Science.gov

Sample records for living cells challenges

  1. Progress and challenges for chemical probing of RNA structure inside living cells

    PubMed Central

    Kubota, Miles; Tran, Catherine; Spitale, Robert C

    2016-01-01

    Proper gene expression is essential for the survival of every cell. Once thought to be a passive transporter of genetic information, RNA has recently emerged as a key player in nearly every pathway in the cell. A full description of its structure is critical to understanding RNA function. Decades of research have focused on utilizing chemical tools to interrogate the structures of RNAs, with recent focus shifting to performing experiments inside living cells. This Review will detail the design and utility of chemical reagents used in RNA structure probing. We also outline how these reagents have been used to gain a deeper understanding of RNA structure in vivo. We review the recent merger of chemical probing with deep sequencing. Finally, we outline some of the hurdles that remain in fully characterizing the structure of RNA inside living cells, and how chemical biology can uniquely tackle such challenges. PMID:26575240

  2. Live endothelial cells imaged by Scanning Near-field Optical Microscopy (SNOM): capabilities and challenges.

    PubMed

    Bulat, Katarzyna; Rygula, Anna; Szafraniec, Ewelina; Ozaki, Yukihiro; Baranska, Malgorzata

    2016-08-22

    The scanning near-field optical microscopy (SNOM) shows a potential to study details of biological samples, since it provides the optical images of objects with nanometric spatial resolution (50-200 nm) and the topographic information at the same time. The goal of this work is to demonstrate the capabilities of SNOM in transmission configuration to study human endothelial cells and their morphological changes, sometimes very subtle, upon inflammation. Various sample preparations were tested for SNOM measurements and promising results are collected to show: 1) the influence of α tumor necrosis factor (TNF-α) on EA.hy 926 cells (measurements of the fixed cells); 2) high resolution images of various endothelial cell lines, i.e. EA.hy 926 and HLMVEC (investigations of the fixed cells in buffer environment); 3) imaging of live endothelial cells in physiological buffers. The study demonstrate complementarity of the SNOM measurements performed in air and in liquid environments, on fixed as well as on living cells. Furthermore, it is proved that the SNOM is a very useful method for analysis of cellular morphology and topography. Changes in the cell shape and nucleus size, which are the symptoms of inflammatory reaction, were noticed in TNF-α activated EA.hy 926 cells. The cellular structures of submicron size were observed in high resolution optical images of cells from EA.hy 926 and HLMVEC lines.

  3. Fluorescence Live Cell Imaging

    PubMed Central

    Ettinger, Andreas

    2014-01-01

    Fluorescence microscopy of live cells has become an integral part of modern cell biology. Fluorescent protein tags, live cell dyes, and other methods to fluorescently label proteins of interest provide a range of tools to investigate virtually any cellular process under the microscope. The two main experimental challenges in collecting meaningful live cell microscopy data are to minimize photodamage while retaining a useful signal-to-noise ratio, and to provide a suitable environment for cells or tissues to replicate physiological cell dynamics. This chapter aims to give a general overview on microscope design choices critical for fluorescence live cell imaging that apply to most fluorescence microscopy modalities, and on environmental control with a focus on mammalian tissue culture cells. In addition, we provide guidance on how to design and evaluate fluorescent protein constructs by spinning disk confocal microscopy. PMID:24974023

  4. The B-cell response to foot-and-mouth-disease virus in cattle following vaccination and live-virus challenge.

    PubMed

    Grant, Clare F J; Carr, B Veronica; Singanallur, Nagendrakumar B; Morris, Jacqueline; Gubbins, Simon; Hudelet, Pascal; Ilott, Martin; Charreyre, Catherine; Vosloo, Wilna; Charleston, Bryan

    2016-09-01

    Antibodies play a pivotal role against viral infection, and maintenance of protection is dependent on plasma and memory B-cells. Understanding antigen-specific B-cell responses in cattle is essential to inform future vaccine design. We have previously defined T-cell-dependent and -independent B-cell responses in cattle, as a prelude to investigating foot-and-mouth-disease-virus (FMDV)-specific B-cell responses. In this study, we have used an FMDV O-serotype vaccination (O1-Manisa or O SKR) and live-virus challenge (FMDV O SKR) to investigate the homologous and heterologous B-cell response in cattle following both vaccination and live-virus challenge. The FMDV O-serotype vaccines were able to induce a cross-reactive plasma-cell response, specific for both O1-Manisa and O SKR, post-vaccination. Post-FMDV O SKR live-virus challenge, the heterologous O1-Manisa vaccination provided cross-protection against O SKR challenge and cross-reactive O SKR-specific plasma cells were induced. However, vaccination and live-virus challenge were not able to induce a detectable FMDV O-serotype-specific memory B-cell response in any of the cattle. The aim of new FMDV vaccines should be to induce memory responses and increased duration of immunity in cattle.

  5. Living-cell microarrays.

    PubMed

    Yarmush, Martin L; King, Kevin R

    2009-01-01

    Living cells are remarkably complex. To unravel this complexity, living-cell assays have been developed that allow delivery of experimental stimuli and measurement of the resulting cellular responses. High-throughput adaptations of these assays, known as living-cell microarrays, which are based on microtiter plates, high-density spotting, microfabrication, and microfluidics technologies, are being developed for two general applications: (a) to screen large-scale chemical and genomic libraries and (b) to systematically investigate the local cellular microenvironment. These emerging experimental platforms offer exciting opportunities to rapidly identify genetic determinants of disease, to discover modulators of cellular function, and to probe the complex and dynamic relationships between cells and their local environment.

  6. Live-cell imaging

    PubMed Central

    Cole, Richard

    2014-01-01

    It would be hard to argue that live-cell imaging has not changed our view of biology. The past 10 years have seen an explosion of interest in imaging cellular processes, down to the molecular level. There are now many advanced techniques being applied to live cell imaging. However, cellular health is often under appreciated. For many researchers, if the cell at the end of the experiment has not gone into apoptosis or is blebbed beyond recognition, than all is well. This is simply incorrect. There are many factors that need to be considered when performing live-cell imaging in order to maintain cellular health such as: imaging modality, media, temperature, humidity, PH, osmolality, and photon dose. The wavelength of illuminating light, and the total photon dose that the cells are exposed to, comprise two of the most important and controllable parameters of live-cell imaging. The lowest photon dose that achieves a measureable metric for the experimental question should be used, not the dose that produces cover photo quality images. This is paramount to ensure that the cellular processes being investigated are in their in vitro state and not shifted to an alternate pathway due to environmental stress. The timing of the mitosis is an ideal canary in the gold mine, in that any stress induced from the imaging will result in the increased length of mitosis, thus providing a control model for the current imagining conditions. PMID:25482523

  7. Microencapsulation Of Living Cells

    NASA Technical Reports Server (NTRS)

    Chang, Manchium; Kendall, James M.; Wang, Taylor G.

    1989-01-01

    In experimental technique, living cells and other biological materials encapsulated within submillimeter-diameter liquid-filled spheres. Sphere material biocompatible, tough, and compliant. Semipermeable, permitting relatively small molecules to move into and out of sphere core but preventing passage of large molecules. New technique promises to make such spherical capsules at high rates and in uniform, controllable sizes. Capsules injected into patient through ordinary hypodermic needle. Promising application for technique in treatment of diabetes. Also used to encapsulate pituitary cells and thyroid hormone adrenocortical cells for treatment of other hormonal disorders, to encapsulate other secreting cells for transplantation, and to package variety of pharmaceutical products and agricultural chemicals for controlled release.

  8. Freezing of living cells

    SciTech Connect

    Mazur, P.

    1985-01-01

    It can be calculated that a living cell will survive more than 5000 years at -196/sup 0/C. This ability to essentially stop biological time has important implications in medicine and agriculture, and in biological research. In medicine the chief implications are in the banking of transplantable tissues and organs and in in vitro fertilization. In agriculture the applications stem in part from the role of frozen embryos in amplifying the number of calves produced by high quanlity cows. The problem is how can cells survive both the cooling to such very low temperatures and the return to normal temperatures. The answers involve fundamental characteristics of cells such as the permeability of their surface membranes to water and solutes. These characteristics determine whether or not cells undergo lethal internal ice formation and other response during freezing and thawing. 27 refs., 12 figs.

  9. Living with Sickle Cell Disease

    MedlinePlus

    ... from the NHLBI on Twitter. Living With Sickle Cell Disease If you or your child has sickle ... NEXT >> Featured Video Living With and Managing Sickle Cell Disease (Nicholas) 09/02/2011 In this video— ...

  10. Astrocytes going live: advances and challenges

    PubMed Central

    Nimmerjahn, Axel

    2009-01-01

    Astrocytes are one of the most numerous cell types in the CNS. They have emerged as sophisticated cells participating in a large and diverse variety of functions vital for normal brain development, adult physiology and pathology. Recent in vivo studies have provided exciting new insight into astrocyte physiology in the intact healthy brain. This review will summarize some of their most intriguing findings, discuss some of their implications, and look ahead at some of the challenges we face in studying astrocyte function in vivo. PMID:19204050

  11. Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate.

    PubMed

    Ratajczak, M Z; Zuba-Surma, E; Wojakowski, W; Suszynska, M; Mierzejewska, K; Liu, R; Ratajczak, J; Shin, D M; Kucia, M

    2014-03-01

    The concept that adult tissue, including bone marrow (BM), contains early-development cells with broader differentiation potential has again been recently challenged. In response, we would like to review the accumulated evidence from several independent laboratories that adult tissues, including BM, harbor a population of very rare stem cells that may cross germ layers in their differentiation potential. Thus, the BM stem cell compartment hierarchy needs to be revisited. These dormant, early-development cells that our group described as very small embryonic-like stem cells (VSELs) most likely overlap with similar populations of stem cells that have been identified in adult tissues by other investigators as the result of various experimental strategies and have been given various names. As reported, murine VSELs have some pluripotent stem cell characteristics. Moreover, they display several epiblast/germline markers that suggest their embryonic origin and developmental deposition in adult BM. Moreover, at the molecular level, changes in expression of parentally imprinted genes (for example, Igf2-H19) and resistance to insulin/insulin-like growth factor signaling (IIS) regulates their quiescent state in adult tissues. In several emergency situations related to organ damage, VSELs can be activated and mobilized into peripheral blood, and in appropriate animal models they contribute to tissue organ/regeneration. Interestingly, their number correlates with lifespan in mice, and they may also be involved in some malignancies. VSELs have been successfully isolated in several laboratories; however, some investigators experience problems with their isolation.

  12. Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate

    PubMed Central

    Ratajczak, M Z; Zuba-Surma, E; Wojakowski, W; Suszynska, M; Mierzejewska, K; Liu, R; Ratajczak, J; Shin, D M; Kucia, M

    2014-01-01

    The concept that adult tissue, including bone marrow (BM), contains early-development cells with broader differentiation potential has again been recently challenged. In response, we would like to review the accumulated evidence from several independent laboratories that adult tissues, including BM, harbor a population of very rare stem cells that may cross germ layers in their differentiation potential. Thus, the BM stem cell compartment hierarchy needs to be revisited. These dormant, early-development cells that our group described as very small embryonic-like stem cells (VSELs) most likely overlap with similar populations of stem cells that have been identified in adult tissues by other investigators as the result of various experimental strategies and have been given various names. As reported, murine VSELs have some pluripotent stem cell characteristics. Moreover, they display several epiblast/germline markers that suggest their embryonic origin and developmental deposition in adult BM. Moreover, at the molecular level, changes in expression of parentally imprinted genes (for example, Igf2–H19) and resistance to insulin/insulin-like growth factor signaling (IIS) regulates their quiescent state in adult tissues. In several emergency situations related to organ damage, VSELs can be activated and mobilized into peripheral blood, and in appropriate animal models they contribute to tissue organ/regeneration. Interestingly, their number correlates with lifespan in mice, and they may also be involved in some malignancies. VSELs have been successfully isolated in several laboratories; however, some investigators experience problems with their isolation. PMID:24018851

  13. Nucleic Acid Aptamers for Living Cell Analysis

    NASA Astrophysics Data System (ADS)

    Xiong, Xiangling; Lv, Yifan; Chen, Tao; Zhang, Xiaobing; Wang, Kemin; Tan, Weihong

    2014-06-01

    Cells as the building blocks of life determine the basic functions and properties of a living organism. Understanding the structure and components of a cell aids in the elucidation of its biological functions. Moreover, knowledge of the similarities and differences between diseased and healthy cells is essential to understanding pathological mechanisms, identifying diagnostic markers, and designing therapeutic molecules. However, monitoring the structures and activities of a living cell remains a challenging task in bioanalytical and life science research. To meet the requirements of this task, aptamers, as “chemical antibodies,” have become increasingly powerful tools for cellular analysis. This article reviews recent advances in the development of nucleic acid aptamers in the areas of cell membrane analysis, cell detection and isolation, real-time monitoring of cell secretion, and intracellular delivery and analysis with living cell models. Limitations of aptamers and possible solutions are also discussed.

  14. Super-resolution imaging in live cells

    PubMed Central

    Cox, Susan

    2015-01-01

    Over the last twenty years super-resolution fluorescence microscopy has gone from proof-of-concept experiments to commercial systems being available in many labs, improving the resolution achievable by up to a factor of 10 or more. There are three major approaches to super-resolution, stimulated emission depletion microscopy, structured illumination microscopy, and localisation microscopy, which have all produced stunning images of cellular structures. A major current challenge is optimising performance of each technique so that the same sort of data can be routinely taken in live cells. There are several major challenges, particularly phototoxicity and the speed with which images of whole cells, or groups of cells, can be acquired. In this review we discuss the various approaches which can be successfully used in live cells, the tradeoffs in resolution, speed, and ease of implementation which one must make for each approach, and the quality of results that one might expect from each technique. PMID:25498481

  15. Optical nanoscopy of a living cell

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Balpreet S.; Wolfson, Deanna L.; Chuang, Frank Y. S.; Huser, Thomas

    2014-08-01

    Optical nanoscopy allows to study biological and functional processes of sub-cellular organelles. In structured illumination microscopy (SIM) the sample is illuminated with a grid-like interference pattern to encode higher spatial frequency information into observable Moiré patterns. By acquiring multiple images and a computation trick a superresolved image is obtained. SIM provides resolution enhancement of 2X in each axis as compared to conventional microscopes. For a visible light, SIM provides an optical resolution of 100 nm. The challenges associated with optical nanoscopy of a living cell are photo-toxicity, special dye requirements and artifacts due to cell movement. SIM works with conventional dyes and is a wide-field technique making it suitable for imaging living cells. In this work, we will discuss the opportunities and challenges of imaging living cells using SIM. Two applications of optical nanoscopy of living cells will be discussed; a) imaging of mitochondria in a keratinocyte cell and Optical microscopy based on fluorescence has emerged as a vital tool in modern bio-medical imaging and diagnosis. Super-resolution bio-imaging allows gathering information from sub-cellular organelles. In structured illumination microscopy (SIM) the sample is illuminated with a grid-like interference patterns to encode higher spatial frequencies information into observable images (Moiré fringes). A super-resolved image is then decoded using computational trick. In this work, we used SIM to acquired super-resolved optical images of mitochondria from a live keratinocyte cell (see Fig 1). SIM provides resolution enhancement of 2X in each axis and contrast enhancement of 8X on a projected image. Time-lapsed imaging was used to study the dynamics of mitochondria in a live cell.

  16. Electronic Interfacing with Living Cells

    NASA Astrophysics Data System (ADS)

    Fleming, James T.

    The direct interfacing of living cells with inorganic electronic materials, components or systems has led to the development of two broad categories of devices that can (1) transduce biochemical signals generated by biological components into electrical signals and (2) transduce electronically generated signals into biochemical signals. The first category of devices permits the monitoring of living cells, the second, enables control of cellular processes. This review will survey this exciting area with emphasis on the fundamental issues and obstacles faced by researchers. Devices and applications that use both prokaryotic (microbial) and eukaryotic (mammalian) cells will be covered. Individual devices described include microbial biofuel cells that produce electricity, bioelectrical reactors that enable electronic control of cellular metabolism, living cell biosensors for the detection of chemicals and devices that permit monitoring and control of mammalian physiology.

  17. Lives of the cell.

    PubMed

    Mendelsohn, J Andrew

    2003-01-01

    What is the relation between things and theories, the material world and its scientific representations? This is a staple philosophical problem that rarely counts as historically legitimate or fruitful. In the following dialogue, the interlocutors do not argue for or against realism. Instead, they explore changing relations between theories and things, between contested objects of knowledge (like the cell) and less contested, more everyday things (like frog eggs scooped from a pond). Widely seen as the life sciences' first general theory, the cell theory underwent dramatic changes during the nineteenth century. The dialogue established that each successive version of the cell theory was formulated - each identity of the object cell was formed - around a different material: cork, cartilage, eggs in cleavage, muscle. Such things thus serve as exemplary materials, in ways not described by standard concepts like induction, theory-testing, theory-laden observation, and construction. Still, how can theories and perspective possibly be honed on things if these are apprehended differently by different observers according to their interests, training, culture, or indeed theories? The second part of the dialogue addresses this problem, partly through the verbal and visual schemata that were used by nineteenth-century microscopists and that are comparable to schemata in the visual arts. The third part of the dialogue considers the exemplary materials as a historical sequence, itself needing explanation. Theoretical change devolved partly from wider histories and geographies of the prevalence, availability, or scientific and cultural status of materials such as plants, animals, and muscle.

  18. Living Well with Sickle Cell Disease

    MedlinePlus

    ... Information For... Media Policy Makers Living Well with Sickle Cell Disease Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir People with sickle cell disease can live full lives and enjoy most ...

  19. Diffusion inside living human cells

    NASA Astrophysics Data System (ADS)

    Leijnse, N.; Jeon, J.-H.; Loft, S.; Metzler, R.; Oddershede, L. B.

    2012-04-01

    Naturally occurring lipid granules diffuse in the cytoplasm and can be used as tracers to map out the viscoelastic landscape inside living cells. Using optical trapping and single particle tracking we found that lipid granules exhibit anomalous diffusion inside human umbilical vein endothelial cells. For these cells the exact diffusional pattern of a particular granule depends on the physiological state of the cell and on the localization of the granule within the cytoplasm. Granules located close to the actin rich periphery of the cell move less than those located towards to the center of the cell or within the nucleus. Also, granules in cells which are stressed by intense laser illumination or which have attached to a surface for a long period of time move in a more restricted fashion than those within healthy cells. For granules diffusing in healthy cells, in regions away from the cell periphery, occurrences of weak ergodicity breaking are observed, similar to the recent observations inside living fission yeast cells [1].

  20. Microencapsulating and Banking Living Cells for Cell-Based Medicine

    PubMed Central

    Zhang, Wujie; He, Xiaoming

    2011-01-01

    A major challenge to the eventual success of the emerging cell-based medicine such as tissue engineering, regenerative medicine, and cell transplantation is the limited availability of the desired cell sources. This challenge can be addressed by cell microencapsulation to overcome the undesired immune response (i.e., to achieve immunoisolation) so that non-autologous cells can be used to treat human diseases, and by cell/tissue preservation to bank living cells for wide distribution to end users so that they are readily available when needed in the future. This review summarizes the status quo of research in both cell microencapsulation and banking the microencapsulated cells. It is concluded with a brief outlook of future research directions in this important field. PMID:22180835

  1. The challenges faced by living stock collections in the USA.

    PubMed

    McCluskey, Kevin; Boundy-Mills, Kyria; Dye, Greg; Ehmke, Erin; Gunnell, Gregg F; Kiaris, Hippokratis; Polihronakis Richmond, Maxi; Yoder, Anne D; Zeigler, Daniel R; Zehr, Sarah; Grotewold, Erich

    2017-03-13

    Many discoveries in the life sciences have been made using material from living stock collections. These collections provide a uniform and stable supply of living organisms and related materials that enhance the reproducibility of research and minimize the need for repetitive calibration. While collections differ in many ways, they all require expertise in maintaining living organisms and good logistical systems for keeping track of stocks and fulfilling requests for specimens. Here, we review some of the contributions made by living stock collections to research across all branches of the tree of life, and outline the challenges they face.

  2. Imaging Transcription in Living Cells

    PubMed Central

    Darzacq, Xavier; Yao, Jie; Larson, Daniel R.; Causse, Sebastien Z.; Bosanac, Lana; de Turris, Valeria; Ruda, Vera M.; Lionnet, Timothee; Zenklusen, Daniel; Guglielmi, Benjamin; Tjian, Robert; Singer, Robert H.

    2011-01-01

    The advent of new technologies for the imaging of living cells has made it possible to determine the properties of transcription, the kinetics of polymerase movement, the association of transcription factors, and the progression of the polymerase on the gene. We report here the current state of the field and the progress necessary to achieve a more complete understanding of the various steps in transcription. Our Consortium is dedicated to developing and implementing the technology to further this understanding. PMID:19416065

  3. Super-resolution imaging in live cells.

    PubMed

    Cox, Susan

    2015-05-01

    Over the last twenty years super-resolution fluorescence microscopy has gone from proof-of-concept experiments to commercial systems being available in many labs, improving the resolution achievable by up to a factor of 10 or more. There are three major approaches to super-resolution, stimulated emission depletion microscopy, structured illumination microscopy, and localisation microscopy, which have all produced stunning images of cellular structures. A major current challenge is optimising performance of each technique so that the same sort of data can be routinely taken in live cells. There are several major challenges, particularly phototoxicity and the speed with which images of whole cells, or groups of cells, can be acquired. In this review we discuss the various approaches which can be successfully used in live cells, the tradeoffs in resolution, speed, and ease of implementation which one must make for each approach, and the quality of results that one might expect from each technique. Copyright © 2014 The Author. Published by Elsevier Inc. All rights reserved.

  4. Information theory in living systems, methods, applications, and challenges.

    PubMed

    Gatenby, Robert A; Frieden, B Roy

    2007-02-01

    Living systems are distinguished in nature by their ability to maintain stable, ordered states far from equilibrium. This is despite constant buffeting by thermodynamic forces that, if unopposed, will inevitably increase disorder. Cells maintain a steep transmembrane entropy gradient by continuous application of information that permits cellular components to carry out highly specific tasks that import energy and export entropy. Thus, the study of information storage, flow and utilization is critical for understanding first principles that govern the dynamics of life. Initial biological applications of information theory (IT) used Shannon's methods to measure the information content in strings of monomers such as genes, RNA, and proteins. Recent work has used bioinformatic and dynamical systems to provide remarkable insights into the topology and dynamics of intracellular information networks. Novel applications of Fisher-, Shannon-, and Kullback-Leibler informations are promoting increased understanding of the mechanisms by which genetic information is converted to work and order. Insights into evolution may be gained by analysis of the the fitness contributions from specific segments of genetic information as well as the optimization process in which the fitness are constrained by the substrate cost for its storage and utilization. Recent IT applications have recognized the possible role of nontraditional information storage structures including lipids and ion gradients as well as information transmission by molecular flux across cell membranes. Many fascinating challenges remain, including defining the intercellular information dynamics of multicellular organisms and the role of disordered information storage and flow in disease.

  5. Thermodynamics of protein destabilization in live cells.

    PubMed

    Danielsson, Jens; Mu, Xin; Lang, Lisa; Wang, Huabing; Binolfi, Andres; Theillet, François-Xavier; Bekei, Beata; Logan, Derek T; Selenko, Philipp; Wennerström, Håkan; Oliveberg, Mikael

    2015-10-06

    Although protein folding and stability have been well explored under simplified conditions in vitro, it is yet unclear how these basic self-organization events are modulated by the crowded interior of live cells. To find out, we use here in-cell NMR to follow at atomic resolution the thermal unfolding of a β-barrel protein inside mammalian and bacterial cells. Challenging the view from in vitro crowding effects, we find that the cells destabilize the protein at 37 °C but with a conspicuous twist: While the melting temperature goes down the cold unfolding moves into the physiological regime, coupled to an augmented heat-capacity change. The effect seems induced by transient, sequence-specific, interactions with the cellular components, acting preferentially on the unfolded ensemble. This points to a model where the in vivo influence on protein behavior is case specific, determined by the individual protein's interplay with the functionally optimized "interaction landscape" of the cellular interior.

  6. ``Backpack'' Functionalized Living Immune Cells

    NASA Astrophysics Data System (ADS)

    Swiston, Albert; Um, Soong Ho; Irvine, Darrell; Cohen, Robert; Rubner, Michael

    2009-03-01

    We demonstrate that functional polymeric ``backpacks'' built from polyelectrolyte multilayers (PEMs) can be attached to a fraction of the surface area of living, individual lymphocytes. Backpacks containing fluorescent polymers, superparamagnetic nanoparticles, and commercially available quantum dots have been attached to B and T-cells, which may be spatially manipulated using a magnetic field. Since the backpack does not occlude the entire cellular surface from the environment, this technique allows functional synthetic payloads to be attached to a cell that is free to perform its native functions, thereby synergistically utilizing both biological and synthetic functionalities. For instance, we have shown that backpack-modified T-cells are able to migrate on surfaces for several hours following backpack attachment. Possible payloads within the PEM backpack include drugs, vaccine antigens, thermally responsive polymers, nanoparticles, and imaging agents. We will discuss how this approach has broad potential for applications in bioimaging, single-cell functionalization, immune system and tissue engineering, and cell-based therapeutics where cell-environment interactions are critical.

  7. Living the Questions: Rilke's Challenge to Our Quest for Certainty

    ERIC Educational Resources Information Center

    Gordon, Mordechai

    2007-01-01

    In this essay, Mordechai Gordon explores the significance of Rilke's challenge to "live the questions" and embrace uncertainty with respect to the quest for certainty in education. The quest for certainty in education refers to our desire to gain a sense of psychological security and more control over a field that is fundamentally indeterminate.…

  8. Living the Questions: Rilke's Challenge to Our Quest for Certainty

    ERIC Educational Resources Information Center

    Gordon, Mordechai

    2007-01-01

    In this essay, Mordechai Gordon explores the significance of Rilke's challenge to "live the questions" and embrace uncertainty with respect to the quest for certainty in education. The quest for certainty in education refers to our desire to gain a sense of psychological security and more control over a field that is fundamentally indeterminate.…

  9. The challenges faced by living stock collections in the USA

    PubMed Central

    McCluskey, Kevin; Boundy-Mills, Kyria; Dye, Greg; Ehmke, Erin; Gunnell, Gregg F; Kiaris, Hippokratis; Polihronakis Richmond, Maxi; Yoder, Anne D; Zeigler, Daniel R; Zehr, Sarah; Grotewold, Erich

    2017-01-01

    Many discoveries in the life sciences have been made using material from living stock collections. These collections provide a uniform and stable supply of living organisms and related materials that enhance the reproducibility of research and minimize the need for repetitive calibration. While collections differ in many ways, they all require expertise in maintaining living organisms and good logistical systems for keeping track of stocks and fulfilling requests for specimens. Here, we review some of the contributions made by living stock collections to research across all branches of the tree of life, and outline the challenges they face. DOI: http://dx.doi.org/10.7554/eLife.24611.001 PMID:28266913

  10. Live-Virtual-Constructive Accomplishments and Challenges: A Corporate View

    DTIC Science & Technology

    2009-01-14

    1 Live-Virtual-Constructive Accomplishments and Challenges: A Corporate View Dr. John B. Foulkes Director Test Resource Management Center Office of...be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of...information if it does not display a currently valid OMB control number. 1. REPORT DATE JAN 2009 2. REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009

  11. Aerosol-, but not intradermal-immunization with the live vaccine strain of Francisella tularensis protects mice against subsequent aerosol challenge with a highly virulent type A strain of the pathogen by an alphabeta T cell- and interferon gamma- dependent mechanism.

    PubMed

    Wayne Conlan, J; Shen, Hua; Kuolee, Rhonda; Zhao, Xigeng; Chen, Wangxue

    2005-03-31

    Francisella tularensis is an extremely virulent facultative intracellular bacterial pathogen of many mammalian species including mice and humans in which it causes a spectrum of disease collectively called tularemia. In humans, intradermal or inhaled inocula of 10cfu or less of the most virulent strains of the pathogen are sufficient to cause severe infection and possible death; in mice similar inocula are routinely lethal. An attenuated live vaccine strain, F. tularensis LVS, was developed almost 50 years ago, and remains the sole prophylactic against virulent strains of the pathogen. Using F. tularensis LVS as a model vaccine, we recently showed that it was possible to systemically immunize various mouse strains and protect them against subsequent massive (2000 cfu) intradermal (i.d.) challenge, but not against low dose (approximately 10 cfu) aerosol challenge, with virulent strains of the pathogen. This is troubling because the latter route is considered an important means of deliberately disseminating F. tularensis in a bioterrorist attack. Others have previously shown that administering LVS to humans, guinea pigs and monkeys as an aerosol enhanced protection against subsequent aerosol challenge with virulent F. tularensis. In the present study, we show the same phenomenon in BALB/c and C3H/HeN mice. In this model, interferon gamma (IFNgamma) and CD4+ and CD8+ T cells are essential for the expression of anti-Francisella immunity in the lungs. Combined this immune response operates by limiting dissemination of the pathogen to susceptible internal organs. Further, understanding of how inhaled LVS elicits local cell-mediated protective immunity will be critical for devising improved vaccines against pulmonary tularemia.

  12. Mag-indo1 affinity for Ca(2+), compartmentalization and binding to proteins: the challenge of measuring Mg(2+) concentrations in living cells.

    PubMed

    Pesco, J; Salmon, J M; Vigo, J; Viallet, P

    2001-03-01

    A physicochemical study of the Mag-indo1 binding to Ca(2+) in solution showed that: (i) the characteristic fluorescence spectra of Ca(2+)-bound and Mg(2+)-bound Mag-indo1 are identical; (ii) two successive equilibria occur for increasing Ca(2+) concentrations; and (iii) the value of the dissociation constant of the first one, as determined by using a probe dilution protocol, amounts to 780 nM. In order to investigate the fluorescence level of Mag-indo1 trapped in cell organelles, fluorescence spectra of Mag-indo1-loaded fibroblasts were recorded before and after a digitonin permeabilization. Their resolution into cation-bound, protein-bound, and free Mag-indo1 characteristic spectra allowed measurement of the fluorescence intensities of these species. The intensities emitted from whole cells were compared to those emitted from organelles (assumed to be endoplasmic reticulum according to a DiOC(6) loading). The cation-bound Mag-indo1 fluorescence resulted partially (20 to 50%) from the cytosol for 30% of the cells, and totally from compartments for 70% of the cells. We found a concentration value of 500 nM for compartmentalized Ca(2+) and concluded that the Mag-indo1 binding to Ca(2+) is likely to affect drastically the Mg(2+) concentration measurements in cells. Moreover, we showed that the amount variation of protein-bound Mag-indo1 also affects Mg(2+) measurements when using the two-wavelength ratio method.

  13. Thermodynamics of protein destabilization in live cells

    PubMed Central

    Danielsson, Jens; Mu, Xin; Lang, Lisa; Wang, Huabing; Binolfi, Andres; Theillet, François-Xavier; Bekei, Beata; Logan, Derek T.; Selenko, Philipp; Wennerström, Håkan; Oliveberg, Mikael

    2015-01-01

    Although protein folding and stability have been well explored under simplified conditions in vitro, it is yet unclear how these basic self-organization events are modulated by the crowded interior of live cells. To find out, we use here in-cell NMR to follow at atomic resolution the thermal unfolding of a β-barrel protein inside mammalian and bacterial cells. Challenging the view from in vitro crowding effects, we find that the cells destabilize the protein at 37 °C but with a conspicuous twist: While the melting temperature goes down the cold unfolding moves into the physiological regime, coupled to an augmented heat-capacity change. The effect seems induced by transient, sequence-specific, interactions with the cellular components, acting preferentially on the unfolded ensemble. This points to a model where the in vivo influence on protein behavior is case specific, determined by the individual protein’s interplay with the functionally optimized “interaction landscape” of the cellular interior. PMID:26392565

  14. Mental health challenges among adolescents living with HIV.

    PubMed

    Vreeman, Rachel C; McCoy, Brittany M; Lee, Sonia

    2017-05-16

    Mental health is a critical and neglected global health challenge for adolescents infected with HIV. The prevalence of mental and behavioural health issues among HIV-infected adolescents may not be well understood or addressed as the world scales up HIV prevention and treatment for adolescents. The objective of this narrative review is to assess the current literature related to mental health challenges faced by adolescents living with HIV, including access to mental health services, the role of mental health challenges during transition from paediatric to adult care services and responsibilities, and the impact of mental health interventions. For each of the topics included in this review, individual searches were run using Medline and PubMed, accompanied by scans of bibliographies of relevant articles. The topics on which searches were conducted for HIV-infected adolescents include depression and anxiety, transition from paediatric to adult HIV care and its impact on adherence and mental health, HIV-related, mental health services and interventions, and the measurement of mental health problems. Articles were included if the focus was consistent with one of the identified topics, involved HIV-infected adolescents, and was published in English. Mental and behavioural health challenges are prevalent in HIV-infected adolescents, including in resource-limited settings where most of them live, and they impact all aspects of HIV prevention and treatment. Too little has been done to measure the impact of mental health challenges for adolescents living with HIV, to evaluate interventions to best sustain or improve the mental health of this population, or to create healthcare systems with personnel or resources to promote mental health. Mental health issues should be addressed proactively during adolescence for all HIV-infected youth. In addition, care systems need to pay greater attention to how mental health support is integrated into the care management for HIV

  15. Mental health challenges among adolescents living with HIV

    PubMed Central

    Vreeman, Rachel C.; McCoy, Brittany M.; Lee, Sonia

    2017-01-01

    Abstract Introduction: Mental health is a critical and neglected global health challenge for adolescents infected with HIV. The prevalence of mental and behavioural health issues among HIV-infected adolescents may not be well understood or addressed as the world scales up HIV prevention and treatment for adolescents. The objective of this narrative review is to assess the current literature related to mental health challenges faced by adolescents living with HIV, including access to mental health services, the role of mental health challenges during transition from paediatric to adult care services and responsibilities, and the impact of mental health interventions. Methods: For each of the topics included in this review, individual searches were run using Medline and PubMed, accompanied by scans of bibliographies of relevant articles. The topics on which searches were conducted for HIV-infected adolescents include depression and anxiety, transition from paediatric to adult HIV care and its impact on adherence and mental health, HIV-related, mental health services and interventions, and the measurement of mental health problems. Articles were included if the focus was consistent with one of the identified topics, involved HIV-infected adolescents, and was published in English. Results and Discussion: Mental and behavioural health challenges are prevalent in HIV-infected adolescents, including in resource-limited settings where most of them live, and they impact all aspects of HIV prevention and treatment. Too little has been done to measure the impact of mental health challenges for adolescents living with HIV, to evaluate interventions to best sustain or improve the mental health of this population, or to create healthcare systems with personnel or resources to promote mental health. Conclusions: Mental health issues should be addressed proactively during adolescence for all HIV-infected youth. In addition, care systems need to pay greater attention to how mental

  16. Nanobiomechanics of living cells: a review

    PubMed Central

    Chen, Jinju

    2014-01-01

    Nanobiomechanics of living cells is very important to understand cell–materials interactions. This would potentially help to optimize the surface design of the implanted materials and scaffold materials for tissue engineering. The nanoindentation techniques enable quantifying nanobiomechanics of living cells, with flexibility of using indenters of different geometries. However, the data interpretation for nanoindentation of living cells is often difficult. Despite abundant experimental data reported on nanobiomechanics of living cells, there is a lack of comprehensive discussion on testing with different tip geometries, and the associated mechanical models that enable extracting the mechanical properties of living cells. Therefore, this paper discusses the strategy of selecting the right type of indenter tips and the corresponding mechanical models at given test conditions. PMID:24748952

  17. Interactions between semiconductor nanowires and living cells.

    PubMed

    Prinz, Christelle N

    2015-06-17

    Semiconductor nanowires are increasingly used for biological applications and their small dimensions make them a promising tool for sensing and manipulating cells with minimal perturbation. In order to interface cells with nanowires in a controlled fashion, it is essential to understand the interactions between nanowires and living cells. The present paper reviews current progress in the understanding of these interactions, with knowledge gathered from studies where living cells were interfaced with vertical nanowire arrays. The effect of nanowires on cells is reported in terms of viability, cell-nanowire interface morphology, cell behavior, changes in gene expression as well as cellular stress markers. Unexplored issues and unanswered questions are discussed.

  18. Live cell refractometry using microfluidic devices.

    PubMed

    Lue, Niyom; Popescu, Gabriel; Ikeda, Takahiro; Dasari, Ramachandra R; Badizadegan, Kamran; Feld, Michael S

    2006-09-15

    Using Hilbert phase microscopy for extracting quantitative phase images, we measured the average refractive index associated with live cells in culture. To decouple the contributions to the phase signal from the cell refractive index and thickness, we confined the cells in microchannels. The results are confirmed by comparison with measurements of spherical cells in suspension.

  19. Protein reconstitution methods for visualizing biomolecular function in living cells.

    PubMed

    Ozawa, Takeaki

    2009-03-01

    One of the most challenging researches in current biology and medicinal chemistry is to understand how individual cellular molecules interact together in living cells. To visualize such molecules, genetically-encoded reporters have been used widely. The most common reporters are firefly luciferase, renilla luciferase, green fluorescent protein (GFP) and its variants with various spectral properties. In this review, novel design of split GFP and split luciferase is described. The principle is based on reconstitution of the split-reporter fragments when they are brought together into close proximity. The reconstitution methods are used for screening organelle-localized proteins, imaging dynamics of nuclear proteins and mRNAs in living cells, and visualizing protease activities in living animals. These methods are generally applicable for imaging of complex cellular processes and evaluating chemical effects in living cells and animals.

  20. Fluorescent Probes for Live-Cell RNA Detection

    PubMed Central

    Bao, Gang; Rhee, Won Jong; Tsourkas, Andrew

    2009-01-01

    Commonly used techniques for analyzing gene expression, such as polymerase chain reaction (PCR), microarrays, and in situ hybridization, have proven invaluable in understanding RNA processing and regulation. However, these techniques rely on the use of lysed and/or fixed cells and are therefore limited in their ability to provide important spatial-temporal information. This has led to the development of numerous techniques for imaging RNA in living cells, some of which have already provided important insight into the dynamic role RNA plays in dictating cell behavior. Here we review the fluorescent probes that have allowed for RNA imaging in living cells and discuss their utility and limitations. Common challenges faced by fluorescent probes, such as probe design, delivery, and target accessibility, are also discussed. It is expected that continued advancements in live cell imaging of RNA will open new and exciting opportunities in a wide range of biological and medical applications. PMID:19400712

  1. Physical chemistry in a single live cell: confocal microscopy.

    PubMed

    Amin, Md Asif; Nandi, Somen; Mondal, Prasenjit; Mahata, Tanushree; Ghosh, Surajit; Bhattacharyya, Kankan

    2017-05-24

    A live cell is a complex, yet extremely important container. Understanding the dynamics in a selected intracellular component is a challenging task. We have recently made significant progress in this direction using a confocal microscope as a tool. The smallest size of the focused spot in a confocal microscope is ∼0.2 μm (200 nm). This is nearly one hundred times smaller than the size of a live cell. Thus, one can selectively study different intracellular components/organelles in a live cell. In this paper, we discuss how one can image different intracellular components/organelles, record fluorescence spectra and decay at different locations, ascertain local polarity and viscosity, and monitor the dynamics of solvation, proton transfer, red-ox and other phenomena at specified locations/organelles inside a cell. We will highlight how this knowledge enriched us in differentiating between cancer and non-cancer cells, 3D tumor spheroids and towards drug delivery.

  2. A family living with Alzheimer's disease: The communicative challenges.

    PubMed

    Jones, Danielle

    2015-09-01

    Alzheimer's disease irrevocably challenges a person's capacity to communicate with others. Earlier research on these challenges focused on the language disorders associated with the condition and situated language deficit solely in the limitations of a person's cognitive and semantic impairments. This research falls short of gaining insight into the actual interactional experiences of a person with Alzheimer's and their family. Drawing on a UK data set of 70 telephone calls recorded over a two-and-a-half year period (2006-2008) between one elderly woman with Alzheimer's disease, and her daughter and son-in-law, this paper explores the role which communication (and its degeneration) plays in family relationships. Investigating these interactions, using a conversation analytic approach, reveals that there are clearly communicative difficulties, but closer inspection suggests that they arise due to the contingencies that are generated by the other's contributions in the interaction. That being so, this paper marks a departure from the traditional focus on language level analysis and the assumption that deficits are intrinsic to the individual with Alzheimer's, and instead focuses on the collaborative communicative challenges that arise in the interaction itself and which have a profound impact on people's lives and relationships.

  3. Thermophoretic manipulation of molecules inside living cells.

    PubMed

    Reichl, Maren R; Braun, Dieter

    2014-11-12

    The complexity of biology requires that measurements of biomolecular interactions be performed inside living cells. While electrophoresis inside cells is prohibited by the cell membrane, the movement of molecules along a temperature gradient appears feasible. This thermophoresis could be used to quantify binding affinities in vitro at picomolar levels and perform pharmaceutical fragment screens. Here we changed the measurement paradigm to enable measurements inside living cells. The temperature gradient is now applied along the optical axis and measures thermophoretic properties for each pixel of the camera image. We verify the approach for polystyrene beads and DNA of various lengths using finite element modeling. Thermophoresis inside living cells is able to record thermophoretic mobilities and intracellular diffusion coefficients across the whole cytoplasm. Interestingly, we find a 30-fold reduced diffusion coefficient inside the cell, indicating that molecular movement across the cell cytoplasm is slowed down due to molecular crowding.

  4. Biosynthesis: Imaging cell-wall biosynthesis live

    NASA Astrophysics Data System (ADS)

    Bugg, Timothy D. H.

    2013-01-01

    The biosynthesis of peptidoglycan is an important step in bacterial cell division and cell-wall maturation. Now it has been shown that fluorescent D-amino acids can be used to label the peptidoglycan cell wall of living bacteria, providing a new tool to study this important process.

  5. Ionic Strength Sensing in Living Cells.

    PubMed

    Liu, Boqun; Poolman, Bert; Boersma, Arnold J

    2017-09-06

    Knowledge of the ionic strength in cells is required to understand the in vivo biochemistry of the charged biomacromolecules. Here, we present the first sensors to determine the ionic strength in living cells, by designing protein probes based on Förster resonance energy transfer (FRET). These probes allow observation of spatiotemporal changes in the ionic strength on the single-cell level.

  6. A Live Specimen Cell for the Microscope.

    ERIC Educational Resources Information Center

    McNeil, D. W.

    1991-01-01

    Provides background and instructions for the assembly of a microaquarium, or specimen cell, in which the dynamic world of living microorganisms can be viewed through a microscope overextended periods of time utilizing the simplest of materials in the process. (JJK)

  7. A Live Specimen Cell for the Microscope.

    ERIC Educational Resources Information Center

    McNeil, D. W.

    1991-01-01

    Provides background and instructions for the assembly of a microaquarium, or specimen cell, in which the dynamic world of living microorganisms can be viewed through a microscope overextended periods of time utilizing the simplest of materials in the process. (JJK)

  8. Healthy Living with Persuasive Technologies: Framework, Issues, and Challenges

    PubMed Central

    Chatterjee, Samir; Price, Alan

    2009-01-01

    While our Y2K worries about old computers “retiring” at midnight captured the television and news media attention, a more significant “old age” phenomenon snuck onto the scene with hardly a headline: the dawn of the age of the aged. 1 The over burdened health care system will face a worldwide wave of retirees who will live longer, cost more to treat, and demand new goods and services to help them stay healthy, active, and independent. Research in persuasive technologies and the associated usage of a computing system, device, or application intentionally designed to change a person's attitude or behavior in a predetermined way is showing the potential to assist in improving healthy living, reduce the costs on the health care system, and allow the aged to maintain a more independent life. This article gives a deeper insight into the evolution of persuasive technologies and presents a framework that can guide a researcher or practitioner in comprehending more effectively the work being done in this novel research field. It also provides categories of domains within health care in which these technologies are used and surveys exemplars from published literature. The article's goal is to provide greater understanding by addressing the challenges that lie ahead for all key stakeholders that design and/or use persuasive technologies in health care. PMID:19074300

  9. Live attenuated vaccines: Historical successes and current challenges

    SciTech Connect

    Minor, Philip D.

    2015-05-15

    Live attenuated vaccines against human viral diseases have been amongst the most successful cost effective interventions in medical history. Smallpox was declared eradicated in 1980; poliomyelitis is nearing global eradication and measles has been controlled in most parts of the world. Vaccines function well for acute diseases such as these but chronic infections such as HIV are more challenging for reasons of both likely safety and probable efficacy. The derivation of the vaccines used has in general not been purely rational except in the sense that it has involved careful clinical trials of candidates and subsequent careful follow up in clinical use; the identification of the candidates is reviewed. - Highlights: • Live vaccines against human diseases caused by viruses have been very successful. • They have been developed by empirical clinical studies and problems identified in later use. • It can be difficult to balance ability to cause disease and ability to immunise for a strain. • There is currently no reliable basis for predicting success from pure virological studies. • Vaccinia, which eradicated smallpox, is the paradigm for all successes and issues.

  10. Non-equilibrium microrheology of living cells

    NASA Astrophysics Data System (ADS)

    Wei, Ming-Tzo; Ou-Yang, H. Daniel

    2011-03-01

    Intracellular stresses generated by molecular motors can actively modify cytoskeletal network and change intracellular mechanical properties. We study the out-of-equilibrium microrheology in living cells using endogenous organelle particles as probes. This paper reports measurements of the intracellular mechanical properties using passive, particle-tracking and active, optical tweezers-based microrheology approaches. Using arguments based on the fluctuation-dissipation theorem, we compared the results from both approaches to distinguish thermal and non-thermal mechanical fluctuations in living cells.

  11. Live Cell Imaging in Fission Yeast.

    PubMed

    Mulvihill, Daniel P

    2017-10-03

    Live cell imaging complements the array of biochemical and molecular genetic approaches to provide a comprehensive insight into functional dependencies and molecular interactions in fission yeast. Fluorescent proteins and vital dyes reveal dynamic changes in the spatial distribution of organelles and the proteome and how each alters in response to changes in environmental and genetic composition. This introduction discusses key issues and basic image analysis for live cell imaging of fission yeast. © 2017 Cold Spring Harbor Laboratory Press.

  12. Live cell imaging in Drosophila melanogaster.

    PubMed

    Parton, Richard M; Vallés, Ana Maria; Dobbie, Ian M; Davis, Ilan

    2010-04-01

    Although many of the techniques of live cell imaging in Drosophila melanogaster are also used by the greater community of cell biologists working on other model systems, studying living fly tissues presents unique difficulties with regard to keeping the cells alive, introducing fluorescent probes, and imaging through thick, hazy cytoplasm. This article outlines the major tissue types amenable to study by time-lapse cinematography and different methods for keeping the cells alive. It describes various imaging and associated techniques best suited to following changes in the distribution of fluorescently labeled molecules in real time in these tissues. Imaging, in general, is a rapidly developing discipline, and recent advances in imaging technology are able to greatly extend what can be achieved with live cell imaging of Drosophila tissues. As far as possible, this article includes the latest technical developments and discusses likely future developments in imaging methods that could have an impact on research using Drosophila.

  13. Live Cell Imaging during Mechanical Stretch

    PubMed Central

    Rápalo, Gabriel; Herwig, Josh D.; Hewitt, Robert; Wilhelm, Kristina R.; Waters, Christopher M.; Roan, Esra

    2015-01-01

    There is currently a significant interest in understanding how cells and tissues respond to mechanical stimuli, but current approaches are limited in their capability for measuring responses in real time in live cells or viable tissue. A protocol was developed with the use of a cell actuator to distend live cells grown on or tissues attached to an elastic substrate while imaging with confocal and atomic force microscopy (AFM). Preliminary studies show that tonic stretching of human bronchial epithelial cells caused a significant increase in the production of mitochondrial superoxide. Moreover, using this protocol, alveolar epithelial cells were stretched and imaged, which showed direct damage to the epithelial cells by overdistention simulating one form of lung injury in vitro. A protocol to conduct AFM nano-indentation on stretched cells is also provided. PMID:26325607

  14. Colon-targeted delivery of live bacterial cell biotherapeutics including microencapsulated live bacterial cells

    PubMed Central

    Prakash, Satya; Malgorzata Urbanska, Aleksandra

    2008-01-01

    There has been an ample interest in delivery of therapeutic molecules using live cells. Oral delivery has been stipulated as best way to deliver live cells to humans for therapy. Colon, in particular, is a part of gastrointestinal (GI) tract that has been proposed to be an oral targeted site. The main objective of these oral therapy procedures is to deliver live cells not only to treat diseases like colorectal cancer, inflammatory bowel disease, and other GI tract diseases like intestinal obstruction and gastritis, but also to deliver therapeutic molecules for overall therapy in various diseases such as renal failure, coronary heart disease, hypertension, and others. This review provides a comprehensive summary of recent advancement in colon targeted live bacterial cell biotherapeutics. Current status of bacterial cell therapy, principles of artificial cells and its potentials in oral delivery of live bacterial cell biotherapeutics for clinical applications as well as biotherapeutic future perspectives are also discussed in our review. PMID:19707368

  15. Living Cell Microarrays: An Overview of Concepts

    PubMed Central

    Jonczyk, Rebecca; Kurth, Tracy; Lavrentieva, Antonina; Walter, Johanna-Gabriela; Scheper, Thomas; Stahl, Frank

    2016-01-01

    Living cell microarrays are a highly efficient cellular screening system. Due to the low number of cells required per spot, cell microarrays enable the use of primary and stem cells and provide resolution close to the single-cell level. Apart from a variety of conventional static designs, microfluidic microarray systems have also been established. An alternative format is a microarray consisting of three-dimensional cell constructs ranging from cell spheroids to cells encapsulated in hydrogel. These systems provide an in vivo-like microenvironment and are preferably used for the investigation of cellular physiology, cytotoxicity, and drug screening. Thus, many different high-tech microarray platforms are currently available. Disadvantages of many systems include their high cost, the requirement of specialized equipment for their manufacture, and the poor comparability of results between different platforms. In this article, we provide an overview of static, microfluidic, and 3D cell microarrays. In addition, we describe a simple method for the printing of living cell microarrays on modified microscope glass slides using standard DNA microarray equipment available in most laboratories. Applications in research and diagnostics are discussed, e.g., the selective and sensitive detection of biomarkers. Finally, we highlight current limitations and the future prospects of living cell microarrays. PMID:27600077

  16. Existential challenges in young people living with a cancer diagnosis.

    PubMed

    Odh, Ida; Löfving, Martina; Klaeson, Kicki

    2016-10-01

    In Sweden, approximately 500 people between the ages of 15 and 39 are diagnosed with cancer each year. When someone is diagnosed with a life-threatening disease, existential issues are easily triggered. Young adults are in a developmental phase of life and are exposed to an extra amount of pressure. The Internet and social media are a daily part of the life of young adults and the use of blogs is common. The aim of this study was to elucidate the theoretical framework of Yalom and his four 'givens' expressed in blogs written by young adults living with various cancer diagnoses in Sweden. This study used a qualitative method in which written stories from six public blogs were analysed using qualitative content analysis. The findings offer valuable in-depth knowledge about the existential issues in this population. The results can be described as a journey with several existential challenges and with death as an impending threat. The bloggers' awareness of their mortality was described as creating a sense of loss and existential loneliness. This study shows that young adults are empowered by the writing of blogs and that blogs can play an important part in increasing wellbeing and a sense of coherence within this population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Live cell imaging by multifocal multiphoton microscopy.

    PubMed

    Straub, M; Lodemann, P; Holroyd, P; Jahn, R; Hell, S W

    2000-10-01

    Multifocal multiphoton microscopy (MMM) permits parallel multiphoton excitation by scanning an array of high numerical aperture foci across a plane in the sample. MMM is particularly suitable for live cell investigations since it combines advantages of standard multiphoton microscopy such as optical sectioning and suppression of out-of-focus phototoxicity with high recording speeds. Here we describe several applications of MMM to live cell imaging using the neuroendocrine cell line PC12 and bovine chromaffin cells. Stainings were performed with the acidophilic dye acridine orange and the lipophilic dyes FM1-43 and Fast DiA as well as by transfection of the cells with GFP. In both bovine chromaffin and PC12 cells structural elements of nuclear chromatin and the 3-D distribution of acidic organelles inside the cells were visualized. In PC12 cells differentiated by nerve growth factor examples of neurites were monitored. Stainings of membranes were used to reconstruct the morphology of cells and neurites in three dimensions by volume-rendering and by isosurface plots. 3-D reconstructions were composed from stacks of about 50 images each with a diameter of 30-100 microm that were acquired within a few seconds. We conclude that MMM proves to be a technically simple and very effective method for fast 3-D live cell imaging at high resolution.

  18. Multispectral imaging fluorescence microscopy for living cells.

    PubMed

    Hiraoka, Yasushi; Shimi, Takeshi; Haraguchi, Tokuko

    2002-10-01

    Multispectral imaging technologies have been widely used in fields of astronomy and remote sensing. Interdisciplinary approaches developed in, for example, the National Aeronautics and Space Administration (NASA, USA), the Jet Propulsion Laboratory (JPL, USA), or the Communications Research Laboratory (CRL, Japan) have extended the application areas of these technologies from planetary systems to cellular systems. Here we overview multispectral imaging systems that have been devised for microscope applications. We introduce these systems with particular interest in live cell imaging. Finally we demonstrate examples of spectral imaging of living cells using commercially available systems with no need for user engineering.

  19. Viscoelastic Mapping of Living Cell Interiors

    NASA Astrophysics Data System (ADS)

    Heinrich, Doris; Sackmann, Erich; Koehler, Jana; Gerisch, Guenther

    2004-03-01

    We performed spatially resolved mapping of the viscoelastic properties of the cytoplasm of living cell interiors. A magnetic tweezer was applied as a local probe for the investigation of active and passive transport inside the slime mold cells Dictyostelium discoideum. Fluorescence labeled components, i.e. the microtubulins, the endoplasmatic reticulum or the core, allow for the determination of the interaction of the magnetic probes with the cytoplasm. By comparing the trajectories of the magnetic beads in the presence of an external magnetic force and in the absence of an external force, we can measure the viscosity at any given position within the cell. These experiments show that the cytoplasm consists of soft pathways (yield stress less or equal 10 Pa) and hard pathways (yield stress less or equal 500 Pa). Selective actin, myosin II or microtubulin network removal in the living cells allows for the determination of the influence of these cell parts on the viscoelastic properties.

  20. Imaging neurotransmitter release kinetics in living cells

    SciTech Connect

    Tan, Weihong; Yeung, E.S.; Haydon, P.G.

    1996-12-31

    A new UV-laser based optical microscope and CCD detection system has been developed to image neurotransmitter in living biological cells. We demonstrate the detection of serotonin that has been taken up into and released from individual living glial cells (astrocytes) based on its native fluorescence. The detection methodology has high sensitivity, low limit of detection and does not require coupling to fluorescence dyes. We have studied serotonin uptake kinetics and its release dynamics in single glial cells. Different regions of a glial cell have taken up different amounts of serotonin with a variety of kinetics. Similarly, different serotonin release mechanisms have been observed in different astrocyte cell regions. The temporal resolution of this detection system is as fast as 50 ms, and the spatial resolution is diffraction limited. We will also report on single enzyme molecule reaction studies and single metal ion detection based on CCD imaging of pL reaction vials formed by micromachining on fused silica.

  1. Transition metal catalysis in the mitochondria of living cells

    NASA Astrophysics Data System (ADS)

    Tomás-Gamasa, María; Martínez-Calvo, Miguel; Couceiro, José R.; Mascareñas, José L.

    2016-09-01

    The development of transition metal catalysts capable of promoting non-natural transformations within living cells can open significant new avenues in chemical and cell biology. Unfortunately, the complexity of the cell makes it extremely difficult to translate standard organometallic chemistry to living environments. Therefore, progress in this field has been very slow, and many challenges, including the possibility of localizing active metal catalysts into specific subcellular sites or organelles, remain to be addressed. Herein, we report a designed ruthenium complex that accumulates preferentially inside the mitochondria of mammalian cells, while keeping its ability to react with exogenous substrates in a bioorthogonal way. Importantly, we show that the subcellular catalytic activity can be used for the confined release of fluorophores, and even allows selective functional alterations in the mitochondria by the localized transformation of inert precursors into uncouplers of the membrane potential.

  2. Transition metal catalysis in the mitochondria of living cells

    PubMed Central

    Tomás-Gamasa, María; Martínez-Calvo, Miguel; Couceiro, José R.; Mascareñas, José L.

    2016-01-01

    The development of transition metal catalysts capable of promoting non-natural transformations within living cells can open significant new avenues in chemical and cell biology. Unfortunately, the complexity of the cell makes it extremely difficult to translate standard organometallic chemistry to living environments. Therefore, progress in this field has been very slow, and many challenges, including the possibility of localizing active metal catalysts into specific subcellular sites or organelles, remain to be addressed. Herein, we report a designed ruthenium complex that accumulates preferentially inside the mitochondria of mammalian cells, while keeping its ability to react with exogenous substrates in a bioorthogonal way. Importantly, we show that the subcellular catalytic activity can be used for the confined release of fluorophores, and even allows selective functional alterations in the mitochondria by the localized transformation of inert precursors into uncouplers of the membrane potential. PMID:27600651

  3. Apparatus and method for transforming living cells

    DOEpatents

    Okandan, Murat; Galambos, Paul C.

    2003-11-11

    An apparatus and method are disclosed for in vitro transformation of living cells. The apparatus, which is formed as a microelectromechanical device by surface micromachining, can be used to temporarily disrupt the cell walls or membrane of host cells one at a time so that a particular substance (e.g. a molecular tag, nucleic acid, bacteria, virus etc.) can be introduced into the cell. Disruption of the integrity of the host cells (i.e. poration) can be performed mechanically or electrically, or by both while the host cells are contained within a flow channel. Mechanical poration is possible using a moveable member which has a pointed or serrated edge and which is driven by an electrostatic actuator to abrade, impact or penetrate the host cell. Electroporation is produced by generating a relatively high electric field across the host cell when the host cell is located in the flow channel between a pair of electrodes having a voltage applied therebetween.

  4. Multifunctional Prenylated Peptides for Live Cell Analysis

    PubMed Central

    Wollack, James W.; Zeliadt, Nicholette A.; Mullen, Daniel G.; Amundson, Gregg; Geier, Suzanne; Falkum, Stacy; Wattenberg, Elizabeth V.; Barany, George; Distefano, Mark D.

