascent malignant cells - a process referred to as immune surveillance. Augmenting immune surveillance and suppressing immune escape are crucial in tumor immunotherapy. A recombinant plasmid capable of co-expressing granulocyte-macrophage colony- stimulating factor (GM-SCF), interleukin-21 (IL-21), and retinoic acid early transcription factor-1 (Rae-1) was constructed, and its effects determined in a mouse model of subcutaneous liver cancer. Serum specimens were assayed for IL-2 and INF-γ by ELISA. Liver cancer specimens were isolated for Rae-1 expression by RT-PCR and Western blot, and splenocytes were analyzed by flow cytometry. The recombinant plasmid inhibited the growth of liver cancer and prolonged survival of tumor-loaded mice. Activation of host immunity might have contributed to this effect by promoting increased numbers and cytotoxicity of natural killer (NK) cells and cytotoxic T lymphocytes (CTL) following expression of GM-SCF, IL-21, and Rae-1. By contrast, the frequency of regulatory T cells was decreased, Consequently, activated CTL and NK cells enhanced their secretion of INF-γ, which promoted cytotoxicity of NK cells and CTL. Moreover, active CTL showed dramatic secretion of IL-2, which stimulates CTL. The recombinant expression plasmid also augmented Rae-1 expression by liver cancer cells. Rae-1 receptor expressing CTL and NK cells removed liver cancer. The recombinant expression plasmid inhibited liver cancer by a mechanism that involved activation of cell-mediated immunity and Rae-1 in liver cancer.
Godoy, Patricio; Hewitt, Nicola J; Albrecht, Ute; Andersen, Melvin E; Ansari, Nariman; Bhattacharya, Sudin; Bode, Johannes Georg; Bolleyn, Jennifer; Borner, Christoph; Böttger, Jan; Braeuning, Albert; Budinsky, Robert A; Burkhardt, Britta; Cameron, Neil R; Camussi, Giovanni; Cho, Chong-Su; Choi, Yun-Jaie; Craig Rowlands, J; Dahmen, Uta; Damm, Georg; Dirsch, Olaf; Donato, María Teresa; Dong, Jian; Dooley, Steven; Drasdo, Dirk; Eakins, Rowena; Ferreira, Karine Sá; Fonsato, Valentina; Fraczek, Joanna; Gebhardt, Rolf; Gibson, Andrew; Glanemann, Matthias; Goldring, Chris E P; Gómez-Lechón, María José; Groothuis, Geny M M; Gustavsson, Lena; Guyot, Christelle; Hallifax, David; Hammad, Seddik; Hayward, Adam; Häussinger, Dieter; Hellerbrand, Claus; Hewitt, Philip; Hoehme, Stefan; Holzhütter, Hermann-Georg; Houston, J Brian; Hrach, Jens; Ito, Kiyomi; Jaeschke, Hartmut; Keitel, Verena; Kelm, Jens M; Kevin Park, B; Kordes, Claus; Kullak-Ublick, Gerd A; LeCluyse, Edward L; Lu, Peng; Luebke-Wheeler, Jennifer; Lutz, Anna; Maltman, Daniel J; Matz-Soja, Madlen; McMullen, Patrick; Merfort, Irmgard; Messner, Simon; Meyer, Christoph; Mwinyi, Jessica; Naisbitt, Dean J; Nussler, Andreas K; Olinga, Peter; Pampaloni, Francesco; Pi, Jingbo; Pluta, Linda; Przyborski, Stefan A; Ramachandran, Anup; Rogiers, Vera; Rowe, Cliff; Schelcher, Celine; Schmich, Kathrin; Schwarz, Michael; Singh, Bijay; Stelzer, Ernst H K; Stieger, Bruno; Stöber, Regina; Sugiyama, Yuichi; Tetta, Ciro; Thasler, Wolfgang E; Vanhaecke, Tamara; Vinken, Mathieu; Weiss, Thomas S; Widera, Agata; Woods, Courtney G; Xu, Jinghai James; Yarborough, Kathy M; Hengstler, Jan G
2013-08-01
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Peixoto, E; Atorrasagasti, C; Aquino, JB; Militello, R; Bayo, J; Fiore, E; Piccioni, F; Salvatierra, E; Alaniz, L; García, MG; Bataller, R; Corrales, F; Gidekel, M; Podhajcer, O; Colombo, MI; Mazzolini, G
2015-01-01
Secreted protein, acidic and rich in cysteine (SPARC) is involved in many biological process including liver fibrogenesis, but its role in acute liver damage is unknown. To examine the role of SPARC in acute liver injury, we used SPARC knock-out (SPARC−/−) mice. Two models of acute liver damage were used: concanavalin A (Con A) and the agonistic anti-CD95 antibody Jo2. SPARC expression levels were analyzed in liver samples from patients with acute-on-chronic alcoholic hepatitis (AH). SPARC expression is increased on acute-on-chronic AH patients. Knockdown of SPARC decreased hepatic damage in the two models of liver injury. SPARC−/− mice showed a marked reduction in Con A-induced necroinflammation. Infiltration by CD4+ T cells, expression of tumor necrosis factor-α and interleukin-6 and apoptosis were attenuated in SPARC−/− mice. Sinusoidal endothelial cell monolayer was preserved and was less activated in Con A-treated SPARC−/− mice. SPARC knockdown reduced Con A-induced autophagy of cultured human microvascular endothelial cells (HMEC-1). Hepatic transcriptome analysis revealed several gene networks that may have a role in the attenuated liver damaged found in Con A-treated SPARC−/− mice. SPARC has a significant role in the development of Con A-induced severe liver injury. These results suggest that SPARC could represent a therapeutic target in acute liver injury. PMID:25410742
Ruddell, Richard G; Knight, Belinda; Tirnitz-Parker, Janina E E; Akhurst, Barbara; Summerville, Lesa; Subramaniam, V Nathan; Olynyk, John K; Ramm, Grant A
2009-01-01
Lymphotoxin-beta (LTbeta) is a proinflammatory cytokine and a member of the tumor necrosis factor (TNF) superfamily known for its role in mediating lymph node development and homeostasis. Our recent studies suggest a role for LTbeta in mediating the pathogenesis of human chronic liver disease. We hypothesize that LTbeta co-ordinates the wound healing response in liver injury via direct effects on hepatic stellate cells. This study used the choline-deficient, ethionine-supplemented (CDE) dietary model of chronic liver injury, which induces inflammation, liver progenitor cell proliferation, and portal fibrosis, to assess (1) the cellular expression of LTbeta, and (2) the role of LTbeta receptor (LTbetaR) in mediating wound healing, in LTbetaR(-/-) versus wild-type mice. In addition, primary isolates of hepatic stellate cells were treated with LTbetaR-ligands LTbeta and LTbeta-related inducible ligand competing for glycoprotein D binding to herpesvirus entry mediator on T cells (LIGHT), and mediators of hepatic stellate cell function and fibrogenesis were assessed. LTbeta was localized to progenitor cells immediately adjacent to activated hepatic stellate cells in the periportal region of the liver in wild-type mice fed the CDE diet. LTbetaR(-/-) mice fed the CDE diet showed significantly reduced fibrosis and a dysregulated immune response. LTbetaR was demonstrated on isolated hepatic stellate cells, which when stimulated by LTbeta and LIGHT, activated the nuclear factor kappa B (NF-kappaB) signaling pathway. Neither LTbeta nor LIGHT had any effect on alpha-smooth muscle actin, tissue inhibitor of metalloproteinase 1, transforming growth factor beta, or procollagen alpha(1)(I) expression; however, leukocyte recruitment-associated factors intercellular adhesion molecule 1 and regulated upon activation T cells expressed and secreted (RANTES) were markedly up-regulated. RANTES caused the chemotaxis of a liver progenitor cell line expressing CCR5. This study suggests that LTbetaR on hepatic stellate cells may be involved in paracrine signaling with nearby LTbeta-expressing liver progenitor cells mediating recruitment of progenitor cells, hepatic stellate cells, and leukocytes required for wound healing and regeneration during chronic liver injury.
[Various pathways leading to the progression of chronic liver diseases].
Egresi, Anna; Lengyel, Gabriella; Somogyi, Anikó; Blázovics, Anna; Hagymási, Krisztina
2016-02-21
As the result of various effects (viruses, metabolic diseases, nutritional factors, toxic agents, autoimmune processes) abnormal liver function, liver steatosis and connective tissue remodeling may develop. Progression of this process is complex including various pathways and a number of factors. The authors summarize the factors involved in the progression of chronic liver disease. They describe the role of cells and the produced inflammatory mediators and cytokines, as well as the relationship between the disease and the intestinal flora. They emphasize the role of oxidative stress, mitochondrial dysfunction and cell death in disease progression. Insulin resistance and micro-elements (iron, copper) in relation to liver damage are also discussed, and genetic and epigenetic aspects underlying disease progression are summarized. Discovery of novel treatment options, assessment of the effectiveness of treatment, as well as the success and proper timing of liver transplantation may depend on a better understanding of the process of disease progression.
Wang, Yingjie; Zhang, Yunping; Zhang, Shichang; Peng, Guangyong; Liu, Tao; Li, Yangxin; Xiang, Dedong; Wassler, Michael J; Shelat, Harnath S; Geng, Yongjian
2012-11-01
Embryonic stem (ES) cells are pluripotent cells that are capable of differentiating all the somatic cell lineages, including those in the liver tissue. We describe the generation of functional hepatic-like cells from mouse ES (mES) cells using a biodegradable polymer scaffold and a rotating bioreactor that allows simulated microgravity. Cells derived from ES cells cultured in the three-dimensional (3D) culture system with exogenous growth factors and hormones can differentiate into hepatic-like cells with morphologic characteristics of typical mature hepatocytes. Reverse-transcription polymerase chain-reaction testing, Western blot testing, immunostaining, and flow cytometric analysis show that these cells express hepatic-specific genes and proteins during differentiation. Differentiated cells on scaffolds further exhibit morphologic traits and biomarkers characteristic of liver cells, including albumin production, cytochrome P450 activity, and low-density lipoprotein uptake. When these stem cell-bearing scaffolds are transplanted into severe combined immunodeficient mice, the 3D constructs remained viable, undergoing further differentiation and maturation of hepatic-like cells in vivo. In conclusion, the growth and differentiation of ES cells in a biodegradable polymer scaffold and a rotating microgravity bioreactor can yield functional and organizational hepatocytes useful for research involving bioartificial liver and engineered liver tissue.
McGettigan, Brett M; McMahan, Rachel H; Luo, Yuhuan; Wang, Xiaoxin X; Orlicky, David J; Porsche, Cara; Levi, Moshe; Rosen, Hugo R
2016-10-28
Bile acid sequestrants are synthetic polymers that bind bile acids in the gut and are used to treat dyslipidemia and hyperphosphatemia. Recently, these agents have been reported to lower blood glucose and increase insulin sensitivity by altering bile acid signaling pathways. In this study, we assessed the efficacy of sevelamer in treating mice with non-alcoholic fatty liver disease (NAFLD). We also analyzed how sevelamer alters inflammation and bile acid signaling in NAFLD livers. Mice were fed a low-fat or Western diet for 12 weeks followed by a diet-plus-sevelamer regimen for 2 or 12 weeks. At the end of treatment, disease severity was assessed, hepatic leukocyte populations were examined, and expression of genes involved in farnesoid X receptor (FXR) signaling in the liver and intestine was analyzed. Sevelamer treatment significantly reduced liver steatosis and lobular inflammation. Sevelamer-treated NAFLD livers had notably fewer pro-inflammatory infiltrating macrophages and a significantly greater fraction of alternatively activated Kupffer cells compared with controls. Expression of genes involved in FXR signaling in the liver and intestine was significantly altered in mice with NAFLD as well as in those treated with sevelamer. In a mouse model of NAFLD, sevelamer improved disease and counteracted innate immune cell dysregulation in the liver. This study also revealed a dysregulation of FXR signaling in the liver and intestine of NAFLD mice that was counteracted by sevelamer treatment. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Butanda-Ochoa, Armando; Hernández-Espinosa, Diego Rolando; Olguín-Martínez, Marisela; Sánchez-Sevilla, Lourdes; Rodríguez, Mario R; Chávez-Rentería, Benito; Aranda-Fraustro, Alberto; Hernández-Muñoz, Rolando
2017-01-01
The 3'-azido-3'-deoxythymidine or Zidovudine (AZT) was the first antiretroviral drug used in the treatment of HIV patients, which has good effectiveness but also hepatotoxic side effects that include cell cycle arrest and oxidative/nitrative mitochondrial damage. Whether such an oxidative damage may affect the proliferative-regenerative capacity of liver remains to be clearly specified at doses commonly used in the clinical practice. In this study, we described the oxidative-proliferative effect of AZT administered at a common clinical dose in rat liver submitted to 70% partial hepatectomy (PH). The results indicate that AZT significantly decreased DNA synthesis and the number of mitosis in liver subjected to PH in a synchronized way with the promotion of organelle-selective lipid peroxidation events (especially those observed in plasma membrane and cytosolic fractions) and with liver enzyme release to the bloodstream. Then at the dose used in clinical practice AZT decreased liver regeneration but stimulates oxidative events involved during the proliferation process in a way that each membrane system inside the cell preserves its integrity in order to maintain the cell proliferative process. Here, the induction of large amounts of free ammonia in the systemic circulation could become a factor capable of mediating the deleterious effects of AZT on PH-induced rat liver regeneration.
Talwar, Sahil; Jagani, Hitesh V; Nayak, Pawan G; Kumar, Nitesh; Kishore, Anoop; Bansal, Punit; Shenoy, Rekha R; Nandakumar, Krishnadas
2013-06-06
Based on the reported antioxidant and anti-inflammatory potential of Terminalia paniculata, the bark aqueous extract (TPW) was investigated against liver damage. Intrinsic cytotoxicity was tested on normal human liver (Chang) cell lines, followed by acute and sub-chronic toxicity studies in mice. TPW was then evaluated against CCl4-induced liver toxicity in rats. Liver enzymes (AST, ALT, and ALP) and antioxidant markers were assessed. The effect of TPW on isolated hepatic cells, post-CCl4 administration, was assessed by isolated mitochondrial membrane staining. The actions of TPW on apoptotic pathway in CCl4-treated Chang cells were also elucidated. TPW was found to be safe at all doses tested in both in vitro and in vivo toxicity studies. TPW (400 mg/kg, p.o.) significantly (*p <0.05) improved liver enzyme activity as compared to CCl4. Also, it improved antioxidant status (GSH, GST, MDA and total thiol) and preserved hepatic cell architecture. TPW pre-treatment significantly attenuated the levels of phospho-p53, p53, cleaved caspase-3, phospho-Bad, Bad and cleaved PARP in CCl4-treated Chang cells, improving the viability considerably. The findings support a protective role for Terminalia paniculata in pathologies involving oxidative stress.
Lack of cilia and differentiation defects in the liver of human foetuses with the Meckel syndrome.
Clotman, Frédéric; Libbrecht, Louis; Killingsworth, Murray C; Loo, Christine C K; Roskams, Tania; Lemaigre, Frédéric P
2008-03-01
Meckel syndrome is an autosomal-recessive disease characterized by a combination of renal cysts, anomalies of the central nervous system, polydactyly and ductal plate malformations (DPM), which are hepatic anomalies consisting of excessive and abnormal foetal biliary structures. Among the genomic loci associated with Meckel syndrome, mutations in four genes were recently identified. These genes code for proteins associated with primary cilia and are possibly involved in cell differentiation. The aim of the present work was to investigate the formation of the primary cilia and the differentiation of the hepatic cells in foetuses with Meckel syndrome. Sections of livers from human foetuses with Meckel syndrome were analysed by immunofluorescence, immunohistochemistry and electron microscopy. The primary cilia of the biliary cells were absent in some Meckel foetuses, but were present in others. In addition, defects in hepatic differentiation were observed in Meckel livers, as evidenced by the presence of hybrid cells co-expressing hepatocytic and biliary markers. Defects in cilia formation occur in some Meckel livers, and most cases show DPM associated with abnormal hepatic cell differentiation. Because differentiation precedes the formation of the cilia during liver development, we propose that defective differentiation may constitute the initial defect in the liver of Meckel syndrome foetuses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosedale, Merrie; Wu, Hong; Kurtz, C. Lisa
A large number of antibiotics are known to cause drug-induced liver injury in the clinic; however, interpreting clinical risk is not straightforward owing to a lack of predictivity of the toxicity by standard preclinical species and a poor understanding of the mechanisms of toxicity. An example is PF-04287881, a novel ketolide antibiotic that caused elevations in liver function tests in Phase I clinical studies. In this study, a mouse diversity panel (MDP), comprised of 34 genetically diverse, inbred mouse strains, was utilized to model the toxicity observed with PF-04287881 treatment and investigate potential mechanisms that may mediate the liver response.more » Significant elevations in serum alanine aminotransferase (ALT) levels in PF-04287881-treated animals relative to vehicle-treated controls were observed in the majority (88%) of strains tested following a seven day exposure. The average fold elevation in ALT varied by genetic background and correlated with microscopic findings of hepatocellular hypertrophy, hepatocellular single cell necrosis, and Kupffer cell vacuolation (confirmed as phospholipidosis) in the liver. Global liver mRNA expression was evaluated in a subset of four strains to identify transcript and pathway differences that distinguish susceptible mice from resistant mice in the context of PF-04287881 treatment. The protein ubiquitination pathway was highly enriched among genes associated with PF-04287881-induced hepatocellular necrosis. Expression changes associated with PF-04287881-induced phospholipidosis included genes involved in drug transport, phospholipid metabolism, and lysosomal function. The findings suggest that perturbations in genes involved in protein degradation leading to accumulation of oxidized proteins may mediate the liver injury induced by this drug. - Highlights: • Identified susceptible and resistant mouse strains to liver injury induced by a CAD • Liver injury characterized by single cell necrosis, and phospholipidosis • Decreased gene expression associated with protein ubiquitination in sensitive mice • Altered protein ubiquitination may cause oxidized protein accumulation in the liver.« less
Badmann, A; Langsch, S; Keogh, A; Brunner, T; Kaufmann, T; Corazza, N
2012-01-01
Paracetamol (acetaminophen, APAP) is a universally used analgesic and antipyretic agent. Considered safe at therapeutic doses, overdoses cause acute liver damage characterized by centrilobular hepatic necrosis. One of the major clinical problems of paracetamol-induced liver disease is the development of hemorrhagic alterations. Although hepatocytes represent the main target of the cytotoxic effect of paracetamol overdose, perturbations within the endothelium involving morphological changes of liver sinusoidal endothelial cells (LSECs) have also been described in paracetamol-induced liver disease. Recently, we have shown that paracetamol-induced liver damage is synergistically enhanced by the TRAIL signaling pathway. As LSECs are constantly exposed to activated immune cells expressing death ligands, including TRAIL, we investigated the effect of TRAIL on paracetamol-induced LSEC death. We here demonstrate for the first time that TRAIL strongly enhances paracetamol-mediated LSEC death with typical features of apoptosis. Inhibition of caspases using specific inhibitors resulted in a strong reduction of cell death. TRAIL appears to enhance paracetamol-induced LSEC death via the activation of the pro-apoptotic BH3-only proteins Bid and Bim, which initiate the mitochondrial apoptotic pathway. Taken together this study shows that the liver endothelial layer, mainly LSECs, represent a direct target of the cytotoxic effect of paracetamol and that activation of TRAIL receptor synergistically enhances paracetamol-induced LSEC death via the mitochondrial apoptotic pathway. TRAIL-mediated acceleration of paracetamol-induced cell death may thus contribute to the pathogenesis of paracetamol-induced liver damage. PMID:23254290
Onaga, Masaaki; Ido, Akio; Hasuike, Satoru; Uto, Hirofumi; Moriuchi, Akihiro; Nagata, Kenji; Hori, Takeshi; Hayash, Katsuhiro; Tsubouchi, Hirohito
2003-11-01
Hepatocellular carcinoma (HCC) is closely associated with chronic liver diseases, particularly cirrhosis. However, the genes involved in hepatocarcinogenesis in the context of developing cirrhosis remain unknown. This study aims to identify genes associated with early cirrhosis-associated hepatocarcinogenesis. We examined genes differentially expressed between the livers of normal rats and rats fed a choline-deficient, L-amino acid-defined (CDAA) diet using suppression subtractive hybridization. We examined both the expression in the liver and HCC tissues of osteoactivin (OA), isolated in this screen, and its effect on invasiveness and metastasis. OA mRNA was strongly expressed in the livers of rats fed the CDAA diet for 1-3 months. Moderate expression was sustained for 18 months. OA overexpression increased the invasiveness and metastasis of rat hepatoma cells in vitro and in vivo. In humans, OA expression was not detectable in normal liver tissues. While OA transcripts were detectable in cirrhotic nontumorous liver tissues surrounding HCCs, the majority of HCC tissue samples exhibited higher levels of OA expression than the surrounding normal tissue. These results indicate that OA is a novel factor involved in the progression of HCC via stimulation of tumor invasiveness and metastatic potential.
van den Broek, Maartje A J; Shiri-Sverdlov, Ronit; Schreurs, Joris J W; Bloemen, Johanne G; Bieghs, Veerle; Rensen, Sander S; Dejong, Cornelis H C; Olde Damink, Steven W M
2013-04-01
Manipulation of the liver during liver surgery results in profound hepatocellular damage. Experimental data show that mobilization-induced hepatocellular damage is related to hepatic inflammation. To date, information on this link in humans is lacking. As it is possible to modulate inflammation, it is clinically relevant to unravel this relationship. This observational study aimed to establish the association between liver mobilization and hepatic inflammation in humans. Consecutive patients requiring mobilization of the right hemi-liver during liver surgery were studied. Plasma samples and liver biopsies were collected prior to and directly after mobilization and after transection of the liver. Hepatocellular damage was assayed by liver fatty acid-binding protein (L-FABP) and aminotransferase levels. Hepatic inflammation was determined by (a) immunohistochemical identification of myeloperoxidase (MPO) and CD68- positive cells and (b) hepatic gene expression of inflammatory and cell adhesion molecules (IL-1β, IL-6, IL-8, VCAM-1 and ICAM-1). A total of 25 patients were included. L-FABP levels increased significantly during mobilization (301 ± 94 ng/ml to 1599 ± 362 ng/ml, P = 0.008), as did ALAT levels (36 ± 5 IU/L to 167 ± 21 IU/L, P < 0.001). A significant increase in MPO (P = 0.001) and CD68 (P = 0.002) positive cells was noticed in the liver after mobilization. The number of MPO-positive cells correlated with the duration of mobilization (Pearson correlation=0.505, P = 0.033). Hepatic gene expression of pro-inflammatory cytokines IL-1β and IL-6, chemo-attractant IL-8 and adhesion molecule ICAM-1 increased significantly during liver manipulation. Liver mobilization is associated with hepatocellular damage and liver inflammation, as shown by infiltration of inflammatory cells and upregulation of genes involved in acute inflammation. © 2012 John Wiley & Sons A/S.
Xu, Anjian; Li, Yanmeng; Zhao, Wenshan; Hou, Fei; Li, Xiaojin; Sun, Lan; Chen, Wei; Yang, Aiting; Wu, Shanna; Zhang, Bei; Yao, Jingyi; Wang, Huan; Huang, Jian
2018-02-01
Hepatic fibrosis is characterized by the activation of hepatic stellate cells (HSCs). Migration of the activated HSCs to the site of injury is one of the key characteristics during the wound healing process. We have previously demonstrated that 14 kDa phosphohistidine phosphatase (PHP14) is involved in migration and lamellipodia formation of HSCs. However, the role of PHP14 in liver fibrosis remains unknown. In this study, we first assessed PHP14 expression and distribution in liver fibrotic tissues using western blot, immunohistochemistry, and double immunofluorescence staining. Next, we investigated the role of PHP14 in liver fibrosis and, more specifically, the migration of HSCs by Transwell assay and 3D collagen matrices assay. Finally, we explored the possible molecular mechanisms of the effects of PHP14 on these processes. Our results show that the PHP14 expression is up-regulated in fibrotic liver and mainly in HSCs. Importantly, TGF-β1 can induce PHP14 expression in HSCs accompanied with the activation of HSCs. Consistent with the previous study, PHP14 promotes HSCs migration, especially, promotes 3D floating collagen matrices contraction but inhibits stressed-released matrices contraction. Mechanistically, the PI3Kγ/AKT/Rac1 pathway is involved in migration regulated by PHP14. Moreover, PHP14 specifically mediates the TGF-β1 signaling to PI3Kγ/AKT pathway and regulates HSC migration, and thus participates in liver fibrosis. Our study identified the role of PHP14 in liver fibrosis, particularly HSC migration, and suggested a novel mediator of transducting TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway. PHP14 is up-regulated in fibrotic liver and activated hepatic stellate cells. The expression of PHP14 is induced by TGF-β1. The migration of hepatic stellate cells is regulated by PHP14. PHP14 is a mediator of TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway in hepatic stellate cells.
Cui, Ruibing; Li, Rong; Guo, Xiaolan; Jia, Xiaoqing; Yan, Ming
2018-06-01
Previously we have demonstrated that stromal interacting molecule-1 (STIM1) was involved in ethanol induced liver injury. However, the exact pathogenic mechanism of STIM1 in alcoholic liver disease (ALD) is still unknown. We constructed plasmid vectors encoding short-hairpin RNA against STIM1 to investigate its role in ALD in the rat liver cell line BRL and in Sprague-Dawley rats. The results showed that STIM1 targeted sh-RNA (Sh-STIM1) significantly ameliorated ethanol-induced BRL cells injury and liver injury in rats with 20 weeks-induced alcoholic liver disease. Inhibition of STIM1 also reduced intracellular calcium ion concentration, reactive oxygen species (ROS) production, lipid peroxidation, NF-kappa B activation and TNF-α production under ethanol exposure. STIM1 may play an important role in the pathogenesis of alcoholic liver disease. Silencing STIM1 may be effective in preventing alcoholic liver disease. Copyright © 2018 Elsevier B.V. All rights reserved.
De Vito, Rita; Alisi, Anna; Masotti, Andrea; Ceccarelli, Sara; Panera, Nadia; Citti, Arianna; Salata, Michele; Valenti, Luca; Feldstein, Ariel E; Nobili, Valerio
2012-07-01
Concomitantly to the obesity epidemic, nonalcoholic fatty liver disease (NAFLD) has become the leading cause of liver disease in children. NAFLD encompasses a spectrum of histological damage ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), with possible progression to cirrhosis. There is growing evidence that the immune system plays a pivotal role in the initiation and progression to NASH but the cellular nature of the hepatic inflammation is still unknown. The present study includes 34 children with biopsy-proven NAFLD. Liver damage was evaluated by the NAFLD activity score (NAS), and the inflammatory infiltrate was characterized by immunohistochemistry for CD45, CD3 and CD163 which are markers of leukocytes, T cells and activated Kupffer cells/macrophages, respectively. Our results have shown that CD45+ (P<0.0001) and CD163+ (P<0.0001) cells were markedly increased in children with severe histological activity (NAS≥5) compared to children with lower activity (NAS<5), whereas CD3+ cells were significantly lower (P<0.01) in children with severe histological activity. There was a significant association between the numbers of CD45+, CD3+ and CD163+ cells, regarding both the portal tract and liver lobule, and the severity of steatosis, ballooning and fibrosis (P<0.01). These data suggest that the severity and composition of the inflammatory infiltrate correlate with steatosis and the severity of disease in children with NAFLD. Moreover, a decrease in CD3+ cells may be involved in the pathogenesis of liver damage. Future studies should evaluate whether it can predict the progression of liver disease independently of established histological scores.
Menstrual blood-derived mesenchymal stem cells differentiate into functional hepatocyte-like cells*
Mou, Xiao-zhou; Lin, Jian; Chen, Jin-yang; Li, Yi-fei; Wu, Xiao-xing; Xiang, Bing-yu; Li, Cai-yun; Ma, Ju-ming; Xiang, Charlie
2013-01-01
Orthotopic liver transplantation (OLT) is the only proven effective treatment for both end-stage and metabolic liver diseases. Hepatocyte transplantation is a promising alternative for OLT, but the lack of available donor livers has hampered its clinical application. Hepatocyte-like cells (HLCs) differentiated from many multi-potential stem cells can help repair damaged liver tissue. Yet almost suitable cells currently identified for human use are difficult to harvest and involve invasive procedures. Recently, a novel mesenchymal stem cell derived from human menstrual blood (MenSC) has been discovered and obtained easily and repeatedly. In this study, we examined whether the MenSCs are able to differentiate into functional HLCs in vitro. After three weeks of incubation in hepatogenic differentiation medium containing hepatocyte growth factor (HGF), fibroblast growth factor-4 (FGF-4), and oncostain M (OSM), cuboidal HLCs were observed, and cells also expressed hepatocyte-specific marker genes including albumin (ALB), α-fetoprotein (AFP), cytokeratin 18/19 (CK18/19), and cytochrome P450 1A1/3A4 (CYP1A1/3A4). Differentiated cells further demonstrated in vitro mature hepatocyte functions such as urea synthesis, glycogen storage, and indocyanine green (ICG) uptake. After intrasplenic transplantation into mice with 2/3 partial hepatectomy, the MenSC-derived HLCs were detected in recipient livers and expressed human ALB protein. We also showed that MenSC-derived HLC transplantation could restore the serum ALB level and significantly suppressed transaminase activity of liver injury animals. In conclusion, MenSCs may serve as an ideal, easily accessible source of material for tissue engineering and cell therapy of liver tissues. PMID:24190442
A Portal Vein Injection Model to Study Liver Metastasis of Breast Cancer
Goddard, Erica T.; Fischer, Jacob; Schedin, Pepper
2016-01-01
Breast cancer is the leading cause of cancer-related mortality in women worldwide. Liver metastasis is involved in upwards of 30% of cases with breast cancer metastasis, and results in poor outcomes with median survival rates of only 4.8 - 15 months. Current rodent models of breast cancer metastasis, including primary tumor cell xenograft and spontaneous tumor models, rarely metastasize to the liver. Intracardiac and intrasplenic injection models do result in liver metastases, however these models can be confounded by concomitant secondary-site metastasis, or by compromised immunity due to removal of the spleen to avoid tumor growth at the injection site. To address the need for improved liver metastasis models, a murine portal vein injection method that delivers tumor cells firstly and directly to the liver was developed. This model delivers tumor cells to the liver without complications of concurrent metastases in other organs or removal of the spleen. The optimized portal vein protocol employs small injection volumes of 5 - 10 μl, ≥ 32 gauge needles, and hemostatic gauze at the injection site to control for blood loss. The portal vein injection approach in Balb/c female mice using three syngeneic mammary tumor lines of varying metastatic potential was tested; high-metastatic 4T1 cells, moderate-metastatic D2A1 cells, and low-metastatic D2.OR cells. Concentrations of ≤ 10,000 cells/injection results in a latency of ~ 20 - 40 days for development of liver metastases with the higher metastatic 4T1 and D2A1 lines, and > 55 days for the less aggressive D2.OR line. This model represents an important tool to study breast cancer metastasis to the liver, and may be applicable to other cancers that frequently metastasize to the liver including colorectal and pancreatic adenocarcinomas. PMID:28060292
Nieuwenhuijs, Vincent B; De Bruijn, Menno T; Padbury, Robert T A; Barritt, Gregory J
2006-06-01
Liver resection and liver transplantation have been successful in the treatment of liver tumors and end-stage liver disease. This success has led to an expansion in the pool of patients potentially treatable by liver surgery and, in the case of transplantation, to a shortage of liver donors. At present, there are significant numbers of potential candidates for liver resection and liver donation who have fatty livers, are aged, or have livers damaged by chemotherapy. All of these are at high risk for ischemic reperfusion (IR) injury. The aims of this review are to assess current knowledge of the clinical effectiveness of ischemic preconditioning and intermittent ischemia in reducing IR damage in liver surgery; to evaluate the use of bile flow as a sensitive indicator of IR liver damage; and to analyze the molecular mechanisms, especially intracellular Ca2+, involved in IR injury and ischemic preconditioning. It is concluded that bile flow is a sensitive indicator of IR injury. Together with reactive oxygen species (ROS) and other extracellular and intracellular signaling molecules, intracellular Ca2+ in hepatocytes plays a key role in the normal regulation of bile flow and in IR-induced injury and cell death. Ischemic preconditioning is an effective strategy to reduce IR injury but there is considerable scope for improvement, especially in patients with fatty and aged livers. The development of effective new strategies to reduce IR injury will depend on improved understanding of the molecular mechanisms involved, especially by gaining a better perspective of the relative importance of the various intrahepatocyte signaling pathways involved.
Xu, Ying; Lv, Sheng-Xiang
2016-12-01
Liver cancer is a leading cause of cancer death, making it as the second most common cause for death from cancer globally. Though many studies before have explored a lot for liver cancer prevention and treatment, there are still a lot far from to know based on the molecular mechanisms. Janus kinase 2 (JAK2) has been reported to play an essential role in the progression of apoptosis, autophagy and proliferation for cells. Therefore, we were aimed to investigate the underlying mechanisms by which JAK2 performed its role in ameliorating liver cancer. JAK2 knockout liver cancer cell lines were involved for our experiments in vitro and in vivo. Western blotting, quantitative RT-PCR (qRT-PCR), ELISA, Immunohistochemistry, and flow-cytometric analysis were used to determine the key signaling pathway regulated by JAK2 for liver cancer progression. Data here indicated that JAK2, indeed, expressed highly in cancer cell lines compared to the normal liver cells. And apoptosis and autophagy were found in JAK2 knockout liver cancer cells through activating Caspase-3, Cyclin-D1 and mTOR regulated by STAT3/5 and PI3K/AKT signaling pathway. And also, the liver cancer cells proliferation was inhibited. In addition, tumor size and weight were reduced by knockout of JAK2 in vivo experiments. These findings demonstrated that JAK2 and its down-streaming signaling pathways play a direct role in the progression of liver cancer possibly. To our knowledge, it was the first time to evaluate the role of JAK2 knockout in improving liver cancer from apoptosis, autophagy and proliferation, which could be a potential target for future therapeutic approach clinically. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Liu, Miao; Du, Lingyao; He, Zhiliang; Yan, Libo; Shi, Ying; Shang, Jin; Tang, Hong
2017-01-01
Aim. ERp57 is involved in virus induced endoplasmic reticulum stress (ERS) and plays an important role in tumorigenesis. This study aimed to find whether HBV infection altered ERp57 expression and whether ERp57 regulation was involved in hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) genesis. Materials and Methods. HBV-HCC tissues, chronic hepatitis B (CHB) liver tissues, and normal liver tissues were acquired. ERp57 expressions in these tissues were detected through immunohistochemistry (IHC). And ERp57 expression in liver cell line L02, HBV replicative liver cell line L02-pHBV4.1, and HCC cell lines were detected through western blot for verification. Then medical data on patients providing HCC tissues were collected and analyzed along with ERp57 expression. Results. Higher ERp57 expression was found in HCC and CHB tissues ( p < 0.001). And HCC cell lines and L02-pHBV4.1 presented higher ERp57 expression as well. In patients, ERp57 expression showed significant differences between death and survival groups ( p = 0.037). And cumulative survival in patients with higher ERp57 (score ⩾ 8.75) is significantly lower ( p = 0.009). Conclusion. Our study found increased expression of ERp57 in HBV-HCC. Such altered expression could be related to HBV infection and high ERp57 expression may lead to poor prognosis of HBV-HCC patients.
Identification of Annexin A4 as a hepatopancreas factor involved in liver cell survival
Zhang, Danhua; Golubkov, Vladislav S.; Han, Wenlong; Correa, Ricardo G.; Zhou, Ying; Lee, Sunyoung; Strongin, Alex Y.; Dong, P. Duc Si
2014-01-01
To gain insight into liver and pancreas development, we investigated the target of 2F11, a monoclonal antibody of unknown antigen, widely used in zebrafish studies for labeling hepatopancreatic ducts. Utilizing mass spectrometry and in vivo assays, we determined the molecular target of 2F11 to be Annexin A4 (Anxa4), a calcium binding protein. We further found that in both zebrafish and mouse endoderm, Anxa4 is broadly expressed in the developing liver and pancreas, and later becomes more restricted to the hepatopancreatic ducts and pancreatic islets, including the insulin producing β-cells. Although Anxa4 is a known target of several monogenic diabetes genes and its elevated expression is associated with chemoresistance in malignancy, its in vivo role is largely unexplored. Knockdown of Anxa4 in zebrafish leads to elevated expression of caspase 8 and Δ113p53, and liver bud specific activation of Caspase 3 and apoptosis. Mosaic knockdown reveal that Anxa4 is required cell-autonomously in the liver bud for cell survival. This finding is further corroborated with mosaic anxa4 knockout studies using the CRISPR/Cas9 system. Collectively, we identify Anxa4 as a new, evolutionarily conserved hepatopancreatic factor that is required in zebrafish for liver progenitor viability, through inhibition of the extrinsic apoptotic pathway. A role for Anxa4 in cell survival may have implications for the mechanism of diabetic β-cell apoptosis and cancer cell chemoresistance. PMID:25176043
Multiparameter immune profiling of operational tolerance in liver transplantation.
Martínez-Llordella, M; Puig-Pey, I; Orlando, G; Ramoni, M; Tisone, G; Rimola, A; Lerut, J; Latinne, D; Margarit, C; Bilbao, I; Brouard, S; Hernández-Fuentes, M; Soulillou, J-P; Sánchez-Fueyo, A
2007-02-01
Immunosuppressive drugs can be completely withdrawn in up to 20% of liver transplant recipients, commonly referred to as 'operationally' tolerant. Immune characterization of these patients, however, has not been performed in detail, and we lack tests capable of identifying tolerant patients among recipients receiving maintenance immunosuppression. In the current study we have analyzed a variety of biological traits in peripheral blood of operationally tolerant liver recipients in an attempt to define a multiparameter 'fingerprint' of tolerance. Thus, we have performed peripheral blood gene expression profiling and extensive blood cell immunophenotyping on 16 operationally tolerant liver recipients, 16 recipients requiring on-going immunosuppressive therapy, and 10 healthy individuals. Microarray profiling identified a gene expression signature that could discriminate tolerant recipients from immunosuppression-dependent patients with high accuracy. This signature included genes encoding for gammadelta T-cell and NK receptors, and for proteins involved in cell proliferation arrest. In addition, tolerant recipients exhibited significantly greater numbers of circulating potentially regulatory T-cell subsets (CD4+ CD25+ T-cells and Vdelta1+ T cells) than either non-tolerant patients or healthy individuals. Our data provide novel mechanistic insight on liver allograft operational tolerance, and constitute a first step in the search for a non-invasive diagnostic signature capable of predicting tolerance before undergoing drug weaning.
Hepatic iron overload is associated with hepatocyte apoptosis during Clonorchis sinensis infection.
Han, Su; Tang, Qiaoran; Chen, Rui; Li, Yihong; Shu, Jing; Zhang, Xiaoli
2017-08-01
Hepatic iron overload has been implicated in many liver diseases; however, whether it is involved in clonorchiasis remains unknown. The purpose of this study is to investigate whether Clonorchis sinensis (C. sinensis) infection causes hepatic iron overload, analyze the relationship between the iron overload and associated cell apoptosis, so as to determine the role of excess iron plays in C. sinensis-induced liver injury. The Perls' Prussian staining and atomic absorption spectrometry methods were used to investigate the iron overload in hepatic sections of wistar rats and patients infected with C. sinensis. The hepatic apoptosis was detected by transferase uridyl nick end labeling (TUNEL) methods. Spearman analysis was used for determining the correlation of the histological hepatic iron index and the apoptotic index. Blue iron particles were deposited mainly in the hepatocytes, Kupffer cells and endothelial cells, around the liver portal and central vein area of both patients and rats. The total iron score was found to be higher in the infected groups than the respective control from 8 weeks. The hepatic iron concentration was also significantly higher in treatment groups than in control rats from 8 weeks. The hepatocyte apoptosis was found to be significantly higher in the portal area of the liver tissue and around the central vein. However, spearman's rank correlation coefficient revealed that there was a mildly negative correlation between the iron index and hepatocyte apoptosis. This present study confirmed that hepatic iron overload was found during C. sinensis infection. This suggests that iron overload may be associated with hepatocyte apoptosis and involved in liver injury during C. sinensis infection. Further studies are needed to investigate the molecular mechanism involved here.
NASA Astrophysics Data System (ADS)
Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng
2016-08-01
Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns.
Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng
2016-01-01
Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns. PMID:27502578
FXR-Gankyrin axis is involved in development of pediatric liver cancer.
Valanejad, Leila; Lewis, Kyle; Wright, Mary; Jiang, Yanjun; D'Souza, Amber; Karns, Rebekah; Sheridan, Rachel; Gupta, Anita; Bove, Kevin; Witte, David; Geller, James; Tiao, Gregory; Nelson, David L; Timchenko, Lubov; Timchenko, Nikolai
2017-07-01
The development of hepatoblastoma (HBL) is associated with failure of hepatic stem cells (HSC) to differentiate into hepatocytes. Despite intensive investigations, mechanisms of the failure of HSC to differentiate are not known. We found that oncogene Gankyrin (Gank) is involved in the inhibition of differentiation of HSC via triggering degradation of tumor suppressor proteins (TSPs) Rb, p53, C/EBPα and HNF4α. Our data show that the activation of a repressor of Gank, farnesoid X receptor, FXR, after initiation of liver cancer by Diethylnitrosamine (DEN) prevents the development of liver cancer by inhibiting Gank and rescuing tumor suppressor proteins. We next analyzed FXR-Gank-Tumor suppressor pathways in a large cohort of HBL patients which include 6 controls and 53 HBL samples. Systemic analysis of these samples and RNA-Seq approach revealed that the FXR-Gank axis is activated; markers of hepatic stem cells are dramatically elevated and hepatocyte markers are reduced in HBL samples. In the course of these studies, we found that RNA binding protein CUGBP1 is a new tumor suppressor protein which is reduced in all HBL samples. Therefore, we generated CUGBP1 KO mice and examined HBL signatures in the liver of these mice. Micro-array studies revealed that the HBL-specific molecular signature is developed in livers of CUGBP1 KO mice at very early ages. Thus, we conclude that FXR-Gank-TSPs-Stem cells pathway is a key determinant of liver cancer in animal models and in pediatric liver cancer. Our data provide a strong basis for development of FXR-Gank-based therapy for treatment of patients with hepatoblastoma. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Molecular mechanisms of liver ischemia reperfusion injury: Insights from transgenic knockout models
Datta, Gourab; Fuller, Barry J; Davidson, Brian R
2013-01-01
Ischemia reperfusion injury is a major obstacle in liver resection and liver transplantation surgery. Understanding the mechanisms of liver ischemia reperfusion injury (IRI) and developing strategies to counteract this injury will therefore reduce acute complications in hepatic resection and transplantation, as well as expanding the potential pool of usable donor grafts. The initial liver injury is initiated by reactive oxygen species which cause direct cellular injury and also activate a cascade of molecular mediators leading to microvascular changes, increased apoptosis and acute inflammatory changes with increased hepatocyte necrosis. Some adaptive pathways are activated during reperfusion that reduce the reperfusion injury. IRI involves a complex interplay between neutrophils, natural killer T-cells cells, CD4+ T cell subtypes, cytokines, nitric oxide synthases, haem oxygenase-1, survival kinases such as the signal transducer and activator of transcription, Phosphatidylinositol 3-kinases/Akt and nuclear factor κβ pathways. Transgenic animals, particularly genetic knockout models, have become a powerful tool at elucidating mechanisms of liver ischaemia reperfusion injury and are complementary to pharmacological studies. Targeted disruption of the protein at the genetic level is more specific and maintained than pharmacological inhibitors or stimulants of the same protein. This article reviews the evidence from knockout models of liver IRI about the cellular and molecular mechanisms underlying liver IRI. PMID:23555157
Jin, Cai-Xia; Li, Wen-Lin; Xu, Fang; Geng, Zhen H; He, Zhi-Ying; Su, Juan; Tao, Xin-Rong; Ding, Xiao-Yan; Wang, Xin; Hu, Yi-Ping
2008-05-01
The conversion of expandable liver progenitor cells into pancreatic beta cells would provide a renewable cell source for diabetes cell therapy. Previously, we reported the establishment of liver epithelial progenitor cells (LEPCs). In this work, LEPCs were modified into EGFP/Pdx-1 LEPCs, cells with stable expression of both Pdx-1 and EGFP. Unlike previous work, with persistent expression of Pdx-1, EGFP/Pdx-1 LEPCs acquired the phenotype of pancreatic endocrine progenitor cells rather than giving rise to insulin-producing cells directly. EGFP/Pdx-1 LEPCs proliferated vigorously and expressed the crucial transcription factors involved in beta cell development, including Ngn3, NeuroD, Nkx2.2, Nkx6.1, Pax4, Pax6, Isl1, MafA and endogenous Pdx-1, but did not secrete insulin. When cultured in high glucose/low serum medium supplemented with cytokines, EGFP/Pdx-1 LEPCs stopped proliferating and gave rise to functional beta cells without any evidence of exocrine or other islet cell lineage differentiation. When transplanted into diabetic SCID mice, EGFP/Pdx-1 LEPCs ameliorated hyperglycemia by secreting insulin in a glucose regulated manner. Considering the limited availability of beta cells, we propose that our experiments will provide a framework for utilizing the immortal liver progenitor cells as a renewable cell source for the generation of functional pancreatic beta cells.
Antoine, Marianne; Tag, Carmen G; Gressner, Axel M; Hellerbrand, Claus; Kiefer, Paul
2009-02-01
Leukocytes and tumor cells use E-selectin binding ligands to attach to activated endothelial cells expressing E-selectin during inflammation or metastasis. The cysteine-rich fibroblast growth factor receptor (CFR) represents the main E-selectin ligand (ESL-1) on granulocytes and its expression is exclusively modified by alpha(1,3)-fucosyltransferases IV or VII (FucT4 and FucT7). Hepatic stellate cells (HSC) are pericytes of liver sinusoidal endothelial cells. The activation of HSC and transdifferentiation into a myofibroblastic phenotype is involved in the repair of liver tissue injury, liver regeneration and angiogenesis of liver metastases. In the present study, we demonstrated that HSC expressed CFR together with FucT7 and exhibited a functional E-selectin binding activity on their cell surface. Since HSC appear to be oxygen-sensing cells, the expression of E-selectin binding activity was analyzed in HSC under a hypoxic atmosphere. While the expression of the glycoprotein CFR was unaffected by hypoxia, the cell-associated E-selectin binding activity decreased. However, under the same conditions, mRNA expression of the modifying enzyme FucT7 increased. The loss of E-selectin binding activity, therefore, appears to be neither the result of a reduced expression of the modifying transferase nor the expression of the backbone glycoprotein. After the transient transfection of HSC with CFR cDNA, the E-selectin binding activity (ESL-1) was efficiently released into the supernatant. Therefore, we hypothesize that under hypoxia, ESL-1 is shed from activated HSC. Our findings provide a novel perspective on the function of HSC in liver metastasis and inflammatory liver diseases.
Role of scavenger receptors in the pathophysiology of chronic liver diseases.
Armengol, Carolina; Bartolí, Ramon; Sanjurjo, Lucía; Serra, Isabel; Amézaga, Núria; Sala, Margarita; Sarrias, Maria-Rosa
2013-01-01
Scavenger receptors comprise a large family of structurally diverse proteins that are involved in many homeostatic functions. They recognize a wide range of ligands, from pathogen-associated molecular patterns (PAMPs) to endogenous, as well as modified host-derived molecules (DAMPs). The liver deals with blood micro-organisms and DAMPs released from injured organs, thus performing vital metabolic and clearance functions that require the uptake of nutrients and toxins. Many liver cell types, including hepatocytes and Kupffer cells, express scavenger receptors that play key roles in hepatitis C virus entry, lipid uptake, and macrophage activation, among others. Chronic liver disease causes high morbidity and mortality worldwide. Hepatitis virus infection, alcohol abuse, and non-alcoholic fatty liver are the main etiologies associated with this disease. In this context, continuous inflammation as a result of liver damage leads to hepatic fibrosis, which frequently brings about cirrhosis and ultimately hepatocellular carcinoma. In this review, we will summarize the role of scavenger receptors in the pathophysiology of chronic liver diseases. We will also emphasize their potential as biomarkers of advanced liver disease, including cirrhosis and cancer.
de Tomaso Portaz, Ana Clara; Caimi, Giselle Romero; Sánchez, Marcela; Chiappini, Florencia; Randi, Andrea S; Kleiman de Pisarev, Diana L; Alvarez, Laura
2015-10-02
Hexachlorobenzene (HCB) is a widespread environmental pollutant, and a liver tumor promoter in rodents. Depending on the particular cell lines studied, exposure to these compounds may lead to cell proliferation, terminal differentiation, or apoptosis. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is involved in drug and xenobiotic metabolism. AhR can also modulate a variety of cellular and physiological processes that can affect cell proliferation and cell fate determination. The mechanisms by which AhR ligands, both exogenous and endogenous, affect these processes involve multiple interactions between AhR and other signaling pathways. In the present study, we examined the effect of HCB on cell proliferation and AhR expression, using an initiation-promotion hepatocarcinogenesis protocol in rat liver and in the human-derived hepatoma cell line, HepG2. Female Wistar rats were initiated with a single dose of 100 mg/kg of diethylnitrosamine (DEN) at the start of the experiment. Two weeks later, daily dosing of 100 mg/kg HCB was maintained for 10 weeks. Partial hepatectomy was performed 3 weeks after initiation. The number and area of glutathione S-transferase-P (GST-P)-positive foci, in the rat liver were used as biomarkers of liver precancerous lesions. Immunohistochemical staining showed an increase in proliferating cell nuclear antigen (PCNA)-positive cells, along with enhanced AhR protein expression in hepatocytes within GST-P-positive foci of (DEN HCB) group, when compared to DEN. In a similar manner, Western blot analysis demonstrated that HCB induced PCNA and AhR protein expression in HepG2 cells. Flow cytometry assay indicated that the cells were accumulated at S and G2/M phases of the cell cycle. HCB increased cyclin D1 protein levels and ERK1/2 phosphorylation in a dose-dependent manner. Treatment of cells with a selective MEK1 inhibitor, prevented HCB-stimulatory effect on PCNA and cyclinD1, indicating that these effects are mediated by ERK1/2. Pretreatment with an AhR antagonist, prevented HCB-induced PCNA protein levels, ERK1/2 phosphorylation and alterations in cell cycle distribution. These results demonstrate that HCB-induced HepG2 proliferation and cell cycle progression depend on ERK1/2 phosphorylation which is mediated by the AhR. Our results provide a clue to the molecular events involved in the mechanism of action of HCB-induced hepatocarcinogenesis. Copyright © 2015. Published by Elsevier Ireland Ltd.
Chloral hydrate decreases gap junction communications in rat liver epithelial cells
Gap junction communication (GJC) is involved in controlling cell proliferation and differentiation. Alterations in GJC are associated with carcinogenesis, but the mechanisms involvedareunknown.Chloralhydrate(CH), a by-productofchlorinedisinfection ofwater,is carcinogenic in mice,...
Su, Si-Biao; Zhang, Jian-Feng; Huang, Fei-Fei; Cen, Yu; Jiang, Hai-Xing
2017-08-01
Cholangiocarcinoma (CCA) associated with liver fluke infection involves inflammatory and immune processes; however, whether these involve the proinflammatory cytokine IL-17A and proliferative cytokine IL-22 remains unclear. Here, numbers of IL-22- and IL-17A-producing Th cells and cytokine concentrations in 30 patients with CCA and long-term liver fluke infection, 40 patients with liver-fluke infection but not CCA, and 16 healthy controls were compared. Analyses were performed using immunohistochemistry, flow cytometry, ELISA and RT-PCR. Immunohistochemical staining showed weaker expression of IL-22 and IL-17A in patients with CCA with than in those without liver fluke infection (P < 0.01). Flow cytometry revealed significantly greater median proportions of IL-22-producing T helper cells in patients with CCA (2.2%) than in those without it (0.69%) or controls (0.4%, P < 0.001). Similar results were obtained for IL-17A-producing T helper cells. ELISA revealed plasma concentrations of IL-22 were 1.3-fold higher in patients with CCA than in those without it and 4.6-fold higher than in controls (P < 0.001). Plasma concentrations of IL-17A were 2.5-fold higher in patients with CCA than in those without it, and 21-fold higher than in controls (P < 0.001). Amounts of IL-22 and IL-17A mRNAs in blood were significantly higher in patients with CCA than in the other two groups. Proportions of CD4 + CD45RO + T cells producing IL-22 correlated with proportions producing IL-17A (r = 0.759; P < 0.001), and plasma concentrations of IL-22 correlated with those of IL-17A (r = 0.726; P < 0.001). These results suggest that both IL-17A and IL-22 affect development of CCA related to liver fluke infection. © 2017 The Societies and John Wiley & Sons Australia, Ltd.
Ice formation in isolated human hepatocytes and human liver tissue.
Bischof, J C; Ryan, C M; Tompkins, R G; Yarmush, M L; Toner, M
1997-01-01
Cryopreservation of isolated cells and tissue slices of human liver is required to furnish extracorporeal bioartificial liver devices with a ready supply of hepatocytes, and to create in vitro drug metabolism and toxicity models. Although both the bioartificial liver and many current biotoxicity models are based on reconstructing organ functions from single isolated hepatocytes, tissue slices offer an in vitro system that may more closely resemble the in vivo situation of the cells because of cell-cell and cell-extracellular matrix interactions. However, successful cryopreservation of both cellular and tissue level systems requires an increased understanding of the fundamental mechanisms involved in the response of the liver and its cells to freezing stress. This study investigates the biophysical mechanisms of water transport and intracellular ice formation during freezing in both isolated human hepatocytes and whole liver tissue. The effects of cooling rate on individual cells were measured using a cryomicroscope. Biophysical parameters governing water transport (Lpg = 2.8 microns/min-atm and ELp = 79 kcal/mole) and intracellular heterogeneous ice nucleation (omega het = 1.08 x 10(9) m-2s-1 and kappa het = 1.04 x 10(9) K5) were determined. These parameters were then incorporated into a theoretical Krogh cylinder model developed to simulate water transport and ice formation in intact liver tissue. Model simulations indicated that the cellular compartment of the Krogh model maintained more water than isolated cells under the same freezing conditions. As a result, intracellular ice nucleation occurred at lower cooling rates in the Krogh model than in isolated cells. Furthermore, very rapid cooling rates (1000 degrees C/min) showed a depression of heterogeneous nucleation and a shift toward homogeneous nucleation. The results of this study are in qualitative agreement with the findings of a previous experimental study of the response to freezing of intact human liver.
Wang, Gaiping; Chen, Shasha; Zhao, Congcong; Li, Xiaofang; Zhao, Weiming; Yang, Jing; Chang, Cuifang; Xu, Cunshuan
2016-09-01
To explore the relevance of OPN signalling pathway to the occurrence and development of nonalcoholic fatty liver disease (NAFLD), liver cirrhosis (LC), hepatic cancer (HC) and acute hepatic failure (AHF) at transcriptional level, Rat Genome 230 2.0 Array was used to detect expression profiles of OPN signalling pathway-related genes in four kinds of liver diseases. The results showed that 23, 33, 59 and 74 genes were significantly changed in the above four kinds of liver diseases, respectively. H-clustering analysis showed that the expression profiles of OPN signalling-related genes were notably different in four kinds of liver diseases. Subsequently, a total of above-mentioned 147 genes were categorized into four clusters by k-means according to the similarity of gene expression, and expression analysis systematic explorer (EASE) functional enrichment analysis revealed that OPN signalling pathway-related genes were involved in cell adhesion and migration, cell proliferation, apoptosis, stress and inflammatory reaction, etc. Finally, ingenuity pathway analysis (IPA) software was used to predict the functions of OPN signalling-related genes, and the results indicated that the activities of ROS production, cell adhesion and migration, cell proliferation were remarkably increased, while that of apoptosis, stress and inflammatory reaction were reduced in four kinds of liver diseases. In summary, the above physiological activities changed more obviously in LC, HC and AHF than in NAFLD.
Butanda-Ochoa, Armando; Hernández-Espinosa, Diego Rolando; Olguín-Martínez, Marisela; Sánchez-Sevilla, Lourdes; Rodríguez, Mario R.; Chávez-Rentería, Benito; Aranda-Fraustro, Alberto
2017-01-01
The 3′-azido-3′-deoxythymidine or Zidovudine (AZT) was the first antiretroviral drug used in the treatment of HIV patients, which has good effectiveness but also hepatotoxic side effects that include cell cycle arrest and oxidative/nitrative mitochondrial damage. Whether such an oxidative damage may affect the proliferative-regenerative capacity of liver remains to be clearly specified at doses commonly used in the clinical practice. In this study, we described the oxidative-proliferative effect of AZT administered at a common clinical dose in rat liver submitted to 70% partial hepatectomy (PH). The results indicate that AZT significantly decreased DNA synthesis and the number of mitosis in liver subjected to PH in a synchronized way with the promotion of organelle-selective lipid peroxidation events (especially those observed in plasma membrane and cytosolic fractions) and with liver enzyme release to the bloodstream. Then at the dose used in clinical practice AZT decreased liver regeneration but stimulates oxidative events involved during the proliferation process in a way that each membrane system inside the cell preserves its integrity in order to maintain the cell proliferative process. Here, the induction of large amounts of free ammonia in the systemic circulation could become a factor capable of mediating the deleterious effects of AZT on PH-induced rat liver regeneration. PMID:28479956
Mechanism of impaired regeneration of fatty liver in mouse partial hepatectomy model.
Murata, Hiroshi; Yagi, Takahito; Iwagaki, Hiromi; Ogino, Tetsuya; Sadamori, Hiroshi; Matsukawa, Hiroyoshi; Umeda, Yuzoh; Haga, Sanae; Takaka, Noriaki; Ozaki, Michitaka
2007-12-01
The mechanism of injury in steatotic liver under pathological conditions been extensively examined. However, the mechanism of an impaired regeneration is still not well understood. The aim of this study was to analyze the mechanism of impaired regeneration of steatotic liver after partial hepatectomy (PH). db/db fatty mice and lean littermates were used for the experiments. Following 70% PH, the survival rate and recovery of liver mass were examined. Liver tissue was histologically examined and analyzed by western blotting and RT-PCR. Of 35 db/db mice, 25 died within 48 h of PH, while all of the control mice survived. Liver regeneration of surviving db/db mice was largely impaired. In db/db mice, mitosis of hepatocytes after PH was disturbed, even though proliferating cell nuclear antigen (PCNA) expression (G1 to S phase marker) in hepatocytes was equally observed in both mice groups. Interestingly, phosphorylation of Cdc2 in db/db mice was suppressed by reduced expression of Wee1 and Myt1, which phosphorylate Cdc2 in S to G2 phase. In steatotic liver, cell-cycle-related proliferative disorders occurred at mid-S phase after PCNA expression. Reduced expression of Wee1 and Myt1 kinases may therefore maintain Cdc2 in an unphosphorylated state and block cell cycle progression in mid-S phase. These kinases may be critical factors involved in the impaired liver regeneration in fatty liver.
[The liver and the immune system].
Jakab, Lajos
2015-07-26
The liver is known to be the metabolic centre of the organism and is under the control of the central nervous system. It has a peculiar tissue structure and its anatomic localisation defines it as part of the immune system having an individual role in the defence of the organism. The determinant of its particular tissue build-up is the sinusoid system. In addition to hepatocytes, one cell row "endothelium", stellate cells close to the external surface, Kupffer cells tightly to its inner surface, as well as dendritic cells and other cell types (T and B lymphocytes, natural killer and natural killer T-cells, mast cells, granulocytes) are present. The multitudes and variety of cells make it possible to carry out the tasks according to the assignment of the organism. The liver is a member of the immune system having immune cells largely in an activated state. Its principal tasks are the assurance of the peripheral immune tolerance of the organism with the help of the haemopoetic cells and transforming growth factor-β. The liver takes part in the determination of the manner of the non-specific immune response of the organism. In addition to acute phase reaction of the organism, the liver has a role in the adaptive/specific immune response. These functions include retardation of the T and B lymphocytes and the defence against harmful pathogens. With the collaboration of transforming growth factor-β, immunoglobulins and their subclasses are inhibited just as the response of the T lymphocytes. The only exception is the undisturbed immunoglobulin A production. Particularly important is the intensive participation of the liver in the acute phase reaction of the organism, which is organised and guided by the coordinated functions of the cortico-hypothalamo-hypophysis-adrenal axis. Beside cellular elements, hormones, adhesion molecules, chemokines and cytokines are also involved in the cooperation with the organs. Acute phase reactants play a central role in these processes. Until recently the α2-macroglobulin was not considered as an acute reactant of the organism, but it is now functionally included in the acute phase reaction presumably due to its close connection with the transforming growth factor-β. Transforming growth factor-β has extraordinarily important roles in all phases of inflammation and in the specific immune response. The peripheral immune tolerance of the organism involves tightly coupled regulation of proliferation, differentiation and survival of lymphocytes.
Rodríguez-Castelán, J; Corona-Pérez, A; Nicolás-Toledo, L; Martínez-Gómez, M; Castelán, F; Cuevas-Romero, E
2017-03-01
Hypothyroidism is associated with the development of non-alcoholic steatohepatitis, but cellular mechanisms have been scarcely analyzed. Thyroid hormones regulate the synthesis and secretion of bile acids that are endogenous ligands of the farnesoid receptor (FXRα), which have been involved in the development of non-alcoholic steatohepatitis. However, the relationship between thyroid hormones and FXRα expression in the liver is yet unknown. Control ( n =6) and methimazole-induced hypothyroid ( n =6) female rabbits were used to evaluate the amount of lipids and glycogen, vascularization, hepatocytes proliferation, immune cells infiltration, and expression of FXRα. Student- t or Mann-Whitney U tests were carried out to determine significant differences. Hypothyroidism induced steatosis, glycogen loss, fibrosis, and a minor vascularization in the liver. In contrast, hypothyroidism increased the proliferation of hepatocytes and the infiltration of mast cells, but did not modify the number of immune cells into sinusoids. These changes were associated with a minor anti-FXRα immunoreactivity of periportal hepatocytes and pericentral immune cells. Our results suggest that hypothyroidism induces a moderate non-alcoholic steatohepatitis, alllowing the hepatic regeneration. The FXRα may be involved in the development of non-alcoholic steatohepatitis in hypothyroid subjects. © Georg Thieme Verlag KG Stuttgart · New York.
Tim2 is expressed in mouse fetal hepatocytes and regulates their differentiation.
Watanabe, Natsumi; Tanaka, Minoru; Suzuki, Kaori; Kumanogoh, Atsushi; Kikutani, Hitoshi; Miyajima, Atsushi
2007-05-01
Liver development is regulated by various extracellular molecules such as cytokines and cell surface proteins. Although several such regulators have been identified, additional molecules are likely to be involved in liver development. To identify such molecules, we employed the signal sequence trap (SST) method to screen cDNAs encoding a secreted or membrane protein from fetal liver and obtained a number of clones. Among them, we found that T cell immunoglobulin and mucin domain 2 (Tim2) was expressed specifically on immature hepatocytes in the fetal liver. Tim2 has been shown to regulate immune responses, but its role in liver development had not been studied. We have examined the possible role of Tim2 in hepatocyte differentiation. At first, we prepared a soluble Tim2 fusion protein consisting of its extracellular domain and the Fc domain of human IgG (Tim2-hFc) and found that it bound to fetal and adult hepatocytes, suggesting that there are Tim2-binding molecules on hepatocytes. Second, Tim2-hFc inhibited the differentiation of hepatocytes in fetal liver primary culture, i.e., the expression of mature hepatic enzymes and accumulation of glycogen were severely reduced. Third, Tim2-hFc also inhibited proliferation of fetal hepatocytes. Fourth, down-regulation of Tim2 expression by small interfering RNA (siRNA) enhanced the expression of liver differentiation marker genes. It is strongly suggested that Tim2 is involved in the differentiation of fetal hepatocytes.
Wu, Yinjuan; Li, Ye; Shang, Mei; Jian, Yu; Wang, Caiqin; Bardeesi, Adham Sameer A; Li, Zhaolei; Chen, Tingjin; Zhao, Lu; Zhou, Lina; He, Ai; Huang, Yan; Lv, Zhiyue; Yu, Xinbing; Li, Xuerong
2017-03-16
Secreted phospholipase A2 (sPLA2) is a protein secreted by Clonorchis sinensis and is a component of excretory and secretory products (CsESPs). Phospholipase A2 is well known for its role in liver fibrosis and inhibition of tumour cells. The JNK signalling pathway is involved in hepatic stellate cells (HSCs) activation. Blocking JNK activity with SP600125 inhibits HSCs activation. In a previous study, the protein CssPLA2 was expressed in insoluble inclusion bodies. Therefore, it's necessary to express CssPLA2 in water-soluble form and determine whether the enzymatic activity of CssPLA2 or cell signalling pathways is involved in liver fibrosis caused by clonorchiasis. Balb/C mice were given an abdominal injection of MBP-CssPLA2. Liver sections with HE and Masson staining were observed to detect accumulation of collagen. Western blot of mouse liver was done to detect the activation of JNK signalling pathway. In vitro, HSCs were incubated with MBP-CssPLA2 to detect the activation of HSCs as well as the activation of JNK signalling pathway. The mutant of MBP-CssPLA2 without enzymatic activity was constructed and was also incubated with HSCs to check whether activation of the HSCs was related to the enzymatic activity of MBP-CssPLA2. The recombinant protein MBP-CssPLA2 was expressed soluble and of good enzymatic activity. A mutant of CssPLA2, without enzymatic activity, was also constructed. In vivo liver sections of Balb/C mice that were given an abdominal injection of 50 μg/ml MBP-CssPLA2 showed an obvious accumulation of collagen and a clear band of P-JNK1 could be seen by western blot of the liver tissue. In vitro, MBP-CssPLA2, as well as the mutant, was incubated with HSCs and it was proved that activation of HSCs was related to activation of the JNK signalling pathway instead of the enzymatic activity of MBP-CssPLA2. Activation of HSCs by CssPLA2 is related to the activation of the JNK signalling pathway instead of the enzymatic activity of CssPLA2. This finding could provide a promising treatment strategy to interrupt the process of liver fibrosis caused by clonorchiasis.
Copper/MYC/CTR1 interplay: a dangerous relationship in hepatocellular carcinoma.
Porcu, Cristiana; Antonucci, Laura; Barbaro, Barbara; Illi, Barbara; Nasi, Sergio; Martini, Maurizio; Licata, Anna; Miele, Luca; Grieco, Antonio; Balsano, Clara
2018-02-06
Free serum copper correlates with tumor incidence and progression of human cancers, including hepatocellular carcinoma (HCC). Copper extracellular uptake is provided by the transporter CTR1, whose expression is regulated to avoid excessive intracellular copper entry. Inadequate copper serum concentration is involved in the pathogenesis of Non Alcoholic Fatty Liver Disease (NAFLD), which is becoming a major cause of liver damage progression and HCC incidence. Finally, MYC is over-expressed in most of HCCs and is a critical regulator of cellular growth, tumor invasion and metastasis. The purpose of our study was to understand if higher serum copper concentrations might be involved in the progression of NAFLD-cirrhosis toward-HCC. We investigated whether high exogenous copper levels sensitize liver cells to transformation and if it exists an interplay between copper-related proteins and MYC oncogene. NAFLD-cirrhotic patients were characterized by a statistical significant enhancement of serum copper levels, even more evident in HCC patients. We demonstrated that high extracellular copper concentrations increase cell growth, migration, and invasion of liver cancer cells by modulating MYC/CTR1 axis. We highlighted that MYC binds a specific region of the CTR1 promoter, regulating its transcription. Accordingly, CTR1 and MYC proteins expression were progressively up-regulated in liver tissues from NAFLD-cirrhotic to HCC patients. This work provides novel insights on the molecular mechanisms by which copper may favor the progression from cirrhosis to cancer. The Cu/MYC/CTR1 interplay opens a window to refine HCC diagnosis and design new combined therapies.
Platelets in liver disease, cancer and regeneration.
Kurokawa, Tomohiro; Ohkohchi, Nobuhiro
2017-05-14
Although viral hepatitis treatments have evolved over the years, the resultant liver cirrhosis still does not completely heal. Platelets contain proteins required for hemostasis, as well as many growth factors required for organ development, tissue regeneration and repair. Thrombocytopenia, which is frequently observed in patients with chronic liver disease (CLD) and cirrhosis, can manifest from decreased thrombopoietin production and accelerated platelet destruction caused by hypersplenism; however, the relationship between thrombocytopenia and hepatic pathogenesis, as well as the role of platelets in CLD, is poorly understood. In this paper, experimental evidence of platelets improving liver fibrosis and accelerating liver regeneration is summarized and addressed based on studies conducted in our laboratory and current progress reports from other investigators. In addition, we describe our current perspective based on the results of these studies. Platelets improve liver fibrosis by inactivating hepatic stellate cells, which decreases collagen production. The regenerative effect of platelets in the liver involves a direct effect on hepatocytes, a cooperative effect with liver sinusoidal endothelial cells, and a collaborative effect with Kupffer cells. Based on these observations, we ascertained the direct effect of platelet transfusion on improving several indicators of liver function in patients with CLD and liver cirrhosis. However, unlike the results of our previous clinical study, the smaller incremental changes in liver function in patients with CLD who received eltrombopag for 6 mo were due to patient selection from a heterogeneous population. We highlight the current knowledge concerning the role of platelets in CLD and cancer and anticipate a novel application of platelet-based clinical therapies to treat liver disease.
Zhang, Jiliang; Sun, Ping; Kong, Tao; Yang, Fan; Guan, Wenchao
2016-01-01
Endocrine disruptor effects of tributyltin (TBT) are well established in fish. However, the adverse effects on lipid metabolism are less well understood. Since the liver is the predominant site of de novo synthesis of lipids, the present study uses zebrafish (Danio rerio) to examine lipid accumulation in the livers and hepatic gene expression associated with lipid metabolism pathways. After exposure for 90 days, we found that the livers in fish exposed to TBT were yellowish in appearance and with accumulation of lipid droplet, which is consistent with the specific pathological features of steatosis. Molecular analysis revealed that TBT induced hepatic steatosis by increasing the gene expression associated with lipid transport, lipid storage, lipiogenic enzymes and lipiogenic factors in the livers. Moreover, TBT enhanced hepatic caspase-3 activity and up-regulated genes related to apoptosis and cell-death, which indicated steatotic livers of fish exposed to TBT and the subsequent liver damage were likely due to accelerated hepatocyte apoptosis or cell stress. In short, TBT can produce multiple and complex alterations in transcriptional activity of lipid metabolism and cell damage, which provides potential molecular evidence of TBT on hepatic steatosis. Copyright © 2015 Elsevier B.V. All rights reserved.
Abdallah, Cosette; Lejamtel, Charlène; Benzoubir, Nassima; Battaglia, Serena; Sidahmed-Adrar, Nazha; Desterke, Christophe; Lemasson, Matthieu; Rosenberg, Arielle R; Samuel, Didier; Bréchot, Christian; Pflieger, Delphine; Le Naour, François; Bourgeade, Marie-Françoise
2017-08-22
Hepatitis C virus (HCV) is a leading cause of liver diseases including the development of hepatocellular carcinoma (HCC). Particularly, core protein has been involved in HCV-related liver pathologies. However, the impact of HCV core on signaling pathways supporting the genesis of HCC remains largely elusive. To decipher the host cell signaling pathways involved in the oncogenic potential of HCV core, a global quantitative phosphoproteomic approach was carried out. This study shed light on novel differentially phosphorylated proteins, in particular several components involved in translation. Among the eukaryotic initiation factors that govern the translational machinery, 4E-BP1 represents a master regulator of protein synthesis that is associated with the development and progression of cancers due to its ability to increase protein expression of oncogenic pathways. Enhanced levels of 4E-BP1 in non-modified and phosphorylated forms were validated in human hepatoma cells and in mouse primary hepatocytes expressing HCV core, in the livers of HCV core transgenic mice as well as in HCV-infected human primary hepatocytes. The contribution of HCV core in carcinogenesis and the status of 4E-BP1 expression and phosphorylation were studied in HCV core/Myc double transgenic mice. HCV core increased the levels of 4E-BP1 expression and phosphorylation and significantly accelerated the onset of Myc-induced tumorigenesis in these double transgenic mice. These results reveal a novel function of HCV core in liver carcinogenesis potentiation. They position 4E-BP1 as a tumor-specific target of HCV core and support the involvement of the 4E-BP1/eIF4E axis in hepatocarcinogenesis.
Ethanol-induced oxidant stress modulates hepatic autophagy and proteasome activity
Donohue, Jr., Terrence M.; Thomes, Paul G.
2014-01-01
In this review, we describe research findings on the effects of alcohol exposure on two major catabolic systems in liver cells: the ubiquitin–proteasome system (UPS) and autophagy. These hydrolytic systems are not unique to liver cells; they exist in all eukaryotic tissues and cells. However, because the liver is the principal site of ethanol metabolism, it sustains the greatest damage from heavy drinking. Thus, the focus of this review is to specifically describe how ethanol oxidation modulates the activities of the UPS and autophagy and the mechanisms by which these changes contribute to the pathogenesis of alcohol-induced liver injury. Here, we describe the history and the importance of cellular hydrolytic systems, followed by a description of each catabolic pathway and the differential modulation of each by ethanol exposure. Overall, the evidence for an involvement of these catabolic systems in the pathogenesis of alcoholic liver disease is quite strong. It underscores their importance, not only as effective means of cellular recycling and eventual energy generation, but also as essential components of cellular defense. PMID:25462063
Asada, Kiyoshi; Aihara, Yosuke; Takaya, Hiroaki; Noguchi, Ryuichi; Namisaki, Tadashi; Moriya, Kei; Uejima, Masakazu; Kitade, Mitsuteru; Mashitani, Tsuyoshi; Takeda, Kosuke; Kawaratani, Hideto; Okura, Yasushi; Kaji, Kosuke; Douhara, Akitoshi; Sawada, Yasuhiko; Nishimura, Norihisa; Seki, Kenichiro; Mitoro, Akira; Yamao, Junichi; Yoshiji, Hitoshi
2016-10-08
To clarify whether Agtr1a methylation is involved in the development of nonalcoholic steatohepatitis (NASH)-related liver fibrosis in adult rats. A choline-deficient amino acid (CDAA) diet model was employed for methylation analysis of NASH-related liver fibrosis. Agtr1a methylation levels were measured in the livers of CDAA- and control choline-sufficient amino acid (CSAA)-fed rats for 8 and 12 wk using quantitative methylation-specific PCR. Hepatic stellate cells (HSCs) were isolated by collagenase digestion of the liver, followed by centrifugation of the crude cell suspension through a density gradient. Agtr1a methylation and its gene expression were also analyzed during the activation of HSCs. The mean levels of Agtr1a methylation in the livers of CDAA-fed rats (11.5% and 18.6% at 8 and 12 wk, respectively) tended to be higher ( P = 0.06 and 0.09, respectively) than those in the livers of CSAA-fed rats (2.1% and 5.3% at 8 and 12 wk, respectively). Agtr1a was not methylated at all in quiescent HSCs, but was clearly methylated in activated HSCs (13.8%, P < 0.01). Interestingly, although Agtr1a was hypermethylated, the Agtr1a mRNA level increased up to 2.2-fold ( P < 0.05) in activated HSCs compared with that in quiescent HSCs, suggesting that Agtr1a methylation did not silence its expression but instead had the potential to upregulate its expression. These findings indicate that Agtr1a methylation and its upregulation of gene expression are associated with the development of NASH-related liver fibrosis. This is the first study to show that DNA methylation is potentially involved in the regulation of a renin-angiotensin system-related gene expression during liver fibrosis.
