Science.gov

Sample records for liver cytochrome p-450

  1. Nerval influences on liver cytochrome P450.

    PubMed

    Klinger, W; Karge, E; Danz, M; Krug, M

    1995-09-01

    In male young adult Wistar rats the influences of nucleus raphe electrocoagulation, spinal cord dissection (cordotomy between C7 and Th1), vagotomy and denervation of liver hilus by phenol on liver cytochrome P450-system (cytochrome P450 concentration, ethylmorphine N-demethylation and ethoxycoumarin O-deethylation activities, hexobarbitone sleeping time) were investigated. In general the influences were small or negligible when compared with sham operated controls, only after vagotomy the depressing effect of sham operation was abolished. In all cases sham operation had a depressing effect until up to five weeks after operation.

  2. [Purification of cytochrome P-450 and NADPH cytochrome p-450 reductase from human liver].

    PubMed

    Isa, M; Cumps, J; Fossoul, C; Atassi, G

    1990-01-01

    Two methods for the purification of cytochromes-P450 from microsomes of human liver are described. Method A: Cyt-P450 were solubilized from microsomes using a non ionic detergent, the Lubrol. The Cyt-P450 were purified by affinity, hydrophobicity followed by ion-exchange chromatography on DEAE-5PW column (HPLC) with an overall yield of 18% and a specific activity of 10 nmole/mg of protein. The recovery of NADPH Cyt-P450 reductase by method A (affinity) is about 60% with a specific activity of 16.2 U.I./mg of protein. Method B: Cyt-P450 were solubilized from microsomes using a zwitterionic detergent, the CHAPS. Cyt-P450 were filtered and separated by chromatofocusing on Mono-P column (HPLC). By this method it was possible to increase strongly the specific activity keeping a yield of 50% of Cyt-P450. Also it was possible to apply this method to small samples of human liver like biopsies (0.5 to 2.5 g).

  3. Precocious development of cytochrome P-450 in neonatal rat liver after glucocorticoid treatment.

    PubMed Central

    Leakey, J E; Fouts, J R

    1979-01-01

    Intraperitoneal injection of neonatal rats with glucocorticoid hormones causes precocious development of hepatic cytochrome P-450. Glucagon injection fails to stimulate this cytochrome P-450 development. Adult liver cytochrome P-450 is less responsive to glucocorticoid stimulation than is that of neonatal rat liver. Adrenalectomy of prematurely delivered neonatal animals prevents the early postnatal development of cytochrome P-450. Glucocorticoids failed to increase cytochrome P-450 concentrations in foetal rat liver. These findings imply that, although glucocorticoids are mandatory regulatory factors controlling cytochrome P-450 development, they are not themselves the 'trigger' initiating onset of that development. PMID:40549

  4. Cytochrome P450 in living donor liver transplantation.

    PubMed

    Chiu, King-Wah; Nakano, Toshiaki; Chen, Kuang-Den; Hsu, Li-Wen; Lai, Chia-Yun; Huang, Ching-Yin; Cheng, Yu-Fan; Goto, Shigeru; Chen, Chao-Long

    2015-05-15

    Cytochrome P450 metabolizes many drugs in the liver. Three genotypes of CYP2C19 with extensive, intermediate, and poor metabolizing activity, respectively, have been identified in peripheral blood of transplant recipients and new liver grafts in living donor liver transplantation (LDLT). The expression of the final genotype in liver graft biopsies depends on the donor, whereas the expression in peripheral blood mononuclear cells depends on the recipient. The metabolizing isoenzyme of the major anti-rejection agents passes through CYP3A4, CYP3A5 and MDR1, which have also been identified to have similar biological characteristics as genotype of CYP2C19 in liver tissue. Recently, pyrosequencing has been used to investigate the expressions of different genotypes in liver grafts in LDLT. This review focuses on recent findings regarding the biological expressions of the CYP2C19, CYP3A4, CYP3A5 and MRD1 genotypes in liver grafts before and after LDLT. The application of pyrosequencing may be beneficial in further research on liver transplantation. Laser capture microdissection of hepatocytes in liver grafts may be a direction for future research.

  5. Correlation of Cytochrome P450 Oxidoreductase Expression with the Expression of 10 Isoforms of Cytochrome P450 in Human Liver

    PubMed Central

    Zhang, Hai-Feng; Li, Zhi-Hui; Liu, Jia-Yu; Liu, Ting-Ting; Wang, Ping; Fang, Yan; Zhou, Jun; Cui, Ming-Zhu; Gao, Na; Tian, Xin; Gao, Jie; Wen, Qiang; Jia, Lin-Jing

    2016-01-01

    Human cytochrome P450 oxidoreductase (POR) provides electrons for all microsomal cytochromes P450 (P450s) and plays an indispensable role in drug metabolism catalyzed by this family of enzymes. We evaluated 100 human liver samples and found that POR protein content varied 12.8-fold, from 12.59 to 160.97 pmol/mg, with a median value of 67.99 pmol/mg; POR mRNA expression varied by 26.4-fold. POR activity was less variable with a median value of 56.05 nmol/min per milligram. Cigarette smoking and alcohol consumption clearly influenced POR activity. Liver samples with a 2286822 TT genotype had significantly higher POR mRNA expression than samples with CT genotype. Homozygous carriers of POR2286822C>T, 2286823G>A, and 3823884A>C had significantly lower POR protein levels compared with the corresponding heterozygous carriers. Liver samples from individuals homozygous at 286823G>A, 1135612A>G, and 10954732G>A generally had lower POR activity levels than those from heterozygous or wild-type samples, whereas the common variant POR*28 significantly increased POR activity. There was a strong association between POR and the expression of P450 isoforms at the mRNA and protein level, whereas the relationship at the activity level, as well as the effect of POR protein content on P450 activity, was less pronounced. POR transcription was strongly correlated with both hepatocyte nuclear factor 4 alpha and pregnane X receptor mRNA levels. In conclusion, we have elucidated some potentially important correlations between POR single-nucleotide polymorphisms and POR expression in the Chinese population and have developed a database that correlates POR expression with the expression and activity of 10 P450s important in drug metabolism. PMID:27271371

  6. Interaction of rocuronium with human liver cytochromes P450.

    PubMed

    Anzenbacherova, Eva; Spicakova, Alena; Jourova, Lenka; Ulrichova, Jitka; Adamus, Milan; Bachleda, Petr; Anzenbacher, Pavel

    2015-02-01

    Rocuronium is a neuromuscular blocking agent acting as a competitive antagonist of acetylcholine. Results of an inhibition of eight individual liver microsomal cytochromes P450 (CYP) are presented. As the patients are routinely premedicated with diazepam, possible interaction of diazepam with rocuronium has been also studied. Results indicated that rocuronium interacts with human liver microsomal CYPs by binding to the substrate site. Next, concentration dependent inhibition of liver microsomal CYP3A4 down to 42% (at rocuronium concentration 189 μM) was found. This effect has been confirmed with two CYP3A4 substrates, testosterone (formation of 6β-hydroxytestosterone) and diazepam (temazepam formation). CYP2C9 and CYP2C19 activities were inhibited down to 75-80% (at the same rocuronium concentration). Activities of other microsomal CYPs have not been inhibited by rocuronium. To prove the possibility of rocuronium interaction with other drugs (diazepam), the effect of rocuronium on formation of main diazepam metabolites, temazepam (by CYP3A4) and desmethyldiazepam, (also known as nordiazepam; formed by CYP2C19) in primary culture of human hepatocytes has been examined. Rocuronium has caused inhibition of both reactions by 20 and 15%, respectively. The results open a possibility that interactions of rocuronium with drugs metabolized by CYP3A4 (and possibly also CYP2C19) may be observed. Copyright © 2014 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  7. Therapeutic doses of SkQ1 do not induce cytochromes P450 in rat liver.

    PubMed

    Myasoedova, K N; Silachev, D N

    2014-10-01

    The effect of SkQ1 (a mitochondria-targeted antioxidant) on the level of cytochromes P450 in rat liver was studied. It was found that administration of therapeutic dose of SkQ1 with drinking water for 5 days (250 nmol/kg of body weight per day) did not alter the level of cytochromes P450. Under the same conditions, the standard dose of phenobarbital used for the induction of cytochromes P450 caused the 2.7-fold increase in the content of these cytochromes. We conclude that therapeutic doses of SkQ1 do not induce cytochromes P450 in rats.

  8. Human Liver Cytochrome P450 3A4 Ubiquitination

    PubMed Central

    Wang, YongQiang; Kim, Sung-Mi; Trnka, Michael J.; Liu, Yi; Burlingame, A. L.; Correia, Maria Almira

    2015-01-01

    CYP3A4 is an abundant and catalytically dominant human liver endoplasmic reticulum-anchored cytochrome P450 enzyme engaged in the biotransformation of endo- and xenobiotics, including >50% of clinically relevant drugs. Alterations of CYP3A4 protein turnover can influence clinically relevant drug metabolism and bioavailability and drug-drug interactions. This CYP3A4 turnover involves endoplasmic reticulum-associated degradation via the ubiquitin (Ub)-dependent 26 S proteasomal system that relies on two highly complementary E2 Ub-conjugating-E3 Ub-ligase (UBC7-gp78 and UbcH5a-C terminus of Hsc70-interacting protein (CHIP)-Hsc70-Hsp40) complexes, as well as protein kinases (PK) A and C. We have documented that CYP3A4 Ser/Thr phosphorylation (Ser(P)/Thr(P)) by PKA and/or PKC accelerates/enhances its Lys ubiquitination by either of these E2-E3 systems. Intriguingly, CYP3A4 Ser(P)/Thr(P) and ubiquitinated Lys residues reside within the cytosol-accessible surface loop and/or conformationally assembled acidic Asp/Glu clusters, leading us to propose that such post-translational Ser/Thr protein phosphorylation primes CYP3A4 for ubiquitination. Herein, this possibility was examined through various complementary approaches, including site-directed mutagenesis, chemical cross-linking, peptide mapping, and LC-MS/MS analyses. Our findings reveal that such CYP3A4 Asp/Glu/Ser(P)/Thr(P) surface clusters are indeed important for its intermolecular electrostatic interactions with each of these E2-E3 subcomponents. By imparting additional negative charge to these Asp/Glu clusters, such Ser/Thr phosphorylation would generate P450 phosphodegrons for molecular recognition by the E2-E3 complexes, thereby controlling the timing of CYP3A4 ubiquitination and endoplasmic reticulum-associated degradation. Although the importance of phosphodegrons in the CHIP targeting of its substrates is known, to our knowledge this is the first example of phosphodegron involvement in gp78-substrate

  9. Absence of cytochrome P450 2A5 enhances alcohol-induced liver injury in mice.

    PubMed

    Hong, Feng; Liu, Xiyu; Ward, Stephen S; Xiong, Huabao; Cederbaum, Arthur I; Lu, Yongke

    2015-06-01

    Ethanol can induce cytochrome P450 2E1, an active generator of reactive oxygen species, and this cytochrome is considered a risk factor for oxidative liver injury. Recently, we found that in addition to P450 2E1 also cytochrome P450 2A5, another isoform of cytochrome P450, can be induced by ethanol, and that ethanol induction of cytochrome P450 2A5 is P450 2E1-dependent. To investigate the role of cytochrome P450 2A5 in alcohol-induced liver injury. Cytochrome P450 2A5-knockout mice and wild type mice were fed the Lieber-Decarli ethanol liquid diet to induce liver injury. Controls were fed the Lieber-Decarli control diet. After 4 weeks of feeding with Lieber-Decarli diet, ethanol-induced liver injury was enhanced in the knockout mice compared with wild type mice, as indicated by serum transaminases, hepatic fat accumulation (steatosis), and necroinflammation observed in liver sections with Haematoxylin & Eosin staining. Ethanol-induced oxidative stress was also higher in the knockout mice than the wild types. Ethanol feeding induced cytochrome P450 2A5 in wild type mice but not in the knockout mice, while induction of cytochrome P450 2E1 was comparable in the knockout and wild type mice. These results suggest that cytochrome P450 2A5 protects against ethanol-induced oxidative liver injury. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  10. KINETICS OF BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P450 ISOENZYMES IN HUMAN LIVER MICROSOMES

    EPA Science Inventory

    Kinetics of Bromodichloromethane Metabolism by
    Cytochrome P450 Isoenzymes in Human Liver Microsomes

    Guangyu Zhao and John W. Allis

    ABSTRACT
    The kinetic constants for the metabolism of bromodichloromethane (BDCM) by three cytochrome P450 (CYP) isoenzymes have ...

  11. KINETICS OF BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P450 ISOENZYMES IN HUMAN LIVER MICROSOMES

    EPA Science Inventory

    Kinetics of Bromodichloromethane Metabolism by
    Cytochrome P450 Isoenzymes in Human Liver Microsomes

    Guangyu Zhao and John W. Allis

    ABSTRACT
    The kinetic constants for the metabolism of bromodichloromethane (BDCM) by three cytochrome P450 (CYP) isoenzymes have ...

  12. Monoclonal antibodies to ethanol-induced rat liver cytochrome P-450 that metabolizes aniline and nitrosamines.

    PubMed

    Ko, I Y; Park, S S; Song, B J; Patten, C; Tan, Y Z; Hah, Y C; Yang, C S; Gelboin, H V

    1987-06-15

    Hybridomas were prepared from mouse myeloma cells and spleen cells derived from female BALB/c mice that had been immunized with a partially purified ethanol-induced rat liver cytochrome P-450 (P-450et). Monoclonal antibodies (MAbs) produced by the hybridomas were screened for binding to P-450et with a radioimmunoassay. Thirty-one independent hybrid clones produced MAbs that had a high affinity for P-450et. Each clone produced MAbs of a single subclass of the mouse immunoglobulins IgG1, IgG2a, IgM, or IgA. Ten of the 31 MAbs also immunoprecipitated P-450et as determined by Ouchterlony double-immunodiffusion analyses. One of the MAbs was tested for cross-reactivity with other rabbit and rat liver cytochromes P-450 and was found not to cross-react with rat liver P-450 induced by either phenobarbital, beta-naphthoflavone, or rabbit liver P-450LM2 or P-450LM4. Nine of the MAbs were tested for cross-reactivity with rat liver clofibrate-induced P-450, rat liver pregnenolone-16-alpha-carbonitrile-induced P-450, and a human liver P-450. All the MAbs showed no cross-reactivity except for one MAb which cross-reacted with both pregnenolone-16-alpha-carbonitrile and human P-450 and three MAbs which cross-reacted with human P-450. Three antigen-precipitating MAbs and four nonprecipitating MAbs were tested for their effects on the aniline p-hydroxylase activity of liver microsomes of untreated rats and from rats treated with acetone, pyrazole, methylpyrazole, or imidazole. One of the seven MAbs tested, 1-91-3, inhibited enzyme activity of acetone-, pyrazole-, or methylpyrazole-induced microsomes by 54, 47, and 48%, respectively. This indicates that at least 50% of microsomal cytochrome P-450 aniline p-hydroxylase activity in the latter is a function of a P-450 enzyme that contained the epitope to which the MAb 1-91-3 is directed. With untreated and imidazole-induced microsomes, 32 and 21% inhibition of the enzyme activity was observed. In reconstituted systems containing

  13. Spaceflight Effects on Cytochrome P450 Content in Mouse Liver

    PubMed Central

    Moskaleva, Natalia; Moysa, Alexander; Novikova, Svetlana; Tikhonova, Olga; Zgoda, Victor; Archakov, Alexander

    2015-01-01

    Hard conditions of long-term manned spaceflight can affect functions of many biological systems including a system of drug metabolism. The cytochrome P450 (CYP) superfamily plays a key role in the drug metabolism. In this study we examined the hepatic content of some P450 isoforms in mice exposed to 30 days of space flight and microgravity. The CYP content was established by the mass-spectrometric method of selected reaction monitoring (SRM). Significant changes in the CYP2C29, CYP2E1 and CYP1A2 contents were detected in mice of the flight group compared to the ground control group. Within seven days after landing and corresponding recovery period changes in the content of CYP2C29 and CYP1A2 returned to the control level, while the CYP2E1 level remained elevated. The induction of enzyme observed in the mice in the conditions of the spaceflight could lead to an accelerated biotransformation and change in efficiency of pharmacological agents, metabolizing by corresponding CYP isoforms. Such possibility of an individual pharmacological response to medication during long-term spaceflights and early period of postflight adaptation should be taken into account in space medicine. PMID:26561010

  14. Cytochromes P450

    PubMed Central

    Werck-Reichhart, Danièle; Bak, Søren; Paquette, Suzanne

    2002-01-01

    There are 272 cytochrome P450 genes (including 26 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest families of proteins in higher plants. This explosion of the P450 family is thought to have occurred via gene duplication and conversion, and to result from the need of sessile plants to adapt to a harsh environment and to protect themselves from pathogens and predators. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions. Their biological functions range from the synthesis of structural macromolecules such as lignin, cutin or suberin, to the synthesis or catabolism of all types of hormone or signaling molecules, the synthesis of pigments and defense compounds, and to the metabolism of xenobiotics. In despite of a huge acceleration in our understanding of plant P450 functions in the recent years, the vast majority of these functions remain completely unknown. PMID:22303202

  15. Inducible cytochrome P-450 from rat liver mitochondria

    SciTech Connect

    Raza, H.; Shayiq, F.M.; Avadhani, N.G.

    1987-05-01

    In the present study they have purified US -naphthoflavone (BNF, which induces isotypes similar to 3-MC) and PB induced mitochondrial isoforms. They have been able to purify two isoforms with molecular weights of 54 Kd and 52 Kd from BNF induced mitochondria. Only the 54 KD form, but not the 52 KD species reacts with the polyclonal antibody to microsomal P-450c, though, both show arylhydrocarbon hydroxylase activity in an in vitro system reconstituted with adrenodoxin and adrenodoxin-reductase. Fingerprint analyses, N-terminal sequencing and use of monoclonal antibody probes show that the two mitochondrial isoforms are different from the microsomal P-450c. Further, the 54 Kd mitochondrial isoform is not detected in control mitochondria indicating that it is truly an induced form. Similarly, a PB induced mitochondrial form which exhibits physical, immunochemical and enzymatic properties different from the microsomal P-450b has also been purified.

  16. Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver

    PubMed Central

    Yang, Xia; Zhang, Bin; Molony, Cliona; Chudin, Eugene; Hao, Ke; Zhu, Jun; Gaedigk, Andrea; Suver, Christine; Zhong, Hua; Leeder, J. Steven; Guengerich, F. Peter; Strom, Stephen C.; Schuetz, Erin; Rushmore, Thomas H.; Ulrich, Roger G.; Slatter, J. Greg; Schadt, Eric E.; Kasarskis, Andrew; Lum, Pek Yee

    2010-01-01

    Liver cytochrome P450s (P450s) play critical roles in drug metabolism, toxicology, and metabolic processes. Despite rapid progress in the understanding of these enzymes, a systematic investigation of the full spectrum of functionality of individual P450s, the interrelationship or networks connecting them, and the genetic control of each gene/enzyme is lacking. To this end, we genotyped, expression-profiled, and measured P450 activities of 466 human liver samples and applied a systems biology approach via the integration of genetics, gene expression, and enzyme activity measurements. We found that most P450s were positively correlated among themselves and were highly correlated with known regulators as well as thousands of other genes enriched for pathways relevant to the metabolism of drugs, fatty acids, amino acids, and steroids. Genome-wide association analyses between genetic polymorphisms and P450 expression or enzyme activities revealed sets of SNPs associated with P450 traits, and suggested the existence of both cis-regulation of P450 expression (especially for CYP2D6) and more complex trans-regulation of P450 activity. Several novel SNPs associated with CYP2D6 expression and enzyme activity were validated in an independent human cohort. By constructing a weighted coexpression network and a Bayesian regulatory network, we defined the human liver transcriptional network structure, uncovered subnetworks representative of the P450 regulatory system, and identified novel candidate regulatory genes, namely, EHHADH, SLC10A1, and AKR1D1. The P450 subnetworks were then validated using gene signatures responsive to ligands of known P450 regulators in mouse and rat. This systematic survey provides a comprehensive view of the functionality, genetic control, and interactions of P450s. PMID:20538623

  17. Marmoset cytochrome P450 2J2 mainly expressed in small intestines and livers effectively metabolizes human P450 2J2 probe substrates, astemizole and terfenadine.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Inoue, Takashi; Okamoto, Eriko; Sasaki, Erika; Yamazaki, Hiroshi

    2016-11-01

    1. Common marmoset (Callithrix jacchus), a New World Monkey, has potential to be a useful animal model in preclinical studies. However, drug metabolizing properties have not been fully understood due to insufficient information on cytochrome P450 (P450), major drug metabolizing enzymes. 2. Marmoset P450 2J2 cDNA was isolated from marmoset livers. The deduced amino acid sequence showed a high-sequence identity (91%) with cynomolgus monkey and human P450 2J2 enzymes. A phylogenetic tree revealed that marmoset P450 2J2 was evolutionarily closer to cynomolgus monkey and human P450 2J2 enzymes, than P450 2J forms in pigs, rabbits, rats or mice. 3. Marmoset P450 2J2 mRNA was abundantly expressed in the small intestine and liver, and to a lesser extent in the brain, lung and kidney. Immunoblot analysis also showed expression of marmoset P450 2J2 protein in the small intestine and liver. 4. Enzyme assays using marmoset P450 2J2 protein heterologously expressed in Escherichia coli indicated that marmoset P450 2J2 effectively catalyzed astemizole O-demethylation and terfenadine t-butyl hydroxylation, similar to human and cynomolgus monkey P450 2J2 enzymes. 5. These results suggest the functional characteristics of P450 2J2 enzymes are similar among marmosets, cynomolgus monkeys and humans.

  18. Cytochromes P450

    PubMed Central

    Bak, Søren; Beisson, Fred; Bishop, Gerard; Hamberger, Björn; Höfer, René; Paquette, Suzanne; Werck-Reichhart, Danièle

    2011-01-01

    There are 244 cytochrome P450 genes (and 28 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest gene families in plants. Contrary to what was initially thought, this family diversification results in very limited functional redundancy and seems to mirror the complexity of plant metabolism. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions leading to the precursors of structural macromolecules such as lignin, cutin, suberin and sporopollenin, or are involved in biosynthesis or catabolism of all hormone and signaling molecules, of pigments, odorants, flavors, antioxidants, allelochemicals and defense compounds, and in the metabolism of xenobiotics. The mechanisms of gene duplication and diversification are getting better understood and together with co-expression data provide leads to functional characterization. PMID:22303269

  19. Metabolism of sesamin by cytochrome P450 in human liver microsomes.

    PubMed

    Yasuda, Kaori; Ikushiro, Shinichi; Kamakura, Masaki; Ohta, Miho; Sakaki, Toshiyuki

    2010-12-01

    Metabolism of sesamin by cytochrome P450 (P450) was examined using yeast expression system and human liver microsomes. Saccharomyces cerevisiae cells expressing each of human P450 isoforms (CYP1A1, 1A2, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, and 3A4) were cultivated with sesamin, and monocatechol metabolite was observed in most of P450s. Kinetic analysis using the microsomal fractions of the recombinant S. cerevisiae cells revealed that CYP2C19 had the largest k(cat)/K(m) value. Based on the kinetic data and average contents of the P450 isoforms in the human liver, the putative contribution of P450s for sesamin metabolism was large in the order of CYP2C9, 1A2, 2C19, and 2D6. A good correlation was observed between sesamin catecholization activity and CYP2C9-specific activity in in vitro studies using 10 individual human liver microsomes, strongly suggesting that CYP2C9 is the most important P450 isoform for sesamin catecholization in human liver. Inhibition studies using each anti-P450 isoform-specific antibody confirmed that CYP2C9 was the most important, and the secondary most important P450 was CYP1A2. We also examined the inhibitory effect of sesamin for P450 isoform-specific activities and found a mechanism-based inhibition of CYP2C9 by sesamin. In contrast, no mechanism-based inhibition by sesamin was observed in CYP1A2-specific activity. Our findings strongly suggest that further studies are needed to reveal the interaction between sesamin and therapeutic drugs mainly metabolized by CYP2C9.

  20. Integration and expression of a rabbit liver cytochrome P-450 gene in transgenic Nicotiana tabacum.

    PubMed Central

    Saito, K; Noji, M; Ohmori, S; Imai, Y; Murakoshi, I

    1991-01-01

    Cytochrome P-450 is involved in the oxidative metabolism of a broad range of substrates. We have made a chimeric construct, pSN002, containing the cDNA for rabbit liver cytochrome P-450 (IIC14) under the control of the TR2' promoter for mannopine synthase in the Agrobacterium Ti plasmid. Nicotiana tabacum was transformed with Agrobacterium tumefaciens harboring a cointegrated plasmid pSN002::pGV2260. The presence of mRNA and of the translated protein from the chimeric cytochrome P-450 gene in transgenic plants was confirmed by RNA blot hybridization and by Western blot and immunohistochemical analyses, respectively. The transformants in which the foreign cytochrome P-450 protein is expressed show marked phenotypic changes, notably a tendency rapidly to senesce. We detected 2-propenylpyrrolidine, a degradative metabolite of nicotine alkaloids, in transgenic tobacco showing this pronounced phenotypic change. Such metabolism is likely to be due to the effect of senescence and not directly to the presence of the cytochrome P-450. Images PMID:1714583

  1. Marmoset cytochrome P450 2D8 in livers and small intestines metabolizes typical human P450 2D6 substrates, metoprolol, bufuralol and dextromethorphan.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Hagihira, Yuya; Murayama, Norie; Shimizu, Makiko; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2015-01-01

    1. Although the New World non-human primate, the common marmoset (Callithrix jacchus), is a potentially useful animal model, comprehensive understanding of drug metabolizing enzymes is insufficient. 2. A cDNA encoding a novel cytochrome P450 (P450) 2D8 was identified in marmosets. The amino acid sequence deduced from P450 2D8 cDNA showed a high sequence identity (83-86%) with other primate P450 2Ds. Phylogenetic analysis showed that marmoset P450 2D8 was closely clustered with human P450 2D6, unlike P450 2Ds of miniature pig, dog, rabbit, guinea pig, mouse or rat. 3. Marmoset P450 2D8 mRNA was predominantly expressed in the liver and small intestine among the tissues types analyzed, whereas marmoset P450 2D6 mRNA was expressed predominantly in the liver where P450 2D protein was detected by immunoblotting. 4. By metabolic assays using marmoset P450 2D8 protein heterologously expressed in Escherichia coli, although P450 2D8 exhibits lower catalytic efficiency compared to marmoset and human P450 2D6 enzymes, P450 2D8 mediated O-demethylations of metoprolol and dextromethorphan and bufuralol 1'-hydroxylation. 5. These results suggest that marmoset P450 2D8 (also expressed in the extrahepatic tissues) has potential roles in drug metabolism in a similar manner to those of human and marmoset P450 2D6.

  2. Progesterone hydroxylation by cytochromes P450 2C and 3A enzymes in marmoset liver microsomes.

    PubMed

    Nakanishi, Kazuyuki; Uehara, Shotaro; Uno, Yasuhiro; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2017-08-17

    1. Common marmosets (Callithrix jacchus) are potentially useful nonhuman primate models for preclinical drug metabolism studies. However, the roles of marmoset cytochrome P450 (P450) isoforms in the oxidation of endobiotic progesterone have not been fully investigated. In this study, the roles of marmoset P450 isoforms in progesterone hydroxylation were extensively determined. 2. The activities of liver microsomes from individual marmosets with respect to progesterone 21/17α- and 16α/6β-hydroxylation were significantly correlated with those for flurbiprofen 4-hydroxylation and midazolam 1'-hydroxylation, respectively, as similar correlations have been found in humans. Anti-P450 2 C and 3 A antibodies suppressed progesterone 21/17α- and 16α/6β-hydroxylation, respectively, in marmoset liver microsomes. 3. Recombinant marmoset P450 2C58 and 2C19 catalyzed progesterone to form 21-hydroxyprogesterone and 16α-hydroxyprogesterone, respectively, as major products with high maximum velocity/Km values of 0.53 and 0.089 mL/min/nmol, respectively. Recombinant marmoset P450 3A4/90 oxidized progesterone to form 6β-hydroxyprogesterone as a major product with homotropic cooperativity (>1 of Hill coefficients). 4. These results indicate that the overall activities and roles of liver microsomal P450 enzymes in marmoset livers are similar to those in humans, especially for progesterone 21/17α- and 16α/6β-hydroxylation by marmoset P450 2 C and 3 A enzymes, respectively, suggesting important roles for these P450 enzymes in the metabolism of endobiotics in marmosets.

  3. Ontogeny of Novel Cytochrome P450 Gene Isoforms during Postnatal Liver Maturation in Mice

    PubMed Central

    Cui, Julia Yue; Renaud, Helen J.

    2012-01-01

    The ontogeny of the first four families of cytochromes P450 (P450s) (i.e., Cyp1–Cyp4) can affect the biotransformation of drugs and dietary chemicals in liver, resulting in unique pharmacological reactions in children. Because genome-scale investigations have identified many novel P450 isoforms, it is critical to perform a systematic characterization of these P450s during liver development. In this study, livers were collected from C57BL/6 mice 2 days before birth and at various postnatal ages (0–45 days of age). The mRNA levels for 75 P450 isoforms (Cyp1–Cyp4) were quantified with branched DNA assays and reverse transcription-polymerase chain reaction assays. More than half of the mouse P450s are conserved in humans, but there are more isoforms in mice. The P450 mRNA levels increased after birth in mouse liver, forming four distinct ontogenic patterns. The majority of P450s form a total of eight genomic clusters, namely, Cyp1a1 and Cyp1a2 genes on chromosome 9 (cluster 1), Cyp2a, Cyp2b, Cyp2f, Cyp2g, and Cyp2t genes on chromosome 7 (cluster 2), Cyp2c genes on chromosome 19 (cluster 3), Cyp2d genes on chromosome 15 (cluster 4), Cyp2j genes on chromosome 4 (cluster 5), Cyp3a genes on chromosome 5 (cluster 6), Cyp4a, Cyp4b, and Cyp4x genes on chromosome 4 (cluster 7), and Cyp4f genes on chromosome 17 (cluster 8). Some P450 isoforms within the same genomic cluster showed similar ontogenic patterns. In conclusion, the present study revealed four patterns of ontogeny for P450s in liver and showed that many P450s within a genomic cluster exhibited similar ontogenic patterns, which suggests that some P450s within a cluster are likely regulated by a common pathway during liver development. PMID:22446519

  4. Isolation and characterization of a constitutive form of rabbit liver microsomal cytochrome P-450.

    PubMed

    Johnson, E F

    1980-01-10

    A heretofore unrecognized form of cytochrome P-450 was purified from rabbit liver microsomes with an average yield and purity similar to that of other highly purified forms of cytochrome P-450. Several properties of this cytochrome are contrasted with those of form 2, the major phenobarbital-inducible cytochrome P-450, form 4, the major 2,3,7,8-tetrachlorodibenzo-p-dioxin-inducible cytochrome, and form 6, a cytochrome that is selectively induced in liver microsomes by 2,3,7,8-tetrachlorodibenzo-p-dioxin during the perinatal period. Thes four forms can be distinguished by virtue of their molecular weights as determined using polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, by their respective peptide fingerprints, and by the monospecificity of their antisera. Since the enumerated properties are thought to reflect the primary structure of the cytochromes and since the observed differences are extensive, we suggest that these four forms are not derived from a common protein precursor.

  5. Toxic dark effects of protoporphyrin on the cytochrome P-450 system in rat liver microsomes.

    PubMed Central

    Williams, M; Van der Zee, J; Van Steveninck, J

    1992-01-01

    In erythropoietic protoporphyria, accumulation of protoporphyrin has been found in various tissues and liver cirrhosis occurs frequently in this disease, probably due to toxic dark effects of protoporphyrin. We have studied the effect of porphyrins on various enzymic functions in rat liver microsomes. Incubation of microsomes with protoporphyrin resulted in a concentration-dependent inhibition of the oxidation of 7-ethoxycoumarin and aminopyrine by the cytochrome P-450 system. Kinetic analysis showed a decrease in Vmax., whereas the Km was not affected (non-competitive inhibition). Furthermore, reduction of cytochrome c by the NADPH-cytochrome P-450 reductase and by the NADH-cytochrome b5 reductase was inhibited. However, the activity of the reductases was only affected when the microsomes were pre-incubated with protoporphyrin, and it was found that the inhibition was dependent on the duration of the pre-incubation. Kinetic analysis again revealed non-competitive inhibition. When these experiments were repeated with uroporphyrin, no inhibition could be observed. With Stern-Volmer plots it was demonstrated that this was most likely caused by the localization of the porphyrins: protoporphyrin is localized in the membrane, whereas uroporphyrin remains in solution. From these results it is concluded that accumulation of protoporphyrin in the liver may markedly affect the cytochrome P-450 system and thus its detoxification function. PMID:1332695

  6. Decreased liver cytochrome P-450 in rats caused by norethindrone or ethynyloestradiol.

    PubMed Central

    White, I N; Muller-Eberhard, U

    1977-01-01

    1. 19-Nor-17alpha-pregna-1,3,5(10)-trien-20-yne-3,17-diol (ethynyloestradiol) or 17beta-hydroxy-19-nor-17alpha-pregn-4-en-20-yn-3-one (norethindrone) but not 17alpha-ethyl-17beta-hydroxy-19-norandrost-4-en-3-one (norethandrolone) caused a time-dependent loss of cytochrome P-450 when incubated in vitro with rat liver microsomal fractions and NADPH-generating systems. 2. The enzyme system catalysing the norethindrone-mediated loss of cytochrome P-450 had many characteristics of the microsomal mixed-function oxidases. It required NADPH and air, and was inhibited by Co. However, it was unaffected by 1 mM-compound SKF 525A. 3. In microsomal fractions from phenobarbitone-pretreated rats the norethindrone-mediated loss of cytochrome P-450 was increased relative to controls. The norethindrone-mediated cytochrome P-450 loss was less pronounced when the animals were pretreated with 3beta-hydroxy-pregn-5-en-2-one 16alpha-carbonitrile (pregnenolone 16alpha-carbonitrile). Pretreatment with 3-methylcholanthrene rendered the animals resistant to the norethindrone effect. 4. Administration in vivo [100mg/kg, intraperitoneally] of norethindrone or ethinyl oestradiol also produced a time-dependent loss of liver cytochrome P-450. Norethandrolone had a similar, though much less-marked, effect. All three steroids lead to an induction of 5-aminolaevulinate synthase and an accumulation of porphyrins in the liver. 5. The loss of cytochrome P-450 and the accumulation of porphyrins in the liver 2 h after the administration of norethindrone to female rats was similar to that seen in males. 6. Rats pretreated with phenobarbitone and given norethindrone or ethynyloestradiol (100mg/kg, intraperitoneally) formed green pigments in their livers. These had characteristics similar to the green pigments produced in the livers of rats after the administration of 2-allyl-2-isopropylacetamide. No green pigments could be extracted from the livers of control rats or those given norethandrolone, oestradiol

  7. Identification of cytochrome P450 isoforms involved in the metabolism of loperamide in human liver microsomes.

    PubMed

    Kim, Kyoung-Ah; Chung, Jaegul; Jung, Dong-Hae; Park, Ji-Young

    2004-10-01

    The purpose of the present study was to elucidate the cytochrome P450 (P450) isoform(s) involved in the metabolism of loperamide (LOP) to N-demethylated LOP (DLOP) in human liver microsomes. Three established approaches were used to identify the P450 isoforms responsible for LOP N-demethylation using human liver microsomes and cDNA-expressed P450 isoforms: (1) correlation of LOP N-demethylation activity with marker P450 activities in a panel of human liver microsomes, (2) inhibition of enzyme activity by P450-selective inhibitors, and (3) measurement of DLOP formation by cDNA-expressed P450 isoforms. The relative contribution of P450 isoforms involved in LOP N-demethylation in human liver microsomes were estimated by applying relative activity factor (RAF) values. The formation rate of DLOP showed biphasic kinetics, suggesting the involvement of multiple P450 isoforms. Apparent Km and Vmax values were 21.1 microM and 122.3 pmol/min per milligram of protein for the high-affinity component and 83.9 microM and 412.0 pmol/min per milligram of protein for the low-affinity component, respectively. Of the cDNA-expressed P450 s tested, CYP2B6, CYP2C8, CYP2D6, and CYP3A4 catalyzed LOP N-demethylation. LOP N-demethylation was significantly inhibited when coincubated with quercetin (a CYP2C8 inhibitor) and ketoconazole (a CYP3A4 inhibitor) by 40 and 90%, respectively, but other chemical inhibitors tested showed weak or no significant inhibition. DLOP formation was highly correlated with CYP3A4-catalyzed midazolam 1-hydroxylation (rs=0.829; P<0.01), CYP2B6-catalzyed 7-ethoxy-4-trifluoromethylcoumarin O-deethylation (rs=0.691; P<0.05), and CYP2C8-catalyzed paclitaxel 6alpha-hydroxylation (rs=0.797; P<0.05). CYP2B6, CYP2C8, CYP2D6, and CYP3A4 catalyze LOP N-demethylation in human liver microsomes, and among them, CYP2C8 and CYP3A4 may play a crucial role in LOP metabolism at the therapeutic concentrations of LOP. Coadministration of these P450 inhibitors may cause drug

  8. Mass spectrometry-based proteomic analysis of human liver cytochrome(s) P450

    SciTech Connect

    Shrivas, Kamlesh; Mindaye, Samuel T.; Getie-Kebtie, Melkamu; Alterman, Michail A.

    2013-02-15

    The major objective of personalized medicine is to select optimized drug therapies and to a large degree such mission is determined by the expression profiles of cytochrome(s) P450 (CYP). Accordingly, a proteomic case study in personalized medicine is provided by the superfamily of cytochromes P450. Our knowledge about CYP isozyme expression on a protein level is very limited and based exclusively on DNA/mRNA derived data. Such information is not sufficient because transcription and translation events do not lead to correlated levels of expressed proteins. Here we report expression profiles of CYPs in human liver obtained by mass spectrometry (MS)-based proteomic approach. We analyzed 32 samples of human liver microsomes (HLM) of different sexes, ages and ethnicity along with samples of recombinant human CYPs. We have experimentally confirmed that each CYP isozyme can be effectively differentiated by their unique isozyme-specific tryptic peptide(s). Trypsin digestion patterns for almost 30 human CYP isozymes were established. Those findings should assist in selecting tryptic peptides suitable for MS-based quantitation. The data obtained demonstrate remarkable differences in CYP expression profiles. CYP2E1, CYP2C8 and CYP4A11 were the only isozymes found in all HLM samples. Female and pediatric HLM samples revealed much more diverse spectrum of expressed CYPs isozymes compared to male HLM. We have confirmed expression of a number of “rare” CYP (CYP2J2, CYP4B1, CYP4V2, CYP4F3, CYP4F11, CYP8B1, CYP19A1, CYP24A1 and CYP27A1) and obtained first direct experimental data showing expression of such CYPs as CYP2F1, CYP2S1, CYP2W1, CYP4A22, CYP4X1, and CYP26A1 on a protein level. - Highlights: ► First detailed proteomic analysis of CYP isozymes expression in human liver ► Trypsin digestion patterns for almost 30 human CYP isozymes established ► The data obtained demonstrate remarkable differences in CYP expression profiles. ► Female HLM samples revealed more

  9. [Activity of cytochromes P-450p and P-450h in liver microsomes and blood corticosteroid levels in experimental animals under the action of physical factors].

    PubMed

    Zolotareva, T A; Gorchakova, G A; Konovalenko, V L; Konovalenko, L N; Grishanova, A Iu; Guliaeva, L F; Liakhovich, V V

    1992-05-01

    In experiments on male Wistar rats it has been found that physical factors applied in medicine (laser radiation of low intensity with wave length 0.89 microns, microwaves of centimeter range of 2450 MHz, and ultrasound of low intensity 880 KHz) changed catalytic activity of liver microsomal and rostenedione 16 alpha- and 6 beta-hydroxylating cytochromes P-450h and P-450p and blood corticosteroids level. Activities of these two steroid-metabolizing cytochromes decreased under ultrasonic skin application on liver region and increased under microwave and laser action. Contents of physiologically inactive form of corticosterone were not changed by the physical factors action while level of active hormone was increased under ultrasonic and microwave action. These findings suggest association of the activity of liver steroid-metabolizing cytochromes P-450 and level of physiologically active form of corticosterone in blood under physical factors skin application on liver region.

  10. [Liver cytochrome P-450 induction in rats by drug preparations and the body vitamin A allowance].

    PubMed

    Kon', I Ia; Martinchik, A N; Dobkina, E E

    1987-05-01

    The content of P-450 cytochrome and vitamin A was determined in the liver of mature male rats who received for a month daily parenteral administrations of phenobarbital solutions (Pb; 40 mg/kg), rheopyrine (a mixture of equal aliquots of amidopyrine and butadione; 200 mg/kg), amidopyrine (100 mg/kg) or water (control). The animals were kept on a semisynthetic diet, receiving once, every week 400 IU of retinol-palmitate per rat. Pb administration markedly (more than threefold) increased P-450 cytochrome content in the liver. Rheopyrine and amidopyrine also elevated its level, but to a lesser extent than Pb. Pb and rheopyrine also depressed vitamin A levels in the liver and caused either a trend towards its decrease (Pb) or a significant decrease (rheopyrine) of its overall content in the liver. The effect of amidopyrine on the concentration and storage of retinol in the liver was less pronounced. The data obtained suggest that the drugs inducing P-450 cytochrome are capable of disturbing vitamin A content in the body.

  11. Physiological Content and Intrinsic Activities of 10 Cytochrome P450 Isoforms in Human Normal Liver Microsomes.

    PubMed

    Zhang, Hai-Feng; Wang, Huan-Huan; Gao, Na; Wei, Jun-Ying; Tian, Xin; Zhao, Yan; Fang, Yan; Zhou, Jun; Wen, Qiang; Gao, Jie; Zhang, Yang-Jun; Qian, Xiao-Hong; Qiao, Hai-Ling

    2016-07-01

    Due to a lack of physiologic cytochrome P450 (P450) isoform content, P450 activity is typically only determined at the microsomal level (per milligram of microsomal protein) and not at the isoform level (per picomole of P450 isoform), which could result in the misunderstanding of variations in P450 activity between individuals and further hinder development of personalized medicine. We found that there were large variations in protein content, mRNA levels, and intrinsic activities of the 10 P450s in 100 human liver samples, in which CYP2E1 and CYP2C9 showed the highest expression levels. P450 gene polymorphisms had different effects on activity at two levels: CYP3A5*3 and CYP2A6*9 alleles conferred increased activity at the isoform level but decreased activity at the microsomal level; CYP2C9*3 had no effect at the isoform level but decreased activity at the microsomal level. The different effects at each level stem from the different effects of each polymorphism on the resulting P450 protein. Individuals with CYP2A6*1/*4, CYP2A6*1/*9, CYP2C9*1/*3, CYP2D6 100C>T TT, CYP2E1 7632T>A AA, CYP3A5*1*3, and CYP3A5*3*3 genotypes had significantly lower protein content, whereas CYP2D6 1661G>C mutants had a higher protein content. In conclusion, we first offered the physiologic data of 10 P450 isoform contents and found that some single nucleotide polymorphisms had obvious effects on P450 expression in human normal livers. The effects of gene polymorphisms on intrinsic P450 activity at the isoform level were quite different from those at the microsomal level, which might be due to changes in P450 protein content. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Catalytic activities of human liver cytochrome P-450 IIIA4 expressed in Saccharomyces cerevisiae.

    PubMed

    Brian, W R; Sari, M A; Iwasaki, M; Shimada, T; Kaminsky, L S; Guengerich, F P

    1990-12-25

    A human liver cytochrome P-450 (P-450) IIIA4 cDNA clone was inserted behind an alcohol dehydrogenase promoter in the plasmid vector pAAH5 and expressed in Saccharomyces cerevisiae (D12 and AH22 strains). A cytochrome P-450 with typical spectral properties was expressed at a level of approximately 8 x 10(5) molecules/cell in either strain of yeast. The expressed P-450 IIIA4 had the same apparent monomeric Mr as the corresponding protein in human liver microsomes (P-450NF) and could be isolated from yeast microsomes. Catalytic activity of the yeast microsomes toward putative P-450 IIIA4 substrates was seen in the reactions supported by cumene hydroperoxide but was often lower and variable when supported by the physiological donor NADPH. The catalytic activity of purified P-450 IIIA4 was also poor in some systems reconstituted with rabbit liver NADPH-P-450 reductase and best when both the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate and a lipid extract (from liver or yeast microsomes) or L-alpha-1,2-dilauroyl-sn-glycero-3-phosphocholine were present. Under these conditions the expressed P-450 IIIA4 was an efficient catalyst for nifedipine oxidation, 6 beta-hydroxylation of testosterone and cortisol, 2-hydroxylation of 17 beta-estradiol and 17 alpha-ethynylestradiol, N-oxygenation and 3-hydroxylation of quinidine, 16 alpha-hydroxylation of dehydroepiandrosterone 3-sulfate, erythromycin N-demethylation, the 10-hydroxylation of (R)-warfarin, the formation of 9,10-dehydrowarfarin from (S)-warfarin, and the activation of aflatoxins B1 and G1, sterigmatocystin, 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (both + and - diastereomers), 3,4-dihydroxy-3,4-dihydrobenz[a]anthracene, 3,4-dihydroxy-3,4-dihydro-7, 12-dimethylbenz[a]anthracene, 9,10-dihydroxy-9,10-dihydrobenzo[b]fluoranthene, 6-aminochrysene, and tris(2,3-dibromopropyl) phosphate to products genotoxic in a Salmonella typhimurium TA1535/pSK1002 system where a chimeric umuC' 'lacZ plasmid is

  13. Purification and characterization of a benzene hydroxylase: A cytochrome P-450 from rat liver mitochondria

    SciTech Connect

    Karaszkiewicz, J.W.

    1989-01-01

    This laboratory previously demonstrated that incubation of ({sup 14}C)benzene with isolated mitochondria resulted in the formation of mtDNA adducts. Since benzene is incapable of spontaneously covalently binding to nuclei acids, it was hypothesized that enzyme(s) present in the organelle metabolized benzene to reactive derivatives. We have purified, to electrophoretic homogeneity, a 52 kDa cytochrome P-450 from liver mitoplasts which metabolizes benzene to phenol. The enzyme has a K{sub M} for benzene of 0.012 mM, and a V{sub MAX} of 22.6 nmol phenol/nmol P-450/10 min, and requires NADPH, adrenodoxin, and adrenodoxin reductase for activity. Activity also can be reconstituted with microsomal cytochrome P-450 reductase. Benzene hydroxylase activity could be inhibited by carbon monoxide and SKF-525A, and by specific inhibitors of microsomal benzene metabolism. The purified enzyme oxidized phenol, forming catechol; aminopyrine N-demethylase activity was also demonstrated. These data confirm that a cytochrome P-450 of mitochondrial origin is involved in benzene metabolism, and indicate a role for the mitochondrion in xenobiotic activation.

  14. Immunochemical evidence of trifluoroacetylated cytochrome P-450 in the liver of halothane-treated rats.

    PubMed

    Satoh, H; Gillette, J R; Davies, H W; Schulick, R D; Pohl, L R

    1985-11-01

    Four hours after the administration of halothane to phenobarbital-pretreated rats, subcellular fractions of liver were isolated and the proteins in the fractions were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis, transferred to nitrocellulose sheets, and immunochemically stained with anti-trifluoroacetylated antibodies. The microsomal fraction contained the highest level of trifluoroacetylated adducts. Its major trifluoroacetylated component was immunochemically identified as a phenobarbital-inducible form of cytochrome P-450 (54 kDa), whereas the other observed trifluoroacetylated protein fraction (59 kDa) was not identified. The plasma membrane fraction also contained a 54-kDa trifluoroacetylated adduct, which was immunochemically related to the 54-kDa cytochrome P-450. Microsomes from untreated rats that were administered halothane contained only the 59-kDa trifluoroacetylated protein fraction. The specificity of the immunochemical staining for the bound oxidative metabolite of halothane was confirmed by the finding that rats treated with deuterated halothane had considerably less stained liver proteins than did those treated with halothane. These results suggest that the CF3COX oxidative metabolite of halothane is so reactive that it binds predominantly to the cytochrome P-450 that produced it.

  15. cDNA and derived amino acid sequence of ethanol-inducible rabbit liver cytochrome P-450 isozyme 3a (P-450ALC).

    PubMed Central

    Khani, S C; Zaphiropoulos, P G; Fujita, V S; Porter, T D; Koop, D R; Coon, M J

    1987-01-01

    Administration of ethanol to rabbits is known to induce a unique liver microsomal cytochrome P-450, termed isozyme 3a or P-450ALC, which is responsible for the increased oxidation of ethanol and other alcohols and the activation of toxic or carcinogenic compounds such as acetaminophen and N-nitrosodimethylamine. To further characterize this cytochrome P-450 we have identified cDNA clones to isozyme 3a by immunoscreening, DNA hybridization, and hybridization-selection. The cDNA sequence determined from two overlapping clones contains an open reading frame of 1416 nucleotides, and the first 25 amino acids of this reading frame correspond to residues 21-45 of cytochrome P-450 3a. The complete polypeptide, including residues 1 to 20, contains 492 amino acids and has a molecular weight of 56,820. Cytochrome P-450 3a is approximately 55% identical in sequence to P-450 isozymes 1 and 3b and 48% identical to isozyme 2. Hybridization of clone p3a-2 to electrophoretically fractionated rabbit liver poly(A)+ RNA revealed multiple bands, but, with a probe derived from the 3' nontranslated portion of this cDNA, only a 1.9-kilobase band was observed. Treatment of rabbits with imidazole, which increases the content of isozyme 3a, resulted in a transient increase in form 3a mRNA, but this was judged to be insufficient to account for the known 4.5-fold increase in form 3a protein. Genomic DNA analysis indicated that the cytochrome P-450 3a gene does not belong to a large subfamily. Images PMID:3027695

  16. Characterization of benidipine and its enantiomers' metabolism by human liver cytochrome P450 enzymes.

    PubMed

    Yoon, Yune-Jung; Kim, Kwon-Bok; Kim, Hyunmi; Seo, Kyung-Ah; Kim, Ho-Sook; Cha, In-June; Kim, Eun-Young; Liu, Kwang-Hyeon; Shin, Jae-Gook

    2007-09-01

    Benidipine is a dihydropyridine calcium antagonist that has been used clinically as an antihypertensive and antianginal agent. It is used clinically as a racemate, containing the (-)-alpha and (+)-alpha isomers of benidipine. This study was performed to elucidate the metabolism of benidipine and its enantiomers in human liver microsomes (HLMs) and to characterize the cytochrome P450 (P450) enzymes that are involved in the metabolism of benidipine. Human liver microsomal incubation of benidipine in the presence of NADPH resulted in the formation of two metabolites, N-desbenzylbenidipine and dehydrobenidipine. The intrinsic clearance (CL(int)) of the formation of N-desbenzylbenidipine and dehydrobenidipine metabolites from (-)-alpha isomer was similar to those from the (+)-alpha isomer (1.9 +/- 0.1 versus 2.3 +/- 2.3 microl/min/pmol P450 and 0.5 +/- 0.2 versus 0.6 +/- 0.6 microl/min/pmol P450, respectively). Correlation analysis between the known P450 enzyme activities and the rate of the formation of benidipine metabolites in the 15 HLMs showed that benidipine metabolism is correlated with CYP3A activity. The P450 isoform-selective inhibition study in liver microsomes and the incubation study of cDNA-expressed enzymes also showed that theN-debenzylation and dehydrogenation of benidipine are mainly mediated by CYP3A4 and CYP3A5. The total CL(int) values of CYP3A4-mediated metabolite formation from (-)-alpha isomer were similar to those from (+)-alpha isomer (17.7 versus 14.4 microl/min/pmol P450, respectively). The total CL(int) values of CYP3A5-mediated metabolite formation from (-)-alpha isomer were also similar to those from (+)-alpha isomer (8.3 versus 11.0 microl/min/pmol P450, respectively). These findings suggest that CYP3A4 and CYP3A5 isoforms are major enzymes contributing to the disposition of benidipine, but stereoselective disposition of benidipine in vivo may be influenced not by stereoselective metabolism but by other factors.

  17. The cytochrome p450 homepage.

    PubMed

    Nelson, David R

    2009-10-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 ( CYP ) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described.

  18. Properties of electrophoretically homogeneous phenobarbital-inducible and beta-naphthoflavone-inducible forms of liver microsomal cytochrome P-450.

    PubMed

    Haugen, D A; Coon, M J

    1976-12-25

    Procedures are described for the isolation of two forms of rabbit liver microsomal liver microsomal cytochrome P-450 (P-450LM) in homogeneous state. They are designated by their relative electrophoretic mobilities on polyacrylamide gel in the presence of sodium dodecyl sulfate as P-450LM2 and P-450LM4. P-450LM2, which was isolated from phenobarbital-induced animals, has a subunit molecular weight of 48,700. The best preparations contain 20 nmol of the cytochrome per mg of protein and 1 molecule of heme per polypeptide chain. P-450LM4, which is induced by beta-naphthoflavone but is also present in phenobarbital-induced and untreated animals, was isolated from all three sources and found to have a subunit molecular weight of 55,300. The best preparations contain 17nmol of the cytochrome per mg of protein and 1 molecule of heme per polypeptide chain. Some of the purified preparations of the cytochromes, although electrophoretically homogeneous, contain apoenzyme due to heme loss during purification. The purified proteins contain no detectable NADPH-cytochrome P-450 reductase, cytochrome b5, or NADH-cytochrome b5 reductase, and only low levels of phospholipid (about 1 molecule per subunit). Amino acid analysis indicated that P-450LM2 and P-450LM4 are similar in composition, but the latter protein has about 60 additional residues. The COOH-terminal amino acid of P-450LM2 is arginine, as shown by carboxypeptidase treatment, whereas that of P-450LM4 is lysine. NH2-terminal amino acid residues could not be detected. Carbohydrate analysis indicated that both cytochromes contain 1 residue of glucosamine and 2 of mannose per polypeptide subunit. The optical spectra of the oxidized and reduced cytochromes and carbon monoxide complexes were determined. Oxidized P-450LM2 has maxima at 568, 535, and 418 nm characteristic of a low spin hemeprotein, and P450LM4 from beta-naphthoflavone-induced, phenobarbital-induced, or control microsomes has maxima at 645 and 394 nm

  19. Malathion bioactivation in the human liver: the contribution of different cytochrome p450 isoforms.

    PubMed

    Buratti, Franca M; D'Aniello, Alessandra; Volpe, Maria Teresa; Meneguz, Annarita; Testai, Emanuela

    2005-03-01

    Among organophosphorothioate (OPT) pesticides, malathion is considered relatively safe for use in mammals. Its rapid degradation by carboxylesterases competes with the cytochrome P450 (P450)-catalyzed formation of malaoxon, the toxic metabolite. However, impurities in commercial formulations are potent inhibitors of carboxylesterase, allowing a dramatic increase in malaoxon formation. Malathion desulfuration has been characterized in human liver microsomes (HLMs) with a method based on acetylcholinesterase inhibition that is able to detect nanomolar levels of oxon. The active P450 isoforms have been identified by means of a multifaceted strategy, including the use of cDNA-expressed human P450s and correlation, immunoinhibition, and chemical inhibition studies in a panel of phenotyped HLMs. HLMs catalyzed malaoxon formation with a high level of variability (>200-fold). One or two components (K(mapp1) = 53-67 microM; K(mapp2) = 427-1721 microM) were evidenced, depending on the relative specific P450 content. Results from different approaches indicated that, at low malathion concentration, malaoxon formation is catalyzed by CYP1A2 and, to a lesser extent, 2B6, whereas the role of 3A4 is relevant only at high malathion levels. These results are in line with those found with chlorpyrifos, diazinon, azynphos-methyl, and parathion, characterized by the presence of an aromatic ring in the molecule. Since malathion has linear chains as substituents at the thioether sulfur, it can be hypothesized that, independently from the chemical structure, OPTs are bioactivated by the same P450s. These results also suggest that CYP1A2 and 2B6 can be considered as possible metabolic biomarkers of susceptibility to OPT-induced toxic effects at actual human exposure levels.

  20. Cytochrome P450-activated prodrugs

    PubMed Central

    Ortiz de Montellano, Paul R

    2013-01-01

    A prodrug is a compound that has negligible, or lower, activity against a specified pharmacological target than one of its major metabolites. Prodrugs can be used to improve drug delivery or pharmacokinetics, to decrease toxicity, or to target the drug to specific cells or tissues. Ester and phosphate hydrolysis are widely used in prodrug design because of their simplicity, but such approaches are relatively ineffective for targeting drugs to specific sites. The activation of prodrugs by the cytochrome P450 system provides a highly versatile approach to prodrug design that is particularly adaptable for targeting drug activation to the liver, to tumors or to hypoxic tissues. PMID:23360144

  1. The role of brain noradrenergic system in the regulation of liver cytochrome P450 expression.

    PubMed

    Sadakierska-Chudy, Anna; Haduch, Anna; Rysz, Marta; Gołembiowska, Krystyna; Daniel, Władysława A

    2013-09-15

    The aim of the present study was to examine the effect of the brain noradrenergic system on the expression of cytochrome P450 in the liver. The experiment was carried out on male Wistar rats. Intracerebroventricular injection of the noradrenergic neurotoxin DSP-4 diminished noradrenaline level in the brain. Simultaneously, significant decreases in the serum concentration of the growth hormone, testosterone and the thyroid hormone thyroxine, as well as an increase in corticosterone level were observed. The concentrations of triiodothyronine and the cytokines interleukine 2 (IL-2) and 6 (IL-6) were not changed by DSP-4. The neurotoxin produced complex changes in the functioning of cytochrome P450. Significant decreases in the activity of liver CYP2C11 (measured as a rate of the 2α- and 16α-hydroxylation of testosterone) and CYP3A (measured as a rate of the 2β- and 6β-hydroxylation of testosterone) were found. In contrast, the activity of CYP1A (measured as a rate of caffeine metabolism) rose, while that of CYP2A (measured as a rate of the 7α-hydroxylation of testosterone), CYP2C6 (measured as a rate of the 7-hydroxylation of warfarin) and CYP2D (the 1'-hydroxylation of bufuralol) remained unchanged. The changes in the activity of CYP1A, CYP2C11 and CYP3A correlated positively with those in CYP protein levels and with the CYP mRNA levels of CYP1A1, CYP2C11 and CYP3A1/2 genes, respectively. The obtained results indicate an important role of the brain noradrenergic system in the neuroendocrine regulation of liver cytochrome P450 expression, which may be of significance in pathological states involving this system, or during pharmacotherapy with drugs affecting noradrenergic transmission.

  2. Sequential metabolism of sesamin by cytochrome P450 and UDP-glucuronosyltransferase in human liver.

    PubMed

    Yasuda, Kaori; Ikushiro, Shinichi; Kamakura, Masaki; Munetsuna, Eiji; Ohta, Miho; Sakaki, Toshiyuki

    2011-09-01

    Our previous study revealed that CYP2C9 played a central role in sesamin monocatecholization. In this study, we focused on the metabolism of sesamin monocatechol that was further converted into the dicatechol form by cytochrome P450 (P450) or the glucuronide by UDP-glucuronosyltransferase (UGT). Catecholization of sesamin monocatechol enhances its antioxidant activity, whereas glucuronidation strongly reduces its antioxidant activity. In human liver microsomes, the glucuronidation activity was much higher than the catecholization activity toward sesamin monocatechol. In contrast, in rat liver microsomes, catecholization is predominant over glucuronidation. In addition, rat liver produced two isomers of the glucuronide, whereas human liver produced only one glucuronide. These results suggest a significant species-based difference in the metabolism of sesamin between humans and rats. Kinetic studies using recombinant human UGT isoforms identified UGT2B7 as the most important UGT isoform for glucuronidation of sesamin monocatechol. In addition, a good correlation was observed between the glucuronidation activity and UGT2B7-specific activity in in vitro studies using 10 individual human liver microsomes. These results strongly suggest that UGT2B7 plays an important role in glucuronidation of sesamin monocatechol. Interindividual difference among the 10 human liver microsomes is approximately 2-fold. These results, together with our previous results on the metabolism of sesamin by human P450, suggest a small interindividual difference in sesamin metabolism. We observed the methylation activity toward sesamin monocatechol by catechol O-methyl transferase (COMT) in human liver cytosol. On the basis of these results, we concluded that CYP2C9, UGT2B7, and COMT played essential roles in the metabolism of sesamin in the human liver.

  3. Inhibition and induction of cytochrome P450 2B1 in rat liver by promazine and chlorpromazine.

    PubMed

    Murray, M

    1992-09-25

    Phenothiazine tranquilizers have been associated with pharmacokinetic drug interactions in man. In this study the in vivo and in vitro effects of the clinically important phenothiazines promazine (PZ) and chlorpromazine (CPZ) on drug oxidations catalysed by specific cytochrome P450 (P450) enzymes were investigated in the rat. In vitro, the two drugs were relatively ineffective inhibitors of constitutive P450 activities, but were inhibitory toward the principal phenobarbital-inducible P450 2B1 and, to a lesser extent, P450 1A1. Administration of PZ and CPZ to male rats did not markedly influence the total microsomal P450 content of the liver. However, the quantitatively important male-specific P450 2C11 was down-regulated by CPZ and concomitant induction of P450 2B1 and associated 7-pentylresorufin O-depentylase activity were noted. A small increase in the activity of microsomal 7-ethylresorufin O-deethylase was also observed following administration of both drugs to rats, suggesting induction of P450 1A1/2. Considered together, it is apparent that the two phenothiazines are preferential inhibitors and inducers of P450 2B1 in rat liver. Drug interactions in humans involving phenothiazines may reflect a combined effect of induction and inhibition processes as well as down-regulation of other P450s, such as that produced by CPZ on P450 2C11.

  4. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes.

    PubMed

    Reed, James R; Cawley, George F; Ardoin, Taylor G; Dellinger, Barry; Lomnicki, Slawomir M; Hasan, Farhana; Kiruri, Lucy W; Backes, Wayne L

    2014-06-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230°C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    SciTech Connect

    Reed, James R.; Cawley, George F.; Ardoin, Taylor G.; Dellinger, Barry; Lomnicki, Slawomir M.; Hasan, Farhana; Kiruri, Lucy W.; Backes, Wayne L.

    2014-06-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is related to

  6. Caffeine 7-N-demethylation and C-8-oxidation mediated by liver microsomal cytochrome P450 enzymes in common marmosets.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Inoue, Takashi; Suzuki, Takako; Utoh, Masahiro; Sasaki, Erika; Yamazaki, Hiroshi

    2015-10-27

    1. 3-N-Demethylation of caffeine (1,3,7-trimethylxanthine) is mediated by human cytochrome P450 1A2, whereas 7-N-demethylation and C-8-hydroxylation are reportedly catalyzed by monkey P450 2C9 and rat P450 1A2, respectively. 2. Roles of marmoset P450 enzymes in caffeine oxidation were investigated using nine marmoset liver microsomes and 14 recombinantly expressed marmoset P450 enzymes. 3. Predominant caffeine 7-N-demethylation and C-8-hydroxylation activities in marmoset liver microsomes were moderately (r = 0.78, p < 0.05) and highly (r = 0.82, p < 0.01) correlated with midazolam 1'-hydroxylation activities, respectively, while the former was not strongly affected by ketoconazole or α-naphthoflavone. 4. Caffeine C-8-hydroxylation in liver microsomes was inhibited by ketoconazole and activated by α-naphthoflavone, suggesting main involvements of P450 3As. 5. Recombinant marmoset P450 3As had high Vmax/Km values for C-8-hydroxylation, comparable to Km values for marmoset liver microsomes. Marmoset P450 1As efficiently mediated caffeine 3-N-demethylation and C-8-hydroxylation with apparently lower Km values than those of liver microsomes. 6. These results collectively suggest highly active marmoset P450 3A enzymes toward caffeine 8-hydorxylaiton and involvement of multiple P450 isoforms including P450 1A in caffeine 7-N- and 3-N-demethylations in marmoset livers. Marmoset P450s have slightly different properties to human or monkey P450s regarding caffeine metabolic pathways.

  7. Selective inactivation of rat liver cytochromes P-450 by 21-chlorinated steroids.

    PubMed

    Halpert, J; Jaw, J Y; Cornfield, L J; Balfour, C; Mash, E A

    1989-01-01

    The inactivation by 21-chlorinated steroids of rat liver cytochromes P-450 involved in the hydroxylation of progesterone and androstenedione has been investigated. Preincubation of intact liver microsomes from phenobarbital-treated rats with 21-chloropregnenolone, 21,21-dichloropregnenolone, or 21,21-dichloroprogesterone in the presence of NADPH caused a time-dependent decrease in progesterone 21-hydroxylase and in progesterone or androstenedione 6 beta-hydroxylase activity but had negligible or only minor effects on five other steroid hydroxylases. The compounds differed, however, with regard to the relative rate constants for inactivation of the 21- and 6 beta-hydroxylases. For example, 21,21-dichloroprogesterone and 21,21-dichloropregnenolone inactivated the progesterone 6 beta-hydroxylase at similar rates, but the dichloroprogesterone was a more effective inactivator of the 21-hydroxylase. The results indicate that the introduction of a dichloromethyl group into a substrate bearing a methyl group normally hydroxylated by only one or a few isozymes of cytochrome P-450 may be a rational means of designing isozyme-selective inhibitors but that target and nontarget enzymes may not totally retain the regioselectivity they exhibit towards the underivatized substrate.

  8. The Cytochrome P450 Homepage

    PubMed Central

    2009-01-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 (CYP) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described. PMID:19951895

  9. In vitro inhibition and induction of human liver cytochrome p450 enzymes by milnacipran.

    PubMed

    Paris, Brandy L; Ogilvie, Brian W; Scheinkoenig, Julie A; Ndikum-Moffor, Florence; Gibson, Remi; Parkinson, Andrew

    2009-10-01

    Milnacipran (Savella) inhibits both norepinephrine and serotonin reuptake and is distinguished by a nearly 3-fold greater potency in inhibiting norepinephrine reuptake in vitro compared with serotonin. We evaluated the ability of milnacipran to inhibit and induce human cytochrome P450 enzymes in vitro. In human liver microsomes, milnacipran did not inhibit CYP1A2, 2B6, 2C8, 2C9, 2C19, or 2D6 (IC(50) >or= 100 microM); whereas, a comparator with dual reuptake properties [duloxetine (Cymbalta)] inhibited CYP2D6 (IC(50) = 7 microM) and CYP2B6 (IC(50) = 15 microM) with a relatively high potency. Milnacipran inhibited CYP3A4/5 in a substrate-dependent manner (i.e., midazolam 1'-hydroxylation IC(50) approximately 30 microM; testosterone 6beta-hydroxylation IC(50) approximately 100 microM); whereas, duloxetine inhibited both CYP3A4/5 activities with equal potency (IC(50) = 37 and 38 microM, respectively). Milnacipran produced no time-dependent inhibition (<10%) of P450 activity, whereas duloxetine produced time-dependent inhibition of CYP1A2, 2B6, 2C19, and 3A4/5. To evaluate P450 induction, freshly isolated human hepatocytes (n = 3) were cultured and treated once daily for 3 days with milnacipran (3, 10, and 30 microM), after which microsomal P450 activities were measured. Whereas positive controls (omeprazole, phenobarbital, and rifampin) caused anticipated P450 induction, milnacipran had minimal effect on CYP1A2, 2C8, 2C9, or 2C19 activity. The highest concentration of milnacipran (30 microM; >10 times plasma C(max)) produced 2.6- and 2.2-fold increases in CYP2B6 and CYP3A4/5 activity (making it 26 and 34% as effective as phenobarbital and rifampin, respectively). Given these results, milnacipran is not expected to cause clinically significant P450 inhibition or induction.

  10. Drug-induced liver graft toxicity caused by cytochrome P450 poor metabolism

    PubMed Central

    Kóbori, László; Kõhalmy, Krisztina; Porrogi, Pálma; Sárváry, Enikõ; Gerlei, Zsuzsa; Fazakas, János; Nagy, Péter; Járay, Jenõ; Monostory, Katalin

    2008-01-01

    Aims The drug-metabolizing capacity of transplanted liver highly influences drug efficacy or toxicity, particularly in the early postoperative period. The aim of our study was to predict therapeutic failures or severe adverse drug reactions by phenotyping for cytochrome P450 (P450) polymorphism resulting in reduced or no activity of the key drug-metabolizing enzymes. Methods A validated analytical system with metabolomic tools has been developed for estimation of the drug-metabolizing capacity of transplanted liver, which allows the prediction of potential poor metabolizer phenotypes of donors and facilitates improvement of the individual recipient therapy. Results Of the 109 liver donors in Hungary, the frequency of poor metabolizers was found to be 0.92%, 5.5% and 8.3% for CYP2C9, CYP2C19 and CYP2D6, respectively. In the present study, two liver grafts transplanted in paediatric recipients were reported to be poor metabolizer phenotypes. The liver grafts presented normal function in the early postoperative days; 2 weeks after transplantation, however, increasing liver enzymes were detected. Histological investigation of a liver biopsy suggested drug toxicity. The test of drug metabolizing status showed one of the liver grafts to be a CYP2C9 poor metabolizer, and the other was found to be a CYP2C19 poor metabolizer. Rationalization of the medication resulted in the recovery of both the grafts and the recipients within 1 week. Conclusions Prospective investigation of the P450 status may lead to the optimization of drug choice and/or dose for a more effective therapy, avoid serious adverse effects, and decrease medical costs. Phenotyping donor livers and tailored medication can contribute to the improvement of graft and recipient survival. What is already known about this subject The activity of drug-metabolizing enzymes, primarily cytochrome P450 enzymes, can determine a patient's response to a drug.Therapeutic failure or drug toxicity in the postoperative period

  11. Metazoan cytochrome P450 evolution.

    PubMed

    Nelson, D R

    1998-11-01

    There are 37 cytochrome P450 families currently identified in animals. The concept of higher order groupings of P450 families called P450 CLANS is introduced. The mammalian CYP3 and CYP5 families belong to the same clan as insect CYP6 and CYP9. All mitochondrial P450s seem to belong to the same clan. Lack of mitochondrial P450s in C. elegans suggests that mitochondrial P450s probably arose from the mistargeting of a microsomal P450 after the coelomates diverged from acoelomates and pseudocoelomates. Different taxonomic groups appear to have recruited different ancestral P450s for expansion as they evolved, since each major taxon seems to have one large cluster of P450s. In insects, this cluster derives from the ancestor to the CYP4 family. Vertebrates and C. elegans may have used the same ancestor independently to generate the CYP1, 2, 17, and 21 families in vertebrates and a large distinctive clan with 45 genes in C. elegans.

