Bu, Dengpan; Bionaz, Massimo; Wang, Mengzhi; Nan, Xuemei; Ma, Lu; Wang, Jiaqi
2017-01-01
Liver and mammary gland are among the most important organs during lactation in dairy cows. With the purpose of understanding both the different and the complementary roles and the crosstalk of those two organs during lactation, a transcriptome analysis was performed on liver and mammary tissues of 10 primiparous dairy cows in mid-lactation. The analysis was performed using a 4×44K Bovine Agilent microarray chip. The transcriptome difference between the two tissues was analyzed using SAS JMP Genomics using ANOVA with a false discovery rate correction (FDR). The analysis uncovered >9,000 genes differentially expressed (DEG) between the two tissues with a FDR<0.001. The functional analysis of the DEG uncovered a larger metabolic (especially related to lipid) and inflammatory response capacity in liver compared with mammary tissue while the mammary tissue had a larger protein synthesis and secretion, proliferation/differentiation, signaling, and innate immune system capacity compared with the liver. A plethora of endogenous compounds, cytokines, and transcription factors were estimated to control the DEG between the two tissues. Compared with mammary tissue, the liver transcriptome appeared to be under control of a large array of ligand-dependent nuclear receptors and, among endogenous chemical, fatty acids and bacteria-derived compounds. Compared with liver, the transcriptome of the mammary tissue was potentially under control of a large number of growth factors and miRNA. The in silico crosstalk analysis between the two tissues revealed an overall large communication with a reciprocal control of lipid metabolism, innate immune system adaptation, and proliferation/differentiation. In summary the transcriptome analysis confirmed prior known differences between liver and mammary tissue, especially considering the indication of a larger metabolic activity in liver compared with the mammary tissue and the larger protein synthesis, communication, and proliferative capacity in mammary tissue compared with the liver. Relatively novel is the indication by the data that the transcriptome of the liver is highly regulated by dietary and bacteria-related compounds while the mammary transcriptome is more under control of hormones, growth factors, and miRNA. A large crosstalk between the two tissues with a reciprocal control of metabolism and innate immune-adaptation was indicated by the network analysis that allowed uncovering previously unknown crosstalk between liver and mammary tissue for several signaling molecules.
Bu, Dengpan; Bionaz, Massimo; Wang, Mengzhi; Nan, Xuemei; Ma, Lu; Wang, Jiaqi
2017-01-01
Liver and mammary gland are among the most important organs during lactation in dairy cows. With the purpose of understanding both the different and the complementary roles and the crosstalk of those two organs during lactation, a transcriptome analysis was performed on liver and mammary tissues of 10 primiparous dairy cows in mid-lactation. The analysis was performed using a 4×44K Bovine Agilent microarray chip. The transcriptome difference between the two tissues was analyzed using SAS JMP Genomics using ANOVA with a false discovery rate correction (FDR). The analysis uncovered >9,000 genes differentially expressed (DEG) between the two tissues with a FDR<0.001. The functional analysis of the DEG uncovered a larger metabolic (especially related to lipid) and inflammatory response capacity in liver compared with mammary tissue while the mammary tissue had a larger protein synthesis and secretion, proliferation/differentiation, signaling, and innate immune system capacity compared with the liver. A plethora of endogenous compounds, cytokines, and transcription factors were estimated to control the DEG between the two tissues. Compared with mammary tissue, the liver transcriptome appeared to be under control of a large array of ligand-dependent nuclear receptors and, among endogenous chemical, fatty acids and bacteria-derived compounds. Compared with liver, the transcriptome of the mammary tissue was potentially under control of a large number of growth factors and miRNA. The in silico crosstalk analysis between the two tissues revealed an overall large communication with a reciprocal control of lipid metabolism, innate immune system adaptation, and proliferation/differentiation. In summary the transcriptome analysis confirmed prior known differences between liver and mammary tissue, especially considering the indication of a larger metabolic activity in liver compared with the mammary tissue and the larger protein synthesis, communication, and proliferative capacity in mammary tissue compared with the liver. Relatively novel is the indication by the data that the transcriptome of the liver is highly regulated by dietary and bacteria-related compounds while the mammary transcriptome is more under control of hormones, growth factors, and miRNA. A large crosstalk between the two tissues with a reciprocal control of metabolism and innate immune-adaptation was indicated by the network analysis that allowed uncovering previously unknown crosstalk between liver and mammary tissue for several signaling molecules. PMID:28291785
Kyung, Eun Jung; Kim, Hyun Bum; Hwang, Eun Sang; Lee, Seok; Choi, Bup Kyung; Lim, Sang Moo; Kwon, Oh In
2018-01-01
In oriental medicine, curcumin is used to treat inflammatory diseases, and its anti-inflammatory effect has been reported in recent research. In this feasibility study, the hepatoprotective effect of curcumin was investigated using a rat liver cirrhosis model, which was induced with dimethylnitrosamine (DMN). Together with biochemical analysis, we used a magnetic resonance-based electrical conductivity imaging method to evaluate tissue conditions associated with a protective effect. The effects of curcumin treatment and lactulose treatment on liver cirrhosis were compared. Electrical conductivity images indicated that liver tissues damaged by DMN showed decreased conductivity compared with normal liver tissues. In contrast, cirrhotic liver tissues treated with curcumin or lactulose showed increased conductivity than tissues in the DMN-only group. Specifically, conductivity of cirrhotic liver after curcumin treatment was similar to that of normal liver tissues. Histological staining and immunohistochemical examination showed significant levels of attenuated fibrosis and decreased inflammatory response after both curcumin and lactulose treatments compared with damaged liver tissues by DMN. The conductivity imaging and biochemical examination results indicate that curcumin's anti-inflammatory effect can prevent the progression of irreversible liver dysfunction. PMID:29887757
Ortiz, Maricelly Santiago; Forti, Kevin Muñoz; Suárez Martinez, Edu B.; Muñoz, Lenin Godoy; Husain, Kazim
2016-01-01
Paraquat (PQ) is a commonly used herbicide that induces oxidative stress via reactive oxygen species (ROS) generation. This study aimed to investigate the effects of the antioxidant N-acetylcysteine (NAC) against PQ-induced oxidative stress in mice. Male Balb/C mice (24) were randomly divided into 4 groups and treated for 3 weeks: 1) control (saline), 2) NAC (0.5% in diet), 3) PQ (20 mg/kg, IP) and 4) combination (PQ + NAC). Afterwards mice were sacrificed and oxidative stress markers were analyzed. Our data showed no significant change in serum antioxidant capacity. PQ enhanced lipid peroxidation (MDA) levels in liver tissue compared to control whereas NAC decreased MDA levels (p<0.05). NAC significantly increased MDA in brain tissue (p<0.05). PQ significantly depleted glutathione (GSH) levels in liver (p=0.001) and brain tissue (p<0.05) but non-significant GSH depletion in lung tissue. NAC counteracted PQ, showing a moderate increase GSH levels in liver and brain tissues. PQ significantly increased 8-oxodeoxyguanosine (8-OH-dG) levels (p<0.05) in liver tissue compared to control without a significant change in brain tissue. NAC treatment ameliorated PQ-induced oxidative DNA damage in the liver tissue. PQ significantly decreased the relative mtDNA amplification and increased the frequency of lesions in liver and brain tissue (p<0.0001), while NAC restored the DNA polymerase activity in liver tissue but not in brain tissue. In conclusion, PQ induced lipid peroxidation, oxidative nuclear DNA and mtDNA damage in liver tissues and depleted liver and brain GSH levels. NAC supplementation ameliorated the PQ-induced oxidative stress response in liver tissue of mice. PMID:27398384
NASA Astrophysics Data System (ADS)
Al-Ebraheem, A.; Mersov, A.; Gurusamy, K.; Farquharson, M. J.
2010-07-01
A microbeam synchrotron X-ray fluorescence (μSRXRF) technique has been used to determine the localization and the relative concentrations of Zn, Cu, Fe and Ca in primary colorectal cancer and secondary colorectal liver metastases. 24 colon and 23 liver samples were examined, all of which were formalin fixed tissues arranged as microarrays of 1.0 mm diameter and 10 μm thickness. The distribution of these metals was compared with light transmission images of adjacent sections that were H and E stained to reveal the location of the cancer cells. Histological details were provided for each sample which enable concentrations of all elements in different tissue types to be compared. In the case of liver, significant differences have been found for all elements when comparing tumour, normal, necrotic, fibrotic, and blood vessel tissues (Kruskal Wallis Test, P<0.0001). The concentrations of all elements have also been found to be significantly different among tumour, necrotic, fibrotic, and mucin tissues in the colon samples (Kruskal Wallis Test, P<0.0001). The concentrations of all elements have been compared between primary colorectal samples and colorectal liver metastases. Concentration of Zn, Cu, Fe and Ca are higher in all types of liver tissues compared to those in the colon tissues. Comparing liver tumour and colon tumour samples, significant differences have been found for all elements (Mann Whitney, P<0.0001). For necrotic tissues, significant increase has been found for Zn, Ca, Cu and Fe (Mann Whitney, P<0.0001 for Fe and Zn, 0.014 for Ca, and 0.001 for Cu). The liver fibrotic levels of Zn, Ca, Cu and Fe were higher than the fibrotic colon areas (independent T test, P=0.007 for Zn and Mann Whitney test P<0.0001 for Cu, Fe and Ca). For the blood vessel tissue, the analysis revealed that the difference was only significant for Fe ( P=0.009) from independent T test.
Evaluation of Ultrasonic Fiber Structure Extraction Technique Using Autopsy Specimens of Liver
NASA Astrophysics Data System (ADS)
Yamaguchi, Tadashi; Hirai, Kazuki; Yamada, Hiroyuki; Ebara, Masaaki; Hachiya, Hiroyuki
2005-06-01
It is very important to diagnose liver cirrhosis noninvasively and correctly. In our previous studies, we proposed a processing technique to detect changes in liver tissue in vivo. In this paper, we propose the evaluation of the relationship between liver disease and echo information using autopsy specimens of a human liver in vitro. It is possible to verify the function of a processing parameter clearly and to compare the processing result and the actual human liver tissue structure by in vitro experiment. In the results of our processing technique, information that did not obey a Rayleigh distribution from the echo signal of the autopsy liver specimens was extracted depending on changes in a particular processing parameter. The fiber tissue structure of the same specimen was extracted from a number of histological images of stained tissue. We constructed 3D structures using the information extracted from the echo signal and the fiber structure of the stained tissue and compared the two. By comparing the 3D structures, it is possible to evaluate the relationship between the information that does not obey a Rayleigh distribution of the echo signal and the fibrosis structure.
Comparative studies on the distribution of rhodanese in different tissues of domestic animals.
Aminlari, M; Gilanpour, H
1991-01-01
1. The activity of rhodanese in different tissues of some domestic animals was measured. 2. Rhodanese was present in all tissues studied. 3. The activity of rhodanese in most tissues of sheep was higher than other animals studied. 4. In sheep and cattle the epithelium of rumen, omasum and reticulum were the richest sources of rhodanese. Significant activity of rhodanese was also present in liver and kidney. 5. In camel the liver contained the highest level of rhodanese followed by lung and rumen epithelium. Camel liver contained a third of the activity of sheep liver. 6. Equine liver had a third of the activity of sheep liver. Other tissues showed low levels of rhodanese activity. 7. Dog liver contained only 4% of the activity of sheep liver. In this animal, brain was the richest source of rhodanese. 8. The results are discussed in terms of efficacy of different tissues of animals in cyanide detoxification.
Increase of infiltrating monocytes in the livers of patients with chronic liver diseases.
Huang, Rui; Wu, Hongyan; Liu, Yong; Yang, Chenchen; Pan, Zhiyun; Xia, Juan; Xiong, Yali; Wang, Guiyang; Sun, Zhenhua; Chen, Jun; Yan, Xiaomin; Zhang, Zhaoping; Wu, Chao
2016-01-01
Infiltrating monocytes have been demonstrated to contribute to tissue damage in experimental models of liver injury and fibrosis. However, less is known about monocyte infiltration in the livers of patients with chronic liver diseases (CLD). In the present study, we demonstrated that CD68+ hepatic macrophages and MAC387+ infiltrating monocytes were significantly increased in the livers of CLD patients with different etiologies as compared with normal liver tissue. In addition, CLD patients with higher inflammatory grading scores had more CD68+ macrophages and MAC387+ monocytes infiltration in their livers compared to those with lower scores. Significantly more MAC387+ infiltrating monocytes were found in the liver tissue of CLD patients with higher fibrotic staging scores compared to those with lower scores. Monocyte chemoattractant protein-1 (MCP-1) expression was significantly increased in the livers of CLD patients with different etiologies. MCP-1 staining scores were significantly positively associated with the numbers of MAC387+ infiltrating monocytes in CLD patients. Taken together, our results demonstrate that infiltrating monocytes may play a pathological role in exacerbating chronic liver inflammation and fibrosis in CLD. MCP-1 may be involved in the monocyte infiltration and progression of liver inflammation and fibrosis in CLD.
Tamai, Miho; Adachi, Eijiro
2013-01-01
The adult liver is wrapped in a connective tissue sheet called the liver capsule, which consists of collagen fibrils and fibroblasts. In this study, we set out to construct a liver organoid tissue that would be comparable to the endogenous liver, using a bioreactor. In vitro liver organoid tissue was generated by combining collagen fibrils, fibroblasts, and primary murine hepatocytes or Hep G2 on a mesh of poly-lactic acid fabric using a bioreactor. Then, the suitability of this liver organoid tissue for transplantation was tested by implanting the constructs into partially hepatectomized BALB/cA-nu/nu mice. As determined by using scanning and transmission electron microscopes, the liver organoid tissues were composed of densely packed collagen fibrils with fibroblasts and aggregates of oval or spherical hepatocytes. Angiogenesis was induced after the transplantation, and blood vessels connected the liver organoid tissue with the surrounding tissue. Thus, a novel approach was applied to generate transplantable liver organoid tissue within a condensed collagen fibril matrix. These results suggested that a dense collagen network populated with fibroblasts can hold a layer of concentrated hepatocytes, providing a three-dimensional microenvrionment suitable for the reestablishment of cell–cell and cell–extracellular matrix (ECM) interactions, and resulting in the maintenance of their liver-specific functions. This liver organoid tissue may be useful for the study of intrahepatic functions of various cells, cytokines, and ECMs, and may fulfill the fundamental requirements of a donor tissue. PMID:23815236
Human hepatocytes loaded in 3D bioprinting generate mini-liver.
Zhong, Cheng; Xie, Hai-Yang; Zhou, Lin; Xu, Xiao; Zheng, Shu-Sen
2016-10-01
Because of an increasing discrepancy between the number of potential liver graft recipients and the number of organs available, scientists are trying to create artificial liver to mimic normal liver function and therefore, to support the patient's liver when in dysfunction. 3D printing technique meets this purpose. The present study was to test the feasibility of 3D hydrogel scaffolds for liver engineering. We fabricated 3D hydrogel scaffolds with a bioprinter. The biocompatibility of 3D hydrogel scaffolds was tested. Sixty nude mice were randomly divided into four groups, with 15 mice in each group: control, hydrogel, hydrogel with L02 (cell line HL-7702), and hydrogel with hepatocyte growth factor (HGF). Cells were cultured and deposited in scaffolds which were subsequently engrafted into livers after partial hepatectomy and radiation-induced liver damage (RILD). The engrafted tissues were examined after two weeks. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin, total bilirubin, CYP1A2, CYP2C9, glutathione S-transferase (a-GST), and UDP-glucuronosyl transferase (UGT-2) were compared among the groups. Hematoxylin-eosin (HE) staining and immunohistochemistry of cKit and cytokeratin 18 (CK18) of engrafted tissues were evaluated. The survival time of the mice was also compared among the four groups. 3D hydrogel scaffolds did not impact the viability of cells. The levels of ALT, AST, albumin, total bilirubin, CYP1A2, CYP2C9, a-GST and UGT-2 were significantly improved in mice engrafted with 3D scaffold loaded with L02 compared with those in control and scaffold only (P<0.05). HE staining showed clear liver tissue and immunohistochemistry of cKit and CK18 were positive in the engrafted tissue. Mice treated with 3D scaffold+L02 cells had longer survival time compared with those in control and scaffold only (P<0.05). 3D scaffold has the potential of recreating liver tissue and partial liver functions and can be used in the reconstruction of liver tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horie, S.
Using a modified semi-micro gradient elution method of chromatography, the distribution of the acid-soluble nucleotides in various normal and neoplastic tissues of rats was compared and the variations of the distribution are described. The distribution and phosphate turnover of the acid-soluble phosphorus compounds were also studied by intraperitoneal injection of P/sup 32/ followed by the chromatographic analysis. The distribution patterns of nucleotides and radioactivity in liver, muscle, heart, lung, thymus, spleen, testicles, brain, fetal liver, and experimental hepatomas are illustrated and the differences between these tissues were pointed out. The characteristics of the experimental hepatoma tissue as compared with themore » normal liver tissue are as follows: The concentration of oxidized DPN was low; the incorporation of P/sup 32/ inorganic phosphate into glucose 6-phosphate and L- alpha -glycerophosphate was absent or, if any, very low; radioactivity of inorganic phosphate in the total acid-soluble radioactivity was extraordinarily high as compared with other tissues besides the liver tissue. (Abstr. Japan Med., 1: No. 9, 1961)« less
Diffuse reflectance spectroscopy of liver tissue
NASA Astrophysics Data System (ADS)
Reistad, Nina; Nilsson, Jan; Vilhelmsson Timmermand, Oskar; Sturesson, Christian; Andersson-Engels, Stefan
2015-06-01
Diffuse reflectance spectroscopy (DRS) with a fiber-optic contact probe is a cost-effective, rapid, and non-invasive optical method used to extract diagnosis information of tissue. By combining commercially available VIS- and NIR-spectrometers with various fiber-optic contact-probes, we have access to the full wavelength range from around 400 to 1600 nm. Using this flexible and portable spectroscopy system, we have acquired ex-vivo DRS-spectra from murine, porcine, and human liver tissue. For extracting the tissue optical properties from the measured spectra, we have employed and compared predictions from two models for light propagation in tissue, diffusion theory model (DT) and Monte Carlo simulations (MC). The focus in this work is on the capacity of this DRS-technique in discriminating metastatic tumor tissue from normal liver tissue as well as in assessing and characterizing damage to non-malignant liver tissue induced by preoperative chemotherapy for colorectal liver metastases.
Tunçsoy, Mustafa; Duran, Servet; Ay, Özcan; Cicik, Bedii; Erdem, Cahit
2017-09-01
Accumulation of copper oxide nanoparticles (CuO NPs) in gill, liver and muscle tissues of Oreochromis niloticus and its effects on superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities in gill and liver tissues were studied after exposing the fish to 20 µg/L Cu over 15 days. Copper levels and enzyme activities in tissues were determined using spectrophotometric (ICP-AES and UV) techniques respectively. No mortality was observed during the experiments. Copper levels increased in gill and liver tissues of O. niloticus compared to control when exposed to CuO NPs whereas exposure to metal had no effect on muscle level at the end of the exposure period. Highest accumulation of copper was observed in liver while no accumulation was detected in muscle tissue. SOD, CAT activities decreased and GPx activity increased in gill and liver tissues when exposed to CuO NPs.
Genome‑wide identification of long noncoding RNAs in CCl4‑induced liver fibrosis via RNA sequencing.
Gong, Zhenghua; Tang, Jialin; Xiang, Tianxin; Lin, Jiayu; Deng, Chaowen; Peng, Yanzhong; Zheng, Jie; Hu, Guoxin
2018-05-07
Liver fibrosis occurs as a result of chronic liver lesions, which may subsequently develop into liver cirrhosis and hepatocellular carcinoma. The involvement of long noncoding RNAs (lncRNAs) in liver fibrosis is being increasingly recognized. However, the exact mechanisms and functions of the majority of lncRNAs are poorly characterized. In the present study, the hepatotoxic substance carbon tetrachloride (CCl4) was employed to induce liver fibrosis in an animal model and agenome‑wide identification of lncRNAs in fibrotic liver tissues compared with CCl4 untreated liver tissues was performed using RNA sequencing. Sprague‑Dawley rats were treated with CCl4 for 8 weeks. Histopathogical alterations were observed in liver tissues, and serum levels of alanine aminotransferase, aspartate aminotransferase, transforming growth factor‑β1 and tumor necrosis factor‑α were significantly higher, in the CCl4‑treated group compared with the CCl4 untreated group. RNA sequencing of liver tissues demonstrated that 231 lncRNAs and 1,036 mRNAs were differentially expressed between the two groups. Furthermore, bioinformatics analysis demonstrated that the differentially expressed mRNAs were predominantly enriched in 'ECM‑receptor interaction', 'PI3K‑Akt signaling pathway' and 'focal adhesion' pathways, all of which are essential for liver fibrosis development. Validation of 12 significantly aberrant lncRNAs by reverse transcription‑quantitative polymerase chain reaction indicated that the expression patterns of 11 lncRNAs were consistent with the sequencing data. Furthermore, overexpression of lncRNA NR_002155.1, which was markedly downregulated in CCl4‑treated liver tissues, was demonstrated to inhibit HSC‑T6 cell proliferation in vitro. In conclusion, the present study determined the expression patterns of mRNAs and lncRNAs in fibrotic liver tissue induced by CCl4. The identified differentially expressed lncRNAs may serve as novel diagnostic biomarkers and therapeutic targets for liver fibrosis.
Lee, Yun-Hee; Kim, Sou Hyun; Kim, Sang-Nam; Kwon, Hyun-Jung; Kim, Jeong-Dong; Oh, Ji Youn; Jung, Young-Suk
2016-07-26
Higher susceptibility to metabolic disease in male exemplifies the importance of sexual dimorphism in pathogenesis. We hypothesized that the higher incidence of non-alcoholic fatty liver disease in males involves sex-specific metabolic interactions between liver and adipose tissue. In the present study, we used a methionine-choline deficient (MCD) diet-induced fatty liver mouse model to investigate sex differences in the metabolic response of the liver and adipose tissue. After 2 weeks on an MCD-diet, fatty liver was induced in a sex-specific manner, affecting male mice more severely than females. The MCD-diet increased lipolytic enzymes in the gonadal white adipose tissue (gWAT) of male mice, whereas it increased expression of uncoupling protein 1 and other brown adipocyte markers in the gWAT of female mice. Moreover, gWAT from female mice demonstrated higher levels of oxygen consumption and mitochondrial content compared to gWAT from male mice. FGF21 expression was increased in liver tissue by the MCD diet, and the degree of upregulation was significantly higher in the livers of female mice. The endocrine effect of FGF21 was responsible, in part, for the sex-specific browning of gonadal white adipose tissue. Collectively, these data demonstrated that distinctively female-specific browning of white adipose tissue aids in protecting female mice against MCD diet-induced fatty liver disease.
Lee, Yun-Hee; Kim, Sou Hyun; Kim, Sang-Nam; Kwon, Hyun-Jung; Kim, Jeong-Dong; Oh, Ji Youn; Jung, Young-Suk
2016-01-01
Higher susceptibility to metabolic disease in male exemplifies the importance of sexual dimorphism in pathogenesis. We hypothesized that the higher incidence of non-alcoholic fatty liver disease in males involves sex-specific metabolic interactions between liver and adipose tissue. In the present study, we used a methionine-choline deficient (MCD) diet-induced fatty liver mouse model to investigate sex differences in the metabolic response of the liver and adipose tissue. After 2 weeks on an MCD-diet, fatty liver was induced in a sex-specific manner, affecting male mice more severely than females. The MCD-diet increased lipolytic enzymes in the gonadal white adipose tissue (gWAT) of male mice, whereas it increased expression of uncoupling protein 1 and other brown adipocyte markers in the gWAT of female mice. Moreover, gWAT from female mice demonstrated higher levels of oxygen consumption and mitochondrial content compared to gWAT from male mice. FGF21 expression was increased in liver tissue by the MCD diet, and the degree of upregulation was significantly higher in the livers of female mice. The endocrine effect of FGF21 was responsible, in part, for the sex-specific browning of gonadal white adipose tissue. Collectively, these data demonstrated that distinctively female-specific browning of white adipose tissue aids in protecting female mice against MCD diet-induced fatty liver disease. PMID:27409675
Hypothermic in situ perfusion of the porcine liver using Celsior or Ringer-lactate solution.
Dinant, S; Roseboom, H J; Levi, M; van Vliet, A K; van Gulik, T M
2009-01-01
Hypothermic perfusion (HP) of the liver is applied during total vascular exclusion (TVE) to reduce ischemic injury during liver resection. No studies have been performed comparing different perfusion solutions for HP. The aim of this experimental study was to compare Ringer-lactate solution (RL) with Celsior solution (Cs) for HP in a pig model of 60-min TVE. Twenty pigs underwent 60-min TVE of the liver. Groups were TVE without HP (no-HP, n = 9), TVE with HP using RL (n = 6), and TVE with HP using Cs (n = 5). Blood and liver tissue samples were taken before TVE and during 24-h reperfusion. In the no-HP group, plasma aspartate aminotransferase values were significantly increased during reperfusion (p < 0.05), while liver tissue pO(2) levels (p < 0.01) were decreased when compared to the HP groups. After 24-h reperfusion, bile production and liver tissue glutathione content were significantly higher (p < 0.05) in the Cs group (42.0 +/- 1.7 mL/h and 44.9 +/- 2.2 nmol/mg, respectively) as compared to the RL group (31.5 +/- 3.5 mL/h and 19.6 +/- 1.8 nmol/mg, respectively). The protective effect of HP during TVE was confirmed in this study. HP with Cs was more effective in reducing ischemic injury as compared to HP with RL.
Bartlett, David C; Newsome, Philip N
2017-01-01
Successful hepatocyte isolation is critical for continued development of cellular transplantation. However, most tissue available for research is from diseased liver and the results of hepatocyte isolation from such tissue are inferior compared to normal tissue. Here we describe a modified method, combining the use of Liberase and N-acetylcysteine (NAC), for the isolation of primary human hepatocytes with high viability from normal and diseased liver.
Aydin, Suleyman; Kuloglu, Tuncay; Aydin, Suna; Eren, Mehmet Nesimi; Yilmaz, Musa; Kalayci, Mehmet; Sahin, Ibrahim; Kocaman, Nevin; Citil, Cihan; Kendir, Yalcin
2013-08-01
We have investigated how diabetes affects the expression of adropin (ADR) in rat brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The rats in the diabetic group were administered an intraperitoneal (i.p.) injection of a single dose of 60 mg/kg streptozotocin (STZ) dissolved in a 0.1 M phosphate-citrate buffer (pH 4.5). The rats were maintained in standard laboratory conditions in a temperature between 21 and 23 °C and a relative humidity of 70 %, under a 12-h light/dark cycle. The animals were fed a standard commercial pellet diet. After 10 weeks, the animals were sacrified. ADR concentrations in the serum and tissue supernatants were measured by ELISA, and immunohistochemical staining was used to follow the expression of the hormones in the brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The quantities were then compared. Increased ADR immunoreaction was seen in the brain, cerebellum, kidneys, heart, liver, and pancreas in the diabetes-induced rats compared to control subjects. ADR was detected in the brain (vascular area, pia mater, neuroglial cell, and neurons), cerebellum (neuroglial cells, Purkinje cells, vascular areas, and granular layer), kidneys (glomerulus, peritubular interstitial cells, and peritubular capillary endothelial cells), heart (endocardium, myocardium, and epicardium), liver (sinusoidal cells), and pancreas (serous acini). Its concentrations (based on mg/wet weight tissues) in these tissues were measured by using ELISA showed that the levels of ADR were higher in the diabetic rats compared to the control rats. Tissue ADR levels based on mg/wet weight tissues were as follows: Pancreas > liver > kidney > heart > brain > cerebellar tissues. Evidence is presented that shows ADR is expressed in various tissues in the rats and its levels increased in STZ-induced diabetes; however, this effect on the pathophysiology of the disorder remains to be understood.
Tiong, Leong U; Finnie, John W; Field, John B; Maddern, Guy J
2012-07-01
In bimodal electric tissue ablation (BETA), the cathode of the DC circuit is attached to the radiofrequency (RF) electrode to increase the surrounding tissue hydration. This will delay tissue desiccation and allowing the ablation process to continue for a longer period of time before "roll-off" occurs, resulting in larger ablations compared with standard radiofrequency ablation (RFA). Previous research showed that attaching the anode to the skin using electrosurgical grounding pads would reduce the efficacy of BETA because of the high electrical resistivity of the skin. This study investigated the ablation size produced when the anode was attached to the peritoneum (BETA-peritoneum) and the liver (BETA-liver) respectively. The anode of the DC circuit in BETA was attached to the peritoneum and the liver in a pig model using ECG dots. In BETA, 9 V of DC was provided for 10 min, after which the radiofrequency generator were switched on and both electrical circuits allowed to run concurrently until "roll-off." The size of ablations produced was compared to when the anode attached to the skin (BETA-skin) and standard RFA, respectively. The sites of anode placement were examined for local tissue injury. The transverse diameters in BETA-peritoneum and BETA-liver were significantly larger compared with BETA-skin and standard RFA, respectively (P < 0.001). The axial diameter in the BETA-peritoneum and BETA-liver groups were also larger compared with the BETA-skin and RFA groups, although the differences did not reach statistical significance (P = 0.09). Hematoxylin and eosin (H and E) examination of the peritoneum and the liver where the anode was attached showed coagulation necrosis involving the superficial epithelium and the liver capsule, respectively. BETA can be used to treat larger liver tumors more effectively and may reduce the tumor recurrence rates compared with standard RFA. The efficacy of BETA depends on ensuring good electrical conductivity between the cathode and the anode of the DC circuit. Research so far has shown that BETA works best when the anode is placed deep to the skin as the stratum corneum consisted of a layer of a-nucleated cells, which have high electrical resistivity. The liver could be the ideal location to place the anode as it has excellent electrical conductivity, therefore ensuring maximum tissue hydration around the cathode to produce the largest ablations possible. Copyright © 2012 Elsevier Inc. All rights reserved.
Miyazawa, Mitsuo; Torii, Takahiro; Toshimitsu, Yasuko; Okada, Katsuya; Ogawa, Nobuji; Shinozuka, Nozomi; Koyama, Isamu
2006-01-01
Compared to tumors located at the edge of the liver, tumors located directly on the liver surface are often difficult to resect, especially when the organ is cirrhotic. To remove tumors at this location, our group has developed a round high-frequency electrosurgical knife that allows hemispherical resection of the liver tissue. This study describes a new laparoscopic-assisted hepatectomy utilizing radiofrequency ablation of the tissue surrounding the tumor and high-frequency electrocautery. When compared with the laparoscopic hepatectomy, this new procedure seems to offer a safer, more effective, and less time-consuming means of resecting tumors on the liver surface. (c) 2005 Wiley-Liss, Inc.
Huo, Yuqing; Guo, Xin; Li, Honggui; Xu, Hang; Halim, Vera; Zhang, Weiyu; Wang, Huan; Fan, Yang-Yi; Ong, Kuok Teong; Woo, Shih-Lung; Chapkin, Robert S.; Mashek, Douglas G.; Chen, Yanming; Dong, Hui; Lu, Fuer; Wei, Lai; Wu, Chaodong
2012-01-01
Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues. PMID:22556414
Iritani, Nobuko; Hirakawa, Tomoe; Fukuda, Hitomi; Katsukawa, Michiko; Kouno, Mika
2014-01-01
To compare incorporations of acetate and glucose in tissue total lipids and triacylglycerols (TAG), incorporations of labeled acetate and glucose in livers and epididymal adipose tissues (adipose tissue) were followed after their intravenous injection in the tail vein of individual rat fed a fat-free or 10% corn oil diet. The incorporation of acetate into total lipids (mostly TAG) in the liver reached maximum 2 h after the injection, while the incorporation of glucose decreased more quickly. Incorporation of glucose into total lipids and TAG was more greatly suppressed by dietary corn oil than that of acetate in the liver. In the adipose tissues, the incorporation of labeled acetate or glucose into total lipids was maximum 2-8 h after the injection, while the incorporation of glucose was very low, especially in rats fed the corn oil diet. Moreover, the time courses for labeled acetate and glucose incorporations into total lipids in the liver were parallel to those in plasma, but opposite to those in adipose tissue. TAG synthesized from acetate and glucose in the liver appeared to be mostly transported to adipose tissue. Thus, it is suggested that as the labeled glucose rapidly decreased in the liver, plasma and adipose tissue, TAG should be less derived from dietary carbohydrate than from dietary fat.
Mechanics of fresh, frozen-thawed and heated porcine liver tissue.
Wex, Cora; Stoll, Anke; Fröhlich, Marlen; Arndt, Susann; Lippert, Hans
2014-06-01
For a better understanding of the effects of thermally altered soft tissue, the biothermomechanics of these tissues need to be studied. Without the knowledge of the underlying physical processes and the parameters that can be controlled clinically, thermal treatment of cancerous hepatic tissue or the preservation of liver grafts are based primarily on trial and error. Thus, this study is concerned with the investigation of the influence of temperature on the rheological properties and the histological properties of porcine liver. Heating previously cooled porcine liver tissue above 40 °C leads to significant, irreversible stiffness changes observed in the amplitude sweep. The increase of the complex shear module of healthy porcine liver from room temperature to 70 °C is approximately 9-fold. Comparing the temperatures -20 °C and 20 °C, no significant difference of the mechanical properties was observed. Furthermore, there is a strong relation between the mechanical and histological properties of the porcine liver. Temperatures above 40 °C destroy the collagen matrix within the liver tissue. This results in the alteration of the biomechanical properties. The time-temperature superposition principle is applied to generate temperature-dependent shift factors that can be described by a two-part exponential function model with an inflection temperature of 45 °C. Tumor ablation techniques such as heating or freezing have a significant influence on the histology of liver tissue. However, only for temperatures above body temperature an influence on the mechanical properties of hepatic tissues was noticeable. Freezing up to -20 °C did not affect the liver mechanics.
Kelly, Daniel M; Akhtar, Samia; Sellers, Donna J; Muraleedharan, Vakkat; Channer, Kevin S; Jones, T Hugh
2016-11-01
Testosterone deficiency is commonly associated with obesity, metabolic syndrome, type 2 diabetes and their clinical consequences-hepatic steatosis and atherosclerosis. The testicular feminised mouse (non-functional androgen receptor and low testosterone) develops fatty liver and aortic lipid streaks on a high-fat diet, whereas androgen-replete XY littermate controls do not. Testosterone treatment ameliorates these effects, although the underlying mechanisms remain unknown. We compared the influence of testosterone on the expression of regulatory targets of glucose, cholesterol and lipid metabolism in muscle, liver, abdominal subcutaneous and visceral adipose tissue. Testicular feminised mice displayed significantly reduced GLUT4 in muscle and glycolytic enzymes in muscle, liver and abdominal subcutaneous but not visceral adipose tissue. Lipoprotein lipase required for fatty acid uptake was only reduced in subcutaneous adipose tissue; enzymes of fatty acid synthesis were increased in liver and subcutaneous tissue. Stearoyl-CoA desaturase-1 that catalyses oleic acid synthesis and is associated with insulin resistance was increased in visceral adipose tissue and cholesterol efflux components (ABCA1, apoE) were decreased in subcutaneous and liver tissue. Master regulator nuclear receptors involved in metabolism-Liver X receptor expression was suppressed in all tissues except visceral adipose tissue, whereas PPARγ was lower in abdominal subcutaneous and visceral adipose tissue and PPARα only in abdominal subcutaneous. Testosterone treatment improved the expression (androgen receptor independent) of some targets but not all. These exploratory data suggest that androgen deficiency may reduce the buffering capability for glucose uptake and utilisation in abdominal subcutaneous and muscle and fatty acids in abdominal subcutaneous. This would lead to an overspill and uptake of excess glucose and triglycerides into visceral adipose tissue, liver and arterial walls.
Gene Expression Profiling of Liver Cancer Stem Cells by RNA-Sequencing
Lam, Chi Tat; Ng, Michael N. P.; Yu, Wan Ching; Lau, Joyce; Wan, Timothy; Wang, Xiaoqi; Yan, Zhixiang; Liu, Hang; Fan, Sheung Tat
2012-01-01
Background Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90+ liver cancer stem cells (CSCs) in hepatocellular carcinoma (HCC). Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq) to compare the gene expression profiling of CD90+ cells sorted from tumor (CD90+CSCs) with parallel non-tumorous liver tissues (CD90+NTSCs) and elucidate the roles of putative target genes in hepatocarcinogenesis. Methodology/Principal Findings CD90+ cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90+ cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90+CSCs and CD90+NTSCs, and validated by quantitative real-time PCR (qRT-PCR) on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes) between CD90+CSCs and CD90+NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90+CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3), a member of glypican family, was markedly elevated in CD90+CSCs compared to CD90+NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90+CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90+CSCs in liver tumor tissues. Conclusions/Significance The identified genes, such as GPC3 that are distinctly expressed in liver CD90+CSCs, may be promising gene candidates for HCC therapy without inducing damages to normal liver stem cells. PMID:22606345
Yin, Jingjing; Qu, Jianguo; Zhang, Wenjie; Lu, Dongrui; Gao, Yucong; Ying, Xixiang; Kang, Tingguo
2014-05-01
Hawthorn leaves, a well-known traditional Chinese medicine, have been widely used for treating cardiovascular and fatty liver diseases. The present study aimed to investigate the therapeutic basis treating fatty liver disease by comparing the tissue distribution of six compounds of hawthorn leaf extract (HLE) in fatty liver rats and healthy rats after oral administration at first day, half month and one month, separately. Therefore, a sensitive and specific HPLC method with internal standard was developed and validated to determine chlorogenic acid, vitexin-4''-O-glucoside, vitexin-2''-O-rhamnoside, vitexin, rutin and hyperoside in the tissues including heart, liver, spleen, kidney, stomach and intestine. The results indicated that the six compounds in HLE presented some bioactivity in treating rat fatty liver as the concentrations of the six compounds varied significantly in inter- and intragroup comparisons (healthy and/or fatty liver group). Copyright © 2013 John Wiley & Sons, Ltd.
Transport Advances in Disposable Bioreactors for Liver Tissue Engineering
NASA Astrophysics Data System (ADS)
Catapano, Gerardo; Patzer, John F.; Gerlach, Jörg Christian
Acute liver failure (ALF) is a devastating diagnosis with an overall survival of approximately 60%. Liver transplantation is the therapy of choice for ALF patients but is limited by the scarce availability of donor organs. The prognosis of ALF patients may improve if essential liver functions are restored during liver failure by means of auxiliary methods because liver tissue has the capability to regenerate and heal. Bioartificial liver (BAL) approaches use liver tissue or cells to provide ALF patients with liver-specific metabolism and synthesis products necessary to relieve some of the symptoms and to promote liver tissue regeneration. The most promising BAL treatments are based on the culture of tissue engineered (TE) liver constructs, with mature liver cells or cells that may differentiate into hepatocytes to perform liver-specific functions, in disposable continuous-flow bioreactors. In fact, adult hepatocytes perform all essential liver functions. Clinical evaluations of the proposed BALs show that they are safe but have not clearly proven the efficacy of treatment as compared to standard supportive treatments. Ambiguous clinical results, the time loss of cellular activity during treatment, and the presence of a necrotic core in the cell compartment of many bioreactors suggest that improvement of transport of nutrients, and metabolic wastes and products to or from the cells in the bioreactor is critical for the development of therapeutically effective BALs. In this chapter, advanced strategies that have been proposed over to improve mass transport in the bioreactors at the core of a BAL for the treatment of ALF patients are reviewed.
Czaplicki, Sylwester; Ogrodowska, Dorota; Zadernowski, Ryszard; Konopka, Iwona
2017-06-01
An in vivo experiment was conducted to determine the effect of sea-buckthorn pulp oil feeding on the fatty acid composition of liver and adipose tissue of Wistar rats and the liver accumulation of retinol, its esters and α-tocopherol. For a period of 28 days, rats were given a modified casein diet (AIN-93) in which sea-buckthorn pulp oil, soybean oil and pork lard were used as sources of fat. Compared to the other fat sources, sea-buckthorn pulp oil was the most abundant in C16 fatty acids, carotenoids (mainly β-carotene) and tocopherols (mainly α-tocopherol). Its consumption was reflected in an increased share of palmitoleic acid in adipose tissue and the liver and an increased level of retinol in liver tissues (this was not observed for its esters). Although the type of fat did not have a significant effect on the average content of α-tocopherol in the liver, the variation of saturation of this tissue with α-tocopherol was the lowest when rats were fed a diet containing sea-buckthorn oil. This experiment indicates the possibility of affecting adipose tissue and liver by a diet.
Impact of Soft Tissue Heterogeneity on Augmented Reality for Liver Surgery.
Haouchine, Nazim; Cotin, Stephane; Peterlik, Igor; Dequidt, Jeremie; Lopez, Mario Sanz; Kerrien, Erwan; Berger, Marie-Odile
2015-05-01
This paper presents a method for real-time augmented reality of internal liver structures during minimally invasive hepatic surgery. Vessels and tumors computed from pre-operative CT scans can be overlaid onto the laparoscopic view for surgery guidance. Compared to current methods, our method is able to locate the in-depth positions of the tumors based on partial three-dimensional liver tissue motion using a real-time biomechanical model. This model permits to properly handle the motion of internal structures even in the case of anisotropic or heterogeneous tissues, as it is the case for the liver and many anatomical structures. Experimentations conducted on phantom liver permits to measure the accuracy of the augmentation while real-time augmentation on in vivo human liver during real surgery shows the benefits of such an approach for minimally invasive surgery.
Low Hepatic Tissue Copper in Pediatric Nonalcoholic Fatty Liver Disease.
Mendoza, Michael; Caltharp, Shelley; Song, Ming; Collin, Lindsay; Konomi, Juna V; McClain, Craig J; Vos, Miriam B
2017-07-01
Animal models and studies in adults have demonstrated that copper restriction increases severity of liver injury in nonalcoholic fatty liver disease (NAFLD). This has not been studied in children. We aimed to determine if lower tissue copper is associated with increased NAFLD severity in children. This was a retrospective study of pediatric patients who had a liver biopsy including a hepatic copper quantitation. The primary outcome compared hepatic copper concentration in NAFLD versus non-NAFLD. Secondary outcomes compared hepatic copper levels against steatosis, fibrosis, lobular inflammation, balloon degeneration, and NAFLD activity score (NAS). The study analysis included 150 pediatric subjects (102 with NAFLD and 48 non-NAFLD). After adjusting for age, body mass index z score, gamma glutamyl transferase, alanine aminotransferase, and total bilirubin, NAFLD subjects had lower levels of hepatic copper than non-NAFLD (P = 0.005). In addition, tissue copper concentration decreased as steatosis severity increased (P < 0.001). Copper levels were not associated with degree of fibrosis, lobular inflammation, portal inflammation, or balloon degeneration. In this cohort of pediatric subjects with NAFLD, we observed decreased tissue copper levels in subjects with NAFLD when compared with non-NAFLD subjects. In addition, tissue copper levels were lower in subjects with nonalcoholic steatohepatitis, a more severe form of the disease, when compared with steatosis alone. Further studies are needed to explore the relationship between copper levels and NAFLD progression.
Aas, Camilla Bakken; Fuglei, Eva; Herzke, Dorte; Yoccoz, Nigel G; Routti, Heli
2014-10-07
Arctic animals undergo large seasonal fluctuations in body weight. The effect of body condition on the distribution and composition of 16 perfluoroalkyl substances (PFASs) was investigated in liver, blood, kidney, adipose tissue, and muscle of Arctic foxes (Vulpes lagopus) from Svalbard (n = 18, age 1-3 years). PFAS concentrations were generally highest in liver, followed by blood and kidney, while lowest concentrations were found in adipose tissue and muscle. Concentrations of summed perfluorocarboxylic acids and perfluoroalkyl sulfonates were five and seven times higher, respectively, in adipose tissue of lean compared to fat foxes. In addition, perfluorodecanoate (PFDA) and perfluoroheptanesulfonate (PFHpS) concentrations in liver, kidney, and blood, and, perfluorononanoate (PFNA) in liver and blood, were twice as high in the lean compared to the fat foxes. The ratio between perfluorooctane sulfonamide (FOSA) and its metabolite perfluorooctanesulfonate (PFOS) was lowest in liver, muscle, and kidney, while significantly higher proportions of FOSA were found in adipose tissue and blood. The results of the present study suggest that toxic potential of exposure to PFAS among other pollutants in Arctic mammals may increase during seasonal emaciation. The results also suggest that body condition should be taken into account when assessing temporal trends of PFASs.
Vildhede, Anna; Wiśniewski, Jacek R; Norén, Agneta; Karlgren, Maria; Artursson, Per
2015-08-07
Freshly isolated human hepatocytes are considered the gold standard for in vitro studies of liver functions, including drug transport, metabolism, and toxicity. For accurate predictions of the in vivo outcome, the isolated hepatocytes should reflect the phenotype of their in vivo counterpart, i.e., hepatocytes in human liver tissue. Here, we quantified and compared the membrane proteomes of freshly isolated hepatocytes and human liver tissue using a label-free shotgun proteomics approach. A total of 5144 unique proteins were identified, spanning over 6 orders of magnitude in abundance. There was a good global correlation in protein abundance. However, the expression of many plasma membrane proteins was lower in the isolated hepatocytes than in the liver tissue. This included transport proteins that determine hepatocyte exposure to many drugs and endogenous compounds. Pathway analysis of the differentially expressed proteins confirmed that hepatocytes are exposed to oxidative stress during isolation and suggested that plasma membrane proteins were degraded via the protein ubiquitination pathway. Finally, using pitavastatin as an example, we show how protein quantifications can improve in vitro predictions of in vivo liver clearance. We tentatively conclude that our data set will be a useful resource for improved hepatocyte predictions of the in vivo outcome.
Structural and quantitative expression analyses of HERV gene family in human tissues.
Ahn, Kung; Kim, Heui-Soo
2009-08-31
Human endogenous retroviruses (HERVs) have been implicated in the pathogenesis of several human diseases as multi-copy members in the human genome. Their gene expression profiling could provide us with important insights into the pathogenic relationship between HERVs and cancer. In this study, we have evaluated the genomic structure and quantitatively determined the expression patterns in the env gene of a variety of HERV family members located on six specific loci by the RetroTector 10 program, as well as real-time RT-PCR amplification. The env gene transcripts evidenced significant differences in the human tumor/normal adjacent tissues (colon, liver, uterus, lung and testis). As compared to the adjacent normal tissues, high levels of expression were noted in testis tumor tissues for HERV-K, in liver and lung tumor tissues for HERV-R, in liver, lung, and testis tumor tissues for HERV-H, and in colon and liver tumor tissues for HERV-P. These data warrant further studies with larger groups of patients to develop biomarkers for specific human cancers.
Intestinal ischemic preconditioning reduces liver ischemia reperfusion injury in rats
XUE, TONG-MIN; TAO, LI-DE; ZHANG, JIE; ZHANG, PEI-JIAN; LIU, XIA; CHEN, GUO-FENG; ZHU, YI-JIA
2016-01-01
The aim of the current study was to investigate whether intestinal ischemic preconditioning (IP) reduces damage to the liver during hepatic ischemia reperfusion (IR). Sprague Dawley rats were used to model liver IR injury, and were divided into the sham operation group (SO), IR group and IP group. The results indicated that IR significantly increased Bax, caspase 3 and NF-κBp65 expression levels, with reduced expression of Bcl-2 compared with the IP group. Compared with the IR group, the levels of AST, ALT, MPO, MDA, TNF-α and IL-1 were significantly reduced in the IP group. Immunohistochemistry for Bcl-2 and Bax indicated that Bcl-2 expression in the IP group was significantly increased compared with the IR group. In addition, IP reduced Bax expression compared with the IR group. The average liver injury was worsened in the IR group and improved in the IP group, as indicated by the morphological evaluation of liver tissues. The present study suggested that IP may alleviates apoptosis, reduce the release of pro-inflammatory cytokines, ameloriate reductions in liver function and reduce liver tissue injury. To conclude, IP provided protection against hepatic IR injury. PMID:26821057
NASA Astrophysics Data System (ADS)
Adavallan, K.; Gurushankar, K.; Nazeer, Shaiju S.; Gohulkumar, M.; Jayasree, Ramapurath S.; Krishnakumar, N.
2017-06-01
Fluorescence spectroscopic techniques have the potential to assess the metabolic changes during disease development and evaluation of treatment response in a non-invasive and label-free manner. The present study aims to evaluate the effect of mulberry-mediated gold nanoparticles (MAuNPs) in comparison with mulberry leaf extract alone (MLE) for monitoring endogenous fluorophores and to quantify the metabolic changes associated with mitochondrial redox states during streptozotocin-induced diabetic liver tissues using fluorescence spectroscopy. Two mitochondrial metabolic coenzymes, reduced nicotinamide dinucleotide (NADH) and oxidized flavin adenine dinucleotide (FAD) are autofluorescent and are important optical biomarkers to estimate the redox state of a cell. Significant differences in the autofluorescence spectral signatures between the control and the experimental diabetic animals have been noticed under the excitation wavelength at 320 nm with emission ranging from 350-550 nm. A direct correlation between the progression of diabetes and the levels of collagen and optical redox ratio was observed. The results revealed that a significant increase in the emission of collagen in diabetic liver tissues as compared with the control liver tissues. Moreover, there was a significant decrease in the optical redox ratio (FAD/(FAD + NADH)) observed in diabetic control liver tissues, which indicates an increased oxidative stress compared to the liver tissues of control rats. Further, the extent of increased oxidative stress was confirmed by the reduced levels of reduced glutathione (GSH) in diabetic liver tissues. On a comparative basis, treatment with MAuNPs was found to be more effective than MLE for reducing the progression of diabetes and improving the optical redox ratio to a near normal range in streptozotocin-induced diabetic liver tissues. Furthermore, principal component analysis followed by linear discriminant analysis (PC-LDA) has been used to classify the autofluorescence emission spectra from the control and the experimental group of diabetic rats. The results of this study raise the important possibility that fluorescence spectroscopy in conjunction with multivariate statistical analysis has tremendous potential for monitoring or potentially predicting responses to therapy.
Yoo, Seungyeul; Wang, Wenhui; Wang, Qin; Fiel, M Isabel; Lee, Eunjee; Hiotis, Spiros P; Zhu, Jun
2017-12-07
Chronic hepatitis B virus (HBV) infection leads to liver fibrosis, which is a major risk factor in hepatocellular carcinoma (HCC) and an independent risk factor of recurrence after HCC tumor resection. The HBV genome can be inserted into the human genome, and chronic inflammation may trigger somatic mutations. However, how HBV integration and other genomic changes contribute to the risk of tumor recurrence with regards to the different degree of liver fibrosis is not clearly understood. We sequenced mRNAs of 21 pairs of tumor and distant non-neoplastic liver tissues of HBV-HCC patients and performed comprehensive genomic analyses of our RNAseq data and public available HBV-HCC sequencing data. We developed a robust pipeline for sensitively identifying HBV integration sites based on sequencing data. Simulations showed that our method outperformed existing methods. Applying it to our data, 374 and 106 HBV host genes were identified in non-neoplastic liver and tumor tissues, respectively. When applying it to other RNA sequencing datasets, consistently more HBV integrations were identified in non-neoplastic liver than in tumor tissues. HBV host genes identified in non-neoplastic liver samples significantly overlapped with known tumor suppressor genes. More significant enrichment of tumor suppressor genes was observed among HBV host genes identified from patients with tumor recurrence, indicating the potential risk of tumor recurrence driven by HBV integration in non-neoplastic liver tissues. We also compared SNPs of each sample with SNPs in a cancer census database and inferred samples' pathogenic SNP loads. Pathogenic SNP loads in non-neoplastic liver tissues were consistently higher than those in normal liver tissues. Additionally, HBV host genes identified in non-neoplastic liver tissues significantly overlapped with pathogenic somatic mutations, suggesting that HBV integration and somatic mutations targeting the same set of genes are important to tumorigenesis. HBV integrations and pathogenic mutations showed distinct patterns between low and high liver fibrosis patients with regards to tumor recurrence. The results suggest that HBV integrations and pathogenic SNPs in non-neoplastic tissues are important for tumorigenesis and different recurrence risk models are needed for patients with low and high degrees of liver fibrosis.
Gene profiling, biomarkers and pathways characterizing HCV-related hepatocellular carcinoma
De Giorgi, Valeria; Monaco, Alessandro; Worchech, Andrea; Tornesello, MariaLina; Izzo, Francesco; Buonaguro, Luigi; Marincola, Francesco M; Wang, Ena; Buonaguro, Franco M
2009-01-01
Background Hepatitis C virus (HCV) infection is a major cause of hepatocellular carcinoma (HCC) worldwide. The molecular mechanisms of HCV-induced hepatocarcinogenesis are not yet fully elucidated. Besides indirect effects as tissue inflammation and regeneration, a more direct oncogenic activity of HCV can be postulated leading to an altered expression of cellular genes by early HCV viral proteins. In the present study, a comparison of gene expression patterns has been performed by microarray analysis on liver biopsies from HCV-positive HCC patients and HCV-negative controls. Methods Gene expression profiling of liver tissues has been performed using a high-density microarray containing 36'000 oligos, representing 90% of the human genes. Samples were obtained from 14 patients affected by HCV-related HCC and 7 HCV-negative non-liver-cancer patients, enrolled at INT in Naples. Transcriptional profiles identified in liver biopsies from HCC nodules and paired non-adjacent non-HCC liver tissue of the same HCV-positive patients were compared to those from HCV-negative controls by the Cluster program. The pathway analysis was performed using the BRB-Array- Tools based on the "Ingenuity System Database". Significance threshold of t-test was set at 0.001. Results Significant differences were found between the expression patterns of several genes falling into different metabolic and inflammation/immunity pathways in HCV-related HCC tissues as well as the non-HCC counterpart compared to normal liver tissues. Only few genes were found differentially expressed between HCV-related HCC tissues and paired non-HCC counterpart. Conclusion In this study, informative data on the global gene expression pattern of HCV-related HCC and non-HCC counterpart, as well as on their difference with the one observed in normal liver tissues have been obtained. These results may lead to the identification of specific biomarkers relevant to develop tools for detection, diagnosis, and classification of HCV-related HCC. PMID:19821982
Stachelscheid, Harald; Urbaniak, Thomas; Ring, Alexander; Spengler, Berlind; Gerlach, Jörg C; Zeilinger, Katrin
2009-07-01
Recent evidence suggests that progenitor cells in adult tissues and embryonic stem cells share a high resistance to hypoxia and ischemic stress. To study the ischemic resistance of adult liver progenitors, we characterized remaining viable cells in human liver tissue after cold ischemic treatment for 24-168 h, applied to the tissue before cell isolation. In vitro cultures of isolated cells showed a rapid decline of the number of different cell types with increasing ischemia length. After all ischemic periods, liver progenitor-like cells could be observed. The comparably small cells exhibited a low cytoplasm-to-nucleus ratio, formed densely packed colonies, and showed a hepatobiliary marker profile. The cells expressed epithelial cell adhesion molecule, epithelial-specific (CK8/18) and biliary-specific (CK7/19) cytokeratins, albumin, alpha-1-antitrypsin, cytochrome-P450 enzymes, as well as weak levels of hepatocyte nuclear factor-4 and gamma-glutamyl transferase, but not alpha-fetoprotein or Thy-1. In vitro survival and expansion was facilitated by coculture with mouse embryonic fibroblasts. Hepatic progenitor-like cells exhibit a high resistance to ischemic stress and can be isolated from human liver tissue after up to 7 days of ischemia. Ischemic liver tissue from various sources, thought to be unsuitable for cell isolation, may be considered as a prospective source of hepatic progenitor cells.
Maawy, Ali A.; Hiroshima, Yukihiko; Zhang, Yong; Luiken, George A.; Hoffman, Robert M.; Bouvet, Michael
2014-01-01
We report here that polyethylene glycol (PEG) linked to near infrared dyes conjugated to chimeric mouse-human anti-carcinoembryonic antigen (CEA) antibody greatly improves imaging of liver metastases in a nude mouse model of colon-cancer experimental metastases. PEGylated and non-PEGylated DyLight 650 and 750 dyes were conjugated to the chimeric anti-CEA antibody. The dyes were initially injected intravenously into nude mice without tumors. Tissue biodistribution was determined by tissue sonication and analyzing tissue dye concentration profiles over time. PEGylated dyes had significantly lower accumulation in the liver (p = 0.03 for the 650 dyes; p = 0.002 for the 750 dyes) compared to non-PEGylated dyes. In an experimental liver metastasis model of HT-29 colon cancer, PEGylated dyes conjugated to the anti-CEA antibody showed good labeling of metastatic tumors with high contrast between normal and malignant tissue which was not possible with the non-PEGylated dyes since there was so much non-specific accumulation in the liver. PEGylation of the DyLight 650 and 750 NIR dyes significantly altered tissue biodistribution, allowing brighter tissue labeling, decreased accumulation in normal organs, particularly the liver. This enabled high fidelity and high contrast imaging of liver metastases. PMID:24859320
Simon, Frank; Bockhorn, Maximilian; Praha, Christian; Baba, Hideo A; Broelsch, Christoph E; Frilling, Andrea; Weber, Frank
2010-04-01
The aim of this study was to elucidate the role of HIF1A expression in hepatocellular carcinoma (HCC) and the corresponding non-malignant liver tissue and to correlate it with the clinical outcome of HCC patients after curative liver resection. HIF1A expression was determined by quantitative RT-PCR in HCC and corresponding non-malignant liver tissue of 53 patients surgically treated for HCC. High-density gene expression analysis and pathway analysis was performed on a selected subset of patients with high and low HIF1A expression in the non-malignant liver tissue. HIF1A over-expression in the apparently non-malignant liver tissue was a predictor of tumor recurrence and survival. The estimated 1-year and 5-year disease-free survival was significantly better in patients with low HIF1A expression in the non-malignant liver tissue when compared to those patients with high HIF1 expression (88.9% vs. 67.9% and 61.0% vs. 22.6%, respectively, p = 0.008). Based on molecular pathway analysis utilizing high-density gene-expression profiling, HIF1A related molecular networks were identified that contained genes involved in cell migration, cell homing, and cell-cell interaction. Our study identified a potential novel mechanism contributing to prognosis of HCC. The deregulation of HIF1A and its related pathways in the apparently non-malignant liver tissue provides for a modulated environment that potentially enhances or allows for HCC recurrence after curative resection.
Schenk, Jens-Peter; Alzen, Gerhard; Klingmüller, Volker; Teufel, Ulrike; El Sakka, Saroa; Engelmann, Guido; Selmi, Buket
2014-01-01
We aimed to determine the comparability of real-time tissue elastography (RTE) and transient elastography (TE) in pediatric patients with liver diseases. RTE was performed on the Elasticity QA Phantom Model 049 (Computerized Imaging Reference Systems Company Inc., Norfolk, Virginia, USA), which has five areas with different levels of stiffness. RTE measurements of relative stiffness (MEAN [mean value of tissue elasticity], AREA [% of blue color-coded stiffer tissue]) in the phantom were compared with the phantom stiffness specified in kPa (measurement unit of TE). RTE and TE were performed on 147 pediatric patients with various liver diseases. A total of 109 measurements were valid. The participants had following diseases: metabolic liver disease (n=25), cystic fibrosis (n=20), hepatopathy of unknown origin (n=11), autoimmune hepatitis (n=12), Wilson's disease (n=11), and various liver parenchyma alterations (n=30). Correlations between RTE and TE measurements in the patients were calculated. In addition, RTE was performed on a control group (n=30), and the RTE values between the patient and control groups were compared. The RTE parameters showed good correlation in the phantom model with phantom stiffness (MEAN/kPa, r=-0.97; AREA/kPa, r=0.98). However, the correlation of RTE and TE was weak in the patient group (MEAN/kPa, r=-0.23; AREA/kPa, r=0.24). A significant difference was observed between the patient and control groups (MEAN, P = 5.32 e-7; AREA, P = 1.62 e-6). In the phantom model, RTE was correlated with kPa, confirming the presumed comparability of the methods. However, there was no direct correlation between RTE and TE in patients with defined liver diseases under real clinical conditions.
The measurement of liver fat from single-energy quantitative computed tomography scans
Cheng, Xiaoguang; Brown, J. Keenan; Guo, Zhe; Zhou, Jun; Wang, Fengzhe; Yang, Liqiang; Wang, Xiaohong; Xu, Li
2017-01-01
Background Studies of soft tissue composition using computed tomography (CT) scans are often semi-quantitative and based on Hounsfield units (HU) measurements that have not been calibrated with a quantitative CT (QCT) phantom. We describe a study to establish the water (H2O) and dipotassium hydrogen phosphate (K2HPO4) basis set equivalent densities of fat and fat-free liver tissue. With this information liver fat can be accurately measured from any abdominal CT scan calibrated with a suitable phantom. Methods Liver fat content was measured by comparing single-energy QCT (SEQCT) HU measurements of the liver with predicted HU values for fat and fat-free liver tissue calculated from their H2O and K2HPO4 equivalent densities and calibration data from a QCT phantom. The equivalent densities of fat were derived from a listing of its constituent fatty acids, and those of fat-free liver tissue from a dual-energy QCT (DEQCT) study performed in 14 healthy Chinese subjects. This information was used to calculate liver fat from abdominal SEQCT scans performed in a further 541 healthy Chinese subjects (mean age 62 years; range, 31–95 years) enrolled in the Prospective Urban Rural Epidemiology (PURE) Study. Results The equivalent densities of fat were 941.75 mg/cm3 H2O and –43.72 mg/cm3 K2HPO4, and for fat-free liver tissue 1,040.13 mg/cm3 H2O and 21.34 mg/cm3 K2HPO4. Liver fat in the 14 subjects in the DEQCT study varied from 0–17.9% [median: 4.5%; interquartile range (IQR): 3.0–7.9%]. Liver fat in the 541 PURE study subjects varied from –0.3–29.9% (median: 4.9%; IQR: 3.4–6.9%). Conclusions We have established H2O and K2HPO4 equivalent densities for fat and fat-free liver tissue that allow a measurement of liver fat to be obtained from any abdominal CT scan acquired with a QCT phantom. Although radiation dose considerations preclude the routine use of QCT to measure liver fat, the method described here facilitates its measurement in patients having CT scans performed for other purposes. Further studies comparing the results with magnetic resonance (MR) measurements of liver fat are required to validate the method as a useful clinical tool. PMID:28811994
Ničković, Vanja P; Novaković, Tatjana; Lazarević, Slavica; Šulović, Ljiljana; Živković, Zorica; Živković, Jovan; Mladenović, Bojan; Stojanović, Nikola M; Petrović, Vladmir; Sokolović, Dušan T
2018-06-01
The present study was designed to compare the ameliorating potential of pre- and post-treatments with melatonin, a potent natural antioxidant, in the carbon tetrachloride-induced rat liver damage model by tracking changes in enzymatic and non-enzymatic liver tissue defense parameters, as well as in the occurring pathohistological changes. Rats from two experimental groups were treated with melatonin before and after CCl 4 administration, while the controls, negative and positive, received vehicle/melatonin and CCl 4 , respectively. Serum levels of transaminases, alkaline phosphates, γ-GT, bilirubin, and albumin, as well as a wide panel of oxidative stress-related parameters in liver tissue, were determined in all experimental animals. Liver tissue specimens were stained with hematoxylin and eosin and further evaluated for morphological changes. Both pre- and post-treatment with melatonin prevented a CCl 4 -induced increase in serum (ALT, AST, and γ-GT) and tissue (MDA and XO) liver damage markers and a decrease in the tissue total antioxidant capacity, in both enzymatic and non-enzymatic systems. The intensity of pathological changes, hepatocyte vacuolar degeneration, necrosis and inflammatory cell infiltration, was suppressed by the treatment with melatonin. In conclusion, melatonin, especially as a post-intoxication treatment, attenuated CCl 4 -induced liver oxidative damage, increased liver antioxidant capacities and improved liver microscopic appearance. The results are of interest due to the great protective potential of melatonin that was even demonstrated to be stronger if applied after the tissue damage. Copyright © 2018 Elsevier Inc. All rights reserved.
Chao, Xiaojuan; Wang, Shaogui; Zhao, Katrina; Li, Yuan; Williams, Jessica A; Li, Tiangang; Chavan, Hemantkumar; Krishnamurthy, Partha; He, Xi C; Li, Linheng; Ballabio, Andrea; Ni, Hong-Min; Ding, Wen-Xing
2018-05-18
Defects in lysosome function and autophagy contribute to pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes, evaluating the functions transcription factor EB (TFEB), which regulates lysosomal biogenesis. We performed studies with GFP-LC3 mice, mice with liver-specific deletion of transcription factor EB (TFEB), mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB, TFE3 double-knockout mice), and Tfeb flox/flox albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of chronic ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice were also given injections of torin1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time PCR to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry. Liver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB, compared with control mice, and hepatocytes had reduced lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting increased mTOR activation. Administration of torin1 increased liver levels of TFEB and reduced steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in liver developed less-severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared to mice carrying a control vector. Mice with knockdown of TFEB, as well as TFEB, TFE3 double-knockout mice, developed more severe liver injury in response to the ethanol diet than control mice. Liver tissues from patients with alcohol-induced hepatitis had lower nuclear levels of TFEB than control tissues CONCLUSIONS: We found chronic ethanol feeding plus an acute binge to reduce hepatic expression of the transcription factor TFEB, which is required for lysosomal biogenesis and autophagy. Strategies to block mTOR activity or increase levels of TFEB might be developed to protect liver from ethanol-induced damage. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir
2014-08-15
The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractionsmore » from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.« less
Gianesin, B; Zefiro, D; Musso, M; Rosa, A; Bruzzone, C; Balocco, M; Carrara, P; Bacigalupo, L; Banderali, S; Rollandi, G A; Gambaro, M; Marinelli, M; Forni, G L
2012-06-01
An accurate assessment of body iron accumulation is essential for the diagnosis and therapy of iron overload in diseases such as thalassemia or hemochromatosis. Magnetic iron detector susceptometry and MRI are noninvasive techniques capable of detecting iron overload in the liver. Although the transverse relaxation rate measured by MRI can be correlated with the presence of iron, a calibration step is needed to obtain the liver iron concentration. Magnetic iron detector provides an evaluation of the iron overload in the whole liver. In this article, we describe a retrospective observational study comparing magnetic iron detector and MRI examinations performed on the same group of 97 patients with transfusional or congenital iron overload. A biopsy-free linear calibration to convert the average transverse relaxation rate in iron overload (R(2) = 0.72), or in liver iron concentration evaluated in wet tissue (R(2) = 0.68), is presented. This article also compares liver iron concentrations calculated in dry tissue using MRI and the existing biopsy calibration with liver iron concentrations evaluated in wet tissue by magnetic iron detector to obtain an estimate of the wet-to-dry conversion factor of 6.7 ± 0.8 (95% confidence level). Copyright © 2011 Wiley-Liss, Inc.
Expression of ceramide-metabolising enzymes in subcutaneous and intra-abdominal human adipose tissue
2012-01-01
Background Inflammation and increased ceramide concentrations characterise adipose tissue of obese women with high liver fat content compared to equally obese women with normal liver fat content. The present study characterises enzymes involved in ceramide metabolism in subcutaneous and intra-abdominal adipose tissue. Methods Pathways leading to increased ceramide concentrations in inflamed versus non-inflamed adipose tissue were investigated by quantifying expression levels of key enzymes involved in ceramide metabolism. Sphingomyelinases (sphingomyelin phosphodiesterases SMPD1-3) were investigated further using immunohistochemistry to establish their location within adipose tissue, and their mRNA expression levels were determined in subcutaneous and intra-abdominal adipose tissue from both non-obese and obese subject. Results Gene expression levels of sphingomyelinases, enzymes that hydrolyse sphingomyelin to ceramide, rather than enzymes involved in de novo ceramide synthesis, were higher in inflamed compared to non-inflamed adipose tissue of obese women (with high and normal liver fat contents respectively). Sphingomyelinases were localised to both macrophages and adipocytes, but also to blood vessels and to extracellular regions surrounding vessels within adipose tissue. Expression levels of SMPD3 mRNA correlated significantly with concentrations of different ceramides and sphingomyelins. In both non-obese and obese subjects SMPD3 mRNA levels were higher in the more inflamed intra-abdominal compared to the subcutaneous adipose tissue depot. Conclusions Generation of ceramides within adipose tissue as a result of sphingomyelinase action may contribute to inflammation in human adipose tissue. PMID:22974251
Sahi, Kamal; Jackson, Stuart; Wiebe, Edward; Armstrong, Gavin; Winters, Sean; Moore, Ronald; Low, Gavin
2014-02-01
To assess if "liver window" settings improve the conspicuity of small renal cell carcinomas (RCC). Patients were analysed from our institution's pathology-confirmed RCC database that included the following: (1) stage T1a RCCs, (2) an unenhanced computed tomography (CT) abdomen performed ≤ 6 months before histologic diagnosis, and (3) age ≥ 17 years. Patients with multiple tumours, prior nephrectomy, von Hippel-Lindau disease, and polycystic kidney disease were excluded. The unenhanced CT was analysed, and the tumour locations were confirmed by using corresponding contrast-enhanced CT or magnetic resonance imaging studies. Representative single-slice axial, coronal, and sagittal unenhanced CT images were acquired in "soft tissue windows" (width, 400 Hounsfield unit (HU); level, 40 HU) and liver windows (width, 150 HU; level, 88 HU). In addition, single-slice axial, coronal, and sagittal unenhanced CT images of nontumourous renal tissue (obtained from the same cases) were acquired in soft tissue windows and liver windows. These data sets were randomized, unpaired, and were presented independently to 3 blinded radiologists for analysis. The presence or absence of suspicious findings for tumour was scored on a 5-point confidence scale. Eighty-three of 415 patients met the study criteria. Receiver operating characteristics (ROC) analysis, t test analysis, and kappa analysis were used. ROC analysis showed statistically superior diagnostic performance for liver windows compared with soft tissue windows (area under the curve of 0.923 vs 0.879; P = .0002). Kappa statistics showed "good" vs "moderate" agreement between readers for liver windows compared with soft tissue windows. Use of liver windows settings improves the detection of small RCCs on the unenhanced CT. Copyright © 2014 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.
Sun, Baoguo; Chen, Yan; Xiang, Ting; Zhang, Lei; Chen, Zexiong; Zhang, Shijun; Zhou, Houming; Chen, Shuqing
2015-01-01
Traditional Chinese Medicine Jianpijiedu decoction (JPJD) could improve the general status of liver cancer patients in clinics, especially the symptoms of decreased food intake and diarrhea. In this study, our results showed that the survival rate of the liver cancer with food restriction and diarrhea (FRD-LC) rats was lower than the liver cancer (LC) rats, and the tumor volume of the FRD-LC rats was higher than the LC rats. It was also shown that the high dose of JPJD significantly improved the survival rate, weight, and organ weight when compared with FRD-LC-induced rats. Moreover, JPJD administration upregulated the mRNA and protein levels of ABCC2 and downregulated the mRNA and protein levels of OATP1B2 in liver tissues. However, opposite results were observed in the cancer tissues. In conclusion, the study indicated that the Chinese Medicine JPJD could contribute to the rats with liver cancer which were pretreated with food restriction and diarrhea by regulating the expression of ABCC2 and OATP1B2 in liver tissues and cancer tissues. PMID:26665149
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sula, M.J.; Bihl, D.E.; Carbaugh, E.H.
1988-04-01
Assessment of organ burdens after internal exposures to radionuclides is often necessary to evaluate the health and regulatory implications of the exposure. The assessment of plutonium activity in skeleton and liver is usually estimated from measurements of plutonium excreted via urine. As part of the overall evaluation of internal dose assessment techniques, it is useful to compare the results of organ burden estimates made from evaluation of urinary excretion data with those made at death from tissue samples collected posthumously from the individual. Estimates of plutonium in the skeleton and liver, based on postmortem analysis of tissue samples for sixmore » individuals, were obtained from the US Transuranium Registry (USTR). Bioassay data and other radiation exposure information obtained from the individuals' files were used to estimate their skeleton and liver burdens at the times of their deaths, and these estimates were compared to those obtained through tissue analysis. 6 refs., 2 tabs.« less
Overmyer, Katherine A.; Thonusin, Chanisa; Qi, Nathan R.; Burant, Charles F.; Evans, Charles R.
2015-01-01
A critical application of metabolomics is the evaluation of tissues, which are often the primary sites of metabolic dysregulation in disease. Laboratory rodents have been widely used for metabolomics studies involving tissues due to their facile handing, genetic manipulability and similarity to most aspects of human metabolism. However, the necessary step of administration of anesthesia in preparation for tissue sampling is not often given careful consideration, in spite of its potential for causing alterations in the metabolome. We examined, for the first time using untargeted and targeted metabolomics, the effect of several commonly used methods of anesthesia and euthanasia for collection of skeletal muscle, liver, heart, adipose and serum of C57BL/6J mice. The data revealed dramatic, tissue-specific impacts of tissue collection strategy. Among many differences observed, post-euthanasia samples showed elevated levels of glucose 6-phosphate and other glycolytic intermediates in skeletal muscle. In heart and liver, multiple nucleotide and purine degradation metabolites accumulated in tissues of euthanized compared to anesthetized animals. Adipose tissue was comparatively less affected by collection strategy, although accumulation of lactate and succinate in euthanized animals was observed in all tissues. Among methods of tissue collection performed pre-euthanasia, ketamine showed more variability compared to isoflurane and pentobarbital. Isoflurane induced elevated liver aspartate but allowed more rapid initiation of tissue collection. Based on these findings, we present a more optimal collection strategy mammalian tissues and recommend that rodent tissues intended for metabolomics studies be collected under anesthesia rather than post-euthanasia. PMID:25658945
Overmyer, Katherine A; Thonusin, Chanisa; Qi, Nathan R; Burant, Charles F; Evans, Charles R
2015-01-01
A critical application of metabolomics is the evaluation of tissues, which are often the primary sites of metabolic dysregulation in disease. Laboratory rodents have been widely used for metabolomics studies involving tissues due to their facile handing, genetic manipulability and similarity to most aspects of human metabolism. However, the necessary step of administration of anesthesia in preparation for tissue sampling is not often given careful consideration, in spite of its potential for causing alterations in the metabolome. We examined, for the first time using untargeted and targeted metabolomics, the effect of several commonly used methods of anesthesia and euthanasia for collection of skeletal muscle, liver, heart, adipose and serum of C57BL/6J mice. The data revealed dramatic, tissue-specific impacts of tissue collection strategy. Among many differences observed, post-euthanasia samples showed elevated levels of glucose 6-phosphate and other glycolytic intermediates in skeletal muscle. In heart and liver, multiple nucleotide and purine degradation metabolites accumulated in tissues of euthanized compared to anesthetized animals. Adipose tissue was comparatively less affected by collection strategy, although accumulation of lactate and succinate in euthanized animals was observed in all tissues. Among methods of tissue collection performed pre-euthanasia, ketamine showed more variability compared to isoflurane and pentobarbital. Isoflurane induced elevated liver aspartate but allowed more rapid initiation of tissue collection. Based on these findings, we present a more optimal collection strategy mammalian tissues and recommend that rodent tissues intended for metabolomics studies be collected under anesthesia rather than post-euthanasia.
Khimmaktong, Wipapan; Petpiboolthai, Hattaya; Panyarachun, Busaba; Anupunpisit, Vipavee
2012-05-01
To investigate the effect of curcumin on the structural change ofmicrovasculature in STZ-induced diabetic rat' liver. Diabetic rats were induced by streptozotocin (60 mg/kg BW). Male rats were divided into thre groups, control (C), diabetic (DM) and diabetic rats treated with curcumin (DMC) (200 mg/kg BW). After 8 weeks o experiments, blood vessels of rat's liver were studied under conventional light microscope (LM) and vascular corrosion cas technique with scanning electron microscope (SEM). LM observation demonstrated that there were pathology and destruction of liver tissues and microvasculature in diabetic animals. The sinusoids around central veins were dilated and filled with red blood cells. There was an accumulation of lipid droplets in the cytoplasm of hepatocytes and hepatocyte nuclei showed pathological sign of pyknosis. Moreover, the inflammation change of liver tissues revealed the infiltration of lymphocytes and increasing of collagen deposition in the area of portal triad. In curcumin-treated rats, the distinguished recovery of liver tissues showed regained normal pattern of central veins, sinusoids, hepatocytes and portal triad, when compared with liver tissues of control group. By using vascular corrosion casting with SEM, the liver blood vessels of DM group revealed higher and expanded sizes, compared with control group; proximal parts of portal veins (C = 577.75 +/- 126.23, DM = 892 +/- 35.79, DMC = 469.5 +/- 8553 microm), distal parts of portal veins (C = 76.72 +/- 1.48, DM = 200 +/- 31.05, DMC = 76.38 +/- 2.98 microm) and venules (C = 27.03 +/- 0.55, DM = 45.15 +/- 5.03, DMC = 28.38 +/- 3.67 microm) and corresponding to increased blood volumes compared with control group; proximal parts of portal veins (C = 20.8 +/- 1.28, DM = 62.2 +/- 3.39, DMC = 14.9 +/- 0.67 microm3), distal parts of portal veins (C = 0.46 +/- 0.03, DM = 3.81 +/- 0.18, DMC = 0.41 +/- 0.05 microm3) and venules (C = 0.05 +/- 0.05, DM = 0.24 +/- 0.013, DMC = 0.05 +/- 0.05 microm3) respectively. Fascinatingly, liver microvasculature in curcumin treated group developed into regenerate and repair into healthy and normal characteristics. Efficiency of curcumin treatment beneficially repaired and regenerated liver tissues of diabetic groups and also redeveloped the liver's microvascular complications. These results optimistically demonstrated the potential use of curcumin as a novel therapeutic agent in liver pathology of diabetic rats.
Liver-resident NK cells and their potential functions.
Peng, Hui; Sun, Rui
2017-09-18
Natural killer (NK) cells represent a heterogeneous population of innate lymphocytes with phenotypically and functionally distinct subsets. In particular, recent studies have identified a unique subset of NK cells residing within the liver that are maintained as tissue-resident cells, confer antigen-specific memory responses and exhibit different phenotypical and developmental characteristics compared with conventional NK (cNK) cells. These findings have encouraged researchers to uncover tissue-resident NK cells at other sites, and detailed analyses have revealed that these tissue-resident NK cells share many similarities with liver-resident NK cells and tissue-resident memory T cells. Here, we present a brief historical perspective on the discovery of liver-resident NK cells and discuss their relationship to cNK cells and other emerging NK cell subsets and their potential functions.Cellular &Molecular Immunology advance online publication, 18 September 2017; doi:10.1038/cmi.2017.72.
Duan, Yun-Fei; An, Yong; Zhu, Feng; Jiang, Yong
2017-08-15
Ischemic preconditioning (IPC) is a strategy to reduce ischemia-reperfusion (I/R) injury. The protective effect of remote ischemic preconditioning (RIPC) on liver I/R injury is not clear. This study aimed to investigate the roles of RIPC in liver I/R in fatty liver rats and the involvement of endothelial nitric oxide synthase-nitric oxide (eNOS-NO) pathway and microRNA expressions in this process. A total of 32 fatty rats were randomly divided into the sham group, I/R group, RIPC group and RIPC+I/R group. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and nitric oxide (NO) were measured. Hematoxylin-eosin staining was used to observe histological changes of liver tissues, TUNEL to detect hepatocyte apoptosis, and immunohistochemistry assay to detect heat shock protein 70 (HSP70) expression. Western blotting was used to detect liver inducible NOS (iNOS) and eNOS protein levels and real-time quantitative polymerase chain reaction to detect miR-34a, miR-122 and miR-27b expressions. Compared with the sham and RIPC groups, serum ALT, AST and iNOS in liver tissue were significantly higher in other two groups, while serum NO and eNOS in liver tissue were lower, and varying degrees of edema, degeneration and inflammatory cell infiltration were found. Cell apoptosis number was slightly lower in the RIPC+I/R group than that in I/R group. Compared with the sham group, HSP70 expressions were significantly increased in other three groups (all P<0.05). Compared with the sham and RIPC groups, elevated miR-34a expressions were found in I/R and RIPC+I/R groups (P<0.05). MiR-122 and miR-27b were found significantly decreased in I/R and RIPC+I/R groups compared with the sham and RIPC groups (all P<0.05). RIPC can reduce fatty liver I/R injury by affecting the eNOS-NO pathway and liver microRNA expressions. Copyright © 2017 The Editorial Board of Hepatobiliary & Pancreatic Diseases International. Published by Elsevier B.V. All rights reserved.
Hall, J A; Barstad, L A; Connor, W E
1997-01-01
The purpose of this study was to characterize the lipid classes in hepatic and adipose tissues from cats with idiopathic hepatic lipidosis (IHL). Concentrations of triglyceride, phospholipid phosphorus, and free and total cholesterol were determined in lipid extracts of liver homogenates from 5 cats with IHL and 5 healthy control cats. Total fatty acid composition of liver and adipose tissue was also compared. Triglyceride accounted for 34% of liver by weight in cats with IHL (338 +/- 38 mg/g wet liver) versus 1% in control cats (9.9 +/- 1.0 mg/g wet liver, P < .001). The mass of cholesterol ester was significantly higher in triglyceride-free (TG-free) liver from cats with IHL (741 +/- 340 micrograms/g TG-free wet liver) compared to healthy cats (31 +/- 11 micrograms/g TG-free wet liver, P < .05). Total fatty acid composition of hepatic tissue in the 2 groups differed; palmitate was higher (19.5 +/- 1.1% of total fatty acids in cats with IHL versus 9.2 +/- 2.7% in controls, P < .05), stearate was lower (8.5 +/- 0.8% versus 16.8 +/- 1.1%, P < .05), oleate was higher (41.2 +/- 1.6% versus 31.1 +/- 1.8%, P < .05), and arachidonate was lower (1.2 +/- 0.2% versus 6.0 +/- 0.9%, P < .05). The total fatty acid composition of adipose tissue also differed between the 2 groups; palmitate was higher (26.2 +/- 1.2% in cats with IHL versus 21.3 +/- 0.6% in controls, P < .05), total monounsaturated fatty acids were higher (48.4 +/- 1.0% versus 45.0 +/- 0.8%, P < .05), linolenate was lower (13.3 +/- 1.6% versus 17.5 +/- 0.9%, P < .05), total (n-6) fatty acids were lower (13.8 +/- 1.38% versus 18.4 +/- 0.83%, P < .05), linolenate was lower (0.2 +/- 0.04% versus 0.7 +/- 0.06%, P < .06), and total (n-3) fatty acids were lower (0.3 +/- 0.02% versus 1.3 +/- 0.32%, P < .05). The fatty acid composition of both liver and adipose tissue was similar for stearate, oleate, linoleate, and linolenate in cats with IHL. These results support the hypothesis that the origin of hepatic triglyceride in cats with IHL is the mobilization of fatty acids from adipose tissue.
Qin, Geng; Wang, Guo Zhen; Guo, Dan Dan; Bai, Ru-Xue; Wang, Miao; Du, Shi Yu
2018-04-25
To explore the effects of Smad4 deletion on inflammation and fibrogenesis during nonalcoholic steatohepatitis (NASH) progression. We collected 56 liver tissues from NASH patients (NASH group) and 60 normal liver tissues from patients received liver resection for trauma (control group). Smad4 Co/Co mice and wild-type (WT) mice were used to construct NASH model by high-fat diet (HFD) or methionine- and choline-deficient (MCD) diet. Hematoxylin and eosin (HE) staining and Tunnel assay were performed to observe pathological changes and apoptosis of liver tissues, respectively, quantitative real-time polymerase chain reaction (qRT-PCR) to detect expressions of inflammatory, fibrogenesis and apoptosis-related genes, and immunohistochemistry to determine proteins expressions of Smad4, MCP-1 and α-SMA. Smad4 protein expression was significantly increased in NASH patients as compared with Control group. Besides, in terms of HFD- and MCD- fed mice, those in Smad4 Co/Co group showed reduction of hepatic steatosis, inflammatory, liver apoptosis and NAS scores, and presented a decrease in glucose, TG, FFAs, AST and ALT, a great up-regulation in adiponectin. Besides, as compared with the WT mice fed with HFD and MCD, Smad4 Co/Co decreased the expressions of inflammatory markers (TNF-α, MCP-1, IFN-γ), fibrogenesis markers (COL1A1, α-SMA and TGF-β1), lipogenic genes (SREBP1c, FAS and ACC) and proapoptotic genes (Bax and caspase 3) in liver tissues, but increased the expressions of β-oxidation genes (PPARα, CPT1 and ACO) and antiapoptotic gene Bcl-2. Smad4 deletion may inhibit lipogenesis, stimulateβ-oxidation, ameliorate lipid metabolism and liver function, alleviate inflammation, fibrosis, and reduce liver apoptosis during NASH. This article is protected by copyright. All rights reserved.
Li, Long; Wang, Wenyue; Lv, Quanxia; Ben, Yujie; Li, Xinghong
2014-03-01
Dechlorane Plus (DP), a flame retardant used as an alternative to decabromodiphenylether, has been frequently detected in organisms, indicating its bioaccumulation and biomagnification potential in aquatic and terrestrial species. However, little data is available on the bioaccumulation of DP in amphibians. Dechlorane Plus and its analogs (DPs) were detected in the liver, muscle and brain tissues of wild frogs (Rana limnocharis), which were collected from an e-waste recycling site, Southeast China. DP, Mirex, Dec 602 and a dechlorinated compound of DP (anti-Cl11-DP) varied in the range of 2.01-291, 0.650-179, 0.260-12.4, and not detected (nd)-8.67 ng/g lipid weight, respectively. No difference of tissue distribution was found for syn-DP, Mirex and Dec 602 between the liver and muscle tissue (liver/muscle concentration ratio close to 1, p > 0.05). However, higher retention was observed for anti-DP and anti-Cl11-DP in the frog muscle relative to the liver tissue (liver/muscle concentration ratio < 1, p < 0.05). Additionally, the blood-brain barrier was found to work efficiently to suppress these compounds entering brain tissues in this species (liver/brain concentration ratio > 1, p < 0.05), and the molecular weight was a key factor impacting the extent of the blood-brain barrier. Compared to levels in the muscle and brain tissue, a preferential enrichment of syn-DP was observed in the liver tissue, suggesting the occurrence of stereo-selective bioaccumulation in the wild frog. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Yu, Hai-Ying; Zhu, Man-Hua; Xiang, Dai-Rong; Li, Jun; Sheng, Ji-Fang
2014-01-01
Background Augmenter of liver regeneration (ALR) is an important polypeptide that participates in the process of liver regeneration. Two forms of ALR proteins are expressed in hepatocytes. Previous data have shown that ALR is essential for cell survival and has potential antimetastatic properties in hepatocellular carcinoma (HCC). Aims The study aimed to evaluate the expression levels of two forms of ALR proteins in HCC and their possible significance in HCC development. Methods Balb/c mouse monoclonal antibody against ALR protein was prepared in order to detect the ALR protein in HCC by Western blotting and immunohistochemistry. ALR mRNA expression levels were measured by real-time polymerase chain reaction in HCC tissues and compared to paracancerous liver tissues in 22 HCC patients. Results ALR mRNA expression in HCC liver tissues (1.51×106 copies/μL) was higher than in paracancerous tissues (1.04×104 copies/μL). ALR protein expression was also enhanced in HCC liver tissues. The enhanced ALR protein was shown to be 23 kDa by Western blotting. Immunohistochemical analysis showed that the 23 kDa ALR protein mainly existed in the hepatocyte cytosol. Conclusion The 23 kDa ALR protein was highly expressed in HCC and may play an important role in hepatocarcinogenesis. PMID:24940072
Bioprinting Perfusion-Enabled Liver Equivalents for Advanced Organ-on-a-Chip Applications.
Grix, Tobias; Ruppelt, Alicia; Thomas, Alexander; Amler, Anna-Klara; Noichl, Benjamin P; Lauster, Roland; Kloke, Lutz
2018-03-22
Many tissue models have been developed to mimic liver-specific functions for metabolic and toxin conversion in in vitro assays. Most models represent a 2D environment rather than a complex 3D structure similar to native tissue. To overcome this issue, spheroid cultures have become the gold standard in tissue engineering. Unfortunately, spheroids are limited in size due to diffusion barriers in their dense structures, limiting nutrient and oxygen supply. Recent developments in bioprinting techniques have enabled us to engineer complex 3D structures with perfusion-enabled channel systems to ensure nutritional supply within larger, densely-populated tissue models. In this study, we present a proof-of-concept for the feasibility of bioprinting a liver organoid by combining HepaRG and human stellate cells in a stereolithographic printing approach, and show basic characterization under static cultivation conditions. Using standard tissue engineering analytics, such as immunohistology and qPCR, we found higher albumin and cytochrome P 450 3A4 (CYP3A4) expression in bioprinted liver tissues compared to monolayer controls over a two-week cultivation period. In addition, the expression of tight junctions, liver-specific bile transporter multidrug resistance-associated protein 2 (MRP2), and overall metabolism (glucose, lactate, lactate dehydrogenase (LDH)) were found to be stable. Furthermore, we provide evidence for the perfusability of the organoids' intrinsic channel system. These results motivate new approaches and further development in liver tissue engineering for advanced organ-on-a-chip applications and pharmaceutical developments.
Yang, Tao; Liu, Shan; Wang, Chang-Hong; Tao, Yan-Yan; Zhou, Hua; Liu, Cheng-Hai
2015-10-10
Fuzheng Huayu recipe (FZHY) is a herbal product for the treatment of liver fibrosis approved by the Chinese State Food and Drug Administration (SFDA), but its pharmacokinetics and tissue distribution had not been investigated. In this study, the liver fibrotic model was induced with intraperitoneal injection of dimethylnitrosamine (DMN), and FZHY was given orally to the model and normal rats. The plasma pharmacokinetics and tissue distribution profiles of four major bioactive components from FZHY were analyzed in the normal and fibrotic rat groups using an ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. Results revealed that the bioavailabilities of danshensu (DSS), salvianolic acid B (SAB) and rosmarinic acid (ROS) in liver fibrotic rats increased 1.49, 3.31 and 2.37-fold, respectively, compared to normal rats. There was no obvious difference in the pharmacokinetics of amygdalin (AMY) between the normal and fibrotic rats. The tissue distribution of DSS, SAB, and AMY trended to be mostly in the kidney and lung. The distribution of DSS, SAB, and AMY in liver tissue of the model rats was significantly decreased compared to the normal rats. Significant differences in the pharmacokinetics and tissue distribution profiles of DSS, ROS, SAB and AMY were observed in rats with hepatic fibrosis after oral administration of FZHY. These results provide a meaningful basis for developing a clinical dosage regimen in the treatment of hepatic fibrosis by FZHY. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhao, Cui-Yan; Tan, Shu-Xian; Xiao, Xi-Yu; Qiu, Xian-Shuai; Pan, Jia-Qiang; Tang, Zhao-Xin
2014-09-01
Broilers in four groups were fed a basal diet supplemented with 60 mg/kg zinc oxide (60-ZnO; control), or 20, 60, or 100 mg/kg ZnO nanoparticles (20-, 60-, and 100-nano-ZnO, respectively). Compared with the controls, after 14 days, birds in the 20- and 60-nano-ZnO groups had significantly greater weight gains and better feed conversion ratios. However, the body weight of birds in the 100-nano-ZnO group was dramatically reduced after 28 days. Relative to the control group, the total antioxidant capability (T-AOC) in serum and liver tissue was significantly higher in the 20-nano-ZnO group at all time points and also significantly higher in the 60- and 100-nano-ZnO groups in serum on days 28 and 35 and in liver tissues on days 21 and 28. Compared with the controls, the activity of copper-zinc superoxide dismutase (Cu-Zn-SOD) was significantly greater in the 60- and 100-nano-ZnO groups in serum on days 28 and 35 and in liver tissues after 21 days. Catalase activity in serum samples was significantly higher in the 20- and 60-nano-ZnO groups relative to the control and 100-nano-ZnO birds, but catalase activity in liver tissue was not affected by different nano-ZnO levels. Malondialdehyde content in serum and liver tissues was significantly reduced in the 20-, 60-, and 100-nano-ZnO groups compared with that in the control group at all time points except day 42. Taken together, our data indicate that appropriate concentration of dietary ZnO nanoparticles improves growth performance and antioxidative capabilities in broilers, and 20 mg/kg nano-ZnO is the optimal concentration.
NASA Astrophysics Data System (ADS)
Brackmann, Christian; Gabrielsson, Britt; Svedberg, Fredrik; Holmäng, Agneta; Sandberg, Ann-Sofie; Enejder, Annika
2010-11-01
Hallmarks of high-fat Western diet intake, such as excessive lipid accumulation in skeletal muscle and liver as well as liver fibrosis, are investigated in tissues from mice using nonlinear microscopy, second harmonic generation (SHG), and coherent anti-Stokes Raman scattering (CARS), supported by conventional analysis methods. Two aspects are presented; intake of standard chow versus Western diet, and a comparison between two high-fat Western diets of different polyunsaturated lipid content. CARS microscopy images of intramyocellular lipid droplets in muscle tissue show an increased amount for Western diet compared to standard diet samples. Even stronger diet impact is found for liver samples, where combined CARS and SHG microscopy visualize clear differences in lipid content and collagen fiber development, the latter indicating nonalcoholic fatty liver disease (NAFLD) and steatohepatitis induced at a relatively early stage for Western diet. Characteristic for NAFLD, the fibrous tissue-containing lipids accumulate in larger structures. This is also observed in CARS images of liver samples from two Western-type diets of different polyunsaturated lipid contents. In summary, nonlinear microscopy has strong potential (further promoted by technical advances toward clinical use) for detection and characterization of steatohepatitis already in its early stages.
Brackmann, Christian; Gabrielsson, Britt; Svedberg, Fredrik; Holmaang, Agneta; Sandberg, Ann-Sofie; Enejder, Annika
2010-01-01
Hallmarks of high-fat Western diet intake, such as excessive lipid accumulation in skeletal muscle and liver as well as liver fibrosis, are investigated in tissues from mice using nonlinear microscopy, second harmonic generation (SHG), and coherent anti-Stokes Raman scattering (CARS), supported by conventional analysis methods. Two aspects are presented; intake of standard chow versus Western diet, and a comparison between two high-fat Western diets of different polyunsaturated lipid content. CARS microscopy images of intramyocellular lipid droplets in muscle tissue show an increased amount for Western diet compared to standard diet samples. Even stronger diet impact is found for liver samples, where combined CARS and SHG microscopy visualize clear differences in lipid content and collagen fiber development, the latter indicating nonalcoholic fatty liver disease (NAFLD) and steatohepatitis induced at a relatively early stage for Western diet. Characteristic for NAFLD, the fibrous tissue-containing lipids accumulate in larger structures. This is also observed in CARS images of liver samples from two Western-type diets of different polyunsaturated lipid contents. In summary, nonlinear microscopy has strong potential (further promoted by technical advances toward clinical use) for detection and characterization of steatohepatitis already in its early stages.