Lee, Hyungkyoung; Kang, Changgeun; Yoo, Yong-San; Hah, Do-Yun; Kim, Chung Hui; Kim, Euikyung; Kim, Jong Shu
2013-09-01
Zearalenone (ZEN) has been implicated in several cases of mycotoxicosis in farm animals and humans. The toxic effects of ZEN have been well characterized, but little is known regarding the mechanisms of ZEN toxicity, including the involvement of the oxidative stress pathway. Using Chang liver cells as a model, the aim of this study was to determine if ZEN could elevate the expression of the heat shock protein Hsp 70, induce cytotoxicity and modulate the levels of glutathione (GSH) and thiobarbituric acid reactive substance (TBARS). In addition, the cytoprotective effects of N-acetylcysteine amide (NACA) pre-treatment were assessed. Finally, the involvement of oxidative stress in ZEN-induced toxicity was confirmed. The results of this study demonstrated that ZEN-induced Hsp 70 expression in a dose- and time-dependent manners. This effect occurred at low-ZEN concentrations, and could therefore be considered a biomarker of ZEN-induced toxicity. The cytotoxicity was reduced when Chang liver cells were exposed to sub-lethal heat shock prior to ZEN treatment, demonstrating a cytoprotective effect of Hsp 70. This cytoprotective effect suggested that Hsp 70 might play a key role in the cellular defense mechanism. When cells were pre-treated with NACA prior to ZEN treatment, the cells were also protected from toxicity. This NACA cytoprotective effect suggested the involvement of oxidative stress in ZEN-induced toxicity, and this mechanism was supported by reduced Hsp 70 expression, inhibited cytolethality, increased GSH levels and decreased TBARS formation when cells were pre-treated with NACA prior to ZEN exposure. Our data clearly demonstrated that ZEN induced cytotoxicity in Chang liver cells by inhibiting cell proliferation, decreasing GSH levels and increasing TBARS formation in a dose-dependent manner. ZEN also, induced Hsp 70 expression, and the side effects of ZEN were significantly alleviated by pre-treatment with NACA. Oxidative stress is likely to be one of the primary pathways of ZEN toxicity. This oxidative stress may contribute, at least in part, to the mechanism of ZEN-induced cytotoxicity. Copyright © 2013 Elsevier B.V. All rights reserved.
Suppression of immune-mediated liver injury after vaccination with attenuated pathogenic cells.
Mei, Yunhua; Wang, Ying; Xu, Lingyun
2007-05-15
Cell vaccination via immunization with attenuated pathogenic cells is an effective preventive method that has been successfully applied in several animal models of inflammatory or autoimmune diseases. Concanavalin A (Con A)-induced hepatitis (CIH) is a commonly used experimental model to study immune-mediated liver injury. Multiple cell types including T lymphocytes, macrophages and neutrophils have been found to be involved in the pathogenesis of CIH. In this study, we used attenuated spleen lymphocytes or peripheral blood lymphocytes as vaccines to investigate whether they could induce protective immune responses to prevent mice from developing CIH. We found that mice receiving such vaccination before CIH induction developed much milder diseases, exhibited a lower level of alanine aminotransferase (ALT) released into their plasma and had less inflammatory lesions in their livers. Such CIH-suppression is dose- and frequency-dependent. The suppressive effect was associated with inhibition of several major inflammatory mediators, pro-inflammatory cytokines and chemokines.
Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua
2015-01-01
Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury. PMID:26316710
Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua
2015-01-01
Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury.
Zhang, Tianshun; Yamamoto, Norio; Ashida, Hitoshi
2014-06-01
Excessive lipid accumulation in the liver has been proposed to cause hyperlipidemia, diabetes and fatty liver disease. 4-Hydroxyderricin (4HD), xanthoangelol (XAG), cardamonin (CAR) and flavokawain B (FKB) are chalcones that have exhibited various biological effects against obesity, inflammation, and diabetes; however, little is known about the inhibitory effects of these chalcones on fatty liver disease. In the present study, we investigated the ability of 4HD, XAG, CAR, and FKB to reduce lipid accumulation in hepatocytes. When HepG2 cells were treated with a mixture of fatty acids (FAs; palmitic acid : oleic acid = 1 : 2 ratio), significant lipid accumulation was observed. Under the same experimental conditions, addition of chalcones at 5 μM significantly suppressed the FA-induced lipid accumulation. We found that the expression of sterol regulatory element-binding protein-1 (SREBP-1), a key molecule involved in lipogenesis, was decreased in these chalcone-treated cells. We also found that these chalcones increased the expression of peroxisome proliferator-activated receptor α (PPARα), which is involved in FA oxidation. Moreover, these chalcones increased phosphorylation of AMP-activated protein kinase (AMPK) and liver kinase B1 (LKB1), upstream regulators of SREBP-1 and PPARα. We confirmed that an AMPK inhibitor, compound C, reversed chalcone-induced changes in SREBP-1 and PPARα expression in the HepG2 cells. Collectively, we found that 4HD, XAG, CAR, and XAG attenuated lipid accumulation through activation of the LKB1/AMPK signaling pathway in HepG2 cells.
Wang, Chong; Huo, Xiaokui; Wang, Changyuan; Meng, Qiang; Liu, Zhihao; Sun, Pengyuan; Cang, Jian; Sun, Huijun; Liu, Kexin
2017-09-01
Cilostazol undergoes extensive liver metabolism. However, the transporter-mediated hepatic disposition of cilostazol remains unknown. The present study was performed to investigate the hepatic uptake and biliary excretion of cilostazol and its metabolites (OPC-13015 and OPC-13213) using rat liver and human transporter-transfected cells in vitro. Cilostazol uptake by rat liver slices and isolated rat hepatocytes exhibited time-, concentration-, and temperature dependency and was decreased by Oatp inhibitors, which suggested that Oatp was involved in the hepatic uptake of cilostazol. Cilostazol uptake in rat hepatocytes, OATP1B1-, and OATP1B3-HEK293 cells indicated a saturable process with K m values of 2.7 μM, 17.7 μM, and 2.7 μM, respectively. Epigallocatechin gallate, cyclosporin A, rifampicin, and telmisartan inhibited cilostazol uptake in OATP1B1/1B3-HEK293 cells with K i values close to their clinical plasma concentration, which suggested possible drug-drug interactions in humans via OATP1B1/1B3. Moreover, the cumulative biliary excretion of cilostazol and OPC-13015 was significantly decreased by quinidine, bilirubin, and novobiocin in perfused rat liver, but OPC-13213 biliary excretion was only inhibited by novobiocin, which suggested that the efflux transporters Mrp2, Bcrp, and P-gp were involved in the biliary excretion of cilostazol and its metabolites. Our findings indicated that multiple transporters were involved in the hepatic disposition of cilostazol and its metabolites. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
The sites of catabolism of murine monomeric IgA.
Moldoveanu, Z; Epps, J M; Thorpe, S R; Mestecky, J
1988-07-01
The tissue sites of monomeric IgA (mIgA) catabolism were determined in a BALB/c mouse model. Mouse mIgA myeloma proteins were labeled either by direct iodination or by coupling the residualizing label, dilactitol-125I-tyramine (125I-DLT) to the proteins; catabolites from protein labeled with 125I-DLT accumulate at the site of protein degradation, allowing identification of the tissue and cellular sites involved in catabolism of the protein. The circulating half-lives of 125I- and 125I-DLT-mIgA were the same. The distribution of radioactivity in tissues was measured at 1, 3, 24, and 96 h after iv. injection of 125I-DLT-labeled mIgA, dimeric IgA (dIgA), IgG, or mouse serum albumin. The greatest uptake of 125I-DLT-mIgA was attributable to the liver. This organ accounted for more internal catabolism of mIgA than all other tissues combined. In contrast, 125I-DLT-IgG was catabolized equally in skin, muscle, and liver. These data indicate that, in mice, the liver is the major site of mIgA catabolism. To determine the cell types involved, collagenase digestion was used to isolate parenchymal and non-parenchymal cells from perfused liver of animals injected with 125-DLT-mIgA. Most of the radioactivity was associated with the hepatocyte fraction, even though both cell types showed uptake of 125I-DLT-mIgA. Inhibition studies, with asialofetuin and mouse IgA demonstrated that the uptake of mIgA by liver cells was mediated primarily by the asialoglycoprotein receptor.
Zhu, Qiang; Li, Changyong; Wang, Kunpeng; Yue, Shi; Jiang, Longfeng; Ke, Michael; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Zhang, Feng; Lu, Ling; Ke, Bibo
2017-06-01
The phosphatase and tensin homolog (PTEN) deleted on chromosome 10 plays an important role in regulating T cell activation during inflammatory response. Activation of β-catenin is crucial for maintaining immune homeostasis. This study investigates the functional roles and molecular mechanisms by which PTEN-β-catenin signaling promotes regulatory T cell (Treg) induction in a mouse model of liver ischemia/reperfusion injury (IRI). We found that mice with myeloid-specific phosphatase and tensin homolog knockout (PTEN M-KO ) exhibited reduced liver damage as evidenced by decreased levels of serum alanine aminotransferase, intrahepatic macrophage trafficking, and proinflammatory mediators compared with the PTEN-proficient (floxed phosphatase and tensin homolog [PTEN FL/FL ]) controls. Disruption of myeloid PTEN-activated b-catenin promoted peroxisome proliferator-activated receptor gamma (PPARγ)-mediated Jagged-1/Notch signaling and induced forkhead box P3 (FOXP3)1 Tregs while inhibiting T helper 17 cells. However, blocking of Notch signaling by inhibiting γ-secretase reversed myeloid PTEN deficiency-mediated protection in ischemia/reperfusion-triggered liver inflammation with reduced FOXP3 + and increased retinoid A receptor-related orphan receptor gamma t-mediated interleukin 17A expression in ischemic livers. Moreover, knockdown of β-catenin or PPARγ in PTEN-deficient macrophages inhibited Jagged-1/Notch activation and reduced FOXP3 + Treg induction, leading to increased proinflammatory mediators in macrophage/T cell cocultures. In conclusion, our findings demonstrate that PTEN-β-catenin signaling is a novel regulator involved in modulating Treg development and provides a potential therapeutic target in liver IRI. Liver Transplantation 23 813-825 2017 AASLD. © 2017 by the American Association for the Study of Liver Diseases.
Mukai, Kaori; Miyagi, Takuya; Nishio, Kumiko; Yokoyama, Yoshinobu; Yoshioka, Teppei; Saito, Yoshinobu; Tanaka, Satoshi; Shigekawa, Minoru; Nawa, Takatoshi; Hikita, Hayato; Sakamori, Ryotaro; Yoshihara, Harumasa; Imai, Yasuharu; Hiramatsu, Naoki; Tatsumi, Tomohide; Takehara, Tetsuo
2016-01-01
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease with a spectrum of presentations. S100A8 has been suggested to play a pivotal role as an endogenous immune-activator in inflammatory diseases. In this study, we investigated the involvement of S100A8 in the development of NAFLD. We used a diet model of NAFLD, in which mice were fed either a high-fat and high-cholesterol diet (HFHCD) or a normal diet (ND) as a control. We also assessed liver tissues from patients with NAFLD, including patients with nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). HFHCD-fed mice, but not ND-fed mice, developed steatohepatitis. S100A8 expression was significantly elevated in the livers of HFHCD-fed mice compared with the controls. S100A8 was exclusively expressed in CXCR2-expressing CD11b(+)Gr-1(high) cells, which significantly increased in the livers of HFHCD-fed mice. These cells were F4/80 negative and did not possess a suppressor function. TNF-α expression was enhanced by S100A8 in primary liver leukocytes or a hepatocyte cell line and significantly elevated in the livers of HFHCD-fed mice. TNF-α was primarily produced from CD11b(+)F4/80(+) cells in liver leukocytes in response to S100A8. TNF-α deficiency attenuated hepatitis in HFHCD-fed mice. S100A8 was significantly more expressed in the liver tissues of patients with NASH than in those of patients with NAFL. In conclusion, these results suggest that S100A8 is primarily produced from CXCR2-expressing CD11b(+)Gr-1(high) cells, and it upregulates TNF-α production in CD11b(+)F4/80(+) cells through cellular cross-talk, which is an important mechanism in the development of NAFLD. Copyright © 2015 by The American Association of Immunologists, Inc.
Yang, Chih-Ya; Chen, Jiun-Bo; Tsai, Ting-Fen; Tsai, Yi-Chen; Tsai, Ching-Yen; Liang, Pi-Hui; Hsu, Tsui-Ling; Wu, Chung-Yi; Netea, Mihai G.; Wong, Chi-Huey; Hsieh, Shie-Liang
2013-01-01
CLEC4F, a member of C-type lectin, was first purified from rat liver extract with high binding affinity to fucose, galactose (Gal), N-acetylgalactosamine (GalNAc), and un-sialylated glucosphingolipids with GalNAc or Gal terminus. However, the biological functions of CLEC4F have not been elucidated. To address this question, we examined the expression and distribution of murine CLEC4F, determined its binding specificity by glycan array, and investigated its function using CLEC4F knockout (Clec4f−/−) mice. We found that CLEC4F is a heavily glycosylated membrane protein co-expressed with F4/80 on Kupffer cells. In contrast to F4/80, CLEC4F is detectable in fetal livers at embryonic day 11.5 (E11.5) but not in yolk sac, suggesting the expression of CLEC4F is induced as cells migrate from yolk cells to the liver. Even though CLEC4F is not detectable in tissues outside liver, both residential Kupffer cells and infiltrating mononuclear cells surrounding liver abscesses are CLEC4F-positive upon Listeria monocytogenes (L. monocytogenes) infection. While CLEC4F has strong binding to Gal and GalNAc, terminal fucosylation inhibits CLEC4F recognition to several glycans such as Fucosyl GM1, Globo H, Bb3∼4 and other fucosyl-glycans. Moreover, CLEC4F interacts with alpha-galactosylceramide (α-GalCer) in a calcium-dependent manner and participates in the presentation of α-GalCer to natural killer T (NKT) cells. This suggests that CLEC4F is a C-type lectin with diverse binding specificity expressed on residential Kupffer cells and infiltrating monocytes in the liver, and may play an important role to modulate glycolipids presentation on Kupffer cells. PMID:23762286
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vickers, Alison E.M., E-mail: vickers_alison@allergan.co; Sinclair, John R.; Fisher, Robyn L.
A novel in vitro model to investigate time-dependent and concentration-dependent responses in blood cells and hemolytic events is studied for rat, dog, and human tissues. Whole blood is co-cultured with a precision-cut liver slice. Methimazole (MMI) was selected as a reference compound, since metabolism of its imidazole thione moiety is linked with hematologic disorders and hepatotoxicity. An oxidative stress response occurred in all three species, marked by a decline in blood GSH levels by 24 h that progressed, and preceded hemolysis, which occurred at high MMI concentrations in the presence of a liver slice with rat (>= 1000 muM atmore » 48 h) and human tissues (>= 1000 muM at 48 h, >= 750 muM at 72 h) but not dog. Human blood-only cultures exhibited a decline of GSH levels but minimal to no hemolysis. The up-regulation of liver genes for heme degradation (Hmox1 and Prdx1), iron cellular transport (Slc40a1), and GSH synthesis and utilization (mGST1 and Gclc) were early markers of the oxidative stress response. The up-regulation of the Kupffer cell lectin Lgals3 gene expression indicated a response to damaged red blood cells, and Hp (haptoglobin) up-regulation is indicative of increased hemoglobin uptake. Up-regulation of liver IL-6 and IL-8 gene expression suggested an activation of an inflammatory response by liver endothelial cells. In summary, MMI exposure led to an oxidative stress response in blood cells, and an up-regulation of liver genes involved with oxidative stress and heme homeostasis, which was clearly separate and preceded frank hemolysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Le; Wang, Jinlong; Lu, Hongwei
Hepatic stellate cells (HSCs) are the primary sources of extracellular matrix (ECM) in normal and fibrotic liver. Peroxisome proliferator-activated receptor gamma (PPARγ) maintains HSCs in a quiescent state, and its downregulation induces HSC activation. MicroRNAs (miRNAs) can induce PPARγ mRNA degradation, but the mechanism by which miRNAs regulate PPARγ in rat HSCs is unclear. This study aimed to investigate some miRNAs which putatively bind to the 3′-untranslated region (3′-UTR) of PPARγ mRNA, and increase expression of ECM genes in rat HSCs. In carbon tetrachloride injection (CCl{sub 4}) and common bile duct ligation (CBDL) liver fibrosis models, miRNAs miR-130a, miR-130b, miR-301a,more » miR-27b and miR-340 levels were found to be increased and PPARγ expression decreased. Overexpression of miR-130a and miR-130b enhanced cell proliferation by involving Runx3. MiR-130a and miR-130b decreased PPARγ expression by targeting the 3′-UTR of PPARγ mRNA in rat HSC-T6 cells. Transforming growth factor-β1 (TGF-β1) may mediate miR-130a and miR-130b overexpression, PPARγ downregulation, and ECM genes overexpression in cell culture. These findings suggest that miR-130a and miR-130b are involved in downregulation of PPARγ in liver fibrosis. - Highlights: • MiR-130a and miR-130b are increased and PPARγ is decreased in liver fibrosis models. • MiR-130a and miR-130b decreased PPARγ by targeting the 3′-UTR of PPARγ mRNA. • MiR-130a and miR-130b enhanced HSC cell proliferation by involving Runx3. • TGF-β1 may mediate miR-130a and miR-130b overexpression.« less
CXC chemokine ligand 4 (Cxcl4) is a platelet-derived mediator of experimental liver fibrosis.
Zaldivar, Mirko Moreno; Pauels, Katrin; von Hundelshausen, Philipp; Berres, Marie-Luise; Schmitz, Petra; Bornemann, Jörg; Kowalska, M Anna; Gassler, Nikolaus; Streetz, Konrad L; Weiskirchen, Ralf; Trautwein, Christian; Weber, Christian; Wasmuth, Hermann E
2010-04-01
Liver fibrosis is a major cause of morbidity and mortality worldwide. Platelets are involved in liver damage, but the underlying molecular mechanisms remain elusive. Here, we investigate the platelet-derived chemokine (C-X-C motif) ligand 4 (CXCL4) as a molecular mediator of fibrotic liver damage. Serum concentrations and intrahepatic messenger RNA of CXCL4 were measured in patients with chronic liver diseases and mice after toxic liver injury. Platelet aggregation in early fibrosis was determined by electron microscopy in patients and by immunohistochemistry in mice. Cxcl4(-/-) and wild-type mice were subjected to two models of chronic liver injury (CCl(4) and thioacetamide). The fibrotic phenotype was analyzed by histological, biochemical, and molecular analyses. Intrahepatic infiltration of immune cells was investigated by fluorescence-activated cell sorting, and stellate cells were stimulated with recombinant Cxcl4 in vitro. The results showed that patients with advanced hepatitis C virus-induced fibrosis or nonalcoholic steatohepatitis had increased serum levels and intrahepatic CXCL4 messenger RNA concentrations. Platelets were found directly adjacent to collagen fibrils. The CCl(4) and thioacetamide treatment led to an increase of hepatic Cxcl4 levels, platelet activation, and aggregation in early fibrosis in mice. Accordingly, genetic deletion of Cxcl4 in mice significantly reduced histological and biochemical liver damage in vivo, which was accompanied by changes in the expression of fibrosis-related genes (Timp-1 [tissue inhibitor of matrix metalloproteinase 1], Mmp9 [matrix metalloproteinase 9], Tgf-beta [transforming growth factor beta], IL10 [interleukin 10]). Functionally, Cxcl4(-/-) mice showed a strongly decreased infiltration of neutrophils (Ly6G) and CD8(+) T cells into the liver. In vitro, recombinant murine Cxcl4 stimulated the proliferation, chemotaxis, and chemokine expression of hepatic stellate cells. The results underscore an important role of platelets in chronic liver damage and imply a new target for antifibrotic therapies.
Simon, Frank; Bockhorn, Maximilian; Praha, Christian; Baba, Hideo A; Broelsch, Christoph E; Frilling, Andrea; Weber, Frank
2010-04-01
The aim of this study was to elucidate the role of HIF1A expression in hepatocellular carcinoma (HCC) and the corresponding non-malignant liver tissue and to correlate it with the clinical outcome of HCC patients after curative liver resection. HIF1A expression was determined by quantitative RT-PCR in HCC and corresponding non-malignant liver tissue of 53 patients surgically treated for HCC. High-density gene expression analysis and pathway analysis was performed on a selected subset of patients with high and low HIF1A expression in the non-malignant liver tissue. HIF1A over-expression in the apparently non-malignant liver tissue was a predictor of tumor recurrence and survival. The estimated 1-year and 5-year disease-free survival was significantly better in patients with low HIF1A expression in the non-malignant liver tissue when compared to those patients with high HIF1 expression (88.9% vs. 67.9% and 61.0% vs. 22.6%, respectively, p = 0.008). Based on molecular pathway analysis utilizing high-density gene-expression profiling, HIF1A related molecular networks were identified that contained genes involved in cell migration, cell homing, and cell-cell interaction. Our study identified a potential novel mechanism contributing to prognosis of HCC. The deregulation of HIF1A and its related pathways in the apparently non-malignant liver tissue provides for a modulated environment that potentially enhances or allows for HCC recurrence after curative resection.
Glycyrrhizin ameliorates metabolic syndrome-induced liver damage in experimental rat model.
Sil, Rajarshi; Ray, Doel; Chakraborti, Abhay Sankar
2015-11-01
Glycyrrhizin, a major constituent of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate insulin resistance, hyperglycemia, dyslipidemia, and obesity in rats with metabolic syndrome. Liver dysfunction is associated with this syndrome. The objective of this study is to investigate the effect of glycyrrhizin treatment on metabolic syndrome-induced liver damage. After induction of metabolic syndrome in rats by high fructose (60%) diet for 6 weeks, the rats were treated with glycyrrhizin (50 mg/kg body weight, single intra-peritoneal injection). After 2 weeks of treatment, rats were sacrificed to collect blood samples and liver tissues. Compared to normal, elevated activities of serum alanine transaminase, alkaline phosphatase and aspartate transaminase, increased levels of liver advanced glycation end products, reactive oxygen species, lipid peroxidation, protein carbonyl, protein kinase Cα, NADPH oxidase-2, and decreased glutathione cycle components established liver damage and oxidative stress in fructose-fed rats. Activation of nuclear factor κB, mitogen-activated protein kinase pathways as well as signals from mitochondria were found to be involved in liver cell apoptosis. Increased levels of cyclooxygenase-2, tumor necrosis factor, and interleukin-12 proteins suggested hepatic inflammation. Metabolic syndrome caused hepatic DNA damage and poly-ADP ribose polymerase cleavage. Fluorescence-activated cell sorting using annexin V/propidium iodide staining confirmed the apoptotic hepatic cell death. Histology of liver tissue also supported the experimental findings. Treatment with glycyrrhizin reduced oxidative stress, hepatic inflammation, and apoptotic cell death in fructose-fed rats. The results suggest that glycyrrhizin possesses therapeutic potential against hepatocellular damage in metabolic syndrome.
A case of thymic Langerhans cell histiocytosis with diabetes insipidus as the first presentation.
Chen, Xiaoyan; Huang, Xiaochun; Qiu, Yuan; Chen, Hanzhang; Fu, Yingyu; Li, Xinchun
2013-03-01
Langerhans cell histiocytosis (LCH) is an idiopathic group of reactive proliferative diseases linked to aberrant immunity, pathologically characterized by clonal proliferation of Langerhans cells. LCH rarely involves the thymus. We report a case of thymic LCH with diabetes insipidus as the first presentation, without evidence of myasthenia gravis and without evidenced involvement of the skin, liver, spleen, bones, lungs and superficial lymph nodes. This present case may have important clinical implications. In screening for LCH lesions, attention should be attached to rarely involved sites in addition to commonly involved organs. Follow-up and imageological examination are very important to a final diagnosis.
Chaumontet, C; Droumaguet, C; Bex, V; Heberden, C; Gaillard-Sanchez, I; Martel, P
1997-03-19
We have shown previously that two flavonoids, apigenin and tangeretin, enhance gap junctional intercellular communication (GJIC) in rat liver epithelial cells, named REL cells. Here, we show that these two flavones also antagonize the inhibition of GJIC induced by tumor promoters like 12-O-tetradecanoyl-phorbol-acetate (TPA) and 3,5,di-tertio-butyl-4-hydroxytoluene (BHT). Their preventive effect is rapid. It does not seem to involve any change of the amount of the connexin expressed in REL cells, connexin 43 (Cx 43), and in its phosphorylation state. Other flavonoids tested including naringenin, myricetin, catechin and chrysin did not enhance GJIC nor counteract TPA-induced inhibition of GJIC.
Role of histone deacetylases(HDACs) in progression and reversal of liver fibrosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xing; Wu, Xiao-Qin; Xu, Tao
Liver fibrosis refers to a reversible wound healing process response to chronic liver injuries. Activation of hepatic stellate cells (HSCs) is closely correlated with the development of liver fibrosis. Histone deacetylases(HDACs) determine the acetylation levels of core histones to modulate expression of genes. To demonstrate the link between HDACs and liver fibrosis, CCl4-induced mouse liver fibrosis model and its spontaneous reversal model were established. Results of the current study demonstrated that deregulation of liver HDACs may involved in the development of liver fibrosis. Among 11 HDACs tested in our study (Class I, II, and IV HDACs), expression of HDAC2 wasmore » maximally increased in CCl4-induced fibrotic livers but decreased after spontaneous recovery. Moreover, expression of HDAC2 was elevated in human liver fibrotic tissues. In this regard, the potential role of HDAC2 in liver fibrosis was further evaluated. Our results showed that administration of HSC-T6 cells with transforming growth factor-beta1 (TGF-β1) resulted in an increase of HDAC2 protein expression in dose- and time-dependent manners. Moreover, HDAC2 deficiency inhibited HSC-T6 cell proliferation and activation induced by TGF-β1. More importantly, the present study showed HDAC2 may regulate HSCs activation by suppressing expression of Smad7, which is a negative modulator in HSCs activation and liver fibrosis. Collectively, these observations revealed that HDAC2 may play a pivotal role in HSCs activation and liver fibrosis while deregulation of HDACs may serve as a novel mechanism underlying liver fibrosis. - Highlights: • This is the first report to systematically examine expressions of HDACs during liver fibrosis and fibrosis reversal. • Aberrant expression of HDAC2 contributes to the development of liver fibrosis. • Provided important foundation for further liver fibrosis conversion studies.« less
Sun, Huidong; Gao, Yanchao; Lu, Kemei; Zhao, Guimei; Li, Xuehua; Li, Zhu; Chang, Hong
2015-10-24
Klotho is a discovered aging suppressor gene, and its overexpression in mice extends the life span of the animal. Recently, Klotho is also identified as a tumor suppressor gene in variety of tumors; however, the potential role and the antitumor mechanism remain unclarified in liver cancers. RT-PCR and western blotting analysis were used to detect the expression of Klotho, β-catenin, C-myc, and Cyclin D1. MTT assay was used to detect the survival rates of HepG2 and SMMC-7721 cells. Colony formation assay was used to test the proliferation ability in Klotho transfected cells. FACS was used to detect the cell apoptosis rate in different groups. The results showed that lower expression of Klotho were found in liver cancer cell lines than the immortalized liver cell L02. Also, MTT assay results found that overexpression or recombinant Klotho administration suppressed the proliferation of liver cancer cells HepG2 and SMMC-7721. Moreover, the colony formation assay results showed that the number of colonies was significantly lower in the cells with transfection with pCMV-Klotho than the controls. Thus, functional analysis demonstrated that Klotho expression inhibited the proliferation of liver cancer cells and Klotho worked as an important antitumor gene in tumor progression. Next, the mechanism was partly clarified that Klotho expression induced cell apoptosis in HepG2 and SMMC-7721 cells, and this phenomenon was mainly involved in the Wnt/β-catenin signaling pathway. The western blotting analysis revealed that overexpression or recombinant administration of Klotho obviously decreased the expression levels of β-catenin, C-myc, and Cyclin D1 in HepG2 cells. Most importantly, the antitumor mechanism for Klotho due to that overexpression of Klotho not only decreased the endogenous β-catenin levels but also inhibited the nuclear translocation of β-catenin to delay the cell cycle progression. Klotho was a tumor suppressor gene, and overexpression of Klotho suppressed the proliferation of liver cancer cells partly due to negative regulation of Wnt/β-catenin signaling pathway. So, Klotho might be used as a potential target, and the study will contribute to treatment for therapy of liver cancer patients.
Delire, Bénédicte; Henriet, Patrick; Lemoine, Pascale; Leclercq, Isabelle A; Stärkel, Peter
2018-05-04
Ninety percent of hepatocarcinoma (HCC) develop in a chronically damaged liver. The interactions between non tumor stromal components, especially macrophages, and the cancer cells are still incompletely understood. Our aim was to determine whether a chronically injured liver represents a favorable environment for the seeding and growth of HCC cells, and to evaluate the potential roles of macrophages infiltrated within the tumor. HCC cells were injected into the liver in healthy mice (healthy liver group-HL) and in mice chronically treated with CCl 4 for 7 weeks (CCl 4 7w group). Livers were examined for the presence of tumor 2 weeks post injection. Tumor and non tumor tissues were analyzed for macrophages infiltration, origin (monocytes-derived vs resident macrophages) and polarization state, and matrix metalloproteinases (MMPs) production. Fifty-three percent of mice developed neoplastic lesion in the HL group while a tumor lesion was found in all livers in the CCl 4 7w group. Macrophages infiltrated more deeply the tumors of the CCl 4 7weeks group. Evaluation of factors involved in the recruitment of macrophages and of markers of their polarization state was in favor of prominent infiltration of M2 pro-tumor monocytes-derived macrophages inside the tumors developing in a chronically injured liver. MMP-2 and -9 production, attributed to M2 pro-tumor macrophages, was significantly higher in the tumors of the CCl 4 7w group. Chronic liver damage promotes cancer development in our model. Our results suggest that an injured background favors the infiltration of M2 pro-tumor monocytes-derived macrophages. These secrete MMP-2 and MMP-9 that promote tumor progression. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Interaction of glucocorticoids with FXR/FGF19/FGF21-mediated ileum-liver crosstalk.
Al-Aqil, Faten A; Monte, Maria J; Peleteiro-Vigil, Ana; Briz, Oscar; Rosales, Ruben; González, Raquel; Aranda, Carlos J; Ocón, Borja; Uriarte, Iker; de Medina, Fermín Sánchez; Martinez-Augustín, Olga; Avila, Matías A; Marín, José J G; Romero, Marta R
2018-06-06
At high doses, glucocorticoids (GC) have been associated with enhanced serum bile acids and liver injury. We have evaluated the effect of GC, in the absence of hepatotoxicity, on FXR/FGF91(Fgf15)/FGF21-mediated ileum-liver crosstalk. Rats and mice (wild type and Fxr -/- , Fgf15 -/- and int-Gr -/- strains; the latter with GC receptor (Gr) knockout selective for intestinal epithelial cells), were treated (i.p.) with dexamethasone, prednisolone or budesonide. In both species, high doses of GC caused hepatotoxicity. At a non-hepatotoxic dose, GC induced ileal Fgf15 down-regulation and liver Fgf21 up-regulation, without affecting Fxr expression. Fgf21 mRNA levels correlated with those of several genes involved in glucose and bile acid metabolism. Surprisingly, liver Cyp7a1 was not up-regulated. The expression of factors involved in transcriptional modulation by Fxr and Gr (p300, Drip205, CBP and Smrt) was not affected. Pxr target genes Cyp3a11 and Mrp2 were not up-regulated in liver or intestine. In contrast, the expression of some Pparα target genes in liver (Fgf21, Cyp4a14 and Vanin-1) and intestine (Vanin-1 and Cyp3a11) was altered. In mice with experimental colitis, liver Fgf21 was up-regulated (4.4-fold). HepG2 cells transfection with FGF21 inhibited CYP7A1 promoter (prCYP7A1-Luc2). This was mimicked by pure human FGF21 protein or culture in medium previously conditioned by cells over-expressing FGF21. This response was not abolished by deletion of a putative response element for phosphorylated FGF21 effectors present in prCYP7A1. In conclusion, GC interfere with FXR/FGF19-mediated intestinal control of CYP7A1 expression by the liver and stimulate hepatic secretion of FGF21, which inhibits CYP7A1 promoter through an autocrine mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.
Copper/MYC/CTR1 interplay: a dangerous relationship in hepatocellular carcinoma
Barbaro, Barbara; Illi, Barbara; Nasi, Sergio; Martini, Maurizio; Licata, Anna; Miele, Luca; Grieco, Antonio; Balsano, Clara
2018-01-01
Free serum copper correlates with tumor incidence and progression of human cancers, including hepatocellular carcinoma (HCC). Copper extracellular uptake is provided by the transporter CTR1, whose expression is regulated to avoid excessive intracellular copper entry. Inadequate copper serum concentration is involved in the pathogenesis of Non Alcoholic Fatty Liver Disease (NAFLD), which is becoming a major cause of liver damage progression and HCC incidence. Finally, MYC is over-expressed in most of HCCs and is a critical regulator of cellular growth, tumor invasion and metastasis. The purpose of our study was to understand if higher serum copper concentrations might be involved in the progression of NAFLD-cirrhosis toward-HCC. We investigated whether high exogenous copper levels sensitize liver cells to transformation and if it exists an interplay between copper-related proteins and MYC oncogene. NAFLD-cirrhotic patients were characterized by a statistical significant enhancement of serum copper levels, even more evident in HCC patients. We demonstrated that high extracellular copper concentrations increase cell growth, migration, and invasion of liver cancer cells by modulating MYC/CTR1 axis. We highlighted that MYC binds a specific region of the CTR1 promoter, regulating its transcription. Accordingly, CTR1 and MYC proteins expression were progressively up-regulated in liver tissues from NAFLD-cirrhotic to HCC patients. This work provides novel insights on the molecular mechanisms by which copper may favor the progression from cirrhosis to cancer. The Cu/MYC/CTR1 interplay opens a window to refine HCC diagnosis and design new combined therapies. PMID:29507693
Akcora, Büsra Öztürk; Storm, Gert; Bansal, Ruchi
2018-03-01
Quiescent hepatic stellate cells (HSCs), in response to liver injury, undergo characteristic morphological transformation into proliferative, contractile and ECM-producing myofibroblasts. In this study, we investigated the implication of canonical Wnt signaling pathway in HSCs and liver fibrogenesis. Canonical Wnt signaling pathway activation and inhibition using β-catenin/CBP inhibitor ICG001 was examined in-vitro in TGFβ-activated 3T3, LX2, primary human HSCs, and in-vivo in CCl 4 -induced acute liver injury mouse model. Fibroblasts-conditioned medium studies were performed to assess the Wnt-regulated paracrine factors involved in crosstalk between HSCs-macrophages and HSCs-endothelial cells. Canonical Wnt signaling pathway components were significantly up-regulated in-vitro and in-vivo. In-vitro, ICG-001 significantly inhibited fibrotic parameters, 3D-collagen contractility and wound healing. Conditioned medium induced fibroblasts-mediated macrophage and endothelial cells activation was significantly inhibited by ICG-001. In-vivo, ICG-001 significantly attenuated collagen accumulation and HSC activation. Interestingly, ICG-001 drastically inhibited macrophage infiltration, intrahepatic inflammation and angiogenesis. We further analyzed the paracrine factors involved in Wnt-mediated effects and found CXCL12 was significantly suppressed both in-vitro and in-vivo following Wnt inhibition. Wnt-regulated CXCL12 secretion from activated HSCs potentiated macrophage infiltration and activation, and angiogenesis. Pharmacological inhibition of canonical Wnt signaling pathway via suppression of stromal CXCL12 suggests a potential therapeutic approach targeting activated HSCs in liver fibrosis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Yang, Ming-Hui; Chung, Tze-Wen; Lu, Yi-Shan; Chen, Yi-Ling; Tsai, Wan-Chi; Jong, Shiang-Bin; Yuan, Shyng-Shiou; Liao, Pao-Chi; Lin, Po-Chiao; Tyan, Yu-Chang
2015-01-01
Silk fibroin (SF) is a protein with bulky hydrophobic domains and can be easily purified as sericin-free silk-based biomaterial. Silk fibroin modified chitosan nanoparticle (SF-CSNP), a biocompatible material, has been widely used as a potential drug delivery system. Our current investigation studied the bio-effects of the SF-CSNP uptake by liver cells. In this experiment, the characterizations of SF-CSNPs were measured by particle size analysis and protein assay. The average size of the SF-CSNP was 311.9 ± 10.7 nm, and the average zeta potential was +13.33 ± 0.3 mV. The SF coating on the SF-CSNP was 6.27 ± 0.17 μg/mL. Moreover, using proteomic approaches, several proteins involved in the ubiquitin proteasome pathway were identified by analysis of differential protein expressions of HepG2 cell uptake the SF-CSNP. Our experimental results have demonstrated that the SF-CSNP may be involved in liver cancer cell survival and proliferation. PMID:25588218
Modes of action and species-specific effects of di-(2-ethylhexyl)phthalate in the liver.
Rusyn, Ivan; Peters, Jeffrey M; Cunningham, Michael L
2006-05-01
The industrial plasticizer di-(2-ethylhexyl)phthalate (DEHP) is used in manufacturing of a wide variety of polyvinyl chloride (PVC)-containing medical and consumer products. DEHP belongs to a class of chemicals known as peroxisome proliferators (PPs). PPs are a structurally diverse group of compounds that share many (but perhaps not all) biological effects and are characterized as non-genotoxic rodent carcinogens. This review focuses on the effect of DEHP in liver, a primary target organ for the pleiotropic effects of DEHP and other PPs. Specifically, liver parenchymal cells, identified herein as hepatocytes, are a major cell type that are responsive to exposure to PPs, including DEHP; however, other cell types in the liver may also play a role. The PP-induced increase in the number and size of peroxisomes in hepatocytes, so called 'peroxisome proliferation' that results in elevation of fatty acid metabolism, is a hallmark response to these compounds in the liver. A link between peroxisome proliferation and tumor formation has been a predominant, albeit questioned, theory to explain the cause of a hepatocarcinogenic effect of PPs. Other molecular events, such as induction of cell proliferation, decreased apoptosis, oxidative DNA damage, and selective clonal expansion of the initiated cells have been also been proposed to be critically involved in PP-induced carcinogenesis in liver. Considerable differences in the metabolism and molecular changes induced by DEHP in the liver, most predominantly the activation of the nuclear receptor peroxisome proliferator-activated receptor (PPAR)alpha, have been identified between species. Both sexes of rats and mice develop adenomas and carcinomas after prolonged feeding with DEHP; however, limited DEHP-specific human data are available, even though exposure to DEHP and other phthalates is common in the general population. This likely constitutes the largest gap in our knowledge on the potential for DEHP to cause liver cancer in humans. Overall, it is believed that the sequence of key events that are relevant to DEHP-induced liver carcinogenesis in rodents involves the following events whereby the combination of the molecular signals and multiple pathways, rather than a single hallmark event (such as induction of PPARalpha and peroxisomal genes, or cell proliferation) contribute to the formation of tumors: (i) rapid metabolism of the parental compound to primary and secondary bioactive metabolites that are readily absorbed and distributed throughout the body; (ii) receptor-independent activation of hepatic macrophages and production of oxidants; (iii) activation of PPARalpha in hepatocytes and sustained increase in expression of peroxisomal and non-peroxisomal metabolism-related genes; (iv) enlargement of many hepatocellular organelles (peroxisomes, mitochondria, etc.); (v) rapid but transient increase in cell proliferation, and a decrease in apoptosis; (vi) sustained hepatomegaly; (vii) chronic low-level oxidative stress and accumulation of DNA damage; (viii) selective clonal expansion of the initiated cells; (ix) appearance of the pre-neoplastic nodules; (x) development of adenomas and carcinomas.
Zhang, Sai-Nan; Yang, Nai-Bin; Ni, Shun-Lan; Dong, Jin-Zhong; Shi, Chun-Wei; Li, Shan-Shan; Zhang, Sheng-Guo; Tang, Xin-Yue; Lu, Ming-Qin
2016-01-01
Endotoxin tolerance (ET) is suggested to attenuate the severity of acute liver failure (ALF) in mice, possibly through both innate and adaptive immunity. However, the involvement of regulatory dendritic cells (DCregs) in ET has not been fully elucidated. In this study, their effect on ALF in mice was investigated. Splenic DCregs from ET-exposed mice (ET-DCregs) showed lower expression levels of CD40, CD80, and MHC-II markers and stronger inhibition of allogenic T cells and regulation of IL-10 and IL-12 secretion than splenic DCregs from normal mice (nDCregs). Moreover, the mRNA and protein levels of TNF-α and P65 in splenic ET-DCregs were significantly lower than those in the splenic nDCregs. The survival rate was significantly increased and liver injury was mitigated in mice with ALF treated with splenic ET-DCregs. In addition, A20 expression was decreased in the liver of ALF mice, but elevated after infusion of splenic nDCregs and ET-DCregs, and a much higher elevation was observed after infusing the latter cells. The functionality of splenic DCregs was altered after ET exposure, contributing to protection of the livers against D-GalN/LPS-induced ALF. PMID:27625297
Hou, Xin; Hao, Xiaolei; Zheng, Meijuan; Xu, Congfei; Wang, Jun; Zhou, Rongbin; Tian, Zhigang
2017-08-01
Gut-derived bacterial products contribute to liver inflammation and injury during chronic hepatitis B virus infection; however, the underlying mechanisms remain obscure. In this study, hepatitis B surface antigen transgenic (HBs-Tg) mice and their wild-type (WT) control C57BL/6 mice were injected with CpG-oligodeoxynucleotides (ODNs) to mimic the translocation of gut microbial products into the systemic circulation. We found that, compared with the WT mice, the HBs-Tg mice were oversensitive to CpG-ODN-induced liver injury, which was dependent on natural killer T (NKT) cells. CpG-ODN injection enhanced the expression of Fas ligand (FasL) on NKT cells. In addition, hepatocytes from the HBs-Tg mice expressed higher levels of Fas than did those from the WT mice, which was further augmented by CpG-ODN. Interaction of Fas and FasL was involved in the cytotoxicity of NKT cells against hepatocytes in the HBs-Tg mice. Moreover, Kupffer cells in the HBs-Tg mice expressed higher levels of CD205 and produced greater amounts of interleukin (IL)-12 than did those in the WT mice. Finally, the depletion of Kupffer cells, neutralization of IL-12 or specific silencing of CD205 on Kupffer cells significantly inhibited CpG-ODN-induced liver injury and NKT activation in the HBs-Tg mice. Our data suggest that CD205-expressing Kupffer cells respond to CpG-ODNs and subsequently release IL-12 to promote NKT cell activation. Activated NKT cells induce liver damage through the Fas signaling pathway in HBs-Tg mice.
Hou, Xin; Hao, Xiaolei; Zheng, Meijuan; Xu, Congfei; Wang, Jun; Zhou, Rongbin; Tian, Zhigang
2017-01-01
Gut-derived bacterial products contribute to liver inflammation and injury during chronic hepatitis B virus infection; however, the underlying mechanisms remain obscure. In this study, hepatitis B surface antigen transgenic (HBs-Tg) mice and their wild-type (WT) control C57BL/6 mice were injected with CpG-oligodeoxynucleotides (ODNs) to mimic the translocation of gut microbial products into the systemic circulation. We found that, compared with the WT mice, the HBs-Tg mice were oversensitive to CpG-ODN-induced liver injury, which was dependent on natural killer T (NKT) cells. CpG-ODN injection enhanced the expression of Fas ligand (FasL) on NKT cells. In addition, hepatocytes from the HBs-Tg mice expressed higher levels of Fas than did those from the WT mice, which was further augmented by CpG-ODN. Interaction of Fas and FasL was involved in the cytotoxicity of NKT cells against hepatocytes in the HBs-Tg mice. Moreover, Kupffer cells in the HBs-Tg mice expressed higher levels of CD205 and produced greater amounts of interleukin (IL)-12 than did those in the WT mice. Finally, the depletion of Kupffer cells, neutralization of IL-12 or specific silencing of CD205 on Kupffer cells significantly inhibited CpG-ODN-induced liver injury and NKT activation in the HBs-Tg mice. Our data suggest that CD205-expressing Kupffer cells respond to CpG-ODNs and subsequently release IL-12 to promote NKT cell activation. Activated NKT cells induce liver damage through the Fas signaling pathway in HBs-Tg mice. PMID:27041637
Zhang, Song; Liang, Ruifang; Luo, Wei; Liu, Chang; Wu, Xiaoli; Gao, Yanan; Hao, Jianlei; Cao, Guangchao; Chen, Xi; Wei, Jun; Xia, Siyuan; Li, Zheng; Wen, Ti; Wu, Yunyun; Zhou, Xinglong; Wang, Puyue; Zhao, Liqing; Wu, Zhengzhou; Xiong, Sidong; Gao, Xiaoming; Gao, Xiang; Chen, Yongyan; Ge, Qing; Tian, Zhigang; Yin, Zhinan
2013-04-01
Interleukin (IL)-27, a newly discovered IL-12 family cytokine, is composed of p28 and EBI3. In this study, CD11c-p28(f/f) conditional knockout mice were generated to delete p28 specifically in dendritic cells (DCs). We demonstrated that in the absence of DC-derived p28, these mice were highly susceptible to both low and higher concentrations of concanavalin A (ConA) (5 mg/kg or 10 mg/kg), with extremely early and steady high levels of interferon-γ (IFN-γ) in sera. Neutralizing IFN-γ prevented ConA-induced liver damage in these mice, indicating a critical role of IFN-γ in this pathological process. Interestingly, the main source of the increased IFN-γ in CD11c-p28(f/f) mice was CD4+ T cells, but not natural killer T (NKT) cells. Depletion of CD4+ , but not NK1.1+ , cells completely abolished liver damage, whereas transferring CD4+ T cells from CD11c-p28(f/f) mice, but not from wild-type mice or CD11c-p28(f/f) -IFN-γ(-/-) double knockout mice to CD4(-/-) mice, restored the increased liver damage. Further studies defined higher levels of IFN-γ and T-bet messenger RNA in naïve CD4+ T cells from CD11c-p28(f/f) mice, and these CD4+ T cells were highly responsive to both low and higher concentrations of anti-CD3, indicating a programmed functional alternation of CD4+ T cells. We provide a unique model for studying the pathology of CD4+ T cell-mediated liver injury and reveal a novel function of DC-derived p28 on ConA-induced fulminant hepatitis through regulation of the intrinsic ability for IFN-γ production by CD4+ T cells. Copyright © 2012 American Association for the Study of Liver Diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafael, A.I.; Almeida, A.; Santos, P.
2007-10-15
Hexavalent chromium [Cr(VI)] exposure is commonly associated with lung cancer. Although other adverse health effects have been reported, some authors, on assuming that orally ingested Cr(VI) is efficiently detoxified upon reduction by body fluids, believe that Cr(VI) do not target cells other than respiratory tract cells. In rodents, ingested Cr(VI)-contaminated water was reported to induce, in the liver, increases in TGF-{beta} transcripts. As TGF-{beta} dependent signaling pathways are closely associated with hepatic injury, the present study was undertaken addressing two specific issues: the effects of ingestion of water contaminated with high levels of Cr(VI) in rat liver structure and function;more » and the role of the TGF-{beta} pathway in Cr(VI)-induced liver injury. Examination of Wistar rats exposed to 20 ppm Cr(VI)-contaminated water for 10 weeks showed increased serum glucose and alanine aminotransferase (ALT) levels. Liver histological examination revealed hepatocellular apoptosis, further confirmed by immunohystochemical study of Caspase 3 expression. Liver gene expression analysis revealed increased expression of Smad2/Smad4 and Dapk, suggesting the involvement of the TGF-{beta} pathway in the apoptotic process. Since no changes in Smad3 expression were observed it appears apoptosis is using a Smad3-independent pathway. Increased expression of both Caspase 8 and Daxx genes suggests also the involvement of the Fas pathway. Gene expression analysis also revealed that a p160{sup ROCK}-Rho-independent pathway operates, leading to cell contraction and membrane blebbing, characteristic apoptotic features. These findings suggest that either the amount of Cr(VI) ingested overwhelmed the body fluids reductive capacity or some Cr(VI) escapes the reductive protection barrier, thus targeting the liver and inducing apoptosis.« less
Ischaemia–reperfusion injury in liver transplantation—from bench to bedside
Zhai, Yuan; Petrowsky, Henrik; Hong, Johnny C.; Busuttil, Ronald W.; Kupiec-Weglinski, Jerzy W.
2013-01-01
Ischaemia–reperfusion injury (IRI) in the liver, a major complication of haemorrhagic shock, resection and transplantation, is a dynamic process that involves the two interrelated phases of local ischaemic insult and inflammation-mediated reperfusion injury. This Review highlights the latest mechanistic insights into innate–adaptive immune crosstalk and cell activation cascades that lead to inflammation-mediated injury in livers stressed by ischaemia–reperfusion, discusses progress in large animal experiments and examines efforts to minimize liver IRI in patients who have received a liver transplant. The interlinked signalling pathways in multiple hepatic cell types, the IRI kinetics and positive versus negative regulatory loops at the innate–adaptive immune interface are discussed. The current gaps in our knowledge and the pathophysiology aspects of IRI in which basic and translational research is still required are stressed. An improved appreciation of cellular immune events that trigger and sustain local inflammatory responses, which are ultimately responsible for organ injury, is fundamental to developing innovative strategies for treating patients who have received a liver transplant and developed ischaemia–reperfusion inflammation and organ dysfunction. PMID:23229329
Rotoli, Deborah; Morales, Manuel; Ávila, Julio; Maeso, María Del Carmen; García, María Del Pino; Mobasheri, Ali; Martín-Vasallo, Pablo
2017-04-22
Scaffold proteins play pivotal roles in the regulation of signaling pathways, integrating external and internal stimuli to various cellular outputs. We report the pattern of cellular and subcellular expression of scaffoldins angiomotin-like 2 (AmotL2), FK506 binding protein 5 (FKBP51) and IQ motif containing GTPase-activating protein 1 (IQGAP1) in colorectal cancer (CRC) and metastases in liver resected after oxaliplatin-based chemotherapy (CT). Positive immunostaining for the three scaffoldins was found in most cells in healthy colon, tumor, healthy liver and metastasized liver. The patterns of expression of AmotL2, FKBP51 and IQGAP1 show the greatest variability in immune system cells and neurons and glia cells and the least in blood vessel cells. The simultaneous subcellular localization in tumor cells and other cell types within the tumor suggest an involvement of these three scaffoldins in cancer biology, including a role in Epithelial Mesenchymal Transition. The display in differential localization and quantitative expression of AmotL2, FKBP51, and IQGAP1 could be used as biomarkers for more accurate tumor staging and as potential targets for anti-cancer therapeutics by blocking or slowing down their interconnecting functions. Tough further research needs to be done in order to improve these assessments.
Infectious Sporozoites of Plasmodium berghei Effectively Activate Liver CD8α+ Dendritic Cells
Parmar, Rajesh; Patel, Hardik; Yadav, Naveen; Parikh, Ritika; Patel, Khyati; Mohankrishnan, Aditi; Bhurani, Vishakha; Joshi, Urja; Dalai, Sarat Kumar
2018-01-01
Immunization with radiation-attenuated sporozoites (RAS) shown to confer complete sterile protection against Plasmodia liver-stage (LS) infection that lasts about 6 to 9 months in mice. We have found that the intermittent infectious sporozoite challenge to immune mice following RAS vaccination extends the longevity of sterile protection by maintaining CD8+ T cell memory responses to LS infection. It is reported that CD8α+ dendritic cells (DCs) are involved in the induction of LS-specific CD8+ T cells following RAS or genetically attenuated parasite (GAP) vaccination. In this study, we demonstrate that CD8α+ DCs respond differently to infectious sporozoite or RAS inoculation. The higher accumulation and activation of CD8α+ DCs was seen in the liver in response to infectious sporozoite 72 h postinoculation and found to be associated with higher expression of chemokines (CCL-20 and CCL-21) and type I interferon response via toll-like receptor signaling in liver. Moreover, the infectious sporozoites were found to induce qualitative changes in terms of the increased MHCII expression as well as costimulatory molecules including CD40 on the CD8α+ DCs compared to RAS inoculation. We have also found that infectious sporozoite challenge increased CD40L-expressing CD4+ T cells, which could help CD8+ T cells in the liver through “licensing” of the antigen-presenting cells. Our results suggest that infectious sporozoite challenge to prior RAS immunized mice modulates the CD8α+ DCs, which might be shaping the fate of memory CD8+ T cells against Plasmodium LS infection. PMID:29472929
SIRT1 antagonizes liver fibrosis by blocking hepatic stellate cell activation in mice.
Li, Min; Hong, Wenxuan; Hao, Chenzhi; Li, Luyang; Wu, Dongmei; Shen, Aiguo; Lu, Jun; Zheng, Yuanlin; Li, Ping; Xu, Yong
2018-01-01
Hepatic stellate cells (HSCs) are a major source of fibrogenesis in the liver, contributing to cirrhosis. When activated, HSCs transdifferentiate into myofibroblasts and undergo profound functional alterations paralleling an overhaul of the transcriptome, the mechanism of which remains largely undefined. We investigated the involvement of the class III deacetylase sirtuin [silent information regulator 1 (SIRT1)] in HSC activation and liver fibrosis. SIRT1 levels were down-regulated in the livers in mouse models of liver fibrosis, in patients with cirrhosis, and in activated HSCs as opposed to quiescent HSCs. SIRT1 activation halted, whereas SIRT1 inhibition promoted, HSC transdifferentiation into myofibroblasts. Liver fibrosis was exacerbated in mice with HSC-specific deletion of SIRT1 [conditional knockout (cKO)], receiving CCl 4 (1 mg/kg) injection or subjected to bile duct ligation, compared to wild-type littermates. SIRT1 regulated peroxisome proliferator activated receptor γ (PPARγ) transcription by deacetylating enhancer of zeste homolog 2 (EZH2) in quiescent HSCs. Finally, EZH2 inhibition or PPARγ activation ameliorated fibrogenesis in cKO mice. In summary, our data suggest that SIRT1 plays an essential role guiding the transition of HSC phenotypes.-Li, M., Hong, W., Hao, C., Li, L., Wu, D., Shen, A., Lu, J., Zheng, Y., Li, P., Xu, Y. SIRT1 antagonizes liver fibrosis by blocking hepatic stellate cell activation in mice. © FASEB.
Onishi, Shintaro; Kitazawa, Hidefumi; Meguro, Shinichi; Tokimitsu, Ichiro
2018-05-31
Epidemiological studies suggest that green tea extracts (GTEs), including catechins such as epigallocatechin gallate and epicatechin gallate, have a beneficial effect on obesity, hyperglycemia, insulin resistance, endothelial dysfunction, and inflammation. Although several studies have shown that catechins directly modulate the cellular and molecular alterations in the liver tissue, the contributions of indirect mechanisms underlying these systemic effects of catechins remain unclear. In this study, we report that, in the C57BL/6J mouse liver, GTEs reduce high-fat diet-induced increases in the levels of hepatokines, liver-derived secretary proteins such as leukocyte cell-derived chemotaxin 2 and selenoprotein P production, which have been shown to induce systemic adverse effects, including several metabolic diseases. These findings suggest that the systemic effects of GTEs involve the regulation of hepatokine production as an indirect mechanism.
Cloning and expression profile of FLT3 gene during progenitor cell-dependent liver regeneration.
Aydin, Iraz T; Tokcaer, Zeynep; Dalgic, Aydin; Konu, Ozlen; Akcali, Kamil C
2007-12-01
The liver has a unique capacity to regenerate upon exposure to viral infections, toxic reactions and cancer formation. Liver regeneration is a complex phenomenon in which several factors participate during its onset. Cellular proliferation is an important component of this process and the factors that regulate this proliferation have a vital role. FLT3, a well-known hematopoietic stem cell and hepatic lineage surface marker, is involved in proliferative events of hematopoietic stem cells. However, its contribution to liver regeneration is not known. Therefore, the aim of this study was to clone and examine the role of FLT3 during liver regeneration in rats. Partial cDNA of rat homolog of FLT3 gene was cloned from thymus and the tissue specific expression of this gene at mRNA and protein levels was examined by RT-PCR and Western blot. After treating with 2-AAF and performing hepatectomy in rats to induce progenitor-dependent liver regeneration, the mRNA and protein expression profile of FLT3 was investigated by real-time PCR and Western blot during liver regeneration. In addition, cellular localization of FLT3 protein was determined by immunohistochemistry. The results indicated that rat FLT3 cDNA has high homology with mouse and human FLT3 cDNA. It was also found that FLT3 is expressed in most of the rat tissues and during liver regeneration. In addition, its intracellular localization is altered during the late stages of liver regeneration. The FLT3 receptor is activated at the late stages of liver regeneration and participates in the proliferation response that is observed during progenitor-dependent liver regeneration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fullerton, Aaron M., E-mail: fuller22@msu.edu; Roth, Robert A., E-mail: rothr@msu.edu; Ganey, Patricia E., E-mail: ganey@msu.edu
Inflammation plays a major role in immune-mediated liver injury, and exposure to environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been reported to alter the inflammatory response as well as affect immune cell activity. In this study, we tested the hypothesis that TCDD pretreatment exacerbates hepatotoxicity in a murine model of immune-mediated liver injury induced by concanavalin A (Con A) administration. Mice were pretreated with 30 μg/kg TCDD or vehicle control on day zero and then given either Con A or saline intravenously on day four. Mice treated with TCDD did not develop liver injury; however, TCDD pretreatment increased liver injurymore » resulting from moderate doses of Con A (4–10 mg/kg). TCDD-pretreated mice had altered plasma concentrations of inflammatory cytokines, including interferon gamma (IFNγ), and TCDD/Con A-induced hepatotoxicity was attenuated in IFNγ knockout mice. At various times after treatment, intrahepatic immune cells were isolated, and expression of cell activation markers as well as cytolytic proteins was determined. TCDD pretreatment increased the proportion of activated natural killer T (NKT) cells and the percent of cells expressing Fas ligand (FasL) after Con A administration. In addition FasL knockout mice and mice treated with CD18 antiserum were both protected from TCDD/Con A-induced hepatotoxicity, suggesting a requirement for direct cell–cell interaction between effector immune cells and parenchymal cell targets in the development of liver injury from TCDD/Con A treatment. In summary, exposure to TCDD increased NKT cell activation and exacerbated immune-mediated liver injury induced by Con A through a mechanism involving IFNγ and FasL expression. -- Highlights: ► TCDD pretreatment sensitizes mice to Con A-induced hepatotoxicity. ► TCDD pretreatment increased concentration of IFNγ in plasma after Con A. ► Con A-induced activation of NKT cells was increased by TCDD pretreatment. ► FasL-positive NKT cells increased with TCDD pretreatment versus Con A alone. ► IFNγ and FasL are critical to the development of liver injury from TCDD/Con A.« less
Michelotti, Gregory A; Tucker, Anikia; Swiderska-Syn, Marzena; Machado, Mariana Verdelho; Choi, Steve S; Kruger, Leandi; Soderblom, Erik; Thompson, J Will; Mayer-Salman, Meredith; Himburg, Heather A; Moylan, Cynthia A; Guy, Cynthia D; Garman, Katherine S; Premont, Richard T; Chute, John P; Diehl, Anna Mae
2016-01-01
Objective The ductular reaction (DR) involves mobilisation of reactive-appearing duct-like cells (RDC) along canals of Hering, and myofibroblastic (MF) differentiation of hepatic stellate cells (HSC) in the space of Disse. Perivascular cells in stem cell niches produce pleiotrophin (PTN) to inactivate the PTN receptor, protein tyrosine phosphatase receptor zeta-1 (PTPRZ1), thereby augmenting phosphoprotein-dependent signalling. We hypothesised that the DR is regulated by PTN/PTPRZ1 signalling. Design PTN-GFP, PTN-knockout (KO), PTPRZ1-KO, and wild type (WT) mice were examined before and after bile duct ligation (BDL) for PTN, PTPRZ1 and the DR. RDC and HSC from WT, PTN-KO, and PTPRZ1-KO mice were also treated with PTN to determine effects on downstream signaling phosphoproteins, gene expression, growth, and migration. Liver biopsies from patients with DRs were also interrogated. Results Although quiescent HSC and RDC lines expressed PTN and PTPRZ1 mRNAs, neither PTN nor PTPRZ1 protein was demonstrated in healthy liver. BDL induced PTN in MF-HSC and increased PTPRZ1 in MF-HSC and RDC. In WT mice, BDL triggered a DR characterised by periportal accumulation of collagen, RDC and MF-HSC. All aspects of this DR were increased in PTN-KO mice and suppressed in PTPRZ1-KO mice. In vitro studies revealed PTN-dependent accumulation of phosphoproteins that control cell-cell adhesion and migration, with resultant inhibition of cell migration. PTPRZ1-positive cells were prominent in the DRs of patients with ductal plate defects and adult cholestatic diseases. Conclusions PTN, and its receptor, PTPRZ1, regulate the DR to liver injury by controlling the migration of resident cells in adult liver progenitor niches. PMID:25596181
Elinav, Eran; Ali, Mohammad; Bruck, Rafi; Brazowski, Eli; Phillips, Adam; Shapira, Yami; Katz, Meirav; Solomon, Gila; Halpern, Zamir; Gertler, Arieh
2009-01-01
Leptin signaling is involved in T-cell polarization and is required for profibrotic function of hepatic stellate cells (HSCs). Leptin-deficient ob/ob mice do not develop liver fibrosis despite the presence of severe long-standing steatohepatitis. Here, we blocked leptin signaling with our recently generated mouse leptin antagonist (MLA), and examined the effects on chronic liver fibrosis in vivo using the chronic thioacetamide (TAA) fibrosis model, and in vitro using freshly-isolated primary HSCs. In the chronic TAA fibrosis model, leptin administration was associated with significantly enhanced liver disease and a 100% 5-week to 8-week mortality rate, while administration or coadministration of MLA markedly improved survival, attenuated liver fibrosis, and reduced interferon gamma (IFN-gamma) levels. No significant changes in weight, serum cholesterol, or triglycerides were noted. In vitro administration of rat leptin antagonist (RLA), either alone or with leptin, to rat primary HSCs reduced leptin-stimulated effects such as increased expression of alpha-smooth muscle actin (alpha-SMA), and activation of alpha1 procollagen promoter. Inhibition of leptin-enhanced hepatic fibrosis may hold promise as a future antifibrotic therapeutic modality.
Kang, Minkyung; Ryu, Jihye; Lee, Doohyung; Lee, Mi-Sook; Kim, Hye-Jin; Nam, Seo Hee; Song, Haeng Eun; Choi, Jungeun; Lee, Gyu-Ho; Kim, Tai Young; Lee, Hansoo; Kim, Sang Jick; Ye, Sang-Kyu; Kim, Semi; Lee, Jung Weon
2014-01-01
Transmembrane 4 L6 family member 5 (TM4SF5) is overexpressed during CCl4-mediated murine liver fibrosis and in human hepatocellular carcinomas. The tetraspanins form tetraspanin-enriched microdomains (TEMs) consisting of large membrane protein complexes on the cell surface. Thus, TM4SF5 may be involved in the signal coordination that controls liver malignancy. We investigated the relationship between TM4SF5-positive TEMs with liver fibrosis and tumorigenesis, using normal Chang hepatocytes that lack TM4SF5 expression and chronically TGFβ1-treated Chang cells that express TM4SF5. TM4SF5 expression is positively correlated with tumorigenic CD151 expression, but is negatively correlated with tumor-suppressive CD63 expression in mouse fibrotic and human hepatic carcinoma tissues, indicating cooperative roles of the tetraspanins in liver malignancies. Although CD151 did not control the expression of TM4SF5, TM4SF5 appeared to control the expression levels of CD151 and CD63. TM4SF5 interacted with CD151, and caused the internalization of CD63 from the cell surface into late lysosomal membranes, presumably leading to terminating the tumor-suppressive functions of CD63. TM4SF5 could overcome the tumorigenic effects of CD151, especially cell migration and extracellular matrix (ECM)-degradation. Taken together, TM4SF5 appears to play a role in liver malignancy by controlling the levels of tetraspanins on the cell surface, and could provide a promising therapeutic target for the treatment of liver malignancies. PMID:25033048
Cornell, R P
1982-02-01
In contrast to previous studies of diabetic humans and animals, which reported unchanged or depressed function, reticuloendothelial system (RES) hyperphagocytosis of colloidal carbon, 125I-albumin microaggregates, and 125I-fibrin monomers were observed in rats as early as 14 days after the induction of diabetes with streptozotocin (STZ). The fact that enhanced phagocytosis by RE macrophages was prevented by chronic insulin replacement therapy indicates that the diabetic internal environment of hyperglycemia and hypoinsulinemia was perhaps responsible for the observed changes. Experiments involving organ localization of intravenously administered particles, perfusion of isolated livers, and microscopic examination of the liver all suggested that increased Kupffer cell activity was the primary event in RES hyperphagocytosis by STZ-diabetic rats. Both hypertrophy and hyperplasia of Kupffer cells were apparent in livers of STZ-diabetic animals as evidenced by photomicrographs and hepatic cell quantification. Plasma fibronectin, which binds fibrin monomers to RE macrophages before phagocytosis, was significantly decreased in the circulation of STZ-diabetic rats, but the level of cell-associated fibronectin was not measured. Renal localization of urea-soluble 125I-fibrin monomers exceeded splenic and pulmonary uptake in normal control rats and was enhanced in animals with STZ-diabetes. Changes in fibronectin levels, fibrin monomer localization, and Kupffer cell size and numbers in experimental diabetes in rats may have implications for the pathogenesis of vascular disease involving phagocytic mesangial and foam cells in diabetic humans.
Hu, Qiping; Fu, Jun; Luo, Bin; Huang, Miao; Guo, Wenwen; Lin, Yongda; Xie, Xiaoxun; Xiao, Shaowen
2015-04-01
Given its tumor-specific expression, including liver cancer, OY-TES-1 is a potential molecular marker for the diagnosis and immunotherapy of liver cancers. However, investigations of the mechanisms and the role of OY-TES-1 in liver cancer are rare. In the present study, based on a comprehensive bioinformatic analysis combined with RNA interference (RNAi) and oligonucleotide microarray, we report for the first time that downregulation of OY-TES-1 resulted in significant changes in expression of NANOG, CD9, CCND2 and CDCA3 in the liver cancer cell line BEL-7404. NANOG, CD9, CCND2 and CDCA3 may be involved in cell proliferation, migration, invasion and apoptosis, yet also may be functionally related to each other and OY-TES-1. Among these molecules, we identified that NANOG, containing a Kazal-2 binding motif and homeobox, may be the most likely candidate protein interacting with OY-TES-1 in liver cancer. Thus, the present study may provide important information for further investigation of the roles of OY-TES-1 in liver cancer.
Ben-Ari, Z; Broida, E; Monselise, Y; Kazatsker, A; Baruch, J; Pappo, O; Skappa, E; Tur-Kaspa, R
2000-03-01
Giant cell hepatitis (GCH) in adults is a rare event. The diagnosis of GCH is based on findings of syncytial giant hepatocytes. It is commonly associated with either viral infection or autoimmune hepatitis type I. A patient with GCH due to autoimmune hepatitis type II (LKM1+) is described, a combination that has not been previously reported. Corticosteroid therapy was effective in decreasing serum liver enzymes; however, the patient deteriorated rapidly and developed subfulminant hepatic failure. Although an emergency orthotopic liver transplantation was performed, the patient died because of reperfusion injury. Interestingly, only a few giant hepatocytes were noted in the explanted liver. This case stresses the association of GCH with autoimmune disorders, the possible immune mechanism involved in the formation of giant cell hepatocytes, and illustrates the rapidly progressive course and unfavorable prognosis that these patients can develop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takemura, Takayo; Yoshida, Yuichi; Kiso, Shinichi, E-mail: kiso@gh.med.osaka-u.ac.jp
Highlights: •HB-EGF expression was increased during the development of liver fibrosis. •Conditional HB-EGF knockout mouse showed enhanced experimental liver fibrosis. •HB-EGF antagonized TGF-β-induced activation of hepatic stellate cells. •We report a possible protective role of HB-EGF in cholestatic liver fibrosis. -- Abstract: Our aims were to evaluate the involvement of heparin-binding EGF-like growth factor (HB-EGF) in liver fibrogenesis of humans and mice and to elucidate the effect of HB-EGF deficiency on cholestatic liver fibrosis using conditional HB-EGF knockout (KO) mice. We first demonstrated that gene expression of HB-EGF had a positive significant correlation with that of collagen in human fibroticmore » livers, and was increased in bile duct ligation (BDL)-induced fibrotic livers in mouse. We then generated conditional HB-EGF knockout (KO) mice using the interferon inducible Mx-1 promoter driven Cre recombinase transgene and wild type (WT) and KO mice were subjected to BDL. After BDL, KO mice exhibited enhanced liver fibrosis with increased expression of collagen, compared with WT mice. Finally, we used mouse hepatic stellate cells (HSCs) to examine the role of HB-EGF in the activation of these cells and showed that HB-EGF antagonized TGF-β-induced gene expression of collagen in mouse primary HSCs. Interestingly, HB-EGF did not prevent the TGF-β-induced nuclear accumulation of Smad3, but did lead to stabilization of the Smad transcriptional co-repressor TG-interacting factor. In conclusion, our data suggest a possible protective role of HB-EGF in cholestatic liver fibrosis.« less
Lampiasi, Nadia; Cusimano, Antonella; Azzolina, Antonina; McCubrey, James A.; Montalto, Giuseppe
2013-01-01
Molecular targeted therapy has shown promise as a treatment for advanced hepatocellular carcinoma (HCC). Sorafenib, a multikinase inhibitor, recently received FDA approval for the treatment of advanced HCC. However, although sorafenib is well tolerated, concern for its safety has been expressed. Celecoxib (Celebrex®) is a selective cyclooxygenase-2 (COX-2) inhibitor which exhibits antitumor effects in human HCC cells. The present study examined the interaction between celecoxib and sorafenib in two human liver tumor cell lines HepG2 and Huh7. Our data showed that each inhibitor alone reduced cell growth and the combination of celecoxib with sorafenib synergistically inhibited cell growth and increased apoptosis. To better understand the molecular mechanisms underlying the synergistic antitumor activity of the combination, we investigated the expression profile of the combination-treated liver cancer cell lines using microarray analysis. Combination treatment significantly altered expression levels of 1,986 and 2,483 transcripts in HepG2 and Huh7 cells, respectively. Genes functionally involved in cell death, signal transduction and regulation of transcription were predominantly up-regulated, while genes implicated in metabolism, cell-cycle control and DNA replication and repair were mainly down-regulated upon treatment. However, combination-treated HCC cell lines displayed specificity in the expression and activity of crucial factors involved in hepatocarcinogenesis. The altered expression of some of these genes was confirmed by semi-quantitative and quantitative RT-PCR and by Western blotting. Many novel genes emerged from our transcriptomic analyses, and further functional analyses may determine whether these genes can serve as potential molecular targets for more effective anti-HCC strategies. PMID:23776502
The role of redox mechanisms in hepatic chronic wound healing and fibrogenesis
2012-01-01
Under physiological conditions, intracellular and tissue levels of reactive oxygen species (ROS) are carefully controlled and employed as fine modulators of signal transduction, gene expression and cell functional responses (redox signaling). A significant derangement in redox homeostasis, resulting in sustained levels of oxidative stress and related mediators, plays a role in the pathogenesis of human diseases characterized by chronic inflammation, chronic activation of wound healing and tissue fibrogenesis, including chronic liver diseases. In this chapter major concepts and mechanisms in redox signaling will be briefly recalled to introduce a number of selected examples of redox-related mechanisms that can actively contribute to critical events in the natural history of a chronic liver diseases, including induction of cell death, perpetuation of chronic inflammatory responses and fibrogenesis. A major focus will be on redox-dependent mechanisms involved in the modulation of phenotypic responses of activated, myofibroblast-like, hepatic stellate cells (HSC/MFs), still considered as the most relevant pro-fibrogenic cells operating in chronic liver diseases. PMID:23259696
Chen, Ting; Gu, Chengxin; Xue, Cailin; Yang, Tao; Zhong, Yun; Liu, Shiming; Nie, Yuqiang; Yang, Hui
2017-01-01
Long non-coding RNAs (lncRNAs) have been implicated in liver carcinogenesis. We previously showed that the induction of lncRNA-uc002mbe.2 is positively associated with the apoptotic effect of trichostatin A (TSA) in hepatocellular carcinoma (HCC) cells. The current study further analyzed the role of uc002mbe.2 in TSA-induced liver cancer cell death. The level of uc002mbe.2 was markedly increased by TSA in the cytoplasm of HCC cells. Knockdown of uc002mbe.2 prohibited TSA-induced G2/M cell cycle arrest, p21 induction, and apoptosis of Huh7 cells and reversed the TSA-mediated decrease in p-AKT. RNA pull-down and RNA-binding protein immunoprecipitation (RIP) assays revealed that TSA induced an interaction between uc002mbe.2 and heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) in Huh7 cells. This interaction mediated AKT deactivation and p21 induction in liver cancer cells. In an athymic xenograft mouse model, knockdown of uc002mbe.2 significantly prohibited the TSA-mediated reduction in tumor size and weight. In addition, the ability of TSA to reduce hnRNPA2B1 and p-AKT levels and induce p21 in the xenograft tumors was prevented by uc002mbe.2 knockdown. Therefore, the interaction of uc002mbe.2 and hnRNPA2B1 in mediating AKT deactivation and p21 induction is involved in the cytostatic effect of trichostatin in liver cancer cells.