  12. Carbon tetrachloride changes the activity of cytochrome P450 system in the liver of male rats: role of antioxidants.

    PubMed

    Sheweita, S A; El-Gabar, M A; Bastawy, M

    2001-12-14

    The cytochrome P-450 enzymes are responsible for the oxidation of xenobiotic chemicals including drugs, pesticides, and carcinogens. These enzymes include cytochrome P450, cytochrome b(5), arylhydrocarbon (benzo[a]pyrene) hydroxylase (AHH), NADPH-cytochrome C reductase and dimethylnitrosamine N-demethylase I (DMN-dI). Changes in the activities of the above mentioned enzymes were studied in the liver microsomes of rats treated with antioxidants (ascorbic acid (AA), DL-a-tocopherol (vitamin E, VE), garlic) as single- and repeated doses prior to the administration of a single dose of CCl(4). Pretreatment of rats with single doses of AA, VE, or garlic prior to the administration of CCl(4) was found to decrease the hepatic content of cytochrome P450, and the activities of DMN-dI and AHH. On the other hand, these treatments induced the hepatic content of cytochrome b(5) and the activity of NADPH-cytochrome c reductase. Pretreatment of rats with repeated doses of AA, VE, or garlic for 12 consecutive days prior to the administration of CCl(4) as single dose was potentially decreased the activities of cytochrome P450, DMN-dI and NADPH-cytochrome c reductase. Also, the activity of AHH decreased after treatments of rats with repeated doses of garlic prior to the administration of CCl(4). It was noted that repeated doses of antioxidants are more effective than single dose in decreasing the activity of drug-metabolizing enzymes. It is concluded that repeated doses of antioxidants or garlic could reduce the toxic effects exerted by CCl(4) upon the liver, and probably other organs, through inhibition of cytochrome P450 system that activates CCl(4) into its active metabolite, trichloromethyl radical. Moreover, inhibition of cytochrome P450 system could also reduce the toxic and carcinogenic effects of chemical carcinogens such as benzo(a)pyrene and dimethylnitrosamine. The mechanisms of antioxidant protection were discussed in the text.

  13. Monkey liver cytochrome P450 2C9 is involved in caffeine 7-N-demethylation to form theophylline.

    PubMed

    Utoh, Masahiro; Murayama, Norie; Uno, Yasuhiro; Onose, Yui; Hosaka, Shinya; Fujino, Hideki; Shimizu, Makiko; Iwasaki, Kazuhide; Yamazaki, Hiroshi

    2013-12-01

    Caffeine (1,3,7-trimethylxanthine) is a phenotyping substrate for human cytochrome P450 1A2. 3-N-Demethylation of caffeine is the main human metabolic pathway, whereas monkeys extensively mediate the 7-N-demethylation of caffeine to form pharmacological active theophylline. Roles of monkey P450 enzymes in theophylline formation from caffeine were investigated using individual monkey liver microsomes and 14 recombinantly expressed monkey P450 enzymes, and the results were compared with those for human P450 enzymes. Caffeine 7-N-demethylation activity in microsomes from 20 monkey livers was not strongly inhibited by α-naphthoflavone, quinidine or ketoconazole, and was roughly correlated with diclofenac 4'-hydroxylation activities. Monkey P450 2C9 had the highest activity for caffeine 7-N-demethylation. Kinetic analysis revealed that monkey P450 2C9 had a high Vmax/Km value for caffeine 7-N-demethylation, comparable to low Km value for monkey liver microsomes. Caffeine could dock favorably with monkey P450 2C9 modeled for 7-N-demethylation and with human P450 1A2 for 3-N-demethylation. The primary metabolite theophylline was oxidized to 8-hydroxytheophylline in similar ways by liver microsomes and by recombinant P450s in both humans and monkeys. These results collectively suggest a high activity for monkey liver P450 2C9 toward caffeine 7-N-demethylation, whereas, in humans, P450 1A2-mediated caffeine 3-N-demethylation is dominant.

  14. Comparison of cytochrome P450 1A induction in blood and liver cells of sea otters

    USGS Publications Warehouse

    Ballachey, Brenda E.; Snyder, Paul W.; Kondratyuk, Tamara

    2005-01-01

    Sea otters in oiled areas of western PWS had elevated levels of cytochrome P450 1A (CYP1A), a biomarker of hydrocarbon exposure, measured in blood samples collected from otters in 1996- 98. In summer 2001, as part of project 01423, we have proposed to resample CYP1A in blood from sea otters in oiled and unoiled areas of PWS. Herein we describe a complementary effort to project 01423. We propose also to sample liver from the captured sea otters, for assays of CYP1A, and for examination of histopathological changes. Liver CYP1A levels will be compared to those measured in blood from the same individuals. We will also assay for CYP1A in archived frozen liver samples from sea otters that were oiled and died in 1989, to enable comparison of current levels of CYP1A induction with levels in sea otters that had a known high degree of oil exposure. The results of this study will provide a basis for comparison of cytochrome P4501A induction in sea otters in 1989, in 1996-98, and in 2001, and will help determine if there is a decline in CYP1A levels over time.

  15. Expression of cytochromes p450 in fetal, infant, and juvenile liver of cynomolgus macaques.

    PubMed

    Ise, Ryota; Kondo, Satoshi; Kato, Hiroto; Imai, Noritaka; Akiyama, Hideo; Iwasaki, Kazuhide; Yamazaki, Hiroshi; Uno, Yasuhiro

    2011-01-01

    Preclinical data of fetal, infant, and juvenile animals are important for the prediction of drug toxicity in fetuses and children. However, expression of drug-metabolizing enzymes, including cytochromes P450 (CYPs), have not been fully investigated in fetal, infant, or juvenile liver of the cynomolgus macaque, an animal species important for preclinical studies. In this study, hepatic expression of 20 cynomolgus macaque CYPs (mfCYPs) in the CYP1-4 subfamilies that are relevant to drug metabolism was measured in fetuses, infants, and juveniles using DNA microarrays. Expression of most mfCYPs, including those moderately or abundantly expressed in postnatal livers such as mfCYP2A23, mfCYP2A24, mfCYP2B6, mfCYP2C9, mfCYP2C19, mfCYP2C76, mfCYP2D17, mfCYP2E1 mfCYP3A4, and mfCYP3A5, was much less abundant in fetal livers, but increased substantially after birth. In contrast, expression of mfCYP2C8 in fetal livers was not substantially different from postnatal livers. Since human CYP3A7 is expressed more abundantly in fetal livers than in adult livers, mfCYP3A7, an ortholog of human CYP3A7, was analyzed by quantitative polymerase chain reaction. Expression of mfCYP3A7 in fetal livers was much lower than that in postnatal livers, and greatly increased after birth, unlike the expression of human CYP3A7. These results indicate that expression of most mfCYPs examined was low in fetal livers, but increased greatly in postnatal livers, with a few exceptions such as mfCYP2C8.

  16. The cytochrome P450 epoxygenase pathway regulates the hepatic inflammatory response in fatty liver disease.

    PubMed

    Schuck, Robert N; Zha, Weibin; Edin, Matthew L; Gruzdev, Artiom; Vendrov, Kimberly C; Miller, Tricia M; Xu, Zhenghong; Lih, Fred B; DeGraff, Laura M; Tomer, Kenneth B; Jones, H Michael; Makowski, Liza; Huang, Leaf; Poloyac, Samuel M; Zeldin, Darryl C; Lee, Craig R

    2014-01-01

    Fatty liver disease is an emerging public health problem without effective therapies, and chronic hepatic inflammation is a key pathologic mediator in its progression. Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid to biologically active epoxyeicosatrienoic acids (EETs), which have potent anti-inflammatory effects. Although promoting the effects of EETs elicits anti-inflammatory and protective effects in the cardiovascular system, the contribution of CYP-derived EETs to the regulation of fatty liver disease-associated inflammation and injury is unknown. Using the atherogenic diet model of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH), our studies demonstrated that induction of fatty liver disease significantly and preferentially suppresses hepatic CYP epoxygenase expression and activity, and both hepatic and circulating levels of EETs in mice. Furthermore, mice with targeted disruption of Ephx2 (the gene encoding soluble epoxide hydrolase) exhibited restored hepatic and circulating EET levels and a significantly attenuated induction of hepatic inflammation and injury. Collectively, these data suggest that suppression of hepatic CYP-mediated EET biosynthesis is an important pathological consequence of fatty liver disease-associated inflammation, and that the CYP epoxygenase pathway is a central regulator of the hepatic inflammatory response in NAFLD/NASH. Future studies investigating the utility of therapeutic strategies that promote the effects of CYP-derived EETs in NAFLD/NASH are warranted.

  17. Cloning and expression of koala (Phascolarctos cinereus) liver cytochrome P450 reductase.

    PubMed

    Kong, Sandra; Ngo, Suong N T; McKinnon, Ross A; Stupans, Ieva

    2009-07-01

    The cloning, expression and characterization of hepatic NADPH-cytochrome P450 reductase (CPR) from koala (Phascolarctos cinereus) is described. Two 2059 bp koala liver CPR cDNAs, designated CPR1 and CPR2, were cloned by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The koala CPR cDNAs encode proteins of 678 amino acids and share 85% amino acid sequence identity to human CPR. Transfection of the koala CPR cDNAs into Cos-7 cells resulted in the expression of proteins, which were recognized by a goat-antihuman CPR antibody. The koala CPR1 and 2 cDNA-expressed enzymes catalysed cytochrome c reductase at the rates of 4.9 +/- 0.5 and 2.6 +/- 0.4 nmol/min/mg protein (mean +/- SD, n = 3), respectively which were comparable to that of rat CPR cDNA-expressed enzyme. The apparent Km value for CPR activity in koala liver microsomes was 11.61 +/- 6.01 microM, which is consistent with that reported for rat CPR enzyme. Northern analysis detected a CPR mRNA band of approximately 2.6 kb. Southern analysis suggested a single PCR gene across species. The present study provides primary molecular data regarding koala CPR1 and CPR2 genes in this unique marsupial species.

  18. Cytochrome P-450 complex formation in rat liver by the antibiotic tiamulin.

    PubMed Central

    Witkamp, R F; Nijmeijer, S M; van Miert, A S

    1996-01-01

    Tiamulin is a semisynthetic diterpene antibiotic frequently used in farm animals. The drug has been shown to produce clinically important--often lethal--interactions with other compounds. It has been suggested that this is caused by a selective inhibition of oxidative drug metabolism via the formation of a cytochrome P-450 metabolic intermediate complex. In the present study, rats were treated orally for 6 days with tiamulin at two different doses: 40 and 226 mg/kg of body weight. For comparison, another group received 300 mg of triacetyloleandomycin (TAO) per kg, which is equivalent to the 226-mg/kg tiamulin group. Subsequently, microsomal P-450 contents, P-450 enzyme activities, metabolic intermediate complex spectra, and P-450 apoprotein concentrations were assessed. In addition, effects on individual microsomal P-450 activities were studied in control microsomes at different tiamulin and substrate concentrations. In the rats treated with tiamulin, a dose-dependent complex formation as evidenced by its absorption spectrum and an increase in cytochrome P-4503A1/2 contents as assessed by Western blotting (immunoblotting) were found. The effects were comparable to those of TAO. Tiamulin induced microsomal P-450 content, testosterone 6 beta-hydroxylation rate, erythromycin N-demethylation rate, and the ethoxyresorufin O-deethylation activity. Other activities were not affected or decreased. When tiamulin was added to microsomes of control rats, the testosterone 6 beta-hydroxylation rate and the erythromycin N-demethylation were strongly inhibited. It is concluded that tiamulin is a potent and selective inducer-inhibitor of cytochrome P-450. Though not belonging to the macrolides, the compound produces an effect on P-450 similar to those of TAO and related compounds. PMID:8787878

  19. Evaluation of inhibitory effects of caffeic acid and quercetin on human liver cytochrome p450 activities.

    PubMed

    Rastogi, Himanshu; Jana, Snehasis

    2014-12-01

    When herbal drugs and conventional allopathic drugs are used together, they can interact in our body which can lead to the potential for herb-drug interactions. This work was conducted to evaluate the herb-drug interaction potential of caffeic acid and quercetin mediated by cytochrome P450 (CYP) inhibition. Human liver microsomes (HLMs) were added to each selective probe substrates of cytochrome P450 enzymes with or without of caffeic acid and quercetin. IC50 , Ki values, and the types of inhibition were determined. Both caffeic acid and quercetin were potent competitive inhibitors of CYP1A2 (Ki = 1.16 and 0.93 μM, respectively) and CYP2C9 (Ki = 0.95 and 1.67 μM, respectively). Caffeic acid was a potent competitive inhibitor of CYP2D6 (Ki = 1.10 μM) and a weak inhibitor of CYP2C19 and CYP3A4 (IC50  > 100 μM). Quercetin was a potent competitive inhibitor of CYP 2C19 and CYP3A4 (Ki = 1.74 and 4.12 μM, respectively) and a moderate competitive inhibitor of CYP2D6 (Ki = 18.72 μM). These findings might be helpful for safe and effective use of polyphenols in clinical practice. Our data indicated that it is necessary to study the in vivo interactions between drugs and pharmaceuticals with dietary polyphenols. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Detection of human lung cytochromes P450 that are immunochemically related to cytochrome P450IIE1 and cytochrome P450IIIA.

    PubMed

    Wheeler, C W; Wrighton, S A; Guenthner, T M

    1992-07-07

    We have used monoclonal antibodies that were prepared against and specifically recognize human hepatic cytochromes P450 as probes for solid phase radioimmunoassay and Western immunoblotting to directly demonstrate the presence in human lung microsomes of cytochromes P450 immunochemically related to human liver cytochromes P450IIE1 (CYP2E1) and P450IIIA (CYP3A). The detected levels of these cytochromes are much lower than levels in human liver microsomes, but similar to the levels seen in microsomes from untreated baboon lung. Proteins immunochemically related to two other constitutive hepatic cytochromes P450, cytochrome P450IIC8 (CYP2C8) and cytochrome P450IIC9 (CYP2C9), were not detectable in lung microsomes.

  1. Monkey liver cytochrome P450 2C19 is involved in R- and S-warfarin 7-hydroxylation.

    PubMed

    Hosoi, Yoshio; Uno, Yasuhiro; Murayama, Norie; Fujino, Hideki; Shukuya, Mitsunori; Iwasaki, Kazuhide; Shimizu, Makiko; Utoh, Masahiro; Yamazaki, Hiroshi

    2012-12-15

    Cynomolgus monkeys are widely used as primate models in preclinical studies. However, some differences are occasionally seen between monkeys and humans in the activities of cytochrome P450 enzymes. R- and S-warfarin are model substrates for stereoselective oxidation in humans. In this current research, the activities of monkey liver microsomes and 14 recombinantly expressed monkey cytochrome P450 enzymes were analyzed with respect to R- and S-warfarin 6- and 7-hydroxylation. Monkey liver microsomes efficiently mediated both R- and S-warfarin 7-hydroxylation, in contrast to human liver microsomes, which preferentially catalyzed S-warfarin 7-hydroxylation. R-Warfarin 7-hydroxylation activities in monkey liver microsomes were not inhibited by α-naphthoflavone or ketoconazole, and were roughly correlated with P450 2C19 levels and flurbiprofen 4-hydroxylation activities in microsomes from 20 monkey livers. In contrast, S-warfarin 7-hydroxylation activities were not correlated with the four marker drug oxidation activities used. Among the 14 recombinantly expressed monkey P450 enzymes tested, P450 2C19 had the highest activities for R- and S-warfarin 7-hydroxylations. Monkey P450 3A4 and 3A5 slowly mediated R- and S-warfarin 6-hydroxylations. Kinetic analysis revealed that monkey P450 2C19 had high V(max) and low K(m) values for R-warfarin 7-hydroxylation, comparable to those for monkey liver microsomes. Monkey P450 2C19 also mediated S-warfarin 7-hydroxylation with V(max) and V(max)/K(m) values comparable to those for recombinant human P450 2C9. R-warfarin could dock favorably into monkey P450 2C19 modeled. These results collectively suggest high activities for monkey liver P450 2C19 toward R- and S-warfarin 6- and 7-hydroxylation in contrast to the saturation kinetics of human P450 2C9-mediated S-warfarin 7-hydroxylation. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Xenobiotic and Endobiotic Mediated Interactions between the Cytochrome P450 System and the Inflammatory Response In the Liver

    PubMed Central

    Woolbright, Benjamin L.; Jaeschke, Hartmut

    2015-01-01

    The liver is a unique organ in the body as it has significant roles in both metabolism and innate immune clearance. Hepatocytes in the liver carry a nearly complete complement of drug metabolizing enzymes, including numerous cytochrome P450s. While a majority of these enzymes effectively detoxify xenobiotics, or metabolize endobiotics, a sub-portion of these reactions result in accumulation of metabolites that can cause either direct liver injury or indirect liver injury through activation of inflammation. The liver also contains multiple populations of innate immune cells including the resident macrophages (Kupffer cells), a relatively large number of natural killer cells, and blood-derived neutrophils. While these cells are primarily responsible for clearance of pathogens, activation of these immune cells can result in significant tissue injury during periods of inflammation. When activated chronically, these inflammatory bouts can lead to fibrosis, cirrhosis, cancer or death. This Chapter will focus on interactions between how the liver processes xenobiotic and endobiotic compounds through the cytochrome P450 system, and how these processes can result in a response from the innate immune cells of the liver. A number of different clinically relevant diseases, as well as experimental models, are currently available to study mechanisms related to the interplay of innate immunity and cytochrome P450 mediated metabolism. A major focus of the chapter will be to evaluate currently understood mechanisms in the context of these diseases as a way of outlining mechanisms that dictate the interactions between the P450 system and innate immunity. PMID:26233906

  3. Xenobiotic and Endobiotic Mediated Interactions Between the Cytochrome P450 System and the Inflammatory Response in the Liver.

    PubMed

    Woolbright, Benjamin L; Jaeschke, Hartmut

    2015-01-01

    The liver is a unique organ in the body as it has significant roles in both metabolism and innate immune clearance. Hepatocytes in the liver carry a nearly complete complement of drug metabolizing enzymes, including numerous cytochrome P450s. While a majority of these enzymes effectively detoxify xenobiotics, or metabolize endobiotics, a subportion of these reactions result in accumulation of metabolites that can cause either direct liver injury or indirect liver injury through activation of inflammation. The liver also contains multiple populations of innate immune cells including the resident macrophages (Kupffer cells), a relatively large number of natural killer cells, and blood-derived neutrophils. While these cells are primarily responsible for clearance of pathogens, activation of these immune cells can result in significant tissue injury during periods of inflammation. When activated chronically, these inflammatory bouts can lead to fibrosis, cirrhosis, cancer, or death. This chapter will focus on interactions between how the liver processes xenobiotic and endobiotic compounds through the cytochrome P450 system, and how these processes can result in a response from the innate immune cells of the liver. A number of different clinically relevant diseases, as well as experimental models, are currently available to study mechanisms related to the interplay of innate immunity and cytochrome P450-mediated metabolism. A major focus of the chapter will be to evaluate currently understood mechanisms in the context of these diseases, as a way of outlining mechanisms that dictate the interactions between the P450 system and innate immunity.

  4. Metabolism of melatonin by cytochrome P-450s in rat liver mitochondria and microsomes

    PubMed Central

    Semak, Igor; Korik, Elena; Antonova, Maria; Wortsman, Jacobo; Slominski, Andrzej

    2008-01-01

    In the present study we provide direct evidence for the involvement of rat microsomal cytochrome P450s in melatonin O-demethylation and hydroxylation at two different positions: 2 and 6, as well as generation of N1-acetyl-N2-formyl-5-methoxy-kynuramine (AFMK) and two unknown products. Moreover, we found that mitochondrial cytochrome P450s also converts melatonin into AFMK, N-acetylserotonin (NAS), 2-hydroxymelatonin, 6-hydroxymelatonin and the same two unknown products. Eadie-Hofstee plots for 6-hydroxylation and O-demethylation reactions were curvilinear for all tested fractions, suggestive of involvement of at least two components, one with a high affinity and low capacity, and another with a low affinity and high capacity. Mitochondrial cytochrome P450s exhibited higher affinity (suggesting lower Km value) and higher Vmax for melatonin 6-hydroxylation and O-demethylation for both high-affinity and low-affinity components as compared to microsomal enzymes. The intrinsic clearance for melatonin hydroxylation by high- and low-affinity components displayed the highest values in all tested fractions, indicating that both mitochondrial and microsomal cytochrome P-450s metabolize melatonin principally by 6-hydroxylation, with O-demethylation representing a minor metabolic pathway. PMID:18717775

  5. Metabolism of melatonin by cytochrome P450s in rat liver mitochondria and microsomes.

    PubMed

    Semak, Igor; Korik, Elena; Antonova, Maria; Wortsman, Jacobo; Slominski, Andrzej

    2008-11-01

    In the present study we provide direct evidence for the involvement of rat microsomal cytochrome P450s in melatonin O-demethylation and hydroxylation at two different positions: 2 and 6, as well as generation of N(1)-acetyl-N(2)-formyl-5-methoxy-kynuramine (AFMK) and two unknown products. Moreover, we found that mitochondrial cytochrome P450s also converts melatonin into AFMK, N-acetylserotonin, 2-hydroxymelatonin, 6-hydroxymelatonin and the same two unknown products. Eadie-Hofstee plots for 6-hydroxylation and O-demethylation reactions were curvilinear for all tested fractions, suggestive of involvement of at least two components, one with a high affinity and low capacity, and another with a low affinity and high capacity. Mitochondrial cytochrome P450s exhibited higher affinity (suggesting lower K(m) value) and higher V(max) for melatonin 6-hydroxylation and O-demethylation for both high-affinity and low-affinity components as compared with microsomal enzymes. The intrinsic clearance for melatonin hydroxylation by high- and low-affinity components displayed the highest values in all tested fractions, indicating that both mitochondrial and microsomal cytochrome P450s metabolize melatonin principally by 6-hydroxylation, with O-demethylation representing a minor metabolic pathway.

  6. PROPICONAZOLE-INDUCED CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RAT AND MOUSE LIVER

    EPA Science Inventory

    Conazoles are N-substituted azole antifungal agents used as both pesticides and drugs. Some of these compounds are hepatocarcinogenic in mice and some can induce thyroid tumors in rats. Many of these compounds are able to induce and/or inhibit mammalian hepatic cytochrome P450s t...

  7. INDUCTION OF CYTOCHROME P450 ISOFORMS IN RAT LIVER BY TWO CONAZOLES, TRIADIMEFON AND MYCLOBUTANIL

    EPA Science Inventory

    1. This study was undertaken to examine the inductive effects of two triazole antifungal agents, myclobutanil and triadimefon on the expression of hepatic cytochrome P450 (CYP) genes and on the activities of CYP enzymes in male Sprague-Dawley rats. Rats were dosed by gavage for 1...

  8. PROPICONAZOLE-INDUCED CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RAT AND MOUSE LIVER

    EPA Science Inventory

    Conazoles are N-substituted azole antifungal agents used as both pesticides and drugs. Some of these compounds are hepatocarcinogenic in mice and some can induce thyroid tumors in rats. Many of these compounds are able to induce and/or inhibit mammalian hepatic cytochrome P450s t...

  9. Cytochromes P450 in Nanodiscs

    PubMed Central

    Denisov, Ilia G.; Sligar, Stephen G.

    2010-01-01

    Nanodiscs have proven to be a versatile tool for the study all types of membrane proteins, including receptors, transporters, enzymes and viral antigens. The self-assembled Nanodisc system provides a robust and common means for rendering these targets soluble in aqueous media while providing a native like bilayer environment that maintains functional activity. This system has thus provided a means for studying the extensive collection of membrane bound cytochromes P450 with the same biochemical and biophysical tools that have been previously limited to use with the soluble P450s. These include a plethora of spectroscopic, kinetic and surface based methods. Significant improvements in homogeneity and stability of these preparations open new possibilities for detailed analysis of equilibrium and steady-state kinetic characteristics of catalytic mechanisms of human cytochromes P450 involved in xenobiotic metabolism and in steroid biosynthesis. The experimental methods developed for physico-chemical and functional studies of membrane cytochromes P450 incorporated in Nanodiscs allow for more detailed understanding of the scientific questions along the lines pioneered by Professor Klaus Ruckpaul and his array of colleagues and collaborators. PMID:20685623

  10. Upregulation of cytochromes P450 2B in rat liver by orphenadrine

    PubMed Central

    Murray, Michael; Fiala-Beer, Eva; Sutton, Dylan

    2003-01-01

    The alkylamine drug orphenadrine (ORPH) is an inducer and inhibitor of the microsomal cytochrome P450 (CYP) system in mammals. This study evaluated the selectivity of CYP induction by ORPH in rat liver. Immunoblot analysis indicated that ORPH was a selective inducer of the phenobarbitone (PB)-inducible CYP2B in rat liver. CYP2B protein was increased to ∼14-fold of levels in untreated rat liver. By comparison PB increased CYP2B expression 40-fold. Corresponding increases in the activity of CYP2B-dependent androstenedione 16β-hydroxylation were measured in microsomes from ORPH and PB-induced rats. Northern analysis indicated that CYP2B1/2 mRNA was increased in ORPH-induced rat liver. Consistent with this finding, ORPH was found to activate a PB-responsive enhancer module in constitutive androstane receptor (CAR)-transfected Hep G2 cells. Other alkylamines like troleandomycin impair CYP turnover. We tested whether ORPH induction of CYP2B may include a post-translational component. In PB-pretreated animals ORPH administration delayed the loss of CYP2B after PB withdrawal, but no evidence for altered turnover was found. These studies establish ORPH as a selective inducer of CYP2B in rat liver. Induction appears to be mediated pretranslationally by CAR activation of CYP2B gene transcription. Post-translational stabilisation by an ORPH metabolite does not elicit induction. Induction of CYP2B may influence pharmacokinetic interactions involving ORPH. PMID:12813002

  11. Curcumin Prevents Aflatoxin B1 Hepatoxicity by Inhibition of Cytochrome P450 Isozymes in Chick Liver

    PubMed Central

    Zhang, Ni-Ya; Qi, Ming; Zhao, Ling; Zhu, Ming-Kun; Guo, Jiao; Liu, Jie; Gu, Chang-Qin; Rajput, Shahid Ali; Krumm, Christopher Steven; Qi, De-Sheng; Sun, Lv-Hui

    2016-01-01

    This study was designed to establish if Curcumin (CM) alleviates Aflatoxin B1 (AFB1)-induced hepatotoxic effects and to determine whether alteration of the expression of cytochrome P450 (CYP450) isozymes is involved in the regulation of these effects in chick liver. One-day-old male broilers (n = 120) were divided into four groups and used in a two by two factorial trial in which the main factors included supplementing AFB1 (< 5 vs. 100 μg/kg) and CM (0 vs. 150 mg/kg) in a corn/soybean-based diet. Administration of AFB1 induced liver injury, significantly decreasing albumin and total protein concentrations and increasing alanine aminotransferase and aspartate aminotransferase activities in serum, and induced hepatic histological lesions at week 2. AFB1 also significantly decreased hepatic glutathione peroxidase, catalase, and glutathione levels, while increasing malondialdehyde, 8-hydroxydeoxyguanosine, and exo-AFB1-8,9-epoxide (AFBO)-DNA concentrations. In addition, the mRNA and/or activity of enzymes responsible for the bioactivation of AFB1 into AFBO—including CYP1A1, CYP1A2, CYP2A6, and CYP3A4—were significantly induced in liver microsomes after 2-week exposure to AFB1. These alterations induced by AFB1 were prevented by CM supplementation. Conclusively, dietary CM protected chicks from AFB1-induced liver injury, potentially through the synergistic actions of increased antioxidant capacities and inhibition of the pivotal CYP450 isozyme-mediated activation of AFB1 to toxic AFBO. PMID:27834912

  12. Inhibitory effects of curculigoside on human liver cytochrome P450 enzymes.

    PubMed

    Lang, Jixiao; Li, Wei; Zhao, Jingming; Wang, Kaiyou; Chen, Dexi

    2017-10-01

    1. Curculigoside possesses numerous pharmacological activities, and however, little data available for the effects of curculigoside on the activity of human liver cytochrome P450 (CYP) enzymes. 2. This study investigates the inhibitory effects of curculigoside on the main human liver CYP isoforms. In this study, the inhibitory effects of curculigoside on the eight human liver CYP isoforms 1A2, 2A6, 2E1, 2D6, 2C9, 2C19, 2C8, and 3A4 were investigated in human liver microsomes. 3. The results indicated that curculigoside could inhibit the activity of CYP1A2, CYP2C8, and CYP3A4, with IC50 values of 15.26, 11.93, and 9.47 μM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that curculigoside was not only a noncompetitive inhibitor of CYP1A2, but also a competitive inhibitor of CYP2C8 and CYP3A4, with Ki values of 5.43, 3.54, and 3.35 μM, respectively. In addition, curculigoside is a time-dependent inhibitor for CYP1A2, with kinact/KI values of 0.056/6.15 μM(-1 )min(-1). 4. The in vitro studies of curculigoside with CYP isoforms suggest that curculigoside has the potential to cause pharmacokinetic drug interactions with other coadministered drugs metabolized by CYP1A2, CYP2C8, and CYP3A4. Further in vivo studies are needed in order to evaluate the significance of this interaction.

  13. Cloning and expression of koala (Phascolarctos cinereus) liver cytochrome P450 CYP4A15.

    PubMed

    Ngo, Suong Ngoc Thi; McKinnon, Ross Allan; Stupans, Ieva

    2006-07-05

    In the present study, the cloning, expression and characterization of hepatic cytochrome P450 (CYP) CYP4A from koala (Phascolarctos cinereus), an obligate eucalyptus feeder, is described. It has been previously reported that microsomal lauric acid hydroxylase activity (a CYP4A marker) and CYP content were higher in koala liver in comparison to that in human, rat or wallaby, species that do not ingest eucalyptus leaves as food [Ngo, S., Kong, S., Kirlich, A., Mckinnon, R.A., Stupans, I., 2000. Cytochrome P450 4A, peroxisomal enzymes and nicotinamide cofactors in koala liver. Comp. Biochem. Physiol., C 127, 327-334]. A 1544 bp koala liver CYP4A cDNA, designated CYP4A15, was cloned by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The koala CYP4A15 cDNA encodes a protein of 500 amino acids and shares 69% nucleotide and 65% amino acid sequence identity to human CYP4A11. Transfection of the koala CYP4A15 cDNA into Cos-7 cells resulted in the expression of a protein with lauric acid hydroxylase activity. The koala CYP4A15 cDNA-expressed enzyme catalysed lauric acid hydroxylation at the rates of 0.45+/-0.18 nmol/min/mg protein and 4.79+/-1.91 nmol/min/nmol CYP (mean+/-SD, n=3), which were comparable to that of rat CYP4A subfamilies. Total CYP content for koala CYP4A15-expressed protein in Cos-7 cells was 0.094+/-0.001 nmol/mg protein (mean+/-SD, n=3) with negligible CYP content in untransfected Cos-7 cells lysate. Immunoblot analysis, using a sheep anti-rat CYP4A polyclonal antibody, detected multiple CYP4A immunoreactive bands in the liver from all species studied. The koala bands were found to be fainter and less confined but appeared much broader as compared to rat, human and wallaby. Northern blot analysis, utilising the koala CYP4A15 cDNA 417 bp probe, detected a mRNA species of approximately 2.6 kb in the koala liver and a mRNA species of approximately 2.4 kb in other species studied. Relative to the intensity of the beta

  14. Inhibition of Cytochrome P450 by Propolis in Human Liver Microsomes

    PubMed Central

    Ryu, Chang Seon; Oh, Soo Jin; Oh, Jung Min; Lee, Ji-Yoon; Lee, Sang Yoon; Chae, Jung-woo; Kwon, Kwang-il; Kim, Sang Kyum

    2016-01-01

    Although propolis is one of the most popular functional foods for human health, there have been no comprehensive studies of herb-drug interactions through cytochrome P450 (CYP) inhibition. The purpose of this study was to determine the inhibitory effects of propolis on the activities of CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1 and 3A4 using pooled human liver microsomes (HLMs). Propolis inhibited CYP1A2, CYP2E1 and CYP2C19 with an IC50 value of 6.9, 16.8, and 43.1 μg/mL, respectively, whereas CYP2A6, 2B6, 2C9, 2D6, and 3A4 were unaffected. Based on half-maximal inhibitory concentration shifts between microsomes incubated with and without nicotinamide adenine dinucleotide phosphate, propolis-induced CYP1A2, CYP2C19, and CYP2E1 inhibition was metabolism-independent. To evaluate the interaction potential between propolis and therapeutic drugs, the effects of propolis on metabolism of duloxetine, a serotonin-norepinephrine reuptake inhibitor, were determined in HLMs. CYP1A2 and CYP2D6 are involved in hydroxylation of duloxetine to 4-hydroxy duloxetine, the major metabolite, which was decreased following propolis addition in HLMs. These results raise the possibility of interactions between propolis and therapeutic drugs metabolized by CYP1A2. PMID:27437087

  15. Significantly reduced cytochrome P450 3A4 expression and activity in liver from humans with diabetes mellitus

    PubMed Central

    Dostalek, Miroslav; Court, Michael H; Yan, Bingfang; Akhlaghi, Fatemeh

    2011-01-01

    BACKGROUND AND PURPOSE Patients with diabetes mellitus require pharmacotherapy with numerous medications. However, the effect of diabetes on drug biotransformation is not well understood. Our goal was to investigate the effect of diabetes on liver cytochrome P450 3As, the most abundant phase I drug-metabolizing enzymes in humans. EXPERIMENTAL APPROACH Human liver microsomal fractions (HLMs) were prepared from diabetic (n = 12) and demographically matched nondiabetic (n = 12) donors, genotyped for CYP3A4*1B and CYP3A5*3 polymorphisms. Cytochrome P450 3A4, 3A5 and 2E1 mRNA expression, protein level and enzymatic activity were compared between the two groups. KEY RESULTS Midazolam 1′- or 4-hydroxylation and testosterone 6β-hydroxylation, catalyzed by P450 3A, were markedly reduced in diabetic HLMs, irrespective of genotype. Significantly lower P450 3A4 protein and comparable mRNA levels were observed in diabetic HLMs. In contrast, neither P450 3A5 protein level nor mRNA expression differed significantly between the two groups. Concurrently, we have observed increased P450 2E1 protein level and higher chlorzoxazone 6-hydroxylation activity in diabetic HLMs. CONCLUSIONS AND IMPLICATIONS These studies indicate that diabetes is associated with a significant decrease in hepatic P450 3A4 enzymatic activity and protein level. This finding could be clinically relevant for diabetic patients who have additional comorbidities and are receiving multiple medications. To further characterize the effect of diabetes on P450 3A4 activity, a well-controlled clinical study in diabetic patients is warranted. PMID:21323901

  16. Relative expression of cytochrome P450 isoenzymes in human liver and association with the metabolism of drugs and xenobiotics.

    PubMed Central

    Forrester, L M; Henderson, C J; Glancey, M J; Back, D J; Park, B K; Ball, S E; Kitteringham, N R; McLaren, A W; Miles, J S; Skett, P

    1992-01-01

    Cytochrome P450s play a central role in the metabolism and disposition of an extremely wide range of drugs and chemical carcinogens. Individual differences in the expression of these enzymes may be an important determinant in susceptibility to adverse drug reactions, chemical toxins and mutagens. In this paper, we have measured the relative levels of expression of cytochrome P450 isoenzymes from eight gene families or subfamilies in a panel of twelve human liver samples in order to determine the individuality in their expression and whether any forms are co-regulated. Isoenzymes were identified in most cases on Western blots based on the mobility of authentic recombinant human cytochrome P450 standards. The levels of the following P450 proteins correlated with each other: CYP2A6, CYP2B6 and a protein from the CYP2C gene subfamily, CYP2E1 and a member of the CYP2A gene subfamily, CYP2C8, CYP3A3/A4 and total cytochrome P450 content. Also, the levels of two proteins in the CYP4A gene subfamily were highly correlated. These correlations are consistent with the relative regulation of members of these gene families in rats or mice. In addition, the level of expression of specific isoenzymes has also been compared with the rate of metabolism of a panel of drugs, carcinogens and model P450 substrates. These latter studies demonstrate and confirm that the correlations obtained in this manner represent a powerful approach towards the assignment of the metabolism of substrates by specific human P450 isoenzymes. Images Fig. 1. Fig. 2. Fig. 3. PMID:1736885

  17. Immunochemical evidence for an ethanol-inducible form of liver microsomal cytochrome P-450 in rodents and primates

    SciTech Connect

    Lasker, J.M.; Ardies, C.M.; Bloswick, B.P.; Lieber, C.S.

    1986-05-01

    Polyclonal antibodies against cytochrome P-450-4, a major liver microsomal P-450 isozyme purified from ethanol (E)-treated hamsters, were used to probe for immunochemically-related hemeproteins in other species. Liver microsomes (LM) were obtained from naive and E-treated rats, deermice, hamsters, and baboons. Baboon liver 9000 x g supernatant (S-9) was prepared from needle biopsy samples. LM and S-9 proteins were resolved by SDS-PAGE, then transferred to nylon membranes. Immunodetection was performed on the Western blots using rabbit anti P-450-4 IgG, anti-rabbit IgG-alk. phos., and an appropriate chromagen. Control LM from all species contained a cross-reacting protein of mol. wt. similar to P-450-4 (54k). The amount of this cross-reacting protein as reflected by staining intensity, was much higher in LM from E-treated animals. This protein was also detected in S-9 from E-treated baboons. In contrast, no increase in phenobarbital-inducible P-450-2 related LM protein (assessed using anti P-450-2) was observed after E treatment. Increased P-450-4 related protein in LM from E-treated animals was associated with enhanced oxidation of ethanol and aniline by these LM when compared to controls. In conclusion, LM from rats, deermice, and baboons contain a protein immunochemically homologous to hamster liver P-450-4. As observed in hamsters, the amount of this hepatic protein increases in these other species after E treatment.

  18. Novel Marmoset Cytochrome P450 2C19 in Livers Efficiently Metabolizes Human P450 2C9 and 2C19 Substrates, S-Warfarin, Tolbutamide, Flurbiprofen, and Omeprazole.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Inoue, Takashi; Kawano, Mirai; Shimizu, Makiko; Toda, Akiko; Utoh, Masahiro; Sasaki, Erika; Yamazaki, Hiroshi

    2015-10-01

    The common marmoset (Callithrix jacchus), a small New World monkey, has the potential for use in human drug development due to its evolutionary closeness to humans. Four novel cDNAs, encoding cytochrome P450 (P450) 2C18, 2C19, 2C58, and 2C76, were cloned from marmoset livers to characterize P450 2C molecular properties, including previously reported P450 2C8. The deduced amino acid sequence showed high sequence identities (>86%) with those of human P450 2Cs, except for marmoset P450 2C76, which has a low sequence identity (∼70%) with any human P450 2Cs. Phylogenetic analysis showed that marmoset P450 2Cs were more closely clustered with those of humans and macaques than other species investigated. Quantitative polymerase chain reaction analysis showed that all of the marmoset P450 2C mRNAs were predominantly expressed in liver as opposed to the other tissues tested. Marmoset P450 2C proteins were detected in liver by immunoblotting using antibodies against human P450 2Cs. Among marmoset P450 2Cs heterologously expressed in Escherichia coli, marmoset P450 2C19 efficiently catalyzed human P450 2C substrates, S-warfarin, diclofenac, tolbutamide, flurbiprofen, and omeprazole. Marmoset P450 2C19 had high Vmax and low Km values for S-warfarin 7-hydroxylation that were comparable to those in human liver microsomes, indicating warfarin stereoselectivity similar to findings in humans. Faster in vivo S-warfarin clearance than R-warfarin after intravenous administration of racemic warfarin (0.2 mg/kg) to marmosets was consistent with the in vitro kinetic parameters. These results indicated that marmoset P450 2C enzymes had functional characteristics similar to those of humans, and that P450 2C-dependent metabolic properties are likewise similar between marmosets and humans. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Comparison between recombinant P450s and human liver microsomes in the determination of cytochrome P450 Michaelis-Menten constants.

    PubMed

    Youdim, K; Dodia, R

    2010-04-01

    Non-linear dose-exposure (supra-proportionality) occurs when plasma drug concentrations increase in a non-linear fashion with increasing dose. To predict the likelihood of this, an understanding is required of the K(M), which reflects a drug ability to saturate a specific enzyme involved in its metabolism. This study assessed the accuracy of K(M) and V(max) determinations for compounds using a substrate-depletion approach with those determined using the product-formation approach, using both recombinant human cytochrome P450 (CYP) enzymes and human liver microsomes. For the vast majority of the compounds studied, the K(M)'s using recombinant CYPs and human liver microsomes in the two approaches predicted within two-fold. Further comparisons between the K(M) and V(max)-values were made between those measured using the product-formation approach and those estimated following simultaneous fitting of the Michaelis-Menten equation to all substrate depletion plots. In each case values were comparable. In conclusion, the current study showed the substrate-depletion approach can be used to estimate K(M) and V(max) using both human liver microsomes and recombinant P450s. Estimation of these parameters during early discovery will aid in the understanding of dosages at which non-linearity may occur, but potentially aid predictions of likely clinical drug-drug interactions.

  20. Assessment of regional cytochrome P450 activities in rat liver slices using resorufin substrates and fluorescence confocal laser cytometry.

    PubMed Central

    Heinonen, J T; Sidhu, J S; Reilly, M T; Farin, F M; Omiecinski, C J; Eaton, D L; Kavanagh, T J

    1996-01-01

    Characterizing constitutive activities and inducibility of various cytochrome P450 isozymes is important for elucidating species and individual differences in susceptibility to many toxicants. Although expression of certain P450s has been studied in homogenized tissues, the ability to assess functional enzyme activity without tissue disruption would further our understanding of interactive factors that modulate P450 activities. We used precision-cut, viable rat liver slices and confocal laser cytometry to determine the regional enzyme activities of P450 isozymes in situ. Livers from control and beta-naphthoflavone (beta NF)-treated rats were sectioned with a Krumdieck tissue slicer into 250-microns thick sections. A slice perfusion chamber that mounts on the cytometer stage was developed to allow for successive measurement of region-specific P450-dependent O-dealkylation of 7-ethoxy-, 7-pentoxy-, and 7-benzyloxyresorufin (EROD, PROD, and BROD activity, respectively) in the same liver slice. Images of the accumulated fluorescent resorufin product within the tissue were acquired using a confocal laser cytometer in confocal mode. As expected, slices isolated from beta NF-treated rats showed high levels of centrilobular EROD activity compared to slices from control rats, whereas PROD and BROD activities remained at control levels. These techniques should allow for the accurate quantification of regional and cell-specific P450 enzyme activity and, with subsequent analysis of the same slice, the ability to correlate specific P450 mRNAs or other factors with enzymatic activity. Moreover, these techniques should be amenable to examination of similar phenomena in other tissues such as lung and kidney, where marked heterogeneity in cellular P450 expression patterns is also known to occur. Images Figure 1. Figure 2. Figure 3. Figure 3. Figure 4. Figure 4. Figure 5. Figure 6. PMID:8743442

  1. Functional Analysis of the Unique Cytochrome P450 of the Liver Fluke Opisthorchis felineus.

    PubMed

    Pakharukova, Mariya Y; Vavilin, Valentin A; Sripa, Banchob; Laha, Thewarach; Brindley, Paul J; Mordvinov, Viatcheslav A

    2015-12-01

    The basic metabolic cytochrome P450 (CYP) system is essential for biotransformation of sterols and xenobiotics including drugs, for synthesis and degradation of signaling molecules in all living organisms. Most eukaryotes including free-living flatworms have numerous paralogues of the CYP gene encoding heme monooxygenases with specific substrate range. Notably, by contrast, the parasitic flatworms have only one CYP gene. The role of this enzyme in the physiology and biochemistry of helminths is not known. The flukes and tapeworms are the etiologic agents of major neglected tropical diseases of humanity. Three helminth infections (Opisthorchis viverrini, Clonorchis sinensis and Schistosoma haematobium) are considered by the International Agency for Research on Cancer (IARC) as definite causes of cancer. We focused our research on the human liver fluke Opisthorchis felineus, an emerging source of biliary tract disease including bile duct cancer in Russia and central Europe. The aims of this study were (i) to determine the significance of the CYP activity for the morphology and survival of the liver fluke, (ii) to assess CYP ability to metabolize xenobiotics, and (iii) to localize the CYP activity in O. felineus tissues. We observed high constitutive expression of CYP mRNA (Real-time PCR) in O. felineus. This enzyme metabolized xenobiotics selective for mammalian CYP2E1, CYP2B, CYP3A, but not CYP1A, as determined by liquid chromatography and imaging analyses. Tissue localization studies revealed the CYP activity in excretory channels, while suppression of CYP mRNA by RNA interference was accompanied by morphological changes of the excretory system and increased mortality rates of the worms. These results suggest that the CYP function is linked to worm metabolism and detoxification. The findings also suggest that the CYP enzyme is involved in vitally important processes in the organism of parasites and is a potential drug target.

  2. Functional Analysis of the Unique Cytochrome P450 of the Liver Fluke Opisthorchis felineus

    PubMed Central

    Pakharukova, Mariya Y.; Vavilin, Valentin A.; Sripa, Banchob; Laha, Thewarach; Brindley, Paul J.; Mordvinov, Viatcheslav A.

    2015-01-01

    The basic metabolic cytochrome P450 (CYP) system is essential for biotransformation of sterols and xenobiotics including drugs, for synthesis and degradation of signaling molecules in all living organisms. Most eukaryotes including free-living flatworms have numerous paralogues of the CYP gene encoding heme monooxygenases with specific substrate range. Notably, by contrast, the parasitic flatworms have only one CYP gene. The role of this enzyme in the physiology and biochemistry of helminths is not known. The flukes and tapeworms are the etiologic agents of major neglected tropical diseases of humanity. Three helminth infections (Opisthorchis viverrini, Clonorchis sinensis and Schistosoma haematobium) are considered by the International Agency for Research on Cancer (IARC) as definite causes of cancer. We focused our research on the human liver fluke Opisthorchis felineus, an emerging source of biliary tract disease including bile duct cancer in Russia and central Europe. The aims of this study were (i) to determine the significance of the CYP activity for the morphology and survival of the liver fluke, (ii) to assess CYP ability to metabolize xenobiotics, and (iii) to localize the CYP activity in O. felineus tissues. We observed high constitutive expression of CYP mRNA (Real-time PCR) in O. felineus. This enzyme metabolized xenobiotics selective for mammalian CYP2E1, CYP2B, CYP3A, but not CYP1A, as determined by liquid chromatography and imaging analyses. Tissue localization studies revealed the CYP activity in excretory channels, while suppression of CYP mRNA by RNA interference was accompanied by morphological changes of the excretory system and increased mortality rates of the worms. These results suggest that the CYP function is linked to worm metabolism and detoxification. The findings also suggest that the CYP enzyme is involved in vitally important processes in the organism of parasites and is a potential drug target. PMID:26625139

  3. Human Liver Mitochondrial Cytochrome P450 2D6: Individual Variations and Implications in Drug Metabolism

    PubMed Central

    Cook Sangar, Michelle L.; Anandatheerthavarada, Hindupur K.; Tang, Weigang; Prabu, Subbuswamy K.; Martin, Martha V.; Dostalek, Miroslav; Guengerich, F. Peter; Avadhani, Narayan G.

    2009-01-01

    Summary Constitutively expressed human cytochrome P450 2D6 (CYP2D6) is responsible for the metabolism of approximately 25% of drugs in common clinical use. It is widely accepted that CYP2D6 is localized in the endoplasmic reticulum of cells; however, we have identified this enzyme in the mitochondria of human liver samples and found that extensive inter-individual variability exists in the level of the mitochondrial enzyme. Metabolic assays using 7-methoxy-4-aminomethylcoumarin as a substrate show that the human liver mitochondrial enzyme is capable of oxidizing this substrate and that the catalytic activity is supported by mitochondrial electron transfer proteins. Here we show that CYP2D6 contains an N-terminal chimeric signal that mediates its bimodal targeting to the endoplasmic reticulum (ER) and mitochondria. In vitro mitochondrial import studies using both N-terminal deletions and point mutations suggest that the mitochondrial targeting signal is localized between residues 23-33 and that the positively charged residues at positions 24, 25, 26, 28, and 32 are required for mitochondrial targeting. The importance of the positively charged residues was confirmed by transient transfection of a CYP2D6 mitochondrial targeting signal mutant in COS-7 cells. Both the mitochondria and the microsomes from a CYP2D6 stable expression cell line contain the enzyme and both fractions exhibit bufuralol 1′-hydroxylation activity, which is completely inhibited by CYP2D6 inhibitory antibody. Overall these results suggest that the targeting of CYP2D6 to mitochondria could be an important physiological process that has significance in xenobiotic metabolism. PMID:19438707

  4. Benzene metabolism by human liver microsomes in relation to cytochrome P450 2E1 activity.

    PubMed

    Seaton, M J; Schlosser, P M; Bond, J A; Medinsky, M A

    1994-09-01

    Low levels of benzene from sources including cigarette smoke and automobile emissions are ubiquitous in the environment. Since the toxicity of benzene probably results from oxidative metabolites, an understanding of the profile of biotransformation of low levels of benzene is critical in making a valid risk assessment. To that end, we have investigated metabolism of a low concentration of [14C]benzene (3.4 microM) by microsomes from human, mouse and rat liver. The extent of phase I benzene metabolism by microsomal preparations from 10 human liver samples and single microsomal preparations from both mice and rats was then related to measured activities of cytochrome P450 (CYP) 2E1. Measured CYP 2E1 activities, as determined by hydroxylation of p-nitrophenol, varied 13-fold (0.253-3.266 nmol/min/mg) for human samples. The fraction of benzene metabolized in 16 min ranged from 10% to 59%. Also at 16 min, significant amounts of oxidative metabolites were formed. Phenol was the main metabolite formed by all but two human microsomal preparations. In those samples, both of which had high CYP 2E1 activity, hydroquinone was the major metabolite formed. Both hydroquinone and catechol formation showed a direct correlation with CYP 2E1 activity over the range of activities present. A simulation model was developed based on a mechanism of competitive inhibition between benzene and its oxidized metabolites, and was fit to time-course data for three human liver preparations. Model calculations for initial rates of benzene metabolism ranging from 0.344 to 4.442 nmol/mg/min are directly proportional to measured CYP 2E1 activities. The model predicted the dependence of benzene metabolism on the measured CYP 2E1 activity in human liver samples, as well as in mouse and rat liver samples. These results suggest that differences in measured hepatic CYP 2E1 activity may be a major factor contributing to both interindividual and interspecies variations in hepatic metabolism of benzene

  5. Evidence for involvement of multiple forms of cytochrome P-450 in aflatoxin B sup 1 metabolism in human liver

    SciTech Connect

    Forrester, L.M.; Wolf, C.R. ); Neal, G.E.; Judah, D.J. )

    1990-11-01

    Liver cancer is a major cause of premature death in many areas of Africa and Asia and its incidence is strongly correlated with exposure to aflatoxin B{sub 1} (AFB{sub 1}). Because AFB{sub 1} requires metabolic activation to achieve a biological response, there is a need for detailed knowledge of the mechanism of activation to assess individual risk. The authors carried out an extensive study using a total of 19 human liver samples to determine the individual variability in the metabolism of the toxin to mutagenic or detoxification products and to identify the specific cytochrome P-450 forms involved in these processes. Metabolism to the toxic 8,9-epoxide or to products mutagenic in the Ames test was found to exhibit very large individual variation. These data demonstrate that, although P450IIIA probably plays an important role in AFB{sub 1} activation, several other cytochrome P-450 forms have the capacity to activate the toxin. Similar considerations apply to detoxifying metabolism to aflatoxin Q{sub 1} and aflatoxin M{sub 1}. The levels of expression of many of the forms of cytochrome P-450 involved in AFB{sub 1} metabolism are known to be highly sensitive to environmental factors. This indicates that such factors will be an important determinant in individual susceptibility to the tumorigenic action of AFB{sub 1}.

  6. Reversible inhibition of three important human liver cytochrome p450 enzymes by tiliroside.

    PubMed

    Sun, Dong-Xue; Lu, Jin-Cai; Fang, Zhong-Ze; Zhang, Yan-Yan; Cao, Yun-Feng; Mao, Yu-Xi; Zhu, Liang-Liang; Yin, Jun; Yang, Ling

    2010-11-01

    Tiliroside, an active flavonoid extensively found in many medicinal plants including Helichrysum italicum, Geranium mexicanum and Helianthemum glomeratum, has been demonstrated to exert multiple biological effects including antiinflammatory, antimicrobial, antioxidant and antitumor activities. Cytochrome P450 (CYP) enzymes play an important role in the Phase I oxidation metabolism of a wide range of xenobiotics and inhibition of CYP isoforms might influence the elimination of drugs and induce serious adverse drug response. The inhibition of seven CYP isoforms (CYP3A4, CYP1A2, CYP2A6, CYP2D6, CYP2C9, CYP2C8 and CYP2E1) by tiliroside was investigated using in vitro human liver microsomal incubation assays. The results showed that tiliroside strongly inhibited the activity of CYP3A4 (IC(50) = 9.0 ± 1.7 μm), CYP2C8 (IC(50) = 12.1 ± 0.9 μm) and CYP2C9 (IC(50) = 10.2 ± 0.9 μm) with other CYP isoforms negligibly influenced. Further kinetic analysis showed that inhibition of these three CYP isoforms by tiliroside is best fit to a competitive way. The K(i) value was calculated to be 5.5 μm, 3.3 μm, 9.4 μm for CYP3A4, CYP2C9 and CYP2C8, respectively. The relatively low K(i) values suggested that tiliroside might induce drug-drug interactions with many clinically used drugs which are mainly metabolized by these three CYP isoforms. Therefore, attention should be given to the probable drug-drug interaction between tiliroside-containing herbs and substrates of CYP3A4, CYP2C9 and CYP2C8. Copyright © 2010 John Wiley & Sons, Ltd.

  7. Selective inactivation by 21-chlorinated steroids of rabbit liver and adrenal microsomal cytochromes P-450 involved in progesterone hydroxylation.

    PubMed

    Halpert, J; Jaw, J Y; Balfour, C; Mash, E A; Johnson, E F

    1988-08-01

    The inactivation by 21-chlorinated steroids of rabbit liver cytochromes P-450 involved in the hydroxylation of progesterone has been investigated in intact microsomes encompassing two phenotypes of 21-hydroxylase activity, two phenotypes of 16 alpha-hydroxylase activity, and three phenotypes of 6 beta-hydroxylase activity. In liver microsomes from outbred New Zealand White male rabbits exhibiting a high content of cytochrome P-450 1, 21,21-dichloropregnenolone caused a time- and NADPH-dependent loss of 21-hydroxylase activity. This loss of activity exhibited a number of characteristics of mechanism-based inactivation, including irreversibility, saturation with increasing inhibitor concentrations, and protection by substrate, and was also documented with purified P-450 1 in a reconstituted system. 21,21-Dichloropregnenolone caused no time-dependent loss of 6 beta-hydroxylase activity in microsomes from the New Zealand White rabbits or from control or rifampicin-treated rabbits of the inbred B/J strain. In contrast, in the microsomes from the B/J rabbits, some inactivation of the 16 alpha-hydroxylase was observed (k = 0.04 min-1), regardless of the rifampicin treatment. The other two compounds tested, 21-chloropregnenolone and 21,21-dichloroprogesterone, were less effective than the dichloropregnenolone as inactivators of cytochrome P-450 1. On the other hand, 21,21-dichloroprogesterone, but not 21,21-dichloropregneolone, caused a rapid time-dependent loss of 21-hydroxylase activity in rabbit adrenal microsomes. The results indicate that the introduction of a dichloromethyl group into a substrate bearing a methyl group normally hydroxylated by only one or a few forms of cytochrome P-450 may be a rational means of designing selective inhibitors of the enzyme.

  8. Canine cytochrome P-450 pharmacogenetics.

    PubMed

    Court, Michael H

    2013-09-01

    The cytochrome P-450 (CYP) drug metabolizing enzymes are essential for the efficient elimination of many clinically used drugs. These enzymes typically display high interindividual variability in expression and function resulting from enzyme induction, inhibition, and genetic polymorphism thereby predisposing patients to adverse drug reactions or therapeutic failure. There are also substantial species differences in CYP substrate specificity and expression that complicate direct extrapolation of information from humans to veterinary species. This article reviews the available published data regarding the presence and impact of genetic polymorphisms on CYP-dependent drug metabolism in dogs in the context of known human-dog CYP differences. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Metabolism of (+)-terpinen-4-ol by cytochrome P450 enzymes in human liver microsomes.

    PubMed

    Haigou, Risa; Miyazawa, Mitsuo

    2012-01-01

    We examined the in vitro metabolism of (+)-terpinen-4-ol by human liver microsomes and recombinant enzymes. The biotransformation of (+)-terpinen-4-ol was investigated by gas chromatography-mass spectrometry (GC-MS). (+)-Terpinen-4-ol was found to be oxidized to (+)-(1R,2S,4S)-1,2-epoxy-p-menthan-4-ol, (+)-(1S,2R,4S)-1,2-epoxy-p-menthan-4-ol, and (4S)-p-menth-1-en-4,8-diol by human liver microsomal P450 enzymes. The identities of (+)-terpinen-4-ol metabolites were determined through the relative abundance of mass fragments and retention times on GC-MS. Of 11 recombinant human P450 enzymes tested, CYP1A2, CYP2A6, and CYP3A4 were found to catalyze the oxidation of (+)-terpinen-4-ol. Based on several lines of evidence, CYP2A6 and CYP3A4 were determined to be major enzymes involved in the oxidation of (+)-terpinen-4-ol by human liver microsomes. First, of the 11 recombinant human P450 enzymes tested, CYP1A2, CYP2A6 and CYP3A4 catalyzed oxidation of (+)-terpinen-4-ol. Second, oxidation of (+)-terpinen-4-ol was inhibited by (+)-menthofuran and ketoconazole, inhibitors known to be specific for these enzymes. Finally, there was a good correlation between CYP2A6 and CYP3A4 activities and (+)-terpinen-4-ol oxidation activities in the 10 human liver microsomes.

  10. Marmoset Cytochrome P450 3A4 Ortholog Expressed in Liver and Small-Intestine Tissues Efficiently Metabolizes Midazolam, Alprazolam, Nifedipine, and Testosterone.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Nakanishi, Kazuyuki; Ishii, Sakura; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2017-05-01

    Common marmosets (Callithrix jacchus), small New World primates, are increasingly attracting attention as potentially useful animal models for drug development. However, characterization of cytochrome P450 (P450) 3A enzymes involved in the metabolism of a wide variety of drugs has not investigated in marmosets. In this study, sequence homology, tissue distribution, and enzymatic properties of marmoset P450 3A4 ortholog, 3A5 ortholog, and 3A90 were investigated. Marmoset P450 3A forms exhibited high amino acid sequence identities (88-90%) to the human and cynomolgus monkey P450 3A orthologs and evolutionary closeness to human and cynomolgus monkey P450 3A orthologs compared with other P450 3A enzymes. Among the five marmoset tissues examined, P450 3A4 ortholog mRNA was abundant in livers and small intestines where P450 3A4 ortholog proteins were immunologically detected. Three marmoset P450 3A proteins heterologously expressed in Escherichia coli membranes catalyzed midazolam 1'- and 4-hydroxylation, alprazolam 4-hydroxylation, nifedipine oxidation, and testosterone 6β-hydroxylation, similar to cynomolgus monkey and human P450 3A enzymes. Among the marmoset P450 3A enzymes, P450 3A4 ortholog effectively catalyzed midazolam 1'-hydroxylation, comparable to microsomes from marmoset livers and small intestines. Correlation analyses with 23 individual marmoset liver microsomes suggested contributions of P450 3A enzymes to 1'-hydroxylation of both midazolam (human P450 3A probe) and bufuralol (human P450 2D6 probe), similar to cynomolgus monkey P450 3A enzymes. These results indicated that marmoset P450 3A forms had functional characteristics roughly similar to cynomolgus monkeys and humans in terms of tissue expression patterns and catalytic activities, suggesting marmosets as suitable animal models for P450 3A-dependent drug metabolism. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Steroid biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes

    PubMed Central

    2012-01-01

    Background Yarrowia lipolytica efficiently metabolizes and assimilates hydrophobic compounds such as n-alkanes and fatty acids. Efficient substrate uptake is enabled by naturally secreted emulsifiers and a modified cell surface hydrophobicity and protrusions formed by this yeast. We were examining the potential of recombinant Y. lipolytica as a biocatalyst for the oxidation of hardly soluble hydrophobic steroids. Furthermore, two-liquid biphasic culture systems were evaluated to increase substrate availability. While cells, together with water soluble nutrients, are maintained in the aqueous phase, substrates and most of the products are contained in a second water-immiscible organic solvent phase. Results For the first time we have co-expressed the human cytochromes P450 2D6 and 3A4 genes in Y. lipolytica together with human cytochrome P450 reductase (hCPR) or Y. lipolytica cytochrome P450 reductase (YlCPR). These whole-cell biocatalysts were used for the conversion of poorly soluble steroids in biphasic systems. Employing a biphasic system with the organic solvent and Y. lipolytica carbon source ethyl oleate for the whole-cell bioconversion of progesterone, the initial specific hydroxylation rate in a 1.5 L stirred tank bioreactor was further increased 2-fold. Furthermore, the product formation was significantly prolonged as compared to the aqueous system. Co-expression of the human CPR gene led to a 4-10-fold higher specific activity, compared to the co-overexpression of the native Y. lipolytica CPR gene. Multicopy transformants showed a 50-70-fold increase of activity as compared to single copy strains. Conclusions Alkane-assimilating yeast Y. lipolytica, coupled with the described expression strategies, demonstrated its high potential for biotransformations of hydrophobic substrates in two-liquid biphasic systems. Especially organic solvents which can be efficiently taken up and/or metabolized by the cell might enable more efficient bioconversion as compared

  12. NADPH: cytochrome P-450 reductase in olfactory epithelium. Relevance to cytochrome P-450-dependent reactions.

    PubMed Central

    Reed, C J; Lock, E A; De Matteis, F

    1986-01-01

    The presence of a very active cytochrome P-450-dependent drug-metabolizing system in the olfactory epithelium has been confirmed by using 7-ethoxycoumarin, 7-ethoxyresorufin, hexobarbitone and aniline as substrates, and the reasons for the marked activity of the cytochrome P-450 in this tissue have been investigated. The spectral interaction of hexobarbitone and aniline with hepatic and olfactory microsomes has been examined. By this criterion there was no evidence for marked differences in the spin state of the cytochromes of the two tissues, or for the olfactory epithelium containing a greater amount of cytochrome capable of binding hexobarbitone, a very actively metabolized substrate. Rates of NADPH and NADH: cytochrome c reductase activity were found to be higher in the olfactory epithelium than in the liver, and direct evidence was obtained for a greater amount of the NADPH-dependent flavoprotein in the olfactory microsomes. Investigation of male rats and male and female mice, as well as male hamsters, demonstrated that, in all cases, the cytochrome P-450 levels of the olfactory epithelium were lower than those of the liver, while the 7-ethoxycoumarin de-ethylase and NADPH:cytochrome c reductase activities were higher. A correlation was found between 7-ethoxycoumarin de-ethylase and NADPH:cytochrome c reductase activities for both tissues in all species examined. The ratio of reductase to cytochrome P-450 was found to be considerably higher in the olfactory epithelium (1:2-1:3) than in the liver (1:11-1:15), regardless of the species examined, suggesting that facilitated electron flow may contribute significantly to the cytochrome P-450 catalytic turnover in the olfactory tissue. Images Fig. 1. PMID:3101674

  13. Repeated Treatment with Furazolidone Induces Multiple Cytochrome P450-Related Activities in Chicken Liver, but Not in Rat Liver

    PubMed Central

    SASAKI, Nobuo; MATUMOTO, Tomoyuki; IKENAKA, Yoshinori; NAKAYAMA, Shouta M. M.; ISHIZUKA, Mayumi; KAZUSAKA, Akio; FUJITA, Shoichi

    2013-01-01

    ABSTRACT The nitrofuran antimicrobial agent, furazolidone (FZ), is still used in veterinary medicine in some countries in the Middle and Far Eastern countries. The present study aimed to investigate the effects of successive bolus doses of FZ and its metabolite 3-amino-2-oxazolidinone (AOZ) on cytochrome P450 (CYP)-related activities in the livers of rats and chickens. Female Wistar rats and white Leghorn chickens were orally administered FZ once a day for 4 consecutive days. FZ-treated chickens showed an increase in multiple CYP-related activities, however, rats treated with FZ did not show these changes. In chickens, treatment with FZ also induced production of microsomal CYP2C6-like apoprotein. The present study demonstrated that FZ caused a multiple-type induction of CYP-related activities in chickens, but not in rats. PMID:23774039

  14. Bromopropylate: induction of hepatic cytochromes P450 and absence of covalent binding to DNA in mouse liver.

    PubMed

    Thomas, H; Sagelsdorff, P; Molitor, E; Skripsky, T; Waechter, F

    1994-11-01

    Oral administration of benzilic acid ester-based acaricide bromopropylate at daily doses of 3, 15, 100, and 300 mg/kg body wt to young adult male Tif:MAGf mice for 14 days caused slightly increased liver weights in the high-dose group. A dose-dependent increase of the microsomal cytochrome P450 content was accompanied by elevated ethoxycoumarin O-deethylase, ethoxyresorufin O-deethylase, pentoxyresorufin O-depentylase, and total testosterone hydroxylase activities. When compared with mice treated in parallel with the model compounds for hepatic xenobiotic metabolizing enzyme induction, phenobarbitone, and 3-methylcholanthrene, the enzyme activity changes observed with bromopropylate largely equalled those expressed in phenobarbitone-treated mice. Immunochemical studies with monoclonal antibodies against rat liver cytochrome P450 isoenzymes of the gene families 1A, 2B, 3A, and 4A confirmed that bromopropylate is a phenobarbitone-type inducer in the mouse liver. Titration of liver microsomal suspensions with bromopropylate yielded Type I substrate binding spectra. The specific amplitude was increased 1.5-fold when microsomes from bromopropylate-treated mice (300 mg/kg body wt) were used instead of control microsomes, indicating the induction of cytochromes P450 catalyzing the oxidative metabolism of the test compound. Single oral administration of 300 mg/kg body wt [14C]bromopropylate to male mice, without or following pretreatment for 14 days with 300 mg/kg body wt unlabeled bromopropylate, gave no indication for DNA binding of the test compound in the liver. This excludes a genotoxic potential via covalent DNA modification. The results suggest that, in analogy to phenobarbitone, bromopropylate acts as a tumor promotor rather than a tumor initiator in the mouse liver.

  15. Selective inhibition by chloramphenicol of pregnenolone-16. cap alpha. -carbonitrile-inducible rat liver cytochrome P-450 isozymes

    SciTech Connect

    Graves, P.E.; Kaminsky, L.S.; Halpert, J.

    1986-03-01

    Pregnenolone-16 ..cap alpha..-carbonitrile (PCN) has been shown to induce, in male rats, cytochrome P-450 isozymes responsible for the formation of R-10-hydroxywarfarin and R-dehydrowarfarin. Antibodies to the major PCN-inducible isozyme (PB/PCN-E) inhibit both activities in microsomal preparations. Recently the authors have shown that PCN treatment of female rats also induces the formation of both R-warfarin metabolites. However, in both sexes chloramphenicol (CAP) treatment selectively inhibits only the rate of formation of the R-dehydrowarfarin. A decrease in microsomal P-450 content occurs after in vivo administration of CAP to PCN-treated rats of both sexes. This is in contrast to the lack of effect of CAP on P-450 levels in phenobarbital-treated rats. Covalent binding of /sup 14/C-CAP to microsomal protein in vitro was increased 3 to 4-fold following PCN treatment. Chromatographic evidences suggests the presence of at least two PCN-induced isozymes of similar molecular weights in both male and female rat liver microsomes. These data are consistent with the multiplicity of PCN-inducible P-450 in rat liver.

  16. Marmoset cytochrome P450 4A11, a novel arachidonic acid and lauric acid ω-hydroxylase expressed in liver and kidney tissues.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Ishii, Sakura; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2017-07-01

    1. A cDNA encoding novel cytochrome P450 (P450) 4A enzyme was cloned from marmoset livers by reverse transcription (RT)-polymerase chain reaction (PCR) based on the marmoset genome sequences. The amino acid sequence deduced from P450 4A11 cDNA contained consensus sequences of six substrate recognition sites and one heme-binding domain. 2. Marmoset P450 4A11, highly identical (85-88%) to cynomolgus monkey and human P450 4A enzymes, was grouped into the same cluster as cynomolgus monkey and human P450 4A enzymes by phylogenetic analysis. 3. The tissue distribution analyses by real-time RT PCR and immunoblotting demonstrated that marmoset P450 4A11 mRNA and proteins were expressed in kidneys and livers. Marmoset P450 4A11 enzyme heterologously expressed in Escherichia coli preferentially catalyzed the ω-hydroxylation of arachidonic acid and lauric acid, similar to cynomolgus monkey and human P450 4A11 enzymes. However, lauric acid ω-hydroxylation activity of marmoset P450 4A11 was low compared with those of marmoset liver microsomes. 4. These results indicated that novel marmoset P450 4A11 was also a fatty acid ω-hydroxylase expressed in kidneys and livers, with the same regioselectivity (at ω-position of fatty acid) as cynomolgus monkey and human P450 4A enzymes.

  17. Reactive intermediates in cytochrome p450 catalysis.

    PubMed

    Krest, Courtney M; Onderko, Elizabeth L; Yosca, Timothy H; Calixto, Julio C; Karp, Richard F; Livada, Jovan; Rittle, Jonathan; Green, Michael T

    2013-06-14

    Recently, we reported the spectroscopic and kinetic characterizations of cytochrome P450 compound I in CYP119A1, effectively closing the catalytic cycle of cytochrome P450-mediated hydroxylations. In this minireview, we focus on the developments that made this breakthrough possible. We examine the importance of enzyme purification in the quest for reactive intermediates and report the preparation of compound I in a second P450 (P450ST). In an effort to bring clarity to the field, we also examine the validity of controversial reports claiming the production of P450 compound I through the use of peroxynitrite and laser flash photolysis.

  18. Reactive Intermediates in Cytochrome P450 Catalysis*

    PubMed Central

    Krest, Courtney M.; Onderko, Elizabeth L.; Yosca, Timothy H.; Calixto, Julio C.; Karp, Richard F.; Livada, Jovan; Rittle, Jonathan; Green, Michael T.