Abbondante, Serena; Eckel-Mahan, Kristin L; Ceglia, Nicholas J; Baldi, Pierre; Sassone-Corsi, Paolo
2016-02-05
Diagnosis and therapeutic interventions in pathological conditions rely upon clinical monitoring of key metabolites in the serum. Recent studies show that a wide range of metabolic pathways are controlled by circadian rhythms whose oscillation is affected by nutritional challenges, underscoring the importance of assessing a temporal window for clinical testing and thereby questioning the accuracy of the reading of critical pathological markers in circulation. We have been interested in studying the communication between peripheral tissues under metabolic homeostasis perturbation. Here we present a comparative circadian metabolomic analysis on serum and liver in mice under high fat diet. Our data reveal that the nutritional challenge induces a loss of serum metabolite rhythmicity compared with liver, indicating a circadian misalignment between the tissues analyzed. Importantly, our results show that the levels of serum metabolites do not reflect the circadian liver metabolic signature or the effect of nutritional challenge. This notion reveals the possibility that misleading reads of metabolites in circulation may result in misdiagnosis and improper treatments. Our findings also demonstrate a tissue-specific and time-dependent disruption of metabolic homeostasis in response to altered nutrition. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Wetmore, Barbara A; Brees, Dominique J; Singh, Reetu; Watkins, Paul B; Andersen, Melvin E; Loy, James; Thomas, Russell S
2010-06-01
Serum aminotransferases have been the clinical standard for evaluating liver injury for the past 50-60 years. These tissue enzymes lack specificity, also tracking injury to other tissues. New technologies assessing tissue-specific messenger RNA (mRNA) release into blood should provide greater specificity and permit indirect assessment of gene expression status of injured tissue. To evaluate the potential of circulating mRNAs as biomarkers of liver injury, rats were treated either with hepatotoxic doses of D-(+)-galactosamine (DGAL) or acetaminophen (APAP) or a myotoxic dose of bupivacaine HCl (BPVC). Plasma, serum, and liver samples were obtained from each rat. Serum alanine aminotransferase and aspartate aminotransferase were increased by all three compounds, whereas circulating liver-specific mRNAs were only increased by the hepatotoxicants. With APAP, liver-specific mRNAs were significantly increased in plasma at doses that had no effect on serum aminotransferases or liver histopathology. Characterization of the circulating mRNAs by sucrose density gradient centrifugation revealed that the liver-specific mRNAs were associated with both necrotic debris and microvesicles. DGAL treatment also induced a shift in the size of plasma microvesicles, consistent with active release of microvesicles following liver injury. Finally, gene expression microarray analysis of the plasma following DGAL and APAP treatment revealed chemical-specific profiles. The comparative analysis of circulating liver mRNAs with traditional serum transaminases and histopathology indicated that the circulating liver mRNAs were more specific and more sensitive biomarkers of liver injury. Further, the possibility of identifying chemical-specific transcriptional profiles from circulating mRNAs could open a range of possibilities for identifying the etiology of drug/chemical-induced liver injury.
Bashir, Adil; Gropler, Robert; Ackerman, Joseph
2015-01-01
Purpose Absolute concentrations of high-energy phosphorus (31P) metabolites in liver provide more important insight into physiologic status of liver disease compared to resonance integral ratios. A simple method for measuring absolute concentrations of 31P metabolites in human liver is described. The approach uses surface spoiling inhomogeneous magnetic field gradient to select signal from liver tissue. The technique avoids issues caused by respiratory motion, chemical shift dispersion associated with linear magnetic field gradients, and increased tissue heat deposition due to radiofrequency absorption, especially at high field strength. Methods A method to localize signal from liver was demonstrated using superficial and highly non-uniform magnetic field gradients, which eliminate signal(s) from surface tissue(s) located between the liver and RF coil. A double standard method was implemented to determine absolute 31P metabolite concentrations in vivo. 8 healthy individuals were examined in a 3 T MR scanner. Results Concentrations of metabolites measured in eight healthy individuals are: γ-adenosine triphosphate (ATP) = 2.44 ± 0.21 (mean ± sd) mmol/l of wet tissue volume, α-ATP = 3.2 ± 0.63 mmol/l, β-ATP = 2.98 ± 0.45 mmol/l, inorganic phosphates (Pi) = 1.87 ± 0.25 mmol/l, phosphodiesters (PDE) = 10.62 ± 2.20 mmol/l and phosphomonoesters (PME) = 2.12 ± 0.51 mmol/l. All are in good agreement with literature values. Conclusions The technique offers robust and fast means to localize signal from liver tissue, allows absolute metabolite concentration determination, and avoids problems associated with constant field gradient (linear field variation) localization methods. PMID:26633549
Lu, Conger; Nie, Zuoming; Chen, Jian; Zhang, Wenping; Ren, Xiaoyuan; Yu, Wei; Liu, Lili; Jiang, Caiying; Zhang, Yaozhou; Guo, Jiangfeng; Wu, Wutong; Shu, Jianhong; Lv, Zhengbing
2013-01-01
To understand the mechanisms of liver regeneration better to promote research examining liver diseases and marine biology, normal and regenerative liver tissues of Chiloscyllium plagiosum were harvested 0 h and 24 h after partial hepatectomy (PH) and used to isolate small RNAs for miRNA sequencing. In total, 91 known miRNAs and 166 putative candidate (PC) miRNAs were identified for the first time in Chiloscyllium plagiosum. Through target prediction and GO analysis, 46 of 91 known miRNAs were screened specially for cellular proliferation and growth. Differential expression levels of three miRNAs (xtr-miR-125b, fru-miR-204, and hsa-miR-142-3p_R-1) related to cellular proliferation and apoptosis were measured in normal and regenerating liver tissues at 0 h, 6 h, 12 h, and 24 h using real-time PCR. The expression of these miRNAs showed a rising trend in regenerative liver tissues at 6 h and 12 h but exhibited a downward trend compared to normal levels at 24 h. Differentially expressed genes were screened in normal and regenerating liver tissues at 24 h by DDRT-PCR, and ten sequences were identified. This study provided information regarding the function of genes related to liver regeneration, deepened the understanding of mechanisms of liver regeneration, and resulted in the addition of a significant number of novel miRNAs sequences to GenBank. PMID:24151623
NASA Astrophysics Data System (ADS)
Lin, Jian; Pan, Shiying; Zheng, Wei; Huang, Zhiwei
2013-10-01
We apply the polarization-resolved second-harmonic generation (PR-SHG) microscopy to investigate the changes of collagen typings (type I vs type III) and collagen fibril orientations of liver tissue in bile-duct-ligation (BDL) rat models. The PR-SHG results show that the second-order susceptibility tensor ratios (χ31/χ15 and χ33/χ15) of collagen fibers increase with liver fibrotic progression after BDL surgery, reflecting an increase of the type III collagen component with the severity of liver fibrosis; and the square root of the collagen type III to type I ratio linearly correlates (R2 = 0.98) with histopathological scores. Furthermore, the collagen fibril orientations become more random with liver fibrosis transformation as compared to normal liver tissue. This work demonstrates that PR-SHG microscopy has the potential for label-free diagnosis and characterization of liver fibrosis based on quantitative analysis of collagen typings and fibril orientations.
Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity.
Baudoin, Régis; Corlu, Anne; Griscom, Laurent; Legallais, Cécile; Leclerc, Eric
2007-06-01
Current developments in the technological fields of liver tissue engineering, bioengineering, biomechanics, microfabrication and microfluidics have lead to highly complex and pertinent new tools called "cell biochips" for in vitro toxicology. The purpose of "cell biochips" is to mimic organ tissues in vitro in order to partially reduce the amount of in vivo testing. These "cell biochips" consist of microchambers containing engineered tissue and living cell cultures interconnected by a microfluidic network, which allows the control of microfluidic flows for dynamic cultures, by continuous feeding of nutrients to cultured cells and waste removal. Cell biochips also allow the control of physiological contact times of diluted molecules with the tissues and cells, for rapid testing of sample preparations or specific addressing. Cell biochips can be situated between in vitro and in vivo testing. These types of systems can enhance functionality of cells by mimicking the tissue architecture complexities when compared to in vitro analysis but at the same time present a more rapid and simple process when compared to in vivo testing procedures. In this paper, we first introduce the concepts of microfluidic and biochip systems based on recent progress in microfabrication techniques used to mimic liver tissue in vitro. This includes progress and understanding in biomaterials science (cell culture substrate), biomechanics (dynamic cultures conditions) and biology (tissue engineering). The development of new "cell biochips" for chronic toxicology analysis of engineered tissues can be achieved through the combination of these research domains. Combining these advanced research domains, we then present "cell biochips" that allow liver chronic toxicity analysis in vitro on engineered tissues. An extension of the "cell biochip" idea has also allowed "organ interactions on chip", which can be considered as a first step towards the replacement of animal testing using a combined liver/lung organ model.
Behavior of Tip-Steerable Needles in ex vivo and in vivo Tissue
Majewicz, Ann; Marra, Steven P.; van Vledder, Mark G.; Lin, MingDe; Choti, Michael A.; Song, Danny Y.; Okamura, Allison M.
2012-01-01
Robotic needle steering is a promising technique to improve the effectiveness of needle-based clinical procedures, such as biopsies and ablation, by computer-controlled, curved insertions of needles within solid organs. In this paper, we explore the capabilities, challenges, and clinical relevance of asymmetric-tip needle steering though experiments in ex vivo and in vivo tissue. We evaluate the repeatability of needle insertion in inhomogeneous biological tissue and compare ex vivo and in vivo needle curvature and insertion forces. Steerable needles curved more in kidney than in liver and prostate, likely due to differences in tissue properties. Pre-bent needles produced higher insertion forces in liver and more curvature in vivo than ex vivo. When compared to straight stainless steel needles, steerable needles did not cause a measurable increase in tissue damage and did not exert more force during insertion. The minimum radius of curvature achieved by pre-bent needles was 5.23 cm in ex vivo tissue, and 10.4 cm in in vivo tissue. The curvatures achieved by bevel tip needles were negligible for in vivo tissue. The minimum radius of curvature for bevel tip needles in ex vivo tissue was 16.4 cm; however, about half of the bevel tip needles had negligible curvatures. We also demonstrate a potential clinical application of needle steering by targeting and ablating overlapping regions of cadaveric canine liver. PMID:22711767
Webb, M A H; Feist, G W; Fitzpatrick, M S; Foster, E P; Schreck, C B; Plumlee, M; Wong, C; Gundersen, D T
2006-04-01
This study determined the partitioning of total mercury in liver, gonad, and cheek muscle of white sturgeon (Acipenser transmonatus) in the lower Columbia River. The relationship between tissue mercury concentrations and various physiologic parameters was assessed. White sturgeon were captured in commercial fisheries in the estuary and Bonneville, The Dalles, and John Day Reservoirs. Condition factor (CF), relative weight (Wr), and gonadosomatic index (GSI) were determined for each fish (n = 57). Gonadal tissue was examined histologically to determine sex and stage of maturity. Liver (n = 49), gonad (n = 49), and cheek muscle (n = 57) were analyzed for total mercury using cold-vapor atomic fluorescence spectrophotometry. Tissue protein concentrations were measured by ultraviolet-visible spectroscopy. Plasma was analyzed for testosterone (T), 11-ketotestosterone (KT), and 17ss-estradiol (E2) using radioimmunoassay. Mean tissue mercury concentrations were higher in muscle compared with liver and gonad at all sampling locations, except Bonneville Reservoir where mean liver mercury content was the highest tissue concentration observed in the study. Significant negative correlations between plasma androgens (T and KT) and muscle mercury content and plasma E2 and liver mercury content were found. A significant positive linear relationship between white sturgeon age and liver mercury concentrations was evident. Significant negative correlations between CF and relative weight and gonad and liver mercury content were found. In addition, immature male sturgeon with increased gonad mercury content had decreased GSIs. These results suggest that mercury, in the form of methylmercury, may have an effect on the reproductive potential of white sturgeon.
Eosin fluorescence: A diagnostic tool for quantification of liver injury.
Ali, Hamid; Ali, Safdar; Mazhar, Maryam; Ali, Amjad; Jahan, Azra; Ali, Abid
2017-09-01
Hepatitis is one of the most common life threatening diseases. The diagnosis is mainly based on biochemical analysis such as liver function test. However, histopathological evaluation of liver serves far better for more accurate final diagnosis. The goal of our study was to evaluate the eosin fluorescence pattern in CCl 4 -induced liver injury model compared with normal and different treatment groups. For this purpose, liver tissues were stained with H/E and examined under bright field microscope but the fluorescence microscopy of H/E stained slides provided an interesting fluorescence pattern and was quite helpful in identifying different structures. Interesting fluorescence patterns were obtained with FITC, Texas Red and Dual channel filter cubes that were quite helpful in identifying different morphological features of the liver. During the course of hepatic injury, liver cells undergo necrosis, apoptosis and overall cellular microenvironment is altered due to the modification of proteins and other intracellular molecules. Intensified eosin fluorescence was observed around the central vein of injured liver compared to normal indicating enhanced binding of eosin to the more exposed amino acid residues. To conclude, eosin fluorescence pattern varies with the health status of a tissue and can be used further for the diagnosis and quantification of severity of various liver diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Hematoporphyrin-Augmented Phototherapy: Dosimetric Studies In Experimental Liver Cancer In The Rat
NASA Astrophysics Data System (ADS)
Pimstone, N. R.; Horner, I. J.; Shaylor-Billings, J.; Gandhi, S. N.
1982-12-01
Liver cancer is an aggressively malignant tumor refractory to known therapy. This study investigated the potential of hematoporphyrin (HP) and light energy to selectively photo-necrose experimental hepatoma in rats. Hepatoma cells (106) when inoculated directly into the liver of recipient Wistar rats developed into a rapidly growing neoplasm which simulated human liver cancer. Seventy-two hours following intravenous HP (5-25 mg/kg), the tumor exhibited patchy porphyrin fluorescence on gross examination and on U.V. microscopy. Fluorescence was maximal in areas furthest from blood vessels, and was within cells which morphologically appeared least viable. Liver tissue did not fluoresce but contained HP concentrations 60% of that in fluorescent tumor and 3 times greater than that in non-fluorescent viable tumor. Tumor necrosis produced by light (Tungsten, 600-640 nm, 200 mW/ sq cm, 240 joules) and HP appeared macroscopically complete to a depth of 1.5 cm. Histologically, in necrotic areas, there were islands of surviving tumor enveloping blood vessels. Three weeks after irradiation, tumor volume averaged 2 mm3 compared to 250 mm3 in control operated animals where HP containing neoplasm was exposed to diffuse room light only. Neighboring liver tissue also was necrosed reflecting HP uptake. As the liver behaved in vivo as a tumor, this provided an ideal solid tissue model to study the biology of the photodynamic action of porphyrins. The clearly visible line of demarcation between photonecrosed and living tissue allowed measurement of the depth of necrosis with an accuracy of a fraction of a millimeter. We observed the following: 1) blue light (Xenon, bandwidth 60 nm, 30 mW/sq cm, 360 joules) produced 1/10 depth of necrosis when compared to red light of the same bandwidth and energy. This may relate in part to demonstrated preferential absorption of shorter wavelength (<590 nm) light energy by liver tissue pigments and hemoglobin. 2) The depth of necrosis related to the log of incident light energy (joules/sq cm). 3) The photodynamic effect of red coherent light (545-625 nm) from a tunable dye pulse laser system was no different from that of red light from a continuous noncoherent (Tungsten) source. 4) There was a logarithmic relationship between the dose of HP administered and the depth of liver necrosis. 5) If one interposed a photoopaque shield between the incident laser light and the liver, a considerable back scattering of light caused tissue necrosis behind the shield. However, when the diameter of the shield was greater than 1.3 mm, there always was a surviving island of tissue which escaped destruction. 6) The depth of necrosis in liver (mms) was significantly less than adjacent non-pigment tumor (cms) which suggests that the optical density of the tissue is a major factor in determining effective light penetration. We conclude that measurement of tissue porphyrin, and optical density with reference to the liver, will allow precise calculation potentially of major clinical importance in the treatment of skin and mucosal cancers.
Hurt, Ryan T; Zakaria, El Rasheid; Matheson, Paul J; Cobb, Mahoney E; Parker, John R; Garrison, R Neal
2009-04-01
Crystalloid fluid resuscitation after hemorrhagic shock (HS) that restores/maintains central hemodynamics often culminates in multi-system organ failure and death due to persistent/progressive splanchnic hypoperfusion and end-organ damage. Adjunctive direct peritoneal resuscitation (DPR) using peritoneal dialysis solution reverses HS-induced splanchnic hypoperfusion and improves survival. We examined HS-mediated hepatic perfusion (galactose clearance), tissue injury (histopathology), and dysfunction (liver enzymes). Anesthetized rats were randomly assigned (n = 8/group): (1) sham (no HS); (2) HS (40% mean arterial pressure for 60 min) plus conventional i.v. fluid resuscitation (CR; shed blood + 2 volumes saline); (3) HS + CR + 30 mL intraperitoneal (IP) DPR; or (4) HS + CR + 30 mL IP saline. Hemodynamics and hepatic blood flow were measured for 2 h after CR completion. In duplicate animals, liver and splanchnic tissues were harvested for histopathology (blinded, graded), hepatocellular function (liver enzymes), and tissue edema (wet-dry ratio). Group 2 decreased liver blood flow, caused liver injuries (focal to submassive necrosis, zones 2 and 3) and tissue edema, and elevated liver enzymes (alanine aminotransferase (ALT), 149 +/- 28 microg/mL and aspartate aminotransferase (AST), 234 +/- 24 microg/mL; p < 0.05) compared to group 1 (73 +/- 9 and 119 +/- 10 microg/mL, respectively). Minimal/no injuries were observed in group 3; enzymes were normalized (ALT 89 +/- 9 microg/mL and AST 150 +/- 17 microg/mL), and tissue edema was similar to sham. CR from HS restored and maintained central hemodynamics but did not restore or maintain liver perfusion and was associated with significant hepatocellular injury and dysfunction. DPR added to conventional resuscitation (blood and crystalloid) restored and maintained liver perfusion, prevented hepatocellular injury and edema, and preserved liver function.
The role of ST2 and ST2 genetic variants in schistosomiasis.
Long, Xin; Daya, Michelle; Zhao, Jianping; Rafaels, Nicholas; Liang, Huifang; Potee, Joseph; Campbell, Monica; Zhang, Bixiang; Araujo, Maria Ilma; Oliveira, Ricardo R; Mathias, Rasika A; Gao, Li; Ruczinski, Ingo; Georas, Steve N; Vercelli, Donata; Beaty, Terri H; Barnes, Kathleen C; Chen, Xiaoping; Chen, Qian
2017-11-01
Chronic schistosomiasis and its severe complication, periportal fibrosis, are characterized by a predominant T h 2 response. To date, specific single nucleotide polymorphisms in ST2 have been some of the most consistently associated genetic variants for asthma. We investigated the role of ST2 (a receptor for the T h 2 cytokine IL-33) in chronic and late-stage schistosomiasis caused by Schistosoma japonicum and the potential effect of ST2 genetic variants on stage of disease and ST2 expression. We recruited 947 adult participants (339 with end-stage schistosomiasis and liver cirrhosis, 307 with chronic infections without liver fibrosis, and 301 health controls) from a S japonicum-endemic area (Hubei, China). Six ST2 single nucleotide polymorphisms were genotyped. Serum soluble ST2 (sST2) was measured by ELISA, and ST2 expression in normal liver tissues, Hepatitis B virus-induced fibrotic liver tissues, and S japonicum-induced fibrotic liver tissues was measured by immunohistochemistry. We found sST2 levels were significantly higher in the end-stage group (36.04 [95% CI, 33.85-38.37]) compared with chronic cases and controls (22.7 [95% CI, 22.0-23.4], P < 1E-10). In addition, S japonicum-induced fibrotic liver tissues showed increased ST2 staining compared with normal liver tissues (P = .0001). Markers rs12712135, rs1420101, and rs6543119 were strongly associated with sST2 levels (P = 2E-10, 5E-05, and 6E-05, respectively), and these results were replicated in an independent cohort from Brazil living in a S mansoni endemic region. We demonstrate for the first time that end-stage schistosomiasis is associated with elevated sST2 levels and show that ST2 genetic variants are associated with sST2 levels in patients with schistosomiasis. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Comparison of pinniped and cetacean prey tissue lipids with lipids of their elasmobranch predator.
Davidson, Bruce; Cliff, Geremy
2014-01-01
The great white shark is known to include pinnipeds and cetaceans in its diet. Both groups of marine mammals deposit thick blubber layers around their bodies. Elasmobranchs do not produce adipose tissue, but rather store lipid in their livers, thus a great white predating on a marine mammal will deposit the lipids in its liver until required. Samples from great white liver and muscle, Cape fur seal, Indian Ocean bottlenose dolphin and common dolphin liver, muscle and blubber were analyzed for their lipid and fatty acid profiles. The great white liver and marine mammal blubber samples showed a considerable degree of homogeneity, but there were significant differences when comparing between the muscle samples. Blubber from all three marine mammal species was calculated to provide greater than 95% of lipid intake for the great white shark from the tissues analyzed. Sampling of prey blubber may give a good indication of the lipids provided to the shark predator.
Mapunda, Edgar C; Othman, Othman C; Akwilapo, Leonard D; Bouwman, Hindrik; Mwevura, Haji
2017-09-15
Concentrations of metallic elements in kidney, liver and lung tissues of Indo-Pacific bottlenose dolphins Tursiops aduncus from coastal waters of Zanzibar were determined using inductively coupled plasma - optical emission spectroscopy. Cadmium, chromium, copper, and zinc were quantifiable in all tissues at concentration ranges of 0.10-150, 0.08-3.2, 1.1-88 and 14-210μg/g dry mass, respectively. Copper and zinc was significantly higher in liver, and females had significantly higher Cd in liver, and chromium in lung. Generally, T. aduncus dolphins from coastal waters around Zanzibar carry low concentrations of metals compared with dolphins from other areas. Cadmium increased significantly with age in kidney and lung. Copper decreased significantly with age in liver, probably due to foetal metallothionein. This study supplied baseline data against which future trends in marine mammals in the Indian Ocean, the world's third largest, can be assessed. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brückner, Sandra, E-mail: sandra.brueckner@medizin.uni-leipzig.de; Tautenhahn, Hans-Michael, E-mail: hans-michael.tautenhahn@medizin.uni-leipzig.de; TRM, Translational Centre for Regenerative Medicine, Philipp-Rosenthal-Str. 55, Leipzig D-04103
Study background: Extended liver resection is the only curative treatment option of liver cancer. Yet, the residual liver may not accomplish the high metabolic and regenerative capacity needed, which frequently leads to acute liver failure. Because of their anti-inflammatory and -apoptotic as well as pro-proliferative features, mesenchymal stem cells differentiated into hepatocyte-like cells might provide functional and regenerative compensation. Clinical translation of basic research requires pre-clinical approval in large animals. Therefore, we characterized porcine mesenchymal stem cells (MSC) from adipose tissue and bone marrow and their hepatocyte differentiation potential for future assessment of functional liver support after surgical intervention inmore » the pig model. Methods: Mesenchymal surface antigens and multi-lineage differentiation potential of porcine MSC isolated by collagenase digestion either from bone marrow or adipose tissue (subcutaneous/visceral) were assessed by flow cytometry. Morphology and functional properties (urea-, glycogen synthesis and cytochrome P450 activity) were determined during culture under differentiation conditions and compared with primary porcine hepatocytes. Results: MSC from porcine adipose tissue and from bone marrow express the typical mesenchymal markers CD44, CD29, CD90 and CD105 but not haematopoietic markers. MSC from both sources displayed differentiation into the osteogenic as well as adipogenic lineage. After hepatocyte differentiation, expression of CD105 decreased significantly and cells adopted the typical polygonal morphology of hepatocytes. Glycogen storage was comparable in adipose tissue- and bone marrow-derived cells. Urea synthesis was about 35% lower in visceral than in subcutaneous adipose tissue-derived MSC. Cytochrome P450 activity increased significantly during differentiation and was twice as high in hepatocyte-like cells generated from bone marrow as from adipose tissue. Conclusion: The hepatocyte differentiation of porcine adipose tissue-derived MSC was shown for the first time yielding hepatocyte-like cells with specific functions similar in bone marrow and subcutaneous adipose tissue-derived MSC. That makes them good pre-clinical candidates for supportive approaches after liver resection in the pig. - Highlights: • First time to show hepatocytic differentiation of porcine adipose tissue-derived MSC. • Hepatocytic-differentiated MSC display metabolic qualities of primary hepatocytes. • Metabolic potency varies between differentiated MSC from different tissues. • MSC are good candidates for pre-clinical evaluation of stem cell-based therapies.« less
Harouaka, Djamila; Engle, Ronald E; Wollenberg, Kurt; Diaz, Giacomo; Tice, Ashley B; Zamboni, Fausto; Govindarajan, Sugantha; Alter, Harvey; Kleiner, David E; Farci, Patrizia
2016-02-02
Analysis of hepatitis C virus (HCV) replication and quasispecies distribution within the tumor of patients with HCV-associated hepatocellular carcinoma (HCC) can provide insight into the role of HCV in hepatocarcinogenesis and, conversely, the effect of HCC on the HCV lifecycle. In a comprehensive study of serum and multiple liver specimens from patients with HCC who underwent liver transplantation, we found a sharp and significant decrease in HCV RNA in the tumor compared with surrounding nontumorous tissues, but found no differences in multiple areas of control non-HCC cirrhotic livers. Diminished HCV replication was not associated with changes in miR-122 expression. HCV genetic diversity was significantly higher in livers containing HCC compared with control non-HCC cirrhotic livers. Tracking of individual variants demonstrated changes in the viral population between tumorous and nontumorous areas, the extent of which correlated with the decline in HCV RNA, suggesting HCV compartmentalization within the tumor. In contrast, compartmentalization was not observed between nontumorous areas and serum, or in controls between different areas of the cirrhotic liver or between liver and serum. Our findings indicate that HCV replication within the tumor is restricted and compartmentalized, suggesting segregation of specific viral variants in malignant hepatocytes.
MCNP simulation of the dose distribution in liver cancer treatment for BNC therapy
NASA Astrophysics Data System (ADS)
Krstic, Dragana; Jovanovic, Zoran; Markovic, Vladimir; Nikezic, Dragoslav; Urosevic, Vlade
2014-10-01
The Boron Neutron Capture Therapy ( BNCT) is based on selective uptake of boron in tumour tissue compared to the surrounding normal tissue. Infusion of compounds with boron is followed by irradiation with neutrons. Neutron capture on 10B, which gives rise to an alpha particle and recoiled 7Li ion, enables the therapeutic dose to be delivered to tumour tissue while healthy tissue can be spared. Here, therapeutic abilities of BNCT were studied for possible treatment of liver cancer using thermal and epithermal neutron beam. For neutron transport MCNP software was used and doses in organs of interest in ORNL phantom were evaluated. Phantom organs were filled with voxels in order to obtain depth-dose distributions in them. The result suggests that BNCT using an epithermal neutron beam could be applied for liver cancer treatment.
Voican, Cosmin S.; Anty, Rodolphe; Saint-Paul, Marie-Christine; Rosenthal-Allieri, Maria-Alessandra; Agostini, Hélène; Njike, Micheline; Barri-Ova, Nadége; Naveau, Sylvie; Le Marchand-Brustel, Yannick; Veillon, Pascal; Calès, Paul; Perlemuter, Gabriel; Tran, Albert; Gual, Philippe
2012-01-01
Background Osteopontin (OPN) plays an important role in the progression of chronic liver diseases. We aimed to quantify the liver, adipose tissue and serum levels of OPN in heavy alcohol drinkers and to compare them with the histological severity of hepatic inflammation and fibrosis. Methodology/Principal Findings OPN was evaluated in the serum of a retrospective and prospective group of 109 and 95 heavy alcohol drinkers, respectively, in the liver of 34 patients from the retrospective group, and in the liver and adipose tissue from an additional group of 38 heavy alcohol drinkers. Serum levels of OPN increased slightly with hepatic inflammation and progressively with the severity of hepatic fibrosis. Hepatic OPN expression correlated with hepatic inflammation, fibrosis, TGFβ expression, neutrophils accumulation and with the serum OPN level. Interestingly, adipose tissue OPN expression also correlated with hepatic fibrosis even after 7 days of alcohol abstinence. The elevated serum OPN level was an independent risk factor in estimating significant (F≥2) fibrosis in a model combining alkaline phosphatase, albumin, hemoglobin, OPN and FibroMeter® levels. OPN had an area under the receiving operator curve that estimated significant fibrosis of 0.89 and 0.88 in the retrospective and prospective groups, respectively. OPN, Hyaluronate (AUROC: 0.88), total Cytokeratin 18 (AUROC: 0.83) and FibroMeter® (AUROC: 0.90) estimated significance to the same extent in the retrospective group. Finally, the serum OPN levels also correlated with hepatic fibrosis and estimated significant (F≥2) fibrosis in 86 patients with chronic hepatitis C, which suggested that its elevated level could be a general response to chronic liver injury. Conclusion/Significance OPN increased in the liver, adipose tissue and serum with liver fibrosis in alcoholic patients. Further, OPN is a new relevant biomarker for significant liver fibrosis. OPN could thus be an important actor in the pathogenesis of this chronic liver disease. PMID:22530059
Belviranlı, Muaz; Gökbel, Hakkı; Okudan, Nilsel; Büyükbaş, Sadık
2013-05-01
The objective of the present study was to investigate the effects of grape seed extract (GSE) supplementation on oxidative stress and antioxidant defense markers in liver tissue of acutely and chronically exercised rats. Rats were randomly assigned to six groups: Control (C), Control Chronic Exercise (CE), Control Acute Exercise (AE), GSE-supplemented Control (GC), GSE-supplemented Chronic Exercise(GCE) and GSE-supplemented Acute Exercise (GAE). Rats in the chronic exercise groups were subjected to a six-week treadmill running and in the acute exercise groups performed an exhaustive running. Rats in the GSE supplemented groups received GSE (100 mg.kg(-1) .day(-1) ) in drinking water for 6 weeks. Liver tissues of the rats were taken for the analysis of malondialdehyde (MDA), nitric oxide (NO) levels and total antioxidant activity (AOA) and xanthine oxidase (XO) activities. MDA levels decreased with GSE supplementation in control groups but increased in acute and chronic exercise groups compared to their non-supplemented control. NO levels increased with GSE supplementation. XO activities were higher in AE group compared to the CE group. AOA decreased with GSE supplementation. In conclusion, while acute exercise triggers oxidative stress, chronic exercise has protective role against oxidative stress. GSE has a limited antioxidant effect on exercise-induced oxidative stress in liver tissue.
MR-guided noninvasive thermal coagulation of in-vivo liver tissue using ultrasonic phased array
NASA Astrophysics Data System (ADS)
Daum, Douglas R.; Smith, Nadine; McDannold, Nathan; Hynynen, Kullervo H.
1999-05-01
Magnetic resonance (MR) imaging was used to guide and monitor the thermal tissue coagulation of in vivo porcine tissue using a 256 element ultrasonic phased array. The array could coagulate tissue volumes greater than 2 cm3 in liver and 0.5 cm3 in kidney using a single 20 second sonication. This sonication used multiple focus fields which were temporally cycled to heat large tissue volumes simultaneously. Estimates of the coagulated tissue using a thermal dose threshold compare well with T2-weighted images of post sonication lesions. The overlapping large focal volumes could aid in the treatment of large tumor volumes which require multiple overlapping sonications. The ability of MR to detect the presence and undesirable thermal increases at acoustic obstacle such as cartilaginous and bony ribs is demonstrated. This could have a significant impact on the ability to monitor thermal treatments of the liver and other organs which are acoustically blocked.
NASA Astrophysics Data System (ADS)
Nenadic, Ivan Z.; Qiang, Bo; Urban, Matthew W.; Zhao, Heng; Sanchez, William; Greenleaf, James F.; Chen, Shigao
2017-01-01
Ultrasound and magnetic resonance elastography techniques are used to assess mechanical properties of soft tissues. Tissue stiffness is related to various pathologies such as fibrosis, loss of compliance, and cancer. One way to perform elastography is measuring shear wave velocity of propagating waves in tissue induced by intrinsic motion or an external source of vibration, and relating the shear wave velocity to tissue elasticity. All tissues are inherently viscoelastic and ignoring viscosity biases the velocity-based estimates of elasticity and ignores a potentially important parameter of tissue health. We present attenuation measuring ultrasound shearwave elastography (AMUSE), a technique that independently measures both shear wave velocity and attenuation in tissue and therefore allows characterization of viscoelasticity without using a rheological model. The theoretical basis for AMUSE is first derived and validated in finite element simulations. AMUSE is validated against the traditional methods for assessing shear wave velocity (phase gradient) and attenuation (amplitude decay) in tissue mimicking phantoms and excised tissue. The results agreed within one standard deviation. AMUSE was used to measure shear wave velocity and attenuation in 15 transplanted livers in patients with potential acute rejection, and the results were compared with the biopsy findings in a preliminary study. The comparison showed excellent agreement and suggests that AMUSE can be used to separate transplanted livers with acute rejection from livers with no rejection.
Methods for Improving the Curvature of Steerable Needles in Biological Tissue
Adebar, Troy K.; Greer, Joseph D.; Laeseke, Paul F.; Hwang, Gloria L.; Okamura, Allison M.
2016-01-01
Robotic needle steering systems have the potential to improve percutaneous interventions such as radiofrequency ablation of liver tumors, but steering techniques described to date have not achieved sufficiently small radius of curvature in biological tissue to be relevant to this application. In this work, the impact of tip geometry on steerable needle curvature is examined. Finite-element simulations and experiments with bent-tip needles in ex vivo liver tissue demonstrate that selection of tip length and angle can greatly improve curvature, with radius of curvature below 5 cm in liver tissue possible through judicious selection of these parameters. Motivated by the results of this analysis, a new articulated-tip steerable needle is described, in which a distal section is actively switched by a robotic system between a straight tip (resulting in a straight path) and a bent tip (resulting in a curved path). This approach allows the tip length and angle to be increased, while the straight configuration allows the needle tip to still pass through an introducer sheath and rotate inside the body. Validation testing in liver tissue shows that the new articulated-tip steerable needle achieves smaller radius of curvature compared to bent-tip needles described in previous work. Steerable needles with optimized tip parameters, which can generate tight curves in liver tissue, increase the clinical relevance of needle steering to percutaneous interventions. PMID:26441438
MORPHOLOGICAL CHANGES IN MICE LIVER IN DYNAMICS OF CONCANAVALIN A - INDUCED HEPATITIS.
Pavlovych, S I; Makogon, N V; Grushka, N G; Bryzgina, T M; Janchiy, R I
The injure of the liver tissue and its infiltration by cells of the innate and adaptive immunity in dynamics of Con A-induced hepatitis in mice was studied. The semiquantitative method of damage rate of microcirculation channel and liver parenchyma was used, leukocyte liver infiltration and cellular composition of infiltrates were investigated also. Primary liver reaction to the Con-A was the inflammatory changes in the vascular bed, followed by disturbances in the parenchyma.The sufficient increasing of leukocyte migration to the liver was revealed. Besides, the neutrophile infiltration was increased first with a maximum at 6 hours of the experiment (63,9 ±4,6%, p<0,001 to the control level) ,and then the lymphocyte infiltration was increased with creation of manycellular lymphocytemacrophage infiltrates (62% at 48 hours comparing to 6 hours of experiment) and sufficient quantity of plasma cells population (4,9%, p<0,05 comparing to 6 hours of experiment). The obtained data gives the base to suggest that the elevated infiltration of liver tissue by leukocytes, particularly by lymphocytes and monocytes, together with necrotic death increasing creats the conditions for effective intracellular interaction and immune response to autoantigenes. This can be the essential pathogenic mechanism of development of autoimmune liver deseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Refaat, Tamer; West, Derek; El Achy, Samar
This work compares intravenous (IV) versus fluoroscopy-guided transarterial intra-catheter (IC) delivery of iron oxide core-titanium dioxide shell nanoparticles (NPs) in vivo in VX2 model of liver cancer in rabbits. NPs coated with glucose and decorated with a peptide sequence from cortactin were administered to animals with developed VX2 liver cancer. Two hours after NPs delivery tumors, normal liver, kidney, lung and spleen tissues were harvested and used for a series on histological and elemental analysis tests. Quantification of NPs in tissues was done both by bulk inductively coupled plasma mass spectrometry (ICP-MS) analysis and by hard X-ray fluorescence microscopy. Bothmore » IV and IC NPs injection are feasible modalities for delivering NPs to VX2 liver tumors with comparable tumor accumulation. It is possible that this is an outcome of the fact that VX2 tumors are highly vascularized and hemorrhagic, and therefore enhanced permeability and retention (EPR) plays the most significant role in accumulation of nanoparticles in tumor tissue. It is, however, interesting to note that IV delivery led to increased sequestration of NPs by spleen and normal liver tissue, while IC delivery lead to more NP positive Kupffer cells. Furthermore, this difference is most likely a direct outcome of blood flow dynamics. Armed with this knowledge about nanoparticle delivery, we plan to test them as radiosensitizers in the future.« less
Refaat, Tamer; West, Derek; El Achy, Samar; ...
2016-08-03
This work compares intravenous (IV) versus fluoroscopy-guided transarterial intra-catheter (IC) delivery of iron oxide core-titanium dioxide shell nanoparticles (NPs) in vivo in VX2 model of liver cancer in rabbits. NPs coated with glucose and decorated with a peptide sequence from cortactin were administered to animals with developed VX2 liver cancer. Two hours after NPs delivery tumors, normal liver, kidney, lung and spleen tissues were harvested and used for a series on histological and elemental analysis tests. Quantification of NPs in tissues was done both by bulk inductively coupled plasma mass spectrometry (ICP-MS) analysis and by hard X-ray fluorescence microscopy. Bothmore » IV and IC NPs injection are feasible modalities for delivering NPs to VX2 liver tumors with comparable tumor accumulation. It is possible that this is an outcome of the fact that VX2 tumors are highly vascularized and hemorrhagic, and therefore enhanced permeability and retention (EPR) plays the most significant role in accumulation of nanoparticles in tumor tissue. It is, however, interesting to note that IV delivery led to increased sequestration of NPs by spleen and normal liver tissue, while IC delivery lead to more NP positive Kupffer cells. Furthermore, this difference is most likely a direct outcome of blood flow dynamics. Armed with this knowledge about nanoparticle delivery, we plan to test them as radiosensitizers in the future.« less
Zhu, Mingyue; Li, Wei; Lu, Yan; Dong, Xu; Lin, Bo; Chen, Yi; Zhang, Xueer; Guo, Junli; Li, Mengsen
2017-03-15
Hepatitis B virus (HBV)-X protein (HBx) plays critical role in inducing the malignant transformation of liver cells. Alpha fetoprotein (AFP) expression is closely related to hepatocarcinogenesis. We report that Oct4, Klf4, Sox2 and c-myc expression positively associated with AFP(+)/HBV(+) hepatocellular carcinoma(HCC) tissues, and the expression of the stemness markers CD44, CD133 and EpCAM was significantly higher in AFP(+)/HBV(+) HCC tissues compared to normal liver tissues or AFP (-)/HBV(-) HCC tissues. AFP expression turned on prior to expression of Oct4, Klf4, Sox2 and c-myc, and the stemness markers CD44, CD133 and EpCAM in the normal human liver L-02 cell line or CHL cell lines upon transfection with MCV-HBx vectors. Stem-like cells generated more tumour colonies compared to primary cells, and xenografts induced tumourigenesis in nude mice. Expression of reprogramming-related proteins was significantly enhanced in HLE cells while transfected with pcDNA3.1-afp vectors. The specific PI3K inhibitor Ly294002 inhibited the effects of pcDNA3.1-afp vectors. AFP-siRNA vectors were able to inhibit tumour colony formation and reprogramming-related gene expression. Altogether, HBx stimulates AFP expression to induce natural reprogramming of liver cells, and AFP plays a critical role in promoting the initiation of HCC progenitor/stem cells. AFP may be a potential novel biotarget for combating HBV-induced hepatocarcinogenesis. © 2016 UICC.
Zhao, Jingxin; Zhai, Fei; Cheng, Jun; He, Qiong; Luo, Jianwen; Yang, Xueping; Shao, Jinhua; Xing, Huichun
2017-01-01
Transient elastography quantifies the propagation of a mechanically generated shear wave within a soft tissue, which can be used to characterize the elasticity and viscosity parameters of the tissue. The aim of our study was to combine numerical simulation and clinical assessment to define a viscoelastic index of liver tissue to improve the quality of early diagnosis of liver fibrosis. This is clinically relevant, as early fibrosis is reversible. We developed an idealized two-dimensional axisymmetric finite element model of the liver to evaluate the effects of different viscoelastic values on the propagation characteristics of the shear wave. The diagnostic value of the identified viscoelastic index was verified against the clinical data of 99 patients who had undergone biopsy and routine blood tests for staging of liver disease resulting from chronic hepatitis B infection. Liver stiffness measurement (LSM) and the shear wave attenuation fitting coefficient (AFC) were calculated from the ultrasound data obtained by performing transient elastography. Receiver operating curve analysis was used to evaluate the reliability and diagnostic accuracy of LSM and AFC. Compared to LSM, the AFC provided a higher diagnostic accuracy to differentiate early stages of liver fibrosis, namely F1 and F2 stages, with an overall specificity of 81.48%, sensitivity of 83.33% and diagnostic accuracy of 81.82%. AFC was influenced by the level of LSM, ALT. However, there are no correlation between AFC and Age, BMI, TBIL or DBIL. Quantification of the viscoelasticity of liver tissue provides reliable measurement to identify and differentiate early stages of liver fibrosis.
Cheng, Jun; He, Qiong; Luo, Jianwen; Yang, Xueping; Shao, Jinhua; Xing, Huichun
2017-01-01
Transient elastography quantifies the propagation of a mechanically generated shear wave within a soft tissue, which can be used to characterize the elasticity and viscosity parameters of the tissue. The aim of our study was to combine numerical simulation and clinical assessment to define a viscoelastic index of liver tissue to improve the quality of early diagnosis of liver fibrosis. This is clinically relevant, as early fibrosis is reversible. We developed an idealized two-dimensional axisymmetric finite element model of the liver to evaluate the effects of different viscoelastic values on the propagation characteristics of the shear wave. The diagnostic value of the identified viscoelastic index was verified against the clinical data of 99 patients who had undergone biopsy and routine blood tests for staging of liver disease resulting from chronic hepatitis B infection. Liver stiffness measurement (LSM) and the shear wave attenuation fitting coefficient (AFC) were calculated from the ultrasound data obtained by performing transient elastography. Receiver operating curve analysis was used to evaluate the reliability and diagnostic accuracy of LSM and AFC. Compared to LSM, the AFC provided a higher diagnostic accuracy to differentiate early stages of liver fibrosis, namely F1 and F2 stages, with an overall specificity of 81.48%, sensitivity of 83.33% and diagnostic accuracy of 81.82%. AFC was influenced by the level of LSM, ALT. However, there are no correlation between AFC and Age, BMI, TBIL or DBIL. Quantification of the viscoelasticity of liver tissue provides reliable measurement to identify and differentiate early stages of liver fibrosis. PMID:28107385
Acoustic characterization of Thiel liver for magnetic resonance-guided focused ultrasound treatment.
Karakitsios, Ioannis; Joy, Joyce; Mihcin, Senay; Melzer, Andreas
2017-04-01
The purpose of this work was to measure the essential acoustic parameters, i.e., acoustic impedance, reflection coefficient, attenuation coefficient, of Thiel embalmed human and animal liver. The Thiel embalmed tissue can be a promising, pre-clinical model to study liver treatment with Magnetic Resonance-guided Focused Ultrasound (MRgFUS). Using a single-element transducer and the contact pulse-echo method, the acoustic parameters, i.e., acoustic impedance, reflection coefficient and attenuation coefficient of Thiel embalmed human and animal liver were measured. The Thiel embalmed livers had higher impedance, similar reflection and lower attenuation compared to the fresh tissue. Embalming liver with Thiel fluid affects its acoustic properties. During MRgFUS sonication of a Thiel organ, more focused ultrasound (FUS) will be backscattered by the organ, and higher acoustic powers are required to reach coagulation levels (temperatures >56 °C).
Medhat, Amina; Mansour, Somaya; El-Sonbaty, Sawsan; Kandil, Eman; Mahmoud, Mustafa
2017-07-01
This study aimed to evaluate the antitumor activity of platinum nanoparticles compared with cis-platin both in vitro and in vivo in the treatment of hepatocellular carcinoma induced in rats. The treatment efficacy of platinum nanoparticles was evaluated by measuring antioxidant activities against oxidative stress caused by diethylnitrosamine in liver tissue. The measurements included reduced glutathione content and superoxide dismutase activity, as well as malondialdehyde level. Liver function tests were also determined, in addition to the evaluation of serum alpha-fetoprotein, caspase-3, and cytochrome c in liver tissue. Total RNA extraction from liver tissue samples was also done for the relative quantification of B-cell lymphoma 2, matrix metallopeptidase 9, and tumor protein p53 genes. Histopathological examination was also performed for liver tissue. Results showed that platinum nanoparticles are more potent than cis-platin in treatment of hepatocellular carcinoma induced by diethylnitrosamine in rats as it ameliorated the investigated parameters toward normal control animals. These findings were well appreciated with histopathological studies of diethylnitrosamine group treated with platinum nanoparticles, suggesting that platinum nanoparticles can serve as a good therapeutic agent for the treatment of hepatocellular carcinoma which should attract further studies.
Upregulation of High Mobility Group Box 1 May Contribute to the Pathogenesis of Biliary Atresia.
Ye, Chun Jing; Wang, Jiang; Yang, Yi Fan; Shen, Zhen; Chen, Gong; Huang, Yan Lei; Zheng, Yi Jie; Dong, Rui; Zheng, Shan
2018-06-17
Biliary atresia (BA) is a progressive inflammatory obstructive cholangiopathy in infants. High mobility group box 1 (HMGB1) is known to play an important role as a late mediator of inflammation. However, it is not clear whether HMGB1 levels are of clinical significance in patients with BA. The aim of this study was to determine correlations between serum HMGB1 levels and the clinicopathologic features of BA. Serum samples were collected from 19 infants with BA, 7 infants with anicteric choledochal cysts (CC) and normal liver function, and 8 healthy controls. Serum HMGB1 levels were measured with an enzyme-linked immunosorbent assay. Routine liver function tests were performed on serum samples. Quantitative real-time polymerase chain reaction and western blot analyses were used to detect HMGB1 expression in BA liver biopsy tissues. Localization of HMGB1 expression in the hepatic lobule was determined by immunohistochemical analysis. HMGB1 levels in serum collected from BA infants were significantly elevated compared with CC and healthy control patients. Furthermore, elevated serum levels of HMGB1 in BA infants positively correlated with gamma-glutamyl transferase levels. HMGB1 messenger ribonucleic acid and protein expression levels were upregulated in BA liver biopsy tissues compared with CC patients. Immunohistochemical analysis also revealed increased positive immunostaining for HMGB1 in BA liver tissues as compared with CC tissues. HMGB1 may play a crucial role in the pathogenesis of BA. Additionally, the correlation of serum HMGB1 levels with gamma-glutamyl transferase levels may provide a novel marker for the diagnosis of BA. Georg Thieme Verlag KG Stuttgart · New York.
Influence of medium-chain triglycerides on lipid metabolism in the rat.
Leveille, G A; Pardini, R S; Tillotson, J A
1967-07-01
Lipid metabolism was studied in rats fed diets containing corn oil, coconut oil, or medium-chain triglyceride (MCT), a glyceride mixture containing fatty acids of 8 and 10 carbons in length. The ingestion of MCT-supplemented, cholesterolfree diets depressed plasma and liver total lipids and cholesterol as compared with corn oil-supplemented diets. In rats fed cholesterol-containing diets, plasma cholesterol levels were not influenced by dietary MCT, but liver cholesterol levels were significantly lower than in animals fed corn oil. In vitro cholesterol synthesis from acetate-1-(14)C was lower in liver slices of rats that consumed MCT than in similar preparations from corn oil-fed rats. Studies of fatty acid carboxyl labeling from acetate-1-(14)C and the conversion of palmitate-1-(14)C to C(18) acids by liver slices showed that chain-lengthening activity is greater in the liver tissue of rats fed MCT than in the liver of animals fed corn oil. The hepatic fatty acid desaturation mechanisms, evaluated by measuring the conversion of stearate-2-(14)C to oleate, was also enhanced by feeding MCT.Adipose tissue of rats fed MCT converts acetate-1-(14)C to fatty acids at a much faster rate than does tissue from animals fed corn oil. Evidence is presented to show that the enhanced incorporation of acetate into fatty acids by the adipose tissue of rats fed MCT represents de novo synthesis of fatty acids and not chain-lengthening activity. Data are also presented on the fatty acid composition of plasma, liver, and adipose tissue lipids of rats fed the different fats under study.
Taner, Timucin; Park, Walter D; Stegall, Mark D
2017-05-01
Kidney allografts transplanted simultaneously with liver allografts from the same donor are known to be immunologically privileged. This is especially evident in recipients with high levels of donor-specific anti-HLA antibodies. Here we investigated the mechanisms of liver's protective impact using gene expression in the kidney allograft. Select solitary kidney transplant or simultaneous liver-kidney transplant recipients were retrospectively reviewed and separated into four groups: 16 cross-match negative kidney transplants, 15 cross-match positive kidney transplants, 12 cross-match negative simultaneous liver-kidney transplants, and nine cross-match-positive simultaneous liver-kidney transplants. Surveillance biopsies of cross-match-positive kidney transplants had increased expression of genes associated with donor-specific antigens, inflammation, and endothelial cell activation compared to cross-match-negative kidney transplants. These changes were not found in cross-match-positive simultaneous liver-kidney transplant biopsies when compared to cross-match-negative simultaneous liver-kidney transplants. In addition, simultaneously transplanting a liver markedly increased renal expression of genes associated with tissue integrity/metabolism, regardless of the cross-match status. While the expression of inflammatory gene sets in cross-match-positive simultaneous liver-kidney transplants was not completely reduced to the level of cross-match-negative kidney transplants, the downstream effects of donor-specific anti-HLA antibodies were blocked. Thus, simultaneous liver-kidney transplants can have a profound impact on the kidney allograft, not only by decreasing inflammation and avoiding endothelial cell activation in cross-match-positive recipients, but also by increasing processes associated with tissue integrity/metabolism by unknown mechanisms. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Suh, Yeunsu; Davis, Michael E.; Lee, Kichoon
2013-01-01
Understanding the tissue-specific pattern of gene expression is critical in elucidating the molecular mechanisms of tissue development, gene function, and transcriptional regulations of biological processes. Although tissue-specific gene expression information is available in several databases, follow-up strategies to integrate and use these data are limited. The objective of the current study was to identify and evaluate novel tissue-specific genes in human and mouse tissues by performing comparative microarray database analysis and semi-quantitative PCR analysis. We developed a powerful approach to predict tissue-specific genes by analyzing existing microarray data from the NCBI′s Gene Expression Omnibus (GEO) public repository. We investigated and confirmed tissue-specific gene expression in the human and mouse kidney, liver, lung, heart, muscle, and adipose tissue. Applying our novel comparative microarray approach, we confirmed 10 kidney, 11 liver, 11 lung, 11 heart, 8 muscle, and 8 adipose specific genes. The accuracy of this approach was further verified by employing semi-quantitative PCR reaction and by searching for gene function information in existing publications. Three novel tissue-specific genes were discovered by this approach including AMDHD1 (amidohydrolase domain containing 1) in the liver, PRUNE2 (prune homolog 2) in the heart, and ACVR1C (activin A receptor, type IC) in adipose tissue. We further confirmed the tissue-specific expression of these 3 novel genes by real-time PCR. Among them, ACVR1C is adipose tissue-specific and adipocyte-specific in adipose tissue, and can be used as an adipocyte developmental marker. From GEO profiles, we predicted the processes in which AMDHD1 and PRUNE2 may participate. Our approach provides a novel way to identify new sets of tissue-specific genes and to predict functions in which they may be involved. PMID:23741331
Non-Invasive Blood Perfusion Measurements Using a Combined Temperature and Heat Flux Surface Probe
Ricketts, Patricia L.; Mudaliar, Ashvinikumar V.; Ellis, Brent E.; Pullins, Clay A.; Meyers, Leah A.; Lanz, Otto I.; Scott, Elaine P.; Diller, Thomas E.
2009-01-01
Non-invasive blood perfusion measurement systems have been developed and tested in a phantom tissue and an animal model. The probes use a small sensor with a laminated flat thermocouple to measure the heat transfer and temperature response to an arbitrary thermal event (convective or conductive) imposed on the tissue surface. Blood perfusion and thermal contact resistance are estimated by comparing heat flux data with a mathematical model of the tissue. The perfusion probes were evaluated for repeatability and sensitivity using both a phantom tissue test stand and exposed rat liver tests. Perfusion in the phantom tissue tests was varied by controlling the flow of water into the phantom tissue test section, and the perfusion in the exposed liver tests was varied by temporarily occluding blood flow through the portal vein. The phantom tissue tests indicated that the probes can be used to detect small changes in perfusion (0.005 ml/ml/s). The probes qualitatively tracked the changes in the perfusion of the liver model due to occlusion of the portal vein. PMID:19885372
Faust, Derek R.; Hooper, Michael J.; Cobb, George P.; Barnes, Melanie; Shaver, Donna; Ertolacci, Shauna; Smith, Philip N.
2014-01-01
Inorganic elements from anthropogenic sources have entered marine environments worldwide and are detectable in marine organisms, including sea turtles. Threatened and endangered classifications of sea turtles have heretofore made assessments of contaminant concentrations difficult because of regulatory restrictions on obtaining samples using nonlethal techniques. In the present study, claw and skin biopsy samples were examined as potential indicators of internal tissue burdens in green sea turtles (Chelonia mydas). Significant relationships were observed between claw and liver, and claw and muscle concentrations of mercury, nickel, arsenic, and selenium (p < 0.05). Similarly, significant relationships were observed between skin biopsy concentrations and those in liver, kidney, and muscle tissues for mercury, arsenic, selenium, and vanadium (p < 0.05). Concentrations of arsenic, barium, chromium, nickel, strontium, vanadium, and zinc in claws and skin biopsies were substantially elevated when compared with all other tissues, indicating that these highly keratinized tissues may represent sequestration or excretion pathways. Correlations between standard carapace length and cobalt, lead, and manganese concentrations were observed (p < 0.05), indicating that tissue concentrations of these elements may be related to age and size. Results suggest that claws may indeed be useful indicators of mercury and nickel concentrations in liver and muscle tissues, whereas skin biopsy inorganic element concentrations may be better suited as indicators of mercury, selenium, and vanadium concentrations in liver, kidney, and muscle tissues of green sea turtles.
NASA Astrophysics Data System (ADS)
Cournane, S.; Cannon, L.; Browne, J. E.; Fagan, A. J.
2010-10-01
The accuracy of a transient elastography liver-scanning ultrasound system was assessed using a novel application of PVA-cryogel as a tissue-mimicking material with acoustic and shear elasticity properties optimized to best represent those of liver tissue. Although the liver-scanning system has been shown to offer a safer alternative for diagnosing liver cirrhosis through stiffness measurement, as compared to the liver needle biopsy exam, the scanner's accuracy has not been fully established. Young's elastic modulus values of 5-6 wt% PVA-cryogel phantoms, also containing glycerol and 0.3 µm Al2O3 and 3 µm Al2O3, were measured using a 'gold standard' mechanical testing technique and transient elastography. The mechanically measured values and acoustic velocities of the phantoms ranged between 1.6 and 16.1 kPa and 1540 and 1570 m s-1, respectively, mimicking those observed in liver tissue. The values reported by the transient elastography system overestimated Young's elastic modulus values representative of the progressive stages of liver fibrosis by up to 32%. These results were attributed to the relative rather than absolute nature of the measurement arising from the single-point acoustic velocity calibration of the system, rendering the measurements critically dependent on the speed of sound of the sample under investigation. Given the wide range of acoustic velocities which exist in the liver, spanning healthy tissue to cirrhotic pathology, coupled with the system's assumption that the liver is approximately elastic when it is rather highly viscoelastic, care should be exercised when interpreting the results from this system in patient groups.
El-Mezayen, Nesrine S; El-Hadidy, Wessam F; El-Refaie, Wessam M; Shalaby, Th I; Khattab, Mahmoud M; El-Khatib, Aiman S
2017-11-28
Liver fibrosis is a global health problem without approved treatment. Imatinib inhibits two key profibrotic pathways; platelet-derived growth factor (PDGF) and transforming growth factor-beta (TGF-β) and thus can be used to treat liver fibrosis. However, conventional imatinib therapy is hampered by low concentration at target tissue and increased toxicity to other tissues especially heart, lung and liver. Since hepatic stellate cells (HSCs) are the main contributors to liver fibrosis pathogenesis and sole hepatic vitamin A (V A ) storage cells, they can be actively targeted by coupling liposomes to V A . In this study, novel V A -coupled imatinib-loaded liposomes (ILC) were prepared and optimized regarding V A -coupling efficiency, imatinib entrapment efficiency, and particle size. Preferential accumulation of the selected formula in liver was proved by tracing intraperitoneally (i.p.)-injected V A -coupled liposomes loaded with Nile Red (LCNR) to rats with CCl 4 -induced liver fibrosis using live animal imaging. Co-localization of LCNR with immunofluorescently-labeled PDGFR-β in frozen liver tissue sections confirmed HSCs targeting. ILC bio-distribution, following single i.p. injection, revealed 13.5 folds higher hepatic accumulation than conventional imatinib in addition to limited bio-distribution to other organs including heart and lung reflecting diminished adverse effects. ILC therapy resulted in a potent inhibition of phosphorylated PDGFR-β expression when compared to conventional imatinib. Subsequently, there was a statistically significant improvement in liver function tests and reversal of hepatotoxicity along with liver fibrosis. Anti-fibrotic effect was evident from histopathologic Ishak score reduction as well as normalization of the level of profibrotic mediators (hydroxyproline, TGF-B and matrix metalloproteinase-2). Thus, HSC-targeted imatinib therapy shows outstanding anti-fibrotic effects with reduced cytotoxicity compared to conventional imatinib. It can represent a promising novel approach for liver fibrosis treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Interleukin-23 mediates the pathogenesis of LPS/GalN-induced liver injury in mice.
Bao, Suxia; Zhao, Qiang; Zheng, Jianming; Li, Ning; Huang, Chong; Chen, Mingquan; Cheng, Qi; Zhu, Mengqi; Yu, Kangkang; Liu, Chenghai; Shi, Guangfeng
2017-05-01
Interleukin-23 (IL-23) is required for T helper 17 (Th17) cell responses and IL-17 production in hepatitis B virus infection. A previous study showed that the IL-23/IL-17 axis aggravates immune injury in patients with chronic hepatitis B virus infection. However, the role of IL-23 in acute liver injury remains unclear. The purpose of this study was to determine the role of the inflammatory cytokine IL-23 in lipopolysaccharide/d-galactosamine (LPS/GalN)-induced acute liver injury in mice. Serum IL-23 from patients with chronic hepatitis B virus (CHB), acute-on-chronic liver failure (ACLF) and healthy individuals who served as healthy controls (HCs) was measured by ELISA. An IL-23p19 neutralizing antibody or an IL-23p40 neutralizing antibody was administered intravenously at the time of challenge with LPS (10μg/kg) and GalN (400mg/kg) in C57BL/6 mice. Hepatic pathology and the expression of Th17-related cytokines, including IL-17 and TNF-α; neutrophil chemoattractants, including Cxcl1, Cxcl2, Cxcl9, and Cxcl10; and the stabilization factor Csf3 were assessed in liver tissue. Serum IL-23 was significantly upregulated in ACLF patients compared with CHB patients and HCs (P<0.05 for both). Serum IL-23 was significantly upregulated in the non-survival group compared with the survival group of ACLF patients, which was consistent with LPS/GalN-induced acute hepatic injury in mice (P<0.05 for both). Moreover, after treatment, serum IL-23 was downregulated in the survival group of ACLF patients (P<0.001). Compared with LPS/GalN mice, mice treated with either an IL-23p19 neutralizing antibody or an IL-23p40 neutralizing antibody showed less severe liver tissue histopathology and significant reductions in the expression of Th17-related inflammatory cytokine, including IL-17 and TNF-α; neutrophil chemoattractants, including Cxcl1, Cxcl2, Cxcl9, and Cxcl10; and stabilization factors Csf3 within the liver tissue compared with LPS/GalN mice (P<0.05 for all). High serum IL-23 was associated with mortality in ACLF patients and LPS/GalN-induced acute liver injury in mice. IL-23 neutralizing antibodies attenuated liver injury by reducing the expression of Th17-related inflammatory cytokines, neutrophil chemoattractants and stabilization factors within the liver tissue, which indicated that IL-23 likely functions upstream of Th17-related cytokine and chemokine expression to recruit inflammatory cells into the liver. Copyright © 2017 Elsevier B.V. All rights reserved.
Magnetic resonance elastography is as accurate as liver biopsy for liver fibrosis staging.
Morisaka, Hiroyuki; Motosugi, Utaroh; Ichikawa, Shintaro; Nakazawa, Tadao; Kondo, Tetsuo; Funayama, Satoshi; Matsuda, Masanori; Ichikawa, Tomoaki; Onishi, Hiroshi
2018-05-01
Liver MR elastography (MRE) is available for the noninvasive assessment of liver fibrosis; however, no previous studies have compared the diagnostic ability of MRE with that of liver biopsy. To compare the diagnostic accuracy of liver fibrosis staging between MRE-based methods and liver biopsy using the resected liver specimens as the reference standard. A retrospective study at a single institution. In all, 200 patients who underwent preoperative MRE and subsequent surgical liver resection were included in this study. Data from 80 patients were used to estimate cutoff and distributions of liver stiffness values measured by MRE for each liver fibrosis stage (F0-F4, METAVIR system). In the remaining 120 patients, liver biopsy specimens were obtained from the resected liver tissues using a standard biopsy needle. 2D liver MRE with gradient-echo based sequence on a 1.5 or 3T scanner was used. Two radiologists independently measured the liver stiffness value on MRE and two types of MRE-based methods (threshold and Bayesian prediction method) were applied. Two pathologists evaluated all biopsy samples independently to stage liver fibrosis. Surgically resected whole tissue specimens were used as the reference standard. The accuracy for liver fibrosis staging was compared between liver biopsy and MRE-based methods with a modified McNemar's test. Accurate fibrosis staging was achieved in 53.3% (64/120) and 59.1% (71/120) of patients using MRE with threshold and Bayesian methods, respectively, and in 51.6% (62/120) with liver biopsy. Accuracies of MRE-based methods for diagnoses of ≥F2 (90-91% [108-9/120]), ≥F3 (79-81% [95-97/120]), and F4 (82-85% [98-102/120]) were statistically equivalent to those of liver biopsy (≥F2, 79% [95/120], P ≤ 0.01; ≥F3, 88% [105/120], P ≤ 0.006; and F4, 82% [99/120], P ≤ 0.017). MRE can be an alternative to liver biopsy for fibrosis staging. 3. Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1268-1275. © 2017 International Society for Magnetic Resonance in Medicine.
Melo, C H; Sousa, F C; Batista, R I P T; Sanchez, D J D; Souza-Fabjan, J M G; Freitas, V J F; Melo, L M; Teixeira, D I A
2015-07-31
The present study aimed to compare laparoscopic (LP) and ultrasound-guided (US) biopsy methods to obtain either liver or splenic tissue samples for ectopic gene expression analysis in transgenic goats. Tissue samples were collected from human granulocyte colony stimulating factor (hG-CSF)-transgenic bucks and submitted to real-time PCR for the endogenous genes (Sp1, Baff, and Gapdh) and the transgene (hG-CSF). Both LP and US biopsy methods were successful in obtaining liver and splenic samples that could be analyzed by PCR (i.e., sufficient sample sizes and RNA yield were obtained). Although the number of attempts made to obtain the tissue samples was similar (P > 0.05), LP procedures took considerably longer than the US method (P = 0.03). Finally, transgene transcripts were not detected in spleen or liver samples. Thus, for the phenotypic characterization of a transgenic goat line, investigation of ectopic gene expression can be made successfully by LP or US biopsy, avoiding the traditional approach of euthanasia.
Azimuthally invariant Mueller-matrix mapping of biological optically anisotropic network
NASA Astrophysics Data System (ADS)
Ushenko, Yu. O.; Vanchuliak, O.; Bodnar, G. B.; Ushenko, V. O.; Grytsyuk, M.; Pavlyukovich, N.; Pavlyukovich, O. V.; Antonyuk, O.
2017-09-01
A new technique of Mueller-matrix mapping of polycrystalline structure of histological sections of biological tissues is suggested. The algorithms of reconstruction of distribution of parameters of linear and circular dichroism of histological sections liver tissue of mice with different degrees of severity of diabetes are found. The interconnections between such distributions and parameters of linear and circular dichroism of liver of mice tissue histological sections are defined. The comparative investigations of coordinate distributions of parameters of amplitude anisotropy formed by Liver tissue with varying severity of diabetes (10 days and 24 days) are performed. The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of coordinate distributions of the value of linear and circular dichroism are defined. The objective criteria of cause of the degree of severity of the diabetes differentiation are determined.
Liu, Hongyan; Dong, Huijia; Robertson, Keith; Liu, Chen
2011-01-01
Carbamoyl phosphate synthetase 1 (CPS1) is a liver-specific, intramitochondrial, rate-limiting enzyme in the urea cycle. A previous study showed that CPS1 is the antigen for hepatocyte paraffin 1 antibody, a commonly used antibody in surgical pathology practice; and CPS1 expression appears to be down-regulated in liver cancer tissue and cell lines. The aim of this study is to understand how the CPS1 gene is regulated in liver carcinogenesis. In this report, we show that human hepatocellular carcinoma (HCC) cells do not express CPS1, whereas cultured human primary hepatocytes express abundant levels. In addition, CPS1 was silenced or down-regulated in liver tumor tissues compared with the matched noncancerous tissues. The expression of CPS1 in HCC cells was restored with a demethylation agent, 5-azacytidine. We show that two CpG dinucleotides, located near the transcription start site, and a CpG-rich region in the first intron were hypermethylated in HCC cells. The hypermethylation of the two CpG dinucleotides was also detected in HCC tumor tissues compared with noncancerous tissues. Further molecular analysis with mutagenesis indicated that the two CpG dinucleotides play a role in promoter activity of the CPS1 gene. In conclusion, our study demonstrates that DNA methylation is a key mechanism of silencing CPS1 expression in human HCC cells, and CPS1 gene hypermethylation of the two CpG dinucleotides is a potential biomarker for HCC. PMID:21281797
Jiang, Qianqian; Pan, Yu; Cheng, Yupeng; Li, Huiling; Li, Hui
2016-01-01
Hepatic ischemia-reperfusion (I-R) injury causes acute organ damage or dysfunction, and remains a problem for liver transplantation. In the I-R phase, the generation of reactive oxygen species aggravates the injury. In the current study, a novel selenocysteine-containing 7-mer peptide (H-Arg-Sec-Gly-Arg-Asn-Ala-Gln-OH) was constructed to imitate the active site of an antioxidant enzyme, glutathione peroxidase (GPX). The 7-mer peptide which has a lower molecular weight, and improved water-solubility, higher stability and improved cell membrane permeability compared with other GPX mimics. Its GPX activity reached 13 U/µmol, which was 13 times that of ebselen (a representative GPX mimic). The effect of this GPX mimic on I-R injury of the liver was assessed in rats. The 7-mer peptide significantly inhibited the increase in serum hepatic amino-transferases, tissue malondialdehyde, nitric oxide contents, myeloperoxidase activity and decrease of GPX activity compared with I-R tissue. Following treatment with the 7-mer peptide, the expression of B-cell CLL/lymphoma-2 (Bcl-2) was significantly upregulated at the mRNA and protein level compared with the I-R group, as determined by reverse transcription-polymerase chain reaction and immunohistochemistry, respectively. By contrast, Bcl-2 associated X protein (Bax) was downregulated by the 7-mer peptide compared the I-R group. Histological and ultrastructural changes of the rat liver tissue were also compared among the experimental groups. The results of the current study suggest that the 7-mer peptide protected the liver against hepatic I-R injury via suppression of oxygen-derived free radicals and regulation of Bcl-2 and Bax expression, which are involved in the apoptosis of liver cells. The findings of the present study will further the investigation of the 7-mer peptide as an effective therapeutic agent in hepatic I-R injury. PMID:27431272
Avila, Eudes Thiago Pereira; da Rosa Lima, Thiago; Tibana, Ramires Alsamir; de Almeida, Paula Caroline; Fraga, Géssica Alves; de Souza Sena, Mariana; Corona, Luiz Felipe Petusk; Navalta, James Wilfred; Rezaei, Sajjad; Ghayomzadeh, Morteza; Damazo, Amílcar Sabino; Prestes, Jonato; Voltarelli, Fabrício Azevedo
2018-02-13
Isolated whey protein (IWP) can decrease body fat compared with other protein sources. The present study verified the effects of high protein diet (HD) containing IWP on several parameters of rats subjected to resistance training (RT). Thirty-two male Wistar rats (60 days of age) were separated into four groups (n = 8/group): sedentary normoproteic (IWP 14%; SN); sedentary hyperproteic (IWP 35%; SH); trained normoproteic (IWP 14%; TN), and trained hyperproteic (WPI 35%; TH). Relative tissue/organ weight (g): perirenal and retroperitoneal adipose tissues were lower in SH and TH compared with SN (no difference to TN); omental and subcutaneous adipose tissues were higher in SN compared with SH. Epididymal adipose tissue was higher in SN compared with other groups. Heart weight was higher in TH compared with TN and SN, but not SH; kidney and liver higher in TH and SH compared with SN and TN; gastrocnemius lower in SN compared with other groups; soleus higher in SH in relation to other groups. The triglycerides levels (mg/dL) was reduced in the TH groups compared with SH, TN, and SN. There were no changes both in the concentrations of adiponectin and leptin and in the protein expression of GLUT-4 and p70 s6k . HD containing WPI improved body composition, increased the weight of the heart, kidneys, liver and gastrocnemius and soleus muscles; however, this diet maintained the normal histomorphology of muscle and liver and, when associated with RT, reduced the serum levels of triglycerides. Copyright © 2018 Elsevier Inc. All rights reserved.
Borges Haubert, Nadia Juliana Beraldo Goulart; Marchini, Julio Sergio; Carvalho Cunha, Selma Freire; Suen, Vivian Marques Miguel; Padovan, Gilberto Joao; Jordao, Alceu Afonso; Marchini Alves, Claudia Maria Meirelles; Marchini, Julio Flavio Meirelles; Vannucchi, Helio
2015-01-01
This study investigates the treatment of non-alcoholic fatty liver disease (NAFLD) in rats with choline and fructooligosaccharide (FOS). The healthy control group received standard diet. The other three groups consisted of animals with NAFLD. Group Estr received standard diet; group Echo received standard diet plus choline (3 g/100 g diet); and group Efos received standard diet plus FOS (10 g/100 g diet). Food intake, weight, urinary nitrogen, urinary ammonia, total cholesterol, serum triacylglyceride, liver and heart weights, tissue nitrogen, tissue fat, vitamin E, TBARS, and reduced glutathione (GSH) were measured in hepatic and heart tissue. Choline and FOS treatments resulted in total mean fat reduction in liver and heart tissue of 0.2 and 1.7 g, respectively. Both treatments were equally effective in reducing hepatic and cardiac steatosis. There were no differences in the TBARS level among experimental and control groups, indicating that the proposed treatments had no added protection against free radicals. While all experimental groups had increased vitamin E and GSH levels, choline treatment led to a significant increase compared to control. PMID:25987847
NASA Astrophysics Data System (ADS)
Spliethoff, Jarich W.; de Boer, Lisanne L.; Meier, Mark A. J.; Prevoo, Warner; de Jong, Jeroen; Kuhlmann, Koert; Bydlon, Torre M.; Sterenborg, Henricus J. C. M.; Hendriks, Benno H. W.; Ruers, Theo J. M.
2016-09-01
There is a strong need to develop clinical instruments that can perform rapid tissue assessment at the tip of smart clinical instruments for a variety of oncological applications. This study presents the first in vivo real-time tissue characterization during 24 liver biopsy procedures using diffuse reflectance (DR) spectroscopy at the tip of a core biopsy needle with integrated optical fibers. DR measurements were performed along each needle path, followed by biopsy of the target lesion using the same needle. Interventional imaging was coregistered with the DR spectra. Pathology results were compared with the DR spectroscopy data at the final measurement position. Bile was the primary discriminator between normal liver tissue and tumor tissue. Relative differences in bile content matched with the tissue diagnosis based on histopathological analysis in all 24 clinical cases. Continuous DR measurements during needle insertion in three patients showed that the method can also be applied for biopsy guidance or tumor recognition during surgery. This study provides an important validation step for DR spectroscopy-based tissue characterization in the liver. Given the feasibility of the outlined approach, it is also conceivable to make integrated fiber-optic tools for other clinical procedures that rely on accurate instrument positioning.
Sun, Wanxin; Chang, Shi; Tai, Dean C S; Tan, Nancy; Xiao, Guangfa; Tang, Huihuan; Yu, Hanry
2008-01-01
Liver fibrosis is associated with an abnormal increase in an extracellular matrix in chronic liver diseases. Quantitative characterization of fibrillar collagen in intact tissue is essential for both fibrosis studies and clinical applications. Commonly used methods, histological staining followed by either semiquantitative or computerized image analysis, have limited sensitivity, accuracy, and operator-dependent variations. The fibrillar collagen in sinusoids of normal livers could be observed through second-harmonic generation (SHG) microscopy. The two-photon excited fluorescence (TPEF) images, recorded simultaneously with SHG, clearly revealed the hepatocyte morphology. We have systematically optimized the parameters for the quantitative SHG/TPEF imaging of liver tissue and developed fully automated image analysis algorithms to extract the information of collagen changes and cell necrosis. Subtle changes in the distribution and amount of collagen and cell morphology are quantitatively characterized in SHG/TPEF images. By comparing to traditional staining, such as Masson's trichrome and Sirius red, SHG/TPEF is a sensitive quantitative tool for automated collagen characterization in liver tissue. Our system allows for enhanced detection and quantification of sinusoidal collagen fibers in fibrosis research and clinical diagnostics.
Kizawa, Hideki; Nagao, Eri; Shimamura, Mitsuru; Zhang, Guangyuan; Torii, Hitoshi
2017-07-01
The liver plays a central role in metabolism. Although many studies have described in vitro liver models for drug discovery, to date, no model has been described that can stably maintain liver function. Here, we used a unique, scaffold-free 3D bio-printing technology to construct a small portion of liver tissue that could stably maintain drug, glucose, and lipid metabolism, in addition to bile acid secretion. This bio-printed normal human liver tissue maintained expression of several kinds of hepatic drug transporters and metabolic enzymes that functioned for several weeks. The bio-printed liver tissue displayed glucose production via cAMP/protein kinase A signaling, which could be suppressed with insulin. Bile acid secretion was also observed from the printed liver tissue, and it accumulated in the culture medium over time. We observed both bile duct and sinusoid-like structures in the bio-printed liver tissue, which suggested that bile acid secretion occurred via a sinusoid-hepatocyte-bile duct route. These results demonstrated that our bio-printed liver tissue was unique, because it exerted diverse liver metabolic functions for several weeks. In future, we expect our bio-printed liver tissue to be applied to developing new models that can be used to improve preclinical predictions of long-term toxicity in humans, generate novel targets for metabolic liver disease, and evaluate biliary excretion in drug development.
Qian, Lichuan; Krause, Diane S.; Saltzman, W. Mark
2012-01-01
Fetal liver epithelial cells (FLEC) are valuable for liver cell therapy and tissue engineering, but methods for culture and characterization of these cells are not well developed. This work explores the influence of multiple soluble factors on FLEC, with the long-term goal of developing an optimal culture system to generate functional liver tissue. Our comparative analysis suggests hepatocyte growth factor (HGF) is required throughout the culture period. In the presence of HGF, addition of oncostatin M (OSM) at culture initiation results in concurrent growth and maturation, while constant presence of protective agents like ascorbic acid enhances cell survival. Study observations led to the development of a culture medium that provided optimal growth and hepatic differentiation conditions. FLEC expansion was observed to be ~2 fold of that under standard conditions, albumin secretion rate was 2 – 3 times greater than maximal values obtained with other media, and the highest level of glycogen accumulation among all conditions was observed with the developed medium. Our findings serve to advance culture methods for liver progenitors in cell therapy and tissue engineering applications. PMID:21922669
Xia, Yaoyao; Li, Jun; Ren, Wenkai; Feng, Zemeng; Huang, Ruilin; Yin, Yulong
2018-06-01
Cadmium (Cd) is a common harmful substance that has many deleterious effects on the liver and kidney. Most reports about Cd toxic studies focused on its inorganic status, whereas the toxicity of Cd in organic materials is less studied. Here, we performed RNA-seq to explore the influences of Cd contaminated rice on function of the liver and kidney of finishing pigs. The concentration of Cd in liver and kidney of pigs fed Cd contaminated rice increased by 4.00 and 2.94 times, respectively, compared to those in the control group. With transcriptomic analysis, approximately 4-6 × 10 7 clean reads were acquired. Five differently expressed genes (DEGs) were identified in the liver, and 12 DEGs in the kidney. SPHK2 was commonly down-regulated. No significantly enriched gene ontology (GO) terms were identified. By Kyoto encyclopaedia of genes and genomes (KEGG) enrichments, four pathways were identified in hepatic tissue, and five pathways in nephritic tissue. Intriguingly, two pathways (sphingolipid metabolism and VEGF signalling pathway) were altered both in the liver and kidney. Cd contaminated rice may cause liver and kidney damage and inflammation, or even lead to more severe harm to these tissues. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Effect of dietary copper addition on lipid metabolism in rabbits
Lei, Liu; Xiaoyi, Sui; Fuchang, Li
2017-01-01
ABSTRACT The present study was conducted to investigate the effect of copper supplementation on lipid metabolism in rabbits. Our study showed dietary copper addition (5-45 mg/kg) increased body mass gain, but decreased fat and liver weights compared with those in the control group (P < 0.05). Copper (45 mg/kg) addition significantly increased the skeletal muscle weight, but inhibited cytoplasmic lipid accumulation in liver, skeletal muscle and adipose tissue (P < 0.05). Compared with the control group, dietary copper addition (45 mg/kg) significantly increased plasma triglyceride levels but decreased very low density lipoprotein levels (P < 0.05). Copper treatment significantly increased gene expression of carnitine palmitoyltransferase (CPT) 1, CPT2 and peroxisome proliferator-activated receptor (PPAR) a in liver (P < 0.05). In skeletal muscle, CPT1, CPT2, fatty acid transport protein, fatty acid-binding protein, and PPARa mRNA as well as phosphorylated AMP-activated protein kinase (AMPK) levels were significantly up-regulated by copper treatment (P < 0.05). Rabbits receiving copper supplementation had higher CPT1, CPT2, PPARa and hormone-sensitive lipase mRNA levels in adipose tissue (P < 0.05). In conclusion, copper promoted skeletal muscle growth and reduced fat accretion. PPARa signaling in liver, skeletal muscle and adipose tissues and AMPK signaling in skeletal muscle tissue were involved in the regulation of lipid metabolism by copper. PMID:28747869
Greaves, Alana K; Letcher, Robert J; Sonne, Christian; Dietz, Rune; Born, Erik W
2012-11-06
Several perfluoroalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates (PFSAs) of varying chain length are bioaccumulative in biota. However, wildlife reports have focused on liver and with very little examination of other tissues, and thus there is a limited understanding of their distribution and potential effects in the mammalian body. In the present study, the comparative accumulation of C(6) to C(15) PFCAs, C(4), C(6), C(8) and C(10) PFSAs, and select precursors were examined in the liver, blood, muscle, adipose, and brain of 20 polar bears (Ursus maritimus) from Scoresby Sound, Central East Greenland. Overall, PFSA and PFCA concentrations were highest in liver followed by blood > brain > muscle ≈ adipose. Liver and blood samples contained proportionally more of the shorter/medium chain length (C(6) to C(11)) PFCAs, whereas adipose and brain samples were dominated by longer chain (C(13) to C(15)) PFCAs. PFCAs with lower lipophilicities accumulated more in the liver, whereas the brain accumulated PFCAs with higher lipophilicities. The concentration ratios (±SE) between perfluorooctane sulfonate and its precursor perfluorooctane sulfonamide varied among tissues from 9 (±1):1 (muscle) to 36 (±7):1 (liver). PFCA and PFSA patterns in polar bears indicate that the pharmacokinetics of these compounds are to some extent tissue-specific, and are the result of several factors that may include differing protein interactions throughout the body.
Impacts of exposure to 900 MHz mobile phone radiation on liver function in rats.
Ma, Hui-rong; Ma, Zhi-hong; Wang, Gui-ying; Song, Cui-miao; Ma, Xue-lian; Cao, Xiao-hui; Zhang, Guo-hong
2015-11-01
To study the impacts of exposure to electromagnetic radiation (EMR) on liver function in rats. Twenty adult male Sprague-Dawley rats were randomly divided into normal group and radiated group. The rats in normal group were not radiated, those in radiated group were exposed to EMR 4 h/ d for 18 consecutive days. Rats were sacrificed immediately after the end of the experiment. The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and those of malondialdehyde (MDA) and glutathione (GSH) in liver tissue were evaluated by colorimetric method. The liver histopathological changes were observed by hematoxylin and eosin staining and the protein expression of bax and bcl- 2 in liver tissue were detected by immunohistochemical method. Terminal-deoxynucleotidyl transferase mediated nick and labelling (TUNEL) method was used for analysis of apoptosis in liver. Compared with the normal rats, the serum levels of ALT and AST in the radiated group had no obvious changes (P>0.05), while the contents of MDA increased (P < 0.01) and those of GSH decreased (P < 0.01) in liver tissues. The histopathology examination showed diffuse hepatocyte swelling and vacuolation, small pieces and focal necrosis. The immunohistochemical results displayed that the expression of the bax protein was higher and that of bcl-2 protein was lower in radiated group. The hepatocyte apoptosis rates in radiated group was higher than that in normal group (all P < 0.01). The exposure to 900 MHz mobile phone 4 h/d for 18 days could induce the liver histological changes, which may be partly due to the apoptosis and oxidative stress induced in liver tissue by electromagnetic radiation.
Desai, Chirag S; Khan, Khalid M; Ma, Xiaobo; Li, Henghong; Wang, Juan; Fan, Lijuan; Chen, Guoling; Smith, Jill P; Cui, Wanxing
2017-11-02
The inflammatory milieu in the liver as determined by histopathology is different in individual patients undergoing autologous islet cell transplantation. We hypothesized that inflammation related to fatty-liver adversely impacts islet survival. To test this hypothesis, we used a mouse model of fatty-liver to determine the outcome of syngeneic islet transplantation after chemical pancreatectomy. Mice (C57BL/6) were fed a high-fat-diet from 6 weeks of age until attaining a weight of ≥28 grams (6-8 weeks) to produce a fatty liver (histologically > 30% fat);steatosis was confirmed with lipidomic profile of liver tissue. Islets were infused via the intra-portal route in fatty-liver and control mice after streptozotocin induction of diabetes. Outcomes were assessed by the rate of euglycemia, liver histopathology, evaluation of liver inflammation by measuring tissue cytokines IL-1β and TNF-α by RT-PCR and CD31 expression by immunohistochemistry. The difference in the euglycemic fraction between the normal liver group (90%, 9/10) and the fatty-liver group (37.5%, 3/8) was statistically significant at the 18 th day post- transplant and was maintained to the end of the study (day 28) (p = 0.019, X 2 = 5.51). Levels of TNF-α and IL-1β were elevated in fatty-liver mice (p = 0.042, p = 0.037). Compared to controls cytokine levels were elevated after islet cell transplantation and in transplanted fatty-liver mice as compared to either fatty- or islet transplant group alone (p = NS). A difference in the histochemical pattern of CD31 could not be determined. Fatty-liver creates an inflammatory state which adversely affects the outcome of autologous islet cell transplantation.
Cheng, Yang; Mai, Jing-Yin; Wang, Mei-Feng; Chen, Gao-Feng; Ping, Jian
2017-01-01
To study the effect of total flavonoids of Astmgali Radix (TFA) on liver cirrhosis induced with dimethylnitrosamine (DMN) in rats, and the effect on peroxisome proliferator-activated receptor γ (PPARγ), uncoupling protein 2 (UCP2) and farnesoid X receptor (FXR). Fifty-three Sprague-Dawley rats were randomly divided into a control group (10 rats) and a DMN group (43 rats). Rats in the DMN group were given DMN for 4 weeks and divided randomly into a model group (14 rats), a low-dosage TFA group (14 rats) and a high-dosage TFA group (15 rats) in the 3rd week. Rats were given TFA for 4 weeks at the dosage of 15 and 30 mg/kg in the low- and high-TFA groups, respectively. At the end of the experiment blood and liver samples were collected. Serum liver function and liver tissue hydroxyproline content were determined. hematoxylin-eosin (HE), Sirus red and immunohistochemical stainings of collagen I, smooth muscle actin (α-SMA) was conducted in paraffinembedded liver tissue slices. Real time polymerase chain reaction (PCR) was adopted to determine PPARγ, UCP2 and FXR mRNA levels. Western blot was adopted to determine protein levels of collagen I, α-SMA, PPARγ, UCP2 and FXR. Compared with the model group, TFA increased the ratio of liver/body weight (low-TFA group P<0.05, high-TFA group P<0.01), improved liver biochemical indices (P<0.01 for ALT, AST, GGT in both groups, P<0.05 for albumin and TBil in the high-TFA group) and reduced liver tissue hydroxproline content (P<0.01 in both groups) in treatment groups significantly. HE staining showed that TFA alleviated liver pathological changes markedly and Sirus red staining showed that TFA reduced collagen deposition, alleviated formation and extent of liver pseudolobule. Collagen I and α-SMA immunohistochemical staining showed that staining area and extent markedly decreased in TFA groups compared with the model group. TFA could increase PPARγ, it regulated target UCP2, and FXR levels significantly compared with the model group (in the low-TFA group all P<0.05, in the high group all P<0.01). TFA could improve liver function, alleviate liver pathological changes, and reduce collagen deposition and formation of liver pseudolobule in rats with liver cirrhosis. The antifibrotic effect of TFA was through regulating PPARγ signal pathway and the interaction with FXR.
Tang, Yong; Chu, Hongpeng; Cao, Guojun; Du, Xiaolong; Min, Xiaobo; Wan, Chidan
2018-03-01
Warm ischemia reperfusion injury (IRI) plays a key role in biliary complication, which is a substantial vulnerability of liver transplantation. The early pathophysiological changes of IRI are characterized by an excessive inflammatory response. S-Adenosylmethionine (SAM) is an important metabolic intermediate that modulates inflammatory reactions; however, its role in bile duct warm IRI is not known. In this study, male rats were treated with or without SAM (170 μmol/kg body weight) after orthotopic autologous liver transplantation. The histopathological observations showed that bile duct injury in the IRI group was more serious than in the SAM group. The alanine aminotransferase (ALT), alkaline phosphatase (ALP) and direct bilirubin (DBIL) levels in the serum of the IRI group were significantly increased compared to the SAM group (P < .05). Simultaneously, SAM effectively improved the survival of the transplant recipients. Furthermore, the H 2 O 2 and malondialdehyde (MDA) of the IRI group were much higher compared to the SAM group (P < .05). The GSH/GSSG ratio in the SAM group was significantly increased by SAM treatment compared to the IRI group (P < .05). SAM administration significantly inhibited macrophage infiltration in liver and bile duct tissues, down-regulated TNF-α levels and up-regulated IL-10 expression in bile duct tissues compared to the IRI group (P < .05). The number of apoptotic biliary epithelial cells and caspase-3-positive cells in IRI rat livers were much higher compared to those in SAM-treated rats at 24 h after liver transplantation (P < .05). These data suggested that SAM protected bile ducts against warm IRI by suppressing oxidative stress, inflammatory reactions and apoptosis of biliary epithelial cells after liver transplantation.α. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ontogeny and nutritional programming of mitochondrial proteins in the ovine kidney, liver and lung.
Yakubu, D P; Mostyn, A; Hyatt, M A; Kurlak, L O; Budge, H; Stephenson, T; Symonds, M E
2007-12-01
This study investigated the developmental and nutritional programming of two important mitochondrial proteins, namely voltage-dependent anion channel (VDAC) and cytochrome c, in the sheep kidney, liver and lung. The effect of maternal nutrient restriction between early and mid-gestation (i.e. 28- to 80-day gestation, the period of maximal placental growth) on the abundance of these proteins was also examined in fetal and juvenile offspring. Fetuses were sampled at 80 and 140 days of gestation (term approximately 147 days), and postnatal animals at 1 and 30 days and 6 months of age. The abundance of VDAC peaked at 140 days of gestation in the lung, compared with 1 day after birth in the kidney and liver, whereas cytochrome c abundance was greatest at 140 days of gestation in the liver, 1 day after birth in the kidney and 6 months of age in lungs. This differential ontogeny in mitochondrial protein abundance between tissues was accompanied with very different tissue-specific responses to changes in maternal food intake. In the liver, maternal nutrient restriction only increased mitochondrial protein abundance at 80 days of gestation, compared with no effect in the kidney. In contrast, in the lung mitochondrial protein, abundance was raised near to term, whereas VDAC abundance was decreased by 6 months of age. These findings demonstrate the tissue-specific nature of mitochondrial protein development that reflects differences in functional adaptation after birth. The divergence in mitochondrial response between tissues to maternal nutrient restriction early in pregnancy further reflects these differential ontogenies.
Wang, M; Wang, X C; Zhao, L; Zhang, Y; Yao, L L; Lin, Y; Peng, Y D; Hu, R M
2014-06-17
Impaired insulin action within skeletal muscle, adipose tissue, and the liver is an important characteristic of type 2 diabetes (T2D). In order to identify common underlying defects in insulin-sensitive tissues that may be involved in the pathogenesis of T2D, the gene expression profiles of skeletal muscle, visceral adipose tissue, and liver from autopsy donors with or without T2D were examined using oligonucleotide microarrays and quantitative reverse transcriptase-PCR. Compared with controls, 691 genes were commonly dysregulated in these three insulin-sensitive tissues of humans with T2D. These co-expressed genes were enriched within the mitochondrion, with suggested involvement in energy metabolic processes such as glycolysis and gluconeogenesis, fatty acid beta oxidative, tricarboxylic acid cycle, and electron transport. Genes related to energy metabolism were mostly downregulated in diabetic skeletal muscle and visceral adipose tissue, while they were upregulated in the diabetic liver. This observed dysregulation in energy-related metabolism may be the underlying factor leading to the molecular mechanisms responsible for the insulin resistance of patients with T2D.
Experimental analysis of robot-assisted needle insertion into porcine liver.
Wang, Wendong; Shi, Yikai; Goldenberg, Andrew A; Yuan, Xiaoqing; Zhang, Peng; He, Lijing; Zou, Yingjie
2015-01-01
How to improve placement accuracy of needle insertion into liver tissue is of paramount interest to physicians. A robot-assisted system was developed to experimentally demonstrate its advantages in needle insertion surgeries. Experiments of needle insertion into porcine liver tissue were performed with conic tip needle (diameter 8 mm) and bevel tip needle (diameter 1.5 mm) in this study. Manual operation was designed to compare the performance of the presented robot-assisted system. The real-time force curves show outstanding advantages of robot-assisted operation in improving the controllability and stability of needle insertion process by comparing manual operation. The statistics of maximum force and average force further demonstrates robot-assisted operation causes less oscillation. The difference of liver deformation created by manual operation and robot-assisted operation is very low, 1 mm for average deformation and 2 mm for maximum deformation. To conclude, the presented robot-assisted system can improve placement accuracy of needle by stably control insertion process.
NASA Astrophysics Data System (ADS)
Ghasemnezhad Targhi, Reza; Homayoun, Mansour; Mansouri, Somaieh; Soukhtanloo, Mohammad; Soleymanifard, Shokouhozaman; Seghatoleslam, Masoumeh
2017-01-01
Ionizing radiation by producing free radicals induces tissue oxidative stress and has clastogenic and cytotoxic effects. The radio protective effect of black mulberry extract (BME) has been investigated on liver tissue and bone marrow cells in the rat. Intraperitoneal (ip) administration of 200 mg/kg BME three days before and three days after 3 Gy and 6 Gy gamma irradiation significantly reduced the frequencies of micro nucleated polychromatic erythrocytes (MnPCEs) and micro nucleated norm chromatic erythrocyte (MnNCEs) and increased PCE/PCE+NCE ratio in rat bone marrow compared to the non-treated irradiated groups. Moreover, this concentration of BME extract decreased the level of malondialdehyde (MDA) and superoxide dismutase (SOD), as well as enhanced the total thiol content and catalase activity in rat's liver compared to the non-treated irradiated groups. It seems that BME extract with antioxidant activity reduced the genotoxicity and cytotoxicity induced by gamma irradiation in bone marrow cells and liver in the rat.
CD4+RORγt++ and Tregs in a Mouse Model of Diet-Induced Nonalcoholic Steatohepatitis
Vonghia, Luisa; Ruyssers, Nathalie; Schrijvers, Dorien; Pelckmans, Paul; Michielsen, Peter; De Clerck, Luc; Ramon, Albert; Jirillo, Emilio; Ebo, Didier; De Winter, Benedicte; Bridts, Chris; Francque, Sven
2015-01-01
Background and Aims. Inflammatory mediators that cross-talk in different metabolically active organs are thought to play a crucial role in the pathogenesis of Nonalcoholic Steatohepatitis (NASH). This study was aimed at investigating the CD4+RORγt+ T-helper cells and their counterpart, the CD4+CD25+FOXP3+ regulatory T cells in the liver, subcutaneous adipose tissue (SAT), and abdominal adipose tissue (AAT) in a high fat diet (HFD) mouse model. Methods. C57BL6 mice were fed a HFD or a normal diet (ND). Liver enzymes, metabolic parameters, and liver histology were assessed. The expression of CD4+RORγt+ cells and regulatory T cells in different organs (blood, liver, AAT, and SAT) were analyzed by flow cytometry. Cytokine and adipokine tissue expression were studied by RT-PCR. Results. Mice fed a HFD developed NASH and metabolic alterations compared to normal diet. CD4+RORγt++ cells were significantly increased in the liver and the AAT while an increase of regulatory T cells was observed in the SAT of mice fed HFD compared to ND. Inflammatory cytokines were also upregulated. Conclusions. CD4+RORγt++ cells and regulatory T cells are altered in NASH with a site-specific pattern and correlate with the severity of the disease. These site-specific differences are associated with increased cytokine expression. PMID:26229237
Akahoshi, Keiichi; Tanaka, Shinji; Mogushi, Kaoru; Shimada, Shu; Matsumura, Satoshi; Akiyama, Yoshimitsu; Aihara, Arihiro; Mitsunori, Yusuke; Ban, Daisuke; Ochiai, Takanori; Kudo, Atsushi; Arii, Shigeki; Tanabe, Minoru
2016-09-01
The incidence of hepatocellular carcinoma (HCC) associated with metabolic risk factors, such as diabetes and obesity, has been increasing. However, the underlying mechanism that links these diseases remains unclear. We performed genome-wide expression analysis of human liver tissues of non-viral HCC patients with or without metabolic risk factors. The upregulated genes that associated with diabetes and obesity were investigated by in vitro and in vivo experiments, and immunohistochemistry of human liver tissues was performed. Among the upregulated genes, connective tissue growth factor (CTGF) expression was induced to a greater extent by combined glucose and insulin administration to human hepatoma cells. Genome-wide expression analysis revealed upregulation of a chemokine network in CTGF-overexpressing hepatoma cells, which displayed an increased ability to induce in vitro activation of macrophages, and in vivo infiltration of liver macrophages. Immunohistochemistry of human liver tissues validated the correlations between CTGF expression and diabetes or obesity as well as activation of liver macrophages in patients with non-viral HCC. Recurrence-free survival was significantly poorer in the CTGF-positive patients compared with the CTGF-negative patients (p = 0.002). Multivariate analysis determined that CTGF expression (HR 2.361; 95 % CI 1.195-4.665; p = 0.013) and vascular invasion (HR 2.367; 95 % CI 1.270-4.410; p = 0.007) were independent prognostic factors for recurrence of non-viral HCC. Our data suggest that CTGF could be involved in oncogenic pathways promoting non-viral HCC associated with metabolic risk factors via induction of liver inflammation and is expected to be a novel HCC risk biomarker and potential therapeutic target.