Busbee, Philip B.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.
2015-01-01
Staphylococcal enterotoxin B (SEB) is a potent superantigen capable of inducing inflammation characterized by robust immune cell activation and proinflammatory cytokine release. Exposure to SEB can result in food poisoning as well as fatal conditions such as toxic shock syndrome. In the current study, we investigated the effect of natural indoles including indole-3-carbinol (I3C) and 3,3’-diindolylmethane (DIM) on SEB-mediated liver injury. Injection of SEB into D-galactosamine-sensitized female C57BL/6 mice resulted in liver injury as indicated by an increase in enzyme aspartate transaminase (AST) levels, induction of inflammatory cytokines, and massive infiltration of immune cells into the liver. Administration of I3C and DIM (40mg/kg), by intraperitonal injection, attenuated SEB-induced acute liver injury, as evidenced by decrease in AST levels, inflammatory cytokines and cellular infiltration in the liver. I3C and DIM triggered apoptosis in SEB-activated T cells primarily through activation of the intrinsic mitochondrial pathway. In addition, inhibitor studies involving caspases revealed that I3C and DIM-mediated apoptosis in these activated cells was dependent on caspase-2 but independent of caspase-8, 9 and 3. In addition, I3C and DIM caused a decrease in Bcl-2 expression. Both compounds also down-regulated miR-31, which directly targets caspase-2 and influences apoptosis in SEB-activated cells. Our data demonstrate for the first time that indoles can effectively suppress acute hepatic inflammation caused by SEB and that this may be mediated by decreased expression of miR-31 and consequent caspase-2-dependent apoptosis in T cells. PMID:25706292
Regulation of hepatic cardiolipin metabolism by TNFα: Implication in cancer cachexia.
Peyta, Laure; Jarnouen, Kathleen; Pinault, Michelle; Coulouarn, Cedric; Guimaraes, Cyrille; Goupille, Caroline; de Barros, Jean-Paul Pais; Chevalier, Stephan; Dumas, Jean-François; Maillot, François; Hatch, Grant M; Loyer, Pascal; Servais, Stephane
2015-11-01
Cardiolipin (CL) content accumulation leads to an increase in energy wasting in liver mitochondria in a rat model of cancer cachexia in which tumor necrosis factor alpha (TNFα) is highly expressed. In this study we investigated the mechanisms involved in liver mitochondria CL accumulation in cancer cachexia and examined if TNFα was involved in this process leading to mitochondrial bioenergetics alterations. We studied gene, protein expression and activity of the main enzymes involved in CL metabolism in liver mitochondria from a rat model of cancer cachexia and in HepaRG hepatocyte-like cells exposed to 20 ng/ml of TNFα for 12 h. Phosphatidylglycerolphosphate synthase (PGPS) gene expression was increased 2.3-fold (p<0.02) and cardiolipin synthase (CLS) activity decreased 44% (p<0.03) in cachectic rat livers compared to controls. CL remodeling enzymes monolysocardiolipin acyltransferase (MLCL AT-1) activity and tafazzin (TAZ) gene expression were increased 30% (p<0.01) and 50% (p<0.02), respectively, in cachectic rat livers compared to controls. Incubation of hepatocytes with TNFα increased CL content 15% (p<0.05), mitochondrial oxygen consumption 33% (p<0.05), PGPS gene expression 44% (p<0.05) and MLCL AT-1 activity 20% (p<0.05) compared to controls. These above findings strongly suggest that in cancer cachexia, TNFα induces a higher energy wasting in liver mitochondria by increasing CL content via upregulation of PGPS expression.
The interaction of bacterial magnetosomes and human liver cancer cells in vitro
NASA Astrophysics Data System (ADS)
Wang, Pingping; Chen, Chuanfang; Chen, Changyou; Li, Yue; Pan, Weidong; Song, Tao
2017-04-01
As the biogenic magnetic nanomaterial, bacterial magnetic nanoparticles, namely magnetosomes, provide many advantages for potential biomedical applications. As such, interactions among magnetosomes and target cells should be elucidated to develop their bioapplications and evaluate their biocompatibilities. In this study, the interaction of magnetosomes and human liver cancer HepG2 cells was examined. Prussian blue staining revealed numerous stained particles in or on the cells. Intracellular iron concentrations, measured through inductively coupled plasma optical emission spectroscopy, increased with the increasing concentration of the magnetosomes. Transmission electron microscopy images showed that magnetosomes could be internalized in cells, mainly encapsulated in membrane vesicles, such as endosomes and lysosomes, and partly found as free particles in the cytosol. Some of the magnetosomes on cellular surfaces were encapsulated through cell membrane ruffling, which is the initiating process of endocytosis. Applying low temperature treatment and using specific endocytic inhibitors, we validated that macropinocytosis and clathrin-mediated endocytosis were involved in magnetosome uptake by HepG2 cells. Consequently, we revealed the interaction and intrinsic endocytic mechanisms of magnetosomes and HepG2 cells. This study provides a basis for the further research on bacterial magnetosome applications in liver diseases.
Fiore, Esteban J; Mazzolini, Guillermo; Aquino, Jorge B
2015-08-01
Mesenchymal stem/stromal cells (MSCs) are progenitors which share plastic-adherence capacity and cell surface markers but have different properties according to their cell and tissue sources and to culture conditions applied. Many recent publications suggest that MSCs can differentiate into hepatic-like cells, which can be a consequence of either a positive selection of rare in vivo pluripotent cells or of the original plasticity of some cells contributing to MSC cultures. A possible role of MSCs in hereditary transmission of obesity and/or diabetes as well as properties of MSCs regarding immunomodulation, cell fusion and exosome release capacities are discussed according to recent literature. Limitations in methods used to track MSCs in vivo especially in the context of liver cirrhosis are addressed as well as strategies explored to enhance their migratory, survival and proliferation properties, which are known to be relevant for their future clinical use. Current knowledge regarding mechanisms involved in liver cirrhosis amelioration mediated by naïve and genetically modified MSCs as well as the effects of applying preconditioning and combined strategies to improve their therapeutic effects are evaluated. Finally, first reports of GMP guidelines and biosafety issues in MSCs applications are discussed.
Castro, Rosario; Abós, Beatriz; Pignatelli, Jaime; von Gersdorff Jørgensen, Louise; González Granja, Aitor; Buchmann, Kurt; Tafalla, Carolina
2014-01-01
Among the essential metabolic functions of the liver, in mammals, a role as mediator of systemic and local innate immunity has also been reported. Although the presence of an important leukocyte population in mammalian liver is well documented, the characterization of leukocyte populations in the teleost liver has been only scarcely addressed. In the current work, we have confirmed the presence of IgM+, IgD+, IgT+, CD8α+, CD3+ cells, and cells expressing major histocompatibility complex (MHC-II) in rainbow trout (Oncorhynchus mykiss) liver by flow cytometry and/or immunohistochemistry analysis. Additionally, the effect of viral hemorrhagic septicemia virus (VHSV) on the liver immune response was assessed. First, we studied the effect of viral intraperitoneal injection on the transcription of a wide selection of immune genes at days 1, 2 and 5 post-infection. These included a group of leukocyte markers genes, pattern recognition receptors (PRRs), chemokines, chemokine receptor genes, and other genes involved in the early immune response and in acute phase reaction. Our results indicate that T lymphocytes play a key role in the initial response to VHSV in the liver, since CD3, CD8, CD4, perforin, Mx and interferon (IFN) transcription levels were up-regulated in response to VHSV. Consequently, flow cytometry analysis of CD8α+ cells in liver and spleen at day 5 post-infection revealed a decrease in the number of CD8α+ cells in the spleen and an increased population in the liver. No differences were found however in the percentages of B lymphocyte (IgM+ or IgD+) populations. In addition, a strong up-regulation in the transcription levels of several PRRs and chemokines was observed from the second day of infection, indicating an important role of these factors in the response of the liver to viral infections. PMID:25338079
Giri, Shibashish; Acikgöz, Ali; Bader, Augustinus
2015-01-01
Background Currently, undifferentiated cells are found in all tissue and term as local stem cells which are quiescent in nature and less in number under normal healthy conditions but activate upon injury and repair the tissue or organs via automated activating mechanism. Due to very scanty presence of local resident somatic local stem cells in healthy organs, isolation and expansion of these adult stems is an immense challenge for medical research and cell based therapy. Particularly organ like liver, there is an ongoing controversy about existence of liver stem cells. Methods Herein, Hepatic stem cells population was identified during culture of primary hepatocyte cells upon immediate isolation of primary hepatocyte cells. These liver stem cells has been expanded extensively and differentiated into primary hepatocytes under defined culture conditions in a nanostructured self assembling peptides modular bioreactor that mimic the state of art of liver microenvironment and compared with Matrigel as a positive control. Nanostructured self assembling peptides were used a defined extracellular matrix and Matrigel was used for undefined extracellular matrix. Proliferation of hepatic stem cells was investigated by two strategies. First strategy is to provide high concentration of hepatocyte growth factor (HGF) and second strategy is to evaluate the role of recombinant human erythropoietin (rHuEPO) in presence of trauma/ischemia cytokines (IL-6, TNF-α). Expansion to hepatic differentiation is observed by morphological analysis and was evaluated for the expression of hepatocyte-specific genes using RT-PCR and biochemical methods. Results Hepatocyte-specific genes are well expressed at final stage (day 21) of differentiation period. The differentiated hepatocytes exhibited functional hepatic characteristics such as albumin secretion, urea secretion and cytochrome P450 expression. Additionally, immunofluorescence analysis revealed that hepatic stem cells derived hepatocytes exhibited mature hepatocyte markers (albumin, CK-19, CPY3A1, alpha 1-antitrypsin). Expansion and hepatic differentiation was efficiently in nanostructured self assembling peptides without such batch to batch variation while there was much variation in Matrigel coated bioreactor. In conclusion, the results of the study suggest that the nanostructured self assembling peptides coated bioreactor supports expansion as well as hepatic differentiation of liver stem cells which is superior than Matrigel. Conclusion This defined microenvironment conditions in bioreactor module can be useful for research involving bioartificial liver system, stem cell research and engineered liver tissue which could contribute to regenerative cell therapies or drug discovery and development. PMID:26155038
Thinking outside the liver: Induced pluripotent stem cells for hepatic applications
Subba Rao, Mekala; Sasikala, Mitnala; Reddy, D Nageshwar
2013-01-01
The discovery of induced pluripotent stem cells (iPSCs) unraveled a mystery in stem cell research, after identification of four re-programming factors for generating pluripotent stem cells without the need of embryos. This breakthrough in generating iPSCs from somatic cells has overcome the ethical issues and immune rejection involved in the use of human embryonic stem cells. Hence, iPSCs form a great potential source for developing disease models, drug toxicity screening and cell-based therapies. These cells have the potential to differentiate into desired cell types, including hepatocytes, under in vitro as well as under in vivo conditions given the proper microenvironment. iPSC-derived hepatocytes could be useful as an unlimited source, which can be utilized in disease modeling, drug toxicity testing and producing autologous cell therapies that would avoid immune rejection and enable correction of gene defects prior to cell transplantation. In this review, we discuss the induction methods, role of reprogramming factors, and characterization of iPSCs, along with hepatocyte differentiation from iPSCs and potential applications. Further, we discuss the location and detection of liver stem cells and their role in liver regeneration. Although tumor formation and genetic mutations are a cause of concern, iPSCs still form a promising source for clinical applications. PMID:23801830
Thinking outside the liver: induced pluripotent stem cells for hepatic applications.
Subba Rao, Mekala; Sasikala, Mitnala; Nageshwar Reddy, D
2013-06-14
The discovery of induced pluripotent stem cells (iPSCs) unraveled a mystery in stem cell research, after identification of four re-programming factors for generating pluripotent stem cells without the need of embryos. This breakthrough in generating iPSCs from somatic cells has overcome the ethical issues and immune rejection involved in the use of human embryonic stem cells. Hence, iPSCs form a great potential source for developing disease models, drug toxicity screening and cell-based therapies. These cells have the potential to differentiate into desired cell types, including hepatocytes, under in vitro as well as under in vivo conditions given the proper microenvironment. iPSC-derived hepatocytes could be useful as an unlimited source, which can be utilized in disease modeling, drug toxicity testing and producing autologous cell therapies that would avoid immune rejection and enable correction of gene defects prior to cell transplantation. In this review, we discuss the induction methods, role of reprogramming factors, and characterization of iPSCs, along with hepatocyte differentiation from iPSCs and potential applications. Further, we discuss the location and detection of liver stem cells and their role in liver regeneration. Although tumor formation and genetic mutations are a cause of concern, iPSCs still form a promising source for clinical applications.
A Multiscale Agent-Based in silico Model of Liver Fibrosis Progression
Dutta-Moscato, Joyeeta; Solovyev, Alexey; Mi, Qi; Nishikawa, Taichiro; Soto-Gutierrez, Alejandro; Fox, Ira J.; Vodovotz, Yoram
2014-01-01
Chronic hepatic inflammation involves a complex interplay of inflammatory and mechanical influences, ultimately manifesting in a characteristic histopathology of liver fibrosis. We created an agent-based model (ABM) of liver tissue in order to computationally examine the consequence of liver inflammation. Our liver fibrosis ABM (LFABM) is comprised of literature-derived rules describing molecular and histopathological aspects of inflammation and fibrosis in a section of chemically injured liver. Hepatocytes are modeled as agents within hexagonal lobules. Injury triggers an inflammatory reaction, which leads to activation of local Kupffer cells and recruitment of monocytes from circulation. Portal fibroblasts and hepatic stellate cells are activated locally by the products of inflammation. The various agents in the simulation are regulated by above-threshold concentrations of pro- and anti-inflammatory cytokines and damage-associated molecular pattern molecules. The simulation progresses from chronic inflammation to collagen deposition, exhibiting periportal fibrosis followed by bridging fibrosis, and culminating in disruption of the regular lobular structure. The ABM exhibited key histopathological features observed in liver sections from rats treated with carbon tetrachloride (CCl4). An in silico “tension test” for the hepatic lobules predicted an overall increase in tissue stiffness, in line with clinical elastography literature and published studies in CCl4-treated rats. Therapy simulations suggested differential anti-fibrotic effects of neutralizing tumor necrosis factor alpha vs. enhancing M2 Kupffer cells. We conclude that a computational model of liver inflammation on a structural skeleton of physical forces can recapitulate key histopathological and macroscopic properties of CCl4-injured liver. This multiscale approach linking molecular and chemomechanical stimuli enables a model that could be used to gain translationally relevant insights into liver fibrosis. PMID:25152891
Serum CXCL10, CXCL11, CXCL12, and CXCL14 chemokine patterns in patients with acute liver injury.
Chalin, Arnaud; Lefevre, Benjamin; Devisme, Christelle; Pronier, Charlotte; Carrière, Virginie; Thibault, Vincent; Amiot, Laurence; Samson, Michel
2018-06-04
The chemokines CXCL10 (interferon ϒ-inducible protein 10 [IP-10]), CXCL11 (Human interferon inducible T cell alpha chemokine [I-TAC]), CXCL12 (stromal cell derived factor 1 [SDF-1]), and CXCL14 (breast and kidney-expressed chemokine [BRAK]) are involved in cell recruitment, migration, activation, and homing in liver diseases and have been shown to be upregulated during acute liver injury in animal models. However, their expression in patients with acute liver injury is unknown. Here, we aimed to provide evidence of the presence of circulating CXCL10, CXCL11, CXCL12, and CXCL14 during human acute liver injury to propose new inflammation biomarkers for acute liver injury. We analyzed the serum concentration of the studied chemokines in healthy donors (n = 36) and patients (n = 163) with acute liver injuries of various etiologies. Serum CXCL10, CXCL11 and CXCL12 levels were elevated in all the studied groups except biliary diseases for CXCL11. CXCL14 was associated with only acute viral infection and vascular etiologies. The strongest correlation was found between the IFN-inducible studied chemokines (CXCL10 and CXCL11) in all patients and more specifically in the acute viral infection group. These data provide evidence for the presence of circulating CXCL10, CXCL11, CXCL12, and CXCL14 during acute liver injury and are consistent with data obtained in animal models. CXCL10, CXCL11 and CXCL12 were the most highly represented and CXCL14 the least represented chemokines. Differential expression patterns were obtained depending on acute liver injury etiology, suggesting the potential use of these chemokines as acute liver injury biomarkers. Copyright © 2018. Published by Elsevier Ltd.
An Organotypic Liver System for Tumor Progression
2007-04-01
involvement and growth dynamics – in progress Additional tasks accepted after Year 1: 9. determine whether breast cancer cell E -cadherin form...heterotypic interactions – completed 10. determine whether hepatocytes modulate cancer cell E -cadherin expression – completed Wells, Alan W81XWH-04...cancer cells that express E - cadherin form heterotypic binding to a monolayer of hepatocytes as determined by centrifugal assay for cell adhesion
Risal, Prabodh; Shrestha, Nirajan; Chand, Lokendra; Sylvester, Karl G; Jeong, Yeon Jun
2017-04-01
Liver regenerates remarkably after toxic injury or surgical resection. In the case of failure of resident hepatocytes to restore loss, repopulation is carried out by induction, proliferation, and differentiation of the progenitor cell. Although, some signaling pathways have been verified to contribute oval cell-mediated liver regeneration, role of Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1(Pin1) in the oval cells proliferation is unknown. In the present study, we evaluate the role of Pin1 in oval cells proliferation. In our study, the expression of Pin1 in the mice liver increased after three weeks feeding of 3, 5-diethoxycarbonyl-1, 4-dihydrocollidine (DDC) diet along with the proliferation of oval cells. The expression of Pin1 was higher in oval cells compared to the hepatocytes.Pin1 inhibition by Juglone reduced oval cell proliferation, which was restored to normal when oval cells were treated with IGF-1. Consistent with increased cell growth, expression of Pin1, β-catenin and PCNA were increased in IGF-1 treated cells in a time dependent manner. In FACS analysis, siRNA-mediated knockdown of the Pin1 protein in the oval cells significantly increased the numbers of cells in G0/G1 phase. Furthermore, hepatocyte when treated with TGF-β showed marked reduction in cell proliferation and expression of Pin1 whereas this effect was not seen in the oval cells treated with TGF-β. In conclusion, Pin1 plays important role in the cell cycle progression and increase oval cells proliferation which may be crucial in chronic liver injury. Copyright © 2017 Elsevier GmbH. All rights reserved.
Sato, Atsushi; Nakashima, Hiroyuki; Nakashima, Masahiro; Ikarashi, Masami; Nishiyama, Kiyoshi; Kinoshita, Manabu; Seki, Shuhji
2014-01-01
We previously reported that F4/80(+) Kupffer cells are subclassified into CD68(+) Kupffer cells with phagocytic and ROS producing capacity, and CD11b(+) Kupffer cells with cytokine-producing capacity. Carbon tetrachloride (CCl4)-induced hepatic injury is a well-known chemical-induced hepatocyte injury. In the present study, we investigated the immunological role of Kupffer cells/macrophages in CCl4-induced hepatitis in mice. The immunohistochemical analysis of the liver and the flow cytometry of the liver mononuclear cells showed that clodronate liposome (c-lipo) treatment greatly decreased the spindle-shaped F4/80(+) or CD68(+) cells, while the oval-shaped F4/80+ CD11b(+) cells increased. Notably, severe hepatic injury induced by CCl4 was further aggravated by c-lipo-pretreatment. The population of CD11b(+) Kupffer cells/macrophages dramatically increased 24 hour (h) after CCl4 administration, especially in c-lipo-pretreated mice. The CD11b(+) Kupffer cells expressed intracellular TNF and surface Fas-ligand (FasL). Furthermore, anti-TNF Ab pretreatment (which decreased the FasL expression of CD11b(+) Kupffer cells), anti-FasL Ab pretreatment or gld/gld mice attenuated the liver injury induced by CCl4. CD1d-/- mouse and cell depletion experiments showed that NKT cells and NK cells were not involved in the hepatic injury. The adoptive transfer and cytotoxic assay against primary cultured hepatocytes confirmed the role of CD11b(+) Kupffer cells in CCl4-induced hepatitis. Interestingly, the serum MCP-1 level rapidly increased and peaked at six h after c-lipo pretreatment, suggesting that the MCP-1 produced by c-lipo-phagocytized CD68(+) Kupffer cells may recruit CD11b(+) macrophages from the periphery and bone marrow. The CD11b(+) Kupffer cells producing TNF and FasL thus play a pivotal role in CCl4-induced acute hepatic injury.
Sato, Atsushi; Nakashima, Hiroyuki; Nakashima, Masahiro; Ikarashi, Masami; Nishiyama, Kiyoshi; Kinoshita, Manabu; Seki, Shuhji
2014-01-01
We previously reported that F4/80+ Kupffer cells are subclassified into CD68+ Kupffer cells with phagocytic and ROS producing capacity, and CD11b+ Kupffer cells with cytokine-producing capacity. Carbon tetrachloride (CCl4)-induced hepatic injury is a well-known chemical-induced hepatocyte injury. In the present study, we investigated the immunological role of Kupffer cells/macrophages in CCl4-induced hepatitis in mice. The immunohistochemical analysis of the liver and the flow cytometry of the liver mononuclear cells showed that clodronate liposome (c-lipo) treatment greatly decreased the spindle-shaped F4/80+ or CD68+ cells, while the oval-shaped F4/80+ CD11b+ cells increased. Notably, severe hepatic injury induced by CCl4 was further aggravated by c-lipo-pretreatment. The population of CD11b+ Kupffer cells/macrophages dramatically increased 24 hour (h) after CCl4 administration, especially in c-lipo-pretreated mice. The CD11b+ Kupffer cells expressed intracellular TNF and surface Fas-ligand (FasL). Furthermore, anti-TNF Ab pretreatment (which decreased the FasL expression of CD11b+ Kupffer cells), anti-FasL Ab pretreatment or gld/gld mice attenuated the liver injury induced by CCl4. CD1d−/− mouse and cell depletion experiments showed that NKT cells and NK cells were not involved in the hepatic injury. The adoptive transfer and cytotoxic assay against primary cultured hepatocytes confirmed the role of CD11b+ Kupffer cells in CCl4-induced hepatitis. Interestingly, the serum MCP-1 level rapidly increased and peaked at six h after c-lipo pretreatment, suggesting that the MCP-1 produced by c-lipo-phagocytized CD68+ Kupffer cells may recruit CD11b+ macrophages from the periphery and bone marrow. The CD11b+ Kupffer cells producing TNF and FasL thus play a pivotal role in CCl4-induced acute hepatic injury. PMID:24667392
Vogl, Thomas J.; Emam, Ahmed; Naguib, Nagy N.; Eichler, Katrin; Zangos, Stefan
2015-01-01
Summary Background The purpose of this review is to demonstrate the clinical indications, technical developments, and outcome of liver-directed therapies in interventional oncology of non-colorectal liver metastases. Methods Liver-directed therapies are classified into vascular transarterial techniques such as chemoperfusion (TACP), chemoembolization (TACE), radioembolization (selective internal radiation therapy (SIRT)), and chemosaturation, as well as thermal ablation techniques like microwave ablation (MWA), radiofrequency ablation (RFA), laser-induced thermotherapy (LITT), cryotherapy, and irreversible electroporation (IRE). The authors searched the database PubMed using the following terms: ‘image-guided tumor ablation’, ‘thermal ablation therapies’, ‘liver metastases of uveal melanoma’, ‘neuroendocrine carcinoma’, ‘breast cancer’, and ‘non-colorectal liver metastases’. Results Various combinations of the above-mentioned therapy protocols are possible. In neuroendocrine carcinomas, oligonodular liver metastases are treated successfully via thermal ablation like RFA, LITT, or MWA, and diffuse involvement via TACE or SIRT. Although liver involvement in breast cancer is a systemic disease, non-responding nodular metastases can be controlled via RFA or LITT. In ocular or cutaneous melanoma, thermal ablation is rarely considered as an interventional treatment option, as opposed to TACE, SIRT, or chemosaturation. Rarely liver-directed therapies are used in pancreatic cancer, most likely due to problems such as biliary digestive communications after surgery and the risk of infections. Rare indications for thermal ablation are liver metastases of other primary cancers like non-small cell lung, gastric, and ovarian cancer. Conclusion Interventional oncological techniques play a role in patients with liver-dominant metastases. PMID:26889144
Tanimizu, Naoki; Nishikawa, Yuji; Ichinohe, Norihisa; Akiyama, Haruhiko; Mitaka, Toshihiro
2014-01-01
It has been shown that mature hepatocytes compensate tissue damages not only by proliferation and/or hypertrophy but also by conversion into cholangiocyte-like cells. We found that Sry HMG box protein 9-positive (Sox9+) epithelial cell adhesion molecule-negative (EpCAM−) hepatocyte nuclear factor 4α-positive (HNF4α+) biphenotypic cells showing hepatocytic morphology appeared near EpCAM+ ductular structures in the livers of mice fed 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-containing diet. When Mx1-Cre:ROSA mice, which were injected with poly(I:C) to label mature hepatocytes, were fed with the DDC diet, we found LacZ+Sox9+ cells near ductular structures. Although Sox9+EpCAM− cells adjacent to expanding ducts likely further converted into ductular cells, the incidence was rare. To know the cellular characteristics of Sox9+EpCAM− cells, we isolated them as GFP+EpCAM− cells from DDC-injured livers of Sox9-EGFP mice. Sox9+EpCAM− cells proliferated and could differentiate to functional hepatocytes in vitro. In addition, Sox9+EpCAM− cells formed cysts with a small central lumen in collagen gels containing Matrigel® without expressing EpCAM. These results suggest that Sox9+EpCAM− cells maintaining biphenotypic status can establish cholangiocyte-type polarity. Interestingly, we found that some of the Sox9+ cells surrounded luminal spaces in DDC-injured liver while they expressed HNF4α. Taken together, we consider that in addition to converting to cholangiocyte-like cells, Sox9+EpCAM− cells provide luminal space near expanded ductular structures to prevent deterioration of the injuries and potentially supply new hepatocytes to repair damaged tissues. PMID:24482234
2011-01-01
Background Short half-life and low levels of growth factors in the niche of injured microenvironment necessitates the exogenous and sustainable delivery of growth factors along with stem cells to augment the regeneration of injured tissues. Methods Here, recombinant human hepatocyte growth factor (HGF) was incorporated into chitosan nanoparticles (CNP) by ionic gelation method and studied for its morphological and physiological characteristics. Cirrhotic mice received either hematopoietic stem cells (HSC) or mesenchymal stemcells (MSC) with or without HGF incorporated chitosan nanoparticles (HGF-CNP) and saline as control. Biochemical, histological, immunostaining and gene expression assays were carried out using serum and liver tissue samples. One way analysis of variance was used for statics application Results Serum levels of selected liver protein and enzymes were significantly increased in the combination of MSC and HGF-CNP (MSC+HGF-CNP) treated group. Immunopositive staining for albumin (Alb) and cytokeratin 18 (CK18), and reverse transcription-polymerase chain reaction (RT-PCR) for Alb, alpha fetoprotein (AFP), CK18, cytokeratin 19 (CK19) ascertained that MSC-HGF-CNP treatment could be an effective combination to repopulate liver parenchymal cells in the liver cirrhosis. Zymogram and western blotting for matrix metalloproteinases 2 and 9 (MMP2 and MMP9) revealed that MMP2 actively involved in the fibrolysis of cirrhotic tissue. Immunostaining for alpha smooth muscle actin (αSMA) and type I collagen showed decreased expression in the MSC+HGF-CNP treatment. These results indicated that HGF-CNP enhanced the differentiation of stem cells into hepatocytes and supported the reversal of fibrolysis of extracellular matrix (ECM). Conclusion Bone marrow stem cells were isolated, characterized and transplanted in mice model. Biodegradable biopolymeric nanoparticles were prepared with the pleotrophic protein molecule and it worked well for the differentiation of stem cells, especially mesenchymal phenotypic cells. Transplantation of bone marrow MSC in combination with HGF-CNP could be an ideal approach for the treatment of liver cirrhosis. PMID:21526984
Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong
The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine-glycine-aspartic acid (RGD) peptide. Our studies demonstrate that RGD-polyethylene glycol (PEG)-PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT-MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system.
He, Lei; Yuan, Fa-Hu; Chen, Ting; Huang, Qiang; Wang, Yu; Liu, Zhi-Guo
2017-04-01
Fibronectin containing extra domain A (EDA + FN), a functional glycoprotein participating in several cellular processes, correlates with chronic liver disease. Herein, we aim to investigate the expression and secretion of EDA + FN from hepatocytes in nonalcoholic fatty liver disease (NAFLD) and the underlying mechanisms. Circulating levels of EDA + FN were determined by ELISA in clinical samples. Western blotting and flow cytometry were performed on L02 and HepG2 cell lines to analyze whether the levels of EDA + FN were associated with endoplasmic reticulum (ER) stress-related cell death. Circulating levels of EDA + FN in NAFLD patients were significantly higher than those in control subjects, and positively related with severity of ultrasonographic steatosis score. In cultured hepatocytes, palmitate up-regulated the expression of EDA + FN in a dose-dependent manner. Conversely, when the cells were pretreated with 4-phenylbutyrate, a specific inhibitor of ER stress, up-regulation of EDA + FN could be abrogated. Moreover, silencing CHOP by shRNA enhanced the release of EDA + FN from hepatocytes following palmitate treatment, which was involved in ER stress-related cell damage. These findings suggest that the up-regulated level of EDA + FN is associated with liver damage in NAFLD, and ER stress-mediated cell damage contributes to the release of EDA + FN from hepatocytes.
Microarray analysis in rat liver slices correctly predicts in vivo hepatotoxicity.
Elferink, M G L; Olinga, P; Draaisma, A L; Merema, M T; Bauerschmidt, S; Polman, J; Schoonen, W G; Groothuis, G M M
2008-06-15
The microarray technology, developed for the simultaneous analysis of a large number of genes, may be useful for the detection of toxicity in an early stage of the development of new drugs. The effect of different hepatotoxins was analyzed at the gene expression level in the rat liver both in vivo and in vitro. As in vitro model system the precision-cut liver slice model was used, in which all liver cell types are present in their natural architecture. This is important since drug-induced toxicity often is a multi-cellular process involving not only hepatocytes but also other cell types such as Kupffer and stellate cells. As model toxic compounds lipopolysaccharide (LPS, inducing inflammation), paracetamol (necrosis), carbon tetrachloride (CCl(4), fibrosis and necrosis) and gliotoxin (apoptosis) were used. The aim of this study was to validate the rat liver slice system as in vitro model system for drug-induced toxicity studies. The results of the microarray studies show that the in vitro profiles of gene expression cluster per compound and incubation time, and when analyzed in a commercial gene expression database, can predict the toxicity and pathology observed in vivo. Each toxic compound induces a specific pattern of gene expression changes. In addition, some common genes were up- or down-regulated with all toxic compounds. These data show that the rat liver slice system can be an appropriate tool for the prediction of multi-cellular liver toxicity. The same experiments and analyses are currently performed for the prediction of human specific toxicity using human liver slices.
Detection of piRNAs in whitespotted bamboo shark liver.
Yang, Lingrong; Ge, Yinghua; Cheng, Dandan; Nie, Zuoming; Lv, Zhengbing
2016-09-15
Piwi-interacting RNAs (piRNAs) are 26 to 31-nt small non-coding RNAs that have been reported mostly in germ-line cells and cancer cells. However, the presence of piRNAs in the whitespotted bamboo shark liver has not yet been reported. In a previous study of microRNAs in shark liver, some piRNAs were detected from small RNAs sequenced by Solexa technology. A total of 4857 piRNAs were predicted and found in shark liver. We further selected 17 piRNAs with high and significantly differential expression between normal and regenerative liver tissues for subsequent verification by Northern blotting. Ten piRNAs were further identified, and six of these were matched to known piRNAs in piRNABank. The actual expression of six known and four novel piRNAs was validated by qRT-PCR. In addition, a total of 401 target genes of the 10 piRNAs were predicted by miRanda. Through GO and pathway function analyses, only five piRNAs could be annotated with eighteen GO annotations. The results indicated that the identified piRNAs are involved in many important biological responses, including immune inflammation, cell-specific differentiation and development, and angiogenesis. This manuscript provides the first identification of piRNAs in the liver of whitespotted bamboo shark using Solexa technology as well as further elucidation of the regulatory role of piRNAs in whitespotted bamboo shark liver. These findings may provide a useful resource and may facilitate the development of therapeutic strategies against liver damage. Copyright © 2016 Elsevier B.V. All rights reserved.
Microarray analysis in rat liver slices correctly predicts in vivo hepatotoxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elferink, M.G.L.; Olinga, P.; Draaisma, A.L.
2008-06-15
The microarray technology, developed for the simultaneous analysis of a large number of genes, may be useful for the detection of toxicity in an early stage of the development of new drugs. The effect of different hepatotoxins was analyzed at the gene expression level in the rat liver both in vivo and in vitro. As in vitro model system the precision-cut liver slice model was used, in which all liver cell types are present in their natural architecture. This is important since drug-induced toxicity often is a multi-cellular process involving not only hepatocytes but also other cell types such asmore » Kupffer and stellate cells. As model toxic compounds lipopolysaccharide (LPS, inducing inflammation), paracetamol (necrosis), carbon tetrachloride (CCl{sub 4}, fibrosis and necrosis) and gliotoxin (apoptosis) were used. The aim of this study was to validate the rat liver slice system as in vitro model system for drug-induced toxicity studies. The results of the microarray studies show that the in vitro profiles of gene expression cluster per compound and incubation time, and when analyzed in a commercial gene expression database, can predict the toxicity and pathology observed in vivo. Each toxic compound induces a specific pattern of gene expression changes. In addition, some common genes were up- or down-regulated with all toxic compounds. These data show that the rat liver slice system can be an appropriate tool for the prediction of multi-cellular liver toxicity. The same experiments and analyses are currently performed for the prediction of human specific toxicity using human liver slices.« less
IL-4 mRNA Is Downregulated in the Liver of Pancreatic Cancer Patients Suffering from Cachexia.
Prokopchuk, Olga; Steinacker, Jürgen M; Nitsche, Ulrich; Otto, Stephanie; Bachmann, Jeannine; Schubert, Elaine C; Friess, Helmut; Martignoni, Marc E
2017-01-01
Interleukin-4 (IL-4) together with interleukin-13 (IL-13) play an important role in inflammation and wound repair, and are known to be upregulated in human skeletal muscle after strenuous physical exercise. Additionally, these cytokines may act as autocrine growth factors in pancreatic cancer cells. We hypothesize that IL-4, IL-13, and their corresponding receptors are involved in mechanism of cancer cachexia. Tissue samples from human skeletal muscle, white fat, liver, healthy pancreas, and pancreatic ductal adenocarcinoma were analyzed by quantitative real-time polymerase chain reaction for mRNA expression levels of IL-4, IL-13, IL-4 receptor α, and IL-13 receptor α1. We demonstrate for the first time that liver IL-4 mRNA is downregulated in vivo in patients with pancreatic cancer and cachexia. Additionally, IL-4 mRNA in the liver inversely correlated with musculus psoas thickness. We speculate that suppression of IL-4 is involved in cancer cachexia, although the exact mechanisms have to be further elucidated.
IDH1 deficiency attenuates gluconeogenesis in mouse liver by impairing amino acid utilization.
Ye, Jing; Gu, Yu; Zhang, Feng; Zhao, Yuanlin; Yuan, Yuan; Hao, Zhenyue; Sheng, Yi; Li, Wanda Y; Wakeham, Andrew; Cairns, Rob A; Mak, Tak W
2017-01-10
Although the enzymatic activity of isocitrate dehydrogenase 1 (IDH1) was defined decades ago, its functions in vivo are not yet fully understood. Cytosolic IDH1 converts isocitrate to α-ketoglutarate (α-KG), a key metabolite regulating nitrogen homeostasis in catabolic pathways. It was thought that IDH1 might enhance lipid biosynthesis in liver or adipose tissue by generating NADPH, but we show here that lipid contents are relatively unchanged in both IDH1-null mouse liver and IDH1-deficient HepG2 cells generated using the CRISPR-Cas9 system. Instead, we found that IDH1 is critical for liver amino acid (AA) utilization. Body weights of IDH1-null mice fed a high-protein diet (HPD) were abnormally low. After prolonged fasting, IDH1-null mice exhibited decreased blood glucose but elevated blood alanine and glycine compared with wild-type (WT) controls. Similarly, in IDH1-deficient HepG2 cells, glucose consumption was increased, but alanine utilization and levels of intracellular α-KG and glutamate were reduced. In IDH1-deficient primary hepatocytes, gluconeogenesis as well as production of ammonia and urea were decreased. In IDH1-deficient whole livers, expression levels of genes involved in AA metabolism were reduced, whereas those involved in gluconeogenesis were up-regulated. Thus, IDH1 is critical for AA utilization in vivo and its deficiency attenuates gluconeogenesis primarily by impairing α-KG-dependent transamination of glucogenic AAs such as alanine.
PNPLA3 I148M polymorphism and progressive liver disease
Dongiovanni, Paola; Donati, Benedetta; Fares, Roberta; Lombardi, Rosa; Mancina, Rosellina Margherita; Romeo, Stefano; Valenti, Luca
2013-01-01
The 148 Isoleucine to Methionine protein variant (I148M) of patatin-like phospholipase domain-containing 3 (PNPLA3), a protein is expressed in the liver and is involved in lipid metabolism, has recently been identified as a major determinant of liver fat content. Several studies confirmed that the I148M variant predisposes towards the full spectrum of liver damage associated with fatty liver: from simple steatosis to steatohepatitis and progressive fibrosis. Furthermore, the I148M variant represents a major determinant of progression of alcohol related steatohepatitis to cirrhosis, and to influence fibrogenesis and related clinical outcomes in chronic hepatitis C virus hepatitis, and possibly chronic hepatitis B virus hepatitis, hereditary hemochromatosis and primary sclerosing cholangitis. All in all, studies suggest that the I148M polymorphism may represent a general modifier of fibrogenesis in liver diseases. Remarkably, the effect of the I148M variant on fibrosis was independent of that on hepatic steatosis and inflammation, suggesting that it may affect both the quantity and quality of hepatic lipids and the biology of non-parenchymal liver cells besides hepatocytes, directly promoting fibrogenesis. Therefore, PNPLA3 is a key player in liver disease progression. Assessment of the I148M polymorphism will possibly inform clinical practice in the future, whereas the determination of the effect of the 148M variant will reveal mechanisms involved in hepatic fibrogenesis. PMID:24222941
Representative Sinusoids for Hepatic Four-Scale Pharmacokinetics Simulations
Schwen, Lars Ole; Schenk, Arne; Kreutz, Clemens; Timmer, Jens; Bartolomé Rodríguez, María Matilde; Kuepfer, Lars; Preusser, Tobias
2015-01-01
The mammalian liver plays a key role for metabolism and detoxification of xenobiotics in the body. The corresponding biochemical processes are typically subject to spatial variations at different length scales. Zonal enzyme expression along sinusoids leads to zonated metabolization already in the healthy state. Pathological states of the liver may involve liver cells affected in a zonated manner or heterogeneously across the whole organ. This spatial heterogeneity, however, cannot be described by most computational models which usually consider the liver as a homogeneous, well-stirred organ. The goal of this article is to present a methodology to extend whole-body pharmacokinetics models by a detailed liver model, combining different modeling approaches from the literature. This approach results in an integrated four-scale model, from single cells via sinusoids and the organ to the whole organism, capable of mechanistically representing metabolization inhomogeneity in livers at different spatial scales. Moreover, the model shows circulatory mixing effects due to a delayed recirculation through the surrounding organism. To show that this approach is generally applicable for different physiological processes, we show three applications as proofs of concept, covering a range of species, compounds, and diseased states: clearance of midazolam in steatotic human livers, clearance of caffeine in mouse livers regenerating from necrosis, and a parameter study on the impact of different cell entities on insulin uptake in mouse livers. The examples illustrate how variations only discernible at the local scale influence substance distribution in the plasma at the whole-body level. In particular, our results show that simultaneously considering variations at all relevant spatial scales may be necessary to understand their impact on observations at the organism scale. PMID:26222615
Lee, Dong Hun; Kim, Dae Hwan; Hwang, Chul Ju; Song, Sukgil; Han, Sang Bae; Kim, Youngsoo; Yoo, Hwan Soo; Jung, Young Suk; Kim, Soo Hyun; Yoon, Do Young; Hong, Jin Tae
2015-05-01
Alcohol abuse and alcoholism lead to alcoholic liver disease (ALD), which is a major type of chronic liver disease worldwide. Interleukin-32 (IL-32) is a novel cytokine involved in inflammation and cancer development. However, the role of IL-32 in chronic liver disease has not been reported. In the present paper, we tested the effect of IL-32γ on ethanol-induced liver injury in IL-32γ-overexpressing transgenic mice (IL-32γ mice) after chronic ethanol feeding. Male C57BL/6 and IL-32γ mice (10-12 weeks old) were fed on a Lieber-DeCarli diet containing 6.6% ethanol for 6 weeks. IL-32γ-transfected HepG2 and Huh7 cells, as well as primary hepatocytes from IL-32γ mice, were treated with or without ethanol. The hepatic steatosis and damage induced by ethanol administration were attenuated in IL-32γ mice. Ethanol-induced cytochrome P450 2E1 expression and hydrogen peroxide levels were decreased in the livers of IL-32γ mice, primary hepatocytes from IL-32γ mice and IL-32γ-overexpressing human hepatic cells. The ethanol-induced expression levels of cyclo-oxygenase-2 (COX-2) and IL-6 were reduced in the livers of IL-32γ mice. Because nuclear transcription factor κB (NF-κB) is a key redox transcription factor of inflammatory responses, we examined NF-κB activity. Ethanol-induced NF-κB activities were significantly lower in the livers of IL-32γ mice than in wild-type (WT) mice. Furthermore, reduced infiltration of natural killer cells, cytotoxic T-cells and macrophages in the liver after ethanol administration was observed in IL-32γ mice. These data suggest that IL-32γ prevents ethanol-induced hepatic injury via the inhibition of oxidative damage and inflammatory responses.
Ren, Shifan; Zhou, Yefang; Fang, Xiaoling; She, Xiaoling; Wu, Yilin; Wu, Xianqing
2016-05-24
To investigate the role of phosphatase of regenerating liver-3 (PRL-3) in the 17β-estradiol (E2)- and interleukin 6 (IL-6)-induced migration of endometrial stromal cells (ESCs) from ectopic endometrium. Ectopic endometrial tissues were collected from patients with endometriosis, and PRL-3 expression in ectopic and eutopic endometrium was examined by immunohistochemistry. Endometrial stromal cells isolated from ectopic endometrium were treated with E2, progesterone (P), IL-6, or sodium orthovanadate (Sov) to inhibit PRL-3. Total RNA and protein were extracted from ESCs after treatment for quantitative real-time polymerase chain reaction and Western blot analyses. Cell migration was assessed using a scratch wound assay. Phosphatase of regenerating liver 3 protein was highly expressed in the endometrial glandular cells (EGCs) and ESCs in ectopic endometrium, whereas its weak expression was observed only in EGCs in eutopic endometrium. Both E2 and IL-6 treatment significantly increased PRL-3 messenger RNA and protein expression, and P treatment significantly inhibited PRL-3 expression. However, E2-induced PRL-3 expression in ESCs from ectopic endometrium was significantly blocked by IL-6 antibody. Moreover, E2- and IL-6-enhanced cell migration was completely abrogated by Sov treatment. Furthermore, Sov treatment could significantly promote PTEN expression but inhibit E2- and IL-6-induced p-AKT activation. Phosphatase of regenerating liver 3 plays a key role in the E2- and IL-6-induced migration of ESCs from ectopic endometrium, a process that is involved in the PTEN-AKT signaling pathway. © The Author(s) 2016.
Preliminary profiling of microRNA in the normal and regenerating liver of Chiloscyllium plagiosum.
Cheng, Dandan; Chen, Yanna; Lu, Conger; Qian, Yuezhong; Lv, Zhengbing
2017-12-01
Liver is a vital organ present in animals for detoxification, protein synthesis, digestion and other functions and its powerful regenerative capacity is well known. C. plagiosum is an abundant fish that is representative of the cartilaginous class in the southeast coastal region of China and its liver accounts for >70% of the fish's visceral weight and contains many bioactive substances. MicroRNAs (microRNAs) play important roles in a wide range of biological processes in eukaryotes, including cell proliferation, differentiation, apoptosis. However, microRNAs in response to liver regeneration has not been well studied. This study aimed to identify the microRNAs that participate in liver regeneration and other liver-related diseases and to improve our understanding of the mechanisms of liver regeneration in sharks. To this end, normal and regenerating liver tissues from C. plagiosum were harvested 0, 3, 6, 12 and 24h after partial hepatectomy (pH) and were sequenced using the Illumina/Solexa platform. In total, 309 known microRNAs and 590 novel microRNAs were identified in C. plagiosum. There were many microRNAs differentially expressed in the normal and regenerating livers between time points. Using target prediction and GO analysis, most of the differentially expressed microRNAs were assigned to functional categories that may be involved in regulating liver regeneration, such as cell proliferation, differentiation and apoptosis. The microRNA expression profile of liver regeneration will pave the way for the development of effective strategies to fight against liver disease and other related disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Hasebe, Takumu; Tanaka, Hiroki; Sawada, Koji; Nakajima, Shunsuke; Ohtake, Takaaki; Fujiya, Mikihiro; Kohgo, Yutaka
2017-03-01
Non-alcoholic fatty liver disease (NAFLD) is frequently accompanied by iron overload. However, because of the complex hepcidin-regulating molecules, the molecular mechanism underlying iron overload remains unknown. To identify the key molecule involved in NAFLD-associated iron dysregulation, we performed whole-RNA sequencing on the livers of obese mice. Male C57BL/6 mice were fed a regular or high-fat diet for 16 or 48 weeks. Internal iron was evaluated by plasma iron, ferritin or hepatic iron content. Whole-RNA sequencing was performed by transcriptome analysis using semiconductor high-throughput sequencer. Mouse liver tissues or isolated hepatocytes and sinusoidal endothelial cells were used to assess the expression of iron-regulating molecules. Mice fed a high-fat diet for 16 weeks showed excess iron accumulation. Longer exposure to a high-fat diet increased hepatic fibrosis and intrahepatic iron accumulation. A pathway analysis of the sequencing data showed that several inflammatory pathways, including bone morphogenetic protein (BMP)-SMAD signaling, were significantly affected. Sequencing analysis showed 2314 altered genes, including decreased mRNA expression of the hepcidin-coding gene Hamp. Hepcidin protein expression and SMAD phosphorylation, which induces Hamp, were found to be reduced. The expression of BMP-binding endothelial regulator (BMPER), which inhibits BMP-SMAD signaling by binding BMP extracellularly, was up-regulated in fatty livers. In addition, immunohistochemical and cell isolation analyses showed that BMPER was primarily expressed in the liver sinusoidal endothelial cells (LSECs) rather than hepatocytes. BMPER secretion by LSECs inhibits BMP-SMAD signaling in hepatocytes and further reduces hepcidin protein expression. These intrahepatic molecular interactions suggest a novel molecular basis of iron overload in NAFLD.
Microscale 3D Liver Bioreactor for In Vitro Hepatotoxicity Testing under Perfusion Conditions.
Freyer, Nora; Greuel, Selina; Knöspel, Fanny; Gerstmann, Florian; Storch, Lisa; Damm, Georg; Seehofer, Daniel; Foster Harris, Jennifer; Iyer, Rashi; Schubert, Frank; Zeilinger, Katrin
2018-03-15
The accurate prediction of hepatotoxicity demands validated human in vitro models that can close the gap between preclinical animal studies and clinical trials. In this study we investigated the response of primary human liver cells to toxic drug exposure in a perfused microscale 3D liver bioreactor. The cellularized bioreactors were treated with 5, 10, or 30 mM acetaminophen (APAP) used as a reference substance. Lactate production significantly decreased upon treatment with 30 mM APAP ( p < 0.05) and ammonia release significantly increased in bioreactors treated with 10 or 30 mM APAP ( p < 0.0001), indicating APAP-induced dose-dependent toxicity. The release of prostaglandin E2 showed a significant increase at 30 mM APAP ( p < 0.05), suggesting an inflammatory reaction towards enhanced cellular stress. The expression of genes involved in drug metabolism, antioxidant reactions, urea synthesis, and apoptosis was differentially influenced by APAP exposure. Histological examinations revealed that primary human liver cells in untreated control bioreactors were reorganized in tissue-like cell aggregates. These aggregates were partly disintegrated upon APAP treatment, lacking expression of hepatocyte-specific proteins and transporters. In conclusion, our results validate the suitability of the microscale 3D liver bioreactor to detect hepatotoxic effects of drugs in vitro under perfusion conditions.
Microscale 3D Liver Bioreactor for In Vitro Hepatotoxicity Testing under Perfusion Conditions
Freyer, Nora; Greuel, Selina; Knöspel, Fanny; Gerstmann, Florian; Storch, Lisa; Damm, Georg; Seehofer, Daniel; Foster Harris, Jennifer; Iyer, Rashi; Schubert, Frank; Zeilinger, Katrin
2018-01-01
The accurate prediction of hepatotoxicity demands validated human in vitro models that can close the gap between preclinical animal studies and clinical trials. In this study we investigated the response of primary human liver cells to toxic drug exposure in a perfused microscale 3D liver bioreactor. The cellularized bioreactors were treated with 5, 10, or 30 mM acetaminophen (APAP) used as a reference substance. Lactate production significantly decreased upon treatment with 30 mM APAP (p < 0.05) and ammonia release significantly increased in bioreactors treated with 10 or 30 mM APAP (p < 0.0001), indicating APAP-induced dose-dependent toxicity. The release of prostaglandin E2 showed a significant increase at 30 mM APAP (p < 0.05), suggesting an inflammatory reaction towards enhanced cellular stress. The expression of genes involved in drug metabolism, antioxidant reactions, urea synthesis, and apoptosis was differentially influenced by APAP exposure. Histological examinations revealed that primary human liver cells in untreated control bioreactors were reorganized in tissue-like cell aggregates. These aggregates were partly disintegrated upon APAP treatment, lacking expression of hepatocyte-specific proteins and transporters. In conclusion, our results validate the suitability of the microscale 3D liver bioreactor to detect hepatotoxic effects of drugs in vitro under perfusion conditions. PMID:29543727
2017-09-01
AWARD NUMBER: W81XWH-16-1-0162 TITLE: Development of a Synthetic Lethal Drug Combination That Targets the Energy Generation Triangle for...in HCC cells to compensate energy loss. Compared to normal liver, HCC up-regulates expression of genes involved in FA biosynthesis and down-regulates... energy generation triangle” (glycolysis, oxidative phosphorylation, and FAO) as a translational, effective and safe therapy for HCC. 15. SUBJECT
Greupink, Rick; Sio, Charles F; Ederveen, Antwan; Orsel, Joke
2009-12-01
We investigate radio-labeling and pharmacokinetics of a new AnnexinA5 variant (HYNIC-cys-AnxA5) and then assess its utility for the non-invasive detection of cell death in liver, spleen and prostate. AnnexinA5 binds to phosphatidylserine expressed on the surface of apoptotic and necrotic cells. Contrary to other AnnexinA5 variants, the new cys-AnxA5 allows for site-specific conjugation of a hydrazinonicotinamide-maleimide moiety and subsequent radio-labeling with (99m)Tc at a position not involved in the AnxA5-phosphatidylserine interaction. Distribution of (99m)Tc-HYNIC-cys-AnxA5 was studied in rats, both invasively and via SPECT/CT. Cycloheximide was used to induce cell death in liver and spleen, whereas apoptosis in the prostate was induced by castration. HYNIC-cys-AnxA5 was efficiently and reproducibly labeled with (99m)Tc. Blood clearance of radioactivity after iv-injection was adequately described by a two-compartment model, the renal cortex representing the main site of accumulation. Cycloheximide treatment resulted in increased accumulation of intravenous-injected (99m)Tc-HYNIC-cys-AnxA5 in liver and spleen over controls, which correlated well with TUNEL staining for cell death in corresponding tissue sections. However, the increase in TUNEL-positive prostate epithelial cells observed following castration was not paralleled by greater (99m)Tc-HYNIC-cys-AnxA5 accumulation. (99m)Tc-HYNIC-cys-AnxA5 appears a suitable tracer for assessment of cell death in liver and spleen, but not prostate.
Guo, Xuan; Wang, Shu; Dou, Ya-ling; Guo, Xiang-fei; Chen, Zhao-li; Wang, Xin-wei; Shen, Zhi-qiang; Qiu, Zhi-gang
2015-01-01
Abstract Pluripotent human hepatic stem cells have broad research and clinical applications, which are, however, restricted by both limited resources and technical difficulties with respect to isolation of stem cells from the adult or fetal liver. In this study, we developed a convenient and efficient method involving a two-step in situ collagenase perfusion, gravity sedimentation, and Percoll density gradient centrifugation to enrich and maintain highly proliferative human fetal liver stem cells (hFLSCs). Using this method, the isolated hFLSCs entered into the exponential growth phase within 10 days and maintained sufficient proliferative activity to permit subculture for at least 20 passages without differentiation. Immunocytochemistry, immunofluorescence, and flow cytometry results showed that these cells expressed stem cell markers, such as c-kit, CD44, epithelial cell adhesion molecule (EpCAM), oval cell marker-6 (OV-6), epithelial marker cytokeratin 18 (CK18), biliary ductal marker CK19, and alpha-fetoprotein (AFP). Gene expression analysis showed that these cells had stable mRNA expression of c-Kit, EpCAM, neural cell adhesion molecule (NCAM), CK19, CK18, AFP, and claudin 3 (CLDN-3) throughout each passage while maintaining low levels of ALB, but with complete absence of cytochrome P450 3A4 (C3A4), phosphoenolpyruvate carboxykinase (PEPCK), telomeric repeat binding factor (TRF), and connexin 26 (CX26) expression. When grown in appropriate medium, these isolated liver stem cells could differentiate into hepatocytes, cholangiocytes, osteoblasts, adipocytes, or endothelial cells. Thus, we have demonstrated a more economical and efficient method to isolate hFLSCs than magnetic-activated cell sorting (MACS). This novel approach may provide an excellent tool to isolate highly proliferative hFLSCs for tissue engineering and regenerative therapies. PMID:25556695
Guo, Xuan; Wang, Shu; Dou, Ya-ling; Guo, Xiang-fei; Chen, Zhao-li; Wang, Xin-wei; Shen, Zhi-qiang; Qiu, Zhi-gang; Jin, Min; Li, Jun-wen
2015-06-01
Pluripotent human hepatic stem cells have broad research and clinical applications, which are, however, restricted by both limited resources and technical difficulties with respect to isolation of stem cells from the adult or fetal liver. In this study, we developed a convenient and efficient method involving a two-step in situ collagenase perfusion, gravity sedimentation, and Percoll density gradient centrifugation to enrich and maintain highly proliferative human fetal liver stem cells (hFLSCs). Using this method, the isolated hFLSCs entered into the exponential growth phase within 10 days and maintained sufficient proliferative activity to permit subculture for at least 20 passages without differentiation. Immunocytochemistry, immunofluorescence, and flow cytometry results showed that these cells expressed stem cell markers, such as c-kit, CD44, epithelial cell adhesion molecule (EpCAM), oval cell marker-6 (OV-6), epithelial marker cytokeratin 18 (CK18), biliary ductal marker CK19, and alpha-fetoprotein (AFP). Gene expression analysis showed that these cells had stable mRNA expression of c-Kit, EpCAM, neural cell adhesion molecule (NCAM), CK19, CK18, AFP, and claudin 3 (CLDN-3) throughout each passage while maintaining low levels of ALB, but with complete absence of cytochrome P450 3A4 (C3A4), phosphoenolpyruvate carboxykinase (PEPCK), telomeric repeat binding factor (TRF), and connexin 26 (CX26) expression. When grown in appropriate medium, these isolated liver stem cells could differentiate into hepatocytes, cholangiocytes, osteoblasts, adipocytes, or endothelial cells. Thus, we have demonstrated a more economical and efficient method to isolate hFLSCs than magnetic-activated cell sorting (MACS). This novel approach may provide an excellent tool to isolate highly proliferative hFLSCs for tissue engineering and regenerative therapies.
HOSSAIN, MOHAMMAD AKBAR; KIM, DONG HWAN; JANG, JUNG YOON; KANG, YONG JUNG; YOON, JEONG-HYUN; MOON, JEON-OK; CHUNG, HAE YOUNG; KIM, GI-YOUNG; CHOI, YUNG HYUN; COPPLE, BRYAN L.; KIM, NAM DEUK
2012-01-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) are known to induce apoptosis in a variety of cancer cells, including colon, prostate, breast and leukemia. Among them, aspirin, a classical NSAID, shows promise in cancer therapy in certain types of cancers. We hypothesized that aspirin might affect the growth of liver cancer cells since liver is the principal site for aspirin metabolism. Therefore, we investigated the effects of aspirin on the HepG2 human hepatocellular carcinoma cell line in vitro and the HepG2 cell xenograft model in BALB/c nude mice. We found that treatment with aspirin inhibited cell growth and induced apoptosis involving both extrinsic and intrinsic pathways as measured by DNA ladder formation, alteration in the Bax/Bcl-2 ratio, activation of the caspase activities and related protein expressions. In vivo antitumor activity assay also showed that aspirin resulted in significant tumor growth inhibition compared to the control. Oral administration of aspirin (100 mg/kg/day) caused a significant reduction in the growth of HepG2 tumors in nude mice. These findings suggest that aspirin may be used as a promising anticancer agent against liver cancer. PMID:22179060
Iida, Tomoya; Wagatsuma, Kohei; Hirayama, Daisuke; Nakase, Hiroshi
2017-12-21
Osteopontin (OPN) is involved in a variety of biological processes, including bone remodeling, innate immunity, acute and chronic inflammation, and cancer. The expression of OPN occurs in various tissues and cells, including intestinal epithelial cells and immune cells such as macrophages, dendritic cells, and T lymphocytes. OPN plays an important role in the efficient development of T helper 1 immune responses and cell survival by inhibiting apoptosis. The association of OPN with apoptosis has been investigated. In this review, we described the role of OPN in inflammatory gastrointestinal and liver diseases, focusing on the association of OPN with apoptosis. OPN changes its association with apoptosis depending on the type of disease and the phase of disease activity, acting as a promoter or a suppressor of inflammation and inflammatory carcinogenesis. It is essential that the roles of OPN in those diseases are elucidated, and treatments based on its mechanism are developed.
Cox, Laura A; Schlabritz-Loutsevitch, Natalia; Hubbard, Gene B; Nijland, Mark J; McDonald, Thomas J; Nathanielsz, Peter W
2006-01-01
Interpretation of gene array data presents many potential pitfalls in adult tissues. Gene array techniques applied to fetal tissues present additional confounding pitfalls. The left lobe of the fetal liver is supplied with blood containing more oxygen than the right lobe. Since synthetic activity and cell function are oxygen dependent, we hypothesized major differences in mRNA expression between the fetal right and left liver lobes. Our aim was to demonstrate the need to evaluate RNA samples from both lobes. We performed whole genome expression profiling on left and right liver lobe RNA from six 90-day gestation baboon fetuses (term 180 days). Comparing right with left, we found 875 differentially expressed genes – 312 genes were up-regulated and 563 down-regulated. Pathways for damaged DNA binding, endonuclease activity, interleukin binding and receptor activity were up-regulated in right lobe; ontological pathways related to cell signalling, cell organization, cell biogenesis, development, intracellular transport, phospholipid metabolism, protein biosynthesis, protein localization, protein metabolism, translational regulation and vesicle mediated transport were down-regulated in right lobe. Molecular pathway analysis showed down-regulation of pathways related to heat shock protein binding, ion channel and transporter activities, oxygen binding and transporter activities, translation initiation and translation regulator activities. Genes involved in amino acid biosynthesis, lipid biosynthesis and oxygen transport were also differentially expressed. This is the first demonstration of RNA differences between the two lobes of the fetal liver. The data support the argument that a complete interpretation of gene expression in the developing liver requires data from both lobes. PMID:16484296
Bigaud, Emilie; Corrales, Fernando J.
2016-01-01
Methylthioadenosine phosphorylase (MTAP), a key enzyme in the adenine and methionine salvage pathways, catalyzes the hydrolysis of methylthioadenosine (MTA), a compound suggested to affect pivotal cellular processes in part through the regulation of protein methylation. MTAP is expressed in a wide range of cell types and tissues, and its deletion is common to cancer cells and in liver injury. The aim of this study was to investigate the proteome and methyl proteome alterations triggered by MTAP deficiency in liver cells to define novel regulatory mechanisms that may explain the pathogenic processes of liver diseases. iTRAQ analysis resulted in the identification of 216 differential proteins (p < 0.05) that suggest deregulation of cellular pathways as those mediated by ERK or NFκB. R-methyl proteome analysis led to the identification of 74 differentially methylated proteins between SK-Hep1 and SK-Hep1+ cells, including 116 new methylation sites. Restoring normal MTA levels in SK-Hep1+ cells parallels the specific methylation of 56 proteins, including KRT8, TGF, and CTF8A, which provides a novel regulatory mechanism of their activity with potential implications in carcinogenesis. Inhibition of RNA-binding proteins methylation is especially relevant upon accumulation of MTA. As an example, methylation of quaking protein in Arg242 and Arg256 in SK-Hep1+ cells may play a pivotal role in the regulation of its activity as indicated by the up-regulation of its target protein p27kip1. The phenotype associated with a MTAP deficiency was further verified in the liver of MTAP± mice. Our data support that MTAP deficiency leads to MTA accumulation and deregulation of central cellular pathways, increasing proliferation and decreasing the susceptibility to chemotherapeutic drugs, which involves differential protein methylation. Data are available via ProteomeXchange with identifier PXD002957 (http://www.ebi.ac.uk/pride/archive/projects/PXD002957). PMID:26819315
Liang, Dandan; Chen, Hongjin; Zhao, Leping; Zhang, Wenxin; Hu, Jie; Liu, Zhiguo; Zhong, Peng; Wang, Wei; Wang, Jingying; Liang, Guang
2018-01-01
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. NAFLD begins with steatosis and advances to nonalcoholic steatohepatitis (NASH) and cirrhosis. The molecular mechanisms involved in NAFLD progression are not understood. Based on recent studies showing dysregulation of epidermal growth factor receptor (EGFR) in animal models of liver injury, we sought to determine if inhibition of EGFR mitigates liver fibrosis and HSC activation in NAFLD. We utilized the high fat diet (HFD)-induced murine model of liver injury to study the role of EGFR in NAFLD. The lipid accumulation, oxidative stress, hepatic stellate cell (HSC) activation and matrix deposition were examined in the liver tissues. We also evaluated the EGFR signaling pathway, ROS activation and pro-fibrogenic phenotype in oxidized low density lipoproteins (ox-LDL) challenged cultured HSCs. We demonstrate that EGFR was phosphorylated in liver tissues of HFD murine model of NAFLD. Inhibition of EGFR prevented diet-induced lipid accumulation, oxidative stress, and HSC activation and matrix deposition. In cultured HSCs, we show that ox-LDL caused rapid activation of the EGFR signaling pathway and induce the production of reactive oxygen species. EGFR also mediated HSC activation and promoted a pro-fibrogenic phenotype. In conclusion, our data demonstrate that EGFR plays an important role in NAFLD and is an attractive target for NAFLD therapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Xu, P; Xu, H; Tang, X; Xu, L; Wang, Y; Guo, L; Yang, Z; Xing, Y; Wu, Y; Warner, M; Gustafsson, J-A; Fan, X
2014-08-01
Several psychiatric disorders are associated with aberrant white matter development, suggesting oligodendrocyte and myelin dysfunction in these diseases. There are indications that radial glial cells (RGCs) are involved in initiating myelination, and may contribute to the production of oligodendrocyte progenitor cells (OPCs) in the dorsal cortex. Liver X receptors (LXRs) are involved in maintaining normal myelin in the central nervous system (CNS), however, their function in oligodendrogenesis and myelination is not well understood. Here, we demonstrate that loss of LXRβ function leads to abnormality in locomotor activity and exploratory behavior, signs of anxiety and hypomyelination in the corpus callosum and optic nerve, providing in vivo evidence that LXRβ deletion delays both oligodendrocyte differentiation and maturation. Remarkably, along the germinal ventricular zone-subventricular zone and corpus callosum there is reduced OPC production from RGCs in LXRβ(-/-) mice. Conversely, in cultured RGC an LXR agonist led to increased differentiation into OPCs. Collectively, these results suggest that LXRβ, by driving RGCs to become OPCs in the dorsal cortex, is critical for white matter development and CNS myelination, and point to the involvement of LXRβ in psychiatric disorders.
He, Wenhua; Shi, Feng; Zhou, Zhi-Wei; Li, Bimin; Zhang, Kunhe; Zhang, Xinhua; Ouyang, Canhui; Zhou, Shu-Feng; Zhu, Xuan
2015-01-01
NADPH oxidases (NOXs) are a predominant mediator of redox homeostasis in hepatic stellate cells (HSCs), and oxidative stress plays an important role in the pathogenesis of liver fibrosis. Ursolic acid (UA) is a pentacyclic triterpenoid with various pharmacological activities, but the molecular targets and underlying mechanisms for its antifibrotic effect in the liver remain elusive. This study aimed to computationally predict the molecular interactome and mechanistically investigate the antifibrotic effect of UA on oxidative stress, with a focus on NOX4 activity and cross-linked signaling pathways in human HSCs and rat liver. Drug–drug interaction via chemical–protein interactome tool, a server that can predict drug–drug interaction via chemical–protein interactome, was used to predict the molecular targets of UA, and Database for Annotation, Visualization, and Integrated Discovery was employed to analyze the signaling pathways of the predicted targets of UA. The bioinformatic data showed that there were 611 molecular proteins possibly interacting with UA and that there were over 49 functional clusters responding to UA. The subsequential benchmarking data showed that UA significantly reduced the accumulation of type I collagen in HSCs in rat liver, increased the expression level of MMP-1, but decreased the expression level of TIMP-1 in HSC-T6 cells. UA also remarkably reduced the gene expression level of type I collagen in HSC-T6 cells. Furthermore, UA remarkably attenuated oxidative stress via negative regulation of NOX4 activity and expression in HSC-T6 cells. The employment of specific chemical inhibitors, SB203580, LY294002, PD98059, and AG490, demonstrated the involvement of ERK, PI3K/Akt, and p38 MAPK signaling pathways in the regulatory effect of UA on NOX4 activity and expression. Collectively, the antifibrotic effect of UA is partially due to the oxidative stress attenuating effect through manipulating NOX4 activity and expression. The results suggest that UA may act as a promising antifibrotic agent. More studies are warranted to evaluate the safety and efficacy of UA in the treatment of liver fibrosis. PMID:26347199
Extranodal non-Hodgkins lymphoma of larynx.
Aiyer, R G; Soni, Geeta; Chougule, Sachin; Unnikrishnan; Nagpal, Tapan
2004-10-01
Non-Hodgkins lymphoma is found in the older age group with extranoda involvement more commonly seen than in Hodgkins lymphomna. It isusually of B-cell type which has a better prognosis than T-cell type, Extranodal Non-Hodkin's lymphomas of larynx are rare. they can present as isolated lesions in larynx or associated with multiple involvement. They are usually found in the supraglottic region of the larynx. We present a case of 70-year-old female with extranodal Hodgkins lymphoma of epiglottis with metastasis in the liver.
Helper-dependent adenoviral vectors for liver-directed gene therapy
Brunetti-Pierri, Nicola; Ng, Philip
2011-01-01
Helper-dependent adenoviral (HDAd) vectors devoid of all viral-coding sequences are promising non-integrating vectors for liver-directed gene therapy because they have a large cloning capacity, can efficiently transduce a wide variety of cell types from various species independent of the cell cycle and can result in long-term transgene expression without chronic toxicity. The main obstacle preventing clinical applications of HDAd for liver-directed gene therapy is the host innate inflammatory response against the vector capsid proteins that occurs shortly after intravascular vector administration resulting in acute toxicity, the severity of which is dependent on vector dose. Intense efforts have been focused on elucidating the factors involved in this acute response and various strategies have been investigated to improve the therapeutic index of HDAd vectors. These strategies have yielded encouraging results with the potential for clinical translation. PMID:21470977
Jin, Haiyan; Yamamoto, Naoki; Uchida, Koichi; Terai, Shuji; Sakaida, Isao
2007-12-28
Rennin-angiotensin system is involved in liver fibrogenesis through activating hepatic stellate cells (HSCs). Telmisartan (Tel) is an angiotensin II type 1 receptor antagonist, could function as a selective peroxisome proliferator-activated receptor gamma activator. Here we studied the effect of Tel on liver fibrosis, pre-neoplastic lesions in vivo and primary HSCs in vitro. In vivo study, we used the choline-deficient L-amino acid-defined (CDAA)-diet induced rat NASH model. The rats were fed the CDAA diet for 8 weeks to induce liver fibrosis and pre-neoplastic lesions, and then co-administrated with Tel for another 10 weeks. Tel prevented liver fibrogenesis and pre-neoplastic lesions by down-regulating TGFbeta1 and TIMP-1, 2 and increasing MMP-13 expression. Tel inhibited HSCs activation and proliferation. These results suggested that Tel could be a promising drug for NASH related liver fibrosis.
Zhao, W M; Qin, Y L; Niu, Z P; Chang, C F; Yang, J; Li, M H; Zhou, Y; Xu, C S
2016-03-24
The NF-kB (nuclear factor kB) pathway is involved in the proliferation of many cell types. To explore the mechanism of the NF-kB signaling pathway underlying the oval cell proliferation during rat liver regeneration, the Rat Genome 230 2.0 Array was used to detect expression changes of NF-kB signaling pathway-related genes in oval cells. The results revealed that the expression levels of many genes in the NF-kB pathway were significantly changed. This included 48 known genes and 16 homologous genes, as well as 370 genes and 85 homologous genes related to cell proliferation. To further understand the biological significance of these changes, an expression profile function was used to analyze the potential biological processes. The results showed that the NF-kB pathway promoted oval cell proliferation mainly through three signaling branches; the tumor necrosis factor alpha branch (TNF-a pathway), the growth factor branch, and the chemokine branch. An integrated statistics method was used to define the key genes in the NF-kB pathway. Seven genes were identified to play vital roles in the NF-kB pathway. To confirm these results, the protein content, including two key genes (TNF and FGF11) and two non-key genes (CCL2 and TNFRSF12A), were analyzed using two-dimensional gel electrophoresis and MALDI-TOF/TOF mass spectrometry. The results were generally consistent with those of the array data. To conclude, three branches and seven key genes were involved in the NF-kB signaling pathway that regulates oval cell proliferation during rat liver regeneration.
Woods, Alisa G.; Lazar, Catalin; Radu, Gabriel L.; Darie, Costel C.; Branza-Nichita, Norica
2013-01-01
Hepatitis B virus (HBV) is a human pathogen causing severe liver disease and eventually death. Despite important progress in deciphering HBV internalization, the early virus-cell interactions leading to infection are not known. HepaRG is a human bipotent liver cell line bearing the unique ability to differentiate towards a mixture of hepatocyte- and biliary-like cells. In addition to expressing metabolic functions normally found in liver, differentiated HepaRG cells support HBV infection in vitro, thus resembling cultured primary hepatocytes more than other hepatoma cells. Therefore, extensive characterization of the plasma membrane proteome from HepaRG cells would allow the identification of new cellular factors potentially involved in infection. Here we analyzed the plasma membranes of non-differentiated and differentiated HepaRG cells using nanoliquid chromatography-tandem mass spectrometry to identify the differences between the proteomes and the changes that lead to differentiation of these cells. We followed up on differentially-regulated proteins in hepatocytes- and biliary-like cells, focusing on Cathepsins D and K, Cyclophilin A, Annexin 1/A1, PDI and PDI A4/ERp72. Major differences between the two proteomes were found, including differentially regulated proteins, protein-protein interactions and intracellular localizations following differentiation. The results advance our current understanding of HepaRG differentiation and the unique properties of these cells. PMID:23977166
Petrareanu, Catalina; Macovei, Alina; Sokolowska, Izabela; Woods, Alisa G; Lazar, Catalin; Radu, Gabriel L; Darie, Costel C; Branza-Nichita, Norica
2013-01-01
Hepatitis B virus (HBV) is a human pathogen causing severe liver disease and eventually death. Despite important progress in deciphering HBV internalization, the early virus-cell interactions leading to infection are not known. HepaRG is a human bipotent liver cell line bearing the unique ability to differentiate towards a mixture of hepatocyte- and biliary-like cells. In addition to expressing metabolic functions normally found in liver, differentiated HepaRG cells support HBV infection in vitro, thus resembling cultured primary hepatocytes more than other hepatoma cells. Therefore, extensive characterization of the plasma membrane proteome from HepaRG cells would allow the identification of new cellular factors potentially involved in infection. Here we analyzed the plasma membranes of non-differentiated and differentiated HepaRG cells using nanoliquid chromatography-tandem mass spectrometry to identify the differences between the proteomes and the changes that lead to differentiation of these cells. We followed up on differentially-regulated proteins in hepatocytes- and biliary-like cells, focusing on Cathepsins D and K, Cyclophilin A, Annexin 1/A1, PDI and PDI A4/ERp72. Major differences between the two proteomes were found, including differentially regulated proteins, protein-protein interactions and intracellular localizations following differentiation. The results advance our current understanding of HepaRG differentiation and the unique properties of these cells.