    2013-01-01

    Recently, we reported the spectroscopic and kinetic characterizations of cytochrome P450 compound I in CYP119A1, effectively closing the catalytic cycle of cytochrome P450-mediated hydroxylations. In this minireview, we focus on the developments that made this breakthrough possible. We examine the importance of enzyme purification in the quest for reactive intermediates and report the preparation of compound I in a second P450 (P450ST). In an effort to bring clarity to the field, we also examine the validity of controversial reports claiming the production of P450 compound I through the use of peroxynitrite and laser flash photolysis. PMID:23632017

  19. Effects of obesity on liver cytochromes P450 in various animal models.

    PubMed

    Tomankova, Veronika; Anzenbacher, Pavel; Anzenbacherova, Eva

    2017-06-01

    The prevalence of obesity and other obesity-related diseases is increasing worldwide. Obesity is a disease characterized by increased body weight, or a condition resulting from excessive accumulation of body fat. Due to increased body fat deposits, obesity has also been associated with increased mortality resulting from higher incidence rates of hypertension, diabetes, or various types of cancer, such as breast, colorectal, cervical and prostate cancer. Physiological changes associated with obesity are likely to result in altered drug biotransformation. The main enzymes enabling the oxidative biotransformation of most drugs are cytochromes P450 (CYPs). The review summarizes how pathophysiological factors, especially obesity, affect properties (e.g. enzyme activity, protein expression, gene expression) of CYP enzymes in various experimental models of human obesity. Results reported by various authors suggest that obesity is associated with a decrease of CYP activities (except for the CYP2C and CYP2E1 enzymes). The only exception is mouse obesity induced by monosodium glutamate (administered to newborn mice) as it usually leads to increased CYP expression. Selecting an animal model that is as close as possible to the properties of human obesity is of paramount importance.

  20. Interaction of isoflavonoids with human liver microsomal cytochromes P450: inhibition of CYP enzyme activities.

    PubMed

    Kopečná-Zapletalová, Michaela; Krasulová, Kristýna; Anzenbacher, Pavel; Hodek, Petr; Anzenbacherová, Eva

    2017-04-01

    1. The possibility of interaction of isoflavonoids with concomitantly taken drugs to determined isoflavonoids safety was studied. Inhibition of nine forms of cytochrome P450 (CYP3A4, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2C9, CYP2D6 and CYP2E1) by 12 isoflavonoids (daidzein, genistein, biochanin A, formononetin, glycitein, equol and six glucosides, daidzin, puerarin, genistin, sissotrin, ononin and glycitin) was studied systematically. 2. The most potent inhibitors were genistein and daidzein inhibiting noncompetitively the CYP2C9 with Ki of 35.95 ± 6.96 and 60.56 ± 3.53 μmol/l and CYP3A4 (inhibited by genistein with Ki of 23.25 ± 5.85 μmol/l also by a noncompetitive mechanism). Potent inhibition of CYP3A4 was observed also with biochanin A (Ki of 57.69 ± 2.36 μmol/l) and equol (Ki of 38.47 ± 2.32 μmol/l). 3. Genistein and daidzein inhibit noncompetitively CYP3A4 and CYP2C9. With plasma levels in micromolar range, a clinically important interaction with concomitantly taken drugs does not seem to be probable.

  1. Induction time course of cytochromes P450 by phenobarbital and 3-methylcholanthrene pretreatment in liver microsomes of Alligator mississippiensis.

    PubMed

    Ertl, R P; Stegeman, J J; Winston, G W

    1998-05-01

    Alligator mississippiensis has at least two classes of inducible hepatic microsomal cytochromes P450 (CYP): (1) those induced by 3-methylcholanthrene (3MC), and (2) those induced by phenobarbital (PB). The rates of induction by these xenobiotic compounds are significantly slower than those reported for mammals. Carbon monoxide binding, western blots, and enzymatic activity measurements indicated that at least 48-72 hr are required to reach full induction. A methoxy-, ethoxy-, pentoxy, and benzyloxyphenoxazone (resorufin) O-dealkylation (MROD, EROD, PROD, and BROD) profile was indicative of substrate selectivity typical of 3MC- and PB-induced P450s. MROD and BROD showed the greatest ability to discriminate between alligator hepatic microsomes induced by 3MC and PB, respectively. This is in contrast to mammals, in which EROD is a biomarker of polycyclic aromatic hydrocarbon exposure because of its ability to discriminate the induction of CYP 1A. In a similar manner, PROD is a highly preferred activity of CYP 2B in mammals; thus, it is used to indicate CYP 2B induction. The induction of P450 by PB is a general phenomenon in mammals and birds. To the best of our knowledge, this is the first report demonstrating PB induction of P450 activities typical of the mammalian CYP 2 family isoforms in alligator or any reptilian liver. The importance of this finding to the evolution of CYP 2 family regulation by PB is heightened by the fact that induction by this xenobiotic is not common to fish and other lower vertebrates (Ertl RP and Winston GW, Comp Biochem Physiol, in press). Although indicating the presence of CYP 1A- and CYP 2B-like isoforms in alligator, it remains to be established how closely related these alligator P450s are to mammalian isoforms.

  2. 10-(6'-Plastoquinonyl)decyltriphenylphosphonium (SkQ1) Does Not Increase the Level of Cytochromes P450 in Rat Liver and Human Hepatocyte Cell Culture.

    PubMed

    Myasoedova, K N; Silachev, D N; Petrov, A D

    2016-12-01

    Mitochondria-targeted antioxidant SkQ1 did not increase the content of cytochromes P450 in livers of rats that were given SkQ1 in drinking water for 5 days in a dose (2.5 µmol per kg body weight) that exceeded 10 times the SkQ1 therapeutic dose. SkQ1 did not affect the levels of cytochrome P450 forms CYP1A2, CYP2B6, and CYP3A4 in monolayer cultures of freshly isolated human hepatocytes, while specific inducers of these forms (omeprazole, phenobarbital, and rifampicin, respectively) significantly increased expression of the cytochromes P450 under the same conditions. We conclude that therapeutic doses of SkQ1 do not induce cytochromes P450 in liver, and the absence of the inducing effect cannot be explained by poor availability of hepatocytes to SkQ1 in vivo.

  3. Metabolism of (-)-cis- and (-)-trans-rose oxide by cytochrome P450 enzymes in human liver microsomes.

    PubMed

    Nakahashi, Hiroshi; Yamamura, Yuuki; Usami, Atsushi; Rangsunvigit, Pramoch; Malakul, Pomthong; Miyazawa, Mitsuo

    2015-12-01

    The in vitro metabolism of (-)-cis- and (-)-trans-rose oxide was investigated using human liver microsomes and recombinant cytochrome P450 (P450 or CYP) enzymes for the first time. Both isomers of rose oxide were incubated with human liver microsomes, and the formation of the respective 9-oxidized metabolite were determined using gas chromatography-mass spectrometry (GC-MS). Of 11 different recombinant human P450 enzymes used, CYP2B6 and CYP2C19 were the primary enzymes catalysing the metabolism of (-)-cis- and (-)-trans-rose oxide. CYP1A2 also efficiently oxidized (-)-cis-rose oxide at the 9-position but not (-)-trans-rose oxide. α-Naphthoflavone (a selective CYP1A2 inhibitor), thioTEPA (a CYP2B6 inhibitor) and anti-CYP2B6 antibody inhibited (-)-cis-rose oxide 9-hydroxylation catalysed by human liver microsomes. On the other hand, the metabolism of (-)-trans-rose oxide was suppressed by thioTEPA and anti-CYP2B6 at a significant level in human liver microsomes. However, omeprazole (a CYP2C19 inhibitor) had no significant effects on the metabolism of both isomers of rose oxide. Using microsomal preparations from nine different human liver samples, (-)-9-hydroxy-cis- and (-)-9-hydroxy-trans-rose oxide formations correlated with (S)-mephenytoin N-demethylase activity (CYP2B6 marker activity). These results suggest that CYP2B6 plays important roles in the metabolism of (-)-cis- and (-)-trans-rose oxide in human liver microsomes.

  4. Metabolic capabilities of cytochrome P450 enzymes in Chinese liver microsomes compared with those in Caucasian liver microsomes

    PubMed Central

    Yang, Junling; He, Minxia M; Niu, Wei; Wrighton, Steven A; Li, Li; Liu, Yang; Li, Chuan

    2012-01-01

    AIM The most common causes of variability in drug response include differences in drug metabolism, especially when the hepatic cytochrome P450 (CYP) enzymes are involved. The current study was conducted to assess the differences in CYP activities in human liver microsomes (HLM) of Chinese or Caucasian origin. METHODS The metabolic capabilities of CYP enzymes in 30 Chinese liver microsomal samples were compared with those of 30 Caucasian samples utilizing enzyme kinetics. Phenacetin O-deethylation, coumarin 7-hydroxylation, bupropion hydroxylation, amodiaquine N-desethylation, diclofenac 4′-hydroxylation (S)-mephenytoin 4′-hydroxylation, dextromethorphan O-demethylation, chlorzoxazone 6-hydroxylation and midazolam 1′-hydroxylation/testosterone 6β-hydroxylation were used as probes for activities of CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A, respectively. Mann-Whitney U test was used to assess the differences. RESULTS The samples of the two ethnic groups were not significantly different in cytochrome-b5 concentrations but were significantly different in total CYP concentrations and NADPH-P450 reductase activity (P < 0.05). Significant ethnic differences in intrinsic clearance were observed for CYP1A2, CYP2C9, CYP2C19 and CYP2E1; the median values of the Chinese group were 54, 58, 26, and 35% of the corresponding values of the Caucasian group, respectively. These differences were associated with differences in Michaelis constant or maximum velocity. Despite negligible difference in intrinsic clearance, the Michaelis constant of CYP2B6 appeared to have a significant ethnic difference. No ethnic difference was observed for CYP2A6, CYP2C8, CYP2D6 and CYP3A. CONCLUSIONS These data extend our knowledge on the ethnic differences in CYP enzymes and will have implications for drug discovery and drug therapy for patients from different ethnic origins. PMID:21815912

  5. Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3).

    PubMed

    Wrighton, S A; Brian, W R; Sari, M A; Iwasaki, M; Guengerich, F P; Raucy, J L; Molowa, D T; Vandenbranden, M

    1990-08-01

    The human P450III family has been shown to be composed of at least four members, P450IIIA3 (HLp), P450IIIA4 (P450NF), P450IIIA5 (HLp3), and P450IIIA6 (HLp2). Due to the lack of probes that specifically recognize the individual members of this family, little is known about their relative expression. We prepared a form-specific antibody to P450IIIA5 by immunoabsorption of anti-P450IIIA5 IgG against Sepharose 4B upon which microsomes that did not contain P450IIIA5 or purified P450IIIA3 had been bound. Immunoblot analyses demonstrated that P450IIIA5 was expressed at detectable levels in only 19 of 66 (29%) human livers. The expression of P450IIIA5 was not influenced by the gender or medical history of the patients. When the expression of P450IIIA5 in different age groups was examined, it was observed that P450IIIA5 was detected in a statistically significantly higher percentage of children and adolescents (19 years old and under), as compared with the remaining population (8 of 17, 47%, versus 11 of 46, 24%, respectively). Furthermore, P450IIIA5 was detected in 1 of 10 human fetal livers. Of the large number of compounds identified as substrates of P450III family members, P450IIIA5 was found to actively metabolize nifedipine, testosterone, estradiol, dehydroepiandrosterone 3-sulfate, and cortisol, whereas it metabolized poorly or did not metabolize erythromycin, quinidine, 17 alpha-ethynylestradiol, and aflatoxins. The acetylenic steroid gestodene was found to be an effective mechanism-based inhibitor of both P450IIIA4 and P450IIIA5. Immunoblots of microsomes isolated from untreated and dexamethasone-, phenobarbital-, or 3-methylcholanthrene-treated HepG2 cells that were developed with an antibody that recognizes all the P450III family members demonstrated that no proteins in the P450III family were expressed by the HepG2 cells. In conclusion, our studies indicate that P450IIIA5 is polymorphically expressed at all stages of human development and is more limited in its

  6. Novel extrahepatic cytochrome P450s

    SciTech Connect

    Karlgren, Maria . E-mail: Maria.Karlgren@imm.ki.se; Miura, Shin-ichi; Ingelman-Sundberg, Magnus

    2005-09-01

    The cytochrome P450 enzymes are highly expressed in the liver and are involved in the metabolism of xenobiotics. Because of the initiatives associated with the Human Genome Project, a great progress has recently been seen in the identification and characterization of novel extrahepatic P450s, including CYP2S1, CYP2R1, CYP2U1 and CYP2W1. Like the hepatic enzymes, these P450s may play a role in the tissue-specific metabolism of foreign compounds, but they may also have important endogenous functions. CYP2S1 has been shown to metabolize all-trans retinoic acid and CYP2R1 is a major vitamin D 25-hydroxylase. Regarding their metabolism of xenobiotics, much remains to be established, but CYP2S1 metabolizes naphthalene and it is likely that these P450s are responsible for metabolic activation of several different kinds of xenobiotic chemicals and contribute to extrahepatic toxicity and carcinogenesis.

  7. Effect of treatment with pyrazine and some derivatives on cytochrome P450 and some enzyme activities in rat liver.

    PubMed

    Japenga, A C; Davies, S; Price, R J; Lake, B G

    1993-02-01

    1. The effect of pyrazine and three pyrazine derivatives, namely (methylthio) methylpyrazine (MTMP), 5, 6, 7, 8-tetrahydroquinoxaline (CHP) and 5-methyl-6, 7-dihydro-5'-cyclopentapyrazine (CPP), on hepatic peroxisomal and microsomal enzyme activities have been studied in male Sprague-Dawley rats. MTMP (0.25-2 mmol/kg per day) and the other compounds (1 mmol/kg/day) were administered by i.p. injections for 3 days. 2. None of the test compounds appeared to be peroxisome proliferators as there was no marked effect on hepatic palmitoyl-CoA oxidation, and neither pyrazine nor MTMP induced microsomal lauric acid 12-hydroxylase. 3. In contrast, all four compounds induced hepatic microsomal cytochrome P450-dependent enzyme activities. MTMP induced the metabolism of several mixed-function oxidase substrates including, 7-pentoxyresorufin, 7-benzoxyresorufin, benzphetamine, 4-nitrophenol and aniline, whereas pyrazine induced the metabolism of fewer substrates but including 4-nitrophenol and aniline. 4. By Western immunoblotting MTMP was found to increase levels of CYP2B1 and CYP3A isoenzymes, whereas pyrazine increased CYP2E1. 5. Thus, while pyrazine appears to be mainly a CYP2E inducer, MTMP is a mixed inducer of cytochrome P450 isoenzymes in the CYP2B, CYP3A and CYP2E subfamilies. CPP is probably a CYP2E inducer in rat liver, whereas CHP appears to be a mixed inducer of cytochrome P450 isoenzymes in the CYP2B, CYP3A and CYP2E subfamilies.

  8. Potent inhibition of cytochrome P450 2B6 by sibutramine in human liver microsomes.

    PubMed

    Bae, Soo Hyeon; Kwon, Min Jo; Choi, Eu Jin; Zheng, Yu Fen; Yoon, Kee Dong; Liu, Kwang-Hyeon; Bae, Soo Kyung

    2013-09-05

    The present study was performed to evaluate the potency and specificity of sibutramine as an inhibitor of the activities of nine human CYP isoforms in liver microsomes. Using a cocktail assay, the effects of sibutramine on specific marker reactions of the nine CYP isoforms were measured in human liver microsomes. Sibutramine showed potent inhibition of CYP2B6-mediated bupropion 6-hydroxylation with an IC50 value of 1.61μM and Ki value of 0.466μM in a competitive manner at microsomal protein concentrations of 0.25mg/ml; this was 3.49-fold more potent than the typical CYP2B6 inhibitor thio-TEPA (Ki=1.59μM). In addition, sibutramine slightly inhibited CYP2C19 activity (Ki=16.6μM, noncompetitive inhibition) and CYP2D6 activity (Ki=15.7μM, noncompetitive inhibition). These observations indicated 35.6- and 33.7-fold decreases in inhibition potency, respectively, compared with that of CYP2B6 by sibutramine. However, no inhibition of CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6, or CYP2E1 activities was observed. In addition, the CYP2B6 inhibitory potential of sibutramine was enhanced at a lower microsomal protein concentration of 0.05mg/ml. After 30min preincubation of human liver microsomes with sibutramine in the presence of NADPH, no shift in IC50 was observed in terms of inhibition of the activities of the nine CYPs, suggesting that sibutramine is not a time-dependent inactivator. These observations suggest that sibutramine is a selective and potent inhibitor of CYP2B6 in vitro, whereas inhibition of other CYPs is substantially lower. These in vitro data support the use of sibutramine as a well-known inhibitor of CYP2B6 for routine screening of P450 reversible inhibition when human liver microsomes are used as the enzyme source.

  9. Unusual Cytochrome P450 Enzymes and Reactions*

    PubMed Central

    Guengerich, F. Peter; Munro, Andrew W.

    2013-01-01

    Cytochrome P450 enzymes primarily catalyze mixed-function oxidation reactions, plus some reductions and rearrangements of oxygenated species, e.g. prostaglandins. Most of these reactions can be rationalized in a paradigm involving Compound I, a high-valent iron-oxygen complex (FeO3+), to explain seemingly unusual reactions, including ring couplings, ring expansion and contraction, and fusion of substrates. Most P450s interact with flavoenzymes or iron-sulfur proteins to receive electrons from NAD(P)H. In some cases, P450s are fused to protein partners. Other P450s catalyze non-redox isomerization reactions. A number of permutations on the P450 theme reveal the diversity of cytochrome P450 form and function. PMID:23632016

  10. Induction of cytochrome P450IA1 in rat colon and liver by indole-3-carbinol and 5,6-benzoflavone.

    PubMed

    Vang, O; Jensen, M B; Autrup, H

    1990-08-01

    It is known that consumption of cruciferous vegetables protects against the chemical induction of cancer in many organs. It has been suggested that this protection is mediated through an effect on the cytochrome P450 monooxygenase system. This system is responsible for the activation of a number of chemical carcinogens to their ultimate forms. In the present study, the effect of indole-3-carbinol (I3C) and 5,6-benzoflavone (5,6BF) on the expression of cytochrome P450IA1 in rat colon and liver has been investigated. Cytochrome P450IA1 mRNA was induced in colon following a single oral administration of I3C or 5,6BF. A biphasic induction profile was obtained with maxima at 4 and 16 h post-administration. Both inducers caused an approximately 2-fold increase in P450IA1 mRNA at 4 h and a 10-fold increase at 16 h. In contrast, both cytochrome P450IA1 and IA2 mRNAs was increased over the control between 4 and 24 h. The total amount of P450IA mRNAs in liver at 4 and 16 h was increased about 2- and 4-fold respectively by I3C; 5,6BF induced the P450IA mRNAs 4- and 5-fold respectively. The expression of cytochrome P450IA1 and IA2 is induced by I3C and several flavones present in cruciferous vegetables. This suggests that one of the protective effects of cruciferous vegetables in the reduction of chemically induced cancer may be regulation of cytochrome P450s involved in the metabolism of the chemical carcinogens.

  11. A world of cytochrome P450s.

    PubMed

    Nelson, David R

    2013-02-19

    The world we live in is a biosphere influenced by all organisms who inhabit it. It is also an ecology of genes, with some having rather startling effects. The premise put forth in this issue is cytochrome P450 is a significant player in the world around us. Life and the Earth itself would be visibly different and diminished without cytochrome P450s. The contributions to this issue range from evolution on the billion year scale to the colour of roses, from Darwin to Rachel Carson; all as seen through the lens of cytochrome P450.

  12. Regio- and Stereo-Selective Oxidation of a Cardiovascular Drug, Metoprolol, Mediated by Cytochrome P450 2D and 3A Enzymes in Marmoset Livers.

    PubMed

    Uehara, Shotaro; Ishii, Sakura; Uno, Yasuhiro; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2017-08-01

    A β-blocker, metoprolol, is one of the in vivo probes for human cytochrome P450 (P450) 2D6. Investigation of nonhuman primate P450 enzymes helps to improve the accuracy of the extrapolation of pharmacokinetic data from animals into humans. Common marmosets (Callithrix jacchus) are a potential primate model for preclinical research, but the detailed roles of marmoset P450 enzymes in metoprolol oxidation remain unknown. In this study, regio- and stereo-selectivity of metoprolol oxidations by a variety of P450 enzymes in marmoset and human livers were investigated in vitro. Although liver microsomes from cynomolgus monkeys and rats preferentially mediated S-metoprolol O-demethylation and R-metoprolol α-hydroxylation, respectively, those from humans, marmosets, minipigs, and dogs preferentially mediated R-metoprolol O-demethylation, in contrast to the slow rates of R- and S-metoprolol oxidation in mouse liver microsomes. R- and S-metoprolol O-demethylation activities in marmoset livers were strongly inhibited by quinidine and ketoconazole, and were significantly correlated with bufuralol 1'-hydroxylation and midazolam 1'-hydroxylation activities and also with P450 2D and 3A4 contents, which is different from the case in human livers that did not have any correlations with P450 3A-mediated midazolam 1'-hydroxylation. Recombinant human P450 2D6 enzyme and marmoset P450 2D6/3A4 enzymes effectively catalyzed R-metoprolol O-demethylation, comparable to the activities of human and marmoset liver microsomes, respectively. These results indicated that the major roles of P450 2D enzymes for the regio- and stereo-selectivity of metoprolol oxidation were similar between human and marmoset livers, but the minor roles of P450 3A enzymes were unique to marmosets. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Evolutionary origin of mitochondrial cytochrome P450.

    PubMed

    Omura, Tsuneo; Gotoh, Osamu

    2017-05-01

    Different molecular species of cytochrome P450 (P450) are distributed between endoplasmic reticulum (microsomes) and mitochondria in animal cells. Plants and fungi have many microsomal P450s, but no mitochondrial P450 has so far been reported. To elucidate the evolutionary origin of mitochondrial P450s in animal cells, available evidence is examined, and the virtual absence of mitochondrial P450 in plants and fungi is confirmed. It is also suggested that a microsomal P450 is the ancestor of animal mitochondrial P450s. It is likely that the endoplasmic reticulum-targeting sequence at the amino-terminus of a microsomal P450 was converted to a mitochondria-targeting sequence possibly by point mutations of a few amino acid residues or by an exon-shuffling/moving event shortly after animal lineage diverged from plants and fungi in the course of evolution of eukaryotes. It is suggested that the microsome-type P450 first imported into mitochondria utilized the existing ferredoxin in the matrix to receive electrons from NADPH, retained its oxygenase activity in the mitochondria, and gradually diversified to several P450s with different substrate specificities in the course of the evolution of animals. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  14. Cytochrome P450 3A, NADPH cytochrome P450 reductase and cytochrome b5 in the upper airways in horse.

    PubMed

    Tydén, E; Olsén, L; Tallkvist, J; Tjälve, H; Larsson, P

    2008-08-01

    Gene and protein expression as well as catalytic activity of cytochrome P450 (CYP) 3A were studied in the nasal olfactory and respiratory mucosa and the tracheal mucosa of the horse. We also examined the activity of NADPH cytochrome P450 reductase (NADPH P450 reductase), the amount of cytochrome b(5) and the total CYP content in these tissues. Comparative values for the above were obtained using liver as a control. The CYP3A related catalytic activity in the tissues of the upper airways was considerably higher than in the liver. The CYP3A gene and protein expression, on the other hand, was higher in the liver than in the upper airway tissues. Thus, the pattern of CYP3A metabolic activity does not correlate with the CYP3A gene and protein expression. Our results showed that the activity of NADPH P450 reductase and the level of cytochrome b(5) in the relation to the gene and protein expression of CYP3A were higher in the tissues of the upper airways than in the liver. It is concluded that CYP3A related metabolism in horse is not solely dependent on the expression of the enzyme but also on adequate levels of NADPH P450 reductase and cytochrome b(5).

  15. Metabolism of paraldehyde to acetaldehyde in liver microsomes. Evidence for the involvement of cytochrome P-450.

    PubMed

    Zaleska, M M; Gessner, P K

    1983-12-15

    A concentration-dependent acetaldehyde (AcH) generation was observed when paraldehyde was incubated with the mouse liver microsomal fraction. The process, which exhibited a requirement for oxygen and NADPH and was inhibited by carbon monoxide, was found to have a Km of 17.9 mM with respect to paraldehyde and a Vmax of 40.1 nmoles/mg protein/min with respect to AcH formation. NADH was much less effective as an electron donor than NADPH, though a more than additive increase in AcH generation was observed when both of these nucleotides were added to the incubation. The rate of microsomal AcH generation from paraldehyde was increased 2.5-fold by pretreatment of the mice with phenobarbital but only 0.6-fold by pretreatment with 3-methylcholanthrene. Pretreatment with 2-diethylaminoethyl-2,2-diphenylvalerate hydrochloride (SKF-525A) resulted in 54% inhibition of the reaction rate. Addition of metopirone to the incubation inhibited AcH generation in a concentration-related fashion, the inhibition being greatest, proportionately, in microsomes from phenobarbital-pretreated animals. The above results conclusively indicate the involvement of cytochrome P-540 mixed function oxidase in the formation of AcH from paraldehyde by mouse liver microsomes. It is also postulated that this process may be accomplished in the reaction analogous to O-dealkylation.

  16. Cytochromes P450 (CYP) in tropical fishes: catalytic activities, expression of multiple CYP proteins and high levels of microsomal P450 in liver of fishes from Bermuda.

    PubMed

    Stegeman, J J; Woodin, B R; Singh, H; Oleksiak, M F; Celander, M

    1997-01-01

    Hepatic microsomes prepared from 10 fish species from Bermuda were studied to establish features of cytochrome P450 (CYP) systems in tropical marine fish. The majority (7/10) of the species had total P450 content between 0.1 and 0.5 nmol/mg, and cytochrome b5 content between 0.025 and 0.25 nmol/mg. Ethoxycoumarin O-deethylase (ECOD) and aminopyrine N-demethylase (APND) rates in these 7 species were 0.23-2.1 nmol/min/mg and 0.5-11 nmol/min/mg, respectively, similar to rates in many temperate fish species. In contrast to those 7 species, sergeant major (Abudefduf saxatilis) and Bermuda chub (Kyphosus sectatrix) had microsomal P450 contents near 1.7 nmol/mg, among the highest values reported in untreated fish, and had greater rates of ECOD, APND, ethoxyresorufin O-deethylase (EROD) and pentoxyresorufin O-depentylase than did most of the other species. Freshly caught individuals of all species had detectable levels of EROD and aryl hydrocarbon hydroxylase (AHH) activities. Those individuals with higher rates of EROD activity had greater content of immunodetected CYP1A protein, consistent with Ah-receptor agonists acting to induce CYP1A in many fish in Bermuda waters. Injection of tomtate and blue-striped grunt with beta-naphthoflavone (BNF; 50 or 100 mg/kg) induced EROD rates by 25 to 55-fold, suggesting that environmental induction in some fish was slight compared with the capacity to respond. AHH rates were induced only 3-fold in these same fish. The basis for disparity in the degree of EROD and AHH induction is not known. Rates of APND and testosterone 6 beta- and 16 beta-hydroxylase were little changed by BNF, indicating that these are not CYP1A activities in these fish. Antibodies to phenobarbital-inducible rat CYP2B1 or to scup P450B, a putative CYP2B, detected one or more proteins in several species, suggesting that CYP2B-like proteins are highly expressed in some tropical fishes. Generally, species with greater amounts of total P450 had greater amounts of

  17. Study Liver Cytochrome P450 3A4 Inhibition and Hepatotoxicity Using DMSO-Differentiated HuH-7 Cells.

    PubMed

    Liu, Yitong

    2016-01-01

    Metabolically competent, inexpensive, and robust in vitro cell models are needed for studying liver drug-metabolizing enzymes and hepatotoxicity. Human hepatoma HuH-7 cells develop into a differentiated in vitro model resembling primary human hepatocytes after a 2-week dimethyl sulfoxide (DMSO) treatment. DMSO-treated HuH-7 cells express elevated cytochrome P450 3A4 (CYP3A4) enzyme gene expression and activity compared to untreated HuH-7 cells. This cell model could be used to study CYP3A4 inhibition by reversible and time-dependent inhibitors, including drugs, food-related substances, and environmental chemicals. The DMSO-treated HuH-7 model is also a suitable tool for investigating hepatotoxicity. This chapter describes a detailed methodology for developing DMSO-treated HuH-7 cells, which are subsequently used for CYP3A4 inhibition and hepatotoxicity studies.

  18. Expression of cytochrome P450 regulators in cynomolgus macaque.

    PubMed

    Uno, Yasuhiro; Yamazaki, Hiroshi

    2017-09-11

    1. Cytochrome P450 (P450) regulators including nuclear receptors and transcription factors have not been fully investigated in cynomolgus macaques, an important species used in drug metabolism studies. In this study, we analyzed 17 P450 regulators by sequence and phylogenetic analysis, and tissue expression. 2. Gene and genome structures of 17 P450 regulators were similar to the human orthologs, and the deduced amino acid sequences showed high sequence identities (92-95%) and more closely clustered in a phylogenetic tree, with the human orthologs. 3. Many of the P450 regulator mRNAs were preferentially expressed in the liver, kidney, and/or jejunum. Among the P450 regulator mRNAs, PXR was most abundant in the liver and jejunum, and HNF4α in the kidney. In the liver, the expression of most P450 regulator mRNAs did not show significant differential expression (>2.5-fold) between cynomolgus macaques bred in Cambodia, China, and Indonesia, or rhesus macaques. 4. By correlation analysis, most of the P450 regulators were significantly (p < 0.05) correlated to other P450 regulators, and many of them were also significantly (p < 0.05) correlated with P450s. 5. These results suggest that 17 P450 regulators of cynomolgus macaques had similar molecular characteristics to the human orthologs.

  19. Immobilized Cytochrome P450 for Monitoring of P450-P450 Interactions and Metabolism.

    PubMed

    Bostick, Chris D; Hickey, Katherine M; Wollenberg, Lance A; Flora, Darcy R; Tracy, Timothy S; Gannett, Peter M

    2016-05-01

    Cytochrome P450 (P450) protein-protein interactions have been shown to alter their catalytic activity. Furthermore, these interactions are isoform specific and can elicit activation, inhibition, or no effect on enzymatic activity. Studies show that these effects are also dependent on the protein partner cytochrome P450 reductase (CPR) and the order of protein addition to purified reconstituted enzyme systems. In this study, we use controlled immobilization of P450s to a gold surface to gain a better understanding of P450-P450 interactions between three key drug-metabolizing isoforms (CYP2C9, CYP3A4, and CYP2D6). Molecular modeling was used to assess the favorability of homomeric/heteromeric P450 complex formation. P450 complex formation in vitro was analyzed in real time utilizing surface plasmon resonance. Finally, the effects of P450 complex formation were investigated utilizing our immobilized platform and reconstituted enzyme systems. Molecular modeling shows favorable binding of CYP2C9-CPR, CYP2C9-CYP2D6, CYP2C9-CYP2C9, and CYP2C9-CYP3A4, in rank order.KDvalues obtained via surface plasmon resonance show strong binding, in the nanomolar range, for the above pairs, with CYP2C9-CYP2D6 yielding the lowestKD, followed by CYP2C9-CYP2C9, CYP2C9-CPR, and CYP2C9-CYP3A4. Metabolic incubations show that immobilized CYP2C9 metabolism was activated by homomeric complex formation. CYP2C9 metabolism was not affected by the presence of CYP3A4 with saturating CPR concentrations. CYP2C9 metabolism was activated by CYP2D6 at saturating CPR concentrations in solution but was inhibited when CYP2C9 was immobilized. The order of addition of proteins (CYP2C9, CYP2D6, CYP3A4, and CPR) influenced the magnitude of inhibition for CYP3A4 and CYP2D6. These results indicate isoform-specific P450 interactions and effects on P450-mediated metabolism. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Effects of dextran sulfate sodium induced experimental colitis on cytochrome P450 activities in rat liver, kidney and intestine.

    PubMed

    Hu, Nan; Huang, Yanjuan; Gao, Xuejiao; Li, Sai; Yan, Zhixiang; Wei, Bin; Yan, Ru

    2017-06-01

    Dextran sulfate sodium (DSS) induced experimental colitis presents a histologic resemblance to human ulcerative colitis (UC). Altered cytochrome P450s (CYPs) have been reported in this model and patients with UC. In this study, six CYPs activities were quantitatively determined in microsomes of liver (RLMs), kidney (RRMs) and intestine (RIMs) from rats with colitis at acute (5% DSS for 7 days, UCA) and remission (7-day DSS treatment followed by 7-day cessation, UCR) phases and compared with normal rats. Generally, CYPs activities varied with isoform, organ, and disease status. Hepatic CYP1A2, 2B1, 2C6/11, 2E1 and 3A1/2 activities were reduced by acute colitis and completely or partially restored after DSS was halted. Although DSS treatment decreased the Vmax of renal CYP2C6/11 and increased that of CYP2D2, their CLint, in vitro were comparable among normal, acute and remission stages. DSS treatment changed the kinetics of CYP3A1/2-mediated nifedipine metabolism in RRMs from biphasic to classical kinetics. Notably, CYP2D2 activity was elevated in liver and kidney in acute UC, while enhanced in liver and decreased in kidney in remission. In intestine, CYP3A1/2 activity was increased in UCA and further enhanced after DSS withdrawal. These findings highlight the necessity of quantifying enzyme activity for precision drug therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Characterization of cDNAs, mRNAs, and proteins related to human liver microsomal cytochrome P-450 (S)-mephenytoin 4'-hydroxylase.

    PubMed

    Ged, C; Umbenhauer, D R; Bellew, T M; Bork, R W; Srivastava, P K; Shinriki, N; Lloyd, R S; Guengerich, F P

    1988-09-06

    A cytochrome P-450 (P-450) multigene family codes for several related human liver enzymes, including the P-450 responsible for (S)-mephenytoin 4'-hydroxylation. This enzyme activity has previously been shown to be associated with a genetic polymorphism. Genomic (Southern) blot analysis using non-overlapping 5' and 3' portions of a cDNA clone suggests that approximately seven related sequences are present in this gene family. In this study four cDNA clones, all nearly full-length, were isolated from a bacteriophage lambda gt11 library prepared from a single human liver. These clones can be grouped into two categories that are approximately 85% identical at the level of DNA sequence. The cDNA clones in one category (MP-4, MP-8) both match the N-terminal sequences of the P-450MP-1 and P-450MP-2 proteins, which had previously been shown to be catalytically active in (S)-mephenytoin 4'-hydroxylation. These two cDNAs, MP-4 and MP-8, differ in only two bases in the coding region but are quite distinct in their 3' noncoding regions. Another protein (P-450MP-3) was isolated on the basis of its immunochemical similarity to P-450MP-1 but was found to be catalytically inactive; amino acid sequencing of tryptic peptides of P-450MP-3 showed a correspondence to the second category of cDNA clones (MP-12, MP-20), which differ from each other in only four (nonsilent) base changes. Oligonucleotides specific for the two groups of cDNA clones were used as probes of human liver mRNAs--individual liver samples examined expressed both types of mRNAs but no correlation was observed between the abundance levels of any mRNA and catalytic activity. Further, oligonucleotide probes indicated that mRNAs corresponding to both the MP-4 and MP-8 clones were apparently present in individual liver samples. A monoclonal antibody was isolated that recognized P-450MP-1 but not P-450MP-2 or P-450MP-3; the amount of protein detected by the antibody in different liver samples was not correlated with the

  2. Cytochrome P450s and molecular epidemiology

    NASA Astrophysics Data System (ADS)

    Gonzalez, Frank J.; Gelboin, Harry V.

    1993-03-01

    Cytochrome P450 (P450) represent a superfamily of heme-containing monooxygenases that are found throughout the animal and plant kingdoms and in many microorganisms. A number of these enzymes are involved in biosynthetic pathways of steroid synthesis but in mammals the vast majority of P450s function to metabolize foreign chemicals or xenobiotics. In the classical phase I reactions on the latter, a membrane-bound P450 will hydroxylate a compound, usually hydrophobic in nature, and the hydroxyl group will serve as a substrate for the various transferases or phase II enzymes that attach hydrophilic substituents such as glutathione, sulfate or glucuronic acid. Some chemicals, however, are metabolically-activated by P450s to electrophiles capable of reacting with cellular macromolecules. The cellular concentrations of the chemical and P450, reactivity of the active metabolite with nucleic acid and the repairability of the resultant adducts, in addition to the nature of the cell type, likely determines whether a chemical will be toxic and kill the cell or will transform the cell. Immunocorrelative and cDNA-directed expression have been used to define the substrate specificities of numerous human P450s. Levels of expression of different human P450 forms have been measured by both in vivo and in vitro methodologies leading to the realization that a large degree of interindividual differences occur in P450 expression. Reliable procedures for measuring P450 expression in healthy and diseased subjects will lead to prospective and case- cohort studies to determine whether interindividual differences in levels of P450 are associated with susceptibility or resistance to environmentally-based disease.

  3. High daily dose and being a substrate of cytochrome P450 enzymes are two important predictors of drug-induced liver injury.

    PubMed

    Yu, Ke; Geng, Xingchao; Chen, Minjun; Zhang, Jie; Wang, Bingshun; Ilic, Katarina; Tong, Weida

    2014-04-01

    Drug-induced liver injury (DILI) is complicated and difficult to predict. It has been observed that drugs with extensive hepatic metabolism have a higher likelihood of causing DILI. Cytochrome P450 (P450) enzymes are primarily involved in hepatic metabolism. Identifying the associations of DILI with drugs that are P450 substrates, inhibitors, or inducers will be extremely helpful to clinicians during the decision-making process of caring for a patient suspected of having DILI. We collected metabolism data on P450 enzymes for 254 orally administered drugs in the Liver Toxicity Knowledge Base Benchmark Dataset with a known daily dose, and applied logistic regression to identify these associations. We revealed that drugs that are substrates of P450 enzymes have a higher likelihood of causing DILI [odds ratio (OR), 3.99; 95% confidence interval (95% CI), 2.07-7.67; P < 0.0001], which is dose-independent, and drugs that are P450 inhibitors have a higher likelihood of generating DILI only when they are administered at high daily doses (OR, 6.03; 95% CI, 1.32-27.5; P = 0.0098). However, drugs that are P450 inducers are not observed to be associated with DILI (OR, 1.55; 95% CI, 0.65-3.68; P = 0.3246). Our findings will be useful in identifying the suspected medication as a cause of liver injury in clinical settings.

  4. Site-directed mutation studies of human liver cytochrome P-450 isoenzymes in the CYP2C subfamily.

    PubMed Central

    Veronese, M E; Doecke, C J; Mackenzie, P I; McManus, M E; Miners, J O; Rees, D L; Gasser, R; Meyer, U A; Birkett, D J

    1993-01-01

    Evidence from human studies in vivo and in vitro strongly suggests that the methylhydroxylation of tolbutamide and the 4-hydroxylation of phenytoin, the major pathways in the elimination of these two drugs, are catalysed by the same cytochrome P-450 isoenzyme(s). In the present study we used site-directed mutagenesis and cDNA expression in COS cells to characterize in detail the kinetics of tolbutamide and phenytoin hydroxylations by seven CYP2C proteins (2C8, 2C9 and variants, and 2C10) in order to define the effects of small changes in amino acid sequences and the likely proteins responsible in the metabolism of these two drugs in man. Tolbutamide was hydroxylated to varying extents by all expressed cytochrome P-450 isoenzymes, although activity was much lower for the expressed 2C8 protein. While the apparent Km values for the 2C9/10 isoenzymes (71.6-131.7 microM) were comparable with the range of apparent Km values previously observed in human liver microsomes, the apparent Km for 2C8 (650.5 microM) was appreciably higher. The 2C8 enzyme also showed quite different sulphaphenazole inhibition characteristics. The 4-hydroxylation of phenytoin was also more efficiently catalysed by the 2C9/10 enzymes. These enzymes showed similarities in kinetics of phenytoin hydroxylation and sulphaphenazole inhibition compared with human liver phenytoin hydroxylase. Also of interest was the observation that, among the 2C9 variants, small differences in amino acid composition could appreciably affect both tolbutamide and phenytoin hydroxylations. The amino acid substitution Cys-144-->Arg increased both the rates of tolbutamide and phenytoin hydroxylations, while the Leu-359-->Ile change had a greater effect on phenytoin hydroxylation. We conclude that: (1) although 2C8 and 2C9/10 proteins metabolize tolbutamide. only 2C9/10 proteins play a major role in human liver; (2) 2C9/10 proteins also appear to be chiefly responsible for phenytoin hydroxylation; and (3) subtle differences in

  5. Identification of human cytochrome P450 isoforms involved in the 7-hydroxylation of chlorpromazine by human liver microsomes.

    PubMed

    Yoshii, K; Kobayashi, K; Tsumuji, M; Tani, M; Shimada, N; Chiba, K

    2000-01-01

    Studies to identify the cytochrome P450 (CYP) isoform(s) involved in chlorpromazine 7-hydroxylation were performed using human liver microsomes and cDNA-expressed human CYPs. The kinetics of chlorpromazine 7-hydroxylation in human liver microsomes showed a simple Michaelis-Menten behavior. The apparent Km and Vmax values were 3.4+/-1.0 microM and 200.5+/-83.7 pmol/min/mg, respectively. The chlorpromazine 7-hydroxylase activity in human liver microsomes showed good correlations with desipramine 2-hydroxylase activity (r = 0.763, p < 0.05), a marker activity for CYP2D6, and phenacetin O-deethylase activity (r = 0.638, p < 0.05), a marker activity for CYP1A2. Quinidine (an inhibitor of CYP2D6) completely inhibited while alpha-naphthoflavone (an inhibitor of CYP1A2) marginally inhibited the chlorpromazine 7-hydroxylase activity in a human liver microsomal sample showing high CYP2D6 activity. On the other hand, alpha-naphthoflavone inhibited the chlorpromazine 7-hydroxylase activity to 55-65% of control in a human liver microsomal sample showing low CYP2D6 activity. Among eleven cDNA-expressed CYPs studied, CYP2D6 and CYP1A2 exhibited significant activity for the chlorpromazine 7-hydroxylation. The Km values for the chlorpromazine 7-hydroxylation of both cDNA-expressed CYP2D6 and CYP1A2 were in agreement with the Km values of human liver microsomes. These results suggest that chlorpromazine 7-hydroxylation is catalyzed mainly by CYP2D6 and partially by CYP1A2.

  6. COMMENTS ON "EFFECT OF PRENATAL EXPOSURE OF DELTAMETHRIN ON THE ONTOGENY OF XENOBIOTIC METABOLIZING CYTOCHROME P450S IN THE BRAIN AND LIVER OF OFFSPRINGS.

    EPA Science Inventory

    Comments on: Effect of prenatal exposure of deltamethrin on the ontogeny of xenobiotic metabolizing cytochrome P450s in the brain and liver of offsprings [Johri et al. Toxicol Appl Pharmacol. 214:279-289, 2006]

    Johri and colleagues recently reported that maternal exposur...

  7. COMMENTS ON "EFFECT OF PRENATAL EXPOSURE OF DELTAMETHRIN ON THE ONTOGENY OF XENOBIOTIC METABOLIZING CYTOCHROME P450S IN THE BRAIN AND LIVER OF OFFSPRINGS.

    EPA Science Inventory

    Comments on: Effect of prenatal exposure of deltamethrin on the ontogeny of xenobiotic metabolizing cytochrome P450s in the brain and liver of offsprings [Johri et al. Toxicol Appl Pharmacol. 214:279-289, 2006]

    Johri and colleagues recently reported that maternal exposur...

  8. Effect of Long-Term Treatment with Antioxidant SkQ1 Added to Drinking Water on Cytochromes P450 Level in Rat Liver.

    PubMed

    Myasoedova, K N; Silachev, D N

    2015-12-01

    Mitochondria-targeted cationic antioxidant plastoquinonyl decyltriphenylphosphonium (SkQ1) added to drinking water in therapeutic doses (250 nmol/kg per day) for a long time (up to 24 months) does not induce cytochromes P450 in rat liver.

  9. Terfenadine t-butyl hydroxylation catalyzed by human and marmoset cytochrome P450 3A and 4F enzymes in livers and small intestines.

    PubMed

    Uehara, Shotaro; Yuki, Yukako; Uno, Yasuhiro; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2017-05-15

    1. Roles of human cytochrome P450 (P450) 3A4 in oxidation of an antihistaminic drug terfenadine have been previously investigated in association with terfenadine-ketoconazole interaction. Several antihistamine drugs have been recently identified as substrates for multiple P450 enzymes. In this study, overall roles of P450 3A4, 2J2, and 4F12 enzymes in terfenadine t-butyl hydroxylation were investigated in small intestines and livers from humans, marmosets, and/or cynomolgus monkeys. 2. Human liver microsomes and liver and small intestine microsomes from marmosets and cynomolgus monkeys effectively mediated terfenadine t-butyl hydroxylation. Ketoconazole and N-hydroxy-N'-(4-butyl-2-methylphenyl)-formamidine (a P450 4A/F inhibitor) almost completely and moderately inhibited these activities, respectively, in human liver microsomes; however, these chemicals did not show substantially suppression in marmoset liver. Anti-human P450 3A and 4F antibodies showed the roughly supportive inhibitory effects. 3. Recombinant P450 3A4/90 and 4F12 showed high terfenadine t-butyl hydroxylation activities with substrate inhibition constants of 84-144 μM (under 26-76 μM of Km values), in similar manners to liver and intestine microsomes. 4. These results suggest that human and marmoset P450 3A4/90 and 4F12 in livers or small intestines played important roles in terfenadine t-butyl hydroxylation. Marmosets could be a model for humans during first pass extraction of terfenadine and related substrates.

  10. In vivo effect of dried chicory root (Cichorium intybus L.) on xenobiotica metabolising cytochrome P450 enzymes in porcine liver.

    PubMed

    Rasmussen, Martin Krøyer; Zamaratskaia, Galia; Ekstrand, Bo

    2011-01-15

    Cytochrome P450 (CYP) enzymes are widely studied for their involvement in metabolism of drugs and endogenous compounds. In porcine liver, CYP1A2, 2A and 2E1 are important for the metabolism of skatole. Feeding chicory roots to pigs is known to decrease the skatole concentration in plasma and fat. In the present study we investigated the effect of chicory on CYP mRNA and protein expression, as well as their activity. Male pigs were feed dried chicory root for 16 days before liver samples were collected. By the use of RT-PCR and Western blotting we showed that the mRNA and protein expression of CYP1A2 and 2A were increased in chicory fed pigs. The mRNA expression of CYP2E1 was increased, while there was no effect on protein expression. Activity of CYP1A2 and 2A were increased in chicory feed pigs; this was not the case for CYP2E1 activity. In conclusion; oral administration of chicory root for 16 days to pigs increased the mRNA expression of CYP1A2, 2A and 2E1; and the protein expression of CYP1A2 and 2A. The activities of CYP1A2 and 2A were increased.

  11. Suppressive effect of the ethanolic extract of adlay bran on cytochrome P-450 enzymes in rat liver and lungs.

    PubMed

    Yao, Hsien-Tsung; Lin, Jia-Hsuan; Chiang, Meng-Tsan; Chiang, Wenchang; Luo, Mei-Nin; Lii, Chong-Kuei

    2011-04-27

    Adlay ( Coix lachryma-jobi L. var. ma-yuen Stapf) is a grass crop and is reported to protect against various diseases such as cancer. To investigate the effect of the ethanolic extract of adlay bran (ABE) on drug-metabolizing enzymes and glutathione-related antioxidant enzymes in rats, three groups of eight male Sprague-Dawley rats each were fed a control diet or a diet containing 5 or 10% ABE for 4 weeks. Significant decreases in microsomal cytochrome P-450 (CYP) 1A1-catalyzed ethoxyresorufin O-deethylation, CYP2C-catalyzed diclofenac 4-hydroxylation, CYP2D-catalyzed dextromethorphan O-demethylation, and CYP3A-catalyzed testosterone 6β-hydroxylation in the liver and CYP1A1-catalyzed ethoxyresorufin O-deethylation in the lungs of rats fed ABE were observed. Immunoblot analyses also showed decreases of CYP1A1, 1A2, 2C6, 2C11, 2D1, 2E1, 3A1, and 3A2 in the liver and CYP1A1 in the lungs. Furthermore, rats fed the 10% ABE diet had a higher glutathione content and glutathione peroxidase, glutathione reductase, and glutathione S-transferase activities in the lungs, but such an increase was not noted in the liver. Inhibition of various CYP-catalyzed enzyme reactions by ABE in rat and human liver microsomes had also been shown. The results of this study indicate that ABE feeding may suppress CYP enzyme activities and CYP protein expression in the liver and lungs of rats. Moreover, the increase of the antioxidant potential by ABE is tissue-specific.

  12. Expression of Cytochrome P450s in the Liver of Rats Administered with Socheongryong-tang, a Traditional Herbal Formula

    PubMed Central

    Jin, Seong Eun; Ha, Hyekyung; Seo, Chang-Seob; Shin, Hyeun-Kyoo; Jeong, Soo-Jin

    2016-01-01

    Objective: The purpose of this study was to investigate the potential influences of Socheongryong-tang (SCRT) on the messenger ribonucleic acid (mRNA) and protein expression of cytochrome P450 (CYP450) in vivo. Materials and Methods: SCRT was orally administered to either male or female Sprague-Dawley rats once daily at doses of 0, 1000, 2000, or 5000 mg/kg/day for 13 weeks. The mRNA expression of CYP450s (CYP1A1, 1A2, 2B1/2, 2C11, 2E1, 3A1, 3A2, and 4A1) in liver tissues was measured by reverse transcription polymerase chain reaction. And then, the protein expression of CYP1A1 and CYP2B1/2 in liver tissues was analyzed by the Western blot. Results: We found no significant influence in the mRNA expression of hepatic CYP1A2, 2C11, 2E1, 3A1, 3A2, and 4A1 after repeated administration of SCRT for 13 weeks. By contrast, the mRNA and protein expression of hepatic CYP1A1 was increased by repeated SCRT treatment in male rats, but not in female rats. The mRNA and protein expression of hepatic CYP2B1/2 in both genders was increased by administration of SCRT. Conclusion: A caution is needed when SCRT is co-administered with substrates of CYP2B1/2 for clinical usage. In case of male, an attention is also required when SCRT and drugs metabolized by CYP1A1 are taken together. Our findings provide information regarding the safety and effectiveness of SCRT when combined with conventional drugs. SUMMARY Oral administration of Socheongryong-tang for 13 weeks did not affect the mRNA expression of hepatic CYP1A2, 2C11, 2E1, 3A1, 3A2, and 4A1In male rats, oral administration of Socheongryong-tang for 13 weeks induced the mRNA and protein expression of hepatic CYP1A1 and CYP2B1/2In female rats, oral administration of Socheongryong-tang for 13 weeks induced the mRNA and protein expression of hepatic CYP2B1/2. Abbreviations used: SCRT: Socheongryong-tang, CYP450: Cytochrome P450, HPLC: High performance liquid chromatography, RT-PCR: Reverse transcription polymerase chain reaction. PMID

  13. Comparative modelling of cytochromes P450.

    PubMed

    Kirton, Stewart B; Baxter, Carol A; Sutcliffe, Michael J

    2002-03-31

    The superfamily of enzymes known as the cytochromes P450 (P450s) comprises a wide-ranging class of proteins with diverse functions. They are known, amongst other things, to be involved in the hormonal regulation of metabolism and reproduction, as well as having a major clinical significance through their association with diseases such as cancer, diabetes and hepatitis. Knowledge of the three-dimensional (3D) structure of a protein gives insight into its function. The 3D structures of P450s are therefore of considerable scientific interest. A number of high-resolution structures of P450s have been determined by X-ray crystallography and studies of these structures have provided valuable insights into the mechanism of these enzymes. Only one of these structures is mammalian and as yet there is no structural information on human P450s in the public domain. Until such a structure is solved it is necessary to employ alternative methods to gain structural insight into how human P450s perform their biological function. Here we report on the use of comparative modelling to predict the structure of human P450s based on knowledge of their amino acid sequences plus the 3D structures of other (not human) P450s. As an illustrative example of these techniques we have modelled the structure of P450 2C5 using five bacterial P450 structures as templates. We examine the importance of selecting suitable templates, obtaining a good amino acid sequence alignment, and evaluating the models generated. To improve the quality of the models an iterative cycle of sequence alignment, model building, and model evaluation is employed. The result is a model with excellent stereochemistry, good amino acid side chain environment properties, and a Calpha trace similar to the crystal structure.

  14. Separation, purification, and properties of cytochrome P-450 from uninduced rat liver microsomes for the studies of metabolism of environmental chemicals

    SciTech Connect

    Dialameh, G.H. )

    1988-09-01

    This study reports the authors present results on the development of a procedure for purification of multiple forms of cytochrome P-450 from un-induced rat liver microsomes. These cytochromes are catalytically active when reconstituted with NADPH-cytochrome c reductase and lipid and exhibit substrate specificities. The presence of four distinct forms of cytochrome P-450 in uninduced rat liver microsomes which is the result of this research report, compared with the presence of six forms in induced animals represent the importance of genetic control of these enzymes for the metabolism and detoxification of environmental chemicals. These metabolite patterns are not only different for the various species, but also among different individuals. The molecular basis for this are genetic and environmental factors, which exhibit interesting evolutionary aspects.

  15. Immunochemical evidence for induction of the alcohol-oxidizing cytochrome P-450 of rabbit liver microsomes by diverse agents: ethanol, imidazole, trichloroethylene, acetone, pyrazole, and isoniazid.

    PubMed Central

    Koop, D R; Crump, B L; Nordblom, G D; Coon, M J

    1985-01-01

    Isozyme 3a of rabbit liver microsomal cytochrome P-450, also termed P-450ALC, was previously isolated in this laboratory from animals administered ethanol or imidazole, and the purified cytochrome was shown to function in the reconstituted system as an oxygenase in catalyzing the oxidation of ethanol and other alcohols. Although liver microsomes from animals treated in various ways exhibit increased alcohol-oxidizing activity, evidence was not available as to whether this was due to enzyme induction or to other factors influencing the activity. Immunochemical quantitation of P-450 isozyme 3a has now been achieved by use of purified antibody to this cytochrome in NaDodSO4/PAGE/blotting and dot-blotting techniques. The specific content of isozyme 3a in liver microsomes was found to be increased from 2- to greater than 4-fold by administration of the following agents, in increasing order of effectiveness as inducers: isoniazid, trichloroethylene, pyrazole, ethanol, imidazole, and acetone. Isozyme 3a represents about 5% of the total P-450 in control animals and is increased to as high as 27% by acetone treatment. Isozyme 3a-dependent butanol-oxidation activity, determined by the inhibitory effect of antibody on the various microsomal preparations, was found to increase proportionally with increased content of this cytochrome. Images PMID:3858864

  16. Substrate specificity of human liver cytochrome P-450 debrisoquine 4-hydroxylase probed using immunochemical inhibition and chemical modeling.

    PubMed

    Wolff, T; Distlerath, L M; Worthington, M T; Groopman, J D; Hammons, G J; Kadlubar, F F; Prough, R A; Martin, M V; Guengerich, F P

    1985-05-01

    A significant population of humans (5 to 10%) are phenotypic poor metabolizers of debrisoquine. We have isolated the cytochrome P-450 isozyme from rat liver responsible for this activity and have shown that antibodies raised against the protein are able to inhibit this catalytic activity in human liver microsomes (Distlerath, L. M., and Guengerich, F. P., Proc. Natl. Acad. Sci. USA, 81: 7348-7352, 1984). These antibodies were utilized to determine which metabolic transformations are linked to debrisoquine 4-hydroxylation in human liver microsomes using techniques of immunochemical inhibition. The antibodies almost completely inhibited debrisoquine 4-hydroxylation and bufuralol 1'-hydroxylation in microsomes prepared from several different human livers. The oxidation of the pyrrolizidine alkaloids lasiocarpine and monocrotaline were inhibited by roughly one-third. The antibodies did not inhibit N,N-dimethylnitrosamine N-demethylation, oxidation of vinylidene chloride to 2,2-chloroacetaldehyde, oxidation of trichloroethylene to chloral, N-oxidation of azoprocarbazine, morphine N-demethylation, diazepam N-demethylation, oxidation of benzo(a)pyrene to alkali-soluble metabolites, oxidation of benzo(a)pyrene 7,8-dihydrodiol to products covalently bound to DNA, the N- and ring-oxidation of 1- and 2-naphthylamine and 2-aminofluorene, or the conversion of aflatoxin B1 to DNA adducts or aflatoxin Q1. Studies with space-filling models of the drugs the metabolism of which is associated with debrisoquine 4-hydroxylase in the literature indicated that all can be fitted to a general structure in which a basic nitrogen is about 5 A away from the site of carbon hydroxylation and a hydrophobic domain is near the site of hydroxylation. These results may be useful in predicting which chemicals may or may not be metabolized in an atypical manner by a segment of the human population.

  17. Characterization of orphan human cytochromes P450.

    PubMed

    Stark, Katarina; Guengerich, F Peter

    2007-01-01

    Of the 57 human cytochromes P450 (P450) and 58 pseudogenes discovered to date, (http://drnelson.utmem.edu/CytochromeP450.html ), 1/4 still remain "orphans" in the sense that their function, expression sites, and regulation are still largely not elucidated. The post-human genome-sequencing project era has presented the research community with novel challenges. Despite many insights gathered about gene location and genetic variations in our human genome, we still lack important knowledge about these novel P450 enzymes and their functions in endogenous and exogenous metabolism, as well as their possible roles in the metabolism of toxicants and carcinogens. Our own list of such orphans currently consists of 13 members: P450 2A7, 2S1, 2U1, 2W1, 3A43, 4A22, 4F11, 4F22, 4V2, 4X1, 4Z1, 20A1, and 27C1. Some of the orphans, e.g. P450s 2W1 and 2U1, already have putative assigned functions in arachidonic acid metabolism and may activate carcinogens. However, at this point, for the majority of them more knowledge is available about their genes and single nucleotide polymorphisms than of their biological functions. It is noteworthy that most P450 orphans express high interspecies sequence conservation and have orthologs in rodents (e.g. CYP4X1/Cyp4x1, CYP4V2/Cyp4v3). This review summarizes recent knowledge about the P450 orphans and questions remaining about their specific roles in human metabolism.

  18. Decreased bile-acid synthesis in livers of hepatocyte-conditional NADPH-cytochrome P450 reductase-null mice results in increased bile acids in serum.

    PubMed

    Cheng, Xingguo; Zhang, Youcai; Klaassen, Curtis D

    2014-10-01

    NADPH-cytochrome P450 reductase (Cpr) is essential for the function of microsomal cytochrome P450 monooxygenases (P450), including those P450s involved in bile acid (BA) synthesis. Mice with hepatocyte-specific deletion of NADPH-cytochrome P450 reductase (H-Cpr-null) have been engineered to understand the in vivo function of hepatic P450s in the metabolism of xenobiotics and endogenous compounds. However, the impact of hepatic Cpr on BA homeostasis is not clear. The present study revealed that H-Cpr-null mice had a 60% decrease in total BA concentration in liver, whereas the total BA concentration in serum was almost doubled. The decreased level of cholic acid (CA) in both serum and livers of H-Cpr-null mice is likely due to diminished enzyme activity of Cyp8b1 that is essential for CA biosynthesis. Feedback mechanisms responsible for the reduced liver BA concentrations and/or increased serum BA concentrations in H-Cpr-null mice included the following: 1) enhanced alternative BA synthesis pathway, as evidenced by the fact that classic BA synthesis is diminished but chenodeoxycholic acid still increases in both serum and livers of H-Cpr-null mice; 2) inhibition of farnesoid X receptor activation, which increased the mRNA of Cyp7a1 and 8b1; 3) induction of intestinal BA transporters to facilitate BA absorption from the intestine to the circulation; 4) induction of hepatic multidrug resistance-associated protein transporters to increase BA efflux from the liver to blood; and 5) increased generation of secondary BAs. In summary, the present study reveals an important contribution of the alternative BA synthesis pathway and BA transporters in regulating BA concentrations in H-Cpr-null mice.

  19. Decreased Bile-Acid Synthesis in Livers of Hepatocyte-Conditional NADPH–Cytochrome P450 Reductase–Null Mice Results in Increased Bile Acids in Serum

    PubMed Central

    Cheng, Xingguo; Zhang, Youcai

    2014-01-01

    NADPH–cytochrome P450 reductase (Cpr) is essential for the function of microsomal cytochrome P450 monooxygenases (P450), including those P450s involved in bile acid (BA) synthesis. Mice with hepatocyte-specific deletion of NADPH–cytochrome P450 reductase (H-Cpr-null) have been engineered to understand the in vivo function of hepatic P450s in the metabolism of xenobiotics and endogenous compounds. However, the impact of hepatic Cpr on BA homeostasis is not clear. The present study revealed that H-Cpr-null mice had a 60% decrease in total BA concentration in liver, whereas the total BA concentration in serum was almost doubled. The decreased level of cholic acid (CA) in both serum and livers of H-Cpr-null mice is likely due to diminished enzyme activity of Cyp8b1 that is essential for CA biosynthesis. Feedback mechanisms responsible for the reduced liver BA concentrations and/or increased serum BA concentrations in H-Cpr-null mice included the following: 1) enhanced alternative BA synthesis pathway, as evidenced by the fact that classic BA synthesis is diminished but chenodeoxycholic acid still increases in both serum and livers of H-Cpr-null mice; 2) inhibition of farnesoid X receptor activation, which increased the mRNA of Cyp7a1 and 8b1; 3) induction of intestinal BA transporters to facilitate BA absorption from the intestine to the circulation; 4) induction of hepatic multidrug resistance–associated protein transporters to increase BA efflux from the liver to blood; and 5) increased generation of secondary BAs. In summary, the present study reveals an important contribution of the alternative BA synthesis pathway and BA transporters in regulating BA concentrations in H-Cpr-null mice. PMID:25034404

  20. Oxidation of tolualdehydes to toluic acids catalyzed by cytochrome P450-dependent aldehyde oxygenase in the mouse liver.

    PubMed

    Watanabe, K; Matsunaga, T; Yamamoto, I; Yashimura, H

    1995-02-01

    Mouse hepatic microsomal enzymes catalyzed the oxidation of o-, m-, and p-tolualdehydes, intermediate metabolites of xylene, to the corresponding toluic acids. Cofactor requirement for the catalytic activity indicates that the microsomes contain NAD- and NADPH-dependent enzymes for this reaction. GC/MS analyses of the carboxylic acids formed by incubation under oxygen-18 gas indicate that the mechanism for this oxidation is an oxygenation and a dehydrogenation for the NADPH- and NAD-dependent reaction. Vmax/Km (nmol/min/mg protein) ratios indicate that the NADPH-dependent activity is more pronounced than the NAD-dependent activity. These results suggest that the NADPH-dependent reaction is mainly responsible for the microsomal oxidation of tolualdehydes. The NADPH-dependent activity was significantly inhibited by SKF 525-A, disulfiram and menadione, inhibitors of cytochrome P450 (P450), suggesting the involvement of P450 in the reaction. In a reconstituted system, P450 MUT-2 (CYP2C29) purified from mouse hepatic microsomes catalyzed the oxidation of o-, m-, and p-tolualdehydes to the carboxylic acids, and the specific activities (nmol/min/nmol P450) were 1.44, 2.81, and 2.32, respectively. Rabbit antibody raised against P450 MUT-2 significantly inhibited the NADPH-dependent oxidation of tolualdehydes to toluic acids by 88% (o-), 63% (m-), and 62% (p-) using mouse hepatic microsomes. The present study demonstrated that a mouse hepatic microsomal aldehyde oxygenase, P450 MUT-2, catalyzed the most of oxidative activity of tolualdehydes to toluic acids in the microsomes.

  1. Oxidation of R- and S-omeprazole stereoselectively mediated by liver microsomal cytochrome P450 2C19 enzymes from cynomolgus monkeys and common marmosets.

    PubMed

    Uehara, Shotaro; Kawano, Mirai; Murayama, Norie; Uno, Yasuhiro; Utoh, Masahiro; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2016-11-15

    Racemic omeprazole has been used for clinically treating gastric acid-related diseases and also as a typical human cytochrome P450 (P450) 2C19 probe substrate in preclinical studies. S-Omeprazole has been developed as a single enantiomer medicine, which has been reported not to be associated with polymorphic human P450 2C19 phenotypes. In this study, 5-hydroxylation and sulfoxidation activities, with respect to stereoselective R- and S-omeprazole oxidations by liver microsomes from experimental animals including non-human primates and humans, were investigated in vitro. Liver microsomes from humans, cynomolgus monkeys, and mice preferentially mediated R-omeprazole 5-hydroxylations, however those from marmosets, minipigs, dogs, and rats preferentially mediated S-omeprazole 5-hydroxylations. High catalytic activities were observed for recombinant human P450 2C19 in R-omeprazole 5-hydroxlations, cynomolgus monkey P450 2C19 in both R- and S-omeprazole 5-hydroxlations, and marmoset P450 2C19 in S-omeprazole 5-hydroxlations. On the other hand, human, cynomolgus monkey, and marmoset P450 3A enzymes preferentially mediated S-omeprazole sulfoxidations. Correlation and kinetic analyses revealed a high affinity of polymorphic cynomolgus monkey and marmoset liver microsomal P450 2C19 enzymes with respect to R- and S-omeprazole 5-hydroxylations, respectively, and a high capacity of cynomolgus monkey and marmoset liver microsomal P450 3A4 for omeprazole 5-hydroxylations and sulfoxidations. R-and S-omeprazole 5-hydroxylation activities in cynomolgus monkey and marmoset liver microsomes were significantly different among wild-type, heterozygous, and homozygous animals genotyped for cynomolgus monkey P450 2C19 p.[(Phe100Asn; Ala103Val; Ile112Leu)] and for marmoset P450 2C19 p.[(Phe7Leu; Ser254Leu; Ile469Thr)], respectively. The results of this study demonstrate polymorphic cynomolgus monkey and marmoset P450 2C19-dependent omeprazole oxidation activities with individual variations

  2. Identification of the rat liver cytochrome P450 enzymes involved in the metabolism of the calcium channel blocker dipfluzine hydrochloride.

    PubMed

    Guo, Wei; Shi, Xiaowei; Wang, Wei; Zhang, Weili; Li, Junxia

    2014-11-01

    This study aimed to identify the specific cytochrome P450 (CYP450) enzymes involved in the metabolism of dipfluzine hydrochloride using the combination of a chemical inhibition study, a correlation analysis and a panel of recombinant rat CYP450 enzymes. The incubation of Dip with rat liver microsomes yielded four metabolites, which were identified by liquid chromatography-coupled tandem mass spectrometry (LC/MS/MS). The results from the assays involving eight selective inhibitors indicated that CYP3A and CYP2A1 contributed most to the metabolism of Dip, followed by CYP2C11, CYP2E1 and CYP1A2; however, CYP2B1, CYP2C6 and CYP2D1 did not contribute to the formation of the metabolites. The results of the correlation analysis and the assays involving the recombinant CYP450 enzymes further confirmed the above results and concluded that CYP3A2 contributed more than CYP3A1. The results will be valuable in understanding drug-drug interactions when Dip is coadministered with other drugs.

  3. Cytochrome P450 2E1 is responsible for the initiation of 1,2-dichloropropane-induced liver damage.

    PubMed

    Yanagiba, Yukie; Suzuki, Tetsuya; Suda, Megumi; Hojo, Rieko; Gonzalez, Frank J; Nakajima, Tamie; Wang, Rui-Sheng

    2016-09-01

    1,2-Dichloropropane (1,2-DCP), a solvent, which is the main component of the cleaner used in the offset printing companies in Japan, is suspected to be the causative agent of bile duct cancer, which has been recently reported at high incidence in those offset printing workplaces. While there are some reports about the acute toxicity of 1,2-DCP, no information about its metabolism related to toxicity in animals is available. As part of our efforts toward clarifying the role of 1,2-DCP in the development of cancer, we studied the metabolic pathways and the hepatotoxic effect of 1,2-DCP in mice with or without cytochrome P450 2E1 (CYP2E1) activity. In an in vitro reaction system containing liver homogenate, 1,2-DCP was only metabolized by liver tissue of wild-type mice but not by that of cyp2e1-null mice. Furthermore, the kinetics of the solvent in mice revealed a great difference between the two genotypes; 1,2-DCP administration resulted in dose-dependent hepatic damage, as shown biochemically and pathologically, but this effect was only observed in wild-type mice. The nuclear factor κB p52 pathway was involved in the liver response to 1,2-DCP. Our results clearly indicate that the oxidative metabolism of 1,2-DCP in mice is exclusively catalyzed by CYP2E1, and this step is indispensable for the manifestation of the hepatotoxic effect of the solvent.

  4. The impact of individual cytochrome P450 enzymes on oxidative metabolism of benzo[a]pyrene in human livers.

    PubMed

    Šulc, Miroslav; Indra, Radek; Moserová, Michaela; Schmeiser, Heinz H; Frei, Eva; Arlt, Volker M; Stiborová, Marie

    2016-04-01

    Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after metabolic activation by cytochrome P450 (CYP) enzymes. In this study human recombinant CYPs (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2E1, 3A4, and 3A5) were expressed in Supersomes™ together with their reductases, NADPH:CYP oxidoreductase, epoxide hydrolase and cytochrome b5 , to investigate BaP metabolism. Human CYPs produced up to eight BaP metabolites. Among these, BaP-7,8-dihydrodiol and BaP-9-ol, which are intermediates in BaP-derived DNA adduct formation, were mainly formed by CYP1A1 and 1B1, and to a lesser extent by CYP2C19 and 3A4. BaP-3-ol, a metabolite that is a 'detoxified' product of BaP, was formed by most human CYPs tested, although CYP1A1 and 1B1 produced it the most efficiently. Based on the amounts of the individual BaP metabolites formed by these CYPs and their expression levels in human liver, we determined their contributions to BaP metabolite formation in this organ. Our results indicate that hepatic CYP1A1 and CYP2C19 are most important in the activation of BaP to BaP-7,8-dihydrodiol, whereas CYP2C19, 3A4, and 1A1 are the major enzymes contributing to the formation of BaP-9-ol. BaP-3-ol is predominantly formed by hepatic CYP3A4, while CYP1A1 and 2C19 are less active.

  5. Individual Differences in Metabolic Clearance of S-Warfarin Efficiently Mediated by Polymorphic Marmoset Cytochrome P450 2C19 in Livers.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Inoue, Takashi; Kawano, Mirai; Shimizu, Makiko; Toda, Akiko; Utoh, Masahiro; Sasaki, Erika; Yamazaki, Hiroshi

    2016-07-01

    Marmoset cytochrome P450 2C19, highly homologous to human P450 2C9 and 2C19, has been identified in common marmosets (Callithrix jacchus), a nonhuman primate species used in drug metabolism studies. Although genetic variants in human and macaque P450 2C genes account for the interindividual variability in drug metabolism, genetic variants have not been investigated in the marmoset P450 2C19 In this study, sequencing of P450 2C19 in 24 marmosets identified three variants p.[(Phe7Leu; Ser254Leu; Ile469Thr)], which showed substantially reduced metabolic capacity of S-warfarin compared with the wild-type group in vivo and in vitro. Although mean plasma concentrations of R-warfarin in marmosets determined after chiral separation were similar between the homozygous mutant and wild-type groups up to 24 hours after the intravenous and oral administrations of racemic warfarin, S-warfarin depletion from plasma was significantly faster in the three wild-type marmosets compared with the three homozygous mutant marmosets. These variants, cosegregating in the marmosets analyzed, influenced metabolic activities in 18 marmoset liver microsomes because the homozygotes and heterozygotes showed significantly reduced catalytic activities in liver microsomes toward S-warfarin 7-hydroxylation compared with the wild-type group. Kinetic analysis for S-warfarin 7-hydroxylation indicated that the recombinant P450 2C19 Ser254Leu variant would change the metabolic capacity. These results indicated that the interindividual variability of P450 2C-dependent drug metabolism such as S-warfarin clearance is at least partly accounted for by P450 2C19 variants in marmosets, suggesting that polymorphic P450 2C-dependent catalytic functions are relatively similar between marmosets and humans. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Predominant 4-hydroxylation of estradiol by constitutive cytochrome P450s in the female ACI rat liver.