Bell-Anderson, K S; Aouad, L; Williams, H; Sanz, F R; Phuyal, J; Larter, C Z; Farrell, G C; Caterson, I D
2011-12-01
Fat Aussie mice (foz/foz) are morbidly obese, glucose intolerant and have liver steatosis that develops into steatohepatitis on a high-fat diet. The cannabinoid 1 receptor (CB1) antagonist SR141716 has been shown to improve obesity-associated metabolic complications in humans and rodent models. The aim of this study was to assess the effect of SR141716 in foz/foz mice. Male wildtype (WT) and foz/foz mice were fed a chow or high-fat diet (45% saturated fat). Vehicle or SR141716 (10 mg kg(-1) per day) was administered in jelly once daily for 4 weeks from 4 months of age. Foz/foz mice were obese but had less epididymal adipose tissue mass than fat-fed WT mice despite being significantly heavier. Liver weight was increased by twofold in foz/foz compared with WT mice and showed significant steatogenesis associated with impaired liver function. Foz/foz and fat-fed WT mice were glucose intolerant as determined by oral glucose tolerance test. In chow-fed foz/foz mice, SR141716 reduced body weight, liver weight, reversed hepatosteatosis and glucose intolerance. Subcutaneous white adipose tissue gene expression of the macrophage-specific marker Cd68 reflected the improvements in the metabolic status by SR141716 in these mice. The results are consistent with the hypothesis that foz/foz mice have defective lipid metabolism, are unable to adequately store fat in adipose tissue but instead sequester fat ectopically in other metabolic tissues (liver) leading to insulin resistance and hepatic steatosis associated with inflammation. Our findings suggest that SR141716 can improve liver lipid metabolism in foz/foz mice in line with improved insulin sensitivity and adipose tissue inflammation.
The flame-retardant BDE-99 dose-dependently affects viral replication in CVB3-infected mice.
Lundgren, Magnus; Darnerud, Per Ola; Ilbäck, Nils-Gunnar
2013-06-01
The flame retardant component 2,2',4,4',5-penta-BDE (BDE-99) is found in the environment and in human tissues and fluids. In mice the common human coxsackievirus B3 (CVB3) infection has been shown to change the tissue distribution of BDE-99. We now investigate how CVB3 infection in mice affects liver uptake of (14)C at two doses of radiolabelled BDE-99, and whether increased tissue levels are related to changed virus replication and gene expression of the proinflammatory chemokine monocyte chemoattractant protein-1 (MCP-1). Mice were infected on day 0, orally treated either with 200μg or 20mg (14)C-BDE-99/kgbw on day 1, and euthanised on day 3. Serum and liver levels of (14)C-BDE-99, as well as virus levels and gene expressions of MCP-1 in the liver, were measured. In non-infected mice, there was a dose-dependent uptake of BDE-99 in both liver and serum, and in infected animals the liver BDE-99 levels was further increased. When comparing infected mice exposed to the two BDE-99 doses, the higher BDE dose resulted in increased virus amounts in the liver, and decreased infection-induced expression of MCP-1. Consequently, a high enough dose/tissue concentration of BDE-99 may result in a disturbed mobilisation of immune cells into infected tissues that could explain higher virus titres and a possibly altered clinical course of the disease. Moreover, the fact that CVB3 infection increased the BDE-99 levels in liver but not in serum may impair the risk assessment of polybrominated diphenyl ethers (PBDEs) in subclinical and clinically infected individuals, as serum levels is the common marker of exposure. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cheng, Jun; Song, Xuekun; Ao, Lu; Chen, Rou; Chi, Meirong; Guo, You; Zhang, Jiahui; Li, Hongdong; Zhao, Wenyuan; Guo, Zheng; Wang, Xianlong
2018-01-01
Background & Aims : Primary tumors of colorectal carcinoma (CRC) with liver metastasis might gain some liver-specific characteristics to adapt the liver micro-environment. This study aims to reveal potential liver-like transcriptional characteristics associated with the liver metastasis in primary colorectal carcinoma. Methods: Among the genes up-regulated in normal liver tissues versus normal colorectal tissues, we identified "liver-specific" genes whose expression levels ranked among the bottom 10% ("unexpressed") of all measured genes in both normal colorectal tissues and primary colorectal tumors without metastasis. These liver-specific genes were investigated for their expressions in both the primary tumors and the corresponding liver metastases of seven primary CRC patients with liver metastasis using microdissected samples. Results: Among the 3958 genes detected to be up-regulated in normal liver tissues versus normal colorectal tissues, we identified 12 liver-specific genes and found two of them, ANGPTL3 and CFHR5 , were unexpressed in microdissected primary colorectal tumors without metastasis but expressed in both microdissected liver metastases and corresponding primary colorectal tumors (Fisher's exact test, P < 0.05). Genes co-expressed with ANGPTL3 and CFHR5 were significantly enriched in metabolism pathways characterizing liver tissues, including "starch and sucrose metabolism" and "drug metabolism-cytochrome P450". Conclusions: For primary CRC with liver metastasis, both the liver metastases and corresponding primary colorectal tumors may express some liver-specific genes which may help the tumor cells adapt the liver micro-environment.
Jobara, Kanta; Kaido, Toshimi; Hori, Tomohide; Iwaisako, Keiko; Endo, Kosuke; Uchida, Yoichiro; Uemoto, Shinji
2014-10-01
Liver fibrosis and subsequent cirrhosis is a major cause of death worldwide, but few effective antifibrotic therapies are reported. Whey-hydrolyzed peptide (WHP), a major peptide component of bovine milk, exerts anti-inflammatory effects in experimental models. A WHP-enriched diet is widely used for immunomodulating diets (IMD) in clinical fields. However, the effects of WHP on liver fibrosis remain unknown. The aim of this study was to investigate the antifibrotic effects of WHP in a rat cirrhosis model. Progressive liver fibrosis was induced by repeated intraperitoneal administration of dimethylnitrosamine (DMN) for 3 wk. Rats were fed either a WHP-enriched IMD (WHP group) or a control enteral diet (control group). The degree of liver fibrosis was compared between groups. Hepatocyte-protective effects were examined using hepatocytes isolated from rats fed a WHP diet. Reactive oxygen species and glutathione in liver tissue were investigated in the DMN cirrhosis model. Macroscopic and microscopic progression of liver fibrosis was remarkably suppressed in the WHP group. Elevated serum levels of liver enzymes and hyaluronic acid, and liver tissue hydroxyproline content were significantly attenuated in the WHP group. Necrotic hepatocyte rates with DMN challenge, isolated from rats fed a WHP-enriched IMD, were significantly lower. In the DMN cirrhosis model, reactive oxygen species were significantly lower, and glutathione was significantly higher in the WHP group's whole liver tissue. A WHP-enriched IMD effectively prevented progression of DMN-induced liver fibrosis in rats via a direct hepatocyte-protective effect and an antioxidant effect through glutathione synthesis. Copyright © 2014 Elsevier Inc. All rights reserved.
Khazaee, Manoochehr; Hamidian, Amir Hossein; Alizadeh Shabani, Afshin; Ashrafi, Sohrab; Mirjalili, Seyyed Ali Ashghar; Esmaeilzadeh, Esmat
2016-02-01
Rodents frequently serve as bioindicator to monitor the quality of the environment. Concentrations of 11 elements (Cd, Co, Ti, Fe, Mn, Cu, Sb, As, Sr, Ni, and Cr) were investigated and compared in liver, hair, femur, and lung of the Persian jird (Meriones persicus) from Darreh Zereshk copper mine, Iran. Metals were determined in different tissues of 39 individuals of Persian jird, collected by snap trap in 2014 from five areas of Darreh Zereshk copper mine. Samples were prepared by wet digestion method, and the contents of elements were analyzed with ICP-OES (VARIAN, 725-ES) instrument. Cadmium, Sb, and Co were below the limit of detection, and Mn and As were found only in hair and liver tissues. We detected the highest concentration of Cu, As, Ti, Fe, Mn, Cr, and Ni in hair in comparison with other tissues. Significant higher levels of Ti in femur and hair; Fe in liver and hair; Mn in liver; As in hair; Sr in lung; Cr in lung, hair, femur, and liver; Cu in femur; and Ni in liver and lung tissues were observed in females. Nearly all element concentrations in the tissues of Persian jird from flotation site, Darreh Zereshk and Hasan Abad villages and leaching site (mining areas) were higher than those from tailing dump site (reference site). We found the highest concentrations of As in liver and hair; Ni and Cr in liver, hair, and lung; and Sr in lung and hair tissues of Persian jird in leaching site. We tried to specify the status of elements before fully exploitation of Darreh Zereshk copper mine by using bioindicator species. Based on our achievements, initial activities did not strongly pollute the surrounded environment of the mine. The high abundance of Persian jird as well as their several proper features makes them a suitable species for biomonitoring programs especially for further studies will be performed after full exploitation of Darreh Zereshk copper mine.
Zurbuchen, Urte; Poch, Franz; Gemeinhardt, Ole; Kreis, Martin E; Niehues, Stefan M; Vahldieck, Janis L; Lehmann, Kai S
2017-02-01
Background Radiofrequency ablation is used to induce thermal necrosis in the treatment of liver metastases. The specific electrical conductivity of a liver metastasis has a distinct influence on the heat formation and resulting tumor ablation within the tissue. Purpose To examine the electrical conductivity σ of human colorectal liver metastases and of tumor-free liver tissue in surgical specimens. Material and Methods Surgical specimens from patients with resectable colorectal liver metastases were used for measurements (size of metastases <30 mm). A four-needle measuring probe was used to determine the electrical conductivity σ of human colorectal liver metastasis (n = 8) and tumor-free liver tissue (n = 5) in a total of five patients. All measurements were performed at 470 kHz, which is the relevant frequency for radiofrequency ablation. The tissue temperature was also measured. Hepatic resections were performed in accordance with common surgical standards. Measurements were performed in the operating theater immediately after resection. Results The median electrical conductivity σ was 0.57 S/m in human colorectal liver metastases at a median temperature of 35.1℃ and 0.35 S/m in tumor-free liver tissue at a median temperature of 34.9℃. The electrical conductivity was significantly higher in tumor tissue than in tumor-free liver tissue ( P = 0.005). There were no differences in tissue temperature between the two groups ( P = 0.883). Conclusion The electrical conductivity is significantly higher in human colorectal liver metastases than in tumor-free liver tissue at a frequency of 470 kHz.
Faust, Derek R; Hooper, Michael J; Cobb, George P; Barnes, Melanie; Shaver, Donna; Ertolacci, Shauna; Smith, Philip N
2014-09-01
Inorganic elements from anthropogenic sources have entered marine environments worldwide and are detectable in marine organisms, including sea turtles. Threatened and endangered classifications of sea turtles have heretofore made assessments of contaminant concentrations difficult because of regulatory restrictions on obtaining samples using nonlethal techniques. In the present study, claw and skin biopsy samples were examined as potential indicators of internal tissue burdens in green sea turtles (Chelonia mydas). Significant relationships were observed between claw and liver, and claw and muscle concentrations of mercury, nickel, arsenic, and selenium (p < 0.05). Similarly, significant relationships were observed between skin biopsy concentrations and those in liver, kidney, and muscle tissues for mercury, arsenic, selenium, and vanadium (p < 0.05). Concentrations of arsenic, barium, chromium, nickel, strontium, vanadium, and zinc in claws and skin biopsies were substantially elevated when compared with all other tissues, indicating that these highly keratinized tissues may represent sequestration or excretion pathways. Correlations between standard carapace length and cobalt, lead, and manganese concentrations were observed (p < 0.05), indicating that tissue concentrations of these elements may be related to age and size. Results suggest that claws may indeed be useful indicators of mercury and nickel concentrations in liver and muscle tissues, whereas skin biopsy inorganic element concentrations may be better suited as indicators of mercury, selenium, and vanadium concentrations in liver, kidney, and muscle tissues of green sea turtles. © 2014 SETAC.
Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice
Yang, Hao; Wang, Shu Pei; Mitchell, Grant A.
2017-01-01
Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency. PMID:29232702
Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice.
Xia, Bo; Cai, Guo He; Yang, Hao; Wang, Shu Pei; Mitchell, Grant A; Wu, Jiang Wei
2017-12-01
Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency.
Vitamin E and selenium treatment of monocrotaline induced hepatotoxicity in rats.
Cuce, G; Canbaz, H T; Sozen, M E; Yerlikaya, F H; Kalkan, S
2017-01-01
Monocrotaline (MCT) is a hepatotoxic pyrrolizidine alkaloid that is derived from plants; exposure may occur by consumption of contaminated grains, herbal teas and medicines. MCT can cause liver damage. We investigated the antioxidant effects of selenium (Se) and vitamin E against the toxic effects of MCT. Female Wistar albino rats were divided into four groups: a control group, an MCT group, an MCT + Se group, and an MCT + vitamin E group. Liver tissues were harvested, fixed, processed to paraffin and sections were cut. Anti-von Willebrand factor (vWF) immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL), and hematoxylin and eosin staining were performed. Serum and liver tissue glutathione (GSH), catalase (CAT), and glutathione peroxidase (GPx) levels were measured. Histopathological and TUNEL data showed significantly increased liver damage in the MCT group compared to controls. Histopathological and TUNEL staining indicated significant improvements in the MCT + vitamin E and MCT + Se groups compared to the MCT group. MCT significantly reduced the serum GSH level and GPx activity, and liver GPx activity. Biochemical data indicated a significant improvement in serum GSH level in the MCT + vitamin E group compared to the MCT group. We suggest that vitamin E and Se afford limited protection against MCT hepatotoxicity.
A study on effects of glutathione s-transferase from silkworm on CCL4-induced mouse liver injury.
Yan, Hui; Gui, Zhongzheng; Wang, Bochu
2011-01-01
To assess the hepatoprotective activity of Glutathione S-transferase(GSTsw), extracted and purified from silkworm, in experimental acute mice liver injury and explore mechanisms. Mice were divided into five groups: control group, carbon tetrachloride (CCl4) group, and three treatment groups that received CCl4 and GSTsw at doses of 0.083 mg•g(-1), 0.0415 mg•g(-1) and 0.0207 mg•g(-1) for 3 days. ALT in serum, GST, SOD and T-AOC in liver tissue homogenate, and changes in liver pathology in the five groups were studied. CCl4 administration led to pathological and biochemical evidence of liver injury as compared to untreated controls. GSTsw administration led to significant protection against CCl4-induced changes in liver pathology. It was also associatedwith significantly lower serum ALT levels, higher GST-SOD and T-AOC level in live tissue homogenate. Thus, GSTsw showed protective activity against CCl4-induced hepatotoxicity in mice.
Glińska-Suchocka, K; Kubiak, K; Spużak, J; Jankowski, M; Borusewicz, P
2017-03-28
Shear wave elastography is a novel technique enabling real-time measurement of the elasticity of liver tissue. The color map is superimposed on the classic ultrasound image of the assessed tissue, which enables a precise evaluation of the stiffness of the liver tissue. The aim of the study was to assess the stiffness of normal liver tissue in the guinea pig using shear wave elastography. The study was carried out on 36 guinea pigs using the SuperSonic Imagine Aixplorer scanner, and a 1 to 6 MH convex SC6-1 transducer. An ultrasound guided Try-Cut liver core needle biopsy was carried out in all the studied animals and the collected samples were examined to exclude pathological lesions. The mean liver tissue stiffness ranged from 0.89 to 5.40 kPa. We found that shear wave elastography is an easy, non-invasive technique that can be used to assess the stiffness of liver tissue. The obtained results can be used in future studies to assess the types and changes of liver tissue in the course of various types of liver disease.
Mailloux, Ryan J; Gardiner, Danielle; O'Brien, Marisa
2016-08-01
Pyruvate dehydrogenase (Pdh) and 2-oxoglutarate dehydrogenase (Ogdh) are vital for Krebs cycle metabolism and sources of reactive oxygen species (ROS). O2(·-)/H2O2 formation by Pdh and Ogdh from porcine heart were compared when operating under forward or reverse electron transfer conditions. Comparisons were also conducted with liver and cardiac mitochondria. During reverse electron transfer (RET) from NADH, purified Ogdh generated ~3-3.5× more O2(·-)/H2O2 in comparison to Pdh when metabolizing 0.5-10µM NADH. Under forward electron transfer (FET) conditions Ogdh generated ~2-4× more O2(·-)/H2O2 than Pdh. In both liver and cardiac mitochondria, Ogdh displayed significantly higher rates of ROS formation when compared to Pdh. Ogdh was also a significant source of ROS in liver mitochondria metabolizing 50µM and 500µM pyruvate or succinate. Finally, we also observed that DTT directly stimulated O2(·-)/H2O2 formation by purified Pdh and Ogdh and in cardiac or liver mitochondria in the absence of substrates and cofactors. Taken together, Ogdh is a more potent source of ROS than Pdh in liver and cardiac tissue. Ogdh is also an important ROS generator regardless of whether pyruvate or succinate serve as the sole source of carbon. Our observations provide insight into the ROS generating capacity of either complex in cardiac and liver tissue. The evidence presented herein also indicates DTT, a reductant that is routinely added to biological samples, should be avoided when assessing mitochondrial O2(·-)/H2O2 production. Copyright © 2016 Elsevier B.V. All rights reserved.
Al-Otaiba, Amna; John, Annie; Al-Belooshi, Thekra; Raza, Haider
2010-11-01
We have previously reported the occurrence of multiple forms of drug-metabolizing enzymes in camel tissues. Here, we investigate glutathione (GSH)-dependent redox homeostasis, reactive oxygen species (ROS) production and mitochondrial respiratory functions in camel tissues and compare them with imported domestic goats and laboratory rats and mice. Cytochrome P450 2E1 (CYP 2E1) and GSH-metabolizing enzymes were differentially expressed in the liver and kidney of these animals. Camel liver has significantly lower GSH pool than that in goats, rats and mice. Mitochondria isolated from the tissues of these animals showed a comparable ability to metabolize specific substrates for respiratory enzyme complexes I, II/III and IV. These complexes were metabolically more active in the kidney than in the liver of all the species. Furthermore, the activity of complex IV in camel tissues was significantly lower than in other species. On the other hand, complex II/III activity in camel kidney was higher compared to the other species. In addition, as expected, we observed that inhibitors of these enzyme complexes augment the production of mitochondrial ROS in camel and goat tissues. These results help to better understand the metabolic ability and adaptation in desert camels in comparison with domestic goats and laboratory rats and mice since they are exposed to different environmental and dietary conditions. Our study may also have implications in the pharmacology and toxicology of drugs and pollutants in these species.
Ragusa, Rosetta; Cabiati, Manuela; Guzzardi, Maria Angela; D'Amico, Andrea; Giannessi, Daniela; Del Ry, Silvia; Caselli, Chiara
2017-04-01
Suppression of tumorigenicity 2 (ST2) mediates the effect of Interleukin-33 (IL-33). Few data are reported on the relationship between IL-33/ST2 and obesity. We aimed to investigate effects of obesity on IL-33/ST2 system in heart, adipose tissue and liver in a rodent model of obesity. The relationship of cardiac expression of IL-33/ST2 system with natriuretic peptides (NPs) system and inflammatory mediators was also studied. mRNA expression of IL-33/ST2 system was evaluated in cardiac, adipose and hepatic biopsies from obese Zucker rats (O) and controls (CO). Expression levels of sST2 was significantly lower in O rats compared with CO (p<0.05) in all tissues. Besides, the mRNA levels of IL-33 decreased significant in fat of O respect to CO, while, expression levels of ST2L was significantly higher in liver of CO than in O. A strong relationship of IL-33/ST2 with NPs and classical inflammatory mediators was observed in cardiac tissue. Expression of sST2 in cardiac, adipose and liver tissue decreased in O compared with controls, suggesting an involvement for IL-33/ST2 system in molecular mechanisms of obesity. The strong relationships with NP systems and inflammatory mediators could suggest an involvement for IL-33/ST2 in molecular pathways leading to cardiac dysfunction and inflammation associated with obesity. Copyright © 2017 Elsevier Inc. All rights reserved.
Human Hepatocyte Isolation: Does Portal Vein Embolization Affect the Outcome?
Kluge, Martin; Reutzel-Selke, Anja; Napierala, Hendrik; Hillebrandt, Karl Herbert; Major, Rebeka Dalma; Struecker, Benjamin; Leder, Annekatrin; Siefert, Jeffrey; Tang, Peter; Lippert, Steffen; Sallmon, Hannes; Seehofer, Daniel; Pratschke, Johann; Sauer, Igor M; Raschzok, Nathanael
2016-01-01
Primary human hepatocytes are widely used for basic research, pharmaceutical testing, and therapeutic concepts in regenerative medicine. Human hepatocytes can be isolated from resected liver tissue. Preoperative portal vein embolization (PVE) is increasingly used to decrease the risk of delayed postoperative liver regeneration by induction of selective hypertrophy of the future remnant liver tissue. The aim of this study was to investigate the effect of PVE on the outcome of hepatocyte isolation. Primary human hepatocytes were isolated from liver tissue obtained from partial hepatectomies (n = 190) using the two-step collagenase perfusion technique followed by Percoll purification. Of these hepatectomies, 27 isolations (14.2%) were performed using liver tissue obtained from patients undergoing PVE before surgery. All isolations were characterized using parameters that had been described in the literature as relevant for the outcome of hepatocyte isolation. The isolation outcomes of the PVE and the non-PVE groups were then compared before and after Percoll purification. Metabolic parameters (transaminases, urea, albumin, and vascular endothelial growth factor secretion) were measured in the supernatant of cultured hepatocytes for more than 6 days (PVE: n = 4 and non-PVE: n = 3). The PVE and non-PVE groups were similar in regard to donor parameters (sex, age, and indication for surgery), isolation parameters (liver weight and cold ischemia time), and the quality of the liver tissue. The mean initial viable cell yield did not differ between the PVE and non-PVE groups (10.16 ± 2.03 × 10(6) cells/g vs. 9.70 ± 0.73 × 10(6) cells/g, p = 0.499). The initial viability was slightly better in the PVE group (77.8% ± 2.03% vs. 74.4% ± 1.06%). The mean viable cell yield (p = 0.819) and the mean viability (p = 0.141) after Percoll purification did not differ between the groups. PVE had no effect on enzyme leakage and metabolic activity of cultured hepatocytes. Although PVE leads to drastic metabolic alterations and changes in hepatic blood flow, embolized liver tissue is a suitable source for the isolation of primary human hepatocytes and is equivalent to untreated liver tissue in regard to cell yield and viability.
Ion Imbalance Is Involved in the Mechanisms of Liver Oxidative Damage in Rats Exposed to Glyphosate
Tang, Juan; Hu, Ping; Li, Yansen; Win-Shwe, Tin-Tin; Li, Chunmei
2017-01-01
Glyphosate (N-phosphonomethyl-glycine, GLP) is the most popular herbicide used worldwide. This study aimed to investigate the effects of glyphosate on rats' liver function and induction of pathological changes in ion levels and oxidative stress in hepatic tissue. Sprague-Dawley rats were treated orally with 0, 5, 50, and 500 mg/kg body weight of the GLP. After 5 weeks of treatment, blood and liver samples were analyzed for biochemical and histomorphological parameters. The various mineral elements content in the organs of the rats were also measured. Significant decreases were shown in the weights of body, liver, kidney and spleen between the control and treatment groups. Changes also happened in the histomorphology of the liver and kidney tissue of GLP-treated rats. The GLP resulted in an elevated level of glutamic-oxalacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT) and IL-1β in the serum. Besides, decreased total superoxide dismutase (T-SOD) activity and increased malondialdehyde (MDA) contents in the serum, liver, and kidney indicated the presence of oxidative stress. Moreover, increase of hydrogen peroxide (H2O2) level and catalase (CAT) activity in the serum and liver and decrease of glutathione (GSH) and lutathione peroxidase (GSH-Px) activity in the kidney tissue further confirmed the occurrence of oxidative stress. The results of RT-PCR showed that the mRNA expressions of IL-1α, IL-1β, IL-6, MAPK3, NF-κB, SIRT1, TNF-α, Keap1, GPX2, and Caspase-3 were significantly increased in the GLP-treated groups compared to the control group. Furthermore, PPARα, DGAT, SREBP1c, and SCD1 mRNA expressions were also remarkably increased in the GLP-treated groups compared to the control group. In addition, aluminum (Al), iron (Fe), copper (Cu), zinc (Zn), and magnesium (Mg) levels were showed a significant difference reduction or increase in rat liver, kidney, spleen, lung, heart, muscle, brain, and fat tissues. These results suggested that glyphosate caused obvious damage to rats' liver and caused various mineral elements content imbalances in various organs of rats. Ion imbalance could weaken antioxidant capacity and involve in the mechanism of liver oxidative damage caused by GLP. PMID:29311996
Valenzuela, Rodrigo; Echeverria, Francisca; Ortiz, Macarena; Rincón-Cervera, Miguel Ángel; Espinosa, Alejandra; Hernandez-Rodas, María Catalina; Illesca, Paola; Valenzuela, Alfonso; Videla, Luis A
2017-04-11
Eicosapentaenoic acid (EPA, C20:5n-3), docosahexaenoic acid (DHA, C22:6n-3) and arachidonic acid (AA, C20:4n-6) are long-chain polyunsaturated fatty acids (LCPUFAs) with relevant roles in the organism. EPA and DHA are synthesized from the precursor alpha-linolenic acid (ALA, C18:3n-3), whereas AA is produced from linoleic acid (LA, C18:2n-6) through the action of Δ5 and Δ6-desaturases. High-fat diet (HFD) decreases the activity of both desaturases and LCPUFA accretion in liver and other tissues. Hydroxytyrosol (HT), a natural antioxidant, has an important cytoprotective effects in different cells and tissues. Male mice C57BL/6 J were fed a control diet (CD) (10% fat, 20% protein, 70% carbohydrates) or a HFD (60% fat, 20% protein, 20% carbohydrates) for 12 weeks. Animals were daily supplemented with saline (CD) or 5 mg HT (HFD), and blood and the studied tissues were analyzed after the HT intervention. Parameters studied included liver histology (optical microscopy), activity of hepatic desaturases 5 and 6 (gas-liquid chromatography of methyl esters derivatives) and antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase by spectrophotometry), oxidative stress indicators (glutathione, thiobarbituric acid reactants, and the antioxidant capacity of plasma), gene expression assays for sterol regulatory element-binding protein 1c (SREBP-1c) (qPCR and ELISA), and LCPUFA profiles in liver, erythrocyte, brain, heart, and testicle (gas-liquid chromatography). HFD led to insulin resistance and liver steatosis associated with SREBP-1c upregulation, with enhancement in plasma and liver oxidative stress status and diminution in the synthesis and storage of n-6 and n-3 LCPUFAs in the studied tissues, compared to animals given control diet. HT supplementation significantly reduced fat accumulation in liver and plasma as well as tissue metabolic alterations induced by HFD. Furthermore, a normalization of desaturase activities, oxidative stress-related parameters, and tissue n-3 LCPUFA content was observed in HT-treated rats over control animals. HT supplementation prevents metabolic alterations in desaturase activities, oxidative stress status, and n-3 LCPUFA content in the liver and extrahepatic tissues of mice fed HFD.
Song, Yan; Zhao, Guo-zhen; Zhao, Bai-xiao; Ji, Bo; Wang, De-sheng; Zhang, He; Mao, Ying-qiu; Zhang, Ping; Xu, Yong-si; Liu, Ya-li; Lu, Ya-wen; Dai, Jian; Li, Ying-hui
2015-10-01
To observe the effect of acupuncture intervention at different time-points on the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), the content of malonaldehyde (MDA) and expression of heat shock protein 70 (HSP 70) of liver tissue in rats with simulated weightlessness, so as to explore its mechanism underlying improvement of liver injury in rats with simulated weightlessness. Twenty male Wistar rats were randomly divided into control group, model group, pre-acupuncture group and EA group, 5 rats in each. The model of simulated weightlessness was established by tail suspension for 4 week. One week before the tail suspension, the rats in the pre-acupuncture group were treated with electroacupuncture (EA) at "Shenshu" (BL 23), "Pishu"(BL 20) and "Sanyinjiao" (SP 6) for 30 min before treatment, once a day for 7 days. The rats in the EA group received tail suspension and acupuncture intervention at the same time. EA was applied for 30 min per treatment, once every other day for 14 times. Immunohistochemical staining was used to assay the expression of HSP 70 in the liver tissue. The activities of SOD and GSH-PX and content of MDA in liver tissues were examined by means of colourimetric method. Results Compared with the control group,the expression of HSP 70 and the content of MDA in the liver tissue were increased significantly (P < 0.01), and the activity of SOD and GSH-PX was notably reduced (P < 0.05) in the model group. Compared with the model group, the content of HSP 70 was significantly reduced in the pre-acupuncture group (P < 0.01). There were no significant changes in the levels of SOD, GSH-PX, MDA and HSP 70 in the EA group (P > 0.05). In comparison with the pre-acupuncture group, the activity of GSH-PX was lower (P < 0.05) and the content of MDA was higher (P < 0.05) in the EA group. EA-pretreatment can suppress the increase of liver HSP 70 immunoactivity in rats with simulated weightlessness, being likely to improve the antioxidant ability of liver.
Physical trade-offs shape the evolution of buoyancy control in sharks.
Gleiss, Adrian C; Potvin, Jean; Goldbogen, Jeremy A
2017-11-15
Buoyancy control is a fundamental aspect of aquatic life that has major implications for locomotor performance and ecological niche. Unlike terrestrial animals, the densities of aquatic animals are similar to the supporting fluid, thus even small changes in body density may have profound effects on locomotion. Here, we analysed the body composition (lipid versus lean tissue) of 32 shark species to study the evolution of buoyancy. Our comparative phylogenetic analyses indicate that although lean tissue displays minor positive allometry, liver volume exhibits pronounced positive allometry, suggesting that larger sharks evolved bulkier body compositions by adding lipid tissue to lean tissue rather than substituting lean for lipid tissue, particularly in the liver. We revealed a continuum of buoyancy control strategies that ranged from more buoyant sharks with larger livers in deeper ecosystems to relatively denser sharks with small livers in epipelagic habitats. Across this eco-morphological spectrum, our hydrodynamic modelling suggests that neutral buoyancy yields lower drag and more efficient steady swimming, whereas negative buoyancy may be more efficient during accelerated movements. The evolution of buoyancy control in sharks suggests that ecological and physiological factors mediate the selective pressures acting on these traits along two major gradients, body size and habitat depth. © 2017 The Author(s).
Raach, Meriem; Lebeuf, Michel; Pelletier, Emilien
2011-03-01
Due to their lipophilic properties, persistent organic pollutants (POPs) are commonly assessed using the blubber of marine mammals. However, these chemicals are also accumulating in other tissues including the liver. Some pollutants, namely perfluorinated alkyl acids, are found predominately in the liver and blood of marine mammals, and thus monitored in those tissues. This raises the question whether any tissue would represent an identical trend of POPs in the SLE beluga. The current study reports the first temporal trends of PBDEs and PCBs in the liver of 65 SLE belugas. Neither ∑₇PBDEs nor major individual PBDE-homolog group concentrations showed significant trends between 1993 and 2007. Also, ∑₃₂PCBs did not change over years, although, tetra-, penta- and hepta-PCB decreased by 7.1, 6.8 and 8.5%, respectively, in males, whereas tetra-, penta- and octa-PCBs declined by 11, 12 and 12.9%, respectively, in females. In order to compare the distribution of POPs between liver and blubber, a lipid normalised concentration ratio R (blubber/liver) for PBDEs and PCBs was calculated for each individual beluga. For all PBDE and several PCB homolog groups, mean R values were not statistically different from unity indicating that the partitioning of these POPs is governed by the tissue lipid-content. Temporal trends of R ratios of PBDEs and PCBs were also examined. There were generally no significant temporal trends except for PBDEs in males where R increased in average by 12.7 ± 2.9% yearly. The stratification of the blubber into a metabolically active (inner) and less active layers (outer blubber) may result in a slower response time of the blubber (full depth) than the liver to the recent change of contamination in the environment and explain the time trend differences between both tissues. This study suggests that the liver is more representative of recent exposure to lipophilic contaminants.
Najafi, Houshang; Mohamadi Yarijani, Zeynab; Changizi-Ashtiyani, Saeed; Mansouri, Kamran; Modarresi, Masoud; Madani, Seyed Hamid
2017-01-01
Mallow (Malva sylvestris L.) has had medicinal and therapeutic uses in addition to its oral consumption. The present study was conducted to examine the protective effect of Malva sylvestris L. extract on ischemia-reperfusion-induced kidney injury and remote organ injuries in the liver. Before ischemia-reperfusion, rats in the different groups received intraperitoneal normal saline or mallow extract at the doses of 200, 400 or 600 mg/kg of body weight. After 30-minutes of bilateral renal ischemia followed by 24-hours of reperfusion, tissue damage in the kidney and liver samples were determined through studying H&E-stained slides under a light microscope. The degree of leukocyte infiltration and tissue mRNA expressions of TNF- and ICAM-1 were then measured to examine the degree of renal inflammation. The renal tissue MDA and FRAP levels were measured for determining the amount of oxidative stress. Plasma concentrations of creatinine, urea, ALT and ALP were also measured. Ischemia-reperfusion led to a significant increase in plasma concentrations of creatinine, urea, ALT and ALP, and renal tissue MDA, and a significant decrease in renal tissue FRAP. The expression of pro-inflammatory factors in the kidney tissue, the level of leukocyte infiltration and the amount of tissue damage in the kidney and liver also increased. Pretreatment by mallow extract led to a significant improvement in all the variables measured. The 200- and 400-mg doses yielded better results in most parameters compared to the 600-mg dose. The findings showed that mallow extract protects the kidney against ischemia-reperfusion and reduces remote organ injury in the liver. PMID:29155898
Tissue shrinkage in microwave ablation of liver: an ex vivo predictive model.
Amabile, Claudio; Farina, Laura; Lopresto, Vanni; Pinto, Rosanna; Cassarino, Simone; Tosoratti, Nevio; Goldberg, S Nahum; Cavagnaro, Marta
2017-02-01
The aim of this study was to develop a predictive model of the shrinkage of liver tissues in microwave ablation. Thirty-seven cuboid specimens of ex vivo bovine liver of size ranging from 2 cm to 8 cm were heated exploiting different techniques: 1) using a microwave oven (2.45 GHz) operated at 420 W, 500 W and 700 W for 8 to 20 min, achieving complete carbonisation of the specimens, 2) using a radiofrequency ablation apparatus (450 kHz) operated at 70 W for a time ranging from 6 to 7.5 min obtaining white coagulation of the specimens, and 3) using a microwave (2.45 GHz) ablation apparatus operated at 60 W for 10 min. Measurements of specimen dimensions, carbonised and coagulated regions were performed using a ruler with an accuracy of 1 mm. Based on the results of the first two experiments a predictive model for the contraction of liver tissue from microwave ablation was constructed and compared to the result of the third experiment. For carbonised tissue, a linear contraction of 31 ± 6% was obtained independently of the heating source, power and operation time. Radiofrequency experiments determined that the average percentage linear contraction of white coagulated tissue was 12 ± 5%. The average accuracy of our model was determined to be 3 mm (5%). The proposed model allows the prediction of the shrinkage of liver tissues upon microwave ablation given the extension of the carbonised and coagulated zones. This may be useful in helping to predict whether sufficient tissue volume is ablated in clinical practice.
Dietz, Birgit M.; Hagos, Ghenet K.; Eskra, Jillian N.; Wijewickrama, Gihani T.; Anderson, Jeffrey R.; Nikolic, Dejan; Guo, Jian; Wright, Brian; Chen, Shao-Nong; Pauli, Guido F.; van Breemen, Richard B.; Bolton, Judy L.
2013-01-01
Scope Hops contain the phytoestrogen, 8-prenylnaringenin, and the cytoprotective compound, xanthohumol (XH). XH induces the detoxification enzyme, NAD(P)H-quinone oxidoreductase (NQO1) in vitro; however, the tissue distribution of XH and 8-prenylnaringenin and their tissue specific activity have not been analyzed. Methods and results A standardized hop extract (p.o.) and XH (s.c.) were administered to Sprague-Dawley rats over four days. LC-MS-MS analysis of plasma, liver and mammary gland revealed that XH accumulated in liver and mammary glands. Compared with the low level in the original extract, 8-prenylnaringenin was enriched in the tissues. Hops and XH induced NQO1 in the liver, while only hops reduced NQO1 activity in the mammary gland. Mechanistic studies revealed that hops modulated NQO1 through three mechanisms. In liver cells, 1) XH modified Keap1 leading to Nrf2 translocation and antioxidant response element (ARE) activation; 2) hop-mediated ARE induction was partially mediated through phosphorylation of Nrf2 by PKC; 3) in breast cells, 8-prenylnaringenin reduced NQO1 likely through binding to ERα, recruiting Nrf2, and downregulating ARE-regulated genes. Conclusions XH and 8-prenylnaringenin in dietary hops are bioavailable to the target tissues. While hops and XH might be cytoprotective in the liver, 8-prenylnaringenin seems responsible for hop-mediated NQO1 reduction in the mammary gland. PMID:23512484
Haque, Mazhar; Robinson, Charlotte; Owen, David; Yoshida, Eric M; Harris, Alison
2010-01-01
Acoustic Radiation Force Impulse Imaging (ARFI) is a novel non invasive technique studying the localized mechanical properties of tissue by utilising short, high intensity acoustic pulses (shear wave pulses) to assess the mechanical response (tissue displacement), providing a measure of tissue elasticity. The aim of this study is to investigate the feasibility of ARFI imaging as a non-invasive method for the assessment of liver fibrosis compared to liver biopsy scores. A prospective blind comparison study of ARFI elastography (Virtual Touch Imaging., ACUSON S2000 Ultrasound Unit, Siemens, Mountain View CA) in a consecutive series of patients who underwent liver biopsy for assessment of fibrosis in chronic liver disease. ARFI shear-wave propagation velocity was measured in meters per second. Mean ARFI velocities were compared with both Batts-Ludwig (F0 to F4) and Modified Ishak scores (F0 to F4) for fibrosis in liver biopsy findings. Twenty-one patients with chronic liver disease (Hepatitis C (HCV) =16, Hepatitis B (HBV) = 1, both HCV and HBV = 1 Alcoholic liver disease (ALD) = 1, others = 2) underwent ARFI and liver biopsy on the same day. The Spearman correlation coefficients between the median values of the ARFI measurements and the histological fibrosis stage of the Modified Ishak score and Batts-Lud- (3) wig score were both highly significant (p < 0.01) with rho = 0.69 and rho = 0.72 respectively. The median ARFI (total 180 replications; minimum 5, maximum 10 measurements per patients) velocities for our study population range from 0.92 to 4.17 m/sec. Areas under the receiver operating characteristic curve for the accuracy of ARFI imaging was 1.00 and 0.35, for the diagnosis of moderate fibrosis (histologic fibrosis stage, F (3) 2) and 0.85 and 0.85 respectively for Ishak and Batts-Ludwig score, for the diagnosis of cirrhosis. ARFI imaging has a strong correlation with the fibrosis stage of both Batts-Ludwig and shak score in chronic liver disease. It.s accuracy in prediction of severe fibrosis and cirrhosis is maximal in comparison with earlier stages.
Metabonomics study on Polygonum multiflorum induced liver toxicity in rats by GC-MS
Zhang, Yuan; Wang, Nannan; Zhang, Meiling; Diao, Tingting; Tang, Jingyue; Dai, Mingzhu; Chen, Suhong; Lin, Guanyang
2015-01-01
Polygonum multiflorum, a traditional Chinese medicinal herb, is widely used in liver and liver nourishing. Recent years, drug regulatory departments reported that Polygonum multiflorum caused serious adverse reaction in clinic, especially liver injury. In this study, we detected the changes in rat serum and liver tissue metabolites through gas chromatography-mass spectrometry (GC-MS). Mass spectrometry, partial least squares-discriminate analysis (PLS-DA) and other diversified techniques were used to analyze the differences among their metabolites. Compared to the control group, the serum concentrations of L-threonine and serine in water extraction groups increased. The serum concentrations of 9,12-octadecadienoic acid, hexadecanoic acid, oleic acid, D-glucose and octadecanoic acid in alcohol extraction groups increased, while lactic acid decreased to a great extent. For liver tissue, compared to the control group, the concentrations of myo-inositol, oleic acid and cholesterol in water extraction groups increased, while those of hexadecanoic acid, octadecanoic acid, ribitol and butanedioic acid decreased to a great extent. The concentrations of myo-inositol, phosphoric acid, uridine, oleic acid, cholesterol and butanoic acid in alcohol extraction groups increased to a great extent, while those of hexadecanoic acid, octadecanoic acid, ribitol and butanedioic acid decreased. The results indicate that Polygonum multiflorum induces the metabolic disorders of energy metabolism, amino acid and lipid metabolism. What’s more, liver injury of alcohol extraction group was more serious than group of water extraction. PMID:26379894
Solubilized liver extracellular matrix maintains primary rat hepatocyte phenotype in-vitro.
Loneker, Abigail E; Faulk, Denver M; Hussey, George S; D'Amore, Antonio; Badylak, Stephen F
2016-04-01
Whole organ engineering and cell-based regenerative medicine approaches are being investigated as potential therapeutic options for end-stage liver failure. However, a major challenge of these strategies is the loss of hepatic specific function after hepatocytes are removed from their native microenvironment. The objective of the present study was to determine if solubilized liver extracellular matrix (ECM), when used as a media supplement, can better maintain hepatocyte phenotype compared to type I collagen alone or solubilized ECM harvested from a non-liver tissue source. Liver extracellular matrix (LECM) from four different species was isolated via liver tissue decellularization, solubilized, and then used as a media supplement for primary rat hepatocytes (PRH). The four species of LECM investigated were human, porcine, canine and rat. Cell morphology, albumin secretion, and ammonia metabolism were used to assess maintenance of hepatocyte phenotype. Biochemical and mechanical characterization of each LECM were also conducted. Results showed that PRH's supplemented with canine and porcine LECM maintained their phenotype to a greater extent compared to all other groups. PRH's supplemented with canine and porcine LECM showed increased bile production, increased albumin production, and the formation of multinucleate cells. The findings of the present study suggest that solubilized liver ECM can support in-vitro hepatocyte culture and should be considered for therapeutic and diagnostic techniques that utilize hepatocytes. © 2016 Wiley Periodicals, Inc.
Downregulation of P-cadherin expression in hepatocellular carcinoma induces tumorigenicity
Bauer, Richard; Valletta, Daniela; Bauer, Karin; Thasler, Wolfgang E; Hartmann, Arndt; Müller, Martina; Reichert, Torsten E; Hellerbrand, Claus
2014-01-01
P-cadherin is a major contributor to cell-cell adhesion in epithelial tissues, playing pivotal roles in important morphogenetic and differentiation processes and in maintaining tissue integrity and homeostasis. Alterations of P-cadherin expression have been observed during the progression of several carcinomas where it appears to act as tumor suppressive or oncogenic in a context-dependent manner. Here, we found a significant downregulation of P-cadherin in hepatocellular carcinoma (HCC) cell lines and tissues compared to primary human hepatocytes and non-malignant liver tissues. Combined immunohistochemical analysis of a tissue microarray containing matched pairs of HCC tissue and corresponding non-tumorous liver tissue of 69 patients confirmed reduced P-cadherin expression in more than half of the cases. In 35 human HCC tissues, the P-cadherin immunosignal was completely lost which correlated with tumor staging and proliferation. Also in vitro, P-cadherin suppression in HCC cells via siRNA induced proliferation compared to cells transfected with control-siRNA. In summary, downregulation of P-cadherin expression appears to induce tumorigenicity in HCC. Therefore, P-cadherin expression may serve as a prognostic marker and therapeutic target of this highly aggressive tumor. PMID:25337260
Downregulation of P-cadherin expression in hepatocellular carcinoma induces tumorigenicity.
Bauer, Richard; Valletta, Daniela; Bauer, Karin; Thasler, Wolfgang E; Hartmann, Arndt; Müller, Martina; Reichert, Torsten E; Hellerbrand, Claus
2014-01-01
P-cadherin is a major contributor to cell-cell adhesion in epithelial tissues, playing pivotal roles in important morphogenetic and differentiation processes and in maintaining tissue integrity and homeostasis. Alterations of P-cadherin expression have been observed during the progression of several carcinomas where it appears to act as tumor suppressive or oncogenic in a context-dependent manner. Here, we found a significant downregulation of P-cadherin in hepatocellular carcinoma (HCC) cell lines and tissues compared to primary human hepatocytes and non-malignant liver tissues. Combined immunohistochemical analysis of a tissue microarray containing matched pairs of HCC tissue and corresponding non-tumorous liver tissue of 69 patients confirmed reduced P-cadherin expression in more than half of the cases. In 35 human HCC tissues, the P-cadherin immunosignal was completely lost which correlated with tumor staging and proliferation. Also in vitro, P-cadherin suppression in HCC cells via siRNA induced proliferation compared to cells transfected with control-siRNA. In summary, downregulation of P-cadherin expression appears to induce tumorigenicity in HCC. Therefore, P-cadherin expression may serve as a prognostic marker and therapeutic target of this highly aggressive tumor.
Wang, P; Walter, R D; Bhat, B G; Florant, G L; Coleman, R A
1997-10-01
In order to determine whether critical enzyme activities of glycerolipid synthesis change seasonally in the golden-mantled ground squirrel (Spermophilus lateralis), we collected summer and winter samples of liver, brown adipose tissue (BAT), and white adipose tissue (WAT). Compared with fatty acid synthase activity during hibernation, summer activities were 2.5- to 8-fold higher in adipose tissue and liver. Diacylglycerol acyltransferase (DGAT) activity was 2.6-fold higher in WAT during the summer, consistent with increased seasonal triacylglycerol storage, but the activity did not change in liver or BAT, suggesting that in these tissues, triacylglycerol synthesis is equally active in summer and winter. Lack of change in acyl-CoA synthetase in liver and BAT may reflect high synthetic rates for acyl-CoAs that are destined in the summer for glycerolipid synthesis and in the winter for beta-oxidation. Monoacylglycerol acyltransferase (MGAT) activity increased significantly in both liver and WAT during the summer but decreased in BAT. Although the changes were consistent with active year-round triacylglycerol synthesis, the higher summer MGAT activity observed in the squirrel liver and WAT suggest that MGATs function may not be limited to conserving essential fatty acids during physiological states of lipolysis. Seasonal changes observed in the ground squirrel were similar to those previously reported in the yellow-bellied marmot (Marmota flaviventris), confirming that important adjustments occur in energy metabolism necessitated by long seasonal hibernation.
Nishimura, Shotaro; Sagara, Ayano; Oshima, Ichiro; Ono, Yoshitaka; Iwamoto, Hisao; Okano, Kaoru; Miyachi, Hideyuki; Tabata, Shoji
2009-08-01
The distribution and three-dimensional architecture of collagen fibers were compared between pig, goat and chicken livers. Immunohistochemical staining revealed that collagen type I was identified in the interlobular connective tissue region and intralobular areas in pigs and goats. Type III collagen was also identified in the interlobular connective tissue region and intralobular sinusoidal walls. In the chicken liver, only the circumference region of the vessels was immunostained with collagen type I and III antibodies and the interlobular connective tissue wall could not be distinguished clearly. In the intralobular region, collagen type I antibody immunoreacted around the hepatic cells but collagen type III antibody immunoreacted weakly. In the NaOH macerated specimen, well-developed collagen bundles formed the prominent interlobular walls in pigs. In contrast, the wall in the goat liver comprised a thin layer of the bundles. In the chicken liver, there were no notable collagen septa between lobules. The intralobular collagen construction was quite different between the animals, indicating a fragile collagen fibril networks in pigs, a robust framework in goats and dense fabric-like septa in chickens. These results indicate that the distinct collagen frameworks may contribute to the histological strength of the livers in each of the animal species.
Xue, Gai; Han, Xiaolei; Ma, Xin; Wu, Honghai; Qin, Yabin; Liu, Jianfang; Hu, Yuqin; Hong, Yang; Hou, Yanning
2016-01-01
Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are considered to be an ideal cell source for cell therapy of many diseases. The aim of this study was to investigate the contribution of the microenvironment to the hepatic differentiation potential of hUCMSCs in vitro and in vivo and to explore their therapeutic use in acute liver injury in rats. We established a new model to simulate the liver tissue microenvironment in vivo using liver homogenate supernatant (LHS) in vitro. This induced environment could drive hUCMSCs to differentiate into hepatocyte-like cells within 7 days. The differentiated cells expressed hepatocyte-specific markers and demonstrated hepatocellular functions. We also injected hUCMSCs into rats with CCl4-induced acute hepatic injury. The hUCMSCs were detected in the livers of recipient rats and expressed the human hepatocyte-specific markers, suggesting that hUCMSCs could differentiate into hepatocyte-like cells in vivo in the liver tissue microenvironment. Levels of biochemistry markers improved significantly after transplantation of hUCMSCs compared with the nontransplantation group (P < 0.05). In conclusion, this study demonstrated that the liver tissue microenvironment may contribute to the differentiation of hUCMSCs into hepatocytes both in vitro and in vivo. PMID:27088093
Szabó, András; Mézes, Miklós; Romvári, Róbert; Fébel, Hedvig
2010-03-01
The phospholipid (PL) fatty acyl chain (FA) composition (mol%) was determined in the kidney, liver, lung and brain of 8 avian species ranging in body mass from 150g (Japanese quail, Coturnix coturnix japonica) to 19kg (turkey, Meleagris gallopavo). In all organs except the brain, docosahexaenoic acid (C22:6 n3, DHA) was found to show a negative allometric scaling (allometric exponent: B=-0.18; -0.20 and -0.24, for kidney, liver and lung, respectively). With minor inter-organ differences, smaller birds had more n3 FAs and longer FA chains in the renal, hepatic and pulmonary PLs. Comparing our results with literature data on avian skeletal muscle, liver mitochondria and kidney microsomes and divergent mammalian tissues, the present findings in the kidney, liver and lung PLs seem to be a part of a general relationship termed "membranes as metabolic pacemakers". Marked negative allometric scaling was found furthermore for the tissue malondialdehyde concentrations in all organs except the brain (B=-0.17; -0.13 and -0.05, respectively). In the liver and kidney a strong correlation was found between the tissue MDA and DHA levels, expressing the role of DHA in shaping the allometric properties of membrane lipids. 2009 Elsevier Inc. All rights reserved.
Promoter methylation assay of SASH1 gene in hepatocellular carcinoma.
Peng, Liu; Wei, He; Liren, Li
2014-01-01
To analyse the relationship between the expression of SASH1 and its methylation level in human hepatocellular carcinoma. Expression levels of SASH1 were examined with real-time PCR (RT-PCR) in tissues and cells, and methylation analysis was performed with MassArray. The expression levels of SASH1 were strongly reduced in liver cancer tissues compared with adjacent normal tissues. Quantitative methylation analysis by MassArray revealed different CpG sites in SASH1 promoter shared similar methylation pattern between liver cancer tissues and adjacent normal tissues and the CpG sites of significant difference in methylation level were found as follows: CpG_3, CpG_17, CpG_21.22, CpG_25, CpG_26.27, CpG_28, CpG_34.35.36 and CpG_51.52. Moreover, 5-aza-2'-deoxycytidine treatment of Hep-G2 cell line caused significant elevation of SASH1 mRNA. Based on these data, we propose that increase of DNA methylation degree in the promoter region of SASH1 gene, particularly CpG_26.27 sites, possibly repressed SASH1 expression in liver cancer.
Sato, Tomohiro; Tamada, Tsutomu; Watanabe, Shigeru; Nishimura, Hirotake; Kanki, Akihiko; Noda, Yasufumi; Higaki, Atsushi; Yamamoto, Akira; Ito, Katsuyoshi
2015-06-01
This study was undertaken to quantify tissue gadolinium (Gd) deposition in hepatorenally impaired rats exposed to gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) by means of inductively coupled plasma mass spectrometry (ICP-MS) and to compare differences in Gd distribution among major organs as possible triggers for nephrogenic systemic fibrosis. Five hepatorenally impaired rats (5/6-nephrectomized, with carbon-tetrachloride-induced liver fibrosis) were injected with Gd-EOB-DTPA. Histological assessment was conducted and Gd content of the skin, liver, kidneys, lungs, heart, spleen, diaphragm, and femoral muscle was measured by inductively coupled plasma mass spectrometry (ICP-MS) at 7 days after last injection. In addition, five renally impaired rats were injected with Gd-EOB-DTPA and the degree of tissue Gd deposition was compared with that in the hepatorenally impaired rats. ICP-MS analysis revealed significantly higher Gd deposition in the kidneys, spleen, and liver (p = 0.009-0.047) in the hepatorenally impaired group (42.6 ± 20.1, 17.2 ± 6.1, 8.4 ± 3.2 μg/g, respectively) than in the renally impaired group (17.2 ± 7.7, 5.4 ± 2.1, 2.8 ± 0.7 μg/g, respectively); no significant difference was found for other organs. In the hepatorenally impaired group, Gd was predominantly deposited in the kidneys, followed by the spleen, liver, lungs, skin, heart, diaphragm, and femoral muscle. Histopathological investigation revealed hepatic fibrosis in the hepatorenally impaired group. Compared with renally impaired rats, tissue Gd deposition in hepatorenally impaired rats exposed to Gd-EOB-DTPA was significantly increased in the kidneys, spleen, and liver, probably due to the impairment of the dual excretion pathways of the urinary and biliary systems.
NASA Astrophysics Data System (ADS)
Theodorakou, Chrysoula; Farquharson, Michael J.
2009-08-01
The motivation behind this study is to assess whether angular dispersive x-ray diffraction (ADXRD) data, processed using multivariate analysis techniques, can be used for classifying secondary colorectal liver cancer tissue and normal surrounding liver tissue in human liver biopsy samples. The ADXRD profiles from a total of 60 samples of normal liver tissue and colorectal liver metastases were measured using a synchrotron radiation source. The data were analysed for 56 samples using nonlinear peak-fitting software. Four peaks were fitted to all of the ADXRD profiles, and the amplitude, area, amplitude and area ratios for three of the four peaks were calculated and used for the statistical and multivariate analysis. The statistical analysis showed that there are significant differences between all the peak-fitting parameters and ratios between the normal and the diseased tissue groups. The technique of soft independent modelling of class analogy (SIMCA) was used to classify normal liver tissue and colorectal liver metastases resulting in 67% of the normal tissue samples and 60% of the secondary colorectal liver tissue samples being classified correctly. This study has shown that the ADXRD data of normal and secondary colorectal liver cancer are statistically different and x-ray diffraction data analysed using multivariate analysis have the potential to be used as a method of tissue classification.
High residue levels and the chemical form of mercury in tissues and organs of seabirds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, E.Y.; Murakami, Toru; Saeki, Kazutoshi
1995-12-31
Total and organic (methyl) mercury in liver, muscle, kidney and feather of 9 species of seabirds were analyzed to determine the levels and their distribution and to clarify the occurrences of high mercury levels and their detoxification process in seabirds. Total mercury levels in liver showed great variations in intra and interspecies, while organic mercury levels were less variable. As compared with species in relatively low mercury levels, the species which accumulated the high concentration of mercury like black-footed albatross exhibited the different distribution of mercury in the body: in total mercury burden, albatross species contained less than 10% inmore » feather and over 50% in liver, while other species contained over 40% in feather and less than 20% in liver. The order of organic mercury concentrations in tissues were as follows: liver > kidney > muscle in seabirds examined, except oldsquaw. The mean percentage of organic mercury in total was 35%, 66%, and 36% in liver, muscle and kidney, respectively, for all the species. The significant negative correlations were found between organic mercury percentage to total mercury and total mercury concentrations in the liver and muscle of black-footed albatross and in the liver of laysan albatross. Furthermore, in liver, muscle, and kidney of all the species, the percentages of organic mercury had a negative trend with an increase of total mercury concentrations. The results suggest that albatross species may be capable for demethylating organic mercury in the tissues (mainly in liver), and for storing the mercury as immobilizable inorganic form in the liver as substitution for delivering organic mercury to other organs. It is noteworthy that the species with high degree of demethylation showed the lower mercury burdens in feather and slow moulting pattern.« less
Kehrig, Helena A; Hauser-Davis, Rachel A; Seixas, Tercia G; Pinheiro, Ana Beatriz; Di Beneditto, Ana Paula M
2016-06-01
In the present study, the concentration of trace elements, total mercury (Hg) and selenium (Se) and mercury forms (MeHg, Hginorg and HgSe) in the vulnerable coastal dolphins Pontoporia blainvillei and Sotalia guianensis were appraised and compared, using metallothioneins (MT) and glutathione (GSH) as biomarkers for trace element exposure. The trace element concentrations varied between muscle and liver tissues, with liver of all dolphin specimens showing higher Hg and Se concentrations than those found in muscle. Hg, MeHg and Hginorg molar concentrations showed a clear increase with Se molar concentrations in the liver of both dolphins, and Se concentrations were higher than those of Hg on a molar basis. Se plays a relevant role in the detoxification of MeHg in the hepatic tissue of both dolphins, forming Hg-Se amorphous crystals in liver. In contrast, MT were involved in the detoxification process of Hginorg in liver. GSH levels in P. blainvillei and S. guianensis muscle tissue suggest that these dolphins have different diving capacities. Muscle Hg concentrations were associated to this tripeptide, which protects dolphin cells against Hg stress. Copyright © 2016 Elsevier Ltd. All rights reserved.
Protective effect of IGF-1 on experimental liver cirrhosis-induced common bile duct ligation.
Cantürk, Nuh Zafer; Cantürk, Zeynep; Ozden, Meltem; Dalçik, Hakki; Yardimoglu, Melda; Tülübas, Feti
2003-01-01
The causes of malnutrition in liver cirrhosis are multifactorial. Levels of IGF-1 (insulin like growth factor-1) that is a crucial regulator of intermediary metabolism decreases. The aim of this study was to analyze the effect of IGF-1 supplementation during liver cirrhosis induced by common bile duct ligation. Rats were divided into five different groups: One sham and four experimental groups. Rats in three of four groups were treated with 2 micrograms/day IGF-1 with a different time of experiment in each group. Blood biochemical parameters, tissue malondialdehyde, glutathione levels and the activity of tissue antioxidant enzymes and conventional and immunohistochemical analysis of liver samples were studied for each group. Serum albumin, total protein, fibrinogen levels decreased and prothrombin time was prolonged in the bile duct ligated and transected experimental group but not in the IGF-I treated rats compared with the rats in sham group. Liver malondialdehyde levels significantly increased in control group but not in IGF-1 treated groups. The activities of antioxidant enzymes were decreased compared with the other groups. Histopathology findings of liver biopsy demonstrated intense degree fibrosis and overexpression of fibroblast growth factor and desmin in the control group but a lesser degree of those in the IGF-1 treated groups. IGF-1 treatment improves liver function and decreases oxidative liver damage and histopathological findings. Further studies are required to delineate the mechanisms of protective effects of IGF-1.
Zhao, Yaxian; Li, Yuanyuan; Qin, Xiaofei; Lou, Qinqin; Qin, Zhanfen
2016-11-01
This study aimed to investigate the accumulation of polybrominated diphenyl ethers (PBDEs) in the brain compared with that in other tissues among different vertebrates. We collected mice, chickens, ducks, frogs, and fish from an e-waste recycling region in Taizhou, China, and measured PBDE concentrations in brain, liver and muscle tissues. The levels of PBDE in the tissues of mice, chickens, ducks, frogs and fish ranged 0.45-206, 0.06-18.8, 1.83-112, 2.75-108, and 0.02-32.0 ng/g wet weight, respectively. Preferential distribution in the liver and muscle relative to the brain was observed for PBDEs in mice, chickens, ducks and frogs. However, a high retention in the brain compared to the liver and muscle was observed in fish. Comparison of the brain/liver concentration (B/L) ratios revealed differences in PBDEs accumulation in the brain among these vertebrates. PBDEs accumulation in the brain was greatest in fish, followed by frogs, while the lowest accumulation occurred in the brains of mammals and birds. The findings apparently coincided with the evolution of the blood-brain barrier (BBB) across vertebrates, i.e. the BBB of fish might be less efficient than those of mammals, birds and amphibian. Low brominated congeners (such as BDE-28, BDE-47 and BDE-99) were predominant in the brains of investigated vertebrates, whereas BDE-209 was most abundant in liver and muscle tissues of mice, chickens and ducks. Significant differences in B/L ratios among PBDE congeners were found in both mice and chickens (p < 0.05). Particularly in mice, the B/L ratios of PBDE congeners presented a declining trend with increased bromine number. Our findings suggested that low brominated congeners might have a higher capacity to penetrate the BBB and accumulate in the brain, whereas high brominated congeners such as BDE-209 might have less potency to pass through the barrier. Further experimental studies are needed to confirm our findings. Copyright © 2016 Elsevier Ltd. All rights reserved.
A New Modeling for the Changes in the Distribution of Scatterers in Cirrhotic Liver
NASA Astrophysics Data System (ADS)
Hara, Takashi; Hachiya, Hiroyuki
2000-05-01
The human liver is composed of small hexagonal structures called liver lobules. Cirrhosis destroys these liver lobules and replaces them with permanent connective tissue referred to as regenerative nodules. In this paper, we propose a new modeling technique for changes in the scatterer distribution in liver tissue considering the structure of liver lobules to obtain images of the cirrhotic liver over continuous stages. Using these images, we analyze the relationship between changes in characteristics of biological tissue and changes in B-mode images during progressive liver cirrhosis.
The alterations in the extracellular matrix composition guide the repair of damaged liver tissue
Klaas, Mariliis; Kangur, Triin; Viil, Janeli; Mäemets-Allas, Kristina; Minajeva, Ave; Vadi, Krista; Antsov, Mikk; Lapidus, Natalia; Järvekülg, Martin; Jaks, Viljar
2016-01-01
While the cellular mechanisms of liver regeneration have been thoroughly studied, the role of extracellular matrix (ECM) in liver regeneration is still poorly understood. We utilized a proteomics-based approach to identify the shifts in ECM composition after CCl4 or DDC treatment and studied their effect on the proliferation of liver cells by combining biophysical and cell culture methods. We identified notable alterations in the ECM structural components (eg collagens I, IV, V, fibronectin, elastin) as well as in non-structural proteins (eg olfactomedin-4, thrombospondin-4, armadillo repeat-containing x-linked protein 2 (Armcx2)). Comparable alterations in ECM composition were seen in damaged human livers. The increase in collagen content and decrease in elastic fibers resulted in rearrangement and increased stiffness of damaged liver ECM. Interestingly, the alterations in ECM components were nonhomogenous and differed between periportal and pericentral areas and thus our experiments demonstrated the differential ability of selected ECM components to regulate the proliferation of hepatocytes and biliary cells. We define for the first time the alterations in the ECM composition of livers recovering from damage and present functional evidence for a coordinated ECM remodelling that ensures an efficient restoration of liver tissue. PMID:27264108
Senyucel, M F; Boybeyi, O; Ayva, S; Aslan, M K; Soyer, T; Demet, A I; Kısa, U; Basar, M; Cakmak, M A
2013-10-01
An experimental study was carried out to evaluate the effects of extracorporeal shock wave lithotripsy (ESWL) on contralateral kidney, liver and lung by histopathological and biochemical methods. Twelve New Zealand rabbits were allocated to two groups (n = 6). Tissues of control group (CG, n = 6) were harvested without any intervention. In ESWL group (EG), right kidneys were exposed to 3,000 shock waves at 14 kV energy using electro-hydraulic type ESWL device three times every other day. Both kidneys, liver, and right lobe of lung tissues in EG were harvested on seventh day. Kidneys were examined histopathologically for presence of glomerular and tubular injury, interstitial edema, congestion, inflammation and fibrosis. Livers were examined for hepatocyte vacuolization, congestion, portal inflammation and fibrosis. Lung tissues were examined for loss of normal structure, emphysema, interstitial congestion-edema, prominent alveolar septal vessels, interstitial inflammation, intra-alveolar hemorrhage, intraluminal hemorrhage, peribronchial edema, congestion, inflammation in bronchial wall and epithelial desquamation. Biochemical analysis of tissue samples was performed for oxidative injury markers. Histopathological evaluations revealed that tubular injury was found in both shocked and contralateral kidneys (p < 0.05). EG showed higher grades of portal fibrosis in liver and higher grades of peribronchial congestion in lung when compared to CG (p < 0.05). Biochemical evaluations of both kidneys showed that malondialdehyde levels were higher in EG than in CG (p < 0.05). ESWL causes histopathologic alterations both in shocked and contralateral kidneys. Extrarenal tissues such as liver and lung can be affected by shock waves histopathologically and oxidative injury of contralateral kidney may occur acutely after ESWL.
Harper, Erin R; St Leger, Judy A; Westberg, Jody A; Mazzaro, Lisa; Schmitt, Todd; Reidarson, Tom H; Tucker, Melinda; Cross, Dee H; Puschner, Birgit
2007-06-01
Concentrations of nine heavy metals (As, Cd, Cu, Fe, Hg, Pb, Mn, Mo and Zn) were determined in the hepatic and renal tissues of 80 stranded California sea lions (Zalophus californianus). Significant age-dependant increases were observed in liver and kidney concentrations of cadmium and mercury, and renal zinc concentrations. Hepatic iron concentrations were significantly higher in females than males. Animals with suspected domoic acid associated pathological findings had significantly higher concentrations of liver and kidney cadmium; and significantly higher liver mercury concentrations when compared to animals classified with infectious disease or traumatic mortality. Significantly higher hepatic burdens of molybdenum and zinc were found in animals that died from infectious diseases. This is the largest study of tissue heavy metal concentrations in California sea lions to date. These data demonstrate how passive monitoring of stranded animals can provide insight into environmental impacts on marine mammals.
Steele, R D; Weber, H; Patterson, J I
1984-04-01
The oxidative decarboxylation of alpha-ketobutyrate was studied in rat tissue preparations. Decarboxylation was confined to the mitochondrial fraction and required coenzyme A, NAD, TPP and FAD for optimal activity in solubilized preparations. The pH optimum for this reaction in liver was 7.8, somewhat higher than that reported for other alpha-keto acid dehydrogenases. An apparent Km of 0.63 mM for alpha-ketobutyrate was determined for the rat liver system. Competition by other alpha-keto acids at 10 mM concentrations inhibited enzyme activity up to 75%. Tissue distribution of alpha-ketobutyrate dehydrogenase activity relative to liver activity was (in percent): liver, 100; heart, 127; brain, 63; kidney, 57; skeletal muscle, 38; and small intestine, 7. Total liver alpha-ketobutyrate dehydrogenase was decreased by 40% after a 24-hour fast. Similar results were found for kidney and heart activity. alpha-Aminobutyrate-pyruvate aminotransferase activity in liver or kidney was not affected by fasting; however, it was induced in liver by 50% after feeding a 40% casein diet for 10 days compared to rats fed a 20% casein diet. Increasing the dietary casein content from 6 through 40% of the diet resulted in about a fivefold increase in liver alpha-ketobutyrate dehydrogenase activity. The substantial extrahepatic capacity for alpha-ketobutyrate metabolism makes it unlikely that a loss of liver function results in an inability to metabolize alpha-ketobutyrate. Whether alpha-ketobutyrate is decarboxylated by a specific enzyme or by an already characterized complex such as pyruvate dehydrogenase or the branched-chain keto acid dehydrogenase remains to be established.
Storey, Kenneth B.
2013-01-01
One of the most adaptive facultative anaerobes among vertebrates is the freshwater turtle, Trachemys scripta elegans. Upon a decrease in oxygen supply and oxidative phosphorylation, these turtles are able to reduce their metabolic rate and recruit anaerobic glycolysis to meet newly established ATP demands. Within the glycolytic pathway, aldolase enzymes cleave fructose-1,6-bisphosphate to triose phosphates facilitating an increase in anaerobic production of ATP. Importantly, this enzyme exists primarily as tissue-specific homotetramers of aldolase A, B or C located in skeletal muscle, liver and brain tissue, respectively. The present study characterizes aldolase activity and structure in the liver tissue of a turtle whose survival greatly depends on increased glycolytic output during anoxia. Immunoblot and mass spectrometry analysis verified the presence of both aldolase A and B in turtle liver tissue, and results from co-immunoprecipitation experiments suggested that in the turtle aldolase proteins may exist as an uncommon heterotetramer. Expression levels of aldolase A protein increased significantly in liver tissue to 1.59±0.11-fold after 20 h anoxia, when compared to normoxic control values (P<0.05). A similar increase was seen for aldolase B expression. The overall kinetic properties of aldolase, when using fructose-1,6-bisphosphate as substrate, were similar to that of a previously studied aldolase A and aldolase B heterotetramer, with a Km of 240 and 180 nM (for normoxic and anoxic turtle liver, respectively). Ligand docking of fructose-1,6-bisphosphate to the active site of aldolase A and B demonstrated minor differences in both protein:ligand interactions compared to rabbit models. It is likely that the turtle is unique in its ability to regulate a heterotetramer of aldolase A and B, with a higher overall enzymatic activity, to achieve greater rates of glycolytic output and support anoxia survival. PMID:23874782
Dawson, Neal J; Biggar, Kyle K; Storey, Kenneth B
2013-01-01
One of the most adaptive facultative anaerobes among vertebrates is the freshwater turtle, Trachemys scripta elegans. Upon a decrease in oxygen supply and oxidative phosphorylation, these turtles are able to reduce their metabolic rate and recruit anaerobic glycolysis to meet newly established ATP demands. Within the glycolytic pathway, aldolase enzymes cleave fructose-1,6-bisphosphate to triose phosphates facilitating an increase in anaerobic production of ATP. Importantly, this enzyme exists primarily as tissue-specific homotetramers of aldolase A, B or C located in skeletal muscle, liver and brain tissue, respectively. The present study characterizes aldolase activity and structure in the liver tissue of a turtle whose survival greatly depends on increased glycolytic output during anoxia. Immunoblot and mass spectrometry analysis verified the presence of both aldolase A and B in turtle liver tissue, and results from co-immunoprecipitation experiments suggested that in the turtle aldolase proteins may exist as an uncommon heterotetramer. Expression levels of aldolase A protein increased significantly in liver tissue to 1.59±0.11-fold after 20 h anoxia, when compared to normoxic control values (P<0.05). A similar increase was seen for aldolase B expression. The overall kinetic properties of aldolase, when using fructose-1,6-bisphosphate as substrate, were similar to that of a previously studied aldolase A and aldolase B heterotetramer, with a Km of 240 and 180 nM (for normoxic and anoxic turtle liver, respectively). Ligand docking of fructose-1,6-bisphosphate to the active site of aldolase A and B demonstrated minor differences in both protein:ligand interactions compared to rabbit models. It is likely that the turtle is unique in its ability to regulate a heterotetramer of aldolase A and B, with a higher overall enzymatic activity, to achieve greater rates of glycolytic output and support anoxia survival.
Bakır, Salih; Yazgan, Ümit Can; İbiloğlu, İbrahim; Elbey, Bilal; Kızıl, Murat; Kelle, Mustafa
2015-01-01
The purpose of this study was to perform a histopathological investigation, at the light microscopy level, of the protective effects of pomegranate extract in cisplatin-induced liver and kidney damage in rats. Twenty-eight adult male Wistar albino rats were randomly divided into four groups of seven animals: Group 1: Control; Group 2: Treated for 10 consecutive days by gavage with pomegranate juice (2 ml/kg/day); Group 3: Injected intraperitoneally with cisplatin (8 mg/kg body weight, single dose) onset of the day 5, and Group 4: Treated by gavage with pomegranate juice 10 days before and after a single injection of cisplatin onset of the day 5. After 10 days, the animals were sacrificed and their kidneys and liver tissue samples were removed from each animal after experimental procedures. Cisplatin-induced renal and hepatic toxicity and the effect of pomegranate juice were evaluated by histopatological examinations. In the kidney tissue, pomegranate juice significantly ameliorated cisplatin-induced structural alterations when compared with the cisplatin alone group. But in the liver tissue, although pomegranate juice attenuated the cisplatin-induced toxicity only in two rats, significant improvement was not observed. In conclusion, these results demonstrate that the anti-oxidant pomegranate juice might have a protective effect against cisplatin-induced toxicity in rat kidney, but not in liver. Pomegranate juice could be beneficial as a dietary supplement in patients receiving chemotherapy medications.
O'Rourke, Ann P; Lazebnik, Mariya; Bertram, John M; Converse, Mark C; Hagness, Susan C; Webster, John G; Mahvi, David M
2007-08-07
Hepatic malignancies have historically been treated with surgical resection. Due to the shortcomings of this technique, there is interest in other, less invasive, treatment modalities, such as microwave hepatic ablation. Crucial to the development of this technique is the accurate knowledge of the dielectric properties of human liver tissue at microwave frequencies. To this end, we characterized the dielectric properties of in vivo and ex vivo normal, malignant and cirrhotic human liver tissues from 0.5 to 20 GHz. Analysis of our data at 915 MHz and 2.45 GHz indicates that the dielectric properties of ex vivo malignant liver tissue are 19 to 30% higher than normal tissue. The differences in the dielectric properties of in vivo malignant and normal liver tissue are not statistically significant (with the exception of effective conductivity at 915 MHz, where malignant tissue properties are 16% higher than normal). Also, the dielectric properties of in vivo normal liver tissue at 915 MHz and 2.45 GHz are 16 to 43% higher than ex vivo. No statistically significant differences were found between the dielectric properties of in vivo and ex vivo malignant tissue (with the exception of effective conductivity at 915 MHz, where malignant tissue properties are 28% higher than normal). We report the one-pole Cole-Cole parameters for ex vivo normal, malignant and cirrhotic liver tissue in this frequency range. We observe that wideband dielectric properties of in vivo liver tissue are different from the wideband dielectric properties of ex vivo liver tissue, and that the in vivo data cannot be represented in terms of a Cole-Cole model. Further work is needed to uncover the mechanisms responsible for the observed wideband trends in the in vivo liver data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsegmed, Uranchimeg; Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Nakashima, Takeo
The aim of the current planning study is to evaluate the ability of gadoxetate disodium-enhanced magnetic resonance imaging (EOB-MRI)–guided stereotactic body radiation therapy (SBRT) planning by using intensity-modulated radiation therapy (IMRT) techniques in sparing the functional liver tissues during SBRT for hepatocellular carcinoma. In this study, 20 patients with hepatocellular carcinoma were enrolled. Functional liver tissues were defined according to quantitative liver-spleen contrast ratios ≥ 1.5 on a hepatobiliary phase scan. Functional images were fused with the planning computed tomography (CT) images; the following 2 SBRT plans were designed using a “step-and-shoot” static IMRT technique for each patient: (1) an anatomicalmore » SBRT plan optimization based on the total liver; and (2) a functional SBRT plan based on the functional liver. The total prescribed dose was 48 gray (Gy) in 4 fractions. Dosimetric parameters, including dose to 95% of the planning target volume (PTV D{sub 95%}), percentages of total and functional liver volumes, which received doses from 5 to 30 Gy (V5 to V30 and fV5 to fV30), and mean doses to total and functional liver (MLD and fMLD, respectively) of the 2 plans were compared. Compared with anatomical plans, functional image-guided SBRT plans reduced MLD (mean: plan A, 5.5 Gy; and plan F, 5.1 Gy; p < 0.0001) and fMLD (mean: plan A, 5.4 Gy; and plan F, 4.9 Gy; p < 0.0001), as well as V5 to V30 and fV5 to fV30. No differences were noted in PTV coverage and nonhepatic organs at risk (OARs) doses. In conclusion, EOB-MRI–guided SBRT planning using the IMRT technique may preserve functional liver tissues in patients with hepatocellular carcinoma (HCC).« less
Gentamicin tissue concentration in various avian species following recommended dosage therapy
Bush, M.; Locke, D.; Neal, L.A.; Carpenter, J.W.
1981-01-01
Plasma and tissue drug concentrations were compared in eastern bobwhite quail (Colinus virginianus virginianus) and pigeons (Columba livia) given gentamicin by IM administration at the dosage of 10 mg/kg, and in greater sandhill cranes (Grus canadensis tabida) and hybrid rosybill ducks (Netta sp) given the same antibiotic at a dosage of 5 mg/kg. Quail and cranes had significantly higher liver concentrations of gentamicin at 6 hours after injection than did pigeons and ducks. Cranes had significantly higher plasma concentrations than did ducks at 6 hours after injection. Compared with plasma values, gentamicin concentrations were significantly higher in the liver of cranes at 12 hours after injection, and in the kidneys at 18 hours.
Surgical effects on soft tissue produced by a 405-nm violet diode laser in vivo
NASA Astrophysics Data System (ADS)
Miyazaki, H.; Kato, J.; Kawai, S.; Hatayama, H.; Uchida, K.; Otsuki, M.; Tagami, J.; Yokoo, S.
2011-12-01
This study evaluated the surgical performance of a 405-nm diode laser in vivo, using living rat liver tissue. Tissue was incised by irradiation with the laser at low output power ranging from 1 W (722 W/cm2) to 3 W (2165 W/cm2) on a manual control at a rate of 1 mm/s. As a control, incisions using a stainless scalpel were compared. Immediately after operation, the surface of the incisions was macroscopically observed and histopathologically evaluated by microscopy. Laser-ablated liver tissue was smooth with observable signs of remnant carbonization and easily acquired hemostasis. The thickness of the denatured layer increased in proportion to the output power; the coagulation layer did not thicken accordingly. Bleeding could not be stopped for tissues incised with the stainless scalpel. The 405-nm diode laser thus proved to be effective for ablating soft tissue with high hemostatic ability at low power.
Analysis of drugs in human tissues by supercritical fluid extraction/immunoassay
NASA Astrophysics Data System (ADS)
Furton, Kenneth G.; Sabucedo, Alberta; Rein, Joseph; Hearn, W. L.
1997-02-01
A rapid, readily automated method has been developed for the quantitative analysis of phenobarbital from human liver tissues based on supercritical carbon dioxide extraction followed by fluorescence enzyme immunoassay. The method developed significantly reduces sample handling and utilizes the entire liver homogenate. The current method yields comparable recoveries and precision and does not require the use of an internal standard, although traditional GC/MS confirmation can still be performed on sample extracts. Additionally, the proposed method uses non-toxic, inexpensive carbon dioxide, thus eliminating the use of halogenated organic solvents.
Motawi, Tarek M K; Atta, Hazem M; Sadik, Nermin A H; Azzam, May
2014-01-01
Liver fibrosis is the excessive accumulation of extracellular matrix (ECM) proteins including collagen that occurs in most types of chronic liver diseases. Studies concerning the capacity of mesenchymal stem cells (MSCs) and simvasatain (SIMV) to repair fibrotic tissues through reducing inflammation, collagen deposition, are still controversial. This study aimed to investigate the therapeutic efficacy of bone marrow (BM)-derived MSCs and SIMV on carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Rats were divided into: normal, CCl4, CCl4/MSCs, CCl4/SIMV, CCl4/MSCs/SIMV, and SIMV groups. BM-derived MSCs were detected by RT-PCR of CD29 and were then infused into the tail vein of female rats that received CCl4 injection to induce liver fibrosis. Sex-determining region Y (SRY) gene on Y-chromosome gene was assessed by PCR to confirm homing of the male stem cells in liver tissue of the female recipients. Serum liver function tests, liver procollagens I and III, tissue inhibitors of metalloproteinase-1 (TIMP-1), endoglin, matrix metalloproteinase-1 (MMP-1) gene expressions, transforming growth factor-beta (TGF-β1) immunostaining, and histopathologicl examination were performed. MSCs and SIMV decreased liver procollagens I and III, TIMP-1 and endoglin gene expressions, TGF-β1 immunostaining, and serum liver function tests compared with the CCl4 group. MMP-1 expression was increased in the CCl4/MSCs group. Histopathological examination as well as fibrosis score supports the biochemical and molecular findings. It can be concluded that MSCs and SIMV were effective in the treatment of hepatic CCl4-induced fibrosis-rat model. Treatment with MSCs was superior to SIMV. This antifibrotic effect can be attributed to their effect on the MMPs/TIMPs balance which is central in fibrogenesis.
Komori, Yoko; Iwashita, Yukio; Ohta, Masayuki; Kawano, Yuichiro; Inomata, Masafumi; Kitano, Seigo
2014-08-01
A recent study demonstrated that high pressure of carbon dioxide (CO2) pneumoperitoneum before liver resection impairs postoperative liver regeneration. This study was aimed to investigate effects of varying insufflation pressures of CO2 pneumoperitoneum on liver regeneration using a rat model. 180 male Wistar rats were randomly divided into three groups: control group (without preoperative pneumoperitoneum), low-pressure group (with preoperative pneumoperitoneum at 5 mmHg), and high-pressure group (with preoperative pneumoperitoneum at 10 mmHg). After pneumoperitoneum, all rats were subjected to 70% partial hepatic resection and then euthanized at 0 min, 12 h, and on postoperative days (PODs) 1, 2, 4, and 7. Following outcome parameters were used: liver regeneration (liver regeneration rate, mitotic count, Ki-67 labeling index), hepatocellular damage (serum aminotransferases), oxidative stress [serum malondialdehyde (MDA)], interleukin-6 (IL-6), and hepatocyte growth factor (HGF) expression in the liver tissue. No significant differences were observed for all parameters between control and low-pressure groups. The liver regeneration rate and mitotic count were significantly decreased in the high-pressure group than in control and low-pressure groups on PODs 2 and 4. Postoperative hepatocellular damage was significantly greater in the high-pressure group on PODs 1, 2, 4, and 7 compared with control and/or low-pressure groups. Serum MDA levels were significantly higher in the high-pressure group on PODs 1 and 2, and serum IL-6 levels were significantly higher in the high-pressure group at 12 h and on POD 1, compared with control and/or low-pressure groups. The HGF tissue expression was significantly lower in the high-pressure group at 12 h and on PODs 1 and 4, compared with that in control and/or low-pressure groups. High-pressure pneumoperitoneum before 70% liver resection impairs postoperative liver regeneration, but low-pressure pneumoperitoneum has no adverse effects. This study suggests that following laparoscopic liver resection using appropriate pneumoperitoneum pressure, no impairment of liver regeneration occurs.
Sunjog, Karolina; Kolarević, Stoimir; Kračun-Kolarević, Margareta; Višnjić-Jeftić, Željka; Skorić, Stefan; Gačić, Zoran; Lenhardt, Mirjana; Vasić, Nebojša; Vuković-Gačić, Branka
2016-06-01
Metals and metalloids are natural components of the biosphere, which are not produced per se by human beings, but whose form and distribution can be affected by human activities. Like all substances, they are a contaminant if present in excess compared to background levels and/or in a form that would not normally occur in the environment. Samples of liver, gills, gonads and muscle from European chub, Squalius cephalus, were analyzed for Al, As, B, Ba, Cr, Cu, Fe, Hg, Mn, Mo, Sr and Zn using inductively coupled plasma optical emission spectrometry (ICP-OES) to highlight the importance of tissue selection in monitoring research. The comet assay or single cell gel electrophoresis (SCGE) was selected as an in vivo genotoxicity assay, a rapid and sensitive method for measuring genotoxic effects in blood, liver and gills of the European chub. Microscopic images of comets were scored using Comet IV Computer Software (Perceptive Instruments, UK). The objective of our study was to investigate two reservoirs, Zlatar and Garasi, and one river, Pestan by: (i) determining and comparing metal and metalloid concentrations in sediment, water and tissues of European chub: liver, gills, muscle and gonads (ii) comparing these findings with genotoxicity of water expressed through DNA damage of fish tissues. A clear link between the level of metals in water, sediment and tissues and between metal and genotoxicity levels at examined sites was not found. This suggests that other xenobiotics (possibly the organic compounds), contribute to DNA damage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Onaolapo, Olakunle J; Adekola, Moses A; Azeez, Taiwo O; Salami, Karimat; Onaolapo, Adejoke Y
2017-01-01
We compared the relative protective abilities of silymarin and l-methionine pre-treatment in acetaminophen overdose injuries of the liver, kidney and cerebral cortex by assessing behaviours, antioxidant status, tissue histological changes and biochemical parameters of hepatic/renal function. Rats were divided into six groups of ten each; animals in five of these groups were pre-treated with oral distilled water, silymarin (25mg/kg) or l-methionine (2.5, 5 and 10mg/kg body weight) for 14days; and then administered intraperitoneal (i.p.) acetaminophen at 800mg/kg/day for 3days. Rats in the sixth group (normal control) received distilled water orally for 14days and then i.p. for 3days. Neurobehavioural tests were conducted 7days after last i.p treatment, and animals sacrificed on the 8th day. Plasma was assayed for biochemical markers of liver/kidney function; while sections of the liver, kidney and cerebral cortex were either homogenised for assay of antioxidant status or processed for histology. Acetaminophen overdose resulted in locomotor retardation, excessive self-grooming, working-memory impairment, anxiety, derangement of liver/kidney biochemistry, antioxidant imbalance, and histological changes in the liver, kidney and cerebral cortex. Administration of silymarin or increasing doses of l-methionine counteracted the behavioural changes, reversed biochemical indices of liver/kidney injury, and improved antioxidant activity. Silymarin and l-methionine also conferred variable degrees of tissue protection, on histology. Either silymarin or l-methionine can protect vulnerable tissues from acetaminophen overdose injury; however, each offers variable protection to different tissues. This study highlights an obstacle to seeking the 'ideal' protective agent against acetaminophen overdose. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Husvéth, F; Manilla, H A; Gaál, T; Vajdovich, P; Balogh, N; Wágner, L; Lóth, I; Németh, K
2000-01-01
The influence of fish oil (highly unsaturated) and beef tallow (highly saturated) with vitamin E (100 IU/kg) supplementation on the antioxidant status of broiler chicken cockerels was investigated. Chicks were fed a control diet with no added fat, 40 g/kg each of fish oil and beef tallow diets, respectively, from 11 to 42 days of age. Tocopherol concentration and the rate of lipid peroxidation, thiobarbituric acid reactive substance (TBARS) in liver, fatty acid composition of the liver lipids, blood serum total antioxidant status (TAS), and reduced glutathione (GSH) content were determined. Vitamin E supplementation of the diet increased liver alpha-tocopherol content in chicks regardless of the type of dietary fat. Fish oil diet resulted in higher liver TBARS value while beef tallow diet showed lower values compared to the control diet. Vitamin E supplementation reduced liver TBARS as well as serum GSH, and raised serum TAS for all diets. Serum GSH was the same for vitamin E supplemented diets regardless of the fat supplement. Fish oil diets resulted in a significant increase in hepatic lipid n-3 PUFA content. A significant positive correlation was found between liver TBARS and n-3 PUFA content. No relationships were established, however, between liver TBARS and n-6 PUFA or saturated fatty acids. The results suggest that feeding oils rich in n-3 PUFA increases tissue concentration of these fatty acids, consequently increasing tissue lipid peroxidation and reducing the antioxidative status of broiler chickens. Supplementing high levels of vitamin E with such oils may increase tissue oxidative stability. Serum TAS or GSH may be used as a measure of antioxidative status in chickens.
Zhang, Man; Castaneda, Benjamin; Wu, Zhe; Nigwekar, Priya; Joseph, Jean V.; Rubens, Deborah J.; Parker, Kevin J.
2007-01-01
Biomechanical properties of soft tissues are important for a wide range of medical applications, such as surgical simulation and planning and detection of lesions by elasticity imaging modalities. Currently, the data in the literature is limited and conflicting. Furthermore, to assess the biomechanical properties of living tissue in vivo, reliable imaging-based estimators must be developed and verified. For these reasons we developed and compared two independent quantitative methods – crawling wave estimator (CRE) and mechanical measurement (MM) for soft tissue characterization. The CRE method images shear wave interference patterns from which the shear wave velocity can be determined and hence the Young’s modulus can be obtained. The MM method provides the complex Young’s modulus of the soft tissue from which both elastic and viscous behavior can be extracted. This article presents the systematic comparison between these two techniques on the measurement of gelatin phantom, veal liver, thermal-treated veal liver, and human prostate. It was observed that the Young’s moduli of liver and prostate tissues slightly increase with frequency. The experimental results of the two methods are highly congruent, suggesting CRE and MM methods can be reliably used to investigate viscoelastic properties of other soft tissues, with CRE having the advantages of operating in nearly real time and in situ. PMID:17604902
Herrero, Astrid; Prigent, Julie; Lombard, Catherine; Rosseels, Valérie; Daujat-Chavanieu, Martine; Breckpot, Karine; Najimi, Mustapha; Deblandre, Gisèle; Sokal, Etienne M.
2017-01-01
There is growing evidence that cell therapy constitutes a promising strategy for liver regenerative medicine. In the setting of hepatic cancer treatments, cell therapy could prove a useful therapeutic approach for managing the acute liver failure that occurs following extended hepatectomy. In this study, we examined the influence of delivering adult-derived human liver stem/progenitor cells (ADHLSCs) at two different early time points in an immunodeficient mouse model (Rag2−/-IL2Rg-/-) that had undergone a 70% hepatectomy procedure. The hepatic mesenchymal cells were intrasplenically infused either immediately after surgery (n = 26) or following a critical 3-day period (n = 26). We evaluated the cells' capacity to engraft at day 1 and day 7 following transplantation by means of human Alu qPCR quantification, along with histological assessment of human albumin and α-smooth muscle actin. In addition, cell proliferation (anti-mouse and human Ki-67 staining) and murine liver weight were measured in order to evaluate liver regeneration. At day 1 posttransplantation, the ratio of human to mouse cells was similar in both groups, whereas 1 week posttransplantation this ratio was significantly improved (p < 0.016) in mice receiving ADHLSC injection at day 3 posthepatectomy (1.7%), compared to those injected at the time of surgery (1%). On the basis of liver weight, mouse liver regeneration was more extensive 1 week posttransplantation in mice transplanted with ADHLSCs (+65.3%) compared to that of mice from the sham vehicle group (+42.7%). In conclusion, infusing ADHLSCs 3 days after extensive hepatectomy improves the cell engraftment and murine hepatic tissue regeneration, thereby confirming that ADHLSCs could be a promising cell source for liver cell therapy and hepatic tissue repair. PMID:27657746
Miao, Ruoyu; Wu, Yan; Zhang, Haohai; Zhou, Huandi; Sun, Xiaofeng; Csizmadia, Eva; He, Lian; Zhao, Yi; Jiang, Chengyu; Miksad, Rebecca A; Ghaziani, Tahereh; Robson, Simon C; Zhao, Haitao
2016-09-13
Therapies for primary liver cancer, the third leading cause of cancer-related death worldwide, remain limited. Following multi-omics analysis (including whole genome and transcriptome sequencing), we were able to identify the dual-specific protein kinase TTK as a putative new prognostic biomarker for liver cancer. Herein, we show that levels of TTK protein are significantly elevated in neoplastic tissues from a cohort of liver cancer patients, when compared with adjacent hepatic tissues. We also tested the utility of TTK targeted inhibition and have demonstrated therapeutic potential in an experimental model of liver cancer in vivo. Following lentiviral shRNA knockdown in several human liver cancer cell lines, we demonstrated that TTK boosts cell growth and promotes cell spreading; as well as protects against senescence and decreases autophagy. In an experimental animal model, we show that in vitro knockdown of TTK effectively blocks intrahepatic growth of human HCC xenografts. Furthermore, we note that, in vivo silencing of TTK, by systemically delivering TTK siRNAs to already tumor-bearing liver, limits intrahepatic spread of liver cancer cells. This intervention is associated with decreased tumor aggressiveness, as well as increased senescence and autophagy. Taken together, our data suggest that targeted TTK inhibition might have clinical utility as an adjunct therapy in management of liver cancer.
Lumeij, J T; Meidam, M; Wolfswinkel, J; Van der Hage, M H; Dorrestein, G M
1988-01-01
Changes in plasma variables as a result of liver damage induced by ethylene glycol (group A) or D-galactosamine (group B) and of muscle damage induced by doxycycline were compared. Plasma bile acid concentration was both a specific and a sensitive indicator of liver disease. Another specific, but less sensitive indicator of liver disease was 7-GT. Plasma AS AT activity was the most sensitive indicator of disease of the liver, but was not specific, since increased ASAT activities were also seen during muscle disease. ALAT activity was slightly more sensitive to liver damage than 7-GT, but was also not specific, being increased also after muscle damage. Plasma GLDH activity was increased only as a result of extensive liver necrosis. AP activity was of no value for detecting liver disease in the pigeon. CK activity was specific for muscle injury, though the activities of ALAT, ASAT and LD were also increased. Because of its long elimination half-life, increased ALAT activity persisted for 9 days after muscle damage, whereas CK activity returned to reference values within 3 days. LDH was a poor indicator of damage to liver and muscle, despite its relatively high tissue concentrations in both tissues. The rapid disappearance rate of LDH from plasma probably explains this observation.
Peixoto, Thamara C; Moura, Egberto G; de Oliveira, Elaine; Soares, Patrícia N; Guarda, Deysla S; Bernardino, Dayse N; Ai, Xu Xue; Rodrigues, Vanessa da S T; de Souza, Gabriela Rodrigues; da Silva, Antonio Jorge Ribeiro; Figueiredo, Mariana S; Manhães, Alex C; Lisboa, Patrícia C
2017-05-13
Obese individuals have higher production of reactive oxygen species, which leads to oxidative damage. We hypothesize that cranberry extract (CE) can improve this dysfunction in HFD-induced obesity in rats since it has an important antioxidant activity. Here, we evaluated the effects of CE in food intake, adiposity, biochemical and hormonal parameters, lipogenic and adipogenic factors, hepatic morphology and oxidative balance in a HFD model. At postnatal day 120 (PN120), male Wistar rats were assigned into two groups: (1) SD (n = 36) fed with a standard diet and (2) HFD (n = 36), fed with a diet containing 44.5% (35.2% from lard) energy from fat. At PN150, 12 animals from SD and HFD groups were killed while the others were subdivided into four groups (n = 12/group): animals that received 200 mg/kg cranberry extract (SD CE, HFD CE) gavage/daily/30 days or water (SD, HFD). At PN180, animals were killed. HFD group showed higher body mass and visceral fat, hypercorticosteronemia, higher liver glucocorticoid sensitivity, cholesterol and triglyceride contents and microsteatosis. Also, HFD group had higher lipid peroxidation (plasma and tissues) and higher protein carbonylation (liver and adipose tissue) compared to SD group. HFD CE group showed lower body mass gain, hypotrygliceridemia, hypocorticosteronemia, and lower hepatic cholesterol and fatty acid synthase contents. HFD CE group displayed lower lipid peroxidation, protein carbonylation (liver and adipose tissue) and accumulation of liver fat compared to HFD group. Although adiposity was not completely reversed, cranberry extract improved the metabolic profile and reduced oxidative damage and steatosis in HFD-fed rats, which suggests that it can help manage obesity-related disorders.