Marlicz, W; Wunsch, E; Mydlowska, M; Milkiewicz, M; Serwin, K; Mularczyk, M; Milkiewicz, P; Raszeja-Wyszomirska, J
2016-12-01
The evidence is mounting that alterations of innate immunity and gut microbiota contribute to chronic liver disease and its complications. Modulation of intestinal microbiota is an emerging therapeutic strategy in hepatology. Probiotics through modulation of intestinal milieu have the potential to affect the course of liver disease. The data concerning the influence of probiotics on various plasma molecules and compounds involved in the pathogenesis of hyperdynamic circulatory state in liver cirrhosis is still not confluent and require further evaluation. In our study twenty patients with compensated and decompensated liver cirrhosis and ten healthy controls received probiotic VSL#3 daily for 28 days. Plasma levels of interleukin 6 (IL-6), vascular endothelial growth factor (VEGF), plasminogen activator inhibitor (PAI), macrophage inflammatory protein 3/α (MIP-3 α/CCL20), monocyte chemotactic protein-1α (MCP-1/CCL2), human myeloperoxidase (MPO), nitric oxide (NO), prostaglandins, thromboxane (TXB 2 ) and big-endothelin were measured at baseline, day 14 and 28 of probiotic administration. The incidence of hepatic encephalopathy was assessed with critical flicker frequency. Changes in clinical, biochemical and microbiological parameters were evaluated. The stage of liver cirrhosis correlated with an increase in plasma levels of pro-inflammatory cytokines (IL-6) and chemotactic chemokines involved in immune cell trafficking (MIP-3α/CCL20). Probiotic administration in patients with liver cirrhosis led to modulation of plasma levels of several molecules and compounds measured (MIP-3α/CCL20, NO, big-endothelin, TXB 2 and MPO). The grade of encephalopathy during the course of probiotic supplementation remained unaffected in both groups of patients. VSL#3 treatment was well tolerated and safe in patients with liver disease. In patients with compensated and decompensated liver cirrhosis, VSL#3 manipulates selected plasma molecules and compounds involved in hyperdynamic circulatory dysfunction. Short term VSL#3 administration affects several clinical and biochemical parameters commonly altered in liver cirrhosis.
Modulation of TGF-beta signaling during progression of chronic liver diseases.
Matsuzaki, Koichi
2009-01-01
A large body of work has established roles for epithelial cells as important mediators of progressive fibrosis and carcinogenesis. Transforming growth factor-beta (TGF-beta) and pro-inflammatory cytokines are important inducers of fibro-carcinogenesis. TGF-beta signaling involves phosphorylation of Smad3 at middle linker and/or C-terminal regions. Reversible shifting of Smad3-dependent signaling between tumor-suppression and oncogenesis in hyperactive Ras-expressing epithelial cells indicates that Smad3 phosphorylated at the C-terminal region (pSmad3C) transmits a tumor-suppressive TGF-beta signal, while oncogenic activities such as cell proliferation and invasion are promoted by Smad3 phosphorylated at the linker region (pSmad3L). Notably, pSmad3L-mediated signaling promotes extracellular matrix deposition by activated mesenchymal cells. During progression of chronic liver diseases, hepatic epithelial hepatocytes undergo transition from the tumor-suppressive pSmad3C pathway to the fibrogenic/oncogenic pSmad3L pathway, accelerating liver fibrosis and increasing risk of hepatocellular carcinoma. c-Jun N-terminal kinase activated by pro-inflammatory cytokines is mediating this perturbed hepatocytic TGF-beta signaling. Thus, TGF-beta signaling of hepatocytes affected by chronic inflammation offers a general framework for understanding the molecular mechanisms of human fibro-carcinogenesis during progression of chronic liver diseases.
Wang, Baogui; Li, Lumin; Fu, Jing; Yu, Ping; Gong, Deming; Zeng, Cheng; Zeng, Zheling
2016-03-01
Nonalcoholic fatty liver disease (NAFLD) is closely associated with obesity-related metabolic complications, which caused by excess energy intake and physical inactivity apart from genetic defects. The mechanisms that promote disease progression from NAFLD to further liver injury are still unclear. We hypothesize that the progression involved "2nd hit" is strongly influenced by the type of fatty acids in diets. Flow cytometric analysis showed that medium-chain fatty acid (MCFA) markedly decreased the percentage of late apoptotic and necrotic cells compared with long-chain fatty acid (LCFA), and MCFA inhibited the activities of caspase-3 and -9 in human liver cells with steatosis. Western blot analysis found that the levels of inflammatory markers (interleukin [IL]-6, IL-1-β, and tumor necrosis factor-α) were substantially reduced by MCFA compared with LCFA. Proteomic analysis further showed that LCFA inhibited the expression of antioxidant enzymes, and increased the expression of proteins associated with oxidative stress. It was found that LCFA (palmitate), not MCFA induced apoptosis, oxidative stress and chronic inflammatory responses in the hepatic cells with steatosis. In conclusion, reasonable selection of dietary fats has potential to translate therapeutically by ameliorating disease progression in patients with NAFLD. © 2016 Institute of Food Technologists®
Sauer, Vanessa; Tchaikovskaya, Tatyana; Wang, Xia; Li, Yanfeng; Zhang, Wei; Tar, Krisztina; Polgar, Zsuzsanna; Ding, Jianqiang; Guha, Chandan; Fox, Ira J; Roy-Chowdhury, Namita; Roy-Chowdhury, Jayanta
2016-12-13
Although several types of somatic cells have been reprogrammed into induced pluripotent stem cells (iPSCs) and then differentiated to hepatocyte-like cells (iHeps), the method for generating such cells from renal tubular epithelial cells shed in human urine and transplanting them into animal livers has not been described systematically. We report reprogramming of human urinary epithelial cells into iPSCs and subsequent hepatic differentiation, followed by a detailed characterization of the newly generated iHeps. The epithelial cells were reprogrammed into iPSCs by delivering the pluripotency factors OCT3/4, SOX2, KLF4, and MYC using methods that do not involve transgene integration, such as nucleofection of episomal (oriP/EBNA-1) plasmids or infection with recombinant Sendai viruses. After characterization of stable iPSC lines, a three-step differentiation toward hepatocytes was performed. The iHeps expressed a large number of hepatocyte-preferred genes, including nuclear receptors that regulate genes involved in cholesterol homeostasis, bile acid transport, and detoxification. MicroRNA profile of the iHeps largely paralleled that of primary human hepatocytes. The iHeps engrafted into the livers of Scid mice transgenic for mutant human SERPINA1 after intrasplenic injection. Thus, urine is a readily available source for generating human iHeps that could be potentially useful for disease modeling, pharmacological development, and regenerative medicine.
Samlowski, W E; Spangrude, G J; Daynes, R A
1984-10-15
The removal of "effete" glycoproteins from the circulation represents a proposed physiologic role for the hepatocyte asialoglycoprotein receptor. Our experiments support the hypothesis that this receptor may also be directly involved in the removal from the circulation of cells bearing asialoglycoconjugates. We report that the enhanced liver localization of neuraminidase-treated lymphocytes can be competitively inhibited by the coinjection of asialofetuin (ASF). Fetuin itself was without effect. Competitive inhibition of the liver receptor allowed normal localization to lymphoid tissues of the enzyme-treated lymphocytes, a condition which persisted as long as free ASF was present in the circulation. Our studies support the concept that cell surface carbohydrates play an important role in the tissue distribution of circulating lymphocytes. The process of thymocyte maturation, bone marrow transplantation, and the adoptive immunotherapy with continuous T-cell lines represent conditions where recirculation potential may be influenced by the presence of galactose terminal glycoconjugates.
Matesan, Manuela; Rajendran, Joseph; Press, Oliver W.; Maloney, David G.; Storb, Rainer F.; Cassaday, Ryan D.; Pagel, John M.; Oliveira, George; Gopal, Ajay K.
2014-01-01
Biodistribution data to-date using 111In- ibritumomab tiuxetan has been initially obtained in patients with <25% lymphomatous bone marrow involvement and adequate hematopoietic synthetic function. In this article we present the results of an analysis of the biodistribution data obtained from a cohort of patients with extensive bone marrow involvement, baseline cytopenias, and chronic lymphocytic leukemia (CLL). Thirty nine patients with diagnosis of B-cell lymphoma or CLL expressing the CD20 antigen, who had failed at least one prior regimen, and had evidence of persistent disease were included in this analysis, however only 38 of these completed the treatment. Semiquantitative analysis of the biodistribution was performed using regions of interest (ROI) over the liver, lungs, kidneys, spleen and sacrum. The observed interpatient variability including higher liver uptake in 4 patients is discussed. No severe solid organs toxicity was observed at the maximum administered activity of 1184 MBq (32 mCi) 90Yibritumomab tiuxetan. After accounting for differences in marrow involvement, patients with CLL exhibit comparable biodistributions to those with B-NHL. We found that the estimated sacral marrow uptake on 48 hour images in patients with bone marrow involvement may be an indicator of bone marrow involvement. There was no correlation between tumor visualization and response to treatment. These data suggest that the imaging step is not critical when the administered activity is below 1184 MBq (32 mCi). However our analysis confirms that the semiquantitative imaging data can be used to identify patients at risk for liver toxicity when higher doses of 90Y- ibritumomab tiuxetan are used. Patients with CLL can have excellent targeting of disease by 111Inibritumomab tiuxetan, indicating potential efficacy in this patient population. PMID:25076159
Seshachalam, Veerabrahma Pratap; Sekar, Karthik; Hui, Kam M
2018-04-19
Hepatitis B virus, hepatitis C virus, alcoholic consumption and non-alcoholic fatty liver are the major known risk factors for Hepatocellular carcinoma (HCC). There have been very few studies comparing the underlying biological mechanisms associated with the different etiologies of HCC. In this study, we hypothesized the existence of different regulatory networks associated with different liver disease etiologies involved in hepatocarcinogenesis. Using upstream regulatory analysis tool in ingenuity pathway analysis software, URs were predicted using differential expressed genes for HCC to facilitate the interrogation of global gene regulation. Analysis of regulatory networks for HBV HCC revealed E2F1 as activated UR, regulating genes involved in cell cycle and DNA replication and HNF4A and HNF1A as inhibited UR. In HCV HCC, IFNG, involved in cellular movement and signaling was activated while IL1RN, MAPK1 involved in IL-22 signaling and immune response was inhibited. In Alcoholic-consumption HCC, ERBB2 involved in inflammatory response and cellular movement was activated, whereas HNF4A, NUPR1 were inhibited. For HCC derived from Non-alcoholic fatty liver disease, miR-1249-5p was activated and NUPR1 involved in cell cycle and apoptosis was inhibited. The prognostic value of representative genes identified in the regulatory networks for HBV HCC can be further validated by an independent HBV HCC dataset established in our laboratory with survival data. Our study identified functionally distinct candidate URs for HCC developed from different etiologic risk factors. Further functional validation studies of these regulatory networks could facilitate the management of HCC towards personalized medicine. This article is protected by copyright. All rights reserved.
Michelotti, Gregory A; Tucker, Anikia; Swiderska-Syn, Marzena; Machado, Mariana Verdelho; Choi, Steve S; Kruger, Leandi; Soderblom, Erik; Thompson, J Will; Mayer-Salman, Meredith; Himburg, Heather A; Moylan, Cynthia A; Guy, Cynthia D; Garman, Katherine S; Premont, Richard T; Chute, John P; Diehl, Anna Mae
2016-04-01
The ductular reaction (DR) involves mobilisation of reactive-appearing duct-like cells (RDC) along canals of Hering, and myofibroblastic (MF) differentiation of hepatic stellate cells (HSC) in the space of Disse. Perivascular cells in stem cell niches produce pleiotrophin (PTN) to inactivate the PTN receptor, protein tyrosine phosphatase receptor zeta-1 (PTPRZ1), thereby augmenting phosphoprotein-dependent signalling. We hypothesised that the DR is regulated by PTN/PTPRZ1 signalling. PTN-GFP, PTN-knockout (KO), PTPRZ1-KO, and wild type (WT) mice were examined before and after bile duct ligation (BDL) for PTN, PTPRZ1 and the DR. RDC and HSC from WT, PTN-KO, and PTPRZ1-KO mice were also treated with PTN to determine effects on downstream signaling phosphoproteins, gene expression, growth, and migration. Liver biopsies from patients with DRs were also interrogated. Although quiescent HSC and RDC lines expressed PTN and PTPRZ1 mRNAs, neither PTN nor PTPRZ1 protein was demonstrated in healthy liver. BDL induced PTN in MF-HSC and increased PTPRZ1 in MF-HSC and RDC. In WT mice, BDL triggered a DR characterised by periportal accumulation of collagen, RDC and MF-HSC. All aspects of this DR were increased in PTN-KO mice and suppressed in PTPRZ1-KO mice. In vitro studies revealed PTN-dependent accumulation of phosphoproteins that control cell-cell adhesion and migration, with resultant inhibition of cell migration. PTPRZ1-positive cells were prominent in the DRs of patients with ductal plate defects and adult cholestatic diseases. PTN, and its receptor, PTPRZ1, regulate the DR to liver injury by controlling the migration of resident cells in adult liver progenitor niches. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Lutz, Stefan Z.; Hennige, Anita M.; Feil, Susanne; Peter, Andreas; Gerling, Andrea; Machann, Jürgen; Kröber, Stefan M.; Rath, Michaela; Schürmann, Annette; Weigert, Cora; Häring, Hans-Ulrich; Feil, Robert
2011-01-01
OBJECTIVE The nitric oxide/cGMP/cGMP-dependent protein kinase type I (cGKI) signaling pathway regulates cell functions that play a pivotal role in the pathogenesis of type 2 diabetes. However, the impact of a dysfunction of this pathway for glucose metabolism in vivo is unknown. RESEARCH DESIGN AND METHODS The expression of cGKI in tissues relevant to insulin action was analyzed by immunohistochemistry. The metabolic consequences of a genetic deletion of cGKI were studied in mice that express cGKI selectively in smooth muscle but not in other cell types (cGKI-SM mice). RESULTS In wild-type mice, cGKI protein was detected in hepatic stellate cells, but not in hepatocytes, skeletal muscle, fat cells, or pancreatic β-cells. Compared with control animals, cGKI-SM mice had higher energy expenditure in the light phase associated with lower body weight and fat mass and increased insulin sensitivity. Mutant mice also showed higher fasting glucose levels, whereas insulin levels and intraperitoneal glucose tolerance test results were similar to those in control animals. Interleukin (IL)-6 signaling was strongly activated in the liver of cGKI-SM mice as demonstrated by increased levels of IL-6, phospho-signal transducer and activator of transcription 3 (Tyr 705), suppressor of cytokine signaling-3, and serum amyloid A2. Insulin-stimulated tyrosine phosphorylation of the insulin receptor in the liver was impaired in cGKI-SM mice. The fraction of Mac-2–positive macrophages in the liver was significantly higher in cGKI-SM mice than in control mice. In contrast with cGKI-SM mice, conditional knockout mice lacking cGKI only in the nervous system were normal with respect to body weight, energy expenditure, fasting glucose, IL-6, and insulin action in the liver. CONCLUSIONS Genetic deletion of cGKI in non-neuronal cells results in a complex metabolic phenotype, including liver inflammation and fasting hyperglycemia. Loss of cGKI in hepatic stellate cells may affect liver metabolism via a paracrine mechanism that involves enhanced macrophage infiltration and IL-6 signaling. PMID:21464444
Kuo, Fang-Ying; Huang, Hsuan-Ying; Chen, Chao-Long; Eng, Hock-Liew; Huang, Chao-Cheng
2017-09-01
A recurrent YAP1-TFE3 gene fusion has been identified in WWTR1-CAMTA1-negative epithelioid hemangioendotheliomas arising in soft tissue, bone, and lung, but not in liver. We present the first case of TFE3-rearranged hepatic epithelioid hemangioendothelioma in a 39-year-old Taiwanese woman. Computed tomography scan revealed multifocal, ill-defined nodules involving both hepatic lobes. She then underwent deceased donor liver transplantation. Histologically, the tumors in the liver explant showed a biphasic growth pattern. One component was composed of dilated and well-formed blood vessels lined by epithelioid cells with abundant eosinophilic cytoplasm, mimicking an alveolar pattern, whereas the other component was composed of cords and single cells, featuring intracytoplasmic vacuoles, separated by a myxoid stroma. The tumor cells showed vesicular nuclei and small indistinct nucleoli with mild to moderate cytologic atypia. Most tumor cells showed factor VIII, CD34, CD31, and TFE3 positivity in immunohistochemical study. Fluorescence in situ hybridization analysis for the tumor cells exhibited TFE3 gene rearrangement. The patient is currently alive, and no post-operative tumor recurrence developed during a 13-year follow-up. Awareness of this rare vasoformative variant and identification of the gene rearrangement would be helpful on differential diagnosis with other high-grade carcinoma and angiosarcoma of liver. © 2017 APMIS. Published by John Wiley & Sons Ltd.
Shi, Xiao-Lei; Mancham, Shanta; Hansen, Bettina E; de Knegt, Robert J; de Jonge, Jeroen; van der Laan, Luc J W; Rivadeneira, Fernando; Metselaar, Herold J; Kwekkeboom, Jaap
2016-06-01
Co-inhibitory receptor-ligand interactions fine-tune immune responses by negatively regulating T cell functions. Our aim is to examine the involvement of co-inhibitory receptor-ligand pair PD-1/PD-L1 in regulating rejection after liver transplantation (LT) in humans. PD-L1/PD-1 expression in liver allograft was determined by immunohistochemistry or flow cytometry, and the effect of blockade was studied using graft-infiltrating T cells ex vivo. Five single nucleotide polymorphisms within PD-1 and PD-L1 genes were genotyped in 528 LT recipients and 410 donors, and associations with both early (⩽6months) and late (>6months) acute rejection were analyzed using Cox proportional-hazards regression model. The effect of PD-L1 rs4143815 on PD-L1 expression was analyzed using donor hepatic leukocytes. PD-L1 was expressed by hepatocytes, cholangiocytes and along the sinusoids in post-transplant liver allografts, and PD-1 was abundantly expressed on allograft-infiltrating T cells. PD-L1 blockade enhanced allogeneic proliferative responses of graft-infiltrating T cells. In the genetic association analysis, donor PD-L1 rs4143815 (CC/CG vs. GG; HR=0.230; p=0.002) and recipient PD-1 rs11568821 (AA/AG vs. GG; HR=3.739; p=0.004) were associated with acute rejection late after LT in multivariate analysis. Recipients carrying the PD-1 rs11568821 A allele who were transplanted with liver grafts of PD-L1 rs4143815 GG homozygous donors showed the highest risk for late acute rejection. PD-L1 rs4143815 is associated with differential PD-L1 expression on donor hepatic dendritic cells upon IFN-γ stimulation. Our data suggest that interplay between donor PD-L1 and recipient PD-1 counter-regulates rejection activity against liver grafts in humans. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Liver natural killer cells: subsets and roles in liver immunity
Peng, Hui; Wisse, Eddie; Tian, Zhigang
2016-01-01
The liver represents a frontline immune organ that is constantly exposed to a variety of gut-derived antigens as a result of its unique location and blood supply. With a predominant role in innate immunity, the liver is enriched with various innate immune cells, among which natural killer (NK) cells play important roles in host defense and in maintaining immune balance. Hepatic NK cells were first described as ‘pit cells' in the rat liver in the 1970s. Recent studies of NK cells in mouse and human livers have shown that two distinct NK cell subsets, liver-resident NK cells and conventional NK (cNK) cells, are present in this organ. Here, we review liver NK cell subsets in different species, revisiting rat hepatic pit cells and highlighting recent progress related to resident NK cells in mouse and human livers, and also discuss the dual roles of NK cells in liver immunity. PMID:26639736
Elshenawy, Osama H.; Shoieb, Sherif M.; Mohamed, Anwar; El-Kadi, Ayman O.S.
2017-01-01
Cytochrome P450-mediated metabolism of arachidonic acid (AA) is an important pathway for the formation of eicosanoids. The ω-hydroxylation of AA generates significant levels of 20-hydroxyeicosatetraenoic acid (20-HETE) in various tissues. In the current review, we discussed the role of 20-HETE in the kidney, liver, lung, and brain during physiological and pathophysiological states. Moreover, we discussed the role of 20-HETE in tumor formation, metabolic syndrome and diabetes. In the kidney, 20-HETE is involved in modulation of preglomerular vascular tone and tubular ion transport. Furthermore, 20-HETE is involved in renal ischemia/reperfusion (I/R) injury and polycystic kidney diseases. The role of 20-HETE in the liver is not clearly understood although it represents 50%–75% of liver CYP-dependent AA metabolism, and it is associated with liver cirrhotic ascites. In the respiratory system, 20-HETE plays a role in pulmonary cell survival, pulmonary vascular tone and tone of the airways. As for the brain, 20-HETE is involved in cerebral I/R injury. Moreover, 20-HETE has angiogenic and mitogenic properties and thus helps in tumor promotion. Several inhibitors and inducers of the synthesis of 20-HETE as well as 20-HETE analogues and antagonists are recently available and could be promising therapeutic options for the treatment of many disease states in the future. PMID:28230738
Ccdc3: A New P63 Target Involved in Regulation Of Liver Lipid Metabolism.
Liao, Wenjuan; Liu, Hongbing; Zhang, Yiwei; Jung, Ji Hoon; Chen, Jiaxiang; Su, Xiaohua; Kim, Yeong C; Flores, Elsa R; Wang, San Ming; Czarny-Ratajczak, Malwina; Li, Wen; Zeng, Shelya X; Lu, Hua
2017-08-21
TAp63, a member of the p53 family, has been shown to regulate energy metabolism. Here, we report coiled coil domain-containing 3 (CCDC3) as a new TAp63 target. TAp63, but not ΔNp63, p53 or p73, upregulates CCDC3 expression by directly binding to its enhancer region. The CCDC3 expression is markedly reduced in TAp63-null mouse embryonic fibroblasts and brown adipose tissues and by tumor necrosis factor alpha that reduces p63 transcriptional activity, but induced by metformin, an anti-diabetic drug that activates p63. Also, the expression of CCDC3 is positively correlated with TAp63 levels, but conversely with ΔNp63 levels, during adipocyte differentiation. Interestingly, CCDC3, as a secreted protein, targets liver cancer cells and increases long chain polyunsaturated fatty acids, but decreases ceramide in the cells. CCDC3 alleviates glucose intolerance, insulin resistance and steatosis formation in transgenic CCDC3 mice on high-fat diet (HFD) by reducing the expression of hepatic PPARγ and its target gene CIDEA as well as other genes involved in de novo lipogenesis. Similar results are reproduced by hepatic expression of ectopic CCDC3 in mice on HFD. Altogether, these results demonstrate that CCDC3 modulates liver lipid metabolism by inhibiting liver de novo lipogenesis as a downstream player of the p63 network.
Isolated hepatocytes--past, present and future.
Berry, M N; Grivell, A R; Grivell, M B; Phillips, J W
1997-07-01
The first technique for large-scale preparation of isolated hepatocytes was described in 1953 and involved perfusion of rat liver under pressure with a Ca(2+)-free solution containing a chelating agent. Various modifications of this technique were in use over the next ten years, until it was demonstrated that cells prepared in this manner were grossly damaged, losing most of their cytoplasmic enzymes during the preparative procedure. The successful preparation of intact isolated hepatocytes by collagenase-treatment of liver was achieved in 1967, and the widespread use of intact hepatocyte suspensions was accelerated by the development soon after of high-yield preparative techniques involving perfusion of the liver with a medium containing collagenase. The introduction of the isolated hepatocyte preparation has enabled experimental studies that otherwise would not be feasible. Important advances have been the use of cultured hepatocytes, frequently of human origin, for the investigation of the metabolism and toxicology of potential therapeutic agents. Success in this field has been achieved through the steady improvement in techniques for the maintenance in culture of differentiated hepatocytes, and in particular their cytochrome P450 complexes. Another area showing considerable promise is the employment of hepatocytes, generally from a porcine source, in temporary support systems for patients with acute liver failure. Our own studies have concentrated on the demonstration of long-range interactions between hepatocyte compartments which suggest that energy transfer between cell compartments can take place without ATP turnover.
Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice.
Kong, Xiaoni; Feng, Dechun; Wang, Hua; Hong, Feng; Bertola, Adeline; Wang, Fu-Sheng; Gao, Bin
2012-09-01
Interleukin (IL)-22 is known to play a key role in promoting antimicrobial immunity, inflammation, and tissue repair at barrier surfaces by binding to the receptors, IL-10R2 and IL-22R1. IL-22R1 is generally thought to be expressed exclusively in epithelial cells. In this study, we identified high levels of IL-10R2 and IL-22R1 expression on hepatic stellate cells (HSCs), the predominant cell type involved in liver fibrogenesis in response to liver damage. In vitro treatment with IL-22 induced the activation of signal transducer and activator of transcription (STAT) 3 in primary mouse and human HSCs. IL-22 administration prevented HSC apoptosis in vitro and in vivo, but surprisingly, the overexpression of IL-22 by either gene targeting (e.g., IL-22 transgenic mice) or exogenous administration of adenovirus expressing IL-22 reduced liver fibrosis and accelerated the resolution of liver fibrosis during recovery. Furthermore, IL-22 overexpression or treatment increased the number of senescence-associated beta-galactosidase-positive HSCs and decreased alpha-smooth muscle actin expression in fibrotic livers in vivo and cultured HSCs in vitro. Deletion of STAT3 prevented IL-22-induced HSC senescence in vitro, whereas the overexpression of a constitutively activated form of STAT3 promoted HSC senescence through p53- and p21-dependent pathways. Finally, IL-22 treatment up-regulated the suppressor of cytokine signaling (SOCS) 3 expression in HSCs. Immunoprecipitation analyses revealed that SOCS3 bound p53 and subsequently increased the expression of p53 and its target genes, contributing to IL-22-mediated HSC senescence. IL-22 induces the senescence of HSCs, which express both IL-10R2 and IL-22R1, thereby ameliorating liver fibrogenesis. The antifibrotic effect of IL-22 is likely mediated by the induction of HSC senescence, in addition to the previously discovered hepatoprotective functions of IL-22. Copyright © 2012 American Association for the Study of Liver Diseases.
Nucleophosmin/B23 is a proliferate shuttle protein associated with nuclear matrix.
Yun, Jing-Ping; Chew, Eng Ching; Liew, Choong-Tsek; Chan, John Y H; Jin, Mei-Lin; Ding, Ming-Xiao; Fai, Yam Hin; Li, H K Richard; Liang, Xiao-Man; Wu, Qiu-Liang
2003-12-15
It has become obvious that a better understanding and potential elucidation of the nucleolar phosphoprotein B23 involving in functional interrelationship between nuclear organization and gene expression. In present study, protein B23 expression were investigated in the regenerative hepatocytes at different periods (at days 0, 1, 2, 3, 4, 7) during liver regeneration after partial hepatectomy on the rats with immunohistochemistry and Western blot analysis. Another experiment was done with immunolabeling methods and two-dimensional (2-D) gel electrophoresis for identification of B23 in the regenerating hepatocytes and HepG2 cells (hepatoblastoma cell line) after sequential extraction with detergents, nuclease, and salt. The results showed that its expression in the hepatocytes had a locative move and quantitative change during the process of liver regeneration post-operation. Its immunochemical localization in the hepatocytes during the process showed that it moved from nucleoli of the hepatocytes in the stationary stage to nucleoplasm, cytoplasm, mitotic spindles, and mitotic chromosomes of the hepatocytes in the regenerating livers. It was quantitatively increased progressively to peak level at day 3 post-operation and declined gradually to normal level at day 7. It was detected in nuclear matrix protein (NMP) composition extracted from the regenerating hepatocytes and HepG2 cells and identified with isoelectric point (pI) value of 5.1 and molecular weight of 40 kDa. These results indicated that B23 was a proliferate shuttle protein involving in cell cycle and cell proliferation associated with nuclear matrix. Copyright 2003 Wiley-Liss, Inc.
Jaramillo-Esparza, C M; Consuelo-Sánchez, A; Acosta-Rodríguez-Bueno, C P; Ramón-García, G; Sadowinski-Pine, S W; Escobar-Sánchez, M A; Castorena-Villa, I; Gaytán-Morales, F; Vázquez-Frias, R
2018-02-24
Graft-versus-host disease (GVHD) is a common multisystemic complication of allogeneic hematopoietic cell transplantation. The most frequent presentations of graft-versus-host disease involve the skin, the gastrointestinal tract, and the liver. The aim of the present study was to know the frequency of gastrointestinal tract and liver GVHD and the characteristics of disease presentation in pediatric patients that underwent hematopoietic stem cell transplantation (HSCT) at a tertiary care hospital center in Mexico City. A retrospective study was carried out, utilizing the case records of patients that underwent HSCT in 2015, to determine the frequency of GVHD in pediatric patients at a Mexican tertiary care hospital center. In 2015, 16 HSCT were performed, 11 of which were carried out in males (68%). Only 3 patients developed graft-versus-host disease (18.7%). One patient presented with skin and liver GVHD and 2 patients presented with gastrointestinal tract and liver GVHD, which was the most frequent type. HSCT is still an uncommon procedure in Mexico and there is a lower frequency of gastrointestinal tract and liver GVHD than that reported in other studies. Most certainly, there will be an increase in this type of patient and risk factors in the Mexican population must still be determined to help predict the onset of GVHD. Copyright © 2018 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.
Jiang, Shu-Jun; Li, Wen
2013-01-01
Abstract Hepatic stimulator substance (HSS) has been suggested to protect liver cells from various toxins. However, the precise role of HSS in hepatic ischemia–reperfusion (I/R) injury remains unknown. This study aims to elucidate whether overexpression of HSS could attenuate hepatic ischemia–reperfusion injury and its possible mechanisms. Both in vivo hepatic I/R injury in mice and in vitro hypoxia–reoxygenation (H/R) in a cell model were used to evaluate the effect of HSS protection after adenoviral gene transfer. Moreover, a possible mitochondrial mechanism of HSS protection was investigated. Efficient transfer of the HSS gene into liver inhibited hepatic I/R injury in mice, as evidenced by improvement in liver function tests, the preservation of hepatic morphology, and a reduction in hepatocyte apoptosis. HSS overexpression also inhibited H/R-induced cell death, as detected by cell viability and cell apoptosis assays. The underlying mechanism of this hepatic protection might involve the attenuation of mitochondrial dysfunction and mitochondrial-dependent cell apoptosis, as shown by the good preservation of mitochondrial ultrastructure, mitochondrial membrane potential, and the inhibition of cytochrome c leakage and caspase activity. Moreover, the suppression of H/R-induced mitochondrial ROS production and the maintenance of mitochondrial respiratory chain complex activities may participate in this mechanism. This new function of HSS expands the possibility of its application for the prevention of I/R injury, such as hepatic resection and liver transplantation in clinical practice. PMID:23461564
Ohnishi, Hiroyuki; Asamoto, Makoto; Tujimura, Kazunari; Hokaiwado, Naomi; Takahashi, Satoru; Ogawa, Kumiko; Kuribayashi, Masanori; Ogiso, Tadashi; Okuyama, Harumi; Shirai, Tomoyuki
2004-12-01
Dietary phytochemicals can inhibit the development of certain types of tumors. We here investigated the effects of nobiletin (Nob), garcinol (Gar), auraptene (Aur), beta-cryptoxanthin- and hesperidine-rich pulp (CHRP) and 1,1'-acetoxychavicol acetate (ACA) on hepatocarcinogenesis in a rat medium-term liver bioassay, and also examined their influence on cell proliferation, cell cycle kinetics, apoptosis and cell invasion of rat and human hepatocellular carcinoma (HCC) cells, MH1C1 and HepG2, respectively. While there were no obvious suppressive effects on the development of putative preneoplastic liver lesions, inhibition of hepatocarcinoma cell proliferation was evident in the Nob group. Nob also caused G2/M cell cycle arrest and apoptosis. Microarray analysis identified a set of genes specifically regulated by Nob, and these are likely to be involved in the observed growth suppression of HCC cells. These results suggest that phytochemicals might have chemopreventive potential in late stages of hepatocarcinogenesis.
Iron metabolism and related genetic diseases: A cleared land, keeping mysteries.
Brissot, Pierre; Loréal, Olivier
2016-02-01
Body iron has a very close relationship with the liver. Physiologically, the liver synthesizes transferrin, in charge of blood iron transport; ceruloplasmin, acting through its ferroxidase activity; and hepcidin, the master regulator of systemic iron. It also stores iron inside ferritin and serves as an iron reservoir, both protecting the cell from free iron toxicity and ensuring iron delivery to the body whenever needed. The liver is first in line for receiving iron from the gut and the spleen, and is, therefore, highly exposed to iron overload when plasma iron is in excess, especially through its high affinity for plasma non-transferrin bound iron. The liver is strongly involved when iron excess is related either to hepcidin deficiency, as in HFE, hemojuvelin, hepcidin, and transferrin receptor 2 related haemochromatosis, or to hepcidin resistance, as in type B ferroportin disease. It is less involved in the usual (type A) form of ferroportin disease which targets primarily the macrophagic system. Hereditary aceruloplasminemia raises important pathophysiological issues in light of its peculiar organ iron distribution. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Identification and isolation of adult liver stem/progenitor cells.
Tanaka, Minoru; Miyajima, Atsushi
2012-01-01
Hepatoblasts are considered to be liver stem/progenitor cells in the fetus because they propagate and differentiate into two types of liver epithelial cells, hepatocytes and cholangiocytes. In adults, oval cells that emerge in severely injured liver are considered facultative hepatic stem/progenitor cells. However, the nature of oval cells has remained unclear for long time due to the lack of a method to isolate them. It has also been unclear whether liver stem/progenitor cells exist in normal adult liver. Recently, we and others have successfully identified oval cells and adult liver stem/progenitor cells. Here, we describe the identification and isolation of mouse liver stem/progenitor cells by utilizing antibodies against specific cell surface marker molecules.
Stem Cells Transplantation in the Treatment of Patients with Liver Failure.
Tao, Ya-Chao; Wang, Meng-Lan; Chen, En-Qiang; Tang, Hong
2018-02-23
Liver failure is a life-threatening liver disease encompassing severe acute deterioration of liver function. Emergency liver transplantation is the only curative treatment for liver failure, but is restricted by the severe shortage of organ donors. Stem cell, including embroyonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells and hepatic progenitor cells, have capacity to proliferate and differentiate and could be used in a variety of liver diseases including hereditary liver diseases, cirrhosis and liver failure. We summarized the basic experimental and clinical advances of stem cell transplantation in liver failure treatment, and also discussed the advantages and disadvantage of different stem cells subtype in this field, aiming to provide a perspective on the stem cell-based therapy for liver failure. Stem cells, especially mesenchymal stem cells (mainly low immunogenicity and paracrine characteristics) and induced pluripotent stem cells (generation of desired cell type from somatic cell), are feasible candidates for cell therapy in the treatment of liver failure, but there are some drawbacks remaining to be resolved, such as low engraftment, cryotpreservation methods and tumorigenesis. Stem cell transplantation is a promising but challenging strategy and paves a new way for curing liver failure. But more efforts need to be made to overcome problems before this new strategy could be safely and effectively applied to humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Gene expression patterns in the progression of canine copper-associated chronic hepatitis
Dirksen, Karen; Spee, Bart; Penning, Louis C.; van den Ingh, Ted S. G. A. M.; Burgener, Iwan A.; Watson, Adrian L.; Groot Koerkamp, Marian; Rothuizen, Jan
2017-01-01
Copper is an essential trace element, but can become toxic when present in abundance. The severe effects of copper-metabolism imbalance are illustrated by the inherited disorders Wilson disease and Menkes disease. The Labrador retriever dog breed is a novel non-rodent model for copper-storage disorders carrying mutations in genes known to be involved in copper transport. Besides disease initiation and progression of copper accumulation, the molecular mechanisms and pathways involved in progression towards copper-associated chronic hepatitis still remain unclear. Using expression levels of targeted candidate genes as well as transcriptome micro-arrays in liver tissue of Labrador retrievers in different stages of copper-associated hepatitis, pathways involved in progression of the disease were studied. At the initial phase of increased hepatic copper levels, transcriptomic alterations in livers mainly revealed enrichment for cell adhesion, developmental, inflammatory, and cytoskeleton pathways. Upregulation of targeted MT1A and COMMD1 mRNA shows the liver’s first response to rising intrahepatic copper concentrations. In livers with copper-associated hepatitis mainly an activation of inflammatory pathways is detected. Once the hepatitis is in the chronic stage, transcriptional differences are found in cell adhesion adaptations and cytoskeleton remodelling. In view of the high similarities in copper-associated hepatopathies between men and dog extrapolation of these dog data into human biomedicine seems feasible. PMID:28459846
Wu, Jia-Feng; Song, Shih-Hsi; Lee, Chee-Seng; Chen, Huey-Ling; Ni, Yen-Hsuan; Hsu, Hong-Yuan; Wu, Tzee-Chung; Chang, Mei-Hwei
2018-04-11
This study aimed to elucidate predictors of liver fibrosis in patients with chronic hepatitis B virus (HBV) infection. Transient elastography was performed to define liver stiffness in 533 patients with chronic HBV infection (mean age ± standard deviation, 30.72 ± 0.57 years). Protein array was performed on serum samples and lysates of Huh7 cells transfected with HBV mutants; the results were confirmed by enzyme-linked immunosorbent assay. Single-nucleotide polymorphisms in the gene encoding interleukin 1β (IL-1β) were examined in patients with chronic HBV infection with and without liver fibrosis. Male sex, age ≥18 years, and serum α-fetoprotein level >3.6 ng/mL were independent predictors of a liver stiffness measurement of ≥7 kPa (P = .005, .019, and <.001, respectively). HBV e antigen (HBeAg)-negative hepatitis is associated with increased liver stiffness (P < .001). Elevation of the serum IL-1β level was demonstrated in subjects with liver fibrosis. IL-1β was upregulated in Huh7 cells transfected with HBV mutants associated with HBeAg-negative hepatitis. The AA genotype at rs16944 and the CC genotype at rs1143627 in the gene encoding IL-1β were associated with higher serum IL-1β levels and liver fibrosis. Male sex, age ≥18 years, elevated α-fetoprotein level, and HBeAg-negative hepatitis are risk factors for liver fibrosis. IL-1β is involved in the progression of liver fibrosis in subjects with HBeAg-negative hepatitis.
Acute-on-chronic Liver Failure.
Sarin, Shiv Kumar; Choudhury, Ashok
2016-12-01
Acute-on-chronic liver failure (ACLF) is a distinct entity that differs from acute liver failure and decompensated cirrhosis in timing, presence of treatable acute precipitant, and course of disease, with a potential for self-recovery. The core concept is acute deterioration of existing liver function in a patient of chronic liver disease with or without cirrhosis in response to an acute insult. The insult should be a hepatic one and presentation in the form of liver failure (jaundice, encephalopathy, coagulopathy, ascites) with or without extrahepatic organ failure in a defined time frame. ACLF is characterized by a state of deregulated inflammation. Initial cytokine burst presenting as SIRS, progression to CARS and associated immunoparalysis leads to sepsis and multi-organ failure. Early identification of the acute insult and mitigation of the same, use of nucleoside analogue in HBV-ACLF, steroid in severe alcoholic hepatitis, steroid in severe autoimmune hepatitis and/or bridging therapy lead to recovery, with a 90-day transplant-free survival rate of up to 50 %. First-week presentation is crucial concerning SIRS/sepsis, development, multiorgan failure and consideration of transplant. A protocol-based multi-disciplinary approach including critical care hepatology, early liver transplant before multi-organ involvement, or priority for organ allocation may improve the outcome. Presentation with extrahepatic organ involvement or inclusion of sepsis as an acute insult in definition restricts the therapy, i.e., liver transplant or bridging therapy, and needs serious consideration. Augmentation of regeneration, cell-based therapy, immunotherapy, and gut microbiota modulation are the emerging areas and need further research.
HEPATIC METABOLISM OF RETINOIDS AND DISEASE ASSOCIATIONS
Shirakami, Yohei; Lee, Seung-Ah; Clugston, Robin D.; Blaner, William S.
2012-01-01
The liver is the most important tissue site in the body for uptake of postprandial retinoid, as well as for retinoid storage. Within the liver, both hepatocytes and hepatic stellate cells (HSCs) are importantly involved in retinoid metabolism. Hepatocytes play an indispensable role in uptake and processing of dietary retinoid into the liver, and in synthesis and secretion of retinol-binding protein (RBP), which is required for mobilizing hepatic retinoid stores. HSCs are the central cellular site for retinoid storage in the healthy animal, accounting for as much as 50–60% of the total retinoid present in the entire body. The liver is also an important target organ for retinoid actions. Retinoic acid is synthesized in the liver and can interact with retinoid receptors which control expression of a large number of genes involved in hepatic processes. Altered retinoid metabolism and the accompanying dysregulation of retinoid signaling in the liver contribute to hepatic disease. This is related to HSCs, which contribute significantly to the development of hepatic disease when they undergo a process of cellular activation. HSC activation results in the loss of HSC retinoid stores and changes in extracellular matrix deposition leading to the onset of liver fibrosis. An association between hepatic disease progression and decreased hepatic retinoid storage has been demonstrated. In this review article, we summarize the essential role of the liver in retinoid metabolism and consider briefly associations between hepatic retinoid metabolism and disease. PMID:21763780
Resveratrol attenuates the progress of liver fibrosis via the Akt/nuclear factor-κB pathways.
Zhang, Hui; Sun, Qingfeng; Xu, Tingyan; Hong, Liang; Fu, Rongquan; Wu, Jinguo; Ding, Jiguang
2016-01-01
Liver fibrosis is a wound-healing response to chronic liver injury that results in the accumulation of extracellular matrix proteins. It eventually leads to cirrhosis of the liver and liver failure, and it is a critical threat to the health and lives of patients with chronic liver diseases. No effective treatment is currently available. Resveratrol is a polyphenol with antioxidant, anti‑cancer and anti‑inflammatory properties. It has been reported that resveratrol prevents liver fibrosis, possibly by inhibiting NF‑κB activation. The present study investigated the mechanisms by which resveratrol prevented liver fibrosis, focusing on the possible involvement of the NF‑κB pathway. Mice with carbon tetrachloride (CCl4)‑induced liver fibrosis were treated with various concentrations of resveratrol. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and tumor necrosis factor (TNF)‑α were detected by ELISAs. Expression of α‑smooth muscle actin (α‑SMA), collagen I, inhibitor of NF‑κB (IκB) and NF‑κB were detected by western blot analysis. In addition, the present study examined the effects of resveratrol on the expression of fibrosis markers in LX‑2 cells. Western blot analysis was further used to detect the levels of Akt and phosphorylated Akt, as well as the nuclear levels of IκB, phosphorylated IκB and NF‑κB p65. The expression of α‑SMA in resveratrol‑treated LX‑2 cells was detected by immunofluorescence and flow cytometry, which demonstrated that resveratrol decreased the expression of α‑SMA in LX‑2 cells. Resveratrol also decreased CCl4‑induced upregulation of serum AST, ALT, TNF‑α, α‑SMA and collagen I. Finally, resveratrol prevented the activation of NF‑κB and Akt. The results of the present study therefore indicated that resveratrol attenuates liver fibrosis via the Akt/NF-κB pathways.
Zhang, Yuan; Zhao, Wei; Han, Haibo; Li, Sheng; Chen, Dongji; Zhang, Zhiqian
2017-10-20
Accumulating evidence demonstrates that miRNAs, a class of small non-coding RNAs, are involved in the regulation of tumor-initiating cells (TICs) which are considered to be the origin of cancer development according to the cancer stem cell hypothesis. We have previously identified that miR-31 may play suppressive roles in α2δ1 + hepatocellular carcinoma (HCC) TICs. Here, we confirm that the expression of miR-31 is significantly downregulated in α2δ1 + HCC TICs. Overexpression of miR-31 in α2δ1 + HCC TICs results in significant suppression of the self-renewal and tumorigenicity abilities of these cells. Conversely, knockdown the expression of miR-31 in PLC/PRF/5 cells is able to reprogram them into TICs with stem cell-like properties. Furthermore, the expression of ISL LIM Homeobox 1(ISL1), a transcription factor involved in recognition of undifferentiated cardiac progenitors, is negatively regulated by miR-31, and the luciferase reporters' activities with the 3'-UTRs of ISL1 are inhibited significantly by miR-31. Collectively, our results suggest that miR-31 can negatively regulate the self-renewal ability of α2δ1 + liver TICs via silencing ISL1 .
Frequency and Pathophysiology of Acute Liver Failure in Ornithine Transcarbamylase Deficiency (OTCD)
Laemmle, Alexander; Gallagher, Renata C.; Keogh, Adrian; Stricker, Tamar; Gautschi, Matthias; Nuoffer, Jean-Marc; Baumgartner, Matthias R.; Häberle, Johannes
2016-01-01
Background Acute liver failure (ALF) has been reported in ornithine transcarbamylase deficiency (OTCD) and other urea cycle disorders (UCD). The frequency of ALF in OTCD is not well-defined and the pathogenesis is not known. Aim To evaluate the prevalence of ALF in OTCD, we analyzed the Swiss patient cohort. Laboratory data from 37 individuals, 27 females and 10 males, diagnosed between 12/1991 and 03/2015, were reviewed for evidence of ALF. In parallel, we performed cell culture studies using human primary hepatocytes from a single patient treated with ammonium chloride in order to investigate the inhibitory potential of ammonia on hepatic protein synthesis. Results More than 50% of Swiss patients with OTCD had liver involvement with ALF at least once in the course of disease. Elevated levels of ammonia often correlated with (laboratory) coagulopathy as reflected by increased values for international normalized ratio (INR) and low levels of hepatic coagulation factors which did not respond to vitamin K. In contrast, liver transaminases remained normal in several cases despite massive hyperammonemia and liver involvement as assessed by pathological INR values. In our in vitro studies, treatment of human primary hepatocytes with ammonium chloride for 48 hours resulted in a reduction of albumin synthesis and secretion by approximately 40%. Conclusion In conclusion, ALF is a common complication of OTCD, which may not always lead to severe symptoms and may therefore be underdiagnosed. Cell culture experiments suggest an ammonia-induced inhibition of hepatic protein synthesis, thus providing a possible pathophysiological explanation for hyperammonemia-associated ALF. PMID:27070778
Hara, Shintaro; Morita, Reiko; Ogawa, Takashi; Segawa, Risa; Takimoto, Norifumi; Suzuki, Kazuhiko; Hamadate, Naobumi; Hayashi, Shim-Mo; Odachi, Ayano; Ogiwara, Isao; Shibusawa, Sakae; Yoshida, Toshinori; Shibutani, Makoto
2014-08-01
To investigate the protective effect of bilberry extracts (BBE) and enzymatically modified isoquercitrin (EMIQ) on the hepatocarcinogenic process involving oxidative stress responses, we used a two-stage hepatocarcinogenesis model in N-diethylnitrosamine-initiated and piperonyl butoxide (PBO)-promoted rats. We examined the modifying effect of co-administration with BBE or EMIQ on the liver tissue environment including oxidative stress responses, cell proliferation and apoptosis, and phosphatase and tensin homolog (PTEN)/Akt and transforming growth factor (TGF)-β/Smad signalings on the induction mechanism of preneoplastic lesions during early stages of hepatocellular tumor promotion. PBO increased the numbers and area of glutathione S-transferase placental form (GST-P)(+) liver cell foci and the numbers of Ki-67(+) proliferating cells within GST-P(+) foci. Co-administration of BBE or EMIQ suppressed these effects with the reductions of GST-P(+) foci (area) to 48.9-49.4% and Ki-67(+) cells to 55.5-61.4% of the PBO-promoted cases. Neither BBE nor EMIQ decreased microsomal reactive oxygen species induced by PBO. However, only EMIQ suppressed the level of thiobarbituric acid-reactive substances to 78.4% of the PBO-promoted cases. PBO increased the incidences of phospho-PTEN(-) foci, phospho-Akt substrate(+) foci, phospho-Smad3(-) foci and Smad4(-) foci in GST-P(+) foci. Both BBE and EMIQ decreased the incidences of phospho-PTEN(-) foci in GST-P(+) foci to 59.8-72.2% and Smad4(-) foci to 62.4-71.5% of the PBO-promoted cases, and BBE also suppressed the incidence of phospho-Akt substrate(+) foci in GST-P(+) foci to 75.2-75.7% of the PBO-promoted cases. These results suggest that PBO-induced tumor promotion involves facilitation of PTEN/Akt and disruptive TGF-β/Smad signalings without relation to oxidative stress responses, but this promotion was suppressed by co-treatment with BBE or EMIQ through suppression of cell proliferation activity of preneoplastic liver cells. Copyright © 2014 Elsevier GmbH. All rights reserved.
Tyrosine Kinase Btk Is Required for NK Cell Activation
Bao, Yan; Zheng, Jian; Han, Chaofeng; Jin, Jing; Han, Huanxing; Liu, Yinping; Lau, Yu-Lung; Tu, Wenwei; Cao, Xuetao
2012-01-01
Bruton tyrosine kinase (Btk) is not only critical for B cell development and differentiation but is also involved in the regulation of Toll-like receptor-triggered innate response of macrophages. However, whether Btk is involved in the regulation of natural killer (NK) cell innate function remains unknown. Here, we show that Btk expression is up-regulated during maturation and activation of mouse NK cells. Murine Btk−/− NK cells have decreased innate immune responses to the TLR3 ligand, with reduced expressions of IFN-γ, perforin, and granzyme-B and decreased cytotoxic activity. Furthermore, Btk is found to promote TLR3-triggered NK cell activation mainly by activating the NF-κB pathway. Poly(I:C)-induced NK cell-mediated acute hepatitis was observed to be attenuated in Btk−/− mice or the mice with in vivo administration of the Btk inhibitor. Correspondingly, liver damage was aggravated in Btk−/− mice after the adoptive transfer of Btk+/+ NK cells, further indicating that Btk-mediated NK cell activation contributes to TLR3-triggered acute liver injury. Importantly, reduced TLR3-triggered activation of human NK cells was observed in Btk-deficient patients with X-linked agammaglobulinemia, as evidenced by the reduced IFN-γ, CD69, and CD107a expression and cytotoxic activity. These results indicate that Btk is required for activation of NK cells, thus providing insight into the physiological significance of Btk in the regulation of immune cell functions and innate inflammatory response. PMID:22589540
Tyrosine kinase Btk is required for NK cell activation.
Bao, Yan; Zheng, Jian; Han, Chaofeng; Jin, Jing; Han, Huanxing; Liu, Yinping; Lau, Yu-Lung; Tu, Wenwei; Cao, Xuetao
2012-07-06
Bruton tyrosine kinase (Btk) is not only critical for B cell development and differentiation but is also involved in the regulation of Toll-like receptor-triggered innate response of macrophages. However, whether Btk is involved in the regulation of natural killer (NK) cell innate function remains unknown. Here, we show that Btk expression is up-regulated during maturation and activation of mouse NK cells. Murine Btk(-/-) NK cells have decreased innate immune responses to the TLR3 ligand, with reduced expressions of IFN-γ, perforin, and granzyme-B and decreased cytotoxic activity. Furthermore, Btk is found to promote TLR3-triggered NK cell activation mainly by activating the NF-κB pathway. Poly(I:C)-induced NK cell-mediated acute hepatitis was observed to be attenuated in Btk(-/-) mice or the mice with in vivo administration of the Btk inhibitor. Correspondingly, liver damage was aggravated in Btk(-/-) mice after the adoptive transfer of Btk(+/+) NK cells, further indicating that Btk-mediated NK cell activation contributes to TLR3-triggered acute liver injury. Importantly, reduced TLR3-triggered activation of human NK cells was observed in Btk-deficient patients with X-linked agammaglobulinemia, as evidenced by the reduced IFN-γ, CD69, and CD107a expression and cytotoxic activity. These results indicate that Btk is required for activation of NK cells, thus providing insight into the physiological significance of Btk in the regulation of immune cell functions and innate inflammatory response.
MicroRNAs control hepatocyte proliferation during liver regeneration.
Song, Guisheng; Sharma, Amar Deep; Roll, Garrett R; Ng, Raymond; Lee, Andrew Y; Blelloch, Robert H; Frandsen, Niels M; Willenbring, Holger
2010-05-01
MicroRNAs (miRNAs) constitute a new class of regulators of gene expression. Among other actions, miRNAs have been shown to control cell proliferation in development and cancer. However, whether miRNAs regulate hepatocyte proliferation during liver regeneration is unknown. We addressed this question by performing 2/3 partial hepatectomy (2/3 PH) on mice with hepatocyte-specific inactivation of DiGeorge syndrome critical region gene 8 (DGCR8), an essential component of the miRNA processing pathway. Hepatocytes of these mice were miRNA-deficient and exhibited a delay in cell cycle progression involving the G(1) to S phase transition. Examination of livers of wildtype mice after 2/3 PH revealed differential expression of a subset of miRNAs, notably an induction of miR-21 and repression of miR-378. We further discovered that miR-21 directly inhibits Btg2, a cell cycle inhibitor that prevents activation of forkhead box M1 (FoxM1), which is essential for DNA synthesis in hepatocytes after 2/3 PH. In addition, we found that miR-378 directly inhibits ornithine decarboxylase (Odc1), which is known to promote DNA synthesis in hepatocytes after 2/3 PH. Our results show that miRNAs are critical regulators of hepatocyte proliferation during liver regeneration. Because these miRNAs and target gene interactions are conserved, our findings may also be relevant to human liver regeneration.
Seki, Ekihiro; Tsutsui, Hiroko; Iimuro, Yuji; Naka, Tetsuji; Son, Gakuhei; Akira, Shizuo; Kishimoto, Tadamitsu; Nakanishi, Kenji; Fujimoto, Jiro
2005-03-01
Toll-like receptors (TLRs) act as innate immune signal sensors and play central roles in host defense. Myeloid differentiation factor (MyD) 88 is a common adaptor molecule required for signaling mediated by TLRs. When the receptors are activated, cells bearing TLRs produce various proinflammatory cytokines in a MyD88-dependent manner. Liver regeneration following partial hepatectomy (PH) requires innate immune responses, particularly interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) production by Kupffer cells, although the recognition and activation processes are still unknown. We investigated whether TLR/MyD88 signaling is critical for induction of innate immune responses after PH. In Myd88(-/-) mice after PH, induction of expression of immediate early genes involved in hepatocyte replication and phosphorylation of STAT3 in the liver, and production of TNF-alpha/IL-6 by and activation of NF-kappaB in the Kupffer cells were grossly subnormal and were associated with impaired liver regeneration. However, TLR2, 4 and 9, which recognize gram-negative and -positive bacterial products, are not essential for NF-kappaB activation and IL-6 production after PH, which excludes a possible contribution of TLR2/TLR4 or TLR9 to MyD88-mediated pathways. In conclusion, the TLR/MyD88 pathway is essential for incidental liver restoration, particularly its early phase.
Wang, Juan; Chen, Yanlei; Gao, Na; Wang, Yisong; Tian, Yanping; Wu, Jiangman; Zhang, Junlei; Zhu, Junping; Fan, Dongying; An, Jing
2013-01-01
The pathogenesis of dengue virus (DV) infection has not been completely defined and change of redox status mediated by depletion of glutathione (GSH) in host cell is a common result of viral infection. Our previous study has demonstrated that DV serotype 2 (DV2) infection alters host intracellular GSH levels, and exogenous GSH inhibits viral production by modulating the activity of NF-κB in HepG2 cells. GSH is the most powerful intracellular antioxidant and involved in viral infections. Thus, this study was to investigate whether DV2 infection can induce alteration in redox balance and effect of GSH on the disease in HepG2 xenografts SCID mice. Our results revealed that mice infected with DV2 showed alterations in oxidative stress by increasing the level of malondialdehyde (MDA), an end product of lipid peroxidation, and GSSG/GSH ratio. DV2-infected mice also showed a decrease in the activity of catalase (CAT) and total superoxide dismutase (T-SOD) in the serum and/or observed organs, especially the liver. Moreover, DV2 infection resulted in elevated serum levels of the cytokines tumor necrosis factor-α and interlukin-6 and obvious histopathological changes in the liver. The administration of exogenous GSH significantly reversed all of the aforementioned pathological changes and prevented significant liver damage. Furthermore, in vitro treatment of HepG2 cells with antioxidants such as GSH inhibited viral entry as well as the production of reactive oxygen species in HepG2 cells. These results suggest that GSH prevents DV2-induced oxidative stress and liver injury in mice by inhibiting proinflammatory cytokine production, and GSH and may be a promising therapeutic agent for prevention of oxidative liver damage during DV infection. PMID:23383181
NASH is an Inflammatory Disorder: Pathogenic, Prognostic and Therapeutic Implications
van Rooyen, Derrick; Gan, Lay; Chitturi, Shivrakumar
2012-01-01
While non-alcoholic fatty liver disease (NAFLD) is highly prevalent (15% to 45%) in modern societies, only 10% to 25% of cases develop hepatic fibrosis leading to cirrhosis, end-stage liver disease or hepatocellular carcinoma. Apart from pre-existing fibrosis, the strongest predictor of fibrotic progression in NAFLD is steatohepatitis or non-alcoholic steatohepatitis (NASH). The critical features other than steatosis are hepatocellular degeneration (ballooning, Mallory hyaline) and mixed inflammatory cell infiltration. While much is understood about the relationship of steatosis to metabolic factors (over-nutrition, insulin resistance, hyperglycemia, metabolic syndrome, hypoadiponectinemia), less is known about inflammatory recruitment, despite its importance for the perpetuation of liver injury and fibrogenesis. In this review, we present evidence that liver inflammation has prognostic significance in NAFLD. We then consider the origins and components of liver inflammation in NASH. Hepatocytes injured by toxic lipid molecules (lipotoxicity) play a central role in the recruitment of innate immunity involving Toll-like receptors (TLRs), Kupffer cells (KCs), lymphocytes and neutrophils and possibly inflammasome. The key pro-inflammatory signaling pathways in NASH are nuclear factor-kappa B (NF-κB) and c-Jun N-terminal kinase (JNK). The downstream effectors include adhesion molecules, chemokines, cytokines and the activation of cell death pathways leading to apoptosis. The upstream activators of NF-κB and JNK are more contentious and may depend on the experimental model used. TLRs are strong contenders. It remains possible that inflammation in NASH originates outside the liver and in the gut microbiota that prime KC/TLR responses, inflamed adipose tissue and circulating inflammatory cells. We briefly review these mechanistic considerations and project their implications for the effective treatment of NASH. PMID:22570745
Kuijk, Ewart W.; Rasmussen, Shauna; Blokzijl, Francis; Huch, Meritxell; Gehart, Helmuth; Toonen, Pim; Begthel, Harry; Clevers, Hans; Geurts, Aron M.; Cuppen, Edwin
2016-01-01
The rat is an important model for liver regeneration. However, there is no in vitro culture system that can capture the massive proliferation that can be observed after partial hepatectomy in rats. We here describe the generation of rat liver stem cell lines. Rat liver stem cells, which grow as cystic organoids, were characterized by high expression of the stem cell marker Lgr5, by the expression of liver progenitor and duct markers, and by low expression of hepatocyte markers, oval cell markers, and stellate cell markers. Prolonged cultures of rat liver organoids depended on high levels of WNT-signalling and the inhibition of BMP-signaling. Upon transplantation of clonal lines to a Fah−/− Il2rg−/− rat model of liver failure, the rat liver stem cells engrafted into the host liver where they differentiated into areas with FAH and Albumin positive hepatocytes. Rat liver stem cell lines hold potential as consistent reliable cell sources for pharmacological, toxicological or metabolic studies. In addition, rat liver stem cell lines may contribute to the development of regenerative medicine in liver disease. To our knowledge, the here described liver stem cell lines represent the first organoid culture system in the rat. PMID:26915950
Haga, Sanae; Kanno, Akira; Ozawa, Takeaki; Morita, Naoki; Asano, Mami; Ozaki, Michitaka
2017-07-21
Liver injury is often observed in various pathological conditions including posthepatectomy state and cancer chemotherapy. It occurs mainly as a consequence of the combined necrotic and apoptotic types of cell death. In order to study liver/hepatocyte injury by necrotic type of cell death, we studied signal-regulated necrosis (necroptosis) by newly developing an optic probe detecting receptor-interacting protein (RIP)1/RIP3 binding, an essential process for necroptosis induction. In the mouse hepatocyte cell line, TIB-73 cells, TNF-a/cycloheximide (T/C) induced RIP1/3 binding only when caspase activity was suppressed by z-VAD-fmk (zVAD), a caspase-specific inhibitor. T/C/zVADinduced RIP1/3-binding was inhibited by necrostatin-1 (Nec-1), an allosteric inhibitor of RIP1. The reduced cell survival by T/C/zVAD was improved by Nec-1. These facts indicate that T/C induces necroptosis of hepatocytes when apoptotic pathway is inhibited/unavailable. FasL also induced cell death which was only partially inhibited by zVAD, indicating the possible involvement of necroptosis other than apoptosis. FasL activated caspase-3 and, similarly, induced RIP1/3-binding when caspases were inactivated. Interestingly, FasL-induced RIP1/3 binding was significantly suppressed by the antioxidants, Trolox and N-acetyl cysteine (NAC), suggesting the involvement of reactive oxygen species (ROS) in FasL-induced necroptotic cellular processes. H₂O₂, by itself, induced RIP1/3 binding that was suppressed by Nec-1, but not by zVAD. Hypoxia induced RIP1/3 binding after reoxygenation, which was suppressed by Nec-1 or by the antioxidants. Cell death induced by hypoxia/reoxygenation (H/R) was also improved by Nec-1. Similar to H₂O₂, H/R did not require caspase inhibition for RIP1/3 binding, suggesting the involvement of a caspase-independent mechanism for non-ligand induced and/or redox-mediated necroptosis. These data indicate that ROS induce necroptosis, and mediate the FasL- and hypoxia-induced necroptosis via a molecular mechanism that differs from a conventional caspase-dependent pathway. In conclusion, necroptosis is potentially involved in liver/hepatocyte injury induced by oxidative stress and FasL, other than apoptosis.
Fusion protein of retinol-binding protein and albumin domain III reduces liver fibrosis
Lee, Hongsik; Jeong, Hyeyeun; Park, Sangeun; Yoo, Wonbaek; Choi, Soyoung; Choi, Kyungmin; Lee, Min-Goo; Lee, Mihwa; Cha, DaeRyong; Kim, Young-Sik; Han, Jeeyoung; Kim, Wonkon; Park, Sun-Hwa; Oh, Junseo
2015-01-01
Activated hepatic stellate cells (HSCs) play a key role in liver fibrosis, and inactivating HSCs has been considered a promising therapeutic approach. We previously showed that albumin and its derivative designed for stellate cell-targeting, retinol-binding protein–albumin domain III fusion protein (referred to as R-III), inactivate cultured HSCs. Here, we investigated the mechanism of action of albumin/R-III in HSCs and examined the anti-fibrotic potential of R-III in vivo. R-III treatment and albumin expression downregulated retinoic acid (RA) signaling which was involved in HSC activation. RA receptor agonist and retinaldehyde dehydrogenase overexpression abolished the anti-fibrotic effect of R-III and albumin, respectively. R-III uptake into cultured HSCs was significantly decreased by siRNA-STRA6, and injected R-III was localized predominantly in HSCs in liver. Importantly, R-III administration reduced CCl4- and bile duct ligation-induced liver fibrosis. R-III also exhibited a preventive effect against CCl4-inducd liver fibrosis. These findings suggest that the anti-fibrotic effect of albumin/R-III is, at least in part, mediated by downregulation of RA signaling and that R-III is a good candidate as a novel anti-fibrotic drug. PMID:25864124
Rhodes, Katherine A; Andrew, Elizabeth M; Newton, Darren J; Tramonti, Daniela; Carding, Simon R
2008-08-01
Although gammadelta T cells play a role in protecting tissues from pathogen-elicited damage to bacterial, viral and parasitic pathogens, the mechanisms involved in the damage and in the protection have not been clearly elucidated. This has been addressed using a murine model of listeriosis, which in mice lacking gammadelta T cells (TCRdelta(-/-)) is characterised by severe and extensive immune-mediated hepatic necrosis. We show that these hepatic lesions are caused by Listeria-elicited CD8(+) T cells secreting high levels of TNF-alpha that accumulate in the liver of Listeria-infected TCRdelta(-/-) mice. Using isolated populations of gammadelta T cells from wild-type and cytokine-deficient strains of mice to reconstitute TCRdelta(-/-) mice, the TCR variable gene 4 (Vgamma4)(+) subset of gammadelta T cells was shown to protect against liver injury. Hepatoprotection was dependent upon their ability to produce IL-10 after TCR-mediated interactions with Listeria-elicited macrophages and CD8(+) T cells. IL-10-producing Vgamma4(+) T cells also contribute to controlling CD8(+) T cell expansion and to regulating and reducing TNF-alpha secretion by activated CD8(+) T cells. This effect on TNF-alpha production was directly attributed to IL-10. These findings identify a novel mechanism by which pathogen-elicited CD8(+) T cells are regulated via interactions with, and activation of, IL-10-producing hepatoprotective gammadelta T cells.
Murine CD103+ dendritic cells protect against steatosis progression towards steatohepatitis.
Heier, Eva-Carina; Meier, Anna; Julich-Haertel, Henrike; Djudjaj, Sonja; Rau, Monica; Tschernig, Thomas; Geier, Andreas; Boor, Peter; Lammert, Frank; Lukacs-Kornek, Veronika
2017-06-01
Non-alcoholic fatty liver (NAFL) is the hepatic consequence of metabolic syndrome and can progress to non-alcoholic steatohepatitis (NASH). The identification of molecular and cellular factors that determine the progression of NASH and lead to irreversible hepatocellular damage are crucial. Dendritic cells (DCs) represent a heterogeneous cell population among which CD103 + DCs play a significant role in immunity and tolerance. We aimed to clarify the role of this DC subset in the pathomechanism of NASH. Steatosis progression towards steatohepatitis was analysed using multicolor FACS analyses, cytokine and qPCR array in high sucrose diet (HSD) and methionine and choline deficient diet (MCD) fed wild-type and basic leucine zipper transcription factor, ATF-Like-3 (Batf3) deficient animals, which lack CD103 + DCs (classical type-1 DC, cDC1s). Metabolic challenge of Batf3 -/- animals resulted in the progression of steatosis towards steatohepatitis, manifesting by an increased influx of inflammatory cells into the liver and elevated inflammatory cytokine production of myeloid cells upon innate stimuli. However, the lack of cDC1s did not affect cellular apoptosis and fibrosis progression but altered genes involved in lipid metabolism. The adoptive transfer of CD103 + cDC1s to Batf3 deficient animals reversed these observed changes and more importantly could attenuate cellular damage and inflammation in established murine steatohepatitis. Here, we have identified the murine CD103 + cDC1s as a protective DC subtype that influences the pro-anti-inflammatory balance and protects the liver from metabolic damage. As guardians of liver integrity, they play a key role in the inflammatory process during the development of steatohepatitis in mice. Non-alcoholic fatty liver (NAFL) is the hepatic consequence of metabolic syndrome and can lead to non-alcoholic steatohepatitis (NASH). The current study demonstrated that a specific murine dendritic cell subtype possesses a potent regulatory role to influence the inflammatory milieu of the liver in this process. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Nucleoplasmic calcium regulates cell proliferation through legumain.
Andrade, Viviane; Guerra, Mateus; Jardim, Camila; Melo, Flavia; Silva, Wamberto; Ortega, Jose M; Robert, Marie; Nathanson, Michael H; Leite, Fatima
2011-09-01
Nucleoplasmic Ca(2+) regulates cell growth in the liver, but the proteins through which this occurs are unknown. We used Rapid Subtraction Hybridization (RaSH) to subtract genes in SKHep1 liver cells expressing the Ca(2+) buffer protein parvalbumin (PV) targeted to the nucleus, from genes in cells expressing a mutated form of nuclear-targeted PV which has one of two Ca(2+)-binding sites inactivated. The subtraction permitted the selection of genes whose expression was affected by a small alteration in nuclear Ca(2+) concentration. The asparaginyl endopeptidase legumain (LGMN) was identified in this screening. When Ca(2+) was buffered in the nucleus of SKHep1 cells, LGMN mRNA was decreased by 97%, in part by a transcriptional mechanism, and decreased expression at the protein level was observed by immunoblot and immunofluorescence. Treatment with hepatocyte growth factor increased LGMN expression. Knockdown of LGMN by siRNA decreased proliferation of SKHep1 cells by ∼50% as measured both by BrdU uptake and mitotic index, although an inhibitor of LGMN activity did not affect BrdU incorporation. A significant reduction in the fraction of cells in G2/M phase was seen as well. This was associated with increases in the expression of cyclins A and E. Furthermore, LGMN expression was increased in hepatocellular carcinoma cells relative to normal hepatocytes in the same specimens. These findings suggest a new role for LGMN and provide evidence that nuclear Ca(2+) signals regulate cell proliferation in part through the modulation of LGMN expression. Increased expression of LGMN may be involved in liver carcinogenesis. Copyright © 2011 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Lu, Meng; Wu, Jiao; He, Feng; Wang, Xi-Long; Li, Can; Chen, Zhi-Nan; Bian, Huijie
2015-02-01
Overexpression of CD147/basigin in hepatic cells promotes the progression of hepatocellular carcinoma (HCC). Whether CD147 also expressed in liver non-parenchymal cells and associated with HCC development was unknown. The aim of the study was to explore time-dependent cell expression patterns of CD147 in a widely accepted N-diethylnitrosamine/phenobarbital (DEN/PB)-induced HCC mouse model. Liver samples collected at month 1-12 of post-DEN/PB administration were assessed the localization of CD147 in hepatocytes, endothelial cells, hepatic stellate cells, and macrophages. Immunohistochemistry analysis showed that CD147 was upregulated in liver tumors during month 1-8 of DEN/PB induction. Expression of CD147 was positively correlated with cytokeratin 18, a hepatocyte marker (r = 0.7857, P = 0.0279), CD31 (r = 0.9048, P = 0.0046), an endothelial cell marker, and CD68, a macrophage marker (r = 0.7619, P = 0.0368). A significant correlation was also observed between CD147 and alpha-smooth muscle actin (r = 0.8857, P = 0.0333) at DEN/PB initiation and early stage of tumor formation. Immunofluorescence and fluorescence in situ hybridization showed that CD147 co-expressed with cytokeratin 18, CD31, alpha-smooth muscle actin, and CD68. Moreover, there existed positive correlations between CD147 and microvessel density (r = 0.7857, P = 0.0279), CD147 and Ki-67 (r = 0.9341, P = 0.0022) in the development of DEN/PB-induced HCC. In conclusion, our results demonstrated that CD147 was upregulated in the liver parenchymal and mesenchymal cells and involved in angiogenesis and tumor cell proliferation in the development of DEN/PB-induced HCC.
Deuschle, Ulrich; Birkel, Manfred; Hambruch, Eva; Hornberger, Martin; Kinzel, Olaf; Perović-Ottstadt, Sanja; Schulz, Andreas; Hahn, Ulrike; Burnet, Michael; Kremoser, Claus
2015-06-01
The nuclear bile acid receptor Farnesoid X receptor (FXR) is strongly expressed in liver and intestine, controls bile acid and lipid homeostasis and exerts tumor-protective functions in liver and intestine. Histidine-rich glycoprotein (HRG) is an abundant plasma protein produced by the liver with the proposed function as a pattern recognition molecule involved in the clearance of immune complexes, necrotic cells and pathogens, the modulation of angiogenesis, the normalization of deranged endothelial vessel structure in tumors and tumor suppression. FXR recognition sequences were identified within a human HRG promoter fragment that mediated FXR/FXR-agonist dependent reporter gene activity in vitro. We show that HRG is a novel transcriptional target gene of FXR in human hepatoma cells, human upcyte® primary hepatocytes and 3D human liver microtissues in vitro and in mouse liver in vivo. Prolonged administration of the potent nonsteroidal FXR agonist PX20606 increases HRG levels in mouse plasma. Finally, daily oral administration of this FXR agonist for seven days resulted in a significant increase of HRG levels in the plasma of healthy human male volunteers during a clinical Phase I safety study. HRG might serve as a surrogate marker indicative of liver-specific FXR activation in future human clinical studies. Furthermore, potent FXR agonists might be beneficial in serious health conditions where HRG is reduced, for example, in hepatocellular carcinoma but also other solid cancers, liver failure, sepsis and pre-eclampsia. © 2014 UICC.
Liu, Hui; French, Barbara A.; Nelson, Tyler J.; Li, Jun; Tillman, Brittany; French, Samuel W.
2015-01-01
Chemokines and their receptors are involved in oncogenesis and in tumor progression, invasion, and metastasis. Various chemokines also promote cell proliferation and resistance to apoptosis of stressed cells. The chemokine CXCL8, also known as interleukin-8 (IL-8), is a proinflammatory molecule that has functions within the tumor microenvironment. Deregulation of IL-8 signaling is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of IL-8 signaling by RNA sequencing (RNA-Seq) analyses. Real-time PCR analysis of CXCR2 further shows a 6-fold up regulation in AH livers and a 26-fold up regulation in the livers of DDC re-fed mice. IL-8 mRNA was also significantly up regulated in AH livers and DDC re-fed mice livers. This indicates that CXCR2 and IL-8 may be crucial for liver MDB formation. MDB containing balloon hepatocytes in AH livers had increased intensity of staining of the cytoplasm for both CXCR2 and IL-8. Over expression of IL-8 leads to an increase of the mitogen activated protein kinase (MAPK) cascade and exacerbates the inflammatory cycle. These observations constitute a demonstration of the altered regulation of IL-8 signaling in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by IL-8 signaling in AH. PMID:26260904
Liu, Hui; French, Barbara A; Nelson, Tyler J; Li, Jun; Tillman, Brittany; French, Samuel W
2015-10-01
Chemokines and their receptors are involved in oncogenesis and in tumor progression, invasion, and metastasis. Various chemokines also promote cell proliferation and resistance to apoptosis of stressed cells. The chemokine CXCL8, also known as interleukin-8 (IL-8), is a proinflammatory molecule that has functions within the tumor microenvironment. Deregulation of IL-8 signaling is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of IL-8 signaling by RNA sequencing (RNA-Seq) analyses. Real-time PCR analysis of CXCR2 further shows a 6-fold up-regulation in AH livers and a 26-fold up-regulation in the livers of DDC re-fed mice. IL-8 mRNA was also significantly up-regulated in AH livers and DDC re-fed mice livers. This indicates that CXCR2 and IL-8 may be crucial for liver MDB formation. MDB containing balloon hepatocytes in AH livers had increased intensity of staining of the cytoplasm for both CXCR2 and IL-8. Overexpression of IL-8 leads to an increase of the mitogen activated protein kinase (MAPK) cascade and exacerbates the inflammatory cycle. These observations constitute a demonstration of the altered regulation of IL-8 signaling in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by IL-8 signaling in AH. Copyright © 2015 Elsevier Inc. All rights reserved.