    PubMed

    Wilson, A M; Reed, G A

    2001-02-01

    The ACI rat is extremely sensitive to estrogens as mammary carcinogens, whereas the Sprague-Dawley strain is relatively resistant. Comparison of the disposition and effects of estrogens in these two strains should provide insights into the mechanisms of estrogen carcinogenicity. We have begun this investigation by comparing the metabolism of [(3)H]17beta-estradiol (E2) by liver microsomes prepared from female rats from each strain. Both strains produce estrone (E1) as the major product at E2 concentrations >1 microM, with smaller amounts of 2-hydroxy-E2 formed. As the E2 concentration is decreased, however, aromatic hydroxylation becomes a more dominant pathway for both strains. At starting E2 concentrations as low as 3 nM, Sprague-Dawley liver microsomes produced comparable yields of 2-hydroxy-E2 and E1. In contrast, ACI liver microsomes yielded a profound shift to aromatic hydroxylation as the dominant pathway as E2 concentrations dropped below 1 microM, and this shift reflected the production of 4-hydroxy-E2 as the predominant product. The apparent K(m) for 4-hydroxylation of E2 is <0.8 microM, as opposed to approximately 4 microM for 2-hydroxylation, suggesting that different cytochrome P450s (CYPs) are responsible. Western immunoblotting of the liver microsomal preparations from ACI and Sprague-Dawley rats for CYPs known to catalyze 2- and 4-hydroxylation of E2 revealed that both strains contained comparable amounts of CYP 2B1/2 and 3A1/2, but no detectable amounts of CYP 1B1, the proposed E2 4-hydroxylase. Although this enzyme is not a constitutive CYP in Sprague-Dawley rat liver, its presence in ACI liver could provide a ready explanation for the predominance of 4-hydroxy-E2 as a product. The identity of the estradiol 4-hydroxylase in ACI rat liver and the role of this unique reaction in the heightened sensitivity to E2 carcinogenicity remain to be elucidated.

  7. Evidence in rat and mouse liver for temporal control of two forms of cytochrome P-450 inducible by 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    PubMed

    Guenthner, T M; Nebert, D W

    1978-11-15

    In the liver of perinatal rats or mice, the ratio of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced aryl hydrocarbon hydroxylase to total cytochrome P-450 content decreases, whereas the ratio of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced acetanilide 4-hydroxylase to total cytochrome P-450 content increases, between 18 or 19 days and 22 days following conception. The ontogenesis of inducible aryl hydrocarbon hydroxylase corresponds well with increases in a 56000-Mr electrophoretic band; we suggest this band represents the cytochrome P1-450 subunit. The later temporal expression of inducible acetanilide 4-hydroxylase closely parallels 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced increases in size of a 54000-Mr electrophoretic band and a 2--3-nm hypsochromic shift in the Soret peak of the total microsomal reduced cytochrome P-450 . CO complex. We suggest this band represents the cytochrome P-448 subunit. Previous work from this laboratory has shown that this developmental difference is separated by several weeks in rabbit liver, as compared with several day's separation shown in this report with rat or mouse liver. The data here therefore provide evidence in the rodent for temporal control of the expression of different structural gene products regulated by the Ah locus.

  8. Hepatocarcinogenic heterocyclic aromatic amines that induce cytochrome P-448 isozymes, mainly cytochrome P-448H (P-450IA2), responsible for mutagenic activation of the carcinogens in rat liver.

    PubMed

    Degawa, M; Tanimura, S; Agatsuma, T; Hashimoto, Y

    1989-06-01

    Male F344 rats were treated with hepatocarcinogenic heterocyclic aromatic amines such as amino acid- and protein-pyrolysate components (Trp P-1, Trp P-2, Glu P-1, Glu P-2, A alpha C, MeA alpha C, IQ and MeIQx) and changes in microsomal cytochrome P-450 isozymes in the livers were examined by means of immuno-Western blotting using anti-rat cytochrome P-450 monoclonal antibodies. The results suggested that all chemicals tested induce cytochrome P-448 isozymes, particularly cytochrome P-448H (P-450IA2), which efficiently mediate mutagenic activation of the carcinogens. This was substantiated by the enzymatic analyses with the substrates showing different characters to rat cytochrome P-450 isozyme-mediated mutagenesis.

  9. AM-2201 Inhibits Multiple Cytochrome P450 and Uridine 5'-Diphospho-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes.

    PubMed

    Kim, Ju-Hyun; Kwon, Soon-Sang; Kong, Tae Yeon; Cheong, Jae Chul; Kim, Hee Seung; In, Moon Kyo; Lee, Hye Suk

    2017-03-10

    AM-2201 is a synthetic cannabinoid that acts as a potent agonist at cannabinoid receptors and its abuse has increased. However, there are no reports of the inhibitory effect of AM-2201 on human cytochrome P450 (CYP) or uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes. We evaluated the inhibitory effect of AM-2201 on the activities of eight major human CYPs (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4) and six major human UGTs (1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) enzymes in pooled human liver microsomes using liquid chromatography-tandem mass spectrometry to investigate drug interaction potentials of AM-2201. AM-2201 potently inhibited CYP2C9-catalyzed diclofenac 4'-hydroxylation, CYP3A4-catalyzed midazolam 1'-hydroxylation, UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation, and UGT2B7-catalyzed naloxone 3-glucuronidation with IC50 values of 3.9, 4.0, 4.3, and 10.0 μM, respectively, and showed mechanism-based inhibition of CYP2C8-catalyzed amodiaquine N-deethylation with a Ki value of 2.1 μM. It negligibly inhibited CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, UGT1A1, UGT1A4, UGT1A6, and UGT1A9 activities at 50 μM in human liver microsomes. These in vitro results indicate that AM-2201 needs to be examined for potential pharmacokinetic drug interactions in vivo due to its potent inhibition of CYP2C8, CYP2C9, CYP3A4, UGT1A3, and UGT2B7 enzyme activities.

  10. Effect of zinc deficiency on NADPH and cytochrome P-450 dependent active oxygen generation in rat lung and liver

    SciTech Connect

    Hammermueller, J.D.; Bray, T.M.; Bettger, W.J.

    1986-03-05

    The cyt. P-450 system and cyt. P-450 reductase are involved in the generation of active oxygen species such as H/sub 2/O/sub 2/. The objective of this study was to investigate the effect of short term, severe, dietary zinc deficiency in rats on the formation of active oxygen in vitro. Weanling male Wistar rats were fed egg white-based diets containing less than 1 ppm Zn (ZnD). Controls were fed ad libitum (ZnAl) or pair-fed (ZnPF) a diet containing 100 ppm Zn. After 3 weeks lung and liver microsomes were assayed for H/sub 2/O/sub 2/ production (pmol H/sub 2/O/sub 2//mg protein/min) and cyt. P-450 reductase activity (nmol cyt. C reduced/mg protein/min). For the measurement of H/sub 2/O/sub 2/ production exogenous substrate (aminopyrine) and NADPH (cofactor) were provided to drive the cyt. P-450 system and NaN/sub 3/ was used to inhibit catalase. The results showed a significant effect of dietary Zn on NADPH and cyt. P-450 dependent active oxygen generation and support the hypothesis that Zn has a role in the function of biomembranes.

  11. In vitro metabolism of a novel PPAR gamma agonist, KR-62980, and its stereoisomer, KR-63198, in human liver microsomes and by recombinant cytochrome P450s.

    PubMed

    Kim, K-B; Seo, K-A; Yoon, Y-J; Bae, M-A; Cheon, H G; Shin, J-G; Liu, K-H

    2008-09-01

    1. KR-62980 and its stereoisomer KR-63198 are novel and selective peroxisome proliferator-activated receptor gamma (PPAR gamma) modulators with activity profiles different from that of rosiglitazone. This study was performed to identify the major metabolic pathways for KR-62980 and KR-63198 in human liver microsomes. 2. Human liver microsomal incubation of KR-62980 and KR-63198 in the presence of a beta-nicotinamide adenine dinucleotide phosphate (NADPH)-generating system resulted in hydroxy metabolite formation. In addition, the specific cytochrome P450s (CYPs) responsible for KR-62980 and KR-63198 hydroxylation were identified by using a combination of chemical inhibition in human liver microsomes and metabolism by recombinant P450s. It is shown that CYP1A2, CYP2D6, CYP3A4, and CYP3A5 are the predominant enzymes in the hydroxylation of KR-62980 and KR-63198. 3. The intrinsic clearance through hydroxylation was consistently and significantly higher for KR-62980 than for KR-63198, indicating metabolic stereoselectivity (CL(int) of 0.012 +/- 0.001 versus 0.004 +/- 0.001 microl min(-1) pmol(-1) P450, respectively). 4. In a drug-drug interaction study, KR-62980 and KR-63198 had no effect on the activities of the P450s tested (IC(50) > 50 microM), suggesting that in clinical interactions between KR-62980 and KR-63198 the P450s tested would not be expected.

  12. Effects of coffee and its chemopreventive components kahweol and cafestol on cytochrome P450 and sulfotransferase in rat liver.

    PubMed

    Huber, Wolfgang W; Rossmanith, Walter; Grusch, Michael; Haslinger, Elisabeth; Prustomersky, Sonja; Peter-Vörösmarty, Barbara; Parzefall, Wolfram; Scharf, Gerlinde; Schulte-Hermann, Rolf

    2008-04-01

    Coffee drinking appears to reduce cancer risk in liver and colon. Such chemoprevention may be caused by the diterpenes kahweol and cafestol (K/C) contained in unfiltered beverage. In animals, K/C treatment inhibited the mutagenicity/tumorigenicity of several carcinogens, likely explicable by beneficial modifications of xenobiotic metabolism, particularly by stimulation of carcinogen-detoxifying phase II mechanisms. In the present study, we investigated the influence of K/C on potentially carcinogen-activating hepatic cytochrome P450 (CYP450) and sulfotransferase (SULT). Male F344 rats received 0.2% K/C (1:1) in the diet for 10 days or unfiltered and/or filtered coffee as drinking fluid. Consequently, K/C decreased the metabolism of four resorufin derivatives representing CYP1A1, CYP1A2, CYP2B1, and CYP2B2 activities by approximately 50%. For CYP1A2, inhibition was confirmed at the mRNA level, accompanied by decreased CYP3A9. In contrast to K/C, coffee increased the metabolism of the resorufin derivatives up to 7-fold which was only marginally influenced by filtering. CYP2E1 activity and mRNA remained unchanged by K/C and coffee. K/C but not coffee decreased SULT by approximately 25%. In summary, K/C inhibited CYP450s by tendency but not universally. Inhibition of CYP450 and SULT may contribute to chemoprevention with K/C but involvement in the protection of coffee drinkers is unlikely. The data confirm that the effects of complex mixtures may deviate from those of their putatively active components.

  13. Perfluorocarboxylic acids induce cytochrome P450 enzymes in mouse liver through activation of PPAR-alpha and CAR transcription factors.

    PubMed

    Cheng, Xingguo; Klaassen, Curtis D

    2008-11-01

    Cytochrome p450 enzymes (Cyps) are major phase-I xenobiotic-metabolizing enzymes. Cyps are regulated by many environmental chemicals and drugs. However, knowledge about regulation of Cyps by perfluorocarboxylic acids (PFCAs), which are persistent in the environment, is limited. Two days after a single i.p. administration (50 mg/kg) of perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) increased mRNA expression of Cyp2B10 (20-fold), 3A11 (two-fold), and 4A14 (32-fold), but not Cyp1A1/2 in mouse livers. PFDA and PFOA also markedly increased protein expression of Cyp2B (50-fold) and 4A (10-fold). PFDA increased Cyp4A14 mRNA expression at relatively low doses (0.5 mg/kg), but increased Cyp2B10 mRNA expression only at high doses (> 20 mg/kg). By using constitutive androstane receptor (CAR)-, pregnane-X receptor (PXR)-, peroxisome proliferator-activated receptor alpha (PPAR)-alpha-, and farnesoid X receptor-null mouse models, PPAR-alpha and CAR were shown to play central roles in the induction of Cyps by PFDA. Specifically, PFDA increased Cyp4A14 mRNA expression in wild-type (WT) mice, but much less in PPAR-alpha-null mice. PFDA increased Cyp2B10 mRNA expression in WT mice, but not in CAR-null mice. In addition, PFDA increased mRNA expression and nuclear translocation of the transcription factor CAR. Therefore, the current studies provide important insight into understanding the regulatory mechanisms initiated by PFCAs, and may help to better predict and understand the toxicokinetics and toxicodynamics of various PFCAs. In conclusion, PFCAs increased Cyp2B10 and 4A14 expression by activating PPAR-alpha and CAR nuclear receptors, respectively. PPAR-alpha is activated at much lower doses of PFDA than CAR.

  14. Inhibitory effects of seven components of danshen extract on catalytic activity of cytochrome P450 enzyme in human liver microsomes.

    PubMed

    Qiu, Furong; Zhang, Rong; Sun, Jianguo; Jiye, A; Hao, Haiping; Peng, Ying; Ai, Hua; Wang, Guangji

    2008-07-01

    The potential for herb-drug interactions has recently received greater attention worldwide, considering the fact that the use of herbal products becomes more and more widespread. The goal of this work was to examine the potential for the metabolism-based drug interaction arising from seven active components (danshensu, protocatechuic aldehyde, protocatechuic acid, salvianolic acid B, tanshinone I, tanshinone IIA, and cryptotanshinone) of danshen extract. Probe substrates of cytochrome P450 enzymes were incubated in human liver microsomes (HLMs) with or without each component of danshen extract. IC(50) and K(i) values were estimated, and the types of inhibition were determined. Among the seven components of danshen extract, tanshinone I, tanshinone IIA, and cryptotanshinone were potent competitive inhibitors of CYP1A2 (K(i) = 0.48, 1.0, and 0.45 microM, respectively); danshensu was a competitive inhibitor of CYP2C9 (K(i) = 35 microM), and cryptotanshinone was a moderate mixed-type inhibitor of CYP2C9 (K(i) = 8 microM); cryptotanshinone inhibited weakly and in mixed mode against CYP2D6 activity (K(i) = 68 microM), and tanshinone I was a weak inhibitor of CYP2D6 (IC(50) = 120 microM); and protocatechuic aldehyde was a weak inhibitor of CYP3A4 (IC(50) = 130 and 160 microM for midazolam and testosterone, respectively). These findings provided some useful information for safe and effective use of danshen preparations in clinical practice. Our data indicated that it was necessary to study the in vivo interactions between drugs and pharmaceuticals with danshen extract.

  15. The impact of individual cytochrome P450 enzymes on oxidative metabolism of benzo[a]pyrene in human livers

    PubMed Central

    Šulc, Miroslav; Indra, Radek; Moserová, Michaela; Schmeiser, Heinz H.; Frei, Eva; Arlt, Volker M.; White, P.

    2016-01-01

    Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after metabolic activation by cytochrome P450 (CYP) enzymes. In this study human recombinant CYPs (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2E1, 3A4, and 3A5) were expressed in Supersomes™ together with their reductases, NADPH:CYP oxidoreductase, epoxide hydrolase and cytochrome b5, to investigate BaP metabolism. Human CYPs produced up to eight BaP metabolites. Among these, BaP‐7,8‐dihydrodiol and BaP‐9‐ol, which are intermediates in BaP‐derived DNA adduct formation, were mainly formed by CYP1A1 and 1B1, and to a lesser extent by CYP2C19 and 3A4. BaP‐3‐ol, a metabolite that is a ‘detoxified’ product of BaP, was formed by most human CYPs tested, although CYP1A1 and 1B1 produced it the most efficiently. Based on the amounts of the individual BaP metabolites formed by these CYPs and their expression levels in human liver, we determined their contributions to BaP metabolite formation in this organ. Our results indicate that hepatic CYP1A1 and CYP2C19 are most important in the activation of BaP to BaP‐7,8‐dihydrodiol, whereas CYP2C19, 3A4, and 1A1 are the major enzymes contributing to the formation of BaP‐9‐ol. BaP‐3‐ol is predominantly formed by hepatic CYP3A4, while CYP1A1 and 2C19 are less active. Environ. Mol. Mutagen. 57:229–235, 2016. © 2016 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc. PMID:26919089

  16. LEAD AND METHYL MERCURY: EFFECTS OF ACUTE EXPOSURE ON CYTOCHROME P-450 AND THE MIXED FUNCTION OXIDASE SYSTEM IN THE LIVER

    PubMed Central

    Alvares, Alvito P.; Leigh, Susan; Cohn, Jonathan; Kappas, Attallah

    1972-01-01

    The rat liver mixed function oxidase system which is responsible for the metabolism of endogenous and exogenous compounds has been shown to be affected by lead and methyl mercury. Administration of these environmental pollutants to rats results in a decrease in cytochrome P-450 content and inhibition of in vitro N-demethylase and hydroxylase activities. The in vitro enzyme-inhibiting effects of the metals found pharmacological expression in the whole animal by prolongation of hexobarbital-induced sleeping times. PMID:5025440

  17. Activation of brain serotonergic system by repeated intracerebral administration of 5-hydroxytryptophan (5-HTP) decreases the expression and activity of liver cytochrome P450.

    PubMed

    Rysz, Marta; Bromek, Ewa; Daniel, Władysława A

    2016-01-01

    Our recent studies suggest that brain serotonergic system may be involved in the neuroendocrine regulation of cytochrome P450 expression. Intracerebral injection of the serotonergic neurotoxin 5,7-dihydroxytryptamine affected serum hormone concentration and increased the expression and activity of the hormone-dependent isoforms CYP1A1/2, CYP2C11 and CYP3A1. Therefore, the aim of the present study was to investigate the effect of stimulation of brain serotonergic system on cytochrome P450 expression in the liver. The serotonin precursor 5-hydroxytryptophan (5-HTP) was injected for 5 days to the lateral ventricles of rat brain. Afterwards, the brain concentrations of serotonin and its metabolite 5-hydroxyindoleacetic acid 5-HIAA, serum hormone levels and liver cytochrome P450 expression and activity were measured. 5-HTP potently increased the concentration of serotonin and its metabolite 5-HIAA in all the brain structures studied including the hypothalamus. The brain concentrations of noradrenaline or dopamine and its metabolites were not changed in that structure. At the same time, a significant decrease in the serum concentration of the growth hormone and an increase in that of thyroxine were observed. In the liver, the activity of CYP1A, CYP2A, CYP2B, CYP2C11 and CYP3A was diminished, which positively correlated with a decrease in the respective CYP protein levels and a reduction in the mRNA levels of CYP1A2, CYP2A2, CYP2C11, CYP3A1 and CYP3A2. The obtained results provide evidence to prove that brain serotonergic system negatively regulates liver cytochrome P450 expression via endocrine system and suggest mechanisms by which this enzyme may be regulated by drugs with a serotonergic profile such as antidepressants. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Cannabinoids and Cytochrome P450 Interactions.

    PubMed

    Zendulka, Ondřej; Dovrtělová, Gabriela; Nosková, Kristýna; Turjap, Miroslav; Šulcová, Alexandra; Hanuš, Lumír; Juřica, Jan

    2016-01-01

    This review consists of three parts, representing three different possibilities of interactions between cannabinoid receptor ligands of both exogenous and endogenous origin and cytochrome P450 enzymes (CYPs). The first part deals with cannabinoids as CYP substrates, the second summarizes current knowledge on the influence of various cannabinoids on the metabolic activity of CYP, and the third outline a possible involvement of the endocannabinoid system and cannabinoid ligands in the regulation of CYP liver activity. We performed a structured search of bibliographic and drug databases for peer-reviewed literature using focused review questions. Biotransformation via a hydrolytic pathway is the major route of endocannabinoid metabolism and the deactivation of substrates is characteristic, in contrast to the minor oxidative pathway via CYP involved in the bioactivation reactions. Phytocannabinoids are extensively metabolized by CYPs. The enzymes CYP2C9, CYP2C19, and CYP3A4 catalyze most of their hydroxylations. Similarly, CYP represents a major metabolic pathway for both synthetic cannabinoids used therapeutically and drugs that are abused. In vitro experiments document the mostly CYP inhibitory activity of the major phytocannabinoids, with cannabidiol as the most potent inhibitor of many CYPs. The drug-drug interactions between cannabinoids and various drugs at the CYP level are reported, but their clinical relevance remains unclear. The direct activation/inhibition of nuclear receptors in the liver cells by cannabinoids may result in a change of CYP expression and activity. Finally, we hypothesize the interplay of central cannabinoid receptors with numerous nervous systems, resulting in a hormone-mediated signal towards nuclear receptors in hepatocytes.

  19. Keeping the spotlight on cytochrome P450.

    PubMed

    Shalan, Hadil; Kato, Mallory; Cheruzel, Lionel

    2017-06-06

    This review describes the recent advances utilizing photosensitizers and visible light to harness the synthetic potential of P450 enzymes. The structures of the photosensitizers investigated to date are first presented along with their photophysical and redox properties. Functional photosensitizers range from organic and inorganic complexes to nanomaterials as well as the biological photosystem I complex. The focus is then on the three distinct approaches that have emerged for the activation of P450 enzymes. The first approach utilizes the in situ generation of reactive oxygen species entering the P450 mechanism via the peroxide shunt pathway. The other two approaches are sustained by electron injections into catalytically competent heme domains either facilitated by redox partners or through direct heme domain reduction. Achievements as well as pitfalls of each approach are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017. Published by Elsevier B.V.

  20. The role of highly purified forms of rat liver cytochrome P-450 in the dimethylation of dimethylnitrosamine and its activation to mutagens.

    PubMed

    Masson, H A; Ioannides, C; Gibson, G G

    1983-06-01

    Highly purified NADPH-cytochrome P-450 reductase and the major phenobarbital (PB) and beta-naphthoflavone (beta NF) forms of cytochrome P-450 were used in reconstituted systems to study the demethylation and subsequent activation of dimethylnitrosamine (DMN) to mutagenic intermediates. Both forms of cytochrome P-450 were active in the demethylation of DMN, cytochrome P-450 from PB-treated animals being more efficient, generating nearly twice as much formaldehyde per nmol of haemoprotein. Neither form of the cytochrome could activate DMN to mutagens in the Ames test. These findings indicate that DMN demethylation does not lead to its activation to mutagenic products.

  1. Determination of cytochrome P450 enzymes involved in the metabolism of (-)-terpinen-4-ol by human liver microsomes.

    PubMed

    Miyazawa, M; Haigou, R

    2011-12-01

    The in vitro metabolism of (-)-terpinen-4-ol was examined in human liver microsomes and recombinant enzymes. The biotransformation of (-)-terpinen-4-ol was investigated by gas chromatography-mass spectrometry. (-)-Terpinen-4-ol was found to be oxidized to (-)-(1S,2R,4R)-1,2-epoxy-p-menthan-4-ol, major metabolic product by human liver microsomal P450 enzymes. The formation of metabolites of (-)-terpinen-4-ol was determined by relative abundance of mass fragments and retention times on GC. CYP2A6 in human liver microsomes was a major enzyme involved in the oxidation of (-)-terpinen-4-ol by human liver microsomes, based on the following lines of evidence. First, of 11 recombinant human P450 enzymes tested, CYP2A6 had the highest activity for oxidation of (-)-terpinen-4-ol. Second, oxidation of (-)-terpinen-4-ol was inhibited by (+)-menthofuran. Finally, there was a good correlation between CYP2A6 maker activity and (-)-terpinen-4-ol oxidation activities in liver microsomes of 10 human samples. Kinetic analysis showed that the V(max)/K(m) values for (-)-(1S,2R,4R)-1,2-epoxy-p-menthan-4-ol catalysed by liver microsomes of human sample HH-18 was 2.49 μL/min/nmol. Human recombinant CYP2A6 catalysed (-)-(1S,2R,4R)-1,2-epoxy-p-menthan-4-ol with V(max) values of 13.9 nmol/min/nmol P450 and apparent K(m) values of 91 μM.

  2. Cytochrome P450 gene polymorphism and cancer.

    PubMed

    Agundez, Jose A G

    2004-06-01

    Human cytochrome P450 (CYP) enzymes play a key role in the metabolism of drugs and environmental chemicals. Several CYP enzymes metabolically activate procarcinogens to genotoxic intermediates. Phenotyping analyses revealed an association between CYP enzyme activity and the risk to develop several forms of cancer. Research carried out in the last decade demonstrated that several CYP enzymes are polymorphic due to single nucleotide polymorphisms, gene duplications and deletions. As genotyping procedures became available for most human CYP, an impressive number of association studies on CYP polymorphisms and cancer risk were conducted. Here we review the findings obtained in these studies regarding CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP3A7, CYP8A1 and CYP21 gene polymorphisms. Consistent evidences for association between CYP polymorphisms and lung, head and neck, and liver cancer were reported. Controversial findings suggest that colorectal and prostate cancers may be associated to CYP polymorphisms, whereas no evidences for a relevant association with breast or bladder cancers were reported. We summarize the available information related to the association of CYP polymorphisms with leukaemia, lymphomas and diverse types of cancer that were investigated only for some CYP genes, including brain, esophagus, stomach, pancreas, pituitary, cervical epithelium, melanoma, ovarian, kidney, anal and vulvar cancers. This review discusses on causes of heterogeneity in the proposed associations, controversial findings on cancer risk, and identifies topics that require further investigation. In addition, some recommendations on study design, in order to obtain more conclusive findings in further studies, are provided.

  3. Effects of polychlorinated biphenyls on porphyrin synthesis and cytochrome P-450 dependent monooxygenases in small intestine and liver of Japanese quail

    SciTech Connect

    Miranda, C.L.; Henderson, M.C.; Wang, J.L.; Nakaue, H.S.; Buhler, D.R.

    1987-01-01

    The effects of acute exposure to polychlorinated biphenyls (PCBs) on porphyrin synthesis and cytochrome P-450-dependent monooxygenases in the small intestine and liver were studied in male Japanese quail. The birds were dosed orally with the PCB mixture, Aroclor 1242, or the individual PCB isomers, 2,4,2',4'-tetrachlorobiphenyl (2-TCB) and 3,4,3',4'-tetrachlorobiphenyl (3-TCB), and were killed 48 h later. All the PCB compounds caused a significant increase in porphyrin content and sigma-aminolevulinic acid synthetase (ALA-S) activity in the small intestine and liver. Increases in porphyrins were greater in the small intestine in the liver. However, a smaller increase in ALA-S activity occurred in the small intestine than in liver, suggesting that ALA-S induction is not a major mechanism for the increased porphyrin content of small intestine. All the test compounds significantly increased the cytochrome P-450 content of liver. In the small intestine, cytochrome P-450 content was increased by Aroclor 1242 and 2-TCB but not by 3-TCB. The activity of 7-ethoxyresorufin O-deethylase, however, was increased by all test compounds in both liver and small intestine. In contrast, there was a striking difference between small intestine and liver in the induction of 7-ethoxycoumarin O-deethylase (ECOD) activity by Aroclor 1242. In the liver, ECOD activity was unchanged or decreased, but in the small intestine, ECOD activity linearly with dose. No tissue difference in ECOD activity was observed after treatment with 2-TCB or 3-TCB.

  4. Cloning of cytochrome P-450 2C9 cDNA from human liver and its expression in CHL cells

    PubMed Central

    Zhu, Ge-Jian; Yu, Ying-Nian; Li, Xin; Qian, Yu-Li

    2002-01-01

    AIM: Using bacterial, yeast, or mammalian cell expressing a human drug metabolism enzyme would seem good way to study drug metabolism-related problems. Human cytochrome P-450 2C9 (CYP2C9) is a polymorphic enzyme responsible for the metabolism of a large number of clinically important drugs. It ranks among the most important drug metabolizing enzymes in humans. In order to provide a sufficient amount of the enzyme for drug metabolic research, the CYP2C9 cDNA was cloned and expressed stably in CHL cells. METHODS: After extraction of total RNA from human liver tissue, the human CYP2C9 cDNA was amplified with reverse transcription-polymerase chain reaction (RT-PCR), and cloned into cloning vector pGEM-T. The cDNA fragment was identified by DNA sequencing and subcloned into a mammalian expression vector pREP9. A transgenic cell line was established by transfecting the recombinant vector of pREP9-CYP2C9 into CHL cells. The enzyme activity of CYP2C9 catalyzing oxidation of tolbutamide to hydroxy tolbutamide in S9 fraction of the cell was determined by high performance liquid chromatography (HPLC). RESULTS: The amino acid sequence predicted from the cDNA segment was identical to that of CYP2C9*1, the wild typeCYP2C9. However, there were two base differences, i.e. 21T > C, 1146C > T, but the encoding amino acid sequence was the same, L7, P382. The S9 fraction of the established cell line metabolizes tolbutamide to hydroxy tolbutamide; tolbutamide hydroxylase activity was found to be 0.465 ± 0.109 μmol•min-1 ·g-1 S9 protein or 8.62 ± 2.02 mol•min-1 ·mol-1 CYP, but was undetectable in parental CHL cell. CONCLUSION: The cDNA of human CYP2C9 was successfully cloned and a cell line of CHL-CYP2C9, efficiently expressing the protein of CYP2C9, was established. PMID:11925616

  5. The impact of porous silicon nanoparticles on human cytochrome P450 metabolism in human liver microsomes in vitro.

    PubMed

    Ollikainen, Elisa; Liu, Dongfei; Kallio, Arttu; Mäkilä, Ermei; Zhang, Hongbo; Salonen, Jarno; Santos, Hélder A; Sikanen, Tiina M

    2017-06-15

    Engineered nanoparticles are increasingly used as drug carriers in pharmaceutical formulations. This study focuses on the hitherto unaddressed impact of porous silicon (PSi) nanoparticles on human cytochrome P450 (CYP) metabolism, which is the major detoxification route of most pharmaceuticals and other xenobiotics. Three different surface chemistries, including thermally carbonized PSi (TCPSi), aminopropylsilane-modified TCPSi (APTES-TCPSi) and alkyne-terminated thermally hydrocarbonized PSi (Alkyne-THCPSi), were compared for their effects on the enzyme kinetics of the major CYP isoforms (CYP1A2, CYP2A6, CYP2D6, and CYP3A4) in human liver microsomes (HLM) in vitro. The enzyme kinetic parameters, Km and Vmax, and the intrinsic clearance (CLint) were determined using FDA-recommended, isoenzyme-specific model reactions with and without PSi nanoparticles. Data revealed statistically significant alterations of most isoenzyme activities in HLM in the presence of nanoparticles at 1mg/ml concentration, and polymorphic CYP2D6 was the most vulnerable to enzyme inhibition. However, the observed CYP2D6 inhibition was shown to be dose-dependent in case of TCPSi and Alkyne-THCPSi nanoparticles and attenuated at the concentrations below 1μg/ml. Adsorption of the probe substrates onto the hydrophobic Alkyne-THCPSi particles was also observed and taken into account in the determination of the kinetic parameters. Three polymer additives commonly used in pharmaceutical nanoformulations (Pluronics F68 and F127, and polyvinylalcohol) were also separately screened for their effects on CYP isoenzyme activities. These polymers had less effect on the enzyme kinetic parameters, and resulted in increased activity rather than enzyme inhibition, in contrast to the PSi nanoparticles. Although the chosen subcellular model (HLM) is not able to predict the cellular disposition of PSi nanoparticles in hepatocytes and thus provides limited information of probability of CYP interactions in vivo

  6. Utility of intersystem extrapolation factors in early reaction phenotyping and the quantitative extrapolation of human liver microsomal intrinsic clearance using recombinant cytochromes P450.

    PubMed

    Chen, Yuan; Liu, Liling; Nguyen, Khanh; Fretland, Adrian J

    2011-03-01

    Reaction phenotyping using recombinant human cytochromes P450 (P450) has great utility in early discovery. However, to fully realize the advantages of using recombinant expressed P450s, the extrapolation of data from recombinant systems to human liver microsomes (HLM) is required. In this study, intersystem extrapolation factors (ISEFs) were established for CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 using 11 probe substrates, based on substrate depletion and/or metabolite formation kinetics. The ISEF values for CYP2C9, CYP2D6, and CYP3A4 determined using multiple substrates were similar across substrates. When enzyme kinetics of metabolite formation for CYP1A2, 2C9, 2D6, and 3A4 were used, the ISEFs determined were generally within 2-fold of that determined on the basis of substrate depletion. Validation of ISEFs was conducted using 10 marketed drugs by comparing the extrapolated data with published data. The major isoforms responsible for the metabolism were identified, and the contribution of the predominant P450s was similar to that of previously reported data. In addition, phenotyping data from internal compounds, extrapolated using the rhP450-ISEF method, were comparable to those obtained using an HLM-based inhibition assay approach. Moreover, the intrinsic clearance (CL(int)) calculated from extrapolated rhP450 data correlated well with measured HLM CL(int). The ISEF method established in our laboratory provides a convenient tool in early reaction phenotyping for situations in which the HLM-based inhibition approach is limited by low turnover and/or unavailable metabolite formation. Furthermore, this method allows for quantitative extrapolation of HLM intrinsic clearance from rhP450 phenotyping data simultaneously to obtaining the participating metabolizing enzymes.

  7. Effects of the aqueous extract from Salvia miltiorrhiza Bge on the pharmacokinetics of diazepam and on liver microsomal cytochrome P450 enzyme activity in rats.

    PubMed

    Jinping, Qiao; Peiling, Hou; Yawei, Li; Abliz, Zeper

    2003-08-01

    The aim of this study was to determine the effects of the aqueous extract of Salvia miltiorrhiza Bge (danshen in Chinese) on the pharmacokinetics of diazepam and on liver microsomal cytochrome P450 enzyme activity in rats. Rats (n = 5) were pretreated with danshen extract (100 mg kg(-1) per day, p.o.) for 15 consecutive days. Control rats (n = 5) received saline at the same time. Each rat was then administered a single oral dose of 15 mg kg(-1) diazepam. The pharmacokinetic parameters of diazepam were significantly different between the two groups. In the danshen pretreated group, the maximum concentration of diazepam and the area under the plasma concentration-time curve were reduced to about 72.7% and 44.4%, respectively, while the total body clearance was markedly increased by 2-fold. To help explain the results, liver microsomal suspensions were obtained from rats that were randomly divided into the control group (n = 10), and the low- (20 mg kg(-1) for 15 days, p.o., n = 10) and high-dose groups (100 mg kg(-1) for 15 days, p.o., n = 10) pretreated with danshen extract. Compared with the control rats, the microsomal protein content, cytochrome P450 enzyme level and erythromycin N-demethylase activity of pretreated rats were significantly increased. These results indicate that danshen extract can stimulate the activity of cytochrome P450 isoforms, and changes in the pharmacokinetics of diazepam resulting from danshen extract are related to an increase in metabolic activity of cytochrome P450.

  8. Aminopyrine metabolism by multiple forms of cytochrome P-450 from rat liver microsomes: simultaneous quantitation of four aminopyrine metabolites by high-performance liquid chromatography.

    PubMed

    Imaoka, S; Inoue, K; Funae, Y

    1988-08-15

    Four aminopyrine metabolites generated by hepatic microsomes were simultaneously assayed by high-performance liquid chromatography. The metabolites were 4-monomethylaminoantipyrine (MAA), 4-aminoantipyrine (AA), 3-hydroxymethyl-2-methyl-4-dimethylamino-1-phenyl-3-pyrazoline-5-one (AM-OH), and one unidentified metabolite. MAA was the major metabolite generated by the microsomes; its formation was induced by phenobarbital but not by 3-methylcholanthrene. Female rats had lower N-demethylation activity of aminopyrine than male rats. The production of AA by microsomes was low. The formation of AM-OH was strongly induced by phenobarbital, but treatment with 3-methylcholanthrene reduced its formation. These differences in the microsomal aminopyrine monooxygenase activity are dependent on the relative amounts of the individual cytochrome P-450 isozymes. Therefore, we examined aminopyrine metabolism in a reconstituted system with purified cytochrome P-450s. P-450 UT-2 (P-450h) had high aminopyrine N-demethylation and hydroxylation activities, but P-450 F-2 (P-450i) had low N-demethylation activity and no hydroxylation activities, but P-450 F-2 (P-450i) had low N-demethylation activity and no hydroxylation activity. P-450 PB-4 (P-450b) and P-450 PB-5 (P-450e) had high aminopyrine hydroxylation activity and their N-demethylation activity also was high. The 3-methylcholanthrene-inducible forms P-450 MC-1 (P-450d) and MC-5 (P-450c) had aminopyrine N-demethylation activity but no hydroxylation activity. P-450 UT-4 (RLM2) is a unique form that produced a large amount of the unknown metabolite. P-450 UT-7 had the highest N-demethylation activity. Addition of cytochrome b5 to the reconstituted system enhanced the aminopyrine hydroxylation activities of P-450s UT-1, UT-2, PB-2, and PB-5. Also, the N-demethylation activities of P-450s UT-1, PB-1, PB-2, and MC-1 were increased by cytochrome b5. Metyrapone inhibited the catalytic activities of P-450s PB-4, PB-5, MC-1, and MC-5, and

  9. Purification of the pyrazole-inducible cytochrome P-450 isozyme

    SciTech Connect

    Palakodety, R.; Clejan, L.; Krikun, G.; Feierman, D.; Cederbaum, A.I.

    1987-05-01

    The alcohol dehydrogenase inhibitor, pyrazole, appears to induce a cytochrome P-450 isozyme with properties similar to the ethanol-inducible P-450. The pyrazole-inducible P-450 isozyme was purified from the liver microsomes of rats treated with pyrazole essentially by the procedure of Ryan et al and also by chromatofocussing. The final preparation appeared homogenous by SDS-PAGE with an apparent molecular weight of 52,000, had a specific content of 11 nmoles P-450 per mg protein, showed very high activity of low K/sub m/ dimethylnitrosamine demethylase and produced a type II binding spectrum with dimethylsulfoxide. The enzyme was also active with aniline and aminopyrine as substrates. Pyrazole itself served as an excellent substrate with 4-hydroxy pyrazole being the product. An antibody against the pyrazole-inducible P-450 raised in chickens recognized a protein with mol.wt of about 52,000 in control microsomes. This band was highly enriched in microsomes from rats treated with pyrazole, 4-methyl-pyrazole, ethanol or acetone, but not phenobarbital or 3-methylcholanthrene. In summary, the pyrazole-inducible P-450 has been purified and appears to be identical in its catalytic and immunological properties to the alcohol-inducible P-450.

  10. Reduction of benzyl halides by liver microsomes. Formation of 478 NM-absorbing sigma-alkyl-ferric cytochrome P-450 complexes.

    PubMed

    Mansuy, D; Fontecave, M

    1983-06-15

    The benzyl halides benzyl bromide and 4-nitrobenzyl chloride are reduced anaerobically by NADPH and rat liver microsomes to yield toluene and 4-nitrotoluene, respectively. These reductions and cytochrome P-450-dependent since they are inhibited by CO and metyrapone, and are increased after pretreatment of rats by phenobarbital and 3-methylcholanthrene. During benzyl halide reduction, cytochrome P-450 complexes, which are very unstable to O2 and characterized by a Soret peak at 478 nm, are formed in steady-state concentrations. These concentrations are very dependent on pretreatment of rats and on the nature of the reducing agent (NADPH or dithionite) and the benzyl halide:4-methylbenzyl bromide and benzyl bromide lead to 478 nm absorbing complexes in the presence of NADPH whereas 4-nitrobenzyl chloride and benzyl chloride lead to such completes only in the presence of dithionite. Microsomal reductions of 4-nitrobenzyl chloride and benzyl bromide in D2O lead to partially deuterated 4-nitrotoluene and toluene. From these results, we propose a mechanism for anaerobic microsomal reduction of benzyl halides involving the intermediate formation of sigma-alkyl cytochrome P-450-Fe(III)-CH2Ar complexes which exhibit red-shifted Soret peaks around 478 nm. Toluenes, ArCH3, are formed either by protonation of the sigma-alkyl complexes or by hydrogen abstraction by the intermediate free radical ArCH2.

  11. Flower colour and cytochromes P450.

    PubMed

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-02-19

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) and thus they play a crucial role in the determination of flower colour. F3'H and F3'5'H mostly belong to CYP75B and CYP75A, respectively, except for the F3'5'Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3'5'H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3'5'H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3'5'H and F3'H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones.

  12. Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes.

    PubMed

    Sello, Mopeli Marshal; Jafta, Norventia; Nelson, David R; Chen, Wanping; Yu, Jae-Hyuk; Parvez, Mohammad; Kgosiemang, Ipeleng Kopano Rosinah; Monyaki, Richie; Raselemane, Seiso Caiphus; Qhanya, Lehlohonolo Benedict; Mthakathi, Ntsane Trevor; Sitheni Mashele, Samson; Syed, Khajamohiddin

    2015-07-01

    Cytochrome P450 monooxygenases (P450s) are heme-thiolate proteins whose role as drug targets against pathogens, as well as in valuable chemical production and bioremediation, has been explored. In this study we performed comprehensive comparative analysis of P450s in 13 newly explored oomycete pathogens. Three hundred and fifty-six P450s were found in oomycetes. These P450s were grouped into 15 P450 families and 84 P450 subfamilies. Among these, nine P450 families and 31 P450 subfamilies were newly found in oomycetes. Research revealed that oomycetes belonging to different orders contain distinct P450 families and subfamilies in their genomes. Evolutionary analysis and sequence homology data revealed P450 family blooms in oomycetes. Tandem arrangement of a large number of P450s belonging to the same family indicated that P450 family blooming is possibly due to its members' duplications. A unique combination of amino acid patterns was observed at EXXR and CXG motifs for the P450 families CYP5014, CYP5015 and CYP5017. A novel P450 fusion protein (CYP5619 family) with an N-terminal P450 domain fused to a heme peroxidase/dioxygenase domain was discovered in Saprolegnia declina. Oomycete P450 patterns suggested host influence in shaping their P450 content. This manuscript serves as reference for future P450 annotations in newly explored oomycetes.

  13. Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes

    PubMed Central

    Sello, Mopeli Marshal; Jafta, Norventia; Nelson, David R; Chen, Wanping; Yu, Jae-Hyuk; Parvez, Mohammad; Kgosiemang, Ipeleng Kopano Rosinah; Monyaki, Richie; Raselemane, Seiso Caiphus; Qhanya, Lehlohonolo Benedict; Mthakathi, Ntsane Trevor; Sitheni Mashele, Samson; Syed, Khajamohiddin

    2015-01-01

    Cytochrome P450 monooxygenases (P450s) are heme-thiolate proteins whose role as drug targets against pathogens, as well as in valuable chemical production and bioremediation, has been explored. In this study we performed comprehensive comparative analysis of P450s in 13 newly explored oomycete pathogens. Three hundred and fifty-six P450s were found in oomycetes. These P450s were grouped into 15 P450 families and 84 P450 subfamilies. Among these, nine P450 families and 31 P450 subfamilies were newly found in oomycetes. Research revealed that oomycetes belonging to different orders contain distinct P450 families and subfamilies in their genomes. Evolutionary analysis and sequence homology data revealed P450 family blooms in oomycetes. Tandem arrangement of a large number of P450s belonging to the same family indicated that P450 family blooming is possibly due to its members’ duplications. A unique combination of amino acid patterns was observed at EXXR and CXG motifs for the P450 families CYP5014, CYP5015 and CYP5017. A novel P450 fusion protein (CYP5619 family) with an N-terminal P450 domain fused to a heme peroxidase/dioxygenase domain was discovered in Saprolegnia declina. Oomycete P450 patterns suggested host influence in shaping their P450 content. This manuscript serves as reference for future P450 annotations in newly explored oomycetes. PMID:26129850

  14. Cytochrome P450 expression in oesophageal cancer.

    PubMed Central

    Murray, G I; Shaw, D; Weaver, R J; McKay, J A; Ewen, S W; Melvin, W T; Burke, M D

    1994-01-01

    The cytochrome P450 superfamily of enzymes play a central part in the metabolism of carcinogens and anti-cancer drugs. The expression, cellular localisation, and distribution of different forms of P450 and the functionally associated enzymes epoxide hydrolase and glutathione S-transferases have been investigated in oesophageal cancer and non-neoplastic oesophageal tissue using immunohistochemistry. Expression of the different enzymes was confined to epithelial cells in both non-neoplastic samples and tumour samples except the CYP3A was also identified in mast cells and glutathione S-transferase pi was present in chronic inflammatory cells. CYP1A was present in a small percentage of non-neoplastic samples but both CYP2C and CYP3A were absent. Epoxide hydrolase was present in half of the non-neoplastic samples and the different classes of glutathione S-transferase were present in a low number of samples. In carcinomas CYP1A, CYP3A, epoxide hydrolase, and glutathione S-transferase pi were expressed in at least 60% of samples. The expression of glutathione S-transferases alpha and mu were significantly less in adenocarcinoma compared with squamous carcinoma. Images Figure 1 Figure 2 Figure 3 PMID:8200549

  15. Marmoset pulmonary cytochrome P450 2F1 oxidizes biphenyl and 7-ethoxycoumarin and hepatic human P450 substrates.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Oshio, Toru; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2017-07-24

    1. A potentially useful animal model for preclinical studies is the common marmoset (Callithrix jacchus). In this study, using reverse-transcription polymerase chain reaction from marmoset livers, we identified a novel cytochrome P450 (P450) 2F1 cDNA with an open reading frame of 1473 bp. 2. High sequence identities of 92-94% with primate P450 2 F amino acid sequences were indicated by deduced amino acid sequences of P450 2F1 cDNA. Phylogenetic analysis indicates that marmoset P450 2F1 is more congruent with primate P450 2 F forms than those of other species such as rodents. 3. Among five tissue types examined, abundant expression of marmoset P450 2F1 mRNA and P450 2F1 protein in lungs was shown. Cynomolgus monkey P450 2F1 mRNA was abundantly expressed in lungs as well as testes and ovaries in 10 tissue types. 4. Similar to those of humans and cynomolgus monkeys, marmoset P450 2F1 heterologously expressed in Escherichia coli membranes efficiently catalyzed 7-ethoxycoumarin O-deethylation and biphenyl hydroxylation, however unlike human P450 2F1, marmoset P450 2F1 exhibited hydroxylation activity toward coumarin and chlorzoxazone. 5. These findings indicated that P450 2F1 enzyme expressed in marmoset lungs and also catalyzed metabolism of xenobiotics, suggesting the importance of P450 2 F-dependent drug metabolism in marmoset lungs.

  16. Flower colour and cytochromes P450

    PubMed Central

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-01-01

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) and thus they play a crucial role in the determination of flower colour. F3′H and F3′5′H mostly belong to CYP75B and CYP75A, respectively, except for the F3′5′Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3′5′H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3′5′H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3′5′H and F3′H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones. PMID:23297355

  17. Inhibition of Cytochrome P450 1A2-Mediated Metabolism and Production of Reactive Oxygen Species by Heme Oxygenase-1 in Rat Liver Microsomes

    PubMed Central

    Reed, James R.; Cawley, George F.; Backes, Wayne L.

    2011-01-01

    Heme oxygenase-1 (HO-1) is induced in most cell types by many forms of environmental stress and is believed to play a protective role in cells exposed to oxidative stress. Metabolism by cytochromes P450 (P450) is highly inefficient as the oxidation of substrate is associated with the production of varying proportions of hydrogen peroxide and/or superoxide. This study tests the hypothesis that heme oxygenase-1 (HO-1) plays a protective role against oxidative stress by competing with P450 for binding to the common redox partner, the NADPH P450 reductase (CPR) and in the process, diminishing P450 metabolism and the associated production of reactive oxygen species (ROS). Liver microsomes were isolated from uninduced rats and rats that were treated with cadmium and/or β-napthoflavone (BNF) to induce HO-1 and/or CYP1A2. HO-1 induction was associated with slower rates of metabolism of the CYP1A2-specific substrate, 7-ethoxyresorufin. Furthermore, HO-1 induction also was associated with slower rates of hydrogen peroxide and hydroxyl radical production by microsomes from rats induced for CYP1A2. The inhibition associated with HO-1 induction was not dependent on the addition of heme to the microsomal incubations. The effects of HO-1 induction were less dramatic in the absence of substrate for CYP1A2, suggesting that the enzyme was more effective in inhibiting the CYP1A2-related activity than the CPR-related production of superoxide (that dismutates to form hydrogen peroxide). PMID:20942796

  18. Effect of hepatitis C virus infection on the mRNA expression of drug transporters and cytochrome p450 enzymes in chimeric mice with humanized liver.

    PubMed

    Kikuchi, Ryota; McCown, Matthew; Olson, Pamela; Tateno, Chise; Morikawa, Yoshio; Katoh, Yumiko; Bourdet, David L; Monshouwer, Mario; Fretland, Adrian J

    2010-11-01

    The expression of drug transporters and metabolizing enzymes is a primary determinant of drug disposition. Chimeric mice with humanized liver, including PXB mice, are an available model that is permissive to the in vivo infection of hepatitis C virus (HCV), thus being a promising tool for investigational studies in development of new antiviral molecules. To investigate the potential of HCV infection to alter the pharmacokinetics of small molecule antiviral therapeutic agents in PXB mice, we have comprehensively determined the mRNA expression profiles of human ATP-binding cassette (ABC) transporters, solute carrier (SLC) transporters, and cytochrome P450 (P450) enzymes in the livers of these mice under noninfected and HCV-infected conditions. Infection of PXB mice with HCV resulted in an increase in the mRNA expression levels of a series of interferon-stimulated genes in the liver. For the majority of genes involved in drug disposition, minor differences in the mRNA expression of ABC and SLC transporters as well as P450s between the noninfected and HCV-infected groups were observed. The exceptions were statistically significantly higher expression of multidrug resistance-associated protein 4 and organic anion-transporting polypeptide 2B1 and lower expression of organic cation transporter 1 and CYP2D6 in HCV-infected mice. Furthermore, the enzymatic activities of the major human P450s were, in general, comparable in the two experimental groups. These data suggest that the pharmacokinetic properties of small molecule antiviral therapies in HCV-infected PXB mice are likely to be similar to those in noninfected PXB mice. However, caution is needed in the translation of this relationship to HCV-infected patients as the PXB mouse model does not accurately reflect the pathology of patients with chronic HCV infection.

  19. The revised human liver cytochrome P450 "Pie": absolute protein quantification of CYP4F and CYP3A enzymes using targeted quantitative proteomics.

    PubMed

    Michaels, Scott; Wang, Michael Zhuo

    2014-08-01

    The CYP4F subfamily of enzymes has been identified recently to be involved in the metabolism of endogenous compounds (arachidonic acid and leukotriene B4), nutrients (vitamins K1 and E), and xenobiotics (pafuramidine and fingolimod). CYP4F2 and CYP4F3B are reported to be expressed in the human liver. However, absolute concentrations of these enzymes in human liver microsomes (HLMs) and their interindividual variability have yet to be determined because of the lack of specific antibodies. Here, an liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based targeted quantitative proteomic approach was employed to determine the absolute protein concentrations of CYP4F2 and CYP4F3B compared with CYP3A in two panels of HLMs (n = 31). As a result, the human hepatic cytochrome P450 (P450) "pie" has been revised to include the contribution of CYP4F enzymes, which amounts to 15% of the total hepatic cytochrome P450 enzymes. CYP4F3B displayed low interindividual variability (3.3-fold) in the HLM panels whereas CYP4F2 displayed large variability (21-fold). However, CYP4F2 variability decreased to 3.4-fold if the two donors with the lowest expression were excluded. In contrast, CYP3A exhibited 29-fold interindividual variability in the same HLM panels. The proposed marker reaction for CYP4F enzymes pafuramidine/DB289 M1 formation did not correlate with CYP4F protein content, suggesting alternate metabolic pathways for DB289 M1 formation in HLMs. In conclusion, CYP4F enzymes are highly expressed in the human liver and their physiologic and pharmacologic roles warrant further investigation.

  20. Differential metabolism of acetanilide versus ethoxycoumarin and benzo[a]pyrene by two 3-methylcholanthrene-inducible forms of rat liver cytochrome P-450.

    PubMed

    Sundheimer, D W; Caveness, M B; Goldstein, J A

    1983-10-15

    The present study compares the catalytic activities of two 3-methylcholanthrene (3-MC) inducible forms of cytochrome P-450. These isozymes (P-448HCB and P-448MC) were isolated from liver microsomes of rats treated with 3,4,5,3',4',5'-hexachlorobiphenyl (HCB) and 3-MC, respectively. Catalytic activities of the isozymes were compared in a reconstituted system and by antibody inhibition studies in microsomes. In a reconstituted system, P-448HCB had very little catalytic activity toward benzo[a]pyrene or ethoxycoumarin (substrates metabolized preferentially by P-448MC). In contrast, both isozymes had high turnover numbers for aniline and acetanilide. However, catalytic activities of the purified isozymes were affected dramatically by Emulgen 911, a nonionic detergent. Since nonionic detergents used in the purification of P-450 isozymes cannot be completely removed after purification, residual amounts of detergent probably affect turnover numbers in a reconstituted system. Therefore, specific antibodies to cytochromes P-448MC and P-448HCB were used to examine the contribution of these isozymes to microsomal metabolism. Antibody inhibition studies confirmed that the majority of benzo[a]pyrene and ethoxycoumarin metabolism in 3-MC-induced microsomes was catalyzed by cytochrome P-448MC. In contrast, P-448HCB accounted for the majority of the acetanilide hydroxylase activity in 3-MC- and HCB-induced microsomes. Neither isozyme contributed appreciably to metabolism of these substrates in control microsomes.

  1. Identification of cytochrome p450 enzymes involved in the metabolism of 4'-methyl-alpha-pyrrolidinopropiophenone, a novel scheduled designer drug, in human liver microsomes.

    PubMed

    Springer, Dietmar; Paul, Liane D; Staack, Roland F; Kraemer, Thomas; Maurer, Hans H

    2003-08-01

    4'-Methyl-alpha-pyrrolidinopropiophenone (MPPP) is a new drug of abuse. It is believed to have an abuse potential similar to that of amphetamines. Previous studies with Wistar rats had shown that MPPP was metabolized mainly by hydroxylation in position 4' followed by dehydrogenation to the corresponding carboxylic acid. The aim of the study presented here was to identify the human hepatic cytochrome p450 (p450) enzymes involved in the biotransformation of MPPP to 4'-hydroxymethyl-pyrrolidinopropiophenone. Baculovirus-infected insect cell microsomes and human liver microsomes were used for this purpose. Only CYP2C19 and CYP2D6 catalyzed this hydroxylation. The apparent Km and Vmax values for the latter were 9.8 +/- 2.5 microM and 13.6 +/- 0.7 pmol/min/pmol p450, respectively. CYP2C19 was not saturable over the tested substrate range (2-1000 microM) and interestingly showed a biphasic kinetic profile with apparent Km,1 and Vmax,1 values of 47.2 +/- 12.5 microM and 8.1 +/- 1.4 pmol/min/pmol p450, respectively. Experiments with pooled human liver microsomes also revealed biphasic nonsaturable kinetics with apparent Km,1 and Vmax,1 values of 57.0 +/- 20.9 microM and 199.7 +/- 59.7 pmol/min/mg of protein for the high affinity enzyme, respectively. Incubation of 2 microM MPPP with 3 microM of the CYP2D6-specific inhibitor quinidine resulted in significant (p < 0.01) turnover inhibition (11.8 +/- 1.6% of control). Based on kinetic data corrected for the relative activity factors, CYP2D6 is the enzyme mainly responsible for MPPP hydroxylation, confirmed by CYP2D6 inhibition studies.

  2. Inhibitory effects of curcumin on activity of cytochrome P450 2C9 enzyme in human and 2C11 in rat liver microsomes.

    PubMed

    Wang, Zhe; Sun, Wei; Huang, Cheng-Ke; Wang, Li; Xia, Meng-Ming; Cui, Xiao; Hu, Guo-Xin; Wang, Zeng-Shou

    2015-04-01

    Cytochrome P450 2C9 (CYP2C9), one of the most important phase I drug metabolizing enzymes, could catalyze the reactions that convert diclofenanc into diclofenac 4'-hydroxylation. Evaluation of the inhibitory effects of compounds on CYP2C9 is clinically important because inhibition of CYP2C9 could result in serious drug-drug interactions. The objective of this work was to investigate the effects of curcumin on CYP2C9 in human and cytochrome P450 2C11 (CYP2C11) in rat liver microsomes. The results showed that curcumin inhibited CYP2C9 activity (10 µmol L(-1) diclofenac) with half-maximal inhibition or a half-maximal inhibitory concentration (IC50) of 15.25 µmol L(-1) and Ki = 4.473 µmol L(-1) in human liver microsomes. Curcumin's mode of action on CYP2C9 activity was noncompetitive for the substrate diclofenanc and uncompetitive for the cofactor NADPH. In contrast to its potent inhibition of CYP2C9 in human, diclofenanc had lesser effects on CYP2C11 in rat, with an IC50 ≥100 µmol L(-1). The observations imply that curcumin has the inhibitory effects on CYP2C9 activity in human. These in vitro findings suggest that more attention should be paid to special clinical caution when intake of curcumin combined with other drugs in treatment.

  3. Simultaneous alterations of brain and plasma serotonin concentrations and liver cytochrome P450 in rats fed on a tryptophan-free diet.

    PubMed

    Kot, Marta; Pilc, Andrzej; Daniel, Władysława A

    2012-10-01

    Our previous study suggested involvement of the brain serotonergic system in the regulation of liver cytochrome P450 (CYP). The aim of the present study was to demonstrate simultaneous responsiveness of liver CYP and the peripheral and brain serotonergic systems to a tryptophan deficient diet during three days and one or three weeks of ingestion. The concentrations of serotonin, noradrenaline, dopamine and their metabolites were measured in blood plasma, the hypothalamus and brain stem of male rats. The enzyme activity and protein levels in the liver were determined for isoforms CYP1A, CYP2A, CYP2B, CYP2C6, CYP2C11, CYP2D and CYP3A. A three-day tryptophan-free diet increased serotonin content in the hypothalamus (but not in the brain stem or plasma). After one week, the level of serotonin was not changed in the brain, but was markedly increased in the plasma. A three week tryptophan restriction significantly reduced the concentration of serotonin in the brain and plasma. Changes in CYP2C6 and CYP2C11 (an increase and a decrease, respectively) were maintained throughout the experiment, while those found in other CYP isoforms varied, which usually resulted in a gradual increase in the enzyme activity within three weeks. The observed alterations in liver CYPs suggest involvement of both central and peripheral serotonin in the regulation of liver CYP expression whose mechanism is discussed. In conclusion, a deficit in tryptophan in the diet may be responsible for very serious food-cytochrome P450 and food-drug metabolism interactions. Interactions of this type may also refer to drugs acting via serotonergic system.

  4. Metabolism of aflatoxin B{sub 1} in Turkey liver microsomes: The relative roles of cytochromes P450 1A5 and 3A37

    SciTech Connect

    Rawal, Sumit; Coulombe, Roger A.

    2011-08-01

    The extreme sensitivity of turkeys to aflatoxin B{sub 1} (AFB{sub 1}) is associated with efficient epoxidation by hepatic cytochromes P450 (P450) 1A5 and 3A37 to exo-aflatoxin B{sub 1}-8,9-epoxide (exo-AFBO). The combined presence of 1A5 and 3A37, which obey different kinetic models, both of which metabolize AFB{sub 1} to the exo-AFBO and to detoxification products aflatoxin M{sub 1} (AFM{sub 1}) and aflatoxin Q{sub 1} (AFQ{sub 1}), respectively, complicates the kinetic analysis of AFB{sub 1} in turkey liver microsomes (TLMs). Antisera directed against 1A5 and 3A37, thereby individually removing the catalytic contribution of these enzymes, were used to identify the P450 responsible for epoxidating AFB{sub 1} in TLMs. In control TLMs, AFB{sub 1} was converted to exo-AFBO in addition to AFM{sub 1} and AFQ{sub 1} confirming the presence of functional 1A5 and 3A37. Pretreatment with anti-1A5 inhibited exo-AFBO formation, especially at low, submicromolar ({approx} 0.1 {mu}M), while anti-3A37, resulted in inhibition of exo-AFBO formation, but at higher (> 50 {mu}M) AFB{sub 1} concentrations. Metabolism in immunoinhibited TLMs resembled that of individual enzymes: 1A5 produced exo-AFBO and AFM{sub 1}, conforming to Michaelis-Menten, while 3A37 produced exo-AFBO and AFQ{sub 1} following the kinetic Hill equation. At 0.1 {mu}M AFB{sub 1}, close to concentrations in livers of exposed animals, 1A5 contributed to 98% of the total exo-AFBO formation. At this concentration, 1A5 accounted for a higher activation:detoxification (50:1, exo-AFBO: AFM{sub 1}) compared to 3A37 (0.15: 1, exo-AFBO: AFQ{sub 1}), suggesting that 1A5 is high, while 3A4 is the low affinity enzyme in turkey liver. The data support the conclusion that P450 1A5 is the dominant enzyme responsible for AFB{sub 1} bioactivation and metabolism at environmentally-relevant AFB{sub 1} concentrations in turkey liver. - Graphical abstract: Display Omitted Highlights: > Efficient bioactivation by P450s 1A5 and 3A4

  5. Role of specific cytochrome P450 isoforms in the conversion of phenoxypropoxybiguanide analogs in human liver microsomes to potent antimalarial dihydrotriazines.

    PubMed

    Diaz, Damaris S; Kozar, Michael P; Smith, Kirsten S; Asher, Constance O; Sousa, Jason C; Schiehser, Guy A; Jacobus, David P; Milhous, Wilbur K; Skillman, Donald R; Shearer, Todd W

    2008-02-01

    Phenoxypropoxybiguanides, such as PS-15, are antimalarial prodrugs analogous to the relationship of proguanil and its active metabolite cycloguanil. Unlike cycloguanil, however, WR99210, the active metabolite of PS-15, has retained in vitro potency against newly emerging antifolate-resistant malaria parasites. Recently, in vitro metabolism of a new series of phenoxypropoxybiguanide analogs has examined the production of the active triazine metabolites by human liver microsomes. The purpose of this investigation was to elucidate the primary cytochrome P450 isoforms involved in the production of active metabolites in the current lead candidate. By using expressed human recombinant isoform preparations, specific chemical inhibitors, and isoform-specific inhibitory antibodies, the primary cytochrome P450 isoforms involved in the in vitro metabolic activation of JPC-2056 were elucidated. Unlike proguanil, which is metabolized primarily by CYP2C19, the results indicate that CYP3A4 plays a more important role in the metabolism of both PS-15 and JPC-2056. Whereas CYP2D6 appears to play a major role in the metabolism of PS-15 to WR99210, it appears less important in the conversion of JPC-2056 to JPC-2067. These results are encouraging, considering the prominence of CYP2C19 and CYP2D6 polymorphisms in certain populations at risk for contracting malaria, because the current clinical prodrug candidate from this series may be less dependent on these enzymes for metabolic activation.

  6. Cyclosporin A drug interactions. Screening for inducers and inhibitors of cytochrome P-450 (cyclosporin A oxidase) in primary cultures of human hepatocytes and in liver microsomes.

    PubMed

    Pichard, L; Fabre, I; Fabre, G; Domergue, J; Saint Aubert, B; Mourad, G; Maurel, P

    1990-01-01

    In previous papers we demonstrated that cyclosporin A (CsA) was specifically oxidized in rabbit and human liver by cytochrome P-450IIIA. We therefore anticipated that any drug that is an inducer or an inhibitor of this cytochrome should lead to interaction with CsA when given in association with it. In order to confirm this hypothesis, primary cultures of human hepatocytes and human liver microsomes were used to "reproduce" in vitro clinically significant interactions observed between CsA and drugs known either as specific inducers (i.e., rifampicin) or as specific inhibitors (i.e., erythromycin) of P-450IIIA. Our results were in close agreement with the clinical reports. Human hepatocytes maintained in primary cultures for 72 hr in the presence of 50 microM rifampicin exhibited increased levels of P-450IIIA, determined by Western blot using specific antibodies, and concomitant increase in CsA oxidase activity, determined by HPLC analysis of extra and intracellular media. Conversely, these cultures exhibited erythromycin concentration-dependent decreases in CsA oxidase activity when incubated in the presence of 5, 20, and 100 microM erythromycin. In addition, a Lineweaver-Burk analysis of the erythromycin-mediated inhibition of CsA oxidase activity in human liver microsomes revealed competitive inhibition (with Ki of 75 microM) as expected, this macrolide being a specific substrate of P-450IIIA. Using this experimental approach, 59 molecules representative of 17 different therapeutic classes were screened for inducers and inhibitors of CsA oxidase activity. Our results allowed us to elucidate the molecular mechanism of previously observed, but unexplained, drug interactions involving CsA, and to detect drugs that should interfere with CsA metabolism as inducers or inhibitors. Drugs detected as potential inducers of CsA oxidase included: rifampicin, sulfadimidine, phenobarbital, phenytoin, phenylbutazone, dexamethasone, sulfinpyrazone, and carbamazepine. Drugs

  7. Metabolism of methyl tert-butyl ether and other gasoline ethers in mouse liver microsomes lacking cytochrome P450 2E1.

    PubMed

    Hong, J Y; Wang, Y Y; Bondoc, F Y; Yang, C S; Gonzalez, F J; Pan, Z; Cokonis, C D; Hu, W Y; Bao, Z

    1999-03-08

    To reduce the production of pollutants in motor vehicle exhaust, methyl tert-butyl ether (MTBE) and other ethers such as ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME) are added to gasoline as oxygenates for more complete combustion. Metabolism of these gasoline ethers is catalyzed by cytochrome P450 (P450) enzymes. P450 2E1, which metabolizes diethyl ether, was suggested to be an enzyme involved. The present study used 2E1 knock-out mice (2E1-/-) to assess the contribution of 2E1 to the metabolism of MTBE, ETBE and TAME. Liver microsomes prepared from the 2E1 knock-out mice lacked 2E1 activity (assayed as N-nitrosodimethylamine demethylation), but were still active in metabolizing all three gasoline ethers. The levels of ether-metabolizing activity (nmol/min per mg) in the liver microsomes from 7 week old female 2E1 knock-out mice were 0.54+/-0.17 for MTBE, 0.51+/-0.24 for ETBE and 1.14+/-0.25 for TAME at a 1 mM substrate concentration. These activity levels were not significantly different from those of the sex- and age-matched C57BL/6N and 129/Sv mice, which are the parental lineage strains of the 2E1 knock-out mice and are both 2E1+/+. Our results clearly demonstrate that 2E1 plays a negligible role in the metabolism of MTBE, ETBE and TAME in mouse livers.

  8. Effect of pyrazole, cobalt and phenobarbital on mouse liver cytochrome P-450 2a-4/5 (Cyp2a-4/5) expression.

    PubMed Central

    Hahnemann, B; Salonpää, P; Pasanen, M; Mäenpää, J; Honkakoski, P; Juvonen, R; Lang, M A; Pelkonen, O; Raunio, H

    1992-01-01

    Pyrazole, cobalt and phenobarbital increase the activity of coumarin 7-hydroxylase (COH) in mouse liver. To study the mechanism of this increase, we measured the expression of the cytochrome P-450 2a-4/5 (Cyp2a-4/5) complex, which mediates testosterone 15 alpha-hydroxylase and COH activities, as a function of dose and time after the treatment of C57BL/6 (B6) and DBA/2 (D2) male mice with the inducers. COH activity and Cyp2a-4/5 steady-state mRNA levels were increased in both strains in response to the inducers. No marked effect occurred with testosterone 15 alpha-hydroxylase or activities associated with Cyp1a-1 or Cyp2e-1. A 2-7-fold increase in response to the inducers was seen in the amount of P-450Coh (cytochrome P-450 isoenzyme catalysing coumarin 7-hydroxylation) protein in Western immunoblots. PCR amplification of a 1 kb region in Cyp2a-4/5-mRNA-derived cDNA, followed by cutting at the diagnostic PstI site, showed that most of the steady-state mRNA consisted of Cyp2a-5, which is also the form most affected by pyrazole. Nuclear run-off analysis revealed no increase in the transcription rate of Cyp2a-4/5 after pyrazole or cobalt treatment, whereas a 2-3-fold increase occurred after phenobarbital pretreatment in B6 mice. Together with previous reports [Aida & Negishi (1991) Biochemistry 30, 8041-8045], the current data suggest that both pyrazole and cobalt increase COH catalytic activity by affecting Cyp2a-5 by post-transcriptional mechanisms in mice. Images Fig. 1. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:1520280

  9. Chemical proteomic probes for profiling cytochrome P450 activities and drug interactions in vivo

    PubMed Central

    Wright, Aaron T.; Cravatt, Benjamin F.

    2007-01-01

    The cytochrome P450 (P450) superfamily metabolizes many endogenous signaling molecules and drugs. P450 enzymes are regulated by post-translational mechanisms in vivo, which hinders their functional characterization by conventional genomic or proteomic methods. Here, we describe a chemical proteomic strategy to profile P450 activities directly in living systems. Derivatization of a mechanism-based inhibitor with a “clickable” handle provided an activity-based probe that labels multiple P450s both in proteomic extracts and in vivo. This probe was used to record alterations in liver P450 activities triggered by chemical agents, including inducers of P450 expression and direct P450 inhibitors. The chemical proteomic strategy described herein thus offers a versatile method to monitor P450 activities and small molecule interactions in any biological system and, through doing so, should facilitate the functional characterization of this large and diverse enzyme class. PMID:17884636

  10. Canine cytochrome P450 (CYP) pharmacogenetics

    PubMed Central

    Court, Michael H.