Tak, Hyosun; Kang, Hoin; Ji, Eunbyul; Hong, Youlim; Kim, Wook; Lee, Eun Kyung
2018-03-18
Precise and early diagnosis is critical to improve the survival rate of hepatocellular carcinoma (HCC) patients. Although several genetic and protein markers have been developed and are currently used for diagnosis, prognosis, risk stratification, and therapeutic monitoring, application of these markers still needs to be improved for better specificity and efficacy. In this study, we investigated the relative expression of mitochondrial dynamics-regulating factors including T-cell intercellular antigen protein-1 (TIA-1), mitochondrial fission factor (MFF), microRNA (miR)-200a-3p, and miR-27a/b in the liver tissues from HCC patients. The expressions of TIA-1 and MFF were augmented in the cancerous liver tissues compared to the corresponding non-tumor tissues at mRNA and protein level, while the levels of miR-200a-3p and miR-27a/b were relatively lower in the cancerous liver tissues. In addition, high levels of TIA-1 and MFF mRNA were related to the poor survival rate of HCC patients. Our results indicated that the expressions of TIA-1, MFF, miR-200a-3p, and miR-27a/b in the cancerous liver tissues differed to these in non-cancerous tissues of HCC patients, demonstrating that these gene expressions could be potential markers for the diagnosis and prognosis of HCC. Copyright © 2018 Elsevier Inc. All rights reserved.
Patel, Krupa J; Trédan, Olivier; Tannock, Ian F
2013-07-01
Pharmacokinetic analyses estimate the mean concentration of drug within a given tissue as a function of time, but do not give information about the spatial distribution of drugs within that tissue. Here, we compare the time-dependent spatial distribution of three anticancer drugs within tumors, heart, kidney, liver and brain. Mice bearing various xenografts were treated with doxorubicin, mitoxantrone or topotecan. At various times after injection, tumors and samples of heart, kidney, liver and brain were excised. Within solid tumors, the distribution of doxorubicin, mitoxantrone and topotecan was limited to perivascular regions at 10 min after administration and the distance from blood vessels at which drug intensity fell to half was ~25-75 μm. Although drug distribution improved after 3 and 24 h, there remained a significant decrease in drug fluorescence with increasing distance from tumor blood vessels. Drug distribution was relatively uniform in the heart, kidney and liver with substantially greater perivascular drug uptake than in tumors. There was significantly higher total drug fluorescence in the liver than in tumors after 10 min, 3 and 24 h. Little to no drug fluorescence was observed in the brain. There are marked differences in the spatial distributions of three anticancer drugs within tumor tissue and normal tissues over time, with greater exposure to most normal tissues and limited drug distribution to many cells in tumors. Studies of the spatial distribution of drugs are required to complement pharmacokinetic data in order to better understand and predict drug effects and toxicities.
Lau, Christine Li Ling; Chan, Sook Tyng; Selvaratanam, Manimegahlai; Khoo, Hui Wen; Lim, Adeline Yi Ling; Modamio, Pilar; Mariño, Eduardo L; Segarra, Ignacio
2015-08-01
Tyrosine kinase inhibitor sunitinib (used in GIST, advanced RCC, and pancreatic neuroendocrine tumors) undergoes CYP3A4 metabolism and is an ABCB1B and ABCG2 efflux transporters substrate. We assessed the pharmacokinetic interaction with ibuprofen (an NSAID used by patients with cancer) in Balb/c male and female mice. Mice (study group) were coadministered (30 min apart) 30 mg/kg of ibuprofen and 60 mg/kg of sunitinib PO and compared with the control groups, which received sunitinib alone (60 mg/kg, PO). Sunitinib concentration in plasma, brain, kidney, and liver was measured by HPLC as scheduled and noncompartmental pharmacokinetic parameters estimated. In female control mice, sunitinib AUC0→∞ decreased in plasma (P < 0.05), was higher in liver and brain (P < 0.001), and lower in kidney (P < 0.001) vs. male control mice. After ibuprofen coadministration, female mice showed lower AUC0→∞ in plasma (P < 0.01), brain, liver, and kidney (all P < 0.001). However, in male mice, AUC0→∞ remained unchanged in plasma, increased in liver and kidney, and decreased in brain (all P < 0.001). The tissue-to-plasma AUC0→∞ ratio was similar between male and female control mice, but changed after ibuprofen coadministration: Male mice showed 1.6-fold higher liver-to-plasma ratio (P < 0.001) while remained unchanged in female mice and in kidney (male and female mice) but decreased 55% in brain (P < 0.05). The tissue-to-plasma partial AUC ratio, the drug tissue targeting index, and the tissue-plasma hysteresis-like plots also showed sex-based ibuprofen-sunitinib drug interaction differences. The results illustrate the relevance of this DDI on sunitinib pharmacokinetics and tissue uptake. These may be due to gender-based P450 and efflux/transporters differences. © 2015 Société Française de Pharmacologie et de Thérapeutique.
In Vitro Tissue Differentiation using Dynamics of Tissue Mechanical Properties
NASA Astrophysics Data System (ADS)
Lin, Wei-Chiang; Phillips, Paul J.
2002-03-01
Dynamics of tissue mechanical properties of various human tissue types were studied at macroscopic as well as microscopic level in vitro. This study was conducted to enable the development of a feedback system based on dynamics of tissue mechanical properties for intraoperative guidance for tumor treatment (e.g., RF ablation of liver tumor) and noninvasive tumor localization. Human liver tissues, including normal, cancerous, and cirrhotic tissues, were obtained from patients receiving liver transplant or tumor resection at Vanderbilt University Medical Center with the approval of the Vanderbilt Institutional Review Board. Tissue samples, once resected from the patients, were snap-frozen using liquid nitrogen and stored at -70 oC. Measurements of the mechanical properties of these tissue samples were conducted at the University of Tennessee at Knoxville. Dynamics of tissue mechanical properties were measured from both native and thermally coagulated tissue samples at macroscopic and microscopic level. Preliminary results suggest the dynamics of mechanical properties of normal liver tissues are very different from those of cancerous liver tissues. The correlation between the dynamics of mechanical properties at macroscopic level and those at microscopic level is currently under investigation.
Deficiency of eNOS exacerbates early-stage NAFLD pathogenesis by changing the fat distribution.
Nozaki, Yuichi; Fujita, Koji; Wada, Koichiro; Yoneda, Masato; Shinohara, Yoshiyasu; Imajo, Kento; Ogawa, Yuji; Kessoku, Takaomi; Nakamuta, Makoto; Saito, Satoru; Masaki, Naohiko; Nagashima, Yoji; Terauchi, Yasuo; Nakajima, Atsushi
2015-12-17
Although many factors and molecules that are closely associated with non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) have been reported, the role of endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) in the pathogenesis of NAFLD/NASH remains unclear. We therefore investigated the role of eNOS-derived NO in NAFLD pathogenesis using systemic eNOS-knockout mice fed a high-fat diet. eNOS-knockout and wild-type mice were fed a basal diet or a high-fat diet for 12 weeks. Lipid accumulation and inflammation were evaluated in the liver, and various factors that are closely associated with NAFLD/NASH and hepatic tissue blood flow were analyzed. Lipid accumulation and inflammation were more extensive in the liver and lipid accumulation was less extensive in the visceral fat tissue in eNOS-knockout mice, compared with wild-type mice, after 12 weeks of being fed a high-fat diet. While systemic insulin resistance was comparable between the eNOS-knockout and wild-type mice fed a high-fat diet, hepatic tissue blood flow was significantly suppressed in the eNOS-knockout mice, compared with the wild-type mice, in mice fed a high-fat diet. The microsomal triglyceride transfer protein activity was down-regulated in eNOS-knockout mice, compared with wild-type mice, in mice fed a high-fat diet. A deficiency of eNOS-derived NO may exacerbate the early-stage of NASH pathogenesis by changing the fat distribution in a mouse model via the regulation of hepatic tissue blood flow.
Ishikawa, Momotaro; Sekine, Keisuke; Okamura, Ai; Zheng, Yun-wen; Ueno, Yasuharu; Koike, Naoto; Tanaka, Junzo; Taniguchi, Hideki
2011-06-01
Reconstitution of tissue architecture in vitro is important because it enables researchers to investigate the interactions and mutual relationships between cells and cellular signals involved in the three-dimensional (3D) construction of tissues. To date, in vitro methods for producing tissues with highly ordered structure and high levels of function have met with limited success although a variety of 3D culture systems have been investigated. In this study, we reconstituted functional hepatic tissue including mature hepatocyte and blood vessel-like structures accompanied with bile duct-like structures from E15.5 fetal liver cells, which contained more hepatic stem/progenitor cells comparing with neonatal liver cells. The culture was performed in a simulated microgravity environment produced by a rotating wall vessel (RWV) bioreactor. The hepatocytes in the reconstituted 3D tissue were found to be capable of producing albumin and storing glycogen. Additionally, bile canaliculi between hepatocytes, characteristics of adult hepatocyte in vivo were also formed. Apart from this, bile duct structure secreting mucin was shown to form complicated tubular branches. Furthermore, gene expression analysis by semi-quantitative RT-PCR revealed the elevated levels of mature hepatocyte markers as well as genes with the hepatic function. With RWV culture system, we could produce functionally reconstituted liver tissue and this might be useful in pharmaceutical industry including drug screening and testing and other applications such as an alternative approach to experimental animals. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Kaldenbach, Michaela; Cubero, Francisco Javier; Erschfeld, Stephanie; Liedtke, Christian; Trautwein, Christian; Streetz, Konrad
2014-01-01
Hepatocyte transplantation (HT) is a promising alternative treatment strategy for end-stage liver diseases compared with orthotopic liver transplantation. A limitation for this approach is the low engraftment of donor cells. The deletion of the I-kappa B kinase-regulatory subunit IKKγ/NEMO in hepatocytes prevents nuclear factor (NF)-kB activation and triggers spontaneous liver apoptosis, chronic hepatitis and the development of liver fibrosis and hepatocellular carcinoma. We hypothesized that NEMOΔhepa mice may therefore serve as an experimental model to study HT. Pre-conditioned NEMOΔhepa mice were transplanted with donor-hepatocytes from wildtype (WT) and mice deficient for the pro-apoptotic mediator Caspase-8 (Casp8Δhepa). Transplantation of isolated WT-hepatocytes into pre-conditioned NEMOΔhepa mice resulted in a 6-7 fold increase of donor cells 12 weeks after HT, while WT-recipients showed no liver repopulation. The use of apoptosis-resistant Casp8Δhepa-derived donor cells further enhanced the selection 3-fold after 12-weeks and up to 10-fold increase after 52 weeks compared with WT donors. While analysis of NEMOΔhepa mice revealed strong liver injury, HT-recipient NEMOΔhepa mice showed improved liver morphology and decrease in serum transaminases. Concomitant with these findings, the histological examination elicited an improved liver tissue architecture associated with significantly lower levels of apoptosis, decreased proliferation and a lesser amount of liver fibrogenesis. Altogether, our data clearly support the therapeutic benefit of the HT procedure into NEMOΔhepa mice. This study demonstrates the feasibility of the NEMOΔhepa mouse as an in vivo tool to study liver repopulation after HT. The improvement of the characteristic phenotype of chronic liver injury in NEMOΔhepa mice after HT suggests the therapeutic potential of HT in liver diseases with a chronic inflammatory phenotype and opens a new door for the applicability of this technique to combat liver disease in the human clinic.
Kaldenbach, Michaela; Cubero, Francisco Javier; Erschfeld, Stephanie; Liedtke, Christian; Trautwein, Christian; Streetz, Konrad
2014-01-01
Background Hepatocyte transplantation (HT) is a promising alternative treatment strategy for end-stage liver diseases compared with orthotopic liver transplantation. A limitation for this approach is the low engraftment of donor cells. The deletion of the I-kappa B kinase-regulatory subunit IKKγ/NEMO in hepatocytes prevents nuclear factor (NF)-kB activation and triggers spontaneous liver apoptosis, chronic hepatitis and the development of liver fibrosis and hepatocellular carcinoma. We hypothesized that NEMOΔhepa mice may therefore serve as an experimental model to study HT. Methods Pre-conditioned NEMOΔhepa mice were transplanted with donor-hepatocytes from wildtype (WT) and mice deficient for the pro-apoptotic mediator Caspase-8 (Casp8Δhepa). Results Transplantation of isolated WT-hepatocytes into pre-conditioned NEMOΔhepa mice resulted in a 6-7 fold increase of donor cells 12 weeks after HT, while WT-recipients showed no liver repopulation. The use of apoptosis-resistant Casp8Δhepa-derived donor cells further enhanced the selection 3-fold after 12-weeks and up to 10-fold increase after 52 weeks compared with WT donors. While analysis of NEMOΔhepa mice revealed strong liver injury, HT-recipient NEMOΔhepa mice showed improved liver morphology and decrease in serum transaminases. Concomitant with these findings, the histological examination elicited an improved liver tissue architecture associated with significantly lower levels of apoptosis, decreased proliferation and a lesser amount of liver fibrogenesis. Altogether, our data clearly support the therapeutic benefit of the HT procedure into NEMOΔhepa mice. Conclusion This study demonstrates the feasibility of the NEMOΔhepa mouse as an in vivo tool to study liver repopulation after HT. The improvement of the characteristic phenotype of chronic liver injury in NEMOΔhepa mice after HT suggests the therapeutic potential of HT in liver diseases with a chronic inflammatory phenotype and opens a new door for the applicability of this technique to combat liver disease in the human clinic. PMID:24979756
Character and temporal evolution of apoptosis in acetaminophen-induced acute liver failure*.
Possamai, Lucia A; McPhail, Mark J W; Quaglia, Alberto; Zingarelli, Valentina; Abeles, R Daniel; Tidswell, Robert; Puthucheary, Zudin; Rawal, Jakirty; Karvellas, Constantine J; Leslie, Elaine M; Hughes, Robin D; Ma, Yun; Jassem, Wayel; Shawcross, Debbie L; Bernal, William; Dharwan, Anil; Heaton, Nigel D; Thursz, Mark; Wendon, Julia A; Mitry, Ragai R; Antoniades, Charalambos G
2013-11-01
To evaluate the role of hepatocellular and extrahepatic apoptosis during the evolution of acetaminophen-induced acute liver failure. A prospective observational study in two tertiary liver transplant units. Eighty-eight patients with acetaminophen-induced acute liver failure were recruited. Control groups included patients with nonacetaminophen-induced acute liver failure (n = 13), nonhepatic multiple organ failure (n = 28), chronic liver disease (n = 19), and healthy controls (n = 11). Total and caspase-cleaved cytokeratin-18 (M65 and M30) measured at admission and sequentially on days 3, 7, and 10 following admission. Levels were also determined from hepatic vein, portal vein, and systemic arterial blood in seven patients undergoing transplantation. Protein arrays of liver homogenates from patients with acetaminophen-induced acute liver failure were assessed for apoptosis-associated proteins, and histological assessment of liver tissue was performed. Admission M30 levels were significantly elevated in acetaminophen-induced acute liver failure and non-acetaminophen induced acute liver failure patients compared with multiple organ failure, chronic liver disease, and healthy controls. Admission M30 levels correlated with outcome with area under receiver operating characteristic of 0.755 (0.639-0.885, p < 0.001). Peak levels in patients with acute liver failure were seen at admission then fell significantly but did not normalize over 10 days. A negative gradient of M30 from the portal to hepatic vein was demonstrated in patients with acetaminophen-induced acute liver failure (p = 0.042) at the time of liver transplant. Analysis of protein array data demonstrated lower apoptosis-associated protein and higher catalase concentrations in acetaminophen-induced acute liver failure compared with controls (p < 0.05). Explant histological analysis revealed evidence of cellular proliferation with an absence of histological evidence of apoptosis. Hepatocellular apoptosis occurs in the early phases of human acetaminophen-induced acute liver failure, peaking on day 1 of hospital admission, and correlates strongly with poor outcome. Hepatic regenerative/tissue repair responses prevail during the later stages of acute liver failure where elevated levels of M30 are likely to reflect epithelial cell death in extrahepatic organs.
Tian, Lipeng; Deshmukh, Abhijeet; Ye, Zhaohui; Jang, Yoon-Young
2016-08-01
While in vitro liver tissue engineering has been increasingly studied during the last several years, presently engineered liver tissues lack the bile duct system. The lack of bile drainage not only hinders essential digestive functions of the liver, but also leads to accumulation of bile that is toxic to hepatocytes and known to cause liver cirrhosis. Clearly, generation of bile duct tissue is essential for engineering functional and healthy liver. Differentiation of human induced pluripotent stem cells (iPSCs) to bile duct tissue requires long and/or complex culture conditions, and has been inefficient so far. Towards generating a fully functional liver containing biliary system, we have developed defined and controlled conditions for efficient 2D and 3D bile duct epithelial tissue generation. A marker for multipotent liver progenitor in both adult human liver and ductal plate in human fetal liver, EpCAM, is highly expressed in hepatic spheroids generated from human iPSCs. The EpCAM high hepatic spheroids can, not only efficiently generate a monolayer of biliary epithelial cells (cholangiocytes), in a 2D differentiation condition, but also form functional ductal structures in a 3D condition. Importantly, this EpCAM high spheroid based biliary tissue generation is significantly faster than other existing methods and does not require cell sorting. In addition, we show that a knock-in CK7 reporter human iPSC line generated by CRISPR/Cas9 genome editing technology greatly facilitates the analysis of biliary differentiation. This new ductal differentiation method will provide a more efficient method of obtaining bile duct cells and tissues, which may facilitate engineering of complete and functional liver tissue in the future.
Involvement of TGF-β1/Smad3 Signaling in Carbon Tetrachloride-Induced Acute Liver Injury in Mice
Niu, Liman; Cui, Xueling; Qi, Yan; Xie, Dongxue; Wu, Qian; Chen, Xinxin; Ge, Jingyan; Liu, Zhonghui
2016-01-01
Transforming growth factor-beta1 (TGF-β1) is a major factor in pathogenesis of chronic hepatic injury. Carbon tetrachloride (CCl4) is a liver toxicant, and CCl4-induced liver injury in mouse is a classical animal model of chemical liver injury. However, it is still unclear whether TGF-β1 is involved in the process of CCl4-induced acute chemical liver injury. The present study aimed to evaluate the role of TGF-β1 and its signaling molecule Smad3 in the acute liver injury induce by CCl4. The results showed that CCl4 induced acute liver injury in mice effectively confirmed by H&E staining of liver tissues, and levels of not only liver injury markers serum ALT and AST, but also serum TGF-β1 were elevated significantly in CCl4-treated mice, compared with the control mice treated with olive oil. Our data further revealed that TGF-β1 levels in hepatic tissue homogenate increased significantly, and type II receptor of TGF-β (TβRII) and signaling molecules Smad2, 3, mRNA expressions and Smad3 and phospho-Smad3 protein levels also increased obviously in livers of CCl4-treated mice. To clarify the effect of the elevated TGF-β1/Smad3 signaling on CCl4-induced acute liver injury, Smad3 in mouse liver was overexpressed in vivo by tail vein injection of Smad3-expressing plasmids. Upon CCl4 treatment, Smad3-overexpressing mice showed more severe liver injury identified by H&E staining of liver tissues and higher serum ALT and AST levels. Simultaneously, we found that Smad3-overexpressing mice treated with CCl4 showed more macrophages and neutrophils infiltration in liver and inflammatory cytokines IL-1β and IL-6 levels increment in serum when compared with those in control mice treated with CCl4. Moreover, the results showed that the apoptosis of hepatocytes increased significantly, and apoptosis-associated proteins Bax, cytochrome C and the cleaved caspase 3 expressions were up-regulated in CCl4-treated Smad3-overexpressing mice as well. These results suggested that TGF-β1/Smad3 signaling was activated during CCl4-induced acute liver injury in mice, and Smad3 overexpression aggravated acute liver injury by promoting inflammatory cells infiltration, inflammatory cytokines release and hepatocytes apoptosis. In conclusion, the activation of TGF-β signaling contributes to the CCl4-induced acute liver injury. Thus, TGF-β1/Smad3 may serve as a potential target for acute liver injury therapy. PMID:27224286
Yoshioka, Saburo; Hamada, Atsuhide; Jobu, Kohei; Yokota, Junko; Onogawa, Masahide; Kyotani, Shojiro; Miyamura, Mitsuhiko; Saibara, Toshiji; Onishi, Saburo; Nishioka, Yutaka
2010-02-01
Non-alcoholic steatohepatitis is associated with the deposition of lipid droplets in the liver, and is characterised histologically by the infiltration of inflammatory cells, hepatocellular degeneration and liver fibrosis. Oxidative stress may play an important role in the onset and deterioration of non-alcoholic steatohepatitis. We previously reported that an Eriobotrya japonica seed extract, extracted in 70% ethanol, exhibited antioxidant actions in vitro and in vivo. In this study, we examined the effect of this extract in a rat model of non-alcoholic steatohepatitis. The seed extract was given in the drinking water to fats being fed a methionine-choline-deficient diet for 15 weeks. Increases in alanine aminotransferase and aspartate aminotransferase levels were significantly inhibited in rats fed the seed extract compared with the group on the diet alone. Formation of fatty droplets in the liver was also inhibited. Antioxidant enzyme activity in liver tissue was higher than in the diet-only group and lipid peroxidation was reduced compared with rats that also received the extract. Expression of 8-hydroxy-2'-deoxyguanosine and 4-hydroxy-2-nonenal was lower in the rats given the seed extract than in the diet-only group. In the former, liver tissue levels of transforming growth factor-beta and collagen were also decreased. Thus, the E. japonica seed extract inhibited fatty liver, inflammation and fibrosis, suggesting its usefulness in the treatment of non-alcoholic steatohepatitis.
The molecular functions of hepatocyte nuclear factors - In and beyond the liver.
Lau, Hwee Hui; Ng, Natasha Hui Jin; Loo, Larry Sai Weng; Jasmen, Joanita Binte; Teo, Adrian Kee Keong
2018-05-01
The hepatocyte nuclear factors (HNFs) namely HNF1α/β, FOXA1/2/3, HNF4α/γ and ONECUT1/2 are expressed in a variety of tissues and organs, including the liver, pancreas and kidney. The spatial and temporal manner of HNF expression regulates embryonic development and subsequently the development of multiple tissues during adulthood. Though the HNFs were initially identified individually based on their roles in the liver, numerous studies have now revealed that the HNFs cross-regulate one another and exhibit synergistic relationships in the regulation of tissue development and function. The complex HNF transcriptional regulatory networks have largely been elucidated in rodent models, but less so in human biological systems. Several heterozygous mutations in these HNFs were found to cause diseases in humans but not in rodents, suggesting clear species-specific differences in mutational mechanisms that remain to be uncovered. In this review, we compare and contrast the expression patterns of the HNFs, the HNF cross-regulatory networks and how these liver-enriched transcription factors serve multiple functions in the liver and beyond, extending our focus to the pancreas and kidney. We also summarise the insights gained from both human and rodent studies of mutations in several HNFs that are known to lead to different disease conditions. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Increased expression of zinc finger protein 267 in non-alcoholic fatty liver disease.
Schnabl, Bernd; Czech, Barbara; Valletta, Daniela; Weiss, Thomas S; Kirovski, Georgi; Hellerbrand, Claus
2011-01-01
Hepatocellular lipid accumulation is a hallmark of non-alcoholicfatty liver disease (NAFLD), which encompasses a spectrum ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) and ultimately cirrhosis. Zinc finger protein 267 (ZNF267) belongs to the family of Kruppel-like transcription factors, which regulate diverse biological processes that include development, proliferation, and differentiation. We have previously demonstrated that ZNF267 expression is up-regulated in liver cirrhosis and is further increased in hepatocellular carcinoma (HCC). Here, we analyzed the expression of ZNF267 in tissue specimens of NAFLD patients and found a significant up-regulation compared to normal liver tissue. Noteworthy, ZNF267 mRNA was already significantly increased in steatotic liver tissue without inflammation. In line with this, incubation of primary human hepatocytes with palmitic acid induced a dose-dependent lipid accumulation and corresponding dose-dependent ZNF267 induction in vitro. Furthermore, hepatocellular lipid accumulation induced formation of reactive oxygen species (ROS), and also chemically induced ROS formation increased ZNF267 mRNA expression. In summary with previous findings, which revealed ZNF267 as pro-fibrogenic and pro-cancerogenic factor in chronic liver disease, the present study further suggests ZNF267 as promising therapeutic target particularly for NAFLD patients. In addition, it further indicates that hepatic steatosis per se has pathophysiological relevance and should not be considered as benign.
Increased expression of Zinc finger protein 267 in non-alcoholic fatty liver disease
Schnabl, Bernd; Czech, Barbara; Valletta, Daniela; Weiss, Thomas S; Kirovski, Georgi; Hellerbrand, Claus
2011-01-01
Hepatocellular lipid accumulation is a hallmark of non-alcoholic fatty liver disease (NAFLD), which encompasses a spectrum ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) and ultimately cirrhosis. Zinc finger protein 267 (ZNF267) belongs to the family of Kruppel-like transcription factors, which regulate diverse biological processes that include development, proliferation, and differentiation. We have previously demonstrated that ZNF267 expression is up-regulated in liver cirrhosis and is further increased in hepatocellular carcinoma (HCC). Here, we analyzed the expression of ZNF267 in tissue specimens of NAFLD patients and found a significant up-regulation compared to normal liver tissue. Noteworthy, ZNF267 mRNA was already significantly increased in steatotic liver tissue without inflammation. In line with this, incubation of primary human hepatocytes with palmitic acid induced a dose-dependent lipid accumulation and corresponding dose-dependent ZNF267 induction in vitro. Furthermore, hepatocellular lipid accumulation induced formation of reactive oxygen species (ROS), and also chemically induced ROS formation increased ZNF267 mRNA expression. In summary with previous findings, which revealed ZNF267 as pro-fibrogenic and pro-cancerogenic factor in chronic liver disease, the present study further suggests ZNF267 as promising therapeutic target particularly for NAFLD patients. In addition, it further indicates that hepatic steatosis per se has pathophysiological relevance and should not be considered as benign. PMID:22076166
Molecular mechanisms of liver preconditioning
Alchera, Elisa; Dal Ponte, Caterina; Imarisio, Chiara; Albano, Emanuele; Carini, Rita
2010-01-01
Ischemia/reperfusion (I/R) injury still represents an important cause of morbidity following hepatic surgery and limits the use of marginal livers in hepatic transplantation. Transient blood flow interruption followed by reperfusion protects tissues against damage induced by subsequent I/R. This process known as ischemic preconditioning (IP) depends upon intrinsic cytoprotective systems whose activation can inhibit the progression of irreversible tissue damage. Compared to other organs, liver IP has additional features as it reduces inflammation and promotes hepatic regeneration. Our present understanding of the molecular mechanisms involved in liver IP is still largely incomplete. Experimental studies have shown that the protective effects of liver IP are triggered by the release of adenosine and nitric oxide and the subsequent activation of signal networks involving protein kinases such as phosphatidylinositol 3-kinase, protein kinase C δ/ε and p38 MAP kinase, and transcription factors such as signal transducer and activator of transcription 3, nuclear factor-κB and hypoxia-inducible factor 1. This article offers an overview of the molecular events underlying the preconditioning effects in the liver and points to the possibility of developing pharmacological approaches aimed at activating the intrinsic protective systems in patients undergoing liver surgery. PMID:21182220
[Expression of ATAD2 in different liver lesions and its clinical significance].
Liu, F; Zhou, X; Ji, H H; Li, H; Xiang, F G
2017-05-20
Objective: To examine the expression of ATAD2 in different liver lesions and its clinical significance. Methods: ATAD2 expression in 60 hepatocellular carcinoma (HCC) surgical specimens (49 of which have concurrent liver cirrhosis), 43 HCC biopsy specimens, 2 high-grade liver dysplastic nodule specimens, 3 low-grade liver dysplastic nodule specimens, 50 liver cirrhosis tissue samples, and 20 normal liver tissue samples were measured using immunohistochemistry. The F-test, q-test, t-test, and chi-square test were used for statistical analysis of data. Results: ATAD2 was expressed in 56 HCC surgical specimens (93.33%), 35 HCC biopsy specimens (81.40%), and 2 high-grade liver dysplastic nodule specimens (2/2), but not in the low-grade liver dysplastic nodule, liver cirrhosis tissue, and normal liver tissue samples. The mean expression of ATAD2 was significantly higher in HCC tissues than in high-grade and low-grade liver dysplastic nodule tissues, liver cirrhosis tissue, and normal liver tissue ( F = 22.96, q = 3.138, 3.972, 12.272, and 9.101, respectively, all P < 0.01). There were no significant differences in the mean expression and positive expression rate of ATAD2 between HCC surgical and biopsy specimens ( t = 1.40, P > 0.05; χ ² = 3.47, P >0.05). Of the 35 HCC biopsy specimens that expressed ATAD2, the mean ATAD2 expression was ≥1% in 35 specimens (100%), ≥3% in 27 specimens (77.14%), and ≥5 % in 23 specimens (65.71%). In addition, among the pathological grade I-II HCC biopsy specimens, the mean ATAD2 expression was ≥1% in 28 specimens (100%), ≥3% in 22 specimens (62.86%), and ≥5% in 19 specimens (54.29%). Moreover, ATAD2 expression in HCC was associated with serum alpha-fetoprotein level, presence of hepatitis B virus surface antigen (HBsAg), and presence of concurrent liver cirrhosis ( t = 2.09, 2.30, and 2.18, respectively, all P < 0.05). Conclusion: ATAD2 may play an important role in HCC tumorigenesis, and may be involved in malignant transformation of cells. ATAD2 expression can be a valuable marker for differentiating the nature of lesions in liver biopsy tissues during clinical practice.
Lee, Ho-Joon; Son, Myung Jin; Ahn, Jiwon; Oh, Soo Jin; Lee, Mihee; Kim, Ansoon; Jeung, Yun-Ji; Kim, Han-Gyeul; Won, Misun; Lim, Jung Hwa; Kim, Nam-Soon; Jung, Cho-Rock; Chung, Kyung-Sook
2017-12-01
Current in vitro liver models provide three-dimensional (3-D) microenvironments in combination with tissue engineering technology and can perform more accurate in vivo mimicry than two-dimensional models. However, a human cell-based, functionally mature liver model is still desired, which would provide an alternative to animal experiments and resolve low-prediction issues on species differences. Here, we prepared hybrid hydrogels of varying elasticity and compared them with a normal liver, to develop a more mature liver model that preserves liver properties in vitro. We encapsulated HepaRG cells, either alone or with supporting cells, in a biodegradable hybrid hydrogel. The elastic modulus of the 3D liver dynamically changed during culture due to the combined effects of prolonged degradation of hydrogel and extracellular matrix formation provided by the supporting cells. As a result, when the elastic modulus of the 3D liver model converges close to that of the in vivo liver (≅ 2.3 to 5.9 kPa), both phenotypic and functional maturation of the 3D liver were realized, while hepatic gene expression, albumin secretion, cytochrome p450-3A4 activity, and drug metabolism were enhanced. Finally, the 3D liver model was expanded to applications with embryonic stem cell-derived hepatocytes and primary human hepatocytes, and it supported prolonged hepatocyte survival and functionality in long-term culture. Our model represents critical progress in developing a biomimetic liver system to simulate liver tissue remodeling, and provides a versatile platform in drug development and disease modeling, ranging from physiology to pathology. We provide a functionally improved 3D liver model that recapitulates in vivo liver stiffness. We have experimentally addressed the issues of orchestrated effects of mechanical compliance, controlled matrix formation by stromal cells in conjunction with hepatic differentiation, and functional maturation of hepatocytes in a dynamic 3D microenvironment. Our model represents critical progress in developing a biomimetic liver system to simulate liver tissue remodeling, and provides a versatile platform in drug development and disease modeling, ranging from physiology to pathology. Additionally, recent advances in the stem-cell technologies have made the development of 3D organoid possible, and thus, our study also provides further contribution to the development of physiologically relevant stem-cell-based 3D tissues that provide an elasticity-based predefined biomimetic 3D microenvironment. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marino, Kady B.; Hoover-Miller, Anne; Conlon, Suzanne
This study quantified the Hg levels in the liver (n=98) and heart (n=43) tissues of Harbor Seals (Phoca vitulina) (n=102) harvested from Prince William Sound and Kodiak Island Alaska. Mercury tissue dry weight (dw) concentrations in the liver ranged from 1.7 to 393 ppm dw, and in the heart from 0.19 to 4.99 ppm dw. Results of this study indicate liver and heart tissues' Hg ppm dw concentrations significantly increase with age. Male Harbor Seals bioaccumulated Hg in both their liver and heart tissues at a significantly faster rate than females. The liver Hg bioaccumulation rates between the harvest locationsmore » Kodiak Island and Prince William Sound were not found to be significantly different. On adsorption Hg is transported throughout the Harbor Seal's body with the partition coefficient higher for the liver than the heart. No significant differences in the bio-distribution (liver:heart Hg ppm dw ratios (n=38)) values were found with respect to either age, sex or geographic harvest location. In this study the age at which Hg liver and heart bioaccumulation levels become significantly distinct in male and female Harbor Seals were identified through a Tukey's analysis. Of notably concern to human health was a male Harbor Seal's liver tissue harvested from Kodiak Island region. Mercury accumulation in this sample tissue was determined through a Q-test to be an outlier, having far higher Hg concentrarion (liver 392 Hg ppm dw) than the general population sampled. - Highlights: Black-Right-Pointing-Pointer Mercury accumulation in the liver and heart of seals exceed food safety guidelines. Black-Right-Pointing-Pointer Accumulation rate is greater in males than females with age. Black-Right-Pointing-Pointer Liver mercury accumulation is greater than in the heart tissues. Black-Right-Pointing-Pointer Mercury determination by USA EPA Method 7473 using thermal decomposition.« less
Grape seed extract reduces oxidative stress and fibrosis in experimental biliary obstruction.
Dulundu, Ender; Ozel, Yahya; Topaloglu, Umit; Toklu, Hale; Ercan, Feriha; Gedik, Nursal; Sener, Goksel
2007-06-01
The aim of this study was to assess the protective effect of grape seed extract (GSE) against oxidative liver injury and fibrosis induced by biliary obstruction in rats. Wistar albino rats were divided into four groups; control (C), GSE-treated, bile duct ligated (BDL), and BDL and GSE-treated (BDL + GSE) groups. GSE was administered at a dose of 50 mg/kg a day orally for 28 days. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) levels were determined to assess liver function and tissue damage, respectively. Tumor necrosis factor-alpha (TNF-alpha) and antioxidant capacity (AOC) were assayed in plasma samples. Liver tissues were taken for determination of the hepatic malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and collagen content. Production of reactive oxidants was monitored by chemiluminescence (CL) assay. Serum AST, ALT, LDH and plasma TNF-alpha were elevated in the BDL group as compared to the control group and were significantly decreased with GSE treatment. Plasma AOC and hepatic GSH level, depressed by BDL, was elevated back to the control level in the GSE-treated BDL group. Increases in tissue MDA level, MPO activity and collagen content due to BDL were also attenuated by GSE treatment. Furthermore, luminol and lucigenin CL values in the BDL group increased dramatically compared to the control and were reduced by GSE treatment. These results suggest that GSE protects the liver from oxidative damage following bile duct ligation in rats. This effect possibly involves the inhibition of neutrophil infiltration and lipid peroxidation; thus, restoration of oxidant and antioxidant status in the tissue.
Tagaloa, Sherry; Zhang, Linda; Dare, Anna J.; MacDonald, Julia R.; Yeong, Mee-Ling; Bartlett, Adam S. J. R.; Phillips, Anthony R. J.
2014-01-01
Background Hepatic steatosis is a major risk factor for graft failure in liver transplantation. Hepatic steatosis shows a greater negative influence on graft function following prolonged cold ischaemia. As the impact of steatosis on hepatocyte metabolism during extended cold ischaemia is not well-described, we compared markers of metabolic capacity and mitochondrial function in steatotic and lean livers following clinically relevant durations of cold preservation. Methods Livers from 10-week old leptin-deficient obese (ob/ob, n = 9) and lean C57 mice (n = 9) were preserved in ice-cold University of Wisconsin solution. Liver mitochondrial function was then assessed using high resolution respirometry after 1.5, 3, 5, 8, 12, 16 and 24 hours of storage. Metabolic marker enzymes for anaerobiosis and mitochondrial mass were also measured in conjunction with non-bicarbonate tissue pH buffering capacity. Results Ob/ob and lean mice livers showed severe (>60%) macrovesicular and mild (<30%) microvesicular steatosis on Oil Red O staining, respectively. Ob/ob livers had lower baseline enzymatic complex I activity but similar adenosine triphosphate (ATP) levels compared to lean livers. During cold storage, the respiratory control ratio and complex I-fueled phosphorylation deteriorated approximately twice as fast in ob/ob livers compared to lean livers. Ob/ob livers also demonstrated decreased ATP production capacities at all time-points analyzed compared to lean livers. Ob/ob liver baseline lactate dehydrogenase activities and intrinsic non-bicarbonate buffering capacities were depressed by 60% and 40%, respectively compared to lean livers. Conclusions Steatotic livers have impaired baseline aerobic and anaerobic capacities compared to lean livers, and mitochondrial function indices decrease particularly from after 5 hours of cold preservation. These data provide a mechanistic basis for the clinical recommendation of shorter cold storage durations in steatotic donor livers. PMID:24956382
Cell Patterning for Liver Tissue Engineering via Dielectrophoretic Mechanisms
Yahya, Wan Nurlina Wan; Kadri, Nahrizul Adib; Ibrahim, Fatimah
2014-01-01
Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP) force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration. PMID:24991941
Hemostatic Effects of Microbubble-Enhanced Low-Intensity Ultrasound in a Liver Avulsion Injury Model
Feng, Guiying; Liu, Jianhua; Zhao, Xiaochen; Wei, Jinglu; Ou, Wencai; Xiao, Shuyi; Hu, Zhiwen; Wei, Hongqin; Liu, Zheng
2014-01-01
Objectives Microbubble-enhanced therapeutic ultrasound (MEUS) can block the blood flow in the organs. The aim of this study was to evaluate the hemostatic effect of microbubble-enhanced pulsed, low-intensity ultrasound in a New Zealand White rabbit model of avulsion trauma of the liver. The therapeutic ultrasound (TUS) transducer was operated with the frequency of 1.2 MHz and an acoustic pressure of 3.4 MPa. Microbubble-(MB) enhanced ultrasound (MEUS) (n = 6) was delivered to the distal part of the liver where the avulsion was created. Livers were treated by TUS only (n = 4) or MB only (n = 4) which served as controls. Bleeding rates were measured and contrast enhanced ultrasound (CEUS) was performed to assess the hemostatic effect, and liver hemoperfusion before and after treatment. Generally, bleeding rates decreased more than 10-fold after the treatment with MEUS compared with those of the control group (P<0.05). CEUS showed significant declines in perfusion. The peak intensity value and the area under the curve also decreased after insonation compared with those of the control group (P<0.05). Histological examination showed cloudy and swollen hepatocytes, dilated hepatic sinusoids, perisinusoidal spaces with erythrocyte accumulation in small blood vessels, obvious hemorrhage around portal areas and scattered necrosis in liver tissues within the insonation area of MEUS Group. In addition, necrosis was found in liver tissue 48 h after insonation. We conclude that MEUS might provide an effective hemostatic therapy for serious organ trauma such as liver avulsion injury. PMID:24788757
Ogawa, Tetsuro; Wang, Li; Katsube, Takuya; Yamasaki, Yukikazu; Sun, Xufeng; Shiwaku, Kuninori
2013-01-01
The anti-obesity effects of a hot water extract from wasabi (Wasabia japonica Matsum.) leaves (WLE), without its specific pungent constituents, such as allyl-isothiocyanate, were investigated in high fat-diet induced mice. C57J/BL mice were fed a high-fat diet (control group) or a high-fat diet supplemented with 5% WLE (WLE group). Physical parameters and blood profiles were determined. Gene expression associated with lipid metabolism in liver and white adipose tissue were analyzed. After 120 days of feeding, significantly lower body weight gain, liver weight and epididymal white adipose tissue weight was observed in the WLE group compared to the control group. In liver gene expression within the WLE group, PPARα was significantly enhanced and SREBP-1c was significantly suppressed. Subsequent downstream genes controlled by these regulators were significantly suppressed. In epididymal white adipose tissue of the WLE group, expression of leptin, PPARγ, and C/EBPα were significantly suppressed and adiponectin was significantly enhanced. Acox, related to fatty acid oxidization in adipocytes, was also enhanced. Our results demonstrate that the WLE dietary supplement induces mild suppression of obesity in a high-fat diet induced mice, possibly due to suppression of lipid accumulation in liver and white adipose tissue. PMID:23964313
Yamasaki, Masayuki; Ogawa, Tetsuro; Wang, Li; Katsube, Takuya; Yamasaki, Yukikazu; Sun, Xufeng; Shiwaku, Kuninori
2013-08-01
The anti-obesity effects of a hot water extract from wasabi (Wasabia japonica Matsum.) leaves (WLE), without its specific pungent constituents, such as allyl-isothiocyanate, were investigated in high fat-diet induced mice. C57J/BL mice were fed a high-fat diet (control group) or a high-fat diet supplemented with 5% WLE (WLE group). Physical parameters and blood profiles were determined. Gene expression associated with lipid metabolism in liver and white adipose tissue were analyzed. After 120 days of feeding, significantly lower body weight gain, liver weight and epididymal white adipose tissue weight was observed in the WLE group compared to the control group. In liver gene expression within the WLE group, PPARα was significantly enhanced and SREBP-1c was significantly suppressed. Subsequent downstream genes controlled by these regulators were significantly suppressed. In epididymal white adipose tissue of the WLE group, expression of leptin, PPARγ, and C/EBPα were significantly suppressed and adiponectin was significantly enhanced. Acox, related to fatty acid oxidization in adipocytes, was also enhanced. Our results demonstrate that the WLE dietary supplement induces mild suppression of obesity in a high-fat diet induced mice, possibly due to suppression of lipid accumulation in liver and white adipose tissue.
Explanted Diseased Livers – A Possible Source of Metabolic Competent Primary Human Hepatocytes
Krech, Till; DeTemple, Daphne; Jäger, Mark D.; Lehner, Frank; Manns, Michael P.; Klempnauer, Jürgen; Borlak, Jürgen; Bektas, Hueseyin; Vondran, Florian W. R.
2014-01-01
Being an integral part of basic, translational and clinical research, the demand for primary human hepatocytes (PHH) is continuously growing while the availability of tissue resection material for the isolation of metabolically competent PHH remains limited. To overcome current shortcomings, this study evaluated the use of explanted diseased organs from liver transplantation patients as a potential source of PHH. Therefore, PHH were isolated from resected surgical specimens (Rx-group; n = 60) and explanted diseased livers obtained from graft recipients with low labMELD-score (Ex-group; n = 5). Using established protocols PHH were subsequently cultured for a period of 7 days. The viability and metabolic competence of cultured PHH was assessed by the following parameters: morphology and cell count (CyQuant assay), albumin synthesis, urea production, AST-leakage, and phase I and II metabolism. Both groups were compared in terms of cell yield and metabolic function, and results were correlated with clinical parameters of tissue donors. Notably, cellular yields and viabilities were comparable between the Rx- and Ex-group and were 5.3±0.5 and 2.9±0.7×106 cells/g liver tissue with 84.3±1.3 and 76.0±8.6% viability, respectively. Moreover, PHH isolated from the Rx- or Ex-group did not differ in regards to loss of cell number in culture, albumin synthesis, urea production, AST-leakage, and phase I and II metabolism (measured by the 7-ethoxycoumarin-O-deethylase and uracil-5′-diphosphate-glucuronyltransferase activity). Likewise, basal transcript expressions of the CYP monooxygenases 1A1, 2C8 and 3A4 were comparable as was their induction when treated with a cocktail that consisted of 3-methylcholantren, rifampicin and phenobarbital, with increased expression of CYP 1A1 and 3A4 mRNA while transcript expression of CYP 2C8 was only marginally changed. In conclusion, the use of explanted diseased livers obtained from recipients with low labMELD-score might represent a valuable source of metabolically competent PHH which are comparable in viability and function to cells obtained from specimens following partial liver resection. PMID:24999631
Yang, Tao; Liu, Shan; Zheng, Tian-Hui; Tao, Yan-Yan; Liu, Cheng-Hai
2015-05-26
Fuzheng Huayu recipe (FZHY) is formulated on the basis of Chinese medicine theory in treating liver fibrosis. To illuminate the influence of the pathological state of liver fibrosis on the pharmacokinetics and tissue distribution profiles of lignan components from FZHY. Male Wistar rats were randomly divided into normal group and Hepatic fibrosis group (induced by dimethylnitrosamine). Six lignan components were detected and quantified by ultrahigh performance liquid chromatography-tandem mass spectrometry(UHPLC-MS/MS)in the plasma and tissue of normal and hepatic fibrosis rats. A rapid, sensitive and convenient UHPLC-MS/MS method has been developed for the simultaneous determination of six lignan components in different rat biological samples successfully. After oral administration of FZHY at a dose of 15g/kg, the pharmacokinetic behaviors of schizandrin A (SIA), schizandrin B (SIB), schizandrin C (SIC), schisandrol A (SOA), Schisandrol B (SOB) and schisantherin A (STA) have been significantly changed in hepatic fibrosis rats compared with the normal rats, and their AUC(0-t) values were increased by 235.09%, 388.44%, 223.30%, 669.30%, 295.08% and 267.63% orderly (P<0.05). Tissue distribution results showed the amount of SIA, SIB, SOA and SOB were significant increased in heart, lung, spleen and kidney of hepatic fibrosis rats compared with normal rats at most of the time point (P<0.05). Meanwhile, the result also reveals that the hepatic fibrosis could delay the peak time of lignans in liver. The results proved that the established UHPLC-MS/MS method could be applied to the comparative study on pharmacokinetics and tissue distribution of lignan components in normal and hepatic fibrosis rats. The hepatic fibrosis could alter the pharmacokinetics and tissue distribution properties of lignan components in rats after administration of FZHY. The results might be helpful for guide the clinical application of this medicine. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Kumar, Gajendra; Srivastava, Amita; Sharma, Surinder Kumar; Gupta, Yogendra Kumar
2014-01-01
Background & objectives: Sidh Makardhwaj (SM) is a mercury based Ayurvedic formulation used in rheumatoid arthritis and neurological disorders. However, toxicity concerns due to mercury content are often raised. Therefore, the present study was carried out to evaluate the effect of SM on brain cerebrum, liver and kidney in rats. Methods: Graded doses of SM (10, 50, 100 mg/kg), mercuric chloride (1 mg/kg) and normal saline were administered orally to male Wistar rats for 28 days. Behavioural parameters were assessed on days 1, 7, 14 and 28 using Morris water maze, passive avoidance, elevated plus maze and rota rod. Liver and kidney function tests were done on day 28. Animals were sacrificed and brain cerebrum acetylcholinesterase activity, levels of malondialdehyde (MDA), reduced glutathione (GSH) in brain cerebrum, liver, kidney were estimated. The levels of mercury in brain cerebrum, liver and kidney were estimated and histopathology of these tissues was also performed. Results: SM in the doses used did not cause significant change in neurobehavioural parameters, brain cerebrum AChE activity, liver (ALT, AST, ALP bilirubin) and kidney (serum urea and creatinine) function tests as compared to control. The levels of mercury in brain cerebrum, liver, and kidney were found to be raised in dose dependent manner. However, the levels of MDA and GSH in these tissues did not show significant changes at doses of 10 and 50 mg/kg. Also, there was no histopathological change in cytoarchitecture of brain cerebrum, liver, and kidney tissues at doses of 10 and 50 mg/kg. Interpretation & conclusions: The findings of the present study suggest that Sidh Makardhwaj upto five times the equivalent human dose administered for 28 days did not show any toxicological effects on rat brain cerebrum, liver and kidney. PMID:24927349
Amirfakhrian, Hossein; Abedi, Seyed Mohammad; Sadeghi, Hossein; Azizi, Soheil; Hosseinimehr, Seyed Jalal
2018-01-01
In this study, we investigated the protective effect of vitamin E against methotrexate (MTX)-induced hepatotoxicity by quantitative liver 99mTc-phytate uptake and liver imaging and to compare its effect with histopathology in rat. Rats were divided into five groups as control, solvent, Vit E (100 mg/kg), MTX (20 mg/kg), Vit E + MTX and. Vit E was intraperitoneally administrated for 17 days before MTX injection and continued for 4 days. 99mTc-phytate was injected through the tail of rats after the drug administration. The percentage of the injected dose per gram of liver and spleen tissues (%ID/g) was calculated. Liver imaging was obtained with gamma camera. In other experiment, liver of treated rats were assessed for histopathology. 99mTc-phytate uptake per gram tissue of the livers as %ID/g in control, solvent, MTX, Vit E, Vit E + MTX and MTX groups were 8.99% ± 1.37, 8.53% ± 2.91, 8.65% ± 3.84, 3.22% ± 1.09 and 8.38% ± 2.68. Vit E administration with MTX resulted in a significant increasing in the level of %ID/g. Vit E treatment improved the shape of live in planner image. Histophatological examinations showed a protective effect of Vit E against MTX-induced hepatoxicity in rats. The results showed that Vit E significantly attenuates the MTX-induced hepatotoxicity in rats, and 99mTc-phytate uptake in liver as well as liver image to be acceptable techniques for assessment of liver and spleen damages and/or their tissues protective effects in animal model.
Kumar, Gajendra; Srivastava, Amita; Sharma, Surinder Kumar; Gupta, Yogendra Kumar
2014-04-01
Sidh Makardhwaj (SM) is a mercury based Ayurvedic formulation used in rheumatoid arthritis and neurological disorders. However, toxicity concerns due to mercury content are often raised. Therefore, the present study was carried out to evaluate the effect of SM on brain cerebrum, liver and kidney in rats. Graded doses of SM (10, 50, 100 mg/kg), mercuric chloride (1 mg/kg) and normal saline were administered orally to male Wistar rats for 28 days. Behavioural parameters were assessed on days 1, 7, 14 and 28 using Morris water maze, passive avoidance, elevated plus maze and rota rod. Liver and kidney function tests were done on day 28. Animals were sacrificed and brain cerebrum acetylcholinesterase activity, levels of malondialdehyde (MDA), reduced glutathione (GSH) in brain cerebrum, liver, kidney were estimated. The levels of mercury in brain cerebrum, liver and kidney were estimated and histopathology of these tissues was also performed. SM in the doses used did not cause significant change in neurobehavioural parameters, brain cerebrum AChE activity, liver (ALT, AST, ALP bilirubin) and kidney (serum urea and creatinine) function tests as compared to control. The levels of mercury in brain cerebrum, liver, and kidney were found to be raised in dose dependent manner. However, the levels of MDA and GSH in these tissues did not show significant changes at doses of 10 and 50 mg/kg. Also, there was no histopathological change in cytoarchitecture of brain cerebrum, liver, and kidney tissues at doses of 10 and 50 mg/kg. The findings of the present study suggest that Sidh Makardhwaj upto five times the equivalent human dose administered for 28 days did not show any toxicological effects on rat brain cerebrum, liver and kidney.
Measuring water contents in animal organ tissues using terahertz spectroscopic imaging.
Lee, Kyumin; Jeoung, Kiyong; Kim, Sang Hoon; Ji, Young-Bin; Son, Hyeyoung; Choi, Yuna; Huh, Young-Min; Suh, Jin-Suck; Oh, Seung Jae
2018-04-01
We investigated the water contents in several organ tissues such as the liver, spleen, kidney, and brain tissue of rats using the terahertz spectroscopic imaging technique. The water contents of the tissues were determined by using a simple equation containing the absorption coefficients of fresh and lyophilized tissues and water. We compared the measured water contents with the difference in mass of tissues before and after lyophilization. All results showed a good match except for the kidney, which has several Bowman's capsules.
Asbach, Patrick; Hein, Patrick A; Stemmer, Alto; Wagner, Moritz; Huppertz, Alexander; Hamm, Bernd; Taupitz, Matthias; Klessen, Christian
2008-01-01
To evaluate soft tissue contrast and image quality of a respiratory-triggered echo-planar imaging based diffusion-weighted sequence (EPI-DWI) with different b values for magnetic resonance imaging (MRI) of the liver. Forty patients were examined. Quantitative and qualitative evaluation of contrast was performed. Severity of artifacts and overall image quality in comparison with a T2w turbo spin-echo (T2-TSE) sequence were scored. The liver-spleen contrast was significantly higher (P < 0.05) for the EPI-DWI compared with the T2-TSE sequence (0.47 +/- 0.11 (b50); 0.48 +/- 0.13 (b300); 0.47 +/- 0.13 (b600) vs 0.38 +/- 0.11). Liver-lesion contrast strongly depends on the b value of the DWI sequence and decreased with higher b values (b50, 0.47 +/- 0.19; b300, 0.40 +/- 0.20; b600, 0.28 +/- 0.23). Severity of artifacts and overall image quality were comparable to the T2-TSE sequence when using a low b value (P > 0.05), artifacts increased and image quality decreased with higher b values (P < 0.05). Respiratory-triggered EPI-DWI of the liver is feasible because good image quality and favorable soft tissue contrast can be achieved.
Naruse, Katsutoshi; Tang, Wei; Makuuchi, Masatoshi
2007-01-01
Liver transplantation and blood purification therapy, including plasmapheresis, hemodiafiltration, and bioartificial liver support, are the available treatments for patients with severe hepatic failure. Bioartificial liver support, in which living liver tissue is used to support hepatic function, has been anticipated as an effective treatment for hepatic failure. The two mainstream systems developed for bioartificial liver support are extracorporeal whole liver perfusion (ECLP) and bioreactor systems. Comparing various types of bioartificial liver in view of function, safety, and operability, we concluded that the best efficacy can be provided by the ECLP system. Moreover, in our subsequent experiments comparing ECLP and apheresis therapy, ECLP offers more ammonia metabolism than HD and HF. In addition, ECLP can compensate amino acid imbalance and can secret bile. A controversial point with ECLP is the procedure is labor intensive, resulting in high costs. However, ECLP has the potential to reduce elevated serum ammonia levels of hepatic coma patients in a short duration. When these problems are solved, bioartificial liver support, especially ECLP, can be adopted as an option in ordinary clinical therapy to treat patients with hepatic failure. PMID:17461442
Hepatoprotective activity of Psidium guajava Linn. leaf extract.
Roy, Chanchal K; Kamath, Jagadish V; Asad, Mohammed
2006-04-01
The study was designed to evaluate the hepatoprotective activity of P. guajava in acute experimental liver injury induced by carbon tetrachloride, paracetamol or thioacetamide and chronic liver damage induced by carbon tetrachloride. The effects observed were compared with a known hepatoprotective agent, silymarin. In the acute liver damage induced by different hepatotoxins, P. guajava leaf extracts (250 and 500mg/kg, po) significantly reduced the elevated serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and bilirubin. The higher dose of the extract (500 mg/kg, po) prevented the increase in liver weight when compared to hepatoxin treated control, while the lower dose was ineffective except in the paracetamol induced liver damage. In the chronic liver injury induced by carbon tetrachloride, the higher dose (500 mg/kg, po) of P. guajava leaf extract was found to be more effective than the lower dose (250 mg/kg, po). Histological examination of the liver tissues supported the hepatoprotection. It is concluded that the aqueous extract of leaves of guava plant possesses good hepatoprotective activity.
Green, Charlotte J; Charlton, Catriona A; Wang, Lai-Mun; Silva, Michael; Morten, Karl J; Hodson, Leanne
2017-12-01
Two-step perfusion is considered the gold standard method for isolating hepatocytes from human liver tissue. As perfusion may require a large tissue specimen, which is encapsulated and has accessible vessels for cannulation, only a limited number of tissue samples may be suitable. Therefore, the aim of this work was to develop an alternative method to isolate hepatocytes from non-encapsulated and small samples of human liver tissue. Healthy tissue from 44 human liver resections were graded for steatosis and tissue weights between 7.8 and 600 g were used for hepatocyte isolations. Tissue was diced and underwent a two-step digestion (EDTA and collagenase). Red cell lysis buffer was used to prevent red blood cell contamination and toxicity. Isolated hepatocyte viability was determined by trypan blue exclusion. Western blot and biochemical analyses were undertaken to ascertain cellular phenotype and function. Liver tissue that weighed ≥50 g yielded significantly higher (P < 0.01) cell viability than tissue <50 g. Viable cells secreted urea and displayed the phenotypic hepatocyte markers albumin and cytochrome P450. Presence of steatosis in liver tissue or intra-hepatocellular triglyceride content had no effect on cell viability. This methodology allows for the isolation of viable primary human hepatocytes from small amounts of "healthy" resected liver tissue which are not suitable for perfusion. This work provides the opportunity to increase the utilisation of resection surplus tissue, and may ultimately lead to an increased number of in vitro cellular studies being undertaken using the gold-standard model of human primary hepatocytes.
Jain, Surbhi; Boldbaatar, Batbold; Hamilton, James P.; Lin, Selena Y.; Chang, Ting-Tsung; Chen, Shun-Hua; Song, Wei; Meltzer, Stephen J.; Block, Timothy M.; Su, Ying-Hsiu
2012-01-01
Hypermethylation of the glutathione S-transferase π 1 (GSTP1) gene promoter region has been reported to be a potential biomarker to distinguish hepatocellular carcinoma (HCC) from other liver diseases. However, reports regarding how specific a marker it is have ranged from 100% to 0%. We hypothesized that, to a large extent, the variation of specificity depends on the location of the CpG sites analyzed. To test this hypothesis, we compared the methylation status of the GSTP1 promoter region of the DNA isolated from HCC, cirrhosis, hepatitis, and normal liver tissues by bisulfite–PCR sequencing. We found that the 5′ region of the position −48 nt from the transcription start site of the GSTP1 gene is selectively methylated in HCC, whereas the 3′ region is methylated in all liver tissues examined, including normal liver and the HCC tissue. Interestingly, when DNA derived from fetal liver and 11 nonhepatic normal tissue was also examined by bisulfite-PCR sequencing, we found that methylation of the 3′ region of the promoter appeared to be liver-specific. A methylation-specific PCR assay targeting the 5′ region of the promoter was developed and used to quantify the methylated GSTP1 gene in various diseased liver tissues including HCC. When we used an assay targeting the 3′ region, we found that the methylation of the 5′-end of the GSTP1 promoter was significantly more specific than that of the 3′-end (97.1% vs. 60%, p<0.0001 by Fisher's exact test) for distinguishing HCC (n = 120) from hepatitis (n = 35) and cirrhosis (n = 35). Encouragingly, 33.8% of the AFP-negative HCC contained the methylated GSTP1 gene. This study clearly demonstrates the importance of the location of CpG site methylation for HCC specificity and how liver-specific DNA methylation should be considered when an epigenetic DNA marker is studied for detection of HCC. PMID:22536438
Shen, Shi-Qiang; Zhang, Yuan; Xiang, Jin-Jian; Xiong, Cheng-Long
2007-01-01
AIM: To investigate the hypothesis that the protective effects of curcumin in hepatic warm ischemia/reperfusion (I/R) injury are associated with increasing heat shock protein 70 (Hsp70) expression and antioxidant enzyme activity. METHODS: Sixty Sprague-Dawley male rats were randomly divided into sham, I/R, C + I/R groups. The model of reduced-size liver warm ischemia and reperfusion was used. Curcumin (50 mg/kg) was administered by injection through a branch of superior mesenteric vein at 30 min before ischemia in C + I/R group. Five rats were used to investigate the survival during 1 wk after operation in each group. Blood samples and liver tissues were obtained in the remaining animals after 3, 12, and 24 h of reperfusion to assess serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver tissue NO2- + NO3-, malondialdehyde (MDA) content, superoxide dismutase (SOD), catalase (CAT), nitricoxide synthase (NOS) and myeloperoxidase (MPO) activity, Hsp70 expression and apoptosis ratio. RESULTS: Compared with I/R group, curcumin pretreatment group showed less ischemia/reperfusion-induced injury. CAT and SOD activity and Hsp70 expression increased significantly. A higher rate of apoptosis was observed in I/R group than in C + I/R group, and a significant increase of MDA, NO2- + NO3- and MPO level in liver tissues and serum transaminase concentration was also observed in I/R group compared to C + I/R group. Curcumin also decreased the activity of inducible NO synthase (iNOS) in liver after reperfusion, but had no effect on the level of endothelial NO synthase (eNOS) after reperfusion in liver. The 7 d survival rate was significantly higher in C + I/R group than in I/R group. CONCLUSION: Curcumin has protective effects against hepatic I/R injury. Its mechanism might be related to the overexpression of Hsp70 and antioxidant enzymes. PMID:17461496
Chang, Siou Han; Huang, Han Hsiang; Kang, Pei Leun; Wu, Yu Chian; Chang, Ming-Huang; Kuo, Shyh Ming
2017-11-01
Volvox sphere is a biomimetic concept of a natural Volvox, wherein a large outer sphere contains smaller inner spheres, which can encapsulate cells and provide a double-layer three-dimensional environment for culturing cells. This study simultaneously encapsulated rat mesenchymal stem cells (MSCs) and AML12 hepatocytes in volvox spheres and extensively evaluated the effects of various culturing modes on cell functions and fates. The results showed that compared with a static flask culture, MSCs encapsulated in volvox spheres differentiated into hepatocyte-like cells with a 2-fold increase in albumin (ALB) expression and a 2.5-fold increase in cytokeratin 18 expression in a dynamic bioreactor. Moreover, the restorative effects of volvox spheres encapsulating cells on retrorsine-exposed CCl 4 -induced liver injuries in rats were evaluated. The data presented significant reductions in AST and ALT levels after the implantation of volvox spheres encapsulating both MSCs and AML12 hepatocytes in vivo. In contrast to the negative control group, histopathological analysis demonstrated liver repair and formation of the new liver tissue in groups implanted with volvox spheres containing cells. These results demonstrate that liver cells implanted with volvox spheres encapsulating both MSCs and AML12 hepatocytes promote liver repair and liver tissue regeneration in liver failure caused by necrotizing agents such as retrorsine and CCl 4 . Hence, volvox spheres encapsulating MSCs and liver cells can be a promising and clinically effective therapy for liver injury. In this study, we used a volvox sphere, which is a unique design that mimics the natural Volvox, that consists of a large outer sphere that contains smaller inner spheres, which provide a three-dimensional environment to culture cells. The purpose of this study is to co-culture mesenchymal stem cells (MSCs) and AML12 liver cells in volvox spheres and evaluate two different culture methods, dynamic bioreactor and static culture flask,on the cultured cells. In addition, we aimed to evaluate the restorative effects of volvox spheres encapsulating MSCs and/or AML12 liver cells on rats with retrorsine-exposed CCl 4 -induced liver injuries. The results showed that MSCs encapsulated in volvox spheres differentiated into hepatocyte-like cells with a 2-fold increase in albumin expression and a 2.5-fold increase in cytokeratin 18 expression ina dynamic bioreactor. Moreover, the data presented significant reductions in AST and ALT levels after the implantation of volvox spheres encapsulating both MSCs and AML12 hepatocytes in vivo. In contrast to the negative control group, histopathological analysis demonstrated liver repair and formation of new liver tissue in groups implanted with volvox spheres containing cells. These results demonstrate that liver cells implanted with volvox spheres encapsulating both MSCs and AML12 hepatocytes promote liver repair and liver tissue regeneration in liver failure caused by necrotizing agents such as retrorsine and CCl 4 . Hence, volvox spheres encapsulating MSCs and liver cells can be a promising and clinically effective therapy for liver injury. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Mikowska, Magdalena; Dziublińska, Barbara; Świergosz-Kowalewska, Renata
2018-07-01
The main idea of the study was to assess how environmental metal pollution activates defence responses at transcription levels in the tissues of bank voles (Clethrionomys glareolus). For this purpose, the metallothioneine (MT) genes expression (a well known biomarker of exposure and response to various metals) was measured. The real-time PCR method was used for relative quantification of metallothionein I and metallothionein II expressions in the livers, kidneys and testes of bank voles from six populations exposed to different contaminants, mainly zinc, cadmium and iron. The assessment of Zn, Cu and Fe concentrations in the tissues allowed to study the MTs gene expression responses to these metals. ANOVA analysis showed differences between populations in terms of metal concentration in tissues, livers and kidneys. Student T test showed significant differences in metal concentration between unpolluted and polluted sites only for the liver tissue: significantly lower Zn levels and significantly higher Fe levels in the unpolluted sites. Kruskal-Wallis test performed on C T data shows differences in the gene expressions between populations for both MT genes for liver and testes. In the liver metallothionein I gene expression was upregulated in populations considered as more polluted (up to 7.5 higher expression in Miasteczko Śląskie comparing to Mikołajki). Expression of metallothionein II revealed a similar pattern. In kidneys, differences in expression of both MT genes were not that evident. In testes, MT upregulation in polluted sites was noted for metallothionein II. For metallothionein however, we found downregulation in populations from more contaminated sites. The expressions of both MTs were positively influenced by cadmium in kidney (concentration data from the previous study) and zinc and copper in liver, while cadmium had effects only on the liver MT II gene expression. Positive relationship was obtained for lead and metallothionein II expression in the liver.
Heavy Metal Content in Chilean Fish Related to Habitat Use, Tissue Type and River of Origin.
Copaja, S V; Pérez, C A; Vega-Retter, C; Véliz, D
2017-12-01
In this study, we analyze the concentration of ten metals in two freshwater fish-the benthic catfish Trichomycterus areolatus and the limnetic silverside Basilichthys microlepidotus-in order to detect possible accumulation differences related to fish habitat (benthic or pelagic), tissue type (gill, liver and muscle), and the river of origin (four different rivers) in central Chile. The MANOVA performed with all variables and metals, revealed independent effects of fish, tissue and river. In the case of the fish factor, Cu, Cr, Mo and Zn showed statistically higher concentrations in catfish compared with silverside for all tissues and in all rivers (p < 0.05). In the case of the tissue factor, Al, Cr, Fe and Mn had statistically higher concentrations in liver and gills than in muscle (p < 0.05). For the river effect, the analysis showed higher concentrations of Cr, Mn and Pb in the Cogoti river and the lower concentrations in the Recoleta river. These results suggest that not all metals have the same pattern of accumulation; however, some metals tend to accumulate more in readily catfish, probably due to their benthic habit, and in liver and gill tissue, probably as a result of accumulation from food sources and respiration.
Ebuehi, O A T; Ajayl, O E; Onyeulor, A L; Awelimobor, D
2011-01-01
Energy drinks are canned or bottled carbonated beverages that contain large amounts of caffeine and sugar with additional ingredients, such as B-Vitamins, amino acids and herbal stimulants. Previous reports have shown that consumption of large amounts of these energy drinks may result in adverse health consequences. The present study is to ascertain if oral administration of energy drinks, such as "power horse" and "red bull", may affect blood chemistry, tissue histology and acetyl choline levels in rabbits. Five ml of power horse and red bull energy drinks, caffeine and saline (control) were orally administered daily for 36 days to rabbits. Body weight, feed and water intake were measured every other day. The blood samples were taken by cardiac puncture for blood chemistry measurement and their liver, heart and brain tissues were used for histological assay. The plasma, liver, brain and heart acetylcholine levels were also determined. There were no significant differences in the body weight, feed intake and organ weights of rabbits administered energy drinks or caffeine as compared to the control. The blood chemistry results showed that the activities of the aspartate and alanine amino transferase, concentrations of plasma creatinine, uric acid and albumin were increased in the control as compared to the red bull and caffeine administered rabbits. The concentrations of total protein, total cholesterol, triglyceride, high density lipoprotein (HDL) and low density lipoprotein (LDL) and glucose concentrations were increased in power horse and red bull administered rabbits as compared to caffeine administered rabbits and control rabbits. The concentrations of plasma and brain acetylcholine of rabbits administered power horse and red bull were significantly higher than in the control, while it was lower in liver and heart acetyl choline levels. The histopathological findings of the brain and liver show that there were no obvious histopathological abnormalities in the brain, liver and heart of rabbits administered power horse or red bull and caffeine as compared to the control rabbits. Data of the present study indicate that oral administration of the energy drinks, specifically power horse and red bull, affected blood chemistry, liver enzymes activities, but do not significantly affect the histopathology of the brain, heart and liver of the rabbits. This findings suggest that energy drinks may alter cholinergic neurotransmission and neural functions mediated by acetylcholine.
Yohannes, Elizabeth; Grimm, Claudia; Rothhaupt, Karl-Otto; Behrmann-Godel, Jasminca
2017-01-01
Stable isotope analysis of commercially and ecologically important fish can improve understanding of life-history and trophic ecology. However, accurate interpretation of stable isotope values requires knowledge of tissue-specific isotopic turnover that will help to describe differences in the isotopic composition of tissues and diet. We performed a diet-switch experiment using captive-reared parasite-free Eurasian perch (Perca fluviatilis) and wild caught specimens of the same species, infected with the pike tapeworm Triaenophorus nodulosus living in host liver tissue. We hypothesize that metabolic processes related to infection status play a major role in isotopic turnover and examined the influence of parasite infection on isotopic turn-over rate of carbon (δ13C), nitrogen (δ15N) and sulphur (δ34S) in liver, blood and muscle. The δ15N and δ13C turnovers were fastest in liver tissues, followed by blood and muscle. In infected fish, liver and blood δ15N and δ13C turnover rates were similar. However, in infected fish, liver and blood δ13C turnover was faster than that of δ15N. Moreover, in infected subjects, liver δ15N and δ13C turnover rates were three to five times faster than in livers of uninfected subjects (isotopic half-life of ca.3-4 days compared to 16 and 10 days, respectively). Blood δ34S turnover rate were about twice faster in non-infected individuals implying that parasite infection could retard the turnover rate of δ34S and sulphur containing amino acids. Slower turnover rate of essential amino acid could probably decrease individual immune function. These indicate potential hidden costs of chronic and persistent infections that may have accumulated adverse effects and might eventually impair life-history fitness. For the first time, we were able to shift the isotope values of parasites encapsulated in the liver by changing the dietary source of the host. We also report variability in isotopic turnover rates between tissues, elements and between infected and parasite-free individuals. These results contribute to our understanding of data obtained from field and commercial hatcheries; and strongly improve the applicability of the stable isotope method in understanding life-history and trophic ecology of fish populations.
Yohannes, Elizabeth; Grimm, Claudia; Rothhaupt, Karl-Otto; Behrmann-Godel, Jasminca
2017-01-01
Stable isotope analysis of commercially and ecologically important fish can improve understanding of life-history and trophic ecology. However, accurate interpretation of stable isotope values requires knowledge of tissue-specific isotopic turnover that will help to describe differences in the isotopic composition of tissues and diet. We performed a diet-switch experiment using captive-reared parasite-free Eurasian perch (Perca fluviatilis) and wild caught specimens of the same species, infected with the pike tapeworm Triaenophorus nodulosus living in host liver tissue. We hypothesize that metabolic processes related to infection status play a major role in isotopic turnover and examined the influence of parasite infection on isotopic turn-over rate of carbon (δ13C), nitrogen (δ15N) and sulphur (δ34S) in liver, blood and muscle. The δ15N and δ13C turnovers were fastest in liver tissues, followed by blood and muscle. In infected fish, liver and blood δ15N and δ13C turnover rates were similar. However, in infected fish, liver and blood δ13C turnover was faster than that of δ15N. Moreover, in infected subjects, liver δ15N and δ13C turnover rates were three to five times faster than in livers of uninfected subjects (isotopic half-life of ca.3-4 days compared to 16 and 10 days, respectively). Blood δ34S turnover rate were about twice faster in non-infected individuals implying that parasite infection could retard the turnover rate of δ34S and sulphur containing amino acids. Slower turnover rate of essential amino acid could probably decrease individual immune function. These indicate potential hidden costs of chronic and persistent infections that may have accumulated adverse effects and might eventually impair life-history fitness. For the first time, we were able to shift the isotope values of parasites encapsulated in the liver by changing the dietary source of the host. We also report variability in isotopic turnover rates between tissues, elements and between infected and parasite-free individuals. These results contribute to our understanding of data obtained from field and commercial hatcheries; and strongly improve the applicability of the stable isotope method in understanding life-history and trophic ecology of fish populations. PMID:28046021
Li, Yi; Wu, Qiong; Wang, Yujia; Li, Li; Chen, Fei; Shi, Yujun; Bao, Ji; Bu, Hong
2017-01-01
An individualized, tissue-engineered liver suitable for transplanting into a patient with liver disease would be of great benefit to the patient and the healthcare system. The tissue-engineered liver would possess the functions of the original healthy organ. Two fields of study, (i) using decellularized tissue as cell scaffolding, and (ii) stem cell differentiation into functional cells, are coming together to make this concept feasible. The decellularized liver scaffolds (DLS) can interact with cells to promote cell differentiation and signal transduction and three-dimensional (3D) stem cell aggregations can maintain the phenotypes and improve functions of stem cells after differentiation by undergoing cell-cell contact. Although the effects of DLS and stem cell aggregation culture have been intensively studied, few observations about the interaction between the two have been achieved. We established a method that combines the use of decellularized liver scaffolds and aggregation culture of MSCs (3D-DLS) and explored the effects of the two on hepatic differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) in bioengineered hepatic tissue. A higher percentage of albumin-producing cells, higher levels of liver-specific transcripts, higher urea cycle-related transcripts, and lower levels of stem cell-specific transcripts were observed in the 3D-DLS group when compared to that of hUC-MSCs in monolayer culture (2D), aggregation culture (3D), monolayer on DLS culture (2D-DLS). The gene arrays also indicated that 3D-DLS induced the differentiation from the hUC-MSC phenotype to the PHH phenotype. Liver-specific proteins albumin, CK-18, and glycogen storage were highly positive in the 3D-DLS group. Albumin secretion and ammonia conversion to urea were more effective with a higher cell survival rate in the 3D-DLS group for 14 days. This DLS and aggregation combination culture system provides a novel method to improve hepatic differentiation, maintain phenotype of hepatocyte-like cells and sustain survival for 14 days in vitro. This is a promising strategy to use to construct bioengineered hepatic tissue. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Devrim, Erdinç; Ergüder, Imge B; Kılıçoğlu, Bülent; Yaykaşlı, Emine; Cetin, Recep; Durak, Ilker
2008-01-01
ABSTRACT In this study, the aim was to investigate possible effects of Electromagnetic Radiation (EMR) use on oxidant and antioxidant status in erythrocytes and kidney, heart, liver, and ovary tissues from rats, and possible protective role of vitamin C. For this aim, 40 Wistar albino female rats were used throughout the study. The treatment group was exposed to EMR in a frequency of 900 MHz, the EMR plus vitamin C group was exposed to the same EMR frequency and given vitamin C (250 mg/kg/day) orally for 4 weeks. There were 10 animals in each group including control and vitamin C groups. At the end of the study period, blood samples were obtained from the animals to get erythrocyte sediments. Then the animals were sacrificed and heart, kidney, liver, and ovary tissues were removed. Malondialdehyde (MDA) levels and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), xanthine oxidase (XO), and adenosine deaminase (ADA) enzyme activities were measured in the tissues and erythrocytes. It was observed that MDA level, XO, and GSH-Px activities significantly increased in the EMR group as compared with those of the control group in the erythrocytes. In the kidney tissues, it was found that MDA level and CAT activity significantly increased, whereas XO and ADA activities decreased in the cellular phone group as compared with those of the control group. However, in the heart tissues it was observed that MDA level, ADA, and XO activities significantly decreased in the cellular phone group as compared with those of the control group. The results suggest that EMR at the frequency generated by a cell phone causes oxidative stress and peroxidation in the erythrocytes and kidney tissues from rats. In the erythrocytes, vitamin C seems to make partial protection against the oxidant stress.
Zeng, Z. S.; Guillem, J. G.
1998-01-01
Experimental in vitro and animal data support an important role for matrix metalloproteinases (MMPs) in cancer invasion and metastasis via proteolytic degradation of the extracellular matrix (ECM). Our previous data have shown that MMP-9 mRNA is localized to the interface between liver metastasis and normal liver tissue, indicating that MMP-9 may play an important role in liver metastasis formation. In the present study, we analysed the cellular enzymatic expression of MMP-9 in 18 human colorectal cancer (CRC) liver metastasis specimens by enzyme-linked immunosorbent assay (ELISA) and zymography. ELISA analysis reveals that the latent form of MMP-9 is present in both liver metastasis and paired adjacent normal liver tissue. The mean level of the latent form of MMP-9 is 580+/-270 ng per mg total tissue protein (mean+/-s.e.) in liver metastasis vs 220+/-90 in normal liver tissue. However, this difference is not significantly different (P = 0.26). Using gelatin zymography, the 92-kDa band representative of the latent form is present in both liver metastasis and normal liver tissue. However, the 82 kDa band, representative of the active form of MMP-9, was seen only in liver metastasis. This was confirmed by Western blot analysis. Our observation of the unique presence of the active form of MMP-9 within liver metastasis suggests that proMMP-9 activation may be a pivotal event during CRC liver metastasis formation. Images Figure 3 Figure 4 PMID:9703281
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janak, K.; Becker, G.; Colmisjoe, A.
1998-06-01
The presence of 24 methyl sulfonyl polychlorinated biphenyl (PCB) congeners (MeSO{sub 2}-CBs) and 3-methyl sulfonyl 2,2-bis(4-chlorophenyl)-1,1-dichlorethene (DDE) (MeSO{sub 2}-DDE), metabolites of PCB and DDE, in blubber, lung, and liver of gray seals has been determined by using atomic emission detection (AED) and electron capture detection (ECD). Selective accumulation of aryl methyl sulfones in blubber, liver, and lung tissue was also investigated. For the liver samples, a substantial and highly specific retention of PCB methyl sulfones was observed. The atomic emission technique significantly improved the determination of measured solutes compared with ECD. Atomic emission detection was also valuable for the monitoringmore » of the prefractionation and to decrease the requirements of sample clean-up. Comparing both detection techniques showed a good correlation between the results of the AED sulfur-selective line and ECD.« less
Sun, Wei; Ma, Jie; Wu, Songfeng; Yang, Dong; Yan, Yujuan; Liu, Kehui; Wang, Jinglan; Sun, Longqin; Chen, Ning; Wei, Handong; Zhu, Yunping; Xing, Baocai; Zhao, Xiaohang; Qian, Xiaohong; Jiang, Ying; He, Fuchu
2010-02-05
Tissue interstitial fluid (TIF) forms the interface between circulating body fluids and intracellular fluid. Pathological alterations of liver cells could be reflected in TIF, making it a promising source of liver disease biomarkers. Mouse liver TIF was extracted, separated by SDS-PAGE, analyzed by linear ion trap mass spectrometer, and 1450 proteins were identified. These proteins may be secreted, shed from membrane vesicles, or represent cellular breakdown products. They show different profiling patterns, quantities, and possibly modification/cleavage of intracellular proteins. The high solubility and even distribution of liver TIF supports its suitability for proteome analysis. Comparison of mouse liver TIF data with liver tissue and plasma proteome data identified major proteins that might be released from liver to plasma and serve as blood biomarkers of liver origin. This result was partially supported by comparison of human liver TIF data with human liver and plasma proteome data. Paired TIFs from tumor and nontumor liver tissues of a hepatocellular carcinoma patient were analyzed and the profile of subtracted differential proteins supports the potential for biomarker discovery in TIF. This study is the first analysis of the liver TIF proteome and provides a foundation for further application of TIF in liver disease biomarker discovery.
Hunter, Stuart; Willcox, Carrie R; Davey, Martin S; Kasatskaya, Sofya A; Jeffery, Hannah C; Chudakov, Dmitriy M; Oo, Ye H; Willcox, Benjamin E
2018-05-18
γδ T-cells comprise a substantial proportion of tissue-associated lymphocytes. However, our current understanding of human γδ T-cells is primarily based on peripheral blood subsets, while the immunobiology of tissue-associated subsets remains largely unclear. To address this, we characterised the TCR diversity, immunophenotype and function of human liver infiltrating γδ T-cells, focussing on the predominant tissue-associated Vδ2 neg γδ subset, which is implicated in liver immunopathology. Intrahepatic Vδ2 neg γδ T-cells were highly clonally focussed, with single expanded clonotypes featuring complex, private TCR rearrangements frequently dominating the compartment. Such T-cells were predominantly CD27 lo/neg effector lymphocytes, whereas naïve CD27 hi , TCR diverse populations present in matched blood were generally absent in the liver. Furthermore, while a CD45RA hi Vδ2 neg γδ effector subset present in both liver and peripheral blood contained overlapping TCR clonotypes, the liver Vδ2 neg γδ T-cell pool also included a phenotypically distinct CD45RA lo effector compartment that was enriched for expression of the tissue tropism marker CD69, the hepatic homing chemokine receptors CXCR3 and CXCR6, and liver-restricted TCR clonotypes, suggestive of intrahepatic tissue residency. Liver infiltrating Vδ2 neg γδ cells were capable of polyfunctional cytokine secretion, and unlike peripheral blood subsets, were responsive to both TCR and innate stimuli. These findings suggest the ability of Vδ2 neg γδ T-cells to undergo clonotypic expansion and differentiation is crucial in permitting access to solid tissues such as the liver, and can result in functionally distinct peripheral and liver-resident memory γδ T-cell subsets. They highlight the inherent functional plasticity within the Vδ2 neg γδ T-cell compartment, and may inform design of cellular therapies involving intrahepatic trafficking of γδ T-cells to suppress liver inflammation or combat liver cancer. γδ T cells are frequently enriched in many solid tissues, however the immunobiology of such tissue-associated subsets in humans has remained unclear. We show that intrahepatic γδ T cells are enriched for clonally expanded effector T cells, whereas naïve γδ T cells are largely excluded; moreover, whereas a distinct proportion of circulating T cell clonotypes was present in both the liver tissue and peripheral blood, a functionally and clonotypically distinct population of liver-resident γδ T cells was also evident. Our findings suggest that factors triggering γδ T cell clonal selection and differentiation, such as infection, can drive enrichment of γδ T cells into liver tissue, allowing the development of functionally distinct tissue-restricted memory populations specialised in local hepatic immunosurveillance. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Das, Debobrato; Reed, Stephanie; Klokkevold, Perry R; Wu, Benjamin M
2013-02-01
3D digital microscopy was used to develop a rapid alternative approach to quantify the effects of specific laser parameters on soft tissue ablation and charring in vitro without the use of conventional tissue processing techniques. Two diode lasers operating at 810 and 980 nm wavelengths were used to ablate three tissue types (bovine liver, turkey breast, and bovine muscle) at varying laser power (0.3, 1.0, and 2.0 W) and velocities (1-50 mm/s). Spectrophotometric analyses were performed on each tissue to determine tissue-specific absorption coefficients and were considered in creating wavelength-dependent energy attenuation models to evaluate minimum heat of tissue ablations. 3D surface contour profiles characterizing tissue damage revealed that ablation depth and tissue charring increased with laser power and decreased with lateral velocity independent of wavelength and tissue type. While bovine liver ablation and charring were statistically higher at 810 than 980 nm (p < 0.05), turkey breast and bovine muscle ablated and charred more at 980 than 810 nm (p < 0.05). Spectrophotometric analysis revealed that bovine liver tissue had a greater tissue-specific absorption coefficient at 810 than 980 nm, while turkey breast and bovine muscle had a larger absorption coefficient at 980 nm (p < 0.05). This rapid 3D microscopic analysis of robot-driven laser ablation yielded highly reproducible data that supported well-defined trends related to laser-tissue interactions and enabled high throughput characterization of many laser-tissue permutations. Since 3D microscopy quantifies entire lesions without altering the tissue specimens, conventional and immunohistologic techniques can be used, if desired, to further interrogate specific sections of the digitized lesions.
Eiler, J; Kleinholdermann, U; Albers, D; Dahms, J; Hermann, F; Behrens, C; Luedemann, M; Klingmueller, V; Alzen, G F P
2012-10-01
Ultrasound elastography by acoustic radiation force impulse imaging (ARFI) is used in adults for non invasive measurement of liver stiffness, indicating liver diseases like fibrosis. To establish ARFI in children and adolescents we determined standard values of healthy liver tissue and analysed potentially influencing factors. 132 patients between 0 and 17 years old were measured using ARFI. None of them had any liver disease or any other disease that could affect the liver secondarily. All patients had a normal ultrasound scan, a normal BMI and normal liver function tests. The mean value of all ARFI measurements was calculated and potentially influencing factors were analysed. The mean value of all ARFI elastography measurements was 1.16 m/sec (SD ± 0.14 m/sec). Neither age (p = 0.533) nor depth of measurement (p = 0.066) had no significant influence on ARFI values, whereas a significant effect of gender was found with lower ARFI values in females (p = 0.025), however, there was no significant interaction between age groups (before or after puberty) and gender (p = 0.276). There was an interlobar difference with lower values in the right liver lobe compared to the left (p = 0.036) and with a significantly lower variance (p < 0.001). Consistend values were measured by different examiners (p = 0.108), however, the inter examiner variance deviated significantly (p < 0.001). ARFI elastography is a reliable method to measure liver stiffness in children and adolescents. In relation to studies which analyse liver diseases, the standard value of 1.16 m/sec (± 0.14 m/sec) allows a differentiation of healthy versus pathological liver tissue. © Georg Thieme Verlag KG Stuttgart · New York.
Quantitative characterization of fatty liver disease using x-ray scattering
NASA Astrophysics Data System (ADS)
Elsharkawy, Wafaa B.; Elshemey, Wael M.
2013-11-01
Nonalcoholic fatty liver disease (NAFLD) is a dynamic condition in which fat abnormally accumulates within the hepatocytes. It is believed to be a marker of risk of later chronic liver diseases, such as liver cirrhosis and carcinoma. The fat content in liver biopsies determines its validity for liver transplantation. Transplantation of livers with severe NAFLD is associated with a high risk of primary non-function. Moreover, NAFLD is recognized as a clinically important feature that influences patient morbidity and mortality after hepatic resection. Unfortunately, there is a lack in a precise, reliable and reproducible method for quantification of NAFLD. This work suggests a method for the quantification of NAFLD. The method is based on the fact that fatty liver tissue would have a characteristic x-ray scattering profile with a relatively intense fat peak at a momentum transfer value of 1.1 nm-1 compared to a soft tissue peak at 1.6 nm-1. The fat content in normal and fatty liver is plotted against three profile characterization parameters (ratio of peak intensities, ratio of area under peaks and ratio of area under fat peak to total profile area) for measured and Monte Carlo simulated x-ray scattering profiles. Results show a high linear dependence (R2>0.9) of the characterization parameters on the liver fat content with a reported high correlation coefficient (>0.9) between measured and simulated data. These results indicate that the current method probably offers reliable quantification of fatty liver disease.
Obeng-Adjei, N; Choo, D K; Weiner, D B
2013-10-01
Hepatotropic pathogens, such as hepatitis B (HBV) and hepatitis C (HCV), often escape cellular immune clearance resulting in chronic infection. As HBV and HCV infections are the most common causes of hepatocellular carcinoma (HCC), prevention of these infections is believed to be key to the prevention of HCC. It is believed that an effective immune therapy must induce strong cytotonic T lymphocytes (CTLs) that can migrate into the liver, where they can clear infected hepatocytes. Here, we compared the induction of CD8 T cells by two different DNA immunization methods for T-cell differentiation, function, memory programming and their distribution within relevant tissues in a highly controlled fashion. We used hydrodynamic tail vein injection of plasmid to establish liver-specific LCMV-gp antigen (Ag) transient expression, and studied CD8 T cells induced using the P14 transgenic mouse model. CD8 T cells from this group exhibited unique and limited expansion, memory differentiation, polyfunctionality and cytotoxicity compared with T cells generated in intramuscularly immunized mice. This difference in liver-generated expansion resulted in lower memory CD8 T-cell frequency, leading to reduced protection against lethal viral challenge. These data show an unusual induction of naive CD8 T cells contributed to the lower frequency of Ag-specific CTLs observed after immunization in the liver, suggesting that limited priming in liver compared with peripheral tissues is responsible for this outcome.
Harari, Colin M; Magagna, Michelle; Bedoya, Mariajose; Lee, Fred T; Lubner, Meghan G; Hinshaw, J Louis; Ziemlewicz, Timothy; Brace, Christopher L
2016-01-01
To compare microwave ablation zones created by using sequential or simultaneous power delivery in ex vivo and in vivo liver tissue. All procedures were approved by the institutional animal care and use committee. Microwave ablations were performed in both ex vivo and in vivo liver models with a 2.45-GHz system capable of powering up to three antennas simultaneously. Two- and three-antenna arrays were evaluated in each model. Sequential and simultaneous ablations were created by delivering power (50 W ex vivo, 65 W in vivo) for 5 minutes per antenna (10 and 15 minutes total ablation time for sequential ablations, 5 minutes for simultaneous ablations). Thirty-two ablations were performed in ex vivo bovine livers (eight per group) and 28 in the livers of eight swine in vivo (seven per group). Ablation zone size and circularity metrics were determined from ablations excised postmortem. Mixed effects modeling was used to evaluate the influence of power delivery, number of antennas, and tissue type. On average, ablations created by using the simultaneous power delivery technique were larger than those with the sequential technique (P < .05). Simultaneous ablations were also more circular than sequential ablations (P = .0001). Larger and more circular ablations were achieved with three antennas compared with two antennas (P < .05). Ablations were generally smaller in vivo compared with ex vivo. The use of multiple antennas and simultaneous power delivery creates larger, more confluent ablations with greater temperatures than those created with sequential power delivery. © RSNA, 2015.
Al-Alem, Ihssan; Pillai, Krishna; Akhter, Javed; Chua, Terence C; Morris, David L
2014-06-01
Radiofrequency ablation (RFA) is widely used for treating liver tumors; recurrence is common owing to proximity to blood vessels possibly due to the heat sink effect. We seek to investigate this phenomenon using unipolar and bipolar RFA on an egg white tumor tissue model and an animal liver model. Temperature profiles during ablation (with and without vessel simulation) were studied, using both bipolar and unipolar RFA probes by 4 strategically placed temperature leads to monitor temperature profile during ablation. The volume of ablated tissue was also measured. The volume ablated during vessel simulation confirmed the impact of the heat sink phenomenon. The heat sink effect of unipolar RFA was greater compared with bipolar RFA (ratio of volume affected 2:1) in both tissue and liver models. The volume ablated using unipolar RFA was less than the bipolar RFA (ratio of volume ablated = 1:4). Unipolar RFA achieved higher ablation temperatures (122°C vs 98°C). Unipolar RFA resulted in tissue damage beyond the vessel, which was not observed using bipolar RFA. Bipolar RFA ablates a larger tumor volume compared with unipolar RFA, with a single ablation. The impact of heat sink phenomenon in tumor ablation is less so with bipolar than unipolar RFA with sparing of adjacent vessel damage. © The Author(s) 2013.
Detection of hepatitis "C" virus in formalin-fixed liver tissue by nested polymerase chain reaction.
Sallie, R; Rayner, A; Portmann, B; Eddleston, A L; Williams, R
1992-08-01
Interpretation of antibody to hepatitis C virus (HCV) in patients with liver disease is difficult due to false-positive reactivity in some conditions. To evaluate the feasibility of HCV in archival material, HCV was sought in formalin-fixed, paraffin-embedded liver biopsy specimens. Nested polymerase chain reaction was used to detect hepatitis C virus in formalin-fixed, paraffin-embedded liver biopsy specimens after total RNA was extracted from tissue by proteinase K digestion and phenol/chloroform purification. The relative efficiency of amplification of HCV RNA from formalin-fixed material was estimated semiquantitatively by serial dilution of cDNA synthesised from RNA extracted from fresh and formalin-fixed sections from the same liver. Although HCV RNA could be detected in formalin-fixed liver tissue by nested PCR in 5/5 cases in which HCV was detected in serum, amplification was approximately 5-fold less efficient than when HCV was amplified from fresh tissue. Nevertheless, nested PCR of HCV from formalin-fixed liver tissue represents a useful technique in addressing some important questions related to the pathogenesis of liver disease.
Relationship Between Speed of Sound in and Density of Normal and Diseased Rat Livers
NASA Astrophysics Data System (ADS)
Hachiya, Hiroyuki; Ohtsuki, Shigeo; Tanaka, Motonao
1994-05-01
Speed of sound is an important acoustic parameter for quantitative characterization of living tissues. In this paper, the relationship between speed of sound in and density of rat liver tissues are investigated. The speed of sound was measured by the nondeformable technique based on frequency-time analysis of a 3.5 MHz pulse response. The speed of sound in normal livers varied minimally between individuals and was not related to body weight or age. In liver tissues which were administered CCl4, the speed of sound was lower than the speed of sound in normal tissues. The relationship between speed of sound and density in normal, fatty and cirrhotic livers can be fitted well on the line which is estimated using the immiscible liquid model assuming a mixture of normal liver and fat tissues. For 3.5 MHz ultrasound, it is considered that the speed of sound in fresh liver with fatty degeneration is responsible for the fat content and is not strongly dependent on the degree of fibrosis.
Modeling the mechanical properties of liver fibrosis in rats.
Zhu, Ying; Chen, Xin; Zhang, Xinyu; Chen, Siping; Shen, Yuanyuan; Song, Liang
2016-06-14
The progression of liver fibrosis changes the biomechanical properties of liver tissue. This study characterized and compared different liver fibrosis stages in rats in terms of viscoelasticity. Three viscoelastic models, the Voigt, Maxwell, and Zener models, were applied to experimental data from rheometer tests and then the elasticity and viscosity were estimated for each fibrosis stage. The study found that both elasticity and viscosity are correlated with the various stages of liver fibrosis. The study revealed that the Zener model is the optimal model for describing the mechanical properties of each fibrosis stage, but there is no significant difference between the Zener and Voigt models in their performance on liver fibrosis staging. Therefore the Voigt model can still be effectively used for liver fibrosis grading. Copyright © 2016 Elsevier Ltd. All rights reserved.
The gut microbiota modulates host energy and lipid metabolism in mice[S
Velagapudi, Vidya R.; Hezaveh, Rahil; Reigstad, Christopher S.; Gopalacharyulu, Peddinti; Yetukuri, Laxman; Islam, Sama; Felin, Jenny; Perkins, Rosie; Borén, Jan; Orešič, Matej; Bäckhed, Fredrik
2010-01-01
The gut microbiota has recently been identified as an environmental factor that may promote metabolic diseases. To investigate the effect of gut microbiota on host energy and lipid metabolism, we compared the serum metabolome and the lipidomes of serum, adipose tissue, and liver of conventionally raised (CONV-R) and germ-free mice. The serum metabolome of CONV-R mice was characterized by increased levels of energy metabolites, e.g., pyruvic acid, citric acid, fumaric acid, and malic acid, while levels of cholesterol and fatty acids were reduced. We also showed that the microbiota modified a number of lipid species in the serum, adipose tissue, and liver, with its greatest effect on triglyceride and phosphatidylcholine species. Triglyceride levels were lower in serum but higher in adipose tissue and liver of CONV-R mice, consistent with increased lipid clearance. Our findings show that the gut microbiota affects both host energy and lipid metabolism and highlights its role in the development of metabolic diseases. PMID:20040631
Enhanced skeletal muscle insulin sensitivity in year-old rats adapted to hypergravity
NASA Technical Reports Server (NTRS)
Mondon, C. E.; Dolkas, C. B.; Oyama, J.