Jun, Ji Hye; Choi, Jong Ho; Bae, Si Hyun; Oh, Seh Hoon; Kim, Gi Jin
2016-09-01
Chronic liver disease leads to liver fibrosis, and although the liver does have a certain regenerative capacity, this disease is associated with dysfunction of the liver vessels. C-reactive protein (CRP) is produced in the liver and circulated from there for metabolism. CRP was recently shown to inhibit angiogenesis by inducing endothelial cell dysfunction. The objective of this study was to determine the effect of CRP levels on angiogenesis in a rat model of liver dysfunction induced by bile duct ligation (BDL). The diameter of the hepatic vein was analyzed in rat liver tissues using hematoxylin and eosin (H&E) staining. The expression levels of angiogenic factors, albumin, and CRP were analyzed by real-time PCR and Western blotting. A tube formation assay was performed to confirm the effect of CRP on angiogenesis in human umbilical vein endothelial cells (HUVECs) treated with lithocholic acid (LCA) and siRNA-CRP. The diameter of the hepatic portal vein increased significantly with the progression of cirrhosis. The expression levels of angiogenic factors were increased in the cirrhotic liver. In contrast, the expression levels of albumin and CRP were significantly lower in the liver tissue obtained from the BDL rat model than in the normal liver. The CRP level was correlated with the expression of albumin in hepatocytes treated with LCA and siRNA-CRP. Tube formation was significantly decreased in HUVECs when they were treated with LCA or a combination of LCA and siRNA-CRP. CRP seems to be involved in the abnormal formation of vessels in hepatic disease, and so it could be a useful diagnostic marker for hepatic disease.
Cuff, Antonia O.; Robertson, Francis P.; Stegmann, Kerstin A.; Pallett, Laura J.; Maini, Mala K.; Davidson, Brian R.
2016-01-01
Human liver contains an Eomeshi population of NK cells that is not present in the blood. In this study, we show that these cells are characterized by a molecular signature that mediates their retention in the liver. By examining liver transplants where donors and recipients are HLA mismatched, we distinguish between donor liver–derived and recipient-derived leukocytes to show that Eomeslo NK cells circulate freely whereas Eomeshi NK cells are unable to leave the liver. Furthermore, Eomeshi NK cells are retained in the liver for up to 13 y. Therefore, Eomeshi NK cells are long-lived liver-resident cells. We go on to show that Eomeshi NK cells can be recruited from the circulation during adult life and that circulating Eomeslo NK cells are able to upregulate Eomes and molecules mediating liver retention under cytokine conditions similar to those in the liver. This suggests that circulating NK cells are a precursor of their liver-resident counterparts. PMID:27798170
An intravascular lymphoma with extravascular tendencies.
Thomas, Cody A; Guileyardo, Joseph M; Krause, John R
2014-10-01
Intravascular large B-cell lymphoma (IVL) is rare and characterized by selective growth of neoplastic cells within the lumina of small blood vessels. We present the case of a 69-year-old woman who died of a widespread IVL with extravascular involvement of the lymph nodes, liver, bladder, and adrenal gland. This report discusses the unique features of IVL with concurrent extravascular components.
Wan, Ying; Meng, Fanyin; Wu, Nan; Zhou, Tianhao; Venter, Julie; Francis, Heather; Kennedy, Lindsey; Glaser, Trenton; Bernuzzi, Francesca; Invernizzi, Pietro; Glaser, Shannon; Huang, Qiaobing; Alpini, Gianfranco
2017-08-01
Substance P (SP) is involved in the proliferation of cholangiocytes in bile duct-ligated (BDL) mice and human cholangiocarcinoma growth by interacting with the neurokinin-1 receptor (NK-1R). To identify whether SP regulates liver fibrosis during cholestasis, wild-type or NK-1R knockout (NK-1R -/- ) mice that received BDL or sham surgery and multidrug resistance protein 2 knockout (Mdr2 -/- ) mice treated with either an NK-1R antagonist (L-733,060) or saline were used. Additionally, wild-type mice were treated with SP or saline intraperitoneally. In vivo, there was increased expression of tachykinin precursor 1 (coding SP) and NK-1R in both BDL and Mdr2 -/- mice compared to wild-type mice. Expression of tachykinin precursor 1 and NK-1R was significantly higher in liver samples from primary sclerosing cholangitis patients compared to healthy controls. Knockout of NK-1R decreased BDL-induced liver fibrosis, and treatment with L-733,060 resulted in decreased liver fibrosis in Mdr2 -/- mice, which was shown by decreased sirius red staining, fibrosis gene and protein expression, and reduced transforming growth factor-β1 levels in serum and cholangiocyte supernatants. Furthermore, we observed that reduced liver fibrosis in NK-1R -/- mice with BDL surgery or Mdr2 -/- mice treated with L-733,060 was associated with enhanced cellular senescence of hepatic stellate cells and decreased senescence of cholangiocytes. In vitro, L-733,060 inhibited SP-induced expression of fibrotic genes in hepatic stellate cells and cholangiocytes; treatment with L-733,060 partially reversed the SP-induced decrease of senescence gene expression in cultured hepatic stellate cells and the SP-induced increase of senescence-related gene expression in cultured cholangiocytes. Collectively, our results demonstrate the regulatory effects of the SP/NK-1R axis on liver fibrosis through changes in cellular senescence during cholestatic liver injury. (Hepatology 2017;66:528-541). © 2017 by the American Association for the Study of Liver Diseases. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Primary focal T-cell lymphoma of the liver: a case report and review of the literature.
Cerban, Razvan; Gheorghe, Liana; Becheanu, Gabriel; Serban, Valentin; Gheorghe, Cristian
2012-06-01
We present the case of a previously healthy 62 year old man who developed primary non-Hodgkin lymphoma of the liver. Biopsy confirmed that it was a diffuse large anaplastic T-cell lymphoma of an extremely rare type. The diagnosis of this type of lesions is suggested by the presence of a hepatic mass without lymphadenopathy, splenomegaly or bone marrow involvement associated with normal tumor markers (carcinoembryonic antigen, alpha-fetoprotein and CA 19-9 levels). Histological examination of tissue is essential to confirm the diagnosis. Treatment options are surgical resection and/or chemotherapy but the rate of response to treatment varies widely. Some patients can achieve prolonged remission.
Choudhury, Sreetama; Ghosh, Sayan; Mukherjee, Sudeshna; Gupta, Payal; Bhattacharya, Saurav; Adhikary, Arghya; Chattopadhyay, Sreya
2016-12-01
Molecular mechanisms involved in arsenic-induced toxicity are complex and elusive. Liver is one of the most favored organs for arsenic toxicity as methylation of arsenic occurs mostly in the liver. In this study, we have selected a range of environmentally relevant doses of arsenic to examine the basis of arsenic toxicity and the role of pomegranate fruit extract (PFE) in combating it. Male Swiss albino mice exposed to different doses of arsenic presented marked hepatic injury as evident from histological and electron microscopic studies. Increased activities of enzymes alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and alkaline phosphatase corroborated extensive liver damage. It was further noted that arsenic exposure initiated reactive oxygen species (ROS)-dependent apoptosis in the hepatocytes involving loss of mitochondrial membrane potential. Arsenic significantly increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB), coupled with increase in phosphorylated Iκ-B, possibly as adaptive cellular survival strategies. Arsenic-induced oxidative DNA damage to liver cells culminated in p53 activation and increased expression of p53 targets like miR-34a and Bax. Pomegranate polyphenols are known to possess remarkable antioxidant properties and are capable of protecting normal cells from various stimuli-induced oxidative stress and toxicities. We explored the protective role of PFE in ameliorating arsenic-induced hepatic damage. PFE was shown to reduce ROS generation in hepatocytes, thereby reducing arsenic-induced Nrf2 activation. PFE also inhibited arsenic-induced NF-κB-inflammatory pathway. Data revealed that PFE reversed arsenic-induced hepatotoxicity and apoptosis by modulating the ROS/Nrf2/p53-miR-34a axis. For the first time, we have mapped the possible signaling pathways associated with arsenic-induced hepatotoxicity and its rescue by pomegranate polyphenols. Copyright © 2016 Elsevier Inc. All rights reserved.
Blasi, A; Hessheimer, A J; Beltrán, J; Pereira, A; Fernández, J; Balust, J; Martínez-Palli, G; Fuster, J; Navasa, M; García-Valdecasas, J C; Taurá, P; Fondevila, C
2016-06-01
Unexpected donation after circulatory determination of death (uDCD) liver transplantation is a complex procedure, in particular when it comes to perioperative recipient management. However, very little has been published to date regarding intraoperative and immediate postoperative care in this setting. Herein, we compare perioperative events in uDCD liver recipients with those of a matched group of donation after brain death liver recipients. We demonstrate that the former group of recipients suffers significantly greater hemodynamic instability and derangements in coagulation following graft reperfusion. Based on our experience, we recommend a proactive recipient management strategy in uDCD liver transplantation that involves early use of vasopressor support; maintaining adequate intraoperative levels of red cells, platelets, and fibrinogen; and routinely administering tranexamic acid before graft reperfusion. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.
Boomkens, Sacha Y; Spee, Bart; IJzer, Jooske; Kisjes, Ronald; Egberink, Herman F; van den Ingh, Ted SGAM; Rothuizen, Jan; Penning, Louis C
2004-01-01
Background Hepatocellular carcinoma (HCC) is one of the most worldwide frequent primary carcinomas resulting in the death of many cirrhotic patients. Unfortunately, the molecular mechanisms of this cancer are not well understood; therefore, we need a good model system to study HCC. The dog is recognized as a promising model for human medical research, namely compared with rodents. The objective of this study was to establish and characterize a spontaneous canine tumor cell line as a potential model for studies on HCC. Results Histomorphological, biochemical, molecular biological and quantitative assays were performed to characterize the canine HCC cell line that originated from a dog with a spontaneous liver tumor. Morphological investigations provided strong evidence for the hepatocytic and neoplastic nature of the cell line, while biochemical assays showed that they produced liver-specific enzymes. PCR analysis confirmed expression of ceruloplasmin, alpha-fetoprotein and serum albumin. Quantitative RT-PCR showed that the canine HCC cell line resembles human HCC based on the measurements of expression profiles of genes involved in cell proliferation and apoptosis. Conclusions We have developed a novel, spontaneous tumor liver cell line of canine origin that has many characteristics of human HCC. Therefore, the canine HCC cell line might be an excellent model for comparative studies on the molecular pathogenesis of HCC. PMID:15566568
He, Ping; Wu, Yafeng; Shun, Jianchao; Liang, Yaodong; Cheng, Mingliang
2017-01-01
Alcoholic liver injury leads to serious complication including death. The potential role of baicalin at the transcription level in mice model of alcohol injury is not known yet. In this study, we examined the effect of baicalin against chronic plus binge ethanol model in mice and understanding the mechanism of protection. Liver function, histology, steatosis, inflammation, NF-κB activity, oxidative stress sources, nuclear translocation of NRF2 transcription factor, and cell death were assessed. Treatment with baicalin ameliorated ethanol-induced oxidative stress, inflammation, and cell death. Baicalin attenuated ethanol-induced proinflammatory molecules such as TNF-α, IL-1β, MIP-2, and MCP-1 and reversed redox-sensitive transcription factor NF-κB activation. Baicalin also modulated Kupffer cell activation in vitro. Baicalin inhibited ethanol-induced expression of reactive oxygen species (ROS) generating enzymes NOX2, p67phox, xanthine oxidase, and iNOS in addition to CYP2E1 activities. Baicalin also enhanced ethanol-induced NRF2 nuclear translocation and increased downstream target gene HO-1 as antioxidant defense. Finally, baicalin reduced significant apoptotic and necrotic cell death. Our study suggests that baicalin ameliorates chronic plus binge ethanol-induced liver injury involving molecular crosstalk of multiple pathways at the transcriptional level and through upregulation of antioxidant defense mechanism. PMID:28951767
Fairchild, C R; Ivy, S P; Rushmore, T; Lee, G; Koo, P; Goldsmith, M E; Myers, C E; Farber, E; Cowan, K H
1987-11-01
We have previously reported the isolation of a human breast cancer cell line resistant to doxorubicin (adriamycin; AdrR MCF-7 cells) that has also developed the phenotype of multidrug resistance (MDR). MDR in this cell line is associated with increased expression of mdr (P glycoprotein) gene sequences. The development of MDR in AdrR MCF-7 cells is also associated with changes in the expression of several phase I and phase II drug-detoxifying enzymes. These changes are remarkably similar to those associated with development of xenobiotic resistance in rat hyperplastic liver nodules, a well-studied model system of chemical carcinogenesis. Using an mdr-encoded cDNA sequence isolated from AdrR MCF-7 cells, we have examined the expression of mdr sequences in rat livers under a variety of experimental conditions. The expression of mdr increased 3-fold in regenerating liver. It was also elevated (3- to 12-fold) in several different samples of rat hyperplastic nodules and in four of five hepatomas that developed in this system. This suggests that overexpression of mdr, a gene previously associated with resistance to antineoplastic agents, may also be involved in the development of resistance to xenobiotics in rat hyperplastic nodules. In addition, although the acute administration of 2-acetylaminofluorene induced an 8-fold increase in hepatic mdr-encoded RNA, performance of a partial hepatectomy either before or after administration of 2-acetylaminofluorene resulted in a greater than 80-fold increase in mdr gene expression over that in normal untreated livers. This represents an important in vivo model system in which to study the acute regulation of this drug resistance gene.
B cell-mediated maintenance of CD169+ cells is critical for liver regeneration.
Behnke, Kristina; Zhuang, Yuan; Xu, Haifeng C; Sundaram, Balamurugan; Reich, Maria; Shinde, Prashant V; Huang, Jun; Modares, Nastaran Fazel; Tumanov, Alexei V; Polz, Robin; Scheller, Jürgen; Ware, Carl F; Pfeffer, Klaus; Keitel, Verena; Häussinger, Dieter; Pandyra, Aleksandra A; Lang, Karl S; Lang, Philipp A
2018-05-09
The liver has an extraordinary capacity to regenerate via activation of key molecular pathways. However, central regulators controlling liver regeneration remain insufficiently studied. Here we show that B cell-deficient animals failed to induce sufficient liver regeneration after partial hepatectomy (PHx). Consistently, adoptive transfer of B cells could rescue defective liver regeneration. B cell mediated lymphotoxin beta production promoted recovery from PHx. Absence of B cells coincided with loss of splenic CD169 + macrophages. Moreover, depletion of CD169 + cells resulted in defective liver regeneration and decreased survival, which was associated with reduced hepatocyte proliferation. Mechanistically, CD169 + cells contributed to liver regeneration by inducing hepatic IL-6 production and STAT3 activation. Accordingly, treatment of CD169 + cell depleted animals with IL-6/Il-6R rescued liver regeneration and severe pathology following PHx. In conclusion, we identified CD169 + cells to be a central trigger for liver regeneration, by inducing key signaling pathways important for liver regeneration. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.
Yoshida, Katsunori; Matsuzaki, Koichi; Mori, Shigeo; Tahashi, Yoshiya; Yamagata, Hideo; Furukawa, Fukiko; Seki, Toshihito; Nishizawa, Mikio; Fujisawa, Junichi; Okazaki, Kazuichi
2005-04-01
After liver injury, transforming growth factor-beta (TGF-beta) and platelet-derived growth factor (PDGF) regulate the activation of hepatic stellate cells (HSCs) and tissue remodeling. Mechanisms of PDGF signaling in the TGF-beta-triggered cascade are not completely understood. TGF-beta signaling involves phosphorylation of Smad2 and Smad3 at linker and C-terminal regions. Using antibodies to distinguish Smad2/3 phosphorylated at linker regions from those phosphorylated at C-terminal regions, we investigated Smad2/3-mediated signaling in rat liver injured by CCl(4) administration and in cultured HSCs. In acute liver injury, Smad2/3 were transiently phosphorylated at both regions. Although linker-phosphorylated Smad2 remained in the cytoplasm of alpha-smooth muscle actin-immunoreactive mesenchymal cells adjacent to necrotic hepatocytes in centrilobular areas, linker-phosphorylated Smad3 accumulated in the nuclei. c-Jun N-terminal kinase (JNK) in the activated HSCs directly phosphorylated Smad2/3 at linker regions. Co-treatment of primary cultured HSCs with TGF-beta and PDGF activated the JNK pathway, subsequently inducing endogenous linker phosphorylation of Smad2/3. The JNK pathway may be involved in migration of resident HSCs within the space of Disse to the sites of tissue damage because the JNK inhibitor SP600125 inhibited HSC migration induced by TGF-beta and PDGF signals. Moreover, treatment of HSCs with both TGF-beta and PDGF increased transcriptional activity of plasminogen activator inhibitor-1 through linker phosphorylation of Smad3. In conclusion, TGF-beta and PDGF activate HSCs by transmitting their signals through JNK-mediated Smad2/3 phosphorylation at linker regions, both in vivo and in vitro.
Legraverend, C; Antonson, P; Flodby, P; Xanthopoulos, K G
1993-01-01
The promoter region of the mouse CCAAT-Enhancer Binding Protein (C/EBP alpha) gene is capable of directing high levels of expression of reporter constructs in various cell lines, albeit even in cells that do not express their endogenous C/EBP alpha gene. To understand the molecular mechanisms underlying this ubiquitous expression, we have characterized the promoter region of the mouse C/EBP alpha gene by a variety of in vitro and in vivo methods. We show that three sites related in sequence to USF, BTE and C/EBP binding sites and present in promoter region -350/+3, are recognized by proteins from rat liver nuclear extracts. The sequence of the C/EBP alpha promoter that includes the USF binding site is also capable of forming stable complexes with purified Myc+Max heterodimers and mutation of this site drastically reduces transcription of C/EBP alpha promoter luciferase constructs both in liver and non liver cell lines. In addition, we identify three novel protein-binding sites two of which display similarity to NF-1 and a NF kappa B binding sites. The region located between nucleotides -197 and -178 forms several heat-stable complexes with liver nuclear proteins in vitro which are recognized mainly by antibodies specific for C/EBP alpha. Furthermore, transient expression of C/EBP alpha and to a lesser extent C/EBP beta expression vectors, results in transactivation of a cotransfected C/EBP alpha promoter-luciferase reporter construct. These experiments support the notion that the C/EBP alpha gene is regulated by C/EBP alpha but other C/EBP-related proteins may also be involved. Images PMID:8493090
Dipeptidyl peptidase-4 greatly contributes to the hydrolysis of vildagliptin in human liver.
Asakura, Mitsutoshi; Fujii, Hideaki; Atsuda, Koichiro; Itoh, Tomoo; Fujiwara, Ryoichi
2015-04-01
The major metabolic pathway of vildagliptin in mice, rats, dogs, and humans is hydrolysis at the cyano group to produce a carboxylic acid metabolite M20.7 (LAY151), whereas the major metabolic enzyme of vildagliptin has not been identified. In the present study, we determined the contribution rate of dipeptidyl peptidase-4 (DPP-4) to the hydrolysis of vildagliptin in the liver. We performed hydrolysis assay of the cyano group of vildagliptin using mouse, rat, and human liver samples. Additionally, DPP-4 activities in each liver sample were assessed by DPP-4 activity assay using the synthetic substrate H-glycyl-prolyl-7-amino-4-methylcoumarin (Gly-Pro-AMC). M20.7 formation rates in liver microsomes were higher than those in liver cytosol. M20.7 formation rate was significantly positively correlated with the DPP-4 activity using Gly-Pro-AMC in liver samples (r = 0.917, P < 0.01). The formation of M20.7 in mouse, rat, and human liver S9 fraction was inhibited by sitagliptin, a selective DPP-4 inhibitor. These findings indicate that DPP-4 is greatly involved in vildagliptin hydrolysis in the liver. Additionally, we established stable single expression systems of human DPP-4 and its R623Q mutant, which is the nonsynonymous single-nucleotide polymorphism of human DPP-4, in human embryonic kidney 293 (HEK293) cells to investigate the effect of R623Q mutant on vildagliptin-hydrolyzing activity. M20.7 formation rate in HEK293 cells expressing human DPP-4 was significantly higher than that in control HEK293 cells. Interestingly, R623Q mutation resulted in a decrease of the vildagliptin-hydrolyzing activity. Our findings might be useful for the prediction of interindividual variability in vildagliptin pharmacokinetics. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Effects of edaravone, a radical scavenger, on hepatocyte transplantation.
Hayashi, Chihiro; Ito, Masahiro; Ito, Ryoutaro; Murakumo, Akiko; Yamamoto, Naoki; Hiramatsu, Noriko; Fox, Ira J; Horiguchi, Akihiko
2014-12-01
Hepatocyte transplantation (HTx) has yielded significant improvements in liver function and survival in experimentally induced acute liver failure and liver-based metabolic disease. However, transplantation is inefficient, and it is thought that transplanted hepatocytes have a shortened lifespan because of inflammation involving excess nitric oxide (NO). The present study aimed to clarify whether edaravone, a free radical scavenger used to treat ischemic stroke, could reduce ischemic changes in hepatocyte-transplanted livers. Edaravone (3 mg/kg) was administered intravenously 24 h before HTx to Nagase analbuminemic rats (NARs). Hepatocytes were isolated, and 30 × 10(6) cells were injected in a 1.0-ml volume directly into the spleens of NARs. All experimental groups studied received FK506 to control rejection. Animals in Group A received medium-only; Group B received HTx only; and Group C received HTx and edaravone. Forty-eight hours after transplantation, the hepatocytes from animals were isolated and analyzed for staining with propidium iodide- and annexin-V using flow cytometry. Liver sections were also studied by immunostaining for albumin, and TUNEL. Peripheral blood serum albumin levels were measured on post-transplant days 0, 3, 5, 7, 10 and 14 using ELISA. The edaravone-treated animals demonstrated an increased number of engrafted donor hepatocytes in the liver. The edaravone-treated liver sections also contained fewer TUNEL-positive cells and animals that received edaravone had higher serum albumin levels post-transplantation. Hepatocytes were also found to have increased in numbers 2 weeks following treatment with edaravone. Edaravone administration during HTx can suppress apoptosis near the transplanted cells, increasing engraftment. These studies indicate its potential usefulness for future clinical application. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.
Hayward, Rachel M; Nicolin, Gary; Kennedy, Charles; Joy, Harriet; Davies, Justin H
2011-01-01
Diabetes insipidus (DI) is rare in childhood and has a wide-ranging aetiology including the involvement of uncontrolled proliferation of dendritic cells in the hypothalamic-pituitary axis, characteristic of Langerhans cell histiocytosis (LCH). DI may manifest as a sequela of multisystem LCH disease involving skin, bone, liver, spleen and lymph nodes. In very rare cases patients diagnosed with LCH exhibit neurodegenerative changes, such as severe ataxia, tremor, dysarthria and intellectual impairment. We report a 2 1/2-year-old boy who presented initially with apparent idiopathic DI, developed anterior pituitary hormone deficiency and progressive neurological deterioration secondary to neurodegenerative LCH.
RSPOs facilitated HSC activation and promoted hepatic fibrogenesis
Yin, Xinguang; Yi, Huixing; Wang, Linlin; Wu, Wanxin; Wu, Xiaojun; Yu, Linghua
2016-01-01
Roof plate-specific spondin (RSPO) proteins are potent Wnt pathway agonists and involve in a broad range of developmental and physiological processes. This study investigated the activities and mechanisms of RSPOs in liver fibrogenesis, especially in hepatic stellate cell (HSC) activation. HSC activation was assessed by fibrosis biomarker (α-smooth muscle actin and Collagen-I), phenotypic change (accumulation of lipid droplets), and increased proliferation. Similarly, Wnt pathway activity was evaluated by the expression of nuclear β-catenin and T cell-specific transcription factors (TCF) activity. We found RSPOs were overexpressed in human fibrotic liver tissue and the expressions were correlated with liver fibrosis stages. In vitro studies showed RSPOs level increased during HSC activation, and stimuli with RSPOs enhanced Wnt pathway activity and promoted HSC activation subsequently. Furthermore, in vivo experiments demonstrated that the knockdown of RSPOs suppressed both Wnt pathway activity and HSC activation. Interestingly, the inhibitor of the Wnt signaling pathway Dickkopf1 impairs RSPOs effects on HSCs. Taken together, our results revealed that RSPOs facilitated HSC activation and promote liver fibrogenesis by enhancing the Wnt pathway. PMID:27572318
RSPOs facilitated HSC activation and promoted hepatic fibrogenesis.
Yin, Xinguang; Yi, Huixing; Wang, Linlin; Wu, Wanxin; Wu, Xiaojun; Yu, Linghua
2016-09-27
Roof plate-specific spondin (RSPO) proteins are potent Wnt pathway agonists and involve in a broad range of developmental and physiological processes. This study investigated the activities and mechanisms of RSPOs in liver fibrogenesis, especially in hepatic stellate cell (HSC) activation. HSC activation was assessed by fibrosis biomarker (α-smooth muscle actin and Collagen-I), phenotypic change (accumulation of lipid droplets), and increased proliferation. Similarly, Wnt pathway activity was evaluated by the expression of nuclear β-catenin and T cell-specific transcription factors (TCF) activity. We found RSPOs were overexpressed in human fibrotic liver tissue and the expressions were correlated with liver fibrosis stages. In vitro studies showed RSPOs level increased during HSC activation, and stimuli with RSPOs enhanced Wnt pathway activity and promoted HSC activation subsequently. Furthermore, in vivo experiments demonstrated that the knockdown of RSPOs suppressed both Wnt pathway activity and HSC activation. Interestingly, the inhibitor of the Wnt signaling pathway Dickkopf1 impairs RSPOs effects on HSCs. Taken together, our results revealed that RSPOs facilitated HSC activation and promote liver fibrogenesis by enhancing the Wnt pathway.
Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis
González-Terán, Bárbara; Cortés, José R.; Manieri, Elisa; Matesanz, Nuria; Verdugo, ρngeles; Rodríguez, María E.; González-Rodríguez, ρgueda; Valverde, ρngela; Martín, Pilar; Davis, Roger J.; Sabio, Guadalupe
2012-01-01
Bacterial LPS (endotoxin) has been implicated in the pathogenesis of acute liver disease through its induction of the proinflammatory cytokine TNF-α. TNF-α is a key determinant of the outcome in a well-established mouse model of acute liver failure during septic shock. One possible mechanism for regulating TNF-α expression is through the control of protein elongation during translation, which would allow rapid cell adaptation to physiological changes. However, the regulation of translational elongation is poorly understood. We found that expression of p38γ/δ MAPK proteins is required for the elongation of nascent TNF-α protein in macrophages. The MKK3/6-p38γ/δ pathway mediated an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) kinase, which in turn promoted eEF2 activation (dephosphorylation) and subsequent TNF-α elongation. These results identify a new signaling pathway that regulates TNF-α production in LPS-induced liver damage and suggest potential cell-specific therapeutic targets for liver diseases in which TNF-α production is involved. PMID:23202732
Egen, Jackson G; Rothfuchs, Antonio Gigliotti; Feng, Carl G; Winter, Nathalie; Sher, Alan; Germain, Ronald N
2008-02-01
Granulomas play a key role in host protection against mycobacterial pathogens, with their breakdown contributing to exacerbated disease. To better understand the initiation and maintenance of these structures, we employed both high-resolution multiplex static imaging and intravital multiphoton microscopy of Mycobacterium bovis BCG-induced liver granulomas. We found that Kupffer cells directly capture blood-borne bacteria and subsequently nucleate formation of a nascent granuloma by recruiting both uninfected liver-resident macrophages and blood-derived monocytes. Within the mature granuloma, these myeloid cell populations formed a relatively immobile cellular matrix that interacted with a highly dynamic effector T cell population. The efficient recruitment of these T cells was highly dependent on TNF-alpha-derived signals, which also maintained the granuloma structure through preferential effects on uninfected macrophage populations. By characterizing the migration of both innate and adaptive immune cells throughout the process of granuloma development, these studies provide a new perspective on the cellular events involved in mycobacterial containment and escape.
Hernández-Cuevas, Nora Adriana; Weber, Christian; Hon, Chung-Chau; Guillen, Nancy
2014-01-01
Entamoeba histolytica is an ameboid parasite that causes colonic dysentery and liver abscesses in humans. The parasite encounters dramatic changes in iron concentration during its invasion of the host, with relatively low levels in the intestinal lumen and then relatively high levels in the blood and liver. The liver notably contains sources of iron; therefore, the parasite's ability to use these sources might be relevant to its survival in the liver and thus the pathogenesis of liver abscesses. The objective of the present study was to identify factors involved in iron uptake, use and storage in E. histolytica. We compared the respective transcriptomes of E. histolytica trophozoites grown in normal medium (containing around 169 µM iron), low-iron medium (around 123 µM iron), iron-deficient medium (around 91 µM iron), and iron-deficient medium replenished with hemoglobin. The differentially expressed genes included those coding for the ATP-binding cassette transporters and major facilitator transporters (which share homology with bacterial siderophores and heme transporters) and genes involved in heme biosynthesis and degradation. Iron deficiency was associated with increased transcription of genes encoding a subset of cell signaling molecules, some of which have previously been linked to adaptation to the intestinal environment and virulence. The present study is the first to have assessed the transcriptome of E. histolytica grown under various iron concentrations. Our results provide insights into the pathways involved in iron uptake and metabolism in this parasite. PMID:25210888
Hernández-Cuevas, Nora Adriana; Weber, Christian; Hon, Chung-Chau; Guillen, Nancy
2014-01-01
Entamoeba histolytica is an ameboid parasite that causes colonic dysentery and liver abscesses in humans. The parasite encounters dramatic changes in iron concentration during its invasion of the host, with relatively low levels in the intestinal lumen and then relatively high levels in the blood and liver. The liver notably contains sources of iron; therefore, the parasite's ability to use these sources might be relevant to its survival in the liver and thus the pathogenesis of liver abscesses. The objective of the present study was to identify factors involved in iron uptake, use and storage in E. histolytica. We compared the respective transcriptomes of E. histolytica trophozoites grown in normal medium (containing around 169 µM iron), low-iron medium (around 123 µM iron), iron-deficient medium (around 91 µM iron), and iron-deficient medium replenished with hemoglobin. The differentially expressed genes included those coding for the ATP-binding cassette transporters and major facilitator transporters (which share homology with bacterial siderophores and heme transporters) and genes involved in heme biosynthesis and degradation. Iron deficiency was associated with increased transcription of genes encoding a subset of cell signaling molecules, some of which have previously been linked to adaptation to the intestinal environment and virulence. The present study is the first to have assessed the transcriptome of E. histolytica grown under various iron concentrations. Our results provide insights into the pathways involved in iron uptake and metabolism in this parasite.
Almeida, Gilberto S; Bawn, Carlo M; Galler, Martin; Wilson, Ian; Thomas, Huw D; Kyle, Suzanne; Curtin, Nicola J; Newell, David R; Maxwell, Ross J
2017-09-01
Poly(adenosine diphosphate ribose) polymerases (PARPs) are multifunctional proteins which play a role in many cellular processes. Namely, PARP1 and PARP2 have been shown to be involved in DNA repair, and therefore are valid targets in cancer treatment with PARP inhibitors, such as rucaparib, currently in clinical trials. Proton magnetic resonance spectroscopy ( 1 H-MRS) was used to study the impact of rucaparib in vitro and ex vivo in liver tissue from mice, via quantitative analysis of nicotinamide adenosine diphosphate (NAD + ) spectra, to assess the potential of MRS as a biomarker of the PARP inhibitor response. SW620 (colorectal) and A2780 (ovarian) cancer cell lines, and PARP1 wild-type (WT) and PARP1 knock-out (KO) mice, were treated with rucaparib, temozolomide (methylating agent) or a combination of both drugs. 1 H-MRS spectra were obtained from perchloric acid extracts of tumour cells and mouse liver. Both cell lines showed an increase in NAD + levels following PARP inhibitor treatment in comparison with temozolomide treatment. Liver extracts from PARP1 WT mice showed a significant increase in NAD + levels after rucaparib treatment compared with untreated mouse liver, and a significant decrease in NAD + levels in the temozolomide-treated group. The combination of rucaparib and temozolomide did not prevent the NAD + depletion caused by temozolomide treatment. The 1 H-MRS results show that NAD + levels can be used as a biomarker of PARP inhibitor and methylating agent treatments, and suggest that in vivo measurement of NAD + would be valuable. Copyright © 2017 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Ruibing; Yan, Lihui; Luo, Zheng
2015-08-15
Extracellular Ca{sup 2+} influx has been suggested to play a role in ethanol-induced hepatocyte apoptosis and necrosis. Previous studies indicated that store-operated Ca{sup 2+} entry (SOCE) was involved in liver injury induced by ethanol in HepG2 cells. However, the mechanisms underlying liver injury caused by SOCE remain unclear. We aimed to investigate the effects and mechanism of SOCE inhibition on liver injury induced by ethanol in BRL cells and Sprague–Dawley rats. Our data demonstrated that ethanol (0–400 mM) dose-dependently increased hepatocyte injury and 100 mM ethanol significantly upregulated the mRNA and protein expression of SOC for at least 72 hmore » in BRL cells. Blockade of SOCE by pharmacological inhibitors and sh-RNA knockdown of STIM1 and Orai1 attenuated intracellular Ca{sup 2+} overload, restored the mitochondrial membrane potential (MMP), decreased cytochrome C release and inhibited ethanol-induced apoptosis. STIM1 and Orai1 expression was greater in ethanol-treated than control rats, and the SOCE inhibitor corosolic acid ameliorated the histopathological findings and alanine transaminase and aspartate transaminase activity as well as decreased cytochrome C release and inhibited alcohol-induced cell apoptosis. These findings suggest that SOCE blockade could alleviate alcohol-induced hepatotoxicity via inhibiting apoptosis. SOCE might be a useful therapeutic target in alcoholic liver diseases. - Highlights: • Blockade of SOCE alleviated overload of Ca{sup 2+} and hepatotoxicity after ethanol application. • Blockade of SOCE inhibited mitochondrial apoptosis after ethanol application. • SOCE might be a useful therapeutic target in alcoholic liver diseases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Haiyan; Department of Gastroenterology and Hepatology, Yanbian University Hospital, Yanji, Jilin; Yamamoto, Naoki
2007-12-28
Rennin-angiotensin system is involved in liver fibrogenesis through activating hepatic stellate cells (HSCs). Telmisartan (Tel) is an angiotensin II type 1 receptor antagonist, could function as a selective peroxisome proliferator-activated receptor {gamma} activator. Here we studied the effect of Tel on liver fibrosis, pre-neoplastic lesions in vivo and primary HSCs in vitro. In vivo study, we used the choline-deficient L-amino acid-defined (CDAA)-diet induced rat NASH model. The rats were fed the CDAA diet for 8 weeks to induce liver fibrosis and pre-neoplastic lesions, and then co-administrated with Tel for another 10 weeks. Tel prevented liver fibrogenesis and pre-neoplastic lesions bymore » down-regulating TGF{beta}1 and TIMP-1, 2 and increasing MMP-13 expression. Tel inhibited HSCs activation and proliferation. These results suggested that Tel could be a promising drug for NASH related liver fibrosis.« less
Zheng, Yingjuan; Zhao, Chao; Zhang, Naijian; Kang, Wenqin; Lu, Rongrong; Wu, Huadong; Geng, Yingxue; Zhao, Yaping; Xu, Xiaoyan
2018-04-01
The actions of thyroid hormone (TH) on lipid metabolism in the liver are associated with a number of genes involved in lipogenesis and lipid metabolism; however, the underlying mechanisms through which TH impacts on lipid metabolism remain to be elucidated. The present study aimed to investigate the effects of hyperthyroidism on the serum levels of the microRNA (miR) miR‑206 and the role of miR‑206 on TH‑regulated lipid metabolism in liver cells. Serum was obtained from 12 patients diagnosed with hyperthyroidism and 10 healthy control subjects. Human hepatoblastoma (HepG2) cells were used to study the effects of triiodothyronine (T3) and miR‑206 on lipid metabolism. Expression of miR‑206 in serum and cells was determined by reverse transcription‑quantitative polymerase chain reaction analysis. Lipid accumulation in HepG2 cells was assessed with Oil Red O staining. Suppression or overexpression of miR‑206 was performed via transfection with a miR‑206 mimic or miR‑206 inhibitor. Serum miR‑206 was significantly decreased in patients with hyperthyroidism compared with euthyroid controls. Treatment of HepG2 cells with T3 led to reduced total cholesterol (TC) and triglyceride (TG) content, accompanied by reduced miR‑206 expression. Inhibition of endogenous miR‑206 expression decreased intracellular TG and TC content in HepG2 cells. By contrast, overexpression of miR‑206 in HepG2 partially prevented the reduction in TG content induced by treatment with T3. In conclusion, serum miR‑206 expression is reduced in patients with hyperthyroidism. In addition, miR‑206 is involved in T3‑mediated regulation of lipid metabolism in HepG2 cells, indicating a role for miR‑206 in thyroid hormone‑induced disorders of lipid metabolism in the liver.
Pathogenesis of alcoholic liver disease: Role of oxidative metabolism
Ceni, Elisabetta; Mello, Tommaso; Galli, Andrea
2014-01-01
Alcohol consumption is a predominant etiological factor in the pathogenesis of chronic liver diseases, resulting in fatty liver, alcoholic hepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma (HCC). Although the pathogenesis of alcoholic liver disease (ALD) involves complex and still unclear biological processes, the oxidative metabolites of ethanol such as acetaldehyde and reactive oxygen species (ROS) play a preeminent role in the clinical and pathological spectrum of ALD. Ethanol oxidative metabolism influences intracellular signaling pathways and deranges the transcriptional control of several genes, leading to fat accumulation, fibrogenesis and activation of innate and adaptive immunity. Acetaldehyde is known to be toxic to the liver and alters lipid homeostasis, decreasing peroxisome proliferator-activated receptors and increasing sterol regulatory element binding protein activity via an AMP-activated protein kinase (AMPK)-dependent mechanism. AMPK activation by ROS modulates autophagy, which has an important role in removing lipid droplets. Acetaldehyde and aldehydes generated from lipid peroxidation induce collagen synthesis by their ability to form protein adducts that activate transforming-growth-factor-β-dependent and independent profibrogenic pathways in activated hepatic stellate cells (HSCs). Furthermore, activation of innate and adaptive immunity in response to ethanol metabolism plays a key role in the development and progression of ALD. Acetaldehyde alters the intestinal barrier and promote lipopolysaccharide (LPS) translocation by disrupting tight and adherent junctions in human colonic mucosa. Acetaldehyde and LPS induce Kupffer cells to release ROS and proinflammatory cytokines and chemokines that contribute to neutrophils infiltration. In addition, alcohol consumption inhibits natural killer cells that are cytotoxic to HSCs and thus have an important antifibrotic function in the liver. Ethanol metabolism may also interfere with cell-mediated adaptive immunity by impairing proteasome function in macrophages and dendritic cells, and consequently alters allogenic antigen presentation. Finally, acetaldehyde and ROS have a role in alcohol-related carcinogenesis because they can form DNA adducts that are prone to mutagenesis, and they interfere with methylation, synthesis and repair of DNA, thereby increasing HCC susceptibility. PMID:25548474
A three-dimensional in vitro HepG2 cells liver spheroid model for genotoxicity studies.
Shah, Ume-Kulsoom; Mallia, Jefferson de Oliveira; Singh, Neenu; Chapman, Katherine E; Doak, Shareen H; Jenkins, Gareth J S
2018-01-01
The liver's role in metabolism of chemicals makes it an appropriate tissue for toxicity testing. Current testing protocols, such as animal testing and two-dimensional liver cell systems, offer limited resemblance to in vivo liver cell behaviour, in terms of gene expression profiles and metabolic competence; thus, they do not always accurately predict human toxicology. In vitro three-dimensional liver cell models offer an attractive alternative. This study reports on the development of a 3D liver model, using HepG2 cells, by a hanging-drop technique, with a focus on evaluating spheroid growth characteristics and suitability for genotoxicity testing. The cytokinesis-blocked micronucleus assay protocol was adapted to enable micronucleus (MN) detection in the 3D spheroid models. This involved evaluating the difference between hanging vs non-hanging drop positions for dosing of the test agents and comparison of automated Metafer scoring with manual scoring for MN detection in HepG2 spheroids. The initial seeding density, used for all experiments, was 5000 cells/20 μl drop hanging spheroids, harvested on day 4, with >75% cell viability. Albumin secretion (7.8 g/l) and both CYP1A1 and CYP1A2 gene expression were highest in the 3D environment at day 4. Exposure to metabolically activated genotoxicants for 24 h resulted in a 6-fold increase in CYP1A1 enzyme activity (3 μM B[a]P) and a 30-fold increase in CYP1A2 enzyme activity (5 μM PhIP) in 3D hanging spheroids. MN inductions in response to B[a]P or PhIP were 2-fold and 3-fold, respectively, and were greater in 3D hanging spheroids than in 2D format, showing that hanging spheroids are more sensitive to genotoxic agents. HepG2 hanging-drop spheroids are an exciting new alternative system for genotoxicity studies, due to their improved structural and physiological properties, relative to 2D cultures. Copyright © 2017 Elsevier B.V. All rights reserved.
Wei, Shengnan; Zhang, Ming; Yu, Yang; Xue, Huan; Lan, Xiaoxin; Liu, Shuping; Hatch, Grant; Chen, Li
2016-11-15
Hepatocyte Nuclear Factor-4α (HNF-4α) is a key nuclear receptor protein required for liver development. miR-122 is a predominant microRNA expressed in liver and is involved in the regulation of cholesterol and fatty acid metabolism. HNF-4α is know to regulate expression of miR-122 in liver. We examined how HNF-4α regulated gluconeogenesis and lipid metabolism through miR-122 in vivo and in vitro. Expression of miR-122, HNF-4α, phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6Pase), sterol response elementary binding protein-1 (SREBP-1), fatty acid synthase-1 (FAS-1), carnitine palmitoyltransferase-1 (CPT-1) and acetyl Coenzyme A carboxylase alpha (ACCα) were determined in livers of Type 2 diabetic mice and in insulin resistant palmitate-treated HepG2 cells. CPT-1 and phosphorylated ACCα expression were significantly decreased in livers of Type 2 diabetic mice and in palmitate-treated HepG2 cells compared to controls. In contrast, expression of miR-122, HNF-4α, PEPCK, G6Pase, SREBP-1, FAS-1 and ACCα were significantly elevated in liver of Type 2 diabetic mice and in palmitate-treated HepG2 cells compared to controls. Expression of HNF-4α increased whereas siRNA knockdown of HNF-4α decreased miR-122 levels in HepG2 cells compared to controls. In addition, expression of HNF-4α in HepG2 cells increased PEPCK, G6Pase, SREBP-1, FAS-1, ACCα mRNA and protein expression and decreased CPT-1 and p-ACCα mRNA and protein expression compared to controls. Addition of miR-122 inhibitors attenuated the HNF-4α mediated effect on expression of these gluconeogenic and lipid metabolism proteins. The results indicate that HNF-4α regulated miR-122 contributes to development of the gluconeogenic and lipid metabolism alterations observed in Type 2 diabetic mice and in palmitate-treated HepG2 cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Chung, Ki Wung; Lee, Eun Kyeong; Kim, Dae Hyun; An, Hye Jin; Kim, Nam Deuk; Im, Dong Soon; Lee, Jaewon; Yu, Byung Pal; Chung, Hae Young
2015-01-01
Aging is associated with increased vulnerability to inflammatory challenge. However, the effects of altered inflammatory response on the metabolic status of tissues or organs are not well documented. In this study, we present evidence demonstrating that lipopolysaccharide (LPS)-induced upregulation of the inflammasome/IL-1β pathway is accompanied with an increased inflammatory response and abnormal lipid accumulation in livers of aged rats. To monitor the effects of aging on LPS-induced inflammation, we administered LPS (2 mg kg−1) to young (6-month old) and aged (24-month old) rats and found abnormal lipid metabolism in only aged rats with increased lipid accumulation in the liver. This lipid accumulation in the liver was due to the dysregulation of PPARα and SREBP1c. We also observed severe liver inflammation in aged rats as indicated by increased ALT levels in serum and increased Kupffer cells in the liver. Importantly, among many inflammation-associated factors, the aged rat liver showed chronically increased IL-1β production. Increased levels of IL-1β were caused by the upregulation of caspase-1 activity and inflammasome activation. In vitro studies with HepG2 cells demonstrated that treatment with IL-1β significantly induced lipid accumulation in hepatocytes through the regulation of PPARα and SREBP1c. In summary, we demonstrated that LPS-induced liver inflammation and lipid accumulation were associated with a chronically overactive inflammasome/IL-1β pathway in aged rat livers. Based on the present findings, we propose a mechanism of aging-associated progression of steatohepatitis induced by endotoxin, delineating a pathogenic role of the inflammasome/IL-1β pathway involved in lipid accumulation in the liver. PMID:25847140
Vasopressin regulates the growth of the biliary epithelium in polycystic liver disease
Mancinelli, Romina; Franchitto, Antonio; Glaser, Shannon; Vetuschi, Antonella; Venter, Julie; Sferra, Roberta; Pannarale, Luigi; Olivero, Francesca; Carpino, Guido; Alpini, Gianfranco; Onori, Paolo; Gaudio, Eugenio
2017-01-01
The neurohypophysial hormone arginine vasopressin (AVP) acts by three distinct receptor subtypes: V1a, V1b, and V2. In the liver, AVP is involved in ureogenesis, glycogenolysis, neoglucogenesis and regeneration. No data exist about the presence of AVP in the biliary epithelium. Cholangiocytes are the target cells in a number of animal models of cholestasis, including bile duct ligation (BDL), and in several human pathologies, such as polycystic liver disease characterized by the presence of cysts that bud from the biliary epithelium. In vivo, liver fragments from normal and BDL mice and rats as well as liver samples from normal and ADPKD patients were collected to evaluate: (i) intrahepatic bile duct mass by immunohistochemistry for cytokeratin-19; and (ii) expression of V1a, V1b and V2 by immunohistochemistry, immunofluorescence and real-time PCR. In vitro, small and large mouse cholangiocytes, H69 (non-malignant human cholangiocytes) and LCDE (human cholangiocytes from the cystic epithelium) were stimulated with vasopressin in the absence/presence of AVP antagonists such as OPC-31260 and Tolvaptan, before assessing cellular growth by MTT assay and cAMP levels. Cholangiocytes express V2 receptor that was upregulated following BDL and in ADPKD liver samples. Administration of AVP increased proliferation and cAMP levels of small cholangiocytes and LCDE cells. We found no effect in the proliferation of large mouse cholangiocytes and H69 cells. Increases were blocked by preincubation with the AVP antagonists. These results showed that AVP and its receptors may be important in the modulation of the proliferation rate of the biliary epithelium. PMID:27571215
Vasopressin regulates the growth of the biliary epithelium in polycystic liver disease.
Mancinelli, Romina; Franchitto, Antonio; Glaser, Shannon; Vetuschi, Antonella; Venter, Julie; Sferra, Roberta; Pannarale, Luigi; Olivero, Francesca; Carpino, Guido; Alpini, Gianfranco; Onori, Paolo; Gaudio, Eugenio
2016-11-01
The neurohypophysial hormone arginine vasopressin (AVP) acts by three distinct receptor subtypes: V1a, V1b, and V2. In the liver, AVP is involved in ureogenesis, glycogenolysis, neoglucogenesis and regeneration. No data exist about the presence of AVP in the biliary epithelium. Cholangiocytes are the target cells in a number of animal models of cholestasis, including bile duct ligation (BDL), and in several human pathologies, such as polycystic liver disease characterized by the presence of cysts that bud from the biliary epithelium. In vivo, liver fragments from normal and BDL mice and rats as well as liver samples from normal and ADPKD patients were collected to evaluate: (i) intrahepatic bile duct mass by immunohistochemistry for cytokeratin-19; and (ii) expression of V1a, V1b and V2 by immunohistochemistry, immunofluorescence and real-time PCR. In vitro, small and large mouse cholangiocytes, H69 (non-malignant human cholangiocytes) and LCDE (human cholangiocytes from the cystic epithelium) were stimulated with vasopressin in the absence/presence of AVP antagonists such as OPC-31260 and Tolvaptan, before assessing cellular growth by MTT assay and cAMP levels. Cholangiocytes express V2 receptor that was upregulated following BDL and in ADPKD liver samples. Administration of AVP increased proliferation and cAMP levels of small cholangiocytes and LCDE cells. We found no effect in the proliferation of large mouse cholangiocytes and H69 cells. Increases were blocked by preincubation with the AVP antagonists. These results showed that AVP and its receptors may be important in the modulation of the proliferation rate of the biliary epithelium.
Ning, Xia; Wang, Yue; Yan, Wei; Li, Guangke; Sang, Nan
2018-05-03
Chitin synthesis inhibitors (CSIs), as alternatives to conventional insecticides, have been in worldwide demand in recent years. However, little attention has been paid to the potential ecological safety and health risks of CSIs, especially their abilities to interfere with nonsexual hormone receptors such as hypoxia-inducible factor 1α (HIF-1α). In this work, we conducted a systematic study regarding the influence of CSIs on HIF-1α-related liver cancer cell metastasis. The dual-luciferase reporter gene assay revealed that two of fourteen CSIs exhibited dose-response HIF-1α agonistic activities at noncytotoxic concentrations with relative luciferase activity (RLA) values of 25.6% for diflubenzuron (DFB) and 20.9% for triflumuron (TFM). Following this result, in vitro bioassays demonstrated that both DFB and TFM stimulated HepG2 cell migration and invasion. This action was associated with the varied expression levels of genes involved in epithelial-to-mesenchymal transition (EMT) activation and extracellular matrix (ECM) degradation, such as the upregulation of fibronectin (FN1) and matrix metalloproteinase-2 (MMP-2) and the suppression of E-cadherin (E-cad) and tissue inhibitor of metalloproteinases-2 (TIMP-2). Moreover, changes in these EMT and ECM phenotype markers were dramatically blocked by a HIF-1α inhibitor (KC7F2), which further verified the involvement of HIF-1α in CSI-induced HepG2 cell metastasis. For the first time, our findings reveal that CSIs play crucial roles in promoting the metastasis of human liver cancer cells and that HIF-1α is potentially responsible for these changes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zaouali, Mohamed Amine; Panisello, Arnau; Lopez, Alexandre; Castro, Carlos; Folch, Emma; Carbonell, Teresa; Rolo, Anabela; Palmeira, Carlos Marques; Garcia-Gil, Agustin; Adam, René; Roselló-Catafau, Joan
2017-01-01
We investigated the involvement of glycogen synthase kinase-3β (GSK3β) and the voltage-dependent anion channel (VDAC) in livers subjected to cold ischemia–reperfusion injury (I/R) associated with orthotopic liver transplantation (OLT). Rat livers were preserved in University of Wisconsin (UW) and Institute Georges Lopez (IGL-1) solution, the latter enriched or not with trimetazidine, and then subjected to OLT. Transaminase (ALT) and HMGB1 protein levels, glutamate dehydrogenase (GLDH), and oxidative stress (MDA) were measured. The AKT protein kinase and its direct substrates, GSK3β and VDAC, as well as caspases 3, 9, and cytochrome C and reticulum endoplasmic stress-related proteins (GRP78, pPERK, ATF4, and CHOP), were determined by Western blot. IGL-1+TMZ significantly reduced liver injury. We also observed a significant phosphorylation of AKT, which in turn induced the phosphorylation and inhibition of GSK3β. In addition, TMZ protected the mitochondria since, in comparison with IGL-1 alone, we found reductions in VDAC phosphorylation, apoptosis, and GLDH release. All these results were correlated with decreased ER stress. Addition of TMZ to IGL-1 solution increased the tolerance of the liver graft to I/R injury through inhibition of GSK3β and VDAC, contributing to ER stress reduction and cell death prevention. PMID:28282906
Pal, Rajarshi; Mamidi, Murali Krishna; Das, Anjan Kumar; Gupta, Pawan Kumar; Bhonde, Ramesh
2012-01-01
The in vitro derived hepatocytes from human embryonic stem cells (hESC) is a promising tool to acquire improved knowledge of the cellular and molecular events underlying early human liver development under physiological and pathological conditions. Here we report a simple two-step protocol employing conditioned medium (CM) from human hepatocellular carcinoma cell line, HepG2 to generate functional hepatocyte-like cells from hESC. Immunocytochemistry, flow cytometry, quantitative RT-PCR, and biochemical analyses revealed that the endodermal progenitors appeared as pockets in culture, and the cascade of genes associated with the formation of definitive endoderm (HNF-3β, SOX-17, DLX-5, CXCR4) was consistent and in concurrence with the up-regulation of the markers for hepatic progenitors [alpha-feto protein (AFP), HNF-4α, CK-19, albumin, alpha-1-antitrypsin (AAT)], followed by maturation into functional hepatocytes [tyrosine transferase (TAT), tryptophan-2, 3-dioxygenase (TDO), glucose 6-phosphate (G6P), CYP3A4, CYP7A1]. We witnessed that the gene expression profile during this differentiation process recapitulated in vivo liver development demonstrating a gradual down-regulation of extra embryonic endodermal markers (SOX-7, HNF-1β, SNAIL-1, LAMININ-1, CDX2), and the generated hepatic cells performed multiple liver functions. Since prenatal alcohol exposure is known to provoke irreversible abnormalities in the fetal cells and developing tissues, we exposed in vitro generated hepatocytes to ethanol (EtOH) and found that EtOH treatment not only impairs the survival and proliferation, but also induces apoptosis and perturbs differentiation of progenitor cells into hepatocytes. This disruption was accompanied by alterations in the expression of genes and proteins involved in hepatogenesis. Our results provide new insights into the wider range of destruction caused by alcohol on the dynamic process of liver organogenesis. Copyright © 2011 Wiley Periodicals, Inc.
Protective effect of thalidomide on endotoxin-induced liver injury.
Enomoto, Nobuyuki; Takei, Yoshiyuki; Hirose, Miyoko; Kitamura, Tsuneo; Ikejima, Kenichi; Sato, Nobuhiro
2003-08-01
Activation of Kupffer cells by lipopolysaccharide (LPS) plays a pivotal role in the onset of pathophysiological events that occur during endotoxemia, and intracellular calcium concentration ([Ca2+]i) is involved in LPS-stimulated cytokine production. Tumor necrosis factor (TNF)-alpha is produced exclusively by the monocyte-macrophage lineage, which is mostly made up of Kupffer cells, and thalidomide has been shown to reduce TNF-alpha production from macrophages. However, there is increasing evidence that TNF-alpha may play a role in the initiation or progression of multiple organ failure syndrome. Therefore, the purpose of this work was to determine whether thalidomide could prevent LPS-induced liver injury. Rats were given a single oral dose of thalidomide (5 mg/kg). To assess the sensitization of Kupffer cells, LPS (5 or 10 mg/kg) was administered intravenously, and mortality, liver histology, and transaminases were evaluated 24 hr later. Kupffer cells were isolated 2 hr after thalidomide treatment. After the addition of LPS, [Ca2+]i was measured by using a microspectrofluorometer with the fluorescent indicator fura-2, and TNF-alpha was measured by enzyme-linked immunosorbent assay. LPS caused focal necrosis with neutrophil infiltration in the liver. Moreover, LPS dramatically increased transaminases. These pathologic parameters and increases of serum transaminases were diminished markedly by thalidomide. In isolated Kupffer cells, LPS-induced increases in [Ca2+]i and TNF-alpha production were suppressed by treatment with thalidomide. To further explore the mechanism by which thalidomide directly abrogated Kupffer cell sensitivity to LPS, we determined the effect of thalidomide (5 microM) in vitro on LPS-induced [Ca2+]i response and TNF-alpha production. With the addition of thalidomide (5 microM) in vitro to the culture media for 2 hr before LPS, these parameters were suppressed. Thalidomide prevents LPS-induced liver injury via mechanisms dependent on the suppression of TNF-alpha production from Kupffer cells.
Koppe, Christiane; Verheugd, Patricia; Gautheron, Jérémie; Reisinger, Florian; Kreggenwinkel, Karina; Roderburg, Christoph; Quagliata, Luca; Terracciano, Luigi; Gassler, Nikolaus; Tolba, René H; Boege, Yannick; Weber, Achim; Karin, Michael; Luedde, Mark; Neumann, Ulf P; Weiskirchen, Ralf; Tacke, Frank; Vucur, Mihael; Trautwein, Christian; Lüscher, Bernhard; Preisinger, Christian; Heikenwalder, Mathias; Luedde, Tom
2016-10-01
The IκB-Kinase (IKK) complex-consisting of the catalytic subunits, IKKα and IKKβ, as well as the regulatory subunit, NEMO-mediates activation of the nuclear factor κB (NF-κB) pathway, but previous studies suggested the existence of NF-κB-independent functions of IKK subunits with potential impact on liver physiology and disease. Programmed cell death is a crucial factor in the progression of liver diseases, and receptor-interacting kinases (RIPKs) exerts strategic control over multiple pathways involved in regulating novel programmed cell-death pathways and inflammation. We hypothesized that RIPKs might be unrecognized targets of the catalytic IKK-complex subunits, thereby regulating hepatocarcinogenesis and cholestasis. In this present study, mice with specific genetic inhibition of catalytic IKK activity in liver parenchymal cells (LPCs; IKKα/β(LPC-KO) ) were intercrossed with RIPK1(LPC-KO) or RIPK3(-/-) mice to examine whether RIPK1 or RIPK3 might be downstream targets of IKKs. Moreover, we performed in vivo phospho-proteome analyses and in vitro kinase assays, mass spectrometry, and mutagenesis experiments. These analyses revealed that IKKα and IKKβ-in addition to their known function in NF-κB activation-directly phosphorylate RIPK1 at distinct regions of the protein, thereby regulating cell viability. Loss of this IKKα/β-dependent RIPK1 phosphorylation in LPCs inhibits compensatory proliferation of hepatocytes and intrahepatic biliary cells, thus impeding HCC development, but promoting biliary cell paucity and lethal cholestasis. IKK-complex subunits transmit a previously unrecognized signal through RIPK1, which is fundamental for the long-term consequences of chronic hepatic inflammation and might have potential implications for future pharmacological strategies against cholestatic liver disease and cancer. (Hepatology 2016;64:1217-1231). © 2016 by the American Association for the Study of Liver Diseases.
Zhang, Zhenzhen; Liu, Jianfang; Liu, Yang; Li, Zheng; Gao, Wei-Qiang; He, Zuping
2013-02-01
Liver cancer is the sixth most common tumor in the world and the majority of patients with this disease usually die within 1 year. The effective treatment for end-stage liver disease (also known as liver failure), including liver cancer or cirrhosis, is liver transplantation. However, there is a severe shortage of liver donors worldwide, which is the major handicap for the treatment of patients with liver failure. Scarcity of liver donors underscores the urgent need of using stem cell therapy to the end-stage liver disease. Notably, hepatocytes have recently been generated from hepatic and extra-hepatic stem cells. We have obtained mature and functional hepatocytes from rat hepatic stem cells. Here, we review the advancements on hepatic differentiation from various stem cells, including hepatic stem cells, embryonic stem cells, the induced pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, and probably spermatogonial stem cells. The advantages, disadvantages, and concerns on differentiation of these stem cells into hepatic cells are highlighted. We further address the methodologies, phenotypes, and functional characterization on the differentiation of numerous stem cells into hepatic cells. Differentiation of stem cells into mature and functional hepatocytes, especially from an extra-hepatic stem cell source, would circumvent the scarcity of liver donors and human hepatocytes, and most importantly it would offer an ideal and promising source of hepatocytes for cell therapy and tissue engineering in treating liver disease. Copyright © 2012 Wiley Periodicals, Inc.
Intermediate filament proteins of digestive organs: physiology and pathophysiology.
Omary, M Bishr
2017-06-01
Intermediate filament proteins (IFs), such as cytoplasmic keratins in epithelial cells and vimentin in mesenchymal cells and the nuclear lamins, make up one of the three major cytoskeletal protein families. Whether in digestive organs or other tissues, IFs share several unique features including stress-inducible overexpression, abundance, cell-selective and differentiation state expression, and association with >80 human diseases when mutated. Whereas most IF mutations cause disease, mutations in simple epithelial keratins 8, 18, or 19 or in lamin A/C predispose to liver disease with or without other tissue manifestations. Keratins serve major functions including protection from apoptosis, providing cellular and subcellular mechanical integrity, protein targeting to subcellular compartments, and scaffolding and regulation of cell-signaling processes. Keratins are essential for Mallory-Denk body aggregate formation that occurs in association with several liver diseases, whereas an alternate type of keratin and lamin aggregation occurs upon liver involvement in porphyria. IF-associated diseases have no known directed therapy, but high-throughput drug screening to identify potential therapies is an appealing ongoing approach. Despite the extensive current knowledge base, much remains to be discovered regarding IF physiology and pathophysiology in digestive and nondigestive organs. Copyright © 2017 the American Physiological Society.
Parvovirus B19-Induced Apoptosis of Hepatocytes
Poole, Brian D.; Karetnyi, Yuory V.; Naides, Stanley J.
2004-01-01
Parvovirus B19 (B19 virus) can persist in multiple tissues and has been implicated in a variety of diseases, including acute fulminant liver failure. The mechanism by which B19 virus induces liver failure remains unknown. Hepatocytes are nonpermissive for B19 virus replication. We previously reported that acute fulminant liver failure associated with B19 virus infection was characterized by hepatocellular dropout. We inoculated both primary hepatocytes and the hepatocellular carcinoma cell line Hep G2 with B19 virus and assayed for apoptosis by using annexin V staining. Reverse transcriptase PCR analysis and immunofluorescence demonstrated that B19 virus was able to infect the cells and produce its nonstructural protein but little or no structural capsid protein. Infection with B19 virus induced means of 28% of Hep G2 cells and 10% of primary hepatocytes to undergo apoptosis, which were four- and threefold increases, respectively, over background levels. Analysis of caspase involvement showed that B19 virus-inoculated cultures had a significant increase in the number of cells with active caspase 3. Inhibition studies demonstrated that caspases 3 and 9, but not caspase 8, are required for B19 virus-induced apoptosis. PMID:15220451
The P2X4 purinergic receptor regulates hepatic myofibroblast activation during liver fibrogenesis.
Le Guilcher, Camille; Garcin, Isabelle; Dellis, Olivier; Cauchois, Florent; Tebbi, Ali; Doignon, Isabelle; Guettier, Catherine; Julien, Boris; Tordjmann, Thierry
2018-05-23
Liver fibrosis is characterized by the accumulation of extracellular matrix produced by hepatic myofibroblasts (hMF), the activation of which is critical to the fibrogenic process. Extracellular adenosine triphosphate, released by dying or stressed cells, and its purinergic receptors, constitute a powerful signaling network after injury. Although the P2X4 purinergic receptor (P2X4) is highly expressed in the liver, its functions in hMF had never been investigated during liver fibrogenesis. In vivo, bile duct ligation (BDL) and methionine- and choline-deficient (MCD) diet were performed in WT and P2X4 knock-out (P2X4-KO) mice. In vitro, hMF were isolated from mouse (WT and P2X4-KO) and human liver. P2X4 pharmacological inhibition (in vitro and in vivo) and P2X4 siRNAs (in vitro) were used. Histological, biochemical and cell culture analysis allowed us to study P2X4 expression and its involvement in the regulation of fibrogenic and fibrolytic factors, as well as of hMF activation markers and properties. P2X4 genetic invalidation or pharmacological inhibition protected mice from liver fibrosis and hMF accumulation after BDL or MCD diet. Human and mouse hMF expressed P2X4, mainly in lysosomes. Invalidation of P2X4 in human and mouse hMF blunted their activation marker expression and their fibrogenic properties. We finally showed that P2X4 regulates calcium entry and lysosomal exocytosis in hMF, with impact on ATP release, pro-fibrogenic secretory profile, and on transcription factor activation. P2X4 expression and activation is critical for hMF to sustain their activated and fibrogenic phenotype. Therefore, the inactivation of P2X4 may be of therapeutic interest during liver fibrotic diseases. During chronic injury, the liver often repairs with fibrotic tissue for which there is currently no treatment. We found that a previously unexplored pathway involving the purinergic receptor "P2X4", can modulate fibrotic liver repair, and could be considered for future translational investigations. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Characterization of cell types during rat liver development.
Fiegel, Henning C; Park, Jonas J h; Lioznov, Michael V; Martin, Andreas; Jaeschke-Melli, Stefan; Kaufmann, Peter M; Fehse, Boris; Zander, Axel R; Kluth, Dietrich
2003-01-01
Hepatic stem cells have been identified in adult liver. Recently, the origin of hepatic progenitors and hepatocytes from bone marrow was demonstrated. Hematopoietic and hepatic stem cells share the markers CD 34, c-kit, and Thy1. Little is known about liver stem cells during liver development. In this study, we investigated the potential stem cell marker Thy1 and hepatocytic marker CK-18 during liver development to identify putative fetal liver stem cell candidates. Livers were harvested from embryonic and fetal day (ED) 16, ED 18, ED 20, and neonatal ED 22 stage rat fetuses from Sprague-Dawley rats. Fetal livers were digested by collagenase-DNAse solution and purified by percoll centrifugation. Magnetic cell sorting (MACS) depletion of fetal liver cells was performed using OX43 and OX44 antibodies. Cells were characterized by immunocytochemistry for Thy1, CK-18, and proliferating cell antigen Ki-67 and double labeling for Thy1 and CK-18. Thy1 expression was found at all stages of liver development before and after MACS in immunocytochemistry. Thy1 positive cells were enriched after MACS only in early developmental stages. An enrichment of CK-18 positive cells was found after MACS at all developmental stages. Cells coexpressing Thy1 and CK-18 were identified by double labeling of fetal liver cell isolates. In conclusion, hepatic progenitor cells (CK-18 positive) in fetal rat liver express Thy1. Other progenitors express only CK-18. This indicates the coexistence of different hepatic cell compartments. Isolation and further characterization of such cells is needed to demonstrate their biologic properties.
Immunotherapy for liver tumors: present status and future prospects
Matar, Pablo; Alaniz, Laura; Rozados, Viviana; Aquino, Jorge B; Malvicini, Mariana; Atorrasagasti, Catalina; Gidekel, Manuel; Silva, Marcelo; Scharovsky, O Graciela; Mazzolini, Guillermo
2009-01-01
Increasing evidence suggests that immune responses are involved in the control of cancer and that the immune system can be manipulated in different ways to recognize and attack tumors. Progress in immune-based strategies has opened new therapeutic avenues using a number of techniques destined to eliminate malignant cells. In the present review, we overview current knowledge on the importance, successes and difficulties of immunotherapy in liver tumors, including preclinical data available in animal models and information from clinical trials carried out during the lasts years. This review shows that new options for the treatment of advanced liver tumors are urgently needed and that there is a ground for future advances in the field. PMID:19272130
[Correlation between red blood cell count and liver function status].
Xie, Xiaomeng; Wang, Leijie; Yao, Mingjie; Wen, Xiajie; Chen, Xiangmei; You, Hong; Jia, Jidong; Zhao, Jingmin; Lu, Fengmin
2016-02-01
To investigate the changes in red blood cell count in patients with different liver diseases and the correlation between red blood cell count and degree of liver damage. The clinical data of 1427 patients with primary liver cancer, 172 patients with liver cirrhosis, and 185 patients with hepatitis were collected, and the Child-Pugh class was determined for all patients. The differences in red blood cell count between patients with different liver diseases were retrospectively analyzed, and the correlation between red blood cell count and liver function status was investigated. The Mann-Whitney U test, Kruskal-Wallis H test, rank sum test, Spearman rank sum correlation test, and chi-square test were performed for different types of data. Red blood cell count showed significant differences between patients with chronic hepatitis, liver cancer, and liver cirrhosis and was highest in patients with chronic hepatitis and lowest in patients with liver cirrhosis (P < 0.05). In the patients with liver cirrhosis, red blood cell count tended to decrease in patients with a higher Child-Pugh class (P < 0.05). For patients with liver cirrhosis, red blood cell count can reflect the degree of liver damage, which may contribute to an improved liver function prediction model for these patients.
Advantageous use of HepaRG cells for the screening and mechanistic study of drug-induced steatosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolosa, Laia
Only a few in vitro assays have been proposed to evaluate the steatotic potential of new drugs. The present study examines the utility of HepaRG cells as a cell-based assay system for screening drug-induced liver steatosis. A high-content screening assay was run to evaluate multiple toxicity-related cell parameters in HepaRG cells exposed to 28 compounds, including drugs reported to cause steatosis through different mechanisms and non-steatotic compounds. Lipid content was the most sensitive parameter for all the steatotic drugs, whereas no effects on lipid levels were produced by non-steatotic compounds. Apart from fat accumulation, increased ROS production and altered mitochondrialmore » membrane potential were also found in the cells exposed to steatotic drugs, which indicates that all these cellular events contributed to drug-induced hepatotoxicity. These findings are of clinical relevance as most effects were observed at drug concentrations under 100-fold of the therapeutic peak plasmatic concentration. HepaRG cells showed increased lipid overaccumulation vs. HepG2 cells, which suggests greater sensitivity to drug-induced steatosis. An altered expression profile of transcription factors and the genes that code key proteins in lipid metabolism was also found in the cells exposed to drugs capable of inducing liver steatosis. Our results generally indicate the value of HepaRG cells for assessing the risk of liver damage associated with steatogenic compounds and for investigating the molecular mechanisms involved in drug-induced steatosis. - Highlights: • HepaRG cells were explored as an in vitro model to detect steatogenic potential. • Multiple toxicity-related endpoints were analysed by HCS. • HepaRG showed a greater sensitivity to drug-induced steatosis than HepG2 cells. • Changes in the expression of genes related to lipid metabolism were revealed. • HepaRG allow mechanistic understanding of liver damage induced by steatogenic drugs.« less
Ramos-Casals, Manuel; Sánchez-Tapias, Jose-María; Parés, Albert; Forns, Xavier; Brito-Zerón, Pilar; Nardi, Norma; Vazquez, Pilar; Vélez, Desirée; Arias, Isabel; Bové, Albert; Plaza, Joan; Rodés, Juan; Font, Josep
2006-08-01
To analyze the prevalence and clinical significance of liver involvement in patients with Sjögren's syndrome (SS), focusing on the characterization and differentiation of autoimmune versus chronic viral liver disease. We investigated liver involvement (clinical signs, analytical data, chronic viral infections, and autoantibodies) in 475 consecutive patients with SS. All patients fulfilled 4 or more of the 1993 European Community Study Group criteria for SS. Liver involvement was detected in 129 (27%) patients. After ruling out chronic illnesses or use of hepatotoxic drugs, the main etiologies were chronic viral liver disease in 64 (13%) cases [chronic hepatitis C virus (HCV) infection in 63 and HBV infection in one] and autoimmune liver diseases in 24 (5%; primary biliary cirrhosis in 16 patients and type-1 autoimmune hepatitis in 8). The analytical liver profile was not useful in differentiating between viral and autoimmune liver disease. In contrast, patients with SS and autoimmune liver disease presented higher mean values of erythrocyte sedimentation rate (p = 0.044), circulating gammaglobulins (p = 0.007), and a higher prevalence of antinuclear antibodies (p < 0.001), antimitochondrial antibodies (p < 0.001), anti-smooth muscle antibodies (p = 0.026), anti-Ro/SSA (p < 0.001), and anti-La/SSB (p = 0.01), while patients with chronic viral liver disease had a higher frequency of cryoglobulinemia (p < 0.001) and hypocomplementemia (p < 0.001). Chronic viral liver disease (associated overwhelmingly with HCV) was the main cause of liver involvement in our patients with SS, with a prevalence of 13%, nearly 3-fold greater than that observed for autoimmune liver involvement. The immunological pattern played a key role in the differentiation of viral (predominance of cryoglobulins and low complement levels) and autoimmune (higher frequency of autoantibodies) liver involvement.
Entry inhibitors: New advances in HCV treatment
Qian, Xi-Jing; Zhu, Yong-Zhe; Zhao, Ping; Qi, Zhong-Tian
2016-01-01
Hepatitis C virus (HCV) infection affects approximately 3% of the world's population and causes chronic liver diseases, including liver fibrosis, cirrhosis, and hepatocellular carcinoma. Although current antiviral therapy comprising direct-acting antivirals (DAAs) can achieve a quite satisfying sustained virological response (SVR) rate, it is still limited by viral resistance, long treatment duration, combined adverse reactions, and high costs. Moreover, the currently marketed antivirals fail to prevent graft reinfections in HCV patients who receive liver transplantations, probably due to the cell-to-cell transmission of the virus, which is also one of the main reasons behind treatment failure. HCV entry is a highly orchestrated process involving initial attachment and binding, post-binding interactions with host cell factors, internalization, and fusion between the virion and the host cell membrane. Together, these processes provide multiple novel and promising targets for antiviral therapy. Most entry inhibitors target host cell components with high genetic barriers and eliminate viral infection from the very beginning of the viral life cycle. In future, the addition of entry inhibitors to a combination of treatment regimens might optimize and widen the prevention and treatment of HCV infection. This review summarizes the molecular mechanisms and prospects of the current preclinical and clinical development of antiviral agents targeting HCV entry. PMID:26733381
Igami, Kentaro; Shimojo, Yosuke; Ito, Hisatomi; Miyazaki, Toshitsugu; Kashiwada, Yoshiki
2015-04-01
This work aimed at evaluating the effect of fermented ginseng (FG) and fermented red ginseng (FRG) against rat liver injury caused by paracetamol (acetaminophen (APAP)). Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the serum and histopathological changes in the liver were analysed to determine the degree of liver injury. Deoxyribonucleic acid (DNA) microarray analysis was performed to compare gene expression levels altered in the rat livers. Phosphorylated Jun-N-terminal kinase (JNK) in human hepatocellular carcinoma (HepG2) cells were detected using western blot analysis to investigate the anti-inflammatory activity of compound K. Pretreatment with FG, containing compound K at high concentration, attenuated AST as well as ALT levels in rats, while no obvious effect was observed in the group that received FRG, whose content of compound K was lower than that of FG. In addition, the results of our histopathological analysis were consistent with changes in the serum biochemical analysis. DNA microarray analysis indicated that JNK- and glutathione S-transferase (GST)-related genes were involved in the hepatotoxicity. Notably, compound K, a major ginsenoside in FG, inhibited the phosphorylation of JNK in HepG2 cells. FG was shown to possess hepatoprotective activity against paracetamol (APAP)-induced liver injury better than FRG. Compound K might play an important role for an anti-inflammatory activity of FG by inhibiting JNK signalling in the liver. © 2014 Royal Pharmaceutical Society.