    2009-01-01

    Protein prenylation is a common post-translational modification present in eukaryotic cells. Many key proteins involved in signal transduction pathways are prenylated and inhibition of prenylation can be useful as a therapeutic intervention. While significant progress has been made in understanding protein prenylation in vitro, we have been interested in studying this process in living cells, including the question of where prenylated molecules localize. Here, we describe the synthesis and live cell analysis of a series of fluorescently labeled multifunctional peptides, based on the C-terminus of the naturally prenylated protein CDC42. A synthetic route was developed that features a key Acm to Scm protecting group conversion. This strategy was compatible with acid-sensitive isoprenoid moieties, and allowed incorporation of an appropriate fluorophore as well as a cell-penetrating sequence (penetratin). These peptides are able to enter cells through different mechanisms, depending on the presence or absence of the penetratin vehicle and the nature of the prenyl group attached. Interestingly, prenylated peptides lacking penetratin are able to enter cells freely through an energy-independent process, and localize in a perinuclear fashion. This effect extends to a prenylated peptide that includes a full “CAAX box” sequence (specifically, CVLL). Hence, these peptides open the door for studies of protein prenylation in living cells, including enzymatic processing and intracellular peptide trafficking. Moreover, the synthetic strategy developed here should be useful for the assembly of other types of peptides that contain acid sensitive functionalities. PMID:19425596

  5. Bioluminescence imaging in live cells and animals

    PubMed Central

    Tung, Jack K.; Berglund, Ken; Gutekunst, Claire-Anne; Hochgeschwender, Ute; Gross, Robert E.

    2016-01-01

    Abstract. The use of bioluminescent reporters in neuroscience research continues to grow at a rapid pace as their applications and unique advantages over conventional fluorescent reporters become more appreciated. Here, we describe practical methods and principles for detecting and imaging bioluminescence from live cells and animals. We systematically tested various components of our conventional fluorescence microscope to optimize it for long-term bioluminescence imaging. High-resolution bioluminescence images from live neurons were obtained with our microscope setup, which could be continuously captured for several hours with no signs of phototoxicity. Bioluminescence from the mouse brain was also imaged noninvasively through the intact skull with a conventional luminescence imager. These methods demonstrate how bioluminescence can be routinely detected and measured from live cells and animals in a cost-effective way with common reagents and equipment. PMID:27226972

  6. Bioluminescence imaging in live cells and animals.

    PubMed

    Tung, Jack K; Berglund, Ken; Gutekunst, Claire-Anne; Hochgeschwender, Ute; Gross, Robert E

    2016-04-01

    The use of bioluminescent reporters in neuroscience research continues to grow at a rapid pace as their applications and unique advantages over conventional fluorescent reporters become more appreciated. Here, we describe practical methods and principles for detecting and imaging bioluminescence from live cells and animals. We systematically tested various components of our conventional fluorescence microscope to optimize it for long-term bioluminescence imaging. High-resolution bioluminescence images from live neurons were obtained with our microscope setup, which could be continuously captured for several hours with no signs of phototoxicity. Bioluminescence from the mouse brain was also imaged noninvasively through the intact skull with a conventional luminescence imager. These methods demonstrate how bioluminescence can be routinely detected and measured from live cells and animals in a cost-effective way with common reagents and equipment.

  7. Synchrotron IR spectromicroscopy: chemistry of living cells.

    PubMed

    Holman, Hoi-Ying N; Bechtel, Hans A; Hao, Zhao; Martin, Michael C

    2010-11-01

    Advanced analytical capabilities of synchrotron IR spectromicroscopy meet the demands of modern biological research for studying molecular reactions in individual living cells. (To listen to a podcast about this article, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html.).

  8. Confocal diffraction phase microscopy of live cells.

    PubMed

    Lue, Niyom; Choi, Wonshik; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S; Popescu, Gabriel

    2008-09-15

    We present a new quantitative phase microscopy technique, confocal diffraction phase microscopy, which provides quantitative phase measurements from localized sites on a sample with high sensitivity. The technique combines common-path interferometry with confocal microscopy in a transmission geometry. The capability of the technique for static imaging is demonstrated by imaging polystyrene microspheres and live HT29 cells, while dynamic imaging is demonstrated by quantifying the nanometer scale fluctuations of red blood cell membranes.

  9. Spectro-microscopy of living plant cells.

    PubMed

    Harter, Klaus; Meixner, Alfred J; Schleifenbaum, Frank

    2012-01-01

    Spectro-microscopy, a combination of fluorescence microscopy with spatially resolved spectroscopic techniques, provides new and exciting tools for functional cell biology in living organisms. This review focuses on recent developments in spectro-microscopic applications for the investigation of living plant cells in their native tissue context. The application of spectro-microscopic methods led to the recent discovery of a fast signal response pathway for the brassinosteroide receptor BRI1 in the plasma membrane of living plant cells. Moreover, the competence of different plant cell types to respond to environmental or endogenous stimuli was determined in vivo by correlation analysis of different optical and spectroscopic readouts such as fluorescence lifetime (FLT). Furthermore, a new spectro-microscopic technique, fluorescence intensity decay shape analysis microscopy (FIDSAM), has been developed. FIDSAM is capable of imaging low-expressed fluorophore-tagged proteins at high spatial resolution and precludes the misinterpretation of autofluorescence artifacts. In addition, FIDSAM provides a very effective and sensitive tool on the basis of Förster resonance energy transfer (FRET) for the qualitative and quantitative determination of protein-protein interaction. Finally, we report on the quantitative analysis of the photosystem I and II (PSI/PSII) ratio in the chloroplasts of living Arabidopsis plants at room temperature, using high-resolution, spatially resolved fluorescence spectroscopy. With this technique, it was not only possible to measure PSI/PSII ratios, but also to demonstrate the differential competence of wild-type and carbohydrate-deficient plants to adapt the PSI/PSII ratio to different light conditions. In summary, the information content of standard microscopic images is extended by several dimensions by the use of spectro-microscopic approaches. Therefore, novel cell physiological and molecular topics can be addressed and valuable insights into

  10. Urgent challenges in implementing live attenuated influenza vaccine.

    PubMed

    Singanayagam, Anika; Zambon, Maria; Lalvani, Ajit; Barclay, Wendy

    2017-08-02

    Conflicting reports have emerged about the effectiveness of the live attenuated influenza vaccine. The live attenuated influenza vaccine appears to protect particularly poorly against currently circulating H1N1 viruses that are derived from the 2009 pandemic H1N1 viruses. During the 2015-16 influenza season, when pandemic H1N1 was the predominant virus, studies from the USA reported a complete lack of effectiveness of the live vaccine in children. This finding led to a crucial decision in the USA to recommend that the live vaccine not be used in 2016-17 and to switch to the inactivated influenza vaccine. Other countries, including the UK, Canada, and Finland, however, have continued to recommend the use of the live vaccine. This policy divergence and uncertainty has far reaching implications for the entire global community, given the importance of the production capabilities of the live attenuated influenza vaccine for pandemic preparedness. In this Personal View, we discuss possible explanations for the observed reduced effectiveness of the live attenuated influenza vaccine and highlight the underpinning scientific questions. Further research to understand the reasons for these observations is essential to enable informed public health policy and commercial decisions about vaccine production and development in coming years. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Cellular interaction between fixed and living cells. Transfer of radioactive materials from living cells to fixed cells

    PubMed Central

    1979-01-01

    Transfer of radioactive materials to fixed cells from an overlying layer of living cells has been examined to determine whether fixed cells can act as acceptors of glycosyltransferases of living cells. After the incubation of living cells were removed by EDTA treatment, and the radioactivity associated with the fixed cells was determined. Lipids, proteins and carbohydrates were found to be transfered from the living cells to the fixed cells. The amount of radioactivity transferred to the fixed cells was dependent on the number of both fixed and living cells and increased with the time of incubation. When fixed cells were treated with chloroform-methanol before the addition of living cells, the transfer of both lipids and proteins to the fixed cells decreased drastically, but only a slight decrease incarbohydrate transfer was observed. Most of the radioactive materials transferred from living cells labeled with glucosamine or fucose to chloroform- methanol-treated fixed cells were solubilized by trypsin but not by the detergents tested. Approximately 55% of the materials transferred from the cells labeled with glucosamine could be solubilized by hyaluronidase and chondroitinase, and the rest was solubilized by neuraminidase and a glycosidase mixture. The treatment of chloroform- methanol-extracted fixed cells with trypsin caused a significant decrease in the transfer from cells labeled with glucosamine. When nucleotide sugars were used as the radioactive precursor, no significant amount of radioactivity was transferred to the fixed cells. PMID:379019

  12. Live single-cell mass spectrometry.

    PubMed

    Masujima, Tsutomu

    2009-08-01

    The history from bio-imaging to live single-cell mass spectrometry (MS) is herein reviewed. The limitation of the current bio-imaging method is probing only known molecules, and a method for finding new molecules is needed for cells which, however, show individual behaviors even in the same incubation dish. Single-cell MALDI-TOF/MS has been developed, but it can detect only molecules that can be easily ionized, and not be exhaustive. Recently, the contents of a single cell have been sucked out by a nano-electro spray tip, and directly introduced into MS by nano-spray ionization. Thousands of molecular peaks have been successfully and exhaustively detected, and an extraction method for key molecules was also developed. This new method is now being widely applied to explore site- or state-specific molecules in various aspects of cell dynamisms.

  13. Biomimetic silica encapsultation of living cells

    NASA Astrophysics Data System (ADS)

    Jaroch, David Benjamin

    Living cells perform complex chemical processes on size and time scales that artificial systems cannot match. Cells respond dynamically to their environment, acting as biological sensors, factories, and drug delivery devices. To facilitate the use of living systems in engineered constructs, we have developed several new approaches to create stable protective microenvironments by forming bioinspired cell-membrane-specific silica-based encapsulants. These include vapor phase deposition of silica gels, use of endogenous membrane proteins and polysaccharides as a site for silica nucleation and polycondensation in a saturated environment, and protein templated ordered silica shell formation. We demonstrate silica layer formation at the surface of pluripotent stem-like cells, bacterial biofilms, and primary murine and human pancreatic islets. Materials are characterized by AFM, SEM and EDS. Viability assays confirm cell survival, and metabolite flux measurements demonstrate normal function and no major diffusion limitations. Real time PCR mRNA analysis indicates encapsulated islets express normal levels of genetic markers for β-cells and insulin production. The silica glass encapsulant produces a secondary bone like calcium phosphate mineral layer upon exposure to media. Such bioactive materials can improve device integration with surrounding tissue upon implantation. Given the favorable insulin response, bioactivity, and long-term viability observed in silica-coated islets, we are currently testing the encapsulant's ability to prevent immune system recognition of foreign transplants for the treatment of diabetes. Such hybrid silica-cellular constructs have a wide range of industrial, environmental, and medical applications.

  14. Single-Molecule Studies in Live Cells.

    PubMed

    Yu, Ji

    2016-05-27

    Live-cell single-molecule experiments are now widely used to study complex biological processes such as signal transduction, self-assembly, active trafficking, and gene regulation. These experiments' increased popularity results in part from rapid methodological developments that have significantly lowered the technical barriers to performing them. Another important advance is the development of novel statistical algorithms, which, by modeling the stochastic behaviors of single molecules, can be used to extract systemic parameters describing the in vivo biochemistry or super-resolution localization of biological molecules within their physiological environment. This review discusses recent advances in experimental and computational strategies for live-cell single-molecule studies, as well as a selected subset of biological studies that have utilized these new technologies.

  15. Imaging Single Cells in the Living Retina

    PubMed Central

    Williams, David R.

    2011-01-01

    A quarter century ago, we were limited to a macroscopic view of the retina inside the living eye. Since then, new imaging technologies, including confocal scanning laser ophthalmoscopy, optical coherence tomography, and adaptive optics fundus imaging, transformed the eye into a microscope in which individual cells can now be resolved noninvasively. These technologies have enabled a wide range of studies of the retina that were previously impossible. PMID:21596053

  16. Detecting stoichiometry of macromolecular complexes in live cells using FRET.

    PubMed

    Ben-Johny, Manu; Yue, Daniel N; Yue, David T

    2016-12-06

    The stoichiometry of macromolecular interactions is fundamental to cellular signalling yet challenging to detect from living cells. Fluorescence resonance energy transfer (FRET) is a powerful phenomenon for characterizing close-range interactions whereby a donor fluorophore transfers energy to a closely juxtaposed acceptor. Recognizing that FRET measured from the acceptor's perspective reports a related but distinct quantity versus the donor, we utilize the ratiometric comparison of the two to obtain the stoichiometry of a complex. Applying this principle to the long-standing controversy of calmodulin binding to ion channels, we find a surprising Ca(2+)-induced switch in calmodulin stoichiometry with Ca(2+) channels-one calmodulin binds at basal cytosolic Ca(2+) levels while two calmodulins interact following Ca(2+) elevation. This feature is curiously absent for the related Na channels, also potently regulated by calmodulin. Overall, our assay adds to a burgeoning toolkit to pursue quantitative biochemistry of dynamic signalling complexes in living cells.

  17. Detecting stoichiometry of macromolecular complexes in live cells using FRET

    PubMed Central

    Ben-Johny, Manu; Yue, Daniel N.; Yue, David T.

    2016-01-01

    The stoichiometry of macromolecular interactions is fundamental to cellular signalling yet challenging to detect from living cells. Fluorescence resonance energy transfer (FRET) is a powerful phenomenon for characterizing close-range interactions whereby a donor fluorophore transfers energy to a closely juxtaposed acceptor. Recognizing that FRET measured from the acceptor's perspective reports a related but distinct quantity versus the donor, we utilize the ratiometric comparison of the two to obtain the stoichiometry of a complex. Applying this principle to the long-standing controversy of calmodulin binding to ion channels, we find a surprising Ca2+-induced switch in calmodulin stoichiometry with Ca2+ channels—one calmodulin binds at basal cytosolic Ca2+ levels while two calmodulins interact following Ca2+ elevation. This feature is curiously absent for the related Na channels, also potently regulated by calmodulin. Overall, our assay adds to a burgeoning toolkit to pursue quantitative biochemistry of dynamic signalling complexes in living cells. PMID:27922011

  18. [Living donors for kidney transplantation: ethical and legal challenges].

    PubMed

    Mamzer-Bruneel, Marie-France; Fournier, Catherine; Legendre, Christophe

    2010-05-01

    Living donor kidney transplantation has developed very heterogeneously worldwide despite excellent results and without taking into account the context of global organ shortage. Such a heterogeneity highlights persistent ethical issues, whereas organ trafficking is emerging as an organized transplant tourism reinforcing the need for strong national legal frameworks. Despite its powerful regulation system, which ensures standardization, transparency and accountability of support for donation, France remains reluctant to enlarge the circle of legal donors, whereas it would be the first step to give a greater role to living organ donation.

  19. Nuclear choreography: interpretations from living cells.

    PubMed

    Janicki, Susan M; Spector, David L

    2003-04-01

    The advent of green fluorescent protein technology, its use in photobleaching experiments and the development of methods to rapidly acquire images and analyze complex datasets have opened the door to unraveling the mechanisms of nuclear functions in living cells. Studies over the past few years have characterized the movement of chromatin, nuclear proteins and nuclear bodies and, in some cases, correlated their dynamics with energy dependence, cell cycle progression, developmental changes, factor targeting and nuclear position. The mechanisms by which nuclear components move or are restrained have important implications for understanding not only the efficacy of nuclear functions but also the regulation of developmental programs and cellular growth.

  20. Imaging individual myosin molecules within living cells.

    PubMed

    Nenasheva, Tatiana A; Mashanov, Gregory I; Peckham, Michelle; Molloy, Justin E

    2011-01-01

    Myosins are mechano-enzymes that convert the chemical energy of ATP hydrolysis into mechanical work. They are involved in diverse biological functions including muscle contraction, cell migration, cell division, hearing, and vision. All myosins have an N-terminal globular domain, or "head" that binds actin, hydrolyses ATP, and produces force and movement. The C-terminal "tail" region is highly divergent amongst myosin types, and this part of the molecule is responsible for determining the cellular role of each myosin. Many myosins bind to cell membranes. Their membrane-binding domains vary, specifying which lipid each myosin binds to. To directly observe the movement and localisation of individual myosins within the living cell, we have developed methods to visualise single fluorescently labelled molecules, track them in space and time, and gather a sufficient number of individual observations so that we can draw statistically valid conclusions about their biochemical and biophysical behaviour. Specifically, we can use this approach to determine the affinity of the myosin for different binding partners, and the nature of the movements that the myosins undergo, whether they cluster into larger molecular complexes and so forth. Here, we describe methods to visualise individual myosins as they move around inside live mammalian cells, using myosin-10 and myosin-6 as examples for this type of approach.

  1. Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments.

    PubMed

    Van Valen, David A; Kudo, Takamasa; Lane, Keara M; Macklin, Derek N; Quach, Nicolas T; DeFelice, Mialy M; Maayan, Inbal; Tanouchi, Yu; Ashley, Euan A; Covert, Markus W

    2016-11-01

    Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domains of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems.

  2. Electromicroinjection of particles into living cells

    DOEpatents

    Ray, F. Andrew; Cram, L. Scott; Galey, William R.

    1988-01-01

    Method and apparatus for introducing particles into living cells. Fluorescently-stained human chromosomes are introduced into cultured, mitotic Chinese hamster cells using electromicroinjection. The recipient cells frequently survived the physiological perturbation imposed by a successful chromosome injection. Successfully injected recipient cells maintained viability as evidenced by their ability to be expanded. The technique relies on the surface charge of fluorescently stained chromosomes and their ability to be attracted and repelled to and from the tip of a micropipette. The apparatus includes a micropipette having a tip suitable for piercing the membrane of a target cell and an electrode inserted into the lumen thereof. The target cells and suspended particles are located in an electrically conducted solution, and the lumen of the micropipette is filled with an electrically conducting solution which contacts the electrode located therein. A second electrode is also located in the conducting solution containing the target cells and particles. Voltages applied to the electrode within the micropipette attract the particles to the region of the tip thereof. The particles adhere to the surface of the micropipette with sufficient force that insertion of the micropipette tip and attached particle through the membrane of a target cell will not dislodge the particle. By applying a voltage having the opposite polarity of the attraction voltage, the particles are expelled from the micropipette to which is then withdrawn from the cell body.

  3. Circumventing photodamage in live-cell microscopy

    PubMed Central

    Magidson, Valentin; Khodjakov, Alexey

    2013-01-01

    Fluorescence microscopy has become an essential tool in cell biology. This technique allows researchers to visualize the dynamics of tissue, cells, individual organelles and macromolecular assemblies inside the cell. Unfortunately, fluorescence microscopy is not completely ‘non-invasive’ as the high-intensity excitation light required for excitation of fluorophores is inherently toxic for live cells. Physiological changes induced by excessive illumination can lead to artifacts and abnormal responses. In this chapter we review major factors that contribute to phototoxicity and discuss practical solutions for circumventing photodamage. These solutions include the proper choice of image acquisition parameters, optimization of filter sets, hardware synchronization, and the use of intelligent illumination to avoid unnecessary light exposure. PMID:23931522

  4. Physical Environments of Assisted Living: Research Needs and Challenges

    ERIC Educational Resources Information Center

    Cutler, Lois J.

    2007-01-01

    Purpose: This article aims to review research measures and findings related to physical environments of assisted living (AL) according to multiple conceptual perspectives--ecological, cultural, and Maslovian hierarchy. Design and Methods: A literature and research review was undertaken with two foci: performance measures for physical environments,…

  5. Adaptive optical imaging through complex living plant cells

    NASA Astrophysics Data System (ADS)

    Tamada, Yosuke; Hayano, Yutaka; Murata, Takashi; Oya, Shin; Honma, Yusuke; Kanazawa, Minoru; Miura, Noriaki; Hasebe, Mitsuyasu; Kamei, Yasuhiro; Hattori, Masayuki

    2017-04-01

    Live-cell imaging using fluorescent molecules is now essential for biological researches. However, images of living cells are accompanied with blur, which becomes stronger according to the depth inside the cells and tissues. This image blur is caused by the disturbance on light that goes through optically inhomogeneous living cells and tissues. Here, we show adaptive optics (AO) imaging of living plant cells. AO has been developed in astronomy to correct the disturbance on light caused by atmospheric turbulence. We developed AO microscope effective for the observation of living plant cells with strong disturbance by chloroplasts, and successfully obtained clear images inside plant cells.

  6. Optical magnetic imaging of living cells

    PubMed Central

    Le Sage, D.; Arai, K.; Glenn, D. R.; DeVience, S. J.; Pham, L. M.; Rahn-Lee, L.; Lukin, M. D.; Yacoby, A.; Komeili, A.; Walsworth, R. L.

    2013-01-01

    Magnetic imaging is a powerful tool for probing biological and physical systems. However, existing techniques either have poor spatial resolution compared to optical microscopy and are hence not generally applicable to imaging of sub-cellular structure (e.g., magnetic resonance imaging [MRI]1), or entail operating conditions that preclude application to living biological samples while providing sub-micron resolution (e.g., scanning superconducting quantum interference device [SQUID] microscopy2, electron holography3, and magnetic resonance force microscopy [MRFM]4). Here we demonstrate magnetic imaging of living cells (magnetotactic bacteria) under ambient laboratory conditions and with sub-cellular spatial resolution (400 nm), using an optically-detected magnetic field imaging array consisting of a nanoscale layer of nitrogen-vacancy (NV) colour centres implanted at the surface of a diamond chip. With the bacteria placed on the diamond surface, we optically probe the NV quantum spin states and rapidly reconstruct images of the vector components of the magnetic field created by chains of magnetic nanoparticles (magnetosomes) produced in the bacteria, and spatially correlate these magnetic field maps with optical images acquired in the same apparatus. Wide-field sCMOS acquisition allows parallel optical and magnetic imaging of multiple cells in a population with sub-micron resolution and >100 micron field-of-view. Scanning electron microscope (SEM) images of the bacteria confirm that the correlated optical and magnetic images can be used to locate and characterize the magnetosomes in each bacterium. The results provide a new capability for imaging bio-magnetic structures in living cells under ambient conditions with high spatial resolution, and will enable the mapping of a wide range of magnetic signals within cells and cellular networks5, 6. PMID:23619694

  7. Laser nanosurgery and manipulation in living cells

    NASA Astrophysics Data System (ADS)

    Sacconi, Leonardo; Tolic-Norrelykke, Iva M.; Antolini, Renzo; Pavone, Francesco S.

    2005-03-01

    We present a combination of nonlinear microscopy, laser nanosurgery and optical trapping applied to the 3D imaging and manipulation of intracellular structures in live cells. We use Titanium-sapphire laser pulses for a combined nonlinear microscopy and nanosurgery on microtubules tagged with green fluorescent protein (GFP) in fission yeast. The same laser source is also used to trap small round lipid droplets naturally present in the cell. The trapped droplets are used as handles to exert a pushing force on the nucleus, allowing for a displacement of the nucleus away from its normal position in the center of the cell. We show that nonlinear nanosurgery and optical manipulation can be performed with sub-micrometer precision and without visible collateral damage to the cell. We present this combination as an important tool in cell biology for the manipulation of specific structures in alternative to genetic methods or chemical agents. This technique can be applied to several fundamental problems in cell biology, including the study of dynamics processes in cell division.

  8. Creep function of a single living cell.

    PubMed

    Desprat, Nicolas; Richert, Alain; Simeon, Jacqueline; Asnacios, Atef

    2005-03-01

    We used a novel uniaxial stretching rheometer to measure the creep function J(t) of an isolated living cell. We show, for the first time at the scale of the whole cell, that J(t) behaves as a power-law J(t) = At(alpha). For N = 43 mice myoblasts (C2-7), we find alpha = 0.24 +/- 0.01 and A = (2.4 +/- 0.3) 10(-3) Pa(-1) s(-alpha). Using Laplace Transforms, we compare A and alpha to the parameters G(0) and beta of the complex modulus G*(omega) = G(0)omega(beta) measured by other authors using magnetic twisting cytometry and atomic force microscopy. Excellent agreement between A and G(0) on the one hand, and between alpha and beta on the other hand, indicated that the power-law is an intrinsic feature of cell mechanics and not the signature of a particular technique. Moreover, the agreement between measurements at very different size scales, going from a few tens of nanometers to the scale of the whole cell, suggests that self-similarity could be a central feature of cell mechanical structure. Finally, we show that the power-law behavior could explain previous results first interpreted as instantaneous elasticity. Thus, we think that the living cell must definitely be thought of as a material with a large and continuous distribution of relaxation time constants which cannot be described by models with a finite number of springs and dash-pots.

  9. Direct Visualization of De novo Lipogenesis in Single Living Cells

    NASA Astrophysics Data System (ADS)

    Li, Junjie; Cheng, Ji-Xin

    2014-10-01

    Increased de novo lipogenesis is being increasingly recognized as a hallmark of cancer. Despite recent advances in fluorescence microscopy, autoradiography and mass spectrometry, direct observation of de novo lipogenesis in living systems remains to be challenging. Here, by coupling stimulated Raman scattering (SRS) microscopy with isotope labeled glucose, we were able to trace the dynamic metabolism of glucose in single living cells with high spatial-temporal resolution. As the first direct visualization, we observed that glucose was largely utilized for lipid synthesis in pancreatic cancer cells, which occurs at a much lower rate in immortalized normal pancreatic epithelial cells. By inhibition of glycolysis and fatty acid synthase (FAS), the key enzyme for fatty acid synthesis, we confirmed the deuterium labeled lipids in cancer cells were from de novo lipid synthesis. Interestingly, we also found that prostate cancer cells exhibit relatively lower level of de novo lipogenesis, but higher fatty acid uptake compared to pancreatic cancer cells. Together, our results demonstrate a valuable tool to study dynamic lipid metabolism in cancer and other disorders.

  10. Characterization of microtubule buckling in living cells.

    PubMed

    Pallavicini, Carla; Monastra, Alejandro; Bardeci, Nicolás González; Wetzler, Diana; Levi, Valeria; Bruno, Luciana

    2017-09-01

    Microtubules are filamentous biopolymers involved in essential biological processes. They form key structures in eukaryotic cells, and thus it is very important to determine the mechanisms involved in the formation and maintenance of the microtubule network. Microtubule bucklings are transient and localized events commonly observed in living cells and characterized by a fast bending and its posterior relaxation. Active forces provided by molecular motors have been indicated as responsible for most of these rapid deformations. However, the factors that control the shape amplitude and the time scales of the rising and release stages remain unexplored. In this work, we study microtubule buckling in living cells using Xenopus laevis melanophores as a model system. We tracked single fluorescent microtubules from high temporal resolution (0.3-2 s) confocal movies. We recovered the center coordinates of the filaments with 10-nm precision and analyzed the amplitude of the deformation as a function of time. Using numerical simulations, we explored different force mechanisms resulting in microtubule bending. The simulated events reproduce many features observed for microtubules, suggesting that a mechanistic model captures the essential processes underlying microtubule buckling. Also, we studied the interplay between actively transported vesicles and the microtubule network using a two-color technique. Our results suggest that microtubules may affect transport indirectly besides serving as tracks of motor-driven organelles. For example, they could obstruct organelles at microtubule intersections or push them during filament mechanical relaxation.

  11. DEMENTIA CARE IN ASSISTED LIVING: NEEDS AND CHALLENGES

    PubMed Central

    Smith, Marianne; Buckwalter, Kathleen C.; Kang, Hyunwook; Ellingrod, Vicki; Schultz, Susan K.

    2011-01-01

    Assisted living (AL) is an increasingly popular long-term care option for older adults with dementia. Recent reports suggest that as many as 68% of AL residents have dementia, and that frequency of both behavioral symptoms and psychotropic medications are high. This pilot project explored the feasibility of research methods for use in AL facilities. Findings suggest that most AL residents with dementia have moderate to severe dementia, and the majority are taking one or more psychotropic medication. Descriptive and qualitative findings related to health records, caregiver perceptions of behavioral symptoms, and practicality of assessment methods undertaken are described and implications for psychiatric nursing practice and research are reviewed. PMID:18649209

  12. Periodic operation of immobilized live cell bioreactors

    SciTech Connect

    Mehta, N.

    1988-01-01

    A complete system for computer-assisted fermentation research was set up. The system consisted of a 16 liter laboratory fermentor connected to a mass spectrometer for off-gas analysis, a flow injection analyzer for on-line enzymatic and colorimetric analysis, and an on-line HPLC. This system was interfaced to a Micro VAX II computer. The kinetics of growth and candicidin production by S. griseus in complex and in synthetic media were investigated. On-line glucose analysis of the fermentation was used to identify nutrient limitation by multiple substrates during the fermentation. The growth kinetics of S. griseus under limitation by two nutrients were studied. The Monod type of model was used to analyze cell growth under multiple substrate limitation. Regions of phosphate limitation were identified by analysis of the environmental state space. Based on this analysis the nutrient medium for the forced periodic operation of the immobilized bioreactor was developed. A lumped model for cell growth and candicidin production in an immobilized live cell bioreactor was developed. The model was used to perform a simulation study of the periodic operation of an immobilized bioreactor. Finally, an immobilzed bioreactor with forced periodic operation was used to study the effect of cycling frequency on reactor performance. The results of the studies on the periodic operation suggest that periodically operated immobilized live cell bioreactors can provide a potent alternative for the production of non-growth associated biochemicals, as compared to free cell fermentations, pulsed fermentations with process cycle regeneration, and non-regenerated bioreactors. This work has demonstrated that by frequent pulsing of growth limiting nutrient, stable extended production can be obtained at high specific cellular productivities.

  13. Current challenges in dedifferentiated fat cells research.

    PubMed

    Shah, Mickey; George, Richard L; Evancho-Chapman, M Michelle; Zhang, Ge

    2016-07-02

    Dedifferentiated fat cells show great promises as a novel cell source for stem cell research. It has many advantages when used for cell-based therapeutics including abundance, pluripotency, and safety. However, there are many obstacles researchers need to overcome to make the next big move in DFAT cells research. In this review, we summarize the current main challenges in DFAT cells research including cell culture purity, phenotypic properties, and dedifferentiation mechanisms. The common methods to produce DFAT cells as well as the cell purity issue during DFAT cell production have been introduced. Current approaches to improve DFAT cell purity have been discussed. The phenotypic profile of DFAT cells have been listed and compared with other stem cells. Further studies on elucidating the underlying dedifferentiation mechanisms will dramatically advance DFAT cell research.

  14. Challenges and Limitations of Intelligent Ambient Assisted Living Environments

    NASA Astrophysics Data System (ADS)

    Wichert, Reiner

    As a result of changing demographics, residing and being cared for in one's own familiar environment versus in an institutionalised inpatient setting is becoming the more attractive alternative for an ever increasing portion of the population. Despite its tremendous market potential, the AAL (Ambient Assisted Living) branch is still on the cusp of a mainstream breakthrough. A lack of viable business models is considered almost unanimously to be the greatest market obstacle to a broad implementation of innovative AAL systems. This paper highlights possible explanations for this deficit and shows why the AAL community has yet to arrive at joint solutions based on a unified AAL reference platform. Furthermore, this paper describes the enormous potential of AmI and AAL, as the first real opportunity for their success is provided through universAAL and AALOA.

  15. Nanoparticle PEBBLE sensors in live cells.

    PubMed

    Lee, Yong-Eun Koo; Kopelman, Raoul

    2012-01-01

    Live cell studies are of fundamental importance to the life sciences and their medical applications. Nanoparticle (NP)-based sensor platforms have many advantages as sensors for intracellular measurements, due to their flexible engineerability, noninvasive nature (due to their nano-size and nontoxic matrix), and, for some of the NPs, intrinsic optical properties. NP-based fluorescent sensors for intracellular measurements, so called PEBBLE sensors, have been developed for many important intracellular analytes and functions, including ions, small molecules, reactive oxygen species, physical properties, and enzyme activities, which are involved in many chemical, biochemical, and physical processes taking place inside the cell. PEBBLE sensors can be used with a standard microscope for simultaneous optical imaging of cellular structures and sensing of composition and function, just like investigations performed with molecular probes. However, PEBBLE sensors of any design and matrix can be delivered into cells by several standard methods, unlike dye molecules that need to be cell permeable. Furthermore, new sensing possibilities are enabled by PEBBLE nanosensors, which are not possible with molecular probes. This review summarizes a variety of designs of the PEBBLE sensors, their characteristics, and their applications to cells.

  16. Automated live cell imaging systems reveal dynamic cell behavior.

    PubMed

    Chirieleison, Steven M; Bissell, Taylor A; Scelfo, Christopher C; Anderson, Jordan E; Li, Yong; Koebler, Doug J; Deasy, Bridget M

    2011-07-01

    Automated time-lapsed microscopy provides unique research opportunities to visualize cells and subcellular components in experiments with time-dependent parameters. As accessibility to these systems is increasing, we review here their use in cell science with a focus on stem cell research. Although the use of time-lapsed imaging to answer biological questions dates back nearly 150 years, only recently have the use of an environmentally controlled chamber and robotic stage controllers allowed for high-throughput continuous imaging over long periods at the cell and subcellular levels. Numerous automated imaging systems are now available from both companies that specialize in live cell imaging and from major microscope manufacturers. We discuss the key components of robots used for time-lapsed live microscopic imaging, and the unique data that can be obtained from image analysis. We show how automated features enhance experimentation by providing examples of uniquely quantified proliferation and migration live cell imaging data. In addition to providing an efficient system that drastically reduces man-hours and consumes fewer laboratory resources, this technology greatly enhances cell science by providing a unique dataset of temporal changes in cell activity. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  17. Cyborg cells: functionalisation of living cells with polymers and nanomaterials.

    PubMed

    Fakhrullin, Rawil F; Zamaleeva, Alsu I; Minullina, Renata T; Konnova, Svetlana A; Paunov, Vesselin N

    2012-06-07

    Living cells interfaced with a range of polyelectrolyte coatings, magnetic and noble metal nanoparticles, hard mineral shells and other complex nanomaterials can perform functions often completely different from their original specialisation. Such "cyborg cells" are already finding a range of novel applications in areas like whole cell biosensors, bioelectronics, toxicity microscreening, tissue engineering, cell implant protection and bioanalytical chemistry. In this tutorial review, we describe the development of novel methods for functionalisation of cells with polymers and nanoparticles and comment on future advances in this technology in the light of other literature approaches. We review recent studies on the cell viability and function upon direct deposition of nanoparticles, coating with polyelectrolytes, polymer assisted assembly of nanomaterials and hard shells on the cell surface. The cell toxicity issues are considered for many practical applications in terms of possible adverse effects of the deposited polymers, polyelectrolytes and nanoparticles on the cell surface.

  18. Living with disabled children in Malawi: Challenges and rewards

    PubMed Central

    Barlindhaug, Grete; Umar, Eric; Wazakili, Margaret

    2016-01-01

    Background Rehabilitation personnel need to be sensitive to the cultural aspects that constitute the environment of a disabled child’s family life. Objectives The aim of this study was to gain insight on how families experience parenting of disabled children and how the families experience the support provided by the rehabilitation system in Malawi. Method An anthropological field study combining interviews and observations was conducted in a rural district of Malawi in 2011. Permission was granted to follow four families, and this study presents the stories of two families, whose children have severe disabilities. We used phenomenological and narrative analyses to make sense of the stories. Results The findings indicate that families with disabled children invest time and emphasise care for their disabled children. They feel enriched by their experience despite challenging situations with little support from the rehabilitation services. High standards of care demonstrating positive and moral attitudes have earned these families respect in their communities. Storytelling has created an opportunity for the families to understand and interpret their challenging situation with inherent contextual meaning. Conclusion This study shows that families with disabled children draw on cultural and structural strengths that rehabilitation professionals should be aware of in their support to mothers and other caregivers of children with disabilities. PMID:28730057

  19. Subpopulations of long-lived and short-lived T cells in advanced HIV-1 infection

    PubMed Central

    Hellerstein, Marc K.; Hoh, Rebecca A.; Hanley, Mary Beth; Cesar, Denise; Lee, Daniel; Neese, Richard A.; McCune, Joseph M.

    2003-01-01

    Antigenic stimulation of T cells gives rise to short-lived effector cells and long-lived memory cells. We used two stable isotope-labeling techniques to identify kinetically distinct subpopulations of T cells and to determine the effect of advanced infection with HIV-1. Long-term deuterated water (2H2O) incorporation into DNA demonstrated biphasic accrual of total and of memory/effector (m/e)–phenotype but not naive-phenotype T cells, consistent with the presence of short-lived and longer-lived subpopulations within the m/e-phenotype T cell pool. These results were mirrored by biphasic die-away kinetics in m/e- but not naive-phenotype T cells after short-term 2H-glucose labeling. Persistent label retention was observed in a subset of m/e-phenotype T cells (presumably memory T cells), confirming the presence of T cells with very different life spans in humans. In advanced HIV-1 infection, much higher proportions of T cells were short-lived, compared to healthy controls. Effective long-term anti-retroviral therapy restored values to normal. These results provide the first quantitative evidence that long-lived and quiescent T cells do indeed predominate in the T cell pool in humans and determine T cell pool size, as in rodents. The greatest impact of advanced HIV-1 infection is to reduce the generation of long-lived, potential progenitor T cells. PMID:12975480

  20. Computational challenges in modeling and simulating living matter

    NASA Astrophysics Data System (ADS)

    Sena, Alexandre C.; Silva, Dilson; Marzulo, Leandro A. J.; de Castro, Maria Clicia Stelling

    2016-12-01

    Computational modeling has been successfully used to help scientists understand physical and biological phenomena. Recent technological advances allowthe simulation of larger systems, with greater accuracy. However, devising those systems requires new approaches and novel architectures, such as the use of parallel programming, so that the application can run in the new high performance environments, which are often computer clusters composed of different computation devices, as traditional CPUs, GPGPUs, Xeon Phis and even FPGAs. It is expected that scientists take advantage of the increasing computational power to model and simulate more complex structures and even merge different models into larger and more extensive ones. This paper aims at discussing the challenges of using those devices to simulate such complex systems.

  1. Challenges associated with increased survival among parents living with HIV.

    PubMed

    Lee, M; Rotheram-Borus, M J

    2001-08-01

    This study examined sociodemographic and psychosocial factors that predict survival among parents living with HIV. Parents with HIV (n = 307) were recruited from 1993 to 1995 in New York City and repeatedly assessed. Survival was monitored among the sample (81% mothers; 45% Latino, 34% African American). Over a median period of 28 months (range = 0-53 months), 44% (n = 135) of the parents died. Having an AIDS diagnosis and being African American were associated with earlier death. Sex, age, and financial status were not related to survival. Parents who survived had initially higher levels of anxiety that decreased over time; in contrast, parents who died reported initially lower, but constant, levels of anxiety over time. After HIV diagnostic status was controlled for, it was found that parents who reported having more children, using a coping style of seeking social support, and being sexually active at baseline survived longer. The counterintuitive findings raise hypotheses regarding the role of change and responsibilities in the survival of parents with HIV.

  2. Living donor liver transplantation in Taiwan-challenges beyond surgery.

    PubMed

    Pillai, Vinod G; Chen, Chao-Long

    2016-04-01

    Taiwan has a high prevalence of hepatitis B and C viral infections, and consequently a high burden of chronic liver diseases. Liver transplantation (LT) began in Taiwan in 1984, and living donor liver transplantation (LDLT) in 1994. Education and collaboration between physicians on a national and international scale were important factors in the development of transplantation in East Asia. Technical innovations in donor hepatectomy, vascular and biliary reconstruction, and interventional radiology, perioperative management of transplant patients and development of associated specialties have enabled achievement of excellent results after both adult and pediatric LDLT. The establishment of rigorous protocols to withstand strict medico-legal scrutiny, combined with technical excellence has contributed to excellent surgical outcomes. The socioeconomic development of Taiwan and the first nationwide hepatitis B vaccination program in the world have also contributed to the decrease in disease burden and improvement of quality of healthcare. This article examines the factors enabling the development of LT in Taiwan, the innovations that have contributed to excellent outcomes, and indicates the future prospects of LDLT in Taiwan.

  3. Detection of intracellular phosphatidylserine in living cells.

    PubMed

    Calderon, Frances; Kim, Hee-Yong

    2008-03-01

    To demonstrate the intracellular phosphatidylserine (PS) distribution in neuronal cells, neuroblastoma cells and hippocampal neurons expressing green fluorescence protein (GFP)-AnnexinV were stimulated with a calcium ionophore and localization of GFP-AnnexinV was monitored by fluorescence microscopy. Initially, GFP-AnnexinV distributed evenly in the cytosol and nucleus. Raising the intracellular calcium level with ionomycin-induced translocation of cytoplasmic GFP-AnnexinV to the plasma membrane but not to the nuclear membrane, indicating that PS distributes in the cytoplasmic side of the plasma membrane. Nuclear GFP-AnnexinV subsequently translocated to the nuclear membrane, indicating PS localization in the nuclear envelope. GFP-AnnexinV also localized in a juxtanuclear organelle that was identified as the recycling endosome. However, minimal fluorescence was detected in any other subcellular organelles including mitochondria, endoplasmic reticulum, Golgi complex, and lysosomes, strongly suggesting that PS distribution in the cytoplasmic face in these organelles is negligible. Similarly, in hippocampal primary neurons PS distributed in the inner leaflet of plasma membranes of cell body and dendrites, and in the nuclear envelope. To our knowledge, this is the first demonstration of intracellular PS localization in living cells, providing an insight for specific sites of PS interaction with soluble proteins involved in signaling processes.

  4. Photoacoustics of individual live cells and particles

    NASA Astrophysics Data System (ADS)

    Kudryashov, Sergey I.; Allen, Susan D.; Galanzha, Ekaterina I.; Galitovskaya, E.; Zharov, Vladimir P.

    2006-02-01

    The photoacoustic (PA) technique has been employed to a number of new biomedical applications based of highly sensitive detection of laser-induced acoustic waves from individual live cells and single absorbing micro-particles or clusters of nanoparticles. These applications involve both linear and non-linear thermoacoustic phenomena initiated by focused nanosecond single laser pulse and detected with a fast PZT-ceramic acoustic transducer. Particularly, we present the following experimental results: 1) monitoring of linear and non-linear PA responses from red blood cells in suspensions in vitro; 2) detection of PA responses from breast cancer cell targeted with gold nanoparticles; 3) PA study of linear and non-linear interaction of laser with colored polystyrene micro-particles as model single absorbers; 4) monitoring of PA responses from moving absorbers in flow in vitro (PA flow cytometry in vitro); 5) recording of PA responses from blood flow in vivo on rat mesentery as animal model (PA flow cytometery in vivo); and 6) monitoring of sedimentation kinetics of particles and cells. The obtained results demonstrate the high sensitivity, low background, simple detection principle, easy data acquisition, and straightforward interpretation of the PA data.

  5. Synthetic Glycosphingolipids for Live-Cell Labeling.

    PubMed

    Dauner, Martin; Batroff, Ellen; Bachmann, Verena; Hauck, Christof R; Wittmann, Valentin

    2016-07-20

    Glycosphingolipids are an important component of cell membranes that are involved in many biological processes. Fluorescently labeled glycosphingolipids are frequently used to gain insight into their localization. However, the attachment of a fluorophore to the glycan part or-more commonly-to the lipid part of glycosphingolipids is known to alter the biophysical properties and can perturb the biological function of the probe. Presented here is the synthesis of novel glycosphingolipid probes with mono- and disaccharide head groups and ceramide moieties containing fatty acids of varying chain length (C4 to C20). These glycosphingolipids bear an azide or an alkyne group as chemical reporter to which a fluorophore can be attached through a bioorthogonal ligation reaction. The fluorescent tag and any linker connected to it can be chosen in a flexible manner. We demonstrate the suitability of the probes by selective visualization of the plasma membrane of living cells by confocal microscopy techniques. Whereas the derivatives with the shorter fatty acids can be directly applied to HEK 293T cells, the hydrophobic glycosphingolipids with longer fatty acids can be delivered to cells using fusogenic liposomes.

  6. Dopamine receptor oligomerization visualized in living cells.

    PubMed

    O'Dowd, Brian F; Ji, Xiaodong; Alijaniaram, Mohammad; Rajaram, Ryan D; Kong, Michael M C; Rashid, Asim; Nguyen, Tuan; George, Susan R

    2005-11-04

    G protein-coupled receptors occur as dimers within arrays of oligomers. We visualized ensembles of dopamine receptor oligomers in living cells and evaluated the contributions of receptor conformation to the dynamics of oligomer association and dissociation, using a strategy of trafficking a receptor to another cellular compartment. We incorporated a nuclear localization sequence into the D1 dopamine receptor, which translocated from the cell surface to the nucleus. Receptor inverse agonists blocked this translocation, retaining the modified receptor, D1-nuclear localization signal (NLS), at the cell surface. D1 co-translocated with D1-NLS to the nucleus, indicating formation of homooligomers. (+)-Butaclamol retained both receptors at the cell surface, and removal of the drug allowed translocation of both receptors to the nucleus. Agonist-nonbinding D1(S198A/S199A)-NLS, containing two substituted serine residues in transmembrane 5 also oligomerized with D1, and both were retained on the cell surface by (+)-butaclamol. Drug removal disrupted these oligomerized receptors so that D1 remained at the cell surface while D1(S198A/S199A)-NLS trafficked to the nucleus. Thus, receptor conformational differences permitted oligomer disruption and showed that ligand-binding pocket occupancy by the inverse agonist induced a conformational change. We demonstrated robust heterooligomerization between the D2 dopamine receptor and the D1 receptor. The heterooligomers could not be disrupted by inverse agonists targeting either one of the receptor constituents. However, D2 did not heterooligomerize with the structurally modified D1(S198A/S199A), indicating an impaired interface for their interaction. Thus, we describe a novel method showing that a homogeneous receptor conformation maintains the structural integrity of oligomers, whereas conformational heterogeneity disrupts it.

  7. The lived experiences of adolescents with sickle cell disease in Kingston, Jamaica.

    PubMed

    Forrester, Andrea Brown; Barton-Gooden, Antoinette; Pitter, Cynthia; Lindo, Jascinth L M

    2015-01-01

    To explore the lived experiences of adolescents with sickle cell disease, in Kingston, Jamaica. A descriptive qualitative design was used for this research. In-depth interviews were conducted with six adolescents with sickle cell disease at a Sickle Cell Unit operated by the University of the West Indies. Interviews were audiotaped, transcribed, and thematically analyzed. The majority of the adolescents demonstrated a positive self-concept. They reported strong family, school, and peer support which made them feel accepted. All were actively engaged in social activities such as parties, but had challenges participating in sporting activities. Various coping strategies were utilized to address challenges of the disease including praying, watching television, and surfing the Internet. Sickle cell disease can be very challenging for the adolescent, but with positive self-concept and increased social support, especially from family and peers, these adolescents were able to effectively cope with their condition and live productive lives.

  8. The lived experiences of adolescents with sickle cell disease in Kingston, Jamaica

    PubMed Central

    Forrester, Andrea Brown; Barton-Gooden, Antoinette; Pitter, Cynthia; Lindo, Jascinth L. M.

    2015-01-01

    Aim To explore the lived experiences of adolescents with sickle cell disease, in Kingston, Jamaica. Method A descriptive qualitative design was used for this research. In-depth interviews were conducted with six adolescents with sickle cell disease at a Sickle Cell Unit operated by the University of the West Indies. Interviews were audiotaped, transcribed, and thematically analyzed. Results The majority of the adolescents demonstrated a positive self-concept. They reported strong family, school, and peer support which made them feel accepted. All were actively engaged in social activities such as parties, but had challenges participating in sporting activities. Various coping strategies were utilized to address challenges of the disease including praying, watching television, and surfing the Internet. Conclusion Sickle cell disease can be very challenging for the adolescent, but with positive self-concept and increased social support, especially from family and peers, these adolescents were able to effectively cope with their condition and live productive lives. PMID:26341889

  9. Mathematical and numerical challenges in living biological materials

    NASA Astrophysics Data System (ADS)

    Forest, M. Gregory; Vasquez, Paula A.

    2013-10-01

    The proclaimed Century of Biology is rapidly leading to the realization of how starkly different and more complex biological materials are than the materials that underpinned the industrial and technological revolution. These differences arise, in part, because biological matter exhibits both viscous and elastic behavior. Moreover, this behavior varies across the frequency, wavelength and amplitude spectrum of forcing. This broadclass of responsesin biological matter requires multiple frequency-dependent functions to specify material behavior, instead of a discrete set of parameters that relate to either viscosity or elasticity. This complexity prevails even if the biological matter is assumed to be spatially homogeneous, which is rarely true. However, very little progress has been made on the characterization of heterogeneity and how to build that information into constitutive laws and predictive models. In addition, most biological matter is non-stationary, which motivates the term "living". Biomaterials typically are in an active state in order to perform certain functions, and they often are modified or replenished on the basis of external stimuli. It has become popular in materials engineering to try to duplicate some of the functionality of biomaterials, e.g., a lot of effort has gone into the design of self-assembling, self-healing and shape shifting materials. These distinguishing features of biomaterials require significantly more degrees of freedom than traditional composites and many of the molecular species and their roles in functionality have yet to be determined. A typical biological material includes small molecule biochemical species that react and diffuse within larger species. These large molecular weightspecies provide the primary structural and biophysical properties of the material. The small molecule binding and unbinding kinetics serves to modulate material properties, and typical small molecule production and release are governed by

  10. Pathogenic long-lived plasma cells and their survival niches in autoimmunity, malignancy, and allergy.

    PubMed

    Winter, Oliver; Dame, Christof; Jundt, Franziska; Hiepe, Falk

    2012-12-01

    Long-lived plasma cells survive in a protected microenvironment for years or even a lifetime and provide humoral memory by establishing persistent Ab titers. Long-lived autoreactive, malignant, and allergen-specific plasma cells are likewise protected in their survival niche and are refractory to immunosuppression, B cell depletion, and irradiation. Their elimination remains an essential therapeutic challenge. Recent data indicate that long-lived plasma cells reside in a multicomponent plasma cell niche with a stable mesenchymal and a dynamic hematopoietic component, both providing essential soluble and membrane-bound survival factors. Alternative niches with different hematopoietic cell components compensate fluctuations of single cell types but may also harbor distinct plasma cell subsets. In this Brief Review, we discuss conventional therapies in autoimmunity and multiple myeloma in comparison with novel drugs that target plasma cells and their niches. In the future, such strategies may enable the specific depletion of pathogenic plasma cells while leaving the protective humoral memory intact.

  11. Limited dissemination of pathogenic SIV after vaginal challenge of rhesus monkeys immunized with a live, attenuated lentivirus.

    PubMed

    Stone, Mars; Ma, Zhong-Min; Genescà, Meritxell; Fritts, Linda; Blozois, Shelley; McChesney, Michael B; Miller, Christopher J

    2009-09-30

    In non-human primate models of AIDS, attenuated lentiviruses provide the most reliable protection from challenge with pathogenic virus but the extent to which the vaccine virus replicates after challenge is unclear. At 7 and 14 days after vaginal challenge with pathogenic SIVmac239, plasma SIVenv RNA levels were significantly lower in female macaques immunized 6 months earlier with live, attenuated SHIV89.6 compared to unimmunized control animals. In 2 SHIV-immunized, unprotected macaques SIV replication produced moderate-level plasma viremia with dissemination of challenge virus to all tissues on day 14 after challenge. In protected, SHIV-immunized monkeys, SIV replication was controlled in all tissues, from the day of challenge through 14 days post-challenge. Further, in CD8(+) T cell-depleted SHIV-immunized animals, SIV replication and dissemination were more rapid than in control animals. These findings suggest that replication of a pathogenic AIDS virus can be controlled at the site of mucosal inoculation by live-attenuated lentivirus immunization.

  12. Imaging Specific Genomic DNA in Living Cells.

    PubMed

    Chen, Baohui; Guan, Juan; Huang, Bo

    2016-07-05

    The three-dimensional organization of the genome plays important roles in regulating the functional output of the genome and even in the maintenance of epigenetic inheritance and genome stability. Here, we review and compare a number of newly developed methods-especially those that utilize the CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated protein 9) system-that enable the direct visualization of specific, endogenous DNA sequences in living cells. We also discuss the practical considerations in implementing the CRISPR imaging technique to achieve sufficient signal-to-background levels, high specificity, and high labeling efficiency. These DNA labeling methods enable tracking of the copy number, localization, and movement of genomic elements, and we discuss the potential applications of these methods in understanding the searching and targeting mechanism of the Cas9-sgRNA complex, investigating chromosome organization, and visualizing genome instability and rearrangement.

  13. Bursts of Active Transport in Living Cells

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Kuo, James; Granick, Steve

    2013-11-01

    We show, using a large new data set, that the temporally resolved speed of active cargo transport in living cells follows a scaling law over several decades of time and length. The statistical regularities display a time-averaged shape that we interpret to reflect stress buildup, followed by rapid release. The scaling power law agrees quantitatively with those reported in inanimate systems (jammed colloids and granular media, and magnetic Barkhausen noise), suggesting a common origin in pushing through a crowded environment in a weak force regime. The implied regulation of the speed of active cellular transport due to environmental obstruction results in bursts of speed and acceleration. These findings extend the classical notion of molecular crowding.

  14. Bursts of active transport in living cells.

    PubMed

    Wang, Bo; Kuo, James; Granick, Steve

    2013-11-15

    We show, using a large new data set, that the temporally resolved speed of active cargo transport in living cells follows a scaling law over several decades of time and length. The statistical regularities display a time-averaged shape that we interpret to reflect stress buildup, followed by rapid release. The scaling power law agrees quantitatively with those reported in inanimate systems (jammed colloids and granular media, and magnetic Barkhausen noise), suggesting a common origin in pushing through a crowded environment in a weak force regime. The implied regulation of the speed of active cellular transport due to environmental obstruction results in bursts of speed and acceleration. These findings extend the classical notion of molecular crowding.

  15. Block-Cell-Printing for live single-cell printing

    PubMed Central

    Zhang, Kai; Chou, Chao-Kai; Xia, Xiaofeng; Hung, Mien-Chie; Qin, Lidong

    2014-01-01

    A unique live-cell printing technique, termed “Block-Cell-Printing” (BloC-Printing), allows for convenient, precise, multiplexed, and high-throughput printing of functional single-cell arrays. Adapted from woodblock printing techniques, the approach employs microfluidic arrays of hook-shaped traps to hold cells at designated positions and directly transfer the anchored cells onto various substrates. BloC-Printing has a minimum turnaround time of 0.5 h, a maximum resolution of 5 µm, close to 100% cell viability, the ability to handle multiple cell types, and efficiently construct protrusion-connected single-cell arrays. The approach enables the large-scale formation of heterotypic cell pairs with controlled morphology and allows for material transport through gap junction intercellular communication. When six types of breast cancer cells are allowed to extend membrane protrusions in the BloC-Printing device for 3 h, multiple biophysical characteristics of cells—including the protrusion percentage, extension rate, and cell length—are easily quantified and found to correlate well with their migration levels. In light of this discovery, BloC-Printing may serve as a rapid and high-throughput cell protrusion characterization tool to measure the invasion and migration capability of cancer cells. Furthermore, primary neurons are also compatible with BloC-Printing. PMID:24516129

  16. Imidazolium-tagged glycan probes for non-covalent labeling of live cells.

    PubMed

    Benito-Alifonso, David; Tremell, Shirley; Sadler, Joanna C; Berry, Monica; Galan, M Carmen

    2016-04-07

    Selective, bioorthogonal and fast labeling of glycoconjugates in living cells is a major challenge for synthetic and cellular biology. Here we report the use imidazolium tagged-mannosamine derivative (ITag-Man) for the non-covalent, rapid and site-specific labeling of sialic acid containing glycoproteins using commercial N-nitrilotriacetate fluorescent reagents in a range of cell lines.

  17. Microinjection of gelsolin into living cells

    PubMed Central

    1987-01-01

    Gelsolins are actin-binding proteins that cap, nucleate, and sever actin filaments. Microinjection of cytoplasmic or plasma gelsolin into living fibroblasts and macrophages did not affect the shape, actin distribution, deformability, or ruffling activity of the cells. Gelsolin requires calcium for activity, but the NH2-terminal half is active without calcium. Microinjection of this proteolytic fragment had marked effects: the cells rounded up, stopped ruffling, became soft, and stress fibers disappeared. These changes are similar to those seen with cytochalasin, which also caps barbed ends of actin filaments. Attempts to raise the cytoplasmic calcium concentration and thereby activate the injected gelsolin were unsuccessful, but the increases in calcium concentration were minimal or transient and may not have been sufficient. Our interpretation of these results is that at the low calcium concentrations normally found in cells, gelsolin does not express the activities observed in vitro at higher calcium concentrations. We presume that gelsolin may be active at certain times or places if the calcium concentration is elevated to a sufficient level, but we cannot exclude the existence of another molecule that inhibits gelsolin. Microinjection of a 1:1 gelsolin/actin complex had no effect on the cells. This complex is stable in the absence of calcium and has capping activity but no severing and less nucleation activity as compared with either gelsolin in calcium or the NH2- terminal fragment. The NH2-terminal fragment-actin complex also has capping and nucleating activity but no severing activity. On microinjection it had the same effects as the fragment alone. The basis for the difference between the two complexes is unknown. The native molecular weight of rabbit plasma gelsolin is 82,500, and the extinction coefficient at 280 nm is 1.68 cm2/mg. A new simple procedure for purification of plasma gelsolin is described. PMID:3029140

  18. Mechanical force characterization in manipulating live cells with optical tweezers.

    PubMed

    Wu, Yanhua; Sun, Dong; Huang, Wenhao

    2011-02-24

    Laser trapping with optical tweezers is a noninvasive manipulation technique and has received increasing attentions in biological applications. Understanding forces exerted on live cells is essential to cell biomechanical characterizations. Traditional numerical or experimental force measurement assumes live cells as ideal objects, ignoring their complicated inner structures and rough membranes. In this paper, we propose a new experimental method to calibrate the trapping and drag forces acted on live cells. Binding a micro polystyrene sphere to a live cell and moving the mixture with optical tweezers, we can obtain the drag force on the cell by subtracting the drag force on the sphere from the total drag force on the mixture, under the condition of extremely low Reynolds number. The trapping force on the cell is then obtained from the drag force when the cell is in force equilibrium state. Experiments on numerous live cells demonstrate the effectiveness of the proposed force calibration approach.

  19. Electron-beam direct processing on living cell membrane

    SciTech Connect

    Hoshino, Takayuki; Morishima, Keisuke

    2011-10-24

    We demonstrated a direct processing on a living Hep G2 cell membrane in conventional cultivation conditions using an electron beam. Electron beam-induced deposition from liquid precursor 3,4-ethylenedioxythiophene and ablation was performed on the living cells. The 2.5-10 keV electron beam which was irradiated through a 100-nm-thick SiN nanomembrane could induce a deposition pattern and a ablation on a living cell membrane. This electron beam direct processing can provide simple in-situ cell surface modification for an analytical method of living cell membrane dynamic.

  20. Engineering of a synthetic electron conduit in living cells

    PubMed Central

    Jensen, Heather M.; Albers, Aaron E.; Malley, Konstantin R.; Londer, Yuri Y.; Cohen, Bruce E.; Helms, Brett A.; Weigele, Peter; Groves, Jay T.; Ajo-Franklin, Caroline M.