1981-01-01
Rats induced into a hypermetabolic state by exposure to chronic (7 mo) centrifugation at 4.15 g exhibited increased glucose uptake at lower plasma insulin levels than weight-matched control animals following oral glucose administration. In order to determine the insulin sensitivity of specific tissues, the effect of exogenous insulin on glucose uptake by isolated perfused livers and hindlim skeletal muscle from rats adapted to chronic centrifugation for one year was compared with perfused tissue from 2.5 mo-old noncentrifuged control animals of equal body weight. Metabolic glucose clearance by skeletal muscle from hypergravic rats did not prove significantly greater than control muscle when perfused in the absence of insulin (10.6 vs 8.1 microliters/min-g-muscle), but was twice as fast (23.0 vs 9.5) at perfusate insulin levels of 35 micro-U/ml. Conversely, glucose uptake by hypergravic livers was significantly decreased (P is less than 0.001) compared with control livers (10.3 vs 27.8) at perfusate insulin levels of 40 micro-U/ml. Results suggest that skeletal muscle rather than liver is primarily responsible for the enhanced sensitivity to insulin and the increased energy expenditure observed in rats subjected to hypergravity.
Tanaka, Mitsuru; Yasuoka, Akihito; Shimizu, Manae; Saito, Yoshikazu; Kumakura, Kei; Asakura, Tomiko; Nagai, Toshitada
2017-01-01
To elucidate the effects of altered dietary carbohydrate and fat balance on liver and adipose tissue transcriptomes, 3-week-old rats were fed three kinds of diets: low-, moderate-, and high-fat diets (L, M, and H) containing a different ratio of carbohydrate-fat (C-F) (65:15, 60:20, and 35:45 in energy percent, respectively). The rats consumed the diets for 9 weeks and were subjected to biochemical and DNA microarray analyses. The rats in the H-group exhibited lower serum triacylglycerol (TG) levels but higher liver TG and cholesterol content than rats in the L-group. The analysis of differentially expressed genes (DEGs) between each group (L vs M, M vs H, and L vs H) in the liver revealed about 35% of L vs H DEGs that were regulated in the same way as M vs H DEGs, and most of the others were L- vs H-specific. Gene ontology analysis of these L vs H DEGs indicated that those related to fatty acid synthesis and circadian rhythm were enriched. Interestingly, about 30% of L vs M DEGs were regulated in a reverse way compared with L vs H and M vs H DEGs. These reversed liver DEGs included M-up/H-down genes ( Sds for gluconeogenesis from amino acids) and M-down/H-up genes ( Gpd2 for gluconeogenesis from glycerol, Agpat9 for TG synthesis, and Acot1 for beta-oxidation). We also analyzed L vs H DEGs in white (WAT) and brown (BAT) adipose tissues and found that both oxidation and synthesis of fatty acids were inhibited in these tissues. These results indicate that the alteration of dietary C-F balance differentially affects the transcriptomes of metabolizing and energy-storing tissues.
Vogel, J A; van Veldhuisen, E; Agnass, P; Crezee, J; Dijk, F; Verheij, J; van Gulik, T M; Meijerink, M R; Vroomen, L G; van Lienden, K P; Besselink, M G
2016-01-01
Irreversible electroporation (IRE) is a novel ablation technique in the treatment of unresectable cancer. The non-thermal mechanism is thought to cause mostly apoptosis compared to necrosis in thermal techniques. Both in experimental and clinical studies, a waiting time between ablation and tissue or imaging analysis to allow for cell death through apoptosis, is often reported. However, the dynamics of the IRE effect over time remain unknown. Therefore, this study aims to summarize these effects in relation to the time between treatment and evaluation. A systematic search was performed in Pubmed, Embase and the Cochrane Library for original articles using IRE on pancreas, liver or surrounding structures in animal or human studies. Data on pathology and time between IRE and evaluation were extracted. Of 2602 screened studies, 36 could be included, regarding IRE in liver (n = 24), pancreas (n = 4), blood vessels (n = 4) and nerves (n = 4) in over 440 animals (pig, rat, goat and rabbit). No eligible human studies were found. In liver and pancreas, the first signs of apoptosis and haemorrhage were observed 1-2 hours after treatment, and remained visible until 24 hours in liver and 7 days in pancreas after which the damaged tissue was replaced by fibrosis. In solitary blood vessels, the tunica media, intima and lumen remained unchanged for 24 hours. After 7 days, inflammation, fibrosis and loss of smooth muscle cells were demonstrated, which persisted until 35 days. In nerves, the median time until demonstrable histological changes was 7 days. Tissue damage after IRE is a dynamic process with remarkable time differences between tissues in animals. Whereas pancreas and liver showed the first damages after 1-2 hours, this took 24 hours in blood vessels and 7 days in nerves.
Dysregulation of hepatic fatty acid metabolism in chronic kidney disease.
Jin, Kyubok; Norris, Keith; Vaziri, Nosratola D
2013-02-01
Chronic kidney disease (CKD) results in hypertriglyceridemia which is largely due to impaired clearance of triglyceride-rich lipoproteins occasioned by downregulation of lipoprotein lipase and very low-density lipoprotein (LDL) receptor in the skeletal muscle and adipose tissue and of hepatic lipase and LDL receptor-related protein in the liver. However, data on the effect of CKD on fatty acid metabolism in the liver is limited and was investigated here. Male Sprague-Dawley rats were randomized to undergo 5/6 nephrectomy (CRF) or sham operation (control) and observed for 12 weeks. The animals were then euthanized and their liver tissue tested for nuclear translocation (activation) of carbohydrate-responsive element binding protein (ChREBP) and sterol-responsive element binding protein-1 (SREBP-1) which independently regulate the expression of key enzyme in fatty acid synthesis, i.e. fatty acid synthase (FAS) and acyl-CoA carboxylase (ACC) as well as nuclear Peroxisome proliferator-activated receptor alpha (PPARα) which regulates the expression of enzymes involved in fatty acid oxidation and transport, i.e. L-FABP and CPT1A. In addition, the expression of ATP synthase α, ATP synthase β, glycogen synthase and diglyceride acyltransferase 1 (DGAT1) and DGAT2 were determined. Compared with controls, the CKD rats exhibited hypertriglyceridemia, elevated plasma and liver tissue free fatty acids, increased nuclear ChREBP and reduced nuclear SREBP-1 and PPARα, upregulation of ACC and FAS and downregulation of L-FABP, CPT1A, ATP synthase α, glycogen synthase and DGAT in the liver tissue. Liver in animals with advanced CKD exhibits ChREBP-mediated upregulation of enzymes involved in fatty acid synthesis, downregulation of PPARα-regulated fatty acid oxidation system and reduction of DGAT resulting in reduced fatty acid incorporation in triglyceride.
The protective effect of pomegranate juice in paracetamol-induced acute hepatotoxicity in rats
Çalışkan, Duygu; Koca, Tuğba; Doğuç, Duygu Kumbul; Özgöçmen, Meltem; Akçam, Mustafa
2016-01-01
Aim: Being the most commonly used antipyretic and analgesic, paracetamol is one of the most common causes of childhood poisoning in the world and maintains its importance also in our country. Paracetamol poisoning is one of the most common causes of liver failure. This study aimed to investigate if pomegranate juice had protective effect in acute liver toxicity related with paracetamol. Material and Methods: A total of 36 Wistar-Albino rats were divided into four groups as the paracetamol group (3 000 mg/kg paracetamol), the pomegranate juice + paracetamol group (1.5 mL pomegranate juice plus 3 000 mg/kg paracetamol), the pomegranate juice group (1.5 mL pomegranate juice) and the control group (1.5 mL distilled water). Pomegranate juice and distilled water were administered for eight days. Paracetamol was administered on day 8. The level of thiobarbituric acid reactive substances, as an oxidative marker, was measured in the blood and liver tissue on day 9. In addition, liver tissues were evaluated histologically (in terms of increased connective tissue, granular degeneration, mononuclear cell infiltration, necrotic cells and vascular congestion). Results: The liver tissue and blood thiobarbituric acid reactive substances levels were found to be significantly lower in the pomegranate juice + paracetamol group compared to the paracetamol group (p<0.05). Histologically, structural changes related with damage were observed in both the paracetamol group and pomegranate juice + paracetamol group. The extent of damage was statistically significantly lower in the pomegranate juice + paracetamol group (p<0.001). Conclusions: Our results related with oxidative and histologic evaluation showed that pomegranate juice might have a preventive effect in paracetamol-induced acute liver damage. PMID:27489463
The protective effect of pomegranate juice in paracetamol-induced acute hepatotoxicity in rats.
Çalışkan, Duygu; Koca, Tuğba; Doğuç, Duygu Kumbul; Özgöçmen, Meltem; Akçam, Mustafa
2016-06-01
Being the most commonly used antipyretic and analgesic, paracetamol is one of the most common causes of childhood poisoning in the world and maintains its importance also in our country. Paracetamol poisoning is one of the most common causes of liver failure. This study aimed to investigate if pomegranate juice had protective effect in acute liver toxicity related with paracetamol. A total of 36 Wistar-Albino rats were divided into four groups as the paracetamol group (3 000 mg/kg paracetamol), the pomegranate juice + paracetamol group (1.5 mL pomegranate juice plus 3 000 mg/kg paracetamol), the pomegranate juice group (1.5 mL pomegranate juice) and the control group (1.5 mL distilled water). Pomegranate juice and distilled water were administered for eight days. Paracetamol was administered on day 8. The level of thiobarbituric acid reactive substances, as an oxidative marker, was measured in the blood and liver tissue on day 9. In addition, liver tissues were evaluated histologically (in terms of increased connective tissue, granular degeneration, mononuclear cell infiltration, necrotic cells and vascular congestion). The liver tissue and blood thiobarbituric acid reactive substances levels were found to be significantly lower in the pomegranate juice + paracetamol group compared to the paracetamol group (p<0.05). Histologically, structural changes related with damage were observed in both the paracetamol group and pomegranate juice + paracetamol group. The extent of damage was statistically significantly lower in the pomegranate juice + paracetamol group (p<0.001). Our results related with oxidative and histologic evaluation showed that pomegranate juice might have a preventive effect in paracetamol-induced acute liver damage.
Oberholzer, Hester Magdalena; Van Der Schoor, Ciska; Taute, Helena; Bester, Megan Jean
2015-08-01
Exposure to drugs during pregnancy is a major concern, as some teratogenic compounds can influence normal foetal development. Although the use of drugs during pregnancy should generally be avoided, exposure of the developing foetus to teratogens may occur unknowingly since these compounds may be hidden in products that are being marketed as "all natural." The aim of the current study was to investigate the possible teratogenic and cellular effects of sibutramine-a serotonin-norepinephrine reuptake inhibitor used in the treatment of obesity-on the heart and liver tissue of chick embryos. Ephedrine was used as a positive control. The chick embryo model was chosen because it has been used in studying developmental and experimental biology and teratology with great success. The embryos were exposed to three different concentrations of sibutramine and ephedrine respectively. The results obtained revealed that both compounds exhibited embryotoxicity when compared to the control groups. Liver and heart tissue of the exposed embryos was severely affected by these compounds in a dose-related manner. Morphology similar to that of muscle dystrophy was observed in the heart, where the muscle tissue was infiltrated by adipose and connective tissue. Severe liver steatosis was also noted. A more in-depth investigation into the molecular pathways involved might provide more information on the exact mechanism of toxicity of these products influencing embryonic development. © 2015 Wiley Periodicals, Inc.
Helling, T S; Edwards, C A; Helling, T S; Chang, C C; Hodges, M C; Dhar, A; VanWay, C
1999-09-01
Accelerated hepatic apoptosis was first described in portal vein-ligated livers but has since been reported in a variety of liver injuries. Because porto-prival states can induce apoptosis we sought to determine whether transient ischemic periods followed by reperfusion would trigger such cell death. The cytokines TNF-alpha and TGF-beta are known to facilitate apoptosis and are released in response to a number of stimuli including ischemia. We also investigated alterations in plasma and tissue levels of these cytokines which might lend support to their role in increased apoptotic activity following ischemia/reperfusion. Female pigs were used as the experimental model. Inflow occlusion of portal and hepatic arterial blood was performed to a portion of the swine liver directing the entire splanchnic flow to the remaining hepatic lobes for a period of 2 h. The livers were then reperfused and plasma and tissue samples taken for determination of apoptotic activity utilizing cell death immunoperoxidase staining of 3'-OH DNA ends generated by fragmentation and ELISA assay of histone-associated DNA fragments. Plasma and tissue levels of TNF-alpha and plasma levels of TGF-beta were determined by ELISA assay. An increase in apoptotic activity following reperfusion was seen at Day 2 and Day 4 compared to preischemic values by the cell death stain. The ELISA cell death assay showed an increase in apoptotic activity at 60 min, Day 2, and Day 4. Moreover, the ELISA cell death assay showed enhanced apoptotic activity in "hyperperfused" hepatic lobes compared to preischemic, or resting, liver. This was also observed when compared to sham-operated animals. Surprisingly, there was no detectable increase in plasma TNF-alpha or TGF-beta levels following ischemia/reperfusion, although homogenized liver TNF-alpha levels were increased at 60 min and Day 2 following reperfusion. We conclude that transient hepatic inflow occlusion followed by reperfusion can induce increased apoptotic activity in the swine model. Furthermore, increased apoptotic activity also occurs in the hyperperfused liver raising the possibility of a locally active factor or global hepatic expression of receptor activity in response to ischemia/reperfusion. This period of ischemia/reperfusion did not produce a detectable increase in circulating cytokine levels, and accelerated apoptosis could not be linked to heightened TNF-alpha or TGF-beta plasma activity. Higher tissue levels of TNF-alpha could reflect enhanced binding to TNF cell surface receptors or amplified receptor expression. Copyright 1999 Academic Press.
Enami, Yuta; Joseph, Brigid; Bandi, Sriram; Lin, Juan; Gupta, Sanjeev
2012-04-01
Organs from non-heart-beating donors are attractive for use in cell therapy. Understanding the nature of molecular perturbations following reperfusion/reoxygenation will be highly significant for non-heart-beating donor cells. We studied non-heart-beating donor rats for global gene expression with Affymetrix microarrays, hepatic tissue integrity, viability of isolated hepatocytes, and engraftment and proliferation of transplanted cells in dipeptidyl peptidase IV-deficient rats. In non-heart-beating donors, liver tissue was morphologically intact for >24 hours with differential expression of 1, 95, or 372 genes, 4, 16, or 34 hours after death, respectively, compared with heart-beating donors. These differentially expressed genes constituted prominent groupings in ontological pathways of oxidative phosphorylation, adherence junctions, glycolysis/gluconeogenesis, and other discrete pathways. We successfully isolated viable hepatocytes from non-heart-beating donors, especially up to 4 hours after death, although the hepatocyte yield and viability were inferior to those of hepatocytes from heart-beating donors (P < 0.05). Similarly, although hepatocytes from non-heart-beating donors engrafted and proliferated after transplantation in recipient animals, this was inferior to hepatocytes from heart-beating donors (P < 0.05). Gene expression profiling in hepatocytes isolated from non-heart-beating donors showed far greater perturbations compared with corresponding liver tissue, including representation of pathways in focal adhesion, actin cytoskeleton, extracellular matrix-receptor interactions, multiple ligand-receptor interactions, and signaling in insulin, calcium, wnt, Jak-Stat, or other cascades. Liver tissue remained intact over prolonged periods after death in non-heart-beating donors, but extensive molecular perturbations following reperfusion/reoxygenation impaired the viability of isolated hepatocytes from these donors. Insights into molecular changes in hepatocytes from non-heart-beating donors offer opportunities for improving donor cell viability, which will advance the utility of non-heart-beating donor organs for cell therapy or other applications. Copyright © 2012 American Association for the Study of Liver Diseases.
Application of tissue-specific NK and NKT cell activity for tumor immunotherapy
Subleski, Jeff J.; Wiltrout, Robert H.; Weiss, Jonathan M.
2009-01-01
Natural killer (NK) and NKT cells are a first line of defense against pathogens and transformed cells. However, dysregulation of their function can lead to autoimmune disease. A better understanding of the mechanisms controlling NK and NKT effector function should lead to the development of improved strategies for the treatment of many diseases. The site in which NK and NKT cells reside should be taken into account, because accumulating evidence suggests that the tissue microenvironment strongly influences their function. In this regard, the liver represents a unique immunologic organ in which the balance between the need for tolerance and the ability to respond rapidly to pathogens and tissue injury is tightly regulated. NK cells in the liver have augmented cytolytic activity as compared to other organs, which is consistent with a role for liver-associated NK cells in being critical effector cells for inhibiting tumor metastasis in the liver. Several studies also suggest that hepatic NKT cells have different functions than those in other organs. Whereas splenic and thymic NKT cells have been shown to suppress diabetes development, facilitate the induction of systemic tolerance and are regulated by IL-4 and other Th2 cytokines, certain subsets of NKT cells in the liver are important sources of Th1 cytokines such as Interferon gamma, and are the primary mediators of anti-tumor responses. The unique properties and roles as critical effector cells make NK and NKT cells within the liver microenvironment attractive targets of immunotherapeutic approaches that have the goal of controlling tumor metastasis in the liver. PMID:19682859
Markowitz, Geoffrey J; Michelotti, Gregory A; Diehl, Anna Mae; Wang, Xiao-Fan
2015-04-01
Initiation and progression of hepatocellular carcinoma (HCC) is intimately associated with a chronically diseased liver tissue. This diseased liver tissue background is a drastically different microenvironment from the healthy liver, especially with regard to immune cell prevalence and presence of mediators of immune function. To better understand the consequences of liver disease on tumor growth and the interplay with its microenvironment, we utilized two standard methods of fibrosis induction and orthotopic implantation of tumors into the inflamed and fibrotic liver to mimic the liver condition in human HCC patients. Compared to non-diseased controls, tumor growth was significantly enhanced under fibrotic conditions. The immune cells that infiltrated the tumors were also drastically different, with decreased numbers of natural killer cells but greatly increased numbers of immune-suppressive CD11b + Gr1 hi myeloid cells in both models of fibrosis. In addition, there were model-specific differences: Increased numbers of CD11b + myeloid cells and CD4 + CD25 + T cells were found in tumors in the bile duct ligation model but not in the carbon tetrachloride model. Induction of fibrosis altered the cytokine production of implanted tumor cells, which could have farreaching consequences on the immune infiltrate and its functionality. Taken together, this work demonstrates that the combination of fibrosis induction with orthotopic tumor implantation results in a markedly different tumor microenvironment and tumor growth kinetics, emphasizing the necessity for more accurate modeling of HCC progression in mice, which takes into account the drastic changes in the tissue caused by chronic liver disease.
Chen, Xiaole; Gong, Jianping; Xu, Faliang
2014-02-01
To investigate the changes in the functional activity of glycogen synthase kinase-3 (GSK-3) in the hepatic tissue after endotoxin (lipopolysaccharide, LPS) tolerance and explore the effects of LPS-induced GSK-3 inhibition on glycogen metabolism in the liver. Male SD rats were randomly divided into normal control, endotoxin pretreatment and GSK-3 inhibitor (lithium chloride) groups with corresponding pretreatments prior to a large dose of LPS challenge (10 mg/kg) to induce liver injury. Glycogen deposition and content in the hepatic tissue was detected using periodic acid-Schiff (PAS) staining and a glycogen quantification kit, respectively. Western blotting was performed for semi-quantitative analysis of protein level and inhibitory phosphorylation of GSK-3, and a Coomassie brilliant blue G-250-based colorimetric assay was used to detect calpain activity in the liver. Glycogen content in the liver decreased significantly after LPS challenge in all the 3 groups (P<0.05) but showed no significant difference among the groups (P>0.05). Both LPS and lithium chloride pretreatments caused a significant increase of liver glycogen content (P<0.05). LPS pretreatment induced inhibitory phosphorylation of GSK-3β (P<0.05) and partial cleavage of GSK-3α but did not affect the expression of GSK-3 protein (P>0.05). Large-dose LPS challenge significantly increased the activity of calpain in the liver tissue (P<0.05) to a comparable level in the 3 groups (P>0.05). Endotoxin pretreatment induces inhibitory phosphorylation of GSK-3β and partial cleavage of GSK-3α and promotes the deposition of liver glycogen but does not affect the activity of calpain, which may contribute to an increased glycogen reserve for energy supply in the event of large-dose LPS challenge.
Singha, Indrani; Das, Subir Kumar
2016-04-01
Ionizing radiation (IR) has become an integral part of the modern medicine--both for diagnosis as well as therapy. However, normal tissues or even distant cells also suffer IR-induced free radical insult. It may be more damaging in longer term than direct radiation exposure. Antioxidants provide protection against IR-induced damage. Grapes are the richest source of antioxidants. Here, we assessed the scavenging properties of four grape (Vitis vinifera) cultivars, namely Flame seedless (Black), Kishmish chorni (Black with reddish brown), Red globe (Red) and Thompson seedless mutant (Green), and also evaluated their protective action against γ-radiation-induced oxidative stress in liver tissue ex vivo. The scavenging abilities of grape seeds [2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC₅₀ = 0.008 ± 0.001 mg/mL), hydrogen peroxide (IC₅₀ = 0.49 to 0.8 mg/mL), hydroxyl radicals (IC₅₀ = 0.08 ± 0.008 mg/mL), and nitric oxide (IC₅₀ = 0.8 ± 0.08 mg/mL)] were higher than that of skin or pulp. Gamma (γ) radiation exposure to sliced liver tissues ex vivo from goat, @ 6 Gy significantly (P < 0.001) decreased reduced glutathione (GSH) content by 21.2% and also activities of catalase, glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione s-transferase (GST) by 49.5, 66.0, 70.3, 73.6%, respectively. However, it increased thiobarbituric acid reactive substances (TBARS) by 2.04-fold and nitric oxide level by 48.6% compared to untreated group. Further increase in doses (10 or 16 Gy) of γ-radiation correspondingly decreased GSH content and enzyme activities, and increased TBARS and nitric oxide levels. Grape extract treatment prior to ionizing radiation exposure ameliorated theses effects at varying extent. The seed extracts exhibited strong antioxidant potential compared to skin or pulp extracts of different grape cultivars against oxidative damage by ionizing radiation (6 Gy, 10 Gy and 16 Gy) in sliced liver tissues ex vivo. Grape extracts at higher concentration (10 mg extract/g liver tissue) showed stronger antioxidant potential against lower dose (6 Gy) of ionizing radiation. Our results suggest that grape extracts could serve as a potential source of natural antioxidant against lower doses of IR-induced oxidative stress in liver extracts ex vivo.
de Araujo, G G; Gobatto, C A; de Barros Manchado-Gobatto, F; Teixeira, L Fm; Dos Reis, I Gm; Caperuto, L C; Papoti, M; Bordin, S; Cavaglieri, C R; Verlengia, R
2015-01-01
We evaluate the mRNA expression of monocarboxylate transporters 1 and 4 (MCT1 and MCT4) in skeletal muscle (soleus, red and white gastrocnemius), heart and liver tissues in mice submitted to a single bout of swimming exercise at the maximal lactate steady state workload (MLSSw). After 72 h of MLSS test, the animals were submitted to a swimming exercise session for 25 min at individual MLSSw. Tissues and muscle samples were obtained at rest (control, n=5), immediately (n=5), 5 h (n=5) and 10 h (n=5) after exercise for determination of the MCT1 and MCT4 mRNA expression (RT-PCR). The MCT1 mRNA expression in liver increased after 10 h in relation to the control, immediate and 5 h groups, but the MCT4 remained unchanged. The MCT1 mRNA expression in heart increased by 31 % after 10 h when compared to immediate, but no differences were observed in relation to the control group. No significant differences were observed for red gastrocnemius in MCT1 and MCT4 mRNA expression. However, white gastrocnemius increased MCT1 mRNA expression immediately when compared to rest, 5 and 10 h test groups. In soleus muscle, the MCT1 mRNA expression increased immediately, 5 and 10 h after exercise when compared to the control. In relation to MCT4 mRNA expression, the soleus increased immediately and 10 h after acute exercise when compared to the control group. The soleus, liver and heart were the main tissues that showed improved the MCT1 mRNA expression, indicating its important role in controlling MLSS concentration in mice.
Perez, Dale M.; Richards, Mark P.; Parker, Robert S.; Berres, Mark E.; Wright, Aaron T.; Sifri, Mamduh; Sadler, Natalie C; Tatiyaborworntham, Nantawat; Li, Na
2016-01-01
Turkeys and chickens reared to 5 weeks of age and fed diets with feedstuffs low in endogenous tocopherols were examined. Treatments included feed supplemented with RRR (natural source vitamin E) alpha tocopheryl acetate (AcT, 35 mg/kg feed) and all-racemic (synthetic vitamin E) AcT (10 and 58 mg/kg feed). Alpha tocopherol hydroxylase activity was greater in liver microsomes prepared from turkeys compared to that from chickens (p < 0.01). Alpha and gamma tocopherol metabolites were higher in turkey bile than in chicken when assessing the RRR AcT diet and the all-racemic AcT diet at 58 mg/kg feed (p < 0.01). Turkey cytochrome P450 2C29 was increased relative to its chicken ortholog on the basis of RNA-Seq transcript abundance (p < 0.001) and activity-based protein profiling (p < 0.01) of liver tissue. Alpha tocopherol concentrations in plasma, liver, and muscle from turkey were lower than the respective tissues from chicken (p < 0.05). Lipid oxidation was greater in turkey thigh than in chicken (p < 0.05). These results suggest that elevated tocopherol metabolism by cytochrome P450 hydroxylase(s) in turkeys contributes to the decreased accumulation of alpha tocopherol in turkey tissues compared to that of chickens. PMID:26653675
The prognostic significance of lymphatics in colorectal liver metastases.
Muralidharan, Vijayaragavan; Nguyen, Linh; Banting, Jonathan; Christophi, Christopher
2014-01-01
Background. Colorectal Cancer (CRC) is the most common form of cancer diagnosed in Australia across both genders. Approximately, 40%-60% of patients with CRC develop metastasis, the liver being the most common site. Almost 70% of CRC mortality can be attributed to the development of liver metastasis. This study examines the pattern and density of lymphatics in colorectal liver metastases (CLM) as predictors of survival following hepatic resection for CLM. Methods. Patient tissue samples were obtained from the Victorian Cancer Biobank. Immunohistochemistry was used to examine the spatial differences in blood and lymphatic vessel densities between different regions within the tumor (CLM) and surrounding host tissue. Lymphatic vessel density (LVD) was assessed as a potential prognostic marker. Results. Patients with low lymphatic vessel density in the tumor centre, tumor periphery, and adjacent normal liver demonstrated a significant disease-free survival advantage compared to patients with high lymphatic vessel density (P = 0.01, P > 0.01, and P = 0.05, resp.). Lymphatic vessel density in the tumor centre and periphery and adjacent normal liver was an accurate predictive marker of disease-free survival (P = 0.05). Conclusion. Lymphatic vessel density in CLM appears to be an accurate predictor of recurrence and disease-free survival.
Swer, Rijied Thompson; Anbalagan, J.; Rajesh, Bhargavan
2017-01-01
Introduction The increasing scientific evidence of various health hazards on exposure of Radiofrequency Radiation (RFR) emitted from both the cell phones and base stations have caused significant media attention and public discussion in recent years. The mechanism of interaction of RF fields with developing tissues of children and fetuses may be different from that of adults due to their smaller physical size and variation in tissue electromagnetic properties. The present study may provide an insight into the basic mechanisms by which RF fields interact with developing tissues in an embryo. Aim To evaluate the possible tissue and DNA damage in developing liver of chick embryo following chronic exposure to Ultra-High Frequency/Radiofrequency Radiation (UHF/RFR) emitted from 2G and 3G cell phone. Materials and Methods Fertilized chick embryos were incubated in four groups. Group A-experimental group exposed to 2G radiation (60 eggs), Group B- experimental group exposed to 3G radiation (60 eggs), Group C- sham exposed control group (60 eggs) and Group D– control group (48 eggs). On completion of scheduled duration, the embryos were collected and processed for routine histological studies to check structural changes in liver. The nuclear diameter and karyorrhexis changes of hepatocytes were analysed using oculometer and square reticule respectively. The liver procured from one batch of eggs from all the four groups was subjected to alkaline comet assay technique to assess DNA damage. The results were compared using one-way ANOVA test. Results In our study, the exposure of developing chick embryos to 2G and 3G cell phone radiations caused structural changes in liver in the form of dilated sinusoidal spaces with haemorrhage, increased vacuolations in cytoplasm, increased nuclear diameter and karyorrhexis and significantly increased DNA damage. Conclusion The chronic exposure of chick embryo liver to RFR emitted from 2G and 3G cell phone resulted in various structural changes and DNA damage. The changes were more pronounced in 3G experimental group. Based on these findings it is necessary to create awareness among public about the possible ill effects of RFR exposure from cell phone. PMID:28892876
D'Silva, Mary Hydrina; Swer, Rijied Thompson; Anbalagan, J; Rajesh, Bhargavan
2017-07-01
The increasing scientific evidence of various health hazards on exposure of Radiofrequency Radiation (RFR) emitted from both the cell phones and base stations have caused significant media attention and public discussion in recent years. The mechanism of interaction of RF fields with developing tissues of children and fetuses may be different from that of adults due to their smaller physical size and variation in tissue electromagnetic properties. The present study may provide an insight into the basic mechanisms by which RF fields interact with developing tissues in an embryo. To evaluate the possible tissue and DNA damage in developing liver of chick embryo following chronic exposure to Ultra-High Frequency/Radiofrequency Radiation (UHF/RFR) emitted from 2G and 3G cell phone. Fertilized chick embryos were incubated in four groups. Group A-experimental group exposed to 2G radiation (60 eggs), Group B- experimental group exposed to 3G radiation (60 eggs), Group C- sham exposed control group (60 eggs) and Group D- control group (48 eggs). On completion of scheduled duration, the embryos were collected and processed for routine histological studies to check structural changes in liver. The nuclear diameter and karyorrhexis changes of hepatocytes were analysed using oculometer and square reticule respectively. The liver procured from one batch of eggs from all the four groups was subjected to alkaline comet assay technique to assess DNA damage. The results were compared using one-way ANOVA test. In our study, the exposure of developing chick embryos to 2G and 3G cell phone radiations caused structural changes in liver in the form of dilated sinusoidal spaces with haemorrhage, increased vacuolations in cytoplasm, increased nuclear diameter and karyorrhexis and significantly increased DNA damage. The chronic exposure of chick embryo liver to RFR emitted from 2G and 3G cell phone resulted in various structural changes and DNA damage. The changes were more pronounced in 3G experimental group. Based on these findings it is necessary to create awareness among public about the possible ill effects of RFR exposure from cell phone.
Collagen-binding vascular endothelial growth factor attenuates CCl4-induced liver fibrosis in mice
Wu, Kangkang; Huang, Rui; Wu, Hongyan; Liu, Yong; Yang, Chenchen; Cao, Shufeng; Hou, Xianglin; Chen, Bing; Dai, Jianwu; Wu, Chao
2016-01-01
Vascular endothelial growth factor (VEGF) serves an important role in promoting angiogenesis and tissue regeneration. However, the lack of an effective delivery system that can target this growth factor to the injured site reduces its therapeutic efficacy. Therefore, in the current study, collagen-binding VEGF was constructed by fusing a collagen-binding domain (CBD) to the N-terminal of native VEGF. The CBD-VEGF can specifically bind to collagen which is the major component of the extracellular matrix in fibrotic liver. The anti-fibrotic effects of this novel material were investigated by the carbon tetrachloride (CCl4)-induced liver fibrotic mouse model. Mice were injected with CCl4 intraperitoneally to induce liver fibrosis. CBD-VEGF was injected directly into the liver tissue of mice. The liver tissues were stained with hematoxylin and eosin for general observation or with Masson's trichrome staining for detection of collagen deposition. The hepatic stellate cell activation, blood vessel formation and hepatocyte proliferation were measured by immunohistochemical staining for α-smooth muscle actin, CD31 and Ki67 in the liver tissue. The fluorescent TUNEL assay was performed to evaluate the hepatocyte apoptosis. The present study identified that the CBD-VEGF injection could significantly promote vascularization of the liver tissue of fibrotic mice and attenuate liver fibrosis. Furthermore, hepatocyte apoptosis and hepatic stellate cell activation were attenuated by CBD-VEGF treatment. CBD-VEGF treatment could additionally promote hepatocyte regeneration in the liver tissue of fibrotic mice. Thus, it was suggested that CBD-VEGF may be used as a novel therapeutic intervention for liver fibrosis. PMID:27748931
Li, Ronghua; Fu, Xiaoyu; Tang, Yujing; Fu, Lei; Tan, Deming; Ouyang, Yi; Peng, Shifang
2018-05-28
To investigate expression profiles of the plasma exosomal miRNAs of the chronic hepatitis B (CHB) patients with persistently normal alamine aminotransferase (PNALT) for the first time and try to find exosomal miRNAs which could reflect liver inflammation better.
Methods: Five CHB patients with liver tissue inflammation grade ≥A2 of PNALT and 5 CHB patients with liver tissue inflammation grade
Li, Wei; Qu, Xin-Nan; Han, Ye; Zheng, Si-Wen; Wang, Jia; Wang, Ying-Ping
2015-01-01
The aim of this paper is to evaluate the protective effect of 5-hydroxymethyl-2-furfural (5-HMF) on acute alcohol-induced liver oxidative injury in mice. 5-HMF, a maillard reaction product, was isolated from the fruits of Schisandra chinensis for animal experiments. Experimental ICR mice were pretreated with different doses of 5-HMF (7.5, 15, and 30 mg/kg) for seven days by gavage feeding. Biochemical markers and enzymatic antioxidants from serum and liver tissue were examined. Our results showed that the activities of ALT (alanine aminotransferase), AST (aspartate transaminase), TC (total cholesterol), TG (triglyceride), L-DLC (low density lipoprotein) in serum and the levels of MDA (malondialdehyde) in liver tissue, decreased significantly (p < 0.05) in the 5-HMF-treated group compared with the alcohol group. On the contrary, enzymatic antioxidants CAT (catalase), GSH-Px (glutathione peroxidase), and GSH SOD (superoxide dismutase) were markedly elevated in liver tissue treated with 5-HMF (p < 0.05). Furthermore, the hepatic levels of pro-inflammatory response marker tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) were significantly suppressed (p < 0.05). Histopathological examination revealed that 5-HMF (30 mg/kg) pretreatment noticeably prevented alcohol-induced hepatocyte apoptosis and fatty degeneration. It is suggested that the hepatoprotective effects exhibited by 5-HMF on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties. PMID:25622257
Li, Wei; Qu, Xin-Nan; Han, Ye; Zheng, Si-Wen; Wang, Jia; Wang, Ying-Ping
2015-01-22
The aim of this paper is to evaluate the protective effect of 5-hydroxymethyl-2-furfural (5-HMF) on acute alcohol-induced liver oxidative injury in mice. 5-HMF, a maillard reaction product, was isolated from the fruits of Schisandra chinensis for animal experiments. Experimental ICR mice were pretreated with different doses of 5-HMF (7.5, 15, and 30 mg/kg) for seven days by gavage feeding. Biochemical markers and enzymatic antioxidants from serum and liver tissue were examined. Our results showed that the activities of ALT (alanine aminotransferase), AST (aspartate transaminase), TC (total cholesterol), TG (triglyceride), L-DLC (low density lipoprotein) in serum and the levels of MDA (malondialdehyde) in liver tissue, decreased significantly (p < 0.05) in the 5-HMF-treated group compared with the alcohol group. On the contrary, enzymatic antioxidants CAT (catalase), GSH-Px (glutathione peroxidase), and GSH SOD (superoxide dismutase) were markedly elevated in liver tissue treated with 5-HMF (p < 0.05). Furthermore, the hepatic levels of pro-inflammatory response marker tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) were significantly suppressed (p < 0.05). Histopathological examination revealed that 5-HMF (30 mg/kg) pretreatment noticeably prevented alcohol-induced hepatocyte apoptosis and fatty degeneration. It is suggested that the hepatoprotective effects exhibited by 5-HMF on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties.
Denys, Alban; Czuczman, Peter; Grey, David; Bascal, Zainab; Whomsley, Rhys; Kilpatrick, Hugh; Lewis, Andrew L
2017-01-01
To evaluate the plasma and tissue pharmacokinetics, safety and toxicity following intra-arterial hepatic artery administration of Vandetanib (VTB)-eluting Radiopaque Beads (VERB) in healthy swine. In a first phase, healthy swine were treated with hepatic intra-arterial administration of VERB at target dose loading strengths of 36 mg/mL (VERB36), 72 mg/mL (VERB72) and 120 mg/mL (VERB120). Blood and tissue samples were taken and analysed for VTB and metabolites to determine pharmacokinetic parameters for the different dose forms over 30 days. In a second phase, animals were treated with unloaded radiopaque beads or high dose VTB loaded beads (VERB100, 100 mg/mL). Tissue samples from embolized and non-embolized areas of the liver were evaluated at necropsy (30 and 90 days) for determination of VTB and metabolite levels and tissue pathology. Imaging was performed prior to sacrifice using multi-detector computed tomography (MDCT) and imaging findings correlated with pathological changes in the tissue and location of the radiopaque beads. The peak plasma levels of VTB (C max ) released from the various doses of VERB ranged between 6.19-17.3 ng/mL indicating a low systemic burst release. The plasma profile of VTB was consistent with a distribution phase up to 6 h after administration followed by elimination with a half-life of 20-23 h. The AUC of VTB and its major metabolite N-desmethyl vandetanib (NDM VTB) was approximately linear with the dose strength of VERB. VTB plasma levels were at or below limits of detection two weeks after administration. In liver samples, VTB and NDM VTB were present in treated sections at 30 days after administration at levels above the in vitro IC 50 for biological effectiveness. At 90 days both analytes were still present in treated liver but were near or below the limit of quantification in untreated liver sections, demonstrating sustained release from the VERB. Comparison of the reduction of the liver lobe size and associated tissue changes suggested a more effective embolization with VERB compared to the beads without drug. Hepatic intra-arterial administration of VERB results in a low systemic exposure and enables sustained delivery of VTB to target tissues following embolization. Changes in the liver tissue are consistent with an effective embolization and this study has demonstrated that VERB100 is well tolerated with no obvious systemic toxicity.
Brázová, Tímea; Hanzelová, Vladimíra; Miklisová, Dana
2012-08-01
Concentrations of six indicator PCB congeners (IUPAC nos. 28, 52, 101, 138, 153, and 180) were measured in several organs and adipose tissue of a freshwater predatory fishes (European perch, northern pike, pike perch, wels catfish) as well as in nonpredators (common carp, freshwater bream, goldfish, white bream) and in acanthocephalan Acanthocephalus lucii from the water reservoir Zemplínska šírava (Eastern Slovakia), which is considered to be one of the most PCB-contaminated places in Europe. Concentration of PCBs was determined by capillary gas chromatography in samples from May to September 2009. The two-way main-effect ANOVA confirmed that feeding habits of fish (P < 0.00001) and peculiarity of individual fish organs (P < 0.01) affect PCB bioaccumulation. The total amount of PCBs was significantly higher (P < 0.05) in predators compared to nonpredators. Tissue-specific differences were found in PCB accumulation in both fish groups. PCBs were predominantly accumulated in the liver and hard roe. Individual congeners were not distributed homogeneously within the investigated organs and adipose tissue. PCB 153 was present in higher concentrations than the other congeners in all fish organs as well as in adipose tissue comprising an average 31 and 34 % of ΣPCB in predators and nonpredators, respectively. Acanthocephalans, attached to the intestine of perch, absorbed significantly higher concentrations of PCBs (P < 0.001) than the muscles, liver, kidney, brain, and adipose tissue of their host. About 20 times lower amount of PCBs was detected in the liver and almost 3 times in muscles of infected perch. Data on PCB accumulation in perch infected with acanthocephalans demonstrated a decline of PCB values in all organs as well as in adipose tissue compared to noninfected fish. About 20 times lower amount of PCBs was detected in the liver and almost 3 times in muscles of infected perch. Present results could indicate that some parasitic organisms may influence positively their hosts in PCB-contaminated environment.
Peng, Jinghua; Li, Xuemei; Feng, Qin; Chen, Liang; Xu, Lili; Hu, Yiyang
2013-06-01
Cordyceps sinensis has been used to treat liver disease in traditional Chinese medicine for thousands of years. Polysaccharide extracted from cultured Cordyceps sinensis mycelia (CS-PS) is the major active components of cordyceps sinensis with anti-liver injury effects. In the present study, the effects of CS-PS on hepatic stellate cell (HSC) activation, transforming growth factor-β1 (TGF-β1)/Smad pathway, as well as matrix metalloproteinase (MMP) 2, MMP9 and tissue inhibitor of metalloproteinase (TIMP) 1, TIMP2, were investigated in liver fibrosis in rats induced by carbon tetrachloride (CCl4). Colchicine was used as a positive control. The effect of CS-PS inhibition liver injury and fibrosis was confirmed by decreasing serum alanine aminotransferase, aspartate aminotransferase, total bilirubin, hepatic hydroxyproline and increasing serum albumin, as well as alleviation of histological changes, which was comparable to that of colchicine. With CS-PS treatment, hepatic α-smooth muscle actin, TGF-β1, TGF-β1 receptor (TβR)-I, TβR-II, p-Smad2, p-Smad3 and TIMP2 proteins expression were down-regulated comparing to that in CCl4 group. The activities of MMP2 and MMP9 in liver tissue were also inhibited in CS-PS-treated group. It is indicated that the effects of CS-PS anti-liver fibrosis are probably associated with the inhibition on HSC activation, TGF-β1/Smads signalling pathway, as well as MMP2, MMP9 activity and TIMP2 expression.
Distribution of bemitil in organs and tissues of rats after single or repeated administration.
Sergeeva, S A; Gulyaeva, I L
2006-05-01
After single and repeated peroral administration of bemitil to rats this drug was found in the liver, brain, kidneys, spleen, heart, skeletal muscles, lungs, adipose tissue, and testicles. After single treatment accumulation of bemitil was most pronounced in the liver. After repeated treatment the decrease in bemitil concentration in the liver was probably associated with increased elimination of the drug from liver tissue due to intensification of its biotransformation. We conclude that bemitil can accumulate in the blood, but not in tissues.
Zhang, Shichang; Zhang, Bo; Chen, Xia; Chen, Li; Wang, Zhengguo; Wang, Yingjie
2014-12-01
Tissue-engineered liver using primary hepatocytes has been considered a valuable new therapeutic modality as an alternative to whole organ liver transplantation for different liver diseases. The development of clinically feasible liver tissue engineering approaches, however, has been hampered by the poor engraftment efficiency of hepatocytes. We developed a three-dimensional (3D) culture system using a microgravity bioreactor (MB), biodegradable scaffolds and growth-factor-reduced Matrigel to construct a tissue-engineered liver for transplantation into the peritoneal cavity of non-obese diabetic severe combined immunodeficient mice. The number of viable cells in the hepatic tissue constructs was stably maintained in the 3D MB culture system. Hematoxylin-eosin staining and zonula occludens-1 expression revealed that neonatal mouse liver cells were reorganized to form tissue-like structures during MB culture. Significantly upregulated hepatic functions (albumin secretion, urea production and cytochrome P450 activity) were observed in the MB culture group. Post-transplantation analysis indicated that the engraftment efficiency of the hepatic tissue constructs prepared in MB cultures was higher than that of those prepared in the static cultures. Higher level of hepatic function in the implants was confirmed by the expression of albumin. These findings suggest that 3D MB culture systems may offer an improved method for creating tissue-engineered liver because of the higher engraftment efficiency and the reduction of the initial cell function loss.
Pestel, G; Fukui, K; Hager, H; Kurz, A; Hiltebrand, L
2009-01-01
Difference in pulse pressure (dPP) confirms adequate intravascular filling as a prerequisite for tissue perfusion. We hypothesized that both oxygen and dobutamine increase liver tissue oxygen tension (ptO(2)). Eight anesthetized pigs received dPP-guided fluid management. Hepatic pO(2) was measured with Clark-type electrodes placed subcapsularly, and on the liver surface. Pigs received: (1) supplemental oxygen (F(i)O(2) 1.0); (2) dobutamine 2.5 microg/kg/min, and (3) dobutamine 5 microg/kg/min. Data were analyzed using repeated-measures ANOVA followed by a Tukey post-test for multiple comparisons. ptO(2 )measured subcapsularly and at the liver surface were compared using the Bland-Altman plot. Variation in F(i)O(2) changed local hepatic tissue ptO(2) [subcapsular measurement: 39 +/- 12 (F(i)O(2) 0.3), 89 +/- 35 mm Hg (F(i)O(2) 1.0, p = 0.01 vs. F(i)O(2) 0.3), 44 +/- 10 mm Hg (F(i)O(2) 0.3, p = 0.05 vs. F(i)O(2) 1.0); surface measurement: 52 +/- 35 (F(i)O(2) 0.3), 112 +/- 24 mm Hg (F(i)O(2) 1.0, p = 0.001 vs. F(i)O(2) 0.3), 54 +/- 24 mm Hg (F(i)O(2) 0.3, p = 0.001 vs. F(i)O(2) 1.0)]. Surface measurements were widely scattered compared to subcapsular measurements (bias: -15 mm Hg, precision: 76.3 mm Hg). Dobutamine did not affect hepatic oxygenation. Supplemental oxygen increased hepatic tissue pO(2) while dobutamine did not. Although less invasive, the use of surface measurements is discouraged. Copyright 2009 S. Karger AG, Basel.
Orchestrating liver development.
Gordillo, Miriam; Evans, Todd; Gouon-Evans, Valerie
2015-06-15
The liver is a central regulator of metabolism, and liver failure thus constitutes a major health burden. Understanding how this complex organ develops during embryogenesis will yield insights into how liver regeneration can be promoted and how functional liver replacement tissue can be engineered. Recent studies of animal models have identified key signaling pathways and complex tissue interactions that progressively generate liver progenitor cells, differentiated lineages and functional tissues. In addition, progress in understanding how these cells interact, and how transcriptional and signaling programs precisely coordinate liver development, has begun to elucidate the molecular mechanisms underlying this complexity. Here, we review the lineage relationships, signaling pathways and transcriptional programs that orchestrate hepatogenesis. © 2015. Published by The Company of Biologists Ltd.
Croce, Anna C; Ferrigno, Andrea; Santin, Giada; Piccolini, Valeria M; Bottiroli, Giovanni; Vairetti, Mariapia
2014-07-01
Autofluorescence (AF) based optical biopsy of liver tissue is a powerful approach for the real-time diagnosis of its functionality. Since increasing attention is given to the bile production and composition to monitor the liver metabolic engagement in surgery and transplantation, we have investigated the bile AF properties as a potential, additional diagnostic parameter. Spectrofluorometric analysis has been performed in real time on a rat liver model of warm ischemia and reperfusion-60 minutes partial portal vein and hepatic artery clamping and subsequent restoration of blood circulation-in comparison with sham operated rats. The AF spectra have been recorded through a single fiber optic probe (366 nm excitation) from both liver tissue and bile, collected from the cannulated bile duct, and analyzed by means of curve fitting procedures. Bile composition has been also analyzed through biochemical assays of bilirubin, total bile acids (TBA) and proteins. Both liver and bile AF signal amplitude and spectral shape undergo changes during induction of ischemia and subsequent reperfusion. The liver tissue response is mainly ascribable to changes in NAD(P)H and flavins and their redox state, largely dependent on oxygen supply, and to the decrease of both vitamin A and fatty acid AF contributions. During comparable times, sham operated rat livers undergo smaller alterations in AF spectral shape, indicating a continuous, slight increase in the oxidized state. Bile AF emission shows a region in the 510-600 nm range ascribable to bilirubin, and resulting from the contribution of two bands, centered at about 515-523 and 570 nm, consistently with its bichromophore nature. Variations in the balance between these two bands depend on the influence of microenvironment on bilirubin intramolecular interchromophore energy transfer efficiency and are likely indicating alteration in a bile composition. This event is supported also by changes observed in the 400-500 nm emission region, ascribable to other bile components. In parallel with the intratissue AF properties, mainly reflecting redox metabolic activities, the bile AF analysis can provide additional information to assess alterations and recovery in the balance of liver metabolic activities. © 2014 Wiley Periodicals, Inc.
Random forest classification of large volume structures for visuo-haptic rendering in CT images
NASA Astrophysics Data System (ADS)
Mastmeyer, Andre; Fortmeier, Dirk; Handels, Heinz
2016-03-01
For patient-specific voxel-based visuo-haptic rendering of CT scans of the liver area, the fully automatic segmentation of large volume structures such as skin, soft tissue, lungs and intestine (risk structures) is important. Using a machine learning based approach, several existing segmentations from 10 segmented gold-standard patients are learned by random decision forests individually and collectively. The core of this paper is feature selection and the application of the learned classifiers to a new patient data set. In a leave-some-out cross-validation, the obtained full volume segmentations are compared to the gold-standard segmentations of the untrained patients. The proposed classifiers use a multi-dimensional feature space to estimate the hidden truth, instead of relying on clinical standard threshold and connectivity based methods. The result of our efficient whole-body section classification are multi-label maps with the considered tissues. For visuo-haptic simulation, other small volume structures would have to be segmented additionally. We also take a look into these structures (liver vessels). For an experimental leave-some-out study consisting of 10 patients, the proposed method performs much more efficiently compared to state of the art methods. In two variants of leave-some-out experiments we obtain best mean DICE ratios of 0.79, 0.97, 0.63 and 0.83 for skin, soft tissue, hard bone and risk structures. Liver structures are segmented with DICE 0.93 for the liver, 0.43 for blood vessels and 0.39 for bile vessels.
Physiological characterization of a mouse model of cachexia in colorectal liver metastases.
Murphy, Kate T; Struk, Adam; Malcontenti-Wilson, Cathy; Christophi, Christopher; Lynch, Gordon S
2013-05-15
Loss of skeletal muscle mass and function (cachexia) is severe in patients with colorectal liver metastases because of the large increase in resting energy expenditure but remains understudied because of a lack of suitable preclinical models. Our aim was to characterize a novel preclinical model of cachexia in colorectal liver metastases. We tested the hypothesis that mice with colorectal liver metastases would exhibit cachexia, as evidenced by a reduction in liver-free body mass, muscle mass, and physiological impairment. Twelve-week-old male CBA mice received an intrasplenic injection of Ringer solution (sham) or murine colorectal cancer cells (MoCR) to induce colorectal liver metastases. At end-point (20-29 days), the livers of MoCR mice were infiltrated completely with metastases, and MoCR mice had reduced liver-free body mass, muscle mass, and epididymal fat mass compared with sham controls (P < 0.03). MoCR mice exhibited impaired rotarod performance and grip strength (P < 0.03). Histochemical analyses of tibialis anterior muscles from MoCR mice revealed muscle fiber atrophy and reduced oxidative enzyme activity (P < 0.001). Adipose tissue remodeling was evident in MoCR mice, with reduced adipocyte diameter and greater infiltration of nonadipocyte tissue (P < 0.05). These findings reveal the MoCR mouse model exhibits significant cachexia and is a suitable preclinical model of cachexia in colorectal liver metastases. This model should be used for identifying effective treatments for cachexia to improve quality of life and reduce mortality in patients with colorectal liver metastases.
Detection of liver cancer and abnormal liver tissue by Raman spectroscopy and fluorescence
NASA Astrophysics Data System (ADS)
Li, Xiaozhou; Ding, Jianhua; Zhang, Xiujun; Lin, Junxiu; Wang, Deli
2005-01-01
In this paper, laser induced human serum Raman spectra of liver cancer are measured. The spectra differences in serum from normal people and liver disease patients are analyzed. For the typical spectrum of normal serum, there are three sharp Raman peaks and relative intensity of Raman peaks excited by 514.5nm is higher than that excited by 488.0nm. For the Raman spectrum of liver cancer serum there are no peaks or very weak Raman peaks at the same positions. Results from more than two hundred case measurements show that clinical diagnostic accuracy is 92.86%. And then, the liver fibrosis and liver cirrhosis are studied applying the technology of LIF. To liver cirrhosis, the shape of Raman peak is similar to normal and fluorescence spectrum is similar to that of liver cancer from statistic data. The experiment indicates that there is notable fluorescence difference between the abnormal and normal liver tissue and have blue shift in fluorescence peak. Except for human serum, we use rats serum for researching either. Compared with results of path al examination, we analyze the spectra of normal cases, hepatic fibrosis and hepatocirrhosis respectively in an attempt to find some difference between them. Red shift of fluorescence peak is observed with disease evolution using 514.5nm excitation of an Ar-ion laser. However, no distinct changes happen with 488.0nm excitation. These results have important reference values to explore the method of laser spectrum diagnosis.
Adipokines in Liver Cirrhosis.
Buechler, Christa; Haberl, Elisabeth M; Rein-Fischboeck, Lisa; Aslanidis, Charalampos
2017-06-29
Liver fibrosis can progress to cirrhosis, which is considered a serious disease. The Child-Pugh score and the model of end-stage liver disease score have been established to assess residual liver function in patients with liver cirrhosis. The development of portal hypertension contributes to ascites, variceal bleeding and further complications in these patients. A transjugular intrahepatic portosystemic shunt (TIPS) is used to lower portal pressure, which represents a major improvement in the treatment of patients. Adipokines are proteins released from adipose tissue and modulate hepatic fibrogenesis. These proteins affect various biological processes that are involved in liver function, including angiogenesis, vasodilation, inflammation and deposition of extracellular matrix proteins. The best studied adipokines are adiponectin and leptin. Adiponectin protects against hepatic inflammation and fibrogenesis, and leptin functions as a profibrogenic factor. These and other adipokines are supposed to modulate disease severity in patients with liver cirrhosis. Consequently, circulating levels of these proteins have been analyzed to identify associations with parameters of hepatic function, portal hypertension and its associated complications in patients with liver cirrhosis. This review article briefly addresses the role of adipokines in hepatitis and liver fibrosis. Here, studies having analyzed these proteins in systemic blood in cirrhotic patients are listed to identify adipokines that are comparably changed in the different cohorts of patients with liver cirrhosis. Some studies measured these proteins in systemic, hepatic and portal vein blood or after TIPS to specify the tissues contributing to circulating levels of these proteins and the effect of portal hypertension, respectively.
Haberl, Elisabeth M.; Rein-Fischboeck, Lisa; Aslanidis, Charalampos
2017-01-01
Liver fibrosis can progress to cirrhosis, which is considered a serious disease. The Child-Pugh score and the model of end-stage liver disease score have been established to assess residual liver function in patients with liver cirrhosis. The development of portal hypertension contributes to ascites, variceal bleeding and further complications in these patients. A transjugular intrahepatic portosystemic shunt (TIPS) is used to lower portal pressure, which represents a major improvement in the treatment of patients. Adipokines are proteins released from adipose tissue and modulate hepatic fibrogenesis. These proteins affect various biological processes that are involved in liver function, including angiogenesis, vasodilation, inflammation and deposition of extracellular matrix proteins. The best studied adipokines are adiponectin and leptin. Adiponectin protects against hepatic inflammation and fibrogenesis, and leptin functions as a profibrogenic factor. These and other adipokines are supposed to modulate disease severity in patients with liver cirrhosis. Consequently, circulating levels of these proteins have been analyzed to identify associations with parameters of hepatic function, portal hypertension and its associated complications in patients with liver cirrhosis. This review article briefly addresses the role of adipokines in hepatitis and liver fibrosis. Here, studies having analyzed these proteins in systemic blood in cirrhotic patients are listed to identify adipokines that are comparably changed in the different cohorts of patients with liver cirrhosis. Some studies measured these proteins in systemic, hepatic and portal vein blood or after TIPS to specify the tissues contributing to circulating levels of these proteins and the effect of portal hypertension, respectively. PMID:28661458
Lavado, Ramon; Schlenk, Daniel
2011-01-17
Rainbow trout often serve as a surrogate species evaluating xenobiotic toxicity in cold-water species including other salmonids of the same genus, which are listed as threatened or endangered. Biotransformation tends to show species-specific patterns that influence susceptibility to xenobiotic toxicity, particularly organophosphate insecticides (OPs). To evaluate the contribution of biotransformation in the mechanism of toxicity of three organophosphate (phosphorothionate) insecticides, (chlorpyrifos, parathion and fenthion), microsomal bioactivation and detoxification pathways were measured in gills, liver and olfactory tissues in juvenile rainbow trout (Oncorhynchus mykiss) and compared to juvenile coho salmon (Oncorhynchus kisutch). Consistent with species differences in acute toxicity, significantly higher chlorpyrifos bioactivation was found in liver microsomes of rainbow trout (up to 2-fold) when compared with coho salmon. Although bioactivation to the oxon was observed, the catalytic efficiency towards chlorpyrifos dearylation (detoxification) was significantly higher in liver for both species (1.82 and 0.79 for trout and salmon, respectively) when compared to desulfuration (bioactivation). Bioactivation of parathion to paraoxon was significantly higher (up to 2.2-fold) than detoxification to p-nitrophenol in all tissues of both species with rates of conversion in rainbow trout, again significantly higher than coho salmon. Production of fenoxon and fenthion sulfoxides from fenthion was detected only in liver and gills of both species with activities in rainbow trout significantly higher than coho salmon. NADPH-dependent cleavage of fenthion was observed in all tissues, and was the only activity detected in olfactory tissues. These results indicate rainbow trout are more sensitive than coho salmon to the acute toxicity of OP pesticides because trout have higher catalytic rates of oxon formation. Thus, rainbow trout may serve as a conservative surrogate species for the evaluation of OP pesticides in coho salmon. Copyright © 2010 Elsevier B.V. All rights reserved.
Lavado, Ramon
2010-01-01
Rainbow trout often serve as a surrogate species evaluating xenobiotic toxicity in cold-water species including other salmonids of the same genus, which are listed as threatened or endangered. Biotransformation tends to show species-specific patterns that influence susceptibility to xenobiotic toxicity, particularly organophoshpate insecticides (OPs). To evaluate the contribution of biotransformation in the mechanism of toxicity of three organophosphate (phosphorothionate) insecticides, chlorpyrifos, parathion and fenthion, microsomal bioactivation and detoxification pathways were measured in gills, liver and olfactory tissues in juvenile rainbow trout (Oncorhynchus mykiss) and compared to juvenile coho salmon (Oncorhynchus kisutch). Consistent with species differences in acute toxicity, significantly higher chlorpyrifos bioactivation was found in liver microsomes of rainbow trout (up to 2-fold) when compared with coho salmon. Although bioactivation to the oxon was observed, the catalytic efficiency towards chlorpyrifos dearylation (detoxification) was significantly higher in liver for both species (1.82 and 0.79 for trout and salmon, respectively) when compared to desulfuration (bioactivation). Bioactivation of parathion to paraoxon was significantly higher (up to 2.2-fold) than detoxification to p-nitrophenol in all tissues of both species with rates of conversion in rainbow trout, again significantly higher than coho salmon. Production of fenoxon and fenthion sulfoxides from fenthion was detected only in liver and gills of both species with activities in rainbow trout significantly higher than coho salmon. NADPH-Dependent hydrolysis of fenthion was observed in all tissues, and was the only activity detected in olfactory tissues. These results indicate rainbow trout are more sensitive than coho salmon to the acute toxicity of OP pesticides because trout have higher catalytic rates of oxon formation. Thus, rainbow trout may serve as a conservative surrogate species for the evaluation of OP pesticides in coho salmon. PMID:20947181
Estradiol inhibits hepatic stellate cell area and collagen synthesis in the chicken liver.
Nishimura, Shotaro; Teshima, Akifumi; Kawabata, Fuminori; Tabata, Shoji
2017-11-01
Hepatic stellate cells (HSCs) are the main collagen-producing cells in the liver. The HSC area and amount of collagen fibers are different between male and female chickens. This study was performed to confirm the effect of estradiol on collagen synthesis in the growing chicken liver. Blood estradiol levels in chicks were compared at 4 and 8 weeks of age, and the collagen fibril network in liver tissue was observed at 8 weeks by scanning electron microscopy. Intraperitoneal administrations of estradiol and tamoxifen to male and female chicks, respectively, were performed daily from 5 to 8 weeks of age. The areas of HSCs and collagen contents were measured in the liver tissue. The blood estradiol level was higher in females than in males, and the collagen fibril network was denser in males than in females at 8 weeks of age. Estradiol administration in males induced decreases in the HSC area and collagen content of the liver. Conversely, tamoxifen administration in females induced an increase in the HSC area but did not facilitate collagen synthesis. Based on these results, estradiol inhibits the area and collagen synthesis of HSCs in the growing chicken liver under normal physiological conditions. © 2017 Japanese Society of Animal Science.
Zeilinger, Katrin; Schreiter, Thomas; Darnell, Malin; Söderdahl, Therese; Lübberstedt, Marc; Dillner, Birgitta; Knobeloch, Daniel; Nüssler, Andreas K; Gerlach, Jörg C; Andersson, Tommy B
2011-05-01
Within the scope of developing an in vitro culture model for pharmacological research on human liver functions, a three-dimensional multicompartment hollow fiber bioreactor proven to function as a clinical extracorporeal liver support system was scaled down in two steps from 800 mL to 8 mL and 2 mL bioreactors. Primary human liver cells cultured over 14 days in 800, 8, or 2 mL bioreactors exhibited comparable time-course profiles for most of the metabolic parameters in the different bioreactor size variants. Major drug-metabolizing cytochrome P450 activities analyzed in the 2 mL bioreactor were preserved over up to 23 days. Immunohistochemical studies revealed tissue-like structures of parenchymal and nonparenchymal cells in the miniaturized bioreactor, indicating physiological reorganization of the cells. Moreover, the canalicular transporters multidrug-resistance-associated protein 2, multidrug-resistance protein 1 (P-glycoprotein), and breast cancer resistance protein showed a similar distribution pattern to that found in human liver tissue. In conclusion, the down-scaled multicompartment hollow fiber technology allows stable maintenance of primary human liver cells and provides an innovative tool for pharmacological and kinetic studies of hepatic functions with small cell numbers.
Yılmaz, Ahmet; Elbey, Bilal; Yazgan, Ümit Can; Dönder, Ahmet; Arslan, Necmi; Arslan, Serkan; Alabalık, Ulaş; Aslanhan, Hamza
2016-01-01
Background. The aim of the study was to analyse the effect of caffeic acid phenethyl ester (CAPE) on fluoxetine-induced hepatotoxicity in rats. Materials and Methods. Group I served as control. Group II received CAPE intraperitoneally. Group III received fluoxetine per orally. Group IV received fluoxetine and CAPE. The total antioxidant capacity (TAC), total oxidant status (TOS), oxidative stress index (OSI), and liver enzymes including paraoxonase-1 (PON-1), aspartate transaminase, and alanine transaminase levels were measured. Liver tissues were processed histopathologically for evaluation of liver injury and to validate the serum enzyme levels. Results. An increase in TOS and OSI and a decrease in TAC and PON-1 levels in serum and liver tissues of Group III were observed compared to Groups I and II. After treatment with CAPE, the level of TOS and OSI decreased while TAC and PON-1 increased in serum and liver in Group IV. Histopathological examination of the liver revealed hepatic injury after fluoxetine treatment and reduction of injury with CAPE treatment. Conclusion. Our results suggested that CAPE treatment provided protection against fluoxetine toxicity. Following CAPE treatment with fluoxetine-induced hepatotoxicity, TOS and OSI levels decreased, whereas PON-1 and TAC increased in the serum and liver.
Bridges, Robert S.; Scanlan, Victoria F.; Lee, Jong-O; Byrnes, Elizabeth M.
2011-01-01
Recent studies have reported that reproductive experience in female rats alters prolactin (PRL) receptor gene expression in the brain as well as neural sensitivity to PRL. Given PRL's actions in nonneural tissues, that is, mammary tissue and liver, it was asked whether reproductive experience may also alter prolactin receptor (Prlr) gene expression in these tissues. Groups of age-matched female rats were generated with varying reproductive histories. Separate groups of primiparous (first lactation) and multiparous (second lactation) had mammary tissue and liver samples collected on Day 3 or 10 of lactation. A fifth group raised one litter to weaning and then resumed estrous cyclicity. This group and a final group of age-matched, virgin controls were killed on diestrus. Tissue was processed by quantitative PCR for expression rates of the long and short forms of Prlr mRNA as well as casein beta mRNA (mammary tissue only). Western blots were performed to quantify receptor protein content. Multiple lactations as well as lactation itself resulted in alterations in Prlr expression. Prlr gene expression in mammary tissue was increased in primiparous mothers compared with that in multiparous dams, whereas in the liver, Prlr expression was reduced during an initial lactation. In contrast, PRLR protein levels declined during lactation in mammary, but not hepatic, tissues. Overall, the results demonstrate that the prolactin receptor system is altered in nonneural tissues as a result of the female's reproductive history. The findings are discussed in the context of milk and bile production and PRL's possible role in breast cancer. PMID:21508351
Bridges, Robert S; Scanlan, Victoria F; Lee, Jong-O; Byrnes, Elizabeth M
2011-08-01
Recent studies have reported that reproductive experience in female rats alters prolactin (PRL) receptor gene expression in the brain as well as neural sensitivity to PRL. Given PRL's actions in nonneural tissues, that is, mammary tissue and liver, it was asked whether reproductive experience may also alter prolactin receptor (Prlr) gene expression in these tissues. Groups of age-matched female rats were generated with varying reproductive histories. Separate groups of primiparous (first lactation) and multiparous (second lactation) had mammary tissue and liver samples collected on Day 3 or 10 of lactation. A fifth group raised one litter to weaning and then resumed estrous cyclicity. This group and a final group of age-matched, virgin controls were killed on diestrus. Tissue was processed by quantitative PCR for expression rates of the long and short forms of Prlr mRNA as well as casein beta mRNA (mammary tissue only). Western blots were performed to quantify receptor protein content. Multiple lactations as well as lactation itself resulted in alterations in Prlr expression. Prlr gene expression in mammary tissue was increased in primiparous mothers compared with that in multiparous dams, whereas in the liver, Prlr expression was reduced during an initial lactation. In contrast, PRLR protein levels declined during lactation in mammary, but not hepatic, tissues. Overall, the results demonstrate that the prolactin receptor system is altered in nonneural tissues as a result of the female's reproductive history. The findings are discussed in the context of milk and bile production and PRL's possible role in breast cancer.
Laser probes for noninvasive coagulation of subsurface tissues
NASA Astrophysics Data System (ADS)
Chung, Chia-Chun; Permpongkosol, Sompol; Varkarakis, Ioannis M.; Lima, Guilherme; Franco, Nicholas; Hayman, Michael H.; Nicol, Theresa; Fried, Nathaniel M.
2006-02-01
Previous ex vivo tissue studies utilizing deep laser heating combined with contact cooling of the tissue surface produced noninvasive thermal destruction of subsurface tissue structures in skin and liver samples. This study describes the design and preliminary in vivo testing of two integrated laser/cooling probes for simultaneous Nd:YAG laser irradiation and sapphire contact cooling of liver and skin tissues in an in vivo, acute porcine model for potential use in laparoscopic and endoscopic surgery. Nd:YAG laser radiation with a wavelength of 1.06 μm, power of 20 W, 7.5-mm-diameter spot, 500-ms pulse length, and repetition rate of 0.625 Hz, was delivered to the tissue with a total irradiation time of 16 s. The tissue surface was continuously cooled with a sapphire plate maintained at -5 °C, and with pre- and post-ablation cooling times measuring 120 s and 30 s, resulting in a total operation time of 166 s per a lesion. Thermal lesions were created in liver and skin at a 1-mm depth below the tissue surface and with a 3-4 mm diameter. The laser parameters and lesion dimensions were comparable to previous ex vivo tissue studies. Preliminary in vivo animal studies demonstrate noninvasive creation of subsurface thermal lesions in tissue using Nd:YAG laser irradiation in conjunction with sapphire contact cooling. Chronic wound healing studies will be necessary to optimize the laser and cooling parameters. Potential clinical applications include endoscopic laser treatment of female stress urinary incontinence and thermal coagulation of early stage bladder tumors.
Detection and three-dimensional visualization of lesion models using sonoelastography
NASA Astrophysics Data System (ADS)
Taylor, Lawrence S.; Gaborski, Thomas R.; Strang, John G.; Rubens, Deborah; Parker, Kevin J.
2002-04-01
Sonoelastography is a vibration Doppler technique for imaging the relative elasticity of tissues. Detectability of hard lesions of various sizes has previously been demonstrated in tissue phantoms by our group. Because real tissue differs from phantom material, the injection of formaldehyde in fresh liver tissue is being used as an in-vitro lesion model. Pieces of fresh calf liver were embedded in an agar gel then injected with a bolus of 37% formaldehyde to create a stiff lesion. Two and three-dimensional sonoelastography and b-mode images were acquired. The lesions were visible in each sonoelastography image as a region of reduced vibration. After imaging, lesions were dissected and measured for size and volume. One 0.4 cc bolus injection of formaldehyde created a lesion with a volume of 10.3 cc in the sonoelastography image compared to 9.3 cc using fluid displacement of the dissected lesion. A 0.33 cc injection of formaldehyde lesion created a volume of 5 cc in the sonoelastography image compared to 4.4 cc using fluid displacement. Sonoelastography imaging techniques for imaging hard lesions in phantoms can be successfully extended to imaging formaldehyde induced lesions in real tissue.
Kobashi, Keiji; Prayongrat, Anussara; Kimoto, Takuya; Toramatsu, Chie; Dekura, Yasuhiro; Katoh, Norio; Shimizu, Shinichi; Ito, Yoichi M; Shirato, Hiroki
2018-03-01
Modern radiotherapy technologies such as proton beam therapy (PBT) permit dose escalation to the tumour and minimize unnecessary doses to normal tissues. To achieve appropriate patient selection for PBT, a normal tissue complication probability (NTCP) model can be applied to estimate the risk of treatment-related toxicity relative to X-ray therapy (XRT). A methodology for estimating the difference in NTCP (∆NTCP), including its uncertainty as a function of dose to normal tissue, is described in this study using the Delta method, a statistical method for evaluating the variance of functions, considering the variance-covariance matrix. We used a virtual individual patient dataset of radiation-induced liver disease (RILD) in liver tumour patients who were treated with XRT as a study model. As an alternative option for individual patient data, dose-bin data, which consists of the number of patients who developed toxicity in each dose level/bin and the total number of patients in that dose level/bin, are useful for multi-institutional data sharing. It provides comparable accuracy with individual patient data when using the Delta method. With reliable NTCP models, the ∆NTCP with uncertainty might potentially guide the use of PBT; however, clinical validation and a cost-effectiveness study are needed to determine the appropriate ∆NTCP threshold.
Kobashi, Keiji; Kimoto, Takuya; Toramatsu, Chie; Dekura, Yasuhiro; Katoh, Norio; Shimizu, Shinichi; Ito, Yoichi M; Shirato, Hiroki
2018-01-01
Abstract Modern radiotherapy technologies such as proton beam therapy (PBT) permit dose escalation to the tumour and minimize unnecessary doses to normal tissues. To achieve appropriate patient selection for PBT, a normal tissue complication probability (NTCP) model can be applied to estimate the risk of treatment-related toxicity relative to X-ray therapy (XRT). A methodology for estimating the difference in NTCP (∆NTCP), including its uncertainty as a function of dose to normal tissue, is described in this study using the Delta method, a statistical method for evaluating the variance of functions, considering the variance–covariance matrix. We used a virtual individual patient dataset of radiation-induced liver disease (RILD) in liver tumour patients who were treated with XRT as a study model. As an alternative option for individual patient data, dose-bin data, which consists of the number of patients who developed toxicity in each dose level/bin and the total number of patients in that dose level/bin, are useful for multi-institutional data sharing. It provides comparable accuracy with individual patient data when using the Delta method. With reliable NTCP models, the ∆NTCP with uncertainty might potentially guide the use of PBT; however, clinical validation and a cost-effectiveness study are needed to determine the appropriate ∆NTCP threshold. PMID:29538699
Zhao, Heng; Song, Pengfei; Meixner, Duane D; Kinnick, Randall R; Callstrom, Matthew R; Sanchez, William; Urban, Matthew W; Manduca, Armando; Greenleaf, James F; Chen, Shigao
2014-11-01
Shear wave speed can be used to assess tissue elasticity, which is associated with tissue health. Ultrasound shear wave elastography techniques based on measuring the propagation speed of the shear waves induced by acoustic radiation force are becoming promising alternatives to biopsy in liver fibrosis staging. However, shear waves generated by such methods are typically very weak. Therefore, the penetration may become problematic, especially for overweight or obese patients. In this study, we developed a new method called external vibration multi-directional ultrasound shearwave elastography (EVMUSE), in which external vibration from a loudspeaker was used to generate a multi-directional shear wave field. A directional filter was then applied to separate the complex shear wave field into several shear wave fields propagating in different directions. A 2-D shear wave speed map was reconstructed from each individual shear wave field, and a final 2-D shear wave speed map was constructed by compounding these individual wave speed maps. The method was validated using two homogeneous phantoms and one multi-purpose tissue-mimicking phantom. Ten patients undergoing liver magnetic resonance elastography (MRE) were also studied with EVMUSE to compare results between the two methods. Phantom results showed EVMUSE was able to quantify tissue elasticity accurately with good penetration. In vivo EVMUSE results were well correlated with MRE results, indicating the promise of using EVMUSE for liver fibrosis staging.
Zhao, Heng; Song, Pengfei; Meixner, Duane D.; Kinnick, Randall R.; Callstrom, Matthew R.; Sanchez, William; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.
2014-01-01
Shear wave speed can be used to assess tissue elasticity, which is associated with tissue health. Ultrasound shear wave elastography techniques based on measuring the propagation speed of the shear waves induced by acoustic radiation force are becoming promising alternatives to biopsy in liver fibrosis staging. However, shear waves generated by such methods are typically very weak. Therefore, the penetration may become problematic, especially for overweight or obese patients. In this study, we developed a new method called External Vibration Multi-directional Ultrasound Shearwave Elastography (EVMUSE), in which external vibration from a loudspeaker was used to generate a multi-directional shear wave field. A directional filter was then applied to separate the complex shear wave field into several shear wave fields propagating in different directions. A two-dimensional (2D) shear wave speed map was reconstructed from each individual shear wave field, and a final 2D shear wave speed map was constructed by compounding these individual wave speed maps. The method was validated using two homogeneous phantoms and one multi-purpose tissue-mimicking phantom. Ten patients undergoing liver Magnetic Resonance Elastography (MRE) were also studied with EVMUSE to compare results between the two methods. Phantom results showed EVMUSE was able to quantify tissue elasticity accurately with good penetration. In vivo EVMUSE results were well correlated with MRE results, indicating the promise of using EVMUSE for liver fibrosis staging. PMID:25020066
Ezetimibe improves hepatic steatosis in relation to autophagy in obese and diabetic rats.
Chang, Eugene; Kim, Lisa; Park, Se Eun; Rhee, Eun-Jung; Lee, Won-Young; Oh, Ki-Won; Park, Sung-Woo; Park, Cheol-Young
2015-07-07
To investigate whether ezetimibe ameliorates hepatic steatosis and induces autophagy in a rat model of obesity and type 2 diabetes. Male age-matched lean control LETO and obese and diabetic OLETF rats were administered either PBS or ezetimibe (10 mg/kg per day) via stomach gavage for 20 wk. Changes in weight gain and energy intake were regularly monitored. Blood and liver tissue were harvested after overnight fasting at the end of study. Histological assessment was performed in liver tissue. The concentrations of glucose, insulin, triglycerides (TG), free fatty acids (FFA), and total cholesterol (TC) in blood and TG, FFA, and TG in liver tissue were measured. mRNA and protein abundance involved in autophagy was analyzed in the liver. To investigate the effect of ezetimibe on autophagy and reduction in hepatic fat accumulation, human Huh7 hepatocytes were incubated with ezetimibe (10 μmol/L) together with or without palmitic acid (PA, 0.5 mmol/L, 24 h). Transmission electron microscopy (TEM) was employed to demonstrate effect of ezetimibe on autophagy formation. Autophagic flux was measured with bafilomycin A1, an inhibitor of autophagy and following immunoblotting for autophagy-related protein expression. In the OLETF rats that received ezetimibe (10 mg/kg per day), liver weight were significantly decreased by 20% compared to OLETF control rats without changes in food intake and body weight (P < 0.05). Lipid parameters including TG, FFA, and TC in liver tissue of ezetimibe-administrated OLETF rats were dramatically decreased at least by 30% compared to OLETF controls (P < 0.01). The serum glucose, insulin, HOMA-IR, and lipid profiles were also improved by ezetimibe (P < 0.05). In addition, autophagy-related mRNA expression including ATG5, ATG6, and ATG7 and the protein level of microtubule-associated protein light chain 3 (LC3) were significantly increased in the liver in rats that received ezetimibe (P < 0.05). Likewise, for hepatocytes cultured in vitro, ezetimibe treatment significantly decreased PA-induced fat accumulation and increased PA-reduced mRNA and protein expression involved in autophagy (P < 0.05). Ezetimibe-increased autophagosomes was observed in TEM analysis. Immunoblotting analysis of autophagy formation with an inhibitor of autophagy demonstrated that ezetimibe-increased autophagy resulted from increased autophagic flux. The present study demonstrates that ezetimibe-mediated improvement in hepatic steatosis might involve the induction of autophagy.
Functional pitch of a liver: fatty liver disease diagnosis with photoacoustic spectrum analysis
NASA Astrophysics Data System (ADS)
Xu, Guan; Meng, Zhuoxian; Lin, Jiandie; Carson, Paul; Wang, Xueding
2014-03-01
To provide more information for classification and assessment of biological tissues, photoacoustic spectrum analysis (PASA) moves beyond the quantification of the intensities of the photoacoustic (PA) signals by the use of the frequency-domain power distribution, namely power spectrum, of broadband PA signals. The method of PASA quantifies the linear-fit to the power spectrum of the PA signals from a biological tissue with 3 parameters, including intercept, midband-fit and slope. Intercept and midband-fit reflect the total optical absorption of the tissues whereas slope reflects the heterogeneity of the tissue structure. Taking advantage of the optical absorption contrasts contributed by lipid and blood at 1200 and 532 nm, respectively and the heterogeneous tissue microstructure in fatty liver due to the lipid infiltration, we investigate the capability of PASA in identifying histological changes of fatty livers in mouse model. 6 and 9 pairs of normal and fatty liver tissues from rat models were examined by ex vivo experiment with a conventional rotational PA measurement system. One pair of rat models with normal and fatty livers was examined non-invasively and in situ with our recently developed ultrasound and PA parallel imaging system. The results support our hypotheses that the spectrum analysis of PA signals can provide quantitative measures of the differences between the normal and fatty liver tissues and that part of the PA power spectrum can suffice for characterization of microstructures in biological tissues. Experimental results also indicate that the vibrational absorption peak of lipid at 1200nm could facilitate fatty liver diagnosis.
Dietary response of sympatric deer to fire using stable isotope analysis of liver tissue
Walter, W. David; Zimmerman, T.J.; Leslie, David M.; Jenks, J.A.
2009-01-01
Carbon (??13C) and nitrogen (??15N) isotopes in biological samples from large herbivores identify photosynthetic pathways (C3 vs. C4) of plants they consumed and can elucidate potential nutritional characteristics of dietary selection. Because large herbivores consume a diversity of forage types, ??13C and ??15N in their tissue can index ingested and assimilated diets through time. We assessed ??13C and ??15N in metabolically active liver tissue of sympatric mule deer (Odocoileus hemionus) and white-tailed deer (O. virginianus) to identify dietary disparity resulting from use of burned and unburned areas in a largely forested landscape. Interspecific variation in dietary disparity of deer was documented 2-3 years post-fire in response to lag-time effects of vegetative response to burning and seasonal (i.e., summer, winter) differences in forage type. Liver ??13C for mule deer were lower during winter and higher during summer 2 years post-fire on burned habitat compared to unburned habitat suggesting different forages were consumed by mule deer in response to fire. Liver ??15N for both species were higher on burned than unburned habitat during winter and summer suggesting deer consumed more nutritious forage on burned habitat during both seasons 2 and 3 years post-fire. Unlike traditional methods of dietary assessment that do not measure uptake of carbon and nitrogen from dietary components, analyses of stable isotopes in liver or similar tissue elucidated ??13C and ??15N assimilation from seasonal dietary components and resulting differences in the foraging ecology of sympatric species in response to fire.
Yigit, F; Gurel-Gurevin, E; Isbilen-Basok, B; Esener, O B B; Bilal, T; Keser, O; Altiner, A; Yilmazer, N; Ikitimur-Armutak, E I
2016-01-01
Spirulina platensis is a microalga that may be a source of antioxidants that can reduce body fat deposition. Consumption of a high fat diet produces elevated blood lipid levels, inflammation and apoptosis. We investigated the possible effects of S. platensis on the blood lipid profile, and liver inflammation and apoptosis in rats fed a high fat diet. Sixty-four young male rats were divided into eight equal groups. The control group was fed a basic diet. The experimental groups were fed a diet for 60 days that was prepared by mixing variable amounts of 43% vegetable oil and 10% cholesterol with or without 3% S. platensis mixed with the basal diet. Blood and liver tissue samples were collected from each animal. Serum samples were used to analyze lipid parameters, total antioxidant status and total oxidant status. iNOS and eNOS were determined by immunohistochemistry. TUNEL staining was used to detect apoptosis to investigate a possible connection between inflammation and apoptosis in the liver tissue. The relations between fat deposition and liver degeneration were assessed by Sirius red staining and alpha-smooth muscle actin immunostaining. S. platensis reduced serum HDL-C, LDL-C and triglyceride, increased HDL-C levels in rats fed a high fat diet to near control levels, and reduced iNOS levels and increased eNOS levels in the liver tissue compared to vegetable oil and cholesterol treated groups. The apoptotic index was reduced in the groups that were fed a high fat or a basic diet when supplemented with S. platensis.
Predictive values of FAP and HGF for tumor angiogenesis and metastasis in colorectal cancer.
Ma, T H; Gao, C C; Xie, R; Yang, X Z; Dai, W J; Zhang, J L; Yan, W; Wu, S N
2017-01-01
This study aims to explore the correlation of hepatocyte growth factor (HGF) and fibroblast activation protein (FAP) expressions with the angiogenesis and metastasis in colorectal cancer (CRC). The immunohistochemical SABC method was used to detect HGF and FAP expressions in 127 CRC tissues, 51 colorectal polyp tissues and 28 normal tissues. HGF and FAP expressions in liver metastasis were detected using western blot to analyze the correlation of their expressions with lymph node metastasis and liver metastasis. Micro-vessel density (MVD) and clinic-pathologic information of CRC patients were recorded and analyzed. In CRC group, HGF and FAP expressions were greatly higher than those in normal group and colorectal polyps group (P < 0.05). Moreover, the positive rates of HGF and FAP expressions in lymph node metastasis were evidently higher than those in non-lymph node metastasis (P < 0.05). In liver metastasis group, HGF and FAP expressions were obviously higher than non-liver metastasis group (P < 0.05). CRC group had much more MVD in comparison with normal group and colorectal polyps group (P < 0.05).When compared with negative group, MVD was significantly higher than that in CRC tissue with positive HGF and FAP (P < 0.05). Spearman rank correlation analysis showed that HGF and FAP were in positive correlation with MVD (r = 0.542, P < 0.001; r = 0.753, P < 0.001). These results indicate that FAP and HGF play an important role in CRC angiogenesis, and their expression levels are valuable to predict CRC liver metastasis and lymph node metastasis.
Development of a physiologically based pharmacokinetic model for flunixin in cattle (Bos taurus).
Leavens, Teresa L; Tell, Lisa A; Kissell, Lindsey W; Smith, Geoffrey W; Smith, David J; Wagner, Sarah A; Shelver, Weilin L; Wu, Huali; Baynes, Ronald E; Riviere, Jim E
2014-01-01
Frequent violation of flunixin residues in tissues from cattle has been attributed to non-compliance with the USFDA-approved route of administration and withdrawal time. However, the effect of administration route and physiological differences among animals on tissue depletion has not been determined. The objective of this work was to develop a physiologically based pharmacokinetic (PBPK) model to predict plasma, liver and milk concentrations of flunixin in cattle following intravenous (i.v.), intramuscular (i.m.) or subcutaneous (s.c.) administration for use as a tool to determine factors that may affect the withdrawal time. The PBPK model included blood flow-limited distribution in all tissues and elimination in the liver, kidney and milk. Regeneration of parent flunixin due to enterohepatic recirculation and hydrolysis of conjugated metabolites was incorporated in the liver compartment. Values for physiological parameters were obtained from the literature, and partition coefficients for all tissues but liver and kidney were derived empirically. Liver and kidney partition coefficients and elimination parameters were estimated for 14 pharmacokinetic studies (including five crossover studies) from the literature or government sources in which flunixin was administered i.v., i.m. or s.c. Model simulations compared well with data for the matrices following all routes of administration. Influential model parameters included those that may be age or disease-dependent, such as clearance and rate of milk production. Based on the model, route of administration would not affect the estimated days to reach the tolerance concentration (0.125 mg kg(-1)) in the liver of treated cattle. The majority of USDA-reported violative residues in liver were below the upper uncertainty predictions based on estimated parameters, which suggests the need to consider variability due to disease and age in establishing withdrawal intervals for drugs used in food animals. The model predicted that extravascular routes of administration prolonged flunixin concentrations in milk, which could result in violative milk residues in treated cattle.
[Protective effects of five different types of Dendrobium on CCl4-induced liver injury in mice].
Wang, Kai; Sui, Dan-Juan; Wang, Chang-Suo; Yang, Li; Ouyang, Zhen; Chen, Nai-Fu; Han, Bang-Xing; Wei, Yuan
2017-05-01
This study aims to investigate the protective effect of Dendrobium huoshanense, D.officinale(Huoshan), D.officinale(Yunnan), D.moniliforme and D. henanense on CCl4-induced hepatic damage in mice. C57BL/6 mice were randomly divided into control group, model group, high-dose(7.5 g•kg⁻¹) and low-dose (1.25 g•kg⁻¹) groups of the five Dendrobium. Each group was intragastrically administered with drugs for 2 weeks. The control group was intraperitoneally injected with Olive oil solution, while the other groups were intraperitoneally given 0.5%CCl4combined with Olive oil solution 2 h later after the last administration. Subsequently, ALT and AST activities in serum, SOD activities and MDA contents in liver tissues were determined in all groups 16 h later after administration. The liver index was calculated, and hepatic histopathological examination was performed. The mRNA expressions of IL-1β, IL-6 and TNF-α were analyzed by Real-time PCR. Compared with the CCl4 model group, the activities of ALT and AST in serum decreased significantly in the five different Dendrobium groups. Meanwhile, in liver tissues, the levels of MDA reduced obviously, while the SOD activities markedly increased. Furthermore, liver tissue damage induced by CCl4 was ameliorated according to the histopathological examination. IL-1β, IL-6 and TNF-α mRNA expressions in D.huoshanense-treated liver tissues were significantly decreased. In conclusion, the five different Dendrobium groups showed hepatoprotective effects on CCl4-induced acute liver injury in mice. However, there were differences among Dendrobium of different types and origins. The protect effect of D.huoshanense is the most obvious, and the order of the protective effect of the other Dendrobium from high to low is D.officinale(Yunnan), D. officinale(Huoshan), D.henanense and D.moniliforme. The differences between the different types of Dendrobium might be related to their chemical components. Copyright© by the Chinese Pharmaceutical Association.
Bolinger, Mark T; Rodnick, Kenneth J
2014-05-01
The pathways and regulatory mechanisms of glycogenolysis remain relatively unexplored in non-mammalian vertebrates, especially poikilotherms. We studied the temperature sensitivity and inhibition of glycogenolytic enzymes in liver, ventricle, and white muscle of rainbow trout acclimated to 14 °C. Glycogen phosphorylase (GP) and acid α-glucosidase (GAA) activities were measured in homogenates of tissues at physiological temperatures (4, 14, and 24 °C), and in the presence of allosteric inhibitor, glucose. Higher GP versus GAA activity in all three tissues suggested a predominance of phosphorolytic glycogenolysis over the lysosomal glucosidic pathway. GP activities at 14 °C were ~2-fold higher in the ventricle and white muscle versus the liver and selectively increased by AMP in striated muscle. Conversely, the activities of GAA and lysosomal marker acid phosphatase were 8- to 10-fold higher in the liver compared with the ventricle and white muscle. Thermal sensitivity (Q10) was increased for GP in all tissues below 14 °C and decreased in striated muscle in the absence of AMP above 14 °C. GAA had lower Q10 values than GP below 14 °C, and, unlike GP, Q10s for GAA were not different between tissues or affected by temperature. Both GP (in the absence of AMP) and GAA were inhibited by glucose in a dose-dependent manner, with the lowest IC50 values observed in the white muscle (1.4 and 6.3 mM, respectively). In conclusion, despite comparatively low kinetic potential, lysosomal GAA might facilitate glycogenolysis at colder body temperatures in striated muscle and intracellular glucose could limit phosphorolytic and glucosidic glycogenolysis in multiple tissues of the rainbow trout. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Macavoy, S. E.; Jamil, T.; Macko, S. A.; Arneson, L. S.
2003-12-01
Stable isotope analysis is becoming an extensively used tool in animal ecology. The isotopes most commonly used for analysis in terrestrial systems are those of carbon and nitrogen, due to differential carbon fractionation in C3 and C4 plants, and the approximately 3‰ enrichment in 15N per trophic level. Although isotope signatures in animal tissues presumably reflect the local food web, analysis is often complicated by differential nutrient routing and fractionation by tissues, and by the possibility that large organisms are not in isotopic equilibrium with the foods available in their immediate environment. Additionally, the rate at which organisms incorporate the isotope signature of a food through both growth and metabolic tissue replacement is largely unknown. In this study we have assessed the rate of carbon and nitrogen isotopic turnover in liver, muscle and blood in mice following a diet change. By determining growth rates, we were able to determine the proportion of tissue turnover caused by growth versus that caused by metabolic tissue replacement. Growth was found to account for approximately 10% of observed tissue turnover in sexually mature mice (Mus musculus). Blood carbon was found to have the shortest half-life (16.9 days), followed by muscle (24.7 days). Liver carbon turnover was not as well described by the exponential decay equations as other tissues. However, substantial liver carbon turnover was observed by the 28th day after diet switch. Surprisingly, these tissues primarily reflect the carbon signature of the protein, rather than carbohydrate, source in their diet. The nitrogen signature in all tissues was enriched by 3 - 5‰ over their dietary protein source, depending on tissue type, and the isotopic turnover rates were comparable to those observed in carbon.
Yilmaz, E E; Arikanoğlu, Z; Turkoğlu, A; Kiliç, E; Yüksel, H; Gümüş, M
2016-01-01
We aimed to investigate the protective potential of pomegranate extract on the liver and remote organs in rats with obstructive jaundice. The rats were split into 4 groups. In Group 1 (G1) (sham group) rats, the common bile duct was mobilized without any ligation. Group 2 (G2) received a combination of the sham operation and synchronous treatment with pomegranate. Group 3 (G3) received common bile duct ligation (CBDL). Group 4 (G4) were subjected to CBDL and treatment with pomegranate. After 8 days, we measured total oxidative status (TOS) and antioxidant capacity in the rats' liver tissue and remote organs, and evaluated blood levels of malondialdehyde and total antioxidant capacity (TAC). G3 rats showed significantly raised malondialdehyde level as compared to G1 rats (p < 0.001). Following the pomegranate therapy, a decrease in malondialdehyde was observed (p = 0.015). TAC levels were significantly raised in the G3 rats compared to the G1 rats (p = 0.004). TAC levels dropped after pomegranate therapy (p = 0.011). CBDL caused elevated TOS levels in the liver and remote organs, with a statistically significant increase in the lung tissue (p = 0.002). TOS levels in the CBDL groups decreased after pomegranate treatment (p < 0.001). This study reveals the marked protective effect of pomegranate on the liver and remote organs in obstructive jaundice.
Batchelar, Katharina L; Kidd, Karen A; Drevnick, Paul E; Munkittrick, Kelly R; Burgess, Neil M; Roberts, Aaron P; Smith, James D
2013-03-01
Few studies have investigated the effects of mercury (Hg) on wild fish from remote areas, even though these fish can have high total Hg concentrations. In Kejimkujik National Park and National Historic Site (KNPNHS), Nova Scotia, Canada, concentrations of total Hg in many yellow perch (Perca flavescens) currently exceed the estimated threshold level for adverse effects in fish (0.2 µg Hg g(-1) (wet wt), whole body). To determine whether Hg exposure is adversely affecting the general health of these fish, the authors collected male and female perch in the fall of 2009 and 2010 from 12 lakes within KNPNHS. The health endpoints condition, liver somatic index (LSI), and macrophage aggregates (MAs; indicators of oxidative stress and tissue damage) in the liver, kidney, and spleen were examined, and in female perch were compared between lakes and related to Hg concentrations measured in the muscle and liver tissue. No negative relationships between fish condition or LSI and Hg were found. However, within the liver, kidney, and spleen tissues of females, the relative area occupied by MAs was positively related to both muscle and liver Hg concentrations, indicating the health of these perch was adversely affected at the cellular level. These findings raise concerns for the health of these perch as well as for other wild fish populations known to have similarly elevated Hg concentrations. Copyright © 2013 SETAC.
Paquin-Proulx, Dominic; Greenspun, Benjamin C; Pasquet, Lise; Strunz, Benedikt; Aleman, Soo; Falconer, Karolin; Terabe, Masaki; Berzofsky, Jay A; Sandberg, Johan K; Melum, Espen; Nixon, Douglas F; Björkström, Niklas K
2018-04-20
Innate lymphocytes are selectively enriched in the liver where they have important roles in liver immunology. Murine studies have shown that type I NKT cells can promote liver inflammation whereas type II NKT cells have an anti-inflammatory role. In humans, type II NKT cells were found to accumulate in the gut during inflammation and IL13Rα2 was proposed as a marker for these cells. In the human liver, less is known about type I and II NKT cells. Here, we studied the phenotype and function of human liver T cells expressing IL13Rα2. We found that IL13Rα2 was expressed by around 1% of liver resident memory T cells but not on circulating T cells. In support of their innate-like T cell character, the IL13Rα2 + T cells had higher expression of PLZF compared to IL13Rα2 - T cells and possessed the capacity to produce IL-22. However, only a minority of human liver sulfatide-reactive type II NKT cells expressed IL13Rα2. Collectively, these findings suggest that IL13Rα2 identifies tissue-resident intrahepatic T cells with innate characteristics and the capacity to produce IL-22. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Hepatitis virus infection affects DNA methylation in mice with humanized livers.