    2013-01-01

    Synopsis The cytochrome P450 (CYP) drug metabolizing enzymes are essential for the efficient elimination of many clinically used drugs. These enzymes typically display high interindividual variability in expression and function resulting from enzyme induction, inhibition, and genetic polymorphism thereby predisposing patients to adverse drug reactions or therapeutic failure. There are also substantial species differences in CYP substrate specificity and expression that complicate direct extrapolation of information from humans to veterinary species. This article reviews the available published data regarding the presence and impact of genetic polymorphisms on CYP-dependent drug metabolism in dogs in the context of known human-dog CYP differences. Canine CYP1A2, which metabolizes phenacetin, caffeine, and theophylline, is the most widely studied polymorphic canine CYP. A single nucleotide polymorphism resulting in a CYP1A2 premature stop codon (c.1117C>T; R383X) with a complete lack of enzyme is highly prevalent in certain dog breeds including Beagle and Irish wolfhound. This polymorphism was shown to substantially affect the pharmacokinetics of several experimental compounds in Beagles during preclinical drug development. However, the impact on the pharmacokinetics of phenacetin (a substrate specific for human CYP1A2) was quite modest probably because other canine CYPs are capable of metabolizing phenacetin. Other canine CYPs with known genetic polymorphisms include CYP2C41 (gene deletion), as well as CYP2D15, CYP2E1, and CYP3A12 (coding SNPs). However the impact of these variants on drug metabolism in vitro or on drug pharmacokinetics is unknown. Future systematic investigations are needed to comprehensively identify CYP genetic polymorphisms that are predictive of drug effects in canine patients. PMID:23890236

  11. The inhaled glucocorticoid fluticasone propionate efficiently inactivates cytochrome P450 3A5, a predominant lung P450 enzyme

    PubMed Central

    Murai, Takahiro; Reilly, Christopher R.; Ward, Robert M.; Yost, Garold S.

    2010-01-01

    Inhaled glucocorticoid (GC) therapy is a vital part of the management of chronic asthma. GCs are metabolized by members of the cytochrome P450 3A family in both liver and lung, but the enzymes are differentially expressed. Selective inhibition of one or more P450 3A enzymes could substantially modify target and systemic concentrations of GCs. In this study, we have evaluated the mechanism-based inactivation of P450 3A4, 3A5 and 3A7 enzymes by GCs. Among the five major inhaled GCs approved for clinical use in the United States, fluticasone propionate (FLT) was the most potent mechanism-based inactivator of P450 3A5, the predominant P450 enzyme in the lung. FLT inactivated P450 3A5 in a time- and concentration-dependent manner with KI, kinact and partition ratio of 16 μM, 0.027 min-1 and 3, respectively. In contrast, FLT minimally inactivated P450 3A4 and did not inactivate 3A7, even with a concentration of 100 μM. The inactivation of P450 3A5 by FLT was irreversible because dialysis did not restore enzyme activity. In addition, the exogenous nucleophilic scavenger GSH did not attenuate inactivation. The prosthetic heme of P450 3A5 was not modified by FLT. The loss of P450 3A5 activity in lung cells could substantially decrease the metabolism of FLT, which would increase the effective FLT concentration at its target site, the respiratory epithelium. Also, inactivation of lung P450 3A5 could increase the absorption of inhaled FLT, which could lead to high systemic concentrations and adverse effects, such as life-threatening adrenal crises or cataracts that have been documented in children receiving high doses of inhaled GCs. PMID:20707410

  12. Role of cytochrome P450 in drug interactions.

    PubMed

    Bibi, Zakia

    2008-10-18

    Drug-drug interactions have become an important issue in health care. It is now realized that many drug-drug interactions can be explained by alterations in the metabolic enzymes that are present in the liver and other extra-hepatic tissues. Many of the major pharmacokinetic interactions between drugs are due to hepatic cytochrome P450 (P450 or CYP) enzymes being affected by previous administration of other drugs. After coadministration, some drugs act as potent enzyme inducers, whereas others are inhibitors. However, reports of enzyme inhibition are very much more common. Understanding these mechanisms of enzyme inhibition or induction is extremely important in order to give appropriate multiple-drug therapies. In future, it may help to identify individuals at greatest risk of drug interactions and adverse events.

  13. Role of cytochrome P450 in drug interactions

    PubMed Central

    Bibi, Zakia

    2008-01-01

    Drug-drug interactions have become an important issue in health care. It is now realized that many drug-drug interactions can be explained by alterations in the metabolic enzymes that are present in the liver and other extra-hepatic tissues. Many of the major pharmacokinetic interactions between drugs are due to hepatic cytochrome P450 (P450 or CYP) enzymes being affected by previous administration of other drugs. After coadministration, some drugs act as potent enzyme inducers, whereas others are inhibitors. However, reports of enzyme inhibition are very much more common. Understanding these mechanisms of enzyme inhibition or induction is extremely important in order to give appropriate multiple-drug therapies. In future, it may help to identify individuals at greatest risk of drug interactions and adverse events. PMID:18928560

  14. Recent Structural Insights into Cytochrome P450 Function

    PubMed Central

    Peter Guengerich, F.; Waterman, Michael R.; Egli, Martin

    2016-01-01

    Cytochrome P450 (P450) enzymes are important in the metabolism of drugs, steroids, fat-soluble vitamins, carcinogens, pesticides, and many other types of chemicals. Their catalytic activities are important issues in areas such as drug-drug interactions and endocrine function. During the past 30 years, structures of P450s have been very helpful in understanding function, particularly the mammalian P450 structures available in the past 15 years. We review recent activity in this area, focusing on the past two years (2014–2015). Structural work with microbial P450s includes studies related to the biosynthesis of natural products and the use of parasitic and fungal P450 structures as targets for drug discovery. Studies on mammalian P450s include the utilization of information about ‘drug-metabolizing’ P450s to improve drug development and also to understand the molecular bases of endocrine dysfunction. PMID:27267697

  15. Zonation of hepatic cytochrome P-450 expression and regulation.

    PubMed Central

    Oinonen, T; Lindros, K O

    1998-01-01

    The CYP genes encode enzymes of the cytochrome P-450 superfamily. Cytochrome P-450 (CYP) enzymes are expressed mainly in the liver and are active in mono-oxygenation and hydroxylation of various xenobiotics, including drugs and alcohols, as well as that of endogenous compounds such as steroids, bile acids, prostaglandins, leukotrienes and biogenic amines. In the liver the CYP enzymes are constitutively expressed and commonly also induced by chemicals in a characteristic zonated pattern with high expression prevailing in the downstream perivenous region. In the present review we summarize recent studies, mainly based on rat liver, on the factors regulating this position-dependent expression and induction. Pituitary-dependent signals mediated by growth hormone and thyroid hormone seem to selectively down-regulate the upstream periportal expression of certain CYP forms. It is at present unknown to what extent other hormones that also affect total hepatic CYP activities, i.e. insulin, glucagon, glucocorticoids and gonadal hormones, act zone-specifically. The expression and induction of CYP enzymes in the perivenous region probably have important toxicological implications, since many CYP-activated chemicals cause cell injury primarily in this region of the liver. PMID:9405271

  16. Rearrangement Reactions Catalyzed by Cytochrome P450s

    PubMed Central

    Ortiz de Montellano, Paul R.; Nelson, Sidney D.

    2010-01-01

    Cytochrome P450s promote a variety of rearrangement reactions both as a consequence of the nature of the radical and other intermediates generated during catalysis, and of the neighboring structures in the substrate that can interact either with the initial radical intermediates or with further downstream products of the reactions. This article will review several kinds of previously published cytochrome P450-catalyzed rearrangement reactions, including changes in stereochemistry, radical clock reactions, allylic rearrangements, “NIH” and related shifts, ring contractions and expansions, and cyclizations that result from neighboring group interactions. Although most of these reactions can be carried out by many members of the cytochrome P450 superfamily, some have only been observed with select P450s, including some reactions that are catalyzed by specific endoperoxidases and cytochrome P450s found in plants. PMID:20971058

  17. Engineering Cytochrome P450 Biocatalysts for Biotechnology, Medicine, and Bioremediation

    PubMed Central

    Kumar, Santosh

    2009-01-01

    Importance of the field: Cytochrome P450 enzymes comprise a superfamily of heme monooxygenases that are of considerable interest for the: 1) synthesis of novel drugs and drug metabolites, 2) targeted cancer gene therapy, 3) biosensor design, and 4) bioremediation. However, their applications are limited because cytochrome P450, especially mammalian P450 enzymes, show a low turnover rate and stability, and require a complex source of electrons through cytochrome P450 reductase and NADPH. Areas covered in this review: In this review, we discuss the recent progress towards the use of P450 enzymes in a variety of above-mentioned applications. We also present alternate and cost-effective ways to perform P450-mediated reaction, especially using peroxides. Furthermore, we expand upon the current progress in P450 engineering approaches describing several recent examples that are utilized to enhance heterologous expression, stability, catalytic efficiency, and utilization of alternate oxidants. What the reader will gain: The review will provide a comprehensive knowledge in the design of P450 biocatalysts for potentially practical purposes. Finally, we provide a prospective on the future aspects of P450 engineering and its applications in biotechnology, medicine, and bioremediation. Take home message: Because of its wide applications, academic and pharmaceutical researchers, environmental scientists, and health care providers are expected to gain current knowledge and future prospects of the practical use of P450 biocatalysts. PMID:20064075

  18. Thiomers: Inhibition of cytochrome P450 activity.

    PubMed

    Iqbal, Javed; Sakloetsakun, Duangkamon; Bernkop-Schnürch, Andreas

    2011-08-01

    The aim of the present study was to investigate the potential of different thiolated polymers (thiomers) on the catalytic activity of CYP450s on one hand and to explore new inhibitors for CYP activity on the other hand. Several thiolated polymers including poly(acrylic acid)-cysteine (PAA-cysteine), chitosan-thioglycolic acid (chitosan-TGA), and thiolated PEG-g-PEI copolymer along with brij 35, myrj 52 and the well-established CYPP450 inhibitor verapamil were screened for their CYP3A4 and CYP2A6 inhibitory activity, and their IC(50) values were determined. Both enzyme inhibition assays were performed in 96-well microtiter plates. 7-Benzyloxy-4-(trifluoromethyl)-coumarin (BFC) and 7-hydroxycoumarin (7-HC) were used as fluorescent substrates in order to determine CYP3A4 and CYP2A6 catalytic activity, respectively. All investigated compounds inhibited CYP3A4 as well as CYP2A6 activity. All tested (thiolated) polymers were found to be more potent inhibitors of CYP3A4 than of CYP2A6 catalytic activity. Apart from verapamil that is a known CYP3A4 inhibitor, brij 35 and myrj 52 were explored as potent inhibitors of CYP3A4 and CYP2A6 catalytic activity. Among the tested polymers, the rank order for CYP3A4 inhibition was PAA-cysteine (100 kDa)>brij 35>thiolated PEG-g-PEI copolymer (16 kDa)>myrj 52>PAA (100 kDa)>PAA-cysteine (450 kDa)>verapamil>PAA (450 kDa)>chitosan-TGA (150 kDa)>chitosan (150 kDa). On the other hand, the rank order of CYP2A6 inhibition was brij 35>PAA-cysteine (100kDa)>chitosan-TGA (150 kDa)>PAA (100 kDa)>thiolated PEG-g-PEI copolymer (16 kDa)>PAA-cysteine (450 kDa)>chitosan (150 kDa)>verapamil>PAA (450 kDa)>myrj 52. Thus, this study suggests that (thiolated) polymers display a promising potential to inhibit cytochrome P450s activity and might turn out to be potentially valuable tools for improving the oral bioavailability of actively secreted compounds by avoiding intestinal metabolism.

  19. Substrate Binding to Cytochromes P450

    PubMed Central

    Isin, Emre M.; Guengerich, F. Peter

    2016-01-01

    P450s have attracted tremendous attention due not only to their involvement in the metabolism of drug molecules and endogenous substrates but also the unusual nature of the reaction they catalyze, namely the oxidation of unactivated C-H bonds. The binding of substrates to P450s, which is usually viewed as the first step in the catalytic cycle, has been studied extensively via a variety of biochemical and biophysical approaches. These studies were directed towards answering different questions related to P450s including, mechanism of oxidation, substrate properties, unusual substrate oxidation kinetics, function, and active site features. Some of the substrate binding studies extending over a period of more than forty years of dedicated work has been summarized in this review and categorized by the techniques employed in the binding studies. PMID:18622598

  20. Regulation of cytochrome P450 expression by inhibitors of hydroxymethylglutaryl-coenzyme A reductase in primary cultured rat hepatocytes and in rat liver.

    PubMed

    Kocarek, T A; Reddy, A B

    1996-11-01

    It was previously demonstrated that treatment of primary cultured rat hepatocytes with lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, induced the mRNAs for several cytochromes P450 (P450s), including CYP2B1/2, CYP3A1/2, and CYP4A. In this study, we have compared the effects of lovastatin with those of three additional HMG-CoA reductase inhibitors (simvastatin, pravastatin, and the structurally dissimilar drug fluvastatin) on P450 expression in primary cultured rat hepatocytes, and we have also characterized the effects of in vivo treatment with fluvastatin on P450 expression in rat liver. Treatment of cultured hepatocytes with lovastatin, simvastatin, or fluvastatin increased CYP2B1/2, CYP3A1/2, and CYP4A mRNA and immunoreactive protein levels over the dose range (3 x 10(-6) to 3 x 10(-5) M) required to increase the amount of HMG-CoA reductase mRNA. The increases in CYP2B1/2 levels produced by 3 x 10(-5) M fluvastatin treatment were larger than those produced by lovastatin or simvastatin treatment or by treatment with 10(-4) M phenobarbital. In contrast, treatment of cultured hepatocytes with 3 x 10(-5) M lovastatin, simvastatin, or fluvastatin increased CYP3A1/2 and CYP4A mRNA and immunoreactive protein to lower levels than those produced by treatment with 10(-5) M dexamethasone or 10(-4) M ciprofibrate. Treatment of cultured hepatocytes with pravastatin had little or no effect on the amount of any of the P450s examined, although this drug induced HMG-CoA reductase mRNA as effectively as did fluvastatin. Incubation of hepatocytes with 10(-4) M fluvastatin increased CYP1A1 mRNA to 67% of the level induced by treatment with 10(-5) M beta-naphthoflavone. Doses of 50 or 100 mg/ kg/day fluvastatin administered for 3 days to rats increased the hepatic levels of CYP2B1/2 and CYP4A mRNA and immunoreactive protein, although to much lower levels than those produced by treatment with phenobarbital or ciprofibrate, respectively. Treatment of

  1. Cytochrome P-450 from the Mesocarp of Avocado (Persea americana)

    PubMed Central

    O'Keefe, Daniel P.; Leto, Kenneth J.

    1989-01-01

    The microsomal fraction from the mesocarp of avocado (Persea americana) is one of few identified rich sources of plant cytochrome P-450. Cytochrome P-450 from this tissue has been solubilized and purified. Enzymatic assays (p-chloro-N-methylaniline demethylase) and spectroscopic observations of substrate binding suggest a low spin form of the cytochrome, resembling that in the microsomal membrane, can be recovered. However, this preparation of native protein is a mixture of nearly equal proportions of two cytochrome P-450 polypeptides that have been resolved only under denaturing conditions. Overall similarities between these polypeptides include indistinguishable amino acid compositions, similar trypsin digest patterns, and cross reactivity with the same antibody. The amino terminal sequences of both polypeptides are identical, with the exception that one of them lacks a methionine residue at the amino terminus. This sequence exhibits some similarities with the membrane targeting signal found at the amino terminus of most mammalian cytochromes P-450. Images Figure 3 PMID:16666677

  2. In vivo and in vitro biotransformation of theobromine by phenobarbital- and 3-methylcholanthrene-inducible cytochrome P-450 monooxygenases in rat liver. Role of thiol compounds.

    PubMed

    Shively, C A; Vesell, E S

    1987-01-01

    A new in vitro method was developed and applied to establish the role of the hepatic cytochrome P-450 monooxygenases in theobromine biotransformation by control and phenobarbital (PB)- and 3-methylcholanthrene (3MC)-induced Sprague-Dawley rats. In vivo theobromine metabolite formation and pharmacokinetic parameters were also determined to serve as a comparison for in vitro studies. In vivo, the major urinary metabolite was 6-amino-5-[N-methylformylamino]-1-methyluracil (3,7DAU) with lesser amounts of 3,7-dimethyluric acid (3,7DMU), 3-methylxanthine, 7-methylxanthine, 7-methyluric acid, and traces of dimethylallantoin (DMA). Following induction with 3MC, but not PB, selective increases occurred in the urinary excretion of 3,7DAU, indicating that a 3MC-inducible cytochrome P-450 isozyme plays a significant role in this metabolic pathway. Both PB and 3MC induction increased slightly urinary elimination of DMA, a minor metabolite. Pharmacokinetic studies after a single oral dose of 5 mg/kg theobromine revealed a marked effect of 3MC treatment on theobromine elimination, as evidenced by a 59% decrease in theobromine t1/2, a 75% decrease in AUC, and a 284% increase in clearance. By contrast, PB had no effect. Fecal 14C elimination accounted for approximately 5% of the administered theobromine dose, and biliary excretion studies revealed the presence of 3,7DMU, DMA, 3,7DAU, and unchanged theobromine. Studies in vitro indicated that 3,7DMU was the major theobromine metabolite produced by liver microsomes. Conversion rates in PB- and 3MC-induced rats were 2- and 11-fold higher, respectively, than in controls.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Catechins in tea suppress the activity of cytochrome P450 1A1 through the aryl hydrocarbon receptor activation pathway in rat livers.

    PubMed

    Fukuda, Itsuko; Nishiumi, Shin; Mukai, Rie; Yoshida, Ken-ichi; Ashida, Hitoshi

    2015-05-01

    Polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons (HAHs) develop various adverse effects through activation of an aryl hydrocarbon receptor (AhR). The suppressive effects of brewed green tea and black tea on 3-methylcholanthrene (MC)-induced AhR activation and its downstream events were examined in the liver of rats. Ad-libitum drinking of green tea and black tea suppressed MC-induced AhR activation and elevation of ethoxyresorufin O-deethylase activity in the liver, whereas the teas themselves did not induce them. Tea showed a suppressive fashion on the expression of cytochrome P450 1A1 (CYP1A1). Tea suppressed the AhR activation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) ex vivo. A part of catechins and theaflavins was present in plasma and liver as conjugated and intact forms. The results of this study suggested that active component(s) of tea are incorporated in the liver and suppress the activity of CYP1As through the AhR activation pathway.

  4. Inhibition of rabbit nasal and hepatic cytochrome P-450-dependent hexamethylphosphoramide (HMPA) N-demethylase by methylenedioxyphenyl compounds.

    PubMed

    Dahl, A R; Brezinski, D A

    1985-03-01

    Eighteen methylenedioxyphenyl (MDP) compounds, including some commonly inhaled by people, were tested for the ability to inhibit rabbit nasal microsomal cytochrome P-450-dependent hexamethylphosphoramide (HMPA) N-demethylase. For comparison, liver microsomes were also used. Nasal cytochrome P-450 from rabbits metabolized MDP compounds to form cytochrome P-450-metabolite (P-450-MI) complexes as indicated by difference spectra in the Soret region. Several of the MDP compounds were potent inhibitors of nasal P-450-dependent N-demethylase. If inhibition of nasal P-450 also occurs in vivo after inhibiting MDP compounds are inhaled, the metabolism of concurrently or subsequently inhaled compounds may be altered.

  5. Interleukin-32γ attenuates ethanol-induced liver injury by the inhibition of cytochrome P450 2E1 expression and inflammatory responses.

    PubMed

    Lee, Dong Hun; Kim, Dae Hwan; Hwang, Chul Ju; Song, Sukgil; Han, Sang Bae; Kim, Youngsoo; Yoo, Hwan Soo; Jung, Young Suk; Kim, Soo Hyun; Yoon, Do Young; Hong, Jin Tae

    2015-05-01

    Alcohol abuse and alcoholism lead to alcoholic liver disease (ALD), which is a major type of chronic liver disease worldwide. Interleukin-32 (IL-32) is a novel cytokine involved in inflammation and cancer development. However, the role of IL-32 in chronic liver disease has not been reported. In the present paper, we tested the effect of IL-32γ on ethanol-induced liver injury in IL-32γ-overexpressing transgenic mice (IL-32γ mice) after chronic ethanol feeding. Male C57BL/6 and IL-32γ mice (10-12 weeks old) were fed on a Lieber-DeCarli diet containing 6.6% ethanol for 6 weeks. IL-32γ-transfected HepG2 and Huh7 cells, as well as primary hepatocytes from IL-32γ mice, were treated with or without ethanol. The hepatic steatosis and damage induced by ethanol administration were attenuated in IL-32γ mice. Ethanol-induced cytochrome P450 2E1 expression and hydrogen peroxide levels were decreased in the livers of IL-32γ mice, primary hepatocytes from IL-32γ mice and IL-32γ-overexpressing human hepatic cells. The ethanol-induced expression levels of cyclo-oxygenase-2 (COX-2) and IL-6 were reduced in the livers of IL-32γ mice. Because nuclear transcription factor κB (NF-κB) is a key redox transcription factor of inflammatory responses, we examined NF-κB activity. Ethanol-induced NF-κB activities were significantly lower in the livers of IL-32γ mice than in wild-type (WT) mice. Furthermore, reduced infiltration of natural killer cells, cytotoxic T-cells and macrophages in the liver after ethanol administration was observed in IL-32γ mice. These data suggest that IL-32γ prevents ethanol-induced hepatic injury via the inhibition of oxidative damage and inflammatory responses.

  6. Cytochrome P450-Mediated Phytoremediation using Transgenic Plants: A Need for Engineered Cytochrome P450 Enzymes

    PubMed Central

    Kumar, Santosh; Jin, Mengyao; Weemhoff, James L

    2013-01-01

    There is an increasing demand for versatile and ubiquitous Cytochrome P450 (CYP) biocatalysts for biotechnology, medicine, and bioremediation. In the last decade there has been an increase in realization of the power of CYP biocatalysts for detoxification of soil and water contaminants using transgenic plants. However, the major limitations of mammalian CYP enzymes are that they require CYP reductase (CPR) for their activity, and they show relatively low activity, stability, and expression. On the other hand, bacterial CYP enzymes show limited substrate diversity and usually do not metabolize herbicides and industrial contaminants. Therefore, there has been a considerable interest for biotechnological industries and the scientific community to design CYP enzymes to improve their catalytic efficiency, stability, expression, substrate diversity, and the suitability of P450-CPR fusion enzymes. Engineered CYP enzymes have potential for transgenic plants-mediated phytoremediation of herbicides and environmental contaminants. In this review we discuss: 1) the role of CYP enzymes in phytoremediation using transgenic plants, 2) problems associated with wild-type CYP enzymes in phytoremediation, and 3) examples of engineered CYP enzymes and their potential role in transgenic plant-mediated phytoremediation. PMID:25298920

  7. Biotransformation of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) by a Rabbit Liver Cytochrome P450: Insight into the Mechanism of RDX Biodegradation by Rhodococcus sp. Strain DN22

    PubMed Central

    Bhushan, Bharat; Trott, Sandra; Spain, Jim C.; Halasz, Annamaria; Paquet, Louise; Hawari, Jalal

    2003-01-01

    A unique metabolite with a molecular mass of 119 Da (C2H5N3O3) accumulated during biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Rhodococcus sp. strain DN22 (D. Fournier, A. Halasz, J. C. Spain, P. Fiurasek, and J. Hawari, Appl. Environ. Microbiol. 68:166-172, 2002). The structure of the molecule and the reactions that led to its synthesis were not known. In the present study, we produced and purified the unknown metabolite by biotransformation of RDX with Rhodococcus sp. strain DN22 and identified the molecule as 4-nitro-2,4-diazabutanal using nuclear magnetic resonance and elemental analyses. Furthermore, we tested the hypothesis that a cytochrome P450 enzyme was responsible for RDX biotransformation by strain DN22. A cytochrome P450 2B4 from rabbit liver catalyzed a very similar biotransformation of RDX to 4-nitro-2,4-diazabutanal. Both the cytochrome P450 2B4 and intact cells of Rhodococcus sp. strain DN22 catalyzed the release of two nitrite ions from each reacted RDX molecule. A comparative study of cytochrome P450 2B4 and Rhodococcus sp. strain DN22 revealed substantial similarities in the product distribution and inhibition by cytochrome P450 inhibitors. The experimental evidence led us to propose that cytochrome P450 2B4 can catalyze two single electron transfers to RDX, thereby causing double denitration, which leads to spontaneous hydrolytic ring cleavage and decomposition to produce 4-nitro-2,4-diazabutanal. Our results provide strong evidence that a cytochrome P450 enzyme is the key enzyme responsible for RDX biotransformation by Rhodococcus sp. strain DN22. PMID:12620815

  8. Molecular modeling of cytochrome P450 3A4

    NASA Astrophysics Data System (ADS)

    Szklarz, Grazyna D.; Halpert, James R.

    1997-05-01

    The three-dimensional structure of human cytochrome P450 3A4 was modeled based on crystallographic coordinates of four bacterial P450s: P450 BM-3, P450cam, P450terp, and P450eryF. The P450 3A4 sequence was aligned to those of the known proteins using a structure-based alignment of P450 BM-3, P450cam, P450terp, and P450eryF. The coordinates of the model were then calculated using a consensus strategy, and the final structure was optimized in the presence of water. The P450 3A4 model resembles P450 BM-3 the most, but the B' helix is similar to that of P450eryF, which leads to an enlarged active site when compared with P450 BM-3, P450cam, and P450terp. The 3A4 residues equivalent to known substrate contact residues of the bacterial proteins and key residues of rat P450 2B1 are located in the active site or the substrate access channel. Docking of progesterone into the P450 3A4 model demonstrated that the substrate bound in a 6β-orientation can interact with a number of active site residues, such as 114, 119, 301, 304, 305, 309, 370, 373, and 479, through hydrophobic interactions. The active site of the enzyme can also accommodate erythromycin, which, in addition to the residues listed for progesterone, also contacts residues 101, 104, 105, 214, 215, 217, 218, 374, and 478. The majority of 3A4 residues which interact with progesterone and/or erythromycin possess their equivalents in key residues of P450 2B enzymes, except for residues 297, 480 and 482, which do not contact either substrate in P450 3A4. The results from docking of progesterone and erythromycin into the enzyme model make it possible to pinpoint residues which may be important for 3A4 function and to target them for site-directed mutagenesis.

  9. Involvement of cytochrome P450, glutathione S-transferase, and epoxide hydrolase in the metabolism of aflatoxin B1 and relevance to risk of human liver cancer.

    PubMed Central

    Guengerich, F P; Johnson, W W; Ueng, Y F; Yamazaki, H; Shimada, T

    1996-01-01

    In recent years there has been considerable interest in the effect of variations in activities of xenobiotic-metabolizing enzymes on cancer incidence. This interest has accelerated with the development of methods for analyzing genetic polymorphisms. However, progress in epidemiology has been slow and the contributions of polymorphisms to risks from individual chemicals and mixtures are often controversial. A series of studies is presented to show the complexities encountered with a single chemical, aflatoxin B1 (AFB1). AFB1 is oxidized by human cytochrome P450 enzymes to several products. Only one of these, the 8,9-exo-epoxide, appears to be mutagenic and the others are detoxication products. P450 3A4, which can both activate and detoxicate AFB1, is found in the liver and the small intestine. In the small intestine, the first contact after oral exposure, epoxidation would not lead to liver cancer. The (nonenzymatic) half-life of the epoxide has been determined to be approximately 1 sec at 23 degrees C and neutral pH. Although the half-life is short, AFB1-8,9-exo-epoxide does react with DNA and glutathione S-transferase. Levels of these conjugates have been measured and combined with the rate of hydrolysis in a kinetic model to predict constants for binding of the epoxide with DNA and glutathione S-transferase. A role for epoxide hydrolase in alteration of AFB1 hepatocarcinogenesis has been proposed, although experimental evidence is lacking. Some inhibition of microsome-generated genotoxicity was observed with rat epoxide hydrolase; further information on the extent of contribution of this enzyme to AFB1 metabolism is not yet available. PMID:8781383

  10. Mechanism-based inhibition of cytochrome P450 (CYP)2A6 by chalepensin in recombinant systems, in human liver microsomes and in mice in vivo

    PubMed Central

    Ueng, Yune-Fang; Chen, Chien-Chih; Chung, Yu-Ting; Liu, Tsung-Yun; Chang, Yu-Ping; Lo, Wei-Sheng; Murayama, Norie; Yamazaki, Hiroshi; Souček, Pavel; Chau, Gar-Yang; Chi, Chin-Wen; Chen, Ruei-Ming; Li, Ding-Tzai

    2011-01-01

    BACKGROUND AND PURPOSE Chalepensin is a pharmacologically active furanocoumarin compound found in rue, a medicinal herb. Here we have investigated the inhibitory effects of chalepensin on cytochrome P450 (CYP) 2A6 in vitro and in vivo. EXPERIMENTAL APPROACH Mechanism-based inhibition was studied in vitro using human liver microsomes and bacterial membranes expressing genetic variants of human CYP2A6. Effects in vivo were studied in C57BL/6J mice. CYP2A6 activity was assayed as coumarin 7-hydroxylation (CH) using HPLC and fluorescence measurements. Metabolism of chalepensin was assessed with liquid chromatography/mass spectrometry (LC/MS). KEY RESULTS CYP2A6.1, without pre-incubation with NADPH, was competitively inhibited by chalepensin. After pre-incubation with NADPH, inhibition by chalepensin was increased (IC50 value decreased by 98%). This time-dependent inactivation (kinact 0.044 min−1; KI 2.64 µM) caused the loss of spectrally detectable P450 content and was diminished by known inhibitors of CYP2A6, pilocarpine or tranylcypromine, and by glutathione conjugation. LC/MS analysis of chalepensin metabolites suggested an unstable epoxide intermediate was formed, identified as the corresponding dihydrodiol, which was then conjugated with glutathione. Compared with the wild-type CYP2A6.1, the isoforms CYP2A6.7 and CYP2A6.10 were less inhibited. In mouse liver microsomes, pre-incubation enhanced inhibition of CH activity. Oral administration of chalepensin to mice reduced hepatic CH activity ex vivo. CONCLUSIONS AND IMPLICATIONS Chalepensin was a substrate and a mechanism-based inhibitor of human CYP2A6. Formation of an epoxide could be a key step in this inactivation. ‘Poor metabolizers’ carrying CYP2A6*7 or *10 may be less susceptible to inhibition by chalepensin. Given in vivo, chalepensin decreased CYP2A activity in mice. PMID:21418183

  11. Interactions of Avocado (Persea americana) Cytochrome P-450 with Monoterpenoids

    PubMed Central

    Hallahan, David L.; Nugent, Jonathan H. A.; Hallahan, Beverly J.; Dawson, Glenn W.; Smiley, Diane W.; West, Jevon M.; Wallsgrove, Roger M.

    1992-01-01

    The microsomal fraction of avocado (Persea americana) mesocarp is a rich source of cytochrome P-450 active in the demethylation of xenobiotics. Cytochrome P-450 from this tissue has been purified and well characterized at the molecular level (DP O'Keefe, KJ Leto [1989] Plant Physiol 89: 1141-1149; KR Bozak, H Yu, R Sirevag, RE Christoffersen [1990] Proc Natl Acad Sci USA 87: 3904-3908). Despite this extensive characterization, the role of the enzyme in vivo was not established. Optical and electron paramagnetic resonance binding studies described here suggest that the monoterpenoids, nerol and geraniol, are substrates of avocado cytochrome P-450 (spectral dissociation constant of 7.2 and 35 micromolar, respectively). Avocado microsomes have been shown to catalyze the hydroxylation of these monoterpenoids, and both nerol and geraniol have been shown to inhibit the activity of avocado cytochrome P-450 toward the artificial substrate 7-ethoxycoumarin, with nerol a competitive inhibitor of this activity. PMID:16668790

  12. Genetics Home Reference: cytochrome P450 oxidoreductase deficiency

    MedlinePlus

    ... hormones, which are needed for normal development and reproduction. The hormonal changes associated with cytochrome P450 oxidoreductase ... which are essential for normal sexual development and reproduction; corticosteroids, which are involved in the body's response ...

  13. The cytochrome P450 genesis locus: the origin and evolution of animal cytochrome P450s

    PubMed Central

    Nelson, David R.; Goldstone, Jared V.; Stegeman, John J.

    2013-01-01

    The neighbourhoods of cytochrome P450 (CYP) genes in deuterostome genomes, as well as those of the cnidarians Nematostella vectensis and Acropora digitifera and the placozoan Trichoplax adhaerens were examined to find clues concerning the evolution of CYP genes in animals. CYP genes created by the 2R whole genome duplications in chordates have been identified. Both microsynteny and macrosynteny were used to identify genes that coexisted near CYP genes in the animal ancestor. We show that all 11 CYP clans began in a common gene environment. The evidence implies the existence of a single locus, which we term the ‘cytochrome P450 genesis locus’, where one progenitor CYP gene duplicated to create a tandem set of genes that were precursors of the 11 animal CYP clans: CYP Clans 2, 3, 4, 7, 19, 20, 26, 46, 51, 74 and mitochondrial. These early CYP genes existed side by side before the origin of cnidarians, possibly with a few additional genes interspersed. The Hox gene cluster, WNT genes, an NK gene cluster and at least one ARF gene were close neighbours to this original CYP locus. According to this evolutionary scenario, the CYP74 clan originated from animals and not from land plants nor from a common ancestor of plants and animals. The CYP7 and CYP19 families that are chordate-specific belong to CYP clans that seem to have originated in the CYP genesis locus as well, even though this requires many gene losses to explain their current distribution. The approach to uncovering the CYP genesis locus overcomes confounding effects because of gene conversion, sequence divergence, gene birth and death, and opens the way to understanding the biodiversity of CYP genes, families and subfamilies, which in animals has been obscured by more than 600 Myr of evolution. PMID:23297357

  14. De novo sequence analysis of cytochrome P450 1-3 genes expressed in ostrich liver with highest expression of CYP2G19.

    PubMed

    Kawai, Yusuke K; Watanabe, Kensuke P; Ishii, Akihiro; Ohnuma, Aiko; Sawa, Hirofumi; Ikenaka, Yoshinori; Ishizuka, Mayumi

    2013-09-01

    The cytochrome P450 (CYP) 1-3 families are involved in xenobiotic metabolism, and are expressed primarily in the liver. Ostriches (Struthio camelus) are members of Palaeognathae with the earliest divergence from other bird lineages. An understanding of genes coding for ostrich xenobiotic metabolizing enzyme contributes to knowledge regarding the xenobiotic metabolisms of other Palaeognathae birds. We investigated CYP1-3 genes expressed in female ostrich liver using a next-generation sequencer. We detected 10 CYP genes: CYP1A5, CYP2C23, CYP2C45, CYP2D49, CYP2G19, CYP2W2, CYP2AC1, CYP2AC2, CYP2AF1, and CYP3A37. We compared the gene expression levels of CYP1A5, CYP2C23, CYP2C45, CYP2D49, CYP2G19, CYP2AF1, and CYP3A37 in ostrich liver and determined that CYP2G19 exhibited the highest expression level. The mRNA expression level of CYP2G19 was approximately 2-10 times higher than those of other CYP genes. The other CYP genes displayed similar expression levels. Our results suggest that CYP2G19, which has not been a focus of previous bird studies, has an important role in ostrich xenobiotic metabolism.

  15. Use of RNA-seq to determine variation in canine cytochrome P450 mRNA expression between blood, liver, lung, kidney and duodenum in healthy beagles.

    PubMed

    Visser, M; Weber, K; Rincon, G; Merritt, D

    2017-03-19

    RNA sequencing (RNA-seq) is a powerful tool for the evaluation and quantification of transcriptomes and expression patterns in animals, tissues, or pathological conditions. The purpose of this study was to determine the physiologic expression of cytochrome P450 (CYP) mRNA transcripts in whole blood, kidney, duodenum, liver, and lung in healthy, adult male (n = 4) and female (n = 4) beagles via RNA-seq. mRNA expression was above background (transcripts per million) for 45 canine CYPs, with liver, duodenum, and lung expressing a high number of xenobiotic metabolizing CYPs, while prominent endogenous metabolizing CYP expression was present in blood and kidney. The relative expression pattern of CYP2A13, 2B11, 2C21, 2D15, 2E1, 3A12, and 27A1 in liver, lung, and duodenum was verified through qPCR. This is the first global profiling of physiologic CYP mRNA expression in multiple canine tissues, providing a platform for further studies characterizing canine CYPs and changes in gene expression in disease states.

  16. Influence of Sulforaphane Metabolites on Activities of Human Drug-Metabolizing Cytochrome P450 and Determination of Sulforaphane in Human Liver Cells.

    PubMed

    Vanduchova, Alena; Tomankova, Veronika; Anzenbacher, Pavel; Anzenbacherova, Eva

    2016-12-01

    The influence of metabolites of sulforaphane, natural compounds present in broccoli (Brassica oleracea var. botrytis italica) and in other cruciferous vegetables, on drug-metabolizing cytochrome P450 (CYP) enzymes in human liver microsomes and possible entry of sulforaphane into human hepatic cells were investigated. Metabolites studied are compounds derived from sulforaphane by the mercapturic acid pathway (conjugation with glutathione and by following reactions), namely sulforaphane glutathione and sulforaphane cysteine conjugates and sulforaphane-N-acetylcysteine. Their possible effect on four drug-metabolizing CYP enzymes, CYP3A4 (midazolam 1'-hydroxylation), CYP2D6 (bufuralol 1'-hydroxylation), CYP1A2 (7-ethoxyresorufin O-deethylation), and CYP2B6 (7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation), was tested. Inhibition of four prototypical CYP activities by sulforaphane metabolites was studied in pooled human liver microsomes. Sulforaphane metabolites did not considerably affect biological function of drug-metabolizing CYPs in human liver microsomes except for CYP2D6, which was found to be inhibited down to 73-78% of the original activity. Analysis of the entry of sulforaphane into human hepatocytes was done by cell disruption by sonication, methylene chloride extraction, and modified high-performance liquid chromatography method. The results have shown penetration of sulforaphane into the human hepatic cells.

  17. [Cytochrome P450 enzymes and microbial drug development - A review].

    PubMed

    Li, Zhong; Zhang, Wei; Li, Shengying

    2016-03-04

    Cytochrome P450 enzymes broadly exist in animals, plants and microorganisms. This superfamily of monooxygenases holds the greatest diversity of substrate structures and catalytic reaction types among all enzymes. P450 enzymes play important roles in natural product biosynthesis. In particular, P450 enzymes are capable of catalyzing the regio- and stereospecific oxidation of non-activated C-H bonds in complex organic compounds under mild conditions, which overrides many chemical catalysts. This advantage thus warrants their great potential in microbial drug development. In this review, we introduce a variety of P450 enzymes involved in natural product biosynthesis; provide a brief overview on protein engineering, biotransformation and practical application of P450 enzymes; and discuss the limits, challenges and prospects of industrial application of P450 enzymes.

  18. Long-term p-nitrophenol exposure can disturb liver metabolic cytochrome P450 genes together with aryl hydrocarbon receptor in Japanese quail.

    PubMed

    Ahmed, Eman; Nagaoka, Kentaro; Fayez, Mostafa; Samir, Haney; Watanabe, Gen

    2015-08-01

    P-Nitrophenol is a major metabolite of some organophosphorus compounds. It is considered to be one of nitrophenol derivatives of diesel exhaust particles that induce substantial hazards impacts on human and animal health. P-Nitrophenol (PNP) is a persistent organic pollutant. Consequently, bioaccumulation of PNP potentiates toxicity. The objectives of the current study were to assess the potential hepatic toxicity and pathway associated with long-term exposure to PNP. Japanese quails were orally administered different doses of PNP for 75 days. Liver and plasma samples were collected at days 45 (45D), days 60 (60D) and days 75 (75D). Liver histological changes and plasma corticosterone levels were assessed. Basal mRNA level of cytochromes P450 (CYP 450) (CYP1A4, 1A5, 1B1), heme oxygenase (HO-1), and aryl hydrocarbon receptor 1 (AhR1), from the liver of exposed birds and primary hepatocytes cultured for 24 hr with PNP, were analyzed using quantitative real-time PCR. The results revealed various histopathological changes in the liver, such as lymphocytes aggregation and hepatocytes degeneration. Significant increases in corticosterone levels were reported. After 60-days of in vivo exposure, the birds exhibited an overexpression in the liver CYP1A4, 1B1, AhR1, and HO-1. Furthermore, with continuous PNP administration, an overall downregulation of the tested genes was observed. In vitro, although a significant overexpression of CYP1A4, 1B1, and HO-1 was observed, CYP1A5 was downregulated. In conclusion, PNP can interfere with the liver CYP 450 enzymes and modulate HO-1 expression in the in vitro and in vivo experiments. Hence, it could have serious deleterious effects on humans, livestock, and wild animals.

  19. Selective and sensitive quantification of the cytochrome P450 3A4 protein in human liver homogenates through multiple reaction monitoring mass spectrometry.

    PubMed

    Cieślak, Anna; Kelly, Isabelle; Trottier, Jocelyn; Verreault, Mélanie; Wunsch, Ewa; Milkiewicz, Piotr; Poirier, Guy; Droit, Arnaud; Barbier, Olivier

    2016-11-01

    This study aimed at establishing a sensitive multiple reaction monitoring-mass spectrometry (MRM-MS) method for the quantification of the drug metabolizing cytochrome P450 (CYP)3A4 enzyme in human liver homogenates. Liver samples were subjected to trypsin digestion. MRM-MS analyses were performed using three transitions optimized on one purified synthetic peptide unique to CYP3A4 and the standardizing protein, calnexin. Coefficient of variations for the precision and reproducibility of the MRM-MS measurement were also determined. The method was applied to liver samples from ten non-cholestatic donors and 34 cholestatic patients with primary biliary cholangitis (n = 12; PBC), primary sclerosing cholangitis (n = 10; PSC) or alcoholic liver disease (n = 12; ALD). The established method presented high sensitivity with limit of detection lower than 5 fmol, and was successfully applied for the absolute and relative quantification of CYP3A4 in both whole liver homogenate and microsomal fractions. When all groups were analyzed together, a significant correlation was observed for the MRM-based CYP3A4 protein quantification in homogenates and microsomes (r = 0.49, p < 0.001). No statistically significant difference was detected between CYP3A4 levels in PSC, PBC, ALD and control samples. Finally, the MRM-MS quantification of CYP3A4 in homogenates also correlated (r = 0.44; p < 0.05) with the level of enzyme activity in the same samples, as determined by measuring the chenodeoxycholic to hyocholic acid conversion. The established method provides a sensitive tool to evaluate the CYP3A4 protein in human liver homogenates from patients with normal or chronic/severe hepatic injury.

  20. Role of Inflammatory and Oxidative Stress, Cytochrome P450 2E1, and Bile Acid Disturbance in Rat Liver Injury Induced by Isoniazid and Lipopolysaccharide Cotreatment

    PubMed Central

    Hassan, Hozeifa Mohamed; Guo, Hongli; Yousef, Bashir Alsiddig; Guerram, Mounia; Hamdi, Aida Mejda

    2016-01-01

    Isoniazid (INH) remains the core drug in tuberculosis management, but serious hepatotoxicity and potentially fatal liver injury continue to accompany INH consumption. Among numerous theories that have been established to explain INH-induced liver injury, an inflammatory stress theory has recently been widely used to explain the idiosyncrasy. Inflammatory stress usually sensitizes tissues to a drug's toxic consequences. Therefore, the present study was conducted to verify whether bacterial lipopolysaccharide (LPS)-induced inflammation may have a role in enhancing INH hepatotoxicity. While single INH or LPS administration showed no major toxicity signs, INH-LPS cotreatment intensified liver toxicity. Both blood biomarkers and histological evaluations clearly showed positive signs of severe liver damage accompanied by massive necrosis, inflammatory infiltration, and hepatic steatosis. Furthermore, elevated serum levels of bile acid associated with the repression of bile acid synthesis and transport regulatory parameters were observed. Moreover, the principal impact of cytochrome P450 2E1 (CYP2E1) on INH toxicity could be anticipated, as its protein expression showed enormous increases in INH-LPS-cotreated animals. Furthermore, the crucial role of CYP2E1 in the production of reactive oxygen species (ROS) was clearly obvious in the repression of hepatic antioxidant parameters. In summary, these results confirmed that this LPS-induced inflammation model might prove valuable in revealing the hepatotoxic mechanisms of INH and the crucial role played by CYP2E1 in the initiation and propagation of INH-induced liver damage, information which could be very useful to clinicians in understanding the pathogenesis of drug-induced liver injury. PMID:27324775

  1. Effects of Cu(2+) and Pb(2+) on different fish species: liver cytochrome P450-dependent monooxygenase activities and FTIR spectra.

    PubMed

    Henczová, Mária; Deér, Aranka Kiss; Filla, Adrienn; Komlósi, Viktória; Mink, János

    2008-07-01

    The effects of Cu(2+)-sulfate and Pb(2+)-acetate on carp (Cyprinus carpio L.), silver carp (Hypopthalmichtys molitrix V.) and wels (Silurus glanis L.) were studied. The liver microsomal Cyt P450 content, the EROD, ECOD and APND monooxygenase activities were measured. In vivo treatment with 1 mg L(-1) Cu(2+) significantly elevated the activities of these enzymes and Cyt P450 content in silver carp livers. The high-dose Cu(2+) treatment (10 mg L(-1)) on silver carp caused two-fold higher induction in the P450 dependent monooxygenase isoensymes than in wels. Although the 2 mg kg(-1) treatment with Pb(2+) in carp elevated significantly the P450 content, the EROD isoenzyme activities were significantly decreased after 1 day, showing the destructive effect of metal ion on the enzyme system. In vitro, Cu(2+) and Pb(2+) decreased the Cyt P450 content in the carp liver microsomes and the absorption peak shifted to higher wavelength. Fourier Transform Infrared (FTIR) spectroscopy was used to detect the damaging effects of the heavy metals. According to the inhibitory potency to Cu(2+), the most sensitive isoenzyme was the EROD in wels, the least was the silver carp's isoenzyme. The investigated fish P450 isoenzymes showed, that the Cu(2+) was a stronger inhibitor than Pb(2+).

  2. Cytochrome P450-2D6 Screening Among Elderly Using Antidepressants (CYSCE)

    ClinicalTrials.gov

    2017-08-15

    Depression; Depressive Disorder; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Intermediate Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  3. Structural Characterization of Human Cytochrome P450 2C19

    PubMed Central

    Reynald, R. Leila; Sansen, Stefaan; Stout, C. David; Johnson, Eric F.

    2012-01-01

    To identify the structural features underlying the distinct substrate and inhibitor profiles of P450 2C19 relative to the closely related human enzymes, P450s 2C8 and 2C9, the atomic structure (Protein Data Bank code 4GQS) of cytochrome P450 2C19 complexed with the inhibitor (2-methyl-1-benzofuran-3-yl)-(4-hydroxy-3,5-dimethylphenyl)methanone (Protein Data Bank chemical component 0XV) was determined to 2.87 Å resolution by x-ray crystallography. The conformation of the peptide backbone of P450 2C19 is most similar to that of P450 2C8, but the substrate-binding cavity of P450 2C8 is much larger than that of P450 2C19 due to differences in the amino acid residues that form the substrate-binding cavities of the two enzymes. In contrast, the substrate-binding cavity of P450 2C19 is much more similar in size to that of the structure of the P450 2C9 flurbiprofen complex than to that of a modified P450 2C9 or that of P450 2C8. The cavities of the P450 2C19 0XV complex and the P450 2C9 flurbiprofen complex differ, however, because the helix B-C loops of the two enzymes are dissimilar. These conformational differences reflect the effects of adjacent structural elements that interact with the B-C loops and that differ between the two enzymes. The availability of a structure for 2C19 will facilitate computational approaches for predictions of substrate and inhibitor binding to this enzyme. PMID:23118231

  4. [Heterologous expression of functionally active human cytochrome P-450s. Cytochrome P-450IIIA4 catalyzes the biotransformation of the anabolic steroid hormone methandrostenolone].

    PubMed

    Krynetskiĭ, E Iu; Kovaleva, I E; Luzikov, V N

    1994-02-01

    The expression of the cytochrome P450IIIA4 gene in the Saccharomyces cerevisiae yeast using the shuttle vector pYeDP1-8/2 has been carried out. The microsomal fraction isolated from the transformed yeast cells was used for biotransformation of the anabolic steroid hormone-methandrostenolone (MA). The microsomal oxidation products were analyzed by HPLC and two-dimensional TLC. It was shown that microsomes of the yeasts expressing human cytochrome P450IIIA4 catalyze the MA conversion into its 6 beta-hydroxy derivative. An identical product is formed via a reaction catalyzed by human liver microsomes. The use of the heterological system of cytochrome P450IIIA4 expression has made it possible to establish its role in MA metabolism. The experimental system simulates the first phase of the drug biotransformation in liver cells.

  5. Use of bioconjugation with cytochrome P450 enzymes.

    PubMed

    Ducharme, Julie; Auclair, Karine

    2017-06-16

    Bioconjugation, defined as chemical modification of biomolecules, is widely employed in biological and biophysical studies. It can expand functional diversity and enable applications ranging from biocatalysis, biosensing and even therapy. This review summarizes how chemical modifications of cytochrome P450 enzymes (P450s or CYPs) have contributed to improving our understanding of these enzymes. Genetic modifications of P450s have also proven very useful but are not covered in this review. Bioconjugation has served to gain structural information and investigate the mechanism of P450s via photoaffinity labeling, mechanism-based inhibition (MBI) and fluorescence studies. P450 surface acetylation and protein cross-linking have contributed to the investigation of protein complexes formation involving P450 and its redox partner or other P450 enzymes. Finally, covalent immobilization on polymer surfaces or electrodes has benefited the areas of biocatalysis and biosensor design. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Formation of indigo by recombinant mammalian cytochrome P450.

    PubMed

    Gillam, E M; Aguinaldo, A M; Notley, L M; Kim, D; Mundkowski, R G; Volkov, A A; Arnold, F H; Soucek, P; DeVoss, J J; Guengerich, F P

    1999-11-19

    The development of bicistronic systems for coexpression of recombinant human cytochrome P450 enzymes (P450s) with their redox partner, NADPH-cytochrome P450 reductase (NPR), has enabled P450 activity to be reconstituted within bacterial cells. During expression of recombinant P450 2E1 and some other forms, we observed the formation of a blue pigment in bacterial cultures. The pigment was extracted from cultures and shown to comigrate with standard indigo on TLC. UV-visible spectroscopy and mass spectrometric analysis provided further support for identification of the pigment as indigo. Indigo is known to form following the spontaneous oxidation of 3-hydroxyindole. Accordingly, we speculated that indole, formed as a breakdown product of tryptophan in bacteria, was hydroxylated by the P450 system, leading to indigo formation. Bacterial membranes containing recombinant P450 2E1 and human NPR were incubated in vitro with indole and shown to catalyze formation of a blue pigment in a time- and cofactor-dependent manner. These studies suggest potential applications of mammalian P450 enzymes in industrial indigo production or in the development of novel colorimetric assays based on indole hydroxylation. Copyright 1999 Academic Press.

  7. Selective expression and induction of cytochrome P450PB and P450MC during the development of hereditary hepatitis and hepatoma of LEC rats.

    PubMed

    Sugiyama, T; Suzuki, K; Ookawara, T; Kurosawa, T; Taniguchi, N

    1989-11-01

    The Long-Evans rat with a cinnamon-like coat color (LEC rat) is a mutant strain displaying hereditary hepatitis with severe jaundice. The age related difference in microsomal dealkylation of pentoxyresorufin and ethoxyresorufin was examined. The enzyme activity levels of pentoxyresorufin O-depentylase in LEC rats were decreased to 25% of the levels in control [Long-Evans rats with an agouti coat color (LEA rats)]. In contrast, ethoxyresorufin O-deethylase exhibited a much less marked difference between the strains. In parallel with these strain differences in enzyme activities, a decrease in phenobarbital (PB) inducible P450 isozymes, mainly P450b and P450e, was observed by Western blot analysis. The level of P450PB in LEC rats was more markedly depressed than in the LEA strain. On the other hand, microsomes from uninduced LEC rat liver had more 3-methylcholanthrene (MC) inducible P450MC, mainly P450c and P450d, than microsomes from LEA rat liver and these isozymes in the LEC were markedly induced by 3-methylcholanthrene treatment. The great difference in cytochrome P450PB content of the liver microsomes between LEC and LEA rats and the maintained constitutive levels of hepatic cytochrome P450MC in the LEC rats suggest a possible role of these cytochrome isozymes in the onset of spontaneous hepatitis and hepatoma.

  8. Mitochondrial dysfunction by gamma-irradiation accompanies the induction of cytochrome P450 2E1 (CYP2E1) in rat liver.

    PubMed

    Chung, H C; Kim, S H; Lee, M G; Cho, C K; Kim, T H; Lee, D H; Kim, S G

    2001-03-21

    Multiple biological effects are induced by ionizing radiation through dysfunction of cellular organelles, direct interaction with nucleic acids and production of free radical species. The expression of cytochrome P450s was assessed in the livers of 60Co gamma-irradiated rats. Three gray (G) of gamma-irradiation caused CYP2E1 induction with a 3.6-fold increase in the mRNA at 24 h, whereas the expression of CYP1A2 and CYP3A was not changed. Pharmacokinetics of chlorzoxazone, a specific substrate of CYP2E1, was studied in 3 G-irradiated rats. The area under the plasma concentration-time curve from time zero to infinity of 6-hydroxychlorzoxazone and the amount of 6-hydroxychlorzoxazone excreted in 8 h urine were both significantly greater than those in control rats. Hepatic CYP2E1 was not induced in rats exposed to 0.5-1 G of gamma-rays. Rats irradiated at 6-9 G accumulated doses of gamma-rays exhibited smaller increases in the mRNA due to liver injury than those irradiated at a single dose of 3 G gamma-rays. The plasma glucose and insulin levels were not altered in rats with 3 G of gamma-irradiation. As the exposure level of gamma-irradiation increased, the activity of hepatic aconitase, a key enzyme in energy metabolism in mitochondria, was 30-90% decreased. The amount of mitochondrial DNA per gram of wet liver was 50% decreased in rats exposed to 3 G of gamma-rays. These results demonstrated that gamma-ray irradiation at the exposure level inducing organelle dysfunction induced CYP2E1 in the liver, which might be associated with mitochondrial damage, but not with alterations in glucose or insulin levels.

  9. Effect of prenatal exposure of deltamethrin on the ontogeny of xenobiotic metabolizing cytochrome P450s in the brain and liver of offsprings

    SciTech Connect

    Johri, Ashu; Dhawan, Alok; Lakhan Singh, Ram; Parmar, Devendra . E-mail: parmar_devendra@hotmail.com

    2006-08-01

    Prenatal exposure to low doses (0.25 or 0.5 or 1.0 mg/kg, p.o.) of deltamethrin, a type II pyrethroid insecticide, to pregnant dams from gestation days 5 to 21 (GD5-21) produced dose-dependent alterations in the ontogeny of xenobiotic metabolizing cytochrome P450 (CYP) isoforms in brain and liver of the offsprings. RT-PCR analysis revealed dose-dependent increase in the mRNA expression of cerebral and hepatic CYP1A1, 1A2, 2B1, 2B2, and 2E1 isoenzymes in the offsprings exposed prenatally to deltamethrin. Similar increase in the activity of the marker enzymes of these CYP isoforms has indicated that placental transfer of the pyrethroid, a mixed type of CYP inducer, even at these low doses may be sufficient to induce the CYPs in brain and liver of the offsprings. Our data have further revealed persistence in the increase in expression of xenobiotics metabolizing CYPs up to adulthood in brain and liver of the exposed offsprings, suggesting the potential of deltamethrin to imprint the expression of CYPs in brain and liver of the offsprings following its in utero exposure. Furthermore, though the levels of CYPs were several fold lower in brain, almost equal magnitude of induction in cerebral and hepatic CYPs has further suggested that brain CYPs are responsive to the induction by environmental chemicals. The present data indicating alterations in the expression of xenobiotic metabolizing CYPs during development following prenatal exposure to deltamethrin may be of significance as these CYP enzymes are not only involved in the neurobehavioral toxicity of deltamethrin but have a role in regulating the levels of ligands that modulate growth, differentiation, and neuroendocrine functions.

  10. Differential regulation of endobiotic-oxidizing cytochromes P450 in vitamin A-deficient male rat liver

    PubMed Central

    Murray, Michael; Sefton, Rachel M; Croft, Kevin D; Butler, Alison M

    2001-01-01

    The hepatic CYP4A-dependent ω-hydroxylation of arachidonic acid and CYP2C11-dependent 2α-/16α-hydroxylations of testosterone were decreased to 74 and 60% of respective control in microsomal fractions from vitamin A-deficient rats. Decreases in the rates of arachidonic acid ω-1-hydroxylation and testosterone 6β-, 7α- and 17α-hydroxylations were less pronounced.Corresponding decreases in microsomal CYP4A and CYP2C11 immunoreactive protein expression to 64 and 68% of respective control were observed in vitamin A-deficient rat liver. Expression of CYP3A proteins was unchanged from vitamin A-adequate control.Northern analysis revealed a selective decrease in CYP4A2 mRNA expression in vitamin A-deficient rat liver to ∼5% of control; expression of the related CYP4A1/4A3 mRNAs was not decreased. CYP2C11 mRNA expression was also decreased in vitamin A-deficient male rat liver to 39% of control levels.Intake of the deficient diet containing all-trans-retinoic acid (ATRA) during the final week of the experiment restored CYP4A2 mRNA and CYP4A protein. Administration of exogenous androgen or episodic growth hormone was ineffective. In contrast, CYP2C11 expression was restored by ATRA and androgen, but not by growth hormone.From these studies it emerges that CYP4A2, a fatty acid ω-hydroxylase in rat liver, is highly dependent on vitamin A for optimal expression, whereas CYP2C11 is indirectly down regulated by androgen deficiency resulting from vitamin A-deficiency. Altered CYP expression in vitamin A-deficiency provides insights into the relationship between dietary constituents and the intracellular formation of vasoactive eicosanoids as well as the clearance of androgenic steroids. PMID:11724755

  11. Activation of Oxygen by Cytochrome P-450 and Other Haemoproteins

    NASA Astrophysics Data System (ADS)

    Metelitsa, D. I.

    1982-11-01

    Data on the activation of molecular oxygen by the full microsomal hydroxylating system containing cytochrome P-450 as the terminal oxygenase are examined. The nature of the hydroxylating agent, which is the oxenoid Fe3+O, is analysed. The autoxidation reactions of cytochrome P-450 from various sources, haemoglobin, myoglobin, and peroxidases are compared and the role of the axial ligands of the haem iron and the structure of the active centres of the haemoproteins in this process is demonstrated. The possible mechanisms of the oxidation of organic compounds by peroxides with participation of cytochrome P-450, cytochrome c, haemoglobin, and catalase are examined critically. Haemoproteins have been divided into three groups in terms of the type of peroxide oxidation reactions. The relative contributions of the radical and two-electron reactions in the oxidation of compounds by peroxides with participation of different haemoproteins are analysed. The bibliography includes 184 references.

  12. Light-driven biocatalysis with cytochrome P450 peroxygenases.

    PubMed

    Girhard, Marco; Kunigk, Elmar; Tihovsky, Svetlana; Shumyantseva, Victoria V; Urlacher, Vlada B

    2013-01-01

    The cytochrome P450 peroxygenases P450(Bsβ) (CYP152A1) from Bacillus subtilis and P450(Cla) (CYP152A2) from Clostridium acetobutylicum belong to a unique group of P450s with high synthetic potential. They consume hydrogen peroxide via the peroxide shunt and therefore do not require additional electron transfer proteins for biocatalytic activity. Their high synthetic potential is, however, impaired by their rather poor operational stability in the presence of hydrogen peroxide. Herein, we report the use of a light-driven approach utilizing light-excited flavins (riboflavin, flavin mononucleotide, or flavin adenine dinucleotide) and the electron donor ethylenediaminetetraacetate as the electron source for the in situ generation of hydrogen peroxide. This approach represents a simple and easily applicable way to promote oxyfunctionalization reactions catalyzed by P450 peroxygenases and is useful for biocatalysis with these enzymes. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  13. Inhibition on human liver cytochrome P450 3A4 by constituents of fennel (Foeniculum vulgare): identification and characterization of a mechanism-based inactivator.

    PubMed

    Subehan; Zaidi, Syed F H; Kadota, Shigetoshi; Tezuka, Yasuhiro

    2007-12-12

    Fennel, a seed of Foeniculum vulgare, is used as a culinary spice and traditional medicine. The methanolic extract of fennel showed a characteristic of mechanism-based inactivation on erythromycin N-demethylation mediated by human liver microsomal cytochrome P450 3A4 (CYP3A4). The present study was conducted to identify the fennel constituent having the inhibition. Thirteen compounds have been isolated from a methanol extract of fennel and tested for their inhibition on CYP3A4. Among them, 5-methoxypsoralen (5-MOP) showed the strongest inhibition with an IC50 value of 18.3 microM and a mixed type of inhibition. In addition, with the preincubation time of 20 min only 5-MOP showed preincubation time dependency; the IC50 value decreased from 18.3 microM with a preincubation time of 0 min to 4.6 microM with a preincubation time of 20 min. Further investigation on 5-MOP showed the characteristics of time-dependent inhibition, requirement of NADPH, lack of protecting effect of nucleophiles, and recovery of CYP3A4 activity by the competitive inhibitor. This result suggests that the inhibitory activity of CYP3A4 by 5-MOP was a mechanism-based inactivation. The kinetic parameter for mechanism-based inactivation was characterized by a KI value of 15.0 microM and a kinact value of 0.098 min(-1).

  14. Effects of Eleutheroside B and Eleutheroside E on activity of cytochrome P450 in rat liver microsomes

    PubMed Central

    2014-01-01

    Background Chemicals of herbal products may cause unexpected toxicity or adverse effect by the potential for alteration of the activity of CYP450 when co-administered with other drugs. Eleutherococcus senticosus (ES), has been widely used as a traditional herbal medicine and popular herbal dietary supplements, and often co-administered with many other drugs. The main bioactive constituents of ES were considered to be eleutherosides including eleutheroside B (EB) and eleutheroside E (EE). This study was to investigate the effects of EB and EE on CYP2C9, CYP2D6, CYP2E1 and CYP3A4 in rat liver microsomes in vitro. Method Probe drugs of tolbutamide (TB), dextromethorphan (DM), chlorzoxazone (CLZ) and testosterone (TS) as well as eleutherosides of different concentrations were added to incubation systems of rat liver microsomes in vitro. After incubation, validated HPLC methods were used to quantify relevant metabolites. Results The results suggested that EB and EE exhibited weak inhibition against the activity of CYP2C9 and CYP2E1, but no effects on CYP2D6 and CYP3A4 activity. The IC50 values for EB and EE were calculated to be 193.20 μM and 188.36 μM for CYP2E1, 595.66 μM and 261.82 μM for CYP2C9, respectively. Kinetic analysis showed that inhibitions of CYP2E1 by EB and EE were best fit to mixed-type with Ki value of 183.95 μM and 171.63 μM, respectively. Conclusions These results indicate that EB and EE may inhibit the metabolism of drugs metabolized via CYP2C9 and CYP2E1, and have the potential to increase the toxicity of the drugs. PMID:24383621

  15. Complementary DNA cloning, functional expression and characterization of a novel cytochrome P450, CYP2D50, from equine liver.

    PubMed

    DiMaio Knych, H K; Stanley, S D

    2008-10-01

    Members of the CYP2D family constitute only about 2-4% of total hepatic CYP450s, however, they are responsible for the metabolism of 20-25% of commonly prescribed therapeutic compounds. CYP2D enzymes have been identified in a number of different species. However, vast differences in the metabolic activity of these enzymes have been well documented. In the horse, the presence of a member of the CYP2D family has been suggested from studies with equine liver microsomes, however its presence has not been definitively proven. In this study a cDNA encoding a novel CYP2D enzyme (CYP2D50) was cloned from equine liver and expressed in a baculovirus expression system. The nucleotide sequence of CYP2D50 was highly homologous to that of human CYP2D6 and therefore the activity of the enzyme was characterized using dextromethorphan and debrisoquine, two isoform selective substrates for the human orthologue. CYP2D50 displayed optimal catalytic activity with dextromethorphan using molar ratios of CYP2D50 to NADPH CYP450 reductase of 1:15. Although CYP2D50 and CYP2D6 shared significant sequence homology, there were striking differences in the catalytic activity between the two enzymes. CYP2D50 dextromethorphan-O-demethylase activity was nearly 180-fold slower than the human counterpart, CYP2D6. Similarly, rates of formation of 4-hydroxydebrisoquine activity were 50-fold slower for CYP2D50 compared to CYP2D6. The results of this study demonstrate substantial interspecies variability in metabolism of substrates by CYP2D orthologues in the horse and human and support the need to fully characterize this enzyme system in equids.

  16. Cytochrome P450s and cytochrome P450 reductase in the olfactory organ of the cotton leafworm Spodoptera littoralis.

    PubMed

    Pottier, M-A; Bozzolan, F; Chertemps, T; Jacquin-Joly, E; Lalouette, L; Siaussat, D; Maïbèche-Coisne, M

    2012-12-01

    Cytochrome P450 enzymes (P450s) are involved in many physiological functions in insects, such as the metabolism of signal molecules, adaptation to host plants and insecticide resistance. Several P450s have been reported in the olfactory organs of insects, the antennae, and have been proposed to play a role in odorant processing and/or xenobiotic metabolism. Despite recent transcriptomic analyses in several species, the diversity of antennal P450s in insects has not yet been investigated. Here, we report the identification of 37 putative P450s expressed in the antennae of the pest moth Spodoptera littoralis, as well as the characterization of a redox partner, cytochrome P450 reductase (CPR). Phylogenetic analysis revealed that S. littoralis P450s belong to four clades defined by their conservation with vertebrate P450s and their cellular localization. Interestingly, the CYP3 and CYP4 clans, which have been described to be mainly involved in the metabolism of plant compounds and xenobiotics, were largely predominant. More surprisingly, two P450s related to ecdysteroid metabolism were also identified. Expression patterns in adult and larval tissues were studied. Eight P450s appeared to be specific to the chemosensory organs, ie the antennae and proboscis, suggesting a specific role in odorant and tastant processing. Moreover, exposure of males to a plant odorant down-regulated the transcript level of CPR, revealing for the first time the regulation of this gene by odorants within insect antennae. This work suggests that the antennae of insects are a key site for P450-mediated metabolism of a large range of exogenous and endogenous molecules. © 2012 Royal Entomological Society.

  17. Altered cytochrome P450 activities and expression levels in the liver and intestines of the monosodium glutamate-induced mouse model of human obesity.

    PubMed

    Tomankova, Veronika; Liskova, Barbora; Skalova, Lenka; Bartikova, Hana; Bousova, Iva; Jourova, Lenka; Anzenbacher, Pavel; Ulrichova, Jitka; Anzenbacherova, Eva

    2015-07-15

    Cytochromes P450 (CYPs) are enzymes present from bacteria to man involved in metabolism of endogenous and exogenous compounds incl. drugs. Our objective was to assess whether obesity leads to changes in activities and expression of CYPs in the mouse liver, small intestine and colon. An obese mouse model with repeated injection of monosodium glutamate (MSG) to newborns was used. Controls were treated with saline. All mice were sacrificed at 8 months. In the liver and intestines, levels of CYP mRNA and proteins were analyzed using RT-PCR and Western blotting. Activities of CYP enzymes were measured with specific substrates of human orthologous forms. At the end of the experiment, body weight, plasma insulin and leptin levels as well as the specific content of hepatic CYP enzymes were increased in obese mice. Among CYP enzymes, hepatic CYP2A5 activity, protein and mRNA expression increased most significantly in obese animals. Higher activities and protein levels of hepatic CYP2E1 and 3A in the obese mice were also found. No or a weak effect on CYPs 2C and 2D was observed. In the small intestine and colon, no changes of CYP enzymes were detected except for increased expression of CYP2E1 and decreased expression of CYP3A mRNAs in the colon of the obese mice. Results of our study suggest that the specific content and activities of some liver CYP enzymes (especially CYP2A5) can be increased in obese mice. Higher activity of CYP2A5 (CYP2A6 human ortholog) could lead to altered metabolism of drug substrates of this enzyme (valproic acid, nicotine, methoxyflurane). Copyright © 2015 Elsevier Inc. All rights reserved.

  18. High dose of commercial products of kava (Piper methysticum) markedly enhanced hepatic cytochrome P450 1A1 mRNA expression with liver enlargement in rats.

    PubMed

    Yamazaki, Yuko; Hashida, Hiroko; Arita, Anna; Hamaguchi, Keiko; Shimura, Fumio

    2008-12-01

    Commercial products containing the kava plant (Piper methysticum), known to have the anxiolytic activity, are banned in several European countries and Canada because of the suspicion of a potential liver toxicity. In some reports, kava and kavalactones (major constituents of kava) inhibited activities of cytochrome P450 (CYP) isoforms including CYP1A2. On the other hand, a few studies showed that administration of kava to rats moderately increased CYP1A2 proteins in the liver. CYP1A isoforms are likely responsible for the metabolic activation of potent carcinogenic environmental toxins such as aflatoxins, benzo[a]pyrene, and others. On these bases, we have investigated the effects of administration of commercial kava products on gene expression of hepatic CYP1A isoforms in rats. A high dose (equivalent to approximately 380mg kavalactones/kg/day; 100 times of the suggested dosage for human use) of two different types of kava products for 8 days significantly increased liver weights. CYP1A2 mRNA expression was moderately increased (2.8-7.3 fold). More importantly, the high dose of kava markedly enhanced CYP1A1 mRNA expression (75-220 fold) as well as ethoxyresorufin O-deethylase activities and CYP1A1 immunoreactivities. Thus, no observed adverse effect levels of kavalactones would be lower than 380mg/kg/day. When the safety factor of kavalactones is assumed to be 100, a value most often used upon the risk analysis of chemicals and designed to account for interspecies and intraspecies variations, a number of kava product users likely ingest more kavalactones than acceptable daily intakes. Based on overall evidence, we should pay considerable attention to the possibility that kava products induce hepatic CYP1A1 expression in human especially in sensitive individuals.

  19. Homotropic cooperativity of monomeric cytochrome P450 3A4

    SciTech Connect

    Baas, Bradley J.; Denisov, Ilia G.; Sligar, Stephen G.

    2010-11-16

    Mechanistic studies of mammalian cytochrome P450s are often obscured by the phase heterogeneity of solubilized preparations of membrane enzymes. The various protein-protein aggregation states of microsomes, detergent solubilized cytochrome or a family of aqueous multimeric complexes can effect measured substrate binding events as well as subsequent steps in the reaction cycle. In addition, these P450 monooxygenases are normally found in a membrane environment and the bilayer composition and dynamics can also effect these catalytic steps. Here, we describe the structural and functional characterization of a homogeneous monomeric population of cytochrome P450 3A4 (CYP 3A4) in a soluble nanoscale membrane bilayer, or Nanodisc [Nano Lett. 2 (2002) 853]. Cytochrome P450 3A4:Nanodisc assemblies were formed and purified to yield a 1:1 ratio of CYP 3A4 to Nanodisc. Solution small angle X-ray scattering was used to structurally characterize this monomeric CYP 3A4 in the membrane bilayer. The purified CYP 3A4:Nanodiscs showed a heretofore undescribed high level of homotropic cooperativity in the binding of testosterone. Soluble CYP 3A4:Nanodisc retains its known function and shows prototypic hydroxylation of testosterone when driven by hydrogen peroxide. This represents the first functional characterization of a true monomeric preparation of cytochrome P450 monooxygenase in a phospholipid bilayer and elucidates new properties of the monomeric form.