    2010-01-01

    Engineering efficient, directional electronic communication between living and nonliving systems has the potential to combine the unique characteristics of both materials for advanced biotechnological applications. However, the cell membrane is designed by nature to be an insulator, restricting the flow of charged species; therefore, introducing a biocompatible pathway for transferring electrons across the membrane without disrupting the cell is a significant challenge. Here we describe a genetic strategy to move intracellular electrons to an inorganic extracellular acceptor along a molecularly defined route. To do so, we reconstitute a portion of the extracellular electron transfer chain of Shewanella oneidensis MR-1 into the model microbe Escherichia coli. This engineered E. coli can reduce metal ions and solid metal oxides ∼8× and ∼4× faster than its parental strain. We also find that metal oxide reduction is more efficient when the extracellular electron acceptor has nanoscale dimensions. This work demonstrates that a genetic cassette can create a conduit for electronic communication from living cells to inorganic materials, and it highlights the importance of matching the size scale of the protein donors to inorganic acceptors. PMID:20956333

  1. Challenges for heart disease stem cell therapy

    PubMed Central

    Hoover-Plow, Jane; Gong, Yanqing

    2012-01-01

    Cardiovascular diseases (CVDs) are the leading cause of death worldwide. The use of stem cells to improve recovery of the injured heart after myocardial infarction (MI) is an important emerging therapeutic strategy. However, recent reviews of clinical trials of stem cell therapy for MI and ischemic heart disease recovery report that less than half of the trials found only small improvements in cardiac function. In clinical trials, bone marrow, peripheral blood, or umbilical cord blood cells were used as the source of stem cells delivered by intracoronary infusion. Some trials administered only a stem cell mobilizing agent that recruits endogenous sources of stem cells. Important challenges to improve the effectiveness of stem cell therapy for CVD include: (1) improved identification, recruitment, and expansion of autologous stem cells; (2) identification of mobilizing and homing agents that increase recruitment; and (3) development of strategies to improve stem cell survival and engraftment of both endogenous and exogenous sources of stem cells. This review is an overview of stem cell therapy for CVD and discusses the challenges these three areas present for maximum optimization of the efficacy of stem cell therapy for heart disease, and new strategies in progress. PMID:22399855

  2. Nanomembrane-Based, Thermal-Transport Biosensor for Living Cells.

    PubMed

    ElAfandy, Rami T; AbuElela, Ayman F; Mishra, Pawan; Janjua, Bilal; Oubei, Hassan M; Büttner, Ulrich; Majid, Mohammed A; Ng, Tien Khee; Merzaban, Jasmeen S; Ooi, Boon S

    2017-02-01

    Knowledge of materials' thermal-transport properties, conductivity and diffusivity, is crucial for several applications within areas of biology, material science and engineering. Specifically, a microsized, flexible, biologically integrated thermal transport sensor is beneficial to a plethora of applications, ranging across plants physiological ecology and thermal imaging and treatment of cancerous cells, to thermal dissipation in flexible semiconductors and thermoelectrics. Living cells pose extra challenges, due to their small volumes and irregular curvilinear shapes. Here a novel approach of simultaneously measuring thermal conductivity and diffusivity of different materials and its applicability to single cells is demonstrated. This technique is based on increasing phonon-boundary-scattering rate in nanomembranes, having extremely low flexural rigidities, to induce a considerable spectral dependence of the bandgap-emission over excitation-laser intensity. It is demonstrated that once in contact with organic or inorganic materials, the nanomembranes' emission spectrally shift based on the material's thermal diffusivity and conductivity. This NM-based technique is further applied to differentiate between different types and subtypes of cancer cells, based on their thermal-transport properties. It is anticipated that this novel technique to enable an efficient single-cell thermal targeting, allow better modeling of cellular thermal distribution and enable novel diagnostic techniques based on variations of single-cell thermal-transport properties. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments

    PubMed Central

    Van Valen, David A.; Lane, Keara M.; Quach, Nicolas T.; Maayan, Inbal

    2016-01-01

    Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domains of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems. PMID:27814364

  4. Kinase Activity Studied in Living Cells Using an Immunoassay

    ERIC Educational Resources Information Center

    Bavec, Aljos?a

    2014-01-01

    This laboratory exercise demonstrates the use of an immunoassay for studying kinase enzyme activity in living cells. The advantage over the classical method, in which students have to isolate the enzyme from cell material and measure its activity in vitro, is that enzyme activity is modulated and measured in living cells, providing a more…

  5. Kinase Activity Studied in Living Cells Using an Immunoassay

    ERIC Educational Resources Information Center

    Bavec, Aljos?a

    2014-01-01

    This laboratory exercise demonstrates the use of an immunoassay for studying kinase enzyme activity in living cells. The advantage over the classical method, in which students have to isolate the enzyme from cell material and measure its activity in vitro, is that enzyme activity is modulated and measured in living cells, providing a more…

  6. Hox genes and the parasitic flatworms: new opportunities, challenges and lessons from the free-living.

    PubMed

    Olson, P D

    2008-03-01

    Research into the roles played by Hox and related homeotic gene families in the diverse and complex developmental programmes exhibited by parasitic flatworms (Platyhelminthes) can hardly be said to have begun, and thus presents considerable opportunity for new research. Although featured in some of the earliest screens for homeotic genes outside Drosophila and mice, surveys in parasitic flatworms are few in number and almost nothing is yet known of where or when the genes are expressed during ontogeny. This contrasts sharply with a significant body of literature concerning Hox genes in free-living flatworms which have long served as models for the study of regeneration and the maintenance of omnipotent cell lines. Nevertheless, available information suggests that the complement of Hox genes and other classes of homeobox-containing genes in parasitic flatworms is typical of their free-living cousins and of other members of the Lophotrochozoa. Recent work on Schistosoma combined with information on Hox gene expression in planarians indicates that at least some disruption of the clustered genomic arrangement of the genes, as well as of the strict spatial and temporal colinear patterns of expression typical in other groups, may be characteristic of flatworms. However, available data on the genomic arrangement and expression of flatworm Hox genes is so limited at present that such generalities are highly tenuous. Moreover, a basic underlying pattern of colinearity is still observed in their spatial expression patterns making them suitable as cell or region-specific markers. I discuss a number of fundamental developmental questions and some of the challenges to addressing them in relation to each of the major parasitic lineages. In addition, I present newly characterized Hox genes from the model tapeworm Hymenolepis and analyze these by Bayesian inference together with >100 Hox and ParaHox homeodomains of flatworms and select lophotrochozoan taxa, providing a

  7. The Challenges of Living With an Implantable Cardioverter Defibrillator: A Qualitative Study

    PubMed Central

    Abbasi, Mohammad; Negarandeh, Reza; Norouzadeh, Reza; Shojae Mogadam, Amir Reza

    2016-01-01

    Background Dysrhythmia is one of the most common causes of sudden cardiac death worldwide. An implantable cardioverter defibrillator is the most effective method of treatment for dysrhythmias causing cardiac arrest. However, living with an implantable cardioverter defibrillator is associated with challenges such as fear, anxiety, and depression. Objectives The purpose of this study was to identify the challenges of living with an implantable cardioverter defibrillator. Patients and Methods In this qualitative study, an interpretive phenomenological approach was used, with thirteen participants (seven men and six women) between the ages of 21 and 70 years old (mean = 58.15, SD = 14.4). The duration of having an implantable cardioverter defibrillator was 1 - 120 months (mean = 23.15, SD = 33.31). Maximum variation sampling was used to purposefully select the participants from the governmental Imam Khomeini hospital in Tehran, Iran, between May and October of 2013. Semi-structured interviews were conducted for 30 to 45 minutes, and Van Manen’s six-step method was used in this study. Results The challenges of living with an implantable cardioverter defibrillator include: living with fear, concerns about the future, concerns about device malfunction, fearing death during the shock, pain due to the shock, loss of control, the cost of the device, and the lifestyle limitations. Conclusions Patients who live with implantable cardioverter defibrillators face many concerns and challenges. Therefore, the role of nurses in teaching patients before and after implementation is very important. PMID:28180011

  8. The Challenges of Living With an Implantable Cardioverter Defibrillator: A Qualitative Study.

    PubMed

    Abbasi, Mohammad; Negarandeh, Reza; Norouzadeh, Reza; Shojae Mogadam, Amir Reza

    2016-10-01

    Dysrhythmia is one of the most common causes of sudden cardiac death worldwide. An implantable cardioverter defibrillator is the most effective method of treatment for dysrhythmias causing cardiac arrest. However, living with an implantable cardioverter defibrillator is associated with challenges such as fear, anxiety, and depression. The purpose of this study was to identify the challenges of living with an implantable cardioverter defibrillator. In this qualitative study, an interpretive phenomenological approach was used, with thirteen participants (seven men and six women) between the ages of 21 and 70 years old (mean = 58.15, SD = 14.4). The duration of having an implantable cardioverter defibrillator was 1 - 120 months (mean = 23.15, SD = 33.31). Maximum variation sampling was used to purposefully select the participants from the governmental Imam Khomeini hospital in Tehran, Iran, between May and October of 2013. Semi-structured interviews were conducted for 30 to 45 minutes, and Van Manen's six-step method was used in this study. The challenges of living with an implantable cardioverter defibrillator include: living with fear, concerns about the future, concerns about device malfunction, fearing death during the shock, pain due to the shock, loss of control, the cost of the device, and the lifestyle limitations. Patients who live with implantable cardioverter defibrillators face many concerns and challenges. Therefore, the role of nurses in teaching patients before and after implementation is very important.

  9. Live-cell tracking using SIFT features in DIC microscopic videos.

    PubMed

    Jiang, Richard M; Crookes, Danny; Luo, Nie; Davidson, Michael W

    2010-09-01

    In this paper, a novel motion-tracking scheme using scale-invariant features is proposed for automatic cell motility analysis in gray-scale microscopic videos, particularly for the live-cell tracking in low-contrast differential interference contrast (DIC) microscopy. In the proposed approach, scale-invariant feature transform (SIFT) points around live cells in the microscopic image are detected, and a structure locality preservation (SLP) scheme using Laplacian Eigenmap is proposed to track the SIFT feature points along successive frames of low-contrast DIC videos. Experiments on low-contrast DIC microscopic videos of various live-cell lines shows that in comparison with principal component analysis (PCA) based SIFT tracking, the proposed Laplacian-SIFT can significantly reduce the error rate of SIFT feature tracking. With this enhancement, further experimental results demonstrate that the proposed scheme is a robust and accurate approach to tackling the challenge of live-cell tracking in DIC microscopy.

  10. 4D imaging of protein aggregation in live cells.

    PubMed

    Spokoini, Rachel; Shamir, Maya; Keness, Alma; Kaganovich, Daniel

    2013-04-05

    One of the key tasks of any living cell is maintaining the proper folding of newly synthesized proteins in the face of ever-changing environmental conditions and an intracellular environment that is tightly packed, sticky, and hazardous to protein stability. The ability to dynamically balance protein production, folding and degradation demands highly-specialized quality control machinery, whose absolute necessity is observed best when it malfunctions. Diseases such as ALS, Alzheimer's, Parkinson's, and certain forms of Cystic Fibrosis have a direct link to protein folding quality control components, and therefore future therapeutic development requires a basic understanding of underlying processes. Our experimental challenge is to understand how cells integrate damage signals and mount responses that are tailored to diverse circumstances. The primary reason why protein misfolding represents an existential threat to the cell is the propensity of incorrectly folded proteins to aggregate, thus causing a global perturbation of the crowded and delicate intracellular folding environment. The folding health, or "proteostasis," of the cellular proteome is maintained, even under the duress of aging, stress and oxidative damage, by the coordinated action of different mechanistic units in an elaborate quality control system. A specialized machinery of molecular chaperones can bind non-native polypeptides and promote their folding into the native state, target them for degradation by the ubiquitin-proteasome system, or direct them to protective aggregation inclusions. In eukaryotes, the cytosolic aggregation quality control load is partitioned between two compartments: the juxtanuclear quality control compartment (JUNQ) and the insoluble protein deposit (IPOD) (Figure 1 - model). Proteins that are ubiquitinated by the protein folding quality control machinery are delivered to the JUNQ, where they are processed for degradation by the proteasome. Misfolded proteins that are not

  11. 4D Imaging of Protein Aggregation in Live Cells

    PubMed Central

    Kaganovich, Daniel

    2013-01-01

    One of the key tasks of any living cell is maintaining the proper folding of newly synthesized proteins in the face of ever-changing environmental conditions and an intracellular environment that is tightly packed, sticky, and hazardous to protein stability1. The ability to dynamically balance protein production, folding and degradation demands highly-specialized quality control machinery, whose absolute necessity is observed best when it malfunctions. Diseases such as ALS, Alzheimer's, Parkinson's, and certain forms of Cystic Fibrosis have a direct link to protein folding quality control components2, and therefore future therapeutic development requires a basic understanding of underlying processes. Our experimental challenge is to understand how cells integrate damage signals and mount responses that are tailored to diverse circumstances. The primary reason why protein misfolding represents an existential threat to the cell is the propensity of incorrectly folded proteins to aggregate, thus causing a global perturbation of the crowded and delicate intracellular folding environment1. The folding health, or "proteostasis," of the cellular proteome is maintained, even under the duress of aging, stress and oxidative damage, by the coordinated action of different mechanistic units in an elaborate quality control system3,4. A specialized machinery of molecular chaperones can bind non-native polypeptides and promote their folding into the native state1, target them for degradation by the ubiquitin-proteasome system5, or direct them to protective aggregation inclusions6-9. In eukaryotes, the cytosolic aggregation quality control load is partitioned between two compartments8-10: the juxtanuclear quality control compartment (JUNQ) and the insoluble protein deposit (IPOD) (Figure 1 - model). Proteins that are ubiquitinated by the protein folding quality control machinery are delivered to the JUNQ, where they are processed for degradation by the proteasome. Misfolded

  12. A cell transportation solution that preserves live circulating tumor cells in patient blood samples.

    PubMed

    Stefansson, Steingrimur; Adams, Daniel L; Ershler, William B; Le, Huyen; Ho, David H

    2016-05-06

    Circulating tumor cells (CTCs) are typically collected into CellSave fixative tubes, which kills the cells, but preserves their morphology. Currently, the clinical utility of CTCs is mostly limited to their enumeration. More detailed investigation of CTC biology can be performed on live cells, but obtaining live CTCs is technically challenging, requiring blood collection into biocompatible solutions and rapid isolation which limits transportation options. To overcome the instability of CTCs, we formulated a sugar based cell transportation solution (SBTS) that stabilizes cell viability at ambient temperature. In this study we examined the long term viability of human cancer cell lines, primary cells and CTCs in human blood samples in the SBTS for transportation purposes. Four cell lines, 5 primary human cells and purified human PBMCs were tested to determine the viability of cells stored in the transportation solution at ambient temperature for up to 7 days. We then demonstrated viability of MCF-7 cells spiked into normal blood with SBTS and stored for up to 7 days. A pilot study was then run on blood samples from 3 patients with metastatic malignancies stored with or without SBTS for 6 days. CTCs were then purified by Ficoll separation/microfilter isolation and identified using CTC markers. Cell viability was assessed using trypan blue or CellTracker™ live cell stain. Our results suggest that primary/immortalized cell lines stored in SBTS remain ~90% viable for > 72 h. Further, MCF-7 cells spiked into whole blood remain viable when stored with SBTS for up to 7 days. Finally, live CTCs were isolated from cancer patient blood samples kept in SBTS at ambient temperature for 6 days. No CTCs were isolated from blood samples stored without SBTS. In this proof of principle pilot study we show that viability of cell lines is preserved for days using SBTS. Further, this solution can be used to store patient derived blood samples for eventual isolation of viable CTCs after

  13. Delineating cooperative responses of processive motors in living cells

    PubMed Central

    Efremov, Artem K.; Radhakrishnan, Anand; Tsao, David S.; Bookwalter, Carol S.; Trybus, Kathleen M.; Diehl, Michael R.

    2014-01-01

    Characterizing the collective functions of cytoskeletal motors is critical to understanding mechanisms that regulate the internal organization of eukaryotic cells as well as the roles various transport defects play in human diseases. Though in vitro assays using synthetic motor complexes have generated important insights, dissecting collective motor functions within living cells still remains challenging. Here, we show that the protein heterodimerization switches FKBP-rapalog-FRB can be harnessed in engineered COS-7 cells to compare the collective responses of kinesin-1 and myosinVa motors to changes in motor number and cargo size. The dependence of cargo velocities, travel distances, and position noise on these parameters suggests that multiple myosinVa motors can cooperate more productively than collections of kinesins in COS-7 cells. In contrast to observations with kinesin-1 motors, the velocities and run lengths of peroxisomes driven by multiple myosinVa motors are found to increase with increasing motor density, but are relatively insensitive to the higher loads associated with transporting large peroxisomes in the viscoelastic environment of the COS-7 cell cytoplasm. Moreover, these distinctions appear to be derived from the different sensitivities of kinesin-1 and myosinVa velocities and detachment rates to forces at the single-motor level. The collective behaviors of certain processive motors, like myosinVa, may therefore be more readily tunable and have more substantial roles in intracellular transport regulatory mechanisms compared with those of other cytoskeletal motors. PMID:24402168

  14. Delineating cooperative responses of processive motors in living cells.

    PubMed

    Efremov, Artem K; Radhakrishnan, Anand; Tsao, David S; Bookwalter, Carol S; Trybus, Kathleen M; Diehl, Michael R

    2014-01-21

    Characterizing the collective functions of cytoskeletal motors is critical to understanding mechanisms that regulate the internal organization of eukaryotic cells as well as the roles various transport defects play in human diseases. Though in vitro assays using synthetic motor complexes have generated important insights, dissecting collective motor functions within living cells still remains challenging. Here, we show that the protein heterodimerization switches FKBP-rapalog-FRB can be harnessed in engineered COS-7 cells to compare the collective responses of kinesin-1 and myosinVa motors to changes in motor number and cargo size. The dependence of cargo velocities, travel distances, and position noise on these parameters suggests that multiple myosinVa motors can cooperate more productively than collections of kinesins in COS-7 cells. In contrast to observations with kinesin-1 motors, the velocities and run lengths of peroxisomes driven by multiple myosinVa motors are found to increase with increasing motor density, but are relatively insensitive to the higher loads associated with transporting large peroxisomes in the viscoelastic environment of the COS-7 cell cytoplasm. Moreover, these distinctions appear to be derived from the different sensitivities of kinesin-1 and myosinVa velocities and detachment rates to forces at the single-motor level. The collective behaviors of certain processive motors, like myosinVa, may therefore be more readily tunable and have more substantial roles in intracellular transport regulatory mechanisms compared with those of other cytoskeletal motors.

  15. Quantitative fluorescence correlation spectroscopy on DNA in living cells

    NASA Astrophysics Data System (ADS)

    Hodges, Cameron; Kafle, Rudra P.; Meiners, Jens-Christian

    2017-02-01

    FCS is a fluorescence technique conventionally used to study the kinetics of fluorescent molecules in a dilute solution. Being a non-invasive technique, it is now drawing increasing interest for the study of more complex systems like the dynamics of DNA or proteins in living cells. Unlike an ordinary dye solution, the dynamics of macromolecules like proteins or entangled DNA in crowded environments is often slow and subdiffusive in nature. This in turn leads to longer residence times of the attached fluorophores in the excitation volume of the microscope and artifacts from photobleaching abound that can easily obscure the signature of the molecular dynamics of interest and make quantitative analysis challenging.We discuss methods and procedures to make FCS applicable to quantitative studies of the dynamics of DNA in live prokaryotic and eukaryotic cells. The intensity autocorrelation is computed function from weighted arrival times of the photons on the detector that maximizes the information content while simultaneously correcting for the effect of photobleaching to yield an autocorrelation function that reflects only the underlying dynamics of the sample. This autocorrelation function in turn is used to calculate the mean square displacement of the fluorophores attached to DNA. The displacement data is more amenable to further quantitative analysis than the raw correlation functions. By using a suitable integral transform of the mean square displacement, we can then determine the viscoelastic moduli of the DNA in its cellular environment. The entire analysis procedure is extensively calibrated and validated using model systems and computational simulations.

  16. Challenges in the detection of long lived particles: the Hidden Valley Scenario

    SciTech Connect

    Sidoti, Antonio

    2008-11-23

    Neutral particles with long decay paths and many particles in the final state represent, from an experimental point of view, a challenge both for the trigger and for the reconstruction capabilities of the ATLAS detector. The Hidden Valley scenario is an excellent framework to explore the challenges posed by long-lived neutral particles. In this paper we present strategies to select such events, in particular for the Higgs boson decays, with special attention to trigger level problems.

  17. Resisting and challenging stigma in Uganda: the role of support groups of people living with HIV.

    PubMed

    Mburu, Gitau; Ram, Mala; Skovdal, Morten; Bitira, David; Hodgson, Ian; Mwai, Grace W; Stegling, Christine; Seeley, Janet

    2013-11-13

    Global scale up of antiretroviral therapy is changing the context of HIV-related stigma. However, stigma remains an ongoing concern in many countries. Groups of people living with HIV can contribute to the reduction of stigma. However, the pathways through which they do so are not well understood. This paper utilizes data from a qualitative study exploring the impact of networked groups of people living with HIV in Jinja and Mbale districts of Uganda. Participants were people living with HIV (n=40), members of their households (n=10) and their health service providers (n=15). Data were collected via interviews and focus group discussions in 2010, and analyzed inductively to extract key themes related to the approaches and outcomes of the groups' anti-stigma activities. Study participants reported that HIV stigma in their communities had declined as a result of the collective activities of groups of people living with HIV. However, they believed that stigma remained an ongoing challenge. Gender, family relationships, social and economic factors emerged as important drivers of stigma. Challenging stigma collectively transcended individual experiences and united people living with HIV in a process of social renegotiation to achieve change. Groups of people living with HIV provided peer support and improved the confidence of their members, which ultimately reduced self-stigma and improved their ability to deal with external stigma when it was encountered. Antiretroviral therapy and group-based approaches in the delivery of HIV services are opening up new avenues for the collective participation of people living with HIV to challenge HIV stigma and act as agents of social change. Interventions for reducing HIV stigma should be expanded beyond those that aim to increase the resilience and coping mechanisms of individuals, to those that build the capacity of groups to collectively cope with and challenge HIV stigma. Such interventions should be gender sensitive and should

  18. Resisting and challenging stigma in Uganda: the role of support groups of people living with HIV

    PubMed Central

    Mburu, Gitau; Ram, Mala; Skovdal, Morten; Bitira, David; Hodgson, Ian; Mwai, Grace W; Stegling, Christine; Seeley, Janet

    2013-01-01

    Introduction Global scale up of antiretroviral therapy is changing the context of HIV-related stigma. However, stigma remains an ongoing concern in many countries. Groups of people living with HIV can contribute to the reduction of stigma. However, the pathways through which they do so are not well understood. Methods This paper utilizes data from a qualitative study exploring the impact of networked groups of people living with HIV in Jinja and Mbale districts of Uganda. Participants were people living with HIV (n=40), members of their households (n=10) and their health service providers (n=15). Data were collected via interviews and focus group discussions in 2010, and analyzed inductively to extract key themes related to the approaches and outcomes of the groups’ anti-stigma activities. Results Study participants reported that HIV stigma in their communities had declined as a result of the collective activities of groups of people living with HIV. However, they believed that stigma remained an ongoing challenge. Gender, family relationships, social and economic factors emerged as important drivers of stigma. Challenging stigma collectively transcended individual experiences and united people living with HIV in a process of social renegotiation to achieve change. Groups of people living with HIV provided peer support and improved the confidence of their members, which ultimately reduced self-stigma and improved their ability to deal with external stigma when it was encountered. Conclusions Antiretroviral therapy and group-based approaches in the delivery of HIV services are opening up new avenues for the collective participation of people living with HIV to challenge HIV stigma and act as agents of social change. Interventions for reducing HIV stigma should be expanded beyond those that aim to increase the resilience and coping mechanisms of individuals, to those that build the capacity of groups to collectively cope with and challenge HIV stigma. Such

  19. Imaging and manipulating proteins in live cells through covalent labeling.

    PubMed

    Xue, Lin; Karpenko, Iuliia A; Hiblot, Julien; Johnsson, Kai

    2015-12-01

    The past 20 years have witnessed the advent of numerous technologies to specifically and covalently label proteins in cellulo and in vivo with synthetic probes. These technologies range from self-labeling proteins tags to non-natural amino acids, and the question is no longer how we can specifically label a given protein but rather with what additional functionality we wish to equip it. In addition, progress in fields such as super-resolution microscopy and genome editing have either provided additional motivation to label proteins with advanced synthetic probes or removed some of the difficulties of conducting such experiments. By focusing on two particular applications, live-cell imaging and the generation of reversible protein switches, we outline the opportunities and challenges of the field and how the synergy between synthetic chemistry and protein engineering will make it possible to conduct experiments that are not feasible with conventional approaches.

  20. Physical Chemical State of Water in Living Cells.

    DTIC Science & Technology

    1985-05-01

    AD-A154 566 PHYSICAL CHEMICAL STATE OF WATER IN LIVING CELLS(J) / BAYLOR COLL OF MEDICINE HOUSTON TX DEPT OF PHYSIOLOGY C F HAZLEWOOD ET AL. MAY 85...N00014-76--C-0l0O Title: Physical Chemical State of Water in Living Cells Sub-Project A: Physical Chemical State of Water in Living Cells and Tissues Sub...provide the fundamental framework of our concepts of the living state. The following includes: (1) a statement of the rationale for this work; (2

  1. Live Cell Optical Sensing for High Throughput Applications

    NASA Astrophysics Data System (ADS)

    Fang, Ye

    Live cell optical sensing employs label-free optical biosensors to non-invasively measure stimulus-induced dynamic mass redistribution (DMR) in live cells within the sensing volume of the biosensor. The resultant DMR signal is an integrated cellular response, and reflects cell signaling mediated through the cellular target(s) with which the stimulus intervenes. This article describes the uses of live cell optical sensing for probing cell biology and ligand pharmacology, with an emphasis of resonant waveguide grating biosensor cellular assays for high throughput applications.

  2. Strategies for Living with the Challenges of HIV and Antiretroviral Use in Zambia

    ERIC Educational Resources Information Center

    Jones, Deborah; Zulu, Isaac; Mumbi, Miriam; Chitalu, Ndashi; Vamos, Szonja; Gomez, Jacqueline; Weiss, Stephen M.

    2009-01-01

    This study sought to identify strategies for living with the challenges of HIV and antiretroviral (ARV) use among new medication users in urban Zambia. Participants (n = 160) were recruited from urban Lusaka, Zambia. Qualitative Data was drawn from monthly ARV treatment education intervention groups addressing HIV and antiretroviral use. Themes…

  3. Builders Challenge High Performance Builder Spotlight - Masco Environments for Living, Las Vegas, Nevada

    SciTech Connect

    2009-01-01

    Building America Builders Challenge fact sheet on Masco’s Environments for Living Certified Green demo home at the 2009 International Builders Show in Las Vegas. The home has a Home Energy Rating System (HERS) index score of 44, a right-sized air conditi

  4. Challenges Experienced in Teaching Daily Living Skills to Learners with Mental Retardation

    ERIC Educational Resources Information Center

    Ruteere, Rosallin Kananu; Mutia, Jacob Mpekethu; Mwoma, Teresa; Runo, Mary

    2015-01-01

    The aim of this study was to establish the challenges encountered when teaching daily living skills (DLS) to learners with mental retardation (MR). The study used purposive sampling to select the sub-county, special units, learners and teachers. The target population in this study was eighty four respondents. The sample for the study was the same…

  5. Fourier-transform infrared spectroscopy for rapid screening and live-cell monitoring: application to nanotoxicology.

    PubMed

    Sundaram, S K; Sacksteder, Colette A; Weber, Thomas J; Riley, Brian J; Addleman, R Shane; Harrer, Bruce J; Peterman, John W

    2013-01-01

    A significant challenge to realize the full potential of nanotechnology for therapeutic and diagnostic applications is to understand and evaluate how live cells interact with an external stimulus, such as a nanosized particle, and the toxicity and broad risk associated with these stimuli. It is difficult to capture the complexity and dynamics of these interactions by following omics-based approaches exclusively, which can be expensive and time-consuming. Attenuated total reflectance-Fourier transform infrared spectroscopy is well suited to provide noninvasive live-cell monitoring of cellular responses to potentially toxic nanosized particles or other stimuli. This alternative approach provides the ability to carry out rapid toxicity screenings and nondisruptive monitoring of live-cell cultures. We review the technical basis of the approach, the instrument configuration and interface with the biological media, the various effects that impact the data, subsequent data analysis and toxicity, and present some preliminary results on live-cell monitoring.

  6. New microscope gives scientists the inside scoop on living cells.

    PubMed

    Medlin, J

    1999-11-01

    Scientists at Pacific Northwest National Laboratory in Richland, Washington, have developed a unique imaging system capable of focusing on a single living cell within an organism. This new technology will be used in what the multidisciplinary team has termed a "cellular observatory" to study the effect of environmental insults to live cells.

  7. [Bioethical challenges of stem cell tourism].

    PubMed

    Ventura-Juncá, Patricio; Erices, Alejandro; Santos, Manuel J

    2013-08-01

    Stem cells have drawn extraordinary attention from scientists and the general public due to their potential to generate effective therapies for incurable diseases. At the same time, the production of embryonic stem cells involves a serious ethical issue concerning the destruction of human embryos. Although adult stem cells and induced pluripotential cells do not pose this ethical objection, there are other bioethical challenges common to all types of stem cells related particularly to the clinical use of stem cells. Their clinical use should be based on clinical trials, and in special situations, medical innovation, both of which have particular ethical dimensions. The media has raised unfounded expectations in patients and the public about the real clinical benefits of stem cells. At the same time, the number of unregulated clinics is increasing around the world, making direct offers through Internet of unproven stem cell therapies that attract desperate patients that have not found solutions in standard medicine. This is what is called stem cells tourism. This article reviews this situation, its consequences and the need for international cooperation to establish effective regulations to prevent the exploitation of patients and to endanger the prestige of legitimate stem cell research.

  8. Fluorescence lifetime imaging of molecular rotors in living cells.

    PubMed

    Suhling, Klaus; Levitt, James A; Chung, Pei-Hua; Kuimova, Marina K; Yahioglu, Gokhan

    2012-02-09

    Diffusion is often an important rate-determining step in chemical reactions or biological processes and plays a role in a wide range of intracellular events. Viscosity is one of the key parameters affecting the diffusion of molecules and proteins, and changes in viscosity have been linked to disease and malfunction at the cellular level. While methods to measure the bulk viscosity are well developed, imaging microviscosity remains a challenge. Viscosity maps of microscopic objects, such as single cells, have until recently been hard to obtain. Mapping viscosity with fluorescence techniques is advantageous because, similar to other optical techniques, it is minimally invasive, non-destructive and can be applied to living cells and tissues. Fluorescent molecular rotors exhibit fluorescence lifetimes and quantum yields which are a function of the viscosity of their microenvironment. Intramolecular twisting or rotation leads to non-radiative decay from the excited state back to the ground state. A viscous environment slows this rotation or twisting, restricting access to this non-radiative decay pathway. This leads to an increase in the fluorescence quantum yield and the fluorescence lifetime. Fluorescence Lifetime Imaging (FLIM) of modified hydrophobic BODIPY dyes that act as fluorescent molecular rotors show that the fluorescence lifetime of these probes is a function of the microviscosity of their environment. A logarithmic plot of the fluorescence lifetime versus the solvent viscosity yields a straight line that obeys the Förster Hoffman equation. This plot also serves as a calibration graph to convert fluorescence lifetime into viscosity. Following incubation of living cells with the modified BODIPY fluorescent molecular rotor, a punctate dye distribution is observed in the fluorescence images. The viscosity value obtained in the puncta in live cells is around 100 times higher than that of water and of cellular cytoplasm. Time-resolved fluorescence anisotropy

  9. The effect of diatomaceous earth in live, attenuated infectious bronchitis vaccine, immune responses, and protection against challenge.

    PubMed

    Nazmi, Ali; Hauck, Rüdiger; Corbeil, Lynette B; Gallardo, Rodrigo A

    2017-04-17

    Live virus vaccines are commonly used in poultry production, particularly in broilers. Massive application and generation of a protective local mucosal and humoral immunity with no adverse effects is the main goal for this strategy. Live virus vaccines can be improved by adding adjuvants to boost mucosal innate and adaptive responses. In a previous study we showed that diatomaceous earth (DE) can be used as adjuvant in inactivated vaccines. The aim of this study was to test DE as adjuvant in an Ark-DPI live infectious bronchitis virus (IBV) vaccine after ocular or spray application. Titrating the virus alone or after addition of DE showed that DE had no detrimental effect on the vaccine virus. However, adding DE to the vaccine did not induce higher IgG titers in the serum and IgA titers in tears. It also did not affect the frequency of CD4+ T cells, CD8+ T cells and monocytes/macrophages in the blood and the spleen determined by flow cytometry. In addition, protection generated against IBV homologous challenges, measured by viral load in tears, respiratory signs and histopathology in tracheas, did not vary when DE was present in the vaccine formulation. Finally, we confirmed through our observations that Ark vaccines administered by hatchery spray cabinet elicit weaker immune responses and protection against an IBV homologous challenge compared to the same vaccine delivered via ocular route. © 2017 Poultry Science Association Inc.

  10. A direct technique for magnetic functionalization of living human cells.

    PubMed

    Dzamukova, Maria R; Zamaleeva, Alsu I; Ishmuchametova, Dilara G; Osin, Yuri N; Kiyasov, Andrey P; Nurgaliev, Danis K; Ilinskaya, Olga N; Fakhrullin, Rawil F

    2011-12-06

    Functionalized living cells are regarded as effective tools in directed cell delivery and tissue engineering. Here we report the facile functionalization of viable isolated HeLa cells with superparamagnetic cationic nanoparticles via a single-step biocompatible process. Nanoparticles are localized on the cellular membranes and do not penetrate into the cytoplasm. The magnetically responsive cells are viable and able to colonize and grow on substrates. Magnetically facilitated microorganization of functionalized cells into viable living clusters is demonstrated. We believe that the technique described here may find a number of potential applications in cell-based therapies and in development of whole-cell biosensors. © 2011 American Chemical Society

  11. A reovirus challenge model applicable in commercial broilers after live vaccination.

    PubMed

    van Loon, A A W M; Suurland, B; van der Marel, P

    2002-02-01

    The efficacy of live reovirus vaccines may be determined by challenge via the foot pad route 3 to 4 weeks after vaccination. Swelling and discoloration in the foot pad and shank are scored for a period of 14 days. The major disadvantages of this challenge model are the subjective judgement of gross foot pad and/or shank lesions, that it is very difficult to induce lesions in broilers, and that it causes animal suffering. Other reovirus challenge models are based on reisolation of the virus from different tissues or on scoring microscopic lesions in the tendons. Some disadvantages of these models are that they either cannot be used after vaccination with live reovirus because they cannot discriminate between vaccine and challenge virus or that the microscopic lesions scored need not necessarily be related to the challenge virus but may have been induced by other factors. Therefore, we have attempted to develop a reovirus challenge model that was an improvement on the existing ones, using isolation of reovirus from different organs followed by specific detection of the challenge virus with a monoclonal antibody that can discriminate between challenge and vaccine virus. The reovirus challenge model was examined in specific pathogen free (SPF) White Leghorn chickens and commercial broilers. In vivo studies were conducted to examine the efficacy of an attenuated reovirus vaccine in SPF White Leghorn chickens and commercial broilers with maternal immunity against reovirus. No challenge virus could be detected in any of the organs of the vaccinated chickens 3 and 10 days after challenge. In contrast, challenge virus could be isolated from the unvaccinated control group. At an increased challenge dose all unvaccinated challenge control birds were positive, while the vaccinated chickens were protected. It was shown that 1-day-old vaccination in the presence of maternal immunity was effective. It seemed that protection induced in broilers by the attenuated reovirus vaccine

  12. Early Potent Protection against Heterologous SIVsmE660 Challenge Following Live Attenuated SIV Vaccination in Mauritian Cynomolgus Macaques

    PubMed Central

    Berry, Neil; Ham, Claire; Mee, Edward T.; Rose, Nicola J.; Mattiuzzo, Giada; Jenkins, Adrian; Page, Mark; Elsley, William; Robinson, Mark; Smith, Deborah; Ferguson, Deborah; Towers, Greg; Almond, Neil; Stebbings, Richard

    2011-01-01

    Background Live attenuated simian immunodeficiency virus (SIV) vaccines represent the most effective means of vaccinating macaques against pathogenic SIV challenge. However, thus far, protection has been demonstrated to be more effective against homologous than heterologous strains. Immune correlates of vaccine-induced protection have also been difficult to identify, particularly those measurable in the peripheral circulation. Methodology/Principal Findings Here we describe potent protection in 6 out of 8 Mauritian-derived cynomolgus macaques (MCM) against heterologous virus challenge with the pathogenic, uncloned SIVsmE660 viral stock following vaccination with live attenuated SIVmac251/C8. MCM provided a characterised host genetic background with limited Major Histocompatibility Complex (MHC) and TRIM5α allelic diversity. Early protection, observed as soon as 3 weeks post-vaccination, was comparable to that of 20 weeks vaccination. Recrudescence of vaccine virus was most pronounced in breakthrough cases where simultaneous identification of vaccine and challenge viruses by virus-specific PCR was indicative of active co-infection. Persistence of the vaccine virus in a range of lymphoid tissues was typified by a consistent level of SIV RNA positive cells in protected vaccinates. However, no association between MHC class I /II haplotype or TRIM5α polymorphism and study outcome was identified. Conclusion/Significance This SIV vaccine study, conducted in MHC-characterised MCM, demonstrated potent protection against the pathogenic, heterologous SIVsmE660 challenge stock after only 3 weeks vaccination. This level of protection against this viral stock by intravenous challenge has not been hitherto observed. The mechanism(s) of protection by vaccination with live attenuated SIV must account for the heterologous and early protection data described in this study, including those which relate to the innate immune system. PMID:21853072

  13. Direct Force Measurements of Receptor-Ligand Interactions on Living Cells

    NASA Astrophysics Data System (ADS)

    Eibl, Robert H.

    The characterization of cell adhesion between two living cells at the level of single receptor-ligand bonds is an experimental challenge. This chapter describes how the extremely sensitive method of atomic force microscopy (AFM) based force spectroscopy can be applied to living cells in order to probe for cell-to-cell or cell-to-substrate interactions mediated by single pairs of adhesion receptors. In addition, it is outlined how single-molecule AFM force spectroscopy can be used to detect physiologic changes of an adhesion receptor in a living cell. This force spectroscopy allows us to detect in living cells rapidly changing, chemokine SDF-1 triggered activation states of single VLA-4 receptors. This recently developed AFM application will allow for the detailed investigation of the integrin-chemokine crosstalk of integrin activation mechanisms and on how other adhesion receptors are modulated in health and disease. As adhesion molecules, living cells and even bacteria can be studied by single-molecule AFM force spectroscopy, this method is set to become a powerful tool that can not only be used in biophysics, but in cell biology as well as in immunology and cancer research.

  14. Colorimetric detection of endogenous hydrogen sulfide production in living cells

    NASA Astrophysics Data System (ADS)

    Ahn, Yong Jin; Lee, Young Ju; Lee, Jaemyeon; Lee, Doyeon; Park, Hun-Kuk; Lee, Gi-Ja

    2017-04-01

    Hydrogen sulfide (H2S) has received great attention as a third gaseous signal transmitter, following nitric oxide and carbon monoxide. In particular, H2S plays an important role in the regulation of cancer cell biology. Therefore, the detection of endogenous H2S concentrations within biological systems can be helpful to understand the role of gasotransmitters in pathophysiology. Although a simple and inexpensive method for the detection of H2S has been developed, its direct and precise measurement in living cells remains a challenge. In this study, we introduced a simple, facile, and inexpensive colorimetric system for selective H2S detection in living cells using a silver-embedded Nafion/polyvinylpyrrolidone (PVP) membrane. This membrane could be easily applied onto a polystyrene microplate cover. First, we optimized the composition of the coating membrane, such as the PVP/Nafion mixing ratio and AgNO3 concentration, as well as the pH of the Na2S (H2S donor) solution and the reaction time. Next, the in vitro performance of a colorimetric detection assay utilizing the silver/Nafion/PVP membrane was evaluated utilizing a known concentration of Na2S standard solution both at room temperature and at 37 °C in a 5% CO2 incubator. As a result, the sensitivity of the colorimetric assay for H2S at 37 °C in the incubator (0.0056 Abs./μM Na2S, R2 = 0.9948) was similar to that at room temperature (0.0055 Abs./μM Na2S, R2 = 0.9967). Moreover, these assays were less sensitive to interference from compounds such as glutathione, L-cysteine (Cys), and dithiothreitol than to the H2S from Na2S. This assay based on the silver/Nafion/PVP membrane also showed excellent reproducibility (2.8% RSD). Finally, we successfully measured the endogenous H2S concentrations in live C6 glioma cells by s-(5‧-adenosyl)-L-methionine stimulation with and without Cys and L-homocysteine, utilizing the silver/Nafion/PVP membrane. In summary, colorimetric assays using silver

  15. Targeting endogenous nuclear antigens by electrotransfer of monoclonal antibodies in living cells

    PubMed Central

    Freund, Guillaume; Sibler, Annie-Paule; Desplancq, Dominique; Oulad-Abdelghani, Mustapha; Vigneron, Marc; Gannon, Julian; Van Regenmortel, Marc H.; Weiss, Etienne

    2013-01-01

    Antibodies are valuable tools for functional studies in vitro, but their use in living cells remains challenging because they do not naturally cross the cell membrane. Here, we present a simple and highly efficient method for the intracytoplasmic delivery of any antibody into cultured cells. By following the fate of monoclonal antibodies that bind to nuclear antigens, it was possible to image endogenous targets and to show that inhibitory antibodies are able to induce cell growth suppression or cell death. Our electrotransfer system allowed the cancer cells we studied to be transduced without loss of viability and may have applications for a variety of intracellular immuno-interventions. PMID:23765067

  16. Five-color fluorescent imaging in living tumor cells

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Yang, Jie; Chu, Jun; Luo, Qingming; Zhang, Zhihong

    2008-12-01

    The fluorescent probes based on fluorescent proteins (FP) have been widely used to investigate the molecules of interest in living cells. It is well-known that the molecular events in the living cells are very complicate and all of the cell activities are involved by multi-molecular interaction. With the development of novel fluorescent protein mutants and imaging technology, the molecular signal in living cells could be detected accurately. In this study, with the appropriate targeting signals, the fluorescent proteins were localized to plasma membrane (Rac1-mCerulean), Golgi membrane (EYFP-go), ER membrane (RFP2-er), mitochondrial membrane (RFP1-mt). Cultured Hela cells were cotransfected with these four plasmids, and 36 h later, labeled with Hoechst33258 which located in the nucleus of a living cell. Using a confocal microscopy, with 405 nm, 458 nm and 514 nm laser lines employed respectively, a five-color fluorescent image was obtained in which five subcellular structures were clearly shown in living cells. The technique of multi-color imaging in a single cell provides a powerful tool to simultaneously study the multi-molecular events in living cells.

  17. African American kidney transplant patients’ perspectives on challenges in the living donation process

    PubMed Central

    Sieverdes, John C.; Nemeth, Lynne S.; Magwood, Gayenell S.; Baliga, Prabhakar K.; Chavin, Kenneth D.; Ruggiero, Ken J.; Treiber, Frank A.

    2015-01-01

    Context The increasing shortage of deceased donor kidneys suitable for African Americans highlights the critical need to increase living donations among African Americans. Little research has addressed African American transplant recipients’ perspectives on challenges and barriers related to the living donation process. Objective To understand the perspectives of African American recipients of deceased and living donor kidney transplants on challenges, barriers, and educational needs related to pursuing such transplants. Participants and Design A mixed-method design involved 27 African American kidney recipients (13 male) in 4 focus groups (2 per recipient type: 16 African American deceased donor and 11 living donor recipients) and questionnaires. Focus group transcripts were evaluated with NVivo 10.0 (QSR, International) by using inductive and deductive qualitative methods along with crystallization to develop themes of underlying barriers to the living donor kidney transplant process and were compared with the questionnaires. Results Four main themes were identified from groups: concerns, knowledge and learning, expectations of support, and communication. Many concerns for the donor were identified (eg, process too difficult, financial burden, effect on relationships). A general lack of knowledge about the donor process and lack of behavioral skills on how to approach others was noted. The latter was especially evident among deceased donor recipients. Findings from the questionnaires on myths and perceptions supported the lack of knowledge in a variety of domains, including donors’ surgical outcomes risks, costs of surgery, and impact on future health. Participants thought that an educational program led by an African American recipient of a living donor kidney transplant, including practice in approaching others, would increase the likelihood of transplant-eligible patients pursuing living donor kidney transplant. PMID:26107278

  18. Bioengineering Solutions for Manufacturing Challenges in CAR T Cells.

    PubMed

    Piscopo, Nicole J; Mueller, Katherine P; Das, Amritava; Hematti, Peiman; Murphy, William L; Palecek, Sean P; Capitini, Christian M; Saha, Krishanu

    2017-08-25

    The next generation of therapeutic products to be approved for the clinic is anticipated to be cell therapies, termed "living drugs" for their capacity to dynamically and temporally respond to changes during their production ex vivo and after their administration in vivo. Genetically engineered chimeric antigen receptor (CAR) T cells have rapidly developed into powerful tools to harness the power of immune system manipulation against cancer. Regulatory agencies are beginning to approve CAR T cell therapies due to their striking efficacy in treating some hematological malignancies. However, the engineering and manufacturing of such cells remains a challenge for widespread adoption of this technology. Bioengineering approaches including biomaterials, synthetic biology, metabolic engineering, process control and automation, and in vitro disease modeling could offer promising methods to overcome some of these challenges. Here, we describe the manufacturing process of CAR T cells, highlighting potential roles for bioengineers to partner with biologists and clinicians to advance the manufacture of these complex cellular products under rigorous regulatory and quality control. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Temporal techniques: dynamic tracking of nanomaterials in live cells.

    PubMed

    Li, Wei; Liu, Ru; Wang, Yaling; Zhao, Yuliang; Gao, Xueyun

    2013-05-27

    Temporal analytical techniques to track nanoparticles in live cell would provide rich information to well understand the biologic properties of nanoparticles in molecular level. Significant advances in fluorescence microscopy techniques with high temporal and spatial resolution allow single nanoparticles to label biomolecules, ions, and microstructures in live cells, which will address many fundamental questions in cell biology. This review highlights the real time tracking techniques for monitoring the movement of nanomaterials such as carbon nanotubes (CNTs), quantum dots (QDs), metal clusters, upconver-sional nanomaterials, and polystyrene (PS) nanoparticles etc. in live cells. The biological properties of nanoparticles in live cells are also briefly summarized according to fluorescence microscopy studies. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Live-cell targeting of his-tagged proteins by multivalent N-nitrilotriacetic acid carrier complexes.

    PubMed

    Wieneke, Ralph; Labòria, Noemi; Rajan, Malini; Kollmannsperger, Alina; Natale, Francesco; Cardoso, M Cristina; Tampé, Robert

    2014-10-08

    Selective and fast labeling of proteins in living cells is a major challenge. Live-cell labeling techniques require high specificity, high labeling density, and cell permeability of the tagging molecule to target the protein of interest. Here we report on the site-specific, rapid, and efficient labeling of endogenous and recombinant histidine-tagged proteins in distinct subcellular compartments using cell-penetrating multivalent chelator carrier complexes. In vivo labeling was followed in real time in living cells, demonstrating a high specificity and high degree of colocalization in the crowded cellular environment.

  1. Detecting and Tracking Nonfluorescent Nanoparticles Probes in Live Cells

    SciTech Connect

    Wang, Gufeng; Fang, Ning

    2012-01-17

    Precisely imaging and tracking dynamic biological processes in live cells are crucial for both fundamental research in life sciences and biomedical applications. Nonfluorescent nanoparticles are emerging as important optical probes in live-cell imaging because of their excellent photostability, large optical cross sections, and low cytotoxicity. Here, we provide a review of recent development in optical imaging of nonfluorescent nanoparticle probes and their applications in dynamic tracking and biosensing in live cells. A brief discussion on cytotoxicity of nanoparticle probes is also provided.

  2. Electro-Optical Platform for the Manipulation of Live Cells

    DTIC Science & Technology

    2002-10-02

    Electro-Optical Platform for the Manipulation of Live Cells† M. Ozkan,‡ T. Pisanic,§ J. Scheel,| C. Barlow,| S. Esener,‡ and S. N. Bhatia...revolutionized our understanding of living systems. DNA microarrays, catalytic RNA arrays, and protein arrays are all a consequence of innovations in...engineering at the micro- and nanoscales. Here, we extend this paradigm to the fabrication of live mammalian cell arrays that can be used to investigate

  3. Airway epithelial cells: current concepts and challenges.

    PubMed

    Crystal, Ronald G; Randell, Scott H; Engelhardt, John F; Voynow, Judith; Sunday, Mary E

    2008-09-15

    The adult human bronchial tree is covered with a continuous layer of epithelial cells that play a critical role in maintaining the conduit for air, and which are central to the defenses of the lung against inhaled environmental concomitants. The epithelial sheet functions as an interdependent unit with the other lung components. Importantly, the structure and/or function of airway epithelium is deranged in major lung disorders, including chronic obstructive pulmonary disease, asthma, and bronchogenic carcinoma. Investigations regarding the airway epithelium have led to many advances over the past few decades, but new developments in genetics and stem cell/progenitor cell biology have opened the door to understanding how the airway epithelium is developed and maintained, and how it responds to environmental stress. This article provides an overview of the current state of knowledge regarding airway epithelial stem/progenitor cells, gene expression, cell-cell interactions, and less frequent cell types, and discusses the challenges for future areas of investigation regarding the airway epithelium in health and disease.

  4. Correlates of Immunity to Influenza as Determined by Challenge of Children with Live, Attenuated Influenza Vaccine

    PubMed Central

    Wright, Peter F.; Hoen, Anne G.; Ilyushina, Natalia A.; Brown, Eric P.; Ackerman, Margaret E.; Wieland-Alter, Wendy; Connor, Ruth I.; Jegaskanda, Sinthujan; Rosenberg-Hasson, Yael; Haynes, Brenda C.; Luke, Catherine J.; Subbarao, Kanta; Treanor, John J.

    2016-01-01

    Background. The efficacy of live, attenuated live attenuated influenza vaccine(LAIV) and inactivated influenza vaccine(IIV) is poorly explained by either single or composite immune responses to vaccination. Protective biomarkers were therefore studied in response to LAIV or IIV followed by LAIV challenge in children. Methods. Serum and mucosal responses to LAIV or IIV were analyzed using immunologic assays to assess both quantitative and functional responses. Cytokines and chemokines were measured in nasal washes collected before vaccination, on days 2, 4, and 7 after initial LAIV, and again after LAIV challenge using a 63-multiplex Luminex panel. Results. Patterns of immunity induced by LAIV and IIV were significantly different. Serum responses induced by IIV, including hemagglutination inhibition, did not correlate with detection or quantitation of LAIV on subsequent challenge. Modalities that induced sterilizing immunity seen after LAIV challenge could not be defined by any measurements of mucosal or serum antibodies induced by the initial LAIV immunization. No single cytokine or chemokine was predictive of protection. Conclusions. The mechanism of protective immunity observed after LAIV could not be defined, and traditional measurements of immunity to IIV did not correlate with protection against an LAIV challenge. PMID:27419180

  5. Imaging of living cells in real time

    NASA Astrophysics Data System (ADS)

    Tychinsky, Vladimir P.; Koufal, Georgy E.; Perevedentseva, Elena V.; Vyshenskaia, Tatiana V.; Nikandrov, Serguei L.

    1996-12-01

    Parameters of intrinsic cell motility is one of the cell activity characteristics which can be measured in real-time. For evaluation of certain organelles velocity we propose to use high sensitivity of computer-aided phase microscope airyscan to local phase changes connected with refractive index. This method is based on periodical scanning of cell profile in direction perpendicular to organelles movement. Analysis of the obtained 2-dimensional time-coordinate matrix allows us to define organelle velocity in quasi-real time and areas of cell activity. The experiments with onion cells confirm the method applicability for cell activity investigation.

  6. Cell nucleus targeting for living cell extraction of nucleic acid associated proteins with intracellular nanoprobes of magnetic carbon nanotubes.

    PubMed

    Zhang, Yi; Hu, Zhengyan; Qin, Hongqiang; Liu, Fangjie; Cheng, Kai; Wu, Ren'an; Zou, Hanfa

    2013-08-06

    Since nanoparticles could be ingested by cells naturally and target at a specific cellular location as designed, the extraction of intracellular proteins from living cells for large-scale analysis by nanoprobes seems to be ideally possible. Nucleic acid associated proteins (NAaP) take the crucial position during biological processes in maintaining and regulating gene structure and gene related behaviors, yet there are still challenges during the global investigation of intracellular NAaP, especially from living cells. In this work, a strategy to extract intracellular proteins from living cells with the magnetic carbon nanotube (oMWCNT@Fe3O4) as an intracellular probe is developed, to achieve the high throughput analysis of NAaP from living human hepatoma BEL-7402 cells with a mass spectrometry-based proteomic approach. Due to the specific intracellular localization of the magnetic carbon nanotubes around nuclei and its strong interaction with nucleic acids, the highly efficient extraction was realized for cellular NAaP from living cells, with the capability of identifying 2383 intracellular NAaP from only ca. 10,000 living cells. This method exhibited potential applications in dynamic and in situ analysis of intracellular proteins.

  7. Chemically tunable mucin chimeras assembled on living cells

    DOE PAGES

    Kramer, Jessica R.; Onoa, Bibiana; Bustamante, Carlos; ...

    2015-09-29

    Mucins are a family of secreted and transmembrane glycoproteins characterized by a massive domain of dense O-glycosylation on serine and threonine residues. Mucins are intimately involved in immunity and cancer, yet elucidation of the biological roles of their glycodomains has been complicated by their massive size, domain polymorphisms, and variable glycosylation patterns. Here we developed a synthetic route to a library of compositionally defined, high-molecular weight, dual end-functionalized mucin glycodomain constructs via N-carboxyanhydride polymerization. These glycopolypeptides are the first synthetic analogs to our knowledge to feature the native α-GalNAc linkage to serine with molecular weights similar to native mucins, solvingmore » a nearly 50-year synthetic challenge. Physical characterization of the mimics revealed insights into the structure and properties of mucins. The synthetic glycodomains were end-functionalized with an optical probe and a tetrazine moiety, which allowed site-specific bioorthogonal conjugation to an engineered membrane protein on live mammalian cells. Lastly, this strategy in protein engineering will open avenues to explore the biological roles of cell surface mucins.« less

  8. Chemically tunable mucin chimeras assembled on living cells

    SciTech Connect

    Kramer, Jessica R.; Onoa, Bibiana; Bustamante, Carlos; Bertozzi, Carolyn R.

    2015-09-29

    Mucins are a family of secreted and transmembrane glycoproteins characterized by a massive domain of dense O-glycosylation on serine and threonine residues. Mucins are intimately involved in immunity and cancer, yet elucidation of the biological roles of their glycodomains has been complicated by their massive size, domain polymorphisms, and variable glycosylation patterns. Here we developed a synthetic route to a library of compositionally defined, high-molecular weight, dual end-functionalized mucin glycodomain constructs via N-carboxyanhydride polymerization. These glycopolypeptides are the first synthetic analogs to our knowledge to feature the native α-GalNAc linkage to serine with molecular weights similar to native mucins, solving a nearly 50-year synthetic challenge. Physical characterization of the mimics revealed insights into the structure and properties of mucins. The synthetic glycodomains were end-functionalized with an optical probe and a tetrazine moiety, which allowed site-specific bioorthogonal conjugation to an engineered membrane protein on live mammalian cells. Lastly, this strategy in protein engineering will open avenues to explore the biological roles of cell surface mucins.

  9. Stretchable living materials and devices with hydrogel–elastomer hybrids hosting programmed cells

    PubMed Central

    Liu, Xinyue; Tang, Tzu-Chieh; Tham, Eléonore; Yuk, Hyunwoo; Lin, Shaoting; Lu, Timothy K.; Zhao, Xuanhe

    2017-01-01

    Living systems, such as bacteria, yeasts, and mammalian cells, can be genetically programmed with synthetic circuits that execute sensing, computing, memory, and response functions. Integrating these functional living components into materials and devices will provide powerful tools for scientific research and enable new technological applications. However, it has been a grand challenge to maintain the viability, functionality, and safety of living components in freestanding materials and devices, which frequently undergo deformations during applications. Here, we report the design of a set of living materials and devices based on stretchable, robust, and biocompatible hydrogel–elastomer hybrids that host various types of genetically engineered bacterial cells. The hydrogel provides sustainable supplies of water and nutrients, and the elastomer is air-permeable, maintaining long-term viability and functionality of the encapsulated cells. Communication between different bacterial strains and with the environment is achieved via diffusion of molecules in the hydrogel. The high stretchability and robustness of the hydrogel–elastomer hybrids prevent leakage of cells from the living materials and devices, even under large deformations. We show functions and applications of stretchable living sensors that are responsive to multiple chemicals in a variety of form factors, including skin patches and gloves-based sensors. We further develop a quantitative model that couples transportation of signaling molecules and cellular response to aid the design of future living materials and devices. PMID:28202725

  10. Stretchable living materials and devices with hydrogel-elastomer hybrids hosting programmed cells.

    PubMed

    Liu, Xinyue; Tang, Tzu-Chieh; Tham, Eléonore; Yuk, Hyunwoo; Lin, Shaoting; Lu, Timothy K; Zhao, Xuanhe

    2017-02-28

    Living systems, such as bacteria, yeasts, and mammalian cells, can be genetically programmed with synthetic circuits that execute sensing, computing, memory, and response functions. Integrating these functional living components into materials and devices will provide powerful tools for scientific research and enable new technological applications. However, it has been a grand challenge to maintain the viability, functionality, and safety of living components in freestanding materials and devices, which frequently undergo deformations during applications. Here, we report the design of a set of living materials and devices based on stretchable, robust, and biocompatible hydrogel-elastomer hybrids that host various types of genetically engineered bacterial cells. The hydrogel provides sustainable supplies of water and nutrients, and the elastomer is air-permeable, maintaining long-term viability and functionality of the encapsulated cells. Communication between different bacterial strains and with the environment is achieved via diffusion of molecules in the hydrogel. The high stretchability and robustness of the hydrogel-elastomer hybrids prevent leakage of cells from the living materials and devices, even under large deformations. We show functions and applications of stretchable living sensors that are responsive to multiple chemicals in a variety of form factors, including skin patches and gloves-based sensors. We further develop a quantitative model that couples transportation of signaling molecules and cellular response to aid the design of future living materials and devices.

  11. Micropatterning tractional forces in living cells

    NASA Technical Reports Server (NTRS)

    Wang, Ning; Ostuni, Emanuele; Whitesides, George M.; Ingber, Donald E.