Okamoto, Yasuyuki; Shinjo, Keiko; Shimizu, Yasuhiro; Sano, Tsuyoshi; Yamao, Kenji; Gao, Wentao; Fujii, Makiko; Osada, Hirotaka; Sekido, Yoshitaka; Murakami, Shuko; Tanaka, Yasuhito; Joh, Takashi; Sato, Shinya; Takahashi, Satoru; Wakita, Takaji; Zhu, Jingde; Issa, Jean-Pierre J; Kondo, Yutaka
2014-02-01
Cells of tumors associated with chronic inflammation frequently have altered patterns of DNA methylation, including hepatocellular carcinomas. Chronic hepatitis has also been associated with aberrant DNA methylation, but little is known about their relationship. Pyrosequencing was used to determine the methylation status of cultured Huh7.5.1 hepatoma cells after hepatitis C virus (HCV) infection. We also studied mice with severe combined immunodeficiency carrying the urokinase-type plasminogen activator transgene controlled by an albumin promoter (urokinase-type plasminogen activator/severe combined immunodeficient mice), in which up to 85% of hepatocytes were replaced by human hepatocytes (chimeric mice). Mice were given intravenous injections of hepatitis B virus (HBV) or HCV, liver tissues were collected, and DNA methylation profiles were determined at different time points after infection. We also compared methylation patterns between paired samples of hepatocellular carcinomas and adjacent nontumor liver tissues from patients. No reproducible changes in DNA methylation were observed after infection of Huh7.5.1 cells with HCV. Livers from HBV- and HCV-infected mice had genome-wide, time-dependent changes in DNA methylation, compared with uninfected urokinase-type plasminogen activator/severe combined immunodeficient mice. There were changes in 160 ± 63 genes in HBV-infected and 237 ± 110 genes in HCV-infected mice. Methylation of 149 common genes increased in HBV- and HCV-infected mice; methylation of some of these genes also increased in hepatocellular carcinoma samples from patients compared with nontumor tissues. Expression of Ifng, which is expressed by natural killer cells, increased significantly in chimeric livers, in concordance with induction of DNA methylation, after infection with HBV or HCV. Induction of Ifng was reduced after administration of an inhibitor of natural killer cell function (anti-asialo GM1). In chimeric mice with humanized livers, infection with HBV and HCV appears to activate a natural kill cell-dependent innate immune response. This contributes to the induction and accumulation of aberrant DNA methylation in human hepatocytes. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.
The nanomechanical signature of liver cancer tissues and its molecular origin
NASA Astrophysics Data System (ADS)
Tian, Mengxin; Li, Yiran; Liu, Weiren; Jin, Lei; Jiang, Xifei; Wang, Xinyan; Ding, Zhenbin; Peng, Yuanfei; Zhou, Jian; Fan, Jia; Cao, Yi; Wang, Wei; Shi, Yinghong
2015-07-01
Patients with cirrhosis are at higher risk of developing hepatocellular carcinoma (HCC), the second most frequent cause of cancer-related deaths. Although HCC diagnosis based on conventional morphological characteristics serves as the ``gold standard'' in the clinic, there is a high demand for more convenient and effective diagnostic methods that employ new biophysical perspectives. Here, we show that the nanomechanical signature of liver tissue is directly correlated with the development of HCC. Using indentation-type atomic force microscopy (IT-AFM), we demonstrate that the lowest elasticity peak (LEP) in the Young's modulus distribution of surgically removed liver cancer tissues can serve as a mechanical fingerprint to evaluate the malignancy of liver cancer. Cirrhotic tissues shared the same LEP as normal tissues. However, a noticeable downward shift in the LEP was detected when the cirrhotic tissues progressed to a malignant state, making the tumor tissues more prone to microvascular invasion. Cell-level mechanistic studies revealed that the expression level of a Rho-family effector (mDia1) was consistent with the mechanical trend exhibited by the tissue. Our findings indicate that the mechanical profiles of liver cancer tissues directly varied with tumor progression, providing an additional platform for the future diagnosis of HCC.Patients with cirrhosis are at higher risk of developing hepatocellular carcinoma (HCC), the second most frequent cause of cancer-related deaths. Although HCC diagnosis based on conventional morphological characteristics serves as the ``gold standard'' in the clinic, there is a high demand for more convenient and effective diagnostic methods that employ new biophysical perspectives. Here, we show that the nanomechanical signature of liver tissue is directly correlated with the development of HCC. Using indentation-type atomic force microscopy (IT-AFM), we demonstrate that the lowest elasticity peak (LEP) in the Young's modulus distribution of surgically removed liver cancer tissues can serve as a mechanical fingerprint to evaluate the malignancy of liver cancer. Cirrhotic tissues shared the same LEP as normal tissues. However, a noticeable downward shift in the LEP was detected when the cirrhotic tissues progressed to a malignant state, making the tumor tissues more prone to microvascular invasion. Cell-level mechanistic studies revealed that the expression level of a Rho-family effector (mDia1) was consistent with the mechanical trend exhibited by the tissue. Our findings indicate that the mechanical profiles of liver cancer tissues directly varied with tumor progression, providing an additional platform for the future diagnosis of HCC. Electronic supplementary information (ESI) available: Detailed experimental procedures and supplementary figures. See DOI: 10.1039/c5nr02192h
NASA Astrophysics Data System (ADS)
Alenkina, Irina V.; Oshtrakh, Michael I.; Felner, Israel; Vinogradov, Alexander V.; Konstantinova, Tatiana S.; Semionkin, Vladimir A.
2016-10-01
Iron deposits in spleen and liver tissues obtained from several healthy people and patients with mantle cell lymphoma, acute myeloid leukemia and primary myelofibrosis were studied using Mössbauer spectroscopy and magnetization measurements. The results obtained demonstrated differences in the iron content in tissues as well as some variations in the ferrihydrite-like iron core structure in the iron storage proteins in these tissues. The presence of tiny amount of magnetite and paramagnetic component in spleen and liver tissue was also detected in different quantities in the studied tissues.
Khoontawad, Jarinya; Pairojkul, Chawalit; Rucksaken, Rucksak; Pinlaor, Porntip; Wongkham, Chaisiri; Yongvanit, Puangrat; Pugkhem, Ake; Jones, Alun; Plieskatt, Jordan; Potriquet, Jeremy; Bethony, Jeffery; Pinlaor, Somchai; Mulvenna, Jason
2017-01-01
Parts of Southeast Asia have the highest incidence of intrahepatic cholangiocarcinoma (CCA) in the world because of infection by the liver fluke Opisthorchis viverrini (Ov). Ov-associated CCA is the culmination of chronic Ov-infection, with the persistent production of the growth factors and cytokines associated with persistent inflammation, which can endure for years in Ov-infected individuals prior to transitioning to CCA. Isobaric labeling and tandem mass spectrometry of liver tissue from a hamster model of CCA was used to compare protein expression profiles from inflammed tissue (Ovinfected but not cancerous) versus cancerous tissue (Ov-induced CCA). Immunohistochemistry and immunoblotting were used to verify dysregulated proteins in the animal model and in human tissue. We identified 154 dysregulated proteins that marked the transition from Ov-infection to Ov-induced CCA, i.e. proteins dysregulated during carcinogenesis but not Ov-infection. The verification of dysregulated proteins in resected liver tissue from humans with Ov-associated CCA showed the numerous parallels in protein dysregulation between human and animal models of Ov-induced CCA. To identify potential circulating markers for CCA, dysregulated proteins were compared with proteins isolated from exosomes secreted by a human CCA cell line (KKU055) and 27 proteins were identified as dysregulated in CCA and present in exosomes. These data form the basis of potential diagnostic biomarkers for human Ov-associated CCA. The profile of protein dysregulation observed during chronic Ovinfection and then in Ov-induced CCA provides insight into the etiology of an infection-induced inflammation-related cancer. PMID:28232516
Rajeshkumar, Sivakumar; Mini, Jayaprakash; Munuswamy, Natesan
2013-12-01
Distribution of heavy metals and its associated oxidative stress, ultrastructure and expression of HSP 70 were studied in varies tissues of Chanos chanos collected from polluted sites compared with the fish collected from less polluted sites of Kaattuppalli Island. The concentrations of copper, lead, zinc, cadmium, manganese and iron were quantified in gills and liver. The results showed marked differences between the two sites as well as significant variations within the tissues. The decreasing trend of metals in the tissues of fish sampled from both polluted and less polluted sites was in the order of Fe>Mn>Zn>Cu>Pb>Cd. Overall, the highest metal concentrations were found in the fish collected from polluted sites. Similarly increase of antioxidant enzymes biomarkers due to heavy metals was also evident in gills and liver of the fish collected from polluted sites. These tissues were further investigated by scanning and electron microscopy and the results were compared with the reference less polluted sites. The presence of large lipid droplets in liver and increase of mucous cells in gills were some of the most noticeable alterations observed and were related to heavy metal contaminants. It is concluded that scanning, ultrastructural and useful of HSP70 biomarkers for heavy metal induced oxidative stress, and demonstrate that precautions need to be taken in polluted sites of Kaattuppalli Island in order to prevent heavy metal pollution that can occur in the future. © 2013 Elsevier Inc. All rights reserved.
Identification of tissue-embedded ascarid larvae by ribosomal DNA sequencing.
Ishiwata, Kenji; Shinohara, Akio; Yagi, Kinpei; Horii, Yoichiro; Tsuchiya, Kimiyuki; Nawa, Yukifumi
2004-01-01
Polymerase chain reaction (PCR) was applied to identify tissue-embedded ascarid nematode larvae. Two sequences of the internal transcribed spacer (ITS) regions of ribosomal DNA (rDNA), ITS1 and ITS2, of the ascarid parasites were amplified and compared with those of ascarid-nematodes registered in a DNA database (GenBank). The ITS sequences of the PCR products obtained from the ascarid parasite specimen in our laboratory were compatible with those of registered adult Ascaris and Toxocara parasites. PCR amplification of the ITS regions was sensitive enough to detect a single larva of Ascaris suum mixed with porcine liver tissue. Using this method, ascarid larvae embedded in the liver of a naturally infected turkey were identified as Toxocara canis. These results suggest that even a single larva embedded in tissues from patients with larva migrans could be identified by sequencing the ITS regions.
Hepatic progenitor cells in canine and feline medicine: potential for regenerative strategies
2014-01-01
New curative therapies for severe liver disease are urgently needed in both the human and veterinary clinic. It is important to find new treatment modalities which aim to compensate for the loss of parenchymal tissue and to repopulate the liver with healthy hepatocytes. A prime focus in regenerative medicine of the liver is the use of adult liver stem cells, or hepatic progenitor cells (HPCs), for functional recovery of liver disease. This review describes recent developments in HPC research in dog and cat and compares these findings to experimental rodent studies and human pathology. Specifically, the role of HPCs in liver regeneration, key components of the HPC niche, and HPC activation in specific types of canine and feline liver disease will be reviewed. Finally, the potential applications of HPCs in regenerative medicine of the liver are discussed and a potential role is suggested for dogs as first target species for HPC-based trials. PMID:24946932
Tsujiuchi, Toshifumi; Shimizu, Kyoko; Itsuzaki, Yumi; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Honoki, Kanya
2007-04-01
We investigated DNA methylation patterns of E-cadherin and Connexin26 (Cx26) genes in rat hepatocellular carcinomas (HCCs) induced by a choline-deficient L-Amino Acid-defined (CDAA) diet. Six-wks-old F344 male rats were continuously fed with a CDAA diet for 75 wks, and were then killed. A total of five HCCs were obtained, and genomic DNA was extracted from each HCC for assessment of methylation status in the 5' upstream regions of E-cadherin and Cx26 genes by bisulfite sequencing, comparing to two normal liver tissues. The five HCCs showed highly methylated E-cadherin and Cx26 genes, while these genes in two normal liver tissues were all unmethylated. For analysis of gene expression, real-time quantitative reverse transcription (RT)-polymerase chain reaction (PCR) was performed. Expressions of E-cadherin and Cx26 genes were significantly reduced in the five HCCs (P < 0.0001 and P < 0.001, respectively) compared to normal liver tissues, correlating with their methylation statuses. These results suggested that hypermethylation of E-cadherin and Cx26 genes may be involved in the development of HCCs induced by a CDAA diet in rats.
Detection of cocaine and benzoylecgonine in formalin fixed rat tissues.
Hilal, Ahmet; Dağlioğlu, Nebīle; Battal, Dīlek; Yener, Fadīle; Dağlioğlu, Kenan
2009-09-01
The stability of drugs in formalin solution is an important factor in forensic investigation. Tissues (liver, lung, kidney, brain) taken from rats, which have been poisoned acutely with cocaine, were preserved in two different conditions, analyzed by GC-MS, and then compared. Organs of the first group were preserved and stored at -20 degrees C without adding formalin, whereas the organs of the second group were preserved and stored in formalin solution at room temperature (25 degrees C). Serum samples were taken immediately after poisoning and studied as well. In specimens stored at -20 degrees C, cocaine and its metabolite benzoylecgonine were detected in the tissues. Only benzoylecgonine was detected both in tissues and their formalin solution. It was observed that the distribution of cocaine in tissues had differed depending on the preservation conditions. The formalin solution in which benzoylecgonine was mostly detected was from liver. As a result, cocaine was detected in tissues stored at -20 degrees C. It is recommended that both the formalin-fixed tissues and formalin solution should be analyzed concurrently to assure the accurate results (LOD = 3 ng/ml).
Ng, Chaan S.; Hobbs, Brian P.; Wei, Wei; Anderson, Ella F.; Herron, Delise H.; Yao, James C.; Chandler, Adam G.
2014-01-01
Objective To assess the effects of sampling interval (SI) of CT perfusion acquisitions on CT perfusion values in normal liver and liver metastases from neuroendocrine tumors. Methods CT perfusion in 16 patients with neuroendocrine liver metastases were analyzed by distributed parameter modeling to yield tissue blood flow, blood volume, mean transit time, permeability, and hepatic arterial fraction, for tumor and normal liver. CT perfusion values for the reference sampling interval of 0.5s (SI0.5) were compared with those of SI datasets of 1s, 2s, 3s and 4s, using mixed-effects model analyses. Results Increases in SI beyond 1s were associated with significant and increasing departures of CT perfusion parameters from reference values at SI0.5 (p≤0.0009). CT perfusion values deviated from reference with increasing uncertainty with increasing SIs. Findings for normal liver were concordant. Conclusion Increasing SIs beyond 1s yield significantly different CT perfusion parameter values compared to reference values at SI0.5. PMID:25626401
The influence of donor age on liver regeneration and hepatic progenitor cell populations.
Ono, Yoshihiro; Kawachi, Shigeyuki; Hayashida, Tetsu; Wakui, Masatoshi; Tanabe, Minoru; Itano, Osamu; Obara, Hideaki; Shinoda, Masahiro; Hibi, Taizo; Oshima, Go; Tani, Noriyuki; Mihara, Kisyo; Kitagawa, Yuko
2011-08-01
Recent reports suggest that donor age might have a major impact on recipient outcome in adult living donor liver transplantation (LDLT), but the reasons underlying this effect remain unclear. The aims of this study were to compare liver regeneration between young and aged living donors and to evaluate the number of Thy-1+ cells, which have been reported to be human hepatic progenitor cells. LDLT donors were divided into 2 groups (Group O, donor age ≥ 50 years, n = 6 and Group Y, donor age ≤ 30 years, n = 9). The remnant liver regeneration rates were calculated on the basis of computed tomography volumetry on postoperative days 7 and 30. Liver tissue samples were obtained from donors undergoing routine liver biopsy or patients undergoing partial hepatectomy for metastatic liver tumors. Thy-1+ cells were isolated and counted using immunomagnetic activated cell sorting (MACS) technique. Donor liver regeneration rates were significantly higher in young donors compared to old donors (P = .042) on postoperative day 7. Regeneration rates were significantly higher after right lobe resection compared to rates after left lobe resection. The MACS findings showed that the number of Thy-1+ cells in the human liver consistently tended to decline with age. Our study revealed that liver regeneration is impaired with age after donor hepatectomy, especially after right lobe resection. The declining hepatic progenitor cell population might be one of the reasons for impaired liver regeneration in aged donors. Copyright © 2011 Mosby, Inc. All rights reserved.
Yudin, M A; Bykov, V N; Nikiforov, A S; Al-Shekhadat, R I; Ivanov, I M; Ustinova, T M
2018-04-01
We compared the efficiency of delivery of plasmid DNA (active ingredient concentration 1 mg/kg) that provides production of nerve growth factor (NGF) after intravenous administration to rats and after administration by hydroporation. The method of hydroporation ensured plasmid penetration into the liver tissue and lengthened the time of its detection in the organ. DNA concentration in 1 h after its introduction by hydroporation or intravenous route was 0.7 and 0.05 ng/mg tissue, respectively. The use of this transfection method ensured preservation of NGF DNA in the liver tissue at a level of 0.24 ng/mg of tissue 1 day after administration of the plasmid construct, while after intravenous administration, expression of the analyzed DNA was not detected in blood and liver samples. After hydroporation, the maximum of relative normalized expression of cDNA (270 rel. units) was observed after 4 h, and after 1 day, this parameter decreased to 35 rel. units. Introduction of plasmid DNA of NGF by hydroporation prevented the development of disorders of neuromuscular conduction in a rats model of toxic neuropathy induced by subacute administration of malathion in a dose of 0.5 LD 50 .
Apostoli, Pietro; De Palma, Giuseppe; Catalani, Simona; Bortolotti, Federica; Tagliaro, Franco
2009-01-01
Cangrande della Scala, Prince of Verona (Italy), died suddenly shortly after his triumph in the battle of Treviso (July 18, 1329). Thus, in the frame of a multidisciplinary paleo-pathological study, we carried out a multielemental analysis on the Prince's tissue specimens, including hair, liver, muscle, and bone, in order to characterize a multitissue profile of metallic elements in a nobleman of the 14th century. Biological specimens were analyzed by inductively coupled plasma-mass spectrometry. We were able to rule out arsenic poisoning as the primary cause of death. High levels of gold and silver in both hair and liver samples were probably due to prolonged contact of the mummy with precious metals in the funeral garments. High lead concentrations in both liver and bone tissue can be traced back to the ingestion of contaminated food and alcoholic beverages. Most of the essential elements were in the normal range of values for contemporary living people. The low arsenic and chromium levels in the Prince's tissues as compared to modern people would be suggestive of raised concentrations of both the elements in the present era, which are likely due to industrial pollution.
Soft tissue tumors induced by monomeric {sup 239}Pu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lloyd, R.D.; Angus, W.; Taylor, G.N.
1995-10-01
Individual records of soft tissue tumor occurrence (lifetime incidence) among 236 beagles injected with {sup 239}Pu citrate as young adults and 131 comparable control beagles given no radioactivity enabled us to analyze the possible effects on soft tissue tumor induction resulting from internal exposure to {sup 239}Pu. A significant trend was identified in the proportion of animals having malignant liver tumors with increasing radiation dose from {sup 239}. There was also a significant difference in the relative numbers of both malignant liver tumors (18.1 expected, 66 observed). Malignant tumors of the mouth, pancreas, and skin were more frequent among controlsmore » than among the dogs given {sup 239}Pu as well as tumors (malignant plus benign) of the mouth, pancreas, testis, and vagina. For all other tumor sites or types, there was no significant difference for both malignant and all (malignant plus benign) tumors. Mammary tumor occurrence appeared not to be associated with {sup 239}Pu incorporation. We conclude that the only soft-tissue neoplasia induced by the intake of {sup 239}Pu directly into blood is probably a liver tumor. 20 refs., 6 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertesz, Vilmos; Weiskittel, Taylor M.; Vavek, Marissa
Currently, absolute quantitation aspects of droplet-based surface sampling for thin tissue analysis using a fully automated autosampler/HPLC-ESI-MS/MS system are not fully evaluated. Knowledge of extraction efficiency and its reproducibility is required to judge the potential of the method for absolute quantitation of analytes from thin tissue sections. Methods: Adjacent thin tissue sections of propranolol dosed mouse brain (10- μm-thick), kidney (10- μm-thick) and liver (8-, 10-, 16- and 24- μm-thick) were obtained. Absolute concentration of propranolol was determined in tissue punches from serial sections using standard bulk tissue extraction protocols and subsequent HPLC separations and tandem mass spectrometric analysis. Thesemore » values were used to determine propranolol extraction efficiency from the tissues with the droplet-based surface sampling approach. Results: Extraction efficiency of propranolol using 10- μm-thick brain, kidney and liver thin tissues using droplet-based surface sampling varied between ~45-63%. Extraction efficiency decreased from ~65% to ~36% with liver thickness increasing from 8 μm to 24 μm. Randomly selecting half of the samples as standards, precision and accuracy of propranolol concentrations obtained for the other half of samples as quality control metrics were determined. Resulting precision ( ±15%) and accuracy ( ±3%) values, respectively, were within acceptable limits. In conclusion, comparative quantitation of adjacent mouse thin tissue sections of different organs and of various thicknesses by droplet-based surface sampling and by bulk extraction of tissue punches showed that extraction efficiency was incomplete using the former method, and that it depended on the organ and tissue thickness. However, once extraction efficiency was determined and applied, the droplet-based approach provided the required quantitation accuracy and precision for assay validations. Furthermore, this means that once the extraction efficiency was calibrated for a given tissue type and drug, the droplet-based approach provides a non-labor intensive and high-throughput means to acquire spatially resolved quantitative analysis of multiple samples of the same type.« less
Kertesz, Vilmos; Weiskittel, Taylor M.; Vavek, Marissa; ...
2016-06-22
Currently, absolute quantitation aspects of droplet-based surface sampling for thin tissue analysis using a fully automated autosampler/HPLC-ESI-MS/MS system are not fully evaluated. Knowledge of extraction efficiency and its reproducibility is required to judge the potential of the method for absolute quantitation of analytes from thin tissue sections. Methods: Adjacent thin tissue sections of propranolol dosed mouse brain (10- μm-thick), kidney (10- μm-thick) and liver (8-, 10-, 16- and 24- μm-thick) were obtained. Absolute concentration of propranolol was determined in tissue punches from serial sections using standard bulk tissue extraction protocols and subsequent HPLC separations and tandem mass spectrometric analysis. Thesemore » values were used to determine propranolol extraction efficiency from the tissues with the droplet-based surface sampling approach. Results: Extraction efficiency of propranolol using 10- μm-thick brain, kidney and liver thin tissues using droplet-based surface sampling varied between ~45-63%. Extraction efficiency decreased from ~65% to ~36% with liver thickness increasing from 8 μm to 24 μm. Randomly selecting half of the samples as standards, precision and accuracy of propranolol concentrations obtained for the other half of samples as quality control metrics were determined. Resulting precision ( ±15%) and accuracy ( ±3%) values, respectively, were within acceptable limits. In conclusion, comparative quantitation of adjacent mouse thin tissue sections of different organs and of various thicknesses by droplet-based surface sampling and by bulk extraction of tissue punches showed that extraction efficiency was incomplete using the former method, and that it depended on the organ and tissue thickness. However, once extraction efficiency was determined and applied, the droplet-based approach provided the required quantitation accuracy and precision for assay validations. Furthermore, this means that once the extraction efficiency was calibrated for a given tissue type and drug, the droplet-based approach provides a non-labor intensive and high-throughput means to acquire spatially resolved quantitative analysis of multiple samples of the same type.« less
Portillo-Sanchez, Paola; Bril, Fernando; Maximos, Maryann; Lomonaco, Romina; Biernacki, Diane; Orsak, Beverly; Subbarayan, Sreevidya; Webb, Amy; Hecht, Joan; Cusi, Kenneth
2015-06-01
Nonalcoholic fatty liver disease (NAFLD) and its more severe form with steatohepatitis (NASH) are common in patients with type 2 diabetes mellitus (T2DM). However, they are usually believed to largely affect those with elevated aminotransferases. The aim of this study was to determine the prevalence of NAFLD by the gold standard, liver magnetic resonance spectroscopy ((1)H-MRS) in patients with T2DM and normal aminotransferases, and to characterize their metabolic profile. We recruited 103 patients with T2DM and normal plasma aminotransferases (age, 60 ± 8 y; body mass index [BMI], 33 ± 5 kg/m(2); glycated hemoglobin [A1c], 7.6 ± 1.3%). We measured the following: 1) liver triglyceride content by (1)H-MRS; 2) systemic insulin sensitivity (homeostasis model assessment-insulin resistance); and 3) adipose tissue insulin resistance, both fasting (as the adipose tissue insulin resistance index: fasting plasma free fatty acids [FFA] × insulin) and during an oral glucose tolerance test (as the suppression of FFA). The prevalence of NAFLD and NASH were much higher than expected (50% and 56% of NAFLD patients, respectively). The prevalence of NAFLD was higher in obese compared with nonobese patients as well as with increasing BMI (P = .001 for trend). Higher plasma A1c was associated with a greater prevalence of NAFLD and worse liver triglyceride accumulation (P = .01). Compared with nonobese patients without NAFLD, patients with NAFLD had severe systemic (liver/muscle) and, particularly, adipose tissue (fasting/postprandial) insulin resistance (all P < .01). The prevalence of NAFLD is much higher than previously believed in overweight/obese patients with T2DM and normal aminotransferases. Moreover, many are at increased risk of NASH. Physicians should have a lower threshold for screening patients with T2DM for NAFLD/NASH.
Effects of vitamins A and D on the biosynthesis of L-ascorbic acid by rat-liver microsomes
Ghosh, N. C.; Chatterjee, Ipsita; Chatterjee, G. C.
1965-01-01
1. The synthesis of l-ascorbic acid from either d-glucuronolactone or l-gulonolactone by liver microsomes of rats is decreased under conditions of hypervitaminosis A; under hypervitaminosis D the synthesis from d-glucuronolactone is increased and that from l-gulonolactone is not affected. 2. The microsomal conversion of l-gulonolactone into l-ascorbic acid is impaired in liver tissues of rats made deficient with respect to either vitamin A or vitamin D when compared with the controls maintained on stock diet. PMID:16749110
High intensity interval training improves liver and adipose tissue insulin sensitivity.
Marcinko, Katarina; Sikkema, Sarah R; Samaan, M Constantine; Kemp, Bruce E; Fullerton, Morgan D; Steinberg, Gregory R
2015-12-01
Endurance exercise training reduces insulin resistance, adipose tissue inflammation and non-alcoholic fatty liver disease (NAFLD), an effect often associated with modest weight loss. Recent studies have indicated that high-intensity interval training (HIIT) lowers blood glucose in individuals with type 2 diabetes independently of weight loss; however, the organs affected and mechanisms mediating the glucose lowering effects are not known. Intense exercise increases phosphorylation and inhibition of acetyl-CoA carboxylase (ACC) by AMP-activated protein kinase (AMPK) in muscle, adipose tissue and liver. AMPK and ACC are key enzymes regulating fatty acid metabolism, liver fat content, adipose tissue inflammation and insulin sensitivity but the importance of this pathway in regulating insulin sensitivity with HIIT is unknown. In the current study, the effects of 6 weeks of HIIT were examined using obese mice with serine-alanine knock-in mutations on the AMPK phosphorylation sites of ACC1 and ACC2 (AccDKI) or wild-type (WT) controls. HIIT lowered blood glucose and increased exercise capacity, food intake, basal activity levels, carbohydrate oxidation and liver and adipose tissue insulin sensitivity in HFD-fed WT and AccDKI mice. These changes occurred independently of weight loss or reductions in adiposity, inflammation and liver lipid content. These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC.
Tsipouras, Markos G; Giannakeas, Nikolaos; Tzallas, Alexandros T; Tsianou, Zoe E; Manousou, Pinelopi; Hall, Andrew; Tsoulos, Ioannis; Tsianos, Epameinondas
2017-03-01
Collagen proportional area (CPA) extraction in liver biopsy images provides the degree of fibrosis expansion in liver tissue, which is the most characteristic histological alteration in hepatitis C virus (HCV). Assessment of the fibrotic tissue is currently based on semiquantitative staging scores such as Ishak and Metavir. Since its introduction as a fibrotic tissue assessment technique, CPA calculation based on image analysis techniques has proven to be more accurate than semiquantitative scores. However, CPA has yet to reach everyday clinical practice, since the lack of standardized and robust methods for computerized image analysis for CPA assessment have proven to be a major limitation. The current work introduces a three-stage fully automated methodology for CPA extraction based on machine learning techniques. Specifically, clustering algorithms have been employed for background-tissue separation, as well as for fibrosis detection in liver tissue regions, in the first and the third stage of the methodology, respectively. Due to the existence of several types of tissue regions in the image (such as blood clots, muscle tissue, structural collagen, etc.), classification algorithms have been employed to identify liver tissue regions and exclude all other non-liver tissue regions from CPA computation. For the evaluation of the methodology, 79 liver biopsy images have been employed, obtaining 1.31% mean absolute CPA error, with 0.923 concordance correlation coefficient. The proposed methodology is designed to (i) avoid manual threshold-based and region selection processes, widely used in similar approaches presented in the literature, and (ii) minimize CPA calculation time. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Jian; Lu, Fake; Zheng, Wei; Xu, Shuoyu; Tai, Dean; Yu, Hanry; Huang, Zhiwei
2011-11-01
We report the implementation of a unique integrated coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), and two-photon excitation fluorescence (TPEF) microscopy imaging technique developed for label-free monitoring of the progression of liver steatosis and fibrosis generated in a bile duct ligation (BDL) rat model. Among the 21 adult rats used in this study, 18 rats were performed with BDL surgery and sacrificed each week from weeks 1 to 6 (n = 3 per week), respectively; whereas 3 rats as control were sacrificed at week 0. Colocalized imaging of the aggregated hepatic fats, collagen fibrils, and hepatocyte morphologies in liver tissue is realized by using the integrated CARS, SHG, and TPEF technique. The results show that there are significant accumulations of hepatic lipid droplets and collagen fibrils associated with severe hepatocyte necrosis in BDL rat liver as compared to a normal liver tissue. The volume of normal hepatocytes keeps decreasing and the fiber collagen content in BDL rat liver follows a growing trend until week 6; whereas the hepatic fat content reaches a maximum in week 4 and then appears to stop growing in week 6, indicating that liver steatosis and fibrosis induced in a BDL rat liver model may develop at different rates. This work demonstrates that the integrated CARS and multiphoton microscopy imaging technique has the potential to provide an effective means for early diagnosis and detection of liver steatosis and fibrosis without labeling.
Lin, Jian; Lu, Fake; Zheng, Wei; Xu, Shuoyu; Tai, Dean; Yu, Hanry; Huang, Zhiwei
2011-11-01
We report the implementation of a unique integrated coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), and two-photon excitation fluorescence (TPEF) microscopy imaging technique developed for label-free monitoring of the progression of liver steatosis and fibrosis generated in a bile duct ligation (BDL) rat model. Among the 21 adult rats used in this study, 18 rats were performed with BDL surgery and sacrificed each week from weeks 1 to 6 (n = 3 per week), respectively; whereas 3 rats as control were sacrificed at week 0. Colocalized imaging of the aggregated hepatic fats, collagen fibrils, and hepatocyte morphologies in liver tissue is realized by using the integrated CARS, SHG, and TPEF technique. The results show that there are significant accumulations of hepatic lipid droplets and collagen fibrils associated with severe hepatocyte necrosis in BDL rat liver as compared to a normal liver tissue. The volume of normal hepatocytes keeps decreasing and the fiber collagen content in BDL rat liver follows a growing trend until week 6; whereas the hepatic fat content reaches a maximum in week 4 and then appears to stop growing in week 6, indicating that liver steatosis and fibrosis induced in a BDL rat liver model may develop at different rates. This work demonstrates that the integrated CARS and multiphoton microscopy imaging technique has the potential to provide an effective means for early diagnosis and detection of liver steatosis and fibrosis without labeling.
Deformable image registration for tissues with large displacements
Huang, Xishi; Ren, Jing; Green, Mark
2017-01-01
Abstract. Image registration for internal organs and soft tissues is considered extremely challenging due to organ shifts and tissue deformation caused by patients’ movements such as respiration and repositioning. In our previous work, we proposed a fast registration method for deformable tissues with small rotations. We extend our method to deformable registration of soft tissues with large displacements. We analyzed the deformation field of the liver by decomposing the deformation into shift, rotation, and pure deformation components and concluded that in many clinical cases, the liver deformation contains large rotations and small deformations. This analysis justified the use of linear elastic theory in our image registration method. We also proposed a region-based neuro-fuzzy transformation model to seamlessly stitch together local affine and local rigid models in different regions. We have performed the experiments on a liver MRI image set and showed the effectiveness of the proposed registration method. We have also compared the performance of the proposed method with the previous method on tissues with large rotations and showed that the proposed method outperformed the previous method when dealing with the combination of pure deformation and large rotations. Validation results show that we can achieve a target registration error of 1.87±0.87 mm and an average centerline distance error of 1.28±0.78 mm. The proposed technique has the potential to significantly improve registration capabilities and the quality of intraoperative image guidance. To the best of our knowledge, this is the first time that the complex displacement of the liver is explicitly separated into local pure deformation and rigid motion. PMID:28149924
Mostafa, N; Everett, D C; Chou, S C; Kong, P A; Florant, G L; Coleman, R A
1993-01-01
Fatty acid metabolism and triacylglycerol synthesis are critical processes for the survival of hibernating mammals that undergo a prolonged fasting period. Fatty acid synthase, fatty-acid-CoA ligase, diacylglycerol acyltransferase, and monoacylglycerol acyltransferase activities were measured in liver and in white and brown adipose tissue, in order to determine whether enzymes of lipogenesis and triacylglycerol synthesis vary seasonally during hibernation in the yellow-bellied marmot (Marmota flaviventris). Compared with mid-winter hibernation, fatty acid synthase activity was higher in all three tissues during early spring when marmots emerged from hibernation and in mid-summer when they were feeding, consistent with the synthesis of fatty acids from the carbohydrate-rich summer diet. Fatty-acid-CoA ligase and diacylglycerol acyltransferase activities were highest in summer in white adipose tissue when triacylglycerol synthesis would be expected to be high; diacylglycerol acyltransferase activity was also high in brown adipose tissue during spring and summer. In liver, however, diacylglycerol acyltransferase specific activity was highest during hibernation, suggesting that triacylglycerol synthesis may be prominent in liver in winter. Monoacylglycerol acyltransferase activity, which may aid in the retention of essential fatty-acids, was 80-fold higher in liver than in white or brown adipose tissue, but did not vary seasonally. Its dependence on palmitoyl-CoA suggests that a divalent cation might play a role in enzyme activation. The high hepatic diacylglycerol acyltransferase activity during hibernation suggests that the metabolism of very low density lipoprotein may be important in the movement of adipose fatty acids to brown adipose tissue and muscle during the rewarming that occurs periodically during hibernation.(ABSTRACT TRUNCATED AT 250 WORDS)
Isbert, Christoph; Ritz, Jörg-Peter; Roggan, André; Schuppan, Detlef; Ajubi, Navid; Buhr, Heinz Johannes; Hohenberger, Werner; Germer, Christoph-Thomas
2007-01-01
Proliferation and synthesis of hepatocellular tissue after tissue damage are promoted by specific growth factors such as hepatic tissue growth factor (HGF) and connective growth factor (CTGF). Laser-induced thermotherapy (LITT) for the treatment of liver metastases is deemed to be a parenchyma-saving procedure compared to hepatic resection. The aim of this study was to compare the impact of LITT and hepatic resection on intrahepatic residual tumor tissue and expression levels of mRNA HGF/CTGF within liver and tumor tissue. Two independent adenocarcinomas (CC531) were implanted into 75 WAG rats, one in the right (untreated tumor) and one in the left liver lobe (treated tumor). The left lobe tumor was treated either by LITT or partial hepatectomy. The control tumor was submitted to in-situ hybridization of HGF and CTGF 24-96 hours and 14 days after intervention. Volumes of the untreated tumors prior to intervention were 38+/-8 mm(3) in group I (laser), 39 +/- 7 mm(3) in group II (resection), and 42 +/- 12 mm(3) in group III (control) and did not differ significantly (P > 0.05). Fourteen days after the intervention the mean tumor+/-SEM volume of untreated tumor in group I (laser) [223 +/- 36] was smaller than in group II (resection) [1233.28 +/- 181.52; P < 0.001], and in group III (control) [978.92 +/- 87.57; P < 0.003]. Forty-eight hours after the intervention intrahepatic mRNA expression level of HGF in group II (resection) was almost twofold higher than in group I (laser) [7.2 +/- 1.0 c/mf vs. 3.9 +/- 0.4 c/mf; P<0.01]. Fourteen days after the intervention intrahepatic mRNA expression level of CTGF in group I (laser) was higher than in group II (resection) [13.89 +/- 0.77 c/mf vs. 9.09 +/- 0.78 c/mf; P < 0.003]. LITT leads to a decrease of residual tumor growth in comparison to hepatic resection. Accelerated tumor growth after hepatic resection is associated with higher mRNA level of HGF and reduced tumor growth after LITT with higher mRNA level of CTGF. The increased CTGF-mediated regulation of ECM may cause reduced residual tumor growth after LITT. (c) 2006 Wiley-Liss, Inc.
Tao, Yi; Du, Yingshan; Li, Weidong; Cai, Baochang; Di, Liuqing; Shi, Liyun; Hu, Lihong
2017-06-15
Wine-processing, which is sauteing with rice wine, will change the inclination and direction of herbs' actions. After being wine-processed, the effects of nourishing liver and kidney of Dipsacus asper will be strengthened. However, the underlying mechanism remains elusive. The following study is to establish and validate an UHPLC-MS/MS approach to determine six bioactive constituents in tissue samples, including loganin, loganic acid, chlorogenic acid, 3,5-dicaffeoylquinic acid, 4-caffeoylquinic acid and asperosaponin VI and apply the approach to a comparative tissue distribution study of raw and wine-processed Dipsacus asper in rats. A Shimadzu UHPLC system coupled with triple quadrupole mass spectrometer was employed for analysis of the six analytes using multiple reaction monitoring (MRM) mode. A one-step protein precipitation by methanol was employed to extract the six analytes from tissues. Chloramphenicol and glycyrrhetinic acid were selected as internal standards. The proposed approach was fully validated in terms of linearity, sensitivity, precision, repeatability as well as recovery. Our results revealed that all of the calibration curves displayed good linear regression (r 2 >0.9991). Intra- and inter-assay variability for all analytes ranged from -4.62 to 4.93% and from -4.98 to 4.92%, respectively. The recovery rates for each analytes were determined to be 88.3-100.1%. All the samples showed satisfactory precision and accuracy after various stability tests, including storage at 25°C for 4h, -80°C for 30days, three-freeze-thaw cycles, and 4°C for 24h. Tissue pharmacokinetic parameters including AUC 0-t , t 1/2 , T max and C max were calculated. Collectively, the parameters of C max and AUC 0-t of the six analytes in wine-processed group were remarkably elevated (p<0.05) in the rat liver and kidney as compared with those of the raw group. But in the rat heart and spleen, the C max and AUC 0-t of asperosaponin VI was decreased as compared with those of the raw group. The accumulation of bioactive constituents in liver and kidney tissues after wine-processing will contribute to the enhancement of liver and kidney nourishing effects. Copyright © 2017 Elsevier B.V. All rights reserved.
Harari, Colin M.; Magagna, Michelle; Bedoya, Mariajose; Lee, Fred T.; Lubner, Meghan G.; Hinshaw, J. Louis; Ziemlewicz, Timothy
2016-01-01
Purpose To compare microwave ablation zones created by using sequential or simultaneous power delivery in ex vivo and in vivo liver tissue. Materials and Methods All procedures were approved by the institutional animal care and use committee. Microwave ablations were performed in both ex vivo and in vivo liver models with a 2.45-GHz system capable of powering up to three antennas simultaneously. Two- and three-antenna arrays were evaluated in each model. Sequential and simultaneous ablations were created by delivering power (50 W ex vivo, 65 W in vivo) for 5 minutes per antenna (10 and 15 minutes total ablation time for sequential ablations, 5 minutes for simultaneous ablations). Thirty-two ablations were performed in ex vivo bovine livers (eight per group) and 28 in the livers of eight swine in vivo (seven per group). Ablation zone size and circularity metrics were determined from ablations excised postmortem. Mixed effects modeling was used to evaluate the influence of power delivery, number of antennas, and tissue type. Results On average, ablations created by using the simultaneous power delivery technique were larger than those with the sequential technique (P < .05). Simultaneous ablations were also more circular than sequential ablations (P = .0001). Larger and more circular ablations were achieved with three antennas compared with two antennas (P < .05). Ablations were generally smaller in vivo compared with ex vivo. Conclusion The use of multiple antennas and simultaneous power delivery creates larger, more confluent ablations with greater temperatures than those created with sequential power delivery. © RSNA, 2015 PMID:26133361
Testing an aflatoxin B1 gene signature in rat archival tissues.
Merrick, B Alex; Auerbach, Scott S; Stockton, Patricia S; Foley, Julie F; Malarkey, David E; Sills, Robert C; Irwin, Richard D; Tice, Raymond R
2012-05-21
Archival tissues from laboratory studies represent a unique opportunity to explore the relationship between genomic changes and agent-induced disease. In this study, we evaluated the applicability of qPCR for detecting genomic changes in formalin-fixed, paraffin-embedded (FFPE) tissues by determining if a subset of 14 genes from a 90-gene signature derived from microarray data and associated with eventual tumor development could be detected in archival liver, kidney, and lung of rats exposed to aflatoxin B1 (AFB1) for 90 days in feed at 1 ppm. These tissues originated from the same rats used in the microarray study. The 14 genes evaluated were Adam8, Cdh13, Ddit4l, Mybl2, Akr7a3, Akr7a2, Fhit, Wwox, Abcb1b, Abcc3, Cxcl1, Gsta5, Grin2c, and the C8orf46 homologue. The qPCR FFPE liver results were compared to the original liver microarray data and to qPCR results using RNA from fresh frozen liver. Archival liver paraffin blocks yielded 30 to 50 μg of degraded RNA that ranged in size from 0.1 to 4 kB. qPCR results from FFPE and fresh frozen liver samples were positively correlated (p ≤ 0.05) by regression analysis and showed good agreement in direction and proportion of change with microarray data for 11 of 14 genes. All 14 transcripts could be amplified from FFPE kidney RNA except the glutamate receptor gene Grin2c; however, only Abcb1b was significantly upregulated from control. Abundant constitutive transcripts, S18 and β-actin, could be amplified from lung FFPE samples, but the narrow RNA size range (25-500 bp length) prevented consistent detection of target transcripts. Overall, a discrete gene signature derived from prior transcript profiling and representing cell cycle progression, DNA damage response, and xenosensor and detoxication pathways was successfully applied to archival liver and kidney by qPCR and indicated that gene expression changes in response to subchronic AFB1 exposure occurred predominantly in the liver, the primary target for AFB1-induced tumors. We conclude that an evaluation of gene signatures in archival tissues can be an important toxicological tool for evaluating critical molecular events associated with chemical exposures.
Fitschen-Oestern, Stefanie; Weuster, Matthias; Lippross, Sebastian; Behrendt, Peter; Fuchs, Sabine; Pufe, Thomas; Tohidnezhad, Mersedeh; Bayer, Andreas; Seekamp, Andreas; Varoga, Deike; Klüter, Tim
2017-03-07
Human-beta defensins (HBD) belong to the family of acute phase peptides and hold a broad antimicrobial spectrum that includes gram-positive and gram-negative bacteria. HBD are up-regulated after severe injuries but the source of posttraumatic HBD expression has not been focused on before. In the current study we analysed the role of liver tissue in expression of HBD after multiple trauma in human and mice. HBD-2 expression has been detected in plasma samples of 32 multiple trauma patients (ISS > 16) over 14 days after trauma by ELISA. To investigate major sources of HBD-2, its expression and regulation in plasma samples, polymorphonuclear neutrophils (PMN) and human tissue samples of liver and skin were analysed by ELISA. As liver samples of trauma patients are hard to obtain we tried to review findings in an established trauma model. Plasma samples and liver samples of 56 male C57BL/6 N-mice with a thorax trauma and a femur fracture were analysed by ELISA, real-time PCR and immunohistochemistry for murine beta defensin 4 (MBD-4) and compared with the expression of control group without trauma. The induction of HBD-2 expression in cultured hepatocytes (Hep G2) was analysed after incubation with IL-6, supernatant of Staphylococcus aureus (SA) and Lipopolysaccharides (LPS). One possible signalling pathway was tested by blocking toll-like receptor 2 (TLR2) in hepatocytes. Compared to healthy control group, plasma of multiple traumatized patients and mice showed significantly higher defensin levels after trauma. Compared to skin cells, which are known for high beta defensin expression, liver tissue showed less HBD-2 expression, but higher HBD-2 expression compared to PMN. Immunhistochemical staining demonstrated upregulated MBD-4 in hepatocytes of traumatised mice. In HepG2 cells HBD-2 expression could be increased by stimulation with IL-6 and SA. Neutralization of HepG2 cells with αTLR2 showed reduced HBD-2 expression after stimulation with SA. Plasma samples of multiple traumatized patients showed high expression of HBD-2, which may protect the severely injured patient from overwhelming bacterial infection. Our data support the hypothesis that liver is one possible source for HBD-2 in plasma while posttraumatic inflammatory response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Vijay; Kalita, Jayantee, E-mail: jayanteek@yahoo.com; Bora, Himangsu K.
Copper (Cu) at a higher level becomes toxic and it can catalyze the formation of highly reactive hydroxyl radical. We report the vulnerability of liver, kidney and brain to different dose of copper sulfate (CuSO{sub 4}) induced oxidative stress at different time duration. Fifty-four male Wistar rats (weight range = 205 ± 10 g) were equally divided into three groups. CuSO{sub 4} was administered orally to the experimental groups (Group-II and III) up to 90 days in a dose of 100 and 200 mg/Kg body weight per day. Saline water was given to the control group (Group-I). At the endmore » of 30, 60 and 90 days of administration, neurobehavioral studies were done and six rats from each group were sacrificed. Their liver, kidney and brain tissues were subjected for Cu, glutathione (GSH), malondialdehyde (MDA) and total antioxidant capacity (TAC) assay. Blood urea nitrogen (BUN), serum creatinine, bilirubin and transaminases were measured. GSH, TAC and MDA levels were correlated with the markers of respective organ dysfunction. Administration of CuSO{sub 4} resulted in increased free Cu and MDA level, and decrease GSH and TAC levels in group-II and III compared with group-I. In experimental groups, the reduction in TAC and GSH levels was maximum in liver tissue followed by brain and kidney; whereas increase in MDA level was highest in liver followed by brain and kidney at 30, 60 and 90 days. TAC and GSH levels in the liver inversely correlated with serum transaminases and bilirubin, and tissue free Cu, and positively correlated with MDA levels. Free Cu level in kidney tissue and BUN inversely correlated with TAC and GSH, and positively with MDA level. Grip-strength, rotarod and Y-maze findings were inversely correlated with brain free Cu and MDA levels and positively with GSH and TAC levels. The oxidative stress was highest in liver followed by brain and kidney after oral CuSO{sub 4} exposure in a rat model. These levels correlated with the respective organ dysfunction and tissue free Cu concentration. - Highlights: • Oral dosing of CuSO{sub 4} leads to oxidative stress in liver, brain and kidney. • Liver has maximum oxidative stress followed by brain and kidney. • Oxidative stress correlated with the respective organ dysfunction and tissue Cu concentration.« less
Abbasi, A; Moghadam, A A; Kahrarian, Z; Abbsavaran, R; Yari, K; Alizadeh, E
2017-08-15
Leptin is a 16-kDa peptide hormone secreted by adipose tissue that participates in the regulation of energy homeostasis. The aim of this study was to determine the effect of leptin injection on mRNA expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) and comparison of PPAR-γ mRNA expression in rat's adipose and liver tissue. Twenty adult male rats were divided into the following groups: Group 1asa control (n=10) that did not receive any treatment. Group 2as a treatment (n=10) that received leptin (30 µg ⁄ kg BW) intraperitoneally (ip) for two successive days. Blood samples were taken before and one day after second leptin injection for triglyceride (TG), Free Fatty Acid (FFA), HLD-cholesterol, and LDL-cholesterol measurement. Total RNA was extractedfrom the adipose tissue and liver tissues of rats. Adipose and liver tissue cells' cDNA was synthesized to characterize the expression of PPAR-γ. Gene expression of PPAR-γ mRNA was tested by RT- PCR technique. Results show leptin decreases expression of PPAR-γ on rat. Low levels of PPAR-γ mRNA were detected in adipose and liver tissues of treatment rats in comparison to control group. In treatment group, the level of PPAR-γ mRNA in liver tissue was very lower than the adipose tissue. The levels of HDL and FFA in treatment rats were increased whereas serum levels TG, VLDL and LDL were not changed. It is concluded that leptin signal with suppressing of PPAR-γ mRNA expression in rat's adipose and liver tissues can result in lipolysis instead of lipogenesis.
Evaluation of liver fibrosis: "Something old, something new…".
Almpanis, Zannis; Demonakou, Maria; Tiniakos, Dina
2016-01-01
Hepatic fibrogenesis may gradually result to cirrhosis due to the accumulation of extracellular matrix components as a response to liver injury. Thus, therapeutic decisions in chronic liver disease, regardless of the cause, should first and foremost be guided by an accurate quantification of hepatic fibrosis. Detection and assessment of the extent of hepatic fibrosis represent a challenge in modern Hepatology. Although traditional histological staging systems remain the "best standard", they are not able to quantify liver fibrosis as a dynamic process and may not accurately substage cirrhosis. This review aims to compare the currently used non-invasive methods of measuring liver fibrosis and provide an update in current tissue-based digital techniques developed for this purpose, that may prove of value in daily clinical practice.
Custer, Christine M.; Yang, C.; Crock, J.G.; Shearn-Bochsler, V.; Smith, K.S.; Hageman, P.L.
2009-01-01
Concentrations of 31 metals, metalloids, and other elements were measured in insects and insectivorous bird tissues from three drainages with different geochemistry and mining histories in Summit Co., Colorado, in 2003, 2004, and 2005. In insect samples, all 25 elements that were analyzed in all years increased in both Snake and Deer Creeks in the mining impacted areas compared to areas above and below the mining impacted areas. This distribution of elements was predicted from known or expected sediment contamination resulting from abandoned mine tailings in those drainages. Element concentrations in avian liver tissues were in concordance with levels in insects, that is with concentrations higher in mid-drainage areas where mine tailings were present compared to both upstream and downstream locations; these differences were not always statistically different, however. The lack of statistically significant differences in liver tissues, except for a few elements, was due to relatively small sample sizes and because many of these elements are essential and therefore well regulated by the bird's homeostatic processes. Most elements were at background concentrations in avian liver tissue except for Pb which was elevated at mid-drainage sites to levels where ??-aminolevulinic acid dehydratase activity was inhibited at other mining sites in Colorado. Lead exposure, however, was not at toxic levels. Fecal samples were not a good indication of what elements birds ingested and were potentially exposed to. ?? Springer Science+Business Media B.V. 2008.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ai-Guo, E-mail: wangaiguotl@hotmail.com; Song, Ya-Nan; Chen, Jun
2014-09-26
Highlights: • The activation of RAS/ERK is insufficient to inhibit RXRα function and deplete RA. • The retinoid metabolism-related genes are down-regulated by ras oncogene. • The atRA has no effect on preventing hepatic tumorigenesis or curing the developed hepatic nodules. - Abstract: Activation of RAS/ERK signaling pathway, depletion of retinoid, and phosphorylation of retinoid X receptor alpha (RXRα) are frequent events found in liver tumors and thought to play important roles in hepatic tumorigenesis. However, the relationships among them still remained to be elucidated. By exploring the transgenic mouse model of hepatic tumorigenesis induced by liver-specific expression of H-ras12Vmore » oncogene, the activation of RAS/ERK, the mRNA expression levels of retinoid metabolism-related genes, the contents of retinoid metabolites, and phosphorylation of RXRα were determined. RAS/ERK signaling pathway was gradually and significantly activated in hepatic tumor adjacent normal liver tissues (P) and hepatic tumor tissues (T) of H-ras12V transgenic mice compared with normal liver tissues (Wt) of wild type mice. On the contrary, the mRNA expression levels of retinoid metabolism-related genes were significantly reduced in P and T compared with Wt. Interestingly, the retinoid metabolites 9-cis-retinoic acid (9cRA) and all-trans-retinoic acid (atRA), the well known ligands for nuclear transcription factor RXR and retinoic acid receptor (RAR), were significantly decreased only in T compared with Wt and P, although the oxidized polar metabolite of atRA, 4-keto-all-trans-retinoic-acid (4-keto-RA) was significantly decreased in both P and T compared with Wt. To our surprise, the functions of RXRα were significantly blocked only in T compared with Wt and P. Namely, the total protein levels of RXRα were significantly reduced and the phosphorylation levels of RXRα were significantly increased only in T compared with Wt and P. Treatment of H-ras12V transgenic mice at 5-week-old or 5-month-old with atRA had no effect on the prevention of tumorigenesis or cure of developed nodules in liver. These events imply that the depletion of 9cRA and atRA and the inhibition of RXRα function in hepatic tumors involve more complex mechanisms besides the activation of RAS/ERK pathway.« less
Chen, Jiangang; Hou, Gary Y.; Marquet, Fabrice; Han, Yang; Camarena, Francisco
2015-01-01
Acoustic attenuation represents the energy loss of the propagating wave through biological tissues and plays a significant role in both therapeutic and diagnostic ultrasound applications. Estimation of acoustic attenuation remains challenging but critical for tissue characterization. In this study, an attenuation estimation approach was developed using the radiation-force-based method of Harmonic Motion Imaging (HMI). 2D tissue displacement maps were acquired by moving the transducer in a raster-scan format. A linear regression model was applied on the logarithm of the HMI displacements at different depths in order to estimate the acoustic attenuation. Commercially available phantoms with known attenuations (n=5) and in vitro canine livers (n=3) were tested, as well as HIFU lesions in in vitro canine livers (n=5). Results demonstrated that attenuations obtained from the phantoms showed a good correlation (R2=0.976) with the independently obtained values reported by the manufacturer with an estimation error (compared to the values independently measured) varying within the range of 15-35%. The estimated attenuation in the in vitro canine livers was equal to 0.32±0.03 dB/cm/MHz, which is in good agreement with the existing literature. The attenuation in HIFU lesions was found to be higher (0.58±0.06 dB/cm/MHz) than that in normal tissues, also in agreement with the results from previous publications. Future potential applications of the proposed method include estimation of attenuation in pathological tissues before and after thermal ablation. PMID:26371501
Schulman, Allison R; Thompson, Christopher C; Odze, Robert; Chan, Walter W; Ryou, Marvin
2017-02-01
EUS-guided liver biopsy sampling using FNA and, more recently, fine-needle biopsy (FNB) needles has been reported with discrepant diagnostic accuracy, in part due to differences in methodology. We aimed to compare liver histologic yields of 4 EUS-based needles and 2 percutaneous needles to identify optimal number of needle passes and suction. Six needle types were tested on human cadaveric tissue: one 19G FNA needle, one existing 19G FNB needle, one novel 19G FNB needle, one 22G FNB needle, and two 18G percutaneous needles (18G1 and 18G2). Two needle excursion patterns (1 vs 3 fanning passes) were performed on all EUS needles. Primary outcome was number of portal tracts. Secondary outcomes were degree of fragmentation and specimen adequacy. Pairwise comparisons were performed using t tests, with a 2-sided P < .05 considered to be significant. Multivariable regression analysis was performed. In total, 288 liver biopsy samplings (48 per needle type) were performed. The novel 19G FNB needle had significantly increased mean portal tracts compared with all needle types. The 22G FNB needle had significantly increased portal tracts compared with the 18G1 needle (3.8 vs 2.5, P < .001) and was not statistically different from the 18G2 needle (3.8 vs 3.5, P = .68). FNB needles (P < .001) and 3 fanning passes (P ≤ .001) were independent predictors of the number of portal tracts. A novel 19G EUS-guided liver biopsy needle provides superior histologic yield compared with 18G percutaneous needles and existing 19G FNA and core needles. Moreover, the 22G FNB needle may be adequate for liver biopsy sampling. Investigations are underway to determine whether these results can be replicated in a clinical setting. Copyright © 2017 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
FT-IR imaging for quantitative determination of liver fat content in non-alcoholic fatty liver.
Kochan, K; Maslak, E; Chlopicki, S; Baranska, M
2015-08-07
In this work we apply FT-IR imaging of large areas of liver tissue cross-section samples (∼5 cm × 5 cm) for quantitative assessment of steatosis in murine model of Non-Alcoholic Fatty Liver (NAFLD). We quantified the area of liver tissue occupied by lipid droplets (LDs) by FT-IR imaging and Oil Red O (ORO) staining for comparison. Two alternative FT-IR based approaches are presented. The first, straightforward method, was based on average spectra from tissues and provided values of the fat content by using a PLS regression model and the reference method. The second one – the chemometric-based method – enabled us to determine the values of the fat content, independently of the reference method by means of k-means cluster (KMC) analysis. In summary, FT-IR images of large size liver sections may prove to be useful for quantifying liver steatosis without the need of tissue staining.
Aksu, D S; Sağlam, Y S; Yildirim, S; Aksu, T
2017-10-31
Pomegranate juice (PJ) contains relevant amounts of active biological compounds which alleviate the detrimental effects of chronic heavy metal exposure. This study investigated the protective potential of PJ against lead-induced oxidative stress. A total of forty adult male Sprague Dawley rats were divided into four experimental groups. The animals were fed a standard pellet diet and tap water ad libitum. The rats were divided into four groups (n=10 for each group): control, lead asetat (2000 ppm), low-treated PJ- a daily dose of 2.000 ppm lead plus 30µl pomegranate juice (included 1.050 µmol total polyphenols, gallic acid equivalent), and high-treated PJ- a daily dose of 2.000 ppm lead plus 60µl pomegranate juice (included 2.100 µmol total polyphenols, gallic acid equivalent). The treatments were delivered for 5 weeks. After the treatment period, the tissues samples (kidney, liver, heart and testis) were collected. Tissue lead (Pb) and mineral amounts (copper, zinc, and iron), tissues lipid peroxidation level and antioxidant status, and tissues histopathological changes were determined. The results showed that the highest rate lead loading was in the kidney and the testis. Pomegranate juice was decreased the lead levels of soft tissues examined; increased Zn amounts in tissues of which the lead accumulation was higher (kidney and the testis); decreased the copper, zinc and the iron levels of the liver and heart tissues, without creating a weakness in antioxidant capacity of these tissues, restricted the oxidative stress by decreasing lipid peroxidation, improved both of the activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalaz (CAT), and the level of glutathione (GSH) in all the tissues examined in lead-treated groups. As histopathological findings, the cellular damage induced by lead in the tissues of the kidney, liver and the heart were observed to have been partially prevented by PJ treatment. The protective effect of PJ was more pronounced in the testis compared to those others.
Ernst, Thomas; Ittrich, Harald; Jacobs, Thomas; Heeren, Joerg; Tacke, Frank; Tannich, Egbert; Lotter, Hannelore
2013-01-01
Amebic liver abscess (ALA) is a focal destruction of liver tissue due to infection by the protozoan parasite Entamoeba histolytica (E. histolytica). Host tissue damage is attributed mainly to parasite pathogenicity factors, but massive early accumulation of mononuclear cells, including neutrophils, inflammatory monocytes and macrophages, at the site of infection raises the question of whether these cells also contribute to tissue damage. Using highly selective depletion strategies and cell-specific knockout mice, the relative contribution of innate immune cell populations to liver destruction during amebic infection was investigated. Neutrophils were not required for amebic infection nor did they appear to be substantially involved in tissue damage. In contrast, Kupffer cells and inflammatory monocytes contributed substantially to liver destruction during ALA, and tissue damage was mediated primarily by TNFα. These data indicate that besides direct antiparasitic drugs, modulating innate immune responses may potentially be beneficial in limiting ALA pathogenesis. PMID:23300453
Sakitani, Kosuke; Enooku, Kenichiro; Kubo, Hirokazu; Tanaka, Akifumi; Arai, Hisakatsu; Kawazu, Shoji; Koike, Kazuhiko
2017-06-01
Objective The leading cause of liver injuries in diabetes mellitus may be associated with fatty liver. We aimed to elucidate the relationship between fatty liver and diabetes characteristics. Methods Retrospectively, 970 patients with diabetes were analysed. Fatty liver was diagnosed when the liver/spleen Hounsfield unit ratio by computed tomography was below 0.9. Clinical diabetes characteristics were compared between patients with and without fatty liver. Results Of 970 patients (717 male and 253 female; mean age 64.4 years), 175 males (24.4%) and 60 females (23.7%) had fatty liver. None of the 28 patients with type 1 diabetes had fatty liver. In male patients with type 2 diabetes, age, visceral adipose tissue (VAT), albumin, alanine amino-transferase (ALT), and triglycerides were independently associated with fatty liver. In females, age and bilirubin were associated with fatty liver. Conclusions Fatty liver is associated with type 2 diabetes characteristics, including younger age and elevated VAT, albumin, ALT, and triglycerides in males and younger age and elevated bilirubin levels in females.
Sakitani, Kosuke; Enooku, Kenichiro; Kubo, Hirokazu; Tanaka, Akifumi; Arai, Hisakatsu; Kawazu, Shoji; Koike, Kazuhiko
2017-01-01
Objective The leading cause of liver injuries in diabetes mellitus may be associated with fatty liver. We aimed to elucidate the relationship between fatty liver and diabetes characteristics. Methods Retrospectively, 970 patients with diabetes were analysed. Fatty liver was diagnosed when the liver/spleen Hounsfield unit ratio by computed tomography was below 0.9. Clinical diabetes characteristics were compared between patients with and without fatty liver. Results Of 970 patients (717 male and 253 female; mean age 64.4 years), 175 males (24.4%) and 60 females (23.7%) had fatty liver. None of the 28 patients with type 1 diabetes had fatty liver. In male patients with type 2 diabetes, age, visceral adipose tissue (VAT), albumin, alanine amino-transferase (ALT), and triglycerides were independently associated with fatty liver. In females, age and bilirubin were associated with fatty liver. Conclusions Fatty liver is associated with type 2 diabetes characteristics, including younger age and elevated VAT, albumin, ALT, and triglycerides in males and younger age and elevated bilirubin levels in females. PMID:28553763
USDA-ARS?s Scientific Manuscript database
Foodborne campylobacteriosis has been traced to undercooked chicken liver. The objectives of this study were to measure prevalence of Campylobacter associated with chicken livers at retail and determine which subtypes are detected on the surface and inner tissue of livers. Fifteen packages of fres...
Research on Protective Effect and Mechanism of Idazoxan on lps Attacked Acute Hepatic Injury
NASA Astrophysics Data System (ADS)
Zhu, Junyu; Ying, Shangqi; Kang, Wenyuan; Huang, Wenjuan; Liang, Huaping
2018-01-01
Objective: To observe the protection effect of Idazoxan (IDA) on LPS induced acute hepatic injury, and to explore its action mechanism. Methods: 60 adult C57BL/6 mice were divided into a control group (20 mice, intraperitoneal injection of phosphate buffer), a model group (20 mice, intraperitoneal injection of LPS 10 mg/kg) and a agmatine group (20 mice, intraperitoneal injection of LPS 10 mg/kg and agmatine 200 mg/kg) according to random number table method. Blood and liver tissue were collected for preparation of tissue homogenate. Enzyme-linked immunosorbent assay (ELISA) was adopted for detecting tumor necrosis factor-α (TNF-α) and interleukin (IL- 1β and IL - 6) contents in the serum and liver tissue at 24h after molding. Automatic biochemical analyzer is used for determining alanine transaminase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) level at 24h after molding; The liver tissue pathology changes were observed at 24h after molding. Macrophage RAW264.7 cells were stimulated by 10 μg/mL LPS and with or without IDA (100 μmol/L). 2’, 7’-dichlorofluoresce in diacetate (DCFH-DA) was used as a fluorescent probe for detection of intracellular reactive oxygen species (ROS) level; qRT - PCR method was used for detecting antioxidant enzymes HO-1 and NQO-1 mRNA expression level at 2h, 4h and 8 h. Results: mice in the model group suffered from depression, curling and food water forbidding at 6h after molding. Mice in the Idazoxan group have obviously better spirit and activity than that of model group. The serum ALT, AST and LDH level of LPS attacked acute hepatic injury mice can be effectively alleviated after Idazoxan treatment. The expression of proinflammatory factor TNF-α and IL-6 in the liver can be reduced. The liver showed obvious pathological changes at 24 h after injection, such as liver cell swelling, necrosis, congestion, inflammatory cell infiltration, etc.; The liver cell injury was prominently alleviated in IDA treatment group. Compared with the control group, LPS significantly increased ROS level in RAW264.7 cells. The ROS level was decreased with concentration dependence after IDA intervention. IDA increased HO-1 mRNA expression of RAW264.7 cells. It had no influence on NQO-1mRNA. Conclusion: IDA significantly reduces the serum liver injury indexes and contents of TNF-α, IL-6 and other inflammatory mediators in liver tissues. It can alleviate the liver pathology change, thereby it can generate protection function on LPS attacked acute hepatic injury. Its action mechanism may be related to IDA-enhanced liver macrophage antioxidant function.
[Prolyl hydroxylase activity in liver specimens in chronic liver diseases (author's transl)].
Langness, U; Clausnitzer, H; Verspohl, M; Grasedyck, K
1978-08-25
100 patients were laparoscopied, liver tissue specimens taken from atypically altered areas. Prolyl hydroxylase was determined in the specimen, in parallel tissue was examined by light microscope. 8 groups of patients could be differentiated: Patients 1. with active, 2, with inactive cirrhosis, 3. with fatty infiltrations, 4. with fatty infiltration and mesenchymal reaction, 5. with aggressive, 6. with persistent, 7. with reactive hepatitis, 8. patients without histological changes. In the case of connective tissue increase in the liver prolyl hydroxylase activities were statistically significant above normal. In addition, there was a statistically significant difference between the enzyme activities of each group. A correlation could be found between prolyl hydroxylase activity and morphologically estimated connective tissue formation, but not the serum enzyme activities usually determined in liver diseases. Therefore, could be concluded that prolyl hydroxylase activity is an index of actual collagen biosynthesis in chronic liver diseases.
Aboushousha, Tarek; Mamdouh, Samah; Hamdy, Hussam; Helal, Noha; Khorshed, Fatma; Safwat, Gehan; Seleem, Mohamed
2018-01-01
Objective: To investigate the expression of TTF-1, RAGE, GLUT1 and SOX2 in HCV-associated HCCs and in surrounding non-tumorous liver tissue. Material and Methods: Tissue material from partial hepatectomy cases for HCC along with corresponding serum samples and 30 control serum samples from healthy volunteers were studied. Biopsies were classified into: non-tumor hepatic tissue (36 sections); HCC (33 sections) and liver cell dysplasia (LCD) (15 sections). All cases were positive for HCV. Immunohistochemistry (IHC), gene extraction and quantitative real-time reverse-transcription assays (qRT-PCR) were applied. Results: By IHC, LCD and HCC showed significantly high percentages of positive cases with all markers. SOX2 showed significant increase with higher HCC grades, while RAGE demonstrated an inverse relation and GLUT-1 and TTF-1 lacked any correlation. In nontumorous-HCV tissue, we found significantly high TTF-1, low RAGE and negative SOX2 expression. RAGE, GLUT-1 and SOX2 show non-significant elevation positivity in high grade HCV compared to low grade lesions. TTF-1, RAGE and SOX2 exhibited low expression in cirrhosis compared to fibrosis. Biochemical studies on serum and tissue extracts revealed significant down-regulation of RAGE, GLUT-1 and SOX2 genes, as well as significant up-regulation of the TTF-1 gene in HCC cases compared to controls. All studied genes show significant correlation with HCC grade. In non-tumor tissue, only TTF-1 gene expression had a significant correlation with the fibrosis score. Conclusion: Higher expression of TTF-1, RAGE, GLUT-1 and SOX2 in HCC and dysplasia compared to non-tumor tissues indicates up-regulation of these markers as early events during the development of HCV-associated HCC. PMID:29373917
Aboushousha, Tarek; Mamdouh, Samah; Hamdy, Hussam; Helal, Noha; Khorshed, Fatma; Safwat, Gehan; Seleem, Mohamed
2018-01-27
Objective: To investigate the expression of TTF-1, RAGE, GLUT1 and SOX2 in HCV-associated HCCs and in surrounding non-tumorous liver tissue. Material and Methods: Tissue material from partial hepatectomy cases for HCC along with corresponding serum samples and 30 control serum samples from healthy volunteers were studied. Biopsies were classified into: non-tumor hepatic tissue (36 sections); HCC (33 sections) and liver cell dysplasia (LCD) (15 sections). All cases were positive for HCV. Immunohistochemistry (IHC), gene extraction and quantitative real-time reverse-transcription assays (qRT-PCR) were applied. Results: By IHC, LCD and HCC showed significantly high percentages of positive cases with all markers. SOX2 showed significant increase with higher HCC grades, while RAGE demonstrated an inverse relation and GLUT-1 and TTF-1 lacked any correlation. In nontumorous-HCV tissue, we found significantly high TTF-1, low RAGE and negative SOX2 expression. RAGE, GLUT-1 and SOX2 show non-significant elevation positivity in high grade HCV compared to low grade lesions. TTF-1, RAGE and SOX2 exhibited low expression in cirrhosis compared to fibrosis. Biochemical studies on serum and tissue extracts revealed significant down-regulation of RAGE, GLUT-1 and SOX2 genes, as well as significant up-regulation of the TTF-1 gene in HCC cases compared to controls. All studied genes show significant correlation with HCC grade. In non-tumor tissue, only TTF-1 gene expression had a significant correlation with the fibrosis score. Conclusion: Higher expression of TTF-1, RAGE, GLUT-1 and SOX2 in HCC and dysplasia compared to non-tumor tissues indicates up-regulation of these markers as early events during the development of HCV-associated HCC. Creative Commons Attribution License
NASA Astrophysics Data System (ADS)
Agibalov, D. Y.; Panchenkov, D. N.; Chertyuk, V. B.; Leonov, S. D.; Astakhov, D. A.
2017-01-01
The liver failure which is result of disharmony of functionality of a liver to requirements of an organism is the main reason for unsatisfactory results of an extensive resection of a liver. However, uniform effective criterion of definition of degree of a liver failure it isn’t developed now. One of data acquisition methods about a morfo-functional condition of internals is the bioimpedance analysis (BIA) based on impedance assessment (full electric resistance) of a biological tissue. Measurements of an impedance are used in medicine and biology for the characteristic of physical properties of living tissue, studying of the changes bound to a functional state and its structural features. In experimental conditions we carried out an extensive resection of a liver on 27 white laboratory rats of the Vistar line. The comparative characteristic of data of a bioimpedansometriya in intraoperative and after the operational period with the main existing methods of assessment of a functional condition of a liver was carried out. By results of the work performed by us it is possible to claim that the bioimpedance analysis of a liver on the basis of an invasive bioimpedansometriya allows to estimate morphological features and functional activity of a liver before performance of an extensive resection of a liver. The data obtained during scientific work are experimental justification for use of an impedansometriya during complex assessment of functional reserves of a liver. Preliminary data of clinical approbation at a stage of introduction of a technique speak about rather high informational content of a bioimpedansometriya. The subsequent analysis of efficiency of the invasive bioimpedance analysis of a liver requires further accumulation of clinical data. However even at this stage the method showed the prospect for further use in clinical surgical hepathology.
Sun, Xian; Yu, Ri-Qing; Zhang, Mei; Zhang, Xiyang; Chen, Xi; Xiao, Yousheng; Ding, Yulong; Wu, Yuping
2017-12-15
Trace element accumulation in the epidermis of cetaceans has been less studied. This study explored the feasibility of using epidermis as a surrogate tissue to evaluate internal contaminant burdens in Indo-Pacific humpback dolphin (Sousa chinensis). Eleven trace elements were analyzed in the epidermis, muscle and liver tissues from 46 individuals of dolphins stranded along the Pearl River Estuary (PRE) coast between 2007 and 2013. Trace elemental concentrations varied among the three tissues, generally with the highest concentrations found in liver tissues and lowest in the epidermis (except Zn, As, and Pb). Zn concentration in the epidermis was the highest among all tissues, indicating that Zn could be an important element for the epidermis physiology. High concentrations of Hg and Cr in liver were likely due to an excessive intake by dolphins which consumed high Hg and Cr contaminated fishes in the PRE. Hg concentrations in epidermis and muscle tissues were significantly higher in the females than in males. Concentrations of V and Pb in liver, Se and Cd in both muscle and liver, and As and Hg in all tissue samples showed significantly positive relationships with body length. Hepatic Cu concentrations were significantly negatively correlated with the body length. Hg and As concentrations in epidermis showed significantly positive correlations with those in liver tissues. Thus this study proposed that epidermis could be used as a non-invasive monitoring tissue to evaluate Hg and As bioaccumulation in internal tissues of Indo-Pacific humpback dolphins populations. Copyright © 2017 Elsevier B.V. All rights reserved.
Mueller, Claudius; Edmiston, Kirsten H.; Carpenter, Calvin; Gaffney, Eoin; Ryan, Ciara; Ward, Ronan; White, Susan; Memeo, Lorenzo; Colarossi, Cristina; Petricoin, Emanuel F.; Liotta, Lance A.; Espina, Virginia
2011-01-01
Background There is an urgent need to measure phosphorylated cell signaling proteins in cancer tissue for the individualization of molecular targeted kinase inhibitor therapy. However, phosphoproteins fluctuate rapidly following tissue procurement. Snap-freezing preserves phosphoproteins, but is unavailable in most clinics and compromises diagnostic morphology. Formalin fixation preserves tissue histomorphology, but penetrates tissue slowly, and is unsuitable for stabilizing phosphoproteins. We originated and evaluated a novel one-step biomarker and histology preservative (BHP) chemistry that stabilizes signaling protein phosphorylation and retains formalin-like tissue histomorphology with equivalent immunohistochemistry in a single paraffin block. Results Total protein yield extracted from BHP-fixed, routine paraffin-embedded mouse liver was 100% compared to snap-frozen tissue. The abundance of 14 phosphorylated proteins was found to be stable over extended fixation times in BHP fixed paraffin embedded human colon mucosa. Compared to matched snap-frozen tissue, 8 phosphoproteins were equally preserved in mouse liver, while AMPKβ1 Ser108 was slightly elevated after BHP fixation. More than 25 tissues from mouse, cat and human specimens were evaluated for preservation of histomorphology. Selected tissues were evaluated in a multi-site, independent pathology review. Tissue fixed with BHP showed equivalent preservation of cytoplasmic and membrane cytomorphology, with significantly better nuclear chromatin preservation by BHP compared to formalin. Immunohistochemical staining of 13 non-phosphorylated proteins, including estrogen receptor alpha, progesterone receptor, Ki-67 and Her2, was equal to or stronger in BHP compared to formalin. BHP demonstrated significantly improved immunohistochemical detection of phosphorylated proteins ERK Thr202/Tyr204, GSK3-α/β Ser21/Ser9, p38-MAPK Thr180/Tyr182, eIF4G Ser1108 and Acetyl-CoA Carboxylase Ser79. Conclusion In a single paraffin block BHP preserved the phosphorylation state of several signaling proteins at a level comparable to snap-freezing, while maintaining the full diagnostic immunohistochemical and histomorphologic detail of formalin fixation. This new tissue fixative has the potential to greatly facilitate personalized medicine, biobanking, and phospho-proteomic research. PMID:21858221
Wang, Ye; He, Honghui; Chang, Jintao; He, Chao; Liu, Shaoxiong; Li, Migao; Zeng, Nan; Wu, Jian; Ma, Hui
2016-07-01
Today the increasing cancer incidence rate is becoming one of the biggest threats to human health.Among all types of cancers, liver cancer ranks in the top five in both frequency and mortality rate all over the world. During the development of liver cancer, fibrosis often evolves as part of a healing process in response to liver damage, resulting in cirrhosis of liver tissues. In a previous study, we applied the Mueller matrix microscope to pathological liver tissue samples and found that both the Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT) parameters are closely related to the fibrous microstructures. In this paper,we take this one step further to quantitatively facilitate the fibrosis detections and scorings of pathological liver tissue samples in different stages from cirrhosis to cancer using the Mueller matrix microscope. The experimental results of MMPD and MMT parameters for the fibrotic liver tissue samples in different stages are measured and analyzed. We also conduct Monte Carlo simulations based on the sphere birefringence model to examine in detail the influence of structural changes in different fibrosis stages on the imaging parameters. Both the experimental and simulated results indicate that the polarized light microscope and transformed Mueller matrix parameter scan provide additional quantitative information helpful for fibrosis detections and scorings of liver cirrhosis and cancers. Therefore, the polarized light microscope and transformed Mueller matrix parameters have a good application prospect in liver cancer diagnosis.
NASA Astrophysics Data System (ADS)
Wang, Ye; He, Honghui; Chang, Jintao; He, Chao; Liu, Shaoxiong; Li, Migao; Zeng, Nan; Wu, Jian; Ma, Hui
2016-07-01
Today the increasing cancer incidence rate is becoming one of the biggest threats to human health. Among all types of cancers, liver cancer ranks in the top five in both frequency and mortality rate all over the world. During the development of liver cancer, fibrosis often evolves as part of a healing process in response to liver damage, resulting in cirrhosis of liver tissues. In a previous study, we applied the Mueller matrix microscope to pathological liver tissue samples and found that both the Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT) parameters are closely related to the fibrous microstructures. In this paper, we take this one step further to quantitatively facilitate the fibrosis detections and scorings of pathological liver tissue samples in different stages from cirrhosis to cancer using the Mueller matrix microscope. The experimental results of MMPD and MMT parameters for the fibrotic liver tissue samples in different stages are measured and analyzed. We also conduct Monte Carlo simulations based on the sphere birefringence model to examine in detail the influence of structural changes in different fibrosis stages on the imaging parameters. Both the experimental and simulated results indicate that the polarized light microscope and transformed Mueller matrix parameters can provide additional quantitative information helpful for fibrosis detections and scorings of liver cirrhosis and cancers. Therefore, the polarized light microscope and transformed Mueller matrix parameters have a good application prospect in liver cancer diagnosis.
Wang, Rui; Feng, Xia; Zhu, Kai; Zhao, Xin; Suo, Huayi
2016-05-01
The aim of the present study was to evaluate the preventive effects of banana peel polyphenols (BPPs) against hepatic injury. Mice were divide into normal, control, 100 mg/kg and 200 mg/kg banana peel polyphenol and silymarin groups. All the mice except normal mice were induced with hepatic damage using CCl 4 . The serum and tissue levels of mice were determined by a kit and the tissues were further examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. BPPs reduced the serum levels of aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase in a CCl 4 -induced mouse model of hepatic injury. Furthermore, BPPs reduced the levels of malondialdehyde and triglyceride, while increasing glutathione levels in the serum and liver tissues of mice. In addition, the effects of 200 mg/kg treatment were more evident, and these effects were comparable to those of the drug silymarin. Serum levels of the cytokines, interleukin (IL)-6, IL-12, tumor necrosis factor (TNF)-α and interferon-γ, were reduced in the mice treated with BPPs compared with injury control group mice, and these levels were comparable to those of the normal and silymarin-treated groups. Histopathological examination indicated that BPPs were able to reduce the extent of CCl 4 -induced liver tissue injury and protect the liver cells. Furthermore, the mRNA and protein expression levels of the inflammation-associated factors cyclooxygenase-2, nitric oxide synthase, TNF-α and IL-1β were reduced in mice treated with BPPs compared with the control group mice. Mice that received 200 mg/kg BPP exhibited reduced expression levels of these factors compared with mice that received 100 mg/kg BPP. In conclusion, the results of the present study suggested that BPPs exert a good preventive effect against hepatic injury.
Fujita, Rie; Koizumi, Nobuo; Sugiyama, Hiromu; Tomizawa, Rina; Sato, Ryoichi; Ohnishi, Makoto
2015-01-01
Leptospirosis, a zoonotic infection with worldwide prevalence, is caused by pathogenic spirochaetes of Leptospira spp., and exhibits an extremely broad clinical spectrum in human patients. Although previous studies indicated that specific serovars or genotypes of Leptospira spp. were associated with severe leptospirosis or its outbreak, the mechanism underlying the difference in virulence of the various Leptospira serotypes or genotypes remains unclear. The present study addresses this question by measuring and comparing bacterial burden and cytokine gene expression in hamsters infected with strains of two L. interrogans serovars Manilae (highly virulent) and Hebdomadis (less virulent). The histopathology of kidney, liver, and lung tissues was also investigated in infected hamsters. A significantly higher bacterial burden was observed in liver tissues of hamsters infected with serovar Manilae than those infected with serovar Hebdomadis (p < 0.01). The average copy number of the leptospiral genome was 1,302 and 20,559 in blood and liver, respectively, of hamsters infected with serovar Manilae and 1,340 and 4,896, respectively, in hamsters infected with serovar Hebdomadis. The expression levels of mip1alpha in blood; tgfbeta, il1beta, mip1alpha, il10, tnfalpha and cox2 in liver; and tgfbeta, il6, tnfalpha and cox2 in lung tissue were significantly higher in hamsters infected with serovar Manilae than those infected with serovar Hebdomadis (p < 0.05). In addition, infection with serovar Manilae resulted in a significantly larger number of hamsters with tnfalpha upregulation (p = 0.04). Severe distortion of tubular cell arrangement and disruption of renal tubules in kidney tissues and hemorrhage in lung tissues were observed in Manilae-infected hamsters. These results demonstrate that serovar Manilae multiplied more efficiently in liver tissues and induced significantly higher expression of genes encoding pro- and anti-inflammatory cytokines than serovar Hebdomadis even in tissues for which a significant difference in leptospiral load was not observed. In addition, our results suggest a serovar Manilae-specific mechanism responsible for inducing severe damage in kidneys and hemorrhage in lung.
Fujita, Rie; Koizumi, Nobuo; Sugiyama, Hiromu; Tomizawa, Rina; Sato, Ryoichi; Ohnishi, Makoto
2015-01-01
Leptospirosis, a zoonotic infection with worldwide prevalence, is caused by pathogenic spirochaetes of Leptospira spp., and exhibits an extremely broad clinical spectrum in human patients. Although previous studies indicated that specific serovars or genotypes of Leptospira spp. were associated with severe leptospirosis or its outbreak, the mechanism underlying the difference in virulence of the various Leptospira serotypes or genotypes remains unclear. The present study addresses this question by measuring and comparing bacterial burden and cytokine gene expression in hamsters infected with strains of two L. interrogans serovars Manilae (highly virulent) and Hebdomadis (less virulent). The histopathology of kidney, liver, and lung tissues was also investigated in infected hamsters. A significantly higher bacterial burden was observed in liver tissues of hamsters infected with serovar Manilae than those infected with serovar Hebdomadis (p < 0.01). The average copy number of the leptospiral genome was 1,302 and 20,559 in blood and liver, respectively, of hamsters infected with serovar Manilae and 1,340 and 4,896, respectively, in hamsters infected with serovar Hebdomadis. The expression levels of mip1alpha in blood; tgfbeta, il1beta, mip1alpha, il10, tnfalpha and cox2 in liver; and tgfbeta, il6, tnfalpha and cox2 in lung tissue were significantly higher in hamsters infected with serovar Manilae than those infected with serovar Hebdomadis (p < 0.05). In addition, infection with serovar Manilae resulted in a significantly larger number of hamsters with tnfalpha upregulation (p = 0.04). Severe distortion of tubular cell arrangement and disruption of renal tubules in kidney tissues and hemorrhage in lung tissues were observed in Manilae-infected hamsters. These results demonstrate that serovar Manilae multiplied more efficiently in liver tissues and induced significantly higher expression of genes encoding pro- and anti-inflammatory cytokines than serovar Hebdomadis even in tissues for which a significant difference in leptospiral load was not observed. In addition, our results suggest a serovar Manilae-specific mechanism responsible for inducing severe damage in kidneys and hemorrhage in lung. PMID:26146835
Riediger, Natalie D; Othman, Rgia; Fitz, Evelyn; Pierce, Grant N; Suh, Miyoung; Moghadasian, Mohammed H
2008-04-01
Health benefits from low n-6:n-3 fatty acid (FA) ratio on cardiovascular risk have been shown. However, the impact of the source of n-3 FAs has not been fully investigated. Our purpose was to investigate cardiovascular benefits of oils with a low ratio of n-6:n-3 FAs, but different sources of n-3 FAs in C57BL/6 mice. Twenty-one mice were divided into 3 groups (n=7) and fed a diet supplemented with either a fish or flaxseed oil-based 'designer oils' with an approximate n-6:n-3 FA ratio of 2/1 or with a safflower-oil-based diet with a ratio of 25/1, for 16 weeks. Plasma lipids and fatty acid profile of the liver tissue were characterized. Compared to baseline, plasma triacylglycerol levels declined (>50%) in all groups by week 4. Plasma cholesterol levels were reduced in both fish and flax groups by 27% and 36%, respectively, as compared to controls at endpoint. The levels of EPA and DHA in liver phospholipids were significantly increased in both fish and flax groups as compared to the control group, with more profound increases in the fish group. Arachidonic acid levels were similarly decreased in the liver tissues from both fish and flax groups as compared to controls. Our data suggest that health benefits may be achieved by lowering dietary n-6:n-3 FA even in a high fat diet medium.
Pearson, Taliesin; Wattis, Jonathan A D; King, John R; MacDonald, Ian A; Mazzatti, Dawn J
2016-06-01
Whilst the human body expends energy constantly, the human diet consists of a mix of carbohydrates and fats delivered in a discontinuous manner. To deal with this sporadic supply of energy, there are transport, storage and utilisation mechanisms, for both carbohydrates and fats, around all tissues of the body. Insulin-resistant states such as type 2 diabetes and obesity are characterised by reduced efficiency of these mechanisms. Exactly how these insulin-resistant states develop, for example whether there is an order in which tissues become insulin resistant, is an active area of research with the hope of gaining a better overall understanding of insulin resistance. In this paper, we use a previously derived system of 12 first-order coupled differential equations that describe the transport between, and storage in, different tissues of the human body. We briefly revisit the derivation of the model before parametrising the model to account for insulin resistance. We then solve the model numerically, separately simulating each individual tissue as insulin resistant, and discuss and compare these results, drawing three main conclusions. The implications of these results are in accordance with biological intuition. First, insulin resistance in a tissue creates a knock-on effect on the other tissues in the body, whereby they attempt to compensate for the reduced efficiency of the insulin-resistant tissue. Second, insulin resistance causes a fatty liver, and the insulin resistance of tissues other than the liver can cause fat to accumulate in the liver. Finally, although insulin resistance in individual tissues can cause slightly reduced skeletal muscle metabolic flexibility, it is when the whole body is insulin resistant that the biggest effect on skeletal muscle flexibility is seen.
XAS Studies of Se Speciation in Selenite-Fed Rats
Weekley, Claire M.; Aitken, Jade B.; Witting, Paul K.; Harris, Hugh H.
2014-01-01
The biological activity of selenium is dependent on its chemical form. Therefore, knowledge of Se chemistry in vivo is required for efficacious use of selenium compounds in disease prevention and treatment. Using X-ray absorption spectroscopy, Se speciation in the kidney, liver, heart, spleen, testis and red blood cells of rats fed control (~0.3 ppm Se) or selenite-supplemented (1 ppm or 5 ppm Se) diets for 3 or 6 weeks, was investigated. X-ray absorption spectroscopy revealed the presence of Se–Se and Se–C species in the kidney and liver, and Se–S species in the kidney, but not the liver. X-ray absorption near edge structure (XANES) spectra showed that there was variation in speciation in the liver and kidneys, but Se speciation was much more uniform in the remaining organs. Using principal component analysis (PCA) to interpret the Se K-edge X-ray absorption spectra, we were able to directly compare the speciation of Se in two different models of selenite metabolism – human lung cancer cells and rat tissues. The effects of Se dose, tissue type and duration of diet on selenium speciation in rat tissues were investigated, and a relationship between the duration of the diet (3 weeks versus 6 weeks) and selenium speciation was observed. PMID:25363824
[Splenic nodules and sickle cell anemia].
Jouini, S; Sehili, S; Mokrani, A; Ayadi, K; Fakunle, Y; Daghfous, M H; Ladeb, M F
2001-11-01
We report 4 patients with sickle cell anemia presenting with intra-splenic benign nodules corresponding to islands of preserved tissue within splenic ferro-calcinosis. Ultrasound, CT and MRI findings were evaluated and compared to a follow-up study by ultrasound and CT done after 6 to 12 months. Ultrasound showed multiple well-defined rounded nodules appearing hypoechoic compared to the rest of the spleen that was hyperechoic. On CT, the nodules were homogenous, hypodense relative to the spleen, isodense to the liver in 3 cases and hypodense to the liver in 1 case. On MRI, the nodules appeared relatively hyperintense within low-signal-intensity spleens. The ultrasound and CT follow-up study demonstrated no remarkable change. In sickle cell patients, intra-splenic benign nodules corresponding to normal splenic tissue may be identified on imaging studies. The differential diagnosis is discussed.
Cao, Xuan; van Oosten, Anne; Shenoy, Vivek B.; Janmey, Paul A.; Wells, Rebecca G.
2016-01-01
Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G’ and G” and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver. PMID:26735954
Yang, B S; Yamazaki, M; Wan, Q; Kato, N
1996-12-01
The effects were compared of the addition of graded levels of L-cystine and of L-cysteine (0.3, 3, or 5%) to a 10% casein diet on several metabolic parameters in rats. The growth-promoting effect of cystine was equivalent to that of cysteine. Supplementation of these two amino acids elevated serum cholesterol, liver ascorbic acid, liver nonprotein sulfhydryl (SH) and kidney metallothionein, and reduced the activity of serum ceruloplasmin. The responses of serum cholesterol, liver nonprotein SH, and serum ceruloplasmin to cystine were greater than of those to cysteine. When the basal diet was supplemented with 0.3% of these amino acids, the elevation of liver ascorbic acid by cystine supplementation was less than that by cysteine supplementation. However, when supplemented with 5% of these amino acids, the elevation of liver ascorbic acid by cystine was greater than that by cysteine. There was no difference in the influence of cystine and cysteine on kidney metallothionein. This study demonstrates that dietary cystine and cysteine had the same influence on growth, but had a differential influence on such metabolic parameters as liver nonprotein SH, serum ceruloplasmin, serum cholesterol, and tissue ascorbic acid.
Qureshi, Irfan Zia; Kashif, Zeshan; Hashmi, Muhammad Zaffar; Su, Xiaomei; Malik, Riffat Naseem; Ullah, Kalim; Hu, Jinxing; Dawood, Muhammad
2015-09-01
In the present study, we investigated the concentrations of Ni, Fe, Pb, Cu, Co, Zn, Cd, Mn, and Cr in selected body tissues (liver, stomach, kidney, heart, lungs, and skeletal muscles) of two frog species: Rana tigrina and Euphlyctis cyanophlyctis captured from industrial wastewater of Sialkot city known worldwide for its tanning industry. The both frog species had darker appearance, distinctively different wet body weight, and snout-vent length. The results revealed that the heavy metal concentrations were high in the samples collected from industrial sites as compared to non-industrial sites. The different tissues of R. tigrina and E. cyanophlyctis exhibited little significant differences from two sites. The concentrations of heavy metals were more in tissues of R. tigrina as compared to E. cyanophlyctis. Mean concentration of Cd, Fe, Ni, Mn, Cu, and Cr was comparatively greater in R. tigrina, whereas Pb and Co were higher in E. cyanophlyctis. The concentration of Cu and Cd in the liver and kidney were relatively more in both species as compared to other organs. Further, the results indicated that frogs collected from industrial sites showed decreased body length and weight, and greater metal accumulation. The results will help the authorities for the conservation of these frog species which are under the influence of heavy metal contamination.
Tanaka, Mitsuru; Yasuoka, Akihito; Yoshinuma, Haruka; Saito, Yoshikazu; Asakura, Tomiko; Tanabe, Soichi
2018-03-01
We fed rats noodle (N) -diet containing 30 wt.% instant noodle with a 26% fat-to-energy ratio for 30 days (N-group). Compared with rats that were fed the same amount of nutrients (C-group), the N-group showed lower liver triacylglycerol levels and higher fecal cholesterol levels. We then analyzed transcriptome of the hypothalamic-pituitary (HP), the liver and the white adipose tissue (WAT). Thyroid stimulating hormone (Tshb), and its partner, glycoprotein hormone genes were up-regulated in the HP of N-group. Sterol regulatory element binding transcription factors were activated in the liver of N-group, while an up-regulation of the angiogenic signal occurred in the WAT of N-group. N-group showed higher urine noradrenaline (NA) level suggesting that these tissue signals are regulated by NA and Tshb. The N-diet contains 0.326 wt.% glutamate, 0.00236 wt.% 6-shogaol and Maillard reaction products. Our results suggest that these ingredients may affect lipid homeostasis via the HP axis.
Jongen, H A; Thijssen, J M; van den Aarssen, M; Verhoef, W A
1986-02-01
In this paper, a closed-form expression is derived for the absorption of ultrasound by biological tissues. In this expression, the viscothermal and viscoelastic theories of relaxation processes are combined. Three relaxation time distribution functions are introduced, and it is assumed that each of these distributions can be described by an identical and simple hyperbolic function. Several simplifying assumptions had to be made to enable the experimental verification of the derived closed-form expression of the absorption coefficient. The simplified expression leaves two degrees of freedom and it was fitted to the experimental data obtained from homogenized beef liver. The model produced a considerably better fit to the data than other, more pragmatic models for the absorption coefficient as a function of frequency that could be found in the literature. Scattering in beef liver was estimated indirectly from the difference between attenuation in in vitro liver tissue as compared to absorption in a homogenate. The frequency dependence of the scattering coefficient could be described by a power law with a power of the order of 2. A comparable figure was found in direct backscattering measurements, performed at our laboratory with the same liver samples [Van den Aarssen et al., J. Acoust. Soc. Am. (to be published)]. A model for scattering recently proposed by Sehgal and Greenleaf [Ultrason. Imag. 6, 60-80 (1984)] was fitted to the scattering data as well. This latter model enabled the estimation of a maximum scatterer distance, which appeared to be of the order of 25 micron.
Fustin, Jean-Michel; Karakawa, Sachise; Okamura, Hitoshi
2017-12-01
The suprachiasmatic nucleus (SCN) is an extremely robust self-sustained oscillator, containing virtually the same molecular clock present in other tissues in the body but, in addition, endowed with tight intercellular coupling dependent on multiple neurotransmitter systems that allow the SCN to function as the "master clock." Several studies on the circadian SCN transcriptome have been published and compared with the transcriptome of other tissues, but the recent focus shift toward the circadian metabolome and the importance of small molecules for circadian timekeeping has so far been limited to macroscopic tissues such as the liver. Here, we report the successful use of laser capture microdissection coupled with liquid chromatography/tandem mass spectrometry for the circadian profiling of SCN amino acids. Among 18 amino acids detected, 10 (55.5%) showed significant variations, particularly marked for proline, lysine, and histidine, with higher levels during the subjective day. Moreover, we compared SCN and cortical amino acid levels between wild-type and Bmal1-deficient animals, either in the whole body or specifically in the liver. Interestingly, lack of Bmal1 in the whole body led to a significant increase in most amino acids in the SCN but not in the cerebral cortex. In contrast, deletion of Bmal1 in the liver mostly affected cortical amino acid levels during the subjective day. This study demonstrates that laser capture microdissection can be used for the isolation of microscopic brain structures for metabolomic purposes and reveals interactions between liver and SCN amino acid metabolism.