  20. Cytochrome P450-mediated metabolism of vitamin D

    PubMed Central

    Jones, Glenville; Prosser, David E.; Kaufmann, Martin

    2014-01-01

    The vitamin D signal transduction system involves a series of cytochrome P450-containing sterol hydroxylases to generate and degrade the active hormone, 1α,25-dihydroxyvitamin D3, which serves as a ligand for the vitamin D receptor-mediated transcriptional gene expression described in companion articles in this review series. This review updates our current knowledge of the specific anabolic cytochrome P450s involved in 25- and 1α-hydroxylation, as well as the catabolic cytochrome P450 involved in 24- and 23-hydroxylation steps, which are believed to initiate inactivation of the vitamin D molecule. We focus on the biochemical properties of these enzymes; key residues in their active sites derived from crystal structures and mutagenesis studies; the physiological roles of these enzymes as determined by animal knockout studies and human genetic diseases; and the regulation of these different cytochrome P450s by extracellular ions and peptide modulators. We highlight the importance of these cytochrome P450s in the pathogenesis of kidney disease, metabolic bone disease, and hyperproliferative diseases, such as psoriasis and cancer; as well as explore potential future developments in the field. PMID:23564710

  1. Special issue: Cytochrome P450 structure and function: introduction.

    PubMed

    Munro, Andrew W; Leys, David

    2012-05-01

    The 17th International Conference on Cytochrome P450 Biochemistry, Biophysics and Structure was held in Manchester, UK from 26-30 June 2011. This issue of FEBS J. contains review and primary research articles reflecting the breadth of science covered at this conference, and reflecting the impact of P450-related research in fields as diverse as steroid metabolism, plant biochemistry, structural biology and biotechnology.

  2. Enhanced expression of cytochrome P450 in stomach cancer.

    PubMed Central

    Murray, G. I.; Taylor, M. C.; Burke, M. D.; Melvin, W. T.

    1998-01-01

    The cytochromes P450 have a central role in the oxidative activation and detoxification of a wide range of xenobiotics, including many carcinogens and several anti-cancer drugs. Thus the cytochrome P450 enzyme system has important roles in both tumour development and influencing the response of tumours to chemotherapy. Stomach cancer is one of the commonest tumours of the alimentary tract and environmental factors, including dietary factors, have been implicated in the development of this tumour. This type of tumour has a poor prognosis and responds poorly to current therapies. In this study, the presence and cellular localization of several major forms of P450, CYP1A, CYP2E1 and CYP3A have been investigated in stomach cancer and compared with their expression in normal stomach. There was enhanced expression of CYP1A and CYP3A in stomach cancer with CYP1A present in 51% and CYP3A present in 28% of cases. In contrast, no P450 was identified in normal stomach. The presence of CYP1A and CYP3A in stomach cancer provides further evidence for the enhanced expression of specific forms of cytochrome P450 in tumours and may be important therapeutically for the development of anti-cancer drugs that are activated by these forms of P450. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9569036

  3. The Interaction of Microsomal Cytochrome P450 2B4 with its Redox Partners, Cytochrome P450 Reductase and Cytochrome b5

    PubMed Central

    Im, Sang-Choul; Waskell, Lucy

    2010-01-01

    1 Cytochrome P450 2B4 is a microsomal protein with a multi-step reaction cycle similar to that observed in the majority of other cytochromes P450. The cytochrome P450 2B4-substrate complex is reduced from the ferric to the ferrous form by cytochrome P450 reductase. After binding oxygen, the oxyferrous protein accepts a second electron which is provided by either cytochrome P450 reductase or cytochrome b5. In both instances, product formation occurs. When the second electron is donated by cytochrome b5, catalysis (product formation) is ∼ 10 to 100-fold faster than in the presence of cytochrome P450 reductase. This allows less time for side product formation (hydrogen peroxide and superoxide) and improves by ∼ 15% the coupling of NADPH consumption to product formation. Cytochrome b5 has also been shown to compete with cytochrome P450 reductase for a binding site on the proximal surface of cytochrome P450 2B4. These two different effects of cytochrome b5 on cytochrome P450 2B4 reactivity can explain how cytochrome b5 is able to stimulate, inhibit, or have no effect on cytochrome P450 2B4 activity. At low molar ratios (<1) of cytochrome b5 to cytochrome P450 reductase, the more rapid catalysis results in enhanced substrate metabolism. In contrast, at high molar ratios (>1) of cytochome b5 to cytochrome P450 reductase, cytochrome b5 inhibits activity by binding to the proximal surface of cytochrome P450 and preventing the reductase from reducing ferric cytochrome P450 to the ferrous protein, thereby aborting the catalytic reaction cycle. When the stimulatory and inhibitory effects of cytochrome b5 are equal, it will appear to have no effect on the enzymatic activity. It is hypothesized that cytochrome b5 stimulates catalysis by causing a conformational change in the active site, which allows the active oxidizing oxyferryl species of cytochrome P450 to be formed more rapidly than in the presence of reductase. PMID:21055385

  4. Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases

    USDA-ARS?s Scientific Manuscript database

    Cytochrome P450 monooxygenases (P450s) catalyze oxidation of various substrates using oxygen and NAD(P)H. Plant P450s are involved in the biosynthesis of primary and secondary metabolites performing diverse biological functions. The recent availability of soybean genome sequence allows us to ident...

  5. Polymorphism in cytochrome P450 2E1 and interaction with other genetic risk factors and susceptibility to alcoholic liver cirrhosis.

    PubMed

    Khan, Anwar Jamal; Ruwali, Munindra; Choudhuri, Gourdas; Mathur, Neeraj; Husain, Qayyum; Parmar, Devendra

    2009-05-12

    The association of polymorphism in cytochrome P450 2E1 (CYP2E1), the major microsomal ethanol metabolizing enzyme and its interaction with genes, involved in detoxification of reactive oxygen species, such as glutathione-S-transferases M1 (GSTM1) and alcohol intake, gamma-aminobutyric acid receptor gamma2 (GABRG2) was studied with the risk to alcoholic cirrhosis in a case-control study. A total of 160 alcoholic cirrhotic and 125 non-alcoholic cirrhotic cases, visiting the OPD facility of Gastroenterology Department of Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI), Lucknow, India and 250 non-alcoholic and 100 alcoholic controls having no evidence of liver disease were included in the study. PCR-based RFLP methodology was followed for genotyping studies. Our data revealed that the variant genotypes of CYP2E1 5B exhibited significant association with the alcoholic liver cirrhosis when compared to non-alcoholic controls (OR: 4.3; 95%CI: 1.5-12.4; p: 0.003) or non-alcoholic cirrhosis patients (OR: 5.4; 95%CI: 1.2-24.5; p: 0.01) or alcoholic controls (OR: 4.3; 95%CI: 0.95-19.62; p: 0.04). Haplotype approach revealed that haplotype T-A-T was found to be associated with more than 5-fold increase in risk for alcoholic cirrhosis. Likewise, combination of variant genotype of CYP2E1 5B with null genotype of GSTM1, a phase II detoxification enzyme, resulted in several fold increase in risk in alcoholic cirrhotic patients when compared with non-alcoholic controls or non-alcoholic cirrhotic patients. Further, the combination of variant genotype of CYP2E1 5B with GABRG2, significantly increased the risk upto 6.5-fold in alcoholic cirrhotic patients when compared with non-alcoholic controls thereby suggesting the role of gene-gene interaction in alcoholic cirrhosis.

  6. The inhibitory effect of tannic acid on cytochrome P450 enzymes and NADPH-CYP reductase in rat and human liver microsomes.

    PubMed

    Yao, Hsien-Tsung; Chang, Yi-Wei; Lan, Shih-Jung; Yeh, Teng-Kuang

    2008-02-01

    Tannic acid has been shown to decrease mutagenicity and/or carcinogenicity of several amine derivatives and polycyclic aromatic hydrocarbons in rodents. The purpose of this study was to evaluate the effect of tannic acid on cytochrome P450 (CYP)-catalyzed oxidations using rat liver microsomes (RLM) and human liver microsomes (HLM) as the enzyme sources. In RLM, tannic acid showed a non-selective inhibitory effect on 7-methoxyresorufin O-demethylation (MROD), 7-ethoxyresorufin O-deethylation (EROD), tolbutamide hydroxylation, p-nitrophenol hydroxylation and testosterone 6beta-hydroxylation activities with IC(50) values ranged from 14.9 to 27.4 microM. In HLM, tannic acid inhibited EROD, MROD and phenacetin O-deethylation activities with IC(50) values ranged from 5.1 to 7.5 microM, and diclofenac 4-hydroxylation, dextromethorphan O-demethylation, chlorzoxazone 6-hydroxylation and testosterone 6beta-hydroxylation with IC(50) values ranged from 20 to 77 microM. In baculovirus-insect cell-expressed human CYP 1A1 and 1A2, the IC(50) values of tannic acid for CYP 1A1- and 1A2-catalyzed EROD activities were 23.1 and 2.3 microM, respectively, indicating that tannic acid preferably inhibited the activity of CYP1A2. Tannic acid inhibited human CYP1A2 non-competitively with a Ki value of 4.8 microM. Tannic acid was also found to inhibit NADPH-CYP reductase in RLM and HLM with IC(50) values of 11.8 and 17.4 microM, respectively. These results suggested that the inhibition of CYP enzyme activities by tannic acid may be partially attributed to its inhibition of NADPH-CYP reductase activity.

  7. Development of HepG2-derived cells expressing cytochrome P450s for assessing metabolism-associated drug-induced liver toxicity.

    PubMed

    Xuan, Jiekun; Chen, Si; Ning, Baitang; Tolleson, William H; Guo, Lei

    2016-08-05

    The generation of reactive metabolites from therapeutic agents is one of the major mechanisms of drug-induced liver injury (DILI). In order to evaluate metabolism-related toxicity and improve drug efficacy and safety, we generated a battery of HepG2-derived cell lines that express 14 cytochrome P450s (CYPs) (1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, 3A5 and 3A7) individually using a lentiviral expression system. The expression/production of a specific CYP in each cell line was confirmed by an increased abundance of the CYP at both mRNA and protein levels. Moreover, the enzymatic activities of representative CYPs in the corresponding cell lines were also measured. Using our CYP-expressed HepG2 cells, the toxicity of three drugs that could induce DILI (amiodarone, chlorpromazine and primaquine) was assessed, and all of them showed altered (increased or decreased) toxicity compared to the toxicity in drug-treated wild-type HepG2 cells. CYP-mediated drug toxicity examined in our cell system is consistent with previous reports, demonstrating the potential of these cells for assessing metabolism-related drug toxicity. This cell system provides a practical in vitro approach for drug metabolism screening and for early detection of drug toxicity. It is also a surrogate enzyme source for the enzymatic characterization of a particular CYP that contributes to drug-induced liver toxicity.

  8. Estimating pediatric doses of drugs metabolized by cytochrome P450 (CYP) isozymes, based on physiological liver development and serum protein levels.

    PubMed

    Suzuki, Shinya; Murayama, Yuka; Sugiyama, Erika; Hirunpanich, Vilasinee; Saito, Kiyomi; Sekiyama, Masao; Sato, Hitoshi

    2010-04-01

    We established a method for estimating pediatric doses of drugs metabolized by cytochrome P450 (CYP) isozymes, using the free fraction of drug in plasma (fu), serum protein level (P), liver volume (LV), and CYP activity (Vmax/Km) as indices of physiological and biochemical development in children up to 15 years old. This method allows the child/adult dose ratio (D(C)/D(A))=child/adult oral clearance ratio (CL((PO)(C))/CL((PO)(A))) of drugs mainly metabolized in the liver to be estimated by the following equation: [formula: see text]. Major metabolism of drugs was ascribed to CYP1A2 for theophylline and caffeine, and CYP1A2 and CYP2D6 for propranolol and mexiletine. For theophylline and caffeine, CL((PO)(C))/CL((PO)(A)) calculated from the child/adult body surface area ratio (BSA ratio) and the value calculated by our method were compared, using CL((PO)(C))/CL((PO)(A)) calculated from the clearance ratio based on population pharmacokinetics (PPK ratio) as a reference. For all drugs, pediatric doses calculated from the Crawford equation and our equation were compared, with predetermined doses as the reference. For theophylline and caffeine, the relative accuracy of our method was significantly higher than that of BSA-based estimation when the PPK ratio was used for reference. For theophylline, caffeine, and propranolol, the relative accuracy of our method was significantly higher than that of BSA-based estimation when predetermined doses were used for reference. These findings indicate the validity of our method which considers the physiological and biochemical development (i.e., fu, P, LV, and CYP activity) for pediatric dose estimation.

  9. Role of Cytochrome P450s in Inflammation.

    PubMed

    Christmas, Peter

    2015-01-01

    Cytochrome P450 epoxygenases and hydroxylases play a regulatory role in the activation and suppression of inflammation by generating or metabolizing bioactive mediators. CYP2C and CYP2J epoxygenases convert arachidonic acid to anti-inflammatory epoxyeicosatrienoic acids, which have protective effects in a variety of disorders including cardiovascular disease and metabolic syndrome. CYP4A and CYP4F hydroxylases have the ability to metabolize multiple substrates related to the regulation of inflammation and lipid homeostasis, and it is a challenge to determine which substrates are physiologically relevant for each enzyme; the best-characterized activities include generation of 20-hydroxyeicosatetraenoic acid and inactivation of leukotriene B4. The expression of hepatic drug-metabolizing cytochrome P450s is modulated by cytokines during inflammation, resulting in changes to the pharmacokinetics of prescribed medications. Cytochrome P450s are therefore the focus of intersecting challenges in the pharmacology of inflammation: not only do they represent targets for development of new anti-inflammatory drugs but they also contribute to variability in drug efficacy or toxicity in inflammatory disease. Animal models and primary hepatocytes have been used extensively to study the effects of cytokines on cytochrome P450 expression and activity. However, it is difficult to predict changes in drug exposure in patients because the response to inflammation varies depending on the disease state, its time course, and the cytochrome P450 involved. In these circumstances, the development of endogenous markers of cytochrome P450 metabolism might provide a useful tool to reevaluate drug dosage and choice of therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Determinants of thermostability in the cytochrome P450 fold.

    PubMed

    Harris, Kurt L; Thomson, Raine E S; Strohmaier, Silja J; Gumulya, Yosephine; Gillam, Elizabeth M J

    2017-08-16

    Cytochromes P450 are found throughout the biosphere in a wide range of environments, serving a multitude of physiological functions. The ubiquity of the P450 fold suggests that it has been co-opted by evolution many times, and likely presents a useful compromise between structural stability and conformational flexibility. The diversity of substrates metabolized and reactions catalyzed by P450s makes them attractive starting materials for use as biocatalysts of commercially useful reactions. However, process conditions impose different requirements on enzymes to those in which they have evolved naturally. Most natural environments are relatively mild, and therefore most P450s have not been selected in Nature for the ability to withstand temperatures above ~40°C, yet industrial processes frequently require extended incubations at much higher temperatures. Thus, there has been considerable interest and effort invested in finding or engineering thermostable P450 systems. Numerous P450s have now been identified in thermophilic organisms and analysis of their structures provides information as to mechanisms by which the P450 fold can be stabilized. In addition, protein engineering, particularly by directed or artificial evolution, has revealed mutations that serve to stabilize particular mesophilic enzymes of interest. Here we review the current understanding of thermostability as it applies to the P450 fold, gleaned from the analysis of P450s characterized from thermophilic organisms and the parallel engineering of mesophilic forms for greater thermostability. We then present a perspective on how this information might be used to design stable P450 enzymes for industrial application. Copyright © 2017. Published by Elsevier B.V.

  11. Spectroscopic quantitation of cytochrome P-450 in human lung microsomes.

    PubMed

    Wheeler, C W; Guenthner, T M

    1990-01-01

    The cytochrome P-450 content of human lung microsomes was measured by difference spectroscopy of the carbon monoxide-complexed hemoprotein. These measurements were only possible after the microsome preparation had been subjected to centrifugation over a discontinuous sucrose gradient, to remove an opaque black contaminant. The specific concentration of total cytochrome P-450 in human lung microsomes is essentially identical to that of microsomes prepared under identical conditions from untreated baboon lungs, but is only 0.7% of the specific content found in lung microsomes from untreated rabbits. These measurements correspond well to the observed metabolic capacities of the various microsome samples.

  12. Expression and purification of orphan cytochrome P450 4X1 and oxidation of anandamide

    PubMed Central

    Stark, Katarina; Dostalek, Miroslav; Guengerich, F. Peter

    2016-01-01

    Summary Cytochrome P450 (P450) 4X1 is one of the so-called “orphan” P450s without assigned biological function. Codon-optimized P450 4X1 and a number of N-terminal modified sequences were expressed in Escherichia coli. Native P450 4X1 showed a characteristic P450 spectrum but low expression in E. coli DH5α cells (<100 nmol P450/L). The highest level of expression (300-450 nmol P450/L culture) was achieved with a bicistronic P450 4X1 construct (N-terminal MAKKTSSKGKL, change of E2A, amino acids 3-44 truncated). Anandamide (arachidonoyl ethanolamide) has emerged as an important signaling molecule in the neurovascular cascade. Recombinant P450 4X1 protein, co-expressed with human NADPH-P450 reductase in E. coli, was found to convert the natural endocannabinoid anandamide to a single monooxygenated product, 14,15-epoxyeicosatrienoic (EET) ethanolamide. A stable anandamide analog (CD-25) was also converted to a monooxygenated product. Arachidonic acid was oxidized more slowly to 14,15- and 8,9-EETs but only in the presence of cytochrome b5. Other fatty acids were investigated as putative substrates but showed only little or minor oxidation. Real-time PCR analysis demonstrated extrahepatic mRNA expression, including several human brain structures (cerebellum, amygdala, and basal ganglia), in addition to expression in human heart, liver, prostate, and breast. The highest mRNA expression levels were detected in amygdala and skin. The ability of P450 4X1 to generate anandamide derivatives and the mRNA distribution pattern suggest a potential role for P450 4X1 in anandamide signaling in the brain. PMID:18549450

  13. Conformational selectivity in cytochrome P450 redox partner interactions

    PubMed Central

    Hollingsworth, Scott A.; Batabyal, Dipanwita; Nguyen, Brian D.; Poulos, Thomas L.

    2016-01-01

    The heme iron of cytochromes P450 must be reduced to bind and activate molecular oxygen for substrate oxidation. Reducing equivalents are derived from a redox partner, which requires the formation of a protein–protein complex. A subject of increasing discussion is the role that redox partner binding plays, if any, in favoring significant structural changes in the P450s that are required for activity. Many P450s now have been shown to experience large open and closed motions. Several structural and spectral studies indicate that the well-studied P450cam adopts the open conformation when its redox partner, putidaredoxin (Pdx), binds, whereas recent NMR studies indicate that this view is incorrect. Given the relevance of this discrepancy to P450 chemistry, it is important to determine whether Pdx favors the open or closed form of P450cam. Here, we have used both computational and experimental isothermal titration calorimetry studies that unequivocally show Pdx favors binding to the open form of P450cam. Analyses of molecular-dynamic trajectories also provide insights into intermediate conformational states that could be relevant to catalysis. PMID:27439869

  14. Forster Distances of Ligand-Heme Pairs in Cytochrome P450 3A4

    NASA Astrophysics Data System (ADS)

    Fern, Joel; Guengerich, F. Peter; Marsch, Glenn A.

    2003-04-01

    Cytochrome P450 3A4 is a protein in the human intestine and liver which oxidizes over half of drugs in use today. Cytochrome P450 3A4 has proven resistant to structure determination by NMR or x-ray crystallography. Fluorescence Resonance Energy Transfer (FRET) studies of P450 3A4 can be used to compute distances between fluorophores in the protein, providing information on the structure of the protein. For a ligand to be suitably used as a probe its fluorescence must not be completely quenched by the heme cofactor in P450 3A4. By using quantum yields, fluorescence, and the absorption spectra of six P450 ligands, the following Forster distances between each ligand and the P450 heme moiety were obtained: pyrene 4.6 nm, aflatoxin B2 5.7 nm, alpha-naphthoflavone 3.7 nm, indinavir 2.6 nm, quinidine 3.5 nm, and terfenadine 2.8 nm. Having these distances should yield a better low-resolution cytochrome P450 3A4 structure. Using the Forster distances, FRET experiments on inter-ligand placement in P450 3A4 will be undertaken soon.

  15. Interactions among Cytochromes P450 in Microsomal Membranes

    PubMed Central

    Davydov, Dmitri R.; Davydova, Nadezhda Y.; Sineva, Elena V.; Halpert, James R.

    2015-01-01

    The body of evidence of physiologically relevant P450-P450 interactions in microsomal membranes continues to grow. Here we probe oligomerization of human CYP3A4, CYP3A5, and CYP2E1 in microsomal membranes. Using a technique based on luminescence resonance energy transfer, we demonstrate that all three proteins are subject to a concentration-dependent equilibrium between the monomeric and oligomeric states. We also observed the formation of mixed oligomers in CYP3A4/CYP3A5, CYP3A4/CYP2E1, and CYP3A5/CYP2E1 pairs and demonstrated that the association of either CYP3A4 or CYP3A5 with CYP2E1 causes activation of the latter enzyme. Earlier we hypothesized that the intersubunit interface in CYP3A4 oligomers is similar to that observed in the crystallographic dimers of some microsomal drug-metabolizing cytochromes P450 (Davydov, D. R., Davydova, N. Y., Sineva, E. V., Kufareva, I., and Halpert, J. R. (2013) Pivotal role of P450-P450 interactions in CYP3A4 allostery: the case of α-naphthoflavone. Biochem. J. 453, 219–230). Here we report the results of intermolecular cross-linking of CYP3A4 oligomers with thiol-reactive bifunctional reagents as well as the luminescence resonance energy transfer measurements of interprobe distances in the oligomers of labeled CYP3A4 single-cysteine mutants. The results provide compelling support for the physiological relevance of the dimer-specific peripheral ligand-binding site observed in certain CYP3A4 structures. According to our interpretation, these results reveal an important general mechanism that regulates the activity and substrate specificity of the cytochrome P450 ensemble through interactions between multiple P450 species. As a result of P450-P450 cross-talk, the catalytic properties of the cytochrome P450 ensemble cannot be predicted by simple summation of the properties of the individual P450 species. PMID:25533469

  16. Cytochromes P450 Catalyze the Reduction of α,β-Unsaturated Aldehydes

    PubMed Central

    Amunom, Immaculate; Dieter, Laura J.; Tamasi, Viola; Cai, Jan; Conklin, Daniel J.; Srivastava, Sanjay; Martin, Martha V.; Guengerich, F. Peter; Prough, Russell A.

    2011-01-01

    The metabolism of α,β-unsaturated aldehydes, e.g. 4-hydroxynonenal, involves oxidation to carboxylic acids, reduction to alcohols, and glutathionylation to eventually form mercapturide conjugates. Recently we demonstrated that P450s can oxidize aldehydes to carboxylic acids, a reaction previously thought to involve aldehyde dehydrogenase. When recombinant cytochrome P450 3A4 was incubated with 4-hydroxynonenal, O2, and NADPH, several products were produced, including 1,4-dihydroxynonene (DHN), 4-hydroxy-2-nonenoic acid (HNA), and an unknown metabolite. Several P450s catalyzed the reduction reaction in the order (human) P450 2B6 ≅ P450 3A4 > P450 1A2 > P450 2J2 > (mouse) P450 2c29. Other P450s did not catalyze the reduction reaction (human P450 2E1 & rabbit P450 2B4). Metabolism by isolated rat hepatocytes showed that HNA formation was inhibited by cyanamide, while DHN formation was not affected. Troleandomycin increased HNA production 1.6-fold while inhibiting DHN formation, suggesting that P450 3A11 is a major enzyme involved in rat hepatic clearance of 4-HNE. A fluorescent assay was developed using 9-anthracenealdehyde to measure both reactions. Feeding mice diet containing t-butylated hydroxyanisole increased the level of both activities with hepatic microsomal fractions, but not proportionally. Miconazole (0.5 mM) was a potent inhibitor of these microsomal reduction reactions, while phenytoin and α-naphthoflavone (both at 0.5 mM) were partial inhibitors, suggesting the role of multiple P450 enzymes. The oxidative metabolism of these aldehydes was inhibited >90% in an Ar or CO atmosphere, while the reductive reactions were not greatly affected. These results suggest that P450s are significant catalysts of reduction of α,β-unsaturated aldehydes in liver. PMID:21766881

  17. Cytochromes P450 catalyze the reduction of α,β-unsaturated aldehydes.

    PubMed

    Amunom, Immaculate; Dieter, Laura J; Tamasi, Viola; Cai, Jian; Conklin, Daniel J; Srivastava, Sanjay; Martin, Martha V; Guengerich, F Peter; Prough, Russell A

    2011-08-15

    The metabolism of α,β-unsaturated aldehydes, e.g., 4-hydroxynonenal, involves oxidation to carboxylic acids, reduction to alcohols, and glutathionylation to eventually form mercapturide conjugates. Recently, we demonstrated that P450s can oxidize aldehydes to carboxylic acids, a reaction previously thought to involve aldehyde dehydrogenase. When recombinant cytochrome P450 3A4 was incubated with 4-hydroxynonenal, O(2), and NADPH, several products were produced, including 1,4-dihydroxynonene (DHN), 4-hydroxy-2-nonenoic acid (HNA), and an unknown metabolite. Several P450s catalyzed the reduction reaction in the order (human) P450 2B6 ≅ P450 3A4 > P450 1A2 > P450 2J2 > (mouse) P450 2c29. Other P450s did not catalyze the reduction reaction (human P450 2E1 and rabbit P450 2B4). Metabolism by isolated rat hepatocytes showed that HNA formation was inhibited by cyanamide, while DHN formation was not affected. Troleandomycin increased HNA production 1.6-fold while inhibiting DHN formation, suggesting that P450 3A11 is a major enzyme involved in rat hepatic clearance of 4-HNE. A fluorescent assay was developed using 9-anthracenealdehyde to measure both reactions. Feeding mice a diet containing t-butylated hydroxyanisole increased the level of both activities with hepatic microsomal fractions but not proportionally. Miconazole (0.5 mM) was a potent inhibitor of these microsomal reduction reactions, while phenytoin and α-naphthoflavone (both at 0.5 mM) were partial inhibitors, suggesting the role of multiple P450 enzymes. The oxidative metabolism of these aldehydes was inhibited >90% in an Ar or CO atmosphere, while the reductive reactions were not greatly affected. These results suggest that P450s are significant catalysts of the reduction of α,β-unsaturated aldehydes in the liver.

  18. Functional characterization and tissue expression of marmoset cytochrome P450 2E1.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Tomioka, Etsuko; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2017-09-01

    Common marmosets (Callithrix jacchus) have attracted increasing attention as a useful small non-human primate model in preclinical research. However, studies on marmoset cytochrome P450 (P450) 2E enzyme have scarcely been conducted. In this study, the full-length cDNA encoding P450 2E1 enzyme was isolated from marmoset livers by reverse transcription (RT)-polymerase chain reaction (PCR). Marmoset P450 2E1 amino acid sequences were highly identical (>88%) to those of cynomolgus monkey and human P450 2E1 enzymes. Phylogenetic analysis indicated a close evolutionary relationship among marmoset, cynomolgus monkey, and human P450 2E1 enzymes. The tissue expression pattern analyzed by real-time RT-PCR and immunoblotting demonstrated that marmoset P450 2E1 mRNA and proteins were predominantly expressed in livers. Marmoset P450 2E1 enzyme heterologously expressed in Escherichia coli catalyzed the hydroxylation of p-nitrophenol, chlorzoxazone, and theophylline, similar to cynomolgus monkey and human P450 2E1 enzymes. By kinetic analyses, those P450 2E1 enzymes catalyzed p-nitrophenol hydroxylation with similar affinities and relatively high intrinsic clearance efficiencies. These results indicated that tissue distribution and enzyme-substrate specificity of marmoset P450 2E1 were similar to cynomolgus monkey and human P450 2E1 enzymes, suggesting that marmosets are a suitable primate model for P450 2E1-dependent drug and xenobiotic metabolism. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Cytochrome P450 diversity in the tree of life.

    PubMed

    Nelson, David R

    2017-05-11

    Sequencing in all areas of the tree of life has produced >300,000 cytochrome P450 (CYP) sequences that have been mined and collected. Nomenclature has been assigned to >41,000 CYP sequences and the majority of the remainder has been sorted by BLAST searches into clans, families and subfamilies in preparation for naming. The P450 sequence space is being systematically explored and filled in. Well-studied groups like vertebrates are covered in greater depth while new insights are being added into uncharted territories like horseshoe crab (Limulus polyphemus), tardigrades (Hypsibius dujardini), velvet worm (Euperipatoides_rowelli), and basal land plants like hornworts, liverworts and mosses. CYPs from the fungi, one of the most diverse groups, are being explored and organized as nearly 800 fungal species are now sequenced. The CYP clan structure in fungi is emerging with 805 CYP families sorting into 32 CYP clans. >3000 bacterial sequences are named, mostly from terrestrial or freshwater sources. Of 18,379 bacterial sequences downloaded from the CYPED database, all are >43% identical to named CYPs. Therefore, they fit in the 602 named P450 prokaryotic families. Diversity in this group is becoming saturated, however 25% of 3305 seawater bacterial P450s did not match known P450 families, indicating marine bacterial CYPs are not as well sampled as land/freshwater based bacterial CYPs. Future sequencing plans of the Genome 10K project, i5k and GIGA (Global Invertebrate Genomics Alliance) are expected to produce more than one million cytochrome P450 sequences by 2020. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Quantitative analysis of cytochrome P450 isoforms in human liver microsomes by the combination of proteomics and chemical probe-based assay.

    PubMed

    Liu, Xidong; Hu, Lianghai; Ge, Guangbo; Yang, Bo; Ning, Jing; Sun, Shixin; Yang, Ling; Pors, Klaus; Gu, Jingkai

    2014-08-01

    Cytochrome P450 (CYP) is one of the most important drug-metabolizing enzyme families, which participates in the biotransformation of many endogenous and exogenous compounds. Quantitative analysis of CYP expression levels is important when studying the efficacy of new drug molecules and assessing drug-drug interactions in drug development. At present, chemical probe-based assay is the most widely used approach for the evaluation of CYP activity although there are cross-reactions between the isoforms with high sequence homologies. Therefore, quantification of each isozyme is highly desired in regard to meeting the ever-increasing requirements for carrying out pharmacokinetics and personalized medicine in the academic, pharmaceutical, and clinical setting. Herein, an absolute quantification method was employed for the analysis of the seven isoforms CYP1A2, 2B6, 3A4, 3A5, 2C9, 2C19, and 2E1 using a proteome-derived approach in combination with stable isotope dilution assay. The average absolute amount measured from twelve human liver microsomes samples were 39.3, 4.3, 54.0, 4.6, 10.3, 3.0, and 9.3 (pmol/mg protein) for 1A2, 2B6, 3A4, 3A5, 2C9, 2C19, and 2E1, respectively. Importantly, the expression level of CYP3A4 showed high correlation (r = 0.943, p < 0.0001) with the functional activity, which was measured using bufalin-a highly selective chemical probe we have developed. The combination of MRM identification and analysis of the functional activity, as in the case of CYP3A4, provides a protocol which can be extended to other functional enzyme studies with wide application in pharmaceutical research.

  1. Cytochrome P450 system expression and DNA adduct formation in the liver of Zacco platypus following waterborne benzo(a)pyrene exposure: implications for biomarker determination.

    PubMed

    Lee, Jin Wuk; Kim, Yong Hwa; Yoon, Seokjoo; Lee, Sung Kyu

    2014-09-01

    Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon that causes mutations and tumor formation. Zacco platypus is a sentinel species that is suitable for monitoring aquatic environments. We studied cytochrome P450 system (CYP system) expression and DNA adduct formation in the liver of Z. platypus following waterborne exposure to BaP. The results showed both dose and time dependency. The significant induction levels of CYP system mRNA and protein reached maximums at 2 days and 14 days, respectively, and hepatosomatic index was maximally induced at 4 days during 14 days BaP exposure. DNA adduct formation was significantly induced compared to corresponding controls (t-test, p < 0.01) after 4 days of exposure in 100 μg/L BaP. These results indicate that the only use of mRNA expression level of CYP system as a biomarker make us underestimate prolonged toxicity (4-14 days) of BaP and the only use of protein expression level of CYP system make us underestimate acute toxicity (1-2 days) of BaP. Therefore, we suggests that a combinational use of the mRNA expression level and protein expression level of CYP system, hepatosomatic index is a useful biomarker in risk assessment of waterborne BaP exposure. In addition, DNA adduct formation was a useful biomarker in risk assessment of waterborne BaP exposure at 4 days. CYP1A was a more sensitive biomarker than CYP reductase for BaP exposure when considering both the mRNA and protein level. Furthermore, our results show that Z. platypus is a useful species for assessing the risk of waterborne BaP exposure. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  2. Alcohol dehydrogenase and cytochrome P450 2E1 can be induced by long-term exposure to ethanol in cultured liver HEP-G2 cells.

    PubMed

    Balusikova, Kamila; Kovar, Jan

    2013-09-01

    It has been shown in previous studies that liver HEP-G2 cells (human hepatocellular carcinoma) lose their ability to express active alcohol dehydrogenase (ADH) and cytochrome P450 2E1 (CYP2E1). Although both are ethanol-inducible enzymes, short-term exposure to ethanol does not cause any changes in expression or activity in cultured HEP-G2 cells. Therefore, we tested the effect of long-term exposure to ethanol on the expression and activity of both ADH and CYP2E1 in these cells. The expression of ADH and CYP2E1 was assessed at the mRNA and/or protein level using real-time PCR and Western blot analysis. Specific colorimetric assays were used for the measurement of ADH and CYP2E1 enzymatic activities. Caco-2 cells (active CYP2E1 and inactive ADH) were used as control cells. Significantly increased protein expression of ADH (about 2.5-fold) as well as CYP2E1 (about 1.6-fold) was found in HEP-G2 cells after long-term (12 mo) exposure to ethanol. The activity of ADH and CYP2E1 was also significantly increased from 12 ± 3 and 6 ± 1 nmol/h/mg of total protein to 191 ± 9 and 57 ± 9 nmol/h/mg of total protein, respectively. We suggest that the loss of activity of ethanol-metabolizing enzymes in cultured HEP-G2 cells is reversible and can be induced by prolonged exposure to ethanol. We are therefore able to reactivate HEP-G2 cells metabolic functions concerning ethanol oxidation just by modification of in vitro culture conditions without necessity of transfection with its side effect - enzyme overexpression.

  3. In vitro Inhibitory Effect of Gymnema sylvestre Extracts and Total Gymnemic Acids Fraction on Select Cytochrome P450 Activities in Rat Liver Microsomes.

    PubMed

    Vaghela, Madhuri; Iyer, Krishna; Pandita, Nancy

    2017-10-10

    Gymnema sylvestre R. Br. is a well-known Indian medicinal herb. Gymnemic acids are pentacyclic triterpenes saponins and active phytoconstituents of Gymnema sylvestre. The study aimed at evaluation of the in vitro rat liver cytochrome P450 (CYP) inhibition potential of extracts and total gymnemic acid (TA)-enriched fractions from G. sylvestre. Standardization of G. sylvestre [ethanolic (EL), hydroethanolic (HE), total acid of ethanolic (TAE), total acid of hydroethanolic (TAHE) and total acid of aqueous (TAAQ) extract] was done with respect to deacyl gymnemic acid (DAGA), using reverse phase-high performance liquid chromatography (RP-HPLC). Total triterpenoid content was determined by vanillin perchloric acid assay. Total triterpene content was found to be the highest in TAAQ (59.86 ± 0.005% w/w) and TAE (49.77 ± 0.009% w/w). TAAQ showed IC50 ≤ 50 µg/ml for all selected CYP activities. Testosterone 6β-hydroxylation was strongly inhibited by TAE (IC50: 15.48 ± 2.13 µg/ml) and was moderately by TAAQ and EL with IC50 ≥ 50 µg/ml. Flurbiprofen 4'-hydroxylation was subject to strong, weak and moderate inhibition by TAAQ (IC50: 34.67 ± 1.38 µg/ml), TAE (IC50: ≥ 50 µg/ml) and EL (IC50: > 50 µg/ml), respectively. Dextromethorphan O-demethylation was inhibited by TAHE and TAAQ. In vitro inhibition studies suggested that TA strongly inhibits activity of selected CYP. This inhibition may possibly be due to triterpenoids and gymnemic acids that have been reported to be present in it. Data also suggest a potential for possible in vivo herb-drug interactions involving G. sylvestre and other medications that are metabolized by the same CYP.

  4. Effect of antipsychotic drugs on human liver cytochrome P-450 (CYP) isoforms in vitro: preferential inhibition of CYP2D6.

    PubMed

    Shin, J G; Soukhova, N; Flockhart, D A

    1999-09-01

    The ability of antipsychotic drugs to inhibit the catalytic activity of five cytochrome P-450 (CYP) isoforms was compared using in vitro human liver microsomal preparations to evaluate the relative potential of these drugs to inhibit drug metabolism. The apparent kinetic parameters for enzyme inhibition were determined by nonlinear regression analysis of the data. All antipsychotic drugs tested competitively inhibited dextromethorphan O-demethylation, a selective marker for CYP2D6, in a concentration-dependent manner. Thioridazine and perphenazine were the most potent, with IC(50) values (2.7 and 1.5 microM) that were comparable to that of quinidine (0.52 microM). The estimated K(i) values for CYP2D6-catalyzing dextrorphan formation were ranked in the following order: perphenazine (0.8 microM), thioridazine (1.4 microM), chlorpromazine (6.4 microM), haloperidol (7.2 microM), fluphenazine (9.4 microM), risperidone (21.9 microM), clozapine (39.0 microM), and cis-thiothixene (65.0 microM). No remarkable inhibition of other CYP isoforms was observed except for moderate inhibition of CYP1A2-catalyzed phenacetin O-deethylation by fluphenazine (K(i) = 40.2 microM) and perphenazine (K(i) = 65.1). The estimated K(i) values for the inhibition of CYP2C9, 2C19, and 3A were >300 microM in almost all antipsychotics tested. These results suggest that antipsychotic drugs exhibit a striking selectivity for CYP2D6 compared with other CYP isoforms. This may reflect a remarkable commonality of structure between the therapeutic targets for these drugs, the transporters, and metabolic enzymes that distribute and eliminate them. Clinically, coadministration of these medicines with drugs that are primarily metabolized by CYP2D6 may result in significant drug interactions.

  5. Structural features of cytochrome P450 1A associated with the absence of EROD activity in liver of the of the loricariid catfish Pterygoplichthys sp

    PubMed Central

    Parente, T.E.M.; Rebelo, M.F.; da-Silva, M.L.; Woodin, B.R.; Goldstone, J. V.; Bisch, P.M.; Paumgartten, F.J.R.; Stegeman, J.J.

    2011-01-01

    The Amazon catfish genus Pterygoplichthys (Loricariidae, Siluriformes) is closely related to the loricariid genus Hypostomus, in which at least two species lack detectable ethoxyresorufin-O-deethylase (EROD) activity, typically catalyzed by cytochrome P450 1 (CYP1) enzymes. Pterygoplichthys sp. liver microsomes also lacked EROD, as well as activity with other substituted resorufins, but aryl hydrocarbon receptor agonists induced hepatic CYP1A mRNA and protein suggesting structural/functional differences in Pterygoplichthys CYP1s from those in other vertebrates. Comparing the sequences of CYP1As of Pterygoplichthys sp. and of two phylogenetically-related siluriform species that do catalyze EROD (Ancistrus sp., Loricariidae and Corydoras sp., Callichthyidae) showed that these three proteins share amino acids at 17 positions that are not shared by any fish in a set of 24 other species. Pterygoplichthys and Ancistrus (the loricariids) have an additional 22 amino acid substitutions in common that are not shared by Corydoras or by other fish species. Pterygoplichthys has six exclusive amino acid substitutions. Molecular docking and dynamics simulations indicate that Pterygoplichthys CYP1A has a weak affinity for ER, which binds infrequently in a productive orientation, and in a less stable conformation than in CYP1As of species that catalyze EROD. ER also binds with the carbonyl moiety proximal to the heme iron. Pterygoplichthys CYP1A has amino acids substitutions that reduce the frequency of correctly oriented ER in the AS preventing the detection of EROD activity. The results indicate that loricariid CYP1As may have a peculiar substrate selectivity that differs from CYP1As of most vertebrates. PMID:21840383

  6. Identification of cytochrome P450 enzymes involved in the metabolism of 3',4'-methylenedioxy-alpha-pyrrolidinopropiophenone (MDPPP), a designer drug, in human liver microsomes.

    PubMed

    Springer, D; Staack, R F; Paul, L D; Kraemer, T; Maurer, H H

    2005-03-01

    The metabolism of 3',4'-methylenedioxy-a-pyrrolidinopropiophenone (MDPPP), a novel designer drug, to its demethylenated major metabolite 3',4'-dihydroxy-pyrrolidinopropiophenone (di-HO-PPP) was studied in pooled human liver microsomes (HLM) and in cDNA-expressed human hepatic cytochrome P450 (CYP) enzymes. CYP2C19 catalysed the demethylenation with apparent Km and Vmax values of 120.0+/-13.4 microM and 3.2+/-0.1 pmol/min/pmol CYP, respectively (mean+/-standard deviation). CYP2D6 catalysed the demethylenation with apparent Km and Vmax values of 13.5+/-1.5 microM and 1.3+/-0.1 pmol/min/pmol CYP, respectively. HLM exhibited a clear biphasic profile with an apparent Km,1 value of 7.6+/-9.0 and a Vmax,1 value of 11.1+/-3.6 pmol/min/mg protein, respectively. Percentages of intrinsic clearances of MDPPP by specific CYPs were calculated using the relative activity factor (RAF) approach with (S)-mephenytoin-4'-hydroxylation or bufuralol-1'-hydroxylation as index reactions for CYP2C19 or CYP2D6, respectively. MDPPP, di-HO-PPP and the standard 4'-methyl-pyrrolidinohexanophenone (MPHP) were separated and analysed by liquid chromatography-mass spectrometry in the selected-ion monitoring (SIM) mode. The CYP2D6-specific chemical inhibitor quinidine (3 microM) significantly (p<0.001) inhibited di-HO-PPP formation by 75.8%+/-1.7% (mean+/-standard error of the mean) in incubation mixtures with HLM and 2 microM MDPPP. It can be concluded from the data obtained from kinetic and inhibition studies that polymorphically expressed CYP2D6 and CYP2C19 are almost equally responsible for MDPPP demethylenation.

  7. Cytochrome P450 and Non-Cytochrome P450 Oxidative Metabolism: Contributions to the Pharmacokinetics, Safety, and Efficacy of Xenobiotics.

    PubMed

    Foti, Robert S; Dalvie, Deepak K

    2016-08-01

    The drug-metabolizing enzymes that contribute to the metabolism or bioactivation of a drug play a crucial role in defining the absorption, distribution, metabolism, and excretion properties of that drug. Although the overall effect of the cytochrome P450 (P450) family of drug-metabolizing enzymes in this capacity cannot be understated, advancements in the field of non-P450-mediated metabolism have garnered increasing attention in recent years. This is perhaps a direct result of our ability to systematically avoid P450 liabilities by introducing chemical moieties that are not susceptible to P450 metabolism but, as a result, may introduce key pharmacophores for other drug-metabolizing enzymes. Furthermore, the effects of both P450 and non-P450 metabolism at a drug's site of therapeutic action have also been subject to increased scrutiny. To this end, this Special Section on Emerging Novel Enzyme Pathways in Drug Metabolism will highlight a number of advancements that have recently been reported. The included articles support the important role of non-P450 enzymes in the clearance pathways of U.S. Food and Drug Administration-approved drugs over the past 10 years. Specific examples will detail recent reports of aldehyde oxidase, flavin-containing monooxygenase, and other non-P450 pathways that contribute to the metabolic, pharmacokinetic, or pharmacodynamic properties of xenobiotic compounds. Collectively, this series of articles provides additional support for the role of non-P450-mediated metabolic pathways that contribute to the absorption, distribution, metabolism, and excretion properties of current xenobiotics. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Molecular evolutionary dynamics of cytochrome P450 monooxygenases across kingdoms: Special focus on mycobacterial P450s

    PubMed Central

    Parvez, Mohammad; Qhanya, Lehlohonolo Benedict; Mthakathi, Ntsane Trevor; Kgosiemang, Ipeleng Kopano Rosinah; Bamal, Hans Denis; Pagadala, Nataraj Sekhar; Xie, Ting; Yang, Haoran; Chen, Hengye; Theron, Chrispian William; Monyaki, Richie; Raselemane, Seiso Caiphus; Salewe, Vuyani; Mongale, Bogadi Lorato; Matowane, Retshedisitswe Godfrey; Abdalla, Sara Mohamed Hasaan; Booi, Wool Isaac; van Wyk, Mari; Olivier, Dedré; Boucher, Charlotte E.; Nelson, David R.; Tuszynski, Jack A.; Blackburn, Jonathan Michael; Yu, Jae-Hyuk; Mashele, Samson Sitheni; Chen, Wanping; Syed, Khajamohiddin

    2016-01-01

    Since the initial identification of cytochrome P450 monooxygenases (CYPs/P450s), great progress has been made in understanding their structure-function relationship, diversity and application in producing compounds beneficial to humans. However, the molecular evolution of P450s in terms of their dynamics both at protein and DNA levels and functional conservation across kingdoms still needs investigation. In this study, we analyzed 17 598 P450s belonging to 113 P450 families (bacteria −42; fungi −19; plant −28; animal −22; plant and animal −1 and common P450 family −1) and found highly conserved and rapidly evolving P450 families. Results suggested that bacterial P450s, particularly P450s belonging to mycobacteria, are highly conserved both at protein and DNA levels. Mycobacteria possess the highest P450 diversity percentage compared to other microbes and have a high coverage of P450s (≥1%) in their genomes, as found in fungi and plants. Phylogenetic and functional analyses revealed the functional conservation of P450s despite belonging to different biological kingdoms, suggesting the adherence of P450s to their innate function such as their involvement in either generation or oxidation of steroids and structurally related molecules, fatty acids and terpenoids. This study’s results offer new understanding of the dynamic structural nature of P450s. PMID:27616185

  9. Cytochrome P450 arachidonic acid metabolism in bovine corneal epithelium

    SciTech Connect

    Masferrer, J.; Schwartzman, M.L.; Abraham, N.G.; Dunn, M.W.; McGiff, J.C.

    1986-03-01

    The presence of the cytochrom P450 system and its involvement in the metabolism of AA was studied in the corneal epithelium. This tissue contains cytochrome P450 as assessed directly by measurement of the carbon monoxide reduced spectrum (specific activity of 161 pmol/10 mg protein) and indirectly by measuring the activity of aryl hydrocarbon hydroxylase (AHH) - a cytochrome P450-dependent enzyme (11-39 pmol 3-OH benzopyrene/mg protein/10 min). When corneal epithelial microsomes were incubated with /sup 14/C-arachidonic acid, 30-50% of the total radioactivity was converted to two peaks, I and II. Further separation using high performance liquid chromatography has shown that each peak contains two metabolites, A,B and C,D. Metabolite formation was dependent on the addition of NADPH (1 mM) and inhibited by carbon monoxide and SKF-525A (100 ..mu..M) suggesting a cytochrome P450-dependent mechanism. Compound C (5-10 ..mu..M) inhibited the activity of corneal epithelial Na-K-ATPase by 30-60%, being 100-fold more potent than ouabain. Compound D (10-100 ng) induced a dose dependent relaxation of the rat caudal artery. Compound D also inhibited corneal Na-K-ATPase activity but less potently than compound C. These compounds may be important to transport processes of ocular epithelia and participate in the control of the ocular circulation and aqueous humor dynamics.

  10. Unusual properties of the cytochrome P450 superfamily

    PubMed Central

    Lamb, David C.; Waterman, Michael R.

    2013-01-01

    During the early years of cytochrome P450 research, a picture of conserved properties arose from studies of mammalian forms of these monooxygenases. They included the protohaem prosthetic group, the cysteine residue that coordinates to the haem iron and the reduced CO difference spectrum. Alternatively, the most variable feature of P450s was the enzymatic activities, which led to the conclusion that there are a large number of these enzymes, most of which have yet to be discovered. More recently, studies of these enzymes in other eukaryotes and in prokaryotes have led to the discovery of unexpected P450 properties. Many are variations of the original properties, whereas others are difficult to explain because of their unique nature relative to the rest of the known members of the superfamily. These novel properties expand our appreciation of the broad view of P450 structure and function, and generate curiosity concerning the evolution of P450s. In some cases, structural properties, previously not found in P450s, can lead to enzymatic activities impacting the biological function of organisms containing these enzymes; whereas, in other cases, the biological reason for the variations are not easily understood. Herein, we present particularly interesting examples in detail rather than cataloguing them all. PMID:23297356

  11. Immunohistochemical localization of cytochrome P450 aromatase in equine gonads.

    PubMed

    Almadhidi, J; Seralini, G E; Fresnel, J; Silberzahn, P; Gaillard, J L

    1995-06-01

    Estrogens are the major steroids produced by equine gonads. To identify the cells responsible for estrogen synthesis, an antiserum against purified equine testicular cytochrome P450 aromatase was produced in rabbits. The reactivity and specificity of the antiserum were assessed by ELISA, immunoblot analysis, and immunoneutralization studies. Immunofluorescence microscopy demonstrated that in the male gonad, cytochrome P450 aromatase (P450arom) was localized in the interstitial tissue, whereas, under the experimental conditions used, the Sertoli and germ cells did not show any specific staining. In the ovary, the granulosa cells of small follicles exhibited faint immunofluorescent staining for P450arom and the granulosa cells of large, viable more follicles showed a high degree of immunoreactivity. In the corpus luteum, all the luteinized cells showed immunoreactivity. No immunoreactivity was detected in other cells of small and large viable follicles. Immunolocalization of P450arom in the equine testicular Leydig cells and in ovarian granulosa and luteinized cells indicates that these cells have the ability to metabolize androgens to estrogens and possibly to catechol estrogens.

  12. Cytochromes P450 in the bioactivation of chemicals.

    PubMed

    Ioannides, Costas; Lewis, David F V

    2004-01-01

    The initial view that the cytochrome P450 enzyme system functions simply in the deactivation of xenobiotics is anachronistic on the face of mounting evidence that this system can also transform many innocuous chemicals to toxic products. However, not all xenobiotic-metabolising cytochrome P450 subfamilies show the same propensity in the bioactivation of chemicals. For example, the CYP2C, 2B and 2D subfamilies play virtually no role in the bioactivation of toxic and carcinogenic chemicals, whereas the CYP1A, 1B and 2E subfamilies are responsible for the bioactivation of the majority of xenobiotics. Electronic and molecular structural features of organic chemicals appear to predispose them to either bioactivation by one cytochrome P450 enzyme or deactivation by another. Consequently, the fate of a chemical in the body is largely dependent on the cytochrome P450 profile at the time of exposure. Any factor that modulates the enzymes involved in the metabolism of a certain chemical will also influence its toxicity and carcinogenicity. For example, many chemical carcinogens bioactivated by CYP1, on repeated administration, selectively induce this family, thus exacerbating their carcinogenicity. CYP1 induction potency by chemicals appears to be determined by a combination of their molecular shape and electron activation. The function of cytochromes P450 in the bioactivation of chemicals is currently being exploited to design systems that can be used clinically to facilitate the metabolic conversion of prodrugs to their biologically-active metabolites in cells that poorly express them, such as tumour cells, in the so-called gene-directed prodrug therapy.

  13. Coinduction of cytochrome P450IIE1, glutathione S-transferases and microsomal epoxide hydrolase by nitrogen- and sulfur-containing heterocycles in rat liver

    SciTech Connect

    Kim, S.G.; Novak, R.F. )

    1991-03-15

    The effects of thiazole, pyrazine, pyridazine and pyrimidine on cytochrome P450IIE1, the glutathione S-transferases (GSTs) and microsomal epoxide hydrolase (mEH) have been examined at the molecular level. Administration of each of these compounds to rats was found to elevate hepatic P450IIE1, the GSTs, and mEH simultaneously, as evidenced by catalytic activities, SDS-PAGE and immunoblot analyses. Hepatic tissue was obtained at 24, 48 and 72 h during the treatment regimen. RNA and LiCl precipitated from hepatic tissue homogenized in guanidinium thiocyanate and poly(A){sup +} RNA was isolated using oligo(dT) cellulose. Slot and Northern blot analyses of poly(A){sup +} RNA isolated from rats during the 3 d treatment regimen revealed an {approximately}4 to 5-fold decrease in P450IIE1 mRNA at 24 h after treatment with a slight increase noted for 48 and 72 h relative to untreated animals. In contrast, an {approximately}8 to 14-fold increase in GST {alpha}-class mRNA and an {approximately}17- to 20-fold increase in mEH mRNA was monitored at 48 to 72 h as compared to untreated animals. These results revealed that these heterocyclic compounds induce both Phase 1 and Phase 2 drug metabolizing enzymes simultaneously through different molecular mechanisms.

  14. Metabolism of the major Echinacea alkylamide N-isobutyldodeca-2E,4E,8Z,10Z-tetraenamide by human recombinant cytochrome P450 enzymes and human liver microsomes.

    PubMed

    Toselli, F; Matthias, A; Bone, K M; Gillam, E M J; Lehmann, R P

    2010-08-01

    Echinacea preparations are used for the treatment and prevention of upper respiratory tract infections. The phytochemicals believed responsible for the immunomodulatory properties are the alkylamides found in ethanolic extracts, with one of the most abundant being the N-isobutyldodeca-2E,4E,8Z,10Z-tetraenamide (1). In this study, we evaluated the human cytochrome P450 enzymes involved in the metabolism of this alkylamide using recombinant P450s, human liver microsomes and pure synthetic compound. Epoxidation, N-dealkylation and hydroxylation products were detected, with different relative amounts produced by recombinant P450s and microsomes. The major forms showing activity toward the metabolism of 1 were CYP1A1, CYP1A2 (both producing the same epoxide and N-dealkylation product), CYP2A13 (producing two epoxides), and CYP2D6 (producing two epoxides and an hydroxylated metabolite). Several other forms showed less activity. In incubations with human liver microsomes and selective inhibitors, CYP2E1 was found to be principally responsible for producing the dominant, hydroxylation product, whereas CYP2C9 was the principal source of the epoxides and CYP1A2 was responsible for the dealkylation product. In summary, in this study the relative impacts of the main human xenobiotic-metabolizing cytochrome P450s on the metabolism of a major Echinacea alkylamide have been established and the metabolites formed have been identified.

  15. Influence of polyhalogenated aromatic hydrocarbons on the induction, activity, and stabilization of cytochrome P450

    SciTech Connect

    Voorman, R.

    1987-01-01

    In the course of experiments evaluating the metabolism of polybrominated biphenyls by cytochrome P450 isozymes induced by 3,4,5,3',4',5'-hexabromobiphenyl (HBB), it was discovered that the inducer remained closely associated with cytochrome P450d. Subsequent purification of cytochromes from HBB treated rates revealed a 0.5:1 association of HBB to cytochrome P450d but virtually none with cytochrome P450c or cytochrome b5. Immunochemical quantitation of cytochrome P450d in the same microsomes yielded a ratio of P450d:HBB that approached unity. Measurement of cytochrome P450d estradiol 2-hydroxylase indicated non-competitive or mixed type inhibition caused by HBB at a concentration of 10-1000 nM. Inhibition was specific to cytochrome P450d since estradiol 2-hydroxylase catalyzed by cytochrome P450h was unaffected by HBB. The ability of HCB and isosafrole to stabilize cytochrome P450d, and thus indirectly influence regulation of the enzyme, was evaluated by treating rats with a dose of TCDD sufficient to produce maximum induction of cytochromes P450c and P450d via the Ah receptor, yet insufficient to bind to the enzyme. Subsequent treatment of these animals with HCB or isosafrole and a radiolabeled amino acid, revealed a significant increase in cytochrome P450d specific content relative to cytochrome P450c and significant retention of the radiolabel in P450d relative to rats treated only with TCDD.

  16. Brain mitochondrial cytochromes P450: xenobiotic metabolism, presence of multiple forms and their selective inducibility.

    PubMed

    Bhagwat, S V; Boyd, M R; Ravindranath, V

    1995-06-20

    The capability of rat brain mitochondria to metabolize a variety of xenobiotics was examined. The presence of cytochrome P450 (P450) and associated monooxygenase activities were estimated in isolated rat brain mitochondria and compared with the corresponding activities in microsomes. Total P450 content in brain mitochondria from naive rats was twice that of the corresponding microsomal level. The ability of brain mitochondria to metabolize the potent carcinogen N-nitrosodimethylamine was more than twofold that of the corresponding microsomal activity, while the 7-ethoxycoumarin-O-deethylase activity was significantly lower in mitochondria. Immunoblot experiments using antisera to purified rat liver microsomal P450s, namely P450 (2B1/2B2), P4501A1, and P4502E1, and purified phenobarbital-inducible rat brain P450, revealed the presence of immunoreactive bands in isolated brain mitochondria. These various antibodies to P450 inhibited the brain mitochondrial monooxygenase activities to significant, though varying extent. The addition of antiserum to microsomal NADPH cytochrome P450 reductase did not affect the mitochondrial P450 associated monooxygenase activities, although it completely inhibited the corresponding microsomal activities. Chronic ethanol administration resulted in twofold induction of total P450 content and the monooxygenase activities known to be mediated by P4502E1, such as N-nitrosodimethylamine-N-demethylase and p-nitrophenol hydroxylase in brain mitochondria. Pretreatment of animals with phenobarbital resulted in the induction of aminopyrine N-demethylase activity in brain mitochondria. The study demonstrates the presence of multiple forms of P450 in the rat brain mitochondria, their inducibility, and their capability to metabolize xenobiotics.

  17. The rabbit pulmonary cytochrome P450 arachidonic acid metabolic pathway: characterization and significance.

    PubMed Central

    Zeldin, D C; Plitman, J D; Kobayashi, J; Miller, R F; Snapper, J R; Falck, J R; Szarek, J L; Philpot, R M; Capdevila, J H

    1995-01-01

    Cytochrome P450 metabolizes arachidonic acid to several unique and biologically active compounds in rabbit liver and kidney. Microsomal fractions prepared from rabbit lung homogenates metabolized arachidonic acid through cytochrome P450 pathways, yielding cis-epoxyeicosatrienoic acids (EETs) and their hydration products, vic-dihydroxyeicosatrienoic acids, mid-chain cis-trans conjugated dienols, and 19- and 20-hydroxyeicosatetraenoic acids. Inhibition studies using polyclonal antibodies prepared against purified CYP2B4 demonstrated 100% inhibition of arachidonic acid epoxide formation. Purified CYP2B4, reconstituted in the presence of NADPH-cytochrome P450 reductase and cytochrome b5, metabolized arachidonic acid, producing primarily EETs. EETs were detected in lung homogenate using gas chromatography/mass spectroscopy, providing evidence for the in vivo pulmonary cytochrome P450 epoxidation of arachidonic acid. Chiral analysis of these lung EETs demonstrated a preference for the 14(R),15(S)-, 11(S),12(R)-, and 8(S),9(R)-EET enantiomers. Both EETs and vic-dihydroxyeicosatrienoic acids were detected in bronchoalveolar lavage fluid. At micromolar concentrations, methylated 5,6-EET and 8,9-EET significantly relaxed histamine-contracted guinea pig hilar bronchi in vitro. In contrast, 20-hydroxyeicosatetraenoic acid caused contraction to near maximal tension. We conclude that CYP2B4, an abundant rabbit lung cytochrome P450 enzyme, is the primary constitutive pulmonary arachidonic acid epoxygenase and that these locally produced, biologically active eicosanoids may be involved in maintaining homeostasis within the lung. Images PMID:7738183

  18. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions

    PubMed Central

    Ismail, Hanafy M.; O’Neill, Paul M.; Hong, David W.; Finn, Robert D.; Henderson, Colin J.; Wright, Aaron T.; Cravatt, Benjamin F.; Hemingway, Janet; Paine, Mark J. I.

    2013-01-01

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or “pyrethrome.” Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450–insecticide interactions and aiding the development of unique tools for disease control. PMID:24248381

  19. Marked inhibition of hepatic cytochrome P450 activity in cholesterol-induced atherosclerosis in rabbits.

    PubMed

    Irizar, A; Ioannides, C

    1998-04-03

    The objective of the present study was to investigate the expression of major xenobiotic-metabolising cytochrome P450 proteins, and of other enzyme systems, in hepatic and extrahepatic tissues of rabbits rendered atherosclerotic by the dietary administration of 1% cholesterol diets for 8 weeks. Individual cytochrome P450 proteins were monitored using diagnostic substrates and immunologically in Western blot analysis. The activity of all hepatic isoforms studied was depressed in the atherosclerotic animals; when, however, apoprotein levels were determined immunologically, no major differences were evident between the control and the atherosclerotic rabbits. In vitro studies indicated that neither cholesterol nor palm oil inhibited cytochrome P450 activity. The effects of cholesterol treatment leading to atherosclerosis on kidney, heart and lung cytochrome P450 activities were isoform- and tissue-specific; no change was evident in the heart activities, but in the lung and kidney cytochrome P450 activities were clearly modulated by the treatment with cholesterol. Apoprotein levels did not always parallel the changes in activities. Western blot analysis of aortic cytochromes P450 revealed that administration of cholesterol-rich diets enhanced CYP2B and CYP3A apoprotein levels. Cholesterol feeding to rabbits gave rise to a marked decrease in hepatic glutathione S-transferase activity but did not influence glutathione reductase or total glutathione levels. The same treatment had no effect on catalase, glutathione peroxidase and superoxide dismutase. It is concluded that treatment of rabbits with cholesterol-rich diets leading to atherosclerosis gives rise to profound changes in the expression of cytochrome P450 proteins in the liver and other tissues; possible mechanisms are discussed.

  20. Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver

    PubMed Central

    Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao

    2015-01-01

    Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (<100 mg/kg) does not change expression and enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult mouse liver, whereas phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. PMID:26400395

  1. Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver.

    PubMed

    Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao; Zhong, Xiao-bo

    2015-12-01

    Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (<100 mg/kg) does not change expression and enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult mouse liver, whereas phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Stereo-selective metabolism of methadone by human liver microsomes and cDNA-expressed cytochrome P450s: a reconciliation.

    PubMed

    Chang, Yan; Fang, Wenfang B; Lin, Shen-Nan; Moody, David E

    2011-01-01

    In vitro metabolism of methadone was investigated in cytochrome P450 (CYP) supersomes and phenotyped human liver microsomes (HLMs) to reconcile past findings on CYP involvement in stereo-selective metabolism of methadone. Racaemic methadone was used for incubations; (R)- and (S)-methadone turnover and (R)- and (S)-EDDP formation were determined using chiral liquid chromatography-tandem mass spectrometry. CYP supersome activity for methadone use and EDDP formation ranked CYP2B6 > 3A4 > 2C19 > 2D6 > 2C18, 3A7 > 2C8, 2C9, 3A5. After abundance scaling, CYP3A4, 2B6 and 2C19 accounted for 63-74, 12-32 and 1. 4-14% of respective activity. CYP2B6, 2D6 and 2C18 demonstrated a preference for (S)-EDDP formation; CYP2C19, 3A7 and 2C8 for (R)-EDDP; 3A4 none. Correlation analysis with 15 HLMs supported the involvement of CYP2B6 and 3A. The significant correlation of S/R ratio with CYP2B6 activity confirmed its stereo-selectivity. CYP2C19 and 2D6 inhibitors and monoclonal antibody (mAb) did not inhibit EDDP formation in HLM. Chemical and mAb inhibition of CYP3A in high 3A activity HLM reduced EDDP formation by 60-85%; inhibition of CYP2B6 in 2B6 high-activity HLM reduced (S)-EDDP formation by 80% and (R)-EDDP formation by 55%. Inhibition changed methadone metabolism in a stereo-selective manner. When CYP3A was inhibited, 2B6 mediated (S)-EDDP formation predominated; S/R stereo-selectivity increased. When 2B6 was inhibited (S)-EDDP formation fell and stereo-selectivity decreased. The results confirmed the primary roles of CYPs 3A4 and 2B6 in methadone metabolism; CYP2C8 and 2C9 did not appear involved; 2C19 and 2D6 have minimal roles. CYP2B6 is the primary determinant of stereo-selective metabolism; stereo-selective inhibition might play a role in varied plasma concentrations of the two enantiomers.

  3. Spectroscopic features of cytochrome P450 reaction intermediates

    PubMed Central

    Luthra, Abhinav; Denisov, Ilia G.; Sligar, Stephen G.

    2010-01-01

    Preface Cytochromes P450 constitute a broad class of heme monooxygenase enzymes with more than 11,500 isozymes which have been identified in organisms from all biological kingdoms [1]. These enzymes are responsible for catalyzing dozens chemical oxidative transformations such as hydroxylation, epoxidation, N-demethylation, etc., with very broad range of substrates [2-3]. Historically these enzymes received their name from ‘pigment 450’ due to the unusual position of the Soret band in UV-Vis absorption spectra of the reduced CO-saturated state [4-5]. Despite detailed biochemical characterization of many isozymes, as well as later discoveries of other ‘P450-like heme enzymes’ such as nitric oxide synthase and chloroperoxidase, the phenomenological term ‘cytochrome P450’ is still commonly used as indicating an essential spectroscopic feature of the functionally active protein which is now known to be due to the presence of a thiolate ligand to the heme iron [6]. Heme proteins with an imidazole ligand such as myoglobin and hemoglobin as well as an inactive form of P450 are characterized by Soret maxima at 420 nm [7]. This historical perspective highlights the importance of spectroscopic methods for biochemical studies in general, and especially for heme enzymes, where the presence of the heme iron and porphyrin macrocycle provides rich variety of specific spectroscopic markers available for monitoring chemical transformations and transitions between active intermediates of catalytic cycle. PMID:21167809

  4. Differential cytochrome P450 2D metabolism alters tafenoquine pharmacokinetics.

    PubMed

    Vuong, Chau; Xie, Lisa H; Potter, Brittney M J; Zhang, Jing; Zhang, Ping; Duan, Dehui; Nolan, Christina K; Sciotti, Richard J; Zottig, Victor E; Nanayakkara, N P Dhammika; Tekwani, Babu L; Walker, Larry A; Smith, Philip L; Paris, Robert M; Read, Lisa T; Li, Qigui; Pybus, Brandon S; Sousa, Jason C; Reichard, Gregory A; Smith, Bryan; Marcsisin, Sean R

    2015-07-01

    Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Differential Cytochrome P450 2D Metabolism Alters Tafenoquine Pharmacokinetics

    PubMed Central

    Vuong, Chau; Xie, Lisa H.; Potter, Brittney M. J.; Zhang, Jing; Zhang, Ping; Duan, Dehui; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Nanayakkara, N. P. Dhammika; Tekwani, Babu L.; Walker, Larry A.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.; Smith, Bryan

    2015-01-01

    Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations. PMID:25870069

  6. Cytochrome P450IA1 induction and localization in endothelium of vertebrate (teleost) heart.

    PubMed

    Stegeman, J J; Miller, M R; Hinton, D E

    1989-11-01

    Previous studies have shown that high levels of cytochrome P450 can occur in cardiac microsomes of vertebrates [Mol. Pharmacol. 21:517-526, (1982)]. Here we identify the dominant cardiac P450 in the marine fish scup as P450E, a teleost representative of P450IA1, and we describe its restricted cellular localization in the heart. Treatment of scup with beta-naphthoflavone produced an unusually strong (10-fold) induction of spectrally measured P450 in cardiac microsomes, with specific content reaching levels (0.5 nmol/mg) similar to those induced in scup liver. Microsomal ethoxyresorufin O-deethylase and aryl hydrocarbon hydroxylase activities, catalytic functions of scup P450E, were induced in parallel with P450 content. Similar induction was seen in both atrium and ventricle. Immunoblot analysis with monoclonal antibody 1-12-3, specific to scup P450E and other vertebrate P450IA1 proteins, showed that this hydrocarbon-inducible P450 is the dominant and possibly sole P450 form in heart microsomes of experimentally induced animals. Immunohistochemical analysis of scup heart sections (2-4-microns) with monoclonal antibody 1-12-3 revealed that P450E was detectable only in endothelial cells of the endocardium and of the coronary vasculature. A similar endothelial cell localization of the monoclonal antibody 1-12-3 epitope was observed in heart of rainbow trout, induced with beta-naphthoflavone, indicating a general nature for the endothelial localization of induced cardiac P450. Morphometric analysis showed that endothelium could constitute 8-9% of the volume of teleost heart, from which we calculate that P450IA1 could account for as much as 25% of the endothelial cell microsomal protein. Heart microsomes of untreated animals from contaminated environments also contained high levels of P450E, indicating that induction like that caused by beta-naphthoflavone could occur with chemicals in the environment. Strongly induced P450E (P450IA1) in endothelium could play a critical

  7. Incorporation of haemoglobin haem into the rat hepatic haemoproteins tryptophan pyrrolase and cytochrome P-450

    SciTech Connect

    Wyman, J.F.; Gollan, J.L.; Settle, W.; Farrell, G.C.; Correia, M.A.

    1986-01-01

    After its administration to intact rats, haemoglobin haem was incorporated into hepatic tryptophan pyrrolase as shown by the marked increase in functional constitution of this enzyme. Incorporation of haemoglobin haem into cytochrome P-450 was demonstrated in intact rats and in the isolated rat liver perfused with haemoglogin-free medium. In both systems, haemoglobin haem restored cytochrome P-450 content and its dependent mixed-function-oxidase activity after substrate-induced destruction of the cytochrome P-450 haem moiety. Further confirmation that heamoglobin haem could be incorporated prosthetically into cytochrome P-450 was achieved by administration of (tritium) haemoglobin to rats and subsequent isolation and characterization of radiolabelled substrate-alkylated products of cytochrome P-450 haem. Findings indicate that, although hepatic uptake of parenteral haemoglobin is slower than that of haem, it appears to serve as an effective haem donor to the intrahepatic free haem pool. Thus parenteral haemoglobin may warrant consideration as a therapeutic alternative to haem in the acute hepatic porphyrias.

  8. NADPH–Cytochrome P450 Oxidoreductase: Roles in Physiology, Pharmacology, and Toxicology

    PubMed Central

    Ding, Xinxin; Wolf, C. Roland; Porter, Todd D.; Pandey, Amit V.; Zhang, Qing-Yu; Gu, Jun; Finn, Robert D.; Ronseaux, Sebastien; McLaughlin, Lesley A.; Henderson, Colin J.; Zou, Ling; Flück, Christa E.