    2002-01-01

    Here we describe a method for quantifying traction in cells that are physically constrained within micron-sized adhesive islands of defined shape and size on the surface of flexible polyacrylamide gels that contain fluorescent microbeads (0.2-microm diameter). Smooth muscle cells were plated onto square (50 x 50 microm) or circular (25- or 50-microm diameter) adhesive islands that were created on the surface of the gels by applying a collagen coating through microengineered holes in an elastomeric membrane that was later removed. Adherent cells spread to take on the size and shape of the islands and cell tractions were quantitated by mapping displacement fields of the fluorescent microbeads within the gel. Cells on round islands did not exhibit any preferential direction of force application, but they exerted their strongest traction at sites where they formed protrusions. When cells were confined to squares, traction was highest in the corners both in the absence and presence of the contractile agonist, histamine, and cell protrusions were also observed in these regions. Quantitation of the mean traction exerted by cells cultured on the different islands revealed that cell tension increased as cell spreading was promoted. These results provide a mechanical basis for past studies that demonstrated a similar correlation between spreading and growth within various anchorage-dependent cells. This new approach for analyzing the spatial distribution of mechanical forces beneath individual cells that are experimentally constrained to defined sizes and shapes may provide additional insight into the biophysical basis of cell regulation. Copyright 2002 Wiley-Liss, Inc.

  12. Micropatterning tractional forces in living cells

    NASA Technical Reports Server (NTRS)

    Wang, Ning; Ostuni, Emanuele; Whitesides, George M.; Ingber, Donald E.

    2002-01-01

    Here we describe a method for quantifying traction in cells that are physically constrained within micron-sized adhesive islands of defined shape and size on the surface of flexible polyacrylamide gels that contain fluorescent microbeads (0.2-microm diameter). Smooth muscle cells were plated onto square (50 x 50 microm) or circular (25- or 50-microm diameter) adhesive islands that were created on the surface of the gels by applying a collagen coating through microengineered holes in an elastomeric membrane that was later removed. Adherent cells spread to take on the size and shape of the islands and cell tractions were quantitated by mapping displacement fields of the fluorescent microbeads within the gel. Cells on round islands did not exhibit any preferential direction of force application, but they exerted their strongest traction at sites where they formed protrusions. When cells were confined to squares, traction was highest in the corners both in the absence and presence of the contractile agonist, histamine, and cell protrusions were also observed in these regions. Quantitation of the mean traction exerted by cells cultured on the different islands revealed that cell tension increased as cell spreading was promoted. These results provide a mechanical basis for past studies that demonstrated a similar correlation between spreading and growth within various anchorage-dependent cells. This new approach for analyzing the spatial distribution of mechanical forces beneath individual cells that are experimentally constrained to defined sizes and shapes may provide additional insight into the biophysical basis of cell regulation. Copyright 2002 Wiley-Liss, Inc.

  13. Imaging cell biology in live animals: ready for prime time.

    PubMed

    Weigert, Roberto; Porat-Shliom, Natalie; Amornphimoltham, Panomwat

    2013-06-24

    Time-lapse fluorescence microscopy is one of the main tools used to image subcellular structures in living cells. Yet for decades it has been applied primarily to in vitro model systems. Thanks to the most recent advancements in intravital microscopy, this approach has finally been extended to live rodents. This represents a major breakthrough that will provide unprecedented new opportunities to study mammalian cell biology in vivo and has already provided new insight in the fields of neurobiology, immunology, and cancer biology.

  14. Inferring transient particle transport dynamics in live cells.

    PubMed

    Monnier, Nilah; Barry, Zachary; Park, Hye Yoon; Su, Kuan-Chung; Katz, Zachary; English, Brian P; Dey, Arkajit; Pan, Keyao; Cheeseman, Iain M; Singer, Robert H; Bathe, Mark

    2015-09-01

    Live-cell imaging and particle tracking provide rich information on mechanisms of intracellular transport. However, trajectory analysis procedures to infer complex transport dynamics involving stochastic switching between active transport and diffusive motion are lacking. We applied Bayesian model selection to hidden Markov modeling to infer transient transport states from trajectories of mRNA-protein complexes in live mouse hippocampal neurons and metaphase kinetochores in dividing human cells. The software is available at http://hmm-bayes.org/.

  15. Super-resolution Microscopy Approaches for Live Cell Imaging

    PubMed Central

    Godin, Antoine G.; Lounis, Brahim; Cognet, Laurent

    2014-01-01

    By delivering optical images with spatial resolutions below the diffraction limit, several super-resolution fluorescence microscopy techniques opened new opportunities to study biological structures with details approaching molecular structure sizes. They have now become methods of choice for imaging proteins and their nanoscale dynamic organizations in live cells. In this mini-review, we describe and compare the main far-field super-resolution approaches that allow studying endogenous or overexpressed proteins in live cells. PMID:25418158

  16. Living on a flammable planet: interdisciplinary, cross-scalar and varied cultural lessons, prospects and challenges

    PubMed Central

    Chaloner, William G.; Aylen, Jonathan; Bird, Rebecca Bliege; Coughlan, Michael R.; Johnson, Bart R.; Johnston, Fay H.; Steelman, Toddi

    2016-01-01

    Living with fire is a challenge for human communities because they are influenced by socio-economic, political, ecological and climatic processes at various spatial and temporal scales. Over the course of 2 days, the authors discussed how communities could live with fire challenges at local, national and transnational scales. Exploiting our diverse, international and interdisciplinary expertise, we outline generalizable properties of fire-adaptive communities in varied settings where cultural knowledge of fire is rich and diverse. At the national scale, we discussed policy and management challenges for countries that have diminishing fire knowledge, but for whom global climate change will bring new fire problems. Finally, we assessed major fire challenges that transcend national political boundaries, including the health burden of smoke plumes and the climate consequences of wildfires. It is clear that to best address the broad range of fire problems, a holistic wildfire scholarship must develop common agreement in working terms and build across disciplines. We must also communicate our understanding of fire and its importance to the media, politicians and the general public. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216517

  17. Living on a flammable planet: interdisciplinary, cross-scalar and varied cultural lessons, prospects and challenges.

    PubMed

    Roos, Christopher I; Scott, Andrew C; Belcher, Claire M; Chaloner, William G; Aylen, Jonathan; Bird, Rebecca Bliege; Coughlan, Michael R; Johnson, Bart R; Johnston, Fay H; McMorrow, Julia; Steelman, Toddi

    2016-06-05

    Living with fire is a challenge for human communities because they are influenced by socio-economic, political, ecological and climatic processes at various spatial and temporal scales. Over the course of 2 days, the authors discussed how communities could live with fire challenges at local, national and transnational scales. Exploiting our diverse, international and interdisciplinary expertise, we outline generalizable properties of fire-adaptive communities in varied settings where cultural knowledge of fire is rich and diverse. At the national scale, we discussed policy and management challenges for countries that have diminishing fire knowledge, but for whom global climate change will bring new fire problems. Finally, we assessed major fire challenges that transcend national political boundaries, including the health burden of smoke plumes and the climate consequences of wildfires. It is clear that to best address the broad range of fire problems, a holistic wildfire scholarship must develop common agreement in working terms and build across disciplines. We must also communicate our understanding of fire and its importance to the media, politicians and the general public.This article is part of the themed issue 'The interaction of fire and mankind'.

  18. From personal tragedy to personal challenge: responses to stigma among sober living home residents and operators

    PubMed Central

    Heslin, Kevin C.; Singzon, Trudy; Aimiuwu, Otaren; Sheridan, Dave; Hamilton, Alison

    2011-01-01

    Sober living homes for people attempting to maintain abstinence from alcohol and drugs can act as a buffer against the high rates of substance misuse that are endemic to many urban environments. Sober living homes and other group homes for people with disabilities have faced persistent opposition from neighborhood associations, which raises the question of stigma. This article describes the responses of sober living home residents and operators to the threat of stigma across a diverse set of neighborhoods. Ten focus groups were conducted with 68 residents and operators of 35 sober living homes in Los Angeles County, California, between January 2009 and March 2010. Results showed that few residents reported experiences of blatant stigmatization by neighbors; however, they were well aware of the stereotypes that could be ascribed to them. Despite this potential stigma, residents developed valued identities as helpers in their communities, providing advice to neighbors whose family or friends had substance use problems, and organizing community service activities to improve the appearance of their neighborhoods. With their attention to local context, sober living home residents and operators challenge the personal tragedy approach of much traditional advocacy on health-related stigma. PMID:21707663

  19. Spatial dynamics of chromosome translocations in living cells.

    PubMed

    Roukos, Vassilis; Voss, Ty C; Schmidt, Christine K; Lee, Seungtaek; Wangsa, Darawalee; Misteli, Tom

    2013-08-09

    Chromosome translocations are a hallmark of cancer cells. We have developed an experimental system to visualize the formation of translocations in living cells and apply it to characterize the spatial and dynamic properties of translocation formation. We demonstrate that translocations form within hours of the occurrence of double-strand breaks (DSBs) and that their formation is cell cycle-independent. Translocations form preferentially between prepositioned genome elements, and perturbation of key factors of the DNA repair machinery uncouples DSB pairing from translocation formation. These observations generate a spatiotemporal framework for the formation of translocations in living cells.

  20. Introduction of genes into living cells

    NASA Astrophysics Data System (ADS)

    Nishimura, E.; Nagai, A.; Tomimasu, T.; Kina, T.; Fujimoto, S.; Katsura, Y.

    1998-02-01

    One of our main subjects is an application of the FEL to gene therapy of genetic diseases, immunodeficiency syndromes and cancer. In this study, using the FEL, we tried to establish a model system for introducing genes into the stem cells from which all blood cells are derived. Our aim is to specifically mark the stem cells with monoclonal antibodies which are conjugated with efficient FEL absorbers. Cells are then irradiated with FEL at a wavelength corresponding to the absorption energy of the absorber. We speculate that the gap formation of cell membrane will occur, caused by the thermal shock due to the absorption of the FEL energy. As an animal model for gene therapy, we tried to transfer the RAG-2 genes into hematopoietic stem cells from RAG-2 deficient mice, which have severe immunodeficiency because of the lack of RAG-2 gene required for lymphocyte development. As the results by this construct, the infant lymphocytes (T and B cells) could be observed in the thymus of the RAG-2 deficient mice 2 weeks post-operative.

  1. Live imaging reveals the progenitors and cell dynamics of limb regeneration

    PubMed Central

    Alwes, Frederike; Enjolras, Camille; Averof, Michalis

    2016-01-01

    Regeneration is a complex and dynamic process, mobilizing diverse cell types and remodelling tissues over long time periods. Tracking cell fate and behaviour during regeneration in active adult animals is especially challenging. Here, we establish continuous live imaging of leg regeneration at single-cell resolution in the crustacean Parhyale hawaiensis. By live recordings encompassing the first 4-5 days after amputation, we capture the cellular events that contribute to wound closure and morphogenesis of regenerating legs with unprecedented resolution and temporal detail. Using these recordings we are able to track cell lineages, to generate fate maps of the blastema and to identify the progenitors of regenerated epidermis. We find that there are no specialized stem cells for the epidermis. Most epidermal cells in the distal part of the leg stump proliferate, acquire new positional values and contribute to new segments in the regenerating leg. DOI: http://dx.doi.org/10.7554/eLife.19766.001 PMID:27776632

  2. A fluorescent toolkit for spatiotemporal tracking of apoptotic cells in living Drosophila tissues.

    PubMed

    Schott, Sonia; Ambrosini, Arnaud; Barbaste, Audrey; Benassayag, Corinne; Gracia, Mélanie; Proag, Amsha; Rayer, Mégane; Monier, Bruno; Suzanne, Magali

    2017-09-04

    Far from being passive, apoptotic cells influence their environment. For instance, they promote tissue folding, myoblast fusion and modulate tumor growth. Understanding the role of apoptotic cells necessitates their efficient tracking within living tissues, a task which is currently challenging. In order to easily spot apoptotic cells in developing Drosophila tissues, we generated a series of fly lines expressing different fluorescent sensors of caspase activity. We show that three of these reporters (GFP, Cerulean and Venus derived molecules) are detected specifically in apoptotic cells and throughout the whole process of programmed cell death. These reporters allow the specific visualization of apoptotic cells directly within living tissues, without any post-acquisition processing. They overcome the limitations of other apoptosis detection methods developed so far and notably, they can be combined with any kind of fluorophore. © 2017. Published by The Company of Biologists Ltd.

  3. Live cell isolation by laser microdissection with gravity transfer

    NASA Astrophysics Data System (ADS)

    Podgorny, Oleg V.

    2013-05-01

    Laser microdissection by pulsing ultraviolet laser allows the isolation and recultivation of live cells based on morphological features or/and fluorescent labelling from adherent cell cultures. Previous investigations described only the use of the laser microdissection and pressure catapulting (LMPC) for live cell isolation. But LMPC requires complex manipulations and some skill. Furthermore, single-cell cloning using laser microdissection has not yet been demonstrated. The first evidence of successful application of laser microdissection with gravity transfer (LMDGT) for capturing and recultivation of live cells is presented. A new strategy for LMDGT is presented because of the failure to reproduce the manufacturer's protocol. Using the new strategy, successful capturing and recultivation of circle-shaped samples from confluent monolayer of HeLa cells was demonstrated. It was found that LMDGT is easier than LMPC because it doesn't require personal participation of investigator in transferring of isolated samples to final culture dishes. Moreover, for the first time, the generation of clonal colonies from single live cells isolated by laser microdissection was demonstrated. Data obtained in this study confirm that LMDGT is a reliable and high-yield method allowing isolation and expansion of both cell clusters and single cells from adherent cell cultures.

  4. Live cell isolation by laser microdissection with gravity transfer.

    PubMed

    Podgorny, Oleg V

    2013-05-01

    Laser microdissection by pulsing ultraviolet laser allows the isolation and recultivation of live cells based on morphological features or/and fluorescent labelling from adherent cell cultures. Previous investigations described only the use of the laser microdissection and pressure catapulting (LMPC) for live cell isolation. But LMPC requires complex manipulations and some skill. Furthermore, single-cell cloning using laser microdissection has not yet been demonstrated. The first evidence of successful application of laser microdissection with gravity transfer (LMDGT) for capturing and recultivation of live cells is presented. A new strategy for LMDGT is presented because of the failure to reproduce the manufacturer's protocol. Using the new strategy, successful capturing and recultivation of circle-shaped samples from confluent monolayer of HeLa cells was demonstrated. It was found that LMDGT is easier than LMPC because it doesn't require personal participation of investigator in transferring of isolated samples to final culture dishes. Moreover, for the first time, the generation of clonal colonies from single live cells isolated by laser microdissection was demonstrated. Data obtained in this study confirm that LMDGT is a reliable and high-yield method allowing isolation and expansion of both cell clusters and single cells from adherent cell cultures.

  5. High-speed atomic force microscopy imaging of live mammalian cells

    PubMed Central

    Shibata, Mikihiro; Watanabe, Hiroki; Uchihashi, Takayuki; Ando, Toshio; Yasuda, Ryohei

    2017-01-01

    Direct imaging of morphological dynamics of live mammalian cells with nanometer resolution under physiological conditions is highly expected, but yet challenging. High-speed atomic force microscopy (HS-AFM) is a unique technique for capturing biomolecules at work under near physiological conditions. However, application of HS-AFM for imaging of live mammalian cells was hard to be accomplished because of collision between a huge mammalian cell and a cantilever during AFM scanning. Here, we review our recent improvements of HS-AFM for imaging of activities of live mammalian cells without significant damage to the cell. The improvement of an extremely long (~3 μm) AFM tip attached to a cantilever enables us to reduce severe damage to soft mammalian cells. In addition, a combination of HS-AFM with simple fluorescence microscopy allows us to quickly locate the cell in the AFM scanning area. After these improvements, we demonstrate that developed HS-AFM for live mammalian cells is possible to image morphogenesis of filopodia, membrane ruffles, pits open-close formations, and endocytosis in COS-7, HeLa cells as well as hippocampal neurons. PMID:28900590

  6. Classic "broken cell" techniques and newer live cell methods for cell cycle assessment.

    PubMed

    Henderson, Lindsay; Bortone, Dante S; Lim, Curtis; Zambon, Alexander C

    2013-05-15

    Many common, important diseases are either caused or exacerbated by hyperactivation (e.g., cancer) or inactivation (e.g., heart failure) of the cell division cycle. A better understanding of the cell cycle is critical for interpreting numerous types of physiological changes in cells. Moreover, new insights into how to control it will facilitate new therapeutics for a variety of diseases and new avenues in regenerative medicine. The progression of cells through the four main phases of their division cycle [G(0)/G(1), S (DNA synthesis), G(2), and M (mitosis)] is a highly conserved process orchestrated by several pathways (e.g., transcription, phosphorylation, nuclear import/export, and protein ubiquitination) that coordinate a core cell cycle pathway. This core pathway can also receive inputs that are cell type and cell niche dependent. "Broken cell" methods (e.g., use of labeled nucleotide analogs) to assess for cell cycle activity have revealed important insights regarding the cell cycle but lack the ability to assess living cells in real time (longitudinal studies) and with single-cell resolution. Moreover, such methods often require cell synchronization, which can perturb the pathway under study. Live cell cycle sensors can be used at single-cell resolution in living cells, intact tissue, and whole animals. Use of these more recently available sensors has the potential to reveal physiologically relevant insights regarding the normal and perturbed cell division cycle.

  7. Analysis of live cell images: Methods, tools and opportunities.

    PubMed

    Nketia, Thomas A; Sailem, Heba; Rohde, Gustavo; Machiraju, Raghu; Rittscher, Jens

    2017-02-15

    Advances in optical microscopy, biosensors and cell culturing technologies have transformed live cell imaging. Thanks to these advances live cell imaging plays an increasingly important role in basic biology research as well as at all stages of drug development. Image analysis methods are needed to extract quantitative information from these vast and complex data sets. The aim of this review is to provide an overview of available image analysis methods for live cell imaging, in particular required preprocessing image segmentation, cell tracking and data visualisation methods. The potential opportunities recent advances in machine learning, especially deep learning, and computer vision provide are being discussed. This review includes overview of the different available software packages and toolkits.

  8. Live Cell Characterization of DNA Aggregation Delivered through Lipofection

    PubMed Central

    Mieruszynski, Stephen; Briggs, Candida; Digman, Michelle A.; Gratton, Enrico; Jones, Mark R

    2015-01-01

    DNA trafficking phenomena, such as information on where and to what extent DNA aggregation occurs, have yet to be fully characterised in the live cell. Here we characterise the aggregation of DNA when delivered through lipofection by applying the Number and Brightness (N&B) approach. The N&B analysis demonstrates extensive aggregation throughout the live cell with DNA clusters in the extremity of the cell and peri-nuclear areas. Once within the nucleus aggregation had decreased 3-fold. In addition, we show that increasing serum concentration of cell media results in greater cytoplasmic aggregation. Further, the effects of the DNA fragment size on aggregation was explored, where larger DNA constructs exhibited less aggregation. This study demonstrates the first quantification of DNA aggregation when delivered through lipofection in live cells. In addition, this study has presents a model for alternative uses of this imaging approach, which was originally developed to study protein oligomerization and aggregation. PMID:26013547

  9. Live Cell Characterization of DNA Aggregation Delivered through Lipofection.

    PubMed

    Mieruszynski, Stephen; Briggs, Candida; Digman, Michelle A; Gratton, Enrico; Jones, Mark R

    2015-05-27

    DNA trafficking phenomena, such as information on where and to what extent DNA aggregation occurs, have yet to be fully characterised in the live cell. Here we characterise the aggregation of DNA when delivered through lipofection by applying the Number and Brightness (N&B) approach. The N&B analysis demonstrates extensive aggregation throughout the live cell with DNA clusters in the extremity of the cell and peri-nuclear areas. Once within the nucleus aggregation had decreased 3-fold. In addition, we show that increasing serum concentration of cell media results in greater cytoplasmic aggregation. Further, the effects of the DNA fragment size on aggregation was explored, where larger DNA constructs exhibited less aggregation. This study demonstrates the first quantification of DNA aggregation when delivered through lipofection in live cells. In addition, this study has presents a model for alternative uses of this imaging approach, which was originally developed to study protein oligomerization and aggregation.

  10. Tracking single molecules at work in living cells.

    PubMed

    Kusumi, Akihiro; Tsunoyama, Taka A; Hirosawa, Kohichiro M; Kasai, Rinshi S; Fujiwara, Takahiro K

    2014-07-01

    Methods for imaging and tracking single molecules conjugated with fluorescent probes, called single-molecule tracking (SMT), are now providing researchers with the unprecedented ability to directly observe molecular behaviors and interactions in living cells. Current SMT methods are achieving almost the ultimate spatial precision and time resolution for tracking single molecules, determined by the currently available dyes. In cells, various molecular interactions and reactions occur as stochastic and probabilistic processes. SMT provides an ideal way to directly track these processes by observing individual molecules at work in living cells, leading to totally new views of the biochemical and molecular processes used by cells whether in signal transduction, gene regulation or formation and disintegration of macromolecular complexes. Here we review SMT methods, summarize the recent results obtained by SMT, including related superresolution microscopy data, and describe the special concerns when SMT applications are shifted from the in vitro paradigms to living cells.

  11. Micro-photoluminescence of single living diatom cells.

    PubMed

    LeDuff, Paul; Roesijadi, Guritno; Rorrer, Gregory L

    2016-11-01

    Diatoms are single-celled microalgae that possess a nanostructured, porous biosilica shell called a frustule. This study characterized the micro-photoluminescence (μ-PL) emission of single living cells of the photosynthetic marine diatom Thalassiosira pseudonana in response to UV laser irradiation at 325 nm using a confocal Raman microscope. The photoluminescence (PL) spectrum had two primary peaks, one centered at 500-510 nm, which was attributed to the frustule biosilica, and a second peak at 680 nm, which was attributed to auto-fluorescence of photosynthetic pigments. The portion of the μ-PL emission spectrum associated with biosilica frustule in the single living diatom cell was similar to that from single biosilica frustules isolated from these diatom cells. The PL emission by the biosilica frustule in the living cell emerged only after cells were cultivated to silicon depletion. The discovery of the discovery of PL emission by the frustule biosilica within a single living diatom itself, not just its isolated frustule, opens up future possibilities for living biosensor applications, where the interaction of diatom cells with other molecules can be probed by μ-PL spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. High efficiency labeling of glycoproteins on living cells

    PubMed Central

    Zeng, Ying; Ramya, T. N. C.; Dirksen, Anouk; Dawson, Philip E.; Paulson, James C.

    2010-01-01

    We describe a simple method for efficiently labeling cell surface glycans on virtually any living animal cell. The method employs mild Periodate oxidation to generate an aldehyde on sialic acids, followed by Aniline-catalyzed oxime Ligation with a suitable tag (PAL). Aniline catalysis dramatically accelerates oxime ligation, allowing use of low concentrations of aminooxy-biotin at neutral pH to label the majority of cell surface glycoproteins while maintaining high cell viability. PMID:19234450

  13. Living Toroids - Cells on Toroidal Surfaces

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Wen; Angelini, Thomas; Marquez, Samantha; Kim, Harold; Fernandez-Nieves, Alberto

    2014-03-01

    Cellular environment influences a multitude of cellular functions by providing chemical and physical signals that modulate cell behavior, dynamics, development, and eventually survival. Substrate mechanics has been recognized as one of the important physical cues that governs cell behavior at single cell level as well as in collective cell motion. Past research has suggested several contact-guided behaviors to be the result of surface curvature. However, studies on the effect of curvature are relatively scarce likely due to the difficulty in generating substrates with well-defined curvature. Here we describe the generation of toroidal droplets, which unlike spherical droplets, have regions of both positive and negative Gaussian curvature. Additionally, the range of curvatures can be controlled by varying the size and aspect ratio of the torus. Cells are either encapsulated inside toroidal droplets or located on toroidal hydrogel surfaces. Preliminary studies use B. Subtilis to study the organization of bacteria biofilms. When confined in droplets surrounded by yield-stress fluid, bacteria self-organize into heterogeneous biofilm at fluid- substrate interface. It is found that the surface curvature in the sub-millimeter scale has little effect on biofilm architecture.

  14. A microfluidic live cell assay to study anthrax toxin induced cell lethality assisted by conditioned medium

    PubMed Central

    Shen, Jie; Cai, Changzu; Yu, Zhilong; Pang, Yuhong; Zhou, Ying; Qian, Lili; Wei, Wensheng; Huang, Yanyi

    2015-01-01

    It is technically challenging to investigate the function of secreted protein in real time by supply of conditioned medium that contains secreted protein of interest. The internalization of anthrax toxin is facilitated by a secreted protein Dickkopf-1 (DKK1) and its receptor, and eventually leads to cell lethality. To monitor the dynamic interplay between these components in live cells, we use an integrated microfluidic device to perform the cell viability assays with real-time controlled culture microenvironment in parallel. Conditioned medium, which contains the secreted proteins from specific cell lines, can be continuously pumped towards the cells that exposed to toxin. The exogenous DKK1 secreted from distant cells is able to rescue the sensitivity to toxin for those DKK1-knocked-down cells. This high-throughput assay allows us to precisely quantify the dynamic interaction between key components that cause cell death, and provide independent evidence of the function of DKK1 in the complex process of anthrax toxin internalization. PMID:25731605

  15. Nanometre-scale thermometry in a living cell

    NASA Astrophysics Data System (ADS)

    Kucsko, G.; Maurer, P. C.; Yao, N. Y.; Kubo, M.; Noh, H. J.; Lo, P. K.; Park, H.; Lukin, M. D.

    2013-08-01

    Sensitive probing of temperature variations on nanometre scales is an outstanding challenge in many areas of modern science and technology. In particular, a thermometer capable of subdegree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool in many areas of biological, physical and chemical research. Possibilities range from the temperature-induced control of gene expression and tumour metabolism to the cell-selective treatment of disease and the study of heat dissipation in integrated circuits. By combining local light-induced heat sources with sensitive nanoscale thermometry, it may also be possible to engineer biological processes at the subcellular level. Here we demonstrate a new approach to nanoscale thermometry that uses coherent manipulation of the electronic spin associated with nitrogen-vacancy colour centres in diamond. Our technique makes it possible to detect temperature variations as small as 1.8 mK (a sensitivity of 9 mK Hz-1/2) in an ultrapure bulk diamond sample. Using nitrogen-vacancy centres in diamond nanocrystals (nanodiamonds), we directly measure the local thermal environment on length scales as short as 200 nanometres. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the subcellular level, enabling unique potential applications in life sciences.

  16. Nanometre-scale thermometry in a living cell.

    PubMed

    Kucsko, G; Maurer, P C; Yao, N Y; Kubo, M; Noh, H J; Lo, P K; Park, H; Lukin, M D

    2013-08-01

    Sensitive probing of temperature variations on nanometre scales is an outstanding challenge in many areas of modern science and technology. In particular, a thermometer capable of subdegree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool in many areas of biological, physical and chemical research. Possibilities range from the temperature-induced control of gene expression and tumour metabolism to the cell-selective treatment of disease and the study of heat dissipation in integrated circuits. By combining local light-induced heat sources with sensitive nanoscale thermometry, it may also be possible to engineer biological processes at the subcellular level. Here we demonstrate a new approach to nanoscale thermometry that uses coherent manipulation of the electronic spin associated with nitrogen-vacancy colour centres in diamond. Our technique makes it possible to detect temperature variations as small as 1.8 mK (a sensitivity of 9 mK Hz(-1/2)) in an ultrapure bulk diamond sample. Using nitrogen-vacancy centres in diamond nanocrystals (nanodiamonds), we directly measure the local thermal environment on length scales as short as 200 nanometres. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the subcellular level, enabling unique potential applications in life sciences.

  17. Harnessing molecular motors for nanoscale pulldown in live cells.

    PubMed

    Bird, Jonathan E; Barzik, Melanie; Drummond, Meghan C; Sutton, Daniel C; Goodman, Spencer M; Morozko, Eva L; Cole, Stacey M; Boukhvalova, Alexandra K; Skidmore, Jennifer; Syam, Diana; Wilson, Elizabeth A; Fitzgerald, Tracy; Rehman, Atteeq U; Martin, Donna M; Boger, Erich T; Belyantseva, Inna A; Friedman, Thomas B

    2017-02-01

    Protein-protein interactions (PPIs) regulate assembly of macromolecular complexes, yet remain challenging to study within the native cytoplasm where they normally exert their biological effect. Here we miniaturize the concept of affinity pulldown, a gold-standard in vitro PPI interrogation technique, to perform nanoscale pulldowns (NanoSPDs) within living cells. NanoSPD hijacks the normal process of intracellular trafficking by myosin motors to forcibly pull fluorescently tagged protein complexes along filopodial actin filaments. Using dual-color total internal reflection fluorescence microscopy, we demonstrate complex formation by showing that bait and prey molecules are simultaneously trafficked and actively concentrated into a nanoscopic volume at the tips of filopodia. The resulting molecular traffic jams at filopodial tips amplify fluorescence intensities and allow PPIs to be interrogated using standard epifluorescence microscopy. A rigorous quantification framework and software tool are provided to statistically evaluate NanoSPD data sets. We demonstrate the capabilities of NanoSPD for a range of nuclear and cytoplasmic PPIs implicated in human deafness, in addition to dissecting these interactions using domain mapping and mutagenesis experiments. The NanoSPD methodology is extensible for use with other fluorescent molecules, in addition to proteins, and the platform can be easily scaled for high-throughput applications.

  18. Fractal Characterization of Chromatin Decompaction in Live Cells

    PubMed Central

    Yi, Ji; Stypula-Cyrus, Yolanda; Blaha, Catherine S.; Roy, Hemant K.; Backman, Vadim

    2015-01-01

    Chromatin organization has a fundamental impact on the whole spectrum of genomic functions. Quantitative characterization of the chromatin structure, particularly at submicron length scales where chromatin fractal globules are formed, is critical to understanding this structure-function relationship. Such analysis is currently challenging due to the diffraction-limited resolution of conventional light microscopy. We herein present an optical approach termed inverse spectroscopic optical coherence tomography to characterize the mass density fractality of chromatin, and we apply the technique to observe chromatin decompaction in live cells. The technique makes it possible for the first time, to our knowledge, to sense intracellular morphology with length-scale sensitivity from ∼30 to 450 nm, thus primarily probing the higher-order chromatin structure, without resolving the actual structures. We used chromatin decompaction due to inhibition of histone deacytelases and measured the subsequent changes in the fractal dimension of the intracellular structure. The results were confirmed by transmission electron microscopy and confocal fluorescence microscopy. PMID:26636933

  19. Quantum cooperative process in living cells

    NASA Astrophysics Data System (ADS)

    Finkel, Robert

    2006-03-01

    A model of a quantum cooperative process has accurately accounted for various quantitative observations.^1 That investigation considered chemical oscillations to be generated by generic quantum oscillators producing discrete quanta with well-defined energy and wavelength. The current work extends the theory by postulating that these oscillations arise from repetitive electron transfers in membranes. We find this produces a limit cycle completely consistent with the hypothetical generic oscillators, accurately reproduces the results of microwave irradiation experiments on yeast, and addresses limits for the smallest possible cell sizes. Questions of coherence in cells and implications for molecular information transfers are briefly considered. ^1R.W. Finkel, J. Theor. Biol. in press.

  20. Live-cell migration and adhesion turnover assays.

    PubMed

    Lacoste, J; Young, K; Brown, Claire M

    2013-01-01

    Fluorescence microscopy has revolutionized the way live-cell imaging is achieved. At the same time, it is also potentially harmful to a living specimen. Therefore, the specimen must be monitored for viability and health before, during, and after imaging sessions. Methods for monitoring cell viability and health will be discussed in this chapter. Another key to successful live-cell imaging is to minimize light exposure as much as possible. A summary of strategies for minimizing light exposure including maximizing the light throughput of the microscope and the sensitivity of light detection is presented. Various fluorescence microscopy techniques are presented with a focus on how the light is delivered to the sample (i.e., light density) and pros and cons for use with living specimens. The reader is also directed to other publications that go into these topics in more detail. Methods are described on how to prepare samples for single cell migration assays, how to measure cell migration rates (e.g., bright-field, semi-automated, and automated), and how to measure focal adhesion turnover rates. Details of how to correct images for background intensity and field-illumination uniformity artifacts for quantitative imaging are also described. Overall, this chapter will be helpful to scientists who are interested in imaging live specimens using fluorescence microscopy techniques. It will be of particular interest to anyone wanting to perform quantitative fluorescence imaging, and wanting to measure cell migration rates, and focal adhesion dynamics.

  1. Brownian Motion and the Temperament of Living Cells

    NASA Astrophysics Data System (ADS)

    Tsekov, Roumen; Lensen, Marga C.

    2013-07-01

    The migration of living cells usually obeys the laws of Brownian motion. While the latter is due to the thermal motion of the surrounding matter, the locomotion of cells is generally associated with their vitality. We study what drives cell migration and how to model memory effects in the Brownian motion of cells. The concept of temperament is introduced as an effective biophysical parameter driving the motion of living biological entities in analogy with the physical parameter of temperature, which dictates the movement of lifeless physical objects. The locomemory of cells is also studied via the generalized Langevin equation. We explore the possibility of describing cell locomemory via the Brownian self-similarity concept. An heuristic expression for the diffusion coefficient of cells on structured surfaces is derived.

  2. Silicon chips detect intracellular pressure changes in living cells.

    PubMed

    Gómez-Martínez, Rodrigo; Hernández-Pinto, Alberto M; Duch, Marta; Vázquez, Patricia; Zinoviev, Kirill; de la Rosa, Enrique J; Esteve, Jaume; Suárez, Teresa; Plaza, José A

    2013-07-01

    The ability to measure pressure changes inside different components of a living cell is important, because it offers an alternative way to study fundamental processes that involve cell deformation. Most current techniques such as pipette aspiration, optical interferometry or external pressure probes use either indirect measurement methods or approaches that can damage the cell membrane. Here we show that a silicon chip small enough to be internalized into a living cell can be used to detect pressure changes inside the cell. The chip, which consists of two membranes separated by a vacuum gap to form a Fabry-Pérot resonator, detects pressure changes that can be quantified from the intensity of the reflected light. Using this chip, we show that extracellular hydrostatic pressure is transmitted into HeLa cells and that these cells can endure hypo-osmotic stress without significantly increasing their intracellular hydrostatic pressure.

  3. High-frequency microrheology reveals cytoskeleton dynamics in living cells

    NASA Astrophysics Data System (ADS)

    Rigato, Annafrancesca; Miyagi, Atsushi; Scheuring, Simon; Rico, Felix

    2017-08-01

    Living cells are viscoelastic materials, dominated by an elastic response on timescales longer than a millisecond. On shorter timescales, the dynamics of individual cytoskeleton filaments are expected to emerge, but active microrheology measurements on cells accessing this regime are scarce. Here, we develop high-frequency microrheology experiments to probe the viscoelastic response of living cells from 1 Hz to 100 kHz. We report the viscoelasticity of different cell types under cytoskeletal drug treatments. On previously inaccessible short timescales, cells exhibit rich viscoelastic responses that depend on the state of the cytoskeleton. Benign and malignant cancer cells revealed remarkably different scaling laws at high frequencies, providing a unique mechanical fingerprint. Microrheology over a wide dynamic range--up to the frequency characterizing the molecular components--provides a mechanistic understanding of cell mechanics.

  4. Screening of living organ donors for endemic infections: Understanding the challenges and benefits of enhanced screening.

    PubMed

    Rosen, Amanda; Ison, Michael G

    2016-11-14

    Living organ donor candidates are screened for medical and psychosocial contraindications to donation. One important goal of this process is to prevent donor-derived infectious diseases transmissions. These transmissions are exceptionally rare, but have the potential to cause significant morbidity and mortality. The Organ Procurement and Transplantation Network now requires each recovery hospital to develop a protocol for evaluating living donors for tuberculosis and other geographically-defined endemic pathogens, including Trypanosoma cruzi (the causative pathogen of Chagas' disease), Strongyloides stercoralis, and West Nile Virus (WNV), in addition to universal screening for blood-borne pathogens. Enhanced screening requirements were developed in response to the changing epidemiology and endemicity of these diseases, as well as recent case reports of donor-derived disease transmission. Living organ donor disease screening presents a number of unique challenges to clinicians and policy-makers, including deciding which donors to test, which testing modality to use, when to test, and appropriate interpretation of results. This review will analyze the epidemiology of T. cruzi, S. stercoralis, and WNV, the assays available for screening for these diseases, and the subsequent impact on the living organ donor process . This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Quantitative reflection contrast microscopy of living cells

    PubMed Central

    1979-01-01

    Mammalian cells in culture (BHK-21, PtK2, Friend, human flia, and glioma cells) have been observed by reflection contrast microscopy. Images of cells photographed at two different wavelengths (546 and 436 nm) or at two different angles of incidence allowed discrimination between reflected light and light that was both reflected and modulated by interference. Interference is involved when a change in reflected intensity (relative to glass/medium background reflected intensity) occurs on changing either the illumination wavelength or the reflection incidence angle. In cases where interference occurs, refractive indices can be determined at points where the optical path difference is known, by solving the given interference equation. Where cells are at least 50 nm distant from the glass substrate, intensities are also influenced by that distance as well as by the light's angle of incidence and wavelength. The reflected intensity at the glass/medium interface is used as a standard in calculating the refractive index of the cortical cytoplasm. Refractive indices were found to be higher (1.38--1.40) at points of focal contact, where stress fibers terminate, than in areas of close contact (1.354--1.368). In areas of the cortical cytoplasm, between focal contacts, not adherent to the glass substrate, refractive indices between 1.353 and 1.368 were found. This was thought to result from a microfilamentous network within the cortical cytoplasm. Intimate attachment of cells to their substrate is assumed to be characterized by a lack of an intermediate layer of culture medium. PMID:389938

  6. Cervical cancer stem cells: opportunities and challenges.

    PubMed

    Chhabra, Ravindresh

    2015-11-01

    Cervical cancer remains a leading cause of cancer-related deaths in women in spite of screening and vaccination programs. The current treatment strategies including chemotherapy and surgery could only prolong the patient's survival rather than provide a permanent cure. In case of advanced cervical cancer, radical surgery remains the only option which not only affects the child-bearing ability of the patient, but also comes with a continual risk of recurrence of the disease. Hence, there is a need to develop innovative therapeutics. The cancer stem cell hypothesis states that a tumor has a hierarchical cellular structure in which only a small subpopulation, referred to as cancer stem cells (CSCs), is capable of tumorigenesis. The CSCs possess the stem-like properties of self-renewal and can differentiate into non-stem tumor cells. A large number of studies suggest that CSCs are resistant to the conventional therapies used for cancer treatment. These therapies rather enrich the proportion of CSCs in the tumor by eliminating non-stem tumor cells, thereby causing enhanced drug resistance resulting in relapse of the disease. This makes CSCs as the most likely targets for therapeutic intervention. Also, the increase in the proportion of CSCs in patient samples is associated with poor survival rate, thus highlighting their potential role as prognostic biomarker. The CSCs have been identified and characterized in cervical cancer cell lines, but there are hardly any reports of CSCs in cervical cancer patient samples. This review highlights the current status of research on cervical CSCs, their clinical significance and the challenges in the field.

  7. Selective chemical imaging of static actin in live cells.

    PubMed

    Milroy, Lech-Gustav; Rizzo, Stefano; Calderon, Abram; Ellinger, Bernhard; Erdmann, Silke; Mondry, Justine; Verveer, Peter; Bastiaens, Philippe; Waldmann, Herbert; Dehmelt, Leif; Arndt, Hans-Dieter

    2012-05-23

    We have characterized rationally designed and optimized analogues of the actin-stabilizing natural products jasplakinolide and chondramide C. Efficient actin staining was achieved in fixed permeabilized and non-permeabilized cells using different combinations of dye and linker length, thus highlighting the degree of molecular flexibility of the natural product scaffold. Investigations into synthetically accessible, non-toxic analogues have led to the characterization of a powerful cell-permeable probe to selectively image static, long-lived actin filaments against dynamic F-actin and monomeric G-actin populations in live cells, with negligible disruption of rapid actin dynamics.

  8. Measuring Molecular Forces Using Calibrated Optical Tweezers in Living Cells

    PubMed Central

    Hendricks, Adam G.; Goldman, Yale E.

    2017-01-01

    Optical tweezers have been instrumental in uncovering the mechanisms motor proteins use to generate and react to force. While optical traps have primarily been applied to purified, in vitro systems, emerging methods enable measurements in living cells where the actively fluctuating, viscoelastic environment and varying refractive index complicate calibration of the instrument. Here, we describe techniques to calibrate optical traps in living cells using the forced response to sinusoidal oscillations and spontaneous fluctuations, and to measure the forces exerted by endogenous ensembles of kinesin and dynein motor proteins as they transport cargoes in the cell. PMID:27844443

  9. Measuring Molecular Forces Using Calibrated Optical Tweezers in Living Cells.

    PubMed

    Hendricks, Adam G; Goldman, Yale E

    2017-01-01

    Optical tweezers have been instrumental in uncovering the mechanisms motor proteins use to generate and react to force. While optical traps have primarily been applied to purified, in vitro systems, emerging methods enable measurements in living cells where the actively fluctuating, viscoelastic environment and varying refractive index complicate calibration of the instrument. Here, we describe techniques to calibrate optical traps in living cells using the forced response to sinusoidal oscillations and spontaneous fluctuations, and to measure the forces exerted by endogenous ensembles of kinesin and dynein motor proteins as they transport cargoes in the cell.

  10. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    PubMed Central

    JUNGHANS, ANN; WALTMAN, MARY JO; SMITH, HILLARY L.; POCIVAVSEK, LUKA; ZEBDA, NOUREDDINE; BIRUKOV, KONSTANTIN; VIAPIANO, MARIANO; MAJEWSKI, JAROSLAW

    2015-01-01

    Neutron reflectometry (NR) was used to examine various live cells adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutron reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell – surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies. PMID:25705067

  11. Cytokinesis: Going Super-Resolution in Live Cells

    PubMed Central

    Liu, Yajun; Wu, Jian-Qiu

    2017-01-01

    Super-resolution fluorescence microscopy has emerged as a powerful tool for studying molecular organization, but mostly in fixed cells. New work using high-speed fluorescence photoactivation localization microscopy now reveals the organization of cytokinesis nodes and contractile rings in live fission yeast cells. PMID:27825453

  12. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    DOE PAGES

    Junghans, Ann; Waltman, Mary Jo; Smith, Hillary L.; ...

    2014-12-10

    In this study, neutron reflectometry (NR) was used to examine various live cells' adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutronmore » reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell — surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies.« less

  13. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    SciTech Connect

    Junghans, Ann; Waltman, Mary Jo; Smith, Hillary L.; Pocivavsek, Luka; Zebda, Noureddine; Birukov, Konstantin; Viapiano, Mariano; Majewski, Jaroslaw

    2014-12-10

    In this study, neutron reflectometry (NR) was used to examine various live cells' adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutron reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell — surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies.

  14. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Junghans, Ann; Waltman, Mary Jo; Smith, Hillary L.; Pocivavsek, Luka; Zebda, Noureddine; Birukov, Konstantin; Viapiano, Mariano; Majewski, Jaroslaw

    2014-12-01

    Neutron reflectometry (NR) was used to examine various live cells' adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutron reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell — surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies.

  15. Single molecule methods with applications in living cells.

    PubMed

    Persson, Fredrik; Barkefors, Irmeli; Elf, Johan

    2013-08-01

    Our knowledge about dynamic processes in biological cells systems has been obtained roughly on two levels of detail; molecular level experiments with purified components in test tubes and system wide experiments with indirect readouts in living cells. However, with the development of single molecule methods for application in living cells, this partition has started to dissolve. It is now possible to perform detailed biophysical experiments at high temporal resolution and to directly observe processes at the level of molecules in living cells. In this review we present single molecule methods that can easily be implemented by readers interested to venture into this exciting and expanding field. We also review some recent studies where single molecule methods have been used successfully to answer biological questions as well as some of the most common pitfalls associated with these methods. Copyright © 2013. Published by Elsevier Ltd.

  16. Trapping red blood cells in living animals using optical tweezers.

    PubMed

    Zhong, Min-Cheng; Wei, Xun-Bin; Zhou, Jin-Hua; Wang, Zi-Qiang; Li, Yin-Mei

    2013-01-01

    The recent development of non-invasive imaging techniques has enabled the visualization of molecular events underlying cellular processes in live cells. Although microscopic objects can be readily manipulated at the cellular level, additional physiological insight is likely to be gained by manipulation of cells in vivo, which has not been achieved so far. Here we use infrared optical tweezers to trap and manipulate red blood cells within subdermal capillaries in living mice. We realize a non-contact micro-operation that results in the clearing of a blocked microvessel. Furthermore, we estimate the optical trap stiffness in the capillary. Our work expands the application of optical tweezers to the study of live cell dynamics in animals.

  17. Bioenergetics and Diffusion in the Crowded Milieu of Living Cells

    NASA Astrophysics Data System (ADS)

    Heikal, Ahmed

    2014-06-01

    Intracellular nicotinamide adenine dinucleotide (NADH) is a key cofactor in energy metabolism pathways and a myriad of oxidation-reduction reactions in living cells. The crowded milieu of these cells with organelles and macromolecules influences many biological processes such as biomolecular diffusion, protein-protein and protein-substrate interactions, and protein folding. In this contribution, I will highlight our recent findings on the role of macromolecular crowding on biochemical reaction between NADH and selected dehydrogenases in both living cells and in controlled macromolecules-rich environment. In addition, multiscale diffusion (rotational and translational) of a small fluorophore will be used to understand the role of non-specific binding, heterogeneity in microenvironmental viscosity in crowded solutions. Our experimental approach is a combination of fluorescence lifetime imaging microscopy, time-resolved anisotropy and fluorescence correlation spectroscopy. The broader impacts of these results will be discussed within the context of energy metabolism and biophysics in the crowded milieu of living cells.

  18. Detecting RNA viruses in living mammalian cells by fluorescence microscopy.

    PubMed

    Sivaraman, Divya; Biswas, Payal; Cella, Lakshmi N; Yates, Marylynn V; Chen, Wilfred

    2011-07-01

    Traditional methods that rely on viral isolation and culture techniques continue to be the gold standards used for detection of infectious viral particles. However, new techniques that rely on visualization of live cells can shed light on understanding virus-host interaction for early stage detection and potential drug discovery. Live-cell imaging techniques that incorporate fluorescent probes into viral components provide opportunities for understanding mRNA expression, interaction, and virus movement and localization. Other viral replication events inside a host cell can be exploited for non-invasive detection, such as single-virus tracking, which does not inhibit viral infectivity or cellular function. This review highlights some of the recent advances made using these novel approaches for visualization of viral entry and replication in live cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Immunization with live Neisseria lactamica protects mice against meningococcal challenge and can elicit serum bactericidal antibodies.

    PubMed

    Li, Yanwen; Zhang, Qian; Winterbotham, Megan; Mowe, Eva; Gorringe, Andrew; Tang, Christoph M

    2006-11-01

    Natural immunity against Neisseria meningitidis is thought to develop following nasopharyngeal colonization with this bacterium or other microbes expressing cross-reactive antigens. Neisseria lactamica is a commensal of the upper respiratory tract which is often carried by infants and young children; epidemiological evidence indicates that colonization with this bacterium can elicit serum bactericidal activity (SBA) against Neisseria meningitidis, the most validated correlate of protective immunity. Here we demonstrate experimentally that immunization of mice with live N. lactamica protects animals against lethal meningococcal challenge and that some, but not all, strains of N. lactamica elicit detectable SBA in immunized animals regardless of the serogroup of N. meningitidis. While it is unlikely that immunization with live N. lactamica will be implemented as a vaccine against meningococcal disease, understanding the basis for the induction of cross-protective immunity and SBA should be valuable in the design of subunit vaccines for the prevention of this important human infection.

  20. Suppressing active replication of a live attenuated simian immunodeficiency virus vaccine does not abrogate protection from challenge

    SciTech Connect

    Gabriel, Benjamin; Fiebig, Uwe; Hohn, Oliver; Plesker, Roland; Coulibaly, Cheick; Cichutek, Klaus; Mühlebach, Michael D.; Bannert, Norbert; Kurth, Reinhard; Norley, Stephen

    2016-02-15

    Although safety concerns preclude the use of live attenuated HIV vaccines in humans, they provide a useful system for identifying the elusive correlates of protective immunity in the SIV/macaque animal model. However, a number of pieces of evidence suggest that protection may result from prior occupancy of susceptible target cells by the vaccine virus rather than the immune response. To address this, we developed a Nef-deletion variant of an RT-SHIV whose active replication could be shut off by treatment with RT-inhibitors. Groups of macaques were inoculated with the ∆Nef-RT-SHIV and immune responses allowed to develop before antiretroviral treatment and subsequent challenge with wild-type SIVmac239. Vaccinated animals either resisted infection fully or significantly controlled the subsequent viremia. However, there was no difference between animals undergoing replication of the vaccine virus and those without. This strongly suggests that competition for available target cells does not play a role in protection. - Highlights: • A Nef-deleted RT-SHIV was used as a live attenuated vaccine in macaques. • Vaccine virus replication was shut down to investigate its role in protection. • Ongoing vaccine virus replication did not appear to be necessary for protection. • An analysis of T- and B-cell responses failed to identify a correlate of protection.

  1. Generation of living cell arrays for atomic force microscopy studies.

    PubMed

    Formosa, Cécile; Pillet, Flavien; Schiavone, Marion; Duval, Raphaël E; Ressier, Laurence; Dague, Etienne

    2015-01-01

    Atomic force microscopy (AFM) is a useful tool for studying the morphology or the nanomechanical and adhesive properties of live microorganisms under physiological conditions. However, to perform AFM imaging, living cells must be immobilized firmly enough to withstand the lateral forces exerted by the scanning tip, but without denaturing them. This protocol describes how to immobilize living cells, ranging from spores of bacteria to yeast cells, into polydimethylsiloxane (PDMS) stamps, with no chemical or physical denaturation. This protocol generates arrays of living cells, allowing statistically relevant measurements to be obtained from AFM measurements, which can increase the relevance of results. The first step of the protocol is to generate a microstructured silicon master, from which many microstructured PDMS stamps can be replicated. Living cells are finally assembled into the microstructures of these PDMS stamps using a convective and capillary assembly. The complete procedure can be performed in 1 week, although the first step is done only once, and thus repeats can be completed within 1 d.

  2. Autologous cell therapies: challenges in US FDA regulation.

    PubMed

    McAllister, Todd N; Audley, David; L'Heureux, Nicolas

    2012-11-01

    Cell-based therapies (CBTs) have been hailed for the last two decades as the next pillar of healthcare, yet the clinical and commercial potential of regenerative medicine has yet to live up to the hype. While recent analysis has suggested that regenerative medicine is maturing into a multibillion dollar industry, examples of clinical and commercial success are still relatively rare. With 30 years of laboratory and clinical efforts fueled by countless billions in public and private funding, one must contemplate why CBTs have not made a greater impact. The current regulatory environment, with its zero-risk stance, stymies clinical innovation while fueling a potentially risky medical tourism industry. Here, we highlight the challenges the US FDA faces and present talking points for an improved regulatory framework for autologous CBTs.

  3. Mechanical behavior in living cells consistent with the tensegrity model

    NASA Technical Reports Server (NTRS)

    Wang, N.; Naruse, K.; Stamenovic, D.; Fredberg, J. J.; Mijailovich, S. M.; Tolic-Norrelykke, I. M.; Polte, T.; Mannix, R.; Ingber, D. E.

    2001-01-01

    Alternative models of cell mechanics depict the living cell as a simple mechanical continuum, porous filament gel, tensed cortical membrane, or tensegrity network that maintains a stabilizing prestress through incorporation of discrete structural elements that bear compression. Real-time microscopic analysis of cells containing GFP-labeled microtubules and associated mitochondria revealed that living cells behave like discrete structures composed of an interconnected network of actin microfilaments and microtubules when mechanical stresses are applied to cell surface integrin receptors. Quantitation of cell tractional forces and cellular prestress by using traction force microscopy confirmed that microtubules bear compression and are responsible for a significant portion of the cytoskeletal prestress that determines cell shape stability under conditions in which myosin light chain phosphorylation and intracellular calcium remained unchanged. Quantitative measurements of both static and dynamic mechanical behaviors in cells also were consistent with specific a priori predictions of the tensegrity model. These findings suggest that tensegrity represents a unified model of cell mechanics that may help to explain how mechanical behaviors emerge through collective interactions among different cytoskeletal filaments and extracellular adhesions in living cells.

  4. Mechanical behavior in living cells consistent with the tensegrity model

    NASA Technical Reports Server (NTRS)

    Wang, N.; Naruse, K.; Stamenovic, D.; Fredberg, J. J.; Mijailovich, S. M.; Tolic-Norrelykke, I. M.; Polte, T.; Mannix, R.; Ingber, D. E.

    2001-01-01

    Alternative models of cell mechanics depict the living cell as a simple mechanical continuum, porous filament gel, tensed cortical membrane, or tensegrity network that maintains a stabilizing prestress through incorporation of discrete structural elements that bear compression. Real-time microscopic analysis of cells containing GFP-labeled microtubules and associated mitochondria revealed that living cells behave like discrete structures composed of an interconnected network of actin microfilaments and microtubules when mechanical stresses are applied to cell surface integrin receptors. Quantitation of cell tractional forces and cellular prestress by using traction force microscopy confirmed that microtubules bear compression and are responsible for a significant portion of the cytoskeletal prestress that determines cell shape stability under conditions in which myosin light chain phosphorylation and intracellular calcium remained unchanged. Quantitative measurements of both static and dynamic mechanical behaviors in cells also were consistent with specific a priori predictions of the tensegrity model. These findings suggest that tensegrity represents a unified model of cell mechanics that may help to explain how mechanical behaviors emerge through collective interactions among different cytoskeletal filaments and extracellular adhesions in living cells.

  5. Quantitative intracellular magnetic nanoparticle uptake measured by live cell magnetophoresis

    PubMed Central

    Jing, Ying; Mal, Niladri; Williams, P. Stephen; Mayorga, Maritza; Penn, Marc S.; Chalmers, Jeffrey J.; Zborowski, Maciej

    2008-01-01

    Superparamagnetic iron oxide (SPIO) particles have been used successfully as an intracellular contrast agent for nuclear MRI cell tracking in vivo. We present a method of detecting intracellular SPIO colloid uptake in live cells using cell magnetophoresis, with potential applications in measuring intracellular MRI contrast uptake. The method was evaluated by measuring shifts in mean and distribution of the cell magnetophoretic mobility, and the concomitant changes in population frequency of the magnetically positive cells when compared to the unmanipulated negative control. Seven different transfection agent (TA) -SPIO complexes based on dendrimer, lipid, and polyethylenimine compounds were used as test standards, in combination with 3 different cell types: mesenchymal stem cells, cardiac fibroblasts, and cultured KG-1a hematopoietic stem cells. Transfectol (TRA) -SPIO incubation resulted in the highest frequency of magnetically positive cells (>90%), and Fugene 6 (FUG) -SPIO incubation the lowest, below that when using SPIO alone. A highly regular process of cell magnetophoresis was amenable to intracellular iron mass calculations. The results were consistent in all the cell types studied and with other reports. The cell magnetophoresis depends on the presence of high-spin iron species and is therefore expected to be directly related to the cell MRI contrast level.—Jing, Y., Mal, N., Williams, P. S., Mayorga, M., Penn, M. S., Chalmers, J. J., Zborowski, M. Quantitative intracellular magnetic nanoparticle uptake measured by live cell magnetophoresis. PMID:18725459

  6. Acoustic propulsion of nanorod motors inside living cells.

    PubMed

    Wang, Wei; Li, Sixing; Mair, Lamar; Ahmed, Suzanne; Huang, Tony Jun; Mallouk, Thomas E

    2014-03-17

    The ultrasonic propulsion of rod-shaped nanomotors inside living HeLa cells is demonstrated. These nanomotors (gold rods about 300 nm in diameter and about 3 mm long) attach strongly to the external surface of the cells, and are readily internalized by incubation with the cells for periods longer than 24 h. Once inside the cells, the nanorod motors can be activated by resonant ultrasound operating at 4 MHz, and show axial propulsion as well as spinning. The intracellular propulsion does not involve chemical fuels or high-power ultrasound and the HeLa cells remain viable. Ultrasonic propulsion of nanomotors may thus provide a new tool for probing the response of living cells to internal mechanical excitation, for controllably manipulating intracellular organelles, and for biomedical applications.

  7. Acoustic Propulsion of Nanorod Motors Inside Living Cells**

    PubMed Central

    Wang, Wei; Li, Sixing; Mair, Lamar; Ahmed, Suzanne

    2014-01-01

    We demonstrate the ultrasonic propulsion of rod-shaped nanomotors inside living HeLa cells. These nanomotors (gold rods ~ 300 nm in diameter and ~ 3 μm long) attach strongly to the external surface of the cells, and are readily internalized by incubation with the cells for periods longer than 24 h. Once inside the cells, the nanorod motors can be activated by resonant ultrasound operating at ~ 4 MHz, and show axial propulsion as well as spinning. The intracellular propulsion does not involve chemical fuels or high power ultrasound and the HeLa cells remain viable. Ultrasonic propulsion of nanomotors may thus provide a new tool for probing the response of living cells to internal mechanical excitation, for controllably manipulating intracellular organelles, and for biomedical applications. PMID:24677393

  8. Electromagnetic waves and living cells: A kinetic thermodynamic approach

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2016-11-01

    Cells are complex thermodynamic systems. Their energy transfer, thermo-electro-chemical processes and transports phenomena can occur across the cells membranes, the border of the complex system. Moreover, cells can also actively modify their behaviours in relation to any change of their environment. All the living systems waste heat, which is no more than the result of their internal irreversibility. This heat is dissipated into their environment. But, this wasted heat represents also a sort of information, which outflows from the cell towards its environment, completely accessible to any observer. The analysis of irreversibility related to this wasted heat can represent a new useful approach to the study of the cells behaviour. This approach allows us to consider the living systems as black boxes and analyse only the inflows and outflows and their changes in relation to any environmental change. This analysis allows also the explanation of the effects of electromagnetic fields on the cell behaviour.

  9. Integrated nanoscale tools for interrogating living cells

    NASA Astrophysics Data System (ADS)

    Jorgolli, Marsela

    and fabricated a new hybrid chip that combines a front-side nanowire-based interface for neuronal recording with backside complementary metal oxide semiconductor (CMOS) circuits for on-chip multiplexing, voltage control for stimulation, signal amplification, and signal processing. Individual chips contain 1024 stimulation/recording sites enabling large-scale interfacing of neuronal networks with single cell resolution. Through electrical and electrochemical characterization of the devices, we demonstrated their enhanced functionality at a massively parallel scale. In our initial cell experiments, we achieved intracellular stimulations and recordings of changes in the membrane potential in a variety of cells including: HEK293T, cardiomyocytes, and rat cortical neurons. This demonstrated the device capability for single-cell-resolution recording/stimulation which when extended to a large number of neurons in a massively parallel fashion will enable the functional mapping of a complex neuronal network.