Kegel, Victoria; Pfeiffer, Elisa; Burkhardt, Britta; Liu, Jia L.; Zeilinger, Katrin; Nüssler, Andreas K.; Seehofer, Daniel; Damm, Georg
2015-01-01
Drug induced liver injury (DILI) is an idiosyncratic adverse drug reaction leading to severe liver damage. Kupffer cells (KC) sense hepatic tissue stress/damage and therefore could be a tool for the estimation of consequent effects associated with DILI. Aim of the present study was to establish a human in vitro liver model for the investigation of immune-mediated signaling in the pathogenesis of DILI. Hepatocytes and KC were isolated from human liver specimens. The isolated KC yield was 1.2 ± 0.9 × 106 cells/g liver tissue with a purity of >80%. KC activation was investigated by the measurement of reactive oxygen intermediates (ROI, DCF assay) and cell activity (XTT assay). The initial KC activation levels showed broad donor variability. Additional activation of KC using supernatants of hepatocytes treated with hepatotoxic drugs increased KC activity and led to donor-dependent changes in the formation of ROI compared to KC incubated with supernatants from untreated hepatocytes. Additionally, a compound- and donor-dependent increase in proinflammatory cytokines or in anti-inflammatory cytokines was detected. In conclusion, KC related immune signaling in hepatotoxicity was successfully determined in a newly established in vitro liver model. KC were able to detect hepatocyte stress/damage and to transmit a donor- and compound-dependent immune response via cytokine production. PMID:26491234
Alves, Susana P.; Raundrup, Katrine; Cabo, Ângelo; Bessa, Rui J. B.; Almeida, André M.
2015-01-01
Information about lipid content and fatty acid (FA) composition of muskoxen (Ovibos moschatos) edible tissues is very limited in comparison to other meat sources. Thus, this work aims to present the first in-depth characterization of the FA profile of meat, subcutaneous adipose tissue and liver of muskoxen living in West Greenland. Furthermore, we aim to evaluate the effect of sex in the FA composition of these edible tissues. Samples from muscle (Longissimus dorsi), subcutaneous adipose tissue and liver were collected from female and male muskoxen, which were delivered at the butchery in Kangerlussuaq (West Greenland) during the winter hunting season. The lipid content of muscle, adipose tissue and liver averaged 284, 846 and 173 mg/g of dry tissue, respectively. This large lipid contents confirms that in late winter, when forage availability is scarce, muskoxen from West Greenland still have high fat reserves, demonstrating that they are well adapted to seasonal feed restriction. A detailed characterization of FA and dimethylacetal composition of muskoxen muscle, subcutaneous adipose tissue and liver showed that there are little differences on FA composition between sexes. Nevertheless, the 18:1cis-9 was the most abundant FA in muscle and adipose tissue, reaching 43% of total FA in muscle. The high content of 18:1cis-9 suggests that it can be selectively stored in muskoxen tissues. Regarding the nutritional composition of muskoxen edible tissues, they are not a good source of polyunsaturated FA; however, they may contribute to a higher fat intake. Information about the FA composition of muskoxen meat and liver is scarce, so this work can contribute to the characterization of the nutritional fat properties of muskoxen edible tissues and can be also useful to update food composition databases. PMID:26678792
Differential Lectin Agglutination of Fetal, Dividing-Postnatal, and Malignant Hepatocytes
Becker, F. F.
1974-01-01
Numerous studies have reported the capacity of the lectin, concanavalin A, to agglutinate selected cell-types. The finding that cells transformed in culture, embryonic cells, and malignant cells are all agglutinated by this substance, may contribute to our understanding of the oncogenic process. The present study compared the response to concanavalin A of rat hepatocytes derived from livers of differing developmental and mitotic-status as well as those derived from malignant liver tumors (hepatomas). Fetal hepatocytes and hepatoma cells were highly susceptible to agglutination while hepatocytes from post-natal livers, whether dividing or quiescent, were not. Treatment with protease(s) did not make the interphase hepatocyte agglutinable. These data emphasize the importance of examining a wide variety of cells in attempting to understand the interaction of lectins on cell surfaces, and further, demonstrate the value of obtaining cells directly from tissue(s) during differing physiologic and pathologic states. Images PMID:4373708
Rout, P K; Kaushik, R; Ramachandran, N
2016-07-01
It has been established that the synthesis of heat shock protein 70 (Hsp70) is temperature-dependent. The Hsp70 response is considered as a cellular thermometer in response to heat stress and other stimuli. The variation in Hsp70 gene expression has been positively correlated with thermotolerance in Drosophila melanogaster, Caenorhabditis elegans, rodents and human. Goats have a wide range of ecological adaptability due to their anatomical and physiological characteristics; however, the productivity of the individual declines during thermal stress. The present study was carried out to analyze the expression of heat shock proteins in different tissues and to contrast heat stress phenotypes in response to chronic heat stress. The investigation has been carried out in Jamunapari, Barbari, Jakhrana and Sirohi goats. These breeds differ in size, coat colour and production performance. The heat stress assessment in goats was carried out at a temperature humidity index (THI) ranging from 85.36-89.80 over the period. Phenotyping for heat stress susceptibility was carried out by combining respiration rate (RR) and heart rate (HR). Based on the distribution of RR and HR over the breeds in the population, individual animals were recognized as heat stress-susceptible (HSS) and heat stress-tolerant (HST). Based on their physiological responses, the selected animals were slaughtered for tissue collection during peak heat stress periods. The tissue samples from different organs such as liver, spleen, heart, testis, brain and lungs were collected and stored at -70 °C for future use. Hsp70 concentrations were analyzed from tissue extract with ELISA. mRNA expression levels were evaluated using the SYBR green method. Kidney, liver and heart had 1.5-2.0-fold higher Hsp70 concentrations as compared to other organs in the tissue extracts. Similarly, the gene expression pattern of Hsp70 in different organs indicated that the liver, spleen, brain and kidney exhibited 5.94, 4.96, 5.29 and 2.63-fold higher expression than control. Liver and brain tissues showed the highest gene expression at mRNA levels as compared to kidney, spleen and heart. HST individuals had higher levels of mRNA level expression than HSS individuals in all breeds. The Sirohi breed showed the highest (6.3-fold) mRNA expression levels as compared to the other three breeds, indicating the better heat stress regulation activity in the breed.
High intensity interval training improves liver and adipose tissue insulin sensitivity
Marcinko, Katarina; Sikkema, Sarah R.; Samaan, M. Constantine; Kemp, Bruce E.; Fullerton, Morgan D.; Steinberg, Gregory R.
2015-01-01
Objective Endurance exercise training reduces insulin resistance, adipose tissue inflammation and non-alcoholic fatty liver disease (NAFLD), an effect often associated with modest weight loss. Recent studies have indicated that high-intensity interval training (HIIT) lowers blood glucose in individuals with type 2 diabetes independently of weight loss; however, the organs affected and mechanisms mediating the glucose lowering effects are not known. Intense exercise increases phosphorylation and inhibition of acetyl-CoA carboxylase (ACC) by AMP-activated protein kinase (AMPK) in muscle, adipose tissue and liver. AMPK and ACC are key enzymes regulating fatty acid metabolism, liver fat content, adipose tissue inflammation and insulin sensitivity but the importance of this pathway in regulating insulin sensitivity with HIIT is unknown. Methods In the current study, the effects of 6 weeks of HIIT were examined using obese mice with serine–alanine knock-in mutations on the AMPK phosphorylation sites of ACC1 and ACC2 (AccDKI) or wild-type (WT) controls. Results HIIT lowered blood glucose and increased exercise capacity, food intake, basal activity levels, carbohydrate oxidation and liver and adipose tissue insulin sensitivity in HFD-fed WT and AccDKI mice. These changes occurred independently of weight loss or reductions in adiposity, inflammation and liver lipid content. Conclusions These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC. PMID:26909307
Wang, Long; Lin, Qinlu; Yang, Tao; Liang, Ying; Nie, Ying; Luo, Yi; Shen, Junjun; Fu, Xiangjin; Tang, Yiping; Luo, Feijun
2017-09-27
In Western countries and China, the dietary habit of high calories usually results in hyperlipidemia, which is closely associated with cardiovascular diseases. In the study, we investigated the antihyperlipidemic effect of oryzanol and its molecular mechanism in the high fat diet (HFD) mouse model. In total, 60 ICR mice were randomly divided into control group, HFD group, and HFD+Ory group. The mice from the HFD+Ory group were additionally fed with 100 mg/kg of oryzanol by intragastric administration. Our data indicated that oryzanol treatment for 10 weeks significantly reduced bodyweight, liver weight, and adipose tissues weight of the mice; lowered the contents of total cholesterol (TC), triglycerides (TG), and low density lipoprotein-cholesterol (LDL-C); and elevated high density lipoprotein-cholesterol (HDL-C) in the plasma of HFD mice. Compared with the HFD group, H&E staining showed that oryzanol treatment decreased the size of fat droplets of liver tissues and the size of adipocytes. Gene chip data found that oryzanol administration caused 32 genes to increase expressions while 60 genes had reduced expressions in the liver tissues of HFD mice. IPA software was used to analyze the protein interaction network and found that transcript factor NF-κB located in the central role of network, meaning NF-κB may have important function in the lipid-lowering effect of oryzanol. Western blotting and RT-qPCR confirmed that lipid metabolism-related gene expressions were obviously regulated by oryzanol administration. Oryzanol also inhibited expressions of inflammatory factor in the liver tissues of HDF mice. Taken together, our data indicate that oryzanol treatment can regulate lipid metabolism-related gene expressions and inhibit HDF-caused obesity in mice.
Yan, Qiao-Huan; Xu, Dian-Guo; Shen, Yan-Feng; Yuan, Ding-Ling; Bao, Jun-Hui; Li, Hai-Bin; Lv, Ying-Gang
2017-01-01
AIM To observe the effect of targeted therapy with 64-slice spiral computed tomography (CT) combined with cryoablation for liver cancer. METHODS A total of 124 patients (142 tumors) were enrolled into this study. According to the use of dual-slice spiral CT or 64-slice spiral CT as a guide technology, patients were divided into two groups: dual-slice group (n = 56, 65 tumors) and 64-slice group (n = 8, 77 tumors). All patients were accepted and received targeted therapy by an argon-helium superconducting surgery system. The guided scan times of the two groups was recorded and compared. In the two groups, the lesion ice coverage in diameter of ≥ 3 cm and < 3 cm were recorded, and freezing effective rate was compared. Hepatic perfusion values [hepatic artery perfusion (HAP), portal vein perfusion (PVP), and the hepatic arterial perfusion index (HAPI)] of tumor tissues, adjacent tissues and normal liver tissues at preoperative and postoperative four weeks in the two groups were compared. Local tumor changes were recorded and efficiency was compared at four weeks post-operation. Adverse events were recorded and compared between the two groups, including fever, pain, frostbite, nausea, vomiting, pleural effusion and abdominal bleeding. RESULTS Guided scan times in the dual-slice group was longer than that in the 64-slice group (t = 11.445, P = 0.000). The freezing effective rate for tumors < 3 cm in diameter in the dual-slice group (81.58%) was lower than that in the 64-slice group (92.86%) (χ2 = 5.707, P = 0.017). The HAP and HAPI of tumor tissues were lower at four weeks post-treatment than at pre-treatment in both groups (all P < 0.05), and those in the 64-slice group were lower than that in the dual-slice group (all P < 0.05). HAP and PVP were lower and HAPI was higher in tumor adjacent tissues at post-treatment than at pre-treatment (all P < 0.05). Furthermore, the treatment effect and therapeutic efficacy in the dual-slice group were lower than the 64-slice group at four weeks post-treatment (all P < 0.05). Moreover, pleural effusion and intraperitoneal hemorrhage occurred in patients in the dual-slice group, while no complications occurred in the 64-slice group (all P < 0.05). CONCLUSION 64-slice spiral CT applied with cryoablation in targeted therapy for liver cancer can achieve a safe and effective freezing treatment, so it is worth being used. PMID:28652661
Yan, Qiao-Huan; Xu, Dian-Guo; Shen, Yan-Feng; Yuan, Ding-Ling; Bao, Jun-Hui; Li, Hai-Bin; Lv, Ying-Gang
2017-06-14
To observe the effect of targeted therapy with 64-slice spiral computed tomography (CT) combined with cryoablation for liver cancer. A total of 124 patients (142 tumors) were enrolled into this study. According to the use of dual-slice spiral CT or 64-slice spiral CT as a guide technology, patients were divided into two groups: dual-slice group ( n = 56, 65 tumors) and 64-slice group ( n = 8, 77 tumors). All patients were accepted and received targeted therapy by an argon-helium superconducting surgery system. The guided scan times of the two groups was recorded and compared. In the two groups, the lesion ice coverage in diameter of ≥ 3 cm and < 3 cm were recorded, and freezing effective rate was compared. Hepatic perfusion values [hepatic artery perfusion (HAP), portal vein perfusion (PVP), and the hepatic arterial perfusion index (HAPI)] of tumor tissues, adjacent tissues and normal liver tissues at preoperative and postoperative four weeks in the two groups were compared. Local tumor changes were recorded and efficiency was compared at four weeks post-operation. Adverse events were recorded and compared between the two groups, including fever, pain, frostbite, nausea, vomiting, pleural effusion and abdominal bleeding. Guided scan times in the dual-slice group was longer than that in the 64-slice group ( t = 11.445, P = 0.000). The freezing effective rate for tumors < 3 cm in diameter in the dual-slice group (81.58%) was lower than that in the 64-slice group (92.86%) (χ 2 = 5.707, P = 0.017). The HAP and HAPI of tumor tissues were lower at four weeks post-treatment than at pre-treatment in both groups (all P < 0.05), and those in the 64-slice group were lower than that in the dual-slice group (all P < 0.05). HAP and PVP were lower and HAPI was higher in tumor adjacent tissues at post-treatment than at pre-treatment (all P < 0.05). Furthermore, the treatment effect and therapeutic efficacy in the dual-slice group were lower than the 64-slice group at four weeks post-treatment (all P < 0.05). Moreover, pleural effusion and intraperitoneal hemorrhage occurred in patients in the dual-slice group, while no complications occurred in the 64-slice group (all P < 0.05). 64-slice spiral CT applied with cryoablation in targeted therapy for liver cancer can achieve a safe and effective freezing treatment, so it is worth being used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brams, E.; Anthony, W.; Weatherspoon, L.
Low-level contamination of a sandy soil with toxicants Cd and Pb at 0.01 to 9.0 and 3.0 to 54.0 mg kg{sup {minus}1} soil induced a significant toxicant accumulation in sudan-sorghum hay (Sorghum sudanense (Piper) Stapf-S. bicolor (L.) Moench) (0.5-5.0 and 0.2-1.5 mg kg{sup {minus}1} dry biomass), respectively. Ingestion of 22 to 222 mg Cd kg{sup {minus}1} body wt. by pregnant dairy goats (Capra hircus) from the consumption of hay over 98 d resulted in a significant, but relatively diminutive accumulation of Cd in the doe livers (0.01-0.02 mg kg{sup {minus}1}) and brain cortex (0.002-0.007 mg kg{sup {minus}1}) fresh wt., butmore » not in doe kidneys and blood averaging 0.028 and 0.002 mg Cd kg{sup {minus}1} fresh tissues, respectively. Fetal blood and liver accumulated 2.0 and 4.0 mg Cd kg{sup {minus}1} fresh tissue, respectively, and fetal kidney exhibited a weak response (0.03-0.47 mg Cd kg{sup {minus}1} fresh tissue) to Cd ingested by the pregnant does. Consumption of 240 to 1230 {mu}g Pb kg{sup {minus}1} body wt. induced 1.0 to 43.0 mg Pb kg{sup {minus}1} fresh tissue in the doe brain cerebellum, but not in the doe liver and blood averaging 0.09 and 0.017 mg Pb kg{sup {minus}1} fresh tissue, respectively, Fetal liver and blood averaged 0.043 and 0.014 mg Pb kg{sup {minus}1} tissue. Only minuscule amounts of soil Cd and Pb were retained in the select animal tissues via the ingestion of this hay. Only one-ten-millionth of labile soil Cd and Pb, respectively, accumulated in the select tissues of the pregnant does via the hay pathway. All these amounts were comparable to the norm. If these select animal tissues were used as food, no deleterious effects to human health should be induced.« less
Usefulness of chemical-shift MRI in discriminating increased liver echogenicity in glycogenosis.
Pozzato, C; Dall'asta, C; Radaelli, G; Torcoletti, M; Formenti, A; Riva, E; Cornalba, G; Pontiroli, A E
2007-11-01
Glycogen storage diseases are inherited defects which cause accumulation of glycogen in the tissues. Hepatic steatosis is defined as accumulation of fat within hepatocytes. On sonography, liver shows increased echogenicity both in glycogen storage diseases and steatosis. Liver hyperechogenicity in glycogen storage diseases may depend on accumulation of glycogen and/or fat. Chemical-shift magnetic resonance imaging can discriminate tissues only containing water from those containing both fat and water. The primary aim of the present study was to evaluate the usefulness of liver chemical-shift magnetic resonance imaging for detecting liver steatosis in patients with metabolic impairment due to glycogen storage diseases. Twelve patients with type I (n=8) or type III (n=4) glycogen storage diseases were studied and compared to 12 obese-overweight subjects with known liver steatosis. As control group 12 lean normal voluntary subjects were recruited. Liver was evaluated by sonography and chemical-shift magnetic resonance imaging to calculate hepatic fat fraction. A significant difference in echogenicity between patients with glycogen storage diseases and normal subjects was observed (p<0.05), while this difference was not present between overweight-obese and glycogen storage diseases patients. On the contrary, fat fraction was similar between glycogen storage diseases patients and normal subjects and different between glycogen storage diseases patients and overweight-obese (p<0.05). The present data suggest that chemical-shift magnetic resonance imaging may exclude fat deposition as a cause of liver hyperechogenicity in subjects with glycogen storage diseases.
Expression of the serine/threonine kinase hSGK1 in chronic viral hepatitis.
Fillon, Sophie; Klingel, Karin; Wärntges, Simone; Sauter, Martina; Gabrysch, Sabine; Pestel, Sabine; Tanneur, Valerie; Waldegger, Siegfried; Zipfel, Annette; Viebahn, Richard; Häussinger, Dieter; Bröer, Stefan; Kandolf, Reinhard; Lang, Florian
2002-01-01
The human serine/threonine kinase hSGK1 is expressed ubiquitously with highest transcript levels in pancreas and liver. This study has been performed to determine the hSGK1 distribution in normal liver and its putative role in fibrosing liver disease. HSGK1-localization was determined by in situ hybridization, regulation of hSGK1-transcription by Northern blotting, fibronectin synthesis and hSGK1 phosphorylation by Western blotting. In normal liver hSGK1 was mainly transcribed by Kupffer cells. In liver tissue from patients with chronic viral hepatitis, hSGK1 transcript levels were excessively high in numerous activated Kupffer cells and inflammatory cells localized within fibrous septum formations. HSGK1 transcripts were also detected in activated hepatic stellate cells. Accordingly, Western blotting revealed that tissue from fibrotic liver expresses excessive hSGK1 protein as compared to normal liver. TGF-beta1 (2 ng/ml) increases hSGK1 transcription in both human U937 macro-phages and HepG2 hepatoma cells. H(2)O(2) (0.3 mM) activated hSGK1 and increased fibronectin formation in HepG2 cells overexpressing hSGK1 but not in HepG2 cells expressing the inactive mutant hSGK1(K127R). In conclusion hSGK1 is upregulated by TGF-beta1 during hepatitis and may contribute to enhanced matrix formation during fibrosing liver disease. Copyright 2002 S. Karger AG, Basel
Castañón, Eduardo; Soltermann, Alex; López, Inés; Román, Marta; Ecay, Margarita; Collantes, María; Redrado, Miriam; Baraibar, Iosune; López-Picazo, José María; Rolfo, Christian; Vidal-Vanaclocha, Fernando; Raez, Luis; Weder, Walter; Calvo, Alfonso; Gil-Bazo, Ignacio
2017-08-28
Id1 promotes carcinogenesis and metastasis, and predicts prognosis of non-small cell lung cancer (NSCLC)-adenocarcionoma patients. We hypothesized that Id1 may play a critical role in lung cancer colonization of the liver by affecting both tumor cells and the microenvironment. Depleted levels of Id1 in LLC (Lewis lung carcinoma cells, LLC shId1) significantly reduced cell proliferation and migration in vitro. Genetic loss of Id1 in the host tissue (Id1 -/- mice) impaired liver colonization and increased survival of Id1 -/- animals. Histologically, the presence of Id1 in tumor cells of liver metastasis was responsible for liver colonization. Microarray analysis comparing liver tumor nodules from Id1 +/+ mice and Id1 -/- mice injected with LLC control cells revealed that Id1 loss reduces the levels of EMT-related proteins, such as vimentin. In tissue microarrays containing 532 NSCLC patients' samples, we found that Id1 significantly correlated with vimentin and other EMT-related proteins. Id1 loss decreased the levels of vimentin, integrinβ1, TGFβ1 and snail, both in vitro and in vivo. Therefore, Id1 enables both LLC and the host microenvironment for an effective liver colonization, and may represent a novel therapeutic target to avoid NSCLC liver metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.
Wagner, Philipp; Koch, Moritz; Nummer, Daniel; Palm, Sylvia; Galindo, Luis; Autenrieth, Daniel; Rahbari, Nuh; Schmitz-Winnenthal, Friedrich H; Schirrmacher, Volker; Büchler, Markus W; Beckhove, Philipp; Weitz, Jürgen
2008-08-01
Tumor-infiltrating T lymphocytes (TIL) play an important role in primary colorectal cancer, but their activity in liver metastases has not yet been investigated. The aim of this study was to examine whether tumor-selective infiltration, activation, and cytotoxic activity of TIL can be demonstrated in situ in colorectal liver metastases. TIL were obtained from liver metastases and corresponding normal liver tissue of 16 patients with colorectal liver metastases. Characterization of TIL in situ was performed by multicolor flowcytometric analysis. Presence of tumor antigen-reactive T cells was evaluated by interferon gamma Elispot analysis. TIL in colorectal liver metastases responding against tumor antigens were present in most patients. Although the proportions of CD3(+) T cells were comparable in liver metastasis and normal liver tissue, metastases contained significantly enhanced proportions of CD4(+) cells (49% vs. 22%, P < .001). Among all CD4(+) T helper cells, the proportion of activated (CD4(+)CD25(+)) effector cells was significantly increased in liver metastases (15.0% vs. 7.8%, P = .003). Metastases showed significantly higher proportions of activated (CD69(+) [70.1% vs. 49.8%, P = .02] and CD25(+) [4.1% vs. .6%, P = .06]) and cytotoxically active (CD107a(+)) CD8(+) TIL (3.2% vs. 1.3%, P = .03). Importantly, the presence of activated T helper cells correlated with the frequencies of cytotoxic T lymphocytes that exerted cytotoxic activity in situ (P = .02). CD4(+) and CD8(+) TIL are selectively activated in liver metastases, and cytotoxic T lymphocytes exert tumor-selective cytotoxic activity in situ in the presence of activated T helper cells, suggesting the requirement of in-situ-activated T helper cells for efficient cytotoxic T lymphocytes effector function.
Effect of Immunosuppressive Agents on Hepatocyte Apoptosis Post-Liver Transplantation
Lim, Eu Jin; Chin, Ruth; Nachbur, Ueli; Silke, John; Jia, Zhiyuan; Angus, Peter W.; Torresi, Joseph
2015-01-01
Introduction Immunosuppressants are used ubiquitously post-liver transplantation to prevent allograft rejection. However their effects on hepatocytes are unknown. Experimental data from non-liver cells indicate that immunosuppressants may promote cell death thereby driving an inflammatory response that promotes fibrosis and raises concerns that a similar effect may occur within the liver. We evaluated apoptosis within the liver tissue of post-liver transplant patients and correlated these findings with in vitro experiments investigating the effects of immunosuppressants on apoptosis in primary hepatocytes. Methods Hepatocyte apoptosis was assessed using immunohistochemistry for M30 CytoDEATH and cleaved PARP in human liver tissue. Primary mouse hepatocytes were treated with various combinations of cyclosporine, tacrolimus, sirolimus, or MMF. Cell viability and apoptosis were evaluated using crystal violet assays and Western immunoblots probed for cleaved PARP and cleaved caspase 3. Results Post-liver transplant patients had a 4.9-fold and 1.7-fold increase in M30 CytoDEATH and cleaved PARP compared to normal subjects. Cyclosporine and tacrolimus at therapeutic concentrations did not affect hepatocyte apoptosis, however when they were combined with MMF, cell death was significantly enhanced. Cell viability was reduced by 46% and 41%, cleaved PARP was increased 2.6-fold and 2.2-fold, and cleaved caspase 3 increased 2.2-fold and 1.8-fold following treatment with Cyclosporine/MMF and Tacrolimus/MMF respectively. By contrast, the sirolimus/MMF combination did not significantly reduce hepatocyte viability or promote apoptosis. Conclusion Commonly used immunosuppressive drug regimens employed after liver transplantation enhance hepatocyte cell death and may thus contribute to the increased liver fibrosis that occurs in a proportion of liver transplant recipients. PMID:26390404
Yokota, Shinichiro; Yoshida, Osamu; Ono, Yoshihiro; Geller, David A.; Thomson, Angus W.
2016-01-01
The surgically-demanding mouse orthotopic liver transplant model was first described in 1991. It has proved a powerful research tool for investigation of liver biology, tissue injury, the regulation of alloimmunity and tolerance induction and the pathogenesis of specific liver diseases. Liver transplantation in mice has unique advantages over transplantation of the liver in larger species, such as the rat or pig, since the mouse genome is well-characterized and there is much greater availability of both genetically-modified animals and research reagents. Liver transplant experiments using various transgenic or gene knockout mice has provided valuable mechanistic insights into the immuno- and pathobiology of the liver and the regulation of graft rejection and tolerance over the past 25 years. The molecular pathways identified in regulation of tissue injury and promotion of liver transplant tolerance provide new potential targets for therapeutic intervention to control adverse inflammatory responses/ immune-mediated events in the hepatic environment and systemically. Conclusion: Orthotopic liver transplantation in the mouse is a valuable model for gaining improved insights into liver biology, immunopathology and allograft tolerance that may result in therapeutic innovation in liver and other diseases. PMID:26709949
Quantification of HCV RNA in Liver Tissue by bDNA Assay.
Dailey, P J; Collins, M L; Urdea, M S; Wilber, J C
1999-01-01
With this statement, Sherlock and Dooley have described two of the three major challenges involved in quantitatively measuring any analyte in tissue samples: the distribution of the analyte in the tissue; and the standard of reference, or denominator, with which to make comparisons between tissue samples. The third challenge for quantitative measurement of an analyte in tissue is to ensure reproducible and quantitative recovery of the analyte on extraction from tissue samples. This chapter describes a method that can be used to measure HCV RNA quantitatively in liver biopsy and tissue samples using the bDNA assay. All three of these challenges-distribution, denominator, and recovery-apply to the measurement of HCV RNA in liver biopsies.
NASA Astrophysics Data System (ADS)
Szegedi, M.; Rassiah-Szegedi, P.; Fullerton, G.; Wang, B.; Salter, B.
2010-07-01
The purpose of this study is to design a real-tissue phantom for use in the validation of deformation algorithms. A phantom motion controller that runs sinusoidal and non-regular patient-based breathing pattern, via a piston, was applied to porcine liver tissue. It was regulated to simulate movement ranges similar to recorded implanted liver markers from patients. 4D CT was applied to analyze deformation. The suitability of various markers in the liver and the position reproducibility of markers and of reference points were studied. The similarity of marker motion pattern in the liver phantom and in real patients was evaluated. The viability of the phantom over time and its use with electro-magnetic tracking devices were also assessed. High contrast markers, such as carbon markers, implanted in the porcine liver produced less image artifacts on CT and were well visualized compared to metallic ones. The repositionability of markers was within a measurement accuracy of ±2 mm. Similar anatomical patient motions were reproducible up to elongations of 3 cm for a time period of at least 90 min. The phantom is compatible with electro-magnetic tracking devices and 4D CT. The phantom motion is reproducible and simulates realistic patient motion and deformation. The ability to carry out voxel-based tracking allows for the evaluation of deformation algorithms in a controlled environment with recorded patient traces. The phantom is compatible with all therapy devices clinically encountered in our department.
Nigella sativa relieves the deleterious effects of ischemia reperfusion injury on liver
Yildiz, Fahrettin; Coban, Sacit; Terzi, Alpaslan; Ates, Mustafa; Aksoy, Nurten; Cakir, Hale; Ocak, Ali Riza; Bitiren, Muharrem
2008-01-01
AIM: To determine whether Nigella sativa prevents hepatic ischemia-reperfusion injury to the liver. METHODS: Thirty rats were divided into three groups as sham (Group 1), control (Group 2), and Nigella sativa (NS) treatment group (Group 3). All rats underwent hepatic ischemia for 45 min followed by 60 min period of reperfusion. Rats were intraperitoneally infused with only 0.9% saline solution in group 2. Rats in group 3 received NS (0.2 mL/kg) intraperitoneally, before ischemia and before reperfusion. Blood samples and liver tissues were harvested from the rats, and then the rats were sacrificed. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) levels were determined. Total antioxidant capacity (TAC), catalase (CAT), total oxidative status (TOS), oxidative stress index (OSI) and myeloperoxidase (MPO) in hepatic tissue were measured. Also liver tissue histopathology was evaluated by light microscopy. RESULTS: The levels of liver enzymes in group 3 were significantly lower than those in the group 2. TAC in liver tissue was significantly higher in group 3 than in group 2. TOS, OSI and MPO in hepatic tissue were significantly lower in group 3 than the group 2. Histological tissue damage was milder in the NS treatment group than that in the control group. CONCLUSION: Our results suggest that Nigella sativa treatment protects the rat liver against to hepatic ischemia-reperfusion injury. PMID:18777598
Rautio, Anni; Kunnasranta, Mervi; Valtonen, Anu; Ikonen, Mirva; Hyvärinen, Heikki; Holopainen, Ismo J; Kukkonen, Jussi V K
2010-11-01
Many insectivores have been shown to be sensitive to heavy metals and therefore suitable for biomonitoring purposes. In Finland, the hibernation period of the European hedgehog (Erinaceus europaeus) is long, and during hibernation the stress caused by environmental toxins may be crucial. Concentrations of cadmium (Cd), copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), arsenic (As), and selenium (Se) were measured in a population of hedgehogs in the town of Joensuu in eastern Finland during the summers of 2004 and 2005. The analyzed tissues were kidney, liver, hair, and spine. The sampled hedgehogs (n = 65) were mainly road-killed animals. As expected, the concentrations of heavy metals were low because the hedgehogs were living in a comparatively unpolluted area. Significant increases with age were found in Cd concentrations (kidney, liver, and spine) and some essential elements (Se in spine, kidney, and liver; Mo in kidney and liver; Cu in spine; Fe in liver; and Mn in spine). Age accumulation and correlations between Se and Cd and between Mo and Cd may indicate the protective roles of Se and Mo against Cd toxicity in hedgehogs, in which Cd is already at comparatively low concentrations. Sex had no significant effect on concentrations of the elements studied. In conclusion, age is an important parameter to be taken into account when studying heavy-metal concentrations in hedgehogs and other insectivores.
Deep residual networks for automatic segmentation of laparoscopic videos of the liver
NASA Astrophysics Data System (ADS)
Gibson, Eli; Robu, Maria R.; Thompson, Stephen; Edwards, P. Eddie; Schneider, Crispin; Gurusamy, Kurinchi; Davidson, Brian; Hawkes, David J.; Barratt, Dean C.; Clarkson, Matthew J.
2017-03-01
Motivation: For primary and metastatic liver cancer patients undergoing liver resection, a laparoscopic approach can reduce recovery times and morbidity while offering equivalent curative results; however, only about 10% of tumours reside in anatomical locations that are currently accessible for laparoscopic resection. Augmenting laparoscopic video with registered vascular anatomical models from pre-procedure imaging could support using laparoscopy in a wider population. Segmentation of liver tissue on laparoscopic video supports the robust registration of anatomical liver models by filtering out false anatomical correspondences between pre-procedure and intra-procedure images. In this paper, we present a convolutional neural network (CNN) approach to liver segmentation in laparoscopic liver procedure videos. Method: We defined a CNN architecture comprising fully-convolutional deep residual networks with multi-resolution loss functions. The CNN was trained in a leave-one-patient-out cross-validation on 2050 video frames from 6 liver resections and 7 laparoscopic staging procedures, and evaluated using the Dice score. Results: The CNN yielded segmentations with Dice scores >=0.95 for the majority of images; however, the inter-patient variability in median Dice score was substantial. Four failure modes were identified from low scoring segmentations: minimal visible liver tissue, inter-patient variability in liver appearance, automatic exposure correction, and pathological liver tissue that mimics non-liver tissue appearance. Conclusion: CNNs offer a feasible approach for accurately segmenting liver from other anatomy on laparoscopic video, but additional data or computational advances are necessary to address challenges due to the high inter-patient variability in liver appearance.
Madani, Zohra; Sener, Abdullah; Malaisse, Willy J; Dalila, Ait Yahia
2015-11-01
The current study investigated whether sardine protein mitigates the adverse effects of fructose on plasma glucagon‑like peptide-1 (GLP-1) and oxidative stress in rats. Rats were fed casein (C) or sardine protein (S) with or without high‑fructose (HF) for 2 months. Plasma glucose, insulin, GLP‑1, lipid and protein oxidation and antioxidant enzymes were assayed. HF rats developed obesity, hyperglycemia, hyperinsulinemia, insulin resistance and oxidative stress despite reduced energy and food intakes. High plasma creatinine and uric acid levels, in addition to albuminuria were observed in the HF groups. The S‑HF diet reduced plasma glucose, insulin, creatinine, uric acid and homeostasis model assessment‑insulin resistance index levels, however increased GLP‑1 levels compared with the C‑HF diet. Hydroperoxides were reduced in the liver, kidney, heart and muscle of S‑HF fed rats compared with C‑HF fed rats. A reduction in liver, kidney and heart carbonyls was observed in S‑HF fed rats compared with C‑HF fed rats. Reduced levels of nitric oxide (NO) were detected in the liver, kidney and heart of the S‑HF fed rats compared with C‑HF fed rats. The S diet compared with the C diet reduced levels of liver hydroperoxides, heart carbonyls and kidney NO. The S‑HF diet compared with the C‑HF diet increased the levels of liver and kidney superoxide dismutase, liver and muscle catalase, liver, heart and muscle glutathione peroxidase and liver ascorbic acid. The S diet prevented and reversed insulin resistance and oxidative stress, and may have benefits in patients with metabolic syndrome.
Hill, Kathleen A; Halangoda, Asanga; Heinmoeller, Petra W; Gonzalez, Kelly; Chitaphan, Chaniga; Longmate, Jeffrey; Scaringe, William A; Wang, Ji-Cheng; Sommer, Steve S
2005-06-01
To better define the time course of spontaneous mutation frequency in middle to late adulthood of the mouse, measurements were made at 10, 14, 17, 23, 25, and 30 months of age in samples of adipose tissue, liver, cerebellum (90% neurons), and the male germline (95% germ cells). A total of 46 million plaque-forming units (pfus) were screened at the six time points and 1,450 circular blue plaques were harvested and sequenced. These data improve resolution and confirm the previously observed occurrence of at least two tissue-specific profiles of spontaneous mutation frequency (elevation with age in adipose tissue and liver, and constancy with age in neurons and male germ cells), a low mutation frequency in the male germline, and a mutation pattern unchanged with age within a tissue. These findings appear to extend to very old age (30 months). Additional findings include interanimal variation in spontaneous mutation frequency is larger in adipose tissues and liver compared with neurons and male germ cells, and subtle but significant differences in the mutation pattern among tissues, consistent with a minor effect of tissue-specific metabolism. The presumptive unaltered balance of DNA damage and repair with age in the male germline has evolutionary consequences. It is of particular interest given the controversy over whether or not increasing germline mutation frequency with paternal age underlies the reports associating older males with a higher incidence of some types of genetic disease. These most detailed measurements available to date regarding the time course of spontaneous mutation frequency and pattern in individual tissues help to constrain hypotheses regarding the role of mutational mechanisms in DNA repair and aging.
Yamamura, Kensuke; Baba, Yoshifumi; Miyake, Keisuke; Nakamura, Kenichi; Shigaki, Hironobu; Mima, Kosuke; Kurashige, Junji; Ishimoto, Takatsugu; Iwatsuki, Masaaki; Sakamoto, Yasuo; Yamashita, Yoichi; Yoshida, Naoya; Watanabe, Masayuki; Baba, Hideo
2017-12-01
The human microbiome Fusobacterium nucleatum , which primarily inhabits the oral cavity, causes periodontal disease and has also been implicated in the development of colorectal cancer. However, whether F. nucleatum is present in other gastroenterological cancer tissues remains to be elucidated. The present study evaluated whether quantitative polymerase chain reaction (qPCR) assays were able to detect F. nucleatum DNA and measure the quantity of F. nucleatum DNA in esophageal, gastric, pancreatic and liver cancer tissues. The accuracy of the qPCR assay was determined from a calibration curve using DNA extracted from cells from the oral cavity. Formalin-fixed paraffin-embedded (FFPE) tumor tissues from 20 patients with gastroenterological [esophageal (squamous cell carcinoma), gastric, colorectal, pancreatic and liver] cancer and 20 matched normal tissues were evaluated for F. nucleatum DNA content. The cycle threshold values in the qPCR assay for F. nucleatum and solute carrier organic anion transporter family member 2A1 (reference sample) decreased linearly with the quantity of input DNA ( r 2 >0.99). The F. nucleatum detection rate in esophageal, gastric and colorectal cancer tissues were 20% (4/20), 10% (2/20) and 45% (9/20), respectively. F. nucleatum was not detected in liver and pancreatic cancer tissues. The qPCR results from the frozen and FFPE tissues were consistent. Notably, F. nucleatum was detected at a higher level in superficial areas compared with the invasive areas. F. nucleatum in esophageal, gastric and colorectal cancer tissues was evaluated by qPCR using FFPE tissues. F. nucleatum may be involved in the development of esophageal, gastric and colorectal cancer.
NASA Technical Reports Server (NTRS)
White, H. B., III; Kaplan, N. O.
1972-01-01
The isozymes considered are designated 'liver type' and 'muscle type' based on the tissue of highest concentration. Electrophoretic analysis shows that the liver type is found in small amounts or is undetectable in all tissues studied except liver. The muscle type is found in skeletal muscles and kidney. Presumptive hybrid enzymes occur at low levels in chicken liver and kidney. The tissue distribution of glyceron-3-P dehydrogenase in several birds capable of sustained flight is different than in chicken.
Plutonium and americium in the foodchain lichen-reindeer-man
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaakkola, T.; Hakanen, M.; Keinonen, M.
1977-01-01
The atmospheric nuclear tests have produced a worldwide fallout of transuranium elements. In addition to plutonium measurable concentrations of americium are to be found in terrestrial and aquatic environments. The metabolism of plutonium in reindeer was investigated by analyzing plutonium in liver, bone, and lung collected during 1963-1976. To determine the distribution of plutonium in reindeer all tissues of four animals of different ages were analyzed. To estimate the uptake of plutonium from the gastrointestinal tract in reindeer, the tissue samples of elk were also analyzed. Elk which is of the same genus as reindeer does not feed on lichenmore » but mainly on deciduous plants, buds, young twigs, and leaves of trees and bushes. The composition of its feed corresponds fairly well to that of reindeer during the summer. Studies on behaviour of americium along the foodchain lichen-reindeer-man were started by determining the Am-241 concentrations in lichen and reindeer liver. The Am-241 results were compared with those of Pu-239,240. The plutonium contents of the southern Finns, whose diet does not contain reindeer tissues, were determined by analyzing autopsy tissue samples (liver, lung, and bone). The southern Finns form a control group to the Lapps consuming reindeer tissues. Plutonium analyses of the placenta, blood, and tooth samples of the Lapps were performed.« less
Li, Jing-Bin; Xu, Li-Jun; Dong, Hui; Huang, Zhao-Yi; Zhao, Yan; Chen, Guang; Lu, Fu-Er
2013-12-01
The effect of Fructus Mume formula and its separated prescription extract on insulin resistance in type 2 diabetic rats was investigated. The rat model of type 2 diabetes was established by feeding on a high-fat diet for 8 weeks and by subsequently intravenous injection of small doses of streptozotocin. Rats in treatment groups, including the Fructus Mume formula treatment group (FM), the cold property herbs of Fructus Mume formula treatment group (CFM), the warm property herbs of Fructus Mume formula treatment group (WFM), were administrated with Fructus Mume formula and its separated prescription extract by gavage, while the rats in diabetic model group (DM) and metformin group (MET) were given by gavage with normal saline and metformin correspondingly. The body weight before and after treatment was measured, and the oral glucose tolerance test (OGTT) and the insulin release test (IRT) were performed. The homeostasis model assessment-insulin resistance index (HOMA-IR) was calculated. The protein and mRNA expression levels of Insr, β-arrestin-2, Irs-1 and Glut-4 in the liver, skeletal muscle and fat tissues were detected by using Western blotting and RT-PCR respectively. The results demonstrated that, as compared with DM group, OGTT, IRT (0 h, 1 h) levels and HOMR-IR in treatment groups were all reduced, meanwhile their protein and mRNA expression levels of Insr, Irs-1 and Glut-4 in the liver, skeletal muscle and fat tissues were obviously increased, and their protein and mRNA expression levels of β-arrestin-2 in the liver and skeletal muscle tissues were also markedly increased. It was suggested that the Fructus Mume formula and its separated prescription extracts could effectively improve insulin resistance in type 2 diabetic rats, which might be related to the up-regulated expression of Insr, Irs-1 and Glut-4 in the liver, skeletal muscle and fat tissues, and β-arrestin-2 in the liver and skeletal muscle tissues.
Agnass, P.; Crezee, J.; Dijk, F.; Verheij, J.; van Gulik, T. M.; Meijerink, M. R.; Vroomen, L. G.; van Lienden, K. P.; Besselink, M. G.
2016-01-01
Introduction Irreversible electroporation (IRE) is a novel ablation technique in the treatment of unresectable cancer. The non-thermal mechanism is thought to cause mostly apoptosis compared to necrosis in thermal techniques. Both in experimental and clinical studies, a waiting time between ablation and tissue or imaging analysis to allow for cell death through apoptosis, is often reported. However, the dynamics of the IRE effect over time remain unknown. Therefore, this study aims to summarize these effects in relation to the time between treatment and evaluation. Methods A systematic search was performed in Pubmed, Embase and the Cochrane Library for original articles using IRE on pancreas, liver or surrounding structures in animal or human studies. Data on pathology and time between IRE and evaluation were extracted. Results Of 2602 screened studies, 36 could be included, regarding IRE in liver (n = 24), pancreas (n = 4), blood vessels (n = 4) and nerves (n = 4) in over 440 animals (pig, rat, goat and rabbit). No eligible human studies were found. In liver and pancreas, the first signs of apoptosis and haemorrhage were observed 1–2 hours after treatment, and remained visible until 24 hours in liver and 7 days in pancreas after which the damaged tissue was replaced by fibrosis. In solitary blood vessels, the tunica media, intima and lumen remained unchanged for 24 hours. After 7 days, inflammation, fibrosis and loss of smooth muscle cells were demonstrated, which persisted until 35 days. In nerves, the median time until demonstrable histological changes was 7 days. Conclusions Tissue damage after IRE is a dynamic process with remarkable time differences between tissues in animals. Whereas pancreas and liver showed the first damages after 1–2 hours, this took 24 hours in blood vessels and 7 days in nerves. PMID:27870918
Evaluation of liver fibrosis: “Something old, something new…”
Almpanis, Zannis; Demonakou, Maria; Tiniakos, Dina
2016-01-01
Hepatic fibrogenesis may gradually result to cirrhosis due to the accumulation of extracellular matrix components as a response to liver injury. Thus, therapeutic decisions in chronic liver disease, regardless of the cause, should first and foremost be guided by an accurate quantification of hepatic fibrosis. Detection and assessment of the extent of hepatic fibrosis represent a challenge in modern Hepatology. Although traditional histological staging systems remain the “best standard”, they are not able to quantify liver fibrosis as a dynamic process and may not accurately substage cirrhosis. This review aims to compare the currently used non-invasive methods of measuring liver fibrosis and provide an update in current tissue-based digital techniques developed for this purpose, that may prove of value in daily clinical practice. PMID:27708509
Tissue-specific mutation accumulation in human adult stem cells during life
NASA Astrophysics Data System (ADS)
Blokzijl, Francis; de Ligt, Joep; Jager, Myrthe; Sasselli, Valentina; Roerink, Sophie; Sasaki, Nobuo; Huch, Meritxell; Boymans, Sander; Kuijk, Ewart; Prins, Pjotr; Nijman, Isaac J.; Martincorena, Inigo; Mokry, Michal; Wiegerinck, Caroline L.; Middendorp, Sabine; Sato, Toshiro; Schwank, Gerald; Nieuwenhuis, Edward E. S.; Verstegen, Monique M. A.; van der Laan, Luc J. W.; de Jonge, Jeroen; Ijzermans, Jan N. M.; Vries, Robert G.; van de Wetering, Marc; Stratton, Michael R.; Clevers, Hans; Cuppen, Edwin; van Boxtel, Ruben
2016-10-01
The gradual accumulation of genetic mutations in human adult stem cells (ASCs) during life is associated with various age-related diseases, including cancer. Extreme variation in cancer risk across tissues was recently proposed to depend on the lifetime number of ASC divisions, owing to unavoidable random mutations that arise during DNA replication. However, the rates and patterns of mutations in normal ASCs remain unknown. Here we determine genome-wide mutation patterns in ASCs of the small intestine, colon and liver of human donors with ages ranging from 3 to 87 years by sequencing clonal organoid cultures derived from primary multipotent cells. Our results show that mutations accumulate steadily over time in all of the assessed tissue types, at a rate of approximately 40 novel mutations per year, despite the large variation in cancer incidence among these tissues. Liver ASCs, however, have different mutation spectra compared to those of the colon and small intestine. Mutational signature analysis reveals that this difference can be attributed to spontaneous deamination of methylated cytosine residues in the colon and small intestine, probably reflecting their high ASC division rate. In liver, a signature with an as-yet-unknown underlying mechanism is predominant. Mutation spectra of driver genes in cancer show high similarity to the tissue-specific ASC mutation spectra, suggesting that intrinsic mutational processes in ASCs can initiate tumorigenesis. Notably, the inter-individual variation in mutation rate and spectra are low, suggesting tissue-specific activity of common mutational processes throughout life.
Enhanced hepatic and kidney cytochrome p-450 activities in nandrolone decanoate treated albino mice.
Acharjee, B K; Mahanta, R
2009-04-01
Anabolic androgenic steroids are the xenobiotic substrates that are metabolized in the body by the protective enzyme systems. Mixed function oxygenase enzymes include a group of enzymes which play an essential role in the metabolism of a broad range of xenobiotics including endogenous and exogenous substrates. Cytochrome P-450, a member of mixed function oxygenase enzymes, plays an important role in oxidative metabolism of drugs and xenobiotics entering human body. Various anabolic steroids are found either to increase or decrease the activity of cytochrome P-450. However, effect of nandrolone decanoate, most commonly abused anabolic steroid, on cytochrome P-450 activity is still fragmentary. In the present study, albino mice were administered intramuscular 2.5 mg of nandrolone decanoate injection at 15 days interval. Cytochrome P-450 activity is determined by following the method of Omura and Sato (1964) in liver and kidney tissues of both normal and experimental groups upto 90 days. Investigation shows a significant (p <0.01) increase of cytochrome P-450 (nmol/mg) activity in liver tissue as compared to that of kidney tissues. A tissue specific and dose specific increase of cytochrome P-450 activity is observed. Mean cytochrome P-450 is found highest in liver tissue on 45(th) day whereas the activity in kidney tissue is noticed on 90(th) day of treatment. From the above observation, nandrolone decanoate can be suggested as a potent inducer of cytochrome P-450 activity like other anabolic steroids.
Kyuchukova, Ralica; Milanova, Aneliya; Pavlov, Alexander; Lashev, Lubomir
2015-01-01
The aim of the study was to investigate the serum and tissue disposition of enrofloxacin and its active metabolite ciprofloxacin in rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio) after a single oral administration at a dose of 10 mg kg(-1). Concentrations of enrofloxacin in the serum of rainbow trout showed high variability with two peaks at the third and 24th hour after administration. The highest concentrations were found in the liver. The curves of liver levels showed similar changes to the respective serum samples. In the muscles, enrofloxacin concentrations were also higher compared with the respective serum samples. Ciprofloxacin concentrations were lower and showed smaller variations in all investigated tissues. The serum and tissue concentrations of enrofloxacin and ciprofloxacin in common carp showed two peaks, with the first Cmax at the third hour after drug administration as in rainbow trout. Concentrations of both investigated substances were higher in the liver than in the serum. The differences in common carp were less pronounced in comparison with rainbow trout. Relatively high levels of both substances were found in the muscles. Seven days after treatment enrofloxacin concentrations in the serum and tissues were within the therapeutic levels for most of the sensitive microorganisms in trout. Lower concentrations of its metabolite ciprofloxacin were found in the investigated tissues at the last sampling point. Lower levels of both substances were found in carp.
Suthar, Mehul S.; Brassil, Margaret M.; Blahnik, Gabriele; McMillan, Aimee; Ramos, Hilario J.; Proll, Sean C.; Belisle, Sarah E.; Katze, Michael G.; Gale, Michael
2013-01-01
The actions of the RIG-I like receptor (RLR) and type I interferon (IFN) signaling pathways are essential for a protective innate immune response against the emerging flavivirus West Nile virus (WNV). In mice lacking RLR or IFN signaling pathways, WNV exhibits enhanced tissue tropism, indicating that specific host factors of innate immune defense restrict WNV infection and dissemination in peripheral tissues. However, the immune mechanisms by which the RLR and IFN pathways coordinate and function to impart restriction of WNV infection are not well defined. Using a systems biology approach, we defined the host innate immune response signature and actions that restrict WNV tissue tropism. Transcriptional profiling and pathway modeling to compare WNV-infected permissive (spleen) and nonpermissive (liver) tissues showed high enrichment for inflammatory responses, including pattern recognition receptors and IFN signaling pathways, that define restriction of WNV replication in the liver. Assessment of infected livers from Mavs−/−×Ifnar−/− mice revealed the loss of expression of several key components within the natural killer (NK) cell signaling pathway, including genes associated with NK cell activation, inflammatory cytokine production, and NK cell receptor signaling. In vivo analysis of hepatic immune cell infiltrates from WT mice demonstrated that WNV infection leads to an increase in NK cell numbers with enhanced proliferation, maturation, and effector action. In contrast, livers from Mavs−/−×Ifnar−/− infected mice displayed reduced immune cell infiltration, including a significant reduction in NK cell numbers. Analysis of cocultures of dendritic and NK cells revealed both cell-intrinsic and -extrinsic roles for the RLR and IFN signaling pathways to regulate NK cell effector activity. Taken together, these observations reveal a complex innate immune signaling network, regulated by the RLR and IFN signaling pathways, that drives tissue-specific antiviral effector gene expression and innate immune cellular processes that control tissue tropism to WNV infection. PMID:23544010
Werner, Jens M; Lang, Corinna; Scherer, Marcus N; Farkas, Stefan A; Geissler, Edward K; Schlitt, Hans J; Hornung, Matthias
2011-07-01
The liver is an immunological organ containing a large number of T, NK and NKT cells, but little is known about intrahepatic immunity after LTx. Here, we investigated whether the distribution of T, NK and CD3(+)CD56(+)NKT cells is altered in transplanted livers under different circumstances. Core biopsies of transplanted livers were stained with antibodies against CD3 and CD56. Several cell populations including T (CD3(+)CD56(-)), NK (CD3(-)CD56(+)) and NKT cells (CD3(+)CD56(+)) were studied by fluorescence microscopy. Cell numbers were analyzed in relation to the time interval after LTx, immunosuppressive therapy and stage of acute graft rejection (measured with the rejection activity index: RAI) compared to tumor free liver tissue from patients after liver resection due to metastatic disease as control. Recruitment of CD3(+)CD56(+)NKT cells revealed a significant decrease during high RAI scores in comparison to low and middle RAI scores (RAI 7-9: 0.03±0.01/HPF vs. RAI 4-6: 0.1±0.005/HPF). CD3(+)CD56(+)NKT cells were also lower during immunosuppressive therapy with tacrolimus (0.03±0.01/HPF) than with cyclosporine (0.1±0.003/HPF), cyclosporine/MMF (0.1±0.003/HPF) or sirolimus (0.1±0.01/HPF) treatment. Intrahepatic T cell numbers increased significantly 50days after LTx compared to control liver tissue (4.5±0.2/HPF vs. 1.9±0.1/HPF). In contrast, NK cells (0.3±0.004/HPF) were significantly fewer in all biopsies after LTx compared to the control (0.7±0.04/HPF). These data indicate significant alterations in the hepatic recruitment of T, NK and CD3(+)CD56(+)NKT cells after LTx. The increase in T cells and the decrease in NK and CD3(+)CD56(+)NKT cells suggest a shift from innate to adaptive hepatic immunity in the liver graft. Copyright © 2011 Elsevier B.V. All rights reserved.
Church, Stephanie J; Begley, Paul; Kureishy, Nina; McHarg, Selina; Bishop, Paul N; Bechtold, David A; Unwin, Richard D; Cooper, Garth J S
2015-05-08
Ob/ob mice provide an animal model for non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH) in patients with obesity and type-2 diabetes. Low liver copper has been linked to hepatic lipid build-up (steatosis) in animals with systemic copper deficiency caused by low-copper diets. However, hepatic copper status in patients with NAFLD or NASH is uncertain, and a validated animal model useful for the study of hepatic copper regulation in common forms of metabolic liver disease is lacking. Here, we report parallel measurements of essential metal levels in whole-liver tissue and defatted-dried liver tissue from ob/ob and non-obese control mice. Measurements in whole-liver tissue from ob/ob mice at an age when they have developed NAFLD/NASH, provide compelling evidence for factitious lowering of copper and all other essential metals by steatosis, and so cannot be used to study hepatic metal regulation in this model. By marked contrast, metal measurements in defatted-dried liver samples reveal that most essential metals were actually normal and indicate specific lowering of copper in ob/ob mice, consistent with hepatic copper deficiency. Thus ob/ob mice can provide a model useful for the study of copper regulation in NAFLD and NASH, provided levels are measured in defatted-dried liver tissue. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Global PROTOMAP profiling to search for biomarkers of early-recurrent hepatocellular carcinoma.
Taoka, Masato; Morofuji, Noriaki; Yamauchi, Yoshio; Ojima, Hidenori; Kubota, Daisuke; Terukina, Goro; Nobe, Yuko; Nakayama, Hiroshi; Takahashi, Nobuhiro; Kosuge, Tomoo; Isobe, Toshiaki; Kondo, Tadashi
2014-11-07
This study used global protein expression profiling to search for biomarkers to predict early recurrent hepatocellular carcinoma (HCC). HCC tissues surgically resected from patients with or without recurrence within 2 years (early recurrent) after surgery were compared with adjacent nontumor tissue and with normal liver tissue. We used the PROTOMAP strategy for comparative profiling, which integrates denaturing polyacrylamide gel electrophoresis migratory rates and high-resolution, semiquantitative mass-spectrometry-based identification of in-gel-digested tryptic peptides. PROTOMAP allows examination of global changes in the size, topography, and abundance of proteins in complex tissue samples. This approach identified 8438 unique proteins from 45 708 nonredundant peptides and generated a proteome-wide map of changes in expression and proteolytic events potentially induced by intrinsic apoptotic/necrotic pathways. In the early recurrent HCC tissue, 87 proteins were differentially expressed (≥20-fold) relative to the other tissues, 46 of which were up-regulated or specifically proteolyzed and 41 of which were down-regulated. This data set consisted of proteins that fell into various functional categories, including signal transduction and cell organization and, notably, the major catalytic pathways responsible for liver function, such as the urea cycle and detoxification metabolism. We found that aberrant proteolysis appeared to occur frequently during recurrence of HCC in several key signal transducers, including STAT1 and δ-catenin. Further investigation of these proteins will facilitate the development of novel clinical applications.
Rødgaard, Tina; Stagsted, Jan; Christoffersen, Berit Ø; Cirera, Susanna; Moesgaard, Sophia G; Sturek, Michael; Alloosh, Mouhamad; Heegaard, Peter M H
2013-02-15
The acute phase protein orosomucoid (ORM) has anti-inflammatory and immunomodulatory effects, and may play an important role in the maintenance of metabolic homeostasis in obesity-induced low-grade inflammation. Even though the pig is a widely used model for obesity related metabolic symptoms, the expression of ORM has not yet been characterized in such pig models. The objective of this study was to investigate the expression of ORM1 mRNA in liver, visceral adipose tissue, subcutaneous adipose tissue (SAT) from the abdomen or retroperitoneal abdominal adipose tissue (RPAT) and SAT from the neck, as well as the serum concentration of ORM protein in three porcine obesity models; the domestic pig, Göttingen minipigs and Ossabaw minipigs. No changes in ORM1 mRNA expression were observed in obese pigs compared to lean pigs in the four types of tissues. However, obese Ossabaw minipigs, but none of the other breeds, showed significantly elevated ORM serum concentrations compared to their lean counterparts. Studies in humans have shown that the expression of ORM was unchanged in adipose tissue depots in obese humans with an increased serum concentration of ORM. Thus in this respect, obese Ossabaw minipigs behave more similarly to obese humans than the other two pig breeds investigated. Copyright © 2012 Elsevier B.V. All rights reserved.
Denli, M; Blandon, J C; Guynot, M E; Salado, S; Perez, J F
2009-07-01
The aim of this study was to evaluate the ability of AflaDetox (Adiveter, Agro-Reus, Reus, Tarragona, Spain) in counteracting the deleterious effects of aflatoxin B(1) (AFB(1)) in broiler chicks. A total of 120 Ross 308 one-day-old male broiler chicks were assigned to 8 treatments for 42 d. The experiment had a 2 x 4 factorial arrangement of treatments involving 0 and 1 mg of AFB(1)/kg feed and 0, 1, 2, and 5 g of AflaDetox/kg feed. Chicks were fed on the ground during the first 7 d and in cages (3 chicks/cage; 5 cages/treatment) from 7 to 42 d. Growth performance was measured from d 7 to 42 and whole-tract digestibility of gross energy and protein on d 40 to 41. Serum biochemical parameters, organ weights, histopathological examination of liver, and AFB(1) residues in liver and breast muscle tissues were determined on d 42. Aflatoxin B(1) significantly decreased the BW gain, feed intake, and impaired feed conversion rate (P < 0.05). The addition of AflaDetox in the contaminated diets significantly diminished the inhibitory effects of dietary AFB(1) (P < 0.05) on the growth performance with no differences compared to the control diet. Feeding AFB(1) alone decreased serum protein concentration, increased the serum activity of alkaline phosphatase, and caused significant increases in the relative weights of livers. Treatment with AflaDetox significantly alleviated the negative effects of AFB(1) on these parameters (P < 0.05) with no effect on uncontaminated diets. Liver tissue of broilers receiving AFB(1) alone had perilobular inflammation and vacuolar degeneration of hepatocytes as compared with the tissue from the control group (P < 0.05). Residues of AFB(1) were detected in the liver tissues of broilers fed on the AFB(1) diet (0.166 microg/kg). Supplementation of AflaDetox reduced the incidence and severity of the hepatic histopathology changes associated with aflatoxicosis and the amount of AFB(1) residue in liver. In conclusion, our results showed that addition of AflaDetox may reduce the adverse effects produced by the presence of AFB(1) in broiler chickens diets.
Ocque, Andrew J; Hagler, Colleen E; Difrancesco, Robin; Woolwine-Cunningham, Yvonne; Bednasz, Cindy J; Morse, Gene D; Talal, Andrew H
2016-07-01
Determination of paritaprevir and ritonavir in rat liver tissue samples. We successfully validated a UPLC-MS/MS method to measure paritaprevir and ritonavir in rat liver using deuterated internal standards (d8-paritapervir and d6-ritonavir). The method is linear from 20 to 20,000 and 5 to 10,000 pg on column for paritaprevir and ritonavir, respectively, and is normalized per milligram tissue. Interday and intraday variability ranged from 0.591 to 5.33% and accuracy ranged from -6.68 to 10.1% for quality control samples. The method was then applied to the measurement of paritaprevir and ritonavir in rat liver tissue samples from a pilot study. The validated method is suitable for measurement of paritaprevir and ritonavir within rat liver tissue samples for PK studies.
Yan, Shuai; Cui, Sishan; Ke, Kun; Zhao, Bixing; Liu, Xiaolong; Yue, Shuhua; Wang, Ping
2018-06-05
Lipid metabolism is dysregulated in human cancers. The analytical tools that could identify and quantitatively map metabolites in unprocessed human tissues with submicrometer resolution are highly desired. Here, we implemented analytical hyperspectral stimulated Raman scattering microscopy to map the lipid metabolites in situ in normal and cancerous liver tissues from 24 patients. In contrast to the conventional wisdom that unsaturated lipid accumulation enhances tumor cell survival and proliferation, we unexpectedly visualized substantial amount of saturated fat accumulated in cancerous liver tissues, which was not seen in majority of their adjacent normal tissues. Further analysis by mass spectrometry confirmed significant high levels of glyceryl tripalmitate specifically in cancerous liver. These findings suggest that the aberrantly accumulated saturated fat may have great potential to be a metabolic biomarker for liver cancer.
Elbes, Delphine; Denost, Quentin; Robert, Benjamin; Köhler, Max O; Tanter, Mickaël; Bruno, Quesson
2014-05-01
Bubble-enhanced heating (BEH) may be exploited to improve the heating efficiency of high-intensity focused ultrasound in liver and to protect tissues located beyond the focal point. The objectives of this study, performed in ex vivo pig liver, were (i) to develop a method to determine the acoustic power threshold for induction of BEH from displacement images measured by magnetic resonance acoustic radiation force imaging (MR-ARFI), and (ii) to compare temperature distribution with MR thermometry for HIFU protocols with and without BEH. The acoustic threshold for generation of BEH was determined in ex vivo pig liver from MR-ARFI calibration curves of local tissue displacement resulting from sonication at different powers. Temperature distributions (MR thermometry) resulting from "conventional" sonications (20 W, 30 s) were compared with those from "composite" sonications performed at identical parameters, but after a HIFU burst pulse (0.5 s, acoustic power over the threshold for induction of BEH). Displacement images (MR-ARFI) were acquired between sonications to measure potential modifications of local tissue displacement associated with modifications of tissue acoustic characteristics induced by the burst HIFU pulse. The acoustic threshold for induction of BEH corresponded to a displacement amplitude of approximately 50 μm in ex vivo liver. The displacement and temperature images of the composite group exhibited a nearly spherical pattern, shifted approximately 4 mm toward the transducer, in contrast to elliptical shapes centered on the natural focal position for the conventional group. The gains in maximum temperature and displacement values were 1.5 and 2, and the full widths at half-maximum of the displacement data were 1.7 and 2.2 times larger than in the conventional group in directions perpendicular to ultrasound propagation axes. Combination of MR-ARFI and MR thermometry for calibration and exploitation of BEH appears to increase the efficiency and safety of HIFU treatment. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Heavy metals in Franklin`s gull tissues: Age and tissue differences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burger, J.; Gochfeld, M.
1999-04-01
The authors examined the concentrations of lead, cadmium, chromium, mercury, manganese, and selenium in feathers, liver, kidney, heart, brain, and breast muscle of Franklin`s gulls (Larus pipixcan) nesting in northwestern Minnesota, USA, in 1994. Between 16% (chromium) and 71% (selenium, manganese) of the variation in metal concentrations was explained by tissue and age, except for selenium and arsenic, which were only explained by tissue. Of 35 possible differences (seven metals in five tissues), 24 significant age-related differences were found in Franklin`s gulls, with young generally having lower concentrations of metals in all of their tissues than adults. A notable exceptionmore » was the liver; young had significantly higher concentrations of selenium, chromium, manganese, and arsenic than did adults. Three notable findings were the following: young had significantly higher concentrations of selenium, chromium, manganese, and arsenic in their liver than did adults; young had 30 times as much chromium in the liver than adults; and adults had greatly elevated concentrations of cadmium in feathers, kidney, and liver.« less
Song, Alice Tung Wan; de Mello, Evandro Sobroza; Alves, Venâncio Avancini Ferreira; Cavalheiro, Norma de Paula; Melo, Carlos Eduardo; Bonazzi, Patricia Rodrigues; Tengan, Fatima Mitiko; Freire, Maristela Pinheiro; Barone, Antonio Alci; D'Albuquerque, Luiz Augusto Carneiro; Abdala, Edson
2015-01-01
Histology is the gold standard for diagnosing acute rejection and hepatitis C recurrence after liver transplantation. However, differential diagnosis between the two can be difficult. We evaluated the role of C4d staining and quantification of hepatitis C virus (HCV) RNA levels in liver tissue. This was a retrospective study of 98 liver biopsy samples divided into four groups by histological diagnosis: acute rejection in patients undergoing liver transplant for hepatitis C (RejHCV+), HCV recurrence in patients undergoing liver transplant for hepatitis C (HCVTx+), acute rejection in patients undergoing liver transplant for reasons other than hepatitis C and chronic hepatitis C not transplanted (HCVTx-). All samples were submitted for immunohistochemical staining for C4d and HCV RNA quantification. Immunoexpression of C4d was observed in the portal vessels and was highest in the HCVTx- group. There was no difference in C4d expression between the RejHCV+ and HCVTx+ groups. However, tissue HCV RNA levels were higher in the HCVTx+ group samples than in the RejHCV+ group samples. Additionally, there was a significant correlation between tissue and serum levels of HCV RNA. The quantification of HCV RNA in liver tissue might prove to be an efficient diagnostic test for the recurrence of HCV infection. PMID:25742264
Effects of aspirin and enoxaparin in a rat model of liver fibrosis.
Li, Chen-Jie; Yang, Zhi-Hui; Shi, Xiao-Liu; Liu, De-Liang
2017-09-21
To examine the effects of aspirin and enoxaparin on liver function, coagulation index and histopathology in a rat model of liver fibrosis. METHODS Forty-five male Sprague-Dawley rats were randomly divided into the control group (n = 5) and model group (n = 40). Thioacetamide (TAA) was used to induce liver fibrosis in the model group. TAA-induced fibrotic rats received TAA continuously (n = 9), TAA + low-dose aspirin (n = 9), TAA + high-dose aspirin (n = 9) or TAA + enoxaparin (n = 9) for 4 wk. All rats were euthanized after 4 wk, and both hematoxylin-eosin and Masson staining were performed to observe pathological changes in liver tissue. Liver fibrosis was assessed according to the METAVIR score. Compared with untreated cirrhotic controls, a significant improvement in fibrosis grade was observed in the low-dose aspirin, high-dose aspirin and enoxaparin treated groups, especially in the high-dose aspirin treated group. Alanine aminotransferase and total bilirubin were higher, albumin was lower and both prothrombin time and international normalized ratio were prolonged in the four treatment groups compared to controls. No significant differences among the four groups were observed. Aspirin and enoxaparin can alleviate liver fibrosis in this rat model.
Drozd, Radosław; Pilarczyk, Renata; Pilarczyk, Bogumiła; Drozd, Arleta; Tomza-Marciniak, Agnieszka; Bombik, Teresa; Bąkowska, Małgorzata; Bombik, Elżbieta; Jankowiak, Dorota; Wasak, Agata
2015-12-01
The aim of the study was to evaluate the effect of low concentrations of selenium in the environment on the activity of selected antioxidant enzymes: Se-GSHPx, total GSHPx, SOD, CAT, and GST as well as fatty acid profile in the livers of brown hares during winter and spring. Liver tissues obtained from 20 brown hares collected in the north-eastern Poland in the winter and spring season were analyzed. In the tissue analyzed, a significantly lower level of selenium was noticeable in the spring compared to winter; however, values measured in both seasons indicated a deficiency of this element in the analyzed population of brown hares. There were no differences found that could indicate the influence of Se deficiency on the activity of antioxidant enzymes. The determined activity of antioxidant enzymes and fatty acid composition suggest a negligible impact of the low concentration of Se on the analyzed biochemical parameters of brown hare livers.
Yu, Ying; Wang, Dong; Sun, Dong-Xiao; Xu, Gui-Yun; Li, Jun-Ying; Zhang, Yuan
2011-07-01
Liver fatty acid-binding protein (L-FABP) is closely related to intracellular transportation and deposition of lipids. A positive differential displayed fragment was found in the liver tissue among Silkie (CC), CAU-brown chicken (CD), and their reciprocal hybrids (CD and DC) at 8 weeks-old using differential display RT-PCR techniques (DDRT-PCR). Through recycling, sequencing, and alignment analysis, the fragment was identified as chicken liver fatty acid-binding protein gene (L-FABP, GenBank accession number AY321365). Reverse Northern dot blot and semi-quantitative RT-PCR revealed that the avian L-FABP gene was over-expressed in the liver tissue of the reciprocal hybrids (CD and DC) compared to their parental lines (CC and DD), which was consistent with the fact that higher abdomen fat weight and wider inter-muscular fat width observed in the reciprocal hybrids. Considering the higher expression of L-FABP may contribute to the increased lipid deposition in the hybrid chickens, the functional study of avian L-FABP is warranted in future.
Foster, D J; Thoday, K L
2000-02-01
The concentration of serum alkaline phosphatase (SALP) is commonly elevated in hyperthyroid cats. Agarose gel electrophoresis, in tris -barbital-sodium barbital buffer, with and without the separation enhancer neuraminidase, was used to investigate the sources of the constituent isoenzymes of SALP in serum samples from 34 hyperthyroid cats, comparing them to sera from five healthy cats and to tissue homogenates from liver, kidney, bone and duodenum. Contrary to previous reports, treatment of serum with neuraminidase made differentiation of the various isoenzymes more difficult to achieve. A single band corresponding to the liver isoenzyme (LALP) was found in 100 per cent of healthy cats. Eighty-eight per cent of the hyperthyroid cats showed two bands, corresponding to the liver and bone (BALP) isoenzymes while 12 per cent showed a LALP band alone. In hyperthyroid cats, there was a significant correlation between the serum L-thyroxine concentrations and the SALP concentrations. These findings suggest pathological changes in both bone and liver in most cases of feline thyrotoxicosis. Copyright 2000 Harcourt Publishers LtdCopyright 2000 Harcourt Publishers Ltd.
Havel, Miriam; Betz, Christian S; Leunig, Andreas; Sroka, Ronald
2014-08-01
The basic difference between the various common medical laser systems is the wavelength of the emitted light, leading to altered light-tissue interactions due to the optical parameters of the tissue. This study examines laser induced tissue effects in an in vitro tissue model using 1,470 nm diode laser compared to our standard practice for endonasal applications (940 nm diode laser) under standardised and reproducible conditions. Additionally, in vivo induced tissue effects following non-contact application with focus on mucosal healing were investigated in a controlled intra-individual design in patients treated for hypertrophy of nasal turbinate. A certified diode laser system emitting the light of λ = 1470 nm was evaluated with regards to its tissue effects (ablation, coagulation) in an in vitro setup on porcine liver and turkey muscle tissue model. To achieve comparable macroscopic tissue effects the laser fibres (600 µm core diameter) were fixed to a computer controlled stepper motor and the laser light was applied in a reproducible procedure under constant conditions. For the in vivo evaluation, 20 patients with nasal obstruction due to hyperplasia of inferior nasal turbinates were included in this prospective randomised double-blinded comparative trial. The endoscopic controlled endonasal application of λ = 1470 nm on the one and λ = 940 nm on the other side, both in 'non-contact' mode, was carried out as an outpatient procedure under local anaesthesia. The postoperative wound healing process (mucosal swelling, scab formation, bleeding, infection) was endoscopically documented and assessed by an independent physician. In the experimental setup, the 1,470 nm laser diode system proved to be efficient in inducing tissue effects in non-contact mode with a reduced energy factor of 5-10 for highly perfused liver tissue to 10-20 for muscle tissue as compared to the 940 nm diode laser system. In the in vivo evaluation scab formation following laser surgery as assessed clinically on endonasal endoscopy was significantly reduced on 1,470 nm treated site compared to 940 nm diode laser treated site. Diode laser system (1,470 nm) induces efficient tissue effects compared to 940 nm diode laser system as shown in the tissue model experiment. From the clinical point of view, the healing process following non-contact diode laser application revealed to be improved using 1,470 nm diode laser compared to our standard diode laser practise with 940 nm. © 2014 Wiley Periodicals, Inc.
Sathiavelu, Jayanthi; Senapathy, Giftson Jebakkan; Devaraj, Rajkumar; Namasivayam, Nalini
2009-06-01
To evaluate the effect of chrysin, a natural, biologically active compound extracted from many plants, honey and propolis, on the tissue and circulatory antioxidant status, and lipid peroxidation in ethanol-induced hepatotoxicity in rats. Rats were divided into four groups. Groups 1 and 2 received isocaloric glucose. Groups 3 and 4 received 20% ethanol, equivalent to 5 g/kg bodyweight every day. Groups 2 and 4 received chrysin (20 mg/kg bodyweight) dissolved in 0.5% dimethylsulfoxide. The results showed significantly elevated levels of tissue and circulatory thiobarbituric acid reactive substances, conjugated dienes and lipid hydroperoxides, and significantly lowered enzymic and non-enzymic antioxidant activity of superoxide dismutase, catalase and glutathione-related enzymes such as glutathione peroxidase, glutathione reductase, glutathione-S-transferase, reduced glutathione, vitamin C and vitamin E in ethanol-treated rats compared with the control. Chrysin administration to rats with ethanol-induced liver injury significantly decreased the levels of thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes, and significantly elevated the activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase and the levels of reduced glutathione, vitamin C and vitamin E in the tissues and circulation compared with those of the unsupplemented ethanol-treated rats. The histological changes observed in the liver and kidney correlated with the biochemical findings. Chrysin offers protection against free radical-mediated oxidative stress in rats with ethanol-induced liver injury.
Segmentation of liver region with tumorous tissues
NASA Astrophysics Data System (ADS)
Zhang, Xuejun; Lee, Gobert; Tajima, Tetsuji; Kitagawa, Teruhiko; Kanematsu, Masayuki; Zhou, Xiangrong; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kondo, Hiroshi; Hoshi, Hiroaki; Nawano, Shigeru; Shinozaki, Kenji
2007-03-01
Segmentation of an abnormal liver region based on CT or MR images is a crucial step in surgical planning. However, precisely carrying out this step remains a challenge due to either connectivities of the liver to other organs or the shape, internal texture, and homogeneity of liver that maybe extensively affected in case of liver diseases. Here, we propose a non-density based method for extracting the liver region containing tumor tissues by edge detection processing. False extracted regions are eliminated by a shape analysis method and thresholding processing. If the multi-phased images are available then the overall outcome of segmentation can be improved by subtracting two phase images, and the connectivities can be further eliminated by referring to the intensity on another phase image. Within an edge liver map, tumor candidates are identified by their different gray values relative to the liver. After elimination of the small and nonspherical over-extracted regions, the final liver region integrates the tumor region with the liver tissue. In our experiment, 40 cases of MDCT images were used and the result showed that our fully automatic method for the segmentation of liver region is effective and robust despite the presence of hepatic tumors within the liver.
Esser, Michael; Bitzer, Michael; Kolb, Manuel; Fritz, Jan; Kurucay, Mustafa; Ruff, Christer; Horger, Marius
2018-06-13
To investigate whether liver stiffness measured by acoustic radiation force impulse (ARFI) sonoelastography always correlates with the liver perfusion parameters quantified by perfusion CT in patients with known liver cirrhosis. Sonoelastography and perfusion CT were performed in 50 patients (mean age 65.5; range 45-87 years) with liver cirrhosis, who were classified according to Child-Pugh into class A (30/50, 60%), B (17/50, 34%), and C (3/50, 6%). For standardized ARFI measurements in the left liver lobe at a depth of 4 cm, a convex 6-MHz probe was used. CT examinations were performed using 80 kV, 100 mAs, and 50 ml of iodinated contrast agent injected at 5 ml/s. Using standardized region-of-interest measurements, we quantified arterial, portal venous, and total liver perfusion. There was a significant linear correlation between tissue stiffness and arterial liver perfusion (p = 0.015), and also when limiting the analysis to patients with histology (p = 0.019). In addition, there was a positive correlation between the total blood supply (arterial + portal-venous liver perfusion) to the liver and tissue stiffness (p = 0.001; with histology, p = 0.027). Shear wave velocity increased with higher Child-Pugh stages (p = 0.013). The degree of tissue stiffness in cirrhotic livers correlates expectedly-even if only moderately-with the magnitude of arterial liver perfusion and total liver perfusion. As such, liver elastography remains the leading imaging tool in assessing liver fibrosis.
Tedesco, Dana; Thapa, Manoj; Chin, Chui Yoke; Ge, Yong; Gong, Minghao; Li, Jing; Gumber, Sanjeev; Speck, Patrick; Elrod, Elizabeth J; Burd, Eileen M; Kitchens, William H; Magliocca, Joseph F; Adams, Andrew B; Weiss, David S; Mohamadzadeh, Mansour; Grakoui, Arash
2018-06-01
Variants at the ABCB4 or MDR2 locus, which encodes a biliary transport protein, are associated with a spectrum of cholestatic liver diseases. Exacerbation of liver disease has been linked to increased hepatic levels of interleukin (IL) 17, yet the mechanisms of this increase are not understood. We studied mice with disruption of Mdr2 to determine how defects in liver and alteration in the microbiota contribute to production of IL17 by intrahepatic γδ T cells. We performed studies with Mdr2 -/- and littermate FVB/NJ (control) mice. IL17 was measured in serum samples by an enzyme-linked immunosorbent assay. Mice were injected with neutralizing antibodies against the γδ T-cell receptor (TCR; anti-γδ TCR) or mouse IL17A (anti-IL17A). Livers were collected and bacteria were identified in homogenates by culture procedures; TCRγδ + cells were isolated by flow cytometry. Fecal samples were collected from mice and analyzed by 16S ribosomal DNA sequencing. Cells were stimulated with antibodies or bacteria, and cytokine production was measured. We obtained tissues from 10 patients undergoing liver transplantation for primary sclerosing cholangitis or chronic hepatitis C virus infection. Tissues were analyzed for cytokine production by γδ TCR + cells. Mdr2 -/- mice had collagen deposition around hepatic bile ducts and periportal-bridging fibrosis with influx of inflammatory cells and increased serum levels of IL17 compared with control mice. Administration of anti-IL17A reduced hepatic fibrosis. Livers from Mdr2 -/- mice had increased numbers of IL17A + γδTCR + cells-particularly of IL17A + Vγ6Jγ1 γδ TCR + cells. Fecal samples from Mdr2 -/- mice were enriched in Lactobacillus, and liver tissues were enriched in Lactobacillus gasseri compared with control mice. Mdr2 -/- mice also had increased intestinal permeability. The γδ TCR + cells isolated from Mdr2 -/- livers produced IL17 in response to heat-killed L gasseri. Intraperitoneal injection of control mice with L gasseri led to increased serum levels of IL17 and liver infiltration by inflammatory cells; injection of these mice with anti-γδ TCR reduced serum level of IL17. Intravenous injections of Mdr2 -/- mice with anti-γδ TCR reduced fibrosis; liver levels of IL17, and inflammatory cells; and serum levels of IL17. γδTCR + cells isolated from livers of patients with primary sclerosing cholangitis, but not hepatitis C virus infection, produced IL17. In Mdr2 -/- mice, we found development of liver fibrosis and inflammation to require hepatic activation of γδ TCR + cells and production of IL17 mediated by exposure to L gasseri. This pathway appears to contribute to development of cholestatic liver disease in patients. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Pfeifer, A; Neumann, H G
1986-09-01
trans-4-Acetylaminostilbene (trans-AAS) is acutely toxic in rats and lesions are produced specifically in the glandular stomach. Toxicity is slightly increased by pretreating the animals with phenobarbital (PB) and is completely prevented by pretreatment with methylcholanthrene (MC). The prostaglandin inhibitors, indomethacin and acetyl salicylic acid, do not reduce toxicity. The high efficiency of MC suggested that toxicity is caused by reactive metabolites. trans-[3H]-AAS was administered orally to untreated and to PB- or MC-pretreated female Wistar rats and target doses in different tissues were measured by means of covalent binding to proteins, RNA and DNA. Macromolecular binding in the target tissue of poisoned animals was significantly lower than in liver and kidney and comparable to other non-target tissues. Pretreatment with MC lowered macromolecular binding in all extrahepatic tissues but not in liver. These findings are not in line with tissue specific metabolic activation. The only unique property of the target tissue, glandular stomach, that we observed was a particular affinity for the systemically available parent compound. In the early phase of poisoning, tissue concentrations were exceedingly high and the stomach function was impaired.
Ezetimibe improves hepatic steatosis in relation to autophagy in obese and diabetic rats
Chang, Eugene; Kim, Lisa; Park, Se Eun; Rhee, Eun-Jung; Lee, Won-Young; Oh, Ki-Won; Park, Sung-Woo; Park, Cheol-Young
2015-01-01
AIM: To investigate whether ezetimibe ameliorates hepatic steatosis and induces autophagy in a rat model of obesity and type 2 diabetes. METHODS: Male age-matched lean control LETO and obese and diabetic OLETF rats were administered either PBS or ezetimibe (10 mg/kg per day) via stomach gavage for 20 wk. Changes in weight gain and energy intake were regularly monitored. Blood and liver tissue were harvested after overnight fasting at the end of study. Histological assessment was performed in liver tissue. The concentrations of glucose, insulin, triglycerides (TG), free fatty acids (FFA), and total cholesterol (TC) in blood and TG, FFA, and TG in liver tissue were measured. mRNA and protein abundance involved in autophagy was analyzed in the liver. To investigate the effect of ezetimibe on autophagy and reduction in hepatic fat accumulation, human Huh7 hepatocytes were incubated with ezetimibe (10 μmol/L) together with or without palmitic acid (PA, 0.5 mmol/L, 24 h). Transmission electron microscopy (TEM) was employed to demonstrate effect of ezetimibe on autophagy formation. Autophagic flux was measured with bafilomycin A1, an inhibitor of autophagy and following immunoblotting for autophagy-related protein expression. RESULTS: In the OLETF rats that received ezetimibe (10 mg/kg per day), liver weight were significantly decreased by 20% compared to OLETF control rats without changes in food intake and body weight (P < 0.05). Lipid parameters including TG, FFA, and TC in liver tissue of ezetimibe-administrated OLETF rats were dramatically decreased at least by 30% compared to OLETF controls (P < 0.01). The serum glucose, insulin, HOMA-IR, and lipid profiles were also improved by ezetimibe (P < 0.05). In addition, autophagy-related mRNA expression including ATG5, ATG6, and ATG7 and the protein level of microtubule-associated protein light chain 3 (LC3) were significantly increased in the liver in rats that received ezetimibe (P < 0.05). Likewise, for hepatocytes cultured in vitro, ezetimibe treatment significantly decreased PA-induced fat accumulation and increased PA-reduced mRNA and protein expression involved in autophagy (P < 0.05). Ezetimibe-increased autophagosomes was observed in TEM analysis. Immunoblotting analysis of autophagy formation with an inhibitor of autophagy demonstrated that ezetimibe-increased autophagy resulted from increased autophagic flux. CONCLUSION: The present study demonstrates that ezetimibe-mediated improvement in hepatic steatosis might involve the induction of autophagy. PMID:26167075
Khademi, Farzaneh; Ai, Jafar; Soleimani, Masoud; Verdi, Javad; Mohammad Tavangar, Seyed; Sadroddiny, Esmaeil; Massumi, Mohammad; Mahmoud Hashemi, Seyed
2017-11-01
Liver tissue engineering (TE) is rapidly emerging as an effective technique which combines engineering and biological processes to compensate for the shortage of damaged or destroyed liver tissues. We examined the viability, differentiation, and integration of hepatocyte-like cells on an electrospun polyethersulfone (PES) scaffold, derived from human endometrial stem cells (hEnSCs). Natural polymers were separately grafted on plasma-treated PES nanofibers, that is, collagen, heparan sulfate (HS) and collagen-HS. Galactosilated PES (PES-Gal) nanofibrous were created. The engineering and cell growth parameters were considered and compared with each sample. The cellular studies revealed increased cell survival, attachment, and normal morphology on the bioactive natural polymer-grafted scaffolds after 30 days of hepatic differentiation. The chemical and molecular assays displayed hepatocyte differentiation. These cells were also functional, showing glycogen storage, α-fetoprotein, and albumin secretion. The HS nanoparticle-grafted PES nanofibers demonstrated a high rate of cell proliferation, differentiation, and integration. Based on the observations mentioned above, engineered tissue is a good option in the future, for the commercial production of three-dimensional liver tissues for clinical purposes. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2516-2529, 2017. © 2016 Wiley Periodicals, Inc.
Role of activin A in carbon tetrachloride-induced acute liver injury.
Wang, Dong-Hui; Wang, Yi-Nan; Ge, Jing-Yan; Liu, Hai-Yan; Zhang, Hong-Jun; Qi, Yan; Liu, Zhong-Hui; Cui, Xue-Ling
2013-06-28
To investigate the expression and role of activin A in a mouse model of acute chemical liver injury. Acute liver injury in C57BL/6 male mice was induced by intraperitoneal injection with carbon tetrachloride (CCl4) (0.5 mL/kg, body weight) dissolved in olive oil (1:19 v/v). Mice were sacrificed 1, 3, 5 and 7 d after the treatment. The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum were examined and pathological changes of liver observed by hematoxylin and eosin staining to evaluate the liver injury. Activin A protein levels in serum and hepatic tissue homogenate of mice were detected by enzyme-linked immunosorbent assay, and the expression pattern of activin A protein in livers of mice was examined by immunohistochemistry. Activin type IIA receptor (ActRIIA) and Smad3 expressions in the liver were analyzed by real-time quantitative reverse transcription-polymerase chain reaction. In order to further investigate the role of activin A, we also utilized activin A blocking experiment by anti-activin A antibody (500 μg/kg, body weight) injection into mouse tail vein. In CCl4-treated mice, serum ALT and AST levels were significantly increased, compared with that in control mice (P < 0.01). Furthermore, the serious necrosis was observed around hepatic portal areas in CCl4-treated mice. Simultaneously, activin A levels in serum and hepatic tissue homogenate of mice treated with CCl4 for 1, 3 and 5 d increased significantly, compared with that in control mice (P < 0.01). Activin A protein expression in hepatocytes not within the necrotic area was also upregulated in mice following CCl4 treatment. Not only activin A, but also ActRIIA and activin signaling molecule Smad3 mRNA expressions in injury liver induced by CCl4 were significantly higher than that in control liver. In addition, levels of serum ALT and AST in CCl4-treated mice were significantly decreased by injection of anti-activin A antibody to block endogenous activin A action, compared with that in CCl4-treated mice by injection of immunoglobulin G instead of anti-activin A antibody (P < 0.01), and the severity of liver injury was also reduced remarkably. These data show that activin A is involved in CCl4-induced acute liver injury. Blocking activin A actions may be a therapeutic approach for acute liver injury.
The liver tissue bank and clinical database in China.
Yang, Yuan; Liu, Yi-Min; Wei, Ming-Yue; Wu, Yi-Fei; Gao, Jun-Hui; Liu, Lei; Zhou, Wei-Ping; Wang, Hong-Yang; Wu, Meng-Chao
2010-12-01
To develop a standardized and well-rounded material available for hepatology research, the National Liver Tissue Bank (NLTB) Project began in 2008 in China to make well-characterized and optimally preserved liver tumor tissue and clinical database. From Dec 2008 to Jun 2010, over 3000 individuals have been enrolled as liver tumor donors to the NLTB, including 2317 cases of newly diagnosed hepatocellular carcinoma (HCC) and about 1000 cases of diagnosed benign or malignant liver tumors. The clinical database and sample store can be managed easily and correctly with the data management platform used. We believe that the high-quality samples with detailed information database will become the cornerstone of hepatology research especially in studies exploring the diagnosis and new treatments for HCC and other liver diseases.
Yamamoto, Shin; Oshima, Yusuke; Saitou, Takashi; Watanabe, Takao; Miyake, Teruki; Yoshida, Osamu; Tokumoto, Yoshio; Abe, Masanori; Matsuura, Bunzo; Hiasa, Yoichi; Imamura, Takeshi
2016-12-01
Non-alcoholic steatohepatitis (NASH) is a common liver disorder caused by fatty liver. Because NASH is associated with fibrotic and morphological changes in liver tissue, a direct imaging technique is required for accurate staging of liver tissue. For this purpose, in this study we took advantage of two label-free optical imaging techniques, second harmonic generation (SHG) and auto-fluorescence (AF), using two-photon excitation microscopy (TPEM). Three-dimensional ex vivo imaging of tissues from NASH model mice, followed by image processing, revealed that SHG and AF are sufficient to quantitatively characterize the hepatic capsule at an early stage and parenchymal morphologies associated with liver disease progression, respectively.
Urasaki, Yasuyo; Fiscus, Ronald R; Le, Thuc T
2016-04-01
We describe an alternative approach to classifying fatty liver by profiling protein post-translational modifications (PTMs) with high-throughput capillary isoelectric focusing (cIEF) immunoassays. Four strains of mice were studied, with fatty livers induced by different causes, such as ageing, genetic mutation, acute drug usage, and high-fat diet. Nutrient-sensitive PTMs of a panel of 12 liver metabolic and signalling proteins were simultaneously evaluated with cIEF immunoassays, using nanograms of total cellular protein per assay. Changes to liver protein acetylation, phosphorylation, and O-N-acetylglucosamine glycosylation were quantified and compared between normal and diseased states. Fatty liver tissues could be distinguished from one another by distinctive protein PTM profiles. Fatty liver is currently classified by morphological assessment of lipid droplets, without identifying the underlying molecular causes. In contrast, high-throughput profiling of protein PTMs has the potential to provide molecular classification of fatty liver. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Long-term culture of human liver tissue with advanced hepatic functions.
Ng, Soon Seng; Xiong, Anming; Nguyen, Khanh; Masek, Marilyn; No, Da Yoon; Elazar, Menashe; Shteyer, Eyal; Winters, Mark A; Voedisch, Amy; Shaw, Kate; Rashid, Sheikh Tamir; Frank, Curtis W; Cho, Nam Joon; Glenn, Jeffrey S
2017-06-02
A major challenge for studying authentic liver cell function and cell replacement therapies is that primary human hepatocytes rapidly lose their advanced function in conventional, 2-dimensional culture platforms. Here, we describe the fabrication of 3-dimensional hexagonally arrayed lobular human liver tissues inspired by the liver's natural architecture. The engineered liver tissues exhibit key features of advanced differentiation, such as human-specific cytochrome P450-mediated drug metabolism and the ability to support efficient infection with patient-derived inoculums of hepatitis C virus. The tissues permit the assessment of antiviral agents and maintain their advanced functions for over 5 months in culture. This extended functionality enabled the prediction of a fatal human-specific hepatotoxicity caused by fialuridine (FIAU), which had escaped detection by preclinical models and short-term clinical studies. The results obtained with the engineered human liver tissue in this study provide proof-of-concept determination of human-specific drug metabolism, demonstrate the ability to support infection with human hepatitis virus derived from an infected patient and subsequent antiviral drug testing against said infection, and facilitate detection of human-specific drug hepatotoxicity associated with late-onset liver failure. Looking forward, the scalability and biocompatibility of the scaffold are also ideal for future cell replacement therapeutic strategies.
NASA Astrophysics Data System (ADS)
Chen, Jiangang; Hou, Gary Y.; Marquet, Fabrice; Han, Yang; Camarena, Francisco; Konofagou, Elisa
2015-10-01
Acoustic attenuation represents the energy loss of the propagating wave through biological tissues and plays a significant role in both therapeutic and diagnostic ultrasound applications. Estimation of acoustic attenuation remains challenging but critical for tissue characterization. In this study, an attenuation estimation approach was developed using the radiation-force-based method of harmonic motion imaging (HMI). 2D tissue displacement maps were acquired by moving the transducer in a raster-scan format. A linear regression model was applied on the logarithm of the HMI displacements at different depths in order to estimate the acoustic attenuation. Commercially available phantoms with known attenuations (n=5 ) and in vitro canine livers (n=3 ) were tested, as well as HIFU lesions in in vitro canine livers (n=5 ). Results demonstrated that attenuations obtained from the phantoms showed a good correlation ({{R}2}=0.976 ) with the independently obtained values reported by the manufacturer with an estimation error (compared to the values independently measured) varying within the range of 15-35%. The estimated attenuation in the in vitro canine livers was equal to 0.32 ± 0.03 dB cm-1 MHz-1, which is in good agreement with the existing literature. The attenuation in HIFU lesions was found to be higher (0.58 ± 0.06 dB cm-1 MHz-1) than that in normal tissues, also in agreement with the results from previous publications. Future potential applications of the proposed method include estimation of attenuation in pathological tissues before and after thermal ablation.
137Cs and 210Po in Pacific Walrus and Bearded Seal from St. Lawrence Island, Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, T F; Seagars, D J; Jokela, T
2005-02-02
The activity concentration of Cesium-137 ({sup 137}Cs) and naturally-occurring Polonium-210 ({sup 210}Po) were measured in the muscle tissue, kidney and liver of Pacific walrus (Odobenus rosmarus divergens) and bearded seal (Erignathus barbatus) collected by native hunters from the Bering Sea. The mean {sup 137}Cs concentrations in muscle, liver and kidney of Pacific walrus were 0.07, 0.09 and 0.07 Bq kg{sup -1} (N= 5, wet weight), respectively, and 0.17, 0.10, and 0.17 Bq kg{sup -1} (N=2, wet weight), respectively, in bearded seal. In general, {sup 137}Cs tissue concentrations are significantly lower than those previously reported for mammals from other regions. Bymore » comparison, {sup 210}Po activity concentrations appear to be higher than those reported elsewhere but a larger variation. The mean {sup 210}Po concentration in the muscle tissue, liver and kidney of Pacific walrus (N=5, wet weight) were 28.7, 189, and 174 Bq kg{sup -1}, respectively. This compares with {sup 210}Po concentration values (N=2, wet weight) of 27, 207, and 68 Bq kg{sup -1} measured in the muscle tissue, liver and kidney, of bearded seal, respectively. Estimated bioaccumulation factors--as defined by the radionuclide concentration ratio between the target tissue to that in sea water--were two to three orders of magnitude higher for {sup 210}Po that those of {sup 137}Cs. We conclude from radiological dose estimates that ingestion of {sup 137}Cs in foods derived from walrus and seal will pose no threat to human health. This work has important implications for assessing health risks to Alaskan coastal communities concerned about the dumping of nuclear waste in the Russia Arctic.« less
Calvert, Valerie S; Collantes, Rochelle; Elariny, Hazem; Afendy, Arian; Baranova, Ancha; Mendoza, Michael; Goodman, Zachary; Liotta, Lance A; Petricoin, Emanuel F; Younossi, Zobair M
2007-07-01
Nonalcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disease. Omental adipose tissue, a biologically active organ secreting adipokines and cytokines, may play a role in the development of NAFLD. We tested this hypothesis with reverse-phase protein microarrays (RPA) for multiplexed cell signaling analysis of adipose tissue from patients with NAFLD. Omental adipose tissue was obtained from 99 obese patients. Liver biopsies obtained at the time of surgery were all read by the same hepatopathologist. Adipose tissue was exposed to rapid pressure cycles to extract protein lysates. RPA was used to investigate intracellular signaling. Analysis of 54 different kinase substrates and cell signaling endpoints showed that an insulin signaling pathway is deranged in different locations in NAFLD patients. Furthermore, components of insulin receptor-mediated signaling differentiate most of the conditions on the NAFLD spectrum. For example, PKA (protein kinase A) and AKT/mTOR (protein kinase B/mammalian target of rapamycin) pathway derangement accurately discriminates patients with NASH from those with the non-progressive forms of NAFLD. PKC (protein kinase C) delta, AKT, and SHC phosphorylation changes occur in patients with simple steatosis. Amounts of the FKHR (forkhead factor Foxo1)phosphorylated at S256 residue were significantly correlated with AST/ALT ratio in all morbidly obese patients. Furthermore, amounts of cleaved caspase 9 and pp90RSK S380 were positively correlated in patients with NASH. Specific insulin pathway signaling events are altered in the adipose tissue of patients with NASH compared with patients with nonprogressive forms of NAFLD. These findings provide evidence for the role of omental fat in the pathogenesis, and potentially, the progression of NAFLD.