    2013-01-01

    This is a report on a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 2012 meeting in San Diego, California, on April 25, 2012. The symposium speakers summarized and critically evaluated our current understanding of the physiologic, pharmacological, and toxicological roles of NADPH–cytochrome P450 oxidoreductase (POR), a flavoprotein involved in electron transfer to microsomal cytochromes P450 (P450), cytochrome b5, squalene mono-oxygenase, and heme oxygenase. Considerable insight has been derived from the development and characterization of mouse models with conditional Por deletion in particular tissues or partial suppression of POR expression in all tissues. Additional mouse models with global or conditional hepatic deletion of cytochrome b5 are helping to clarify the P450 isoform- and substrate-specific influences of cytochrome b5 on P450 electron transfer and catalytic function. This symposium also considered studies using siRNA to suppress POR expression in a hepatoma cell–culture model to explore the basis of the hepatic lipidosis phenotype observed in mice with conditional deletion of Por in liver. The symposium concluded with a strong translational perspective, relating the basic science of human POR structure and function to the impacts of POR genetic variation on human drug and steroid metabolism. PMID:23086197

  9. mRNA Distribution and Heterologous Expression of Orphan Cytochrome P450 20A1

    PubMed Central

    Stark, Katarina; Wu, Zhong-Liu; Bartleson, Cheryl J.; Guengerich, F. Peter

    2015-01-01

    Cytochrome P450 (P450) 20A1 is one of the so-called “orphan” P450s without assigned biological function. mRNA expression was detected in human liver and extrahepatic expression was noted in several human brain regions, including substantia nigra, hippocampus, and amygdala, using conventional polymerase chain reaction and RNA dot blot analysis. Adult human liver contained 3-fold higher overall mRNA levels than whole brain, although specific regions (i.e., hippocampus and substantia nigra) exhibited higher mRNA expression levels than liver. Orthologous full-length and truncated transcripts of P450 20A1 were transcribed and sequenced from rat liver, heart, and brain. In rat, the concentrations of full-length transcripts were 3–4 fold higher in brain and heart than liver. In situ hybridization of rat whole brain sections showed a similar mRNA expression pattern as observed for human P450 20A1, indicating expression in substantia nigra, hippocampus, and amygdala. A number of N-terminal modifications of the codon-optimized human P450 20A1 sequence were prepared and expressed in Escherichia coli, and two of the truncated derivatives showed characteristic P450 spectra (200–280 nmol P450/l). Although the recombinant enzyme system oxidized NADPH, no catalytic activity was observed with the heterologously expressed protein when a number of potential steroids and biogenic amines were surveyed as potential substrates. The function of P450 20A1 remains unknown; however, the sites of mRNA expression in human brain and the conservation among species may suggest possible neurophysiological function. PMID:18541694

  10. Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis

    EPA Science Inventory

    The gene for the alkane-inducible cytochrome P450, P450alk, has been isolated from the yeast Candida tropicalis by immunoscreening a λgt11 library. Isolation of the gene has been identified on the basis of its inducibility and partial DNA sequence. Transcripts of this gene were i...

  11. Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis

    EPA Science Inventory

    The gene for the alkane-inducible cytochrome P450, P450alk, has been isolated from the yeast Candida tropicalis by immunoscreening a λgt11 library. Isolation of the gene has been identified on the basis of its inducibility and partial DNA sequence. Transcripts of this gene were i...

  12. QUANTITATIVE EVALUATION OF BROMODICHLOROMETHANE METABOLISM BY RECOMBINANT RAT AND HUMAN CYTOCHROME P450S

    EPA Science Inventory

    ABSTRACT
    We report quantitative estimates of the parameters for metabolism of bromodichloromethane (BDCM) by recombinant preparations of hepatic cytochrome P450s (CYPs) from rat and human. BDCM is a drinking water disinfectant byproduct that has been implicated in liver, kidn...

  13. Key Elements of the Chemistry of Cytochrome P-450: The Oxygen Rebound Mechanism.

    ERIC Educational Resources Information Center

    Groves, John T.

    1985-01-01

    Discusses the structure and function of the liver protein cytochrome P-450, an important catalyst for a variety of detoxification reactions. Diagnostic substracts for this heme-containing monooxygenase, synthetic modes of the active site, and oxidations with synthetic metalloporphyrins are the major topic areas considered. (JN)

  14. Key Elements of the Chemistry of Cytochrome P-450: The Oxygen Rebound Mechanism.

    ERIC Educational Resources Information Center

    Groves, John T.

    1985-01-01

    Discusses the structure and function of the liver protein cytochrome P-450, an important catalyst for a variety of detoxification reactions. Diagnostic substracts for this heme-containing monooxygenase, synthetic modes of the active site, and oxidations with synthetic metalloporphyrins are the major topic areas considered. (JN)

  15. QUANTITATIVE EVALUATION OF BROMODICHLOROMETHANE METABOLISM BY RECOMBINANT RAT AND HUMAN CYTOCHROME P450S

    EPA Science Inventory

    ABSTRACT
    We report quantitative estimates of the parameters for metabolism of bromodichloromethane (BDCM) by recombinant preparations of hepatic cytochrome P450s (CYPs) from rat and human. BDCM is a drinking water disinfectant byproduct that has been implicated in liver, kidn...

  16. A passion for P450s (rememberances of the early history of research on cytochrome P450).

    PubMed

    Estabrook, Ronald W

    2003-12-01

    Many members of the superfamily of hemeproteins, known as cytochrome P450 (P450 or CYP), are currently described in the literature (over 2000 at the date of this writing) [see Nelson, 2003 (http://drnelson.utmem.edu/CytochromeP450.html)]. In mammalian tissues, the P450s play central roles in drug and xenobiotic metabolism as well as steroid hormone synthesis, fat-soluble vitamin metabolism, and the conversion of polyunsaturated fatty acids to biologically active molecules. P450s also play a major role in plants by catalyzing the synthesis of a large number of secondary metabolites. Today we appreciate the unique oxygen chemistry catalyzed by the P450 enzymes as well as the dramatic effect of protein structural changes resulting in modifications of substrate specificity. Recent scientific advances have shown the importance of genetic differences (polymorphisms) in altering the physiological response of an animal to endo- and exo-biotic chemicals. In many instances these changes can be directly attributed to small differences in the amino acid sequence of a P450. The present article describes some of the early events associated with the establishment of the biological function of P450s. The 1950s and 1960s showed the transition of P450 from an unknown spectroscopic curiosity to the major player it now occupies in maintaining cellular homeostasis. The P450s are now recognized to occupy a great variety of phylogenetically distributed isoform activities. Much has been learned about the P450s, but much more remains as poorly understood. It has been almost 50 years since this class of unique proteins were discovered and their catalytic functions characterized. The present article describes the background and early history of research leading to our present knowledge of the cytochromes P450. Hopefully we will learn lessons from this history as we venture forward down the path of future scientific discovery.

  17. Epoxidation Activities of Human Cytochromes P450c17 and P450c21

    PubMed Central

    2015-01-01

    Some cytochrome P450 enzymes epoxidize unsaturated substrates, but this activity has not been described for the steroid hydroxylases. Physiologic steroid substrates, however, lack carbon–carbon double bonds in the parts of the pregnane molecules where steroidogenic hydroxylations occur. Limited data on the reactivity of steroidogenic P450s toward olefinic substrates exist, and the study of occult activities toward alternative substrates is a fundamental aspect of the growing field of combinatorial biosynthesis. We reasoned that human P450c17 (steroid 17-hydroxylase/17,20-lyase, CYP17A1), which 17- and 16α-hydroxylates progesterone, might catalyze the formation of the 16α,17-epoxide from 16,17-dehydroprogesterone (pregna-4,16-diene-3,20-dione). CYP17A1 catalyzed the novel 16α,17-epoxidation and the ordinarily minor 21-hydroxylation of 16,17-dehydroprogesterone in a 1:1 ratio. CYP17A1 mutation A105L, which has reduced progesterone 16α-hydroxylase activity, gave a 1:5 ratio of epoxide:21-hydroxylated products. In contrast, human P450c21 (steroid 21-hydroxylase, CYP21A2) converted 16,17-dehydroprogesterone to the 21-hydroxylated product and only a trace of epoxide. CYP21A2 mutation V359A, which has significant 16α-hydroxylase activity, likewise afforded the 21-hydroxylated product and slightly more epoxide. CYP17A1 wild-type and mutation A105L do not 21- or 16α-hydroxylate pregnenolone, but the enzymes 21-hydroxylated and 16α,17-epoxidized 16,17-dehydropregnenolone (pregna-5,16-diene-3β-ol-20-one) in 4:1 or 12:1 ratios, respectively. Catalase and superoxide dismutase did not prevent epoxide formation. The progesterone epoxide was not a time-dependent, irreversible CYP17A1 inhibitor. Our substrate modification studies have revealed occult epoxidase and 21-hydroxylase activities of CYP17A1, and the fraction of epoxide formed correlated with the 16α-hydroxylase activity of the enzymes. PMID:25386927

  18. Spectroscopic studies of the cytochrome P450 reaction mechanisms.

    PubMed

    Mak, Piotr J; Denisov, Ilia G

    2017-06-28

    The cytochrome P450 monooxygenases (P450s) are thiolate heme proteins that can, often under physiological conditions, catalyze many distinct oxidative transformations on a wide variety of molecules, including relatively simple alkanes or fatty acids, as well as more complex compounds such as steroids and exogenous pollutants. They perform such impressive chemistry utilizing a sophisticated catalytic cycle that involves a series of consecutive chemical transformations of heme prosthetic group. Each of these steps provides a unique spectral signature that reflects changes in oxidation or spin states, deformation of the porphyrin ring or alteration of dioxygen moieties. For a long time, the focus of cytochrome P450 research was to understand the underlying reaction mechanism of each enzymatic step, with the biggest challenge being identification and characterization of the powerful oxidizing intermediates. Spectroscopic methods, such as electronic absorption (UV-Vis), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), electron nuclear double resonance (ENDOR), Mössbauer, X-ray absorption (XAS), and resonance Raman (rR), have been useful tools in providing multifaceted and detailed mechanistic insights into the biophysics and biochemistry of these fascinating enzymes. The combination of spectroscopic techniques with novel approaches, such as cryoreduction and Nanodisc technology, allowed for generation, trapping and characterizing long sought transient intermediates, a task that has been difficult to achieve using other methods. Results obtained from the UV-Vis, rR and EPR spectroscopies are the main focus of this review, while the remaining spectroscopic techniques are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Highly reactive electrophilic oxidants in cytochrome P450 catalysis

    SciTech Connect

    Newcomb, Martin . E-mail: men@uic.edu; Chandrasena, R. Esala P.

    2005-12-09

    The cytochrome P450 enzymes effect a wide range of oxidations in nature including difficult hydroxylation reactions of unactivated C-H. Most of the high energy reactions of these catalysts appear to involve highly electrophilic active species. Attempts to detect the reactive transients in the enzymes have met with limited success, but evidence has accumulated that two distinct electrophilic oxidants are produced in the P450 enzymes. The consensus electrophilic oxidant termed 'iron-oxo' is usually thought to be an analogue of Compound I, an iron(IV)-oxo porphyrin radical cation species, but it is possible that a higher energy electronic isomer of Compound I is required to account for the facility of the C-H oxidation reactions. The second electrophilic oxidant of P450 is speculative; circumstantial evidence suggests that this species is iron-complexed hydrogen peroxide, but this oxidant might be a second spin state of iron-oxo. This overview discusses recent studies directed at detection of the electrophilic oxidants in P450 enzymes and the accumulated evidence for two distinct species.

  20. Aromatic Hydroxylation of Salicylic Acid and Aspirin by Human Cytochromes P450

    PubMed Central

    Bojić, Mirza; Sedgeman, Carl A.; Nagy, Leslie D.; Guengerich, F. Peter

    2015-01-01

    Aspirin (acetylsalicylic acid) is a well-known and widely-used analgesic. It is rapidly deacetylated to salicylic acid, which forms two hippuric acids—salicyluric acid and gentisuric acid—and two glucuronides. The oxidation of aspirin and salicylic acid has been reported with human liver microsomes, but data on individual cytochromes P450 involved in oxidation is lacking. In this study we monitored oxidation of these compounds by human liver microsomes and cytochrome P450 (P450) using UPLC with fluorescence detection. Microsomal oxidation of salicylic acid was much faster than aspirin. The two oxidation products were 2,5-dihydroxybenzoic acid (gentisic acid, documented by its UV and mass spectrum) and 2,3-dihydroxybenzoic acid. Formation of neither product was inhibited by desferrioxamine, suggesting a lack of contribution of oxygen radicals under these conditions. Although more liphophilic, aspirin was oxidized less efficiently, primarily to the 2,5-dihydroxy product. Recombinant human P450s 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 all catalyzed the 5-hydroxylation of salicylic acid. Inhibitor studies with human liver microsomes indicated that all six of the previously mentioned P450s could contribute to both the 5- and 3-hydroxylation of salicylic acid and that P450s 2A6 and 2B6 have contributions to 5-hydroxylation. Inhibitor studies indicated that the major human P450 involved in both 3- and 5-hydroxylation of salicylic acid is P450 2E1. PMID:25840124

  1. Aromatic hydroxylation of salicylic acid and aspirin by human cytochromes P450.

    PubMed

    Bojić, Mirza; Sedgeman, Carl A; Nagy, Leslie D; Guengerich, F Peter

    2015-06-20

    Aspirin (acetylsalicylic acid) is a well-known and widely-used analgesic. It is rapidly deacetylated to salicylic acid, which forms two hippuric acids-salicyluric acid and gentisuric acid-and two glucuronides. The oxidation of aspirin and salicylic acid has been reported with human liver microsomes, but data on individual cytochromes P450 involved in oxidation is lacking. In this study we monitored oxidation of these compounds by human liver microsomes and cytochrome P450 (P450) using UPLC with fluorescence detection. Microsomal oxidation of salicylic acid was much faster than aspirin. The two oxidation products were 2,5-dihydroxybenzoic acid (gentisic acid, documented by its UV and mass spectrum) and 2,3-dihydroxybenzoic acid. Formation of neither product was inhibited by desferrioxamine, suggesting a lack of contribution of oxygen radicals under these conditions. Although more liphophilic, aspirin was oxidized less efficiently, primarily to the 2,5-dihydroxy product. Recombinant human P450s 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 all catalyzed the 5-hydroxylation of salicylic acid. Inhibitor studies with human liver microsomes indicated that all six of the previously mentioned P450s could contribute to both the 5- and 3-hydroxylation of salicylic acid and that P450s 2A6 and 2B6 have contributions to 5-hydroxylation. Inhibitor studies indicated that the major human P450 involved in both 3- and 5-hydroxylation of salicylic acid is P450 2E1.

  2. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication.

    PubMed

    Jan, Yi-Hua; Richardson, Jason R; Baker, Angela A; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2015-10-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation.

  3. Tramadol Metabolism to O-Desmethyl Tramadol (M1) and N-Desmethyl Tramadol (M2) by Dog Liver Microsomes: Species Comparison and Identification of Responsible Canine Cytochrome P450s

    PubMed Central

    Mealey, Katrina L.; Grubb, Tamara L.; Greene, Stephen A.; Court, Michael H.

    2016-01-01

    Tramadol is widely used to manage mild to moderately painful conditions in dogs. However, this use is controversial, since clinical efficacy studies in dogs showed conflicting results, whereas pharmacokinetic studies demonstrated relatively low circulating concentrations of O-desmethyltramadol (M1). Analgesia has been attributed to the opioid effects of M1, whereas tramadol and the other major metabolite (N-desmethyltramadol, M2) are considered inactive at opioid receptors. This study aimed to determine whether cytochrome P450 (P450)–dependent M1 formation by dog liver microsomes is slower compared with cat and human liver microsomes and to identify the P450s responsible for M1 and M2 formation in canine liver. Since tramadol is used as a racemic mixture of (+)- and (−)-stereoisomers, both (+)-tramadol and (−)-tramadol were evaluated as substrates. M1 formation from tramadol by liver microsomes from dogs was slower than from cats (3.9-fold) but faster than humans (7-fold). However, M2 formation by liver microsomes from dogs was faster than those from cats (4.8-fold) and humans (19-fold). Recombinant canine P450 activities indicated that M1 was formed by CYP2D15, whereas M2 was largely formed by CYP2B11 and CYP3A12. This was confirmed by dog liver microsome studies that showed selective inhibition of M1 formation by quinidine and M2 formation by chloramphenicol and CYP2B11 antiserum, as well as induction of M2 formation by phenobarbital. Findings were similar for both (+)-tramadol and (−)-tramadol. In conclusion, low circulating M1 concentrations in dogs are explained in part by low M1 formation and high M2 formation, which is mediated by CYP2D15 and CYP2B11/CYP3A12, respectively. PMID:27758804

  4. Cytochrome P450-derived eicosanoids: the neglected pathway in cancer

    PubMed Central

    Kaipainen, Arja; Greene, Emily R.; Huang, Sui

    2010-01-01

    Endogenously produced lipid autacoids are locally acting small molecule mediators that play a central role in the regulation of inflammation and tissue homeostasis. A well-studied group of autacoids are the products of arachidonic acid metabolism, among which the prostaglandins and leukotrienes are the best known. They are generated by two pathways controlled by the enzyme systems cyclooxygenase and lipoxygenase, respectively. However, arachidonic acid is also substrate for a third enzymatic pathway, the cytochrome P450 (CYP) system. This third eicosanoid pathway consists of two main branches: ω-hydroxylases convert arachidonic acid to hydroxyeicosatetraenoic acids (HETEs) and epoxygenases convert it to epoxyeicosatrienoic acids (EETs). This third CYP pathway was originally studied in conjunction with inflammatory and cardiovascular disease. Arachidonic acid and its metabolites have recently stimulated great interest in cancer biology; but, unlike prostaglandins and leukotrienes the link between cytochome P450 metabolites and cancer has received little attention. In this review, the emerging role in cancer of cytochrome P450 metabolites, notably 20-HETE and EETs, are discussed. PMID:20941528

  5. Recollection of the early years of the research on cytochrome P450

    PubMed Central

    OMURA, Tsuneo

    2011-01-01

    Since the publication of the first paper on “cytochrome P450” in 1962, the biochemical research on this novel hemoprotein expanded rapidly in the 1960s and the 1970s as its principal roles in various important metabolic processes including steroid hormone biosynthesis in the steroidogenic organs and drug metabolism in the liver were elucidated. Establishment of the purification procedures of microsomal and mitochondrial P450s in the middle of the 1970s together with the introduction of molecular biological techniques accelerated the remarkable expansion of the research on P450 in the following years. This review paper summarizes the important developments in the research on P450 in the early years, for about two decades from the beginning, together with my personal recollections. PMID:22156409

  6. Herbal interactions involving cytochrome p450 enzymes: a mini review.

    PubMed

    Delgoda, Rupika; Westlake, Andrew C G

    2004-01-01

    The metabolism of a drug can be altered by another drug or foreign chemical, and such interactions can often be clinically significant. Cytochrome P450 (CYP) enzymes, a superfamily of enzymes found mainly in the liver, are involved in the metabolism of a plethora of xenobiotics and have been shown to be involved in numerous interactions between drugs and food, herbs and other drugs. The observed induction and inhibition of CYP enzymes by natural products in the presence of a prescribed drug has (among other reasons) led to the general acceptance that natural therapies can have adverse effects, contrary to the popular beliefs in countries where there is an active practice of ethnomedicine. Herbal medicines such as St. John's wort, garlic, piperine, ginseng, and gingko, which are freely available over the counter, have given rise to serious clinical interactions when co-administered with prescription medicines. Such adversities have spurred various pre-clinical and in vitro investigations on a series of other herbal remedies, with their clinical relevance remaining to be established. Although the presence of numerous active ingredients in herbal medicines, foods and dietary supplements complicate experimentation, the observable interactions with CYP enzymes warrant systematic studies, so that metabolism-based interactions can be predicted and avoided more readily. This article highlights the involvement of CYP enzymes in metabolism-related drug-herb interactions and the importance of gaining a mechanism-based understanding to avoid potential adverse drug reactions, in addition to outlining other contributory factors, such as pharmacogenetics and recreational habits that may compound this important health issue.

  7. Human hepatic cytochrome P450-specific metabolism of the organophosphorus pesticides methyl parathion and diazinon.

    PubMed

    Ellison, Corie A; Tian, Yuan; Knaak, James B; Kostyniak, Paul J; Olson, James R

    2012-01-01

    Organophosphorus pesticides (OPs) are a public health concern due to their worldwide use and documented human exposures. Phosphorothioate OPs are metabolized by cytochrome P450s (P450s) through either a dearylation reaction to form an inactive metabolite, or through a desulfuration reaction to form an active oxon metabolite, which is a potent cholinesterase inhibitor. This study investigated the rate of desulfuration (activation) and dearylation (detoxification) of methyl parathion and diazinon in human liver microsomes. In addition, recombinant human P450s were used to determine the P450-specific kinetic parameters (K(m) and V(max)) for each compound for future use in refining human physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models of OP exposure. The primary enzymes involved in bioactivation of methyl parathion were CYP2B6 (K(m) = 1.25 μM; V(max) = 9.78 nmol · min(-1) · nmol P450(-1)), CYP2C19 (K(m) = 1.03 μM; V(max) = 4.67 nmol · min(-1) · nmol P450(-1)), and CYP1A2 (K(m) = 1.96 μM; V(max) = 5.14 nmol · min(-1) · nmol P450(-1)), and the bioactivation of diazinon was mediated primarily by CYP1A1 (K(m) = 3.05 μM; V(max) = 2.35 nmol · min(-1) · nmol P450(-1)), CYP2C19 (K(m) = 7.74 μM; V(max) = 4.14 nmol · min(-1) · nmol P450(-1)), and CYP2B6 (K(m) = 14.83 μM; V(max) = 5.44 nmol · min(-1) · nmol P450(-1)). P450-mediated detoxification of methyl parathion only occurred to a limited extent with CYP1A2 (K(m) = 16.8 μM; V(max) = 1.38 nmol · min(-1) · nmol P450(-1)) and 3A4 (K(m) = 104 μM; V(max) = 5.15 nmol · min(-1) · nmol P450(-1)), whereas the major enzyme involved in diazinon detoxification was CYP2C19 (K(m) = 5.04 μM; V(max) = 5.58 nmol · min(-1) · nmol P450(-1)). The OP- and P450-specific kinetic values will be helpful for future use in refining human PBPK/PD models of OP exposure.

  8. Human Hepatic Cytochrome P450-Specific Metabolism of the Organophosphorus Pesticides Methyl Parathion and Diazinon

    PubMed Central

    Tian, Yuan; Knaak, James B.; Kostyniak, Paul J.; Olson, James R.

    2012-01-01

    Organophosphorus pesticides (OPs) are a public health concern due to their worldwide use and documented human exposures. Phosphorothioate OPs are metabolized by cytochrome P450s (P450s) through either a dearylation reaction to form an inactive metabolite, or through a desulfuration reaction to form an active oxon metabolite, which is a potent cholinesterase inhibitor. This study investigated the rate of desulfuration (activation) and dearylation (detoxification) of methyl parathion and diazinon in human liver microsomes. In addition, recombinant human P450s were used to determine the P450-specific kinetic parameters (Km and Vmax) for each compound for future use in refining human physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models of OP exposure. The primary enzymes involved in bioactivation of methyl parathion were CYP2B6 (Km = 1.25 μM; Vmax = 9.78 nmol · min−1 · nmol P450−1), CYP2C19 (Km = 1.03 μM; Vmax = 4.67 nmol · min−1 · nmol P450−1), and CYP1A2 (Km = 1.96 μM; Vmax = 5.14 nmol · min−1 · nmol P450−1), and the bioactivation of diazinon was mediated primarily by CYP1A1 (Km = 3.05 μM; Vmax = 2.35 nmol · min−1 · nmol P450−1), CYP2C19 (Km = 7.74 μM; Vmax = 4.14 nmol · min−1 · nmol P450−1), and CYP2B6 (Km = 14.83 μM; Vmax = 5.44 nmol · min−1 · nmol P450−1). P450-mediated detoxification of methyl parathion only occurred to a limited extent with CYP1A2 (Km = 16.8 μM; Vmax = 1.38 nmol · min−1 · nmol P450−1) and 3A4 (Km = 104 μM; Vmax = 5.15 nmol · min−1 · nmol P450−1), whereas the major enzyme involved in diazinon detoxification was CYP2C19 (Km = 5.04 μM; Vmax = 5.58 nmol · min−1 · nmol P450−1). The OP- and P450-specific kinetic values will be helpful for future use in refining human PBPK/PD models of OP exposure. PMID:21969518

  9. Differential modulation of cytochrome P-450 1A and P-glycoprotein expression by aryl hydrocarbon receptor agonists and thyroid hormone in Xenopus laevis liver and intestine.

    PubMed

    Colombo, Anita; Bonfanti, Patrizia; Orsi, Federica; Camatini, Marina

    2003-04-10

    Several defence mechanisms, such as cytochrome P450 1A (CYP1A) enzymes and P-glycoprotein (Pgp), may influence the intracellular concentration and consequently the toxicity of xenobiotics. The parallel expression of CYP1A and Pgp has been investigated in mammals and, to a lesser extent in fish, in search for evidence of co-ordinated responses to xenobiotic exposure. The aryl hydrocarbon receptor (AHR) agonists are well known CYP1A inducers but some of them resulted not to have a uniquely defined action on Pgp levels in mammalian and fish species. To the best of our knowledge, no detailed studies have been carried out so far on amphibians Xenopus laevis. For this reason, in this work, the time dependent responses of the hepatic CYP1A and Pgp, to the prototypical CYP1A inducers, benzo(a)pyrene (B(a)P), 3-methylcholanthrene (3MC) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in X. laevis have been assessed at the protein level and compared. The responsiveness of Xenopus intestinal Pgp to these compounds has also been analysed, as the epithelial cells lining the lumen of intestine represent another preferential site of Pgp expression. In addition, since the thyroid hormone has been demonstrated to down regulate the mdr gene during Xenopus development and in primary culture of Xenopus intestinal epithelial cells, the effects of 3,3',5-triiodo-L-thyronine (T(3)) on CYP1A and Pgp protein levels have been investigated in adult organisms. Western blot evidenced that a single injection of B(a)P (100 mg/kg), 3MC (20 mg/kg), and TCDD (3 microg/kg) elicited a statistically significant induction of hepatic CYP1A at all time points considered (72, 120 and 168 h) which decreased in time. The same trend of liver CYP1A induction was observed in T(3) treated Xenopus (15 microg/kg). Unlike CYP1A induction, the modulation of hepatic and intestinal Pgp expression exhibits an heterogeneous pattern. The basal levels of hepatic and intestinal Pgp were not statistically significant

  10. Unsaturated fatty acid regulation of cytochrome P450 expression via a CAR-dependent pathway

    PubMed Central

    Finn, Robert D.; Henderson, Colin J.; Scott, Claire L.; Wolf, C. Roland

    2008-01-01

    The liver is responsible for key metabolic functions, including control of normal homoeostasis in response to diet and xenobiotic metabolism/detoxification. We have shown previously that inactivation of the hepatic cytochrome P450 system through conditional deletion of POR (P450 oxidoreductase) induces hepatic steatosis, liver growth and P450 expression. We have exploited a new conditional model of POR deletion to investigate the mechanism underlying these changes. We demonstrate that P450 induction, liver growth and hepatic triacylglycerol (triglyceride) homoeostasis are intimately linked and provide evidence that the observed phenotypes result from hepatic accumulation of unsaturated fatty acids, which mediate these phenotypes by activation of the nuclear receptor CAR (constitutive androstane receptor) and, to a lesser degree, PXR (pregnane X receptor). To our knowledge this is the first direct evidence that P450s play a major role in controlling unsaturated fatty acid homoeostasis via CAR. The regulation of P450s involved in xenobiotic metabolism by this mechanism has potentially significant implications for individual responses to drugs and environmental chemicals. PMID:18778245

  11. Polar bear hepatic cytochrome P450: Immunochemical quantitation, EROD/PROD activity and organochlorines

    SciTech Connect

    Letcher, R.J.; Norstrom, R.J. |

    1994-12-31

    Polar bears (Ursus maritimus) are an ubiquitous mammal atop the arctic marine food chain and bioaccumulate lipophilic environmental contaminants. Antibodies prepared against purified rat liver cytochrome P450-1 Al, -1 A2, -2Bl and -3Al enzymes have been found to cross-react with structurally-related orthologues present in the hepatic microsomes of wild polar bears, immunochemically determined levels of P450-1 A and -2B proteins in polar bear liver relative to liver of untreated rats suggested enzyme induction, probably as a result of exposure to xenobiotic contaminants. Optical density quantitation of the most immunochemically responsive isozymes P450-I Al, -IA2 and -2Bi to polygonal rabbit anti-rat P450-IA/IA2 sera and -2BI antibodies in hepatic microsomes of 13 adult male polar bars from the Resolute Bay area of the Canadian Arctic is presented. Correlations with EROD and PROD catalytic activities and levels of organochlorines, such as polychlorinated biphenyls (PCBs), 1,1-dichloro-2,2-bis(4-chlorophenyl)ethene (p,p-DDE) and their methyl sulfone (MeSO2-) metabolites are made to determine if compound-specific enzyme induction linkages exist. Inter-species immunochemical quantitation of isozymic P450 cytochromes can serve as an indicator of exposure to biologically active contaminant.

  12. Induction of hepatic cytochrome P-450 activity in wild cotton rats (Sigmodon hispidus) by phenobarbital and 3-methylcholanthrene

    SciTech Connect

    Elangbam, C.S.; Qualls, C.W.,Jr.; Bauduy, M. )

    1989-05-01

    Wild cotton rats (Sigmodon hispidus) are ubiquitous throughout the Southeast quadrant of the United States, easy to capture, have a generation interval of less than one year and a limited range of movement (less than one hectare). This species may prove to be an excellent model for monitoring environmental contamination. Traditionally, cytochrome P-450 inducing agents are grouped into two classes. One, represented by phenobarbital, induces P-450b and P-450e; the other, represented by 3-methylcholanthrene, induces P-450c and P-450d isoenzymes. The types and amounts of cytochrome P-450 vary among species, organs, health status, sex, and stress of the animal. If the levels of cytochrome P-450 of wild cotton rats are to be used in monitoring environmental pollution, it is necessary to characterize the inducibility and concentration of cytochrome P-450 in this species. This study was designed to determine the concentration and inducibility of cytochrome P-450 in the livers of cotton rats after intraperitoneal (ip) administration of phenobarbital and 3-methylcholanthrene.

  13. 2-Diethylaminoethyl-2,2-diphenylvalerate-HCl (SKF525A) revisited: comparative cytochrome P450 inhibition in human liver microsomes by SKF525A, its metabolites, and SKF-acid and SKF-alcohol.

    PubMed

    Franklin, Michael R; Hathaway, Laura B

    2008-12-01

    When incubated with human liver microsomes, 2-diethylaminoethyl-2,2-diphenylvalerate-HCl (SKF525A) undergoes cytochrome P450 (P450)-dependent oxidative N-deethylation to the secondary amine metabolite 2-ethylaminoethyl-2,2-diphenylvalerate (SKF8742). P450-selective inhibitors indicated CYP3As catalyzed this reaction, and the deethylation rate correlated best with the CYP3A activity across a range of human liver microsomes. SKF525A and its metabolite and primary amine analog all inhibited CYP2B6-, CYP2C9-, CYP2C19-, CYP2D6-, and CYP3A-selective reactions to varying degrees but had little effect on CYP1A2, CYP2A6, and CYP2E1 reactions. Only the inhibition of CYP3A showed major enhancement when the inhibitors were preincubated with NADPH-fortified microsomes, and the extent of metabolic intermediate (MI) complex formation approximated typical CYP3A content. Two "lost with time" SKF525A derivatives devoid of the ethylamine moiety, 2,2-diphenylpropylethanol (SKF-Alcohol) and 2,2-diphenylpropylacetic acid (SKF-Acid) did not form an MI complex and were identified as selective inhibitors of CYP2C9. Although without detectable metabolism, their CYP2C9 inhibition fitted best with a competitive mechanism. Thus, not all the human P450s are inhibited by SKF525A and related compounds, and the mechanisms contributing to those that are inhibited vary with the isoform. P450 MI-complex formation only seems to play a role with CYP3As.

  14. An update on the role of intestinal cytochrome P450 enzymes in drug disposition.

    PubMed

    Xie, Fang; Ding, Xinxin; Zhang, Qing-Yu

    2016-09-01

    Oral administration is the most commonly used route for drug treatment. Intestinal cytochrome P450 (CYP)-mediated metabolism can eliminate a large proportion of some orally administered drugs before they reach systemic circulation, while leaving the passage of other drugs unimpeded. A better understanding of the ability of intestinal P450 enzymes to metabolize various clinical drugs in both humans and preclinical animal species, including the identification of the CYP enzymes expressed, their regulation, and the relative importance of intestinal metabolism compared to hepatic metabolism, is important for improving bioavailability of current drugs and new drugs in development. Here, we briefly review the expression of drug-metabolizing P450 enzymes in the small intestine of humans and several preclinical animal species, and provide an update of the various factors or events that regulate intestinal P450 expression, including a cross talk between the liver and the intestine. We further compare various clinical and preclinical approaches for assessing the impact of intestinal drug metabolism on bioavailability, and discuss the utility of the intestinal epithelium-specific NADPH-cytochrome P450 reductase-null (IECN) mouse as a useful model for studying in vivo roles of intestinal P450 in the disposition of orally administered drugs.

  15. Cytochrome p450 mRNA expression in the rodent brain: species-, sex-, and region-dependent differences.

    PubMed

    Stamou, Marianna; Wu, Xianai; Kania-Korwel, Izabela; Lehmler, Hans-Joachim; Lein, Pamela J

    2014-02-01

    Cytochrome P450 (P450) enzymes play a critical role in the activation and detoxication of many neurotoxic chemicals. Although research has largely focused on P450-mediated metabolism in the liver, emerging evidence suggests that brain P450s influence neurotoxicity by modulating local metabolite levels. As a first step toward better understanding the relative role of brain P450s in determining neurotoxic outcome, we characterized mRNA expression of specific P450 isoforms in the rodent brain. Adult mice (male and female) and rats (male) were treated with vehicle, phenobarbital, or dexamethasone. Transcripts for CYP2B, CYP3A, CYP1A2, and the orphan CYP4X1 and CYP2S1 were quantified in the liver, hippocampus, cortex, and cerebellum by quantitative (real-time) polymerase chain reaction. These P450s were all detected in the liver with the exception of CYP4X1, which was detected in rat but not mouse liver. P450 expression profiles in the brain varied regionally. With the exception of the hippocampus, there were no sex differences in regional brain P450 expression profiles in mice; however, there were marked species differences. In the liver, phenobarbital induced CYP2B expression in both species. Dexamethasone induced hepatic CYP2B and CYP3A in mice but not rats. In contrast, brain P450s did not respond to these classic hepatic P450 inducers. Our findings demonstrate that P450 mRNA expression in the brain varies by region, regional brain P450 profiles vary between species, and their induction varies from that of hepatic P450s. These novel data will be useful for designing mechanistic studies to examine the relative role of P450-mediated brain metabolism in neurotoxicity.

  16. In vitro and in vivo study of the effects of enrofloxacin on hepatic cytochrome P-450. Potential for drug interactions.

    PubMed

    Vancutsem, P M; Babish, J G

    1996-08-01

    Enrofloxacin (EF; BAYTRIL, Miles) was the first fluoroquinolone antimicrobial to be used in veterinary medicine in the US. In humans, fluoroquinolones hinder the metabolism of other clinically important drugs through inhibition of hepatic cytochrome P-450's (P450). Similar interactions are suspected in animals. In this study, we characterized the ability of EF to modify the enzymatic activity of the P450 IA and IIB families. In an in vitro experiment, the inhibition of P450 reductase by EF was assessed by measuring the NADPH-cytochrome c reductase activity, and the inhibition of P450IA1, IA2 and IIB by 0.25, 0.5 and 1.0 mM EF was studied, respectively, by measuring the ethoxy (EROD), methoxy (MROD) and pentoxy (PROD) O-dealkylation activities in rat liver microsomes. NADPH-cytochrome c reductase was not affected. Enrofloxacin induced a strong, concentration-dependent inhibition of P450IA1 and IA2. In an in vivo experiment, the effects of 5 administrations of 5 (EF5), 25 (EF25) or 100 (EF100) mg/kg/d were assessed in rats. The liver cytochrome b5 and total P450 content was assayed by spectrophotometric measurements; P450IA and P450IIB isozyme contents were evaluated by immunoblotting with isozyme specific monoclonal antibodies, and by measuring MROD, EROD and PROD activities. A slight induction of P450IIB1 and IIB2 expression and activity (140% of controls) was only present after EF5 treatment. We concluded that EF directly inhibits P450IA1 and IA2 and advise caution when drugs metabolized extensively by these P450 isozymes are administered in association with EF. The slight stimulation of the P450IIB subfamily is not a concern at the recommended therapeutic dose of 5 mg EF/kg.

  17. Climbazole is a new potent inducer of rat hepatic cytochrome P450.

    PubMed

    Kobayashi, Y; Suzuki, M; Ohshiro, N; Sunagawa, T; Sasaki, T; Tokuyama, S; Yamamoto, T; Yoshida, T

    2001-08-01

    We examined the effect of climbazole on the induction of rat hepatic microsomal cytochrome P450 (P450), and compared the induction potency with other N-substituted azole drugs such as clorimazole. We found that climbazole is found to be a potent inducer of rat hepatic microsomal P450 as clorimazole. Induced level of P450 by climbazole was almost similar in extent to clorimazole when compared with other imidazole drugs in a dose- and time-dependent manner. Parallel to the increase in P450, climbazole increased aminopyrine and erythromycin N-demethylase, ethoxycoumarin O-deethylase, and androstenedione 16 beta- and 15 alpha/6 beta hydroxylase activities; however, clorimazole did not induce aminopyrine N-demethylase activity irrespective of its marked increase in P450 content. Immunoblot analyses revealed that climbazole induced CYP2B1, 3A2 and 4A1. The present findings indicate that climbazole is a new potent inducer of hepatic microsomal P450 and drug-metabolizing enzymes like clorimazole, but it may have some differential mechanism(s) for these enzymes' induction in rat liver.

  18. Alteration in the Expression of Cytochrome P450s (CYP1A1, CYP2E1, and CYP3A11) in the Liver of Mouse Induced by Microcystin-LR

    PubMed Central

    Zhang, Bangjun; Liu, Yang; Li, Xiaoyu

    2015-01-01

    Microcystins (MCs) are cyclic heptapeptide toxins and can accumulate in the liver. Cytochrome P450s (CYPs) play an important role in the biotransformation of endogenous substances and xenobiotics in animals. It is unclear if the CYPs are affected by MCs exposure. The objective of this study was to evaluate the effects of microcystin-LR (MCLR) on cytochrome P450 isozymes (CYP1A1, CYP2E1, and CYP3A11) at mRNA level, protein content, and enzyme activity in the liver of mice the received daily, intraperitoneally, 2, 4, and 8 µg/kg body weight of MCLR for seven days. The result showed that MCLR significantly decreased ethoxyresorufin-O-deethylase (EROD) (CYP1A1) and erythromycin N-demthylase (ERND) (CYP3A11) activities and increased aniline hydroxylase (ANH) activity (CYP2E1) in the liver of mice during the period of exposure. Our findings suggest that MCLR exposure may disrupt the function of CYPs in liver, which may be partly attributed to the toxicity of MCLR in mice. PMID:25831226

  19. FTIR studies of the redox partner interaction in cytochrome P450: the Pdx-P450cam couple.

    PubMed

    Karyakin, Andrey; Motiejunas, Domantas; Wade, Rebecca C; Jung, Christiane

    2007-03-01

    Recently we have developed a new approach to study protein-protein interactions using Fourier transform infrared spectroscopy in combination with titration experiments and principal component analysis (FTIR-TPCA). In the present paper we review the FTIR-TPCA results obtained for the interaction between cytochrome P450 and the redox partner protein in two P450 systems, the Pseudomonas putida P450cam (CYP101) with putidaredoxin (P450cam-Pdx), and the Bacillus megaterium P450BM-3 (CYP102) heme domain with the FMN domain (P450BMP-FMND). Both P450 systems reveal similarities in the structural changes that occur upon redox partner complex formation. These involve an increase in beta-sheets and alpha-helix content, a decrease in the population of random coil/3(10)-helix structure, a redistribution of turn structures within the interacting proteins and changes in the protonation states or hydrogen-bonding of amino acid carboxylic side chains. We discuss in detail the P450cam-Pdx interaction in comparison with literature data and conclusions drawn from experiments obtained by other spectroscopic techniques. The results are also interpreted in the context of a 3D structural model of the Pdx-P450cam complex.

  20. The effects of low levels of dietary toxic weed seeds (jimson weed, Datura stramonium and sicklepod, Cassia obtusifolia) on the relative size of rat liver and levels and function of cytochrome P-450.

    PubMed

    Crawford, L; Friedman, M

    1990-12-01

    Preliminary studies and previous work by other investigators have shown that jimsonweed and sicklepod seeds are very toxic. Such seeds and others are co-harvested and are often found mingling with commercial grain destined for human consumption. Low levels of these seeds were studied here to determine whether such levels would show signs of intoxication in rats by modulating growth, liver weight and relative size, cytochrome P-450 levels and function, and other relevant parameters proven to be sensitive to low levels of toxicants. Assessment of these factors showed that jimson weed does give indications of intoxication at low levels, whereas the highly toxic sicklepod does not give discernible indications.

  1. Cumene hydroperoxide effected hydroperoxidation by cytochrome P-450.

    PubMed

    Chen, C; Gurka, D P

    1985-04-01

    9-Methylfluorene was found to be oxygenated to 9-hydroperoxy-9-methylfluorene and 9-hydroxy-9-methylfluorene by cytochrome P-450 in the presence of cumene hydroperoxide. Molecular oxygen is required and carbon monoxide is inhibitory. The reaction is inhibited by SKF-525A and metyrapone. Metyrapone and cumene hydroperoxide also retard the conversion of 9-hydroperoxy-9-methylfluorene to 9-hydroxy-9-methylfluorene. The reaction is different from hydroperoxide-supported oxygenation, since the cumene hydroperoxide appears to act as an effector of the enzyme rather than oxygen donor. It is suggested that substrates with stable radicals can be dioxygenated in this manner.

  2. Cytochrome P450 3A4 activity after surgical stress.

    PubMed

    Haas, Curtis E; Kaufman, David C; Jones, Carolyn E; Burstein, Aaron H; Reiss, William

    2003-05-01

    To evaluate the relationship between the acute inflammatory response after surgical trauma and changes in hepatic cytochrome P450 3A4 activity, compare changes in cytochrome P450 3A4 activity after procedures with varying degrees of surgical stress, and to explore the time course of any potential drug-cytokine interaction after surgery. Prospective, open-label study with each patient serving as his or her own control. University-affiliated, acute care, general hospital. A total of 16 patients scheduled for elective repair of an abdominal aortic aneurysm (n = 5), complete or partial colectomy (n = 6), or peripheral vascular surgery with graft (n = 5). Cytochrome P450 3A4 activity was estimated using the carbon-14 [14C]erythromycin breath test (ERMBT) before surgery and 24, 48, and 72 hrs after surgery. Abdominal aortic aneurysm and colectomy patients also had an ERMBT performed at discharge. Blood samples were obtained before surgery, immediately after surgery, and 6, 24, 32, 48, and 72 hrs after surgery for determination of plasma concentrations of interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha. Clinical markers of surgical stress that were collected included duration of surgery, estimated blood loss, and volume of fluids administered in the operating room. ERMBT results significantly declined in all three surgical groups, with the lowest value at the time of the 72-hr study in all three groups. There was a trend toward differences in ERMBT results among groups that did not reach statistical significance (p =.06). The nadir ERMBT result was significantly and negatively correlated with both peak interleukin-6 concentration (r(s) = -.541, p =.03) and log interleukin-6 area under the curve from 0 to 72 hrs (r(s) = -.597, p =.014). Subjects with a peak interleukin-6 of >100 pg/mL had a significantly lower nadir ERMBT compared with subjects with a peak interleukin-6 of <100 pg/mL (35.5% +/- 5.2% vs. 74.7% +/- 5.1%, p <.001). Acute inflammation after

  3. Regulation of cytochrome P450 (CYP) genes by nuclear receptors.

    PubMed Central

    Honkakoski, P; Negishi, M

    2000-01-01

    Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks. PMID:10749660

  4. Cytochromes P450 for terpene functionalisation and metabolic engineering.

    PubMed

    Pateraki, Irini; Heskes, Allison Maree; Hamberger, Björn

    2015-01-01

    Plants have evolved the capacity to produce a striking array of specialised metabolites. Terpenoids are the oldest and most diverse class of such compounds and have attracted interest for industrial and pharmaceutical applications. The development of biotechnological alternatives for their production is the focus of intense research. Photosynthetic systems provide new strategies for autotrophic metabolic engineering. Focusing on cytochromes P450, involved in the functionalisation of the core terpene molecules, this review highlights the latest approaches in this field and looks towards recent discoveries that have the potential to shape the future of terpenoid bioengineering.

  5. Human cytochromes P450 in health and disease

    PubMed Central

    Nebert, Daniel W.; Wikvall, Kjell; Miller, Walter L.

    2013-01-01

    There are 18 mammalian cytochrome P450 (CYP) families, which encode 57 genes in the human genome. CYP2, CYP3 and CYP4 families contain far more genes than the other 15 families; these three families are also the ones that are dramatically larger in rodent genomes. Most (if not all) genes in the CYP1, CYP2, CYP3 and CYP4 families encode enzymes involved in eicosanoid metabolism and are inducible by various environmental stimuli (i.e. diet, chemical inducers, drugs, pheromones, etc.), whereas the other 14 gene families often have only a single member, and are rarely if ever inducible or redundant. Although the CYP2 and CYP3 families can be regarded as largely redundant and promiscuous, mutations or other defects in one or more genes of the remaining 16 gene families are primarily the ones responsible for P450-specific diseases—confirming these genes are not superfluous or promiscuous but rather are more directly involved in critical life functions. P450-mediated diseases comprise those caused by: aberrant steroidogenesis; defects in fatty acid, cholesterol and bile acid pathways; vitamin D dysregulation and retinoid (as well as putative eicosanoid) dysregulation during fertilization, implantation, embryogenesis, foetogenesis and neonatal development. PMID:23297354

  6. Regulation of cytochrome P450 expression in Drosophila: Genomic insights

    PubMed Central

    Giraudo, Maeva; Unnithan, G. Chandran; Le Goff, Gaëlle; Feyereisen, René

    2009-01-01

    Genomic tools such as the availability of the Drosophila genome sequence, the relative ease of stable transformation, and DNA microarrays have made the fruit fly a powerful model in insecticide toxicology research. We have used transgenic promoter-GFP constructs to document the detailed pattern of induced Cyp6a2 gene expression in larval and adult Drosophila tissues. We also compared various insecticides and xenobiotics for their ability to induce this cytochrome P450 gene, and show that the pattern of Cyp6a2 inducibility is comparable to that of vertebrate CYP2B genes, and different from that of vertebrate CYP1A genes, suggesting a degree of evolutionary conservation for the “phenobarbital-type” induction mechanism. Our results are compared to the increasingly diverse reports on P450 induction that can be gleaned from whole genome or from “detox” microarray experiments in Drosophila. These suggest that only a third of the genomic repertoire of CYP genes is inducible by xenobiotics, and that there are distinct subsets of inducers / induced genes, suggesting multiple xenobiotic transduction mechanisms. A relationship between induction and resistance is not supported by expression data from the literature. The relative abundance of expression data now available is in contrast to the paucity of studies on functional expression of P450 enzymes, and this remains a challenge for our understanding of the toxicokinetic aspects of insecticide action. PMID:20582327

  7. Immunochemical evidence for multiple steroid-inducible hepatic cytochromes P-450 in the rat.

    PubMed Central

    Hostetler, K A; Wrighton, S A; Kremers, P; Guzelian, P S

    1987-01-01

    It has been established that there are glucocorticoid-inducible hepatic cytochromes P-450 in the rat (P-450p), the rabbit (LM3c) and man (HLp) which share extensive structural, functional and regulatory features. We prepared immunochemical probes to P-450p and identified a unique monoclonal antibody, 1G8, that recognizes purified P-450p, but neither purified LM3c nor HLp, on immunoblot analysis. The N-terminal amino acid sequence of purified samples of P-450p was identical with that previously reported for P-450PCN1 [Gonzalez, Nebert, Hardwick & Kasper (1985) J. Biol. Chem. 260, 7435-7441]. Immunoblot analyses of liver microsomes from untreated male rats revealed two 1G8-reactive proteins, whereas liver microsomes from untreated females contained none. Another monoclonal antibody, 13-7-10, reacted specifically with LM3c and HLp, but not with P-450p. A single 13-7-10-reactive microsomal protein was detected in untreated male and female rats, the latter protein exhibiting a greater apparent Mr. 1G8-reactive proteins were induced to the greatest extent by triacetyloleandomycin, followed by dexamethasone, chlordane, pregnenolone-16 alpha-carbonitrile and 2,4,2',4'-tetrachlorobiphenyl. In contrast, 13-7-10-reactive proteins were most strongly induced by dexamethasone, only moderately by triacetyloleandomycin and pregnenolone-16 alpha-carbonitrile, weakly by chlordane and not at all by 2,4,2',4'-tetrachlorobiphenyl. We conclude that the P-450p family in rat liver consists of three or more proteins that are structurally related and yet appear to be under distinct regulatory control. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:3311032

  8. Effect of dietary eugenol on xenobiotic metabolism and mediation of UDP-glucuronosyltransferase and cytochrome P450 1A1 expression in rat liver.

    PubMed

    Iwano, Hidetomo; Ujita, Wakako; Nishikawa, Miyu; Ishii, Satomi; Inoue, Hiroki; Yokota, Hiroshi

    2014-03-01

    Xenobiotic-metabolizing enzymes (XMEs) play an important role in the elimination and detoxification of xenobiotics and drugs. A variety of natural dietary agents are known to protect against cancer by inducing XME. To elucidate the molecular mechanism of XME induction, we examined the effect of dietary eugenol (4-allyl-1-hydroxy-2-methoxybenzene) on xenobiotic metabolism. In this study, rats were administered dietary eugenol for 4 weeks to investigate the various effects of UDP-glucuronosyltransferase (UGT) and cytochrome P450 (CYP) expression. In rats administered dietary eugenol, expression levels of hepatic CYP1A 1 were reduced to 40% than of the controls, while expression of hepatic UGT1A6, UGT1A7 and UGT2B1 increased to 2-3 times than observed in the controls. Hepatic protein levels of UGT1A6 and 2B1 were also elevated in the eugenol-treated rats. These results suggest that the natural compound eugenol improves the xenobiotic-metabolizing systems that suppress and induce the expression of CYP1A1 and UGT, respectively.

  9. Organochlorine and PBDE concentrations in relation to cytochrome P450 activity in livers of Forster's terns (Sterna forsteri) and Caspian terns (Hydroprogne caspia), in San Francisco Bay, California.

    PubMed

    Herring, Garth; Ackerman, Joshua T; Eagles-Smith, Collin A; Adelsbach, Terrence L; Melancon, Mark J; Stebbins, Katie R; Hoffman, David J

    2010-04-01

    We measured halogenated organic contaminants (HOCs) [polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and dichloro-diphenyl-trichloroethane (DDT)] and P450 [e.g., ethoxyresorufin-O-dealkylase (EROD)] stress in livers from Caspian tern (Hydroprogne caspia) adults and Forster's tern (Sterna forsteri) adults and chicks in San Francisco Bay (SFB). Penta BDEs and tetra PBDEs composed 46-66% of SigmaPBDE in terns. PCB homologues di, tri, penta, hexa, and hepta composed 93-95% of SigmaPCBs and p'p-DDE composed 82-98% of all SigmaDDTs. We found similar concentrations of SigmaPBDEs [mean micrograms per gram wet weight (ww) +/- standard error = 0.4 +/- 0.1], SigmaPCBs (5.9 +/- 1.6), and SigmaDDTs (0.6 +/- 0.1) among species, sexes, and regions. However, concentrations were higher in Forster's tern adults than chicks (SigmaPBDEs = 0.4 +/- 0.1 and 0.1 +/- 0.1; SigmaPCBs = 7.08 +/- 2.4 and 2.4 +/- 1.4; SigmaDDTs = 0.5 +/- 0.1 and 0.1 +/- 0.1; respectively), and there was a nonsignificant trend of elevated SigmaPBDEs and SigmaPCBs for adult Forster's terns in the Central South Bay and Lower South Bay portions of SFB. Combined Forster's tern and Caspian tern SigmaDDTs bioaccumulated similarly to selenium, but not mercury, and there was a nonsignificant but positive trend for SigmaPBDEs and SigmaPCBs bioaccumulation with mercury. P450 protein activity was higher in adult Forster's terns than Caspian terns, higher in Central South Bay than in Lower South Bay, and higher in adult Forster's terns than in chicks.

  10. Kinetic analysis of lauric acid hydroxylation by human cytochrome P450 4A11.

    PubMed

    Kim, Donghak; Cha, Gun-Su; Nagy, Leslie D; Yun, Chul-Ho; Guengerich, F Peter

    2014-10-07

    Cytochrome P450 (P450) 4A11 is the only functionally active subfamily 4A P450 in humans. P450 4A11 catalyzes mainly ω-hydroxylation of fatty acids in liver and kidney; this process is not a major degradative pathway, but at least one product, 20-hydroxyeicosatetraenoic acid, has important signaling properties. We studied catalysis by P450 4A11 and the issue of rate-limiting steps using lauric acid ω-hydroxylation, a prototypic substrate for this enzyme. Some individual reaction steps were studied using pre-steady-state kinetic approaches. Substrate and product binding and release were much faster than overall rates of catalysis. Reduction of ferric P450 4A11 (to ferrous) was rapid and not rate-limiting. Deuterium kinetic isotope effect (KIE) experiments yielded low but reproducible values (1.2-2) for 12-hydroxylation with 12-(2)H-substituted lauric acid. However, considerable "metabolic switching" to 11-hydroxylation was observed with [12-(2)H3]lauric acid. Analysis of switching results [Jones, J. P., et al. (1986) J. Am. Chem. Soc. 108, 7074-7078] and the use of tritium KIE analysis with [12-(3)H]lauric acid [Northrop, D. B. (1987) Methods Enzymol. 87, 607-625] both indicated a high intrinsic KIE (>10). Cytochrome b5 (b5) stimulated steady-state lauric acid ω-hydroxylation ∼2-fold; the apoprotein was ineffective, indicating that electron transfer is involved in the b5 enhancement. The rate of b5 reoxidation was increased in the presence of ferrous P450 mixed with O2. Collectively, the results indicate that both the transfer of an electron to the ferrous·O2 complex and C-H bond-breaking limit the rate of P450 4A11 ω-oxidation.

  11. Kinetic Analysis of Lauric Acid Hydroxylation by Human Cytochrome P450 4A11

    PubMed Central

    2015-01-01

    Cytochrome P450 (P450) 4A11 is the only functionally active subfamily 4A P450 in humans. P450 4A11 catalyzes mainly ω-hydroxylation of fatty acids in liver and kidney; this process is not a major degradative pathway, but at least one product, 20-hydroxyeicosatetraenoic acid, has important signaling properties. We studied catalysis by P450 4A11 and the issue of rate-limiting steps using lauric acid ω-hydroxylation, a prototypic substrate for this enzyme. Some individual reaction steps were studied using pre-steady-state kinetic approaches. Substrate and product binding and release were much faster than overall rates of catalysis. Reduction of ferric P450 4A11 (to ferrous) was rapid and not rate-limiting. Deuterium kinetic isotope effect (KIE) experiments yielded low but reproducible values (1.2–2) for 12-hydroxylation with 12-2H-substituted lauric acid. However, considerable “metabolic switching” to 11-hydroxylation was observed with [12-2H3]lauric acid. Analysis of switching results [Jones, J. P., et al. (1986) J. Am. Chem. Soc.108, 7074–7078] and the use of tritium KIE analysis with [12-3H]lauric acid [Northrop, D. B. (1987) Methods Enzymol.87, 607–625] both indicated a high intrinsic KIE (>10). Cytochrome b5 (b5) stimulated steady-state lauric acid ω-hydroxylation ∼2-fold; the apoprotein was ineffective, indicating that electron transfer is involved in the b5 enhancement. The rate of b5 reoxidation was increased in the presence of ferrous P450 mixed with O2. Collectively, the results indicate that both the transfer of an electron to the ferrous·O2 complex and C–H bond-breaking limit the rate of P450 4A11 ω-oxidation. PMID:25203493

  12. Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species

    SciTech Connect

    Gray, Joshua P.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2010-09-01

    Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and {beta}-naphthoflavone-treated rats, and cytochrome P450 reductase from type II lung epithelial cells. Using rat liver microsomes from {beta}-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury.

  13. Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species

    PubMed Central

    Gray, Joshua P.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2015-01-01

    Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450’s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and β-naphthoflavone treated rats, and cytochrome P450 reductase from type II lung epithelial cells. Using rat liver microsomes from β-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury. PMID:20561902

  14. Effect of topical application of clotrimazole to rats on epidermal and hepatic monooxygenase activities and cytochrome P-450.

    PubMed

    Merk, H F; Khan, W A; Kuhn, C; Bickers, D R; Mukhtar, H

    1989-01-01

    Clotrimazole, an N-substituted imidazole, is a widely used topical agent for the treatment of superficial fungal infections. In this study, the effect of application of clotrimazole to the skin of neonatal rats on the induction response of the cytochrome P-450-dependent monooxygenase system in epidermis and liver has been examined. A single topical application of clotrimazole (10 mg/100 g) to rats resulted in a 53% increase in hepatic cytochrome P-450 content. Clotrimazole treatment also resulted in significant induction of epidermal 7-ethoxycoumarin-O-deethylase activity. Hepatic p-nitrophenol hydroxylase, an enzyme, catalyzed principally by the ethanol inducible cytochrome P-450 isozyme, was also significantly induced (58%) by topically applied clotrimazole. This enzyme activity was undetectable in epidermal microsomes. Further characterization of the cytochrome P-450 isozymes induced in liver by clotrimazole treatment was based on monoclonal antibodies (MAbs) raised against purified rat liver cytochrome P-450 isozymes induced by phenobarbital (MAb 2-66-3) and ethanol (MAb 1-98-1). Hepatic microsomes prepared from clotrimazole-treated rats showed significant immunoreactivity on Western blot with both the MAbs whereas no reactivity occurred in epidermal microsomes. Our data indicate that topical application of clotrimazole to rats results in the induction of selected cytochrome P-450 isozyme(s) in liver and epidermis which may have implications for the therapeutic use of this compound.

  15. Purification and immunochemical detections of ?-naphthoflavone- and phenobarbital-induced avian cytochrome P450 enzymes

    USGS Publications Warehouse

    Brown, R.L.; Levi, P.E.; Hodgson, E.; Melancon, M.J.

    1996-01-01

    Livers from mallards (Anas platyrhynchos) were treated with either -naphthoflavone (50 mg/kg) or phenobarbital (70 mg/kg). Purification of induced hepatic cytochrome P450 was accomplished using both DEAE and hydroxyapatite columns, as well as sodium dodecyl sulfate polyacrylamide gel electrophoresis separation. Polyclonal antibodies to these proteins were then produced in young male New Zealand White rabbits. ?-naphthoflavone (?NF)- and phenobarbital(PB)-treated red-winged blackbird, screech owl, European starling and lesser scaup liver microsomes were analyzed in western blots for species cross-reactivity. Although all four of these avian species exhibited cross-reactivity with antibodies to ?NF-induced mallard P450, all but the lesser scaup revealed a protein of higher molecular weight than that of the ?NF-induced mallard. In addition, only the lesser scaup exhibited cross-reactivity with the anti-PB-induced mallard P450 antibodies.

  16. Effects of contaminated sediment from Cork Harbour, Ireland on the cytochrome P450 system of turbot.

    PubMed

    Kilemade, M; Hartl, M G J; O'Halloran, J; O'Brien, N M; Sheehan, D; Mothersill, C; van Pelt, F N A M

    2009-03-01

    Hatchery-reared juvenile turbot (Scophthalmus maximus L.) were exposed for 3 weeks, under laboratory conditions, to inter-tidal sediments collected from polluted sites in Cork Harbour (Whitegate and Agahda) and a reference site at Ballymacoda Co., Cork, Ireland. The potential of the sediment exposure to induce cytochrome P450 activities and CYP1A1 in the fish was assessed. Chemical analysis revealed that the sediments originating from the reference and harbour sites were contaminated principally with PAHs-the harbour sites having double the levels of those at the reference site. Following 3 weeks exposure to the sediments western blotting demonstrated a strong immunogenic response for CYP1A1 in the liver, but not for gill or intestine. P450 activities were generally significantly higher than those exposed to reference site sediment. Liver was the most responsive tissue with significantly greater P450 activities compared with gill and intestinal tissues.

  17. An evaluation of molecular models of the cytochrome P450 Streptomyces griseolus enzymes P450SU1 and P450SU2

    NASA Astrophysics Data System (ADS)

    Braatz, Julie A.; Bass, Michael B.; Ornstein, Rick L.

    1994-10-01

    P450SU1 and P450SU2 are herbicide-inducible bacterial cytochrome P450 enzymes from Streptomyces griseolus. They have two of the highest sequence identities to camphor hydroxylase (P450cam from Pseudomonas putida), the cytochrome P450 with the first known crystal structure. We have built several models of these two proteins to investigate the variability in the structures that can occur from using different modeling protocols. We looked at variability due to alignment methods, backbone loop conformations and refinement methods. We have constructed two models for each protein using two alignment algorithms, and then an additional model using an identical alignment but different loop conformations for both buried and surface loops. The alignments used to build the models were created using the Needleman-Wunsch method, adapted for multiple sequences, and a manual method that utilized both a dotmatrix search matrix and the Needleman-Wunsch method. After constructing the initial models, several energy minimization methods were used to explore the variability in the final models caused by the choice of minimization techniques. Features of cytochrome P450cam and the cytochrome P450 superfamily, such as the ferredoxin binding site, the heme binding site and the substrate binding site were used to evaluate the validity of the models. Although the final structures were very similar between the models with different alignments, active-site residues were found to be dependent on the conformations of buried loops and early stages of energy minimization. We show which regions of the active site are the most dependent on the particular methods used, and which parts of the structures seem to be independent of the methods.

  18. Cytochrome P450 structure, function and clinical significance: A review.

    PubMed

    Palrasu, Manikandan; Nagini, Siddavaram

    2017-01-25

    The cytochrome P450 (CYP) enzymes are membrane-bound hemoproteins that play a pivotal role in the detoxification of xenobiotics, cellular metabolism and homeostasis. Induction or inhibition of CYP enzymes is a major mechanism that underlies drug-drug interactions. CYP enzymes can be transcriptionally activated by various xenobiotics and endogenous substrates through receptor-dependent mechanisms. CYP enzyme inhibition is a principal mechanism for metabolism-based drug-drug interactions. Many chemotherapeutic drugs can cause drug interactions due to their ability to either inhibit or induce the CYP enzyme system. Predictions based on in silico analyses followed by validation have identified several microRNAs that regulate CYPs. Genetic polymorphisms and epigenetic changes in CYP genes may be responsible for inter-individual and inter-ethnic variations in disease susceptibility and the therapeutic efficacy of drugs. Knowledge about the substrates, inducers, inhibitors of CYP isoforms, and the polymorphisms of CYP enzymes may be used as an aid by clinicians to determine therapeutic strategy, and treatment doses for drugs that are metabolized by CYP gene products. The present review is a comprehensive compilation of cytochrome P450 structure, function, pharmacogenetics, and pharmacoepigenetics and clinical significance.

  19. Identification and location of alpha-helices in mammalian cytochromes P450.

    PubMed

    Edwards, R J; Murray, B P; Boobis, A R; Davies, D S

    1989-05-02

    A model of the alpha-helical structure of mammalian cytochromes P450 is proposed. The location and sequence of alpha-helices in mammalian cytochromes P450 were predicted from their homology with those of cytochrome P450cam, and these sequences were generally confirmed as helical in nature by using a secondary structure prediction method. These analyses were applied to 26 sequences in 6 gene families of cytochrome P450. Mammalian cytochromes P450 consist of approximately 100 amino acid residues more than cytochrome P450cam. This difference was accounted for by three major areas of insertion: (1) at the N-terminus, (2) between helices C and D and between helices D and E, and (3) between helices J and K. Insertion 1 has been suggested by others as a membrane anchoring sequence, but the apparent insertions at 2 and 3 are novel observations; it is suggested that they may be involved in the binding of cytochrome P450 reductase. Only the mitochondrial cytochrome P450 family appeared to show a major variation from this pattern, as insertion 2 was absent, replaced by an insertion between helices G and H and between helices H and I. This may reflect the difference in electron donor proteins that bind to members of this cytochrome P450 family. Other than these differences the model of mammalian cytochromes P450 proposed maintains the general structure of cytochrome P450cam as determined by its alpha-helical composition.

  20. Expression and enzymatic activity of recombinant cytochrome P450 17 alpha-hydroxylase in Escherichia coli.

    PubMed Central

    Barnes, H J; Arlotto, M P; Waterman, M R

    1991-01-01

    When the cDNA encoding bovine microsomal 17 alpha-hydroxylase cytochrome P450 (P45017 alpha) containing modifications within the first seven codons which favor expression in Escherichia coli is placed in a highly regulated tac promoter expression plasmid, as much as 16 mg of spectrally detectable P45017 alpha per liter of culture can be synthesized and integrated into E. coli membranes. The known enzymatic activities of bovine P45017 alpha can be reconstituted by addition of purified rat liver NADPH-cytochrome P450 reductase to isolated E. coli membrane fractions containing the recombinant P45017 alpha enzyme. Surprisingly, it is found that E. coli contain an electron-transport system that can substitute for the mammalian microsomal NADPH-cytochrome P450 reductase in supporting both the 17 alpha-hydroxylase and 17,20-lyase activities of P45017 alpha. Thus, not only can E. coli express this eukaryotic membrane protein at relatively high levels, but as evidenced by metabolism of steroids added directly to the cells, the enzyme is catalytically active in vivo. These studies establish E. coli as an efficacious heterologous expression system for structure-function analysis of the cytochrome P450 system. Images PMID:1829523

  1. Coal fly ash induces hepatic and pulmonary cytochrome P-450 and sigma-aminolevulinic acid synthetase in rats

    SciTech Connect

    Srivastava, P.K.; Misra, U.K.

    1987-01-01

    The effect of intratracheal administration of coal fly ash, its benzene-soluble and benzene-insoluble fractions has been studied on the levels of hepatic and pulmonary cytochrome P-450, cytochrome b5, and the activities of sigma-aminolevulinic acid synthetase and heme oxygenase. Fly ash and both its fractions significantly increased the levels of hepatic and pulmonary cytochrome P-450. Benzene-soluble and benzene-insoluble fractions of coal fly ash significantly increased the levels of cytochrome b5 also in both lung and liver. Fly ash and both its fractions increased the activity of sigma-aminolevulinic acid synthetase and reduced the activity of heme oxygenase in lung and liver. Glass bead particles of similar size did not show any effect on hepatic and pulmonary cytochrome P-450 and cytochrome b5.

  2. Identification of the main human cytochrome P450 enzymes involved in safrole 1'-hydroxylation.

    PubMed

    Ueng, Yune-Fang; Hsieh, Chih-Hang; Don, Ming-Jaw; Chi, Chin-Wen; Ho, Li-Kang

    2004-08-01

    Safrole is a natural plant constituent, found in sassafras oil and certain other essential oils. The carcinogenicity of safrole is mediated through 1'-hydroxysafrole formation, followed by sulfonation to an unstable sulfate that reacts to form DNA adducts. To identify the main cytochrome P450 (P450) involved in human hepatic safrole 1'-hydroxylation (SOH), we determined the SOH activities of human liver microsomes and Escherichia coli membranes expressing bicistronic human P450s. Human liver (n = 18) microsomal SOH activities were in the range of 3.5-16.9 nmol/min/mg protein with a mean value of 8.7 +/- 0.7 nmol/min/mg protein. In human liver (n = 3) microsomes, the mean K(m) and V(max) values of SOH were 5.7 +/- 1.2 mM and 0.14 +/- 0.03 micromol/min/nmol P450, respectively. The mean intrinsic clearance (V(max)/K(m)) was 25.3 +/- 2.3 microL/min/nmol P450. SOH was sensitive to the inhibition by a CYP2C9 inhibitor, sulfaphenazole, and CYP2E1 inhibitors, 4-methylpyrazole and diethyldithiocarbamate. The liver microsomal SOH activity showed significant correlations with tolbutamide hydroxylation (r = 0.569) and chlorzoxazone hydroxylation (r = 0.770) activities, which were the model reactions catalyzed by CYP2C9 and CYP2E1, respectively. Human CYP2C9 and CYP2E1 showed SOH activities at least 2-fold higher than the other P450s. CYP2E1 showed an intrinsic clearance 3-fold greater than CYP2C9. These results demonstrated that CYP2C9 and CYP2E1 were the main P450s involved in human hepatic SOH.