Barone, Sharon L.; Xu, Jie; Steinbergs, Nora; Schuster, Rebecca; Lentsch, Alex B.; Amlal, Hassane; Wang, Jiang; Casero, Robert A.; Soleimani, Manoocher
2012-01-01
Activation of spermine/spermidine-N1-acetyltransferase (SSAT) leads to DNA damage and growth arrest in mammalian cells, and its ablation reduces the severity of ischemic and endotoxic injuries. Here we have examined the role of SSAT in the pathogenesis of toxic liver injury caused by carbon tetrachloride (CCl4). The expression and activity of SSAT increase in the liver subsequent to CCl4 administration. Furthermore, the early liver injury after CCl4 treatment was significantly attenuated in hepatocyte-specific SSAT knockout mice (Hep-SSAT-Cko) compared with wild-type (WT) mice as determined by the reduced serum alanine aminotransferase levels, decreased hepatic lipid peroxidation, and less severe liver damage. Cytochrome P450 2e1 levels remained comparable in both genotypes, suggesting that SSAT deficiency does not affect the metabolism of CCl4. Hepatocyte-specific deficiency of SSAT also modulated the induction of cytokines involved in inflammation and repair as well as leukocyte infiltration. In addition, Noxa and activated caspase 3 levels were elevated in the livers of WT compared with Hep-SSAT-Cko mice. Interestingly, the onset of cell proliferation was significantly more robust in the WT compared with Hep-SSAT Cko mice. The inhibition of polyamine oxidases protected the animals against CCl4-induced liver injury. Our studies suggest that while the abrogation of polyamine back conversion or inhibition of polyamine oxidation attenuate the early injury, they may delay the onset of hepatic regeneration. PMID:22723264
Zahedi, Kamyar; Barone, Sharon L; Xu, Jie; Steinbergs, Nora; Schuster, Rebecca; Lentsch, Alex B; Amlal, Hassane; Wang, Jiang; Casero, Robert A; Soleimani, Manoocher
2012-09-01
Activation of spermine/spermidine-N(1)-acetyltransferase (SSAT) leads to DNA damage and growth arrest in mammalian cells, and its ablation reduces the severity of ischemic and endotoxic injuries. Here we have examined the role of SSAT in the pathogenesis of toxic liver injury caused by carbon tetrachloride (CCl(4)). The expression and activity of SSAT increase in the liver subsequent to CCl(4) administration. Furthermore, the early liver injury after CCl(4) treatment was significantly attenuated in hepatocyte-specific SSAT knockout mice (Hep-SSAT-Cko) compared with wild-type (WT) mice as determined by the reduced serum alanine aminotransferase levels, decreased hepatic lipid peroxidation, and less severe liver damage. Cytochrome P450 2e1 levels remained comparable in both genotypes, suggesting that SSAT deficiency does not affect the metabolism of CCl(4). Hepatocyte-specific deficiency of SSAT also modulated the induction of cytokines involved in inflammation and repair as well as leukocyte infiltration. In addition, Noxa and activated caspase 3 levels were elevated in the livers of WT compared with Hep-SSAT-Cko mice. Interestingly, the onset of cell proliferation was significantly more robust in the WT compared with Hep-SSAT Cko mice. The inhibition of polyamine oxidases protected the animals against CCl(4)-induced liver injury. Our studies suggest that while the abrogation of polyamine back conversion or inhibition of polyamine oxidation attenuate the early injury, they may delay the onset of hepatic regeneration.
Perseghin, G; Caumo, A; Lattuada, G; De Cobelli, F; Ntali, G; Esposito, A; Belloni, E; Canu, T; Ragogna, F; Scifo, P; Del Maschio, A; Luzi, L
2009-09-01
Studies have pointed to insulin resistance as a pathogenic factor in fatty liver. Although pancreatic B-cell function is believed to be involved, its role is unclear. This study was undertaken to test whether fasting C-peptide, an index of fasting B-cell function, was related to intra-hepatic fat (IHF) content in non-diabetic humans. We assessed, retrospectively, fasting plasma C-peptide concentration in 31 patients with fatty liver and 62 individuals without fatty liver. The IHF content was measured by proton magnetic resonance spectroscopy ((1)H-MRS), while insulin sensitivity was estimated based on fasting plasma glucose and insulin with the homestasis model assessment (HOMA) 2 method. Age, sex and body mass index (BMI) were not different between groups. Patients with fatty liver had higher fasting insulin (P < 0.01), C-peptide (P < 0.005) and lower insulin sensitivity (HOMA2-%S). Fasting insulin alone explained 14% of the IHF content variability (P < 0.001); inclusion of fasting C-peptide in multivariate regression explained up to 32% (P < 0.001). A subgroup analysis was performed by matching 1 : 1 for HOMA2-%S. These data were analysed by conditional logistic regression which showed that, when HOMA2-%S was matched between groups, fasting C-peptide remained the only significant predictor of fatty liver. Non-diabetic individuals with fatty liver are characterized by increased fasting plasma C-peptide concentration, irrespective of their insulin resistant state.
Li, Zhen; Wang, Chunhong; Zhu, Jie; Bai, YuE; Wang, Wei; Zhou, Yanfeng; Zhang, Shaozun; Liu, Xiangxiang; Zhou, Sheng; Huang, Wenting; Bi, Yongyi; Wang, Hong
2016-07-01
Epidemiological studies suggest that the increasing incidence of childhood leukemia may be due to maternal exposure to benzene, which is a known human carcinogen; however, the mechanisms involved remain unknown. Liver Kinase B1 (LKB1) acts as a regulator of cellular energy metabolism and functions to regulate hematopoietic stem cell (HSC) homeostasis. We hypothesize that LKB1 contributes to the deregulation of fetal or bone hematopoiesis caused by the benzene metabolite hydroquinone (HQ). To evaluate this hypothesis, we compared the effects of HQ on murine fetal liver hematopoietic stem cells (FL-HSCs) and bone marrow hematopoietic stem cells (BM-HSCs). FL-HSCs and BM-HSCs were isolated and enriched by a magnetic cell sorting system and exposed to various concentrations of HQ (0, 1.25, 2.5, 5, 10, 20, and 40 μM) for 24 h. We found that the inhibition of differentiation and growth, as well as the apoptosis rate of FL-HSCs, induced by HQ were consistent with the changes in BM-HSCs. Furthermore, G1 cell cycle arrest was observed in BM-HSCs and FL-HSCs in response to HQ. Importantly, FL-HSCs were more sensitive than BM-HSCs after exposure to HQ. The highest induction of LKB1 and adenosine monophosphate-activated protein kinase (AMPK) was observed with a much lower concentration of HQ in FL-HSCs than in BM-HSCs. LKB1 may play a critical role in apoptosis and cell cycle arrest of HQ-treated HSCs. This research has developed innovative ideas concerning benzene-induced hematopoietic toxicity or embryotoxicity, which can provide a new experimental evidence for preventing childhood leukemia. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 830-841, 2016. © 2014 Wiley Periodicals, Inc.
A novel method of mouse ex utero transplantation of hepatic progenitor cells into the fetal liver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shikanai, Mima; Asahina, Kinji; Iseki, Sachiko
2009-04-03
Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or {alpha}-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells becamemore » mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.« less
Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut
Seki, Ekihiro; Schnabl, Bernd
2012-01-01
Liver fibrosis occurs as a wound-healing scar response following chronic liver inflammation including alcoholic liver disease, non-alcoholic steatohepatitis, viral hepatitis, cholestatic liver disease and autoimmune liver diseases. The liver has a unique vascular system within the gastrointestinal tract, as the majority of the liver's blood supply comes from the intestine through the portal vein. When the intestinal barrier function is disrupted, an increase in intestinal permeability leads to the translocation of intestine-derived bacterial products such as lipopolysaccharide (LPS) and unmethylated CpG containing DNA to the liver via the portal vein. These gut-derived bacterial products stimulate innate immune receptors, namely Toll-like receptors (TLRs), in the liver. TLRs are expressed on Kupffer cells, endothelial cells, dendritic cells, biliary epithelial cells, hepatic stellate cells, and hepatocytes. TLRs activate these cells to contribute to acute and chronic liver diseases. This review summarizes recent studies investigating the role of TLRs, intestinal microbiota and bacterial translocation in liver fibrosis, alcoholic liver disease and non-alcoholic steatohepatitis. PMID:22124143
Sass, Gabriele; Shembade, Noula D.; Tiegs, Gisa
2004-01-01
TNF (tumour necrosis factor α) induces tolerance towards itself in experimental liver injury. Tolerance induction has been shown to be dependent on TNFR1 (TNF receptor 1) signalling, but mechanisms and mediators of TNF-induced hepatic tolerance are unknown. We investigated the TNF-inducible gene-expression profile in livers of TNFR2−/− mice, using cDNA array technology. We found that, out of 793 investigated genes involved in inflammation, cell cycle and signal transduction, 282 were expressed in the mouse liver in response to TNF via TNFR1. Among those, expression of 78 genes was induced, while expression of 60 genes was reduced. We investigated further the cellular expression of the 27 most prominently induced genes, and found that 20 of these genes were up-regulated directly in parenchymal liver cells, representing potentially protective proteins and possible mediators of TNF tolerance. In vitro experiments revealed that overexpression of SOCS1 (silencer of cytokine signalling 1), a member of the SOCS family of proteins, as well as of HO-1 (haem oxygenase-1), but not of SOCS2 or SOCS3, protected isolated primary mouse hepatocytes from TNF-induced apoptosis. The identification of protective genes in hepatocytes is the prerequisite for future development of gene therapies for immune-mediated liver diseases. PMID:15554901
All-In-One: Advanced preparation of Human Parenchymal and Non-Parenchymal Liver Cells.
Werner, Melanie; Driftmann, Sabrina; Kleinehr, Kathrin; Kaiser, Gernot M; Mathé, Zotlan; Treckmann, Juergen-Walter; Paul, Andreas; Skibbe, Kathrin; Timm, Joerg; Canbay, Ali; Gerken, Guido; Schlaak, Joerg F; Broering, Ruth
2015-01-01
Liver cells are key players in innate immunity. Thus, studying primary isolated liver cells is necessary for determining their role in liver physiology and pathophysiology. In particular, the quantity and quality of isolated cells are crucial to their function. Our aim was to isolate a large quantity of high-quality human parenchymal and non-parenchymal cells from a single liver specimen. Hepatocytes, Kupffer cells, liver sinusoidal endothelial cells, and stellate cells were isolated from liver tissues by collagenase perfusion in combination with low-speed centrifugation, density gradient centrifugation, and magnetic-activated cell sorting. The purity and functionality of cultured cell populations were controlled by determining their morphology, discriminative cell marker expression, and functional activity. Cell preparation yielded the following cell counts per gram of liver tissue: 2.0 ± 0.4 × 10(7) hepatocytes, 1.8 ± 0.5 × 10(6 )Kupffer cells, 4.3 ± 1.9 × 10(5) liver sinusoidal endothelial cells, and 3.2 ± 0.5 × 10(5) stellate cells. Hepatocytes were identified by albumin (95.5 ± 1.7%) and exhibited time-dependent activity of cytochrome P450 enzymes. Kupffer cells expressed CD68 (94.5 ± 1.2%) and exhibited phagocytic activity, as determined with 1 μm latex beads. Endothelial cells were CD146(+) (97.8 ± 1.1%) and exhibited efficient uptake of acetylated low-density lipoprotein. Hepatic stellate cells were identified by the expression of α-smooth muscle actin (97.1 ± 1.5%). These cells further exhibited retinol (vitamin A)-mediated autofluorescence. Our isolation procedure for primary parenchymal and non-parenchymal liver cells resulted in cell populations of high purity and quality, with retained physiological functionality in vitro. Thus, this system may provide a valuable tool for determining liver function and disease.
Mazzocca, Antonio; Carloni, Vinicio; Sciammetta, Silvia; Cordella, Claudia; Pantaleo, Pietro; Caldini, Anna; Gentilini, Paolo; Pinzani, Massimo
2002-09-01
Migration of activated hepatic stellate cells (HSC) is a key event in the progression of liver fibrosis. Little is known about transmembrane proteins involved in HSC motility. Tetraspanins (TM4SF) have been implicated in cell development, differentiation, motility and tumor cell invasion. We evaluated the expression and function of four TM4SF, namely CD9, CD81, CD63 and CD151, and their involvement in HSC migration, adhesion, and proliferation. All TM4SF investigated were highly expressed at the human HSC surface with different patterns of intracellular distribution. Monoclonal antibodies directed against the four TM4SF inhibited HSC migration induced by extracellular matrix proteins in both wound healing and haptotaxis assays. This inhibition was independent of the ECM substrates employed (collagen type I or IV, laminin), and was comparable to that obtained by incubating the cells with an anti-beta1 blocking mAb. Importantly, cell adhesion was unaffected by the incubation with the same antibodies. Co-immunoprecipitation studies revealed different patterns of association between the four TM4SF studied and beta1 integrin. Finally, anti-TM4SF antibodies did not affect HSC growth. These findings provide the first characterization of tetraspanins expression and of their role in HSC migration, a key event in liver tissue wound healing and fibrogenesis.
1980-01-01
H-2D (Rfv-1)-associated control of recovery from FV leukemia was studied in congenic mice. In irradiation chimeras, the high recovery phenotype was transferred by cells of the spleen, bone marrow, and fetal liver. Furthermore, in cell transfers using unirradiated recipients, spleen and bone marrow cells of the high-recovery genotype were able to mediate recovery from leukemia in mice of the low-recovery genotype. Thus, the H-2D (Rfv-1) influence on recovery appeared to operate via nonleukemic cells of the spleen and bone marrow rather than via leukemic cells. The specific nonleukemic cell type(s) involved in recovery remains unknown. However, the mechanism appears to be complex and probably involves both anti-FV antibody and FV-specific cytotoxic T lymphocytes. PMID:6935387
Mohamad, Saharuddin B; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi
2002-05-01
Alpha-N-acetyl galactosaminidase (alpha-NaGalase) has been reported to accumulate in serum of cancer patients and be responsible for deglycosylation of Gc protein, which is a precursor of GcMAF-mediated macrophage activation cascade, finally leading to immunosuppression in advanced cancer patients. We studied the biochemical characterization of alpha-NaGalase from several human tumor cell lines. We also examined its effect on the potency of GcMAF to activate mouse peritoneal macrophage to produce superoxide in GcMAF-mediated macrophage activation cascade. The specific activity of alpha-NaGalases from human colon tumor cell line HCT116, human hepatoma cell line HepG2, and normal human liver cells (Chang liver cell line) were evaluated using two types of substrates; GalNAc-alpha-PNP (exo-type substrate) and Gal-beta-GalNAc-alpha-PNP (endo-type substrate). Tumor-derived alpha-NaGalase having higher activity than normal alpha-NaGalase, had higher substrate specificity to the exo-type substrate than to the endo-type substrate, and still maintained its activity at pH 7. GcMAF enhance superoxide production in mouse macrophage, and pre-treatment of GcMAF with tumor cell lysate reduce the activity. We conclude that tumor-derived alpha-NaGalase is different in biochemical characterization compared to normal alpha-NaGalase from normal Chang liver cells. In addition, tumor cell-derived alpha-NaGalase decreases the potency of GcMAF on macrophage activation.
Ezhilarasan, Devaraj; Evraerts, Jonathan; Sid, Brice; Calderon, Pedro Buc; Karthikeyan, Sivanesan; Sokal, Etienne; Najimi, Mustapha
2017-02-01
Proliferation of hepatic stellate cells (HSCs) plays a pivotal role in the progression of liver fibrosis consequent to chronic liver injury. Silibinin, a flavonoid compound, has been shown to possess anti-fibrogenic effects in animal models of liver fibrosis. This was attributed to an inhibition of cell proliferation of activated HSCs. The present study was to gain insight into the molecular pathways involved in silibinin anti-fibrogenic effect. The study was conducted on LX-2 human stellate cells treated with three concentrations of silibinin (10, 50 and 100 μmol/L) for 24 and 96 hours. At the end of the treatment cell viability and proliferation were evaluated. Protein expression of p27, p21, p53, Akt and phosphorylated-Akt was evaluated by Western blotting analysis and Ki-67 protein expression was by immunocytochemistry. Sirtuin activity was evaluated by chemiluminescence based assay. Silibinin inhibits LX-2 cell proliferation in dose- and time-dependent manner; we showed that silibinin upregulated the protein expressions of p27 and p53. Such regulation was correlated to an inhibition of both downstream Akt and phosphorylated-Akt protein signaling and Ki-67 protein expression. Sirtuin activity also was correlated to silibinin-inhibited proliferation of LX-2 cells. The anti-proliferative effect of silibinin on LX-2 human stellate cells is via the inhibition of the expressions of various cell cycle targets including p27, Akt and sirtuin signaling.
Liang, Hongxia; Huang, Ke; Su, Teng; Li, Zhenhua; Hu, Shiqi; Dinh, Phuong-Uyen; Wrona, Emily A; Shao, Chen; Qiao, Li; Vandergriff, Adam C; Hensley, M Taylor; Cores, Jhon; Allen, Tyler; Zhang, Hongyu; Zeng, Qinglei; Xing, Jiyuan; Freytes, Donald O; Shen, Deliang; Yu, Zujiang; Cheng, Ke
2018-06-26
Acute liver failure is a critical condition characterized by global hepatocyte death and often time needs a liver transplantation. Such treatment is largely limited by donor organ shortage. Stem cell therapy offers a promising option to patients with acute liver failure. Yet, therapeutic efficacy and feasibility are hindered by delivery route and storage instability of live cell products. We fabricated a nanoparticle that carries the beneficial regenerative factors from mesenchymal stem cells and further coated it with the membranes of red blood cells to increase blood stability. Unlike uncoated nanoparticles, these particles promote liver cell proliferation in vitro and have lower internalization by macrophage cells. After intravenous delivery, these artificial stem cell analogs are able to remain in the liver and mitigate carbon tetrachloride-induced liver failure in a mouse model, as gauged by histology and liver function test. Our technology provides an innovative and off-the-shelf strategy to treat liver failure.
Cell Death and Cell Death Responses in Liver Disease: Mechanisms and Clinical Relevance
Luedde, Tom; Kaplowitz, Neil; Schwabe, Robert F.
2015-01-01
Summary Hepatocellular death is present in almost all types of human liver disease and is used as a sensitive parameter for the detection of acute and chronic liver disease of viral, toxic, metabolic, or autoimmune origin. Clinical data and animal models suggest that hepatocyte death is the key trigger of liver disease progression, manifested by the subsequent development of inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Modes of hepatocellular death differ substantially between liver diseases. Different modes of cell death such as apoptosis, necrosis, and necroptosis trigger specific cell death responses and promote progression of liver disease through distinct mechanisms. In this review, we first discuss molecular mechanisms by which different modes of cell death, damage-associated molecular patterns, and specific cell death responses contribute to the development of liver disease. We then review the clinical relevance of cell death, focusing on biomarkers; the contribution of cell death to drug-induced, viral, and fatty liver disease and liver cancer; and evidence for cell death pathways as therapeutic targets. PMID:25046161
Identification of human cytochrome P450s as autoantigens.
Manns, M P; Johnson, E F
1991-01-01
Antimicrosomal antibodies in inflammatory liver diseases all seem to be directed against members of the cytochrome P450 family of proteins. These autoantigens seem to be genetically polymorphic, the autoantibodies are inhibitory, and the autoepitopes are generally conserved among species. Anti-P450 autoantibodies share these characteristics with other autoantibodies, for example, antinuclear antibodies in systemic lupus erythematosus. The identification of P450s as human autoantigens is clinically important. Diagnostic tests will be developed on the basis of cloned antigen, facilitating a better diagnosis of drug-induced and idiopathic autoimmune hepatitis. It is unknown what triggers autoantibody production against cytochrome P450 proteins. Furthermore, their pathogenetic role and thus their involvement in tissue destruction is unclear. In this context LKM1 autoantibodies may serve as a model. Although LKM1 antibodies are inhibitory, all LKM1 antibody-positive patients tested so far are extensive metabolizers for drug metabolism mediated by P450IID6 and express this protein in their livers. Thus, the inhibitory LKM1 autoantibody does not sufficiently penetrate through the intact liver cell membrane to inhibit enzyme function in vivo. Presumably, tissue destruction in autoimmune hepatitis is mediated by liver-infiltrating T lymphocytes. T lymphocytes have been cloned from liver tissue that specifically proliferate in the presence of recombinant cytochrome P450IID6. The construction of overlapping cDNA subclones is also valuable to identify immunodominant B cell as well as relevant T cell epitopes.
Nagamine, Takeaki; Suzuki, Keiji; Kondo, Toshihiko; Nakazato, Kyomi; Kakizaki, Satoru; Takagi, Hitoshi; Nakajima, Katuyuki
2005-08-01
An association between reactive oxygen species and liver damage has been postulated in the course of hepatitis C virus (HCV) infection. Metallothionein (MT), induced by HCV core protein and interferon (IFN), plays a role in scavenging free radicals. MT expression in liver biopsies obtained from 21 patients with chronic HCV infection before and after IFN-alpha therapy was investigated. Changes in Knodell histological activity index (HAI) scores, MT protein levels (immunohistochemistry), MT-I and MT-II messenger (m)RNA expression levels (in situ hybridization) and proliferating cell nuclear antigen (PCNA) labelling index were determined and compared in serial liver specimens. MT staining was clustered around the portal tracts with inflammatory cells and fibrosis. The pattern of MT protein before IFN-alpha therapy was similar in all patients, but was higher in IFN-sustained responders than in nonresponders after IFN-alpha therapy. HAI scores and PCNA labelling indexes were significantly reduced after IFN-alpha therapy. MT-II mRNA expression correlated positively with PCNA index before therapy and with HAI scores after therapy (P<0.05). No correlation was found between MT-I mRNA and HAI scores or PCNA index. The findings indicate that IFN-alpha-induced hepatic MT may participate in the therapeutic effects of IFN-alpha for HCV. In addition, MT-II mRNA expression may be involved in cell proliferation in the livers of patients with chronic HCV infection.
A Novel Nitinol Spherical Occlusion Device for Liver Cancer
Hsiao, Hao-Ming; Wang, Yi-Ping; Ko, Chun-Yi; Cheng, Yu-Han; Lee, Han-Yu
2016-01-01
Liver cancer or hepatic cancer is a cancer that originates in the liver. It is formed from either the liver itself or from structures within the liver, including blood vessels or the bile duct. Liver cancer can be a life-threatening condition, but it may be cured if found early. Hepatic artery embolization is one of the treatment options involving the injection of substances to reduce the blood flow to cancer cells in the livers of patients with tumors that cannot be removed by surgery; however, this treatment has some limitations. In this paper, we propose a novel nitinol “spherical occlusion device” concept, the first of its kind in the world. Our proposed spherical occlusion device is able to reduce the blood flow to cancer cells by deploying it in the upstream hepatic artery supplying blood to the liver. Moreover, it could carry multiple chemotherapy or radioactive drugs for delivery directly to the target site. Nitinol alloy was chosen as the device material due to its excellent super-elastic property. Computational models were developed to predict the mechanical response of the device during manufacturing and deployment procedures, as well as its hemodynamic behavior. Simulation results showed that the presence of the spherical occlusion device with 14%–27% metal density deployed at the upstream location of the right hepatic artery had significant occlusion effects, with the average blood flow rate cut down by 30%–50%. A pulsed fiber laser and a series of expansions and heat treatments were developed to make the first prototype of the spherical occlusion device for the demonstration of our novel concept. PMID:28787820
[Liver transplant with donated graft after controlled cardiac death. Current situation].
Abradelo De Usera, Manuel; Jiménez Romero, Carlos; Loinaz Segurola, Carmelo; Moreno González, Enrique
2013-11-01
An increasing pressure on the liver transplant waiting list, forces us to explore new sources, in order to expand the donor pool. One of the most interesting and with a promising potential, is donation after cardiac death (DCD). Initially, this activity has developed in Spain by means of the Maastricht type II donation in the uncontrolled setting. For different reasons, donation after controlled cardiac death has been reconsidered in our country. The most outstanding circumstance involved in DCD donation is a potential ischemic stress, that could cause severe liver graft cell damage, resulting in an adverse effect on liver transplant results, in terms of complications and outcomes. The complex and particular issues related to DCD Donation will be discussed in this review. Copyright © 2012 AEC. Published by Elsevier Espana. All rights reserved.
Adaptive remodeling of the biliary tree: the essence of liver progenitor cell expansion.
Kok, Cindy Yuet-Yin; Miyajima, Atsushi; Itoh, Tohru
2015-07-01
The liver progenitor cell population has long been thought to exist within the liver. However, there are no standardized criteria for defining the liver progenitor cells, and there has been intense debate about the origin of these cells in the adult liver. The characteristics of such cells vary depending on the disease model used and also on the method of analysis. Visualization of three-dimensional biliary structures has revealed that the emergence of liver progenitor cells essentially reflects the adaptive remodeling of the hepatic biliary network in response to liver injury. We propose that the progenitor cell exists as a subpopulation in the biliary tree and show that the appearance of liver progenitor cells in injured parenchyma is reflective of extensive remodeling of the biliary structure. © 2015 Japanese Society of Hepato-Biliary-Pancreatic Surgery.
Kinetics of liver macrophages (Kupffer cells) in SIV-infected macaques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahsan, Muhammad H.; Gill, Amy F.; Alvarez, Xavier
Since the liver drains antigens from the intestinal tract, and since the intestinal tract is a major site of viral replication, we examined the dynamics of liver macrophages (Kupffer cells) throughout SIV infection. Absolute numbers of Kupffer cells increased in the livers in acute infection, and in animals with AIDS. Significantly higher percentages of proliferating (BrdU+) Kupffer cells were detected in acute infection and in AIDS with similar trends in blood monocytes. Significantly higher percentages of apoptotic (AC3+) Kupffer cells were also found in acute and AIDS stages. However, productively infected cells were not detected in liver of 41/42 animalsmore » examined, despite abundant infected cells in gut and lymph nodes of all animals. Increased rates of Kupffer cell proliferation resulting in an increase in Kupffer cells without productive infection indicate SIV infection affects Kupffer cells, but the liver does not appear to be a major site of productive viral replication. - Highlights: • Kupffer cells increase in the liver of SIV-infected macaques. • Increased proliferation and apoptosis of Kupffer cells occurs in SIV infection. • Productively infected cells are rarely detected in the liver. • The liver is not a major site for SIV replication.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boylan, Joan M.; Salomon, Arthur R.; Department of Chemistry, Brown University, Providence, RI
Protein phosphatase 6 (PP6) is a ubiquitous Ser/Thr phosphatase involved in an array of cellular processes. To assess the potential of PP6 as a therapeutic target in liver disorders, we attenuated expression of the PP6 catalytic subunit in HepG2 cells using lentiviral-transduced shRNA. Two PP6 knock-down (PP6KD) cell lines (90% reduction of PP6-C protein content) were studied in depth. Both proliferated at a rate similar to control cells. However, flow cytometry indicated G2/M cell cycle arrest that was accounted for by a shift of the cells from a diploid to tetraploid state. PP6KD cells did not show an increase inmore » apoptosis, nor did they exhibit reduced viability in the presence of bleomycin or taxol. Gene expression analysis by microarray showed attenuated anti-inflammatory signaling. Genes associated with DNA replication were downregulated. Mass spectrometry-based phosphoproteomic analysis yielded 80 phosphopeptides representing 56 proteins that were significantly affected by a stable reduction in PP6-C. Proteins involved in DNA replication, DNA damage repair and pre-mRNA splicing were overrepresented among these. PP6KD cells showed intact mTOR signaling. Our studies demonstrated involvement of PP6 in a diverse set of biological pathways and an adaptive response that may limit the effectiveness of targeting PP6 in liver disorders. - Highlights: • Lentiviral-transduced shRNA was used to generate a stable knockdown of PP6 in HepG2 cells. • Cells adapted to reduced PP6; cell proliferation was unaffected, and cell survival was normal. • However, PP6 knockdown was associated with a transition to a tetraploid state. • Genomic profiling showed downregulated anti-inflammatory signaling and DNA replication. • Phosphoproteomic profiling showed changes in proteins associated with DNA replication and repair.« less
Muench, Marcus O.; Beyer, Ashley I.; Fomin, Marina E.; Thakker, Rahul; Mulvaney, Usha S.; Nakamura, Masato; Suemizu, Hiroshi; Bárcena, Alicia
2014-01-01
The liver plays a vital role in hematopoiesis during mammalian prenatal development but its hematopoietic output declines during the perinatal period. Nonetheless, hepatic hematopoiesis is believed to persist into adulthood. We sought to model human adult-liver hematopoiesis by transplantation of fetal and neonatal hematopoietic stem cells (HSCs) into adult immunodeficient mice. Livers were found to be engrafted with human cells consisting primarily of monocytes and B-cells with lesser contributions by erythrocytes, T-cells, NK-cells and mast-cells. A resident population of CD117++CD203c+ mast cells was also documented in human midgestation liver, indicating that these cells comprise part of the liver's resident immune cell repertoire throughout human ontogeny. The murine liver was shown to support human multilineage hematopoiesis up to 321 days after transplant. Evidence of murine hepatic hematopoiesis was also found in common mouse strains as old as 2 years. Human HSC engraftment of the murine liver was demonstrated by detection of high proliferative-potential colony-forming cells in clonal cultures, observation of CD38−CD34++ and CD133+CD34++ cells by flow cytometry, and hematopoietic reconstitution of secondary transplant recipients of chimeric liver cells. Additionally, chimeric mice with both hematopoietic and endothelial reconstitution were generated by intrasplenic injection of immunodeficient mice with liver specific expression of the urokinase-type plasminogen activator (uPA) transgene. In conclusion, the murine liver is shown to be a hematopoietic organ throughout adult life that can also support human hematopoiesis in severely immunodeficient strains. Further humanization of the murine liver can be achieved in mice harboring an uPA transgene, which support engraftment of non-hematopoietic cells types. Thus, offering a model system to study the interaction of diverse human liver cell types that regulate hematopoiesis and immune function in the liver. PMID:24819392
Jacques, Alexandre; Bleau, Christian; Turbide, Claire; Beauchemin, Nicole; Lamontagne, Lucie
2009-01-01
The production of interferon-γ (IFN-γ) by infiltrating natural killer (NK) cells in liver is involved in the control of mouse hepatitis virus (MHV) infection. The objectives of this study were to identify the mechanisms used by MHV type 3 to modulate the production of IFN-γ by NK cells during the acute hepatitis in susceptible C57BL/6 mice. Ex vivo and in vitro experiments revealed that NK cells, expressing carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 1a (the MHV receptor), can produce a higher level of IFN-γ in the presence of both L2-MHV3 and interleukin-12 (IL-12)/IL-18. The synergistic production of IFN-γ by NK cells depends on viral replication rather than viral fixation only, because it is inhibited or not induced in cells infected with ultraviolet-inactivated viruses and in cells from Ceacam1a−/− mice infected with virulent viruses. The synergistic IFN-γ production involves the p38 mitogen-activated protein kinase (MAPK) rather than the extracellular signal-regulated kinase-1/2 MAPK signalling pathway. However, the signal triggered through the engagement of CEACAM1a decreases the production of IFN-γ, when these molecules are cross-linked using specific monoclonal antibodies. These results suggest that control of acute hepatitis by IFN-γ-producing NK cells may depend on both production of IL-12 and IL-18 in the liver environment and viral infection of NK cells. PMID:19740316
Protection of Flos Lonicerae against acetaminophen-induced liver injury and its mechanism.
Jiang, Ping; Sheng, Yu-chen; Chen, Yu-hao; Ji, Li-li; Wang, Zheng-tao
2014-11-01
This study aims to observe the protective action of Flos Lonicerae (FL) aqueous extract against acetaminophen (AP)-induced liver injury and its mechanism. Results show that FL decreases AP-increased serum alanine/aspartate transaminases (ALT/AST) activity, as well as total bilirubin (TB) amount, in mice. Histological evaluation of the liver further confirms the protection of FL against AP-induced hepatotoxicity. TdT-mediated biotin-dUTP nick-end labeling (TUNEL) assay shows that FL reduces AP-increased apoptotic cells. Furthermore, AP-decreased liver glutamate-cysteine ligase (GCL) enzymatic activity and glutathione (GSH) amount are both reversed by FL because of the increased expression of the catalytic subunit of GCL (GCLC) protein. The amount of chlorogenic acid (CGA), caffeic acid, and luteolin, the main active compounds in FL, is detected by high-performance liquid chromatography (HPLC). In addition, cell viability assay demonstrates that polyphenols in FL, such as CGA, caffeic acid, as well as isochlorogenic acids A, B, and C, can reverse AP-induced cytotoxicity. In conclusion, FL can prevent AP-induced liver injury by inhibiting apoptosis. The cellular antioxidant enzyme GCL is also involved in such protection. Polyphenols may be the main active hepato-protective ingredients in FL. Copyright © 2014 Elsevier B.V. All rights reserved.
NAKANUMA, SHINICHI; MIYASHITA, TOMOHARU; HAYASHI, HIRONORI; TAJIMA, HIDEHIRO; TAKAMURA, HIROYUKI; TSUKADA, TOMOYA; OKAMOTO, KOICHI; SAKAI, SEISHO; MAKINO, ISAMU; KINOSHITA, JUN; NAKAMURA, KEISHI; OYAMA, KATSUNOBU; INOKUCHI, MASAFUMI; NAKAGAWARA, HISATOSHI; NINOMIYA, ITASU; KITAGAWA, HIROHISA; FUSHIDA, SACHIO; FUJIMURA, TAKASHI; OHTA, TETSUO
2015-01-01
Sinusoidal obstruction syndrome (SOS), previously known as veno-occlusive disease, is relatively rare subsequent to liver transplantation (LT). SOS refractory to medical therapy, however, can result in centrilobular fibrosis, portal hypertension and liver failure. Although sinusoidal endothelial cell damage around central venules (zone 3) occurs early in the development of SOS, the detailed mechanism of SOS development and its association with thrombocytopenia are not yet completely understood. The present report describes a patient who experienced SOS with unexplained thrombocytopenia following living donor LT. The progression of SOS resulted in graft dysfunction and the patient succumbed. The presence of platelets in the liver allograft was assayed immunohistochemically using antibody to the platelet marker cluster of differentiation 42b (platelet glycoprotein Ib). Platelet aggregates were found attached to hepatocytes along the sinusoid and within the cytoplasm of hepatocytes, particularly in zone 3. By contrast, no staining was observed in zone 1. These findings suggested that extravasated platelet aggregation in the space of Disse and the phagocytosis of platelets by hepatocytes were initiated by sinusoidal endothelial cell damage due to the toxicity of the immunosuppressant tacrolimus or a corticosteroid pulse, and that platelet activation and degranulation may be at least partially involved in the mechanism responsible for SOS. PMID:25780397
NASA Astrophysics Data System (ADS)
Wang, Yujia; Bao, Ji; Wu, Xiujuan; Wu, Qiong; Li, Yi; Zhou, Yongjie; Li, Li; Bu, Hong
2016-04-01
Decellularized xenogeneic whole-liver matrices are plausible biomedical materials for the bioengineering of liver transplantation. A common method to reduce the inflammatory potential of xenogeneic matrices is crosslinking. Nevertheless, a comprehensive analysis of the immunogenic features of cross-linked decellularized tissue is still lacking. We aimed to reduce the immunogenicity of decellularized porcine whole-liver matrix through crosslinking with glutaraldehyde or genipin, a new natural agent, and investigated the mechanism of the immune-mediated responses. The histologic assessment of the host’s immune reaction activated in response to these scaffolds, as well as the M1/M2 phenotypic polarization profile of macrophages, was studied in vivo. The genipin-fixed scaffold elicited a predominantly M2 phenotype response, while the glutaraldehyde-fixed scaffold resulted in disrupted host tissue remodeling and a mixed macrophage polarization profile. The specific subsets of immune cells involved in the responses to the scaffolds were identified in vitro. Crosslinking alleviated the host response by reducing the proliferation of lymphocytes and their subsets, accompanied by a decreased release of both Th1 and Th2 cytokines. Therefore, we conclude that the natural genipin crosslinking could lower the immunogenic potential of xenogeneic decellularized whole-liver scaffolds.
Advances in hepatic stem/progenitor cell biology
Verhulst, Stefaan; Best, Jan; van Grunsven, Leo A.; Dollé, Laurent
2015-01-01
The liver is famous for its strong regenerative capacity, employing different modes of regeneration according to type and extent of injury. Mature liver cells are able to proliferate in order to replace the damaged tissue allowing the recovery of the parenchymal function. In more severe scenarios hepatocytes are believed to arise also from a facultative liver progenitor cell compartment. In human, severe acute liver failure and liver cirrhosis are also both important clinical targets in which regeneration is impaired, where the role of this stem cell compartment seems more convincing. In animal models, the current state of ambiguity regarding the identity and role of liver progenitor cells in liver physiology dampens the enthusiasm for the potential use of these cells in regenerative medicine. The aim of this review is to give the basics of liver progenitor cell biology and discuss recent results vis-à-vis their identity and contribution to liver regeneration. PMID:26600740
Al-Humadi, Hussam; Theocharis, Stamatios; Dontas, Ismene; Stolakis, Vasileios; Zarros, Apostolos; Kyriakaki, Argyro; Al-Saigh, Rafal; Liapi, Charis
2012-12-01
The induction of prolonged choline-deprivation (CD) in rats receiving thioacetamide (TAA) is an experimental approach of mild hepatotoxicity that could resemble commonly presented cases in clinical practice (in which states of malnutrition and/or alcoholism are complicated by the development of other liver-associated diseases). The present study aimed to investigate the time-dependent effects of a 30-, a 60- and a 90-day dietary CD and/or TAA administration on the adult rat liver histopathology and the serum markers of hepatic functional integrity. Rats were divided into four main groups: (a) control, (b) CD, (c) TAA and (d) CD + TAA. Dietary CD was provoked through the administration of choline-deficient diet, while TAA administration was performed ad libitum through the drinking water (300 mg/l of drinking water). Histological examination of the CD + TAA liver sections revealed micro- and macro-vesicular steatosis with degeneration and primary fibrosis at day 30, to extensive steatosis and fibrosis at day 90. Steatosis was mostly of the macrovesicular type, involving all zones of the lobule, while inflammatory infiltrate consisted of foci of acute and chronic inflammatory cells randomly distributed in the lobule. These changes were accompanied by gradually increasing mitotic activity, as well as by a constantly high alpha-smooth muscle actin immunohistochemical staining. The determination of hepatocellular injury markers such as the serum enzyme levels' of alanine aminotransferase and aspartate aminotransferase demonstrated a decrease at day 30 (they returned to control levels at days 60 and 90). However, the determination of those serum enzymes used for the assessment of cholestatic liver injury (gamma-glutamyltransferase, alkaline phosphatase) revealed a constant (time-independent) statistically-significant increase versus control values. Long-term combined dietary CD and TAA administration could be a more realistic experimental approach to human liver diseases involving severe steatosis, fibrosis, stellate cell activation and significant regenerative hepatocellular response.
Elcombe, Clifford R.; Peffer, Richard C.; Wolf, Douglas C.; Bailey, Jason; Bars, Remi; Bell, David; Cattley, Russell C.; Ferguson, Stephen S.; Geter, David; Goetz, Amber; Goodman, Jay I.; Hester, Susan; Jacobs, Abigail; Omiecinski, Curtis J.; Schoeny, Rita; Xie, Wen; Lake, Brian G.
2014-01-01
The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are important nuclear receptors involved in the regulation of cellular responses from exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non-genotoxic indirect CAR activator, which induces cytochrome P450 (CYP) and other xenobiotic metabolizing enzymes and is known to produce liver foci/tumors in mice and rats. From literature data, a mode of action (MOA) for PB-induced rodent liver tumor formation was developed. A MOA for PXR activators was not established owing to a lack of suitable data. The key events in the PB-induced liver tumor MOA comprise activation of CAR followed by altered gene expression specific to CAR activation, increased cell proliferation, formation of altered hepatic foci and ultimately the development of liver tumors. Associative events in the MOA include altered epigenetic changes, induction of hepatic CYP2B enzymes, liver hypertrophy and decreased apoptosis; with inhibition of gap junctional intercellular communication being an associative event or modulating factor. The MOA was evaluated using the modified Bradford Hill criteria for causality and other possible MOAs were excluded. While PB produces liver tumors in rodents, important species differences were identified including a lack of cell proliferation in cultured human hepatocytes. The MOA for PB-induced rodent liver tumor formation was considered to be qualitatively not plausible for humans. This conclusion is supported by data from a number of epidemiological studies conducted in human populations chronically exposed to PB in which there is no clear evidence for increased liver tumor risk. PMID:24180433
Yan, Zhaoyong; Qu, Kai; Zhang, Jing; Huang, Qichao; Qu, Ping; Xu, Xinsen; Yuan, Peng; Huang, Xiaojun; Shao, Yongping; Liu, Chang; Zhang, Hongxin; Xing, Jinliang
2015-10-01
Although previous evidence indicates close involvement of CD147 in the pathogenesis of liver fibrosis, the underlying molecular mechanisms and its therapeutic value remain largely unknown. In the present study, we investigated the biological roles of CD147 in liver fibrosis and assessed its therapeutic value as a target molecule in the CCl4-induced liver fibrosis mouse model. We found that CD147 was highly expressed in both hepatocytes and SECs (sinusoidal endothelial cells) in fibrotic liver tissues. Additionally, it was significantly associated with the fibrosis stage. TGF-β1 (transforming growth factor β1) was found to be mainly responsible for the up-regulation of CD147. Bioinformatic and experimental data suggest a functional link between CD147 expression and VEGF-A (vascular endothelial growth factor A)/VEGR-2 (VEGF receptor 2) signalling-mediated angiogenesis in fibrotic liver tissues. Furthermore, we observed that the CD147-induced activation of the PI3K (phosphoinositide 3-kinase)/Akt signalling pathway promotes the production of VEGF-A in hepatocytes and expression of VEGFR-2 in SECs, which was found to enhance the angiogenic capability of SECs. Finally, our data indicate that blocking of CD147 using an mAb (monoclonal antibody) attenuated liver fibrosis progression via inhibition of VEGF-A/VEGFR-2 signalling and subsequent amelioration of microvascular abnormality in the CCl4-induced mouse model. Our findings suggest a novel functional mechanism that CD147 may promote liver fibrosis progression via inducing the VEGF-A/VEGFR-2 signalling pathway-mediated cross-talk between hepatocytes and SECs. New strategies based on the intervention of CD147 can be expected for prevention of liver fibrosis. © 2015 Authors; published by Portland Press Limited.
Har, Chan Hooi; Keong, Chan Kok
2005-01-01
The effects of tocotrienols on murine liver cell viability and their apoptotic events were studied over a dose range of 0-32 microg mL(-1). Normal murine liver cells (BNL CL.2) and murine liver cancer cells (BNL 1ME A.7R.1) were treated with tocotrienols (T(3)), alpha tocopherol (alpha-T) and the chemo drug, Doxorubicin (Doxo, as a positive control). Cell viability assay showed that T(3) significantly (P < or = 0.05) lowered the percentage of BNL 1ME A.7R.1 cell viability in a dose-responsive manner (8-16 microg mL(-1)), whereas T did not show any significant (P>0.05) inhibition in cell viability with increasing treatment doses of 0-16 microg mL(-1). The IC(50) for tocotrienols were 9.8, 8.9, 8.1, 9.7, 8.1 and 9.3 microg mL(-1) at 12, 24, 36, 48, 60 and 72 hours respectively. Early apoptosis was detected 6 hours following T(3) treatment of BNL 1ME A.7R.1 liver cancer cells, using Annexin V-FITC fluorescence microscopy assay for apoptosis, but none were observed for the non-treated liver cancer cells at the average IC(50) of 8.98 microg mL(-1) tocotrienols for liver cancer cells. Several apoptotic bodies were detected in BNL 1ME A.7R.1 liver cancer cells at 6 hours post-treatment with tocotrienols (8.98 microg mL(-1)) using Acridine Orange/Propidium Iodide fluorescence assay. However, only a couple of apoptotic bodies were seen in the non-treated liver cancer cells and the BNL CL.2 normal liver cells. Some mitotic bodies were also observed in the T(3)-treated BNL 1ME A.7R.1 liver cancer cells but were not seen in the untreated BNL 1ME A.7R.1 cells and the BNL CL.2 liver cells. Following T(3)-treatment (8.98 microg mL(-1)) of the BNL 1ME A.7R.1 liver cancer cells, 24.62%, 25.53% and 44.90% of the cells showed elevated active caspase 3 activity at 9, 12 and 24 hours treatment period, respectively. DNA laddering studies indicated DNA fragmentation occurred in the T(3)-treated liver cancer cells, BNL 1ME A.7R.1 but not in non-treated liver cancer cells and the T(3)-treated and non-treated normal liver cells. These results suggest that tocotrienols were able to reduce the cell viability in the murine liver cancer cells at a dose of 8-32 microg mL(-1) and that this decrease in percentage cell viability may be due to apoptosis.
Yanagawa, Rempei; Furukawa, Yoichi; Tsunoda, Tatsuhiko; Kitahara, Osamu; Kameyama, Masao; Murata, Kohei; Ishikawa, Osamu; Nakamura, Yusuke
2001-01-01
Abstract In spite of intensive and increasingly successful attempts to determine the multiple steps involved in colorectal carcinogenesis, the mechanisms responsible for metastasis of colorectal tumors to the liver remain to be clarified. To identify genes that are candidates for involvement in the metastatic process, we analyzed genome-wide expression profiles of 10 primary colorectal cancers and their corresponding metastatic lesions by means of a cDNA microarray consisting of 9121 human genes. This analysis identified 40 genes whose expression was commonly upregulated in metastatic lesions, and 7 that were commonly downregulated. The upregulated genes encoded proteins involved in cell adhesion, or remodeling of the actin cytoskeleton. Investigation of the functions of more of the altered genes should improve our understanding of metastasis and may identify diagnostic markers and/or novel molecular targets for prevention or therapy of metastatic lesions. PMID:11687950
Clinical uses of liver stem cells.
Dan, Yock Young
2012-01-01
Liver transplantation offers a definitive cure for many liver and metabolic diseases. However, the complex invasive procedure and paucity of donor liver graft organs limit its clinical applicability. Liver stem cells provide a potentially limitless source of cells that would be useful for a variety of clinical applications. These stem cells or hepatocytes generated from them can be used in cellular transplantation, bioartificial liver devices and drug testing in the development of new drugs. In this chapter, we review the technical aspects of clinical applications of liver stem cells and the progress made to date in the clinical setting. The difficulties and challenges of realizing the potential of these cells are discussed.
Yang, Shuai; Abbott, Geoffrey W.; Gao, Wei Dong; Liu, Jin; Luo, Chaozhi
2017-01-01
Remote ischemic conditioning has been convincingly shown to render the myocardium resistant to a subsequent more severe sustained episode of ischemia. Compared with other organs, little is known regarding the effect of transient liver ischemic conditioning. We proposed the existence of cardioprotection induced by remote liver conditioning. Male Sprague-Dawley rats were divided into sham-operated control (no further hepatic intervention) and remote liver ischemic conditioning groups. For liver ischemic conditioning, three cycles of 5 min of liver ischemia-reperfusion stimuli were conducted before-(liver preconditioning), post-myocardial ischemia (liver postconditioning), or in combination of both (liver preconditioning + liver postconditioning). Rats were exposed to 45 min of left anterior descending coronary artery occlusion, followed by 3 h of reperfusion thereafter. ECG and hemodynamics were measured throughout the experiment. The coronary artery was reoccluded at the end of reperfusion for infarct size determination. Blood samples were taken for serum lactate dehydrogenase and creatine kinase-MB test. Heart tissues were taken for apoptosis measurements and Western blotting. Our data demonstrate that liver ischemic preconditioning, postconditioning, or a combination of both, offered strong cardioprotection, as evidenced by reduction in infarct size and cardiac tissue damage, recovery of cardiac function, and inhibition of apoptosis after ischemia-reperfusion. Moreover, liver ischemic conditioning increased cardiac (not hepatic) glycogen synthase kinase-3β (GSK-3β) phosphorylation. Accordingly, inhibition of GSK-3β mimicked the cardioprotective action of liver conditioning. These results demonstrate that remote liver ischemic conditioning protected the heart against ischemia and reperfusion injury via GSK-3β-dependent cell-survival signaling pathway. NEW & NOTEWORTHY Remote ischemic conditioning protects hearts against ischemia and reperfusion (I/R) injury. However, it is unclear whether ischemic conditioning of visceral organs such as the liver, the largest metabolic organ in the body, can produce cardioprotection. This is the first study to show the cardioprotective effect of remote liver ischemic conditioning in a rat model of myocardial I/R injury. We also, for the first time, demonstrated these protective properties are associated with glycogen synthase kinase-3β-dependent cell-survival signaling pathway. PMID:28153944
New Insights into the Pathogenesis of Alcohol-Induced ER Stress and Liver Diseases.
Ji, Cheng
2014-01-01
Alcohol-induced liver disease increasingly contributes to human mortality worldwide. Alcohol-induced endoplasmic reticulum (ER) stress and disruption of cellular protein homeostasis have recently been established as a significant mechanism contributing to liver diseases. The alcohol-induced ER stress occurs not only in cultured hepatocytes but also in vivo in the livers of several species including mouse, rat, minipigs, zebrafish, and humans. Identified causes for the ER stress include acetaldehyde, oxidative stress, impaired one carbon metabolism, toxic lipid species, insulin resistance, disrupted calcium homeostasis, and aberrant epigenetic modifications. Importance of each of the causes in alcohol-induced liver injury depends on doses, duration and patterns of alcohol exposure, genetic disposition, environmental factors, cross-talks with other pathogenic pathways, and stages of liver disease. The ER stress may occur more or less all the time during alcohol consumption, which interferes with hepatic protein homeostasis, proliferation, and cell cycle progression promoting development of advanced liver diseases. Emerging evidence indicates that long-term alcohol consumption and ER stress may directly be involved in hepatocellular carcinogenesis (HCC). Dissecting ER stress signaling pathways leading to tumorigenesis will uncover potential therapeutic targets for intervention and treatment of human alcoholics with liver cancer.
Strahm, Emmanuel; Rane, Anders; Ekström, Lena
2014-01-01
Most androgenic drugs are available as esters for a prolonged depot action. However, the enzymes involved in the hydrolysis of the esters have not been identified. There is one study indicating that PDE7B may be involved in the activation of testosterone enanthate. The aims are to identify the cellular compartments where the hydrolysis of testosterone enanthate and nandrolone decanoate occurs, and to investigate the involvement of PDE7B in the activation. We also determined if testosterone and nandrolone affect the expression of the PDE7B gene. The hydrolysis studies were performed in isolated human liver cytosolic and microsomal preparations with and without specific PDE7B inhibitor. The gene expression was studied in human hepatoma cells (HepG2) exposed to testosterone and nandrolone. We show that PDE7B serves as a catalyst of the hydrolysis of testosterone enanthate and nandrolone decanoate in liver cytosol. The gene expression of PDE7B was significantly induced 3- and 5- fold after 2 h exposure to 1 μM testosterone enanthate and nandrolone decanoate, respectively. These results show that PDE7B is involved in the activation of esterified nandrolone and testosterone and that the gene expression of PDE7B is induced by supra-physiological concentrations of androgenic drugs.
CD24-Positive Cells from Normal Adult Mouse Liver Are Hepatocyte Progenitor Cells
Qiu, Qiong; Hernandez, Julio Cesar; Dean, Adam M.; Rao, Pulivarthi H.
2011-01-01
The identification of specific cell surface markers that can be used to isolate liver progenitor cells will greatly facilitate experimentation to determine the role of these cells in liver regeneration and their potential for therapeutic transplantation. Previously, the cell surface marker, CD24, was observed to be expressed on undifferentiated bipotential mouse embryonic liver stem cells and 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced oval cells. Here, we describe the isolation and characterization of a rare, primary, nonhematopoietic, CD24+ progenitor cell population from normal, untreated mouse liver. By immunohistochemistry, CD24-expressing cells in normal adult mouse liver were colocalized with CK19-positive cholangiocytes. This nonhematopoietic (CD45−, Ter119−) CD24+ cell population isolated by flow cytometry represented 0.04% of liver cells and expressed several markers of liver progenitor/oval cells. The immunophenotype of nonhematopoietic CD24+ cells was CD133, Dlk, and Sca-1 high, but c-Kit, Thy-1, and CD34 low. The CD24+ cells had increased expression of CK19, epithelial cell adhesion molecule, Sox 9, and FN14 compared with the unsorted cells. Upon transplantation of nonhematopoietic CD24+ cells under the sub-capsule of the livers of Fah knockout mice, cells differentiated into mature functional hepatocytes. Analysis of X and Y chromosome complements were used to determine whether or not fusion of the engrafted cells with the recipient hepatocytes occurred. No cells were found that contained XXXY or any other combination of donor and host sex chromosomes as would be expected if cell fusion had occurred. These results suggested that CD24 can be used as a cell surface marker for isolation of hepatocyte progenitor cells from normal adult liver that are able to differentiate into hepatocytes. PMID:21361791
CD24-positive cells from normal adult mouse liver are hepatocyte progenitor cells.
Qiu, Qiong; Hernandez, Julio Cesar; Dean, Adam M; Rao, Pulivarthi H; Darlington, Gretchen J
2011-12-01
The identification of specific cell surface markers that can be used to isolate liver progenitor cells will greatly facilitate experimentation to determine the role of these cells in liver regeneration and their potential for therapeutic transplantation. Previously, the cell surface marker, CD24, was observed to be expressed on undifferentiated bipotential mouse embryonic liver stem cells and 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced oval cells. Here, we describe the isolation and characterization of a rare, primary, nonhematopoietic, CD24+ progenitor cell population from normal, untreated mouse liver. By immunohistochemistry, CD24-expressing cells in normal adult mouse liver were colocalized with CK19-positive cholangiocytes. This nonhematopoietic (CD45-, Ter119-) CD24+ cell population isolated by flow cytometry represented 0.04% of liver cells and expressed several markers of liver progenitor/oval cells. The immunophenotype of nonhematopoietic CD24+ cells was CD133, Dlk, and Sca-1 high, but c-Kit, Thy-1, and CD34 low. The CD24+ cells had increased expression of CK19, epithelial cell adhesion molecule, Sox 9, and FN14 compared with the unsorted cells. Upon transplantation of nonhematopoietic CD24+ cells under the sub-capsule of the livers of Fah knockout mice, cells differentiated into mature functional hepatocytes. Analysis of X and Y chromosome complements were used to determine whether or not fusion of the engrafted cells with the recipient hepatocytes occurred. No cells were found that contained XXXY or any other combination of donor and host sex chromosomes as would be expected if cell fusion had occurred. These results suggested that CD24 can be used as a cell surface marker for isolation of hepatocyte progenitor cells from normal adult liver that are able to differentiate into hepatocytes.
Liu, Jia; Huang, Xuan; Werner, Melanie; Broering, Ruth; Yang, Dongliang; Lu, Mengji
2017-01-01
Separation of pure cell populations from the liver is a prerequisite to study the role of hepatic parenchymal and non-parenchymal cells in liver physiology, pathophysiology, and immunology. Traditional methods for hepatic cell separation usually purify only single cell types from liver specimens. Here, we describe an efficient method that can simultaneously purify populations of hepatocytes (HCs), liver sinusoidal endothelial cells (LSECs), and Kupffer cells (KCs) from a single mouse liver specimen. A liberase-based perfusion technique in combination with a low-speed centrifugation and magnetic-activated cell sorting (MACS) led to the isolation and purification of HCs, KCs, and LSECs with high yields and purity.
A Spectrum of Monoclonal Antibodies Reactive with Human Mammary Tumor Cells
NASA Astrophysics Data System (ADS)
Colcher, D.; Horan Hand, P.; Nuti, M.; Schlom, J.
1981-05-01
Splenic lymphocytes of mice, immunized with membrane-enriched fractions of metastatic human mammary carcinoma tissues, were fused with the NS-1 non-immunoglobulin-secreting murine myeloma cell line. This resulted in the generation of hybridoma cultures secreting immunoglobulins reactive in solid-phase radioimmunoassays with extracts of metastatic mammary carcinoma cells from involved livers, but not with extracts of apparently normal human liver. As a result of further screening of immunoglobulin reactivities and double cloning of cultures, 11 monoclonal antibodies were chosen that demonstrated reactivities with human mammary tumor cells and not with apparently normal human tissues. These monoclonal antibodies could be placed into at least five major groups on the basis of their differential binding to the surface of various live human mammary tumor cells in culture, to extracts of mammary tumor tissues, or to tissue sections of mammary tumor cells studied by the immunoperoxidase technique. Whereas a spectrum of reactivities to mammary tumors was observed with the 11 monoclonal antibodies, no reactivity was observed to apparently normal cells of the following human tissues: breast, lymph node, lung, skin, testis, kidney, thymus, bone marrow, spleen, uterus, thyroid, intestine, liver, bladder, tonsils, stomach, prostate, and salivary gland. Several of the antibodies also demonstrated a ``pancarcinoma'' reactivity, showing binding to selected non-breast carcinomas. None of the monoclonal antibodies showed binding to purified ferritin or carcinoembryonic antigen. Monoclonal antibodies of all five major groups, however, demonstrated binding to human metastatic mammary carcinoma cells both in axillary lymph nodes and at distal sites.
Weng, Hong-Lei; Cai, Xiaobo; Yuan, Xiaodong; Liebe, Roman; Dooley, Steven; Li, Hai; Wang, Tai-Ling
2015-01-01
Massive hepatic necrosis is a key event underlying acute liver failure, a serious clinical syndrome with high mortality. Massive hepatic necrosis in acute liver failure has unique pathophysiological characteristics including extremely rapid parenchymal cell death and removal. On the other hand, massive necrosis rapidly induces the activation of liver progenitor cells, the so-called “second pathway of liver regeneration.” The final clinical outcome of acute liver failure depends on whether liver progenitor cell-mediated regeneration can efficiently restore parenchymal mass and function within a short time. This review summarizes the current knowledge regarding massive hepatic necrosis and liver progenitor cell-mediated regeneration in patients with acute liver failure, the two sides of one coin. PMID:26136687
Weng, Hong-Lei; Cai, Xiaobo; Yuan, Xiaodong; Liebe, Roman; Dooley, Steven; Li, Hai; Wang, Tai-Ling
2015-01-01
Massive hepatic necrosis is a key event underlying acute liver failure, a serious clinical syndrome with high mortality. Massive hepatic necrosis in acute liver failure has unique pathophysiological characteristics including extremely rapid parenchymal cell death and removal. On the other hand, massive necrosis rapidly induces the activation of liver progenitor cells, the so-called "second pathway of liver regeneration." The final clinical outcome of acute liver failure depends on whether liver progenitor cell-mediated regeneration can efficiently restore parenchymal mass and function within a short time. This review summarizes the current knowledge regarding massive hepatic necrosis and liver progenitor cell-mediated regeneration in patients with acute liver failure, the two sides of one coin.
Ishikawa, Momotaro; Sekine, Keisuke; Okamura, Ai; Zheng, Yun-wen; Ueno, Yasuharu; Koike, Naoto; Tanaka, Junzo; Taniguchi, Hideki
2011-06-01
Reconstitution of tissue architecture in vitro is important because it enables researchers to investigate the interactions and mutual relationships between cells and cellular signals involved in the three-dimensional (3D) construction of tissues. To date, in vitro methods for producing tissues with highly ordered structure and high levels of function have met with limited success although a variety of 3D culture systems have been investigated. In this study, we reconstituted functional hepatic tissue including mature hepatocyte and blood vessel-like structures accompanied with bile duct-like structures from E15.5 fetal liver cells, which contained more hepatic stem/progenitor cells comparing with neonatal liver cells. The culture was performed in a simulated microgravity environment produced by a rotating wall vessel (RWV) bioreactor. The hepatocytes in the reconstituted 3D tissue were found to be capable of producing albumin and storing glycogen. Additionally, bile canaliculi between hepatocytes, characteristics of adult hepatocyte in vivo were also formed. Apart from this, bile duct structure secreting mucin was shown to form complicated tubular branches. Furthermore, gene expression analysis by semi-quantitative RT-PCR revealed the elevated levels of mature hepatocyte markers as well as genes with the hepatic function. With RWV culture system, we could produce functionally reconstituted liver tissue and this might be useful in pharmaceutical industry including drug screening and testing and other applications such as an alternative approach to experimental animals. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Orfila, C; Lepert, J C; Alric, L; Carrera, G; Beraud, M; Vinel, J P; Pipy, B
1999-10-01
In liver injury induced by carbon tetrachloride, secondary hepatic injury occurs from inflammatory processes originating from products released by activated Kupffer cells, which play a central role in hepatic inflammation. The purpose of our study was to demonstrate, in rats, the relationships between a function of the hepatic macrophages, TNF-alpha production and the state of activation of these cells, characterized by their phenotype, in the different phases of the process and development of fibrosis in a carbon tetrachloride-induced cirrhosis model. The immunohistochemical localization of proinflammatory cytokine TNF-alpha and surface surface makers (ED1 and ED2) was studied in hepatitis and cirrhosis in response to 3 and 9 weeks ingestion of carbon tetrachloride. After carbon tetrachloride ingestion, accompanying the increased necrosis, immunohistochemical analysis of liver tissue sections demonstrated the significantly increased number of cells expressing ED1, ED2 and TNF-alpha, compared to normal. The number of cells expressing the surface phenotypic markers of liver macrophages increased and this change was concomitantly associated with an increased cellular expression of TNF-alpha. Local macrophage proliferation and influx of newly recruited blood monocytes resulted in an increase of the macrophage population. The populational changes involved difference in functional activity and enhanced TNF-alpha expression. This cytokine expressed in the carbon tetrachloride-induced inflammatory process is associated with the development of fibrosis and may contribute to disease severity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verret, Valentin, E-mail: valentin.verret@archimmed.com; Namur, Julien; Ghegediban, Saieda Homayra
The potential mechanisms accounting for the hepatotoxicity of doxorubicin-loaded microspheres in chemoembolization were examined by combining histology and DNA-microarray techniques.The left hepatic arteries of two pigs were embolized with 1 mL of doxorubicin-loaded (25 mg; (DoxMS)) or non-loaded (BlandMS) microspheres. The histopathological effects of the embolization were analyzed at 1 week. RNAs extracted from both the embolized and control liver areas were hybridized onto Agilent porcine microarrays. Genes showing significantly different expression (p < 0.01; fold-change > 2) between two groups were classified by biological process. At 1 week after embolization, DoxMS caused arterial and parenchymal necrosis in 51 andmore » 38 % of embolized vessels, respectively. By contrast, BlandMS did not cause any tissue damage. Up-regulated genes following embolization with DoxMS (vs. BlandMS, n = 353) were mainly involved in cell death, apoptosis, and metabolism of doxorubicin. Down-regulated genes (n = 120) were mainly related to hepatic functions, including enzymes of lipid and carbohydrate metabolisms. Up-regulated genes included genes related to cell proliferation (growth factors and transcription factors), tissue remodeling (MMPs and several collagen types), inflammatory reaction (interleukins and chemokines), and angiogenesis (angiogenic factors and HIF1a pathway), all of which play an important role in liver healing and regeneration. DoxMS caused lesions to the liver, provoked cell death, and disturbed liver metabolism. An inflammatory repair process with cell proliferation, tissue remodeling, and angiogenesis was rapidly initiated during the first week after chemoembolization. This pilot study provides a comprehensive method to compare different types of DoxMS in healthy animals or tumor models.« less
Tedesco, Dana; Thapa, Manoj; Gumber, Sanjeev; Elrod, Elizabeth J; Rahman, Khalidur; Ibegbu, Chris C; Magliocca, Joseph F; Adams, Andrew B; Anania, Frank; Grakoui, Arash
2017-02-01
Persistent hepatotropic viral infections are a common etiologic agent of chronic liver disease. Unresolved infection can be attributed to nonfunctional intrahepatic CD8+ T-cell responses. In light of dampened CD8 + T-cell responses, liver disease often manifests systemically as immunoglobulin (Ig)-related syndromes due to aberrant B-cell functions. These two opposing yet coexisting phenomena implicate the potential of altered CD4 + T-cell help. Elevated CD4 + forkhead box P3-positive (Foxp3+) T cells were evident in both human liver disease and a mouse model of chemically induced liver injury despite marked activation and spontaneous IgG production by intrahepatic B cells. While this population suppressed CD8 + T-cell responses, aberrant B-cell activities were maintained due to expression of CD40 ligand on a subset of CD4 + Foxp3+ T cells. In vivo blockade of CD40 ligand attenuated B-cell abnormalities in a mouse model of liver injury. A phenotypically similar population of CD4 + Foxp3+, CD40 ligand-positive T cells was found in diseased livers explanted from patients with chronic hepatitis C infection. This population was absent in nondiseased liver tissues and peripheral blood. Liver disease elicits alterations in the intrahepatic CD4 + T-cell compartment that suppress T-cell immunity while concomitantly promoting aberrant IgG mediated manifestations. (Hepatology 2017;65:661-677). © 2016 by the American Association for the Study of Liver Diseases.
Selden, Clare; Spearman, Catherine Wendy; Kahn, Delawir; Miller, Malcolm; Figaji, Anthony; Erro, Eloy; Bundy, James; Massie, Isobel; Chalmers, Sherri-Ann; Arendse, Hiram; Gautier, Aude; Sharratt, Peter; Fuller, Barry; Hodgson, Humphrey
2013-01-01
Liver failure is an increasing problem. Donor-organ shortage results in patients dying before receiving a transplant. Since the liver can regenerate, alternative therapies providing temporary liver-support are sought. A bioartificial-liver would temporarily substitute function in liver failure buying time for liver regeneration/organ-procurement. Our aim: to develop a prototype bioartificial-liver-machine (BAL) comprising a human liver-derived cell-line, cultured to phenotypic competence and deliverable in a clinical setting to sites distant from its preparation. The objective of this study was to determine whether its use would improve functional parameters of liver failure in pigs with acute liver failure, to provide proof-of-principle. HepG2cells encapsulated in alginate-beads, proliferated in a fluidised-bed-bioreactor providing a biomass of 4–6×1010cells, were transported from preparation-laboratory to point-of-use operating theatre (6000miles) under perfluorodecalin at ambient temperature. Irreversible ischaemic liver failure was induced in anaesthetised pigs, after portal-systemic-shunt, by hepatic-artery-ligation. Biochemical parameters, intracranial pressure, and functional-clotting were measured in animals connected in an extracorporeal bioartificial-liver circuit. Efficacy was demonstrated comparing outcomes between animals connected to a circuit containing alginate-encapsulated cells (Cell-bead BAL), and those connected to circuit containing alginate capsules without cells (Empty-bead BAL). Cells of the biomass met regulatory standards for sterility and provenance. All animals developed progressive liver-failure after ischaemia induction. Efficacy of BAL was demonstrated since animals connected to a functional biomass (+ cells) had significantly smaller rises in intracranial pressure, lower ammonia levels, more bilirubin conjugation, improved acidosis and clotting restoration compared to animals connected to the circuit without cells. In the +cell group, human proteins accumulated in pigs' plasma. Delivery of biomass using a short-term cold-chain enabled transport and use without loss of function over 3days. Thus, a fluidised-bed bioreactor containing alginate-encapsulated HepG2cell-spheroids improved important parameters of acute liver failure in pigs. The system can readily be up-scaled and transported to point-of-use justifying development at clinical scale. PMID:24367515
Langerhans Cell Histiocytosis Treatment (PDQ®)—Health Professional Version
Langerhans cell histiocytosis (LCH) treatment is based on whether high-risk (liver, spleen, hematopoietic system) or low-risk organs (skin, bone, lung, lymph nodes, GI tract, pituitary gland, thyroid, thymus or CNS) are involved and whether LCH presents as unifocal, multifocal, or multisystem disease. Get detailed information about LCH in adults and children, including etiology, molecular features, presentation, diagnosis, prognosis, and treatment in this summary for clinicians.
Hepatic stem/progenitor cells and stem-cell transplantation for the treatment of liver disease.
Kakinuma, Sei; Nakauchi, Hiromitsu; Watanabe, Mamoru
2009-01-01
Allogeneic liver transplantation is still the only effective treatment available to patients with liver failure. However, because there is a serious shortage of liver donors, an alternative therapeutic approach is needed. Transplantation of mature hepatocytes has been evaluated in clinical trials, but the long-term efficacy remains unclear and the paucity of donor cells limits this strategy. Stem-cell transplantation is a more promising alternative approach. Several studies have provided information about the mechanism underlying the proliferation and differentiation of hepatic stem/progenitor cells. Moreover, in experimental models of liver disease, transplantation of hepatic stem/progenitor cells or hepatocyte-like cells derived from multipotent stem cells led to donor cell-mediated repopulation of the liver and improved survival rates. However, before stem-cell transplantation can be applied in the clinic to treat liver failure in humans, it will be necessary to overcome several difficulties associated with the technique.
High susceptibility to fatty liver disease in two-pore channel 2-deficient mice.
Grimm, Christian; Holdt, Lesca M; Chen, Cheng-Chang; Hassan, Sami; Müller, Christoph; Jörs, Simone; Cuny, Hartmut; Kissing, Sandra; Schröder, Bernd; Butz, Elisabeth; Northoff, Bernd; Castonguay, Jan; Luber, Christian A; Moser, Markus; Spahn, Saskia; Lüllmann-Rauch, Renate; Fendel, Christina; Klugbauer, Norbert; Griesbeck, Oliver; Haas, Albert; Mann, Matthias; Bracher, Franz; Teupser, Daniel; Saftig, Paul; Biel, Martin; Wahl-Schott, Christian
2014-08-21
Endolysosomal organelles play a key role in trafficking, breakdown and receptor-mediated recycling of different macromolecules such as low-density lipoprotein (LDL)-cholesterol, epithelial growth factor (EGF) or transferrin. Here we examine the role of two-pore channel (TPC) 2, an endolysosomal cation channel, in these processes. Embryonic mouse fibroblasts and hepatocytes lacking TPC2 display a profound impairment of LDL-cholesterol and EGF/EGF-receptor trafficking. Mechanistically, both defects can be attributed to a dysfunction of the endolysosomal degradation pathway most likely on the level of late endosome to lysosome fusion. Importantly, endolysosomal acidification or lysosomal enzyme function are normal in TPC2-deficient cells. TPC2-deficient mice are highly susceptible to hepatic cholesterol overload and liver damage consistent with non-alcoholic fatty liver hepatitis. These findings indicate reduced metabolic reserve of hepatic cholesterol handling. Our results suggest that TPC2 plays a crucial role in trafficking in the endolysosomal degradation pathway and, thus, is potentially involved in the homoeostatic control of many macromolecules and cell metabolites.
EVEN VISITING SCIENTISTS COULD MAKE DISCOVERIES IN MONTREAL.
Lázár, György
2014-03-30
This publication summarizes the scientific adventure with Professor Selye, and focuses on the specific effect of rare metal salts on reticuloendothelial functions. Rare earth metal ions markedly affect the functions of cells involved in inflammatory and immunological phenomena. The Kupffer cell blockade induced by GdCl3 is a generally accepted method for investigation of the physiological and pathophysiological roles of Kupffer cells. Potential beneficial effects of macrophage blockade have been demonstrated in different shock states, liver injury and obstructive jaundice.
Nguyen, Charles B.; Kotturi, Hari; Waris, Gulam; Mohammed, Altaf; Chandrakesan, Parthasarathy; May, Randal; Sureban, Sripathi; Weygant, Nathaniel; Qu, Dongfeng; Rao, Chinthalapally V.; Dhanasekaran, Danny N.; Bronze, Michael S.; Houchen, Courtney W.; Ali, Naushad
2016-01-01
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide. Chronic hepatitis C virus (HCV) infection causes induction of several tumor/cancer stem cell (CSC) markers and is known to be a major risk factor for development of HCC. Therefore, drugs that simultaneously target viral replication and CSC properties are needed for a risk-free treatment of advanced stage liver diseases including HCC. Here, we demonstrated that (Z)-3,5,4’-trimethoxystilbene (Z-TMS) exhibits potent anti-tumor and anti-HCV activities without exhibiting cytotoxicity to human hepatocytes in vitro or in mice livers. Diethylnitrosamine (DEN)/carbon tetrachloride (CCl4) extensively induced expression of DCLK1 (a CSC marker) in the livers of C57BL/6 mice following hepatic injury. Z-TMS exhibited hepatoprotective effects against DEN/CCl4-induced injury by reducing DCLK1 expression and improving histological outcomes. The drug caused bundling of DCLK1 with microtubules and blocked cell cycle progression at G2/M phase in hepatoma cells via downregulation of CDK1, induction of p21cip1/waf1 expression, and inhibition of Akt (Ser473) phosphorylation. Z-TMS also inhibited proliferation of erlotinib-resistant lung adenocarcinoma cells (H1975) bearing the T790M EGFR mutation most likely by promoting autophagy and nuclear fragmentation. In conclusion, Z-TMS appears to be a unique therapeutic agent targeting HCV and concurrently eliminating cells with neoplastic potential during chronic liver diseases including HCC. It may also be a valuable drug for targeting drug-resistant carcinomas and cancers of the lungs, pancreas, colon, and intestine in which DCLK1 is involved in tumorigenesis. PMID:27287718
Takezawa, R; Watanabe, Y; Akaike, T
1995-12-01
Controversy has surrounded origin and differentiation of tissue macrophages. We directly demonstrate the differentiation of bone marrow cells into macrophages in the liver in vivo using a cell-labeling fluorescence dye, PKH-26. Bone marrow cells labeled with PKH26 were intravenously injected into syngenic mice, and these cells were tracked by flow cytometric analysis. The majority of the labeled cells were detected only in the liver after 4 days. Interestingly, antigens specific for macrophage lineage cells (F4/80, Fc gamma RII, and CD14) were detected on the liver-accumulated cells only 4 h after the injection. The pattern of the antigen expression changed to that of Kupffer cells (F4/80+, Fc gamma RII+, Mac-1-) after 4 days and remained so thereafter. These labeled cells in the liver were esterase staining-positive and showed phagocytic activity at day 7. The number of labeled cells among the Kupffer cells in the liver increased with days after injection. This indicates that bone marrow cells accumulate in the liver and differentiate into liver macrophages on site. Roles of factors secreted from hepatocytes are also discussed.