Chen, Jiangang; Hou, Gary Y; Marquet, Fabrice; Han, Yang; Camarena, Francisco; Konofagou, Elisa
2015-10-07
Acoustic attenuation represents the energy loss of the propagating wave through biological tissues and plays a significant role in both therapeutic and diagnostic ultrasound applications. Estimation of acoustic attenuation remains challenging but critical for tissue characterization. In this study, an attenuation estimation approach was developed using the radiation-force-based method of harmonic motion imaging (HMI). 2D tissue displacement maps were acquired by moving the transducer in a raster-scan format. A linear regression model was applied on the logarithm of the HMI displacements at different depths in order to estimate the acoustic attenuation. Commercially available phantoms with known attenuations (n = 5) and in vitro canine livers (n = 3) were tested, as well as HIFU lesions in in vitro canine livers (n = 5). Results demonstrated that attenuations obtained from the phantoms showed a good correlation (R² = 0.976) with the independently obtained values reported by the manufacturer with an estimation error (compared to the values independently measured) varying within the range of 15-35%. The estimated attenuation in the in vitro canine livers was equal to 0.32 ± 0.03 dB cm(-1) MHz(-1), which is in good agreement with the existing literature. The attenuation in HIFU lesions was found to be higher (0.58 ± 0.06 dB cm(-1) MHz(-1)) than that in normal tissues, also in agreement with the results from previous publications. Future potential applications of the proposed method include estimation of attenuation in pathological tissues before and after thermal ablation.
Effect of Topically Applied Diisopropylfluorophosphate on Glucose Metabolism in the Rat.
1982-12-01
intermediary metabolism, * liver , adipose tissue topical application. DFP - diisopropylfluorophosphate OL AIISTRACT’MOMNomrse sft NOMNY Ol~ dulp lekib) .1A...skin, liver and adipose tissue preparations were determined. DFP had no demonstratable effect on glucose oxidation. In contrast, DFP enhanced fatty...acid synthesis by 70% over the control values in the skin and by 56 and 92% in the liver and adipose tissue, respectively. DFP stimulated synthesis. of
Kang, JeongWoo; Park, Su-Jeong; Park, Hae-Chul; Gedi, Vinayakumar; So, ByungJae; Lee, Kwang-Jick
2014-09-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) are the group of drugs having the therapeutic efficacy of analgesic and antipyretic. To detect health-threatening residues of NSAIDs, a fast and easy multiresidue method based on liquid chromatography tandem mass spectrometry (LC-MS/MS) was described. Ten NSAIDs were extracted from the tissues using 2 mL of acetonitrile and 0.1 mL of 2 mM ammonium formate in distilled water. After clean-up using C18 sorbent, it was evaporated under nitrogen, reconstituted with 1 mL distilled water and analyzed by LC-MS/MS. The method was validated based on guideline for residue testing laboratory. Furthermore, the method has also been applied successfully to detect ten NSAIDs from bovine, porcine, and chicken liver tissues. In a total of 315 liver samples tested, acetylic salicylic acid was detected from 28 porcine and 2 chicken liver tissues at levels of 13 ∼ 576 and 50 ∼ 53 ng/g, respectively. Subsequently, paracetamol was detected in 15 porcine liver tissues with a detection levels of 28 ∼ 381 ng/g. Phenylbutazone and its metabolite, oxyphenylbutazone, were detected at 247 and 15 ng/g range in one of the bovine liver tissue, respectively.
Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering.
Lee, Jin Woo; Choi, Yeong-Jin; Yong, Woon-Jae; Pati, Falguni; Shim, Jin-Hyung; Kang, Kyung Shin; Kang, In-Hye; Park, Jaesung; Cho, Dong-Woo
2016-01-12
Several studies have focused on the regeneration of liver tissue in a two-dimensional (2D) planar environment, whereas actual liver tissue is three-dimensional (3D). Cell printing technology has been successfully utilized for building 3D structures; however, the poor mechanical properties of cell-laden hydrogels are a major concern. Here, we demonstrate the printing of a 3D cell-laden construct and its application to liver tissue engineering using 3D cell printing technology through a multi-head tissue/organ building system. Polycaprolactone (PCL) was used as a framework material because of its excellent mechanical properties. Collagen bioink containing three different types of cells-hepatocytes (HCs), human umbilical vein endothelial cells , and human lung fibroblasts--was infused into the canals of a PCL framework to induce the formation of capillary--like networks and liver cell growth. A co-cultured 3D microenvironment of the three types of cells was successfully established and maintained. The vascular formation and functional abilities of HCs (i.e., albumin secretion and urea synthesis) demonstrated that the heterotypic interaction among HCs and nonparenchymal cells increased the survivability and functionality of HCs within the collagen gel. Therefore, our results demonstrate the prospect of using cell printing technology for the creation of heterotypic cellular interaction within a structure for liver tissue engineering.
Bedossa, Pierre; Tordjman, Joan; Aron-Wisnewsky, Judith; Poitou, Christine; Oppert, Jean-Michel; Torcivia, Adriana; Bouillot, Jean-Luc; Paradis, Valerie; Ratziu, Vlad; Clément, Karine
2017-09-01
Non-alcoholic fatty liver disease (NAFLD) is a frequent complication of morbid obesity, but its severity varies greatly and thus there is a strong need to better define its natural history in these patients. Liver biopsies were systematically performed in 798 consecutive patients with severe obesity undergoing bariatric surgery. Histology was compared with clinical, biological, anthropometrical and body composition characteristics. Patients with presumably normal liver (n=179, 22%) were significantly younger at bariatric surgery than patients with NAFLD (37.0 vs 44.4 years, p<0.0001). However, both groups showed quite similar obesity duration, since patients with presumably normal liver reported the onset of obesity at a significantly younger age than those with NAFLD (14.8 vs 20.0 year, p<0.0001). The trunk/limb fat mass ratio increased according to liver disease severity (presumably normal liver: 1.00, steatosis: 1.21, non-alcoholic steatohepatitis (NASH): 1.34, p<0.0001), although the total body fat mass decreased (presumably normal liver: 50%, steatosis: 49.1%, NASH: 47.4%, p<0.0001). The volume of subcutaneous adipocytes increased according to severity of liver disease but only in female patients (presumably normal liver: 8543 picolitres, steatosis: 9156 picolitres, NASH: 9996 picolitres). These results suggest that young adults are more prone to store fat in subcutaneous tissue and reach the threshold of bariatric surgery indication before their liver is damaged. A shift of fat storage from subcutaneous to visceral adipose tissue compartment is associated with liver damages. Liver might also be targeted by subcutaneous hypertrophic adipocytes in females since hypertrophic adipocytes are more exposed to lipolysis and to the production of inflammatory mediators. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues.
Nicolle, S; Vezin, P; Palierne, J-F
2010-03-22
Biological soft tissues exhibit a strongly nonlinear viscoelastic behaviour. Among parenchymous tissues, kidney and liver remain less studied than brain, and a first goal of this study is to report additional material properties of kidney and liver tissues in oscillatory shear and constant shear rate tests. Results show that the liver tissue is more compliant but more strain hardening than kidney. A wealth of multi-parameter mathematical models has been proposed for describing the mechanical behaviour of soft tissues. A second purpose of this work is to develop a new constitutive law capable of predicting our experimental data in the both linear and nonlinear viscoelastic regime with as few parameters as possible. We propose a nonlinear strain-hardening fractional derivative model in which six parameters allow fitting the viscoelastic behaviour of kidney and liver tissues for strains ranging from 0.01 to 1 and strain rates from 0.0151 s(-1) to 0.7s(-1). Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Josan, Sonal; Billingsley, Kelvin; Orduna, Juan; Park, Jae Mo; Luong, Richard; Yu, Liqing; Hurd, Ralph; Pfefferbaum, Adolf; Spielman, Daniel; Mayer, Dirk
2015-12-01
To facilitate diagnosis and staging of liver disease, sensitive and non-invasive methods for the measurement of liver metabolism are needed. This study used hyperpolarized (13)C-pyruvate to assess metabolic parameters in a CCl4 model of liver damage in rats. Dynamic 3D (13)C chemical shift imaging data from a volume covering kidney and liver were acquired from 8 control and 10 CCl4-treated rats. At 12 time points at 5 s temporal resolution, we quantified the signal intensities and established time courses for pyruvate, alanine, and lactate. These measurements were compared with standard liver histology and an alanine transaminase (ALT) enzyme assay using liver tissue from the same animals. All CCl4-treated but none of the control animals showed histological liver damage and elevated ALT enzyme levels. In agreement with these results, metabolic imaging revealed an increased alanine/pyruvate ratio in liver of CCl4-treated rats, which is indicative of elevated ALT activity. Similarly, lactate/pyruvate ratios were higher in CCl4-treated compared with control animals, demonstrating the presence of inflammation. No significant differences in metabolite ratios were observed in kidney or vasculature. Thus this work shows that metabolic imaging using (13)C-pyruvate can be a successful tool to non-invasively assess liver damage in vivo. Copyright © 2015 John Wiley & Sons, Ltd.
Yang, Qing-Li; Shen, Ji-Qing; Xue, Yan; Cheng, Xiao-Bing; Jiang, Zhi-Hua; Yang, Yi-Chao; Chen, Ying-Dan; Zhou, Xiao-Nong
2015-12-01
The nitric oxide (NO) formation and intrinsic nitrosation may be involved in the possible mechanisms of liver fluke-associated carcinogenesis. We still do not know much about the responses of inducible NO synthase (iNOS) induced by Clonorchis sinensis infection. This study was conducted to explore the pathological lesions and iNOS expressions in the liver of mice with different infection intensity levels of C. sinensis. Extensive periductal inflammatory cell infiltration, bile duct hyperplasia, and fibrosis were commonly observed during the infection. The different pathological responses in liver tissues strongly correlated with the infection intensity of C. sinensis. Massive acute spotty necrosis occurred in the liver parenchyma after a severe infection. The iNOS activity in liver tissues increased, and iNOS-expressing cells with morphological differences were observed after a moderate or severe infection. The iNOS-expressing cells in liver tissues had multiple origins.
Yang, Qian; Bavi, Prashant; Wang, Julia Y; Roehrl, Michael H
2017-09-25
Late-stage colorectal cancer with liver metastasis is common and affords poor prognosis, yet there is a dearth of reliable biomarkers. Cancer is often characterized by an increase in serologic autoantibodies. Hence, we embarked on an immuno-proteomic strategy by using autoantibodies to discover antigens in tumor tissue as potential cancer markers. Matched sets of tissues from primary colon cancer, liver metastases, and adjacent benign tissues were obtained from colon cancer patients. Tissue proteins were extracted, and autoantigens were uncovered by immunoblotting with autoantibodies and sequenced by mass spectrometry. Informatics analyses identified 48 proteins that were found in tumor only but were absent in normal tissue. Five of these were reproducibly found in two independent experiments, including olfactomedin 4 (OLFM4), CD11b, integrin α2 (ITGA2), periostin, and thrombospondin-2. Further confirmation with tissue from 43 patients by Western blotting, immunohistochemistry, and tissue microarray deemed OLFM4, CD11b, and ITGA2 to be significantly overexpressed in both primary colon tumors and liver metastases. These tumor tissue autoantigens may serve as promising markers for developing differential diagnostics and immunotherapies for colorectal cancers, in particular, those with tendency to progress to liver metastases. Late-stage colorectal cancer with liver metastasis is common and affords poor prognosis, yet there is a dearth of reliable biomarkers. Cancer is often characterized by an increase in serologic autoantibodies. Cancer tissue immunogens - antigens capable of inducing specific antibody production in patients - are promising targets for development of precision diagnostics and immunotherapies. In our manuscript, we describe on an immuno-proteomic strategy by using autoantibodies to discover antigens in tumor tissue as potential cancer markers. Matched sets of tissues from primary colon cancer, liver metastases, and adjacent benign tissues were analyzed. Putative autoantigens were first uncovered by immunoblotting with autoantibodies and sequenced by mass spectrometry. Informatics analyses identified 48 proteins that were found in tumor only but were absent in normal tissue. Using follow-up validation in two independent cohorts, we discovered that OLFM4, CD11b, and ITGA2 are proteins that are overexpressed in both primary colon tumors and liver metastases. We highlight the possible roles of these 3 proteins in carcinogenesis and tumor microenvironment and the implications for autoantigenic immune recognition. More generally, colon cancer biomarkers with autoantigenic properties, like the ones we describe in our manuscript, may open new opportunities for diagnosis, molecular classification, and therapy of colorectal cancer, particularly of aggressive tumors with tendency to progress to liver metastases. The autoantigenic properties of biomarkers are also expected to be of great relevance for immunotherapeutic development. Copyright © 2017. Published by Elsevier B.V.
Harino, H; Ohji, M; Wattayakorn, G; Adulyanukosol, K; Arai, T; Miyazaki, N
2007-07-01
Concentrations of butyltin (BT) and phenyltin (PT) compounds were measured in organs and tissues of five species of whales (Bride's whale [Balaenoptera edeni], false killer whale [Pseudorca crassidens], pygmy sperm whale [Kogia breviceps], short-finned pilot whale [Globicephala macrorhynchus], and sperm whale [Physeter macrocephalus]) found stranded on the coasts of Thailand. The mean concentrations of BTs in various whales were in the range of 0.157 to 1.03 mg kg(-1 )wet weight, which were higher levels than the reported concentrations in whales from other countries. PT concentrations were also detected in the range of 0.022 to 1.14 mg kg(-1) wet weight. The concentrations of BTs and PTs in whales were higher than those in mussels from the coastal area of Thailand. Concentrations of tributyltin (TBT) and triphenyltin (TPT) compounds in whale organs and tissues were also compared, and it was found that TBT concentrations were generally higher in liver and lower in lung. TPT concentrations were higher in liver and blubber and lower in lung. Ratios of TBT degradation products in whale liver, namely monobutyltin (MBT) and dibutyltin (DBT), were higher than the ratios of TBT. TPTs in liver were found to be dominant among PTs. The patterns of BTs and PTs in false killer whale liver were different from those in the other whales by cluster analysis. Their concentrations in false killer whales were the highest among all whales in this study. False killer whales feed on squid and large pelagic fish containing higher concentrations of organotin (OT) compounds, so the differences in patterns and concentrations of OTs in liver between false killer whales and the other whales may be caused by difference in diet.
Chu, Shaogang; Wang, Jun; Leong, Gladys; Woodward, Lee Ann; Letcher, Robert J.; Li, Qing X.
2015-01-01
The Great Pacific Garbage Patch (GPGP) is a gyre of marine plastic debris in the North Pacific Ocean, and nearby is Midway Atoll which is a focal point for ecological damage. This study investigated 13 C4-C16 perfluorinated carboxylic acids (PFCAs), four (C4, C6, C8 and C10) perfluorinated sulfonates and perfluoro-4-ethylcyclohexane sulfonate [collectively perfluoroalkyl acids (PFAAs)] in black-footed albatross tissues (collected in 2011) from Midway Atoll. Of the 18 PFCAs and PFSAs monitored, most were detectable in the liver, muscle and adipose tissues. The concentrations of PFCAs and PFSAs were higher than those in most seabirds from the arctic environment, but lower than those in most of fish-eating water birds collected in the U.S. mainland. The concentrations of the PFAAs in the albatross livers were 7-fold higher than those in Laysan albatross liver samples from the same location reported in 1994. The concentration ranges of PFOS were 22.91-70.48, 3.01-6.59 and 0.53-8.35 ng g-1 wet weight (ww), respectively, in the liver, muscle and adipose. In the liver samples PFOS was dominant, followed by longer chain PFUdA (8.04-18.70 ng g-1 ww), PFTrDA, and then PFNA, PFDA and PFDoA. Short chain PFBA, PFPeA, PFBS and C16 PFODA were below limit of quantification. C8-C13 PFCAs showed much higher composition compared to those found in other wildlife where PFOS typically predominated. The concentrations of PFUdA in all 8 individual albatross muscle samples were even higher than those of PFOS. This phenomenon may be attributable to GPGP as a pollution source as well as PFAA physicochemical properties. PMID:26037817
[Protective effect of Tanreqing injection on acute hepatic injury induced by CCl4 in rats].
Lei, Yang; Zhou, Ai-Min; Guo, Tao; Tan, Ye; Tao, Yan-Yan; Liu, Cheng-Hai
2013-04-01
To observe the protective effect of Tanreqing injection(TRQ) on carbon tetrachloride-induced acute hepatic injury in rats. Rats were randomly divided into the normal group and the model group, and injected subcutaneously with 100% CCl4 5 mL x kg(-1) to establish the single CCl4 infection model, in order to observe the changes in rat liver injury after 3 h and 6 h. Subsequently, the multiple CCl4 infection liver injury model was reproduced by subcutaneously injecting 100% CCl4 (5 mL x kg(-1)), 50% CCl4 olive oil solution (2 mL x kg(-1)) and then 20% CCl4 olive oil solution (2 mL x kg(-1)). At 6 h after the first CCl4 injection, the rats were divided into six groups: the model group, the control group, the diammonium glycyrrhizinate-treated group, and TRQ high, middle and low dose groups. They were injected through caudal veins, while a normal control group was set up. Their weight and liver-body ratio were observed. Hepatic inflammation was observed with HE staining. Assay kits were adopted to detect ALT, AST, T. Bil, D. Bil, CHE, TBA, gamma-GT and Alb. According to the single injection model, serum AST and T. Bil of model rats were obviously increased at 6 h after single subcutaneous injection of CCl4, with disordered lobular structure in liver tissues, notable swollen liver cells and remarkable liver injury. According to the results of the multiple injection pharmacological experiment, compared with the normal group, the model group had higher serum ALT, AST, and gamma-GT activities (P < 0. 05), TBA and T. Bil contents (P < 0.05) and lower CHE activity (P < 0.05). HE staining showed disorganized lobular structure in liver tissues and notable ballooning degeneration in liver cells. Compared with the model group, TRQ high and middle dose groups and the diammonium glycyrrhizinate-treated group showed significant charges in serum liver function and inflammation in liver cells. Specifically, TRQ high and middle dose groups were superior to the diammonium glycyrrhizinate-treated group. Tanreqing injection has significant protective effect on CCl4-induced acute hepatic injury in rats.
Comparative proteomic assessment of matrisome enrichment methodologies
Krasny, Lukas; Paul, Angela; Wai, Patty; Howard, Beatrice A.; Natrajan, Rachael C.; Huang, Paul H.
2016-01-01
The matrisome is a complex and heterogeneous collection of extracellular matrix (ECM) and ECM-associated proteins that play important roles in tissue development and homeostasis. While several strategies for matrisome enrichment have been developed, it is currently unknown how the performance of these different methodologies compares in the proteomic identification of matrisome components across multiple tissue types. In the present study, we perform a comparative proteomic assessment of two widely used decellularisation protocols and two extraction methods to characterise the matrisome in four murine organs (heart, mammary gland, lung and liver). We undertook a systematic evaluation of the performance of the individual methods on protein yield, matrisome enrichment capability and the ability to isolate core matrisome and matrisome-associated components. Our data find that sodium dodecyl sulphate (SDS) decellularisation leads to the highest matrisome enrichment efficiency, while the extraction protocol that comprises chemical and trypsin digestion of the ECM fraction consistently identifies the highest number of matrisomal proteins across all types of tissue examined. Matrisome enrichment had a clear benefit over non-enriched tissue for the comprehensive identification of matrisomal components in murine liver and heart. Strikingly, we find that all four matrisome enrichment methods led to significant losses in the soluble matrisome-associated proteins across all organs. Our findings highlight the multiple factors (including tissue type, matrisome class of interest and desired enrichment purity) that influence the choice of enrichment methodology, and we anticipate that these data will serve as a useful guide for the design of future proteomic studies of the matrisome. PMID:27589945
Uehara, Shotaro; Uno, Yasuhiro; Nakanishi, Kazuyuki; Ishii, Sakura; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi
2017-05-01
Common marmosets ( Callithrix jacchus ), small New World primates, are increasingly attracting attention as potentially useful animal models for drug development. However, characterization of cytochrome P450 (P450) 3A enzymes involved in the metabolism of a wide variety of drugs has not investigated in marmosets. In this study, sequence homology, tissue distribution, and enzymatic properties of marmoset P450 3A4 ortholog, 3A5 ortholog, and 3A90 were investigated. Marmoset P450 3A forms exhibited high amino acid sequence identities (88-90%) to the human and cynomolgus monkey P450 3A orthologs and evolutionary closeness to human and cynomolgus monkey P450 3A orthologs compared with other P450 3A enzymes. Among the five marmoset tissues examined, P450 3A4 ortholog mRNA was abundant in livers and small intestines where P450 3A4 ortholog proteins were immunologically detected. Three marmoset P450 3A proteins heterologously expressed in Escherichia coli membranes catalyzed midazolam 1'- and 4-hydroxylation, alprazolam 4-hydroxylation, nifedipine oxidation, and testosterone 6 β -hydroxylation, similar to cynomolgus monkey and human P450 3A enzymes. Among the marmoset P450 3A enzymes, P450 3A4 ortholog effectively catalyzed midazolam 1'-hydroxylation, comparable to microsomes from marmoset livers and small intestines. Correlation analyses with 23 individual marmoset liver microsomes suggested contributions of P450 3A enzymes to 1'-hydroxylation of both midazolam (human P450 3A probe) and bufuralol (human P450 2D6 probe), similar to cynomolgus monkey P450 3A enzymes. These results indicated that marmoset P450 3A forms had functional characteristics roughly similar to cynomolgus monkeys and humans in terms of tissue expression patterns and catalytic activities, suggesting marmosets as suitable animal models for P450 3A-dependent drug metabolism. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Drouin, Gaetan; Catheline, Daniel; Sinquin, Annaëlle; Baudry, Charlotte; Le Ruyet, Pascale; Rioux, Vincent; Legrand, Philippe
2018-01-01
In human nutrition, optimized the status of n-3 long-chain polyunsaturated fatty acids (LCPUFA) and especially docosahexaenoic acid (DHA) during growth appears to be one of the most important goal. We investigated the potential impact of a partial incorporation of dairy lipids (DL) in the diet to increase the n-3 LCPUFA content in tissues, compared to a mixture of vegetable oils. Rats were fed with vegetable oil diet or DL diet, supplemented or not supplemented with DHA, from weaning for 6 weeks. All diets provided the same quantity of 2.3% of total fatty acids of precursor α-linolenic acid. LCPUFA levels in brain, retina, liver, heart, red blood cells and epididymal adipose tissue, Δ-6 desaturase activity and mRNA expression in liver, and plasma cholesterol were measured. Rats fed a DL diet increased their DHA content in brain and retina compared with rats fed a vegetable oil diet and reached the same level than rats directly supplemented with DHA. The status of n-3 docosapentaenoic acid increased with DL diet in heart, red blood cells and liver. The n-3 docosapentaenoic acid specifically discriminated DL diets in the heart. DL diet increased α-linolenic acid content in liver and epididymal adipose tissue, provided specific fatty acids as short- and medium-chain fatty acids and myristic acid, and increased plasma cholesterol. We hypothesized that dairy lipids may increase the n-3 LCPUFA enrichment in tissues by preserving precursor α-linolenic acid from β-mitochondrial oxidation, associated with the presence of short- and medium-chain fatty acids in DL diets. In conclusion, a partial incorporation of dairy lipids in the diet with an adequate α-linolenic acid content improved the n-3 LCPUFA status, especially DHA in brain and retina. PMID:29876354
CCR1 antagonism attenuates T cell trafficking to omentum and liver in obesity-associated cancer.
Conroy, Melissa J; Galvin, Karen C; Kavanagh, Maria E; Mongan, Ann Marie; Doyle, Suzanne L; Gilmartin, Niamh; O'Farrelly, Cliona; Reynolds, John V; Lysaght, Joanne
2016-07-01
Obesity is a global health problem presenting serious risk of disease fuelled by chronic inflammation, including type 2 diabetes mellitus, cardiovascular disease, liver disease and cancer. Visceral fat, in particular the omentum and liver of obese individuals are sites of excessive inflammation. We propose that chemokine-mediated trafficking of pro-inflammatory cells to the omentum and liver contributes to local and subsequent systemic inflammation. Oesophagogastric adenocarcinoma (OAC) is an exemplar model of obesity and inflammation driven cancer. We have demonstrated that T cells actively migrate to the secreted factors from the omentum and liver of OAC patients and that both CD4(+) and CD8(+) T cells bearing the chemokine receptor CCR5 are significantly more prevalent in these tissues compared to matched blood. The CCR5 ligand and inflammatory chemokine MIP-1α is also secreted at significantly higher concentrations in the omentum and liver of our OAC patient cohort compared to matched serum. Furthermore, we report that MIP-1α receptor antagonism can significantly reduce T cell migration to the secreted factors from OAC omentum and liver. These novel data suggest that chemokine receptor antagonism may have therapeutic potential to reduce inflammatory T cell infiltration to the omentum and liver and in doing so, may ameliorate pathological inflammation in obesity and obesity-associated cancer.
Street, Christina M; Zhu, Zhaohui; Finel, Moshe; Court, Michael H
2017-01-01
1. Bisphenol-A is a ubiquitous environmental contaminant that is primarily metabolized by glucuronidation and associated with various human diseases including breast cancer. Here we identified UDP-glucuronosyltransferases (UGTs) and genetic polymorphisms responsible for interindividual variability in bisphenol-A glucuronidation in human liver and breast. 2. Hepatic UGTs showing the highest bisphenol-A glucuronidation activity included UGT2B15 and UGT1A9. Relative activity factor normalization indicated that UGT2B15 contributes >80% of activity at bisphenol-A concentrations under 5 μM, while UGT1A9 contributes up to 50% of activity at higher concentrations. 3. Bisphenol-A glucuronidation by liver microsomes (46 donors) ranged from 0.25 to 4.3 nmoles/min/mg protein. Two-fold higher glucuronidation (p = 0.018) was observed in UGT1A9 *22/*22 livers compared with *1/*1 and *1/*22 livers. However, no associations were observed for UGT2B15*2 or UGT1A1*28 genotypes. 4. Bisphenol-A glucuronidation by breast microsomes (15 donors) ranged from <0.2 to 56 fmoles/min/mg protein. Breast mRNA expression of UGTs capable of glucuronidating bisphenol-A was highest for UGT1A1, followed by UGT2B4, UGT1A9, UGT1A10, UGT2B7 and UGT2B15. Bisphenol-A glucuronidation was over 10-fold lower in breast tissues with the UGT1A1*28 allele compared with tissues without this allele (p = 0.006). 5. UGT2B15 and UGT1A9 contribute to glucuronidation variability in liver, while UGT1A1 is important in breast.
NASA Astrophysics Data System (ADS)
Sapir, Tamar; Shternhall, Keren; Meivar-Levy, Irit; Blumenfeld, Tamar; Cohen, Hamutal; Skutelsky, Ehud; Eventov-Friedman, Smadar; Barshack, Iris; Goldberg, Iris; Pri-Chen, Sarah; Ben-Dor, Lya; Polak-Charcon, Sylvie; Karasik, Avraham; Shimon, Ilan; Mor, Eytan; Ferber, Sarah
2005-05-01
Shortage in tissue availability from cadaver donors and the need for life-long immunosuppression severely restrict the large-scale application of cell-replacement therapy for diabetic patients. This study suggests the potential use of adult human liver as alternate tissue for autologous beta-cell-replacement therapy. By using pancreatic and duodenal homeobox gene 1 (PDX-1) and soluble factors, we induced a comprehensive developmental shift of adult human liver cells into functional insulin-producing cells. PDX-1-treated human liver cells express insulin, store it in defined granules, and secrete the hormone in a glucose-regulated manner. When transplanted under the renal capsule of diabetic, immunodeficient mice, the cells ameliorated hyperglycemia for prolonged periods of time. Inducing developmental redirection of adult liver offers the potential of a cell-replacement therapy for diabetics by allowing the patient to be the donor of his own insulin-producing tissue. pancreas | transdifferentiation
Quantitative MR Imaging of Hepatic Steatosis: Validation in Ex Vivo Human Livers
Bannas, Peter; Kramer, Harald; Hernando, Diego; Agni, Rashmi; Cunningham, Ashley M.; Mandal, Rakesh; Motosugi, Utaroh; Sharma, Samir D.; del Rio, Alejandro Munoz; Fernandez, Luis; Reeder, Scott B.
2015-01-01
Emerging magnetic resonance imaging (MRI) biomarkers of hepatic steatosis have demonstrated tremendous promise for accurate quantification of hepatic triglyceride concentration. These methods quantify the “proton density fat-fraction” (PDFF), which reflects the concentration of triglycerides in tissue. Previous in vivo studies have compared MRI-PDFF with histologic steatosis grading for assessment of hepatic steatosis. However, the correlation of MRI-PDFF with the underlying hepatic triglyceride content remained unknown. The aim of this ex vivo study was to validate the accuracy of MRI-PDFF as an imaging biomarker of hepatic steatosis. Using ex vivo human livers, we compared MRI-PDFF with magnetic resonance spectroscopy-PDFF (MRS-PDFF), biochemical triglyceride extraction and histology as three independent reference standards. A secondary aim was to compare the precision of MRI-PDFF relative to biopsy for the quantification of hepatic steatosis. MRI-PDFF was prospectively performed at 1.5T in 13 explanted human livers. We performed co-localized paired evaluation of liver fat content in all nine Couinaud segments using single-voxel MRS-PDFF (n=117), tissue wedges for biochemical triglyceride extraction (n=117), and five core biopsies performed in each segment for histologic grading (n=585). Accuracy of MRI-PDFF was assessed through linear regression with MRS-PDFF, triglyceride extraction and histology. Intra-observer agreement, inter-observer agreement and repeatability of MRI-PDFF and histologic grading were assessed through Bland-Altman analyses. MRI-PDFF showed an excellent correlation with MRS-PDFF (r=0.984; CI: 0.978–0.989) and strong correlation with histology (r=0.850; CI: 0.791–0.894) and triglyceride extraction (r=0.871; CI: 0.818–0.909). Intra-observer agreement, inter-observer agreement and repeatability showed a significantly smaller variance for MRI-PDFF than for histologic steatosis grading (all p<0.001). Conclusion MRI-PDFF is an accurate, precise and reader-independent non-invasive imaging biomarker of liver triglyceride content, capable of steatosis quantification over the entire liver. PMID:26224591
SIRT3 mediates multi-tissue coupling for metabolic fuel switching.
Dittenhafer-Reed, Kristin E; Richards, Alicia L; Fan, Jing; Smallegan, Michael J; Fotuhi Siahpirani, Alireza; Kemmerer, Zachary A; Prolla, Tomas A; Roy, Sushmita; Coon, Joshua J; Denu, John M
2015-04-07
SIRT3 is a member of the Sirtuin family of NAD(+)-dependent deacylases and plays a critical role in metabolic regulation. Organism-wide SIRT3 loss manifests in metabolic alterations; however, the coordinating role of SIRT3 among metabolically distinct tissues is unknown. Using multi-tissue quantitative proteomics comparing fasted wild-type mice to mice lacking SIRT3, innovative bioinformatic analysis, and biochemical validation, we provide a comprehensive view of mitochondrial acetylation and SIRT3 function. We find SIRT3 regulates the acetyl-proteome in core mitochondrial processes common to brain, heart, kidney, liver, and skeletal muscle, but differentially regulates metabolic pathways in fuel-producing and fuel-utilizing tissues. We propose an additional maintenance function for SIRT3 in liver and kidney where SIRT3 expression is elevated to reduce the acetate load on mitochondrial proteins. We provide evidence that SIRT3 impacts ketone body utilization in the brain and reveal a pivotal role for SIRT3 in the coordination between tissues required for metabolic homeostasis. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Chenghai; Miao, Jiaming; Yang, Kexin; Guo, Xiasheng; Tu, Juan; Huang, Pintong; Zhang, Dong
2018-05-01
Although predicting temperature variation is important for designing treatment plans for thermal therapies, research in this area is yet to investigate the applicability of prevalent thermal conduction models, such as the Pennes equation, the thermal wave model of bio-heat transfer, and the dual phase lag (DPL) model. To address this shortcoming, we heated a tissue phantom and ex vivo bovine liver tissues with focused ultrasound (FU), measured the temperature response, and compared the results with those predicted by these models. The findings show that, for a homogeneous-tissue phantom, the initial temperature increase is accurately predicted by the Pennes equation at the onset of FU irradiation, although the prediction deviates from the measured temperature with increasing FU irradiation time. For heterogeneous liver tissues, the predicted response is closer to the measured temperature for the non-Fourier models, especially the DPL model. Furthermore, the DPL model accurately predicts the temperature response in biological tissues because it increases the phase lag, which characterizes microstructural thermal interactions. These findings should help to establish more precise clinical treatment plans for thermal therapies.
USDA-ARS?s Scientific Manuscript database
The objective of this survey study was to determine a relationship between the intensity of tissue protein tyrosine nitration measured in samples of mammary gland, liver, pancreas and lung compared to estimated blood endotoxin (LPS) activity. Blood was collected from nine multiparous Holstein cows...
Barrett, Eoin; Fitzgerald, Patrick; Dinan, Timothy G; Cryan, John F; Ross, R Paul; Quigley, Eamonn M; Shanahan, Fergus; Kiely, Barry; Fitzgerald, Gerald F; O'Toole, Paul W; Stanton, Catherine
2012-01-01
The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15) were orally gavaged with either B. breve DPC6330 (10(9) microorganisms/day) alone or in combination with 0.5% (w/w) linoleic acid & 0.5% (w/w) α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11) in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05). Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11) in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05), whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05) compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01) and α-linolenic acid in adipose tissue (p<0.001), whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05), and α-linolenic acid in adipose tissue (p<0.001). B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated rats significantly modified the palmitoleic acid, arachidonic acid and docosahexaenoic acid contents in tissues. The effect was not observed in non-separated animals.
Barrett, Eoin; Fitzgerald, Patrick; Dinan, Timothy G.; Cryan, John F.; Ross, R. Paul; Quigley, Eamonn M.; Shanahan, Fergus; Kiely, Barry; Fitzgerald, Gerald F.; O'Toole, Paul W.; Stanton, Catherine
2012-01-01
The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15) were orally gavaged with either B. breve DPC6330 (109 microorganisms/day) alone or in combination with 0.5% (w/w) linoleic acid & 0.5% (w/w) α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11) in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05). Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11) in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05), whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05) compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01) and α-linolenic acid in adipose tissue (p<0.001), whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05), and α-linolenic acid in adipose tissue (p<0.001). B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated rats significantly modified the palmitoleic acid, arachidonic acid and docosahexaenoic acid contents in tissues. The effect was not observed in non-separated animals. PMID:23185248
NASA Astrophysics Data System (ADS)
Mori, Shohei; Hirata, Shinnosuke; Yamaguchi, Tadashi; Hachiya, Hiroyuki
To develop a quantitative diagnostic method for liver fibrosis using an ultrasound B-mode image, a probability imaging method of tissue characteristics based on a multi-Rayleigh model, which expresses a probability density function of echo signals from liver fibrosis, has been proposed. In this paper, an effect of non-speckle echo signals on tissue characteristics estimated from the multi-Rayleigh model was evaluated. Non-speckle signals were determined and removed using the modeling error of the multi-Rayleigh model. The correct tissue characteristics of fibrotic tissue could be estimated with the removal of non-speckle signals.
Simulating Microdosimetry of Environmental Chemicals for EPA’s Virtual Liver
US EPA Virtual Liver (v-Liver) is a cellular systems model of hepatic tissues aimed at predicting chemical-induced adverse effects through agent-based modeling. A primary objective of the project is to extrapolate in vitro data to in vivo outcomes. Agent-based approaches to tissu...
[Effect of anti-ischemic protection on biochemical indices of the isolated perfused liver].
Kozlov, S A; Kiselev, E N; Zinov'ev, Iu V
1987-01-01
alpha-Tocopherol and prednisolone exhibited the highest antiischemic activity, while lidocaine and sodium glutamate were less active after administration into isolated perfused rabbit liver tissue subjected to 60-min thermic ischemia. Chlorpromazine.HCl did not affect the biochemical patterns studied in isolated perfused liver tissue.
Comparative effects of sandalwood seed oil on fatty acid profiles and inflammatory factors in rats.
Li, Guipu; Singh, Anish; Liu, Yandi; Sunderland, Bruce; Li, Duo
2013-02-01
The aim of the present study was to investigate the effect of sandalwood seed oil on fatty acid (FA) profiles and inflammatory factors in rats. Fifty male Sprague-Dawley rats were randomly divided into five different dietary groups: 10 % soybean oil (SO), 10 % olive oil (OO), 10 % safflower oil (SFO), 10 % linseed oil (LSO) and 8 % sandalwood seed oil blended with 2 % SO (SWSO) for 8 weeks. The SWSO group had a higher total n-3 polyunsaturated fatty acids (PUFA) levels but lower n-6:n-3 PUFA ratios in both adipose tissue and liver than those in the SO, OO and SFO groups (p < 0.05). Although the SWSO group had a much lower 18:3n-3 level (4.51 %) in their dietary lipids than the LSO group (58.88 %), the levels of docosahexaenoic acid (DHA: 22:6n-3) in liver lipids and phospholipids of the SWSO group (7.52 and 11.77 %) were comparable to those of the LSO group (7.07 and 13.16 %). Ximenynic acid, a predominant acetylenic FA in sandalwood seed oil, was found to be highly incorporated into adipose tissue (13.73 %), but relatively lower in liver (0.51 %) in the SWSO group. The levels of prostaglandin F(2α), prostaglandin E₂, thromboxane B₂, leukotriene B₄, tumor necrosis factor-α and interleukin-1β in both liver and plasma were positively correlated with the n-6:n-3 ratios, suggesting that increased n-6 PUFA appear to increase the formation of pro-inflammatory cytokines, whereas n-3 PUFA exhibit anti-inflammatory activity. The present results suggest that sandalwood seed oil could increase tissue levels of n-3 PUFA, DHA and reduce the n-6:n-3 ratio, and may increase the anti-inflammatory activity in rats.
Carbonated soft drinks alter hepatic cytochrome P450 isoform expression in Wistar rats.
Alkhedaide, Adel; Soliman, Mohamed Mohamed; Ibrahim, Zein Shaban
2016-11-01
The aim of the current study was to examine the effects of chronic consumption of soft drinks (SDs) on hepatic oxidative stress and cytochrome P450 enzymes (CYPs) expression in the livers of Wistar rats. For 3 consecutive months, the rats had free access to three different soft drinks, Coca-Cola, Pepsi-Cola and 7-UP. The rats were subsequently compared with control group rats that had consumed water. Blood and hepatic tissue samples were assayed for the changes in antioxidants, liver function biomarkers and hepatic gene expression for different isoforms of hepatic CYP. The results indicated that SD consumption (SDC) decreased serum antioxidant levels and increased malondialdehyde secretion, and increased liver biomarkers (glutamate pyruvate transaminase and glutamate oxaloacetate). SD induced alterations in mRNA expression of hepatic antioxidants and cytochrome isoforms. The expression of peroxidase, catalase, CYP1A2, CYP3A2 and CYP2C11 in the liver were upregulated following SDC. By contrast, CYP2B1 was downregulated after 3 months of SDC in liver tissue samples. Thus, the present findings indicate that SDs induced oxidative stress in the liver of Wistar rats and for the first time, to the best of our knowledge, indicate that SDC disrupts hepatic CYP enzymes that may affect drug metabolism. Therefore, drug-dosing programs should be carefully designed to take these novel findings into consideration for the treatment of diseases.
Mashmoul, Maryam; Azlan, Azrina; Mohtarrudin, Norhafizah; Mohd Yusof, Barakatun Nisak; Khaza'ai, Huzwah; Khoo, Hock Eng; Farzadnia, Mehdi; Boroushaki, Mohammad Taher
2016-10-22
Saffron is the dried stigma of Crocus sativus L. flower which commonly used as a natural remedy to enhance health and even fights disease in the Middle-East and Southeast Asian countries. This study was aimed to investigate protective effect of saffron extract and crocin in fatty liver tissue of high-fat diet induced obese rats. A total of 36 healthy male Sprague Dawley rats were divided into six groups. Two groups served as controls, a normal diet (ND) and a high-fat diet (HFD). The other four groups were each supplemented with saffron extract and crocin at concentrations of 40 and 80 mg/kg body weight/day for 8 weeks. All groups except ND were fed with HFD until end of the study. At baseline, blood sample was collected for determination of levels of hepatic marker enzymes, including aspartate aminotransferase, alanine aminotransferase, alkaline phosphatise and albumin. Liver sample was collected, weighed and stained with haematoxylin and eosin for further histopathological examination. Saffron extract and crocin at concentrations of 40 and 80 mg/kg had dose-dependently alleviated levels of liver enzymes and histopathological changes in diet-induced obese rat model compared to control (HFD group). This study suggested that saffron extract and crocin supplements have hepatoprotective effect against non-alcoholic fatty liver disease and HFD-induced liver damage.
Effects of Urtica dioica on hepatic ischemia-reperfusion injury in rats.
Kandis, Hayati; Karapolat, Sami; Yildirim, Umran; Saritas, Ayhan; Gezer, Suat; Memisogullari, Ramazan
2010-01-01
To evaluate the effects of Urtica dioica on hepatic ischemia-reperfusion injury. Thirty adult male Wistar albino rats were divided into three groups: sham group (group 1), control group (group 2), and Urtica dioica group (group 3). All the rats were exposed to hepatic ischemia for 60 min, followed by 60 min of reperfusion. In group 2, a total of 2 ml/kg 0.9% saline solution was given intraperitoneally. In group 3, a total of 2 ml/kg Urtica dioica was given intraperitoneally. At the end of the procedure, liver tissue and blood samples were taken from all rats. Serum aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, ceruloplasmin, catalase, paraoxonase, arylesterase, and lipid hydroperoxide levels were measured. Liver tissue histopathologies were also evaluated by light microscopy. Serum aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase levels were significantly higher in group 2 than in group 1, and significantly lower in group 3 than in group 2. Also, group 2 had higher serum lipid hydroperoxides and ceruloplasmin levels but lower catalase, paraoxonase, and arylesterase levels than group 1. In group 3, serum lipid hydroperoxides and ceruloplasmin levels were significantly lower, and catalase, paraoxonase, and arylesterase levels were higher than those in group 2. Histopathological examination showed that liver tissue damage was significantly decreased in group 3 compared with group 2. Urtica dioica has a protective effect on the liver in hepatic ischemia-reperfusion-injured rats.
Li, Juan; Yu, Hua; Li, Shuai; Wang, Guang Ji
2010-04-06
A rapid and simple method of high-performance liquid chromatography with UV detector for the quantification of glycyrrhetinic acid (GA) in mice plasma and tissues has been developed and validated. With the established assay method, the pharmacokinetic profiles and tissue distribution of GA in different formulations are compared in mice after intravenous administration of the drug (25mg/kg). The results showed that mPEG-PLA modified (mPEGylated) GA liposome (PL-GA) significantly prolonged the mean residence time (MRT) of GA in mice plasma and liver (MRT: 0.43+/-0.13 and 1.72+/-0.11h, respectively) than the normal GA liposome (L-GA) (MRT: 0.23+/-0.01 and 1.07+/-0.31h, respectively) and GA sodium injection (S-GA) (MRT: 0.13+/-0.01 and 0.95+/-0.08h, respectively). Moreover, PL-GA specifically increased GA uptake in liver (AUC(0-infinity,)(liver) value of 1.6-fold and 1.3-fold higher than that for S-GA and L-GA, respectively) and reduced its distribution into other tissues after dosing. Due to these pharmacokinetic properties, it may be promising to develop PL-GA further as a new pharmaceutical preparation for GA on the treatment of various chronic hepatic diseases. Copyright 2009. Published by Elsevier B.V.
Expression of Innate Immune Response Genes in Liver and Three Types of Adipose Tissue in Cloned Pigs
Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan
2012-01-01
Abstract The pig has been proposed as a relevant model for human obesity-induced inflammation, and cloning may improve the applicability of this model. We tested the assumptions that cloning would reduce interindividual variation in gene expression of innate immune factors and that their expression would remain unaffected by the cloning process. We investigated the expression of 40 innate immune factors by high-throughput quantitative real-time PCR in samples from liver, abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and neck SAT in cloned pigs compared to normal outbred pigs. The variation in gene expression was found to be similar for the two groups, and the expression of a small number of genes was significantly affected by cloning. In the VAT and abdominal SAT, six out of seven significantly differentially expressed genes were downregulated in the clones. In contrast, most differently expressed genes in both liver and neck SAT were upregulated (seven out of eight). Remarkably, acute phase proteins (APPs) dominated the upregulated genes in the liver, whereas APP expression was either unchanged or downregulated in abdominal SAT and VAT. The general conclusion from this work is that cloning leads to subtle changes in specific subsets of innate immune genes. Such changes, even if minor, may have phenotypic effects over time, e.g., in models of long-term inflammation related to obesity. PMID:22928970
Vitamin C restores healthy aging in a mouse model for Werner syndrome
Massip, Laurent; Garand, Chantal; Paquet, Eric R.; Cogger, Victoria C.; O’Reilly, Jennifer N.; Tworek, Leslee; Hatherell, Avril; Taylor, Carla G.; Thorin, Eric; Zahradka, Peter; Le Couteur, David G.; Lebel, Michel
2013-01-01
Werner syndrome (WS) is a premature aging disorder caused by mutations in a RecQ-like DNA helicase. Mice lacking the helicase domain of the WRN homologue exhibit many phenotypic features of WS, including a prooxidant status and a shorter mean life span compared to wild-type animals. Here, we show that Wrn mutant mice also develop premature liver sinusoidal endothelial defenestration along with inflammation and metabolic syndrome. Vitamin C supplementation rescued the shorter mean life span of Wrn mutant mice and reversed several age-related abnormalities in adipose tissues and liver endothelial defenestration, genomic integrity, and inflammatory status. At the molecular level, phosphorylation of age-related stress markers like Akt kinase-specific substrates and the transcription factor NF-κB, as well as protein kinase Cδ and Hif-1α transcription factor levels, which are increased in the liver of Wrn mutants, were normalized by vitamin C. Vitamin C also increased the transcriptional regulator of lipid metabolism PPARα. Finally, microarray and gene set enrichment analyses on liver tissues revealed that vitamin C decreased genes normally up-regulated in human WS fibroblasts and cancers, and it increased genes involved in tissue injury response and adipocyte dedifferentiation in obese mice. Vitamin C did not have such effect on wild-type mice. These results indicate that vitamin C supplementation could be beneficial for patients with WS. PMID:19741171
Integration of technologies for hepatic tissue engineering.
Nahmias, Yaakov; Berthiaume, Francois; Yarmush, Martin L
2007-01-01
The liver is the largest internal organ in the body, responsible for over 500 metabolic, regulatory, and immune functions. Loss of liver function leads to liver failure which causes over 25,000 deaths/year in the United States. Efforts in the field of hepatic tissue engineering include the design of bioartificial liver systems to prolong patient's lives during liver failure, for drug toxicity screening and for the study of liver regeneration, ischemia/reperfusion injury, fibrosis, viral infection, and inflammation. This chapter will overview the current state-of-the-art in hepatology including isolated perfused liver, culture of liver slices and tissue explants, hepatocyte culture on collagen "sandwich" and spheroids, coculture of hepatocytes with non-parenchymal cells, and the integration of these culture techniques with microfluidics and reactor design. This work will discuss the role of oxygen and medium composition in hepatocyte culture and present promising new technologies for hepatocyte proliferation and function. We will also discuss liver development, architecture, and function as they relate to these culture techniques. Finally, we will review current opportunities and major challenges in integrating cell culture, bioreactor design, and microtechnology to develop new systems for novel applications.
2012-01-01
Aim of the study Bear bile and Coptidis Rhizoma have been used in Chinese medicine with a long tradition in treating heat-diseases. Both bear bile and Coptidis Rhizoma are used to treat liver diseases in clinical practice of Chinese Medicine. Since bears are currently endangered, it raises the question whether the use of bear bile is ethical. To look for substitute for bear bile, the aim of this study is to compare the anti-fibrotic effects of Coptidis Rhizoma and its major component berberine with the actions of bear bile and its major compound tauroursodeoxycholic acid on experimental liver fibrosis in rats. Method Quality assessment was conducted with high performance liquid chromatography. The experimental liver fibrosis in rats was induced by carbon tetrachloride, alcohol, and bile duct ligation respectively. The biochemical criteria in the blood and tissue samples were measured to evaluate the anti-fibrotic properties and underlying mechanisms of the drugs. Results Coptidis Rhizoma Aqueous Extract (CRAE), berberine, and bear bile exerted anti-fibrotic properties on various liver fibrosis models in rats. CRAE and berberine significantly reduced the peroxidative stress in liver through increasing the superoxide dismutase enzyme activity. CRAE and berberine were able to excrete bilirubin products from the liver and protect hepatocytes from cholestatic damage. The effect of CRAE and berberine are comparable to that of bear bile. Conclusion Instead of using bear bile, CRAE and berberine can be potential substitutes in treating liver fibrosis. PMID:23190573
Wang, Ning; Feng, Yibin; Cheung, Fan; Chow, Oi-Yee; Wang, Xuanbin; Su, Weiwei; Tong, Yao
2012-11-29
Bear bile and Coptidis Rhizoma have been used in Chinese medicine with a long tradition in treating heat-diseases. Both bear bile and Coptidis Rhizoma are used to treat liver diseases in clinical practice of Chinese Medicine. Since bears are currently endangered, it raises the question whether the use of bear bile is ethical. To look for substitute for bear bile, the aim of this study is to compare the anti-fibrotic effects of Coptidis Rhizoma and its major component berberine with the actions of bear bile and its major compound tauroursodeoxycholic acid on experimental liver fibrosis in rats. Quality assessment was conducted with high performance liquid chromatography. The experimental liver fibrosis in rats was induced by carbon tetrachloride, alcohol, and bile duct ligation respectively. The biochemical criteria in the blood and tissue samples were measured to evaluate the anti-fibrotic properties and underlying mechanisms of the drugs. Coptidis Rhizoma Aqueous Extract (CRAE), berberine, and bear bile exerted anti-fibrotic properties on various liver fibrosis models in rats. CRAE and berberine significantly reduced the peroxidative stress in liver through increasing the superoxide dismutase enzyme activity. CRAE and berberine were able to excrete bilirubin products from the liver and protect hepatocytes from cholestatic damage. The effect of CRAE and berberine are comparable to that of bear bile. Instead of using bear bile, CRAE and berberine can be potential substitutes in treating liver fibrosis.
Hutchins, Rae G; Breitschwerdt, Edward B; Cullen, John M; Bissett, Sally A; Gookin, Jody L
2012-09-01
Canine granulomatous hepatitis is an uncommon morphologic diagnosis that has been associated with a variety of diseases, including a number of systemic infectious etiologies. Formalin-fixed, paraffin-embedded (FFPE) tissues are typically the only source of liver tissue remaining for additional testing for the presence of infectious disease within granulomas. It is unclear if the more common infectious culprits of granulomatous hepatitis can be identified from such specimens. The aim of the current study was to retrospectively investigate archival FFPE liver tissue from dogs with granulomatous hepatitis for the presence of infectious agents. Semiquantitative analysis of copper accumulation in liver specimens was also performed. Medical records were examined for recorded evidence of systemic infectious disease diagnosis. Formalin-fixed, paraffin-embedded liver was prospectively evaluated for infectious agents via differential staining techniques (n = 13), eubacterial fluorescent in situ hybridization (n = 11), and Bartonella polymerase chain reaction assays (n = 15). An infectious cause of granulomatous hepatitis was not identified within liver tissue from any dog using these diagnostic methodologies. Six out of 25 (24%) dogs were diagnosed with concurrent systemic or localized bacterial infections at the time of presentation. Nine out of 17 (53%) dogs had excessive hepatic copper accumulation when evaluated by a semiquantitative histologic grading scheme or quantitative copper analysis. As definitive infectious causes of granulomatous hepatitis were not identified within archival liver biopsy samples, it was concluded that investigation of infectious etiologies within FFPE liver specimens using these diagnostic approaches may be of low yield.
Sanghez, Valentina; Cubuk, Cankut; Sebastián-Leon, Patricia; Carobbio, Stefania; Dopazo, Joaquin; Vidal-Puig, Antonio; Bartolomucci, Alessandro
2016-01-01
Abstract Chronic stress has been associated with obesity, glucose intolerance, and insulin resistance. We developed a model of chronic psychosocial stress (CPS) in which subordinate mice are vulnerable to obesity and the metabolic-like syndrome while dominant mice exhibit a healthy metabolic phenotype. Here we tested the hypothesis that the metabolic difference between subordinate and dominant mice is associated with changes in functional pathways relevant for insulin sensitivity, glucose and lipid homeostasis. Male mice were exposed to CPS for four weeks and fed either a standard diet or a high-fat diet (HFD). We first measured, by real-time PCR candidate genes, in the liver, skeletal muscle, and the perigonadal white adipose tissue (pWAT). Subsequently, we used a probabilistic analysis approach to analyze different ways in which signals can be transmitted across the pathways in each tissue. Results showed that subordinate mice displayed a drastic downregulation of the insulin pathway in liver and muscle, indicative of insulin resistance, already on standard diet. Conversely, pWAT showed molecular changes suggestive of facilitated fat deposition in an otherwise insulin-sensitive tissue. The molecular changes in subordinate mice fed a standard diet were greater compared to HFD-fed controls. Finally, dominant mice maintained a substantially normal metabolic and molecular phenotype even when fed a HFD. Overall, our data demonstrate that subordination stress is a potent stimulus for the downregulation of the insulin signaling pathway in liver and muscle and a major risk factor for the development of obesity, insulin resistance, and type 2 diabetes mellitus. PMID:26946982
Asson-Batres, Mary Ann; Smith, W. Bradford; Clark, Gale
2009-01-01
Vitamin A (VA), all-trans-retinol (at-ROL), and its derivative, all-trans-retinoic acid (at-RA), are required for neuron development. The effects of these retinoids are dependent upon the nutritional status of the rat and tissue-specific dynamics of retinoid access and utilization. The purpose of this study was to determine the status of at-ROL and at-RA in the peripheral olfactory organ of postnatal rats fed a normal diet and rats fed a VA-deficient (VAD) diet. Extracted retinoids were analyzed by HPLC. Resolved sample peaks were identified by comparing their elution times and spectra with those of authentic standards. Mean at-RA and at-ROL concentrations of 23 pmol/g olfactory tissue and 0.13 nmol/g, respectively, were recovered from olfactory tissue. The ratio of at-RA:at-ROL in olfactory was ∼2 times that in testis and 200 times that in liver. at-ROL was depleted from the liver and olfactory organ of rats fed a VAD diet from birth to 70 d of age. Surprisingly, at-RA was still present in olfactory tissue from these rats. At 90 d of age, the VAD rats were frankly deficient and at-RA was no longer detectable in olfactory tissue. The comparatively high ratio of at-RA:at-ROL in the peripheral olfactory organ and the persistence of at-RA in at-ROL-depleted tissues strongly suggests that maintenance of local stores of at-RA is functionally relevant in this tissue. PMID:19403718
Volpi-Lagreca, G; Duckett, S K
2017-06-01
Lambs ( = 18; 40.1 ± 7.4 kg BW) were used to assess supplementation of glycerol or fructose via drinking water on growth, tissue glycogen levels, postmortem glycolysis, and lipogenesis. Lambs were blocked by BW and allocated to alfalfa paddocks (2 lambs/paddock and 3 paddocks/treatment). Each paddock within a block was assigned randomly to drinking water treatments for 30 d: 1) control (CON), 2) 120 g fructose/L of drinking water (FRU), or 3) 120 g glycerol/L of drinking water (GLY). Lambs grazed alfalfa with free access to water treatments for 28 d and then were fasted in indoor pens for a final 2 d with access to only water treatments. Data were analyzed using the MIXED procedure of SAS with water treatment and time (when appropriate) in the model. During the 28-d grazing period, ADG was greater ( < 0.05) for GLY than for CON or FRU. During the 2-d fasting period, BW shrink was lower ( < 0.05) for GLY compared with CON or FRU. Hot carcass weight was greater ( < 0.05) for GLY than for FRU. The interaction for glycogen content × postmortem time was significant ( = 0.003) in LM and semitendinosus (ST) muscles. Glycogen content in the LM was greater ( < 0.05) for GLY at 2 and 3 h and for FRU at 1 h postmortem compared with CON. Glycogen content in ST did not differ between treatments ( > 0.05). Liver glycogen content was over 14-fold greater ( < 0.05) for GLY compared with FRU or CON. Liver free glucose was greater ( < 0.05) for GLY than for CON, whereas liver lipid content was higher ( < 0.05) for CON than for GLY. Supplementation with GLY increased ( < 0.05) odd-chain fatty acids in LM, subcutaneous fat (SQ), and the liver. Stearic acid (C18:0) concentrations were reduced in LM ( = 0.064) and subcutaneous adipose tissue (SQ; = 0.018), whereas oleic acid (C18:1 -9) concentration tended to be increased ( = 0.066) in SQ with FRU and GLY. Linolenic acid (C18:3 -3) was reduced ( = 0.031) and all long-chain -3 fatty acid (eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid) concentrations were increased ( < 0.05) with FRU and GLY compared with CON. Glycerol supplementation upregulated ( < 0.05) stearoyl-CoA desaturate () and fatty acid synthase () mRNA by over 40-fold in the SQ and 5-fold in the liver. Glycerol supplementation also upregulated ( < 0.05) glucose transporters and glycogen branching enzyme in the liver. Overall, glycerol supplementation improved growth, reduced BW shrink during fasting, increased glycogen content in muscle and the liver, and stimulated de novo lipogenesis.
Luo, Ya-ping; Ma, Hui-Rong; Chen, Jing-Wei; Li, Jing-Jing; Li, Chun-xiang
2014-05-01
To observe the effect of American Ginseng Capsule (AGC) on the liver oxidative injury and the Nrf2 protein expression in the liver tissue of rats exposed by 900 MHz cell phone electromagnetic radiation. Totally 40 male SD rats were randomly divided into the normal control group, the model group, the Shuifei Jibin Capsule (SJC) group, and the AGC group,10 in each group. Rats in the normal control group were not irradiated. Rats in the rest three groups were exposed by imitated 900 MHz cellular phone for 4 h in 12 consecutive days. Meanwhile, rats in the SJC group and the AGC group were intragastrically administrated with suspension of SJC and AGC (1 mL/200 g body weight) respectively. Normal saline was administered to rats in the normal control group and the model group. The histolomorphological changes of the liver tissue were observed by HE staining. Contents of malonic dialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GSH-PX)were detected by colorimetry. The Nrf2 protein expression of hepatocytes was detected by immunohistochemical assay and Western blot. Compared with the normal control group, hepatocyte nucleus was atrophied or partially disappeared, the contents of liver MDA and Nrf2 protein obviously increased (P <0. 05, P <0. 01); contents of liver SOD and GSH decreased (P <0. 05) in the model group. Compared with the model group, karyopyknosis was obviously attenuated and approached to the normal level in the SJC group and the AGC group. The contents of liver MDA and Nrf2 protein expression decreased (P <0. 05), and the contents of liver SOD, GSH, and GSH-PX obviously increased (P < 0.05) in the SJC group. The contents of liver MDA and the Nrf2 protein expression decreased (P < 0.05), and contents of SOD and GSH obviously increased in the AGC group (P <0.01, P <0.05). The electromagnetic radiation induced by 900 MHz cell phone could affect the expression of Nrf2 protein, induce oxidative injury, and induce abnormal morphology of liver cells. SJC and AGC could promote the morphological recovery of the liver cells. Its mechanism might be related to affecting the expression of Nrf2 protein and attenuating oxidative damage of liver cells.
Glycyrrhizin ameliorates metabolic syndrome-induced liver damage in experimental rat model.
Sil, Rajarshi; Ray, Doel; Chakraborti, Abhay Sankar
2015-11-01
Glycyrrhizin, a major constituent of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate insulin resistance, hyperglycemia, dyslipidemia, and obesity in rats with metabolic syndrome. Liver dysfunction is associated with this syndrome. The objective of this study is to investigate the effect of glycyrrhizin treatment on metabolic syndrome-induced liver damage. After induction of metabolic syndrome in rats by high fructose (60%) diet for 6 weeks, the rats were treated with glycyrrhizin (50 mg/kg body weight, single intra-peritoneal injection). After 2 weeks of treatment, rats were sacrificed to collect blood samples and liver tissues. Compared to normal, elevated activities of serum alanine transaminase, alkaline phosphatase and aspartate transaminase, increased levels of liver advanced glycation end products, reactive oxygen species, lipid peroxidation, protein carbonyl, protein kinase Cα, NADPH oxidase-2, and decreased glutathione cycle components established liver damage and oxidative stress in fructose-fed rats. Activation of nuclear factor κB, mitogen-activated protein kinase pathways as well as signals from mitochondria were found to be involved in liver cell apoptosis. Increased levels of cyclooxygenase-2, tumor necrosis factor, and interleukin-12 proteins suggested hepatic inflammation. Metabolic syndrome caused hepatic DNA damage and poly-ADP ribose polymerase cleavage. Fluorescence-activated cell sorting using annexin V/propidium iodide staining confirmed the apoptotic hepatic cell death. Histology of liver tissue also supported the experimental findings. Treatment with glycyrrhizin reduced oxidative stress, hepatic inflammation, and apoptotic cell death in fructose-fed rats. The results suggest that glycyrrhizin possesses therapeutic potential against hepatocellular damage in metabolic syndrome.
Ozsoy-Sacan, Ozlem; Yanardag, Refiye; Orak, Haci; Ozgey, Yasemin; Yarat, Aysen; Tunali, Tugba
2006-03-08
Parsley (Petroselinum crispum) is one of the medicinal herbs used by diabetics in Turkey. The aim of this study is to investigate the effects of parsley (2g/kg) and glibornuride (5mg/kg) on the liver tissue of streptozotocin-induced diabetic rats. Swiss albino rats were divided into six groups: control; control+parsley; control+glibornuride; diabetic; diabetic+parsley; diabetic+glibornuride. Diabetes was induced by intraperitoneal injection of 65 mg/kg streptozotocin (STZ). Parsley extract and glibornuride were given daily to both diabetic and control rats separately, until the end of the experiment, at day 42. The drugs were administered to one diabetic and one control group from days 14 to 42. On day 42, liver tissues were taken from each rat. In STZ-diabetic group, blood glucose levels, serum alkaline phosphatase activity, uric acid, sialic acid, sodium and potassium levels, liver lipid peroxidation (LPO), and non-enzymatic glycosylation (NEG) levels increased, while liver glutathione (GSH) levels and body weight decreased. In the diabetic group given parsley, blood glucose, serum alkaline phosphatase activity, sialic acid, uric acid, potassium and sodium levels, and liver LPO and NEG levels decreased, but GSH levels increased. The diabetic group, given glibornuride, blood glucose, serum alkaline phosphatase activity, serum sialic acid, uric acid, potassium, and liver NEG levels decreased, but liver LPO, GSH, serum sodium levels, and body weight increased. It was concluded that probably, due to its antioxidant property, parsley extract has a protective effect comparable to glibornuride against hepatotoxicity caused by diabetes.
Mirbolooki, M. Reza; Upadhyay, Sanjeev Kumar; Constantinescu, Cristian C.; Pan, Min-Liang; Mukherjee, Jogeshwar
2013-01-01
Objective Pharmacologic approaches to study brown adipocyte activation in vivo with a potential of being translational to humans are desired. The aim of this study was to examine pre- and postsynaptic targeting of adrenergic system for enhancing brown adipose tissue (BAT) metabolism quantifiable by [18F]fluoro-2-deoxyglucose ([18F]FDG) positron emission tomography (PET)/ computed tomography (CT) in mice. Methods A β3-adrenoreceptor selective agonist (CL 316243), an adenylyl cyclase enzyme activator (forskolin) and a potent blocker of presynaptic norepinephrine transporter (atomoxetine) were injected through the tail vein of Swiss Webster mice 30 minutes before intravenous (iv) administration of [18F]FDG. The mice were placed on the PET/CT bed for 30 min PET acquisition followed by 10 min CT acquisition for attenuation correction and anatomical delineation of PET images. Results Activated interscapular (IBAT), cervical, periaortic and intercostal BAT were observed in 3-dimentional analysis of [18F]FDG PET images. CL 316243 increased the total [18F]FDG standard uptake value (SUV) of IBAT 5-fold greater compared to that in placebo-treated mice. It also increased the [18F]FDG SUV of white adipose tissue (2.4-fold), and muscle (2.7-fold), as compared to the control. There was no significant difference in heart, brain, spleen and liver uptakes between groups. Forskolin increased [18F]FDG SUV of IBAT 1.9-fold greater than that in placebo-treated mice. It also increased the [18F]FDG SUV of white adipose tissue (2.2-fold) and heart (5.4-fold) compared to control. There was no significant difference in muscle, brain, spleen, and liver uptakes between groups. Atomoxetine increased [18F]FDG SUV of IBAT 1.7-fold greater than that in placebo-treated mice. There were no significant differences in all other organs compared to placebo-treated mice except liver (1.6 fold increase). A positive correlation between SUV levels of IBAT and CT hounsfiled unit (HU) (R2=0.55, p<0.001) and between CT HU levels of IBAT and liver (R2=0.69, p<0.006) was observed. Conclusions The three pharmacologic approaches reported here enhanced BAT metabolism by targeting different sites in adrenergic system as measured by [18F]FDG PET/CT. PMID:24090673
Liver metal concentrations in Greater Sage-grouse (Centrocercus urophasianus).
Dailey, Rebecca N; Raisbeck, Merl F; Siemion, Roger S; Cornish, Todd E
2008-04-01
Greater Sage-grouse (Centrocercus urophasianus) are a species of concern due to shrinking populations associated with habitat fragmentation and loss. Baseline health parameters for this species are limited or lacking, especially with regard to tissue metal concentrations. To obtain a range of tissue metal concentrations, livers were collected from 71 Greater Sage-grouse from Wyoming and Montana. Mean +/- SE metal concentrations (mg/kg wet weight) in liver were determined for vanadium (V) (0.12 +/- 0.01), chromium (Cr) (0.50 +/- 0.02), manganese (Mn) (2.68 +/- 0.11), iron (Fe) (1,019 +/- 103), nickel (Ni) (0.40 +/- 0.04), cobalt (Co) (0.08 +/- 0.02), copper (Cu) (6.43 +/- 0.40), mercury (Hg) (0.30 +/- 0.09), selenium (Se) (1.45 +/- 0.64), zinc (Zn) (59.2 +/- 4.70), molybdenum (Mo) (0.93 +/- 0.07), cadmium (Cd) (1.44 +/- 0.14), barium (Ba) (0.20 +/- 0.03), and lead (Pb) (0.17 +/- 0.03). In addition to providing baseline data, metal concentrations were compared between sex, age (juvenile/adult), and West Nile virus (WNv) groups (positive/negative). Adult birds had higher concentrations of Ni and Cd compared to juveniles. In addition, Zn and Cu concentrations were significantly elevated in WNv-positive birds.
Noguchi, Naoto; Yanagita, Teruyoshi; Rahman, Shaikh Mizanoor; Ando, Yotaro
2016-07-01
Chlorella (Parachlorella beijerinckii) powder is reported to show a preventive effect against metabolic syndromes such as arteriosclerosis, hyperlipidemia, and hypertension. Approximately 60% of the chlorella content is protein. In order to understand the role of chlorella protein, we prepared a chlorella protein hydrolysate (CPH) by protease treatment. Male C57BL/6 mice were divided into three groups: a normal diet group, high-fat diet (HFD) group, and high-fat diet supplemented with CPH (HFD+CPH) group. The CPH administration improved glucose intolerance, insulin sensitivity, and adipose tissue hypertrophy in the high-fat diet-fed mice. In addition, the HFD+CPH group had significantly decreased liver total cholesterol and triglyceride levels compared with those in the HFD group. Furthermore, the HFD+CPH group had a decreased level of monocyte chemotactic protein-1 (MCP-1) in serum and a lower MCP-1 mRNA expression level in adipose tissue compared with the HFD group. The present study suggests that chlorella protein hydrolysate can prevent a high-fat diet-induced glucose disorder and fatty liver by inhibiting adipocyte hypertrophy and reducing the MCP-1 protein and gene expression.
Jarzyńska, Grażyna; Falandysz, Jerzy
2011-07-01
Concentrations, composition and interrelationships of selenium and metallic elements (Ag, Ba, Cd, Co, Cr, Cs, Cu, Ga, Mn, Mo, Pb, Rb, Sb, Sr, Tl, V and Zn) have been examined in muscle and organ meats of Red Deer hunted in Poland. The analytical data obtained were also discussed in terms of Se supplementation and deficit to Deer as well as the benefits and risk to humans associated with the essential and toxic metals intake resulting from consumption of Deer meat and products. These elements were determined in 20 adult animals of both sexes that were obtained in the 2000/2001 hunting season from Warmia and Mazury in the north-eastern part of Poland. The whole kidneys contained Ba, Cd, Cr, Ga, Pb, Se, Sr and Tl at statistically greater concentrations than liver or muscle tissue from the same animal. Liver showed statistically greater concentrations of Ag, Co, Cu, Mn and Mo than kidneys or muscle tissue, and muscle tissue was richer in Zn, when compared to the kidneys or liver. Cs and Rb were similarly distributed between all three tissue types, while V was less abundant in liver than kidneys or muscle tissue. There were significant associations between some metallic elements retained in Red Deer demonstrated by Principal Component Analysis (PCA) of the data set. In organ and muscle meats (kidneys, liver and muscle tissue considered together) the first principal component (PC1) was strongly influenced by positively correlated variables describing Se, Ba and Cd and negatively correlated variables describing Ag, Co, Cs, Mn, Pb, Tl and V; PC2, respectively, by Cu, Mn and Mo (+) and Zn (-); PC3 by Ga (+) and PC4 by Sb (+). Selenium occurred in muscle tissue, liver and kidneys at median concentrations of 0.13, 0.19 and 4.0mg/g dry weight, respectively. These values can be defined as marginally deficient (< 0.6mg Se/kg liver dw) or satisfactory (≤ 3.0mg Se/kg kidneys dw) for the amount required to maintain the Deer's body condition and health, depending on the criterion for supplementation used. In terms of human nutritional needs, a relatively high selenium content of kidneys can be beneficial. The muscle meat, liver and kidneys of Red Deer can be considered as a very good source of essential Co, Cr, Cu, Mo, Mn, Se and Zn in the human diet. Lead is generally considered as toxic, and the concentrations found in Red Deer (via the food chain intake) were well below the European Union tolerance limit. Pb from the lead bullets can always create food hygienic problem, if not well recognized during sanitary inspection, and this was noted for one muscle meat sample in this study (5% surveyed). There is no tolerance limit of Cd in game animal meats. The median values of Cd noted in fresh muscle tissue, liver and whole kidneys were 0.07, 0.18, and 3.3mg/kg wet weight, respectively. Cd exists as a chemical element present at trace levels in plants and mushrooms in Deer's food chain in background (uncontaminated) areas. When these are consumed by the Deer, the amount of Cd sequestered with metallothioneins and retained in the organ and muscle meat in this study is low enough to be considered safe for human consumption. Copyright © 2011 Elsevier Ltd. All rights reserved.
Biggs, Katie; Seidel, Jason S; Wilson, Alex; Martyniuk, Christopher J
2013-09-01
γ-Amino-butyric acid (GABA) is the major inhibitory neurotransmitter in the vertebrate central nervous system. GABA receptors and synthesizing enzymes have also been localized to peripheral tissues including the liver, oviduct, uterus and ovary of mammals but the distribution and role of GABA in peripheral tissues of fish has not been fully investigated. The objectives of this study were to (1) determine if mRNA encoding GABA synthesizing enzymes (glutamic acid decarboxylase 65 and 67; gad65 and gad67), GABA transporters, and GABAA receptor subunits are localized to liver and gonad of fathead minnow (Pimephales promelas) (FHM) (2) investigate the effects of GABA on ovarian 17β-estradiol (E2) production, and (3) measure transcript responses in the ovary after in vitro incubation to GABA. Real-time PCR assays were developed for gad65, gad67, vesicular GABA transporter (vgat) and GABA transporter 1 (gat1), and select GABAA receptor subunits (gabra1, gabra5, gabrb1, gabrb2, gabrg1, gabrg2). All transcripts were localized to the brain as expected; however transcripts were also detected in the liver, ovary, and testis of FHMs. In the female liver, gad65 mRNA was significantly higher in expression compared to the male liver. Transcripts for gad67 were the highest in the brain>gonad>liver and in the gonads, gad67 was significantly higher in expression than gad65 mRNA. In the liver and gonad, the relative abundance of the subunits followed a general trend of gabrb1>gabrb2=gabrg1=gabrg2>gabra1=gabra5. To explore the effects of GABA in the ovary, tissue explants from reproductive female FHMs were treated with GABA (10(-10), 10(-8) and 10(-6)M) for 12h. GABA had no significant effect on 17β-estradiol production or on mRNA abundance for genes involved in ovarian steroidogenesis (e.g., 11βhsd, cyp17, cyp19a). There was a significant decrease in estrogen receptor 2a (esr2a) mRNA with 10(-10)M GABA. This study begins to investigate the GABA system in non-neural tissues of teleost fish and addresses the broader topic regarding the peripheral roles of neurotransmitters. Copyright © 2013 Elsevier Inc. All rights reserved.
Dahab, Gamal M; Kheriza, Mohamed M; El-Beltagi, Hussien M; Fouda, Abdel-Motaal M; El-Din, Osama A Sharaf
2004-01-01
The precise quantification of fibrous tissue in liver biopsy sections is extremely important in the classification, diagnosis and grading of chronic liver disease, as well as in evaluating the response to antifibrotic therapy. Because the recently described methods of digital image analysis of fibrosis in liver biopsy sections have major flaws, including the use of out-dated techniques in image processing, inadequate precision and inability to detect and quantify perisinusoidal fibrosis, we developed a new technique in computerized image analysis of liver biopsy sections based on Adobe Photoshop software. We prepared an experimental model of liver fibrosis involving treatment of rats with oral CCl4 for 6 weeks. After staining liver sections with Masson's trichrome, a series of computer operations were performed including (i) reconstitution of seamless widefield images from a number of acquired fields of liver sections; (ii) image size and solution adjustment; (iii) color correction; (iv) digital selection of a specified color range representing all fibrous tissue in the image and; (v) extraction and calculation. This technique is fully computerized with no manual interference at any step, and thus could be very reliable for objectively quantifying any pattern of fibrosis in liver biopsy sections and in assessing the response to antifibrotic therapy. It could also be a valuable tool in the precise assessment of antifibrotic therapy to other tissue regardless of the pattern of tissue or fibrosis.
McAuley, Paul A; Hsu, Fang-Chi; Loman, Kurt K; Carr, J Jeffrey; Budoff, Matthew J; Szklo, Moyses; Sharrett, A Richey; Ding, Jingzhong
2011-09-01
Insulin resistance is linked to general and abdominal obesity, but its relation to hepatic lipid content and pericardial adipose tissue is less clear. The purpose of this study was to examine cross-sectional associations of liver attenuation, pericardial adipose tissue, BMI, and waist circumference with insulin resistance. We measured liver attenuation and pericardial adipose tissue using the existing cardiac computed tomography scans in 5,291 individuals free of clinical cardiovascular disease and diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA) during the study's baseline visit (2000-2002). Low liver attenuation was defined as the lowest quartile and high pericardial adipose tissue as the upper quartile of volume (cm(3)). We used standard clinical definitions for obesity and abdominal obesity. Insulin resistance was assessed by the homeostasis model assessment of insulin resistance (HOMA(IR)) index. In multivariate linear regression with all adiposity measures in the model simultaneously, all adiposity measures were significantly (P < 0.0001) associated with insulin resistance: regression coefficients (±s.e.) were 0.31 (±0.02) for low liver attenuation, 0.27 (±0.02) for high pericardial adipose tissue, 0.27 (±0.02) for obesity, and 0.32 (±0.02) for abdominal obesity. We found significant differences (P = 0.003) between standardized liver attenuation and insulin resistance by ethnicity: regression coefficients per 1 s.d. increment were 0.10 ± 0.01 for whites, 0.11 ± 0.02 for Chinese, 0.08 ± 0.2 for blacks, and 0.14 ± 0.01 for Hispanics. Liver attenuation and pericardial adipose tissue were associated with insulin resistance, independent of BMI and waist circumference.
Kettunen, H; Tiihonen, K; Peuranen, S; Saarinen, M T; Remus, J C
2001-11-01
The aim of this experiment was to study the patterns of betaine accumulation into intestinal tissue, liver and plasma of broiler chicks with or without coccidial infection. The chicks were raised on a corn-based, low-betaine diet with or without 1000 ppm betaine supplementation and with or without intestinal microparasite (Eimeria maxima) challenge to the age of 21 days. Plasma, liver, intestinal tissue and digesta of non-challenged (NC) birds and plasma and intestinal tissue of coccidiosis challenged (CC) birds were analysed for betaine content. NC birds were also analyzed for homocysteine in plasma and S-adenosylmethionine (S-AM) in liver. The jejunal epithelium was histologically examined for the presence of coccidia and the crypt-villus ratio was measured. Dietary betaine supplementation decreased the plasma homocysteine concentration but had no effect on liver S-AM of NC birds. The data suggest that chicks on a low-betaine diet accumulate betaine into the intestinal tissue. When the diet was supplemented with betaine, betaine accumulated heavily into liver and to a lesser degree into intestinal tissue. The concentration of betaine in jejunal and ileal digesta was low suggesting that dietary betaine was mainly absorbed from the proximal small intestine. The coccidial challenge decreased the concentration of betaine in the liver, but greatly increased that in the intestinal tissue. The crypt-villus ratio was decreased by the dietary betaine supplementation in healthy and challenged chicks, suggesting that dietary betaine both protects the jejunal villi against coccidial infection and also stabilizes the mucosal structure in healthy broiler chicks. These results support our earlier findings suggesting that betaine is likely to act as an important intestinal osmolyte in broiler chicks.
Fischer, H-P
2005-05-01
High dosage regional chemotherapy, chemoembolization and other methods of regional treatment are commonly used to treat unresectable primary liver malignancies and liver metastases. In liver malignancies of childhood neoadjuvant chemotherapy is successfully combined with surgical treatment. Chemotherapy and local tumor ablation lead to characteristic histomorphologic changes: Complete destruction of the tumor tissue and its vascular bed is followed by encapsulated necroses. After selective eradication of the tumor cells under preservation of the fibrovasular bed the tumor is replaced by hypocellular edematous and fibrotic tissue. If completely damaged tumor tissue is absorbed quickly, the tumor area is replaced by regenerating liver tissue. Obliterating fibrohyalinosis of tumor vessels, and perivascular edema or necrosis indicate tissue damage along the vascular bed. Degenerative pleomorphism of tumor cells, steatosis, hydropic swelling and Malloryhyalin in HCC can represent cytologic findings of cytotoxic cellular damage. Macroscopic type of HCC influences significantly the response to treatment. Multinodular HCC often contain viable tumor nodules close to destroyed nodules after treatment. Encapsulated uninodular tumors undergo complete necrosis much easier. Large size and a tumor capsule limitate the effect of percutaneous injection of ethanol into HCC. In carcinomas with an infiltrating border, especially in metastases of adenocarcinomas and hepatic cholangiocarcinoma cytostatic treatment damages the tumor tissue mainly in the periphery. Nevertheless the infiltrating rim, portal veins, lymphatic spaces and bile ducts as well as the angle between liver capsule, tumor nodule and bordering parenchyma are the main refugees of viable tumor tissue even after high dosage regional chemotherapy. This local resistance is caused by special local conditions of vascularization and perfusion. These residues are the source of local tumor progression and distant metastases. Besides intrinsic cellular mechanisms architectural, and microenvironmental factors relevantly limitate the effect of intensive locoregional therapy.
Restoration of CpG Methylation in The Egf Promoter Region during Rat Liver Regeneration.
Deming, Li; Ziwei, Li; Xueqiang, Guo; Cunshuan, Xu
2015-01-01
Epidermal growth factor (EGF) is an important factor for healing after tissue damage in diverse experimental models. It plays an important role in liver regeneration (LR). The objective of this experiment is to investigate the methylation variation of 10 CpG sites in the Egf promoter region and their relevance to Egf expression during rat liver regenera- tion. As a follow up of our previous study, rat liver tissue was collected after rat 2/3 partial hepatectomy (PH) during the re-organization phase (from days 14 to days 28). Liver DNA was extracted and modified by sodium bisulfate. The methylation status of 10 CpG sites in Egf promoter region was determined using bisulfite sequencing polymerase chain reaction (PCR), as BSP method. The results showed that 3 (sites 3, 4 and 9) out of 10 CpG sites have strikingly methylation changes during the re-organization phase compared to the regeneration phase (from 2 hours to 168 hours, P=0.002, 0.048 and 0.018, respectively). Our results showed that methylation modification of CpGs in the Egf promoter region could be restored to the status before PH operation and changes of methylation didn't affect Egf mRNA expression during the re-organization phase.
Bohne, Felix; Martínez-Llordella, Marc; Lozano, Juan-José; Miquel, Rosa; Benítez, Carlos; Londoño, María-Carlota; Manzia, Tommaso-María; Angelico, Roberta; Swinkels, Dorine W.; Tjalsma, Harold; López, Marta; Abraldes, Juan G.; Bonaccorsi-Riani, Eliano; Jaeckel, Elmar; Taubert, Richard; Pirenne, Jacques; Rimola, Antoni; Tisone, Giuseppe; Sánchez-Fueyo, Alberto
2011-01-01
Following organ transplantation, lifelong immunosuppressive therapy is required to prevent the host immune system from destroying the allograft. This can cause severe side effects and increased recipient morbidity and mortality. Complete cessation of immunosuppressive drugs has been successfully accomplished in selected transplant recipients, providing proof of principle that operational allograft tolerance is attainable in clinical transplantation. The intra-graft molecular pathways associated with successful drug withdrawal, however, are not well defined. In this study, we analyzed sequential blood and liver tissue samples collected from liver transplant recipients enrolled in a prospective multicenter immunosuppressive drug withdrawal clinical trial. Before initiation of drug withdrawal, operationally tolerant and non-tolerant recipients differed in the intra-graft expression of genes involved in the regulation of iron homeostasis. Furthermore, as compared with non-tolerant recipients, operationally tolerant patients exhibited higher serum levels of hepcidin and ferritin and increased hepatocyte iron deposition. Finally, liver tissue gene expression measurements accurately predicted the outcome of immunosuppressive withdrawal in an independent set of patients. These results point to a critical role for iron metabolism in the regulation of intra-graft alloimmune responses in humans and provide a set of biomarkers to conduct drug-weaning trials in liver transplantation. PMID:22156196
Restoration of CpG Methylation in The Egf Promoter Region during Rat Liver Regeneration
Deming, Li; Ziwei, Li; Xueqiang, Guo; Cunshuan, Xu
2015-01-01
Epidermal growth factor (EGF) is an important factor for healing after tissue damage in diverse experimental models. It plays an important role in liver regeneration (LR). The objective of this experiment is to investigate the methylation variation of 10 CpG sites in the Egf promoter region and their relevance to Egf expression during rat liver regenera- tion. As a follow up of our previous study, rat liver tissue was collected after rat 2/3 partial hepatectomy (PH) during the re-organization phase (from days 14 to days 28). Liver DNA was extracted and modified by sodium bisulfate. The methylation status of 10 CpG sites in Egf promoter region was determined using bisulfite sequencing polymerase chain reaction (PCR), as BSP method. The results showed that 3 (sites 3, 4 and 9) out of 10 CpG sites have strikingly methylation changes during the re-organization phase compared to the regeneration phase (from 2 hours to 168 hours, P=0.002, 0.048 and 0.018, respectively). Our results showed that methylation modification of CpGs in the Egf promoter region could be restored to the status before PH operation and changes of methylation didn’t affect Egf mRNA expression during the re-organization phase. PMID:26464832
Akbari, Masoud; Kimura, Kazumi; Houts, James T; Yui, Katsuyuki
2016-10-01
The host-parasite relationship is one of the main themes of modern parasitology. Recent revolutions in science, including the development of various fluorescent proteins/probes and two-photon microscopy, have made it possible to directly visualize and study the mechanisms underlying the interaction between the host and pathogen. Here, we describe our method of preparing and setting-up the liver for our experimental approach of using intravital imaging to examine the interaction between Plasmodium berghei ANKA and antigen-specific CD8 + T cells during the liver-stage of the infection in four dimensions. Since the liver is positioned near the diaphragm, neutralization of respiratory movements is critical during the imaging process. In addition, blood circulation and temperature can be affected by the surgical exposure due to the anatomy and tissue structure of the liver. To control respiration, we recommend anesthesia with isoflurane inhalation at 1% during the surgery. In addition, our protocol introduces a cushion of gauze around the liver to avoid external pressure on the liver during intravital imaging using an inverted microscope, which makes it possible to image the liver tissue for long periods with minimal reduction in the blood circulation and with minimal displacement and tissue damage. The key point of this method is to reduce respiratory movements and external pressure on the liver tissue during intravital imaging. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Marx, U; Bushnaq, H; Yalcin, E
1998-02-01
Tissue engineering is seen as an interesting field of technology which could improve medical therapy and could also be considered as a commercial opportunity for the European biotechnological industry. Research in the state of the art of science using the MedLine and the Science Citation Index databases, in the patent situation and of the industry dealing with tissue engineering was done. A special method, based on the Science Citation Index Journal Citation Report 1993, for evaluating scientific work was defined. The main countries working in the field of tissue engineering were evaluated in regard to their scientific performance and their patents. The R&D of German industry was investigated as an exemplary European country. Out of all activities, different tissues were rated with respect to the attention received from research and industry and with regard to the frequency in which patents were applied for. USA, Germany and Japan rank first in most tissues, especially liver. After comparing German patents with the German scientific and industrial work, it seems that the potential in German patents and research is underestimated by German industry and inefficiently exploited.
Nagashima, Yuji; Ohta, Akira; Yin, Xianzhe; Ishizaki, Shoichiro; Doi, Hiroyuki; Ishibashi, Toshiaki
2018-01-01
Although pufferfish of the family Tetraodontidae contain high levels of tetrodotoxin (TTX) mainly in the liver, some species of pufferfish, boxfish of the family Ostraciidae, and porcupinefish of the family Diodontidae do not. To clarify the mechanisms, uptake of TTX and saxitoxins (STXs) into liver tissue slices of pufferfish, boxfish and porcupinefish was examined. Liver tissue slices of the pufferfish (toxic species Takifugu rubripes and non-toxic species Lagocephalus spadiceus, L. cheesemanii and Sphoeroides pachygaster) incubated with 50 µM TTX accumulated TTX (0.99–1.55 µg TTX/mg protein) after 8 h, regardless of the toxicity of the species. In contrast, in liver tissue slices of boxfish (Ostracion immaculatus) and porcupinefish (Diodon holocanthus, D. liturosus, D. hystrix and Chilomycterus reticulatus), TTX content did not increase with incubation time, and was about 0.1 µg TTX/mg protein. When liver tissue slices were incubated with 50 µM STXs for 8 h, the STXs content was <0.1 µg STXs/mg protein, irrespective of the fish species. These findings indicate that, like the toxic species of pufferfish T. rubripes, non-toxic species such as L. spadiceus, L. cheesemanii and S. pachygaster, potentially take up TTX into the liver, while non-toxic boxfish and porcupinefish do not take up either TTX or STXs. PMID:29316695
Significance of Lead Residues in Mallard Tissues
Longcore, J.R.; Locke, L.N.; Bagley, George E.; Andrews, R.
1974-01-01
Tissues of adult, lead-dosed mallards that either died or were sacrificed were analyzed for lead. Lead levels in brains, tibiae, and breast muscle of ducks that died and in tibiae of ducks that were sacrificed increased significantly from dosage until death. Lead in the heart, lung, and blood from sacrificed ducks decreased significantly from dosage until death. Lead concentrations in tissues from ducks in the two groups were not significantly different except for the liver, kidney, and lung. Average lead levels in the livers and kidneys of ducks that died were significantly higher than those in ducks that were sacrificed. The mean concentration of lead in the lungs of the ducks sacrificed was significantly higher than the mean level in the lungs of ducks that died. Measurements of the lead concentrations in this study, when compared with lead levels reported in the literature for avian and non-avian species, showed that arbitrary diagnostic levels indicating lead poisoning could be set. In mallard ducks, lead levels exceeding 3 ppm in the brain, 6 to 20 ppm in the kidney or liver, or 10 ppm in clotted blood from the heart indicated acute exposure to lead.
Baldissera, Matheus D; Souza, Carine F; Parmeggiani, Belisa; Leipnitz, Guilhian; Verdi, Camila Marina; Santos, RobertoC V; Stefani, Lenita M; Baldisserotto, Bernardo
2018-06-07
Aeromonas caviae is a Gram-negative bacterium rarely found in fish but it can be associated to high mortality of infected animals. The disease pathogenesis in fish associated to liver and kidney lesions directly linked to the initiation and progression of the disease remains poorly understood. Thus, the aim of this study was to evaluate whether A. caviae infection causes oxidative stress in liver and kidney of silver catfish Rhamdia quelen, and its involvement in disease pathogenesis. Reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) levels increased in liver and kidney of fish experimentally infected by A. caviae compared to the control uninfected group. On the other hand, non-protein sulfhydryl (NPSH) levels decreased in both tissues of infected animals, while the glutathione S-transferase (GST) activity decreased only in the hepatic tissue. No difference was observed between groups in both tissues regarding superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) activities and glutathione (GSH) levels. In summary, the disturbance of hepatic and renal antioxidant/oxidant equilibrium contributes to the pathophysiology of the disease in fish experimentally infected by A. caviae. Copyright © 2018 Elsevier Ltd. All rights reserved.
MicroRNAs in liver tissue engineering - New promises for failing organs.
Raschzok, Nathanael; Sallmon, Hannes; Pratschke, Johann; Sauer, Igor M
2015-07-01
miRNA-based technologies provide attractive tools for several liver tissue engineering approaches. Herein, we review the current state of miRNA applications in liver tissue engineering. Several miRNAs have been implicated in hepatic disease and proper hepatocyte function. However, the clinical translation of these findings into tissue engineering has just begun. miRNAs have been successfully used to induce proliferation of mature hepatocytes and improve the differentiation of hepatic precursor cells. Nonetheless, miRNA-based approaches beyond cell generation have not yet entered preclinical or clinical investigations. Moreover, miRNA-based concepts for the biliary tree have yet to be developed. Further research on miRNA based modifications, however, holds the promise of enabling significant improvements to liver tissue engineering approaches due to their ability to regulate and fine-tune all biological processes relevant to hepatic tissue engineering, such as proliferation, differentiation, growth, and cell function. Copyright © 2015 Elsevier B.V. All rights reserved.
Anti-Apoptotic Effects of 3,3',5-Triiodo-L-Thyronine in the Liver of Brain-Dead Rats.
Rebolledo, Rolando A; Van Erp, Anne C; Ottens, Petra J; Wiersema-Buist, Janneke; Leuvenink, Henri G D; Romanque, Pamela
2015-01-01
Thyroid hormone treatment in brain-dead organ donors has been extensively studied and applied in the clinical setting. However, its clinical applicability remains controversial due to a varying degree of success and a lack of mechanistic understanding about the therapeutic effects of 3,3',5-Triiodo-L-thyronine (T3). T3 pre-conditioning leads to anti-apoptotic and pro-mitotic effects in liver tissue following ischemia/reperfusion injury. Therefore, we aimed to study the effects of T3 pre-conditioning in the liver of brain-dead rats. Brain death (BD) was induced in mechanically ventilated rats by inflation of a Fogarty catheter in the epidural space. T3 (0.1 mg/kg) or vehicle was administered intraperitoneally 2 h prior to BD induction. After 4 h of BD, serum and liver tissue were collected. RT-qPCR, routine biochemistry, and immunohistochemistry were performed. Brain-dead animals treated with T3 had lower plasma levels of AST and ALT, reduced Bax gene expression, and less hepatic cleaved Caspase-3 activation compared to brain-dead animals treated with vehicle. Interestingly, no differences in the expression of inflammatory genes (IL-6, MCP-1, IL-1β) or the presence of pro-mitotic markers (Cyclin-D and Ki-67) were found in brain-dead animals treated with T3 compared to vehicle-treated animals. T3 pre-conditioning leads to beneficial effects in the liver of brain-dead rats as seen by lower cellular injury and reduced apoptosis, and supports the suggested role of T3 hormone therapy in the management of brain-dead donors.
Jahangiri, Azin; Barzegar-Jalali, Mohammad; Garjani, Alireza; Javadzadeh, Yousef; Hamishehkar, Hamed; Asadpour-Zeynali, Karim; Adibkia, Khosro
2016-01-20
Fixed-dose combination of atorvastatin calcium (ATV) and ezetimibe (EZT) provides a considerable advantage in the management of hyperlipidemia. However, both ATV and EZT suffer from the poor aqueous solubility, which can limit their oral bioavailability. The aim of the present study was to improve the in vitro performance and evaluate the in vivo efficiency of the improved (ATV/EZT) fixed-dose combination. The formulation was prepared through solid dispersion (SD)technique, using Polyvinylpyrrolidone K30 via solvent method. Solid-state analysis and the in vitro drug release of the prepared formulations were also assessed. In order to estimate the therapeutic efficiency of the prepared SDs, in vivo studies including measurement of serum lipid levels, liver index and histological analysis of the liver tissue in hyperlipidemic rats were conducted. Differential scanning calorimetry (DSC) and powder X-ray diffractometry (PXRD) showed that the drugs crystallinity was notably decreased during the preparation process. All SDs showed enhanced release for both drugs compared to their binary mixture, drugs: polymer physical mixtures (PMs) and marketed product. Administration of ATV/EZT SD led to a remarkable decrease (P<0.05) in the serum levels of total cholesterol (TC) and LDL-C in the high fat diet-induced hyperlipidemic rats compared to the PM. Additionally, the histopathological examination of the liver tissue revealed the improved efficiency of the SDs on the liver steatosis. According to the obtained results, ATV/EZT SD with improved physicochemical characteristics, showed favorable effects on the serum lipid levels and liver steatosis. Copyright © 2015 Elsevier B.V. All rights reserved.