  10. Continuous-Wave Stimulated Emission Depletion Microscope for Imaging Actin Cytoskeleton in Fixed and Live Cells

    PubMed Central

    Neupane, Bhanu; Jin, Tao; Mellor, Liliana F.; Loboa, Elizabeth G.; Ligler, Frances S.; Wang, Gufeng

    2015-01-01

    Stimulated emission depletion (STED) microscopy provides a new opportunity to study fine sub-cellular structures and highly dynamic cellular processes, which are challenging to observe using conventional optical microscopy. Using actin as an example, we explored the feasibility of using a continuous wave (CW)-STED microscope to study the fine structure and dynamics in fixed and live cells. Actin plays an important role in cellular processes, whose functioning involves dynamic formation and reorganization of fine structures of actin filaments. Frequently used confocal fluorescence and STED microscopy dyes were employed to image fixed PC-12 cells (dyed with phalloidin- fluorescein isothiocyante) and live rat chondrosarcoma cells (RCS) transfected with actin-green fluorescent protein (GFP). Compared to conventional confocal fluorescence microscopy, CW-STED microscopy shows improved spatial resolution in both fixed and live cells. We were able to monitor cell morphology changes continuously; however, the number of repetitive analyses were limited primarily by the dyes used in these experiments and could be improved with the use of dyes less susceptible to photobleaching. In conclusion, CW-STED may disclose new information for biological systems with a proper characteristic length scale. The challenges of using CW-STED microscopy to study cell structures are discussed. PMID:26393614

  11. The stigma of identifying as having a lived experience runs before me: challenges for lived experience roles.

    PubMed

    Byrne, Louise; Roper, Cath; Happell, Brenda; Reid-Searl, Kerry

    2016-11-12

    Lived experience practitioners can contribute to improved outcomes for people with mental illness, supplementing traditional mental health services and reducing health care costs. However, lived experience practitioners frequently face stigma and discrimination within their work roles. To understand the impact of stigma and discrimination on the effectiveness of lived experience roles from the perspective of lived experience practitioners. In-depth interviews were conducted with 13 lived experience practitioners within a grounded theory study. Issues of stigma and discrimination were identified as a core category of this study. Participants described stigma and discrimination so prevalent as to be considered a "normal" part of their working life. Professional isolation and attitudinal barriers from colleagues were seen to inhibit the effectiveness of lived experience roles. Lived experience practitioners can provide a vital contribution to stigma reduction broadly, however, the stigma and discrimination they face within work roles must be addressed to allow this contribution to be effective.

  12. PALM and STORM: unlocking live-cell super-resolution.

    PubMed

    Henriques, Ricardo; Griffiths, Caron; Hesper Rego, E; Mhlanga, Musa M

    2011-05-01

    Live-cell fluorescence light microscopy has emerged as an important tool in the study of cellular biology. The development of fluorescent markers in parallel with super-resolution imaging systems has pushed light microscopy into the realm of molecular visualization at the nanometer scale. Resolutions previously only attained with electron microscopes are now within the grasp of light microscopes. However, until recently, live-cell imaging approaches have eluded super-resolution microscopy, hampering it from reaching its full potential for revealing the dynamic interactions in biology occurring at the single molecule level. Here we examine recent advances in the super-resolution imaging of living cells by reviewing recent breakthroughs in single molecule localization microscopy methods such as PALM and STORM to achieve this important goal.

  13. DNA Hydrogel with Aptamer-Toehold-Based Recognition, Cloaking, and Decloaking of Circulating Tumor Cells for Live Cell Analysis.

    PubMed

    Song, Ping; Ye, Dekai; Zuo, Xiaolei; Li, Jiang; Wang, Jianbang; Liu, Huajie; Hwang, Michael T; Chao, Jie; Su, Shao; Wang, Lihua; Shi, Jiye; Wang, Lianhui; Huang, Wei; Lal, Ratnesh; Fan, Chunhai

    2017-09-13

    Circulating tumor cells (CTCs) contain molecular information on the primary tumor and can be used for predictive cancer diagnostics. Capturing rare live CTCs and their quantification in whole blood remain technically challenging. Here we report an aptamer-trigger clamped hybridization chain reaction (atcHCR) method for in situ identification and subsequent cloaking/decloaking of CTCs by porous DNA hydrogels. These decloaked CTCs were then used for live cell analysis. In our design, a DNA staple strand with aptamer-toehold biblocks specifically recognizes epithelial cell adhesion molecule (EpCAM) on the CTC surface that triggers subsequent atcHCR via toehold-initiated branch migration. Porous DNA hydrogel based-cloaking of single/cluster of CTCs allows capturing of living CTCs directly with minimal cell damage. The ability to identify a low number of CTCs in whole blood by DNA hydrogel cloaking would allow high sensitivity and specificity for diagnosis in clinically relevant settings. More significantly, decloaking of CTCs using controlled and defined chemical stimuli can release living CTCs without damages for subsequent culture and live cell analysis. We expect this liquid biopsy tool to open new powerful and effective routes for cancer diagnostics and therapeutics.

  14. Animals In Synchrotrons: Overcoming Challenges For High-Resolution, Live, Small-Animal Imaging

    SciTech Connect

    Donnelley, Martin; Parsons, David; Morgan, Kaye; Siu, Karen

    2010-07-23

    Physiological studies in small animals can be complicated, but the complexity is increased dramatically when performing live-animal synchrotron X-ray imaging studies. Our group has extensive experience in high-resolution live-animal imaging at the Japanese SPring-8 synchrotron, primarily examining airways in two-dimensions. These experiments normally image an area of 1.8 mmx1.2 mm at a pixel resolution of 0.45 {mu}m and are performed with live, intact, anaesthetized mice.There are unique challenges in this experimental setting. Importantly, experiments must be performed in an isolated imaging hutch not specifically designed for small-animal imaging. This requires equipment adapted to remotely monitor animals, maintain their anesthesia, and deliver test substances while collecting images. The horizontal synchrotron X-ray beam has a fixed location and orientation that limits experimental flexibility. The extremely high resolution makes locating anatomical regions-of-interest slow and can result in a high radiation dose, and at this level of magnification small animal movements produce motion-artifacts that can render acquired images unusable. Here we describe our experimental techniques and how we have overcome several challenges involved in performing live mouse synchrotron imaging.Experiments have tested different mouse strains, with hairless strains minimizing overlying skin and hair artifacts. Different anesthetics have also be trialed due to the limited choices available at SPring-8. Tracheal-intubation methods have been refined and controlled-ventilation is now possible using a specialized small-animal ventilator. With appropriate animal restraint and respiratory-gating, motion-artifacts have been minimized. The animal orientation (supine vs. head-high) also appears to affect animal physiology, and can alter image quality. Our techniques and image quality at SPring-8 have dramatically improved and in the near future we plan to translate this experience to the

  15. Animals In Synchrotrons: Overcoming Challenges For High-Resolution, Live, Small-Animal Imaging

    NASA Astrophysics Data System (ADS)

    Donnelley, Martin; Parsons, David; Morgan, Kaye; Siu, Karen

    2010-07-01

    Physiological studies in small animals can be complicated, but the complexity is increased dramatically when performing live-animal synchrotron X-ray imaging studies. Our group has extensive experience in high-resolution live-animal imaging at the Japanese SPring-8 synchrotron, primarily examining airways in two-dimensions. These experiments normally image an area of 1.8 mm×1.2 mm at a pixel resolution of 0.45 μm and are performed with live, intact, anaesthetized mice. There are unique challenges in this experimental setting. Importantly, experiments must be performed in an isolated imaging hutch not specifically designed for small-animal imaging. This requires equipment adapted to remotely monitor animals, maintain their anesthesia, and deliver test substances while collecting images. The horizontal synchrotron X-ray beam has a fixed location and orientation that limits experimental flexibility. The extremely high resolution makes locating anatomical regions-of-interest slow and can result in a high radiation dose, and at this level of magnification small animal movements produce motion-artifacts that can render acquired images unusable. Here we describe our experimental techniques and how we have overcome several challenges involved in performing live mouse synchrotron imaging. Experiments have tested different mouse strains, with hairless strains minimizing overlying skin and hair artifacts. Different anesthetics have also be trialed due to the limited choices available at SPring-8. Tracheal-intubation methods have been refined and controlled-ventilation is now possible using a specialized small-animal ventilator. With appropriate animal restraint and respiratory-gating, motion-artifacts have been minimized. The animal orientation (supine vs. head-high) also appears to affect animal physiology, and can alter image quality. Our techniques and image quality at SPring-8 have dramatically improved and in the near future we plan to translate this experience to the

  16. Allosteric activation of membrane-bound glutamate receptors using coordination chemistry within living cells

    NASA Astrophysics Data System (ADS)

    Kiyonaka, Shigeki; Kubota, Ryou; Michibata, Yukiko; Sakakura, Masayoshi; Takahashi, Hideo; Numata, Tomohiro; Inoue, Ryuji; Yuzaki, Michisuke; Hamachi, Itaru

    2016-10-01

    The controlled activation of proteins in living cells is an important goal in protein-design research, but to introduce an artificial activation switch into membrane proteins through rational design is a significant challenge because of the structural and functional complexity of such proteins. Here we report the allosteric activation of two types of membrane-bound neurotransmitter receptors, the ion-channel type and the G-protein-coupled glutamate receptors, using coordination chemistry in living cells. The high programmability of coordination chemistry enabled two His mutations, which act as an artificial allosteric site, to be semirationally incorporated in the vicinity of the ligand-binding pockets. Binding of Pd(2,2‧-bipyridine) at the allosteric site enabled the active conformations of the glutamate receptors to be stabilized. Using this approach, we were able to activate selectively a mutant glutamate receptor in live neurons, which initiated a subsequent signal-transduction pathway.

  17. Three-Dimensional Printing of Tissue/Organ Analogues Containing Living Cells.

    PubMed

    Park, Jeong Hun; Jang, Jinah; Lee, Jung-Seob; Cho, Dong-Woo

    2017-01-01

    The technical advances of three-dimensional (3D) printing in the field of tissue engineering have enabled the creation of 3D living tissue/organ analogues. Diverse 3D tissue/organ printing techniques with computer-aided systems have been developed and used to dispose living cells together with biomaterials and supporting biochemicals as pre-designed 3D tissue/organ models. Furthermore, recent advances in bio-inks, which are printable hydrogels with living cell encapsulation, have greatly enhanced the versatility of 3D tissue/organ printing. Here, we introduce 3D tissue/organ printing techniques and biomaterials that have been developed and widely used thus far. We also review a variety of applications in an attempt to repair or replace the damaged or defective tissue/organ, and develop the in vitro tissue/organ models. The potential challenges are finally discussed from the technical perspective of 3D tissue/organ printing.

  18. Single-Molecule and Superresolution Imaging in Live Bacteria Cells

    PubMed Central

    Biteen, Julie S.; Moerner, W.E.

    2010-01-01

    Single-molecule imaging enables biophysical measurements devoid of ensemble averaging, gives enhanced spatial resolution beyond the diffraction limit, and permits superresolution reconstructions. Here, single-molecule and superresolution imaging are applied to the study of proteins in live Caulobacter crescentus cells to illustrate the power of these methods in bacterial imaging. Based on these techniques, the diffusion coefficient and dynamics of the histidine protein kinase PleC, the localization behavior of the polar protein PopZ, and the treadmilling behavior and protein superstructure of the structural protein MreB are investigated with sub-40-nm spatial resolution, all in live cells. PMID:20300204

  19. Single Molecule Detection and Imaging in Single Living Cells

    NASA Astrophysics Data System (ADS)

    Nie, Shuming

    2002-03-01

    Direct observation of single molecules and single molecular events inside living cells could dramatically improve our understanding of basic cellular processes (e.g., signal transduction and gene transcription) as well as improving our knowledge on the intracellular transport and fate of therapeutic agents (e.g., antisense RNA and gene therapy vectors). This talk will focus on using single-molecule fluorescence and luminescent quantum dots to examine the dynamics and spatial distribution of RNA and proteins inside living cells and on the surface membrane surface. These single-molecule studies yield a detailed description of molecular events and cellular structures under physiological conditions.

  20. Multiplex Imaging of Rho Family GTPase Activities in Living Cells

    PubMed Central

    Spiering, Désirée; Hodgson, Louis

    2011-01-01

    Here, we provide procedures for imaging the Rho GTPase biosensors in both single and multiplex acquisition modes. The multiplex approach enables the direct visualization of two biosensor readouts from a single living cell. Here, we take as an example a combination of the RhoA biosensor based on a CFP/YFP FRET modality and the Cdc42 biosensor based on organic dyes that change fluorescence as a function of the local solvent polarity. We list the required optical components as well as cellular manipulation techniques necessary to successfully image these two ratiometric biosensors in a single living cell. PMID:22144278

  1. Live imaging of multicolor-labeled cells in Drosophila

    PubMed Central

    Boulina, Maria; Samarajeewa, Hasitha; Baker, James D.; Kim, Michael D.; Chiba, Akira

    2013-01-01

    We describe LOLLIbow, a Brainbow-based live imaging system with applications in developmental biology and neurobiology. The development of an animal, including the environmentally sensitive adaptation of its brain, is thought to proceed through continual orchestration among diverse cell types as they divide, migrate, transform and interact with one another within the body. To facilitate direct visualization of such dynamic morphogenesis by individual cells in vivo, we have modified the original Brainbow for Drosophila in which live imaging is practical during much of its development. Our system offers permanent fluorescent labels that reveal fine morphological details of individual cells without requiring dissection or fixation of the samples. It also features a non-invasive means to control the timing of stochastic tricolor cell labeling with a light pulse. We demonstrate applicability of the new system in a variety of settings that could benefit from direct imaging of the developing multicellular organism with single-cell resolution. PMID:23482495

  2. Consensus, Dilemmas, and Challenges in Living Donor Liver Transplantation in Latin America.

    PubMed

    Salvalaggio, Paolo R; Seda Neto, João; Alves, Jefferson Andre; Fonseca, Eduardo A; Carneiro de Albuquerque, Luiz; Andraus, Wellington; Massarollo, Paulo B; Duro Garcia, Valter; Maurette, Rafael J; Ruf, Andrés E; Pacheco-Moreira, Lucio F; Caicedo Rusca, Luis A; Osorio, Veronica Botero; Matamoros, Maria Amalia; Varela-Fascinetto, Gustavo; Jarufe, Nicolas P

    2016-06-01

    We reviewed the history, volume, outcomes, uniqueness, and challenges of living donor liver transplantation (LDLT) in Latin America. We used the data from the Latin American and Caribbean Transplant Society, local transplant societies, and opinions from local transplant experts. There are more than 160 active liver transplant teams in Latin America, but only 30 centers have used LDLT in the past 2 years. In 2014, 226 LDLTs were done in the region (8.5% of liver transplant activities). Living donor liver transplantation is mainly restricted to pediatric patients. Adult-to-adult LDLT activities decreased after the implementation of the model for end-stage liver disease score and a concomitant increase on the rate of deceased donors per million population. Posttransplant outcome analysis is not mandatory, transparent or regulated in most countries. More experienced teams have outcomes comparable to international expert centers, but donor and recipient morbidity might be underreported. Latin America lags behind in terms of the number of adult LDLT and the rate of living donor utilization in comparison with other continents with similar donation rates. Local alliances and collaborations with major transplant centers in the developed world will contribute to the development of LDLT in Latin America.

  3. Radioimmunoimaging with longer-lived positron-emitting radionuclides: potentials and challenges

    PubMed Central

    Nayak, Tapan K.; Brechbiel, Martin W.

    2012-01-01

    Radioimmunoimaging and therapy has been an area of interest for several decades. Steady progress has been made towards clinical translation of radiolabeled monoclonal antibodies for diagnosis and treatment of diseases. Tremendous advances have been made in imaging technologies such as positron emission tomography (PET). However, these advances have so far eluded routine translation into clinical radioimmunoimaging applications due to the mismatch between the short half-lives of routinely used positron-emitting radionuclides such as 18F versus the pharmacokinetics of most intact monoclonal antibodies of interest. The lack of suitable positron-emitting radionuclides that match the pharmacokinetics of intact antibodies has generated interest in exploring the use of longer-lived positron emitters that are more suitable for radioimmunoimaging and dosimetry applications with intact monoclonal antibodies. In this review, we examine the opportunities and challenges of radioimmunoimaging with select longer-lived positron-emitting radionuclides such as 124I, 89Zr and 86Y with respect to radionuclide production, ease of radiolabeling intact antibodies, imaging characteristics, radiation dosimetry and clinical translation potential. PMID:19125647

  4. A microRNA-initiated DNAzyme motor operating in living cells

    NASA Astrophysics Data System (ADS)

    Peng, Hanyong; Li, Xing-Fang; Zhang, Hongquan; Le, X. Chris

    2017-03-01

    Synthetic DNA motors have great potential to mimic natural protein motors in cells but the operation of synthetic DNA motors in living cells remains challenging and has not been demonstrated. Here we report a DNAzyme motor that operates in living cells in response to a specific intracellular target. The whole motor system is constructed on a 20 nm gold nanoparticle (AuNP) decorated with hundreds of substrate strands serving as DNA tracks and dozens of DNAzyme molecules each silenced by a locking strand. Intracellular interaction of a target molecule with the motor system initiates the autonomous walking of the motor on the AuNP. An example DNAzyme motor responsive to a specific microRNA enables amplified detection of the specific microRNA in individual cancer cells. Activated by specific intracellular targets, these self-powered DNAzyme motors will have diverse applications in the control and modulation of biological functions.

  5. A microRNA-initiated DNAzyme motor operating in living cells

    PubMed Central

    Peng, Hanyong; Li, Xing-Fang; Zhang, Hongquan; Le, X. Chris

    2017-01-01

    Synthetic DNA motors have great potential to mimic natural protein motors in cells but the operation of synthetic DNA motors in living cells remains challenging and has not been demonstrated. Here we report a DNAzyme motor that operates in living cells in response to a specific intracellular target. The whole motor system is constructed on a 20 nm gold nanoparticle (AuNP) decorated with hundreds of substrate strands serving as DNA tracks and dozens of DNAzyme molecules each silenced by a locking strand. Intracellular interaction of a target molecule with the motor system initiates the autonomous walking of the motor on the AuNP. An example DNAzyme motor responsive to a specific microRNA enables amplified detection of the specific microRNA in individual cancer cells. Activated by specific intracellular targets, these self-powered DNAzyme motors will have diverse applications in the control and modulation of biological functions. PMID:28262725

  6. Design of microdevices for long-term live cell imaging

    NASA Astrophysics Data System (ADS)

    Chen, Huaying; Rosengarten, Gary; Li, Musen; Nordon, Robert E.

    2012-06-01

    Advances in fluorescent live cell imaging provide high-content information that relates a cell's life events to its ancestors. An important requirement to track clonal growth and development is the retention of motile cells derived from an ancestor within the same microscopic field of view for days to weeks, while recording fluorescence images and controlling the mechanical and biochemical microenvironments that regulate cell growth and differentiation. The aim of this study was to design a microwell device for long-term, time-lapse imaging of motile cells with the specific requirements of (a) inoculating devices with an average of one cell per well and (b) retaining progeny of cells within a single microscopic field of view for extended growth periods. A two-layer PDMS microwell culture device consisting of a parallel-plate flow cell bonded on top of a microwell array was developed for cell capture and clonal culture. Cell deposition statistics were related to microwell geometry (plate separation and well depth) and the Reynolds number. Computational fluid dynamics was used to simulate flow in the microdevices as well as cell-fluid interactions. Analysis of the forces acting upon a cell was used to predict cell docking zones, which were confirmed by experimental observations. Cell-fluid dynamic interactions are important considerations for design of microdevices for long-term, live cell imaging. The analysis of force and torque balance provides a reasonable approximation for cell displacement forces. It is computationally less intensive compared to simulation of cell trajectories, and can be applied to a wide range of microdevice geometries to predict the cell docking behavior.

  7. Vinblastine suppresses dynamics of individual microtubules in living interphase cells.

    PubMed Central

    Dhamodharan, R; Jordan, M A; Thrower, D; Wilson, L; Wadsworth, P

    1995-01-01

    We have characterized the effects of vinblastine on the dynamic instability behavior of individual microtubules in living BS-C-1 cells microinjected with rhodamine-labeled tubulin and have found that at low concentrations (3-64 nM), vinblastine potently suppresses dynamic instability without causing net microtubule depolymerization. Vinblastine suppressed the rates of microtubule growth and shortening, and decreased the frequency of transitions from growth or pause to shortening, also called catastrophe. In vinblastine-treated cells, both the average duration of a pause (a state of attenuated dynamics where neither growth nor shortening could be detected) and the percentage of total time spent in pause were significantly increased. Vinblastine potently decreased dynamicity, a measure of the overall dynamic activity of microtubules, reducing this parameter by 75% at 32 nM. The present work, consistent with earlier in vitro studies, demonstrates that vinblastine kinetically caps the ends of microtubules in living cells and supports the hypothesis that the potent chemotherapeutic action of vinblastine as an antitumor drug is suppression of mitotic spindle microtubule dynamics. Further, the results indicate that molecules that bind to microtubule ends can regulate microtubule dynamic behavior in living cells and suggest that endogenous regulators of microtubule dynamics that work by similar mechanisms may exist in living cells. Images PMID:8534917

  8. Actuation means for the mechanical stimulation of living cells via microelectromechanical systems: A critical review.

    PubMed

    Desmaële, Denis; Boukallel, Mehdi; Régnier, Stéphane

    2011-05-17

    Within a living body, cells are constantly exposed to various mechanical constraints. As a matter of fact, these mechanical factors play a vital role in the regulation of the cell state. It is widely recognized that cells can sense, react and adapt themselves to mechanical stimulation. However, investigations aimed at studying cell mechanics directly in vivo remain elusive. An alternative solution is to study cell mechanics via in vitro experiments. Nevertheless, this requires implementing means to mimic the stresses that cells naturally undergo in their physiological environment. In this paper, we survey various microelectromechanical systems (MEMS) dedicated to the mechanical stimulation of living cells. In particular, we focus on their actuation means as well as their inherent capabilities to stimulate a given amount of cells. Thereby, we report actuation means dependent upon the fact they can provide stimulation to a single cell, target a maximum of a hundred cells, or deal with thousands of cells. Intrinsic performances, strengths and limitations are summarized for each type of actuator. We also discuss recent achievements as well as future challenges of cell mechanostimulation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Live-cell analysis of plant reproduction: live-cell imaging, optical manipulation, and advanced microscopy technologies.

    PubMed

    Kurihara, Daisuke; Hamamura, Yuki; Higashiyama, Tetsuya

    2013-05-01

    Sexual reproduction ensures propagation of species and enhances genetic diversity within populations. In flowering plants, sexual reproduction requires complicated and multi-step cell-to-cell communications among male and female cells. However, the confined nature of plant reproduction processes, which occur in the female reproductive organs and several cell layers of the pistil, limits our ability to observe these events in vivo. In this review, we discuss recent live-cell imaging in in vitro systems and the optical manipulation techniques that are used to capture the dynamic mechanisms representing molecular and cellular communications in sexual plant reproduction.

  10. Living with cardiac resynchronization therapy: Challenges for people with heart failure.

    PubMed

    Dehghanzadeh, Shadi; Dehghan Nayeri, Nahid; Varaei, Shokoh; Kheirkhah, Jalal

    2017-03-01

    The number of people with heart failure requiring implantation of a cardiac resynchronization device is increasing in Iran. Although this intervention is an effective life-saving treatment, several challenges are associated with patients' lifestyle after insertion. This study identified the challenges and coping mechanisms of Iranians with heart failure living with cardiac resynchronization therapy. A qualitative approach using conventional content analysis was adopted. Seventeen people with heart failure and three nurses were recruited between December 2014 and November 2015 from a teaching hospital and a private clinic in Rasht, Iran. Participants were interviewed using semi-structured interviews lasting 30-60 min. Five themes emerged: (i) fear of implantation, (ii) the panic of receiving a shock from the device, (iii) lack of control over life, (iv) inadequacies of the healthcare system, and (v) psychosocial coping. A heightened understanding of these challenges and coping strategies could prepare healthcare professionals to provide better routine care, education, and support to the recipients of cardiac resynchronization therapy prior to implantation, during the recovery period, and for long-term management.

  11. Challenges to conducting research with older people living in nursing homes

    PubMed Central

    Hall, Sue; Longhurst, Susan; Higginson, Irene J

    2009-01-01

    Background Although older people are increasingly cared for in nursing homes towards the end of life, there is a dearth of research exploring the views of residents. There are however, a number of challenges and methodological issues involved in doing this. The aim of this paper is to discuss some of these, along with residents' views on taking part in a study of the perceptions of dignity of older people in care homes and make recommendations for future research in these settings. Methods Qualitative interviews were used to obtain the views on maintaining dignity of 18 people aged 75 years and over, living in two private nursing homes in South East London. Detailed field notes on experiences of recruiting and interviewing participants were kept. Results Challenges included taking informed consent (completing reply slips and having a 'reasonable' understanding of their participation); finding opportunities to conduct interviews; involvement of care home staff and residents' families and trying to maintain privacy during the interviews. Most residents were positive about their participation in the study, however, five had concerns either before or during their interviews. Although 15 residents seemed to feel free to air their views, three seemed reluctant to express their opinions on their care in the home. Conclusion Although we experienced many challenges to conducting this study, they were not insurmountable, and once overcome, allowed this often unheard vulnerable group to express their views, with potential long-term benefits for future delivery of care. PMID:19703277

  12. Transverse mechanical properties of cell walls of single living plant cells probed by laser-generated acoustic waves.

    PubMed

    Gadalla, Atef; Dehoux, Thomas; Audoin, Bertrand

    2014-05-01

    Probing the mechanical properties of plant cell wall is crucial to understand tissue dynamics. However, the exact symmetry of the mechanical properties of this anisotropic fiber-reinforced composite remains uncertain. For this reason, biologically relevant measurements of the stiffness coefficients on individual living cells are a challenge. For this purpose, we have developed the single-cell optoacoustic nanoprobe (SCOPE) technique, which uses laser-generated acoustic waves to probe the stiffness, thickness and viscosity of live single-cell subcompartments. This all-optical technique offers a sub-micrometer lateral resolution, nanometer in-depth resolution, and allows the non-contact measurement of the mechanical properties of live turgid tissues without any assumption of mechanical symmetry. SCOPE experiments reveal that single-cell wall transverse stiffness in the direction perpendicular to the epidermis layer of onion cells is close to that of cellulose. This observation demonstrates that cellulose microfibrils are the main load-bearing structure in this direction, and suggests strong bonding of microfibrils by hemicelluloses. Altogether our measurement of the viscosity at high frequencies suggests that the rheology of the wall is dominated by glass-like dynamics. From a comparison with literature, we attribute this behavior to the influence of the pectin matrix. SCOPE's ability to unravel cell rheology and cell anisotropy defines a new class of experiments to enlighten cell nano-mechanics.

  13. Spray-Dried Multiscale Nano-biocomposites Containing Living Cells.

    PubMed

    Johnson, Patrick E; Muttil, Pavan; MacKenzie, Debra; Carnes, Eric C; Pelowitz, Jennifer; Mara, Nathan A; Mook, William M; Jett, Stephen D; Dunphy, Darren R; Timmins, Graham S; Brinker, C Jeffrey

    2015-07-28

    Three-dimensional encapsulation of cells within nanostructured silica gels or matrices enables applications as diverse as biosensors, microbial fuel cells, artificial organs, and vaccines; it also allows the study of individual cell behaviors. Recent progress has improved the performance and flexibility of cellular encapsulation, yet there remains a need for robust scalable processes. Here, we report a spray-drying process enabling the large-scale production of functional nano-biocomposites (NBCs) containing living cells within ordered 3D lipid-silica nanostructures. The spray-drying process is demonstrated to work with multiple cell types and results in dry powders exhibiting a unique combination of properties including highly ordered 3D nanostructure, extended lipid fluidity, tunable macromorphologies and aerodynamic diameters, and unexpectedly high physical strength. Nanoindentation of the encasing nanostructure revealed a Young's modulus and hardness of 13 and 1.4 GPa, respectively. We hypothesized this high strength would prevent cell growth and force bacteria into viable but not culturable (VBNC) states. In concordance with the VBNC state, cellular ATP levels remained elevated even over eight months. However, their ability to undergo resuscitation and enter growth phase greatly decreased with time in the VBNC state. A quantitative method of determining resuscitation frequencies was developed and showed that, after 36 weeks in a NBC-induced VBNC, less than 1 in 10,000 cells underwent resuscitation. The NBC platform production of large quantities of VBNC cells is of interest for research in bacterial persistence and screening of drugs targeting such cells. NBCs may also enable long-term preservation of living cells for applications in cell-based sensing and the packaging and delivery of live-cell vaccines.

  14. Electrochemiluminescence to detect surface proteins on live cells.

    PubMed

    Lu, Yanmei; Young, Judy; Meng, Y Gloria

    2007-10-01

    Flow cytometry and cell-based enzyme-linked immunosorbent assays have been used to detect surface proteins on cells. A recently available electrochemiluminescent assay methodology using carbon surface electrodes built into the bottom of microwell plates can be used as an alternative to these methods and has some advantages. The carbon surface plates bind suspension cells tightly enough to allow plates to be washed using a plate washer. This eliminates the centrifugation steps typically used for washing suspension cells. For adherent cells, human umbilical vein endothelial cells can be grown, activated, and assayed in the same carbon surface plate. This eliminates the need to detach cells from tissue culture plates for analysis, making the electrochemiluminescent assay much easier to perform than a corresponding flow cytometry assay. This electrochemiluminescence technology provides a high throughput method to detect surface proteins on live cells.

  15. The antimalarial artemisinin synergizes with antibiotics to protect against lethal live Escherichia coli challenge by decreasing proinflammatory cytokine release.

    PubMed

    Wang, Jun; Zhou, Hong; Zheng, Jiang; Cheng, Juan; Liu, Wei; Ding, Guofu; Wang, Liangxi; Luo, Ping; Lu, Yongling; Cao, Hongwei; Yu, Shuangjiang; Li, Bin; Zhang, Lezhi

    2006-07-01

    In the present study artemisinin (ART) was found to have potent anti-inflammatory effects in animal models of sepsis induced by CpG-containing oligodeoxy-nucleotides (CpG ODN), lipopolysaccharide (LPS), heat-killed Escherichia coli 35218 or live E. coli. Furthermore, we found that ART protected mice from a lethal challenge by CpG ODN, LPS, or heat-killed E. coli in a dose-dependent manner and that the protection was related to a reduction in serum tumor necrosis factor alpha (TNF-alpha). More significantly, the administration of ART together with ampicillin or unasyn (a complex of ampicillin and sulbactam) decreased mortality from 100 to 66.7% or 33.3%, respectively, in mice subjected to a lethal live E. coli challenge. Together with the observation that ART alone does not inhibit bacterial growth, this result suggests that ART protection is achieved as a result of its anti-inflammatory activity rather than an antimicrobial effect. In RAW264.7 cells, pretreatment with ART potently inhibited TNF-alpha and interleukin-6 release induced by CpG ODN, LPS, or heat-killed E. coli in a dose- and time-dependent manner. Experiments utilizing affinity sensor technology revealed no direct binding of ART with CpG ODN or LPS. Flow cytometry further showed that ART did not alter binding of CpG ODN to cell surfaces or the internalization of CpG ODN. In addition, upregulated levels of TLR9 and TLR4 mRNA were not attenuated by ART treatment. ART treatment did, however, block the NF-kappaB activation induced by CpG ODN, LPS, or heat-killed E. coli. These findings provide compelling evidence that ART may be an important potential drug for sepsis treatment.

  16. Imaging the action of antimicrobial peptides on living bacterial cells

    PubMed Central

    Gee, Michelle L.; Burton, Matthew; Grevis-James, Alistair; Hossain, Mohammed Akhter; McArthur, Sally; Palombo, Enzo A.; Wade, John D.; Clayton, Andrew H. A.

    2013-01-01

    Antimicrobial peptides hold promise as broad-spectrum alternatives to conventional antibiotics. The mechanism of action of this class of peptide is a topical area of research focused predominantly on their interaction with artificial membranes. Here we compare the interaction mechanism of a model antimicrobial peptide with single artificial membranes and live bacterial cells. The interaction kinetics was imaged using time-lapse fluorescence lifetime imaging of a fluorescently-tagged melittin derivative. Interaction with the synthetic membranes resulted in membrane pore formation. In contrast, the interaction with bacteria led to transient membrane disruption and corresponding leakage of the cytoplasm, but surprisingly with a much reduced level of pore formation. The discovery that pore formation is a less significant part of lipid-peptide interaction in live bacteria highlights the mechanistic complexity of these interactions in living cells compared to simple artificial systems. PMID:23532056

  17. AFM review study on pox viruses and living cells.

    PubMed

    Ohnesorge, F M; Hörber, J K; Häberle, W; Czerny, C P; Smith, D P; Binnig, G

    1997-10-01

    Single living cells were studied in growth medium by atomic force microscopy at a high--down to one image frame per second--imaging rate over time periods of many hours, stably producing hundreds of consecutive scans with a lateral resolution of approximately 30-40 nm. The cell was held by a micropipette mounted onto the scanner-piezo as shown in Häberle, W., J. K. H. Hörber, and G. Binnig. 1991. Force microscopy on living cells. J. Vac. Sci. Technol. B9:1210-0000. To initiate specific processes on the cell surface the cells had been infected with pox viruses as reported earlier and, most likely, the liberation of a progeny virion by the still-living cell was observed, hence confirming and supporting earlier results (Häberle, W., J. K. H. Hörber, F. Ohnesorge, D. P. E. Smith, and G. Binnig. 1992. In situ investigations of single living cells infected by viruses. Ultramicroscopy. 42-44:1161-0000; Hörber, J. K. H., W. Häberle, F. Ohnesorge, G. Binnig, H. G. Liebich, C. P. Czerny, H. Mahnel, and A. Mayr. 1992. Investigation of living cells in the nanometer regime with the atomic force microscope. Scanning Microscopy. 6:919-930). Furthermore, the pox viruses used were characterized separately by AFM in an aqueous environment down to the molecular level. Quasi-ordered structural details were resolved on a scale of a few nm where, however, image distortions and artifacts due to multiple tip effects are probably involved--just as in very high resolution (<15-20 nm) images on the cells. Although in a very preliminary manner, initial studies on the mechanical resonance properties of a single living (noninfected) cell, held by the micropipette, have been performed. In particular, frequency response spectra were recorded that indicate elastic properties and enough stiffness of these cells to make the demonstrated rapid scanning of the imaging tip plausible. Measurements of this kind, especially if they can be proven to be cell-type specific, may perhaps have a large

  18. AFM review study on pox viruses and living cells.

    PubMed Central

    Ohnesorge, F M; Hörber, J K; Häberle, W; Czerny, C P; Smith, D P; Binnig, G

    1997-01-01

    Single living cells were studied in growth medium by atomic force microscopy at a high--down to one image frame per second--imaging rate over time periods of many hours, stably producing hundreds of consecutive scans with a lateral resolution of approximately 30-40 nm. The cell was held by a micropipette mounted onto the scanner-piezo as shown in Häberle, W., J. K. H. Hörber, and G. Binnig. 1991. Force microscopy on living cells. J. Vac. Sci. Technol. B9:1210-0000. To initiate specific processes on the cell surface the cells had been infected with pox viruses as reported earlier and, most likely, the liberation of a progeny virion by the still-living cell was observed, hence confirming and supporting earlier results (Häberle, W., J. K. H. Hörber, F. Ohnesorge, D. P. E. Smith, and G. Binnig. 1992. In situ investigations of single living cells infected by viruses. Ultramicroscopy. 42-44:1161-0000; Hörber, J. K. H., W. Häberle, F. Ohnesorge, G. Binnig, H. G. Liebich, C. P. Czerny, H. Mahnel, and A. Mayr. 1992. Investigation of living cells in the nanometer regime with the atomic force microscope. Scanning Microscopy. 6:919-930). Furthermore, the pox viruses used were characterized separately by AFM in an aqueous environment down to the molecular level. Quasi-ordered structural details were resolved on a scale of a few nm where, however, image distortions and artifacts due to multiple tip effects are probably involved--just as in very high resolution (<15-20 nm) images on the cells. Although in a very preliminary manner, initial studies on the mechanical resonance properties of a single living (noninfected) cell, held by the micropipette, have been performed. In particular, frequency response spectra were recorded that indicate elastic properties and enough stiffness of these cells to make the demonstrated rapid scanning of the imaging tip plausible. Measurements of this kind, especially if they can be proven to be cell-type specific, may perhaps have a large

  19. Live-cell thermometry with nitrogen vacancy centers in nanodiamonds

    NASA Astrophysics Data System (ADS)

    Jayakumar, Harishankar; Fedder, Helmut; Chen, Andrew; Yang, Liudi; Li, Chenghai; Wrachtrup, Joerg; Wang, Sihong; Meriles, Carlos

    The ability to measure temperature is typically affected by a tradeoff between sensitivity and spatial resolution. Good thermometers tend to be bulky systems and hence are ill-suited for thermal sensing with high spatial localization. Conversely, the signal resulting from nanoscale temperature probes is often impacted by noise to a level where the measurement precision becomes poor. Adding to the microscopist toolbox, the nitrogen vacancy (NV) center in diamond has recently emerged as a promising platform for high-sensitivity nanoscale thermometry. Of particular interest are applications in living cells because diamond nanocrystals are biocompatible and can be chemically functionalized to target specific organelles. Here we report progress on the ability to probe and compare temperature within and between living cells using nanodiamond-hosted NV thermometry. We focus our study on cancerous cells, where atypical metabolic pathways arguably lead to changes in the way a cell generates heat, and thus on its temperature profile.

  20. Biosynthesis of a Fully Functional Cyclotide inside Living Bacterial Cells

    SciTech Connect

    Camarero, J A; Kimura, R H; Woo, Y; Cantor, J; Shekhtman, A

    2007-04-05

    The cyclotide MCoTI-II is a powerful trypsin inhibitor recently isolated from the seeds of Momordica cochinchinensis, a plant member of cucurbitaceae family. We report for the first time the in vivo biosynthesis of natively-folded MCoTI-II inside live E. coli cells. Our biomimetic approach involves the intracellular backbone cyclization of a linear cyclotide-intein fusion precursor mediated by a modified protein splicing domain. The cyclized peptide then spontaneously folds into its native conformation. The use of genetically engineered E. coli cells containing mutations in the glutathione and thioredoxin reductase genes considerably improves the production of folded MCoTI-II in vivo. Biochemical and structural characterization of the recombinant MCoTI-II confirmed its identity. Biosynthetic access to correctly-folded cyclotides allows the possibility of generating cell-based combinatorial libraries that can be screened inside living cells for their ability to modulate or inhibit cellular processes.

  1. Influence of microfluidic shear on keratin networks in living cells

    NASA Astrophysics Data System (ADS)

    Nolting, Jens-Friedrich; Köster, Sarah

    2013-04-01

    Intermediate filaments play a key role in cell mechanics, providing cells with compliance to small deformations and reinforcing them when large forces are applied. Here, we present a study of networks of keratin intermediate filaments in living cells under the influence of external forces. We expose the cells to controlled shear forces applied by microflow and investigate the response of the keratin network in situ. Our results show that bundle dynamics are reduced upon the application of shear flow. It is likely that cytoskeletal cross-talk is involved in this shear stress response via actin-keratin coupling.

  2. Active Cellular Mechanics and Information Processing in the Living Cell

    NASA Astrophysics Data System (ADS)

    Rao, M.

    2014-07-01

    I will present our recent work on the organization of signaling molecules on the surface of living cells. Using novel experimental and theoretical approaches we have found that many cell surface receptors are organized as dynamic clusters driven by active currents and stresses generated by the cortical cytoskeleton adjoining the cell surface. We have shown that this organization is optimal for both information processing and computation. In connecting active mechanics in the cell with information processing and computation, we bring together two of the seminal works of Alan Turing.

  3. Shape regulation generates elastic interaction between living cells

    NASA Astrophysics Data System (ADS)

    Golkov, Roman; Shokef, Yair

    2017-06-01

    The organization of live cells to tissues is associated with the mechanical interaction between cells, which is mediated through their elastic environment. We model cells as spherical active force dipoles surrounded by an infinite elastic matrix, and analytically evaluate the interaction energy for different scenarios of their regulatory behavior. We obtain attraction for homeostatic (set point) forces and repulsion for homeostatic displacements. When the translational motion of the cells is regulated, the interaction energy decays with distance as 1/{d}4, while when it is not regulated the energy decays as 1/{d}6. This arises from the same reasons as the van der Waals interaction between induced electric dipoles.

  4. The preservation of living cells with biocompatible microparticles

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Zhu, Yingnan; Xu, Tong; Pan, Chao; Cai, Nana; Huang, He; Zhang, Lei

    2016-07-01

    Biomedical applications of living cells have rapidly expanded in many fields such as toxic detection, drug screening, and regenerative medicine, etc. Efficient methods to support cell survival and maintain activity in vitro have become increasingly important. However, traditional cryopreservation for living cell-based applications is limited by several problems. Here, we report that magnetic hydrogel microparticles can physically assemble into a 3D environment for efficient cell preservation in physiological conditions, avoiding any chemical reactions that would damage the cells. Two representative cell lines (loosely and firmly adherent) were tested to evaluate the versatility of this method. The results showed that cell longevity was significantly extended to at least 15 days, while the control cell samples without microparticles quickly died within 3 days. Moreover, after preservation, cells can be easily retrieved by applying a magnet to separate the magnetic particles. This strategy can also inhibit cell over-proliferation while avoiding the use of temperature extremes or toxic cryoprotectants that are essential in cryopreservation.

  5. The preservation of living cells with biocompatible microparticles.

    PubMed

    Yang, Jing; Zhu, Yingnan; Xu, Tong; Pan, Chao; Cai, Nana; Huang, He; Zhang, Lei

    2016-07-01

    Biomedical applications of living cells have rapidly expanded in many fields such as toxic detection, drug screening, and regenerative medicine, etc. Efficient methods to support cell survival and maintain activity in vitro have become increasingly important. However, traditional cryopreservation for living cell-based applications is limited by several problems. Here, we report that magnetic hydrogel microparticles can physically assemble into a 3D environment for efficient cell preservation in physiological conditions, avoiding any chemical reactions that would damage the cells. Two representative cell lines (loosely and firmly adherent) were tested to evaluate the versatility of this method. The results showed that cell longevity was significantly extended to at least 15 days, while the control cell samples without microparticles quickly died within 3 days. Moreover, after preservation, cells can be easily retrieved by applying a magnet to separate the magnetic particles. This strategy can also inhibit cell over-proliferation while avoiding the use of temperature extremes or toxic cryoprotectants that are essential in cryopreservation.

  6. Out-of-equilibrium microrheology inside living cells.

    PubMed

    Wilhelm, Claire

    2008-07-11

    Both forced and spontaneous motions of magnetic microbeads engulfed by Dictyostelium cells have served as experimental probes of intracellular dynamics. The complex shear modulus G*(omega), determined from active oscillatory measurements, has a power-law dynamics and increases with the probe size, reflecting intracellular structural complexity. The combined use of passive microrheology allows one to derive the power spectrum of active forces acting on intracellular phagosomes and to test the validity of the fluctuation-dissipation theorem inside living cells.

  7. Towards Probing Living Cell Function with NV Centers in Nanodiamonds

    NASA Astrophysics Data System (ADS)

    Sushkov, Alexander; Lovchinsky, Igor; Chisholm, Nicholas; Hunger, David; Akimov, Alexey; Lo, Peggy; Sutton, Amy; Robinson, Jacob; Yao, Norman; Bennett, Steven; Park, Hongkun; Lukin, Mikhail

    2012-02-01

    We report on recent progress in using the nitrogen-vacancy (NV) center in nanodiamonds as a local probe of paramagnetic free radical concentrations in living cells. The ability to monitor the local magnetic environment within the cell provides us a new tool to study organelle function during normal operation or in response to applied stimuli. Our approach involving biologically inert, robust sensor of local magnetic fields with nanoscale resolution opens up a new interface between quantum and biological sciences.

  8. Comparison of Two Commercial Type 1 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Modified Live Vaccines against Heterologous Type 1 and Type 2 PRRSV Challenge in Growing Pigs

    PubMed Central

    Kim, Taeyeon; Park, Changhoon; Choi, Kyuhyung; Jeong, Jiwoon; Kang, Ikjae; Park, Su-Jin

    2015-01-01

    The objective of the present study was to compare the efficacy of two commercial type 1 porcine reproductive and respiratory syndrome virus (PRRSV) modified live vaccines against heterologous type 1 and type 2 PRRSV challenge in growing pigs. Vaccination with a type 1 PRRSV vaccine reduced the level of viremia after type 1 PRRSV challenge but did not reduce the level of viremia after the type 2 PRRSV challenge in pigs. Increased levels of interleukin-10 (IL-10) stimulated by type 2 PRRSV coincided with the low numbers of type 2 PRRSV-specific interferon gamma-secreting cells (IFN-γ-SC) in vaccinated pigs after type 2 PRRSV challenge, whereas low levels of IL-10 stimulated by type 1 PRRSV coincided with high numbers of type 1 PRRSV-specific IFN-γ-SC in vaccinated pigs after type 1 PRRSV challenge. Additionally, vaccination with the type 1 PRRSV vaccine effectively reduced the lung lesions and type 1 PRRSV nucleic acids in type 1 PRRSV-challenged pigs but did not reduce lung lesions and type 2 PRRSV nucleic acids in type 2 PRRSV-challenged pigs. There were no significant differences between two commercial type 1 PRRSV vaccines against type 1 and type 2 PRRSV challenge based on virological results, immunological responses, and pathological outcomes. This study demonstrates that vaccinating pigs with the type 1 PRRSV vaccine provides partial protection against respiratory disease with heterologous type 1 PRRSV challenge but no protection with heterologous type 2 PRRSV challenge. PMID:25855554

  9. Comparison of Two Commercial Type 1 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Modified Live Vaccines against Heterologous Type 1 and Type 2 PRRSV Challenge in Growing Pigs.

    PubMed

    Kim, Taeyeon; Park, Changhoon; Choi, Kyuhyung; Jeong, Jiwoon; Kang, Ikjae; Park, Su-Jin; Chae, Chanhee

    2015-06-01

    The objective of the present study was to compare the efficacy of two commercial type 1 porcine reproductive and respiratory syndrome virus (PRRSV) modified live vaccines against heterologous type 1 and type 2 PRRSV challenge in growing pigs. Vaccination with a type 1 PRRSV vaccine reduced the level of viremia after type 1 PRRSV challenge but did not reduce the level of viremia after the type 2 PRRSV challenge in pigs. Increased levels of interleukin-10 (IL-10) stimulated by type 2 PRRSV coincided with the low numbers of type 2 PRRSV-specific interferon gamma-secreting cells (IFN-γ-SC) in vaccinated pigs after type 2 PRRSV challenge, whereas low levels of IL-10 stimulated by type 1 PRRSV coincided with high numbers of type 1 PRRSV-specific IFN-γ-SC in vaccinated pigs after type 1 PRRSV challenge. Additionally, vaccination with the type 1 PRRSV vaccine effectively reduced the lung lesions and type 1 PRRSV nucleic acids in type 1 PRRSV-challenged pigs but did not reduce lung lesions and type 2 PRRSV nucleic acids in type 2 PRRSV-challenged pigs. There were no significant differences between two commercial type 1 PRRSV vaccines against type 1 and type 2 PRRSV challenge based on virological results, immunological responses, and pathological outcomes. This study demonstrates that vaccinating pigs with the type 1 PRRSV vaccine provides partial protection against respiratory disease with heterologous type 1 PRRSV challenge but no protection with heterologous type 2 PRRSV challenge.

  10. In-vitro analysis of APA microcapsules for oral delivery of live bacterial cells.

    PubMed

    Chen, H; Ouyang, W; Jones, M; Haque, T; Lawuyi, B; Prakash, S

    2005-08-01

    Oral administration of microcapsules containing live bacterial cells has potential as an alternative therapy for several diseases. This article evaluates the suitability of the alginate-poly-L-lysine-alginate (APA) microcapsules for oral delivery of live bacterial cells, in-vitro, using a dynamic simulated human gastro-intestinal (GI) model. Results showed that the APA microcapsules were morphologically stable in the simulated stomach conditions, but did not retain their structural integrity after a 3-day exposure in simulated human GI media. The microbial populations of the tested bacterial cells and the activities of the tested enzymes in the simulated human GI suspension were not substantially altered by the presence of the APA microcapsules, suggesting that there were no significant adverse effects of oral administration of the APA microcapsules on the flora of the human gastrointestinal tract. When the APA microcapsules containing Lactobacillus plantarum 80 (LP80) were challenged in the simulated gastric medium (pH = 2.0), 80.0% of the encapsulated cells remained viable after a 5-min incubation; however, the viability decreased considerably (8.3%) after 15 min and dropped to 2.6% after 30 min and lower than 0.2% after 60 min, indicating the limitations of the currently obtainable APA membrane for oral delivery of live bacteria. Further in-vivo studies are required before conclusions can be made concerning the inadequacy of APA microcapsules for oral delivery of live bacterial cells.

  11. From surface to intracellular non-invasive nanoscale study of living cells impairments

    SciTech Connect

    Ewald, Dr. Maxime; Tetard, Laurene; Elie-Caille, Dr. Cecile; Nicod, Laurence; Passian, Ali; Bourillot, Dr. Eric; Lesniewska, Prof. Eric

    2014-01-01

    Among the enduring challenges in nanoscience, subsurface characterization of live cells holds major stakes. Developments in nanometrology for soft matter thriving on the sensitivity and high resolution benefits of atomic force microscopy have enabled detection of subsurface structures at the nanoscale (1,2,3). However, measurements in liquid environments remain complex (4,5,6,7), in particular in the subsurface domain. Here we introduce liquid-Mode Synthesizing Atomic Force Microscopy (l-MSAFM) to study both the inner structures and the chemically induced intracellular impairments of living cells. Specifically, we visualize the intracellular stress effects of glyphosate on living keratinocytes skin cells. This new approach for living cell nanoscale imaging, l-MSAFM, in their physiological environment or in presence of a chemical stress agent confirmed the loss of inner structures induced by glyphosate. The ability to monitor the cell's inner response to external stimuli, non-destructively and in real time, has the potential to unveil critical nanoscale mechanisms of life science.

  12. Live cell opto-injection by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Baumgart, J.; Bintig, W.; Ngezahayo, A.; Ertmer, W.; Lubatschowski, H.; Heisterkamp, A.

    2007-02-01

    Fluorescence imaging of cells and cell organelles requires labeling by fluorophores. The labeling of living cells is often done by transfection of fluorescent proteins. Viral vectors are transferring the DNA into the cell. To avoid the use of viruses, it is possible to perforate the cell membrane for example by electro-shocks, the so called electroporation, so that the fluorescent proteins can diffuse into the cell. This method causes cell death in up to 50% of the treated cells because the damage of the outer membrane is too large. A less lethal perforation of the cell membrane with high efficiency can be realized by femtosecond (fs) laser pulses. Transient pores are created by focusing the laser beam for some milliseconds on the membrane. Through this pore, the proteins can enter into the cell. This was demonstrated in a proof of principle experiment for a few cells, but it is essential to develop an opto-perforation system for large numbers of cells in order to obtain statistically significant samples for biological experiments. The relationship between pulse energy, irradiation time, repetition rate and efficacy of the transfer of a chromophor into the cells as well as the viability of the cells was analysed. The cell viability was observed up to 90 minutes after manipulation.

  13. Exploring dynamics in living cells by tracking single particles.

    PubMed

    Levi, Valeria; Gratton, Enrico

    2007-01-01

    In the last years, significant advances in microscopy techniques and the introduction of a novel technology to label living cells with genetically encoded fluorescent proteins revolutionized the field of Cell Biology. Our understanding on cell dynamics built from snapshots on fixed specimens has evolved thanks to our actual capability to monitor in real time the evolution of processes in living cells. Among these new tools, single particle tracking techniques were developed to observe and follow individual particles. Hence, we are starting to unravel the mechanisms driving the motion of a wide variety of cellular components ranging from organelles to protein molecules by following their way through the cell. In this review, we introduce the single particle tracking technology to new users. We briefly describe the instrumentation and explain some of the algorithms commonly used to locate and track particles. Also, we present some common tools used to analyze trajectories and illustrate with some examples the applications of single particle tracking to study dynamics in living cells.

  14. Using a nano-flare probe to detect RNA in live donor cells prior to somatic cell nuclear transfer.

    PubMed

    Fu, Bo; Ren, Liang; Liu, Di; Ma, Jian-Zhang; An, Tie-Zhu; Yang, Xiu-Qin; Ma, Hong; Guo, Zhen-Hua; Zhu, Meng; Bai, Jing

    2016-01-01

    Many transgenes are silenced in mammalian cells (donor cells used for somatic cell nuclear transfer [SCNT]). Silencing correlated with a repressed chromatin structure or suppressed promoter, and it impeded the production of transgenic animals. Gene transcription studies in live cells are challenging because of the drawbacks of reverse-transcription polymerase chain reaction and fluorescence in situ hybridization. Nano-flare probes provide an effective approach to detect RNA in living cells. We used 18S RNA, a housekeeping gene, as a reference gene. This study aimed to establish a platform to detect RNA in single living donor cells using a Nano-flare probe prior to SCNT and to verify the safety and validity of the Nano-flare probe in order to provide a technical foundation for rescuing silenced transgenes in transgenic cloned embryos. We investigated cytotoxic effect of the 18S RNA-Nano-flare probe on porcine fetal fibroblasts, characterized the distribution of the 18S RNA-Nano-flare probe in living cells and investigated the effect of the 18S RNA-Nano-flare probe on the development of cloned embryos after SCNT. The cytotoxic effect of the 18S RNA-Nano-flare probe on porcine fetal fibroblasts was dose-dependent, and 18S RNA was detected using the 18S RNA-Nano-flare probe. In addition, treating donor cells with 500 pM 18S RNA-Nano-flare probe did not have adverse effects on the development of SCNT embryos at the pre-implantation stage. In conclusion, we established a preliminary platform to detect RNA in live donor cells using a Nano-flare probe prior to SCNT.

  15. Live-cell imaging: new avenues to investigate retinal regeneration

    PubMed Central

    Lahne, Manuela; Hyde, David R.

    2017-01-01

    Sensing and responding to our environment requires functional neurons that act in concert. Neuronal cell loss resulting from degenerative diseases cannot be replaced in humans, causing a functional impairment to integrate and/or respond to sensory cues. In contrast, zebrafish (Danio rerio) possess an endogenous capacity to regenerate lost neurons. Here, we will focus on the processes that lead to neuronal regeneration in the zebrafish retina. Dying retinal neurons release a damage signal, tumor necrosis factor α, which induces the resident radial glia, the Müller glia, to reprogram and re-enter the cell cycle. The Müller glia divide asymmetrically to produce a Müller glia that exits the cell cycle and a neuronal progenitor cell. The arising neuronal progenitor cells undergo several rounds of cell divisions before they migrate to the site of damage to differentiate into the neuronal cell types that were lost. Molecular and immunohistochemical studies have predominantly provided insight into the mechanisms that regulate retinal regeneration. However, many processes during retinal regeneration are dynamic and require live-cell imaging to fully discern the underlying mechanisms. Recently, a multiphoton imaging approach of adult zebrafish retinal cultures was developed. We will discuss the use of live-cell imaging, the currently available tools and those that need to be developed to advance our knowledge on major open questions in the field of retinal regeneration.

  16. Live-cell imaging: new avenues to investigate retinal regeneration.

    PubMed

    Lahne, Manuela; Hyde, David R

    2017-08-01

    Sensing and responding to our environment requires functional neurons that act in concert. Neuronal cell loss resulting from degenerative diseases cannot be replaced in humans, causing a functional impairment to integrate and/or respond to sensory cues. In contrast, zebrafish (Danio rerio) possess an endogenous capacity to regenerate lost neurons. Here, we will focus on the processes that lead to neuronal regeneration in the zebrafish retina. Dying retinal neurons release a damage signal, tumor necrosis factor α, which induces the resident radial glia, the Müller glia, to reprogram and re-enter the cell cycle. The Müller glia divide asymmetrically to produce a Müller glia that exits the cell cycle and a neuronal progenitor cell. The arising neuronal progenitor cells undergo several rounds of cell divisions before they migrate to the site of damage to differentiate into the neuronal cell types that were lost. Molecular and immunohistochemical studies have predominantly provided insight into the mechanisms that regulate retinal regeneration. However, many processes during retinal regeneration are dynamic and require live-cell imaging to fully discern the underlying mechanisms. Recently, a multiphoton imaging approach of adult zebrafish retinal cultures was developed. We will discuss the use of live-cell imaging, the currently available tools and those that need to be developed to advance our knowledge on major open questions in the field of retinal regeneration.

  17. Internalization of ferromagnetic nanowires by different living cells

    PubMed Central

    Prina-Mello, Adriele; Diao, Zhu; Coey, John Michael David

    2006-01-01

    The ability of living cells, either adherent or suspended, to internalize nickel nanowires is demonstrated for MC3T3-E1, UMR106-tumour and Marrow-Stromal cells. Nanowires were produced by electrodeposition, 20 μm long and 200 nm in diameter. Cell separation and manipulation was achieved for the three cell types. Applied magnetic field successfully oriented the internalized nanowires but no clear anisotropy is induced on the adherent cells. Nanowires tend to bind to cytoplasm metalloproteins and trigger lysosome reorganization around the nucleus. This work demonstrates the applications of nanowires in adherent and suspended cells for cell separation and manipulation, and further explore into their role in nanobiotechnology. PMID:16953891

  18. High resolution 3D imaging of living cells with sub-optical wavelength phonons

    PubMed Central

    Pérez-Cota, Fernando; Smith, Richard J.; Moradi, Emilia; Marques, Leonel; Webb, Kevin F.; Clark, Matt

    2016-01-01

    Label-free imaging of living cells below the optical diffraction limit poses great challenges for optical microscopy. Biologically relevant structural information remains below the Rayleigh limit and beyond the reach of conventional microscopes. Super-resolution techniques are typically based on the non-linear and stochastic response of fluorescent labels which can be toxic and interfere with cell function. In this paper we present, for the first time, imaging of live cells using sub-optical wavelength phonons. The axial imaging resolution of our system is determined by the acoustic wavelength (λa = λprobe/2n) and not on the NA of the optics allowing sub-optical wavelength acoustic sectioning of samples using the time of flight. The transverse resolution is currently limited to the optical spot size. The contrast mechanism is significantly determined by the mechanical properties of the cells and requires no additional contrast agent, stain or label to image the cell structure. The ability to breach the optical diffraction limit to image living cells acoustically promises to bring a new suite of imaging technologies to bear in answering exigent questions in cell biology and biomedicine. PMID:27996028

  19. High resolution 3D imaging of living cells with sub-optical wavelength phonons

    NASA Astrophysics Data System (ADS)

    Pérez-Cota, Fernando; Smith, Richard J.; Moradi, Emilia; Marques, Leonel; Webb, Kevin F.; Clark, Matt

    2016-12-01

    Label-free imaging of living cells below the optical diffraction limit poses great challenges for optical microscopy. Biologically relevant structural information remains below the Rayleigh limit and beyond the reach of conventional microscopes. Super-resolution techniques are typically based on the non-linear and stochastic response of fluorescent labels which can be toxic and interfere with cell function. In this paper we present, for the first time, imaging of live cells using sub-optical wavelength phonons. The axial imaging resolution of our system is determined by the acoustic wavelength (λa = λprobe/2n) and not on the NA of the optics allowing sub-optical wavelength acoustic sectioning of samples using the time of flight. The transverse resolution is currently limited to the optical spot size. The contrast mechanism is significantly determined by the mechanical properties of the cells and requires no additional contrast agent, stain or label to image the cell structure. The ability to breach the optical diffraction limit to image living cells acoustically promises to bring a new suite of imaging technologies to bear in answering exigent questions in cell biology and biomedicine.