All-In-One: Advanced preparation of Human Parenchymal and Non-Parenchymal Liver Cells
Werner, Melanie; Driftmann, Sabrina; Kleinehr, Kathrin; Kaiser, Gernot M.; Mathé, Zotlan; Treckmann, Juergen-Walter; Paul, Andreas; Skibbe, Kathrin; Timm, Joerg; Canbay, Ali; Gerken, Guido; Schlaak, Joerg F.; Broering, Ruth
2015-01-01
Background & Aims Liver cells are key players in innate immunity. Thus, studying primary isolated liver cells is necessary for determining their role in liver physiology and pathophysiology. In particular, the quantity and quality of isolated cells are crucial to their function. Our aim was to isolate a large quantity of high-quality human parenchymal and non-parenchymal cells from a single liver specimen. Methods Hepatocytes, Kupffer cells, liver sinusoidal endothelial cells, and stellate cells were isolated from liver tissues by collagenase perfusion in combination with low-speed centrifugation, density gradient centrifugation, and magnetic-activated cell sorting. The purity and functionality of cultured cell populations were controlled by determining their morphology, discriminative cell marker expression, and functional activity. Results Cell preparation yielded the following cell counts per gram of liver tissue: 2.0±0.4×107 hepatocytes, 1.8±0.5×106 Kupffer cells, 4.3±1.9×105 liver sinusoidal endothelial cells, and 3.2±0.5×105 stellate cells. Hepatocytes were identified by albumin (95.5±1.7%) and exhibited time-dependent activity of cytochrome P450 enzymes. Kupffer cells expressed CD68 (94.5±1.2%) and exhibited phagocytic activity, as determined with 1μm latex beads. Endothelial cells were CD146+ (97.8±1.1%) and exhibited efficient uptake of acetylated low-density lipoprotein. Hepatic stellate cells were identified by the expression of α-smooth muscle actin (97.1±1.5%). These cells further exhibited retinol (vitamin A)-mediated autofluorescence. Conclusions Our isolation procedure for primary parenchymal and non-parenchymal liver cells resulted in cell populations of high purity and quality, with retained physiological functionality in vitro. Thus, this system may provide a valuable tool for determining liver function and disease. PMID:26407160
Cell sources for in vitro human liver cell culture models.
Zeilinger, Katrin; Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny
2016-09-01
In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. © 2016 by the Society for Experimental Biology and Medicine.
Cell sources for in vitro human liver cell culture models
Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny
2016-01-01
In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro. However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro. Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. PMID:27385595
Ballestri, Stefano; Nascimbeni, Fabio; Romagnoli, Dante; Baldelli, Enrica; Targher, Giovanni; Lonardo, Amedeo
2016-01-01
The pathogenesis of type 2 diabetes (T2D) involves chronic hyperinsulinemia due to systemic and hepatic insulin resistance (IR), which if uncorrected, will lead to progressive pancreatic beta cell failure in predisposed individuals. Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of fatty (simple steatosis and steatohepatitis) and non-fatty liver changes (NASH-cirrhosis with or without hepatocellular carcinoma (HCC)) that are commonly observed among individuals with multiple metabolic derangements, notably including visceral obesity, IR and T2D. Hepatitis C virus (HCV) infection is also often associated with both hepatic steatosis and features of a specific HCV-associated dysmetabolic syndrome. In recent years, the key role of the steatotic liver in the development of IR and T2D has been increasingly recognized. Thus, in this comprehensive review we summarize the rapidly expanding body of evidence that links T2D with NAFLD and HCV infection. For each of these two liver diseases with systemic manifestations, we discuss the epidemiological burden, the pathophysiologic mechanisms and the clinical implications. To date, substantial evidence suggests that NAFLD and HCV play a key role in T2D development and that the interaction of T2D with liver disease may result in a “vicious circle”, eventually leading to an increased risk of all-cause mortality and liver-related and cardiovascular complications. Preliminary evidence also suggests that improvement of NAFLD is associated with a decreased incidence of T2D. Similarly, the prevention of T2D following HCV eradication in the era of direct-acting antiviral agents is a biologically plausible result. However, additional studies are required for further clarification of mechanisms involved. PMID:27005620
Liver repopulation by c-Met-positive stem/progenitor cells isolated from the developing rat liver.
Suzuki, Atsushi; Zheng, Yun-wen; Fukao, Katashi; Nakauchi, Hiromitsu; Taniguchi, Hideki
2004-01-01
Self-renewing stem cells responsible for tissue or organ development and regeneration have been recently described. To isolate such cells using flow cytometry, it should be required to find molecules expressing on their cell surfaces. We have previously reported that, on cells fulfilling the criteria for hepatic stem cells, the hepatocyte growth factor receptor c-Met is expressed specifically in the developing mouse liver. In this study, to determine whether c-Met is an essential marker for hepatic stem cells in other animal strains, we examined the potential for in vivo liver-repopulation in sorted fetal rat-derived c-Met+ cells using the retrorsine model. Using flow cytometry and monoclonal antibodies for c-Met and leukocyte common antigen CD45, fetal rat liver cells were fractionated according to the expression of these molecules. Then, cells in each cell subpopulation were sorted and transplanted into the retrorsine-treated adult rats with two-third hepatectomy. At 9 months post transplant, frequency of liver-repopulation was examined by qualitative and quantitative analyses. When we transplanted c-Met+ CD45- sorted cells, many donor-derived cells formed colonies that included mature hepatocytes expressing albumin and containing abundant glycogen in their cytoplasm. In contrast, c-Met- cells and CD45+ cells could not repopulate damaged recipient livers. High enrichment of liver-repopulating cells was conducted by sorting of c-Met+ cells from the developing rat liver. This result suggests that c-Met/HGF interaction plays a crucial role for stem cell growth, differentiation, and self-renewal in rat liver organogenesis. Since the c-Met is also expressed in the fetal mouse-derived hepatic stem cells, this molecule could be expected to be an essential marker for such cell population in the various animal strains, including human.
Chen, Hanbei; Li, Yakui; Zhu, Yemin; Wu, Lifang; Meng, Jian; Lin, Ning; Yang, Dianqiang; Li, Minle; Ding, WenJin; Tong, Xuemei; Su, Qing
2017-08-01
The aim of the study was to elucidate the mechanism by which advanced glycation end products (AGEs) promote cell proliferation in liver cancer cells.We treated liver cancer HepG2 cells with 200 mg/L AGEs or bovine serum albumin (BSA) and assayed for cell viability, cell cycle, and apoptosis. We performed real-time PCR and Western blot analysis for RNA and protein levels of carbohydrate responsive element-binding protein (ChREBP) in AGEs- or BSA-treated HepG2 cells. We analyzed the level of reactive oxygen species (ROS) in HepG2 cells treated with AGEs or BSA.We found that increased S-phase cell percentage and decreased apoptosis contributed to AGEs-induced liver cancer cell proliferation. Real-time PCR and Western blot analysis showed that AGEs stimulated RNA and protein levels of ChREBP, a transcription factor promoting glycolysis and maintaining cell proliferation in liver cancer cells. Intriguingly, the level of ROS was higher in AGEs-treated liver cancer cells. Treating liver cancer cells with antioxidant N-acetyl cystein (NAC) partly blocked AGEs-induced ChREBP expression and cell proliferation.Our results suggest that the AGEs-ROS-ChREBP pathway plays a critical role in promoting ChREBP expression and liver cancer cell proliferation.
Circadian Reprogramming in the Liver Identifies Metabolic Pathways of Aging.
Sato, Shogo; Solanas, Guiomar; Peixoto, Francisca Oliveira; Bee, Leonardo; Symeonidi, Aikaterini; Schmidt, Mark S; Brenner, Charles; Masri, Selma; Benitah, Salvador Aznar; Sassone-Corsi, Paolo
2017-08-10
The process of aging and circadian rhythms are intimately intertwined, but how peripheral clocks involved in metabolic homeostasis contribute to aging remains unknown. Importantly, caloric restriction (CR) extends lifespan in several organisms and rewires circadian metabolism. Using young versus old mice, fed ad libitum or under CR, we reveal reprogramming of the circadian transcriptome in the liver. These age-dependent changes occur in a highly tissue-specific manner, as demonstrated by comparing circadian gene expression in the liver versus epidermal and skeletal muscle stem cells. Moreover, de novo oscillating genes under CR show an enrichment in SIRT1 targets in the liver. This is accompanied by distinct circadian hepatic signatures in NAD + -related metabolites and cyclic global protein acetylation. Strikingly, this oscillation in acetylation is absent in old mice while CR robustly rescues global protein acetylation. Our findings indicate that the clock operates at the crossroad between protein acetylation, liver metabolism, and aging. Copyright © 2017 Elsevier Inc. All rights reserved.
Epigenetic Effects of Ethanol on the Liver and Gastrointestinal System
Shukla, Shivendra D.; Lim, Robert W.
2013-01-01
The widening web of epigenetic regulatory mechanisms also encompasses ethanol-induced changes in the gastrointestinal (GI)–hepatic system. In the past few years, increasing evidence has firmly established that alcohol modifies several epigenetic parameters in the GI tract and liver. The major pathways affected include DNA methylation, different site-specific modifications in histone proteins, and microRNAs. Ethanol metabolism, cell-signaling cascades, and oxidative stress have been implicated in these responses. Furthermore, ethanol-induced fatty liver (i.e., steatohepatitis) and progression of liver cancer (i.e., hepatic carcinoma) may be consequences of the altered epigenetics. Modification of gene and/or protein expression via epigenetic changes also may contribute to the cross-talk among the GI tract and the liver as well as to systemic changes involving other organs. Thus, epigenetic effects of ethanol may have a central role in the various pathophysiological responses induced by ethanol in multiple organs and mediated via the liver–GI axis. PMID:24313164
Endocannabinoids in Liver Disease
Tam, Joseph; Liu, Jie; Mukhopadhyay, Bani; Cinar, Resat; Godlewski, Grzegorz; Kunos, George
2010-01-01
Endocannabinoids are lipid mediators of the same cannabinoid (CB) receptors that mediate the effects of marijuana. The endocannabinoid system (ECS) consists of CB receptors, endocannabinoids, and the enzymes involved in their biosynthesis and degradation, and is present both in brain and peripheral tissues, including the liver. The hepatic ECS is activated in various liver diseases, which contributes to the underlying pathologies. In cirrhosis of various etiologies, activation of vascular and cardiac CB1 receptors by macrophage- and platelet-derived endocannabinoids contribute to the vasodilated state and cardiomyopathy, which can be reversed by CB1 blockade. In mouse models of liver fibrosis, activation of CB1 receptors on hepatic stellate cells is fibrogenic, and CB1 blockade slows the progression of fibrosis. Fatty liver induced by high-fat diets or chronic alcohol feeding depend on activation of peripheral, including hepatic CB1 receptors, which also contribute to insulin resistance and dyslipidemias. Although the documented therapeutic potential of CB1 blockade is limited by neuropsychiatric side effects, these may be mitigated by using novel, peripherally restricted CB1 antagonists. PMID:21254182
Dual effects of phloretin on aflatoxin B1 metabolism: activation and detoxification of aflatoxin B1.
Gao, Shang Shang; Chen, Xiao Yan; Zhu, Ri Zhe; Choi, Byung-Min; Kim, Sun Jun; Kim, Bok-Ryang
2012-01-01
Typically, chemopreventive agents involve either induction of phase II detoxifying enzymes and/or inhibition of cytochrome P450 enzymes (CYPs) that are required for the activation of procarcinogens. In this study, we investigated the protective effects of phloretin against aflatoxin B1 (AFB1) activation to the ultimate carcinogenic intermediate, AFB(1)-8, 9-epoxide (AFBO), and its subsequent detoxification. Phloretin markedly inhibited formation of the epoxide with human liver microsomes in a dose-dependent manner. Phloretin also inhibited the activities of nifedipine oxidation and ethoxyresorufin O-deethylase (EROD) in human liver microsomes. These data show that phloretin strongly inhibits CYP1A2 and CYP3A4 activities, which are involved in the activation of AFB1. Phloretin increased glutathione S-transferase (GST) activity of alpha mouse liver 12 (AML 12) cells in a dose-dependent manner. GST activity toward AFBO in cell lysates treated with 20 μM phloretin was 23-fold that of untreated control cell lysates. The expression of GSTA3, GSTA4, GSTM1, GSTP1 and GSTT1 was induced by phloretin in a dose-dependent manner in AML 12 cells. GSTP1, GSTM1, and GSTT1 were able to significantly increase the conjugation of AFBO with glutathione. Concurrently, induction of the GST isozyme genes was partially associated with the Nrf2/ARE pathway. Taken together, the results demonstrate that phloretin has a strong chemopreventive effect against AFB1 through its inhibitory effect on CYP1A2, CYP3A4, and its inductive effect on GST activity. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.
Lee, Charlotte A; Sinha, Siddharth; Fitzpatrick, Emer; Dhawan, Anil
2018-06-01
Human hepatocyte transplantation has been actively perused as an alternative to liver replacement for acute liver failure and liver-based metabolic defects. Current challenges in this field include a limited cell source, reduced cell viability following cryopreservation and poor engraftment of cells into the recipient liver with consequent limited life span. As a result, alternative stem cell sources such as pluripotent stem cells, fibroblasts, hepatic progenitor cells, amniotic epithelial cells and mesenchymal stem/stromal cells (MSCs) can be used to generate induced hepatocyte like cells (HLC) with each technique exhibiting advantages and disadvantages. HLCs may have comparable function to primary human hepatocytes and could offer patient-specific treatment. However, long-term functionality of transplanted HLCs and the potential oncogenic risks of using stem cells have yet to be established. The immunomodulatory effects of MSCs are promising, and multiple clinical trials are investigating their effect in cirrhosis and acute liver failure. Here, we review the current status of hepatocyte transplantation, alternative cell sources to primary human hepatocytes and their potential in liver regeneration. We also describe recent clinical trials using hepatocytes derived from stem cells and their role in improving the phenotype of several liver diseases.
Rivedal, Edgar; Leithe, Edward
2005-01-15
The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) induces transient inhibition of gap junction intercellular communication (GJIC) in several cell types. The initial block in GJIC has been attributed to protein kinase C (PKC) mediated phosphorylation of connexin gap junction proteins, including connexin43 (Cx43). Restoration of GJIC, associated with normalization of the Cx43 phosphorylation status, has been ascribed to different events, including dephosphorylation of Cx43 and de novo synthesis of Cx43 or other, non-gap junctional, proteins. The data presented suggest that restoration of GJIC during continuous TPA exposure in normal and transformed rat liver epithelial cells is dependent on synthesis of Cx43 protein, as well as the transport of already synthesized Cx43 from intracellular pools to the plasma membrane. Reactivation of inactivated Cx43 by dephosphorylation does not appear to be involved in the recovery of GJIC. Both PKC and MAP kinase is involved in TPA-induced degradation of Cx43 and inhibition of GJIC. We show that coincubation of TPA with the protein synthesis inhibitor cycloheximide or the transcription inhibitor actinomycin D results in synergistic enhancement of the level of activated ERK1/2. Together, the present data highlight Cx43 degradation and synthesis as critical determinants in TPA-induced modifications of cell-cell communication via gap junctions.
GPR55 promotes migration and adhesion of colon cancer cells indicating a role in metastasis
Andersen, L; Hasenöhrl, C; Feuersinger, D; Stančić, A; Fauland, A; Magnes, C; El‐Heliebi, A; Lax, S; Uranitsch, S; Haybaeck, J; Heinemann, A
2015-01-01
Background and Purpose Tumour cell migration and adhesion constitute essential features of metastasis. G‐protein coupled receptor 55 (GPR55), a lysophospholipid receptor, has been shown to play an important role in carcinogenesis. Here, we investigated the involvement of GPR55 in migration and metastasis of colon cancer cells. Experimental Approach Adhesion and migration assays using the highly metastatic colon cancer cell line HCT116 and an in vivo assay of liver metastasis were performed. The GPR55 antagonist CID16020046, cannabidiol, a putative GPR55 antagonist and GPR55 siRNA were used to block GPR55 activity in HCT116 colon cancer cells. Key Results HCT116 cells showed a significant decrease in adhesion to endothelial cells and in migration after blockade with CID16020046 or cannabidiol. The inhibitory effects of CID16020046 or cannabidiol were averted by GPR55 siRNA knock down in cancer cells. The integrity of endothelial cell monolayers was increased after pretreatment of HCT116 cells with the antagonists or after GPR55 siRNA knockdown while pretreatment with lysophosphatidylinositol (LPI), the endogenous ligand of GPR55, decreased integrity of the monolayers. LPI also induced migration in GPR55 overexpressing HCT116 cells that was blocked by GPR55 antagonists. In a mouse model of metastasis, the arrest of HCT116 cancer cells in the liver was reduced after treatment with CID16020046 or cannabidiol. Increased levels of LPI (18:0) were found in colon cancer patients when compared with healthy individuals. Conclusions and Implications GPR55 is involved in the migratory behaviour of colon carcinoma cells and may serve as a pharmacological target for the prevention of metastasis. © 2015 The British Pharmacological Society PMID:26436760
Susceptibility of human liver cells to porcine endogenous retrovirus.
Lin, Xinzi; Qi, Lin; Li, Zhiguo; Chi, Hao; Lin, Wanjun; Wang, Yan; Jiang, Zesheng; Pan, Mingxin; Gao, Yi
2013-12-01
The risk of porcine endogenous retrovirus infection is a major barrier for pig-to-human xenotransplant. Porcine endogenous retrovirus, present in porcine cells, can infect many human and nonhuman primate cells in vitro, but there is no evidence available about in vitro infection of human liver cells. We investigated the susceptibility of different human liver cells to porcine endogenous retrovirus. The supernatant from a porcine kidney cell line was added to human liver cells, including a normal hepatocyte cell line (HL-7702 cells), primary hepatocytes (Phh cells), and a liver stellate cell line (Lx-2 cells), and to human embryonic kidney cells as a reference control. Expression of the porcine endogenous retrovirus antigen p15E in the human cells was evaluated with polymerase chain reaction, reverse transcription-polymerase chain reaction, and Western blot. The porcine endogenous retrovirus antigen p15E was not expressed in any human liver cells (HL-7702, Phh, or Lx-2 cells) that had been exposed to supernatants from porcine kidney cell lines. Porcine endogenous retrovirus-specific fragments were amplified in human kidney cells. Human liver cells tested were not susceptible to infection by porcine endogenous retrovirus. Therefore, not all human cells are susceptible to porcine endogenous retrovirus.
Cell Patterning for Liver Tissue Engineering via Dielectrophoretic Mechanisms
Yahya, Wan Nurlina Wan; Kadri, Nahrizul Adib; Ibrahim, Fatimah
2014-01-01
Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP) force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration. PMID:24991941
Yamamoto, Hideaki; Tonello, Jane Marie; Sambuichi, Takanori; Kawabe, Yoshinori; Ito, Akira; Kamihira, Masamichi
2018-01-01
New cell sources for the research and therapy of organ failure could significantly alleviate the shortage of donor livers that are available to patients who suffer from liver disease. Liver carcinoma derived cells, or hepatoma cells, are the ideal cells for developing bioartificial liver systems. Such cancerous liver cells are easy to prepare in large quantities and can be maintained over long periods under standard culture conditions, unlike primary hepatocytes. However, hepatoma cells possess only a fraction of the functions of primary hepatocytes. In a previous study, by transducing cells with liver-enriched transcription factors that could be inducibly overexpressed-hepatocyte nuclear factor (HNF)1α, HNF1β, HNF3β [FOXA2], HNF4α, HNF6, CCAAT/enhancer binding protein (C/EBP)α, C/EBPβ and C/EBPγ-we created mouse hepatoma cells with high liver-specific gene expression called the Hepa/8F5 cell line. In the present study, we performed functional and genetic analyses to characterize the Hepa/8F5 cell line. Further, in three-dimensional cultures, the function of these cells improved significantly compared to parental cells. Ultimately, these cells might become a new resource that can be used in basic and applied hepatic research. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Chang, Siou Han; Huang, Han Hsiang; Kang, Pei Leun; Wu, Yu Chian; Chang, Ming-Huang; Kuo, Shyh Ming
2017-11-01
Volvox sphere is a biomimetic concept of a natural Volvox, wherein a large outer sphere contains smaller inner spheres, which can encapsulate cells and provide a double-layer three-dimensional environment for culturing cells. This study simultaneously encapsulated rat mesenchymal stem cells (MSCs) and AML12 hepatocytes in volvox spheres and extensively evaluated the effects of various culturing modes on cell functions and fates. The results showed that compared with a static flask culture, MSCs encapsulated in volvox spheres differentiated into hepatocyte-like cells with a 2-fold increase in albumin (ALB) expression and a 2.5-fold increase in cytokeratin 18 expression in a dynamic bioreactor. Moreover, the restorative effects of volvox spheres encapsulating cells on retrorsine-exposed CCl 4 -induced liver injuries in rats were evaluated. The data presented significant reductions in AST and ALT levels after the implantation of volvox spheres encapsulating both MSCs and AML12 hepatocytes in vivo. In contrast to the negative control group, histopathological analysis demonstrated liver repair and formation of the new liver tissue in groups implanted with volvox spheres containing cells. These results demonstrate that liver cells implanted with volvox spheres encapsulating both MSCs and AML12 hepatocytes promote liver repair and liver tissue regeneration in liver failure caused by necrotizing agents such as retrorsine and CCl 4 . Hence, volvox spheres encapsulating MSCs and liver cells can be a promising and clinically effective therapy for liver injury. In this study, we used a volvox sphere, which is a unique design that mimics the natural Volvox, that consists of a large outer sphere that contains smaller inner spheres, which provide a three-dimensional environment to culture cells. The purpose of this study is to co-culture mesenchymal stem cells (MSCs) and AML12 liver cells in volvox spheres and evaluate two different culture methods, dynamic bioreactor and static culture flask,on the cultured cells. In addition, we aimed to evaluate the restorative effects of volvox spheres encapsulating MSCs and/or AML12 liver cells on rats with retrorsine-exposed CCl 4 -induced liver injuries. The results showed that MSCs encapsulated in volvox spheres differentiated into hepatocyte-like cells with a 2-fold increase in albumin expression and a 2.5-fold increase in cytokeratin 18 expression ina dynamic bioreactor. Moreover, the data presented significant reductions in AST and ALT levels after the implantation of volvox spheres encapsulating both MSCs and AML12 hepatocytes in vivo. In contrast to the negative control group, histopathological analysis demonstrated liver repair and formation of new liver tissue in groups implanted with volvox spheres containing cells. These results demonstrate that liver cells implanted with volvox spheres encapsulating both MSCs and AML12 hepatocytes promote liver repair and liver tissue regeneration in liver failure caused by necrotizing agents such as retrorsine and CCl 4 . Hence, volvox spheres encapsulating MSCs and liver cells can be a promising and clinically effective therapy for liver injury. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Nakagawa-Toyama, Yumiko; Hirano, Ken-ichi; Tsujii, Ken-ichi; Nishida, Makoto; Miyagawa, Jun-ichiro; Sakai, Naohiko; Yamashita, Shizuya
2005-11-01
The reverse cholesterol transport (RCT) is one of the major protective systems against atherosclerosis, in which high-density lipoprotein (HDL) removes cholesterol from lipid-laden cells and delivers it to the liver. Scavenger receptor class B type I (SR-BI) is a HDL receptor in the liver and adrenal glands and is involved in the selective uptake of cholesteryl ester from HDL, which has been extensively, analyzed using rodent models. However, the expression and regulation of the human homologue of this receptor are not known yet. We previously reported that this receptor is expressed in in vitro differentiated macrophages and its expression is up-regulated by the addition of modified lipoproteins into the medium [Hirano K, Yamashita S, Nakagawa Y, et al. Expression of human scavenger receptor class B type I in cultured human monocyte-derived macrophages and atherosclerotic lesions. Circ Res 1999;85:108-16]. In order to further investigate the physiological significance of this receptor in humans, we have performed extensive immunohistochemical analyses with specimens of the liver and adrenal glands as well as arteries with different stages of atherosclerotic lesions. In human liver and adrenal glands, a positive SR-BI immunoreactivity was detected in both hepatic and adrenal parenchymal cells as well as Kupffer cells. These parenchymal cells had a strong signal on the cell surface, whereas Kupffer cells showed a heterogeneous and punctate pattern. In human aorta and coronary arteries, SR-BI was highly expressed in atherosclerotic plaques, but not in non-atherosclerotic lesions. Double immunostaining revealed that SR-BI was expressed in a subpopulation of macrophages, of which staining pattern was similar to that observed in Kupffer cells. These data clearly demonstrated that SR-BI was expressed with cell-specific fashions in both the initial and terminal step of RCT in humans. Thus, SR-BI might be physiologically relevant and have distinct tissue-specific functions.
Liver X receptor alpha regulates fatty acid synthase expression in chicken.
Demeure, O; Duby, C; Desert, C; Assaf, S; Hazard, D; Guillou, H; Lagarrigue, S
2009-12-01
Liver X receptor alpha (LXRalpha), also referred to as nuclear receptor subfamily 1, group H, member 3 is a member of the nuclear hormone receptor superfamily, and has recently been shown to act as a master transcription factor governing hepatic lipogenesis in mammals. Liver X receptor alpha directly regulates both the expression of other lipogenic transcription factors and the expression of lipogenic enzymes, thereby enhancing hepatic fatty acid synthesis (FASN). In birds, like in humans, fatty acid synthesis primarily occurs in the liver. Whether LXRalpha is involved in hepatic regulation of lipogenic genes remained to be investigated in this species. Here we show that fatty acid synthase and the expression of other lipogenic genes (sterol regulatory element binding protein 1 and steroyl coenzyme A desaturase 1) are induced in chicken hepatoma cells in response to a pharmacological liver X receptor agonist, T0901317. A detailed analysis of the chicken FASN promoter revealed a functional liver X response element. These data define the chicken FASN gene as a direct target of LXRalpha and further expand the role of LXRalpha as a regulator of lipid metabolism in this species.
Hepatocyte polyploidization and its association with pathophysiological processes.
Wang, Min-Jun; Chen, Fei; Lau, Joseph T Y; Hu, Yi-Ping
2017-05-18
A characteristic cellular feature of the mammalian liver is the progressive polyploidization of the hepatocytes, where individual cells acquire more than two sets of chromosomes. Polyploidization results from cytokinesis failure that takes place progressively during the course of postnatal development. The proportion of polyploidy also increases with the aging process or with cellular stress such as surgical resection, toxic stimulation, metabolic overload, or oxidative damage, to involve as much as 90% of the hepatocytes in mice and 40% in humans. Hepatocyte polyploidization is generally considered an indicator of terminal differentiation and cellular senescence, and related to the dysfunction of insulin and p53/p21 signaling pathways. Interestingly, the high prevalence of hepatocyte polyploidization in the aged mouse liver can be reversed when the senescent hepatocytes are serially transplanted into young mouse livers. Here we review the current knowledge on the mechanism of hepatocytes polyploidization during postnatal growth, aging, and liver diseases. The biologic significance of polyploidization in senescent reversal, within the context of new ways to think of liver aging and liver diseases is considered.
Hepatocyte polyploidization and its association with pathophysiological processes
Wang, Min-Jun; Chen, Fei; Lau, Joseph T Y; Hu, Yi-Ping
2017-01-01
A characteristic cellular feature of the mammalian liver is the progressive polyploidization of the hepatocytes, where individual cells acquire more than two sets of chromosomes. Polyploidization results from cytokinesis failure that takes place progressively during the course of postnatal development. The proportion of polyploidy also increases with the aging process or with cellular stress such as surgical resection, toxic stimulation, metabolic overload, or oxidative damage, to involve as much as 90% of the hepatocytes in mice and 40% in humans. Hepatocyte polyploidization is generally considered an indicator of terminal differentiation and cellular senescence, and related to the dysfunction of insulin and p53/p21 signaling pathways. Interestingly, the high prevalence of hepatocyte polyploidization in the aged mouse liver can be reversed when the senescent hepatocytes are serially transplanted into young mouse livers. Here we review the current knowledge on the mechanism of hepatocytes polyploidization during postnatal growth, aging, and liver diseases. The biologic significance of polyploidization in senescent reversal, within the context of new ways to think of liver aging and liver diseases is considered. PMID:28518148
Peng, Lei; Jia, Xiaoqing; Zhao, Jianjian; Cui, Ruibing; Yan, Ming
2017-08-15
Prolonged activation and proliferation of hepatic stellate cells (HSCs) usually results in the initiation and progression of liver fibrosis following injury. Recent studies have shown that Substance P (SP) participates in the development of fibrosis. However, whether SP is involved in liver fibrosis, especially in the activation and proliferation of HSCs, is largely unknown. In the present study, we measured the effects of a series of concentrations of SP on the cell viability and activation of HSC-T6 cells and LX2 cells. The underlying mechanism was also investigated. We found that SP effectively increased cell viability, both in an MTT assay (p<0.05) and in a lactate dehydrogenase activity assay (LDH) (p<0.05). Moreover, SP upregulated the protein expression of α-SMA and Collagen I (both p<0.05) and decreased the release of lipid droplets (LDs) (p<0.05), all of which are associated with HSC activation. Apoptosis analysis revealed that SP can attenuate the increase of cell apoptosis induced by serum withdrawal (p<0.05). Furthermore, these effects were all blocked by an SP receptor antagonist, L732138. More importantly, L732138 decreased the activation of the TGF-β1/Smad3 signaling pathway, which is highly associated with liver fibrosis. Taken together, our results demonstrate that SP can promote HSC proliferation and induce HSC activation via the TGF-β1/Smad3 signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.
Thyroid hormone induction of human cholesterol 7 alpha-hydroxylase (Cyp7a1) in vitro.
Lammel Lindemann, Jan A; Angajala, Anusha; Engler, David A; Webb, Paul; Ayers, Stephen D
2014-05-05
Thyroid hormone (TH) modulates serum cholesterol by acting on TH receptor β1 (TRβ1) in liver to regulate metabolic gene sets. In rodents, one important TH regulated step involves induction of Cyp7a1, an enzyme in the cytochrome P450 family, which enhances cholesterol to bile acid conversion and plays a crucial role in regulation of serum cholesterol levels. Current models suggest, however, that Cyp7a1 has lost the capacity to respond to THs in humans. We were prompted to re-examine TH effects on cholesterol metabolic genes in human liver cells by a recent study of a synthetic TH mimetic which showed that serum cholesterol reductions were accompanied by increases in a marker for bile acid synthesis in humans. Here, we show that TH effects upon cholesterol metabolic genes are almost identical in mouse liver, mouse and human liver primary cells and human hepatocyte cell lines. Moreover, Cyp7a1 is a direct TR target gene that responds to physiologic TR levels through a set of distinct response elements in its promoter. These findings suggest that THs regulate cholesterol to bile acid conversion in similar ways in humans and rodent experimental models and that manipulation of hormone signaling pathways could provide a strategy to enhance Cyp7a1 activity in human patients. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Martel, Cecile; Allouche, Maya; Esposti, Davide Degli; Fanelli, Elena; Boursier, Céline; Henry, Céline; Chopineau, Joel; Calamita, Giuseppe; Kroemer, Guido; Lemoine, Antoinette; Brenner, Catherine
2013-01-01
Nonalcoholic steatosis is a liver pathology characterized by fat accumulation and severe metabolic alterations involving early mitochondrial impairment and late hepatocyte cell death. However, mitochondrial dysfunction mechanisms remain elusive. Using four models of nonalcoholic steatosis, i.e., livers from patients with fatty liver disease, ob/ob mice, mice fed a high-fat diet, and in vitro models of lipotoxicity, we show that outer mitochondrial membrane permeability is altered and identified a posttranslational modification of voltage-dependent anion channel (VDAC), a membrane channel and NADH oxidase, as a cause of early mitochondrial dysfunction. Thus, in nonalcoholic steatosis VDAC exhibits reduced threonine phosphorylation, which increases the influx of water and calcium into mitochondria, sensitizes the organelle to matrix swelling, depolarization, and cytochrome c release without inducing cell death. This also amplifies VDAC enzymatic and channel activities regulation by calcium and modifies its interaction with proteic partners. Moreover, lipid accumulation triggers a rapid lack of VDAC phosphorylation by glycogen synthase kinase 3 (GSK3). Pharmacological and genetic manipulations proved GSK3 to be responsible for VDAC phosphorylation in normal cells. Notably, VDAC phosphorylation level correlated with steatosis severity in patients. VDAC acts as an early sensor of lipid toxicity and its GSK3-mediated phosphorylation status controls outer mitochondrial membrane permeabilization in hepatosteatosis. Copyright © 2012 American Association for the Study of Liver Diseases.
DAMASKOS, CHRISTOS; GARMPIS, NIKOLAOS; ANNA, GARMPI; NONNI, AFRODITI; SAKELLARIOU, STRATIGOULA; MARGONIS, GEORGIOS-ANTONIOS; SPARTALIS, ELEFTHERIOS; SCHIZAS, DIMITRIOS; ANDREATOS, NIKOLAOS; MAGKOUTI, ELENI; GRIVAS, ALEXANDROS; KONTZOGLOU, KONSTANTINOS; ANTONIOU, A. EFSTATHIOS
2017-01-01
Background/Aim: Epithelioid angiomyolipoma of the liver is a rare benign mesenchymal tumor that usually presents in adult female patients. It most frequently occurs in the kidney, with the liver being the second most common site of involvement. Angiomyolipoma belongs to a family of tumors arising from perivascular epithelioid cells but in rare cases may also have cystic features. We report our experience via the first case of hepatic angiomyolipoma treated by laparoscopic approach. Patients and Methods: We present the case of a 50-year old female patient complaining of abdominal pain. Abdominal ultrasound (US) and Magnetic Resonance Imaging (MRI) revealed a 5x3cm mass located in the left liver lobe. The tumor was resected with a laparoscopic approach. Microscopic examination of the tumor revealed hepatic angiomyolipoma. Results: Twenty-seven months postoperatively, the patient remains fit and healthy. Conclusion: Angiomyolipoma can be removed by laparoscopy. PMID:29102941
Dufour, Julie; Pommier, Aurélien; Alves, Georges; De Boussac, Hugues; Lours-Calet, Corinne; Volle, David H.; Lobaccaro, Jean-Marc A.; Baron, Silvère
2013-01-01
Recent studies underline the implication of Liver X Receptors (LXRs) in several prostate diseases such as benign prostatic hyperplasia (BPH) and prostate cancer. In order to understand the molecular mechanisms involved, we derived epithelial cells from dorsal prostate (MPECs) of wild type (WT) or Lxrαβ−/− mice. In the WT MPECs, our results show that LXR activation reduces proliferation and correlates with the modification of the AKT-survival pathway. Moreover, LXRs regulate lipid homeostasis with the regulation of Abca1, Abcg1 and Idol, and, in a lesser extent, Srebp1, Fas and Acc. Conversely cells derived from Lxrαβ−/− mice show a higher basal phosphorylation and consequently activation of the survival/proliferation transduction pathways AKT and MAPK. Altogether, our data point out that the cell model we developed allows deciphering the molecular mechanisms inducing the cell cycle arrest. Besides, we show that activated LXRs regulate AKT and MAPK transduction pathways and demonstrate that LXRs could be good pharmacological targets in prostate disease such as cancer. PMID:23554947
Okuyama, H; Shimahara, Y; Kawada, N; Seki, S; Kristensen, D B; Yoshizato, K; Uyama, N; Yamaoka, Y
2001-07-27
Redox-regulated processes are important elements in various cellular functions. Reducing agents, such as N-acetyl-l-cysteine (NAC), are known to regulate signal transduction and cell growth through their radical scavenging action. However, recent studies have shown that reactive oxygen species are not always involved in ligand-stimulated intracellular signaling. Here, we report a novel mechanism by which NAC blocks platelet-derived growth factor (PDGF)-induced signaling pathways in hepatic stellate cells, a fibrogenic player in the liver. Unlike in vascular smooth muscle cells, we found that reducing agents, including NAC, triggered extracellular proteolysis of PDGF receptor-beta, leading to desensitization of hepatic stellate cells toward PDGF-BB. This effect was mediated by secreted mature cathepsin B. In addition, type II transforming growth factor-beta receptor was also down-regulated. Furthermore, these events seemed to cause a dramatic improvement of rat liver fibrosis. These results indicated that redox processes impact the cell's response to growth factors by regulating the turnover of growth factor receptors and that "redox therapy" is promising for fibrosis-related disease.
Organ size control is dominant over Rb family inactivation to restrict proliferation in vivo.
Ehmer, Ursula; Zmoos, Anne-Flore; Auerbach, Raymond K; Vaka, Dedeepya; Butte, Atul J; Kay, Mark A; Sage, Julien
2014-07-24
In mammals, a cell's decision to divide is thought to be under the control of the Rb/E2F pathway. We previously found that inactivation of the Rb family of cell cycle inhibitors (Rb, p107, and p130) in quiescent liver progenitors leads to uncontrolled division and cancer initiation. Here, we show that, in contrast, deletion of the entire Rb gene family in mature hepatocytes is not sufficient for their long-term proliferation. The cell cycle block in Rb family mutant hepatocytes is independent of the Arf/p53/p21 checkpoint but can be abrogated upon decreasing liver size. At the molecular level, we identify YAP, a transcriptional regulator involved in organ size control, as a factor required for the sustained expression of cell cycle genes in hepatocytes. These experiments identify a higher level of regulation of the cell cycle in vivo in which signals regulating organ size are dominant regulators of the core cell cycle machinery. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Identification of liver cancer-specific aptamers using whole live cells.
Shangguan, Dihua; Meng, Ling; Cao, Zehui Charles; Xiao, Zeyu; Fang, Xiaohong; Li, Ying; Cardona, Diana; Witek, Rafal P; Liu, Chen; Tan, Weihong
2008-02-01
Liver cancer is the third most deadly cancers in the world. Unfortunately, there is no effective treatment. One of the major problems is that most cancers are diagnosed in the later stage, when surgical resection is not feasible. Thus, accurate early diagnosis would significantly improve the clinical outcome of liver cancer. Currently, there are no effective molecular probes to recognize biomarkers that are specific for liver cancer. The objective of our current study is to identify liver cancer cell-specific molecular probes that could be used for liver cancer recognition and diagnosis. We applied a newly developed cell-SELEX (Systematic Evolution of Ligands by EXponential enrichment) method for the generation of molecular probes for specific recognition of liver cancer cells. The cell-SELEX uses whole live cells as targets to select aptamers (designed DNA/RNA) for cell recognition. In generating aptamers for liver cancer recognition, two liver cell lines were used: a liver cancer cell line BNL 1ME A.7R.1 (MEAR) and a noncancer cell line, BNL CL.2 (BNL). Both cell lines were originally derived from Balb/cJ mice. Through multiple rounds of selection using BNL as a control, we have identified a panel of aptamers that specifically recognize the cancer cell line MEAR with Kd in the nanomolar range. We have also demonstrated that some of the selective aptamers could specifically bind liver cancer cells in a mouse model. There are two major new results (compared with our reported cell-SELEX methodology) in addition to the generation of aptamers specifically for liver cancer. The first one is that our current study demonstrates that cell-based aptamer selection can select specific aptamers for multiple cell lines, even for two cell lines with minor differences (MEAR cell is derived from BNL by chemical inducement); and the second result is that cell-SELEX can be used for adhesive cells and thus open the door for solid tumor selection and investigation. The newly generated cancer-specific aptamers hold great promise as molecular probes for cancer early diagnosis and basic mechanism studies.
Ben Ya'acov, Ami; Meir, Hadar; Zolotaryova, Lydia; Ilan, Yaron; Shteyer, Eyal
2017-03-23
It has been shown that the proportion of natural killer T cells is markedly elevated during liver regeneration and their activation under different conditions can modulate this process. As natural killer T cells and liver injury are central in liver regeneration, elucidating their role is important. The aim of the current study is to explore the role of natural killer T cells in impaired liver regeneration. Concanvalin A was injected 4 days before partial hepatectomy to natural killer T cells- deficient mice or to anti CD1d1-treated mice. Ki-67 and proliferating cell nuclear antigen were used to measure hepatocytes proliferation. Expression of hepatic cyclin B1 and proliferating cell nuclear antigen were evaluated by Western Blot and liver injury was assessed by ALT and histology. Natural killer T cells- deficient or mice injected with anti CD1d antibodies exhibited reduced liver regeneration. These mice were considerably resistant to ConA-induced liver injury. In the absence of NKT cells hepatic proliferating cell nuclear antigen and cyclin B1 decreased in mice injected with Concanvalin A before partial hepatectomy. This was accompanied with reduced serum interleukin-6 levels. Natural killer T cells play an important role in liver regeneration, which is associated with cyclin B1 and interleukin-6.
Hepatic stellate cells in liver development, regeneration, and cancer
Yin, Chunyue; Evason, Kimberley J.; Asahina, Kinji; Stainier, Didier Y.R.
2013-01-01
Hepatic stellate cells are liver-specific mesenchymal cells that play vital roles in liver physiology and fibrogenesis. They are located in the space of Disse and maintain close interactions with sinusoidal endothelial cells and hepatic epithelial cells. It is becoming increasingly clear that hepatic stellate cells have a profound impact on the differentiation, proliferation, and morphogenesis of other hepatic cell types during liver development and regeneration. In this Review, we summarize and evaluate the recent advances in our understanding of the formation and characteristics of hepatic stellate cells, as well as their function in liver development, regeneration, and cancer. We also discuss how improved knowledge of these processes offers new perspectives for the treatment of patients with liver diseases. PMID:23635788
Zepeda-Morales, Adelaida Sara M; Del Toro-Arreola, Susana; García-Benavides, Leonel; Bastidas-Ramírez, Blanca E; Fafutis-Morris, Mary; Pereira-Suárez, Ana L; Bueno-Topete, Miriam R
2016-01-01
BACKGROUND AND RATIONALE FOR THE STUDY: IL-17, TGF-β1/2 are cytokines involved in the development of kidney, pulmonary and liver fibrosis. However, their expression kinetics in the pathogenesis of cholestatic liver fibrosis have not yet been fully explored. The aim of the study was to analyze the expression of IL-17, RORγt, NKp46, TGF-β1, and TGF-β2 in the liver of rats with bile duct ligation (BDL). Hepatic IL-17A gene expression analyzed by qRT-PCR showed a dramatic increase of 350 and 10 fold, at 8 and 30 days post BDL, respectively. TGFβ1 and TGFβ2 gene expression significantly increased throughout the whole fibrotic process. At the protein level in liver homogenates, IL-17, TGF-β1, and RORγt significantly increased at 8 and 30 days after BDL. Interestingly, a significant increase in the protein levels of TGF-β2 and decrease of NKp46 was observed only 30 days after BDL. Unexpectedly, TGF-β2 exhibited stronger signals than TGF-β1 at the gene expression and protein levels. Histological analysis showed bile duct proliferation and collagen deposition. Our results suggest that pro-fibrogenic cytokines IL-17, TGF-β1 and, strikingly, TGF-β2 might be important players of liver damage in the pathogenesis of early and advanced experimental cholestatic fibrosis. Th17 cells might represent an important source of IL-17, while NK cell depletion may account for the perpetuation of liver damage in the BDL model.
Prognostic effect of liver metastasis in lung cancer patients with distant metastasis.
Ren, Yijiu; Dai, Chenyang; Zheng, Hui; Zhou, Fangyu; She, Yunlang; Jiang, Gening; Fei, Ke; Yang, Ping; Xie, Dong; Chen, Chang
2016-08-16
Because the need of clinical prognostic evaluation by specific metastatic organ, we aim to analyze the prognostic factors in lung cancer patients with M1b disease with Surveillance Epidemiology and End-Results database (SEER). This retrospective study evaluated lung cancer patients of adenocarcinoma (AD), squamous cell carcinoma (SQCC), and small cell lung cancer (SCLC) selected from SEER. We provided the prognostic correlates of overall survival (OS) and lung cancer-specific survival (LCSS) in this population. 23,679 eligible patients were included. Bone was the most common metastatic site in AD (63.1%) and SQCC (61.1%), while liver was the most prevalent site (61.9%) in SCLC. Single site metastasis was significantly associated with better outcome compared to multiple sites metastases in all patients. Among patients with single site metastasis, OS and LCSS were longer for AD and SCLC if involving brain or bone, with median survival time of 5 to 7 months, comparing to 3 months if invloving liver (all p-values < 0.001). Similarly, among patients with multiple metastases, better outcomes were observed in AD patients (4 vs 3 months; OS and LCSS, p < 0.001) and SCLC patients (6 vs 4 months; OS, p = 0.017; LCSS, p = 0.023) without liver metastasis compared to those with liver metastasis. In conclusion, we estimated multiple survival outcomes by histology of primary tumor and sites of metastasis. Liver metastasis is found to be the worst prognostic factor for AD and SCLC patients with distant metastasis. More in-depth research is warranted to identify patients who are prone to develop distance metastasis, especially to liver.
2015-12-01
Hepatocellular Carcinoma; Hepatoma; Liver Cancer, Adult; Liver Cell Carcinoma; Liver Cell Carcinoma, Adult; Cancer of Liver; Cancer of the Liver; Cancer, Hepatocellular; Hepatic Cancer; Hepatic Neoplasms; Hepatocellular Cancer; Liver Cancer; Neoplasms, Hepatic; Neoplasms, Liver
Fieber, Lynne A.; Greer, Justin B.; Guo, Fujiang; Crawford, Douglas C.; Rein, Kathleen S.
2012-01-01
The marine toxin, okadaic acid (OA) is produced by dinoflagellates of the genera Prorocentrum and Dinophysis and is the causative agent of the syndrome known as diarrheic shellfish poisoning (DSP). In addition, OA acts as both a tumor promoter, attributed to OA-induced inhibition of protein phosphatases as well as an inducer of apoptosis. To better understand the potentially divergent toxicological profile of OA, the concentration dependent cytotoxicity and alterations in gene expression on the human liver tumor cell line HepG2 upon OA exposure were determined using RNA microarrays, DNA fragmentation, and cell proliferation assays as well as determinations of cell detachment and cell death in different concentrations of OA. mRNA expression was quantified for approximately 15,000 genes. Cell attachment and proliferation were both negatively correlated with OA concentration. Detached cells displayed necrotic DNA signatures but apoptosis also was broadly observed. Data suggest that OA has a concentration dependent effect on cell cycle, which might explain the divergent effects that at low concentration OA stimulates genes involved in the cell cycle and at high concentrations it stimulates apoptosis. PMID:23172983
Molecular pathogenesis and clinical consequences of iron overload in liver cirrhosis.
Sikorska, Katarzyna; Bernat, Agnieszka; Wroblewska, Anna
2016-10-01
The liver, as the main iron storage compartment and the place of hepcidin synthesis, is the central organ involved in maintaining iron homeostasis in the body. Excessive accumulation of iron is an important risk factor in liver disease progression to cirrhosis and hepatocellular carcinoma. Here, we review the literature on the molecular pathogenesis of iron overload and its clinical consequences in chronic liver diseases. PubMed was searched for English-language articles on molecular genesis of primary and secondary iron overload, as well as on their association with liver disease progression. We have also included literature on adjuvant therapeutic interventions aiming to alleviate detrimental effects of excessive body iron load in liver cirrhosis. Excess of free, unbound iron induces oxidative stress, increases cell sensitivity to other detrimental factors, and can directly affect cellular signaling pathways, resulting in accelerated liver disease progression. Diagnosis of liver cirrhosis is, in turn, often associated with the identification of a pathological accumulation of iron, even in the absence of genetic background of hereditary hemochromatosis. Iron depletion and adjuvant therapy with antioxidants are shown to cause significant improvement of liver functions in patients with iron overload. Phlebotomy can have beneficial effects on liver histology in patients with excessive iron accumulation combined with compensated liver cirrhosis of different etiology. Excessive accumulation of body iron in liver cirrhosis is an important predictor of liver failure and available data suggest that it can be considered as target for adjuvant therapy in this condition.
Kim, Do-Geun; Krenz, Antje; Toussaint, Leon E; Maurer, Kirk J; Robinson, Sudie-Ann; Yan, Angela; Torres, Luisa; Bynoe, Margaret S
2016-01-05
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease afflicting about one third of the world's population and 30 % of the US population. It is induced by consumption of high-lipid diets and is characterized by liver inflammation and subsequent liver pathology. Obesity and consumption of a high-fat diet are known to increase the risk of Alzheimer's disease (AD). Here, we investigated NAFLD-induced liver inflammation in the pathogenesis of AD. WT and APP-Tg mice were fed with a standard diet (SD) or a high-fat diet (HFD) for 2, 5 months, or 1 year to induce NAFLD. Another set of APP-Tg mice were removed from HFD after 2 months and put back on SD for 3 months. During acute phase NAFLD, WT and APP-Tg mice developed significant liver inflammation and pathology that coincided with increased numbers of activated microglial cells in the brain, increased inflammatory cytokine profile, and increased expression of toll-like receptors. Chronic NAFLD induced advanced pathological signs of AD in both WT and APP-Tg mice, and also induced neuronal apoptosis. We observed decreased brain expression of low-density lipoprotein receptor-related protein-1 (LRP-1) which is involved in β-amyloid clearance, in both WT and APP-Tg mice after ongoing administration of the HFD. LRP-1 expression correlated with advanced signs of AD over the course of chronic NAFLD. Removal of mice from HFD during acute NAFLD reversed liver pathology, decreased signs of activated microglial cells and neuro-inflammation, and decreased β-amyloid plaque load. Our findings indicate that chronic inflammation induced outside the brain is sufficient to induce neurodegeneration in the absence of genetic predisposition.
Zheng, Fang; Sparkes, Amanda; De Baetselier, Patrick; Schoonooghe, Steve; Stijlemans, Benoit; Muyldermans, Serge; Flamand, Véronique; Van Ginderachter, Jo A; Devoogdt, Nick; Raes, Geert; Beschin, Alain
2017-02-01
Kupffer cells (KCs), the liver resident macrophages, are important mediators of tissue homeostasis and pathogen clearance. However, depending on the inflammatory stimuli, KCs have been involved in divergent hepato-protective or hepato-destructive immune responses. The versatility of KCs in response to environmental triggers, in combination with the specific biomarkers they express, make these macrophages attractive in vivo targets for non-invasive monitoring of liver inflammation or pathogenicity. This study aims to determine whether V-set and Ig domain-containing 4 (Vsig4) and C-type lectin domain family (Clec) 4, member F (Clec4F) can be used as imaging biomarkers for non-invasive monitoring of KCs during distinct liver inflammation models. Flow cytometry (FACS), immuno-histochemistry (IHC), and single-photon emission computed tomography (SPECT) with Tc-99m labeled anti-Vsig4 or anti-Clec4F nanobodies (Nbs) was performed to evaluate in mice KC dynamics in concanavalin A (ConA)-induced hepatitis and in non-alcoholic steatohepatitis induced via methionine choline deficiency (MCD). In homeostatic mice, Nbs targeting Clec4F were found to accumulate and co-localize with Vsig4-targeting Nbs only in the liver. Upon induction of acute hepatitis using ConA, down-regulation of the in vivo Nb imaging signal was observed, reflecting reduction in KC numbers as confirmed by FACS and IHC. On the other hand, induction of steatohepatitis resulted in higher signals in the liver corresponding to higher density of KCs. The Nb-imaging signals returned to normal levels after resolution of the investigated liver diseases. Anti-Clec4F and anti-Vsig4 Nbs targeting KCs as molecular imaging biomarkers could allow non-invasive monitoring/staging of liver pathogenesis.
Fibronectin Extra Domain A Promotes Liver Sinusoid Repair following Hepatectomy.
Sackey-Aboagye, Bridget; Olsen, Abby L; Mukherjee, Sarmistha M; Ventriglia, Alexander; Yokosaki, Yasuyuki; Greenbaum, Linda E; Lee, Gi Yun; Naga, Hani; Wells, Rebecca G
2016-01-01
Liver sinusoidal endothelial cells (LSECs) are the main endothelial cells in the liver and are important for maintaining liver homeostasis as well as responding to injury. LSECs express cellular fibronectin containing the alternatively spliced extra domain A (EIIIA-cFN) and increase expression of this isoform after liver injury, although its function is not well understood. Here, we examined the role of EIIIA-cFN in liver regeneration following partial hepatectomy. We carried out two-thirds partial hepatectomies in mice lacking EIIIA-cFN and in their wild type littermates, studied liver endothelial cell adhesion on decellularized, EIIIA-cFN-containing matrices and investigated the role of cellular fibronectins in liver endothelial cell tubulogenesis. We found that liver weight recovery following hepatectomy was significantly delayed and that sinusoidal repair was impaired in EIIIA-cFN null mice, especially females, as was the lipid accumulation typical of the post-hepatectomy liver. In vitro, we found that liver endothelial cells were more adhesive to cell-deposited matrices containing the EIIIA domain and that cellular fibronectin enhanced tubulogenesis and vascular cord formation. The integrin α9β1, which specifically binds EIIIA-cFN, promoted tubulogenesis and adhesion of liver endothelial cells to EIIIA-cFN. Our findings identify a role for EIIIA-cFN in liver regeneration and tubulogenesis. We suggest that sinusoidal repair is enhanced by increased LSEC adhesion, which is mediated by EIIIA-cFN.
Fibronectin Extra Domain A Promotes Liver Sinusoid Repair following Hepatectomy
Sackey-Aboagye, Bridget; Olsen, Abby L.; Mukherjee, Sarmistha M.; Ventriglia, Alexander; Yokosaki, Yasuyuki; Greenbaum, Linda E.; Lee, Gi Yun; Naga, Hani
2016-01-01
Liver sinusoidal endothelial cells (LSECs) are the main endothelial cells in the liver and are important for maintaining liver homeostasis as well as responding to injury. LSECs express cellular fibronectin containing the alternatively spliced extra domain A (EIIIA-cFN) and increase expression of this isoform after liver injury, although its function is not well understood. Here, we examined the role of EIIIA-cFN in liver regeneration following partial hepatectomy. We carried out two-thirds partial hepatectomies in mice lacking EIIIA-cFN and in their wild type littermates, studied liver endothelial cell adhesion on decellularized, EIIIA-cFN-containing matrices and investigated the role of cellular fibronectins in liver endothelial cell tubulogenesis. We found that liver weight recovery following hepatectomy was significantly delayed and that sinusoidal repair was impaired in EIIIA-cFN null mice, especially females, as was the lipid accumulation typical of the post-hepatectomy liver. In vitro, we found that liver endothelial cells were more adhesive to cell-deposited matrices containing the EIIIA domain and that cellular fibronectin enhanced tubulogenesis and vascular cord formation. The integrin α9β1, which specifically binds EIIIA-cFN, promoted tubulogenesis and adhesion of liver endothelial cells to EIIIA-cFN. Our findings identify a role for EIIIA-cFN in liver regeneration and tubulogenesis. We suggest that sinusoidal repair is enhanced by increased LSEC adhesion, which is mediated by EIIIA-cFN. PMID:27741254
Takahashi, Tomohiro; Sugawara, Wataru; Takiguchi, Yuya; Takizawa, Kento; Nakabayashi, Ami; Nakamura, Mitsuo; Nagano-Ito, Michiyo; Ichikawa, Shinichi
2016-01-01
Fatty liver disease is a condition in which abnormally large numbers of lipid droplets accumulate in liver cells. Fatty liver disease induces inflammation under conditions of oxidative stress and may result in cancer. To identify plants that protect against fatty liver disease, we examined the inhibitory effects of plant extracts on lipid droplet formation in mouse hepatoma cells. A screen of 98 water extracts of plants revealed 4 extracts with inhibitory effects. One of these extracts, Rubus suavissimus S. Lee (Tien-cha or Chinese sweet tea) leaf extract, which showed strong inhibitory effects, was tested in a mouse fatty liver model. In these mouse experiments, intake of the plant extract significantly protected mice against fatty liver disease without affecting body weight gain. Our results suggest that RSE directly affects liver cells and protects them from fatty liver disease. PMID:27429636
Molenaar, Martijn R; Vaandrager, Arie B; Helms, J Bernd
2017-01-01
Hepatic stellate cells (HSCs) are professional lipid-storing cells and are unique in their property to store most of the retinol (vitamin A) as retinyl esters in large-sized lipid droplets. Hepatic stellate cell activation is a critical step in the development of chronic liver disease, as activated HSCs cause fibrosis. During activation, HSCs lose their lipid droplets containing triacylglycerols, cholesteryl esters, and retinyl esters. Lipidomic analysis revealed that the dynamics of disappearance of these different classes of neutral lipids are, however, very different from each other. Although retinyl esters steadily decrease during HSC activation, triacylglycerols have multiple pools one of which becomes transiently enriched in polyunsaturated fatty acids before disappearing. These observations are consistent with the existence of preexisting "original" lipid droplets with relatively slow turnover and rapidly recycling lipid droplets that transiently appear during activation of HSCs. Elucidation of the molecular machinery involved in the regulation of these distinct lipid droplet pools may open new avenues for the treatment of liver fibrosis.
Tumor Microenvironment, a Paradigm in Hepatocellular Carcinoma Progression and Therapy
Tahmasebi Birgani, Maryam; Carloni, Vinicio
2017-01-01
Hepatocellular carcinoma (HCC) is among the most lethal and prevalent cancers in the human population. Different etiological factors such as hepatitis B and C virus, alcohol and diabetes cause liver injury followed by inflammation, necrosis and hepatocytes proliferation. Continuous cycles of this destructive–regenerative process culminates in liver cirrhosis which is characterized by regenerating nodules that progress to dysplastic nodules and ultimately HCC. Despite its significance, there is only an elemental understanding of the pathogenetic mechanisms, and there are only limited therapeutic options. Therefore, the study of the involved molecular mechanisms can open a new insight to define more effective treatment strategies. A variety of alterations have been reported in HCC patients, particularly the cancer-associated microenvironment components including immune cells, fibroblast cells, endothelial cells and extracellular matrix can support the neoplastic cells to proliferate, growth and invade. This review summarizes the current state of knowledge and highlights the principal challenges that are relevant to controlling this milieu. PMID:28216578
CD11c identifies a subset of murine liver natural killer cells that responds to adenoviral hepatitis
Burt, Bryan M.; Plitas, George; Stableford, Jennifer A.; Nguyen, Hoang M.; Bamboat, Zubin M.; Pillarisetty, Venu G.; DeMatteo, Ronald P.
2008-01-01
The liver contains a unique repertoire of immune cells and a particular abundance of NK cells. We have found that CD11c defines a distinct subset of NK cells (NK1.1+CD3−) in the murine liver whose function was currently unknown. In naïve animals, CD11c+ liver NK cells displayed an activated phenotype and possessed enhanced effector functions when compared with CD11c− liver NK cells. During the innate response to adenovirus infection, CD11c+ NK cells were the more common IFN-γ-producing NK cells in the liver, demonstrated enhanced lytic capability, and gained a modest degree of APC function. The mechanism of IFN-γ production in vivo depended on TLR9 ligation as well as IL-12 and -18. Taken together, our findings demonstrate that CD11c+ NK cells are a unique subset of NK cells in the murine liver that contribute to the defense against adenoviral hepatitis. PMID:18664530
Kato, Kazuyoshi; Katsuda, Takahiro; Takeshima, Nobuhiro
2016-03-01
Upper abdominal spreading of advanced-stage ovarian cancer often involves the diaphragm. In addition, bulky diaphragmatic tumors occasionally infiltrate the liver. Here, we describe our early experiences with a ventral liver mobilization technique to remove diaphragmatic tumors with liver involvement. Two patients with primary ovarian cancer and 1 patient with recurrent ovarian cancer underwent en bloc resections of a diaphragmatic tumor together with the full-thickness diaphragm and the liver tissue using a ventral liver mobilization technique. The surgical technique involved a full-thickness division of the diaphragm at the central tendon and a ventral mobilization of the right lobe of the liver, with entry into the pleural cavity. During the parenchymal transection of the liver, the posterior area of the right lobe of the liver was pressed using the surgeon's hand to reduce bleeding from the resection surface. After the completion of the en bloc resection, the diaphragmatic opening was closed using running sutures. All the diaphragmatic tumors were completely removed without severe bleeding in the current series. No intraoperative or postoperative complications occurred. Diaphragmatic tumors with involvement of the liver can be safely and effectively removed using a ventral liver mobilization technique. This surgical procedure may be suitable for the management of bulky diaphragmatic tumors in select patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Ishibashi, Mariko; Yamaguchi, Hiromi; Hirotani, Yukari; Sakurada, Akihisa; Endo, Toshihide; Sugitani, Masahiko; Takayama, Tadatoshi; Makishima, Makoto; Esumi, Mariko
2018-04-01
We found a HLA class II histocompatibility antigen gene, DQ alpha 1 chain (HLA-DQA1), that was expressed more than 9-fold higher in high-load hepatitis C virus (HCV) livers than low-load HCV livers using transcriptomics of chronic HCV-infected livers. To further investigate this finding, we examined which cells were positive for HLA-DQA1 and what liver immune responses were different between HCV-high and -low livers. HLA-DQA1-positive cells were significantly increased in the HCV-high group, and most positive cells were identified as non-parenchymal sinusoid cells and lymphocytic infiltrates in the portal area. Parenchymal hepatocytes were negative for HLA-DQA1. HLA-DQA1-positive cells in the liver sinusoid were positive for CD68 (macrophages or Kupffer cells); those in the lymphocytic infiltrates were positive for CD20 (B cells) or CD3 (T cells). mRNA levels of antigen-presenting cell (APC) markers such as CD68 and CD11c were significantly upregulated in the HCV-high group and were correlated with HLA-DQA mRNA levels. CD8B mRNA (CD8 + T cells) was upregulated in both HCV-positive livers compared with HCV-negative livers, whereas CD154 mRNA (CD4 + T helper cell) was upregulated in the HCV-high group compared with the HCV-low group. The immune regulatory molecules FOXP3 mRNA (regulatory T cell, T reg) and programmed cell death ligand-1 (PD-L1) mRNA were significantly increased in the HCV-high group. HCV-high livers had two molecular immune responses: increased APC numbers and adaptive immunity and the induction of immune tolerance. The local hepatic imbalance of contradictory immune responses might be responsible for high HCV loads.
The emerging role of mast cells in liver disease.
Jarido, Veronica; Kennedy, Lindsey; Hargrove, Laura; Demieville, Jennifer; Thomson, Joanne; Stephenson, Kristen; Francis, Heather
2017-08-01
The depth of our knowledge regarding mast cells has widened exponentially in the last 20 years. Once thought to be only important for allergy-mediated events, mast cells are now recognized to be important regulators of a number of pathological processes. The revelation that mast cells can influence organs, tissues, and cells has increased interest in mast cell research during liver disease. The purpose of this review is to refresh the reader's knowledge of the development, type, and location of mast cells and to review recent work that demonstrates the role of hepatic mast cells during diseased states. This review focuses primarily on liver diseases and mast cells during autoimmune disease, hepatitis, fatty liver disease, liver cancer, and aging in the liver. Overall, these studies demonstrate the potential role of mast cells in disease progression.
Tokita, Daisuke; Sumpter, Tina L.; Raimondi, Giorgio; Zahorchak, Alan F.; Wang, Zhiliang; Nakao, Atsunori; Mazariegos, George V.; Abe, Masanori; Thomson, Angus W.
2008-01-01
Background/Aims The liver is comparatively rich in plasmacytoid (p) dendritic cells (DC),- innate immune effector cells that are also thought to play key roles in the induction and regulation of adaptive immunity. Methods Liver and spleen pDC were purified from fms-like tyrosine kinase ligand-reated control or lipopolysaccharide-injected C57BL/10 mice. Flow cytometric and molecular biologic assays were used to characterize their function and interaction with naturally-occurring regulatory T cells (Treg). Results While IL-10 production was greater for freshly-isolated liver compared with splenic pDC, the former produced less bioactive IL-12p70. Moreover, liver pDC expressed a low Delta4/Jagged1 Notch ligand ratio, skewed towards T helper 2 cell differentiation/cytokine production, and promoted allogeneic CD4+ T cell apoptosis. T cell proliferation in response to liver pDC was, however, enhanced by blocking IL-10 function at the initiation of cultures. In the absence of naturally occurring CD4+CD25+ regulatory T cells, similar levels of T cell proliferation were induced by liver and spleen pDC and the pro-apoptotic activity of liver pDC was reversed. Conclusion The inferior T cell allostimulatory activity of in vivo-stimulated liver pDC may depend on the presence and function of Treg, a property that may contribute to inherent liver tolerogenicity. PMID:18926588
Immunodetection of hepatic stellate cells in dogs with visceral leishmaniasis.
Marques, Natália Cassaro; Mo Reira, Pamela Rodrigues Reina; Bertolo, Paulo Henrique Leal; Gava, Fábio Nelson; Vasconcelos, Rosemeri de Oliveira
2018-06-01
Hepatic stellate cells (HSC), or Ito cells, store vitamin A when at rest but undergo phenotypic changes in situations of liver injury, which may induce fibrosis, and they may participate in the immune response in the liver. The objective of the present study was to investigate the role of HSC in the livers of dogs with visceral leishmaniasis (VL). Twenty-eight livers from dogs infected with VL that were living in an area endemic for the disease were evaluated, among which 13 were asymptomatic (A) and 15 were symptomatic (S). A control group (C) was formed by five dogs from an area that was not endemic for VL. These organs were subjected to histopathological analysis (Masson's trichrome for fibrosis) and immunohistochemical analysis (Leishmania, smooth-muscle α-actin and TGF-β). In the livers from the symptomatic dogs, a moderate to severe granulomatous inflammatory reaction was observed in the capsule and in the portal, centrilobular and intralobular regions. In the asymptomatic dogs, there was slight to moderate presence of granulomas, and these were even absent in some dogs. The intensity of hepatic fibrosis was predominantly low in the infected dogs (A and S), and fibrosis was absent in the control group. The immunomarking of HSC in the infected groups (A and S) differed significantly (P = 0.0153) from that of the control group. The symptomatic dogs presented the largest number of positive cells. This group also presented a larger number of parasitized macrophages, but did not differ statistically from the asymptomatic group (P > 0.05). The cytokine TGF-β was only detected at low levels, and only in the infected animals, but this did not differ from the control group. Immunomarking for HSC was observed mainly in the nuclei of cells present in the hepatic granulomas of symptomatic dogs and in the sinusoids of the asymptomatic dogs. It was concluded that in the livers of dogs with VL, the HSC are activated and participate in the hepatic response to the parasite. The cytokine TGF-β may be involved in this activation, but in the chronic phase of the infection, this cytokine was detected at lower proportions. It is possible that HSC may also contribute towards chemotaxis of leukocytes for the hepatic compartment, along with other cell types such as Kupffer cells.
Effects of treatment with Maraviroc a CCR5 inhibitor on a human hepatic stellate cell line.
Coppola, Nicola; Perna, Angelica; Lucariello, Angela; Martini, Salvatore; Macera, Margherita; Carleo, Maria A; Guerra, Germano; Esposito, Vincenzo; De Luca, Antonio
2018-08-01
After an acute liver damage, tissue regeneration repairs lesions with degradation of deposed fibrotic material, while mechanisms of tissue restoration are persistently activated following several repeated injuries, inducing deposition of extracellular matrix. (ECM). Factors responsible for ECM remodeling have been identified in a pathway involving a family of zinc-dependent enzyme matrix metalloproteinases (MMPs), together with tissue inhibitor of metalloproteinases (TIMPs). Recent experimental models suggested a role of CCR5 receptor in the genesis of liver fibrosis. Drawing from these background we decided to evaluate the effects of the treatment with the CCR5 inhibitor Maraviroc on LX-2, a human hepatic stellate cell line (HSC). Treatment with Maraviroc resulted in a block in S phase of LX-2 cells with increased expression levels of cyclin D1 and p21 while the expression of p53 was reduced. Treatment with Maraviroc was also able to block the accumulation of fibrillar collagens and extracellular matrix proteins (ECM), as demonstrated by the decrease of specific markers as Collagen type I, α-SMA, and TGF-β1. In addition we observed a down regulation of both metalloproteins (MMP-2, MMP-9), used for the degradation of the extracellular matrix and their inhibitors (TIMP-1, TIMP-2). The identification of a compound that may modulate the dynamic of liver fibrosis could be crucial in all chronic liver diseases. Maraviroc could play an important role because, in addition to its own anti-HIV activity, it could reduce the release of pro-inflammatory citokynes implicated in liver fibrogenesis. © 2018 Wiley Periodicals, Inc.
2010-01-01
Background Hepatoma-derived growth factor (HDGF) is involved in the hepatocarcinogenesis. In this study, we investigated the HDGF expression in hepatocellular carcinoma (HCC) and its correlation with clinicopathologic features, including the survival of patients with HCC. Furthermore, we examined the biological processes regulated by HDGF during the development of using HepG2 cell line as a model system. Methods we used immunohistochemistry to compare HDGF protein expression in HCC and normal liver tissues and further analyze the HDGF protein expression in clinicopathologically characterized 137 HCC cases. We stably knocked down the endogenous expression level of HDGF in HepG2 cells with specific shRNA-expressing lentiviral vector. Following the successful establishment of stable cells, we examined in vitro cell growth by MTT assay, anchorage-independent growth by soft-agar colony formation assay and cell migration/invasion by transwell and boyden chamber assay. And in addition, we also investigated the in vivo tumor growth by xenograft transplantation of HepG2 cells into nude mice. Results Protein expression level of HDGF was markedly higher in HCC tissues than that in the normal liver tissues(P = 0.011). In addition, high expression of HDGF protein was positively correlated with T classification(p < 0.001), N classification (p < 0.001), and clinical stage (p < 0.001) of HCC patients. Patients with higher HDGF expression showed a significantly shorter overall survival time than did patients with low HDGF expression. Multivariate analysis suggested that HDGF expression might be an independent prognostic indicator(p < 0.001) for the survival of patients with HCC. HDGF-specific shRNA (shHDGF) successfully knocked down its endogenous expression in HepG2 cells. Compared to the parental and control shRNA-transfected (shCtrl) HepG2 cells, the shHDGF cells exhibited significantly reduced in vitro cell growth, anchorage-independent growth, cell migration and invasion (p < 0.05). In vivo, the xenograft transplants from shHDGF cells gave rise to much smaller tumors as compared to those from shCtrl cells. Conclusion High HDGF expression is associated with poor overall survival in patients with HCC. Down-regulation of HDGF inhibits the growth, anchorage-independent growth, migration and invasion of HepG2 cells. PMID:20846397
Schultz, C J; Blanchette-Mackie, E J; Scow, R O
2000-02-01
Combined lipase deficiency (cld) is a recessive mutation in mice that causes a severe lack of lipoprotein lipase (LPL) and hepatic lipase (HL) activities, hyperlipemia, and death within 3 days after birth. Earlier studies showed that inactive LPL and HL were synthesized by cld/cld tissues and that LPL synthesized by cld/cld brown adipocytes was retained in their ER. We report here a study of HL in liver, adrenal, and plasma of normal newborn and cld/cld mice. Immunofluorescence studies showed HL was present in extracellular space, but not in cells, in liver and adrenal of both normal and cld/cld mice. When protein secretion was blocked with monensin, HL was retained intracellularly in liver cell cultures and in incubated adrenal tissues of both groups of mice. These findings demonstrated that HL was synthesized and secreted by liver and adrenal cells in normal newborn and cld/cld mice. HL activities in liver, adrenal, and plasma in cld/cld mice were very low, <8% of that in normal newborn mice, indicating that HL synthesized and secreted by cld/cld cells was inactive. Livers of both normal newborn and cld/cld mice synthesized LPL, but the level of LPL activity in cld/cld liver was very low, <9% of that in normal liver. Immunofluorescence studies showed that LPL was present intracellularly in liver of cld/cld mice, indicating that LPL was synthesized but not secreted by cld/cld liver cells. Immunofluorescent LPL was not found in normal newborn liver cells unless the cells were treated with monensin, thus demonstrating that normal liver cells synthesized and secreted LPL. Livers of both groups of mice contained an unidentified alkaline lipase activity which accounted for 34-54% of alkaline lipase activity in normal and 65% of that in cld/cld livers. Our findings indicate that liver and adrenal cells synthesized and secreted HL in both normal newborn and cld/cld mice, but the lipase was inactive in cld/cld mice. That cld/cld liver cells secreted inactive HL while retaining inactive LPL indicates that these closely related lipases were processed differently.
Matsushita, Junya; Okamura, Kazuyuki; Nakabayashi, Kazuhiko; Suzuki, Takehiro; Horibe, Yu; Kawai, Tomoko; Sakurai, Toshihiro; Yamashita, Satoshi; Higami, Yoshikazu; Ichihara, Gaku; Hata, Kenichiro; Nohara, Keiko
2018-03-22
C3H mice have been frequently used in cancer studies as animal models of spontaneous liver tumors and chemically induced hepatocellular carcinoma (HCC). Epigenetic modifications, including DNA methylation, are among pivotal control mechanisms of gene expression leading to carcinogenesis. Although information on somatic mutations in liver tumors of C3H mice is available, epigenetic aspects are yet to be clarified. We performed next generation sequencing-based analysis of DNA methylation and microarray analysis of gene expression to explore genes regulated by DNA methylation in spontaneous liver tumors of C3H mice. Overlaying these data, we selected cancer-related genes whose expressions are inversely correlated with DNA methylation levels in the associated differentially methylated regions (DMRs) located around transcription start sites (TSSs) (promoter DMRs). We further assessed mutuality of the selected genes for expression and DNA methylation in human HCC using the Cancer Genome Atlas (TCGA) database. We obtained data on genome-wide DNA methylation profiles in the normal and tumor livers of C3H mice. We identified promoter DMRs of genes which are reported to be related to cancer and whose expressions are inversely correlated with the DNA methylation, including Mst1r, Slpi and Extl1. The association between DNA methylation and gene expression was confirmed using a DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) in Hepa1c1c7 cells and Hepa1-6 cells. Overexpression of Mst1r in Hepa1c1c7 cells illuminated a novel downstream pathway via IL-33 upregulation. Database search indicated that gene expressions of Mst1r and Slpi are upregulated and the TSS upstream regions are hypomethylated also in human HCC. These results suggest that DMRs, including those of Mst1r and Slpi, are involved in liver tumorigenesis in C3H mice, and also possibly in human HCC. Our study clarified genome wide DNA methylation landscape of C3H mice. The data provide useful information for further epigenetic studies of mice models of HCC. The present study particularly proposed novel DNA methylation-regulated pathways for Mst1r and Slpi, which may be applied not only to mouse HCC but also to human HCC.
Bhogal, Ricky H.; Weston, Christopher J.; Curbishley, Stuart M.; Adams, David H.; Afford, Simon C.