  3. Cytochrome P450 enzyme mediated herbal drug interactions (Part 1)

    PubMed Central

    Wanwimolruk, Sompon; Prachayasittikul, Virapong

    2014-01-01

    It is well recognized that herbal supplements or herbal medicines are now commonly used. As many patients taking prescription medications are concomitantly using herbal supplements, there is considerable risk for adverse herbal drug interactions. Such interactions can enhance the risk for an individual patient, especially with regard to drugs with a narrow therapeutic index such as warfarin, cyclosporine A and digoxin. Herbal drug interactions can alter pharmacokinetic or/and pharmacodynamic properties of administered drugs. The most common pharmacokinetic interactions usually involve either the inhibition or induction of the metabolism of drugs catalyzed by the important enzymes, cytochrome P450 (CYP). The aim of the present article is to provide an updated review of clinically relevant metabolic CYP-mediated drug interactions between selected herbal supplements and prescription drugs. The commonly used herbal supplements selected include Echinacea, Ginkgo biloba, garlic, St. John's wort, goldenseal, and milk thistle. To date, several significant herbal drug interactions have their origins in the alteration of CYP enzyme activity by various phytochemicals. Numerous herbal drug interactions have been reported. Although the significance of many interactions is uncertain but several interactions, especially those with St. John’s wort, may have critical clinical consequences. St. John’s wort is a source of hyperforin, an active ingredient that has a strong affinity for the pregnane xenobiotic receptor (PXR). As a PXR ligand, hyperforin promotes expression of CYP3A4 enzymes in the small intestine and liver. This in turn causes induction of CYP3A4 and can reduce the oral bioavailability of many drugs making them less effective. The available evidence indicates that, at commonly recommended doses, other selected herbs including Echinacea, Ginkgo biloba, garlic, goldenseal and milk thistle do not act as potent or moderate inhibitors or inducers of CYP enzymes. A good

  4. Induction and inhibition of cytochrome P450 and drug-metabolizing enzymes by climbazole.

    PubMed

    Kobayashi, Yasuna; Suzuki, Michiya; Ohshiro, Naomi; Sunagawa, Takashi; Sasaki, Tadanori; Oguro, Takiko; Tokuyama, Shogo; Yamamoto, Toshinori; Yoshida, Takemi

    2002-01-01

    To determine the effect of climbazole on hepatic microsomal cytochrome P450 (P450) and drug-metabolizing enzymes, four different P450 isoforms (CYP2B1, 3A2, 2E1, and 2C12) were examined in female Long-Evans rats. Treatment of rats with climbazole resulted in the induction of P450 content. Climbazole both induced and inhibited aminopyrine N-demethylase activity, but not erythromycin N-demethylase activity. Uridine 5'-phosphate (UDP)-glucuronosyl transferase and glutathione S-transferase activities were also increased with climbazole treatment. Immunoblot analyses revealed that climbazole induces CYP2B1 and CYP3A2 at the lower dose examined, but it failed to increase CYP2B1 at the higher dose. Northern blot analysis revealed that climbazole markedly increases P450 2B1 mRNA. These results indicate that climbazole induces and inhibits P450-dependent drug-metabolizing enzymes in vivo and may have the dose-differential effect on CYP2B1 in rat liver.

  5. Characterization of the cytochrome P450 monooxygenase genes (P450ome) from the carotenogenic yeast Xanthophyllomyces dendrorhous.

    PubMed

    Córdova, Pamela; Gonzalez, Ana-María; Nelson, David R; Gutiérrez, María-Soledad; Baeza, Marcelo; Cifuentes, Víctor; Alcaíno, Jennifer

    2017-07-19

    The cytochromes P450 (P450s) are a large superfamily of heme-containing monooxygenases involved in the oxidative metabolism of an enormous diversity of substrates. These enzymes require electrons for their activity, and the electrons are supplied by NAD(P)H through a P450 electron donor system, which is generally a cytochrome P450 reductase (CPR). The yeast Xanthophyllomyces dendrorhous has evolved an exclusive P450-CPR system that specializes in the synthesis of astaxanthin, a carotenoid with commercial potential. For this reason, the aim of this work was to identify and characterize other potential P450 genes in the genome of this yeast using a bioinformatic approach. Thirteen potential P450-encoding genes were identified, and the analysis of their deduced proteins allowed them to be classified in ten different families: CYP51, CYP61, CYP5139 (with three members), CYP549A, CYP5491, CYP5492 (with two members), CYP5493, CYP53, CYP5494 and CYP5495. Structural analyses of the X. dendrorhous P450 proteins showed that all of them have a predicted transmembrane region at their N-terminus and have the conserved domains characteristic of the P450s, including the heme-binding region (FxxGxRxCxG); the PER domain, with the characteristic signature for fungi (PxRW); the ExxR motif in the K-helix region and the oxygen-binding domain (OBD) (AGxDTT); also, the characteristic secondary structure elements of all the P450 proteins were identified. The possible functions of these P450s include primary, secondary and xenobiotic metabolism reactions such as sterol biosynthesis, carotenoid synthesis and aromatic compound degradation. The carotenogenic yeast X. dendrorhous has thirteen P450-encoding genes having potential functions in primary, secondary and xenobiotic metabolism reactions, including some genes of great interest for fatty acid hydroxylation and aromatic compound degradation. These findings established a basis for future studies about the role of P450s in the

  6. Cytochrome P450 Expression Profile of the PICM-19H Pig Liver Cell Line: Potential Application to Rapid Liver Toxicity Assays.

    USDA-ARS?s Scientific Manuscript database

    In vitro models of the liver are needed to replace animal models for the rapid assessment of drug biotransformation and toxicity. One hepatocellular model, the PICM-19 pig liver stem cell line, may fulfill this need since these cells have many activities associated with xenobiotic phase I and phas...

  7. Evaluating the Disposition of a Mixed Aldehyde Oxidase/Cytochrome P450 Substrate in Rats with Attenuated P450 Activity

    PubMed Central

    Crouch, Rachel D.; Morrison, Ryan D.; Byers, Frank W.; Lindsley, Craig W.; Emmitte, Kyle A.

    2016-01-01

    Marketed drugs cleared by aldehyde oxidase (AO) are few, with no known clinically relevant pharmacokinetic drug interactions associated with AO inhibition, whereas cytochrome P450 (P450) inhibition or induction mediates a number of clinical drug interactions. Little attention has been given to the consequences of coadministering a P450 inhibitor with a compound metabolized by both AO and P450. Upon discovering that VU0409106 (1) was metabolized by AO (to M1) and P450 enzymes (to M4–M6), we sought to evaluate the in vivo disposition of 1 and its metabolites in rats with attenuated P450 activity. Male rats were orally pretreated with the pan-P450 inactivator, 1-aminobenzotriazole (ABT), before an i.p. dose of 1. Interestingly, the plasma area under the curve (AUC) of M1 was increased 15-fold in ABT-treated rats, indicating a metabolic shunt toward AO resulted from the drug interaction condition. The AUC of 1 also increased 7.8-fold. Accordingly, plasma clearance of 1 decreased from 53.5 to 15.3 ml/min per kilogram in ABT-pretreated rats receiving an i.v. dose of 1. Consistent with these data, M1 formation in hepatic S9 increased with NADPH-exclusion to eliminate P450 activity (50% over reactions containing NADPH). These studies reflect possible consequences of a drug interaction between P450 inhibitors and compounds cleared by both AO and P450 enzymes. Notably, increased exposure to an AO metabolite may hold clinical relevance for active metabolites or those mediating toxicity at elevated concentrations. The recent rise in clinical drug candidates metabolized by AO underscores the importance of these findings and the need for clinical studies to fully understand these risks. PMID:26936972

  8. Evaluating the Disposition of a Mixed Aldehyde Oxidase/Cytochrome P450 Substrate in Rats with Attenuated P450 Activity.

    PubMed

    Crouch, Rachel D; Morrison, Ryan D; Byers, Frank W; Lindsley, Craig W; Emmitte, Kyle A; Daniels, J Scott

    2016-08-01

    Marketed drugs cleared by aldehyde oxidase (AO) are few, with no known clinically relevant pharmacokinetic drug interactions associated with AO inhibition, whereas cytochrome P450 (P450) inhibition or induction mediates a number of clinical drug interactions. Little attention has been given to the consequences of coadministering a P450 inhibitor with a compound metabolized by both AO and P450. Upon discovering that VU0409106 (1) was metabolized by AO (to M1) and P450 enzymes (to M4-M6), we sought to evaluate the in vivo disposition of 1 and its metabolites in rats with attenuated P450 activity. Male rats were orally pretreated with the pan-P450 inactivator, 1-aminobenzotriazole (ABT), before an i.p. dose of 1. Interestingly, the plasma area under the curve (AUC) of M1 was increased 15-fold in ABT-treated rats, indicating a metabolic shunt toward AO resulted from the drug interaction condition. The AUC of 1 also increased 7.8-fold. Accordingly, plasma clearance of 1 decreased from 53.5 to 15.3 ml/min per kilogram in ABT-pretreated rats receiving an i.v. dose of 1. Consistent with these data, M1 formation in hepatic S9 increased with NADPH-exclusion to eliminate P450 activity (50% over reactions containing NADPH). These studies reflect possible consequences of a drug interaction between P450 inhibitors and compounds cleared by both AO and P450 enzymes. Notably, increased exposure to an AO metabolite may hold clinical relevance for active metabolites or those mediating toxicity at elevated concentrations. The recent rise in clinical drug candidates metabolized by AO underscores the importance of these findings and the need for clinical studies to fully understand these risks. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Role of cytochromes P450 in metabolism of carcinogenic aristolochic acid I: evidence of their contribution to aristolochic acid I detoxication and activation in rat liver.

    PubMed

    Stiborova, Marie; Mares, Jaroslav; Levova, Katerina; Pavlickova, Jana; Barta, Frantisek; Hodek, Petr; Frei, Eva; Schmeiser, Heinz H

    2011-01-01

    The herbal drug aristolochic acid (AA) derived from Aristolochia species has been shown to be the cause of aristolochic acid nephropathy (AAN), Balkan endemic nephropathy (BEN) and their urothelial malignancies. One of the common features of AAN and BEN is that not all individuals exposed to AA suffer from nephropathy and tumor development. One cause for these different responses may be individual differences in the activities of the enzymes catalyzing the biotransformation of AA. Thus, the identification of enzymes principally involved in the metabolism of AAI, the major toxic component of AA, and detailed knowledge of their catalytic specificities is of major importance. Therefore, the present study has been designed to evaluate the cytochrome P450 (CYP)-mediated oxidative detoxification and reductive activation of AAI in a rat model. DNA adduct formation was investigated by the nuclease P1 version of the 32P-postlabeling method. The CYP-mediated formation of a detoxication metabolite of AAI, 8-hydroxyaristolochic acid I (AAIa), in vitro in rat hepatic microsomes was determined by HPLC. Rat hepatic CYPs both detoxicate AAI by its oxidation to AAIa and reductively activate this carcinogen to a cyclic N-acylnitrenium ion forming AAI-DNA adducts in vitro. To define the role of hepatic CYPs in AAI demethylation and activation, the modulation of AAIa and AAI-DNA adduct formation by CYP inducers and selective CYP inhibitors was investigated. Based on these studies, we attribute the major role of CYP1A1 and 1A2 in AAI detoxication by its demethylation to AAIa, and, under hypoxic conditions also to AAI activation to species forming DNA adducts. Using microsomes of Baculovirus transfected insect cells (Supersomes™) containing recombinantly expressed rat CYPs, NADPH:CYP reductase and/or cytochrome b5, a major role of CYP1A1 and 1A2 in both reactions in vitro was confirmed. Based on the results found in this and former studies we propose that AAI activation and

  10. [Cytochrome P-450 and the response to antimalarial drugs].

    PubMed

    Guzmán, Valentina; Carmona-Fonseca, Jaime

    2006-01-01

    To assess the relationship between the genetic and phenotypic factors linked to the cytochrome P-450 enzyme system and the response to the antimalarial drugs chloroquine, amodiaquine, mefloquine, and proguanil, as well as to determine how certain biological and social factors of the host influence the behavior of this enzymatic complex. We performed a systematic review of the medical bibliographic databases PubMed, Excerpta Medica, LILACS, and SciELO by using the following Spanish and English descriptors: "CYP-450" and "citocromo P-450" in combination with "proguanil" (and with "mefloquina," "cloroquina," and "amodiaquina"), "farmacocinética de proguanil" (and the same using "mefloquina," "cloroquina," and "amodiaquina"), "resistencia a proguanil" (and the same using "mefloquina," "cloroquina," and "amodiaquina"), "metabolismo," "farmacogenética," "enfermedad," "inflamación," "infección," "enfermedad hepática," "malaria," "nutrición," and "desnutrición." The same terms were used in English. The search included only articles published in Spanish, English, and Portuguese on or before 30 June 2005 that dealt with only four antimalarial drugs: amodiaquine, chloroquine, mefloquine, and proguanil. Some genetic factors linked to human cytochrome P-450 (mainly its polymorphism), as well as other biological and social factors (the presence of disease itself, or of inflammation and infection, the use of antimalarials in their various combinations, and the patient's nutritional status) influence the behavior of this complex enzymatic system. It has only been in the last decade that the genetics of the cytochromes has been explored and that the mechanisms underlying some therapeutic interactions and aspects of drug metabolism have been uncovered, making it possible to characterize the biotransformation pathway of amodiaquine and chloroquine. Hopefully new research will help answer the questions that still remain, some of which pertain to the metabolism of other

  11. Role of hepatic cytochromes P450 in bioactivation of the anticancer drug ellipticine: Studies with the hepatic NADPH:Cytochrome P450 reductase null mouse

    SciTech Connect

    Stiborova, Marie Arlt, Volker M.; Henderson, Colin J.; Wolf, C. Roland; Kotrbova, Vera; Moserova, Michaela; Hudecek, Jiri; Phillips, David H.; Frei, Eva

    2008-02-01

    Ellipticine is an antineoplastic agent, which forms covalent DNA adducts mediated by cytochromes P450 (CYP) and peroxidases. We evaluated the role of hepatic versus extra-hepatic metabolism of ellipticine, using the HRN (Hepatic Cytochrome P450 Reductase Null) mouse model, in which cytochrome P450 oxidoreductase (POR) is deleted in hepatocytes, resulting in the loss of essentially all hepatic CYP function. HRN and wild-type (WT) mice were treated i.p. with 1 and 10 mg/kg body weight of ellipticine. Multiple ellipticine-DNA adducts detected by {sup 32}P-postlabelling were observed in organs from both mouse strains. Highest total DNA binding levels were found in liver, followed by lung, kidney, urinary bladder, colon and spleen. Ellipticine-DNA adduct levels in the liver of HRN mice were up to 65% lower relative to WT mice, confirming the importance of CYP enzymes for the activation of ellipticine in livers, recently shown in vitro with human and rat hepatic microsomes. When hepatic microsomes of both mouse strains were incubated with ellipticine, ellipticine-DNA adduct levels with WT microsomes were up to 2.9-fold higher than with those from HRN mice. The ratios of ellipticine-DNA adducts in extra-hepatic organs between HRN and WT mice of up to 4.7 suggest that these organs can activate ellipticine and that more ellipticine is available in the circulation. These results and the DNA adduct patterns found in vitro and in vivo demonstrate that both CYP1A or 3A and peroxidases participate in activation of ellipticine to reactive species forming DNA adducts in the mouse model used in this study.

  12. Cyclosporin A-induced free radical generation is not mediated by cytochrome P-450

    PubMed Central

    Krauskopf, Alexandra; Buetler, Timo M; Nguyen, Nathalie S D; Macé, Katherine; Ruegg, Urs T

    2002-01-01

    Reactive oxygen species (ROS) have been proposed to play a role in the side effects of the immunosuppressive drug cyclosporin A (CsA). The aim of this study was to investigate whether cytochrome P-450 (CYP) dependent metabolism of CsA could be responsible for ROS generation since it has been suggested that CsA may influence the CYP system to produce ROS. We show that CsA (1 – 10 μM) generated antioxidant-inhibitable ROS in rat aortic smooth muscle cells (RASMC) using the fluorescent probe 2,7-dichlorofluorescin diacetate. Using cytochrome c as substrate, we show that CsA (10 μM) did not inhibit NADPH cytochrome P-450 reductase in microsomes prepared from rat liver, kidney or RASMC. CsA (10 μM) did not uncouple the electron flow from NADPH via NADPH cytochrome P-450 reductase to the CYP enzymes because CsA did not inhibit the metabolism of substrates selective for several CYP enzymes that do not metabolize CsA in rat liver microsomes. CsA (10 μM) did not generate more radicals in CYP 3A4 expressing immortalized human liver epithelial cells (T5-3A4 cells) than in control cells that do not express CYP 3A4. Neither diphenylene iodonium nor the CYP 3A inhibitor ketoconazole were able to block ROS formation in rat aortic smooth muscle or T5-3A4 cells. These results demonstrate that CYP enzymes do not contribute to CsA-induced ROS formation and that CsA neither inhibits NADPH cytochrome P-450 reductase nor the electron transfer to the CYP enzymes. PMID:11861326

  13. Direct inhibitions of the activities of steroidogenic cytochrome P-450 mono-oxygenase systems by anticonvulsants.

    PubMed

    Ohnishi, T; Ichikawa, Y

    1997-01-01

    The effects of anticonvulsants on the activities of cytochromes P-450(17alpha,lyase) (CYP17), P-450arom (CYP19), P-450C21 (CYP21), P-450SCC (CYP11A1), and P-450(11beta) (CYP11B1) mono-oxygenase systems were studied using rat testicular microsomes, human placental microsomes, bovine adrenocortical microsomes, bovine adrenocortical mitochondria and purified cytochrome P-450(11beta). Phenytoin, clonazepam and carbamazepine inhibited the steroidogenesis catalysed by these cytochrome P-450 mono-oxygenase systems and the Ki values for each anticonvulsant were determined. Neither hydantoin nor sodium valproate inhibited the activities of steroidogenic cytochromes P-450. When the activities of cytochromes P-450arom and P-450C21 were measured in the presence of anticonvulsants, the Ki values (0.15 mM) for phenytoin were close to the plasma concentration of phenytoin under therapeutic conditions. Phenytoin, clonazepam and carbamazepine directly inhibited the monooxygenase activities of cytochromes P-450, because they did not affect the activities of NADPH-cytochrome P-450 reductase, NADPH-adrenoferredoxin reductase and adrenoferredoxin.

  14. Selective Targeting of Heme Protein in Cytochrome P450 and Nitric Oxide Synthase by Diphenyleneiodonium.

    PubMed

    Szilagyi, John T; Mishin, Vladimir; Heck, Diane E; Jan, Yi-Hua; Aleksunes, Lauren M; Richardson, Jason R; Heindel, Ned D; Laskin, Debra L; Laskin, Jeffrey D

    2016-05-01

    Cytochrome P450 (CYP) enzymes mediate mixed-function oxidation reactions important in drug metabolism. The aromatic heterocyclic cation, diphenyleneiodonium (DPI), binds flavin in cytochrome P450 reductase and inhibits CYP-mediated activity. DPI also inhibits CYP by directly interacting with heme. Herein, we report that DPI effectively inhibits a number of CYP-related monooxygenase reactions including NADPH oxidase, a microsomal enzyme activity that generates hydrogen peroxide in the absence of metabolizing substrates. Inhibition of monooxygenase by DPI was time and concentration dependent with IC50's ranging from 0.06 to 1.9 μM. Higher (4.6-23.9 μM), but not lower (0.06-1.9 μM), concentrations of DPI inhibited electron flow via cytochrome P450 reductase, as measured by its ability to reduce cytochrome c and mediate quinone redox cycling. Similar results were observed with inducible nitric oxide synthase (iNOS), an enzyme containing a C-terminal reductase domain homologous to cytochrome P450 reductase that mediates reduction of cytochrome c, and an N-terminal heme-thiolate oxygenase domain mediating nitric oxide production. Significantly greater concentrations of DPI were required to inhibit cytochrome c reduction by iNOS (IC50 = 3.5 µM) than nitric oxide production (IC50 = 0.16 µM). Difference spectra of liver microsomes, recombinant CYPs, and iNOS demonstrated that DPI altered heme-carbon monoxide interactions. In the presence of NADPH, DPI treatment of microsomes and iNOS yielded a type II spectral shift. These data indicate that DPI interacts with both flavin and heme in CYPs and iNOS. Increased sensitivity for inhibition of CYP-mediated metabolism and nitric oxide production by iNOS indicates that DPI targets heme moieties within the enzymes.

  15. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    PubMed Central

    Elenewski, Justin E.; Hackett, John C

    2015-01-01

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis. PMID:25681906

  16. Cholesterol Ester Oxidation by Mycobacterial Cytochrome P450*

    PubMed Central

    Frank, Daniel J.; Madrona, Yarrow; Ortiz de Montellano, Paul R.

    2014-01-01

    Mycobacteria share a common cholesterol degradation pathway initiated by oxidation of the alkyl side chain by enzymes of cytochrome P450 (CYP) families 125 and 142. Structural and sequence comparisons of the two enzyme families revealed two insertions into the N-terminal region of the CYP125 family (residues 58–67 and 100–109 in the CYP125A1 sequence) that could potentially sterically block the oxidation of the longer cholesterol ester molecules. Catalytic assays revealed that only CYP142 enzymes are able to oxidize cholesteryl propionate, and although CYP125 enzymes could oxidize cholesteryl sulfate, they were much less efficient at doing so than the CYP142 enzymes. The crystal structure of CYP142A2 in complex with cholesteryl sulfate revealed a substrate tightly fit into a smaller active site than was previously observed for the complex of CYP125A1 with 4-cholesten-3-one. We propose that the larger CYP125 active site allows for multiple binding modes of cholesteryl sulfate, the majority of which trigger the P450 catalytic cycle, but in an uncoupled mode rather than one that oxidizes the sterol. In contrast, the more unhindered and compact CYP142 structure enables enzymes of this family to readily oxidize cholesteryl esters, thus providing an additional source of carbon for mycobacterial growth. PMID:25210044

  17. Interactions of phospholipase D and cytochrome P450 protein stability

    SciTech Connect

    Zangar, Richard C.; Fan, Yang-Yi; Chapkin, Robert S.

    2004-08-01

    Previous studies have suggested a relationship between cytochrome P450 (P450) 3A (CYP3A) conformation and the phospholipid composition of the associated membrane. In this study, we utilized a novel microsomal incubation system that mimics many of the characteristics of CYP3A degradation pathway that have been observed in vivo and in cultured cells to study the effects of phospholipid composition on protein stability. We found that addition of phosphatidylcholine-specific phospholipase D (PLD) stabilized CYP3A in this system, but that phosphatidylinositol-specific phospholipase C (PLC) was without effect. Addition of phosphatidic acid also stabilized CYP3A protein in the microsomes. The use of 1,10-phenanthroline (phenanthroline), an inhibitor of PLD activity, decreased CYP3A stability in incubated microsomes. Similarly, 6-h treatment of primary cultures of rat hepatocytes with phenanthroline resulted in nearly complete loss of CYP3A protein. Treatment of rats with nicardipine or dimethylsulfoxide (DMSO), which have been shown to affect CYP3A stability, altered the phospholipid composition of hepatic microsomes. It did not appear, though, that the changes in phospholipid composition that resulted from these in vivo treatments accounted for the change in CYP3A stability observed in hepatic microsomes from these animals.

  18. Nanoscale electron transport measurements of immobilized cytochrome P450 proteins

    NASA Astrophysics Data System (ADS)

    Bostick, Christopher D.; Flora, Darcy R.; Gannett, Peter M.; Tracy, Timothy S.; Lederman, David

    2015-04-01

    Gold nanopillars, functionalized with an organic self-assembled monolayer, can be used to measure the electrical conductance properties of immobilized proteins without aggregation. Measurements of the conductance of nanopillars with cytochrome P450 2C9 (CYP2C9) proteins using conducting probe atomic force microscopy demonstrate that a correlation exists between the energy barrier height between hopping sites and CYP2C9 metabolic activity. Measurements performed as a function of tip force indicate that, when subjected to a large force, the protein is more stable in the presence of a substrate. This agrees with the hypothesis that substrate entry into the active site helps to stabilize the enzyme. The relative distance between hopping sites also increases with increasing force, possibly because protein functional groups responsible for electron transport (ETp) depend on the structure of the protein. The inhibitor sulfaphenazole, in addition to the previously studied aniline, increased the barrier height for electron transfer and thereby makes CYP2C9 reduction more difficult and inhibits metabolism. This suggests that P450 Type II binders may decrease the ease of ETp processes in the enzyme, in addition to occupying the active site.

  19. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    NASA Astrophysics Data System (ADS)

    Elenewski, Justin E.; Hackett, John C.

    2015-02-01

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.

  20. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    SciTech Connect

    Elenewski, Justin E.; Hackett, John C

    2015-02-14

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.

  1. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain

    SciTech Connect

    Iyanagi, Takashi . E-mail: iyanagi@spring8.or.jp

    2005-12-09

    NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH {sup {center_dot}}/FMNH{sub 2} couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form can function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.

  2. Enzyme kinetics of oxidative metabolism: cytochromes P450.

    PubMed

    Korzekwa, Ken

    2014-01-01

    The cytochrome P450 enzymes (CYPs) are the most important enzymes in the oxidative metabolism of hydrophobic drugs and other foreign compounds (xenobiotics). The versatility of these enzymes results in some unusual kinetic properties, stemming from the simultaneous interaction of multiple substrates with the CYP active site. Often, the CYPs display kinetics that deviate from standard hyperbolic saturation or inhibition kinetics. Non-Michaelis-Menten or "atypical" saturation kinetics include sigmoidal, biphasic, and substrate inhibition kinetics (see Chapter 3 ). Interactions between substrates include competitive inhibition, noncompetitive inhibition, mixed inhibition, partial inhibition, activation, and activation followed by inhibition (see Chapter 4 ). Models and equations that can result in these kinetic profiles will be presented and discussed.

  3. Personalized Cancer Therapy Considering Cytochrome P450 Variability.

    PubMed

    Preissner, Saskia; Simmaco, Maurizio; Gentile, Giovanna; Preissner, Robert

    2015-01-01

    The individual variability of pharmacokinetics is underestimated and few systematic studies exist in this field. In most cases, this leads to unwanted side effects or toxicity. In polychemotherapy, prodrugs (like ifosfamide), which have to be activated by cytochrome P450 enzymes (CYPs), play an important role. If patients are poor metabolizers for these drugs, the therapy will be ineffective. Furthermore, CYPs and transporters can be (over)expressed in target tissues, which is also not examined and considered in clinical routine. Here, we present a body map showing relevant enzymes in some organs and tissues. Finally, a typical case of a Caucasian chemotherapy patient with breast cancer is presented and discussed regarding a personalized cancer therapy considering the single nucleotide polymorphisms found via genotyping.

  4. Structures of Human Cytochrome P-450 2E1

    PubMed Central

    Porubsky, Patrick R.; Meneely, Kathleen M.; Scott, Emily E.

    2008-01-01

    Human microsomal cytochrome P-450 2E1 (CYP2E1) monooxygenates >70 low molecular weight xenobiotic compounds, as well as much larger endogenous fatty acid signaling molecules such as arachidonic acid. In the process, CYP2E1 can generate toxic or carcinogenic compounds, as occurs with acetaminophen overdose, nitrosamines in cigarette smoke, and reactive oxygen species from uncoupled catalysis. Thus, the diverse roles that CYP2E1 has in normal physiology, toxicity, and drug metabolism are related to its ability to metabolize diverse classes of ligands, but the structural basis for this was previously unknown. Structures of human CYP2E1 have been solved to 2.2 Å for an indazole complex and 2.6 Å for a 4-methylpyrazole complex. Both inhibitors bind to the heme iron and hydrogen bond to Thr303 within the active site. Complementing its small molecular weight substrates, the hydrophobic CYP2E1 active site is the smallest yet observed for a human cytochrome P-450. The CYP2E1 active site also has two adjacent voids: one enclosed above the I helix and the other forming a channel to the protein surface. Minor repositioning of the Phe478 aromatic ring that separates the active site and access channel would allow the carboxylate of fatty acid substrates to interact with conserved 216QXXNN220 residues in the access channel while positioning the hydrocarbon terminus in the active site, consistent with experimentally observed ω-1 hydroxylation of saturated fatty acids. Thus, these structures provide insights into the ability of CYP2E1 to effectively bind and metabolize both small molecule substrates and fatty acids. PMID:18818195

  5. Cloning and expression of a member of a new cytochrome P-450 family: cytochrome P-450lin (CYP111) from Pseudomonas incognita.

    PubMed Central

    Ropp, J D; Gunsalus, I C; Sligar, S G

    1993-01-01

    Cytochrome P-450lin catalyzes the 8-methyl hydroxylation of linalool as the first committed step of its utilization by Pseudomonas incognita as the sole carbon source. By using a polymerase chain reaction-based cloning strategy, a 2.1-kb DNA fragment containing the cytochrome P-450lin gene (linC) was isolated. An open reading frame of 406 amino acids has been identified as that of P-450lin on the basis of amino acid sequence data from peptides of the native protein. Heterologous expression of functional holoprotein is exhibited by Escherichia coli transformed with pUC18 containing the subcloned linC gene under constitutive transcriptional control of the lac promoter. The G+C content of linC was found to be 55% overall and 58% in the third codon position. An optimized amino acid sequence alignment of P-450lin with cytochrome P-450cam shows that the two enzymes have only 25% identity. P-450lin was found to exhibit the expected conservation in the axial cysteine heme ligand-containing peptide and the threonine region postulated to form an O2-binding pocket (T. L. Poulos, B. C. Finzel, and A. J. Howard, J. Mol. Biol. 195:687-700, 1987). The low amino acid sequence identity between P-450lin and all other P-450 sequences has shown that P-450lin is the first member of the CYP111 P-450 gene family. PMID:8376348

  6. Inactivation of cytochrome P450 (P450) 3A4 but not P450 3A5 by OSI-930, a thiophene-containing anticancer drug.

    PubMed

    Lin, Hsia-lien; Zhang, Haoming; Medower, Christine; Hollenberg, Paul F; Johnson, William W

    2011-02-01

    An investigational anticancer agent that contains a thiophene moiety, 3-[(quinolin-4-ylmethyl)-amino]-N-[4-trifluoromethox)phenyl] thiophene-2-carboxamide (OSI-930), was tested to investigate its ability to modulate the activities of several cytochrome P450 enzymes. Results showed that OSI-930 inactivated purified, recombinant cytochrome P450 (P450) 3A4 in the reconstituted system in a mechanism-based manner. The inactivation was dependent on cytochrome b(5) and required NADPH. Catalase did not protect against the inactivation. No inactivation was observed in studies with human 2B6, 2D6, or 3A5 either in the presence or in the absence of b(5). The inactivation of 3A4 by OSI-930 was time- and concentration-dependent. The inactivation of the 7-benzyloxy-4-(trifluoromethyl)coumarin catalytic activity of 3A4 was characterized by a K(I) of 24 μM and a k(inact) of 0.04 min(-1). This K(I) is significantly greater than the clinical OSI-930 C(max) of 1.7 μM at the maximum tolerated dose, indicating that clinical drug interactions of OSI-930 via this pathway are not likely. Spectral analysis of the inactivated protein indicated that the decrease in the reduced CO spectrum at 450 nm was comparable to the amount of inactivation, thereby suggesting that the inactivation was primarily due to modification of the heme. High-pressure liquid chromatography (HPLC) analysis with detection at 400 nm showed a loss of heme comparable to the activity loss, but a modified heme was not detected. This result suggests either that the heme must have been modified enough so as not to be observed in a HPLC chromatograph or, possibly, that it was destroyed. The partition ratio for the inactivation of P450 3A4 was approximately 23, suggesting that this P450 3A4-mediated pathway occurs with approximately 4% frequency during the metabolism of OSI-930. Modeling studies on the binding of OSI-930 to the active site of the P450 3A4 indicated that OSI-930 would be oriented properly in the active site

  7. Pulmonary oxygen toxicity in rats treated with cytochrome P-450 inducers

    SciTech Connect

    Ebel, R.E.; Barlow, R.L.; Gregory, E.M.

    1987-05-01

    Pulmonary oxygen toxicity is assumed to result from damage caused by superoxide (O/sub 2//sup -/) hydrogen peroxide (H/sub 2/O/sub 2/) and/or hydroxyl radical (OH) produced by the partial reduction of molecular oxygen (O/sub 2/). The microsomal cytochrome P-450 (P-450) monooxygenase system is known to produce O/sub 2//sup -/ and H/sub 2/O/sub 2/. They have studied the influence of monooxygenase induction using phenobarbital (PB) and ..beta..-naphthoflavone (..beta..-NF) on O/sub 2/ toxicity in the rat. PB- or ..beta..-NF induce hepatic P-450 but only ..beta..-NF induces pulmonary P-450. Pulmonary microsomes produced O/sub 2//sup -/ and H/sub 2/O/sub 2/ at rates (expressed per mg microsomal protein) which did not vary as a function of pretreatment. Rats were exposed to 100% O/sub 2/ for up to 3 days. After 3 days of O/sub 2/, lung weights were about 50% above controls regardless of pretreatment. The microsomal monooxygenase enzymes (P-450, b/sub 5/ and NADPH P-450 reductase) were quantified in liver and lung. Lung microsomal P-450 was reduced after 3 days of O/sub 2/ exposure regardless of pretreatment. The protective enzymes (catalase, superoxide dismutase (SOD) and glutathione (GSH) peroxidase) and non-protein sulfhydryl groups (NPSH) were also quantified in lung and liver samples. Lung NPSH and GSH peroxidase were increased after 3 days of O/sub 2/ exposure regardless of pretreatment while SOD was increased in controls and PB- but not ..beta..-NF-treated rats. Three of 14 ..beta..-NF-treated rats died during O/sub 2/ exposure while no animals in the control or PB-treated groups died.

  8. Population Pharmacokinetic Model for Docetaxel in Patients with Varying Degrees of Liver Function: Incorporating Cytochrome P450 3A Activity Measurements

    PubMed Central

    Hooker, AC; ten Tije, AJ; Carducci, MA; Weber, J; Garrett-Mayer, E; Gelderblom, H; McGuire, WP; Verweij, J; Karlsson, MO; Baker, SD

    2011-01-01

    The relationship between cytochrome P4503A4 (CYP3A4) activity and docetaxel clearance in patients with varying degrees of liver function (LF) was evaluated. Docetaxel 40, 50, or 75 mg/m2 was administered to 85 patients with advanced cancer; 23 of 77 evaluable patients had abnormalities in liver function tests. Baseline CYP3A activity was assessed using the erythromycin breath test (ERMBT). Pharmacokinetic studies and toxicity assessments were performed during cycle 1 of therapy and population modeling was performed using NONMEM. Docetaxel unbound clearance was lower (317 vs. 470 L/h) and more variable in patients with liver function abnormalities compared to patients with normal LF. Covariates evaluated accounted for 83% of variability on clearance in patients with liver dysfunction, with CYP3A4 activity accounting for 47% of variation; covariates accounted for only 23% of variability in patients with normal LF. The clinical utility of the ERMBT may be in identifying safe docetaxel doses for patients with LF abnormalities. PMID:18183036

  9. Differential cumene hydroperoxide sensitivity of cytochrome P-450 enzymes IA1 and IIB1 determined by their way of membrane incorporation.

    PubMed

    Balvers, W G; Boersma, M G; Veeger, C; Rietjens, I M

    1992-09-15

    The cytochrome P-450-dependent O-dealkylation of alkoxyresorufins was used to study the effect of cumene hydroperoxide on cytochrome P-450 IIB1 and IA1 in microsomal and reconstituted systems. In liver microsomal systems from respectively phenobarbital and 3-methylcholanthrene pretreated male Wistar rats, cytochrome P-450 IIB1-dependent pentoxyresorufin-O-dealkylation appeared to be more sensitive to cumene hydroperoxide treatment than cytochrome P-450 IA1-dependent ethoxyresorufin-O-dealkylation. This phenomenon was also observed when the cumene hydroperoxide sensitivity of P-450 IIB1 and IA1 was studied in an isosafrole pretreated rat liver microsomal system. The decrease in alkoxy-O-dealkylating activities appeared to proceed by destruction of the cytochrome P-450 component of the enzyme system. Purification and reconstitution of the enzyme system components in a system in which the isolated proteins were not incorporated into a membrane resulted in the disappearance of the difference in sensitivity between the two P-450 enzymes. However, in a reconstituted system with membrane incorporated proteins, again cytochrome P-450 IIB1 expressed a higher sensitivity towards cumene hydroperoxide than cytochrome P-450 IA1. From this it was concluded that the differential cumene hydroperoxide sensitivity of cytochrome P-450 IIB1 and IA1 is not caused by an intrinsic difference in their sensitivity but by a differential effect of membrane incorporation on their cumene hydroperoxide sensitivity.

  10. Mechanistic Scrutiny Identifies a Kinetic Role for Cytochrome b5 Regulation of Human Cytochrome P450c17 (CYP17A1, P450 17A1)

    PubMed Central

    Simonov, Alexandr N.; Holien, Jessica K.; Yeung, Joyee Chun In; Nguyen, Ann D.; Corbin, C. Jo; Zheng, Jie; Kuznetsov, Vladimir L.; Auchus, Richard J.; Conley, Alan J.; Bond, Alan M.; Parker, Michael W.; Rodgers, Raymond J.; Martin, Lisandra L.

    2015-01-01

    Cytochrome P450c17 (P450 17A1, CYP17A1) is a critical enzyme in the synthesis of androgens and is now a target enzyme for the treatment of prostate cancer. Cytochrome P450c17 can exhibit either one or two physiological enzymatic activities differentially regulated by cytochrome b5. How this is achieved remains unknown. Here, comprehensive in silico, in vivo and in vitro analyses were undertaken. Fluorescence Resonance Energy Transfer analysis showed close interactions within living cells between cytochrome P450c17 and cytochrome b5. In silico modeling identified the sites of interaction and confirmed that E48 and E49 residues in cytochrome b5 are essential for activity. Quartz crystal microbalance studies identified specific protein-protein interactions in a lipid membrane. Voltammetric analysis revealed that the wild type cytochrome b5, but not a mutated, E48G/E49G cyt b5, altered the kinetics of electron transfer between the electrode and the P450c17. We conclude that cytochrome b5 can influence the electronic conductivity of cytochrome P450c17 via allosteric, protein-protein interactions. PMID:26587646

  11. Cytochrome p450nor, a novel class of mitochondrial cytochrome P450 involved in nitrate respiration in the fungus Fusarium oxysporum.

    PubMed

    Takaya, N; Suzuki, S; Kuwazaki, S; Shoun, H; Maruo, F; Yamaguchi, M; Takeo, K

    1999-12-15

    Fusarium oxysporum, an imperfect filamentous fungus performs nitrate respiration under limited oxygen. In the respiratory system, Cytochrome P450nor (P450nor) is thought to catalyze the last step; reduction of nitric oxide to nitrous oxide. We examined its intracellular localization using enzymatic, spectroscopic, and immunological analyses to show that P450nor is found in both the mitochondria and the cytosol. Translational fusions between the putative mitochondrial targeting signal on the amino terminus of P450nor and Escherichia coli beta-galactosidase resulted in significant beta-galactosidase activity in the mitochondrial fraction of nitrate-respiring cells, suggesting that one of the isoforms of P450nor (P450norA) is in anaerobic mitochondrion of F. oxysporum and acts as nitric oxide reductase. Furthermore, these findings suggest the involvement of P450nor in nitrate respiration in mitochondria.

  12. Generation of hepatocytes expressing functional cytochromes P450 from a pancreatic progenitor cell line in vitro.

    PubMed Central

    Marek, Carylyn J; Cameron, Gary A; Elrick, Lucy J; Hawksworth, Gabrielle M; Wright, Matthew C

    2003-01-01

    The proliferating AR42J-B13 pancreatic cell line is known to respond to glucocorticoid treatment by producing foci of cells that express the liver-specific albumin gene. We demonstrate that this cell line also expresses liver-specific or liver-enriched functional cytochrome P450 proteins when stimulated to trans-differentiate into hepatocytes by glucocorticoid. These data suggest that this cell line has an unusual ability to trans-differentiate into functional hepatocytes and that it could be possible to generate a limitless supply of functional hepatocyte-like cells in vitro. PMID:12542397

  13. A Targeted Proteomics Approach for Profiling Murine Cytochrome P450 Expression

    PubMed Central

    Hersman, Elisabeth M.

    2014-01-01

    The cytochrome P450 (P450) superfamily of enzymes plays a prominent role in drug metabolism. Although mice are a widely used preclinical model in pharmacology, the expression of murine P450 enzymes at the protein level has yet to be fully defined. Twenty-seven proteins belonging to P450 subfamilies 1A, 2A, 2B, 2C, 2D, 2E, 2F, 2J, 2U, 3A, 4A, 4B, 4F, and 4V were readily detectable in Balb/c mouse tissue using a global mass spectrometry–based proteomics approach. Subsequently, a targeted mass spectrometry–based assay was developed to simultaneously quantify these enzymes in ranges of femtomoles of P450 per microgram of total protein concentration range. This screen was applied to mouse liver microsomes and tissue lysates of kidney, lung, intestine, heart, and brain isolated from mixed-sex fetuses; male and female mice that were 3–4 weeks, 9–10 weeks, and 8–10 months of age; and pregnant mice. CYP1A2 was consistently more abundant in male mouse liver microsomes compared with age-matched females. Hepatic expression of CYP2B9 was more abundant in 3- to 4-week-old male and female mice than in mice of other ages; in addition, CYP2B9 was the only enzyme that was detectable at higher levels in pregnant mouse liver microsomes compared with age-matched females. Interestingly, sexually dimorphic expression of CYP2B9, 2D26, 2E1, and 4B1 was observed in kidney only. The targeted proteomics assay described here can be broadly used as a tool for investigating the expression patterns of P450 enzymes in mice. PMID:24594750

  14. Aryl hydrocarbon induction of rat cytochrome P-450d results from increased precursor RNA processing.

    PubMed Central

    Silver, G; Krauter, K S

    1990-01-01

    We have previously demonstrated that cytochrome P-450d mRNA accumulation is induced at a posttranscriptional level by 3-methylcholanthrene (MCA) in primary cultures of rat hepatocytes grown in serum-free hormonally defined medium. Using dactinomycin chase experiments in this culture system, we found that MCA had no effect on the P-450d mRNA half-life. In addition, induction of P-450d occurred both in the presence and in the absence of protein synthesis inhibitors. An analysis of nuclear precursors showed that the accumulation of the primary transcript of the P-450d gene was induced to the same extent as that of the mature mRNA after MCA treatment and that the pattern of accumulation of precursors differed between treated and control liver cells. Since P-450d induction is thought to be a receptor-mediated event, these data are consistent with a model in which a direct interaction occurs between the receptor-ligand complex and the primary transcript. Images PMID:2247082

  15. Bacterial Cytochrome P450 System Catabolizing the Fusarium Toxin Deoxynivalenol

    PubMed Central

    Ito, Michihiro; Sato, Ikuo; Ishizaka, Masumi; Yoshida, Shin-ichiro; Koitabashi, Motoo; Yoshida, Shigenobu

    2013-01-01

    Deoxynivalenol (DON) is a natural toxin of fungi that cause Fusarium head blight disease of wheat and other small-grain cereals. DON accumulates in infected grains and promotes the spread of the infection on wheat, posing serious problems to grain production. The elucidation of DON-catabolic genes and enzymes in DON-degrading microbes will provide new approaches to decrease DON contamination. Here, we report a cytochrome P450 system capable of catabolizing DON in Sphingomonas sp. strain KSM1, a DON-utilizing bacterium newly isolated from lake water. The P450 gene ddnA was cloned through an activity-based screening of a KSM1 genomic library. The genes of its redox partner candidates (flavin adenine dinucleotide [FAD]-dependent ferredoxin reductase and mitochondrial-type [2Fe-2S] ferredoxin) were not found adjacent to ddnA; the redox partner candidates were further cloned separately based on conserved motifs. The DON-catabolic activity was reconstituted in vitro in an electron transfer chain comprising the three enzymes and NADH, with a catalytic efficiency (kcat/Km) of 6.4 mM−1 s−1. The reaction product was identified as 16-hydroxy-deoxynivalenol. A bioassay using wheat seedlings revealed that the hydroxylation dramatically reduced the toxicity of DON to wheat. The enzyme system showed similar catalytic efficiencies toward nivalenol and 3-acetyl deoxynivalenol, toxins that frequently cooccur with DON. These findings identify an enzyme system that catabolizes DON, leading to reduced phytotoxicity to wheat. PMID:23275503

  16. Repurposing Resveratrol and Fluconazole To Modulate Human Cytochrome P450-Mediated Arachidonic Acid Metabolism.

    PubMed

    El-Sherbeni, Ahmed A; El-Kadi, Ayman O S

    2016-04-04

    Cytochrome P450 (P450) enzymes metabolize arachidonic acid (AA) to several biologically active epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids (HETEs). Repurposing clinically-approved drugs could provide safe and readily available means to control EETs and HETEs levels in humans. Our aim was to determine how to significantly and selectively modulate P450-AA metabolism in humans by clinically-approved drugs. Liquid chromatography-mass spectrometry was used to determine the formation of 15 AA metabolites by human recombinant P450 enzymes, as well as human liver and kidney microsomes. CYP2C19 showed the highest EET-forming activity, while CYP1B1 and CYP2C8 showed the highest midchain HETE-forming activities. CYP1A1 and CYP4 showed the highest subterminal- and 20-HETE-forming activity, respectively. Resveratrol and fluconazole produced the most selective and significant modulation of hepatic P450-AA metabolism, comparable to investigational agents. Monte Carlo simulations showed that 90% of human population would experience a decrease by 6-22%, 16-39%, and 16-35% in 16-, 18-, and 20-HETE formation, respectively, after 2.5 g daily of resveratrol, and by 22-31% and 14-23% in 8,9- and 14,15-EET formation after 50 mg of fluconazole. In conclusion, clinically-approved drugs can provide selective and effective means to modulate P450-AA metabolism, comparable to investigational drugs. Resveratrol and fluconazole are good candidates to be repurposed as new P450-based treatments.

  17. Studies on the interaction of furan with hepatic cytochrome P-450.

    PubMed

    Parmar, D; Burka, L T

    1993-03-01

    In vitro incubation of rat liver microsomes with [14C]-furan in the presence of NADPH resulted in the covalent incorporation of furan-derived radioactivity in microsomal protein. Compared to microsomes from untreated rats a two- to threefold increase in binding was observed with microsomes from phenobarbital-treated rats and a four- to five-fold increase was observed with microsomes from rats pretreated with imidazole or pyrazole. Covalent binding was reduced with microsomes from rats pretreated with beta-naphthoflavone. Chemicals containing an amine group (semi-carbazide), those in which the amine group is blocked but have a free thiol group (N-acetylcysteine), and those which have both an amine and a thiol group (glutathione) effectively blocked binding of [14C]-furan to microsomal protein. A decrease in cytochrome P-450 (P-450) content and decreases in the activities of P-450-dependent aniline hydroxylase, 7-ethoxycoumarin-O-deethylase (ECD), and 7-ethoxyresorufin-O-deethylase (ERD) was observed 24 hours after a single oral administration of 8 or 25 mg/kg of furan, suggesting that the reactive intermediate formed during P-450 catalyzed metabolism could be binding with nucleophilic groups within the P-450. In vitro studies indicated a significant decrease in the activity of aniline hydroxylase in pyrazole microsomes and ECD in phenobarbital microsomes without any significant change in the CO-binding spectrum of P-450 or in the total microsomal heme content, suggesting that furan inhibits the P-450s induced by PB and pyrazole.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Impact of Probe Substrate Selection on Cytochrome P450 Reaction Phenotyping Using the Relative Activity Factor.

    PubMed

    Siu, Y Amy; Lai, W George

    2017-02-01

    Accurately assessing the contribution of cytochrome P450 (P450) isoforms to overall metabolic clearance is important for prediction of clinical drug-drug interactions (DDIs). The relative activity factor (RAF) approach in P450 reaction phenotyping assumes that the interaction between P450-selective probes and testing systems is the same as the interaction of drug candidate with those systems. To test this assumption, an intersystem clearance ratio (ICR) was created to evaluate the difference in values between RAF-scaled intrinsic clearance (CLint) and measured CLint in human liver microsomes (HLMs). The RAF value for CYP3A4 or CYP2C9 derived from a particular P450-selective probe reaction was applied to calculate RAF-scaled CLint for other probe reactions of the same P450 isoform in a crossover manner and compared with the measured HLM CLint When RAF derived from midazolam or nifedipine was used for CYP3A4, the ICR for testosterone 6β-hydroxylation was 31 and 25, respectively, suggesting significantly diverse interactions of CYP3A4 probes with the testing systems. Such ICR differences were less profound among probes for CYP2C9. In addition, these RAF values were applied to losartan and meloxicam, whose metabolism is mostly CYP2C9 mediated. Only using the RAF derived from testosterone for CYP3A4 produced the expected CYP2C9 contribution of 72%-87% and 47%-69% for metabolism of losartan and meloxicam, respectively. RAF derived from other CYP3A4 probes would have attributed predominantly to CYP3A4 and led to incorrect prediction of DDIs. Our study demonstrates a significant impact of probe substrate selection on P450 phenotyping using the RAF approach, and the ICR may provide a potential solution. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Inhibition of cytochrome p450 enzymes by enrofloxacin in the sea bass (Dicentrarchus labrax).

    PubMed

    Vaccaro, E; Giorgi, M; Longo, V; Mengozzi, G; Gervasi, P G

    2003-01-10

    Currently, there are no reports on the effects of enrofloxacin (EF), a fluoroquinolone antibiotic, on the cytochrome p450 enzymes in fish, although its use as antimicrobial agent in aquaculture has been put forward. Therefore, the in vivo and in vitro effects of EF on hepatic p450 enzymes of sea bass, a widespread food-producing fish, have been evaluated. Sea bass pretreated with a single dose of EF (3 mg/kg i.p.) or with three daily doses of EF (1 mg/kg i.p.) markedly depressed the microsomal N-demethylation of aminopyrine, erythromycin, the O-deethylation of 7-ethoxycoumarin, ethoxyresorufin and the 6beta-testosterone hydroxylase. In vitro experiments showed that EF at 10 microM inhibited the above-mentioned activities and, in particular, the erythromycin N-demethylase (ERND) and 6beta-testosterone-hydroxylase, likely dependant on a p450 3A isoform. When the nature of ERND inhibition by EF was specifically studied with sea bass liver microsomes, it was found that EF is a potent mechanism-based inhibitor, with K(i) of 3.7 microM and a K(inact) of 0.045 min(-1). An immunoblot analysis with anti p450 3A27 of trout showed that the p450 3A isoform, constitutively expressed in sea bass, is particularly susceptible to inactivation by EF. In vitro experiments with sea bass microsomes have also demonstrated that EF is oxidative deethylated by the p450 system to ciprofloxacin (CF) and that this compound maintains the ability to inactivate the p450 enzymes. The mechanism by which EF or CF inactivate the p450 enzymes has not been studied but an attack of p450 on the cyclopropan ring, present, both in EF and CF structure, with the formation of electrophilic intermediates (i.e. radicals) has been postulated. In conclusion, the EF seems to be a powerful inhibitor of p450s in the sea bass. Therefore, the clinical use of this antibiotic in aquaculture has to be considered with caution.

  20. Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology.

    PubMed

    Girvan, Hazel M; Munro, Andrew W

    2016-04-01

    Cytochrome P450 enzymes (P450s) are a superfamily of monooxygenase enzymes with enormous potential for synthetic biology applications. Across Nature, their substrate range is vast and exceeds that of other enzymes. The range of different chemical transformations performed by P450s is also substantial, and continues to expand through interrogation of the properties of novel P450s and by protein engineering studies. The ability of P450s to introduce oxygen atoms at specific positions on complex molecules makes these enzymes particularly valuable for applications in synthetic biology. This review focuses on the enzymatic properties and reaction mechanisms of P450 enzymes, and on recent studies that highlight their broad applications in the production of oxychemicals. For selected soluble bacterial P450s (notably the high-activity P450-cytochrome P450 reductase enzyme P450 BM3), variants with a multitude of diverse substrate selectivities have been generated both rationally and by random mutagenesis/directed evolution approaches. This highlights the robustness and malleability of the P450 fold, and the capacity of these biocatalysts to oxidise a wide range of chemical scaffolds. This article reviews recent research on the application of wild-type and engineered P450s in the production of important chemicals, including pharmaceuticals and drug metabolites, steroids and antibiotics. In addition, the properties of unusual members of the P450 superfamily that do not follow the canonical P450 catalytic pathway are described.

  1. Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase.

    PubMed

    Bavishi, Krutika; Laursen, Tomas; Martinez, Karen L; Møller, Birger Lindberg; Della Pia, Eduardo Antonio

    2016-07-08

    Direct electrochemistry of cytochrome P450 containing systems has primarily focused on investigating enzymes from microbes and animals for bio-sensing applications. Plant P450s receive electrons from NADPH P450 oxidoreductase (POR) to orchestrate the bio-synthesis of a plethora of commercially valuable compounds. In this report, full length CYP79A1, CYP71E1 and POR of the dhurrin pathway in Sorghum bicolor were reconstituted individually in nanoscale lipid patches, "nanodiscs", and directly immobilized on unmodified gold electrodes. Cyclic voltammograms of CYP79A1 and CYP71E1 revealed reversible redox peaks with average midpoint potentials of 80 ± 5 mV and 72 ± 5 mV vs. Ag/AgCl, respectively. POR yielded two pairs of redox peaks with midpoint potentials of 90 ± 5 mV and -300 ± 10 mV, respectively. The average heterogeneous electron transfer rate constant was calculated to be ~1.5 s(-1). POR was electro-catalytically active while the P450s generated hydrogen peroxide (H2O2). These nanodisc-based investigations lay the prospects and guidelines for construction of a simplified platform to perform mediator-free, direct electrochemistry of non-engineered cytochromes P450 under native-like conditions. It is also a prelude for driving plant P450 systems electronically for simplified and cost-effective screening of potential substrates/inhibitors and fabrication of nano-bioreactors for synthesis of high value natural products.

  2. Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase

    PubMed Central

    Bavishi, Krutika; Laursen, Tomas; Martinez, Karen L.; Møller, Birger Lindberg; Della Pia, Eduardo Antonio

    2016-01-01

    Direct electrochemistry of cytochrome P450 containing systems has primarily focused on investigating enzymes from microbes and animals for bio-sensing applications. Plant P450s receive electrons from NADPH P450 oxidoreductase (POR) to orchestrate the bio-synthesis of a plethora of commercially valuable compounds. In this report, full length CYP79A1, CYP71E1 and POR of the dhurrin pathway in Sorghum bicolor were reconstituted individually in nanoscale lipid patches, “nanodiscs”, and directly immobilized on unmodified gold electrodes. Cyclic voltammograms of CYP79A1 and CYP71E1 revealed reversible redox peaks with average midpoint potentials of 80 ± 5 mV and 72 ± 5 mV vs. Ag/AgCl, respectively. POR yielded two pairs of redox peaks with midpoint potentials of 90 ± 5 mV and −300 ± 10 mV, respectively. The average heterogeneous electron transfer rate constant was calculated to be ~1.5 s−1. POR was electro-catalytically active while the P450s generated hydrogen peroxide (H2O2). These nanodisc-based investigations lay the prospects and guidelines for construction of a simplified platform to perform mediator-free, direct electrochemistry of non-engineered cytochromes P450 under native-like conditions. It is also a prelude for driving plant P450 systems electronically for simplified and cost-effective screening of potential substrates/inhibitors and fabrication of nano-bioreactors for synthesis of high value natural products. PMID:27386958

  3. Inhibition of human cytochrome P450 enzymes by the natural hepatotoxin safrole.

    PubMed

    Ueng, Yune-Fang; Hsieh, Chih-Hang; Don, Ming-Jaw

    2005-05-01

    The hepatotoxin, safrole is a methylenedioxy phenyl compound, found in sassafras oil and certain other essential oils. Recombinant cytochrome P450 (CYP, P450) and human liver microsomes were studied to investigate the selective inhibitory effects of safrole on human P450 enzymes and the mechanisms of action. Using Escherichia coli-expressed human P450, our results demonstrated that safrole was a non-selective inhibitor of CYP1A2, CYP2A6, CYP2D6, CYP2E1, and CYP3A4 in the IC(50) order CYP2E1 < CYP1A2 < CYP2A6 < CYP3A4 < CYP2D6. Safrole strongly inhibited CYP1A2, CYP2A6, and CYP2E1 activities with IC(50) values less than 20 microM. Safrole caused competitive, non-competitive, and non-competitive inhibition of CYP1A2, CYP2A6 and CYP2E1 activities, respectively. The inhibitor constants were in the order CYP1A2 < CYP2E1 < CYP2A6. In human liver microsomes, 50 microM safrole strongly inhibited 7-ethoxyresorufin O-deethylation, coumarin hydroxylation, and chlorzoxazone hydroxylation activities. These results revealed that safrole was a potent inhibitor of human CYP1A2, CYP2A6, and CYP2E1. With relatively less potency, CYP2D6 and CYP3A4 were also inhibited.

  4. Heme exporter FLVCR1a regulates heme synthesis and degradation and controls activity of cytochromes P450.

    PubMed

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-05-01

    The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice. We created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1a(fl/fl);alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured. Flvcr1a(fl/fl);alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1a(fl/fl);alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450. In livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  5. Induction of cytochrome p-450-ia1 in juvenile fish by creosote-contaminated sediment

    SciTech Connect

    Schoor, W.P.; Williams, D.E.; Takahashi, N.

    1991-01-01

    Intact sediment cores, including their surface layers, were used in simulated field exposure tests of juvenile guppies (Poecilia reticulata) to creosote-contaminated sediments. Mixed-function oxygenase activity was induced in the fish after 43 days of exposure to environmentally realistic, sublethal concentrations of creosote-related compounds. An average 50-fold induction in the cytochrome P-450-IA1 was found in the liver in the absence of any histopathological lesions. The possibility that a threshold level for proliferative liver changes was not reached is discussed in the light of the observed biochemical activation.

  6. High-throughput mass spectrometric cytochrome P450 inhibition screening.

    PubMed

    Lim, Kheng B; Ozbal, Can C; Kassel, Daniel B

    2013-01-01

    We describe here a high-throughput assay to support rapid evaluation of drug discovery compounds for possible drug-drug interaction (DDI). Each compound is evaluated for its DDI potential by incubating over a range of eight concentrations and against a panel of six cytochrome P450 (CYP) enzymes: 1A2, 2C8, 2C9, 2C19, 2D6, and 3A4. The method utilizes automated liquid handling for sample preparation, and online solid-phase extraction/tandem mass spectrometry (SPE/MS/MS) for sample analyses. The system is capable of generating two 96-well assay plates in 30 min, and completes the data acquisition and analysis of both plates in about 30 min. Many laboratories that perform the CYP inhibition screening automate only part of the processes leaving a throughput bottleneck within the workflow. The protocols described in this chapter are aimed to streamline the entire process from assay to data acquisition and processing by incorporating automation and utilizing high-precision instrument to maximize throughput and minimize bottleneck.

  7. Midkine Regulates BP through Cytochrome P450-Derived Eicosanoids.

    PubMed

    Sato, Yuka; Sato, Waichi; Maruyama, Shoichi; Wilcox, Christopher S; Falck, John R; Masuda, Tomohiro; Kosugi, Tomoki; Kojima, Hiroshi; Maeda, Kayaho; Furuhashi, Kazuhiro; Ando, Masahiko; Imai, Enyu; Matsuo, Seiichi; Kadomatsu, Kenji

    2015-08-01

    The effects of endothelium-derived hyperpolarizing factors have been attributed to cytochrome P450-derived epoxyeicosatrienoic acids (EETs), but the regulation and role of EETs in endothelial dysfunction remain largely unexplored. Hypertension is a primary risk factor for renal dysfunction, which is frequently accompanied by various systemic diseases induced by endothelial dysfunction in the microcirculation. We previously reported that the endothelial growth factor midkine (MK) enhances hypertension in a model of CKD. Here, we investigated the hypothesis that MK regulates EET activity and thereby BP. MK gene-deleted mice were resistant to hypertension and developed less glomerulosclerosis and proteinuria after administration of a nitric oxide synthase (NOS) inhibitor in the setting of uninephrectomy. The hypertension observed in uninephrectomized wild-type mice after NOS inhibition was ameliorated by anti-MK antibody. MK-deficient mice produced higher amounts of EETs, and EETs dominantly regulated BP in these mice. Furthermore, MK administration to MK-deficient mice recapitulated the BP control observed in wild-type mice. EETs also dominantly regulated renal blood flow, which may influence renal function, in MK-deficient mice. Taken together, these results suggest that the MK/EET pathway is physiologically engaged in BP control and could be a target for the treatment of hypertension complicated by endothelial dysfunction. Copyright © 2015 by the American Society of Nephrology.

  8. First principles calculation of the activity of cytochrome P450

    NASA Astrophysics Data System (ADS)

    Segall, M. D.; Payne, M. C.; Ellis, S. W.; Tucker, G. T.; Boyes, R. N.

    1998-04-01

    The cytochrome P450 superfamily of enzymes is of enormous interest in the biological sciences due to the wide range of endogenous and xenobiotic compounds which it metabolises, including many drugs. We describe the use of first principles quantum mechanical modeling techniques, based on density functional theory, to determine the outcome of interactions between an enzyme and a number of compounds. Specifically, we calculate the spin state of an Fe3+ ion present in a haem moiety at the active site of these enzymes. The spin state of this ion indicates if the catalytic reaction will proceed. The computational results obtained compare favorably with experimental data. Only the principle components of the active site of the enzyme are included in the computational models, demonstrating that only a small fragment of the protein needs to be included in the models in order to accurately reproduce this aspect of the enzymes' function. These results open the way for further investigation of this superfamily of enzymes using the methods detailed in this paper.

  9. Versatile biocatalysis of fungal cytochrome P450 monooxygenases.

    PubMed

    Durairaj, Pradeepraj; Hur, Jae-Seoun; Yun, Hyungdon

    2016-07-18

    Cytochrome P450 (CYP) monooxygenases, the nature's most versatile biological catalysts have unique ability to catalyse regio-, chemo-, and stereospecific oxidation of a wide range of substrates under mild reaction conditions, thereby addressing a significant challenge in chemocatalysis. Though CYP enzymes are ubiquitous in all biological kingdoms, the divergence of CYPs in fungal kingdom is manifold. The CYP enzymes play pivotal roles in various fungal metabolisms starting from housekeeping biochemical reactions, detoxification of chemicals, and adaptation to hostile surroundings. Considering the versatile catalytic potentials, fungal CYPs has gained wide range of attraction among researchers and various remarkable strategies have been accomplished to enhance their biocatalytic properties. Numerous fungal CYPs with multispecialty features have been identified and the number of characterized fungal CYPs is constantly increasing. Literature reveals ample reviews on mammalian, plant and bacterial CYPs, however, modest reports on fungal CYPs urges a comprehensive review highlighting their novel catalytic potentials and functional significances. In this review, we focus on the diversification and functional diversity of fungal CYPs and recapitulate their unique and versatile biocatalytic properties. As such, this review emphasizes the crucial issues of fungal CYP systems, and the factors influencing efficient biocatalysis.

  10. Cytochrome P450 ω-Hydroxylases in Inflammation and Cancer

    PubMed Central

    Johnson, Amanda L.; Edson, Katheryne Z.; Totah, Rheem A.; Rettie, Allan E.

    2015-01-01

    Cytochrome P450-dependent ω-hydroxylation is a prototypic metabolic reaction of CYP4 family members that is important for the elimination and bioactivation of not only therapeutic drugs, but also endogenous compounds, principally fatty acids. Eicosanoids, derived from arachidonic acid, are key substrates in the latter category. Human CYP4 enzymes, mainly CYP4A11, CYP4F2, and CYP4F3B, hydroxylate arachidonic acid at the omega position to form 20-HETE, which has important effects in tumor progression and on angiogenesis and blood pressure regulation in the vasculature and kidney. CYP4F3A in myeloid tissue catalyzes the ω-hydroxylation of leukotriene B4 to 20-hydroxy leukotriene B4, an inactivation process that is critical for the regulation of the inflammatory response. Here, we review the enzymology, tissue distribution, and substrate selectivity of human CYP4 ω-hydroxylases and their roles as catalysts for the formation and termination of the biological effects of key eicosanoid metabolites in inflammation and cancer progression. PMID:26233909

  11. Studies on the substrate specificity and inducibility of cytochrome P-450meg.

    PubMed Central

    Berg, A; Rafter, J J

    1981-01-01

    The cytochrome P-450-dependent steroid 15 beta-hydroxylase system in Bacillus megaterium A.T.C.C. 13368 was investigated with regard to its appearance in the cell with respect to the growth curve of the organism, with regard to its inducibility by a number of agents (among them some of the classical inducers of the mammalian liver microsomal cytochrome P-450 system) and with regard to its capacity to convert non-steroidal substances into oxygenated compounds. The enzyme was found to reach a maximum concentration in the cell during the stationary phase of the growth curve. Of all the agents tested as inducers, none showed any capacity to induce cytochrome P-450meg. Finally, of the substances tested as substrates only aniline (p-hydroxylation) was metabolized by the microbial enzyme system. This conversion might be related to the general oxygenase activity of haemoproteins. It is concluded that the substrate specificity of the B. megaterium hydroxylase system is narrow. PMID:6797409

  12. Human Recombinant Cytochrome P450 Enzymes Display Distinct Hydrogen Peroxide Generating Activities During Substrate Independent NADPH Oxidase Reactions

    PubMed Central

    Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2014-01-01

    Microsomal enzymes generate H2O2 in the presence of NADPH. In this reaction, referred to as “oxidase” activity, H2O2 is generated directly or indirectly via the formation of superoxide anion. In the presence of redox active transition metals, H2O2 can form highly toxic hydroxyl radicals and, depending on the “oxidase” activity of individual cytochrome P450 isoenzymes, this can compromise cellular functioning and contribute to tissue injury. In the present studies, we compared the initial rates of H2O2 generating activity of microsomal preparations containing various human recombinant cytochromes P450s. In the absence of cytochrome P450s the human recombinant NADPH cytochrome P450 reductase (CPR) generated low, but detectable amounts of H2O2 (∼0.04 nmol H2O2/min/100 units of reductase). Significantly greater activity was detected in preparations containing individual cytochrome P450s coexpressed with CPR (from 6.0 nmol H2O2/min/nmol P450 to 0.2 nmol/min/nmol P450); CYP1A1 was the most active, followed by CYP2D6, CYP3A4, CYP2E1, CYP4A11, CYP1A2, and CYP2C subfamily enzymes. H2O2 generating activity of the cytochrome P450s was independent of the ratio of CYP/CPR. Thus, similar H2O2 generating activity was noted with the same cytochrome P450s (CYP3A4, CYP2E1, and CYP2C9) expressed at or near the ratio of CYP/CPR in human liver microsomes (5–7), and when CPR was present in excess (CYP/CPR = 0.2–0.3). Because CYP3A4/5/7 represent up to 40% of total cytochrome P450 in the liver, these data indicate that these enzymes are the major source of H2O2 in human liver microsomes. PMID:25061110

  13. Effects of membrane mimetics on cytochrome P450-cytochrome b5 interactions characterized by NMR spectroscopy.

    PubMed

    Zhang, Meng; Huang, Rui; Im, Sang-Choul; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2015-05-15

    Mammalian cytochrome P450 (P450) is a membrane-bound monooxygenase whose catalytic activities require two electrons to be sequentially delivered from its redox partners: cytochrome b5 (cytb5) and cytochrome P450 reductase, both of which are membrane proteins. Although P450 functional activities are known to be affected by lipids, experimental evidence to reveal the effect of membrane on P450-cytb5 interactions is still lacking. Here, we present evidence for the influence of phospholipid bilayers on complex formation between rabbit P450 2B4 (CYP2B4) and rabbit cytb5 at the atomic level, utilizing NMR techniques. General line broadening and modest chemical shift perturbations of cytb5 resonances characterize CYP2B4-cytb5 interactions on the intermediate time scale. More significant intensity attenuation and a more specific protein-protein binding interface are observed in bicelles as compared with lipid-free solution, highlighting the importance of the lipid bilayer in stabilizing stronger and more specific interactions between CYP2B4 and cytb5, which may lead to a more efficient electron transfer. Similar results observed for the interactions between CYP2B4 lacking the transmembrane domain (tr-CYP2B4) and cytb5 imply interactions between tr-CYP2B4 and the membrane surface, which might assist in CYP2B4-cytb5 complex formation by orienting tr-CYP2B4 for efficient contact with cytb5. Furthermore, the observation of weak and nonspecific interactions between CYP2B4 and cytb5 in micelles suggests that lipid bilayer structures and low curvature membrane surface are preferable for CYP2B4-cytb5 complex formation. Results presented in this study provide structural insights into the mechanism behind the important role that the lipid bilayer plays in the interactions between P450s and their redox partners. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Cytochrome P450: the active oxidant and its spectrum.

    PubMed

    Rittle, Jonathan; Younker, Jarod M; Green, Michael T

    2010-04-19

    This Forum focuses on the nature of the elusive oxidizing intermediate in P450 catalysis. The identity of this species has reemerged as a topic of contentious debate. It was recently reported that laser flash photolysis (LFP) can be used to generate P450 compound I (P450-I) quantitatively. Kinetic analyses of the reaction of the LFP-generated intermediate with substrates have been suggested to indicate that compound I is not the active oxidant in P450 catalysis. We evaluate these claims via an analysis of the UV/visible spectrum of the LFP-generated intermediate. The techniques of singular value decomposition and target testing are used to obtain the spectrum of P450-I in a model-independent manner from stopped-flow data of the reaction of P450 with m-chloroperbenzoic acid. It is shown that the LFP-generated spectrum bears no similarity to the P450-I spectrum. One may conclude that the LFP-generated intermediate is not P450-I.

  15. Plant activation of aromatic amines mediated by cytochromes P450 and flavin-containing monooxygenases.

    PubMed

    Chiapella, C; Radovan, R D; Moreno, J A; Casares, L; Barbé, J; Llagostera, M

    2000-10-31

    To know the mechanisms involved in the activation of promutagenic aromatic amines mediated by plants, we used Persea americana S117 system (S117) for the activation of 2-aminofluorene (2-AF) and m-phenylenediamine (m-PDA) in Ames assays. In these assays, the effect of the diphenylene iodonium (DPI), an inhibitor of flavin-containing monooxygenases (FMOs), of the 1-aminobenzotriazole (1-ABT), an inhibitor of cytochromes P450 (cyt-P450s) and of the methimazole, a high-affinity substrate for FMOs, was studied. The efficacy of both inhibitors and of the methimazole was verified to find that they did partially inhibit the mutagenesis of both aromatic amines, activated with rat liver S9. Similarly, both inhibitors and methimazole did produce a significant decrease in 2-AF and m-PDA mutagenesis, when the activation system was S117, indicating that, similar to what occurs in mammalian systems, plant FMOs and cyt-P450s can metabolize aromatic amines to mutagenic product(s). However, the affinity of both FMOs and cyt-P450s of plant for 2-AF and m-PDA was different. Data obtained indicate that the activities of plant FMOs must be the main enzymatic system of m-PDA activation while, in 2-AF activation, plant cyt-P450s have the most relevant activities. In addition, peroxidases of the S117 system must contribute to 2-AF activation and some isoforms of FMOs and/or cyt-P450s of the S117 system, uninhibited by the inhibitors used, must be the responsible for a partial activation of m-PDA.

  16. Genetic polymorphism of human cytochrome P-450 (S)-mephenytoin 4-hydroxylase. Studies with human autoantibodies suggest a functionally altered cytochrome P-450 isozyme as cause of the genetic deficiency

    SciTech Connect

    Meier, U.T.; Meyer, U.A.

    1987-12-15

    The metabolism of the anticonvulsant mephenytoin is subject to a genetic polymorphism. In 2-5% of Caucasians and 18-23% of Japanese subjects a specific cytochrome P-450 isozyme, P-450 meph, is functionally deficient or missing. The authors have accumulated evidence that autoimmune antibodies observed in sera of patients with tienilic acid induced hepatitis (anti-liver kidney microsome 2 or anti-LKM2 antibodies) specifically recognize the cytochrome P-450 involved in the mephrenytoin hydroxylation polymorphism. This is demonstrated b