  20. Imaging of mobile long-lived nanoplatforms in the live cell plasma membrane.

    PubMed

    Brameshuber, Mario; Weghuber, Julian; Ruprecht, Verena; Gombos, Imre; Horváth, Ibolya; Vigh, László; Eckerstorfer, Paul; Kiss, Endre; Stockinger, Hannes; Schütz, Gerhard J

    2010-12-31

    The plasma membrane has been hypothesized to contain nanoscopic lipid platforms, which are discussed in the context of "lipid rafts" or "membrane rafts." Based on biochemical and cell biological studies, rafts are believed to play a crucial role in many signaling processes. However, there is currently not much information on their size, shape, stability, surface density, composition, and heterogeneity. We present here a method that allows for the first time the direct imaging of nanoscopic long-lived platforms with raft-like properties diffusing in the live cell plasma membrane. Our method senses these platforms by their property to assemble a characteristic set of fluorescent marker proteins or lipids on a time scale of seconds. A special photobleaching protocol was used to reduce the surface density of labeled mobile platforms down to the level of well isolated diffraction-limited spots without altering the single spot brightness. The statistical distribution of probe molecules per platform was determined by single molecule brightness analysis. For demonstration, we used the consensus raft marker glycosylphosphatidylinositol-anchored monomeric GFP and the fluorescent lipid analog BODIPY-G(M1), which preferentially partitions into liquid-ordered phases. For both markers, we found cholesterol-dependent homo-association in the plasma membrane of living CHO and Jurkat T cells in the resting state, thereby demonstrating the existence of small, mobile, long-lived platforms containing these probes. We further applied the technology to address structural changes in the plasma membrane during fever-type heat shock: at elevated temperatures, the glycosylphosphatidylinositol-anchored monomeric GFP homo-association disappeared, accompanied by an increase in the expression of the small heat shock protein Hsp27.

  1. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells

    NASA Astrophysics Data System (ADS)

    Liang, Gaolin; Ren, Hongjun; Rao, Jianghong

    2010-01-01

    Through controlled synthesis and molecular assembly, biological systems are able to organize molecules into supramolecular structures that carry out sophisticated processes. Although chemists have reported a few examples of supramolecular assembly in water, the controlled covalent synthesis of large molecules and structures in vivo has remained challenging. Here we report a condensation reaction between 1,2-aminothiol and 2-cyanobenzothiazole that occurs in vitro and in living cells under the control of either pH, disulfide reduction or enzymatic cleavage. In vitro, the size and shape of the condensation products, and the nanostructures subsequently assembled, were different in each case and could thus be controlled by tuning the structure of the monomers. Direct imaging of the products obtained in the cells revealed their locations-near the Golgi bodies under enzymatic cleavage control-demonstrating the feasibility of a controlled and localized reaction in living cells. This intracellular condensation process enabled the imaging of the proteolytic activity of furin.

  2. A biocompatible condensation reaction for controlled assembly of nanostructures in live cells

    PubMed Central

    Liang, Gaolin; Ren, Hongjun; Rao, Jianghong

    2011-01-01

    Through controlled synthesis and molecular assembly, biological systems are able to organize molecules into supramolecular structures that carry out sophisticated processes. Although chemists have reported a few examples of supramolecular assembly in water, the controlled covalent synthesis of large molecules and structures in vivo has remained challenging. Here we report a condensation reaction between 1,2-aminothiol and 2-cyanobenzothiazole that occurs in vitro and in living cells under the control of pH, disulfide reduction and enzymatic cleavage. In vitro, the size and shape of the condensation products, and nanostructures subsequently assembled, were different in each case and could thus be controlled by tuning the structure of the monomers. Direct imaging of the products obtained in the cells revealed their locations – near the Golgi bodies under enzymatic cleavage control – demonstrating the feasibility of a controlled and localized reaction in living cells. This intracellular condensation process enabled the imaging of the proteolytic activity of furin. PMID:21124381

  3. Biopolymer encapsulated live influenza virus as a universal CD8+ T cell vaccine against influenza virus

    PubMed Central

    Boesteanu, Alina C.; Babu, Nadarajan S.; Wheatley, Margaret; Papazoglou, Elisabeth S.; Katsikis, Peter D.

    2010-01-01

    Current influenza virus vaccines primarily elicit antibodies and can be rendered ineffective by antigenic drift and shift. Vaccines that elicit CD8+ T cell responses targeting less variable proteins may function as universal vaccines that have broad reactivity against different influenza virus strains. To generate such a universal vaccine, we encapsulated live influenza virus in a biopolymer and delivered it to mice subcutaneously. This vaccine was safe, induced potent CD8+ T cell immunity and protected mice against heterosubtypic lethal challenge. Safety of subcutaneous (SQ) vaccination was tested in Rag2−/−γc−/− double knockout mice which we show cannot control intranasal infection. Biopolymer encapsulation of live influenza virus could be used to develop universal CD8+ T cell vaccines against heterosubtypic and pandemic strains. PMID:21034826

  4. Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions

    NASA Astrophysics Data System (ADS)

    Deschout, Hendrik; Lukes, Tomas; Sharipov, Azat; Szlag, Daniel; Feletti, Lely; Vandenberg, Wim; Dedecker, Peter; Hofkens, Johan; Leutenegger, Marcel; Lasser, Theo; Radenovic, Aleksandra

    2016-12-01

    Live-cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenge for super-resolution microscopy. Here we address this important issue by combining photoactivated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed-cell focal adhesion images, we investigate the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework is used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualize the dynamics of focal adhesions, and reveal local mean velocities around 190 nm min-1. The complementarity of PALM and SOFI is assessed in detail with a methodology that integrates a resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of molecular parameters such as fluorophore densities and photoactivation or photoswitching kinetics.

  5. Self-organization and entropy reduction in a living cell

    PubMed Central

    Davies, Paul C.W.; Rieper, Elisabeth; Tuszynski, Jack A.

    2012-01-01

    In this paper we discuss the entropy and information aspects of a living cell. Particular attention is paid to the information gain on assembling and maintaining a living state. Numerical estimates of the information and entropy reduction are given and discussed in the context of the cell’s metabolic activity. We discuss a solution to an apparent paradox that there is less information content in DNA than in the proteins that are assembled based on the genetic code encrypted in DNA. When energy input required for protein synthesis is accounted for, the paradox is clearly resolved. Finally, differences between biological information and instruction are discussed. PMID:23159919

  6. Photobleaching-Corrected FRET Efficiency Imaging of Live Cells

    PubMed Central

    Zal, Tomasz; Gascoigne, Nicholas R. J.

    2004-01-01

    Fluorescent resonance energy transfer (FRET) imaging techniques can be used to visualize protein-protein interactions in real-time with subcellular resolution. Imaging of sensitized fluorescence of the acceptor, elicited during excitation of the donor, is becoming the most popular method for live FRET (3-cube imaging) because it is fast, nondestructive, and applicable to existing widefield or confocal microscopes. Most sensitized emission-based FRET indices respond nonlinearly to changes in the degree of molecular interaction and depend on the optical parameters of the imaging system. This makes it difficult to evaluate and compare FRET imaging data between laboratories. Furthermore, photobleaching poses a problem for FRET imaging in timelapse experiments and three-dimensional reconstructions. We present a 3-cube FRET imaging method, E-FRET, which overcomes both of these obstacles. E-FRET bridges the gap between the donor recovery after acceptor photobleaching technique (which allows absolute measurements of FRET efficiency, E, but is not suitable for living cells), and the sensitized-emission FRET indices (which reflect FRET in living cells but lack the quantitation and clarity of E). With E-FRET, we visualize FRET in terms of true FRET efficiency images (E), which correlate linearly with the degree of donor interaction. We have defined procedures to incorporate photobleaching correction into E-FRET imaging. We demonstrate the benefits of E-FRET with photobleaching correction for timelapse and three-dimensional imaging of protein-protein interactions in the immunological synapse in living T-cells. PMID:15189889

  7. A Stretching Device for High Resolution Live-Cell Imaging

    PubMed Central

    Huang, Lawrence; Mathieu, Pattie S.; Helmke, Brian P.

    2012-01-01

    Several custom-built and commercially available devices are available to investigate cellular responses to substrate strain. However, analysis of structural dynamics by microscopy in living cells during stretch is not readily feasible. We describe a novel stretch device optimized for high-resolution live-cell imaging. The unit assembles onto standard inverted microscopes and applies constant magnitude or cyclic stretch at physiological magnitudes to cultured cells on elastic membranes. Interchangeable modular indenters enable delivery of equibiaxial and uniaxial stretch profiles. Strain analysis performed by tracking fluorescent microspheres adhered onto the substrate demonstrated reproducible application of stretch profiles. In endothelial cells transiently expressing EGFP-vimentin and paxillin-DsRed2 and subjected to constant magnitude equibiaxial stretch, the 2-D strain tensor demonstrated efficient transmission through the extracellular matrix and focal adhesions. Decreased transmission to the intermediate filament network was measured, and a heterogeneous spatial distribution of maximum stretch magnitude revealed discrete sites of strain focusing. Spatial correlation of vimentin and paxillin displacement vectors provided an estimate of the extent of mechanical coupling between the structures. Interestingly, switching the spatial profile of substrate strain reveals that actin-mediated edge ruffling is not desensitized to repeated mechano-stimulation. These initial observations show that the stretch device is compatible with live-cell microscopy and is a novel tool for measuring dynamic structural remodeling under mechanical strain. PMID:20195762

  8. Axially resolved polarisation microscopy of membrane dynamics in living cells

    NASA Astrophysics Data System (ADS)

    Wagner, Michael; Weber, Petra; Schneckenburger, Herbert

    2007-07-01

    Membrane dynamics has a large impact on cellular uptake and release of various metabolites or pharmaceutical agents. For a deeper understanding of the cellular processes involved, we used U373-MG human glioblastoma cells as a model system. As conventional microscopy does not permit to investigate individual layers in living cells, we used structured illumination techniques and total internal reflection fluorescence microscopy (TIRFM) to analyse the plasma membrane and intracellular membranes of living cells selectively. Optical image sections provide a high resolution and the possibility of 3D reconstruction. Membranes of living cells were characterized by the membrane marker 6-dodecanoyl-2-dimethylamino naphthalene (laurdan). Due to its spectral and kinetic properties this fluorescence marker appears appropriate for measuring membrane stiffness and fluidity. After excitation with linearly polarized laser pulses, membrane fluidity of human glioblastoma cells was determined by measurements of steady-state and time-resolved fluorescence anisotropy r(t), since with increasing viscosity of the environment, the rotation of an excited molecule is impeded. The corresponding time constant τ r of molecular relaxation decreased with temperature and increased with the amount of cholesterol. In addition, fluorescence anisotropy r(t) values of the plasma membrane were larger than the values of intracellular membranes for all temperatures in the range of 16°C<=T<=41°C.

  9. [Nucleoplasmic viscosity of living cells investigated by fluorescence correlation spectroscopy].

    PubMed

    Liang, Li-Fang; Da, Xing; Chen, Tong-Sheng; Pei, Yi-Hui

    2009-02-01

    In order to non-invasively investigate nucleoplasmic viscosity in real time with good temporal resolution, the present study firstly introduced a new method based on fluorescence correlation spectroscopy (FCS). FCS is a kind of single-molecule technique with high temporal and spatial resolution to analyze the dynamics of fluorescent molecules in nanomolar concentration. Through a time correlation analysis of spontaneous intensity fluctuations, this technique in conjunction with EGFP as a probe is capable of determining nucleoplasmic viscosity in terms of Stokes-Einstein equation as well as its corresponding analysis of the diffusion coefficient for EGFP in the nucleus. The results showed that nucleoplasmic viscosity of ASTC-a-1 cells and HeLa cells were respectively (2.55 +/- 0.61) cP and (2.04 +/- 0.49) cP at pH 7.4 and 37 degrees C, consistent with the results by traditional methods, and nucleoplasmic viscosity was found to be larger than cytoplasmic viscosity. Meanwhile, the real-time analysis of nucleoplasmic viscosity in living cells exposed to hypotonic media proved that FCS could be used to track the changing rheological characteristics of the nucleoplasm in living cells. Taken together, this study suggests that FCS provides an accurate and non-invasive method to investigate the microenvironment in living cells on the femtoliter scale and it can be used as a powerful tool in researches on the dynamical processes of intracellular molecules.

  10. Glycoarray Technologies: Deciphering Interactions from Proteins to Live Cell Responses

    PubMed Central

    Puvirajesinghe, Tania M.; Turnbull, Jeremy. E.

    2016-01-01

    Microarray technologies inspired the development of carbohydrate arrays. Initially, carbohydrate array technology was hindered by the complex structures of glycans and their structural variability. The first designs of glycoarrays focused on the HTP (high throughput) study of protein–glycan binding events, and subsequently more in-depth kinetic analysis of carbohydrate–protein interactions. However, the applications have rapidly expanded and now achieve successful discrimination of selective interactions between carbohydrates and, not only proteins, but also viruses, bacteria and eukaryotic cells, and most recently even live cell responses to immobilized glycans. Combining array technology with other HTP technologies such as mass spectrometry is expected to allow even more accurate and sensitive analysis. This review provides a broad overview of established glycoarray technologies (with a special focus on glycosaminoglycan applications) and their emerging applications to the study of complex interactions between glycans and whole living cells. PMID:27600069

  11. Live cell imaging of endosomal trafficking in fungi.

    PubMed

    Baumann, Sebastian; Takeshita, Norio; Grün, Nathalie; Fischer, Reinhard; Feldbrügge, Michael

    2015-01-01

    Endosomes are multipurpose membranous carriers important for endocytosis and secretion. During membrane trafficking, endosomes transport lipids, proteins, and even RNAs. In highly polarized cells such as fungal hyphae, they shuttle bidirectionally along microtubules mediated by molecular motors like kinesins and dynein. For in vivo studies of these highly dynamic protein/membrane complexes, advanced fluorescence microscopy is instrumental. In this chapter, we describe live cell imaging of endosomes in two distantly related fungal model systems, the basidiomycete Ustilago maydis and the ascomycete Aspergillus nidulans. We provide insights into live cell imaging of dynamic endosomal proteins and RNA, dual-color detection for colocalization studies, as well as fluorescence recovery after photobleaching (FRAP) for quantification and photo-activated localization microscopy (PALM) for super-resolution. These methods described in two well-studied fungal model systems are applicable to a broad range of other organisms.

  12. Local viscoelasticity of living cells measured by rotational magnetic spectroscopy.

    PubMed

    Berret, J-F

    2016-01-05

    When submitted to a magnetic field, micron-size wires with superparamagnetic properties behave as embedded rheometers and represent interesting sensors for microrheology. Here we use rotational magnetic spectroscopy to measure the shear viscosity of the cytoplasm of living cells. We address the question of whether the cytoplasm is a viscoelastic liquid or an elastic gel. The main result of the study is the observation of a rotational instability between a synchronous and an asynchronous regime of rotation, found for murine fibroblasts and human cancer cells. For wires of susceptibility 3.6, the transition occurs in the range 0.01-1 rad s(-1). The determination of the shear viscosity (10-100 Pa s) and elastic modulus (5-20 Pa) confirms the viscoelastic character of the cytoplasm. In contrast to earlier studies, it is concluded that the interior of living cells can be described as a viscoelastic liquid, and not as an elastic gel.

  13. Live-cell imaging of mitosis in Caenorhabditis elegans embryos.

    PubMed

    Powers, James A

    2010-06-01

    Caenorhabditis elegans is a wonderful model system for live imaging studies of mitosis. A huge collection of research tools is readily available to facilitate experimentation. For imaging, C. elegans embryos provide large clear cells, an invariant pattern of cell division, only six chromosomes, a very short cell cycle, and remain healthy and happy at room temperature. Mitosis is a complicated process and the types of research questions being asked about the mechanisms involved are continuously expanding. For each experiment, the details of imaging methods need to be tailored to the question. Specific imaging methods will depend on the microscopy hardware and software available to each researcher. This article presents points to consider when choosing a microscope, designing an imaging experiment, or selecting appropriate worm strains for imaging. A method for mounting C. elegans embryos and guidelines for fluorescence and differential interference contrast imaging of mitosis in live embryos are presented.

  14. Synthetic mixed-signal computation in living cells

    PubMed Central

    Rubens, Jacob R.; Selvaggio, Gianluca; Lu, Timothy K.

    2016-01-01

    Living cells implement complex computations on the continuous environmental signals that they encounter. These computations involve both analogue- and digital-like processing of signals to give rise to complex developmental programs, context-dependent behaviours and homeostatic activities. In contrast to natural biological systems, synthetic biological systems have largely focused on either digital or analogue computation separately. Here we integrate analogue and digital computation to implement complex hybrid synthetic genetic programs in living cells. We present a framework for building comparator gene circuits to digitize analogue inputs based on different thresholds. We then demonstrate that comparators can be predictably composed together to build band-pass filters, ternary logic systems and multi-level analogue-to-digital converters. In addition, we interface these analogue-to-digital circuits with other digital gene circuits to enable concentration-dependent logic. We expect that this hybrid computational paradigm will enable new industrial, diagnostic and therapeutic applications with engineered cells. PMID:27255669

  15. Optical diffraction tomography for high resolution live cell imaging.

    PubMed

    Sung, Yongjin; Choi, Wonshik; Fang-Yen, Christopher; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S

    2009-01-05

    We report the experimental implementation of optical diffraction tomography for quantitative 3D mapping of refractive index in live biological cells. Using a heterodyne Mach-Zehnder interferometer, we record complex field images of light transmitted through a sample with varying directions of illumination. To quantitatively reconstruct the 3D map of complex refractive index in live cells, we apply optical diffraction tomography based on the Rytov approximation. In this way, the effect of diffraction is taken into account in the reconstruction process and diffraction-free high resolution 3D images are obtained throughout the entire sample volume. The quantitative refractive index map can potentially serve as an intrinsic assay to provide the molecular concentrations without the addition of exogenous agents and also to provide a method for studying the light scattering properties of single cells.

  16. White-light diffraction tomography of unlabelled live cells

    NASA Astrophysics Data System (ADS)

    Kim, Taewoo; Zhou, Renjie; Mir, Mustafa; Babacan, S. Derin; Carney, P. Scott; Goddard, Lynford L.; Popescu, Gabriel

    2014-03-01

    We present a technique called white-light diffraction tomography (WDT) for imaging microscopic transparent objects such as live unlabelled cells. The approach extends diffraction tomography to white-light illumination and imaging rather than scattering plane measurements. Our experiments were performed using a conventional phase contrast microscope upgraded with a module to measure quantitative phase images. The axial dimension of the object was reconstructed by scanning the focus through the object and acquiring a stack of phase-resolved images. We reconstructed the three-dimensional structures of live, unlabelled, red blood cells and compared the results with confocal and scanning electron microscopy images. The 350 nm transverse and 900 nm axial resolution achieved reveals subcellular structures at high resolution in Escherichia coli cells. The results establish WDT as a means for measuring three-dimensional subcellular structures in a non-invasive and label-free manner.

  17. Quantum dots targeted to the assigned organelle in living cells.

    PubMed

    Hoshino, Akiyoshi; Fujioka, Kouki; Oku, Taisuke; Nakamura, Shun; Suga, Masakazu; Yamaguchi, Yukio; Suzuki, Kazuo; Yasuhara, Masato; Yamamoto, Kenji

    2004-01-01

    Fluorescent nanocrystal quantum dots (QDs) have the potential to be applied to bioimaging since QDs emit higher and far longer fluorescence than conventional organic probes. Here we show that QDs conjugated with signal peptide obey the order to transport the assigned organelle in living cells. We designed the supermolecule of luminescent QDs conjugated with nuclear- and mitochondria-targeting ligands. When QDs with nuclear-localizing signal peptides were added to the culture media, we can visualize the movements of the QDs being delivered into the nuclear compartment of the cells with 15 min incubation. In addition, mitochondrial signal peptide can also transport QDs to the mitochondria in living cells. In conclusion, these techniques have the possibility that QDs can reveal the transduction of proteins and peptides into specific subcellular compartments as a powerful tool for studying intracellular analysis in vitro and even in vivo.

  18. Challenges posed to the traceability of weaner pigs following live auction.

    PubMed

    Sithole, F; Toribio, J; Schembri, N; Holyoake, P K

    2009-04-01

    To gather demographic data on live pig sales through a peri-urban saleyard in Camden, New South Wales, and to demonstrate the difficulties in tracing the subsequent movements of pigs, particularly weaner pigs. Records of pig sales held weekly at the Camden saleyards for the 2003/2004 and 2004/2005 financial years were analysed. Saleyard data on a number of variables were entered into a purpose-designed database. Distributions of pig sales according to pig class (weaner/porker/baconer/backfatter), purchaser type (butcher/non-butcher), and transaction type (cash/account) were determined. More weaners (3192 in 2003/2004 and 3940 in 2004/2005) were sold than any other class of pig, accounting for 45% of the total pigs sold during this period. During 2003/2004, 3802 pigs were bought by 329 non-butcher purchasers including 1631 weaners (43%) purchased by 153 non-butchers (47%). The majority of these non-butchers during the study period (86%) paid cash for their pigs and did not provide the necessary information to allow the end destination of pigs to be determined. Location data was available for all vendors but only 25% of purchasers. This study highlights the challenges posed in tracing movement of pigs following sale by auction. A high proportion of weaners sold at this peri-urban saleyard would not have been slaughtered immediately. This study highlights the potential difficulties in tracing pig movements after sale, for disease control purposes. We recommend that legislation be amended requiring the identification of weaner pigs sold live at auction in all states of Australia and the recording of the property identification code of all vendors and purchasers of pigs sold live at auction.

  19. The Health Benefits and Challenges of Exercise Training in Persons Living with Schizophrenia: A Pilot Study

    PubMed Central

    Bredin, Shannon S. D.; Warburton, Darren E. R.; Lang, Donna J.

    2013-01-01

    Background: In addition to the hallmark cognitive and functional impairments mounting evidence indicates that schizophrenia is also associated with an increased risk for the development of secondary complications, in particular cardio-metabolic disease. This is thought to be the result of various factors including physical inactivity and the metabolic side effects of psychotropic medications. Therefore, non-pharmacological approaches to improving brain health, physical health, and overall well-being have been promoted increasingly. Methods: We report on the health-related physical fitness (body composition, blood pressure, heart rate, and aerobic fitness) and lipid profile of persons living with schizophrenia and effective means to address the challenges of exercise training in this population. Results: There was a markedly increased risk for cardio-metabolic disease in 13 persons living with schizophrenia (Age = 31 ± 7 years) including low aerobic fitness (76% ± 34% of predicted), reduced HDL (60% of cohort), elevated resting heart rate (80% of cohort), hypertension (40% of cohort), overweight and obesity (69% of cohort), and abdominal obesity (54% of cohort). Individualized exercise prescription (3 times/week) was well tolerated, with no incidence of adverse exercise-related events. The exercise adherence rate was 81% ± 21% (Range 48%–100%), and 69% of the participants were able to complete the entire exercise training program. Exercise training resulted in clinically important changes in physical activity, aerobic fitness, exercise tolerance, blood pressure, and body composition. Conclusion: Persons living with schizophrenia appear to be at an increased risk for cardio-metabolic disease. An individualized exercise program has shown early promise for the treatment of schizophrenia and the various cognitive, functional, and physiological impairments that ultimately affect health and well-being. PMID:24961427

  20. Copper-Catalyzed Click Reaction on/in Live Cells.

    PubMed

    Li, Siheng; Wang, Lin; Yu, Fei; Zhu, Zhiling; Shobaki, Dema; Chen, Haoqing; Wang, Mu; Wang, Jun; Qin, Guoting; Erasquin, Uriel J; Ren, Li; Wang, Yingjun; Cai, Chengzhi

    2017-03-01

    We demonstrated that copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction could be performed inside live mammalian cells without using a chelating azide. Under optimized conditions, the reaction was performed in human ovary cancer cell line OVCAR5 in which newly synthesized proteins were metabolically modified with homopropargylglycine (HPG). This model system allowed us to estimate the efficiency of the reaction on the cell membranes and in the cytosol using mass spectrometry. We found that the reaction was greatly promoted by a tris(triazolylmethyl)amine Cu(I) ligand tethering a cell-penetrating peptide. Uptake of the ligand, copper, and a biotin-tagged azide in the cells was determined to be 69 ± 2, 163 ± 3 and 1.3 ± 0.1 µM, respectively. After 10 minutes of reaction, the product yields on the membrane and cytosolic proteins were higher than 18% and 0.8%, respectively, while 75% cells remained viable. By reducing the biothiols in the system by scraping or treatment with N-ethylmalemide, the reaction yield on the cytosolic proteins was greatly improved to ~9% and ~14%, respectively, while the yield on the membrane proteins remained unchanged. The results indicate that out of many possibilities, deactivation of the current copper catalysts by biothiols is the major reason for the low yield of CuAAC reaction in the cytosol. Overall, we have improved the efficiency for CuAAC reaction on live cells by 3-fold. Despite the low yielding inside live cells, the products that strongly bind to the intracellular targets can be detected by mass spectrometry. Hence, the in situ CuAAC reaction can be potentially used for screening of cell-specific enzyme inhibitors or biomarkers containing 1,4-substituted 1,2,3-triazoles.

  1. Streamlined duplex live-dead microplate assay for cultured cells.

    PubMed

    Pfeffer, Bruce A; Fliesler, Steven J

    2017-08-01

    A duplex fluorescence assay to assess the viability of cells cultured in multi-well plates is described, which can be carried out in the original culture plate using a plate reader, without exchanges of culture or assay medium, or transfer of cells or cell supernatant. The method uses freshly prepared reagents and does not rely on a proprietary, commercially supplied kit. Following experimental treatment, calcein acetoxymethyl ester (CaAM) is added to each well of cultured cells; after 30 min, the fluorescence intensity (emission λmax ∼ 530 nm) is measured. The signal is due to formation of calcein, which is produced from CaAM by action of esterase activity found in intact live cells. Since live cells may express plasma membrane multidrug transport proteins, especially of the ABC transporter family, the CaAM incubation is carried out in the presence of an inhibitor of this efflux process, thereby improving the dynamic range of the assay. Next, SYTOX(®) Orange (SO) is added to the culture wells, and, after a 30-min incubation, fluorescence intensity (emission λmax ∼ 590 nm) is measured again. SO is excluded from cells that have an intact plasma membrane, but penetrates dead/dying cells and can diffuse into the nucleus, where it binds to and forms a fluorescent complex with DNA. The CaAM already added to the wells causes no interference with the latter fluorescent signal. At the conclusion of the duplex assay, both live and dead cells remain in the culture wells and can be documented by digital imaging to demonstrate correlation of cellular morphology with the assay output. Two examples of the application of this method are provided, using cytotoxic compounds having different mechanisms of action. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Microfluidic Devices for Terahertz Spectroscopy of Live Cells Toward Lab-on-a-Chip Applications.

    PubMed

    Tang, Qi; Liang, Min; Lu, Yi; Wong, Pak Kin; Wilmink, Gerald J; Zhang, Donna; Xin, Hao

    2016-04-04

    THz spectroscopy is an emerging technique for studying the dynamics and interactions of cells and biomolecules, but many practical challenges still remain in experimental studies. We present a prototype of simple and inexpensive cell-trapping microfluidic chip for THz spectroscopic study of live cells. Cells are transported, trapped and concentrated into the THz exposure region by applying an AC bias signal while the chip maintains a steady temperature at 37 °C by resistive heating. We conduct some preliminary experiments on E. coli and T-cell solution and compare the transmission spectra of empty channels, channels filled with aqueous media only, and channels filled with aqueous media with un-concentrated and concentrated cells.

  3. Microfluidic Devices for Terahertz Spectroscopy of Live Cells Toward Lab-on-a-Chip Applications

    PubMed Central

    Tang, Qi; Liang, Min; Lu, Yi; Wong, Pak Kin; Wilmink, Gerald J.; D. Zhang, Donna; Xin, Hao

    2016-01-01

    THz spectroscopy is an emerging technique for studying the dynamics and interactions of cells and biomolecules, but many practical challenges still remain in experimental studies. We present a prototype of simple and inexpensive cell-trapping microfluidic chip for THz spectroscopic study of live cells. Cells are transported, trapped and concentrated into the THz exposure region by applying an AC bias signal while the chip maintains a steady temperature at 37 °C by resistive heating. We conduct some preliminary experiments on E. coli and T-cell solution and compare the transmission spectra of empty channels, channels filled with aqueous media only, and channels filled with aqueous media with un-concentrated and concentrated cells. PMID:27049392

  4. Endogenous Fluorescence Signatures in Living Pluripotent Stem Cells Change with Loss of Potency

    PubMed Central

    Squirrell, Jayne M.; Fong, Jimmy J.; Ariza, Carlos A.; Mael, Amber; Meyer, Kassondra; Shevde, Nirupama K.; Roopra, Avtar; Lyons, Gary E.; Kamp, Timothy J.; Eliceiri, Kevin W.; Ogle, Brenda M.

    2012-01-01

    The therapeutic potential of stem cells is limited by the non-uniformity of their phenotypic state. Thus it would be advantageous to noninvasively monitor stem cell status. Driven by this challenge, we employed multidimensional multiphoton microscopy to quantify changes in endogenous fluorescence occurring with pluripotent stem cell differentiation. We found that global and cellular-scale fluorescence lifetime of human embryonic stem cells (hESC) and murine embryonic stem cells (mESC) consistently decreased with differentiation. Less consistent were trends in endogenous fluorescence intensity with differentiation, suggesting intensity is more readily impacted by nuances of species and scale of analysis. What emerges is a practical and accessible approach to evaluate, and ultimately enrich, living stem cell populations based on changes in metabolism that could be exploited for both research and clinical applications. PMID:22952742

  5. Long live the stem cell: the use of stem cells isolated from post mortem tissues for translational strategies.

    PubMed

    Hodgetts, Stuart I; Stagg, Kelda; Sturm, Marian; Edel, Michael; Blancafort, Pilar

    2014-11-01

    The "stem cell" has become arguably one of the most important biological tools in the arsenal of translational research directed at regeneration and repair. It remains to be seen whether every tissue has its own stem cell niche, although relatively recently a large amount of research has focused on isolating and characterizing tissue-specific stem cell populations, as well as those that are able to be directed to transdifferentiate into a variety of different lineages. Traditionally, stem cells are isolated from the viable tissue of embryonic, fetal, or adult living hosts; from "fresh" donated tissues that have been surgically or otherwise removed (biopsies), or obtained directly from tissues within minutes to several hours post mortem (PM). These human progenitor/stem cell sources remain potentially highly controversial, since they are accompanied by various still-unresolved ethical, social, moral and legal challenges. Due to the limited number of "live" donors, the small amount of material obtained from biopsies and difficulties during purification processes, harvesting from cadaveric material presents itself as an alternative strategy that could provide a hitherto untapped source of stem cells. However, PM stem cells are not without their own unique set of limitations including difficulty of obtaining samples, limited supply of material, variations in delay between death and sample collection, possible lack of medication history and suboptimal retrospective assignment of diagnostic and demographic data. This article is part of a Directed Issue entitled: Regenerative Medicine: The challenge of translation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Towards Probing Living Cell Function with NV Centers in Nanodiamonds

    NASA Astrophysics Data System (ADS)

    Lovchinsky, Igor; Chisholm, Nicholas; Sushkov, Alex; Lo, Peggy; Sutton, Amy; Robinson, Jacob; Yao, Norman; Bennett, Steven; Park, Hongkun; Lukin, Mikhail

    2012-06-01

    We report on recent progress in using nitrogen-vacancy (NV) centers in nanodiamonds as local probes of radical concentrations in living cells. Nanodiamonds are biologically inert, and NV centers within them are robust and can sense local magnetic fields with nanoscale resolution. The ability to monitor the local magnetic environment within the cell would provide a new tool to study organelle function during normal operation or in response to applied stimuli. In addition, radical concentrations have been linked to cancer, aging, and signaling between cells, thus proving to be of significant importance to the biological and medical sciences.

  7. G-quadruplex DNA and ligand interaction in living cells using NMR spectroscopy.

    PubMed

    Salgado, Gilmar F; Cazenave, Christian; Kerkour, Abdelaziz; Mergny, Jean-Louis

    2015-06-01

    Gathering structural information from biologically relevant molecules inside living cells has always been a challenging task. In this work, we have used multidimensional NMR spectroscopy to probe DNA G-quadruplexes inside living Xenopus laevis oocytes. Some of these structures can be found in key regions of chromosomes. G-quadruplexes are considered potential anticancer therapeutic targets and several lines of evidence indirectly point out roles in key biological processes, such as cell proliferation, genomic instability or replication initiation. However, direct demonstrations of the existence of G-quadruplexes in vivo are scarce. Using SOFAST-HMQC type spectra, we probed a tetramolecular G-quadruplex model made of d(TG4T)4 inside living Xenopus laevis oocytes. Our observations lead us to conclude that the quadruplex structure is formed within the cell and that the intracellular environment preferentially selects a conformation that most resembles the one found in vitro under KCl conditions. We also show for the first time that specific ligands targeting G-quadruplexes can be studied using high resolution NMR directly inside living cells, opening new avenues to study ligand binding discrimination under physiologically relevant conditions with atomic detail.

  8. From surface to intracellular non-invasive nanoscale study of living cells impairments

    NASA Astrophysics Data System (ADS)

    Ewald, M.; Tetard, L.; Elie-Caille, C.; Nicod, L.; Passian, A.; Bourillot, E.; Lesniewska, E.

    2014-07-01

    Among the enduring challenges in nanoscience, subsurface characterization of living cells holds major stakes. Developments in nanometrology for soft matter thriving on the sensitivity and high resolution benefits of atomic force microscopy have enabled detection of subsurface structures at the nanoscale. However, measurements in liquid environments remain complex, in particular in the subsurface domain. Here we introduce liquid-mode synthesizing atomic force microscopy (l-MSAFM) to study both the inner structures and the chemically induced intracellular impairments of living cells. Specifically, we visualize the intracellular stress effects of glyphosate on living keratinocytes skin cells. This new approach, l-MSAFM, for nanoscale imaging of living cell in their physiological environment or in presence of a chemical stress agent could resolve the loss of inner structures induced by glyphosate, the main component of a well-known pesticide (RoundUp™). This firsthand ability to monitor the cell’s inner response to external stimuli non-destructively and in liquid, has the potential to unveil critical nanoscale mechanisms of life science.

  9. Miniaturized biological and electrochemical fuel cells: challenges and applications.

    PubMed

    Yang, Jie; Ghobadian, Sasan; Goodrich, Payton J; Montazami, Reza; Hashemi, Nastaran

    2013-09-14

    This paper discusses the fundamentals and developments of miniaturized fuel cells, both biological and electrochemical. An overview of microfluidic fuel cells, miniaturized microbial fuel cells, enzymatic biofuel cells, and implanted biofuel cells in an attempt to provide green energy and to power implanted microdevices is provided. Also, the challenges and applications of each type of fuel cell are discussed in detail. Most recent developments in fuel cell technologies such as novel catalysts, compact designs, and fabrication methods are reviewed.

  10. Challenges to optimal medicines use in people living with dementia and their caregivers: A literature review.

    PubMed

    Alsaeed, Dalal; Jamieson, Elizabeth; Gul, Mine Orlu; Smith, Felicity J

    2016-10-30

    Dementia is fast becoming a global concern due to a demographic shift towards an older population. Many studies have shown that caring for a family member or friend has a profound and negative impact on the physical, emotional and psychosocial aspects of the caregivers' life. One significant activity that a family caregiver undertakes is assistance with the management of medicines. This review was undertaken to ascertain what the issues are that affect optimal medicines use from the perspectives of people living with dementia and their caregivers, both in the community and care home settings. A literature search was conducted using electronic databases, employing a combination of search terms. A total of 16 studies met the inclusion criteria. Six broad themes were identified, together with some recommendations to improve medicines use in people with dementia. Challenges to medicines use centred on medicines management and administration, the impact on the caregiver and care recipient, their partnership and interface with formal care. Future research should focus on developing targeted interventions that can overcome these challenges to achieve optimal medicines use. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Foundations and Emerging Paradigms for Computing in Living Cells.

    PubMed

    Ma, Kevin C; Perli, Samuel D; Lu, Timothy K

    2016-02-27

    Genetic circuits, composed of complex networks of interacting molecular machines, enable living systems to sense their dynamic environments, perform computation on the inputs, and formulate appropriate outputs. By rewiring and expanding these circuits with novel parts and modules, synthetic biologists have adapted living systems into vibrant substrates for engineering. Diverse paradigms have emerged for designing, modeling, constructing, and characterizing such artificial genetic systems. In this paper, we first provide an overview of recent advances in the development of genetic parts and highlight key engineering approaches. We then review the assembly of these parts into synthetic circuits from the perspectives of digital and analog logic, systems biology, and metabolic engineering, three areas of particular theoretical and practical interest. Finally, we discuss notable challenges that the field of synthetic biology still faces in achieving reliable and predictable forward-engineering of artificial biological circuits.

  12. Traceless affinity labeling of endogenous proteins for functional analysis in living cells.

    PubMed

    Hayashi, Takahiro; Hamachi, Itaru

    2012-09-18

    Protein labeling and imaging techniques have provided tremendous opportunities to study the structure, function, dynamics, and localization of individual proteins in the complex environment of living cells. Molecular biology-based approaches, such as GFP-fusion tags and monoclonal antibodies, have served as important tools for the visualization of individual proteins in cells. Although these techniques continue to be valuable for live cell imaging, they have a number of limitations that have only been addressed by recent progress in chemistry-based approaches. These chemical approaches benefit greatly from the smaller probe sizes that should result in fewer perturbations to proteins and to biological systems as a whole. Despite the research in this area, so far none of these labeling techniques permit labeling and imaging of selected endogenous proteins in living cells. Researchers have widely used affinity labeling, in which the protein of interest is labeled by a reactive group attached to a ligand, to identify and characterize proteins. Since the first report of affinity labeling in the early 1960s, efforts to fine-tune the chemical structures of both the reactive group and ligand have led to protein labeling with excellent target selectivity in the whole proteome of living cells. Although the chemical probes used for affinity labeling generally inactivate target proteins, this strategy holds promise as a valuable tool for the labeling and imaging of endogenous proteins in living cells and by extension in living animals. In this Account, we summarize traceless affinity labeling, a technique explored mainly in our laboratory. In our overview of the different labeling techniques, we emphasize the challenge of designing chemical probes that allow for dissociation of the affinity module (often a ligand) after the labeling reaction so that the labeled protein retains its native function. This feature distinguishes the traceless labeling approach from the traditional

  13. Jet-based methods to print living cells.

    PubMed

    Ringeisen, Bradley R; Othon, Christina M; Barron, Jason A; Young, Daniel; Spargo, Barry J

    2006-09-01

    Cell printing has been popularized over the past few years as a revolutionary advance in tissue engineering has potentially enabled heterogeneous 3-D scaffolds to be built cell-by-cell. This review article summarizes the state-of-the-art cell printing techniques that utilize fluid jetting phenomena to deposit 2- and 3-D patterns of living eukaryotic cells. There are four distinct categories of jetbased approaches to printing cells. Laser guidance direct write (LG DW) was the first reported technique to print viable cells by forming patterns of embryonic-chick spinal-cord cells on a glass slide (1999). Shortly after this, modified laser-induced forward transfer techniques (LIFT) and modified ink jet printers were also used to print viable cells, followed by the most recent demonstration using an electrohydrodynamic jetting (EHDJ) method. The low cost of some of these printing technologies has spurred debate as to whether they could be used on a large scale to manufacture tissue and possibly even whole organs. This review summarizes the published results of these cell printers (cell viability, retained genotype and phenotype), and also includes a physical description of the various jetting processes with a discussion of the stresses and forces that may be encountered by cells during printing. We conclude the review by comparing and contrasting the different jet-based techniques, while providing a map for future experiments that could lead to significant advances in the field of tissue engineering.

  14. A drug-compatible and temperature-controlled microfluidic device for live-cell imaging

    PubMed Central

    Chen, Tong; Gomez-Escoda, Blanca; Munoz-Garcia, Javier; Babic, Julien; Griscom, Laurent; Wu, Pei-Yun Jenny

    2016-01-01

    Monitoring cellular responses to changes in growth conditions and perturbation of targeted pathways is integral to the investigation of biological processes. However, manipulating cells and their environment during live-cell-imaging experiments still represents a major challenge. While the coupling of microfluidics with microscopy has emerged as a powerful solution to this problem, this approach remains severely underexploited. Indeed, most microdevices rely on the polymer polydimethylsiloxane (PDMS), which strongly absorbs a variety of molecules commonly used in cell biology. This effect of the microsystems on the cellular environment hampers our capacity to accurately modulate the composition of the medium and the concentration of specific compounds within the microchips, with implications for the reliability of these experiments. To overcome this critical issue, we developed new PDMS-free microdevices dedicated to live-cell imaging that show no interference with small molecules. They also integrate a module for maintaining precise sample temperature both above and below ambient as well as for rapid temperature shifts. Importantly, changes in medium composition and temperature can be efficiently achieved within the chips while recording cell behaviour by microscopy. Compatible with different model systems, our platforms provide a versatile solution for the dynamic regulation of the cellular environment during live-cell imaging. PMID:27512142

  15. Combined fluorescence and ultrastructural mapping of living cells

    NASA Astrophysics Data System (ADS)

    Kohen, Elli; Hirschberg, Joseph G.; Kohen, Cahide; Prince, Jeffrey; Suckewer, Szymon; Santus, Rene C.; Morliere, Patrice; Dubertret, Louis

    1990-05-01

    The topographic analysis of fluorescence distribution has been carried out pixel-by-pixel by one dimensional, two-dimensional microspectrofluorometry and three-dimensional confocal fluorescence microscopy. Fluorescence emission spectra of NAD(P)H and benzo(a)pyrene (or metabolites) were recorded at different excitation wavelengths. Cell bioenergetics are monitored in normal and malignant cells as well as cells with genetic defects by coenzyme responses to microinjections of substrates and modifiers from key metabolic pathways in presence and absence of inhibitors and drugs active on mitochondrial structure and function. Cooperative interactions between organelles involved in detoxification mechanisms are observed in cells treated with fluorescent cytotoxic agents. Such interactions can be directly mapped by the fluorescence of cytotoxic agents, their reaction products or vital probes such as NBD ceramide for the Golgi apparatus. To identify the organelles involved parallel electron microscopic studies are carried out in cells first treated with the cytotoxic agent and then incubated with an electron opaque material. A recently developed combined X-ray laser microscope (COXRALM) holds the promise of carrying out combined phase-fluorescence-and X-ray microscopic observations of fluorescence and ultrastructural correlations in live cell probing. As further versatility is gained in such methods it may become possible to obtain a very detailed structure and function mapping of living cells within the context of cytomatrix analysis, metabolic compartmentation and organelle interactions.

  16. Assembly dynamics of PML nuclear bodies in living cells.

    PubMed

    Brand, Peter; Lenser, Thorsten; Hemmerich, Peter

    2010-03-05

    The mammalian cell nucleus contains a variety of organelles or nuclear bodies which contribute to key nuclear functions. Promyelocytic leukemia nuclear bodies (PML NBs) are involved in the regulation of apoptosis, antiviral responses, the DNA damage response and chromatin structure, but their precise biochemical function in these nuclear pathways is unknown. One strategy to tackle this problem is to assess the biophysical properties of the component parts of these macromolecular assemblies in living cells. In this study we determined PML NB assembly dynamics by live cell imaging, combined with mathematical modeling. For the first time, dynamics of PML body formation were measured in cells lacking endogenous PML. We show that all six human nuclear PML isoforms are able to form nuclear bodies in PML negative cells. All isoforms exhibit individual exchange rates at NBs in PML positive cells but PML I, II, III and IV are static at nuclear bodies in PML negative cells, suggesting that these isoforms require additional protein partners for efficient exchange. PML V turns over at PML Nbs very slowly supporting the idea of a structural function for this isoform. We also demonstrate that SUMOylation of PML at Lysine positions K160 and/or K490 are required for nuclear body formation in vivo.We propose a model in which the isoform specific residence times of PML provide both, structural stability to function as a scaffold and flexibility to attract specific nuclear proteins for efficient biochemical reactions at the surface of nuclear bodies.MCS code: 92C37.

  17. Scanning Ion Conductance Microscopy for living cell membrane potential measurement

    NASA Astrophysics Data System (ADS)

    Panday, Namuna

    Recently, the existence of multiple micro-domains of extracellular potential around individual cells have been revealed by voltage reporter dye using fluorescence microscopy. One hypothesis is that these long lasting potential patterns play a vital role in regulating important cell activities such as embryonic patterning, regenerative repair and reduction of cancerous disorganization. We used multifunctional Scanning Ion Conductance Microscopy (SICM) to study these extracellular potential patterns of single cell with higher spatial resolution. To validate this novel technique, we compared the extracellular potential distribution on the fixed HeLa cell surface and Polydimethylsiloxane (PDMS) surface and found significant difference. We then measured the extracellular potential distributions of living melanocytes and melanoma cells and found both the mean magnitude and spatial variation of extracellular potential of the melanoma cells are bigger than those of melanocytes. As compared to the voltage reporter dye based fluorescence microscope method, SICM can achieve quantitative potential measurements of non-labeled living cell membranes with higher spatial resolution.

  18. Plasma needle: treatment of living cells and tissues

    NASA Astrophysics Data System (ADS)

    Stoffels, Eva

    2003-10-01

    Non-thermal plasmas are capable of refined treatment of heat sensitive surfaces. Recently, many non-thermal sources working under atmospheric pressure have been constructed. Their main applications are various surface treatments: cleaning, etching, changing the wettability/adhesion, and bacterial decontamination. A new research at the Eindhoven University of Technology focuses on in vivo treatment by means of a novel non-thermal plasma source (the plasma needle). At present, a fundamental study has been undertaken to identify all possible responses of living objects exposed to the plasma. Plasma treatment does not lead to cell death (necrosis), which is a cause of inflammation. On the contrary, we observe various sophisticated reactions of mammalian cells, e.g. cell detachment (loss of cell contact) and programmed cell death (apoptosis). Moreover, under certain conditions the plasma is capable of killing bacteria, while eukaryotic cells remain unharmed. These findings may result in development of new techniques, like bacterial sterilization of infected (living) tissues or removal of cells without inflammatory response, and on a longer time scale to new methods in the health care. Possible applications include treatment of skin ailments, aiding wound healing and sterilization of dental cavities.

  19. The dynamic lives of T cells: new approaches and themes

    PubMed Central

    Yamanaka, Yvonne J.; Gierahn, Todd M.; Love, J. Christopher

    2012-01-01

    Activated T cells have classically been thought to progress unidirectionally through discrete phenotypic states and differentiate into static lineages. It is increasingly evident, however, that T cells exhibit much more complex and flexible dynamic behaviors than initially appreciated, and that these behaviors influence the efficacy of T cell responses to immunological challenges. In this review, we discuss how new technologies for monitoring the dynamics of T cells are enhancing the resolution of the fine phenotypic and functional heterogeneity within populations of T cells and revealing how individual T cells transition among a continuum of states. Such insights into the dynamic properties of T cells should improve immune monitoring and inform strategies for therapeutic interventions. PMID:23200626

  20. Cross Talk Free Fluorescence Cross Correlation Spectroscopy in Live Cells

    PubMed Central

    Thews, Elmar; Gerken, Margarita; Eckert, Reiner; Zäpfel, Johannes; Tietz, Carsten; Wrachtrup, Jörg

    2005-01-01

    Fluorescence correlation spectroscopy (FCS) is now a widely used technique to measure small ensembles of labeled biomolecules with single molecule detection sensitivity (e.g., low endogenous concentrations). Fluorescence cross correlation spectroscopy (FCCS) is a derivative of this technique that detects the synchronous movement of two biomolecules with different fluorescence labels. Both methods can be applied to live cells and, therefore, can be used to address a variety of unsolved questions in cell biology. Applications of FCCS with autofluorescent proteins (AFPs) have been hampered so far by cross talk between the detector channels due to the large spectral overlap of the fluorophores. Here we present a new method that combines advantages of these techniques to analyze binding behavior of proteins in live cells. To achieve this, we have used dual color excitation of a common pair of AFPs, ECFP and EYFP, being discriminated in excitation rather than in emission. This is made possible by pulsed excitation and detection on a shorter timescale compared to the average residence time of particles in the FCS volume element. By this technique we were able to eliminate cross talk in the detector channels and obtain an undisturbed cross correlation signal. The setup was tested with ECFP/EYFP lysates as well as chimeras as negative and positive controls and demonstrated to work in live HeLa cells coexpressing the two fusion proteins ECFP-connexin and EYFP-connexin. PMID:15951373

  1. Imaging Live Cells at the Nanometer-Scale with Single-Molecule Microscopy: Obstacles and Achievements in Experiment Optimization for Microbiology

    PubMed Central

    Haas, Beth L.; Matson, Jyl S.; DiRita, Victor J.; Biteen, Julie S.

    2015-01-01

    Single-molecule fluorescence microscopy enables biological investigations inside living cells to achieve millisecond- and nanometer-scale resolution. Although single-molecule-based methods are becoming increasingly accessible to non-experts, optimizing new single-molecule experiments can be challenging, in particular when super-resolution imaging and tracking are applied to live cells. In this review, we summarize common obstacles to live-cell single-molecule microscopy and describe the methods we have developed and applied to overcome these challenges in live bacteria. We examine the choice of fluorophore and labeling scheme, approaches to achieving single-molecule levels of fluorescence, considerations for maintaining cell viability, and strategies for detecting single-molecule signals in the presence of noise and sample drift. We also discuss methods for analyzing single-molecule trajectories and the challenges presented by the finite size of a bacterial cell and the curvature of the bacterial membrane. PMID:25123183

  2. Imaging live cells at the nanometer-scale with single-molecule microscopy: obstacles and achievements in experiment optimization for microbiology.

    PubMed

    Haas, Beth L; Matson, Jyl S; DiRita, Victor J; Biteen, Julie S

    2014-08-13

    Single-molecule fluorescence microscopy enables biological investigations inside living cells to achieve millisecond- and nanometer-scale resolution. Although single-molecule-based methods are becoming increasingly accessible to non-experts, optimizing new single-molecule experiments can be challenging, in particular when super-resolution imaging and tracking are applied to live cells. In this review, we summarize common obstacles to live-cell single-molecule microscopy and describe the methods we have developed and applied to overcome these challenges in live bacteria. We examine the choice of fluorophore and labeling scheme, approaches to achieving single-molecule levels of fluorescence, considerations for maintaining cell viability, and strategies for detecting single-molecule signals in the presence of noise and sample drift. We also discuss methods for analyzing single-molecule trajectories and the challenges presented by the finite size of a bacterial cell and the curvature of the bacterial membrane.

  3. Modeling the dynamics of dendritic actin waves in living cells

    NASA Astrophysics Data System (ADS)

    Wasnik, Vaibhav; Mukhopadhyay, Ranjan

    2014-11-01

    The actin cytoskeleton in living cells exhibits a high degree of capacity for dynamic self-organization. Recent experiments have observed propagating actin waves in Dictyostelium cells recovering from complete depolymerization of their actin cytoskeleton. The propagation of these waves appear to be dependent on a programmed recruitment of a few proteins that control actin assembly and disassembly. Such waves also arise spontaneously along the plasma membrane of the cell, and it has been suggested that actin waves enable the cell to scan a surface for particles to engulf. Based on known molecular components involved in wave propagation, we present and study a minimal reaction-diffusion model for actin wave production observed in recovering cells.

  4. Multiplexed nanoflares: mRNA detection in live cells.

    PubMed

    Prigodich, Andrew E; Randeria, Pratik S; Briley, William E; Kim, Nathaniel J; Daniel, Weston L; Giljohann, David A; Mirkin, Chad A

    2012-02-21

    We report the development of the multiplexed nanoflare, a nanoparticle agent that is capable of simultaneously detecting two distinct mRNA targets inside a living cell. These probes are spherical nucleic acid (SNA) gold nanoparticle (Au NP) conjugates consisting of densely packed and highly oriented oligonucleotide sequences, many of which are hybridized to a reporter with a distinct fluorophore label and each complementary to its corresponding mRNA target. When multiplexed nanoflares are exposed to their targets, they provide a sequence specific signal in both extra- and intracellular environments. Importantly, one of the targets can be used as an internal control, improving detection by accounting for cell-to-cell variations in nanoparticle uptake and background. Compared to single-component nanoflares, these structures allow one to determine more precisely relative mRNA levels in individual cells, improving cell sorting and quantification.

  5. Live Imaging of Adult Neural Stem Cells in Rodents

    PubMed Central

    Ortega, Felipe; Costa, Marcos R.

    2016-01-01

    The generation of cells of the neural lineage within the brain is not restricted to early development. New neurons, oligodendrocytes, and astrocytes are produced in the adult brain throughout the entire murine life. However, despite the extensive research performed in the field of adult neurogenesis during the past years, fundamental questions regarding the cell biology of adult neural stem cells (aNSCs) remain to be uncovered. For instance, it is crucial to elucidate whether a single aNSC is capable of differentiating into all three different macroglial cell types in vivo or these distinct progenies constitute entirely separate lineages. Similarly, the cell cycle length, the time and mode of division (symmetric vs. asymmetric) that these cells undergo within their lineage progression are interesting questions under current investigation. In this sense, live imaging constitutes a valuable ally in the search of reliable answers to the previous questions. In spite of the current limitations of technology new approaches are being developed and outstanding amount of knowledge is being piled up providing interesting insights in the behavior of aNSCs. Here, we will review the state of the art of live imaging as well as the alternative models that currently offer new answers to critical questions. PMID:27013941

  6. Mapping eGFP oligomer mobility in living cell nuclei.

    PubMed

    Dross, Nicolas; Spriet, Corentin; Zwerger, Monika; Müller, Gabriele; Waldeck, Waldemar; Langowski, Jörg

    2009-01-01

    Movement of particles in cell nuclei can be affected by viscosity, directed flows, active transport, or the presence of obstacles such as the chromatin network. Here we investigate whether the mobility of small fluorescent proteins is affected by the chromatin density. Diffusion of inert fluorescent proteins was studied in living cell nuclei using fluorescence correlation spectroscopy (FCS) with a two-color confocal scanning detection system. We first present experiments exposing FCS-specific artifacts encountered in live cell studies as well as strategies to prevent them, in particular those arising from the choice of the fluorophore used for calibration of the focal volume, as well as temperature and acquisition conditions used for fluorescence fluctuation measurements. After defining the best acquisition conditions, we show for various human cell lines that the mobility of GFP varies significantly within the cell nucleus, but does not correlate with chromatin density. The intranuclear diffusional mobility strongly depends on protein size: in a series of GFP-oligomers, used as free inert fluorescent tracers, the diffusion coefficient decreased from the monomer to the tetramer much more than expected for molecules free in aqueous solution. Still, the entire intranuclear chromatin network is freely accessible for small proteins up to the size of eGFP-tetramers, regardless of the chromatin density or cell line. Even the densest chromatin regions do not exclude free eGFP-monomers or multimers.

  7. Mapping eGFP Oligomer Mobility in Living Cell Nuclei

    PubMed Central

    Zwerger, Monika; Müller, Gabriele; Waldeck, Waldemar; Langowski, Jörg

    2009-01-01

    Movement of particles in cell nuclei can be affected by viscosity, directed flows, active transport, or the presence of obstacles such as the chromatin network. Here we investigate whether the mobility of small fluorescent proteins is affected by the chromatin density. Diffusion of inert fluorescent proteins was studied in living cell nuclei using fluorescence correlation spectroscopy (FCS) with a two-color confocal scanning detection system. We first present experiments exposing FCS-specific artifacts encountered in live cell studies as well as strategies to prevent them, in particular those arising from the choice of the fluorophore used for calibration of the focal volume, as well as temperature and acquisition conditions used for fluorescence fluctuation measurements. After defining the best acquisition conditions, we show for various human cell lines that the mobility of GFP varies significantly within the cell nucleus, but does not correlate with chromatin density. The intranuclear diffusional mobility strongly depends on protein size: in a series of GFP-oligomers, used as free inert fluorescent tracers, the diffusion coefficient decreased from the monomer to the tetramer much more than expected for molecules free in aqueous solution. Still, the entire intranuclear chromatin network is freely accessible for small proteins up to the size of eGFP-tetramers, regardless of the chromatin density or cell line. Even the densest chromatin regions do not exclude free eGFP-monomers or multimers. PMID:19347038

  8. Nucleoplasmic viscosity of living cells investigated by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Liang, Lifang; Xing, Da; Chen, Tongshen; Pei, Yihui

    2007-11-01

    Fluorescence correlation spectroscopy (FCS) is a new kind of real-time, high-speed and single-molecule technique. It is used to detect the kinetic characteristics of fluorescent dye such as diffusion coefficient in the aqueous solution. Combined with confocal microscope optics, it has been now widely applied in cell biological research. Through a time correlation analysis of spontaneous intensity fluctuations, this technique with EGFP as a probe is capable of determining viscosity of fluids according to Stokes-Einstein equation. Nucleoplasmic viscosity is an important physical parameter to quantify the rheological characteristics of the nucleoplasm. Investigation on nucleoplasmic viscosity plays an important role in further understanding intranuclear environment. In this paper, FCS is introduced to noninvasively investigate nucleoplasmic viscosity of living cells. The results show that nucleoplasmic viscosity of lung adenocarcinoma (ASTC-a-1) cells is 2.55+/-0.61 cP and nucleoplasmic viscosity is larger than cytoplasmic viscosity at 37 °C (pH 7.4). In addition, significant changes in nucleoplasmic viscosity are detected by FCS when cells are exposed to hyper or hypotonic medium. Our study suggests that FCS can be used to detect the kinetic characteristics of biomolecules in living cells and thus helps to investigate the dynamic changes of the microenvironment in the cell.

  9. Gold nanoshell bioconjugates for molecular imaging in living cells

    NASA Astrophysics Data System (ADS)

    Loo, Christopher; Hirsch, Leon; Lee, Min-Ho; Chang, Emmanuel; West, Jennifer; Halas, Naomi; Drezek, Rebekah

    2005-05-01

    Advances in scattering-based optical imaging technologies offer a new approach to noninvasive point-of-care detection, diagnosis, and monitoring of cancer. Emerging photonics technologies provide a cost-effective means to image tissue in vivo with high resolution in real time. Advancing the clinical potential of these imaging strategies requires the development of optical contrast agents targeted to specific molecular signatures of disease. We describe the use of a novel class of contrast agents based on nanoshell bioconjugates for molecular imaging in living cells. Nanoshells offer significant advantages over conventional imaging probes including continuous and broad wavelength tunability, far greater scattering and absorption coefficients, increased chemical stability, and improved biocompatibility. We show that nanoshell bioconjugates can be used to effectively target and image human epidermal growth factor receptor 2 (HER2), a clinically relevant biomarker, in live human breast carcinoma cells.