2012-01-01
The role of autophagy in the response of human hepatocytes to oxidative stress remains unknown. Understanding this process may have important implications for the understanding of basic liver epithelial cell biology and the responses of hepatocytes during liver disease. To address this we isolated primary hepatocytes from human liver tissue and exposed them ex vivo to hypoxia and hypoxia-reoxygenation (H-R). We showed that oxidative stress increased hepatocyte autophagy in a reactive oxygen species (ROS) and class III PtdIns3K-dependent manner. Specifically, mitochondrial ROS and NADPH oxidase were found to be key regulators of autophagy. Autophagy involved the upregulation of BECN1, LC3A, Atg7, Atg5 and Atg 12 during hypoxia and H-R. Autophagy was seen to occur within the mitochondria of the hepatocyte and inhibition of autophagy resulted in the lowering a mitochondrial membrane potential and onset of cell death. Autophagic responses were primarily observed in the large peri-venular (PV) hepatocyte subpopulation. Inhibition of autophagy, using 3-methyladenine, increased apoptosis during H-R. Specifically, PV human hepatocytes were more susceptible to apoptosis after inhibition of autophagy. These findings show for the first time that during oxidative stress autophagy serves as a cell survival mechanism for primary human hepatocytes. PMID:22302008
Wilkins, Benjamin J.; Gong, Weilong; Pack, Michael
2015-01-01
Heritable and acquired biliary disorders are an important cause of acute and chronic human liver disease. Biliary development and physiology have been studied extensively in rodent models and more recently, zebrafish have been used to uncover pathogenic mechanisms and potential therapies for these conditions. Here we report development of novel transgenic lines labeling the intrahepatic and extrahepatic biliary system of zebrafish larvae that can be used for lineage tracing and isolation of biliary-specific RNAs from mixed populations of liver cells. We show that GFP expression driven by a 4.4 kilobase promoter fragment from the zebrafish keratin18 (krt18) gene allows visualization of all components of the developing biliary system as early as 3 days post-fertilization. In addition, expression of a ribosomal fusion protein (EGFP-Rpl10a) in krt18:TRAP transgenic fish allows for enrichment of translated biliary cell mRNAs via translating ribosome affinity purification (TRAP). Future studies utilizing these reagents will enhance our understanding of the morphologic and molecular processes involved in biliary development and disease. PMID:24394404
Zhang, Ketao; Che, Siyao; Pan, Chuzhi; Su, Zheng; Zheng, Shangyou; Yang, Shanglin; Zhang, Huayao; Li, Wenda; Wang, Weidong; Liu, Jianping
2018-05-02
The cell surface antigen CD90 has recently been established as a promising marker for liver cancer stem cells. This study aimed to investigate potential implications of SHH/Gli signalling in CD90+ liver cancer stem cells. Correlation of the expression of SHH signalling components and CD90 in liver cancer cells and clinical tissues, as well as in enriched CD90+ liver cancer stem cells and the TCGA database, were analysed by quantitative RT-PCR, Western blotting and flow cytometry. Functional analysis was conducted by siRNA-mediated CD90, Gli1 and Gli3 gene knockdown, SHH treatment and application of the JAK2 inhibitor AZD1480 and IL6 neutralizing antibody in CD90+ liver cancer stem cells, followed by cell proliferation, migration, sphere formation and tumorigenicity assays. CD90 expression exhibited a high positive correlation with Gli1 and Gli3 in multiple liver cancer cell lines and human cancerous liver tissues, both of which showed a significant increase in liver cancer. Analysis of TCGA data revealed an association of CD90, Gli1 and Gli3 with a short overall survival and positive correlation between CD90 expression and Gli3 expression level. The stem cell potentials of CD90+ 97L liver cancer cells were greatly impaired by Gli1/3 knockdown with siRNA but enhanced by SHH treatment. Application of the JAK2 inhibitor AZD1480 and IL6 neutralizing antibody showed the CD90 and SHH/Gli-regulated liver cancer stem cell functions were mediated by the IL6/JAK2/STAT3 pathway. The stem cell properties of CD90+ liver cancer cells are regulated by the downstream SHH/Gli and IL6/JAK2/STAT3 signalling pathways. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
The let-7/Lin28 axis regulates activation of hepatic stellate cells in alcoholic liver injury.
McDaniel, Kelly; Huang, Li; Sato, Keisaku; Wu, Nan; Annable, Tami; Zhou, Tianhao; Ramos-Lorenzo, Sugeily; Wan, Ying; Huang, Qiaobing; Francis, Heather; Glaser, Shannon; Tsukamoto, Hidekazu; Alpini, Gianfranco; Meng, Fanyin
2017-07-07
The let-7/Lin28 axis is associated with the regulation of key cellular regulatory genes known as microRNAs in various human disorders and cancer development. This study evaluated the role of the let-7/Lin28 axis in regulating a mesenchymal phenotype of hepatic stellate cells in alcoholic liver injury. We identified that ethanol feeding significantly down-regulated several members of the let-7 family in mouse liver, including let-7a and let-7b. Similarly, the treatment of human hepatic stellate cells (HSCs) with lipopolysaccharide (LPS) and transforming growth factor-β (TGF-β) significantly decreased the expressions of let-7a and let-7b. Conversely, overexpression of let-7a and let-7b suppressed the myofibroblastic activation of cultured human HSCs induced by LPS and TGF-β, as evidenced by repressed ACTA2 (α-actin 2), COL1A1 (collagen 1A1), TIMP1 (TIMP metallopeptidase inhibitor 1), and FN1 (fibronectin 1); this supports the notion that HSC activation is controlled by let-7. A combination of bioinformatics, dual-luciferase reporter assay, and Western blot analysis revealed that Lin28B and high-mobility group AT-hook (HMGA2) were the direct targets of let-7a and let-7b. Furthermore, Lin28B deficiency increased the expression of let-7a/let-7b as well as reduced HSC activation and liver fibrosis in mice with alcoholic liver injury. This feedback regulation of let-7 by Lin28B is verified in hepatic stellate cells isolated by laser capture microdissection from the model. The identification of the let-7/Lin28 axis as an important regulator of HSC activation as well as its upstream modulators and down-stream targets will provide insights into the involvement of altered microRNA expression in contributing to the pathogenesis of alcoholic liver fibrosis and novel therapeutic approaches for human alcoholic liver diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Kariya, Taro; Ueta, Hisashi; Xu, Xue-Dong; Koga, Daisuke; Ezaki, Taichi; Yu, Enqiao; Kusumi, Satoshi; Kitazawa, Yusuke; Sawanobori, Yasushi; Ushiki, Tatsuo; Issekutz, Thomas; Matsuno, Kenjiro
2016-10-01
Lymphocyte recruitment into the portal tract is crucial not only for homeostatic immune surveillance but also for many liver diseases. However, the exact route of entry for lymphocytes into portal tract is still obscure. We investigated this question using a rat hepatic allograft rejection model. A migration route was analyzed by immunohistological methods including a recently developed scanning electron microscopy method. Transmigration-associated molecules such as selectins, integrins, and chemokines and their receptors expressed by hepatic vessels and recruited T-cells were analyzed by immunohistochemistry and flow cytometry. The immunoelectron microscopic analysis clearly showed CD8β(+) cells passing through the portal vein (PV) endothelia. Furthermore, the migrating pathway seemed to pass through the endothelial cell body. Local vascular cell adhesion molecule-1 (VCAM-1) expression was induced in PV endothelial cells from day 2 after liver transplantation. Although intercellular adhesion molecule-1 (ICAM-1) expression was also upregulated, it was restricted to sinusoidal endothelia. Recipient T-cells in the graft perfusate were CD25(+)CD44(+)ICAM-1(+)CXCR3(+)CCR5(-) and upregulated α4β1 or αLβ2 integrins. Immunohistochemistry showed the expression of CXCL10 in donor MHCII(high) cells in the portal tract as well as endothelial walls of PV. We show for the first time direct evidence of T-cell transmigration across PV endothelial cells during hepatic allograft rejection. Interactions between VCAM-1 on endothelia and α4β1 integrin on recipient effector T-cells putatively play critical roles in adhesion and transmigration through endothelia. A chemokine axis of CXCL10 and CXCR3 also may be involved.
Peng, Yuan; Huang, Kai; Shen, Li; Tao, Yan-yan; Liu, Cheng-hai
2016-02-01
Recent evidence shows that cultured mycelium Cordyceps sinensis (CMCS) effectively protects against liver fibrosis in mice. Here, we investigated whether the anti-fibrotic action of CMCS was related to its regulation of the activity of hepatic natural killer (NK) cells in CCl4-treated mice. C57BL/6 mice were injected with 10% CCl4 (2 mL/kg, ip) 3 times per week for 4 weeks, and received CMCS (120 mg·kg(-1)·d(-1), ig) during this period. In another part of experiments, the mice were also injected with an NK cell-deleting antibody ASGM-1 (20 μg, ip) 5 times in the first 3 weeks. After the mice were sacrificed, serum liver function, and liver inflammation, hydroxyproline content and collagen deposition were assessed. The numbers of hepatic NK cells and expression of NKG2D (activation receptor of NK cells) on isolated liver lymphocytes were analyzed using flow cytometry. Desmin expression and cell apoptosis in liver tissues were studied using desmin staining and TUNEL assay, respectively. The levels of α-SMA, TGF-β, RAE-1δ and RAE-1ε in liver tissues were determined by RT-qPCR. In CCl4-treated mice, CMCS administration significantly improved liver function, attenuated liver inflammation and fibrosis, and increased the numbers of hepatic NK cells and expression level of NKG2D on hepatic NK cells. Furthermore, CMCS administration significantly decreased desmin expression in liver tissues, and increased TUNEL staining adjacent to hepatic stellate cells. Injection with NK cell-deleting ASGM-1 not only diminished the numbers of hepatic NK cells, but also greatly accelerated liver inflammation and fibrosis in CCl4-treated mice. In CCl4-treated mice with NK cell depletion, CMCS administration decelerated the rate of liver fibrosis development, and mildly upregulated the numbers of hepatic NK cells but without changing NKG2D expression. CMCS alleviates CCl4-induced liver inflammation and fibrosis via promoting activation of hepatic NK cells. CMCS partially reverses ASGM-1-induced depletion of hepatic NK cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Chong; Han, Rui; Liu, Limin
Studies demonstrated that perfluorooctane sulfonate (PFOS) tends to accumulate in the liver and is capable to cause hepatomegaly. In the present study, we investigated the roles of miR-155 in PFOS-induced hepatotoxicity in SD rats and HepG2 cells. Male SD rats were orally administrated with PFOS at 1 or 10 mg/kg/day for 28 days while HepG2 cells were treated with 0–50 μM of PFOS for 24 h or 50 μM of PFOS for 1, 3, 6, 12 or 24 h, respectively. We found that PFOS significantly increased the liver weight and serum alanine transaminase (ALT) and aspartate amino transferase (AST) levelsmore » in rats. Morphologically, PFOS caused actin filament remodeling and endothelial permeability changes in the liver. Moreover, PFOS triggered reactive oxygen species (ROS) generation and induced apoptosis in both in vivo and in vitro assays. Immunoblotting data showed that NF-E2-related factor-2 (Nrf2) expression and activation and its target genes were all suppressed by PFOS in the liver and HepG2 cells. However, PFOS significantly increased miR-155 expression. Further studies showed that pretreatment of HepG2 cells with catalase significantly decreased miR-155 expression and substantially increased Nrf2 expression and activation, resulting in reduction of PFOS-induced cytotoxicity and oxidative stress. Taken together, these results indicated that miR-155 plays an important role in the PFOS-induced hepatotoxicity by disrupting Nrf2/ARE signaling pathway. - Highlights: • PFOS is capable to cause hepatotoxicity. • PFOS triggers ROS generation and induces apoptosis both in vivo and in vitro assays. • PFOS-induced ROS inhibits Nrf2 expression and its transactivation function. • PFOS promotes miR155 expression in liver and HepG2 cells. • miR-155 is involved in PFOS-induced hepatotoxicity by disrupting Nrf2/ARE pathway.« less
Molecular Signature and Mechanisms of Hepatitis D Virus-Associated Hepatocellular Carcinoma.
Diaz, Giacomo; Engle, Ronald E; Tice, Ashley; Melis, Marta; Montenegro, Stephanie; Rodriguez-Canales, Jaime; Hanson, Jeffrey; Emmert-Buck, Michael R; Bock, Kevin W; Moore, Ian N; Zamboni, Fausto; Govindarajan, Sugantha; Kleiner, David; Farci, Patrizia
2018-06-01
There is limited data on the molecular mechanisms whereby hepatitis D virus (HDV) promotes liver cancer. Therefore, serum and liver specimens obtained at the time of liver transplantation from well-characterized patients with HDV-HCC (n-5) and with non-HCC HDV cirrhosis (n=7) were studied using an integrated genomic approach. Transcriptomic profiling was performed using laser capture-microdissected (LCM) malignant and non-malignant hepatocytes, tumorous and non-tumorous liver tissue from patients with HDV-HCC, and liver tissue from patients with non-HCC HDV cirrhosis. HDV-HCC was also compared with hepatitis B virus (HBV) HBV-HCC alone and hepatitis C virus (HCV) HCV-HCC. HDV malignant hepatocytes were characterized by an enrichment of up-regulated transcripts associated with pathways involved in cell cycle/DNA replication, damage and repair (sonic hedgehog, GADD45, DNA-damage-induced 14-3-3σ, cyclins and cell cycle regulation, cell cycle: G2/M DNA-damage checkpoint regulation, and hereditary breast cancer). Moreover, a large network of genes identified functionally relate to DNA repair, cell cycle, mitotic apparatus and cell division, including 4 cancer testis antigen genes, attesting to the critical role of genetic instability in this tumor. Besides being over-expressed, these genes were also strongly co-regulated. Gene co-regulation was high not only when compared to non-malignant hepatocytes, but also to malignant hepatocytes from HBV-HCC alone or HCV-HCC. Activation and co-regulation of genes critically associated with DNA replication, damage, and repair point to genetic instability as an important mechanism of HDV hepatocarcinogenesis. This specific HDV-HCC trait emerged also from the comparison of the molecular pathways identified for each hepatitis virus-associated HCC. Despite the dependence of HDV on HBV, these findings suggest that HDV and HBV promote carcinogenesis by distinct molecular mechanisms. This study identifies a molecular signature of HDV-associated hepatocellular carcinoma and suggests the potential for new biomarkers for early diagnostics. Copyright ©2018, American Association for Cancer Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Insook; Park, Sujin; Cho, Jin Won
12/15-lipoxygenase (12/15-LOX) is involved in organelle homeostasis by degrading mitochondria in maturing red blood cells and by eliminating excess peroxisomes in liver. Furthermore, 12/15-LOX contributes to diseases by exacerbating oxidative stress-related injury, notably in stroke. Nonetheless, it is unclear what the consequences are of abolishing 12/15-LOX activity. Mice in which the alox15 gene has been ablated do not show an obvious phenotype, and LOX enzyme inhibition is not overtly detrimental. We show here that liver histology is also unremarkable. However, electron microscopy demonstrated that 12/15-LOX knockout surprisingly leads to increased macroautophagy in the liver. Not only macroautophagy but also mitophagymore » and pexophagy were increased in hepatocytes, which otherwise showed unaltered fine structure and organelle morphology. These findings were substantiated by immunofluorescence showing significantly increased number of LC3 puncta and by Western blotting demonstrating a significant increase for LC3-II protein in both liver and brain homogenates of 12/15-LOX knockout mice. Inhibition of 12/15-LOX activity by treatment with four structurally different inhibitors had similar effects in cultured HepG2 hepatoma cells and SH-SY5Y neuroblastoma cells with significantly increased autophagy discernable already after 2 hours. Hence, our study reveals a link between ablation or inhibition of 12/15-LOX and stimulation of macroautophagy. The enhanced macroautophagy may be related to the known tissue-protective effects of LOX ablation or inhibition under various diseased conditions caused by oxidative stress and ischemia. This could provide an important cleaning mechanism of cells and tissues to prevent accumulation of damaged mitochondria and other cellular components. - Highlights: • A relationship between lipoxygenases and autophagy is disclosed. • 12/15-lipoxygenase knockout increases autophagy in mice liver and brain. • Lipoxygenase inhibition boosts autophagy in human hepatoma and neuroblastoma cells. • Lipoxygenase knockout or inhibition triggers selective autophagy.« less
The isolation and in vitro expansion of hepatic Sca-1 progenitor cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, Elizabeth, E-mail: Elizabeth.Clayton@ed.ac.uk; Forbes, Stuart J.
2009-04-17
The intra-hepatic population of liver progenitor cells expands during liver injury when hepatocyte proliferation is inhibited. These cells can be purified by density gradient centrifugation and cultured. Separated by size only this population contains small cells of hematopoietic, epithelial and endothelial lineages and is thought to contain liver stem cells. The identity of liver stem cells remains unknown although there is some evidence that tissue Sca1{sup +} CD45{sup -} cells display progenitor cell characteristics. We identified both intra-hepatic and gall bladder Sca1{sup +} cells following liver injury and expanded ex vivo Sca1 cells as part of heterogenous cell culture ormore » as a purified population. We found significant difference between the proliferation of Sca-1 cells when plated on laminin or collagen I while proliferation of heterogenous population was not affected by the extracellular matrix indicating the necessity for culture of Sca1{sup +} cells with laminin matrix or laminin producing cells in long term liver progenitor cell cultures.« less
Taniguchi, H; Kondo, R; Suzuki, A; Zheng, Y W; Takada, Y; Fukunaga, K; Seino, K; Yuzawa, K; Otsuka, M; Fukao, K; Nakauchi, H
2000-01-01
Stem cells are defined as cells having multilineage differentiation potential and self-renewal capability. Hepatic stem cells have aroused considerable interest not only because of their developmental importance but also for their therapeutic potential. However, their presence in the liver has not yet been demonstrated. With the use of a fluorescence-activated cell sorter (FACS) and monoclonal antibodies, we attempted to ascertain whether hepatic stem cells are present in the murine fetal liver. For this purpose, we optimized a cell isolation technique for FACS sorting of fetal liver cells. When isolated CD45 TER119 cells (the non-blood cell fraction in the fetal liver) were tested for their clonogenic colony-forming ability, mechanical dissociation (pipetting) was the most suitable cell isolation technique for FACS sorting. We confirmed that these colonies contained not only cells expressing hepatocyte markers but also cells expressing cholangiocyte markers. To identify hepatic stem cells, studies must focus on CD45TER119- cells in the murine fetal liver.
Sayyaf Dezfuli, Bahram; Fernandes, Carlos E; Galindo, Gizela M; Castaldelli, Giuseppe; Manera, Maurizio; DePasquale, Joseph A; Lorenzoni, Massimo; Bertin, Sara; Giari, Luisa
2016-08-30
A survey on endoparasitic helminths from freshwater fishes in the Pantanal Region (Mato Grosso do Sul, Brazil) revealed the occurrence of third-larval stage of the nematode Brevimulticaecum sp. (Heterocheilidae) in most organs of Gymnotus inaequilabiatus (Gymnotidae) also known by the local name tuvira. The aim of the present study was to examine Brevimulticaecum sp.-infected tuvira liver at the ultrastructural level and clarify the nature of granulomas and the cellular elements involved in the immune response to nematode larvae. Thirty-eight adult specimens of tuvira from Porto Morrinho, were acquired in January and March 2016. Infected and uninfected liver tissues were fixed and prepared for histological and ultrastructure investigations. The prevalence of infection of tuvira liver by the nematode larvae was 95 %, with an intensity of infection ranging from 4 to 343 larvae (mean ± SD: 55.31 ± 73.94 larvae per liver). In livers with high numbers of nematode larvae, almost entire hepatic tissue was occupied by the parasites. Hepatocytes showed slight to mild degenerative changes and accumulation of pigments. Parasite larvae were surrounded by round to oval granulomas, the result of focal host tissue response to the infection. Each granuloma was typically formed by three concentric layers: an outer layer of fibrous connective tissue with thin elongated fibroblasts; a middle layer of mast cells entrapped in a thin fibroblast-connective mesh; and an inner layer of densely packed epithelioid cells, displaying numerous desmosomes between each other. Numerous macrophage aggregates occurred in the granulomas and in the parenchyma. Our results in tuvira showed that the larvae were efficiently sequestered within the granulomas, most of the inflammatory components were confined within the thickness of the granuloma, and the parenchyma was relatively free of immune cells and without fibrosis. Presumably this focal encapsulation of the parasites permits uninfected portions of liver to maintain its functions and allows the survival of the host.
Maeda, Hiromichi; Shigoka, Masatoshi; Wang, Yongchun; Fu, Yingxin; Wesson, Russell N.; Lin, Qing; Montgomery, Robert A.; Enzan, Hideaki; Sun, Zhaoli
2014-01-01
Background and Aim Green fluorescent protein (GFP) is a widely used molecular tag to trace transplanted cells in rodent liver injury models. The differing results from various previously reported studies using GFP could be attributed to the immunogenicity of GFP. Methods Hepatocytes were obtained from GFP-expressing transgenic (Tg) Lewis rats and were transplanted into the livers of wild-type Lewis rats after they had undergone a partial hepatectomy. The proliferation of endogenous hepatocytes in recipient rats was inhibited by pretreatment with retrorsine to enhance the proliferation of the transplanted hepatocytes. Transplantation of wild-type hepatocytes into GFP-Tg rat liver was also performed for comparison. Results All biopsy specimens taken seven days after transplantation showed engraftment of transplanted hepatocytes, with the numbers of transplanted hepatocytes increasing until day 14. GFP-positive hepatocytes in wild-type rat livers were decreased by day 28 and could not be detected on day 42, whereas the number of wild-type hepatocytes steadily increased in GFP-Tg rat liver. Histological examination showed degenerative change of GFP-positive hepatocytes and the accumulation of infiltrating cells on day 28. PCR analysis for the GFP transgene suggested that transplanted hepatocytes were eliminated rather than being retained along with the loss of GFP expression. Both modification of the immunological response using tacrolimus and bone marrow transplantation prolonged the survival of GFP-positive hepatocytes. In contrast, host immunization with GFP-positive hepatocytes led to complete loss of GFP-positive hepatocytes by day 14. Conclusion GFP-positive hepatocytes isolated from GFP-Tg Lewis rats did not survive long term in the livers of retrorsine-pretreated wild-type Lewis rats. The mechanism underlying this phenomenon most likely involves an immunological reaction against GFP. The influence of GFP immunogenicity on cell transplantation models should be considered in planning in vivo experiments using GFP and in interpreting their results. PMID:24796859
Lacotte, Stéphanie; Slits, Florence; Orci, Lorenzo A.; Meyer, Jeremy; Oldani, Graziano; Gonelle-Gispert, Carmen; Morel, Philippe; Toso, Christian
2016-01-01
ABSTRACT Kupffer cells represent the first line of defense against tumor cells in the liver. Myeloid-derived suppressor cells (MDSC) have recently been observed in the liver parenchyma of tumor-bearing animals. The present study investigates the function of the MDSC subsets, and their impact on Kupffer cell phenotype and function. RIL-175 mouse hepatocellular carcinoma (HCC) cells were injected into the median liver lobe of C57BL/6 mice. Three weeks later, the median lobe hosting the tumor nodule was removed, and Kupffer cells and MDSCs were sorted from the remaining liver. Mouse livers devoid of HCC served as control. Kupffer cells expressed less co-stimulatory CD86 and MHCII and more co-inhibitory CD274 molecules in HCC-bearing livers than in control livers. Corresponding to this phenotype, Kupffer cells from HCC-bearing mice were less efficient in their function as antigen-presenting cells. Three CD11b+ cell populations were identified and sorted from HCC-bearing mice. These cells had various phenotypes with different levels of MDSC-specific surface markers (Ly6Ghigh cells, Gr1high cells, and Ly6Clow cells), and may be considered as bonafide MDSCs given their suppression of antigen-specific T cell proliferation. Primary isolated Kupffer cells in co-culture with the three MDSC subsets showed a decrease in CCL2 and IL-18 secretion, and an increase in IL-10 and IL-1β secretion, and an increased expression of CD86, CD274, and MHCII. In conclusion, these data demonstrated the existence of three MDSC subsets in HCC-bearing animals. These cells altered Kupffer cell function and may decrease the migration and activation of anticancer effector cells in the liver. PMID:27999748
Awan, Sana Javaid; Baig, Maria Tayyab; Yaqub, Faiza; Tayyeb, Asima; Ali, Gibran
2017-01-01
Hepatic oval cells are likely to be activated during advanced stage of liver fibrosis to reconstruct damaged hepatic tissue. However, their scarcity, difficulties in isolation, and in vitro expansion hampered their transplantation in fibrotic liver. This study was aimed to investigate the repair potential of in vitro differentiated hepatic oval-like cells in CCl 4 -induced liver fibrosis. BMSCs and oval cells were isolated and characterized from C57BL/6 GFP + mice. BMSCs were differentiated into oval cells by preconditioning with HGF, EGF, SCF, and LIF and analyzed for the oval cells-specific genes. Efficiency of oval cells to reduce hepatocyte injury was studied by determining cell viability, release of LDH, and biochemical tests in a co-culture system. Further, in vivo repair potential of differentiated oval cells was determined in CCl 4 -induced fibrotic model by gene expression analysis, biochemical tests, mason trichrome, and Sirius red staining. Differentiated oval cells expressed hepatic oval cells-specific markers AFP, ALB, CK8, CK18, CK19. These differentiated cells when co-cultured with injured hepatocytes showed significant hepato-protection as measured by reduction in apoptosis, LDH release, and improvement in liver functions. Transplantation of differentiated oval cells like cells in fibrotic livers exhibited enhanced homing, reduced liver fibrosis, and improved liver functions by augmenting hepatic microenvironment by improved liver functions. This preconditioning strategy to differentiate BMSCs into oval cell leads to improved survival and homing of transplanted cells. In addition, reduction in fibrosis and functional improvement in mice with CCl 4 -induced liver fibrosis was achieved. © 2016 International Federation for Cell Biology.
Bolte, Fabian J; O'Keefe, Ashley C; Webb, Lauren M; Serti, Elisavet; Rivera, Elenita; Liang, T Jake; Ghany, Marc; Rehermann, Barbara
2017-11-01
Chronic hepatitis affects phenotypes of innate and adaptive immune cells. Mucosal-associated invariant T (MAIT) cells are enriched in the liver as compared with the blood, respond to intra-hepatic cytokines, and (via the semi-invariant T-cell receptor) to bacteria translocated from the gut. Little is known about the role of MAIT cells in livers of patients with chronic hepatitis C virus (HCV) infection and their fate after antiviral therapy. We collected blood samples from 42 patients with chronic HCV infection who achieved a sustained virologic response after 12 weeks of treatment with sofosbuvir and velpatasvir. Mononuclear cells were isolated from blood before treatment, at weeks 4 and 12 during treatment, and 24 weeks after the end of treatment. Liver biopsies were collected from 37 of the patients prior to and at week 4 of treatment. Mononuclear cells from 56 blood donors and 10 livers that were not suitable for transplantation were used as controls. Liver samples were assessed histologically for inflammation and fibrosis. Mononuclear cells from liver and blood were studied by flow cytometry and analyzed for responses to cytokine and bacterial stimulation. The frequency of MAIT cells among T cells was significantly lower in blood and liver samples of patients with HCV infection than of controls (median, 1.31% vs 2.32% for blood samples, P = .0048; and median, 4.34% vs 13.40% for liver samples, P = .001). There was an inverse correlation between the frequency of MAIT cells in the liver and histologically determined levels of liver inflammation (r = -.5437, P = .0006) and fibrosis (r = -.5829, P = .0002). MAIT cells from the liver had higher levels of activation and cytotoxicity than MAIT cells from blood (P < .0001). Production of interferon gamma by MAIT cells was dependent on monocyte-derived interleukin 18, and was reduced in patients with HCV infection in response to T-cell receptor-mediated but not cytokine-mediated stimulation, as compared with controls. Anti-viral therapy rapidly decreased liver inflammation and MAIT cell activation and cytotoxicity, and increased the MAIT cell frequency among intra-hepatic but not blood T cells. The MAIT cell response to T-cell receptor-mediated stimulation did not change during the 12 weeks of antiviral therapy. In analyses of paired blood and liver samples from patients with chronic HCV infection before, during, and after antiviral therapy with sofosbuvir and velpatasvir, we found that intrahepatic MAIT cells are activated by monocyte-derived cytokines and depleted in HCV-induced liver inflammation. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
Zheng, Jianjian; Wu, Cunzao; Lin, Zhuo; Guo, Yong; Shi, Liang; Dong, Peihong; Lu, Zhongqiu; Gao, Shenmeng; Liao, Yi; Chen, Bicheng; Yu, Fujun
2014-01-01
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) has been reported to play a role in the suppression of activated hepatic stellate cells (HSCs). Moreover, it has been demonstrated that hypermethylation of the PTEN promoter is responsible for the loss of PTEN expression during HSC activation. Methylation is now established as a fundamental regulator of gene transcription. MicroRNAs (miRNAs), which can control gene expression by binding to their target genes for degradation and/or translational repression, were found to be involved in liver fibrosis. However, the mechanism responsible for miRNA-mediated epigenetic regulation in liver fibrosis still remained unclear. In the present study, curcumin treatment significantly resulted in the inhibition of cell proliferation and an increase in the apoptosis rate through the up-regulation of PTEN associated with a decreased DNA methylation level. Only DNA methyltransferase 3b (DNMT3b) was reduced in vivo and in vitro after curcumin treatment. Further studies were performed aiming to confirm that the knockdown of DNMT3b enhanced the loss of PTEN methylation by curcumin. In addition, miR-29b was involved in the hypomethylation of PTEN by curcumin. MiR-29b not only was increased by curcumin in activated HSCs, but also was confirmed to target DNMT3b by luciferase activity assays. Curcumin-mediated PTEN up-regulation, DNMT3b down-regulation and PTEN hypomethylation were all attenuated by miR-29b inhibitor. Collectively, it is demonstrated that curcumin can up-regulate miR-29b expression, resulting in DNMT3b down-regulation in HSCs and epigenetically-regulated PTEN involved in the suppression of activated HSCs. These results indicate that miRNA-mediated epigenetic regulation may be a novel mechanism suppressing liver fibrosis. © 2013 FEBS.
PNPLA3 overexpression results in reduction of proteins predisposing to fibrosis.
Pingitore, Piero; Dongiovanni, Paola; Motta, Benedetta Maria; Meroni, Marica; Lepore, Saverio Massimo; Mancina, Rosellina Margherita; Pelusi, Serena; Russo, Cristina; Caddeo, Andrea; Rossi, Giorgio; Montalcini, Tiziana; Pujia, Arturo; Wiklund, Olov; Valenti, Luca; Romeo, Stefano
2016-12-01
Liver fibrosis is a pathological scarring response to chronic hepatocellular injury and hepatic stellate cells (HSCs) are key players in this process. PNPLA3 I148M is a common variant robustly associated with liver fibrosis but the mechanisms underlying this association are unknown. We aimed to examine a) the effect of fibrogenic and proliferative stimuli on PNPLA3 levels in HSCs and b) the role of wild type and mutant PNPLA3 overexpression on markers of HSC activation and fibrosis.Here, we show that PNPLA3 is upregulated by the fibrogenic cytokine transforming growth factor-beta (TGF-β), but not by platelet-derived growth factor (PDGF), and is involved in the TGF-β-induced reduction in lipid droplets in primary human HSCs. Furthermore, we show that retinol release from human HSCs ex vivo is lower in cells with the loss-of-function PNPLA3 148M compared with 148I wild type protein. Stable overexpression of PNPLA3 148I wild type, but not 148M mutant, in human HSCs (LX-2 cells) induces a reduction in the secretion of matrix metallopeptidase 2 (MMP2), tissue inhibitor of metalloproteinase 1 and 2 (TIMP1 and TIMP2), which is mediated by retinoid metabolism. In conclusion, we show a role for PNPLA3 in HSC activation in response to fibrogenic stimuli. Moreover, we provide evidence to indicate that PNPLA3-mediated retinol release may protect against liver fibrosis by inducing a specific signature of proteins involved in extracellular matrix remodelling. © The Author 2016. Published by Oxford University Press.
PNPLA3 overexpression results in reduction of proteins predisposing to fibrosis
Pingitore, Piero; Dongiovanni, Paola; Motta, Benedetta Maria; Meroni, Marica; Lepore, Saverio Massimo; Mancina, Rosellina Margherita; Pelusi, Serena; Russo, Cristina; Caddeo, Andrea; Rossi, Giorgio; Montalcini, Tiziana; Pujia, Arturo; Wiklund, Olov; Valenti, Luca; Romeo, Stefano
2016-01-01
Abstract Liver fibrosis is a pathological scarring response to chronic hepatocellular injury and hepatic stellate cells (HSCs) are key players in this process. PNPLA3 I148M is a common variant robustly associated with liver fibrosis but the mechanisms underlying this association are unknown. We aimed to examine a) the effect of fibrogenic and proliferative stimuli on PNPLA3 levels in HSCs and b) the role of wild type and mutant PNPLA3 overexpression on markers of HSC activation and fibrosis. Here, we show that PNPLA3 is upregulated by the fibrogenic cytokine transforming growth factor-beta (TGF-β), but not by platelet-derived growth factor (PDGF), and is involved in the TGF-β-induced reduction in lipid droplets in primary human HSCs. Furthermore, we show that retinol release from human HSCs ex vivo is lower in cells with the loss-of-function PNPLA3 148M compared with 148I wild type protein. Stable overexpression of PNPLA3 148I wild type, but not 148M mutant, in human HSCs (LX-2 cells) induces a reduction in the secretion of matrix metallopeptidase 2 (MMP2), tissue inhibitor of metalloproteinase 1 and 2 (TIMP1 and TIMP2), which is mediated by retinoid metabolism. In conclusion, we show a role for PNPLA3 in HSC activation in response to fibrogenic stimuli. Moreover, we provide evidence to indicate that PNPLA3-mediated retinol release may protect against liver fibrosis by inducing a specific signature of proteins involved in extracellular matrix remodelling. PMID:27742777
Dobashi, H; Seki, S; Habu, Y; Ohkawa, T; Takeshita, S; Hiraide, H; Sekine, I
1999-08-01
Although bacterial superantigens have been well characterized as potent stimulators of T cells, their role in natural killer (NK)-type cells remains largely unknown. In the present study, we examined the effect of bacterial superantigens on mouse liver NK cells and NK1.1 Ag(+) (NK1(+)) T cells. C57BL/6 mice were intravenously injected with staphylococcal enterotoxin B (SEB) or streptococcal pyrogenic exotoxin A (SPE-A), and mononuclear cells (MNC) of various organs were obtained from mice 4 hours after being injected with superantigen. MNC were cultured for 48 hours, and interferon gamma (IFN-gamma) levels of supernatants were measured. The antitumor cytotoxicities of the liver and spleen MNC were also evaluated 24 hours after the mice were injected with superantigen. Liver MNC produced more IFN-gamma than did splenocytes, and peripheral blood and lung MNC did not produce any detectable IFN-gamma. In addition, liver MNC acquired a potent antitumor cytotoxicity by the SEB injection, and both NK cells and NK1(+)T cells but not cluster of differentiation (CD)8(+) T cells were responsible for the cytotoxicity as demonstrated by either in vivo or in vitro cell depletion experiments, and the NK-type cells were partly responsible for the increased serum IFN-gamma. Activation of liver NK-type cells was also supported by the fact that liver NK cells proportionally increased and NK1(+) T cells augmented their CD11a expressions after SEB injection. The pretreatment of mice with anti-IFN-gamma Ab and/or with anti-interleukin-12 (IL-12) Ab diminished the SEB-induced cytotoxicity of liver MNC. Furthermore, the in vivo depletion of Kupffer cells decreased the SEB-induced cytotoxicity of liver MNC. Consistent with these results, liver MNC stimulated with superantigens in the presence of Kupffer cells in vitro produced a greater amount of IFN-gamma than did the liver MNC without Kupffer cells or splenocytes. Our results suggest that bacterial superantigen-primed Kupffer cells produce IL-12 and other monokines, while also nonspecifically activating both NK cells and NK1(+) T cells to produce IFN-gamma.
Wu, Changzhe; Cao, Yue; Huo, Xiaolin; Li, Ming
2015-01-01
Bioartificial liver support system (BALSS) based on culturing hepatocytes is an important research field for the treatment of acute liver failure. It is necessary to monitor the state of liver cell functions during the treatment of BALSS in order to guide clinical treatment. To design a micro-channel chip to achieve flash mixing for timely detection of liver cell status in bioreactors and improving liver cells growth environment to ensure the efficacy of the bio-artificial liver support system. Alanine aminotransferase (ALT) and Urea are chosen as detection indicators to reflect the degree of liver cell injury and the detoxification function. A diamond tandem structure micro-channel is designed and optimized to achieve the efficient mixing of serum and ALT or Urea reagent. The simulation and experimental results show that the diamond tandem structure micro-channel can significantly improve the mixing efficiency and meet the online detecting requirements. The easily controllable diamond tandem structure micro-channel combines the advantages of active and passive mixer and can effectively mix the serum and ALT or Urea reagent. It lays the foundation for online monitoring of liver cells and will help to improve the viability of liver cell in the bioreactor.
[Ethanol changes sensitivity of Kupffer cells to endotoxin].
Yamashina, Shunhei; Ikejima, Kenichi; Enomoto, Nobuyuki; Takei, Yoshiyuki; Sato, Nobuhiro
2003-10-01
Gut-derived endotoxin plays an important role in alcoholic liver injury. Intestinal sterilization with antibiotics (polymyxin B and neomycin) or inactivation of Kupffer cells with gadolinium chloride can prevent early alcohol-induced liver injury in the Tsukamoto-French model. Although short-term administration of alcohol enhances endotoxin hepatotoxicity, a majority of studies report that short-term ethanol inactivates Kupffer cells. It is therefore paradoxical that Kupffer cells are involved in alcoholic liver injury based on in vivo data with gadolinium chloride and antibiotics, yet ethanol blunts activation of isolated Kupffer cells. Accordingly, this review focuses on understanding this paradox by studying the temporal effect of ethanol in vivo on the response of subsequently isolated Kupffer cells. Mice were given ethanol intragastrically, and LPS was injected later. One hour after ethanol treatment, serum transaminases after LPS were 60% of control, while ethanol increased these parameters about 3-fold 21 hours after ethanol. Pretreatment with antibiotics blocked these effects of ethanol. Two hours after ethanol administration, the LPS-induced increases in intracellular calcium concentration and TNF alpha release by Kupffer cells was diminished by 50% of control, and these parameters were reciprocally enhanced two-fold at 24 hours. Sterilization of the gut with antibiotics blocked both effects of ethanol on intracellular calcium concentration and TNF alpha release. Twenty-four hours after ethanol, CD14 in Kupffer cells was elevated to about five-fold. In Kupffer cells from mice treated with ethanol 1 hour earlier, IRAK expression and activity and NF kappa B were decreased to 50-60% of control. In contrast, in Kupffer cells from mice treated with ethanol 21 hours earlier, LPS-induced TNF alpha production, expression and activity of IRAK were increased 1.5-fold over controls, while NF kappa B activation was elevated 3-fold. Kupffer cells isolated from rodents early after ethanol exhibited tolerance to LPS, whereas sensitization was observed later. In conclusion, acute ethanol alters the expression of endotoxin receptors and intracellular signaling molecules, and causes both tolerance and sensitization of Kupffer cells to endotoxin. It is postulated that tolerance of Kupffer cells contributes to the impairment of innate immune system in alcoholism, while sensitization to endotoxin enhances progression of alcoholic liver injury.
Jeffery, Hannah C; van Wilgenburg, Bonnie; Kurioka, Ayako; Parekh, Krishan; Stirling, Kathryn; Roberts, Sheree; Dutton, Emma E; Hunter, Stuart; Geh, Daniel; Braitch, Manjit K; Rajanayagam, Jeremy; Iqbal, Tariq; Pinkney, Thomas; Brown, Rachel; Withers, David R; Adams, David H; Klenerman, Paul; Oo, Ye H
2016-05-01
Mucosal-Associated Invariant T (MAIT) cells are innate-like T cells characterised by the invariant TCR-chain, Vα7.2-Jα33, and are restricted by MR1, which presents bacterial vitamin B metabolites. They are important for antibacterial immunity at mucosal sites; however, detailed characteristics of liver-infiltrating MAIT (LI-MAIT) and their role in biliary immune surveillance remain unexplored. The phenotype and intrahepatic localisation of human LI-MAIT cells was examined in diseased and normal livers. MAIT cell activation in response to E. coli-exposed macrophages, biliary epithelial cells (BEC) and liver B cells was assessed with/without anti-MR1. Intrahepatic MAIT cells predominantly localised to bile ducts in the portal tracts. Consistent with this distribution, they expressed biliary tropic chemokine receptors CCR6, CXCR6, and integrin αEβ7. LI-MAIT cells were also present in the hepatic sinusoids and possessed tissue-homing chemokine receptor CXCR3 and integrins LFA-1 and VLA-4, suggesting their recruitment via hepatic sinusoids. LI-MAIT cells were enriched in the parenchyma of acute liver failure livers compared to chronic diseased livers. LI-MAIT cells had an activated, effector memory phenotype, expressed α4β7 and receptors for IL-12, IL-18, and IL-23. Importantly, in response to E. coli-exposed macrophages, liver B cells and BEC, MAIT cells upregulated IFN-γ and CD40 Ligand and degranulated in an MR1-dependent, cytokine-independent manner. In addition, diseased liver MAIT cells expressed T-bet and RORγt and the cytokines IFN-γ, TNF-α, and IL-17. Our findings provide the first evidence of an immune surveillance effector response for MAIT cells towards BEC in human liver; thus they could be manipulated for treatment of biliary disease in the future. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
[Endocrine factors influencing melanoma progression].
Dobos, Judit
2009-03-01
According to recent findings that beside cancers traditionally considered as hormone-dependent, several other tumor types show different behavior in the two sexes, indicating the possible role of endocrine factors in the course of these diseases. The possibility that endocrine factors may influence the clinical course of human malignant melanoma is suggested by the higher survival rate in premenopausal vs. postmenopausal women or men of any ages. However, investigations on the sex hormone receptor status of human cutaneous melanomas and experiments attempting to support the epidemiological results yielded conflicting results. In our human melanoma cell lines we failed to detect steroid receptors at protein level, while quantitative PCR demonstrated that their mRNA expression level was orders of magnitude lower compared to the positive control cell lines. Sex hormones did not influence the in vitro features of the human melanoma cells considerably. On the other hand, glucocorticoid receptor was present both at mRNA and protein level, although dexamethasone was effective in vitro only at high doses. Our previous experiments showed that intrasplenic injection of human melanoma cells resulted in a significantly higher number of liver colonies in male than in female SCID mice. We now show that this difference evolves during the first day. After injection into the tail vein we did not observe gender-dependent difference in the efficiency of pulmonary colonization. Examining the pattern of metastasis formation after intracardiac injection, we have found differences between the two sexes in the incidence or number of colonies only in the case of the liver but not in other organs. We concluded that the observed phenomenon is specific to the liver; therefore we investigated the effects of 2-methoxyestradiol, an endogenous metabolite of estradiol produced mainly in the liver, with an estrogen receptor-independent antitumor activity. 2ME2 effectively inhibited melanoma cell proliferation by inducing apoptosis and an arrest in the G2/M phase. The mechanism of action involved microtubules, mitochondrial damage and caspase activation as well. In SCID mice, 2ME2 was effective in reducing primary tumor weight and the number of liver colonies after intrasplenic injection of human melanoma cells, and causing significantly higher rate of apoptotic cells in the colonies.
Wang, Zhiguo; Su, Bo; Fan, Sumei; Fei, Haixia; Zhao, Wei
2015-03-20
The long-term consumption of alcohol has been associated with multiple pathologies at all levels, such as alcoholism, chronic pancreatitis, malnutrition, alcoholic liver disease (ALD) and cancer. In the current study, we investigated the protective effect of oligomeric proanthocyanidins (OPC) against alcohol-induced liver steatosis and injury and the possible mechanisms using ethanol-induced chronic liver damage mouse models. The results showed that OPC significantly improved alcohol-induced dyslipidemia and alleviated liver steatosis by reducing levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total triglyceride (TG), total cholesterol (TC), low-density cholesterol (LDL-c) and liver malondialdehyde (MDA), and increasing levels of serum high-density lipoprotein (HDL-c), liver superoxide dismutase (SOD). Further investigation indicated that OPC markedly decreased the expressions of lipid synthesis genes and inflammation genes such as sterol regulatory element-binding protein-1c (Srebp-1c), protein-2 (Srebp2), interleukin IL-1β, IL-6 and TNF-α. Furthermore, AML-12 cells line was used to investigate the possible mechanisms which indicated that OPC might alleviate liver steatosis and damage through AMP-activated protein kinase (AMPK) activation involving oxidative stress. In conclusion, our study demonstrated excellent protective effect of OPC against alcohol-induced liver steatosis and injury, which could a potential drug for the treatment of alcohol-induced liver injury in the future. Copyright © 2015 Elsevier Inc. All rights reserved.
Serum YKL-40 as a marker of liver fibrosis in patients with non-alcoholic fatty liver disease.
Kumagai, Erina; Mano, Yohei; Yoshio, Sachiyo; Shoji, Hirotaka; Sugiyama, Masaya; Korenaga, Masaaki; Ishida, Tsuyoshi; Arai, Taeang; Itokawa, Norio; Atsukawa, Masanori; Hyogo, Hideyuki; Chayama, Kazuaki; Ohashi, Tomohiko; Ito, Kiyoaki; Yoneda, Masashi; Kawaguchi, Takumi; Torimura, Takuji; Nozaki, Yuichi; Watanabe, Sumio; Mizokami, Masashi; Kanto, Tatsuya
2016-10-14
Non-alcoholic fatty liver disease (NAFLD) is a common cause of chronic non-viral liver disease. YKL-40, chitinase-like protein expressed in multiple tissues including liver, is involved in cell proliferation, inflammation and remodeling of the extracellular matrix. The aim of this study was to assess whether serum YKL-40 levels are associated with liver fibrosis in NAFLD patients. Serum YKL-40 levels were quantified in 111 NAFLD patients and 23 HCC patients with NAFLD. To identify the source of YKL-40, immunofluorescence staining of liver specimens from NAFLD patients was performed. Serum YKL-40 levels in NAFLD patients increased in accordance with the progression of liver fibrosis. Multivariate analysis revealed that YKL-40 was one of the independent factors significantly associated with severe fibrosis (F3-4). We established a new predictive model for fibrosis of NAFLD, using logistic regression analysis: YKL-40 based fibrosis score = -0.0545 + type IV collagen 7s * 0.3456 + YKL-40 * 0.0024. Serum YKL-40 levels of HCC patients with non-cirrhotic NAFLD were significantly higher than those without HCC. Immunofluorescence staining showed that YKL-40 was expressed by macrophages in liver tissue of NAFLD patients. In conclusion, macrophage-derived YKL-40 is a feasible biomarker of liver fibrosis in NAFLD patients.
Nrf2 activation prevents cadmium-induced acute liver injury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kai C.; Liu, Jie J.; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu
2012-08-15
Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-nullmore » mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H{sub 2}DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice were resistant to cadmium-induced liver injury. ► Cadmium increased ROS in hepatocytes isolated from Nrf2-null and wild-type mice. ► Mt-1 and Mt‐2 were induced over 200-fold in both Nrf2-null and Nrf2-enhanced mice. ► Gclc, Gpx2, and Srxn-1 were induced in Nrf2-enhanced mice, not in Nrf2-null mice.« less
Lin, M; Sun, P; Zhang, G; Xu, X; Liu, G; Miao, H; Yang, Y; Xu, H; Zhang, L; Wu, P; Li, M
2014-03-01
Normal liver has a great potential of regenerative capacity after partial hepatectomy. In clinic, however, most patients receiving partial hepatectomy are usually suffering from chronic liver diseases with severely damaged hepatocyte population. Under these conditions, activation of hepatic progenitor cell (oval cell in rodents) population might be considered as an alternative mean to enhance liver functional recovery. Vitamin K2 has been shown to promote liver functional recovery in patients with liver cirrhosis. In this study, we explored the possibility of vitamin K2 treatment in activating hepatic oval cell for liver regeneration with the classic 2-acetamido-fluorene/partial hepatectomy (2-AAF/PH) model in Sprague-Dawley rats. In 2-AAF/PH animals, vitamin K2 treatment induced a dose-dependent increase of liver regeneration as assessed by the weight ratio of remnant liver versus whole body and by measuring serum albumin level. In parallel, a drastic expansion of oval cell population as assessed by anti-OV6 and anti-CK19 immunostaining was noticed in the periportal zone of the remnant liver. Since matrilin-2 was linked to oval cell proliferation and liver regeneration after partial hepatectomy, we assessed its expression at both the mRNA and protein levels. The results revealed a significant increase after vitamin K2 treatment in parallel with the expansion of oval cell population. Consistently, knocking down matrilin-2 expression in vivo largely reduced vitamin K2-induced liver regeneration and oval cell proliferation in 2-AAF/PH animals. In conclusion, these data suggest that vitamin K2 treatment enhances liver regeneration after partial hepatectomy, which is associated with oval cell expansion and matrilin-2 up-regulation.
Li, J; Hu, S B; Wang, L Y; Zhang, X; Zhou, X; Yang, B; Li, J H; Xiong, J; Liu, N; Li, Y; Wu, Y Z; Zheng, Q C
2017-11-30
Autophagy is a pathophysiological phenomenon in liver cirrhosis that can further progress into hepatocarcinoma. Liver cancer stem cells (CSCs) are believed to initiate hepatocarcinogenesis. To investigate the precise mechanism related to the origin of CSCs in liver cirrhosis and hepatocarcinogenesis, we labeled Axin2+ hepatic cells with EGFP in Axin2Cre;Rosa26EGFP transgenic rats, and then stratified clinical and rat liver cirrhosis samples by autophagy flux. Clinical follow-up and lineage tracing in transgenic rat liver cirrhosis revealed that while Axin2/EGFP+ hepatic cells were present in normal livers and cirrhotic livers without aberrant autophagy, hepatic Axin2/EGFP+CD90+ cells were generated exclusively in cirrhotic livers with aberrant autophagy and promoted hepatocarcinogenesis. Aberrant autophagy in liver cirrhosis resulted in hepatocyte growth factor (HGF) expression, leading to activation of Met/JNK and Met/STAT3 signaling in sorted hepatic Axin2/EGFP+ cells and their transition into Axin2/EGFP+CD90+ cells that possess CSC properties. In a transgenic rat liver cirrhosis model, induction or inhibition of autophagy in cirrhotic livers by systemic administration of rapamycin or chloroquine or transfection with Atg3- and Atg7-shRNAs significantly induced or suppressed HGF expression, which in turn increased or reduced generation of EGFP+CD90+ hepatic cells by activating or inactivating Met/JNK and Met/STAT3 signaling, thereby promoting or preventing hepatocarcinogenesis. Systemic treatment with HGF-shRNA, SP600125 or stattic also reduced generation of EGFP(Axin2)+ hepatic cell-originated CD90+ CSCs in aberrant autophagic cirrhotic livers by inactivating HGF/Met/JNK or HGF/Met/STAT3 signaling, further preventing hepatocarcinogenesis. These data suggest that activation of Met/JNK and Met/STAT3 signaling in Axin2+ hepatic cells via autophagy-dependent HGF expression and the resultant generation of Axin2+CD90+ CSCs is a major mechanism of hepatocarcinogenesis in cirrhotic livers.
Li, J; Hu, S B; Wang, L Y; Zhang, X; Zhou, X; Yang, B; Li, J H; Xiong, J; Liu, N; Li, Y; Wu, Y Z; Zheng, Q C
2017-01-01
Autophagy is a pathophysiological phenomenon in liver cirrhosis that can further progress into hepatocarcinoma. Liver cancer stem cells (CSCs) are believed to initiate hepatocarcinogenesis. To investigate the precise mechanism related to the origin of CSCs in liver cirrhosis and hepatocarcinogenesis, we labeled Axin2+ hepatic cells with EGFP in Axin2Cre;Rosa26EGFP transgenic rats, and then stratified clinical and rat liver cirrhosis samples by autophagy flux. Clinical follow-up and lineage tracing in transgenic rat liver cirrhosis revealed that while Axin2/EGFP+ hepatic cells were present in normal livers and cirrhotic livers without aberrant autophagy, hepatic Axin2/EGFP+CD90+ cells were generated exclusively in cirrhotic livers with aberrant autophagy and promoted hepatocarcinogenesis. Aberrant autophagy in liver cirrhosis resulted in hepatocyte growth factor (HGF) expression, leading to activation of Met/JNK and Met/STAT3 signaling in sorted hepatic Axin2/EGFP+ cells and their transition into Axin2/EGFP+CD90+ cells that possess CSC properties. In a transgenic rat liver cirrhosis model, induction or inhibition of autophagy in cirrhotic livers by systemic administration of rapamycin or chloroquine or transfection with Atg3- and Atg7-shRNAs significantly induced or suppressed HGF expression, which in turn increased or reduced generation of EGFP+CD90+ hepatic cells by activating or inactivating Met/JNK and Met/STAT3 signaling, thereby promoting or preventing hepatocarcinogenesis. Systemic treatment with HGF-shRNA, SP600125 or stattic also reduced generation of EGFP(Axin2)+ hepatic cell-originated CD90+ CSCs in aberrant autophagic cirrhotic livers by inactivating HGF/Met/JNK or HGF/Met/STAT3 signaling, further preventing hepatocarcinogenesis. These data suggest that activation of Met/JNK and Met/STAT3 signaling in Axin2+ hepatic cells via autophagy-dependent HGF expression and the resultant generation of Axin2+CD90+ CSCs is a major mechanism of hepatocarcinogenesis in cirrhotic livers. PMID:28783177
Morphologic examination of CD3-CD4(bright) cells in rat liver.
Yamamoto, Satoshi; Sato, Yosinobu; Abo, Toru; Hatakeyama, Katsuyosi
2002-01-01
Recently, we found CD3-CD4(bright) cells with comparative specificity for normal rat liver. In the current study, we investigated the type and form of both CD3-CD4(bright) cells and CD3-CD4(dull) cells in the rat liver. The surface phenotype of hepatic mononuclear cells in Lewis rats was identified by using monoclonal antibodies including anti-CD4, anti-CD3, and antimacrophage in conjunction with two- or three-color immunofluorescence analysis. CD3-CD4(bright) cells and CD3-CD4(dull) cells were examined morphologically using May-Giemsa staining and scanning electron microscopy. The distribution of CD3-CD4(bright) cells and CD3-CD4(dull) cells 48 hours after intravenous administration of liposome-encapsulated dichloromethylene diphosphate was also investigated. In comparison to CD3-CD4(dull) cells, CD3-CD4(bright) cells were slightly larger macrophages with abundant cytoplasmic granules, being present with comparative specificity for normal rat liver and showing negligible effects by intravenous liposome-encapsulated dichloromethylene diphosphate administration. These data suggest that in normal young rat liver these CD3-CD4(dull) and CD3-CD4(bright) cells may be dendritic cells and Kupffer cells that shift from the liver to the spleen or vice versa. These cells may also be able to locally proliferate in liver or spleen due to changes in the developing liver.
Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation
Mazza, Giuseppe; Rombouts, Krista; Rennie Hall, Andrew; Urbani, Luca; Vinh Luong, Tu; Al-Akkad, Walid; Longato, Lisa; Brown, David; Maghsoudlou, Panagiotis; Dhillon, Amar P.; Fuller, Barry; Davidson, Brian; Moore, Kevin; Dhar, Dipok; De Coppi, Paolo; Malago, Massimo; Pinzani, Massimo
2015-01-01
Liver synthetic and metabolic function can only be optimised by the growth of cells within a supportive liver matrix. This can be achieved by the utilisation of decellularised human liver tissue. Here we demonstrate complete decellularization of whole human liver and lobes to form an extracellular matrix scaffold with a preserved architecture. Decellularized human liver cubic scaffolds were repopulated for up to 21 days using human cell lines hepatic stellate cells (LX2), hepatocellular carcinoma (Sk-Hep-1) and hepatoblastoma (HepG2), with excellent viability, motility and proliferation and remodelling of the extracellular matrix. Biocompatibility was demonstrated by either omental or subcutaneous xenotransplantation of liver scaffold cubes (5 × 5 × 5 mm) into immune competent mice resulting in absent foreign body responses. We demonstrate decellularization of human liver and repopulation with derived human liver cells. This is a key advance in bioartificial liver development. PMID:26248878
Kinetics of liver macrophages (Kupffer cells) in SIV-infected macaques
Ahsan, Muhammad H.; Gill, Amy F.; Alvarez, Xavier; Lackner, Andrew A.; Veazey, Ronald S.
2013-01-01
Since the liver drains antigens from the intestinal tract, and since the intestinal tract is a major site of viral replication, we examined the dynamics of liver macrophages (Kupffer cells) throughout SIV infection. Absolute numbers of Kupffer cells increased in the livers in acute infection, and in animals with AIDS. Significantly higher percentages of proliferating (BrdU+) Kupffer cells were detected in acute infection and in AIDS with similar trends in blood monocytes. Significantly higher percentages of apoptotic (AC3+) Kupffer cells were also found in acute and AIDS stages. However, productively infected cells were not detected in liver of 41/42 animals examined, despite abundant infected cells in gut and lymph nodes of all animals. Increased rates of Kupffer cell proliferation resulting in an increase in Kupffer cells without productive infection indicate SIV infection affects Kupffer cells, but the liver does not appear to be a major site of productive viral replication. PMID:24074569
Modulation of liver regeneration via myeloid PTEN deficiency
Ma, Wen-Tao; Jia, Yan-Jie; Liu, Qing-Zhi; Yang, Yan-Qing; Yang, Jing-Bo; Zhao, Zhi-Bin; Yang, Zhen-Ye; Shi, Qing-Hua; Ma, Hong-Di; Gershwin, M Eric; Lian, Zhe-Xiong
2017-01-01
Molecular mechanisms that modulate liver regeneration are of critical importance for a number of hepatic disorders. Kupffer cells and natural killer (NK) cells are two cell subsets indispensable for liver regeneration. We have focused on these two populations and, in particular, the interplay between them. Importantly, we demonstrate that deletion of the myeloid phosphatase and tensin homolog on chromosome 10 (PTEN) leading to an M2-like polarization of Kupffer cells, which results in decreased activation of NK cells. In addition, PTEN-deficient Kupffer cells secrete additional factors that facilitate the proliferation of hepatocytes. In conclusion, PTEN is critical for inhibiting M2-like polarization of Kupffer cells after partial hepatectomy, resulting in NK cell activation and thus the inhibition of liver regeneration. Furthermore, PTEN reduces growth factor secretion by Kupffer cells. Our results suggest that targeting PTEN on Kupffer cells may be useful in altering liver regeneration in patients undergoing liver resection. PMID:28542148
Fischer, H P; Lankes, G
1991-01-01
The microanatomic organization of focal nodular hyperplasia (FNH) of the liver was analyzed to obtain information about the histogenesis of this tumor-like lesion. All of the 11 examples of FNH studied showed subdivision into multiple pseudolobules, which were characterized by fibrovascular and ductular areas radiating from perilobular septa, and an expanding periphery of normal appearing hepatocytes. Immunohistochemical analysis showed continuous transitions from normal hepatocytes in the periphery of the pseudolobules, which expressed only the keratins 8 and 18, to small hepatocytes and ductular aggregates in the center of the pseudolobules, both of which also expressed the keratins 7 and 19. Ductular metaplasia of hepatocytes was always accompanied by sinusoidal endothelial cells stained by the endothelial markers BMA 120, M 616, and by an increase in collagenous fibers especially of type III. Further development of this fibrovascular and ductular transformation lead to subdivision of the involved pseudolobules. The pseudolobules had similar mean sizes, irrespective of their site in the periphery or the center of the FNHs, showing that proliferation, fibrovascular and ductular transformation and subdivision of these micronodules are a basic histogenetic phenomenon in FNH. The findings indicate that local changes in the interrelations between liver epithelial and mesenchymal cells influence substantially the abnormal but nevertheless regulated growth of liver parenchyma which gives rise to FNH.
Wierk, Jannika Katharina; Langbehn, Annette; Kamper, Maria; Richter, Stefanie; Burda, Paul-Christian; Heussler, Volker Theo; Deschermeier, Christina
2013-01-01
Mitogen-activated protein kinases (MAPKs) regulate key signaling events in eukaryotic cells. In the genomes of protozoan Plasmodium parasites, the causative agents of malaria, two genes encoding kinases with significant homology to other eukaryotic MAPKs have been identified (mapk1, mapk2). In this work, we show that both genes are transcribed during Plasmodium berghei liver stage development, and analyze expression and subcellular localization of the PbMAPK1 protein in liver stage parasites. Live cell imaging of transgenic parasites expressing GFP-tagged PbMAPK1 revealed a nuclear localization of PbMAPK1 in the early schizont stage mediated by nuclear localization signals in the C-terminal domain. In contrast, a distinct localization of PbMAPK1 in comma/ring-shaped structures in proximity to the parasite’s nuclei and the invaginating parasite membrane was observed during the cytomere stage of parasite development as well as in immature blood stage schizonts. The PbMAPK1 localization was found to be independent of integrity of a motif putatively involved in ATP binding, integrity of the putative activation motif and the presence of a predicted coiled-coil domain in the C-terminal domain. Although PbMAPK1 knock out parasites showed normal liver stage development, the kinase may still fulfill a dual function in both schizogony and merogony of liver stage parasites regulated by its dynamic and stage-dependent subcellular localization. PMID:23544094
Cassiman, David; Libbrecht, Louis; Sinelli, Nicoletta; Desmet, Valeer; Denef, Carl; Roskams, Tania
2002-01-01
In the rat the hepatic branch of the nervus vagus stimulates proliferation of hepatocytes after partial hepatectomy and growth of bile duct epithelial cells after bile duct ligation. We studied the effect of hepatic vagotomy on the activation of the hepatic progenitor cell compartment in human and rat liver. The number of hepatic progenitor cells and atypical reactive ductular cells in transplanted (denervated) human livers with hepatitis was significantly lower than in innervated matched control livers and the number of oval cells in vagotomized rat livers with galactosamine hepatitis was significantly lower than in livers of sham-operated rats with galactosamine hepatitis. The expression of muscarinic acetylcholine receptors (M1-M5 receptor) was studied by immunohistochemistry and reverse transcriptase-polymerase chain reaction. In human liver, immunoreactivity for M3 receptor was observed in hepatic progenitor cells, atypical reactive ductules, intermediate hepatocyte-like cells, and bile duct epithelial cells. mRNA for the M1-M3 and the M5 receptor, but not the M4 receptor, was detected in human liver homogenates. In conclusion, the hepatic vagus branch stimulates activation of the hepatic progenitor cell compartment in diseased liver, most likely through binding of acetylcholine to the M3 receptor expressed on these cells. These findings may be of clinical importance for patients with a transplant liver. PMID:12163377
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, P.; Schlemper, B.; Molitor, E.
The ability of isolated rat liver endothelial and Kupffer cells to activate benzo(a)pyrene (BP), trans-7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene (DDBP), trans-1,2-dihydroxy-1,2-dihydrochrysene (DDCH), and aflatoxin B{sub 1} (AFB{sub 1}) to mutagenic metabolites was assessed by means of a cell-mediated bacterial mutagenicity assay and compared with the ability of parenchymal cells to activate these compounds. Endothelial and Kupffer cells from untreated rats were able to activate AFB{sub 1} and DDBP; DDBP was activated even in the absence of an NADPH-generating system. Pretreating the animals with Aroclor 1254 strongly enhanced the mutagenicity of the dihydrodiol, whereas the mutagenicity of AFB{sub 1} showed a slight increase. BP andmore » DDCH were only activated by endothelial and Kupffer cells isolated from Aroclor 1254-pretreated rats. Parenchymal cells form untreated animals activated all four carcinogens tested; Aroclor 1254 enhanced the parenchymal cell-mediated mutagenicity of BP and DDCH but did not affect that of DDBP and clearly reduced that of AFB{sub 1}. The reduced mutagenicity of AFB{sub 1} correlates with the decrease in the amount of 2{alpha}-hydroxytestosterone formed when testosterone was incubated with parenchymal cell microsomes from Aroclor 1254-pretreated rats (compared with microsomes from untreated animals): the formation of 2{alpha}-hydroxytestosterone is specifically catalyzed by cytochrome P-450h, a hemoprotein thought to be involved in the activation of AFB{sub 1}. These results show that not only rat liver parenchymal cells, but also endothelial and Kupffer cells, activated several carcinogens to mutagenic metabolites.« less
Pfeiffer, Elisa; Zeilinger, Katrin; Seehofer, Daniel; Damm, Georg
2016-01-01
Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine1. Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique. Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation. Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models. PMID:27077489
Kegel, Victoria; Deharde, Daniela; Pfeiffer, Elisa; Zeilinger, Katrin; Seehofer, Daniel; Damm, Georg
2016-03-30
Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine(1). Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique. Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation. Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models.
Establishment and characterization of a unique 1 microm diameter liver-derived progenitor cell line.
Aravalli, Rajagopal N; Behnan Sahin, M; Cressman, Erik N K; Steer, Clifford J
2010-01-01
Liver-derived progenitor cells (LDPCs) are recently identified novel stem/progenitor cells from healthy, unmanipulated adult rat livers. They are distinct from other known liver stem/progenitor cells such as the oval cells. In this study, we have generated a LDPC cell line RA1 by overexpressing the simian virus 40 (SV40) large T antigen (TAg) in primary LDPCs. This cell line was propagated continuously for 55 passages in culture, after which it became senescent. Interestingly, following transformation with SV40 TAg, LDPCs decreased in size significantly and the propagating cells measured 1 microm in diameter. RA1 cells proliferated in vitro with a doubling time of 5-7 days, and expressed cell surface markers of LDPCs. In this report, we describe the characterization of this novel progenitor cell line that might serve as a valuable model to study liver cell functions and stem cell origin of liver cancers. Copyright 2009 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Jon M.; Diamond, Deborah L.; Chan, Eric Y.
2005-06-01
The development of a reproducible model system for the study of Hepatitis C virus (HCV) infection has the potential to significantly enhance the study of virus-host interactions and provide future direction for modeling the pathogenesis of HCV. While there are studies describing global gene expression changes associated with HCV infection, changes in the proteome have not been characterized. We report the first large scale proteome analysis of the highly permissive Huh-7.5 cell line containing a full length HCV replicon. We detected > 4,400 proteins in this cell line, including HCV replicon proteins, using multidimensional liquid chromatographic (LC) separations coupled tomore » mass spectrometry (MS). The set of Huh-7.5 proteins confidently identified is, to our knowledge, the most comprehensive yet reported for a human cell line. Consistent with the literature, a comparison of Huh-7.5 cells (+) and (-) the HCV replicon identified expression changes of proteins involved in lipid metabolism. We extended these analyses to liver biopsy material from HCV-infected patients where > 1,500 proteins were detected from 2 {micro}g protein lysate using the Huh-7.5 protein database and the accurate mass and time (AMT) tag strategy. These findings demonstrate the utility of multidimensional proteome analysis of the HCV replicon model system for assisting the determination of proteins/pathways affected by HCV infection. Our ability to extend these analyses to the highly complex proteome of small liver biopsies with limiting protein yields offers the unique opportunity to begin evaluating the clinical significance of protein expression changes associated with HCV infection.« less
Inactivated Orf virus (Parapoxvirus ovis) elicits antifibrotic activity in models of liver fibrosis.
Nowatzky, Janina; Knorr, Andreas; Hirth-Dietrich, Claudia; Siegling, Angela; Volk, Hans-Dieter; Limmer, Andreas; Knolle, Percy; Weber, Olaf
2013-05-01
Inactivated Orf virus (ORFV, Parapoxvirus ovis) demonstrates strong antiviral activity in animal models including a human hepatitis B virus (HBV)-transgenic mouse. In addition, expression of interferon (IFN)-γ and interleukin-10 (IL-10) was induced after administration of inactivated ORFV in these mice. IFN-γ and IL-10 are known to elicit antifibrotic activity. We therefore aimed to study antifibrotic activity of inactivated ORFV in models of liver fibrosis. We characterized ORFV-induced hepatic cytokine expression in rats. We then studied ORFV in two models of liver fibrosis in rats, pig serum-induced liver fibrosis and carbon tetrachloride (CCL4 )-induced liver fibrosis. ORFV induced hepatic expression of IFN-γ and IL-10 in rats. ORFV mediated antifibrotic activity when administrated concomitantly with the fibrosis-inducing agents in both models of liver fibrosis. Importantly, when CCL4 -induced liver fibrosis was already established, ORFV application still showed significant antifibrotic activity. In addition, we were able to demonstrate a direct antifibrotic effect of ORFV on stellate cells. These results establish a potential novel antifibrotic therapeutic approach that not only prevents but also resolves established liver fibrosis. Further studies are required to unravel the details of the mechanisms involved. © 2012 The Japan Society of Hepatology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osna, Natalia A., E-mail: nosna@UNMC.edu; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105; White, Ronda L.
The proteasome is a multi-catalytic protein degradation enzyme that is regulated by ethanol-induced oxidative stress; such suppression is attributed to CYP2E1-generated metabolites. However, under certain conditions, it appears that in addition to oxidative stress, other mechanisms are also involved in proteasome regulation. This study investigated whether impaired protein methylation that occurs during exposure of liver cells to ethanol, may contribute to suppression of proteasome activity. We measured the chymotrypsin-like proteasome activity in Huh7CYP cells, hepatocytes, liver cytosols and nuclear extracts or purified 20S proteasome under conditions that maintain or prevent protein methylation. Reduction of proteasome activity of hepatoma cell andmore » hepatocytes by ethanol or tubercidin was prevented by simultaneous treatment with S-adenosylmethionine (SAM). Moreover, the tubercidin-induced decline in proteasome activity occurred in both nuclear and cytosolic fractions. In vitro exposure of cell cytosolic fractions or highly purified 20S proteasome to low SAM:S-adenosylhomocysteine (SAH) ratios in the buffer also suppressed proteasome function, indicating that one or more methyltransferase(s) may be associated with proteasomal subunits. Immunoblotting a purified 20S rabbit red cell proteasome preparation using methyl lysine-specific antibodies revealed a 25 kDa proteasome subunit that showed positive reactivity with anti-methyl lysine. This reactivity was modified when 20S proteasome was exposed to differential SAM:SAH ratios. We conclude that impaired methylation of proteasome subunits suppressed proteasome activity in liver cells indicating an additional, yet novel mechanism of proteasome activity regulation by ethanol.« less
Hisada, Masayuki; Ota, Yoshihiro; Zhang, Xiuying; Cameron, Andrew M; Gao, Bin; Montgomery, Robert A; Williams, George Melville; Sun, Zhaoli
2015-01-01
Livers from Lewis rats fed with 7% alcohol for 5 weeks were used for transplantation. Reduced sized (50%) livers or whole livers were transplanted into normal DA recipients, which, in this strain combination, survive indefinitely when the donor has not been fed alcohol. However, none of the rats survived a whole fatty liver transplant while six of seven recipients of reduced sized alcoholic liver grafts survived long term. SDF-1 and HGF were significantly increased in reduced size liver grafts compared to whole liver grafts. Lineage-negative Thy-1+CXCR4+CD133+ stem cells were significantly increased in the peripheral blood and in allografts after reduced size fatty liver transplantation. In contrast, there were meager increases in cells reactive with anti Thy-1, CXCR4 and CD133 in peripheral blood and allografts in whole alcoholic liver recipients. The provision of plerixafor, a stem cell mobilizer, salvaged 5 of 10 whole fatty liver grafts. Conversely, blocking SDF-1 activity with neutralizing antibodies diminished stem cell recruitment and four of five reduced sized fatty liver recipients died. Thus chemokine insuficiency was associated with transplant failure of whole grafts which was overcome by the increased regenerative requirements promoted by the small grafts and mediated by SDF-1 resulting in stem cell influx. PMID:22994609
MiR-525-3p Enhances the Migration and Invasion of Liver Cancer Cells by Downregulating ZNF395
Pang, Fei; Zha, Ruopeng; Zhao, Yingjun; Wang, Qifeng; Chen, Di; Zhang, Zhenfeng; Chen, Taoyang; Yao, Ming; Gu, Jianren; He, Xianghuo
2014-01-01
Liver cancer is one of leading causes of cancer-related deaths. A deeper mechanistic understanding of liver cancer could lead to the development of more effective therapeutic strategies. In our previous work, we screened 646 miRNAs and identified 11 that regulate liver cancer cell migration. The current study shows that miR-525-3p is frequently up-regulated in liver cancer tissues, and enhanced expression of miR-525-3p can promote liver cancer cell migration and invasion. Zinc finger protein 395 (ZNF395) is the direct functional target gene for miR-525-3p, and it is frequently down-regulated in liver cancer tissues. High expression of ZNF395 can significantly inhibit while knockdown of ZNF395 expression can markedly enhance the migration and invasion of liver cancer cells, suggesting that ZNF395 suppresses metastasis in liver cancer. Down-regulation of ZNF395 can mediate miR-525-3p induced liver cancer cell migration and invasion. In conclusion, miR-525-3p promotes liver cancer cell migration and invasion by directly targeting ZNF395, and the fact that miR-525-3p and ZNF395 both play important roles in liver cancer progression makes them potential therapeutic targets. PMID:24599008
Mamoon, Abulkhair; Subauste, Angela; Subauste, Maria C; Subauste, Jose
2014-10-25
Retinoic acid (RA) affects multiple aspects of development, embryogenesis and cell differentiation processes. The liver is a major organ that stores RA suggesting that retinoids play an important role in the function of hepatocytes. In our previous studies, we have demonstrated the involvement of small heterodimer partner (SHP) in RA-induced signaling in a non-transformed hepatic cell line AML 12. In the present study, we have identified several critical genes in lipid homeostasis (Apoa1, Apoa2 and ApoF) that are repressed by RA-treatment in a SHP dependent manner, in vitro and also in vivo with the use of the SHP null mice. In a similar manner, RA also represses several critical genes involved in bile acid metabolism (Cyp7a1, Cyp8b1, Mdr2, Bsep, Baat and Ntcp) via upregulation of SHP. Collectively our data suggest that SHP plays a major role in RA-induced potential changes in pathophysiology of metabolic disorders in the liver. Copyright © 2014. Published by Elsevier B.V.
Paquin-Proulx, Dominic; Greenspun, Benjamin C; Pasquet, Lise; Strunz, Benedikt; Aleman, Soo; Falconer, Karolin; Terabe, Masaki; Berzofsky, Jay A; Sandberg, Johan K; Melum, Espen; Nixon, Douglas F; Björkström, Niklas K
2018-04-20
Innate lymphocytes are selectively enriched in the liver where they have important roles in liver immunology. Murine studies have shown that type I NKT cells can promote liver inflammation whereas type II NKT cells have an anti-inflammatory role. In humans, type II NKT cells were found to accumulate in the gut during inflammation and IL13Rα2 was proposed as a marker for these cells. In the human liver, less is known about type I and II NKT cells. Here, we studied the phenotype and function of human liver T cells expressing IL13Rα2. We found that IL13Rα2 was expressed by around 1% of liver resident memory T cells but not on circulating T cells. In support of their innate-like T cell character, the IL13Rα2 + T cells had higher expression of PLZF compared to IL13Rα2 - T cells and possessed the capacity to produce IL-22. However, only a minority of human liver sulfatide-reactive type II NKT cells expressed IL13Rα2. Collectively, these findings suggest that IL13Rα2 identifies tissue-resident intrahepatic T cells with innate characteristics and the capacity to produce IL-22. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.