  10. GFP-based FRET analysis in live cells.

    PubMed

    Takanishi, Christina L; Bykova, Ekaterina A; Cheng, Wei; Zheng, Jie

    2006-05-26

    Fluorescence resonance energy transfer (FRET) is a widely utilized optical technique for measuring small distances of 1-10 nm in live cells. In recent years, its application has been greatly popularized by the discovery of green fluorescent protein (GFP) and many improved variants which make good donor-acceptor fluorophore pairs. GFP-based proteins are structurally stable, relatively inert, and can be reliably attached to points of interest. The combination of easy access to the GFP-based FRET technique and its obvious usefulness in many applications can lead to complacency. Potential problems such as light contaminants, e.g., bleed-through and cross-talk, and inconsistent donor and acceptor concentrations are easily overlooked and can lead to errors in FRET calculation and data interpretation. In this article, we outline possible pitfalls of GFP-based FRET and approaches that address these issues, including a "Spectra FRET" technique that can be easily applied to live cell studies.

  11. Aptamer Nano-Flares for Molecular Detection in Living Cells

    PubMed Central

    Zheng, Dan; Seferos, Dwight S.; Giljohann, David A.; Patel, Pinal C.; Mirkin, Chad A.

    2011-01-01

    We demonstrate a composite nanomaterial, termed an aptamer nano-flare, that can directly quantify an intracellular analyte in a living cell. Aptamer nano-flares consist of a gold nanoparticle core functionalized with a dense monolayer of nucleic acid aptamers with a high affinity for adenosine triphosphate (ATP). The probes bind selectively to target molecules and release fluorescent reporters which indicate the presence of the analyte. Additionally, these nanoconjugates are readily taken up by cells where their signal intensity can be used to quantify intracellular analyte concentration. These nanoconjugates are a promising approach for the intracellular quantification of other small molecules or proteins, or as agents that use aptamer binding to elicit a biological response in living systems. PMID:19645478

  12. High-speed synthetic aperture microscopy for live cell imaging

    PubMed Central

    Kim, Moonseok; Choi, Youngwoon; Fang-Yen, Christopher; Sung, Yongjin; Dasari, Ramachandra R.; Feld, Michael S.; Choi, Wonshik

    2011-01-01

    We present a high-speed synthetic aperture microscopy for quantitative phase imaging of live biological cells. We measure 361 complex amplitude images of an object with various directions of illumination covering an NA of 0.8 in less than one-thirteenth of a second and then combine the images with a phase-referencing method to create a synthesized phase image. Because of the increased depth selectivity, artifacts from diffraction that are typically present in coherent imaging are significantly suppressed, and lateral resolution of phase imaging is improved. We use the instrument to demonstrate high-quality phase imaging of live cells, both static and dynamic, and thickness measurements of a nanoscale cholesterol helical ribbon. PMID:21263482

  13. Laser-based techniques for living cell pattern formation

    NASA Astrophysics Data System (ADS)

    Hopp, Béla; Smausz, Tomi; Papdi, Bence; Bor, Zsolt; Szabó, András; Kolozsvári, Lajos; Fotakis, Costas; Nógrádi, Antal

    2008-10-01

    In the production of biosensors or artificial tissues a basic step is the immobilization of living cells along the required pattern. In this paper the ability of some promising laser-based methods to influence the interaction between cells and various surfaces is presented. In the first set of experiments laser-induced patterned photochemical modification of polymer foils was used to achieve guided adherence and growth of cells to the modified areas: (a) Polytetrafluoroethylene was irradiated with ArF excimer laser ( λ=193 nm, FWHM=20 ns, F=9 mJ/cm2) in presence of triethylene tetramine liquid photoreagent; (b) a thin carbon layer was produced by KrF excimer laser ( λ=248 nm, FWHM=30 ns, F=35 mJ/cm2) irradiation on polyimide surface to influence the cell adherence. It was found that the incorporation of amine groups in the PTFE polymer chain instead of the fluorine atoms can both promote and prevent the adherence of living cells (depending on the applied cell types) on the treated surfaces, while the laser generated carbon layer on polyimide surface did not effectively improve adherence. Our attempts to influence the cell adherence by morphological modifications created by ArF laser irradiation onto polyethylene terephtalate surface showed a surface roughness dependence. This method was effective only when the Ra roughness parameter of the developed structure did not exceed the 0.1 micrometer value. Pulsed laser deposition with femtosecond KrF excimer lasers ( F=2.2 J/cm2) was effectively used to deposit structured thin films from biomaterials (endothelial cell growth supplement and collagen embedded in starch matrix) to promote the adherence and growth of cells. These results present evidence that some surface can be successfully altered to induce guided cell growth.

  14. Probing and tracking organelles in living plant cells.

    PubMed

    Chen, Tong; Wang, Xiaohua; von Wangenheim, Daniel; Zheng, Maozhong; Šamaj, Jozef; Ji, Wanquan; Lin, Jinxing

    2012-06-01

    Intracellular organelle movements and positioning play pivotal roles in enabling plants to proliferate life efficiently and to survive diverse environmental stresses. The elaborate dissection of organelle dynamics and their underlying mechanisms (e.g., the role of the cytoskeleton in organelle movements) largely depends on the advancement and efficiency of organelle tracking systems. Here, we provide an overview of some recently developed tools for labeling and tracking organelle dynamics in living plant cells.

  15. Automatic Detection of Single Fluorophores in Live Cells

    PubMed Central

    Mashanov, G. I.; Molloy, J. E.

    2007-01-01

    Recent developments in light microscopy enable individual fluorophores to be observed in aqueous conditions. Biological molecules, labeled with a single fluorophore, can be localized as isolated spots of light when viewed by optical microscopy. Total internal reflection fluorescence microscopy greatly reduces background fluorescence and allows single fluorophores to be observed inside living cells. This advance in live-cell imaging means that the spatial and temporal dynamics of individual molecules can be measured directly. Because of the stochastic nature of single molecule behavior a statistically meaningful number of individual molecules must be detected and their separate trajectories in space and time stored and analyzed. Here, we describe digital image processing methods that we have devised for automatic detection and tracking of hundreds of molecules, observed simultaneously, in vitro and within living cells. Using this technique we have measured the diffusive behavior of pleckstrin homology domains bound to phosphoinositide phospholipids at the plasma membrane of live cultured mammalian cells. We found that mobility of these membrane-bound protein domains is dominated by mobility of the lipid molecule to which they are attached and is highly temperature dependent. Movement of PH domains isolated from the tail region of myosin-10 is consistent with a simple random walk, whereas, diffusion of intact PLC-δ1 shows behavior inconsistent with a simple random walk. Movement is rapid over short timescales but much slower at longer timescales. This anomalous behavior can be explained by movement being restricted to membrane regions of 0.7 μm diameter. PMID:17208981

  16. Intracellular protein target detection by quantum dots optimized for live cell imaging.

    PubMed

    Choi, Youngseon; Kim, Keumhyun; Hong, Sukmin; Kim, Hichul; Kwon, Yong-Jun; Song, Rita

    2011-08-17

    Imaging of specific intracellular target proteins in living cells has been of great challenge and importance for understanding intracellular events and elucidating various biological phenomena. Highly photoluminescent and water-soluble semiconductor nanocrystal quantum dots (QDs) have been extensively applied to various cellular imaging applications due to the long-term photostability and the tunable narrow emission spectra with broad excitation. Despite the great success of various bioimaging and diagnostic applications, visualization of intracellular targets in live cells still has been of great challenge. Nonspecific binding, difficulty of intracellular delivery, or endosomal trapping of nanosized QDs are the main reasons to hamper specific target binding in live cells. In this context, we prepared the polymer-coated QDs (pcQD) of which the surface was optimized for specific intracellular targeting in live cells. Efficient intracellular delivery was achieved through PEGylation and subsequent cell penetrating peptide (i.e., TAT) conjugation to the pcQD in order to avoid significant endosomal sequestration and to facilitate internalization of the QDs, respectively. In this study, we employed HEK293 cell line overexpressing endothelin A receptor (ET(A)R), a family of G-protein coupled receptor (GPCR), of which the cytosolic c-terminal site is genetically engineered to possess green fluorescent protein (GFP) as our intracellular protein target. The fluorescence signal of the target protein and the well-defined intracellular behavior of the GPCR help to evaluate the targeting specificity of QDs in living cells. To test the hypothesis that the TAT-QDs conjugated with antibody against intracellular target of interest can find the target, we conjugated anti-GFP antibody to TAT-PEG-pcQD using heterobifunctional linkers. Compared to the TAT-PEG-pcQD, which was distributed throughout the cytoplasm, the antiGFP-functionalized TAT-PEG-pcQD could penetrate the cell membrane

  17. Development and application of 2-color live-cell STED nanoscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Allgeyer, Edward S.; Bottanelli, Francesca; Kromann, Emil B.; Hao, Xiang; Bewersdorf, Joerg

    2016-02-01

    Stimulated emission depletion (STED) microscopy has been established as an important technique for imaging below the diffraction limit facilitating new discoveries in an array of biological systems. In STED microscopy a "donut-shaped" laser focus is super-imposed onto the diffraction-limited focus of an excitation laser. The dounut-shaped beam suppresses fluorescence in the periphery of the excitation spot, reducing the effective point spread function to a sub-diffraction size. However, the application of multicolor STED microscopy in living cells poses a number of challenges. Here we detail a novel STED system specifically designed for two-color STED applications. Our system employs FPGA-based gated detection and fast beam scanning to reduce pixel dwell time and photobleaching. We demonstrate the instrument's capability with two-color continuous imaging of intracellular targets below the diffraction limit allowing observation of rare events within live-cells.

  18. Nanomolar pyrophosphate detection and nucleus staining in living cells with simple terpyridine–Zn(II) complexes

    PubMed Central

    Chao, Duobin; Ni, Shitan

    2016-01-01

    Great efforts have been made to develop fluorescent probes for pyrophosphate (PPi) detection. Nucleus staining with fluorescence microscopy has been also widely investigated. But fluorescent probes for PPi detection with high sensitivity in water medium and nucleus staining with low–cost non–precious metal complexes in living cells are still challenging. Herein, we report simple terpyridine–Zn(II) complexes for selective nanomolar PPi detection over ATP and ADP in water based on aggregation induced emission (AIE) and intramolecular charge transfer (ICT). In addition, these terpyridine–Zn(II) complexes were successfully employed for nucleus staining in living cells. These results demonstrated simply obtained terpyridine–Zn(II) complexes are powerful tool for PPi detection and the development of PPi–related studies. PMID:27198968

  19. Nanomolar pyrophosphate detection and nucleus staining in living cells with simple terpyridine–Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Chao, Duobin; Ni, Shitan

    2016-05-01

    Great efforts have been made to develop fluorescent probes for pyrophosphate (PPi) detection. Nucleus staining with fluorescence microscopy has been also widely investigated. But fluorescent probes for PPi detection with high sensitivity in water medium and nucleus staining with low–cost non–precious metal complexes in living cells are still challenging. Herein, we report simple terpyridine–Zn(II) complexes for selective nanomolar PPi detection over ATP and ADP in water based on aggregation induced emission (AIE) and intramolecular charge transfer (ICT). In addition, these terpyridine–Zn(II) complexes were successfully employed for nucleus staining in living cells. These results demonstrated simply obtained terpyridine–Zn(II) complexes are powerful tool for PPi detection and the development of PPi–related studies.

  20. Selective, rapid and optically switchable regulation of protein function in live mammalian cells.

    PubMed

    Tsai, Yu-Hsuan; Essig, Sebastian; James, John R; Lang, Kathrin; Chin, Jason W

    2015-07-01

    The rapid and selective regulation of a target protein within living cells that contain closely related family members is an outstanding challenge. Here we introduce genetically directed bioorthogonal ligand tethering (BOLT) and demonstrate selective inhibition (iBOLT) of protein function. In iBOLT, inhibitor-conjugate/target protein pairs are created where the target protein contains a genetically encoded unnatural amino acid with bioorthogonal reactivity and the inhibitor conjugate contains a complementary bioorthogonal group. iBOLT enables the first rapid and specific inhibition of MEK isozymes, and introducing photoisomerizable linkers in the inhibitor conjugate enables reversible, optical regulation of protein activity (photo-BOLT) in live mammalian cells. We demonstrate that a pan kinase inhibitor conjugate allows selective and rapid inhibition of the lymphocyte specific kinase, indicating the modularity and scalability of BOLT. We anticipate that BOLT will enable the rapid and selective regulation of diverse proteins for which no selective small-molecule ligands exist.

  1. Catalytic Molecular Imaging of MicroRNA in Living Cells by DNA-Programmed Nanoparticle Disassembly.

    PubMed

    He, Xuewen; Zeng, Tao; Li, Zhi; Wang, Ganglin; Ma, Nan

    2016-02-24

    Molecular imaging is an essential tool for disease diagnostics and treatment. Direct imaging of low-abundance nucleic acids in living cells remains challenging because of the relatively low sensitivity and insufficient signal-to-background ratio of conventional molecular imaging probes. Herein, we report a class of DNA-templated gold nanoparticle (GNP)-quantum dot (QD) assembly-based probes for catalytic imaging of cancer-related microRNAs (miRNA) in living cells with signal amplification capacity. We show that a single miRNA molecule could catalyze the disassembly of multiple QDs with the GNP through a DNA-programmed thermodynamically driven entropy gain process, yielding significantly amplified QD photoluminescence (PL) for miRNA imaging. By combining the robust PL of QDs with the catalytic amplification strategy, three orders of magnitude improvement in detection sensitivity is achieved in comparison with non-catalytic imaging probe, which enables facile and accurate differentiation between cancer cells and normal cells by miRNA imaging in living cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Inferring diffusion in single live cells at the single-molecule level

    PubMed Central

    Robson, Alex; Burrage, Kevin; Leake, Mark C.

    2013-01-01

    The movement of molecules inside living cells is a fundamental feature of biological processes. The ability to both observe and analyse the details of molecular diffusion in vivo at the single-molecule and single-cell level can add significant insight into understanding molecular architectures of diffusing molecules and the nanoscale environment in which the molecules diffuse. The tool of choice for monitoring dynamic molecular localization in live cells is fluorescence microscopy, especially so combining total internal reflection fluorescence with the use of fluorescent protein (FP) reporters in offering exceptional imaging contrast for dynamic processes in the cell membrane under relatively physiological conditions compared with competing single-molecule techniques. There exist several different complex modes of diffusion, and discriminating these from each other is challenging at the molecular level owing to underlying stochastic behaviour. Analysis is traditionally performed using mean square displacements of tracked particles; however, this generally requires more data points than is typical for single FP tracks owing to photophysical instability. Presented here is a novel approach allowing robust Bayesian ranking of diffusion processes to discriminate multiple complex modes probabilistically. It is a computational approach that biologists can use to understand single-molecule features in live cells. PMID:23267182

  3. Single-Molecule Studies of Integrins by AFM-Based Force Spectroscopy on Living Cells

    NASA Astrophysics Data System (ADS)

    Eibl, Robert H.

    The characterization of cell adhesion between two living cells at the single-molecule level, i.e., between one adhesion receptor and its counter-receptor, appears to be an experimental challenge. Atomic force microscopy (AFM) can be used in its force spectroscopy mode to determine unbinding forces of a single pair of adhesion receptors, even with a living cell as a probe. This chapter provides an overview of AFM force measurements of the integrin family of cell adhesion receptors and their ligands. A focus is given to major integrins expressed on leukocytes, such as lymphocyte function-associated antigen 1 (LFA-1) and very late antigen 4 (VLA-4). These receptors are crucial for leukocyte trafficking in health and disease. LFA-1 and VLA-1 can be activated within the bloodstream from a low-affinity to a high-affinity receptor by chemokines in order to adhere strongly to the vessel wall before the receptor-bearing leukocytes extravasate. The experimental considerations needed to provide near-physiological conditions for a living cell and to be able to measure adequate forces at the single-molecule level are discussed in detail. AFM technology has been developed into a modern and extremely sensitive tool in biomedical research. It appears now that AFM force spectroscopy could enter, within a few years, medical applications in diagnosis and therapy of cancer and autoimmune diseases.

  4. Environment Sensing Merocyanine Dyes for Live Cell Imaging Applications

    PubMed Central

    MacNevin, Christopher J.; Gremyachinskiy, Dmitriy; Hsu, Chia-Wen; Li, Li; Rougie, Marie; Davis, Tamara T.; Hahn, Klaus M.

    2013-01-01

    Fluorescent biosensors based on environmentally sensitive dyes enable visualization and quantification of endogenous protein activation within living cells. Merocyanine dyes are especially useful for live cell imaging applications as they are extraordinarily bright, have long wavelengths of excitation and emission, and can exhibit readily detectable fluorescence changes in response to environment. We sought to systematically examine the effects of structural features on key photophysical properties, including dye brightness, environmental responsiveness, and photostability, through the synthesis of a library of 25 merocyanine dyes, derived from combinatorial reaction of 5 donor and 5 acceptor heterocycles. Four of these dyes showed optimal properties for specific imaging applications and were subsequently prepared with reactive side chains and enhanced aqueous solubility using a one-pot synthetic method. The new dyes were then applied within a biosensor design for Cdc42 activation, where dye mero60 showed a remarkable 1470% increase in fluorescence intensity on binding activated Cdc42 in vitro. The dye-based biosensors were used to report activation of endogenous Cdc42 in living cells. PMID:23297747

  5. Insights into nuclear dynamics using live-cell imaging approaches.

    PubMed

    Bigley, Rachel B; Payumo, Alexander Y; Alexander, Jeffrey M; Huang, Guo N

    2017-03-01

    The nucleus contains the genetic blueprint of the cell and myriad interactions within this subcellular structure are required for gene regulation. In the current scientific era, characterization of these gene regulatory networks through biochemical techniques coupled with systems-wide 'omic' approaches has become commonplace. However, these strategies are limited because they represent a mere snapshot of the cellular state. To obtain a holistic understanding of nuclear dynamics, relevant molecules must be studied in their native contexts in living systems. Live-cell imaging approaches are capable of providing quantitative assessment of the dynamics of gene regulatory interactions within the nucleus. We survey recent insights into what live-cell imaging approaches have provided the field of nuclear dynamics. In this review, we focus on interactions of DNA with other DNA loci, proteins, RNA, and the nuclear envelope. WIREs Syst Biol Med 2017, 9:e1372. doi: 10.1002/wsbm.1372 For further resources related to this article, please visit the WIREs website.

  6. Delivery of optical contrast agents using Triton-X100, part 1: reversible permeabilization of live cells for intracellular labeling

    NASA Astrophysics Data System (ADS)

    van de Ven, Anne L.; Adler-Storthz, Karen; Richards-Kortum, Rebecca

    2009-03-01

    Effective delivery of optical contrast agents into live cells remains a significant challenge. We sought to determine whether Triton-X100, a detergent commonly used for membrane isolation and protein purification, could be used to effectively and reversibly permeabilize live cells for delivery of targeted optical contrast agents. Although Triton-X100 is widely recognized as a good cell permeabilization agent, no systematic study has evaluated the efficiency, reproducibility, and reversibility of Triton-X100-mediated permeabilization in live mammalian cells. We report a series of studies to characterize macromolecule delivery in cells following Triton-X100 treatment. Using this approach, we demonstrate that molecules ranging from 1 to 150 kDa in molecular weight can be reproducibly delivered into live cells by controlling the moles of Triton-X100 relative to the number of cells to be treated. When Triton-X100 is administered at or near the minimum effective concentration, cell permeabilization is generally reversed within 24 h, and treated cells continue to proliferate and show metabolic activity during the restoration of membrane integrity. We conclude that Triton-X100 is a promising permeabilization agent for efficient and reproducible delivery of optical contrast agents into live mammalian cells.

  7. Molecular signaling in live cells studied by FRET

    NASA Astrophysics Data System (ADS)

    Chien, Shu; Wang, Yingxiao

    2011-11-01

    Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) enables visualization of signaling events in live cells with high spatiotemporal resolution. We have used FRET to assess temporal and spatial characteristics for signaling molecules, including tyrosine kinases Src and FAK, small GTPase Rac, calcium, and a membrane-bound matrix metalloproteinase MT1-MMP. Activations of Src and Rac by platelet derived growth factor (PDGF) led to distinct subcellular patterns during cell migration on micropatterned surface, and these two enzymes interact with each other to form a feedback loop with differential regulations at different subcellular locations. We have developed FRET biosensors to monitor FAK activities at rafts vs. non-raft regions of plasma membrane in live cells. In response to cell adhesion on matrix proteins or stimulation by PDGF, the raft-targeting FAK biosensor showed a stronger FRET response than that at non-rafts. The FAK activation at rafts induced by PDGF is mediated by Src. In contrast, the FAK activation at rafts induced by adhesion is independent of Src activity, but rather is essential for Src activation. Thus, Src is upstream to FAK in response to chemical stimulation (PDGF), but FAK is upstream to Src in response to mechanical stimulation (adhesion). A novel biosensor has been developed to dynamically visualize the activity of membrane type-1-matrix metalloproteinase (MT1-MMP), which proteolytically remodels the extracellular matrix. Epidermal growth factor (EGF) directed active MT1-MMP to the leading edge of migrating live cancer cells with local accumulation of EGF receptor via a process dependent on an intact cytoskeletal network. In summary, FRET-based biosensors enable the elucidation of molecular processes and hierarchies underlying spatiotemporal regulation of biological and pathological processes, thus advancing our knowledge on how cells perceive mechanical/chemical cues in space and time to coordinate

  8. Molecular signaling in live cells studied by FRET

    NASA Astrophysics Data System (ADS)

    Chien, Shu; Wang, Yingxiao

    2012-03-01

    Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) enables visualization of signaling events in live cells with high spatiotemporal resolution. We have used FRET to assess temporal and spatial characteristics for signaling molecules, including tyrosine kinases Src and FAK, small GTPase Rac, calcium, and a membrane-bound matrix metalloproteinase MT1-MMP. Activations of Src and Rac by platelet derived growth factor (PDGF) led to distinct subcellular patterns during cell migration on micropatterned surface, and these two enzymes interact with each other to form a feedback loop with differential regulations at different subcellular locations. We have developed FRET biosensors to monitor FAK activities at rafts vs. non-raft regions of plasma membrane in live cells. In response to cell adhesion on matrix proteins or stimulation by PDGF, the raft-targeting FAK biosensor showed a stronger FRET response than that at non-rafts. The FAK activation at rafts induced by PDGF is mediated by Src. In contrast, the FAK activation at rafts induced by adhesion is independent of Src activity, but rather is essential for Src activation. Thus, Src is upstream to FAK in response to chemical stimulation (PDGF), but FAK is upstream to Src in response to mechanical stimulation (adhesion). A novel biosensor has been developed to dynamically visualize the activity of membrane type-1-matrix metalloproteinase (MT1-MMP), which proteolytically remodels the extracellular matrix. Epidermal growth factor (EGF) directed active MT1-MMP to the leading edge of migrating live cancer cells with local accumulation of EGF receptor via a process dependent on an intact cytoskeletal network. In summary, FRET-based biosensors enable the elucidation of molecular processes and hierarchies underlying spatiotemporal regulation of biological and pathological processes, thus advancing our knowledge on how cells perceive mechanical/chemical cues in space and time to coordinate

  9. Imaging individual neurons in the retinal ganglion cell layer of the living eye

    PubMed Central

    Rossi, Ethan A.; Granger, Charles E.; Yang, Qiang; Saito, Kenichi; Schwarz, Christina; Walters, Sarah; Nozato, Koji; Zhang, Jie; Kawakami, Tomoaki; Fischer, William; Latchney, Lisa R.; Hunter, Jennifer J.; Chung, Mina M.; Williams, David R.

    2017-01-01

    Although imaging of the living retina with adaptive optics scanning light ophthalmoscopy (AOSLO) provides microscopic access to individual cells, such as photoreceptors, retinal pigment epithelial cells, and blood cells in the retinal vasculature, other important cell classes, such as retinal ganglion cells, have proven much more challenging to image. The near transparency of inner retinal cells is advantageous for vision, as light must pass through them to reach the photoreceptors, but it has prevented them from being directly imaged in vivo. Here we show that the individual somas of neurons within the retinal ganglion cell (RGC) layer can be imaged with a modification of confocal AOSLO, in both monkeys and humans. Human images of RGC layer neurons did not match the quality of monkey images for several reasons, including safety concerns that limited the light levels permissible for human imaging. We also show that the same technique applied to the photoreceptor layer can resolve ambiguity about cone survival in age-related macular degeneration. The capability to noninvasively image RGC layer neurons in the living eye may one day allow for a better understanding of diseases, such as glaucoma, and accelerate the development of therapeutic strategies that aim to protect these cells. This method may also prove useful for imaging other structures, such as neurons in the brain. PMID:28049835

  10. Breastfeeding among Somali mothers living in Norway: Attitudes, practices and challenges.

    PubMed

    Wandel, Margareta; Terragni, Laura; Nguyen, Camilla; Lyngstad, Julianne; Amundsen, Marlen; de Paoli, Marina

    2016-12-01

    Data from previous studies indicate a short duration of breastfeeding, especially exclusive breastfeeding, among infants of immigrant mothers living in Norway and other Western countries. Norway has a long tradition of supporting breastfeeding. To explore infant feeding practices among Somali-born mothers in Norway, and the ways in which they navigate among different information sources. Qualitative in-depth interviews and focus groups were carried out with mothers of children 6, 12 and 24 months of age. Women were recruited by a multi-recruitment strategy. Twenty-one mothers participated in interviews and twenty-two in five focus groups. The analysis was guided by Grounded Theory. The mothers had positive attitudes to breastfeeding, but were unfamiliar with the concept of exclusive breastfeeding. Early introduction of water and infant formula was a common practice that interfered with exclusive breastfeeding. The mothers experienced challenges of dealing with conflicting recommendations and expectations regarding infant feeding. They navigated among different sources of information, taking into consideration traditional values, experiences and habits from living in Norway, and research-based knowledge. Their prioritization of the different information sources varied with different life situations, children's age, and the extent to which the mothers trusted the information sources. Despite the strong focus on breastfeeding in Norway, Somali-born mothers encounter obstacles in their breastfeeding practices. These may be due to lack of information about exclusive breastfeeding and to the conflicting information they received. Breastfeeding practices may be enhanced by promoting culturally sensitive communication, and relations of trust at health-care centers. Copyright © 2016 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  11. Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells

    NASA Astrophysics Data System (ADS)

    Herce, Henry D.; Schumacher, Dominik; Schneider, Anselm F. L.; Ludwig, Anne K.; Mann, Florian A.; Fillies, Marion; Kasper, Marc-André; Reinke, Stefan; Krause, Eberhard; Leonhardt, Heinrich; Cardoso, M. Cristina; Hackenberger, Christian P. R.

    2017-08-01

    Functional antibody delivery in living cells would enable the labelling and manipulation of intracellular antigens, which constitutes a long-thought goal in cell biology and medicine. Here we present a modular strategy to create functional cell-permeable nanobodies capable of targeted labelling and manipulation of intracellular antigens in living cells. The cell-permeable nanobodies are formed by the site-specific attachment of intracellularly stable (or cleavable) cyclic arginine-rich cell-penetrating peptides to camelid-derived single-chain VHH antibody fragments. We used this strategy for the non-endocytic delivery of two recombinant nanobodies into living cells, which enabled the relocalization of the polymerase clamp PCNA (proliferating cell nuclear antigen) and tumour suppressor p53 to the nucleolus, and thereby allowed the detection of protein-protein interactions that involve these two proteins in living cells. Furthermore, cell-permeable nanobodies permitted the co-transport of therapeutically relevant proteins, such as Mecp2, into the cells. This technology constitutes a major step in the labelling, delivery and targeted manipulation of intracellular antigens. Ultimately, this approach opens the door towards immunostaining in living cells and the expansion of immunotherapies to intracellular antigen targets.

  12. The Croonian lecture 2006. Structure of the living cell.

    PubMed

    Campbell, Iain D

    2008-07-27

    The smallest viable unit of life is a single cell. To understand life, we need to visualize the structure of the cell as well as all cellular components and their complexes. This is a formidable task that requires sophisticated tools. These have developed from the rudimentary early microscopes of 350 years ago to a toolbox that includes electron microscopes, synchrotrons, high magnetic fields and vast computing power. This lecture briefly reviews the development of biophysical tools and illustrates how they begin to unravel the 'molecular logic of the living state'.

  13. Imaging intracellular RNA distribution and dynamics in living cells.

    PubMed

    Tyagi, Sanjay

    2009-05-01

    Powerful methods now allow the imaging of specific mRNAs in living cells. These methods enlist fluorescent proteins to illuminate mRNAs, use labeled oligonucleotide probes and exploit aptamers that render organic dyes fluorescent. The intracellular dynamics of mRNA synthesis, transport and localization can be analyzed at higher temporal resolution with these methods than has been possible with traditional fixed-cell or biochemical approaches. These methods have also been adopted to visualize and track single mRNA molecules in real time. This review explores the promises and limitations of these methods.

  14. Microrheology, Stress Fluctuations, and Active Behavior of Living Cells

    NASA Astrophysics Data System (ADS)

    Lau, A. W.; Hoffman, B. D.; Davies, A.; Crocker, J. C.; Lubensky, T. C.

    2003-11-01

    We report the first measurements of the intrinsic strain fluctuations of living cells using a recently developed tracer correlation technique along with a theoretical framework for interpreting such data in heterogeneous media with nonthermal driving. The fluctuations' spatial and temporal correlations indicate that the cytoskeleton can be treated as a course-grained continuum with power-law rheology, driven by a spatially random stress tensor field. Combined with recent cell rheology results, our data imply that intracellular stress fluctuations have a nearly 1/ω2 power spectrum, as expected for a continuum with a slowly evolving internal prestress.

  15. Visually Tracking Translocations in Living Cells | Center for Cancer Research

    Cancer.gov

    Chromosomal translocations, the fusion of pieces of DNA from different chromosomes, are often observed in cancer cells and can even cause cancer. However, little is known about the dynamics and regulation of translocation formation. To investigate this critical process, Tom Misteli, Ph.D., in CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleague Vassilis Roukos, Ph.D., developed a novel experimental system that allowed the researchers to see, for the first time, translocations form in individual, live cells.

  16. Single-Molecule Imaging of RNA Splicing in Live Cells.

    PubMed

    Rino, José; Martin, Robert M; Carvalho, Célia; de Jesus, Ana C; Carmo-Fonseca, Maria

    2015-01-01

    Expression of genetic information in eukaryotes involves a series of interconnected processes that ultimately determine the quality and amount of proteins in the cell. Many individual steps in gene expression are kinetically coupled, but tools are lacking to determine how temporal relationships between chemical reactions contribute to the output of the final gene product. Here, we describe a strategy that permits direct measurements of intron dynamics in single pre-mRNA molecules in live cells. This approach reveals that splicing can occur much faster than previously proposed and opens new avenues for studying how kinetic mechanisms impact on RNA biogenesis.

  17. Analysis of microtubule polymerization dynamics in live cells

    PubMed Central

    Gierke, Sarah; Kumar, Praveen; Wittmann, Torsten

    2012-01-01

    Intracellular microtubule polymerization dynamics are spatiotemporally controlled by numerous microtubule-associated proteins and other mechanisms, and this regulation is central to many cell processes. Here, we give an overview and practical guide on how to acquire and analyze time-lapse sequences of dynamic microtubules in live cells by either fluorescently labeling entire microtubules or by utilizing proteins that specifically associate only with growing microtubule ends, and summarize the strengths and weaknesses of different approaches. We give practical recommendations for imaging conditions, and we also discuss important limitations of such analysis that are dictated by the maximal achievable spatial and temporal sampling frequencies. PMID:20719263

  18. Monitoring of RNA Dynamics in Living Cells Using PUM-HD and Fluorescent Protein Reconstitution Technique.

    PubMed

    Yoshimura, H; Ozawa, T

    2016-01-01

    Fluorescence live-cell RNA imaging to monitor the intracellular localization and dynamics of the target RNA is a challenging subject. One of the difficulties to achieve this is to establish a precise method to enable a fluorescent labeling to the target RNA in living cells. Technologies to reduce the background fluorescence and to detect the RNA with high sensitivity are also necessary to visualize and analyze the intracellular localization and dynamic of the target RNA precisely. Especially in monitoring single-molecule motion, a special setup of a microscope system is required. Such technical problems make the live-cell RNA imaging to be a difficult subject. We recently developed a methodology to label and to visualize a target RNA in living cells with low background fluorescence by using a probe that is based on an RNA-binding protein domain PUM-HD (pumilio homology domain) and a fluorescent protein reconstitution method. A noteworthy property of PUM-HD to apply RNA probes is that this protein domain can be modified to recognize a particular 8-base RNA sequence by inducing tailor-made designed mutagenesis. The fluorescent protein reconstitution method allows us to detect the target RNA with high signal-to-noise ratio. Using the probe based on PUM-HD, a fluorescent protein reconstitution method, and a homebuilt fluorescent microscope system, we succeeded in single-molecule observation of a target RNA in living cells. In this chapter, the techniques to establish the probe and to observe the motion of single-molecule RNA are described. © 2016 Elsevier Inc. All rights reserved.

  19. Quantitative FRET Analysis by Fast Acquisition Time Domain FLIM at High Spatial Resolution in Living Cells

    PubMed Central

    Padilla-Parra, Sergi; Audugé, Nicolas; Coppey-Moisan, Maïté; Tramier, Marc

    2008-01-01

    Quantitative analysis in Förster resonance energy transfer (FRET) experiments in live cells for protein interaction studies is still a challenging issue. In a two-component system (FRET and no FRET donor species), fitting of fluorescence lifetime imaging microscopy (FLIM) data gives the fraction of donor molecules involved in FRET (fD) and the intrinsic transfer efficiency. But when fast FLIM acquisitions are used to monitor dynamic changes in protein-protein interactions at high spatial and temporal resolutions in living cells, photon statistics and time resolution are limited. In this case, fitting procedures are not reliable, even for single lifetime donors. We introduce the new concept of a minimal fraction of donor molecules involved in FRET (mfD), coming from the mathematical minimization of fD. We find particular advantage in the use of mfD because it can be obtained without fitting procedures and it is derived directly from FLIM data. mfD constitutes an interesting quantitative parameter for live cell studies because it is related to the minimal relative concentration of interacting proteins. For multi-lifetime donors, the process of fitting complex fluorescence decays to find at least four reliable lifetimes is a near impossible task. Here, mfD extension for multi-lifetime donors is the only quantitative determinant. We applied this methodology for imaging the interaction between the bromodomains of TAFII250 and acetylated histones H4 in living cells at high resolution. We show the existence of discrete acetylated chromatin domains where the minimal fraction of bromodomain interacting with acetylated H4 oscillates from 0.26 to 0.36 and whose size is smaller than half of one micron cube. We demonstrate that mfD by itself is a useful tool to investigate quantitatively protein interactions in live cells, especially when using fast FRET-FLIM acquisition times. PMID:18539634

  20. Molecular Beacons: Powerful Tools for Imaging RNA in Living Cells

    PubMed Central

    Monroy-Contreras, Ricardo; Vaca, Luis

    2011-01-01

    Recent advances in RNA functional studies highlights the pivotal role of these molecules in cell physiology. Diverse methods have been implemented to measure the expression levels of various RNA species, using either purified RNA or fixed cells. Despite the fact that fixed cells offer the possibility to observe the spatial distribution of RNA, assays with capability to real-time monitoring RNA transport into living cells are needed to further understand the role of RNA dynamics in cellular functions. Molecular beacons (MBs) are stem-loop hairpin-structured oligonucleotides equipped with a fluorescence quencher at one end and a fluorescent dye (also called reporter or fluorophore) at the opposite end. This structure permits that MB in the absence of their target complementary sequence do not fluoresce. Upon binding to targets, MBs emit fluorescence, due to the spatial separation of the quencher and the reporter. Molecular beacons are promising probes for the development of RNA imaging techniques; nevertheless much work remains to be done in order to obtain a robust technology for imaging various RNA molecules together in real time and in living cells. The present work concentrates on the different requirements needed to use successfully MB for cellular studies, summarizing recent advances in this area. PMID:21876785

  1. F-pili dynamics by live-cell imaging.

    PubMed

    Clarke, Margaret; Maddera, Lucinda; Harris, Robin L; Silverman, Philip M

    2008-11-18

    Bacteria have evolved numerous mechanisms for cell-cell communication, many of which have important consequences for human health. Among these is conjugation, the direct transfer of DNA from one cell to another. For gram-negative bacteria, conjugation requires thin, flexible filaments (conjugative pili) that are elaborated by DNA donor cells. The structure, function, and especially the dynamics of conjugative pili are poorly understood. Here, we have applied live-cell imaging to characterize the dynamics of F-pili (conjugative pili encoded by the F plasmid of Escherichia coli). We establish that F-pili normally undergo cycles of extension and retraction in the absence of any obvious triggering event, such as contact with a recipient cell. When made, such contacts are able to survive the shear forces felt by bacteria in liquid media. Our data emphasize the role of F-pilus flexibility both in efficiently sampling a large volume surrounding donor cells in liquid culture and in establishing and maintaining cell-cell contact. Additionally and unexpectedly, we infer that extension and retraction are accompanied by rotation about the long axis of the filament.

  2. Real-time transposable element activity in individual live cells

    PubMed Central

    Lee, Gloria; Martini, K. Michael

    2016-01-01

    The excision and reintegration of transposable elements (TEs) restructure their host genomes, generating cellular diversity involved in evolution, development, and the etiology of human diseases. Our current knowledge of TE behavior primarily results from bulk techniques that generate time and cell ensemble averages, but cannot capture cell-to-cell variation or local environmental and temporal variability. We have developed an experimental system based on the bacterial TE IS608 that uses fluorescent reporters to directly observe single TE excision events in individual cells in real time. We find that TE activity depends upon the TE’s orientation in the genome and the amount of transposase protein in the cell. We also find that TE activity is highly variable throughout the lifetime of the cell. Upon entering stationary phase, TE activity increases in cells hereditarily predisposed to TE activity. These direct observations demonstrate that real-time live-cell imaging of evolution at the molecular and individual event level is a powerful tool for the exploration of genome plasticity in stressed cells. PMID:27298350

  3. The challenges of classical swine fever control: modified live and E2 subunit vaccines.

    PubMed

    Huang, Yu-Liang; Deng, Ming-Chung; Wang, Fun-In; Huang, Chin-Cheng; Chang, Chia-Yi

    2014-01-22

    Classical swine fever (CSF) is an economically important, highly contagious disease of swine worldwide. CSF is caused by classical swine fever virus (CSFV), and domestic pigs and wild boars are its only natural hosts. The two main strategies used to control CSF epidemic are systematic prophylactic vaccination and a non-vaccination stamping-out policy. This review compares the protective efficacy of the routinely used modified live vaccine (MLV) and E2 subunit vaccines and summarizes the factors that influence the efficacy of the vaccines and the challenges that both vaccines face to CSF control. Although MLV provide earlier and more complete protection than E2 subunit vaccines, it has the drawback of not allowing differentiation between infected and vaccinated animals (DIVA). The marker vaccine of E2 protein with companion discriminatory test to detect antibodies against E(rns) allows DIVA and is a promising strategy for future control and eradication of CSF. Maternal derived antibody (MDA) is the critical factor in impairing the efficacy of both MLV and E2 subunit vaccines, so the well-designed vaccination programs of sows and piglets should be considered together. Because of the antigen variation among various genotypes of CSFV, antibodies raised by either MLV or subunit vaccine neutralize genotypically homologous strains better than heterologous ones. However, although this is not a major concern for MLV as the induced immune responses can protect pigs against the challenge of various genotypes of CSFVs, it is critical for E2 subunit vaccines. It is thus necessary to evaluate whether the E2 subunit vaccine can completely protect against the current prevalent strains in the field. An ideal new generation of vaccine should be able to maintain the high protective efficiency of MLV and overcome the problem of antigenic variations while allowing for DIVA.

  4. Detecting Nanodomains in Living Cell Membrane by Fluorescence Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Hai-Tao; Marguet, Didier

    2011-05-01

    Cell membranes actively participate in numerous cellular functions. Inasmuch as bioactivities of cell membranes are known to depend crucially on their lateral organization, much effort has been focused on deciphering this organization on different length scales. Within this context, the concept of lipid rafts has been intensively discussed over recent years. In line with its ability to measure diffusion parameters with great precision, fluorescence correlation spectroscopy (FCS) measurements have been made in association with innovative experimental strategies to monitor modes of molecular lateral diffusion within the plasma membrane of living cells. These investigations have allowed significant progress in the characterization of the cell membrane lateral organization at the suboptical level and have provided compelling evidence for the in vivo existence of raft nanodomains. We review these FCS-based studies and the characteristic structural features of raft nanodomains. We also discuss the findings in regards to the current view of lipid rafts as a general membrane-organizing principle.

  5. Using microdispensing to manufacture a customized cell dish for microbeam irradiation of single, living cells

    NASA Astrophysics Data System (ADS)

    Nilsson, E. J. C.; Olsson, M. G.; Nilsson, J.; Pallon, J.; Masternak, A.; Paczesny, J.; Arteaga-Marrero, N.; Elfman, M.; Kristiansson, P.; Nilsson, C.; Åkerström, B.

    2009-04-01

    In this paper is described the preparation of patterned cell dishes to be used in studies of low dose irradiation effects on living cells. Using a droplet microdispenser, an 8 μm thick polypropylene cell substrate, to which cells do not naturally adhere, was coated in a matrix pattern with the cell adhesive mussel protein Cell-Tak. Cells were shown to adhere and grow on the protein-coated spots, but not on the uncoated parts, providing for guided cell growth. Cultivation of isolated cell colonies provides an opportunity to study how low doses of ionizing radiation affect neighbouring un-irradiated cell colonies.

  6. The dynamic structure of the pericellular matrix on living cells

    PubMed Central

    1993-01-01

    Although up to several microns thick, the pericellular matrix is an elusive structure due to its invisibility with phase contrast or DIC microscopy. This matrix, which is readily visualized by the exclusion of large particles such as fixed red blood cells is important in embryonic development and in maintenance of cartilage. While it is known that the pericellular matrix which surrounds chondrocytes and a variety of other cells consists primarily of proteoglycans and hyaluronan with the latter binding to cell surface receptors, the macromolecular organization is still speculative. The macromolecular organization previously could not be determined because of the collapse of the cell coat with conventional fixation and dehydration techniques. Until now, there has been no way to study the dynamic arrangement of hyaluronan with its aggregated proteoglycans on living cells. In this study, the arrangement and mobility of hyaluronan-aggrecan complexes were directly observed in the pericellular matrix of living cells isolated from bovine articular cartilage. The complexes were labeled with 30- to 40-nm colloidal gold conjugated to 5-D-4, an antibody to keratan sulfate, and visualized with video-enhanced light microscopy. From our observations of the motion of pericellular matrix macromolecules, we report that the chondrocyte pericellular matrix is a dynamic structure consisting of individual tethered molecular complexes which project outward from the cell surface. These complexes undergo restricted rotation or wobbling. When the cells were cultured with ascorbic acid, which promotes production of matrix components, the size of the cell coat and the position of the gold probes relative to the plasma membrane were not changed. However, the rapidity and extent of the tethered motion were reduced. Treatment with Streptomyces hyaluronidase removed the molecules that displayed the tethered motion. Addition of hyaluronan and aggrecan to hyaluronidase-treated cells yielded the

  7. Simulations of living cell origins using a cellular automata model.

    PubMed

    Ishida, Takeshi

    2014-04-01

    Understanding the generalized mechanisms of cell self-assembly is fundamental for applications in various fields, such as mass producing molecular machines in nanotechnology. Thus, the details of real cellular reaction networks and the necessary conditions for self-organized cells must be elucidated. We constructed a 2-dimensional cellular automata model to investigate the emergence of biological cell formation, which incorporated a looped membrane and a membrane-bound information system (akin to a genetic code and gene expression system). In particular, with an artificial reaction system coupled with a thermal system, the simultaneous formation of a looped membrane and an inner reaction process resulted in a more stable structure. These double structures inspired the primitive biological cell formation process from chemical evolution stage. With a model to simulate cellular self-organization in a 2-dimensional cellular automata model, 3 phenomena could be realized: (1) an inner reaction system developed as an information carrier precursor (akin to DNA); (2) a cell border emerged (akin to a cell membrane); and (3) these cell structures could divide into 2. This double-structured cell was considered to be a primary biological cell. The outer loop evolved toward a lipid bilayer membrane, and inner polymeric particles evolved toward precursor information carriers (evolved toward DNA). This model did not completely clarify all the necessary and sufficient conditions for biological cell self-organization. Further, our virtual cells remained unstable and fragile. However, the "garbage bag model" of Dyson proposed that the first living cells were deficient; thus, it would be reasonable that the earliest cells were more unstable and fragile than the simplest current unicellular organisms.

  8. Simulations of Living Cell Origins Using a Cellular Automata Model

    NASA Astrophysics Data System (ADS)

    Ishida, Takeshi

    2014-04-01

    Understanding the generalized mechanisms of cell self-assembly is fundamental for applications in various fields, such as mass producing molecular machines in nanotechnology. Thus, the details of real cellular reaction networks and the necessary conditions for self-organized cells must be elucidated. We constructed a 2-dimensional cellular automata model to investigate the emergence of biological cell formation, which incorporated a looped membrane and a membrane-bound information system (akin to a genetic code and gene expression system). In particular, with an artificial reaction system coupled with a thermal system, the simultaneous formation of a looped membrane and an inner reaction process resulted in a more stable structure. These double structures inspired the primitive biological cell formation process from chemical evolution stage. With a model to simulate cellular self-organization in a 2-dimensional cellular automata model, 3 phenomena could be realized: (1) an inner reaction system developed as an information carrier precursor (akin to DNA); (2) a cell border emerged (akin to a cell membrane); and (3) these cell structures could divide into 2. This double-structured cell was considered to be a primary biological cell. The outer loop evolved toward a lipid bilayer membrane, and inner polymeric particles evolved toward precursor information carriers (evolved toward DNA). This model did not completely clarify all the necessary and sufficient conditions for biological cell self-organization. Further, our virtual cells remained unstable and fragile. However, the "garbage bag model" of Dyson proposed that the first living cells were deficient; thus, it would be reasonable that the earliest cells were more unstable and fragile than the simplest current unicellular organisms.

  9. A hybrid microsystem for parallel perfusion experiments on living cells

    NASA Astrophysics Data System (ADS)

    Greve, Frauke; Seemann, Livia; Hierlemann, Andreas; Lichtenberg, Jan

    2007-08-01

    A fully integrated microchip device for performing a complete and automated sample-perfusion experiment on living cells is presented. Cells were trapped and immobilized in a defined grid pattern inside a small 0.5 µl volume incubation chamber by pneumatic anchoring on 1000 5-µm orifices. This new cell trapping technique assures a precise and repeatable cell quantity for each experiment and enables the formation of a homogeneous cell population in the incubation chamber. The microsystem includes a perforated silicon chip seamlessly integrated by a new embedding technique in a larger elastomer substrate, which features the microfluidic network. The latter forms the incubation chamber and allows for economic logarithmic dilution of the sample reagent over a range of three orders of magnitude with subsequent perfusion of the cell population. First, the logarithmic dilution stage was validated using quantitative fluorescent imaging of fluorescein solution. Then, the cell adhesion and culturing inside the incubation chamber was studied using primary normal human dermal fibroblasts (NHDFs). The cells adhered well on laminin-coated surfaces and proliferated to form a confluent cell layer after 6 days in vitro. Finally, the complete system was tested by a perfusion experiment with cultured NHDFs, which were exposed to a fluorescent cell tracker at dilutions of 100 µm, 10 µm, 1 µm, 0.1 µm and 0 µm at a flow rate of 1.25 µl min-1 for 20 min. Fluorescence imaging of the cell array after incubation and image analysis showed a logarithmic relationship between sample concentration and the fluorescence signal. This paper describes the fabrication of the components and the assembly of the microsystem, the design approach and the validation of the sample diluter, cell-adhesion and cell-culturing experiments over several days.

  10. The Challenge of Hair Cell Regeneration

    PubMed Central

    Groves, Andrew K.

    2013-01-01

    Sensory hair cells of the inner ear are responsible for translating auditory or vestibular stimuli into electrical energy that can be perceived by the nervous system. Although hair cells are exquisitely mechanically sensitive, they can be easily damaged by excessive stimulation, by ototoxic drugs and by the effects of aging. In mammals, auditory hair cells are never replaced, such that cumulative damage to the ear causes progressive and permanent deafness. In contrast, non-mammalian vertebrates are capable of replacing lost hair cells, which has led to efforts to understand the molecular and cellular basis of regenerative responses in different vertebrate species. In this review, we describe recent progress in understanding the limits to hair cell regeneration in mammals and discuss the obstacles that currently exist for therapeutic approaches to hair cell replacement. PMID:20407075

  11. Skin vaccination with live virus vectored microneedle arrays induce long lived CD8(+) T cell memory.

    PubMed

    Becker, Pablo D; Hervouet, Catherine; Mason, Gavin M; Kwon, Sung-Yun; Klavinskis, Linda S

    2015-09-08

    A simple dissolvable microneedle array (MA) platform has emerged as a promising technology for vaccine delivery, due to needle-free injection with a formulation that preserves the immunogenicity of live viral vectored vaccines dried in the MA matrix. While recent studies have focused largely on design parameters optimized to induce primary CD8(+) T cell responses, the hallmark of a vaccine is synonymous with engendering long-lasting memory. Here, we address the capacity of dried MA vaccination to programme phenotypic markers indicative of effector/memory CD8(+) T cell subsets and also responsiveness to recall antigen benchmarked against conventional intradermal (ID) injection. We show that despite a slightly lower frequency of dividing T cell receptor transgenic CD8(+) T cells in secondary lymphoid tissue at an early time point, the absolute number of CD8(+) T cells expressing an effector memory (CD62L(-)CD127(+)) and central memory (CD62L(+)CD127(+)) phenotype during peak expansion were comparable after MA and ID vaccination with a recombinant human adenovirus type 5 vector (AdHu5) encoding HIV-1 gag. Similarly, both vaccination routes generated CD8(+) memory T cell subsets detected in draining LNs for at least two years post-vaccination capable of responding to secondary antigen. These data suggest that CD8(+) T cell effector/memory generation and long-term memory is largely unaffected by physical differences in vaccine delivery to the skin via dried MA or ID suspension. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Distinct short-lived and long-lived antibody-producing cell populations.

    PubMed

    Ho, F; Lortan, J E; MacLennan, I C; Khan, M

    1986-10-01

    This report analyzes the life span of Ig-containing cells (IgCC) in different sites of antibody production. The experimental approach was based upon the observations that most IgCC are derived from proliferating precursors while IgCC themselves are mainly nondividing end cells. Rats were given a continuous infusion of [3H] thymidine via an osmotic pump inserted in the peritoneal cavity. At intervals of 1, 3, 5 or 10 days after starting infusions, tissues were taken and analyzed by a combination of immunohistology and autoradiography to identify the proportions of IgCC which had gone through S phase of the cell cycle during the period of infusion. After 3 days infusion the median and (range) percent-labeled IgCC in the medullary cords of mesenteric and cervical lymph nodes and the red pulp of the spleen were, respectively, 88 (81-90), 75 (66-77) and 88 (82-93). Conversely that for IgCC in bone marrow was only 13 (11-17) and that in the lamina propria of the jejunum 47 (33-68). The rate of increase in labeling of bone marrow IgCC with length of infusion was approximately linear. Extrapolation of this slope suggests that bone marrow IgCC have a life span in excess of 3 weeks. The slopes of increase in IgCC labeled with time for lymph nodes and spleen were clearly biphasic suggesting that while most IgCC in these tissues have a life span of less than 3 days, there is also a minor population of long-lived IgCC. The lamina propria appears to have approximately equal proportions of long and short-lived IgCC. The life span of IgCC, with the exception of IgMCC, appears to be a feature of the site of antibody production rather than the Ig class produced. Almost all IgM-containing cells were found to be short lived.

  13. Quantitative analysis of live cells using digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Lewis, Tan Rongwei; Qu, Weijuan; Chee, Oi Choo; Singh, Vijay Raj; Asundi, Anand

    2010-03-01

    During the life time of a cell, it goes through changes to the plasma membrane as well as its internal structures especially distinctive during processes like cell division and death. Different types of microscope are used to fulfill the observation of the cell's variation. In our experiment, Vero cells have been investigated by using phase contrast microscopy and digital holographic microscopy (DHM). A comparison of the images obtained for cell division is presented here. The conventional phase contrast microscope provided a good imaging method in the real time analysis of cell division. The off-axis digital hologram recorded by the DHM system can be reconstructed to obtain both the intensity image and phase contrast image of the test object. These can be used for live cell imaging to provide multiple results from a single equipment setup. The DHM system, besides being a qualitative tool, is able to provide quantitative results and 3D images of the cell division process. The ability of DHM to provide quantitative analysis makes it an ideal tool for life science applications.

  14. Quantitative analysis of live cells using digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Lewis, Tan Rongwei; Qu, Weijuan; Chee, Oi Choo; Singh, Vijay Raj; Asundi, Anand

    2009-12-01

    During the life time of a cell, it goes through changes to the plasma membrane as well as its internal structures especially distinctive during processes like cell division and death. Different types of microscope are used to fulfill the observation of the cell's variation. In our experiment, Vero cells have been investigated by using phase contrast microscopy and digital holographic microscopy (DHM). A comparison of the images obtained for cell division is presented here. The conventional phase contrast microscope provided a good imaging method in the real time analysis of cell division. The off-axis digital hologram recorded by the DHM system can be reconstructed to obtain both the intensity image and phase contrast image of the test object. These can be used for live cell imaging to provide multiple results from a single equipment setup. The DHM system, besides being a qualitative tool, is able to provide quantitative results and 3D images of the cell division process. The ability of DHM to provide quantitative analysis makes it an ideal tool for life science applications.

  15. Diamagnetically trapped arrays of living cells above micromagnets.

    PubMed

    Kauffmann, Paul; Ith, Ammara; O'Brien, Daniel; Gaude, Victor; Boué, Florian; Combe, Stéphanie; Bruckert, Franz; Schaack, Béatrice; Dempsey, Nora M; Haguet, Vincent; Reyne, Gilbert

    2011-09-21

    Cell arrays are of foremost importance for many applications in pharmaceutical research or fundamental biology. Although arraying techniques have been widely investigated for adherent cells, organization of cells in suspension has been rarely considered. The arraying of non-adherent cells using the diamagnetic repulsive force is presented. A planar arrangement of Jurkat cells is achieved at the microscale above high quality microfabricated permanent magnets with remanent magnetization of J(r)≈ 1 T, in the presence of a paramagnetic contrast agent. The cytotoxicity of three Gd based contrast agents, Gd-DOTA, Gd-BOPTA and Gd-HP-DO3A, is studied. Among them, Gd-HP-DO3A appears to be the most biocompatible toward Jurkat cells. In close agreement with analytical simulations, diamagnetically 'suspended' cells have been successfully arrayed above square and honeycomb-like micromagnet arrays, which act as a "diamagnetophobic" surface. Living cell trapping is achieved in a simple manner using concentrations of Gd-HP-DO3A as low as 1.5 mM.

  16. Live-cell Video Microscopy of Fungal Pathogen Phagocytosis

    PubMed Central

    Lewis, Leanne E.; Bain, Judith M.; Okai, Blessing; Gow, Neil A.R.; Erwig, Lars Peter

    2013-01-01

    Phagocytic clearance of fungal pathogens, and microorganisms more generally, may be considered to consist of four distinct stages: (i) migration of phagocytes to the site where pathogens are located; (ii) recognition of pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs); (iii) engulfment of microorganisms bound to the phagocyte cell membrane, and (iv) processing of engulfed cells within maturing phagosomes and digestion of the ingested particle. Studies that assess phagocytosis in its entirety are informative1, 2, 3, 4, 5 but are limited in that they do not normally break the process down into migration, engulfment and phagosome maturation, which may be affected differentially. Furthermore, such studies assess uptake as a single event, rather than as a continuous dynamic process. We have recently developed advanced live-cell imaging technologies, and have combined these with genetic functional analysis of both pathogen and host cells to create a cross-disciplinary platform for the analysis of innate immune cell function and fungal pathogenesis. These studies have revealed novel aspects of phagocytosis that could only be observed using systematic temporal analysis of the molecular and cellular interactions between human phagocytes and fungal pathogens and infectious microorganisms more generally. For example, we have begun to define the following: (a) the components of the cell surface required for each stage of the process of recognition, engulfment and killing of fungal cells1, 6, 7, 8; (b) how surface geometry influences the efficiency of macrophage uptake and killing of yeast and hyphal cells7; and (c) how engulfment leads to alteration of the cell cycle and behavior of macrophages 9, 10. In contrast to single time point snapshots, live-cell video microscopy enables a wide variety of host cells and pathogens to be studied as continuous sequences over lengthy time periods, providing spatial and temporal information on a

  17. A cancer cell-specific fluorescent probe for imaging Cu2 + in living cancer cells

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Dong, Baoli; Kong, Xiuqi; Song, Xuezhen; Zhang, Nan; Lin, Weiying

    2017-07-01

    Monitoring copper level in cancer cells is important for the further understanding of its roles in the cell proliferation, and also could afford novel copper-based strategy for the cancer therapy. Herein, we have developed a novel cancer cell-specific fluorescent probe for the detecting Cu2 + in living cancer cells. The probe employed biotin as the cancer cell-specific group. Before the treatment of Cu2 +, the probe showed nearly no fluorescence. However, the probe can display strong fluorescence at 581 nm in response to Cu2 +. The probe exhibited excellent sensitivity and high selectivity for Cu2 + over the other relative species. Under the guidance of biotin group, could be successfully used for detecting Cu2 + in living cancer cells. We expect that this design strategy could be further applied for detection of the other important biomolecules in living cancer cells.

  18. Visualizing dopamine released from living cells using a nanoplasmonic probe

    NASA Astrophysics Data System (ADS)

    Qin, W. W.; Wang, S. P.; Li, J.; Peng, T. H.; Xu, Y.; Wang, K.; Shi, J. Y.; Fan, C. H.; Li, D.

    2015-09-01

    We report the development of an ultrasensitive nanoplasmonic probe for discriminative detection and imaging of dopamine released from living cells. The sensing mechanism is based on the dopamine-induced seeded-growth of Au nanoparticles (Au NPs) that leads to the shift of the plasmon band. This platform allows for the detection of dopamine with a detection limit down to 0.25 pM within 1 min. This nanoplasmonic assay is further applied to visualize the release of dopamine from living rat pheochromocytoma (PC12) cells under ATP-stimulation with dark-field microscopy (DFM). The DFM results together with real time fluorescence imaging of PC12 cells stained with the Fluo calcium indicator, suggested that ATP stimulated-release of dopamine is concomitant with the Ca2+ influx, and the influx of Ca2+ is through ATP-activated channels instead of the voltage-gated Ca2+ channel (VGC).We report the development of an ultrasensitive nanoplasmonic probe for discriminative detection and imaging of dopamine released from living cells. The sensing mechanism is based on the dopamine-induced seeded-growth of Au nanoparticles (Au NPs) that leads to the shift of the plasmon band. This platform allows for the detection of dopamine with a detection limit down to 0.25 pM within 1 min. This nanoplasmonic assay is further applied to visualize the release of dopamine from living rat pheochromocytoma (PC12) cells under ATP-stimulation with dark-field microscopy (DFM). The DFM results together with real time fluorescence imaging of PC12 cells stained with the Fluo calcium indicator, suggested that ATP stimulated-release of dopamine is concomitant with the Ca2+ influx, and the influx of Ca2+ is through ATP-activated channels instead of the voltage-gated Ca2+ channel (VGC). Electronic supplementary information (ESI) available: Fig. S1-S4 and Table S1. See DOI: 10.1039/c5nr04433b

  19. Modeling a Living Cell as a Physical System

    NASA Astrophysics Data System (ADS)

    Finkel, Robert

    2003-11-01

    The organization and synchrony of a living cell suggests that a cooperative process may enable the cell to act as a unit for some functions. This is an old and unproven idea, although some findings seem to be best interpreted as cooperative behavior. Here we propose a model based on cooperative behavior originating from metabolism-behavior not immediately evident from the component molecules or biochemical sequences. The model follows from treating energy cycles as quantum oscillators that give rise to associated chemical waves and quanta much as lattice vibrations in solids give rise to phonons. Model parameters are determined from established data for a specific bacterium. We find average wavelengths for the quanta of chemical oscillations are 115 nm at 310 K agreeing closely with the diameter of the smallest free-living cells. We analyze experimental results where yeast cells experienced resonant changes in growth at specific microwave frequencies. These frequencies are accurately reproduced with the model and other critical frequencies are predicted.

  20. Visualizing light-triggered release of molecules inside living cells.

    PubMed

    Huschka, Ryan; Neumann, Oara; Barhoumi, Aoune; Halas, Naomi J

    2010-10-13

    The light-triggered release of deoxyribonucleic acid (DNA) from gold nanoparticle-based, plasmon resonant vectors, such as nanoshells, shows great promise for gene delivery in living cells. Here we show that intracellular light-triggered release can be performed on molecules that associate with the DNA in a DNA host-guest complex bound to nanoshells. DAPI (4',6-diamidino-2-phenylindole), a bright blue fluorescent molecule that binds reversibly to double-stranded DNA, was chosen to visualize this intracellular light-induced release process. Illumination of nanoshell-dsDNA-DAPI complexes at their plasmon resonance wavelength dehybridizes the DNA, releasing the DAPI molecules within living cells, where they diffuse to the nucleus and associate with the cell's endogenous DNA. The low laser power and irradiation times required for molecular release do not compromise cell viability. This highly controlled co-release of nonbiological molecules accompanying the oligonucleotides could have broad applications in the study of cellular processes and in the development of intracellular targeted therapies.

  1. Measurement of spatio-temporal transport in live cells

    NASA Astrophysics Data System (ADS)

    Wang, Ru; Wang, Zhuo; Millet, Larry; Gillette, Martha U.; Popescu, Gabriel

    2010-03-01

    The live cell is a highly dynamical system with complicated biophysical and biochemical processes taking place at diverse spatiotemporal scales. Though it is well known that microtubules and actin filaments play important roles in intracellular transport, their dynamic behavior is not entirely understood. We propose a unified approach to studying transport in live cells. We used Spatial Light Interference Microscopy, a quantitative phase imaging method developed in our laboratory, to extract cell mass distributions over broad spatiotemporal scales. The dispersion relations for this transport dynamics, i.e. frequency bandwidth vs. spatial frequencies, reveal deterministic mass transport at large spatial scales (w˜q) and diffusive transport at small spatial scales (w˜q̂2). At submicron scales, we observed a w˜q̂3 behavior, which indicates whip-like movements of protein filaments. Further control experiments where both the microtubule and actin polymerization were blocked suggests that essentially actin governs the long spatial scales behavior and microtubules the short scales. This label-free method enables us to access different components of cell dynamics and quantify diffusion coefficients and speed of motor proteins.

  2. Visualization and targeted disruption of protein interactions in living cells.

    PubMed

    Herce, Henry D; Deng, Wen; Helma, Jonas; Leonhardt, Heinrich; Cardoso, M Cristina

    2013-01-01

    Protein-protein interactions are the basis of all processes in living cells, but most studies of these interactions rely on biochemical in vitro assays. Here we present a simple and versatile fluorescent-three-hybrid (F3H) strategy to visualize and target protein-protein interactions. A high-affinity nanobody anchors a GFP-fusion protein of interest at a defined cellular structure and the enrichment of red-labelled interacting proteins is measured at these sites. With this approach, we visualize the p53-HDM2 interaction in living cells and directly monitor the disruption of this interaction by Nutlin 3, a drug developed to boost p53 activity in cancer therapy. We further use this approach to develop a cell-permeable vector that releases a highly specific peptide disrupting the p53 and HDM2 interaction. The availability of multiple anchor sites and the simple optical readout of this nanobody-based capture assay enable systematic and versatile analyses of protein-protein interactions in practically any cell type and species.

  3. Fourier-transform infrared spectroscopy for rapid screening and live-cell monitoring: application to nanotoxicology

    SciTech Connect

    Sundaram, S. K.; Sacksteder, Colette A.; Weber, T. J.; Riley, Brian J.; Addleman, Raymond S.; Harrer, Bruce J.; Peterman, John W.

    2013-01-01

    A significant challenge to realize the full potential of nanotechnology for therapeutic and diagnostic applications is to understand and evaluate how live-cells interact with an external stimulus, e.g., a nanosized particle (NSP), and the toxicity and broad risk associated with these stimuli. NSPs are increasingly used in medicine with largely undetermined hazards in complex cell dynamics and environments. It is difficult to capture the complexity and dynamics of these interactions by following an omics-based approach exclusively, which are expensive and time-consuming. Additionally, this approach needs destructive sampling methods. Live-cell attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometry is well suited to provide noninvasive approach to provide rapid screening of cellular responses to potentially toxic NSPs or any stimuli. Herein we review the technical basis of the approach, the instrument configuration and interface with the biological media, and various effects that impact the data, data analysis, and toxicity. Our preliminary results on live-cell monitoring show promise for rapid screening the NSPs.

  4. Intravital live cell triggered imaging system reveals monocyte patrolling and macrophage migration in atherosclerotic arteries

    PubMed Central

    McArdle, Sara; Chodaczek, Grzegorz; Ray, Nilanjan; Ley, Klaus

    2015-01-01

    Abstract. Intravital multiphoton imaging of arteries is technically challenging because the artery expands with every heartbeat, causing severe motion artifacts. To study leukocyte activity in atherosclerosis, we developed the intravital live cell triggered imaging system (ILTIS). This system implements cardiac triggered acquisition as well as frame selection and image registration algorithms to produce stable movies of myeloid cell movement in atherosclerotic arteries in live mice. To minimize tissue damage, no mechanical stabilization is used and the artery is allowed to expand freely. ILTIS performs multicolor high frame-rate two-dimensional imaging and full-thickness three-dimensional imaging of beating arteries in live mice. The external carotid artery and its branches (superior thyroid and ascending pharyngeal arteries) were developed as a surgically accessible and reliable model of atherosclerosis. We use ILTIS to demonstrate Cx3cr1GFP monocytes patrolling the lumen of atherosclerotic arteries. Additionally, we developed a new reporter mouse (Apoe−/−Cx3cr1GFP/+Cd11cYFP) to image GFP+ and GFP+YFP+ macrophages “dancing on the spot” and YFP+ macrophages migrating within intimal plaque. ILTIS will be helpful to answer pertinent open questions in the field, including monocyte recruitment and transmigration, macrophage and dendritic cell activity, and motion of other immune cells. PMID:25710308

  5. Photoluminescence Lifetime Imaging of Newly Synthesized Proteins in Living Cells with Iridium-alkyne Probe.

    PubMed

    Zhang, Xinrong; Wang, Jinyu; Xue, Jie; Yan, Zihe; Zhang, Sichun; Qiao, Juan

    2017-09-23

    Designing probes for real-time imaging of dynamic processes in living cells is a continual challenge. Herein, a novel near-infrared photoluminescence probe with long lifetime was exploited for photoluminescence lifetime imaging (PLIM) based on an Iridium-alkyne complex. This probe offers benefits of desirable deep-red to NIR emission, long stokes shift, excellent cell penetration, low cytotoxicity and good resistance to photobleaching. To the best of our knowledge this is the first PLIM probe applicable to click reaction of Cu(I)-catalysed azide-alkyne cycloaddition with remarkable lifetime shifts of 414 ns before and after click reaction. The approach fully eliminates the background interference and well distinguishes the reacted probes from the unreacted probes, thus enabling the wash-free imaging of the newly synthesized proteins in single living cells. Based on the unique properties of the Iridium complexes, it is anticipated to be applied in more important issues in living cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Imaging Erg and Jun transcription factor interaction in living cells using fluorescence resonance energy transfer analyses

    SciTech Connect

    Camuzeaux, Barbara; Heliot, Laurent; Coll, Jean . E-mail: martine.duterque@ibl.fr

    2005-07-15

    Physical interactions between transcription factors play important roles in modulating gene expression. Previous in vitro studies have shown a transcriptional synergy between Erg protein, an Ets family member, and Jun/Fos heterodimer, members of the bZip family, which requires direct Erg-Jun protein interactions. Visualization of protein interactions in living cells is a new challenge in biology. For this purpose, we generated fusion proteins of Erg, Fos, and Jun with yellow and cyan fluorescent proteins, YFP and CFP, respectively. After transient expression in HeLa cells, interactions of the resulting fusion proteins were explored by fluorescence resonance energy transfer microscopy (FRET) in fixed and living cells. FRET between YFP-Erg and CFP-Jun was monitored by using photobleaching FRET and fluorescence lifetime imaging microscopy. Both techniques revealed the occurrence of intermolecular FRET between YFP-Erg and CFP-Jun. This is stressed by loss of FRET with an YFP-Erg version carrying a point mutation in its ETS domain. These results provide evidence for the interaction of Erg and Jun proteins in living cells as a critical prerequisite of their transcriptional synergy, but also for the essential role of the Y371 residue, conserved in most Ets proteins, in this interaction.

  7. Intravital live cell triggered imaging system reveals monocyte patrolling and macrophage migration in atherosclerotic arteries

    NASA Astrophysics Data System (ADS)

    McArdle, Sara; Chodaczek, Grzegorz; Ray, Nilanjan; Ley, Klaus

    2015-02-01

    Intravital multiphoton imaging of arteries is technically challenging because the artery expands with every heartbeat, causing severe motion artifacts. To study leukocyte activity in atherosclerosis, we developed the intravital live cell triggered imaging system (ILTIS). This system implements cardiac triggered acquisition as well as frame selection and image registration algorithms to produce stable movies of myeloid cell movement in atherosclerotic arteries in live mice. To minimize tissue damage, no mechanical stabilization is used and the artery is allowed to expand freely. ILTIS performs multicolor high frame-rate two-dimensional imaging and full-thickness three-dimensional imaging of beating arteries in live mice. The external carotid artery and its branches (superior thyroid and ascending pharyngeal arteries) were developed as a surgically accessible and reliable model of atherosclerosis. We use ILTIS to demonstrate Cx3cr1GFP monocytes patrolling the lumen of atherosclerotic arteries. Additionally, we developed a new reporter mouse (Apoe-/-Cx3cr1GFP/+Cd11cYFP) to image GFP+ and GFP+YFP+ macrophages "dancing on the spot" and YFP+ macrophages migrating within intimal plaque. ILTIS will be helpful to answer pertinent open questions in the field, including monocyte recruitment and transmigration, macrophage and dendritic cell activity, and motion of other immune cells.

  8. Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy

    PubMed Central

    Wei, Lu; Yu, Yong; Shen, Yihui; Wang, Meng C.; Min, Wei

    2013-01-01

    Synthesis of new proteins, a key step in the central dogma of molecular biology, has been a major biological process by which cells respond rapidly to environmental cues in both physiological and pathological conditions. However, the selective visualization of a newly synthesized proteome in living systems with subcellular resolution has proven to be rather challenging, despite the extensive efforts along the lines of fluorescence staining, autoradiography, and mass spectrometry. Herein, we report an imaging technique to visualize nascent proteins by harnessing the emerging stimulated Raman scattering (SRS) microscopy coupled with metabolic incorporation of deuterium-labeled amino acids. As a first demonstration, we imaged newly synthesized proteins in live mammalian cells with high spatial–temporal resolution without fixation or staining. Subcellular compartments with fast protein turnover in HeLa and HEK293T cells, and newly grown neurites in differentiating neuron-like N2A cells, are clearly identified via this imaging technique. Technically, incorporation of deuterium-labeled amino acids is minimally perturbative to live cells, whereas SRS imaging of exogenous carbon–deuterium bonds (C–D) in the cell-silent Raman region is highly sensitive, specific, and compatible with living systems. Moreover, coupled with label-free SRS imaging of the total proteome, our method can readily generate spatial maps of the quantitative ratio between new and total proteomes. Thus, this technique of nonlinear vibrational imaging of stable isotope incorporation will be a valuable tool to advance our understanding of the complex spatial and temporal dynamics of newly synthesized proteome in vivo. PMID:23798434

  9. Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy.

    PubMed

    Wei, Lu; Yu, Yong; Shen, Yihui; Wang, Meng C; Min, Wei

    2013-07-09

    Synthesis of new proteins, a key step in the central dogma of molecular biology, has been a major biological process by which cells respond rapidly to environmental cues in both physiological and pathological conditions. However, the selective visualization of a newly synthesized proteome in living systems with subcellular resolution has proven to be rather challenging, despite the extensive efforts along the lines of fluorescence staining, autoradiography, and mass spectrometry. Herein, we report an imaging technique to visualize nascent proteins by harnessing the emerging stimulated Raman scattering (SRS) microscopy coupled with metabolic incorporation of deuterium-labeled amino acids. As a first demonstration, we imaged newly synthesized proteins in live mammalian cells with high spatial-temporal resolution without fixation or staining. Subcellular compartments with fast protein turnover in HeLa and HEK293T cells, and newly grown neurites in differentiating neuron-like N2A cells, are clearly identified via this imaging technique. Technically, incorporation of deuterium-labeled amino acids is minimally perturbative to live cells, whereas SRS imaging of exogenous carbon-deuterium bonds (C-D) in the cell-silent Raman region is highly sensitive, specific, and compatible with living systems. Moreover, coupled with label-free SRS imaging of the total proteome, our method can readily generate spatial maps of the quantitative ratio between new and total proteomes. Thus, this technique of nonlinear vibrational imaging of stable isotope incorporation will be a valuable tool to advance our understanding of the complex spatial and temporal dynamics of newly synthesized proteome in vivo.

  10. Fluorescent probes for super-resolution imaging in living cells.

    PubMed

    Fernández-Suárez, Marta; Ting, Alice Y

    2008-12-01

    In 1873, Ernst Abbe discovered that features closer than approximately 200 nm cannot be resolved by lens-based light microscopy. In recent years, however, several new far-field super-resolution imaging techniques have broken this diffraction limit, producing, for example, video-rate movies of synaptic vesicles in living neurons with 62 nm spatial resolution. Current research is focused on further improving spatial resolution in an effort to reach the goal of video-rate imaging of live cells with molecular (1-5 nm) resolution. Here, we describe the contributions of fluorescent probes to far-field super-resolution imaging, focusing on fluorescent proteins and organic small-molecule fluorophores. We describe the features of existing super-resolution fluorophores and highlight areas of importance for future research and development.

  11. The lac repressor displays facilitated diffusion in living cells.

    PubMed

    Hammar, Petter; Leroy, Prune; Mahmutovic, Anel; Marklund, Erik G; Berg, Otto G; Elf, Johan

    2012-06-22

    Transcription factors (TFs) are proteins that regulate the expression of genes by binding sequence-specific sites on the chromosome. It has been proposed that to find these sites fast and accurately, TFs combine one-dimensional (1D) sliding on DNA with 3D diffusion in the cytoplasm. This facilitated diffusion mechanism has been demonstrated in vitro, but it has not been shown experimentally to be exploited in living cells. We have developed a single-molecule assay that allows us to investigate the sliding process in living bacteria. Here we show that the lac repressor slides 45 ± 10 base pairs on chromosomal DNA and that sliding can be obstructed by other DNA-bound proteins near the operator. Furthermore, the repressor frequently (>90%) slides over its natural lacO(1) operator several times before binding. This suggests a trade-off between rapid search on nonspecific sequences and fast binding at the specific sequence.

  12. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia.

    PubMed

    Eisenhoffer, George T; Loftus, Patrick D; Yoshigi, Masaaki; Otsuna, Hideo; Chien, Chi-Bin; Morcos, Paul A; Rosenblatt, Jody

    2012-04-15

    For an epithelium to provide a protective barrier, it must maintain homeostatic cell numbers by matching the number of dividing cells with the number of dying cells. Although compensatory cell division can be triggered by dying cells, it is unknown how cell death might relieve overcrowding due to proliferation. When we trigger apoptosis in epithelia, dying cells are extruded to preserve a functional barrier. Extrusion occurs by cells destined to die signalling to surrounding epithelial cells to contract an actomyosin ring that squeezes the dying cell out. However, it is not clear what drives cell death during normal homeostasis. Here we show in human, canine and zebrafish cells that overcrowding due to proliferation and migration induces extrusion of live cells to control epithelial cell numbers. Extrusion of live cells occurs at sites where the highest crowding occurs in vivo and can be induced by experimentally overcrowding monolayers in vitro. Like apoptotic cell extrusion, live cell extrusion resulting from overcrowding also requires sphingosine 1-phosphate signalling and Rho-kinase-dependent myosin contraction, but is distinguished by signalling through stretch-activated channels. Moreover, disruption of a stretch-activated channel, Piezo1, in zebrafish prevents extrusion and leads to the formation of epithelial cell masses. Our findings reveal that during homeostatic turnover, growth and division of epithelial cells on a confined substratum cause overcrowding that leads to their extrusion and consequent death owing to the loss of survival factors. These results suggest that live cell extrusion could be a tumour-suppressive mechanism that prevents the accumulation of excess epithelial cells.

  13. Spatio-Temporal Analysis of Cell-Cell Signaling in a Living Cell Microarray

    NASA Astrophysics Data System (ADS)

    Mirsaidov, Utkur; Timp, Winston; Timp, Kaethe; Matsudaira, Paul; Timp, Greg

    2007-03-01

    Cell-cell signaling plays a central role in biology, enabling individual cells to coordinate their activities. For example, bacteria show evidence of intercellular signaling through quorum sensing, a regulatory mechanism that launches a coordinated response, depending on the population density. To explore the spatio-temporal development of cell-to-cell signaling, we have created regular, heterotypic microarrays of living cells in hydrogel using time-multiplexed optical traps for submicron positional control of the cell orientation and location without loss of viability. We studied the Lux system for quorum sensing; splitting it into sender and receiver plasmids, which were subsequently introduced into E. Coli. Induced by IPTG, the sender cells express a fluorescent reporter (mRFP1) and the LuxI enzyme that catalyzes the synthesis of a molecular signal AHL that diffuses through the cell membrane and the extra-cellular scaffold. The receiver cells collect the AHL signal that binds to the LuxR regulator and reports it through GFP production. We have measured the time-delay between the onset of mRFP1 and GFP dependence on intercellular spacing in the array.

  14. History, challenges and perspectives of cell microencapsulation.

    PubMed

    Orive, Gorka; Hernández, Rose Maria; Rodríguez Gascón, Alicia; Calafiore, Riccardo; Chang, Thomas Ming Swi; de Vos, Paul; Hortelano, Gonzalo; Hunkeler, David; Lacík, Igor; Pedraz, José Luis

    2004-02-01

    Cell microencapsulation continues to hold significant promise for biotechnology and medicine. The controlled, and continuous, delivery of therapeutic products to the host by immunoisolated cells is a potentially cost-effective method to treat a wide range of diseases. Although there are several issues that need to be addressed, including capsule manufacture, properties and performance, in the past few years, a stepwise analysis on the essential obstacles and limitations has brought the whole technology closer to a realistic proposal for clinical application. This paper summarizes the current situation in the cell encapsulation field and discusses the main events that have occurred along the way.

  15. Coupling of immunostimulants to live cells through metabolic glycoengineering and bioorthogonal click chemistry.

    PubMed

    Mongis, Aline; Piller, Friedrich; Piller, Véronique

    2017-03-15

    The present study investigated the potential of metabolic glycoengineering followed by bioorthogonal click chemistry for introducing into cell surface glycans different immunomodulating molecules. Mouse tumor models EG7 and MC38-OVA were treated with Ac4GalNAz and Ac4ManNAz followed by ligation of immunostimulants to modified cell surface glycans of the living cells through bioorthogonal click chemistry. The presence of covalently bound oligosaccharide and oligonucleotide immunostimulants could be clearly established. The activation of a reporter macrophage cell line was determined. Depending on the tumor cell line, covalently and non-covalently bound CpG activated the macrophages by between 67 and 100% over controls. EG7 cells with covalently attached immunostimulants and controls were injected subcutaneously into C57BL/6 mice. All tumor cells subjected to the complete treatment with control molecules formed tumors like non-treated cells confirming cell viability. However, when CpG oligonucleotide was linked to cell surface glycans, tumor growth was slowed significantly (60% reduction, n=10, by covalently bound CpG compared to, n=10, non-covalently bound CpG). When mice which had not developed large tumors were challenged with unmodified EG7 cells, no new tumors developed, suggesting protection through the immune system.

  16. Labeling proteins inside living cells using external fluorophores for microscopy

    PubMed Central

    Teng, Kai Wen; Ishitsuka, Yuji; Ren, Pin; Youn, Yeoan; Deng, Xiang; Ge, Pinghua; Lee, Sang Hak; Belmont, Andrew S; Selvin, Paul R

    2016-01-01

    Site-specific fluorescent labeling of proteins inside live mammalian cells has been achieved by employing Streptolysin O, a bacterial toxin which forms temporary pores in the membrane and allows delivery of virtually any fluorescent probes, ranging from labeled IgG’s to small ligands, with high efficiency (>85% of cells). The whole process, including recovery, takes 30 min, and the cell is ready to be imaged immediately. A variety of cell viability tests were performed after treatment with SLO to ensure that the cells have intact membranes, are able to divide, respond normally to signaling molecules, and maintains healthy organelle morphology. When combined with Oxyrase, a cell-friendly photostabilizer, a ~20x improvement in fluorescence photostability is achieved. By adding in glutathione, fluorophores are made to blink, enabling super-resolution fluorescence with 20–30 nm resolution over a long time (~30 min) under continuous illumination. Example applications in conventional and super-resolution imaging of native and transfected cells include p65 signal transduction activation, single molecule tracking of kinesin, and specific labeling of a series of nuclear and cytoplasmic protein complexes. DOI: http://dx.doi.org/10.7554/eLife.20378.001 PMID:27935478

  17. Extracellular dynamics at nm resolution in live cells.

    PubMed

    Jena, Bhanu P

    2008-01-01

    We are all voyagers in time and space, and throughout history of human civilization, our quest to understand Nature has fueled our imagination to make the necessary inventions that further our perception of Nature, perceptions beyond the natural limits of our senses. For example, the invention of various telescopes for observing distant objects, and microscopes for perceiving the very small, has enabled discoveries of distant galaxies and planets light years away, and of the micrometer-size unit of life-the "Cell," and of its nanometer-size subcellular organelles. The story of cell secretion, a fundamental process as old as life itself, occurs in all organisms-from the simple yeast to cells in humans. In the last 15 years, primarily using the atomic force microscope-a force spectroscope, a detailed understanding of the molecular machinery and mechanism of secretion in cells has come to light. This has led to a paradigm shift in our understanding of the underlying mechanism of cell secretion. The journey leading to the discovery of the "porosome," a nanometer-size structure at the cell plasma membrane-the universal secretory machinery, and its structure and dynamics in live cells, is briefly discussed in this chapter.

  18. Raman microscopy of individual living human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Novikov, S. M.; Beermann, J.; Bozhevolnyi, S. I.; Harkness, L. M.; Kassem, M.

    2010-04-01

    We demonstrate the possibility of mapping the distribution of different biomolecules in living human embryonic stem cells grown on glass substrates, without the need for fluorescent markers. In our work we improve the quality of measurements by finding a buffer that gives low fluorescence, growing cells on glass substrates (whose Raman signals are relatively weak compared to that of the cells) and having the backside covered with gold to improve the image contrast under direct white light illumination. The experimental setup used for Raman microscopy is the commercially available confocal scanning Raman microscope (Alpha300R) from Witec and sub-μm spatially resolved Raman images were obtained using a 532 nm excitation wavelength.

  19. Children's lived experiences of hematopoietic stem cell transplantation.

    PubMed

    Manookian, Arpi; Nasrabadi, Alireza Nikbakht; Asadi, Monireh

    2014-09-01

    Although hematopoietic stem cell transplantation is a valuable treatment in many life-threatening pediatric disorders, a large number of children who receive hematopoietic stem cell transplantation are faced with a variety of physical and psychological problems throughout this process. In this study, we explored the lived experiences of these children during their treatment to provide a better understanding of their main concerns, emotions, and expectations. The participants were six children, aged between 6 and 17 years, who underwent hematopoietic stem cell transplantation. Data were collected through individual, in-depth, and semistructured interviews. Using interpretive phenomenological analysis, the findings revealed that the children experienced "transplantation rejoicing" in this "difficult passage", which was associated with "deepening of family ties". Awareness of these experiences, feelings, and concerns can help in the development of more professional interventions to provide children with holistic care during their hospitalization.

  20. Encapsulation system for the immunoisolation of living cells

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Lacik, Igor (Inventor); Brissova, Marcela (Inventor); Anikumar, Amrutur V. (Inventor); Prokop, Ales (Inventor); Powers, Alvin C. (Inventor)

    1999-01-01

    The present invention is drawn to a composition of matter comprising high viscosity sodium alginate, cellulose sulfate and a multi-component polycation. Additionally, the present invention provides methods for making capsules, measuring capsule permeability to immunologically-relevant proteins and treating disease in an animal using encapsulated cells. Over one thousand combinations of polyanions and polycations were examined as polymer candidates suitable for encapsulation of living cells and thirty-three pairs were effective. The combination of sodium alginate, cellulose sulfate, poly(methylene-co-guanidine) hydrochloride, calcium chloride, and sodium chloride produced the most desirable results. Pancreatic islets encapsulated in this multicomponent capsule demonstrated glucose-stimulated insulin secretion in vitro and reversed diabetes without stimulating immune reaction in mice. The capsule formulation and system of the present invention allows independent adjustments of capsule size, wall thickness, mechanical strength and permeability, and offers distinct advantages for immunoisolating cells.

  1. Fluorescence-Activated Cell Sorting of Live Versus Dead Bacterial Cells and Spores

    NASA Technical Reports Server (NTRS)

    Bernardini, James N.; LaDuc, Myron T.; Diamond, Rochelle; Verceles, Josh

    2012-01-01

    This innovation is a coupled fluorescence-activated cell sorting (FACS) and fluorescent staining technology for purifying (removing cells from sampling matrices), separating (based on size, density, morphology, and live versus dead), and concentrating cells (spores, prokaryotic, eukaryotic) from an environmental sample.

  2. Prospects and challenges of quantitative phase imaging in tumor cell biology

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Götte, Martin; Greve, Burkhard; Ketelhut, Steffi

    2016-03-01

    Quantitative phase imaging (QPI) techniques provide high resolution label-free quantitative live cell imaging. Here, prospects and challenges of QPI in tumor cell biology are presented, using the example of digital holographic microscopy (DHM). It is shown that the evaluation of quantitative DHM phase images allows the retrieval of different parameter sets for quantification of cellular motion changes in migration and motility assays that are caused by genetic modifications. Furthermore, we demonstrate simultaneously label-free imaging of cell growth and morphology properties.

  3. Challenges in imaging cell surface receptor clusters

    NASA Astrophysics Data System (ADS)

    Medda, Rebecca; Giske, Arnold; Cavalcanti-Adam, Elisabetta Ada

    2016-01-01

    Super-resolution microscopy offers unique tools for visualizing and resolving cellular structures at the molecular level. STED microscopy is a purely optical method where neither complex sample preparation nor mathematical post-processing is required. Here we present the use of STED microscopy for imaging receptor cluster composition. We use two-color STED to further determine the distribution of two different receptor subunits of the family of receptor serine/threonine kinases in the presence or absence of their ligands. The implications of receptor clustering on the downstream signaling are discussed, and future challenges are also presented.

  4. New approaches for understanding the nuclear force balance in living, adherent cells.

    PubMed

    Neelam, Srujana; Dickinson, Richard B; Lele, Tanmay P

    2016-02-01

    Cytoskeletal forces are transmitted to the nucleus to position and shape it. Linkages mediated by the LINC (linker of nucleoskeleton and cytoskeleton) complex transfer these forces to the nuclear envelope. Nuclear position and shape can be thought to be determined by a balance of cytoskeletal forces generated by microtubule motors that shear the nuclear surface, actomyosin forces that can pull, push and shear the nucleus, and intermediate filaments that may passively resist nuclear decentering and deformation. Parsing contributions of these different forces to nuclear mechanics is a very challenging task. Here we review new approaches that can be used in living cells to probe and understand the nuclear force balance.

  5. Experimental approaches for addressing fundamental biological questions in living, functioning cells with single molecule precision.

    PubMed

    Lenn, Tchern; Leake, Mark C

    2012-06-01

    In recent years, single molecule experimentation has allowed researchers to observe biological processes at the sensitivity level of single molecules in actual functioning, living cells, thereby allowing us to observe the molecular basis of the key mechanistic processes in question in a very direct way, rather than inferring these from ensemble average data gained from traditional molecular and biochemical techniques. In this short review, we demonstrate the impact that the application of single molecule bioscience experimentation has had on our understanding of various cellular systems and processes, and the potential that this approach has for the future to really address very challenging and fundamental questions in the life sciences.

  6. Large-scale live imaging of adult neural stem cells in their endogenous niche.

    PubMed

    Dray, Nicolas; Bedu, Sébastien; Vuillemin, Nelly; Alunni, Alessandro; Coolen, Marion; Krecsmarik, Monika; Supatto, Willy; Beaurepaire, Emmanuel; Bally-Cuif, Laure

    2015-10-15

    Live imaging of adult neural stem cells (aNSCs) in vivo is a technical challenge in the vertebrate brain. Here, we achieve long-term imaging of the adult zebrafish telencephalic neurogenic niche and track a population of >1000 aNSCs over weeks, by taking advantage of fish transparency at near-infrared wavelengths and of intrinsic multiphoton landmarks. This methodology enables us to describe the frequency, distribution and modes of aNSCs divisions across the entire germinal zone of the adult pallium, and to highlight regional differences in these parameters.

  7. Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells

    PubMed Central

    Shibata, Mikihiro; Uchihashi, Takayuki; Ando, Toshio; Yasuda, Ryohei

    2015-01-01

    Visualization of morphological dynamics of live cells with nanometer resolution under physiological conditions is highly desired, but challenging. It has been demonstrated that high-speed atomic force microscopy is a powerful technique for visualizing dynamics of biomolecules under physiological conditions. However, application of high-speed atomic force microscopy for imaging larger objects such as live mammalian cells has been complicated because of the collision between the cantilever and samples. Here, we demonstrate that attaching an extremely long (~3 μm) and thin (~5 nm) tip by amorphous carbon to the cantilever allows us to image the surface structure of live cells with the spatiotemporal resolution of nanometers and seconds. We demonstrate that long-tip high-speed atomic force microscopy is capable of imaging morphogenesis of filopodia, membrane ruffles, pit formation, and endocytosis in COS-7, HeLa cells and hippocampal neurons. PMID:25735540

  8. Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells

    NASA Astrophysics Data System (ADS)

    Shibata, Mikihiro; Uchihashi, Takayuki; Ando, Toshio; Yasuda, Ryohei

    2015-03-01

    Visualization of morphological dynamics of live cells with nanometer resolution under physiological conditions is highly desired, but challenging. It has been demonstrated that high-speed atomic force microscopy is a powerful technique for visualizing dynamics of biomolecules under physiological conditions. However, application of high-speed atomic force microscopy for imaging larger objects such as live mammalian cells has been complicated because of the collision between the cantilever and samples. Here, we demonstrate that attaching an extremely long (~3 μm) and thin (~5 nm) tip by amorphous carbon to the cantilever allows us to image the surface structure of live cells with the spatiotemporal resolution of nanometers and seconds. We demonstrate that long-tip high-speed atomic force microscopy is capable of imaging morphogenesis of filopodia, membrane ruffles, pit formation, and endocytosis in COS-7, HeLa cells and hippocampal neurons.

  9. Quantifying Protein-mRNA Interactions in Single Live Cells.

    PubMed

    Wu, Bin; Buxbaum, Adina R; Katz, Zachary B; Yoon, Young J; Singer, Robert H

    2015-07-02

    Specific binding proteins are crucial for the correct spatiotemporal expression of mRNA. To understand this process, a method is required to characterize RNA-protein interactions in single living cells with subcellular resolution. We combined endogenous single RNA and protein detection with two-photon fluorescence fluctuation analysis to measure the average number of proteins bound to mRNA at specific locations within live cells. We applied this to quantify the known binding of zipcode binding protein 1 (ZBP1) and ribosomes to β-actin mRNA within subcellular compartments of primary fibroblasts and neurons. ZBP1-mRNA binding did not occur in nuclei, contrary to previous conclusions. ZBP1 interaction with β-actin mRNA was enhanced perinuclearly in neurons compared to fibroblasts. Cytoplasmic ZBP1 and ribosome binding to the mRNA were anti-correlated depending on their location in the cell. These measurements support a mechanism whereby ZBP1 inhibits translation of localizing mRNA until its release from the mRNA peripherally, allowing ribosome binding. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Tracking single mRNA molecules in live cells

    NASA Astrophysics Data System (ADS)

    Moon, Hyungseok C.; Lee, Byung Hun; Lim, Kiseong; Son, Jae Seok; Song, Minho S.; Park, Hye Yoon

    2016-06-01

    mRNAs inside cells interact with numerous RNA-binding proteins, microRNAs, and ribosomes that together compose a highly heterogeneous population of messenger ribonucleoprotein (mRNP) particles. Perhaps one of the best ways to investigate the complex regulation of mRNA is to observe individual molecules. Single molecule imaging allows the collection of quantitative and statistical data on subpopulations and transient states that are otherwise obscured by ensemble averaging. In addition, single particle tracking reveals the sequence of events that occur in the formation and remodeling of mRNPs in real time. Here, we review the current state-of-the-art techniques in tagging, delivery, and imaging to track single mRNAs in live cells. We also discuss how these techniques are applied to extract dynamic information on the transcription, transport, localization, and translation of mRNAs. These studies demonstrate how single molecule tracking is transforming the understanding of mRNA regulation in live cells.

  11. Local viscoelasticity of living cells measured by rotational magnetic spectroscopy

    PubMed Central

    Berret, J.-F.

    2016-01-01

    When submitted to a magnetic field, micron-size wires with superparamagnetic properties behave as embedded rheometers and represent interesting sensors for microrheology. Here we use rotational magnetic spectroscopy to measure the shear viscosity of the cytoplasm of living cells. We address the question of whether the cytoplasm is a viscoelastic liquid or an elastic gel. The main result of the study is the observation of a rotational instability between a synchronous and an asynchronous regime of rotation, found for murine fibroblasts and human cancer cells. For wires of susceptibility 3.6, the transition occurs in the range 0.01–1 rad s−1. The determination of the shear viscosity (10–100 Pa s) and elastic modulus (5–20 Pa) confirms the viscoelastic character of the cytoplasm. In contrast to earlier studies, it is concluded that the interior of living cells can be described as a viscoelastic liquid, and not as an elastic gel. PMID:26729062

  12. Small Molecule-Mediated Cleavage of RNA in Living Cells

    PubMed Central

    Guan, Lirui

    2013-01-01

    Antisense oligonucleotides and small interfering RNAs (siRNAs) control gene expression by triggering the degradation of a mRNA via recruitment of RNase H or the RNA-induced silencing complex (RISC), respectively.[1] These approaches are hampered, however, by the poor cellular permeability of oligonucleotides. A small molecule approach to cleave RNA targets could obviate uptake issues. Several compounds can induce RNA cleavage in vitro,[2] however, to the best of our knowledge no small molecules have been previously described to cleave RNA in living cells. Herein, we describe the development of a potentially general approach to design small molecules that specifically cleave an RNA in a living cell, affecting biological function. Specifically, a designed, modularly assembled small molecule that binds the RNA that causes myotonic dystrophy type 1 (DM1)[3] was appended with a moiety that generates hydroxyl radicals upon irradiation. Cleavage of the transcript improves DM1-associated defects in cell culture, and compounds are non-toxic at an efficacious dose as determined by a MTT viability assay. This approach may allow for the site-specific cleavage and inactivation of other cellular RNAs.[4] Compounds that bind to and cleave RNA have the potential to serve as chemical genetics probes of function or lead therapeutics with spatial and temporal control. PMID:23280953

  13. Single-Molecule Ion Channel Conformational Dynamics in Living Cells

    NASA Astrophysics Data System (ADS)

    Lu, H. Peter

    2014-03-01

    Stochastic and inhomogeneous conformational changes regulate the function and dynamics of ion channels that are crucial for cell functions, neuronal signaling, and brain functions. Such complexity makes it difficult, if not impossible, to characterize ion channel dynamics using conventional electrical recording alone since that the measurement does not specifically interrogate the associated conformational changes but rather the consequences of the conformational changes. Recently, new technology developments on single-molecule spectroscopy, and especially, the combined approaches of using single ion channel patch-clamp electrical recording and single-molecule fluorescence imaging have provided us the capability of probing ion channel conformational changes simultaneously with the electrical single channel recording. By combining real-time single-molecule fluorescence imaging measurements with real-time single-channel electric current measurements in artificial lipid bilayers and in living cell membranes, we were able to probe single ion-channel-protein conformational changes simultaneously, and thus providing an understanding the dynamics and mechanism of ion-channel proteins at the molecular level. The function-regulating and site-specific conformational changes of ion channels are now measurable under physiological conditions in real-time, one molecule at a time. We will focus our discussion on the new development and results of real-time imaging of the dynamics of gramicidin, colicin, and NMDA receptor ion channels in lipid bilayers and living cells. Our results shed light on new perspectives of the intrinsic interplay of lipid membrane dynamics, solvation dynamics, and the ion channel functions.

  14. Live cell imaging of protein dislocation from the endoplasmic reticulum.

    PubMed

    Zhong, Yongwang; Fang, Shengyun

    2012-08-10

    Misfolded proteins in the endoplasmic reticulum (ER) are dislocated to the cytosol to be degraded by the proteasomes. Various plant and bacterial toxins and certain viruses hijack this dislocation pathway to exert their toxicity or to infect cells. In this study, we report a dislocation-dependent reconstituted GFP (drGFP) assay that allows, for the first time, imaging proteins dislocated from the ER lumen to the cytosol in living cells. Our results indicate that both luminal and membrane-spanning ER proteins can be fully dislocated from the ER to the cytosol. By combining the drGFP assay with RNAi or chemical inhibitors of proteins in the Hrd1 ubiquitin ligase complex, we demonstrate that the Sel1L, Hrd1, p97/VCP, and importin β proteins are required for the dislocation of misfolded luminal α-1 antitrypsin. The strategy described in this work is broadly applicable to the study of other types of transmembrane transport of proteins and likely also of viruses and toxins in living cells.

  15. Photovoice as a community-based participatory research method among women living with HIV/AIDS: ethical opportunities and challenges.

    PubMed

    Teti, Michelle; Murray, Cynthia; Johnson, LaShaune; Binson, Diane

    2012-10-01

    Photovoice is a method in which participants use photography to identify, express, and disseminate their experiences. We conducted photovoice projects with women living with HIV/AIDS (N=21) to explore opportunities and challenges associated with the method. Photovoice provided a means to achieve two key principles of ethical public health practice: It gives participants opportunities to define their health priorities, and facilitates participant empowerment. Ethical challenges that were encountered related to exposing, through photographs, one's identity as living with HIV/AIDS, illicit activities, and other people. We discuss lessons learned for future practice to maximize the ethical opportunities and manage the challenges associated with using photovoice as an HIV-related CBPR strategy.

  16. Cell sheet engineering for regenerative medicine: current challenges and strategies.

    PubMed

    Owaki, Toshiyuki; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2014-07-01

    Substantial progress made in the areas of stem cell research and regenerative medicine has provided a number of innovative methods to repair or regenerate defective tissues and organs. Although previous studies regarding regenerative medicine, especially those involving induced pluripotent stem cells, have been actively promoted in the past decade, there remain some challenges that need to be addressed in order to enable clinical applications. Designed for use in clinical applications, cell sheet engineering has been developed as a unique, scaffold-free method of cell processing utilizing temperature-responsive cell culture vessels. Clinical studies using cell sheets have shown positive outcomes and will be translated into clinical practice in the near future. However, several challenges stand in the way of the industrialization of cell sheet products and the widespread acceptance of regenerative medicine based on cell sheet engineering. This review describes current strategies geared towards the realization of the regenerative medicine approach.

  17. Application of living microbial cells entrapped with synthetic resin prepolymers.

    PubMed

    Fukui, S; Tanaka, A

    1989-12-01

    Living and growing microbial cells were immobilized by entrapping in synthetic resin gels prepared from their prepolymers, and used in the production of various useful substances. The production of the desired metabolites and also both the activity and the stability of the catalytic systems were seriously affected by the physico-chemical properties of the prepolymers, and those of the resin gels subsequently formed, such as gel network, hydrophilicity-hydrophobicity balance and ionic nature, as well as by the type of bioreactors. Hydroxylation of steroids and production of antibiotics, polypeptides and other biologically active substances, and the effects of gel properties on them are discussed as examples.

  18. Electron Microscopy of Living Cells During in Situ Fluorescence Microscopy

    PubMed Central

    Liv, Nalan; van Oosten Slingeland, Daan S. B.; Baudoin, Jean-Pierre; Kruit, Pieter; Piston, David W.; Hoogenboom, Jacob P.

    2016-01-01

    We present an approach toward dynamic nanoimaging: live fluorescence of cells encapsulated in a bionanoreactor is complemented with in situ scanning electron microscopy (SEM) on an integrated microscope. This allows us to take SEM snapshots on-demand, that is, at a specific location in time, at a desired region of interest, guided by the dynamic fluorescence imaging. We show that this approach enables direct visualization, with EM resolution, of the distribution of bioconjugated quantum dots on cellular extensions during uptake and internalization. PMID:26580231

  19. Imaging and analysis of mitochondrial dynamics in living cells.

    PubMed

    Ekanayake, Sanjaya B; El Zawily, Amr M; Paszkiewicz, Gaël; Rolland, Aurélia; Logan, David C

    2015-01-01

    One of the most striking features of plant mitochondria when visualized in living tissue is their dynamism. The beauty of cytoplasmic streaming, driving, and being driven by the motility of mitochondria and other small organelles belies the complexity of the process. Equally, capturing that dynamism and investigating the genes, proteins, and mechanisms underpinning the processes using molecular cell biology and bioimaging is a complex process. It requires the generation of fluorescent protein constructs, stable transgenic plants sometimes expressing multiple fusions, and generation of mutants, even before one is ready for analytical experimentation. Here, we describe some of the key tools and methods necessary to investigate plant mitochondrial dynamics.

  20. Antibody mediated transduction of therapeutic proteins into living cells.

    PubMed

    Hansen, James E; Weisbart, Richard H; Nishimura, Robert N

    2005-09-16

    Protein therapy refers to the direct delivery of therapeutic proteins to cells and tissues with the goal of ameliorating or modifying a disease process. Current techniques for delivering proteins across cell membranes include taking advantage of receptor-mediated endocytosis or using protein transduction domains that penetrate directly into cells. The most commonly used protein transduction domains are small cell-penetrating peptides derived from such proteins as the HIV-1 Tat protein. A novel protein transduction domain developed as the single chain fragment (Fv) of a murine anti-DNA autoantibody, mAb 3E10, has recently been developed and used to deliver biologically active proteins to living cells in vitro. This review will provide a brief overview of the development of the Fv fragment and provide a summary of recent studies using Fv to deliver therapeutic peptides and proteins (such as a C-terminal p53 peptide, C-terminal p53 antibody fragment, full-length p53, and micro-dystrophin) to cells.

  1. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche

    PubMed Central

    Lo Celso, Cristina; Fleming, Heather E.; Wu, Juwell W.; Zhao, Cher X.; Miake-Lye, Sam; Fujisaki, Joji; Côté, Daniel; Rowe, David W.; Lin, Charles P.; Scadden, David T.

    2010-01-01

    Stem cells reside in a specialized, regulatory environment termed the niche that dictates how they generate, maintain and repair tissues1,2. We have previously documented that transplanted haematopoietic stem and progenitor cell populations localize to subdomains of bone-marrow microvessels where the chemokine CXCL12 is particularly abundant3. Using a combination of high-resolution confocal microscopy and two-photon video imaging of individual haematopoietic cells in the calvarium bone marrow of living mice over time, we examine the relationship of haematopoietic stem and progenitor cells to blood vessels, osteoblasts and endosteal surface as they home and engraft in irradiated and c-Kit-receptor-deficient recipient mice. Osteoblasts were enmeshed in microvessels and relative positioning of stem/progenitor cells within this complex tissue was nonrandom and dynamic. Both cell autonomous and non-autonomous factors influenced primitive cell localization. Different haematopoietic cell subsets localized to distinct locations according to the stage of differentiation. When physiological challenges drove either engraftment or expansion, bone-marrow stem/progenitor cells assumed positions in close proximity to bone and osteoblasts. Our analysis permits observing in real time, at a single cell level, processes that previously have been studied only by their long-term outcome at the organismal level. PMID:19052546

  2. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche.

    PubMed

    Lo Celso, Cristina; Fleming, Heather E; Wu, Juwell W; Zhao, Cher X; Miake-Lye, Sam; Fujisaki, Joji; Côté, Daniel; Rowe, David W; Lin, Charles P; Scadden, David T

    2009-01-01

    Stem cells reside in a specialized, regulatory environment termed the niche that dictates how they generate, maintain and repair tissues. We have previously documented that transplanted haematopoietic stem and progenitor cell populations localize to subdomains of bone-marrow microvessels where the chemokine CXCL12 is particularly abundant. Using a combination of high-resolution confocal microscopy and two-photon video imaging of individual haematopoietic cells in the calvarium bone marrow of living mice over time, we examine the relationship of haematopoietic stem and progenitor cells to blood vessels, osteoblasts and endosteal surface as they home and engraft in irradiated and c-Kit-receptor-deficient recipient mice. Osteoblasts were enmeshed in microvessels and relative positioning of stem/progenitor cells within this complex tissue was nonrandom and dynamic. Both cell autonomous and non-autonomous factors influenced primitive cell localization. Different haematopoietic cell subsets localized to distinct locations according to the stage of differentiation. When physiological challenges drove either engraftment or expansion, bone-marrow stem/progenitor cells assumed positions in close proximity to bone and osteoblasts. Our analysis permits observing in real time, at a single cell level, processes that previously have been studied only by their long-term outcome at the organismal level.

  3. 3-dimensional forces and molecular dynamics of live cells

    NASA Astrophysics Data System (ADS)

    Hur, Sung Sik; Li, Yi-Shuan; Park, Joon Seok; Hu, Ying-Li; Chien, Shu

    2010-08-01

    The forces exerted by an adherent cell on a substrate were studied previously only in the two-dimensions (2D) tangential to the substrate surface. We used a novel technique to measure the three-dimensional (3D) stresses exerted by live bovine aortic endothelial cells (BAECs) on polyacrylamide deformable substrate, with particular emphasis on the 3D forces of focal adhesions. On 3D images acquired by confocal microscopy, displacements were determined with imageprocessing programs, and stresses in tangential (XY) and normal (Z) directions were computed by finite element method (FEM). BAECs generated stress in normal direction (Tz) with an order of magnitude comparable to that in tangential direction (Txy). Tz is upward at the cell edge and downward under the nucleus, changing continuously with a sign reversal between cell edge and nucleus edge. With the use of green fluorescent protein (GFP) labeled paxillin, the dynamics of this intracellular molecule were studied concurrently with the measurement of 3D forces. In the dynamic region, including the new lamellapodium forming region in the front and the retracting region in the rear, the tangential forces (Fxy) are correlated with the size of the focal adhesions (FAs) much more strongly than those in the stable region under the nucleus. In the dynamic region, normal force (Fz) was upward and positively correlated with FA size, while Fz in the stable region was downward and negatively correlated with FA size. These findings show the influence of the size of FAs on the 3D forces they exert on the substrate. This technique can be applied to study any adherent type of live cells to assess their biomechanical dynamics in conjunction with biochemical and functional activities, thus elucidating cellular functions in health and disease.

  4. Securing a Better Living Environment for Left-Behind Children: Implications and Challenges for Policies.

    PubMed

    Lam, Theodora; Ee, Miriam; Anh, Hoang Lan; Yeoh, Brenda S A

    2013-12-01

    Migration is an increasingly significant driver of transformations in family configurations and caregiving practices as well as living arrangements. The sustainability of geographically-split family formations is dependent on several factors, including the presence and strength of care support networks among migrants and their left-behind families, access to communication infrastructure and the stability of the families' financial resources. Drawing on both a selective review of relevant academic literature as well as key findings from the CHAMPSEA Project, the article first examines the effects of these three factors on the well-being of migrants' left-behind family members, especially children. The article also considers major implications of the project's findings, as well as possible challenges for migration and development policies. One area of concern for migration and development policy arising from our research findings is the need to provide better support for left-behind caregivers or carers who are substituting for the absent migrant in childcare and domestic work but who may also need care and support themselves. Another area relates to the need to improve communication infrastructure to help migrants and their families maintain their relationships across transnational spaces; while a third lies with the importance of minimizing migrant families' economic stress stemming from the cycle of debts resulting from exorbitant broker fees and the mismanagement of remittances. By acknowledging both the social and economic costs of international labor migration on families, governments of labor-sending countries can create a more effective legal and institutional framework as well as design suitable supporting mechanisms for left-behind families. There is then a stronger possibility that migration can become a sustainable development strategy for transnational families in South-East Asia.

  5. Mental health treatment preferences and challenges of living with multimorbidity from the veteran perspective.

    PubMed

    DiNapoli, Elizabeth A; Cinna, Christopher; Whiteman, Karen L; Fox, Lauren; Appelt, Cathleen J; Kasckow, John

    2016-10-01

    To explore middle-aged and older veterans' current disease-management practices, mental health treatment preferences, and challenges of living with multiple chronic health conditions (i.e., multimorbidity). Semi-structured qualitative interviews and self-report measures were collected from 28 middle-aged and older (50 years of age or older) veterans with multimorbidity. Our sample of veterans with multimorbidity was, on average, mildly depressed and anxious with elevated stress and disability. Veterans acknowledged the interaction of physical and emotional symptoms, which caused greater difficulty with health care management and daily functioning. Veterans had many concerns regarding their physical and emotional health conditions, such as continued disease progression and the addition of other emotional and physical health complications. Veterans also identified specific self-care approaches for disease management (e.g., medication, healthy lifestyle practices, and psychological stress management techniques), as well as barriers to engaging in care (e.g., money, transportation, and stigma). Participants preferred a combination of medication, psychotherapy, and healthy lifestyle practices for mental health treatment. The majority of participants (88.5%) agreed that these mental health treatments would be beneficial to integrate into disease management for older veterans with multimorbidity. Lastly, veterans provided an array of recommendations for improving Veteran's Administration services and reducing mental health stigma. These findings provide support for patient-centered approaches and integrated mental and physical health self-management in the Veteran's Administration for middle-aged and older veterans with multiple chronic conditions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Isoniazid preventive therapy for people living with HIV: public health challenges and implementation issues.

    PubMed

    Aït-Khaled, N; Alarcon, E; Bissell, K; Boillot, F; Caminero, J A; Chiang, C-Y; Clevenbergh, P; Dlodlo, R; Enarson, D A; Enarson, P; Ferroussier, O; Fujiwara, P I; Harries, A D; Heldal, E; Hinderaker, S G; Kim, S J; Lienhardt, C; Rieder, H L; Rusen, I D; Trébucq, A; Van Deun, A; Wilson, N

    2009-08-01

    Isoniazid preventive therapy (IPT) is recognised as an important component of collaborative tuberculosis (TB) and human immunodeficiency virus (HIV) activities to reduce the burden of TB in people living with HIV (PLHIV). However, there has been little in the way of IPT implementation at country level. This failure has resulted in a recent call to arms under the banner title of the 'Three I's' (infection control to prevent nosocomial transmission of TB in health care settings, intensified TB case finding and IPT). In this paper, we review the background of IPT. We then discuss the important challenges of IPT in PLHIV, namely responsibility and accountability for the implementation, identification of latent TB infection, exclusion of active TB and prevention of isoniazid resistance, length of treatment and duration of protective efficacy. We also highlight several research questions that currently remain unanswered. We finally offer practical suggestions about how to scale up IPT in the field, including the need to integrate IPT into a package of care for PLHIV, the setting up of operational projects with the philosophy of 'learning while doing', the development of flow charts for eligibility for IPT, the development and implementation of care prior to antiretroviral treatment, and finally issues around procurement, distribution, monitoring and evaluation. We support the implementation of IPT, but only if it is done in a safe and structured way. There is a definite risk that 'sloppy' IPT will be inefficient and, worse, could lead to the development of multidrug-resistant TB, and this must be avoided at all costs.

  7. Securing a Better Living Environment for Left-Behind Children: Implications and Challenges for Policies

    PubMed Central

    Lam, Theodora; Ee, Miriam; Anh, Hoang Lan; Yeoh, Brenda S.A.

    2014-01-01

    Migration is an increasingly significant driver of transformations in family configurations and caregiving practices as well as living arrangements. The sustainability of geographically-split family formations is dependent on several factors, including the presence and strength of care support networks among migrants and their left-behind families, access to communication infrastructure and the stability of the families’ financial resources. Drawing on both a selective review of relevant academic literature as well as key findings from the CHAMPSEA Project, the article first examines the effects of these three factors on the well-being of migrants’ left-behind family members, especially children. The article also considers major implications of the project’s findings, as well as possible challenges for migration and development policies. One area of concern for migration and development policy arising from our research findings is the need to provide better support for left-behind caregivers or carers who are substituting for the absent migrant in childcare and domestic work but who may also need care and support themselves. Another area relates to the need to improve communication infrastructure to help migrants and their families maintain their relationships across transnational spaces; while a third lies with the importance of minimizing migrant families’ economic stress stemming from the cycle of debts resulting from exorbitant broker fees and the mismanagement of remittances. By acknowledging both the social and economic costs of international labor migration on families, governments of labor-sending countries can create a more effective legal and institutional framework as well as design suitable supporting mechanisms for left-behind families. There is then a stronger possibility that migration can become a sustainable development strategy for transnational families in South-East Asia. PMID:24954965

  8. Single Molecule Imaging of Transcription Factor Binding to DNA in Live Mammalian Cells

    PubMed Central

    Gebhardt, J Christof M; Suter, David M; Roy, Rahul; Zhao, Ziqing W; Chapman, Alec R; Basu, Srinjan; Maniatis, Tom; Xie, X Sunney

    2013-01-01

    Imaging single fluorescent proteins in living mammalian cells is challenging due to out-of-focus fluorescence excitation by common microscopy schemes. We report the development of a novel fluorescence microscopy method, reflected light sheet microscopy (RLSM), which allows selective plane illumination throughout the nucleus of living mammalian cells, for reducing out-of-focus fluorescence signal. Generation of a thin light sheet parallel to the imaging plane and close to the sample surface is achieved by reflecting an elliptical laser beam incident from the top by 45° with a small mirror. The thin light sheet allows for an increased signal-to-background ratio superior to previous illumination schemes and enables imaging of single fluorescent proteins with up to 100 Hz time resolution. We demonstrate the sensitivity of RLSM by measuring the DNA-bound fraction of glucocorticoid receptor (GR) and determine the residence times on DNA of various oligomerization states and mutants of GR and estrogen receptor (ER), enabling us to resolve different modes of DNA binding of GR. Finally, we demonstrate two-color single molecule imaging by observing the spatio-temporal co-localization of two different protein pairs. The combination of our single molecule measurements and statistical analysis reveals dynamic properties of transcription factors in live mammalian cells. PMID:23524394

  9. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination

    PubMed Central

    Planchon, Thomas A; Gao, Liang; Milkie, Daniel E; Davidson, Michael W; Galbraith, James A; Galbraith, Catherine G; Betzig, Eric

    2012-01-01

    A key challenge when imaging living cells is how to noninvasively extract the most spatiotemporal information possible. Unlike popular wide-field and confocal methods, plane-illumination microscopy limits excitation to the information-rich vicinity of the focal plane, providing effective optical sectioning and high speed while minimizing out-of-focus background and premature photobleaching. Here we used scanned Bessel beams in conjunction with structured illumination and/or two-photon excitation to create thinner light sheets (<0.5 μm) better suited to three-dimensional (3D) subcellular imaging. As demonstrated by imaging the dynamics of mitochondria, filopodia, membrane ruffles, intracellular vesicles and mitotic chromosomes in live cells, the microscope currently offers 3D isotropic resolution down to ~0.3 μm, speeds up to nearly 200 image planes per second and the ability to noninvasively acquire hundreds of 3D data volumes from single living cells encompassing tens of thousands of image frames. PMID:21378978

  10. Challenges in structural approaches to cell modeling

    PubMed Central

    Im, Wonpil; Liang, Jie; Olson, Arthur; Zhou, Huan-Xiang; Vajda, Sandor; Vakser, Ilya A.

    2016-01-01

    Computational modeling is essential for structural characterization of biomolecular mechanisms across the broad spectrum of scales. Adequate understanding of biomolecular mechanisms inherently involves our ability to model them. Structural modeling of individual biomolecules and their interactions has been rapidly progressing. However, in terms of the broader picture, the focus is shifting toward larger systems, up to the level of a cell. Such modeling involves a more dynamic and realistic representation of the interactomes in vivo, in a crowded cellular environment, as well as membranes and membrane proteins, and other cellular components. Structural modeling of a cell complements computational approaches to cellular mechanisms based on differential equations, graph models, and other techniques to model biological networks, imaging data, etc. Structural modeling along with other computational and experimental approaches will provide a fundamental understanding of life at the molecular level and lead to important applications to biology and medicine. A cross section of diverse approaches presented in this review illustrates the developing shift from the structural modeling of individual molecules to that of cell biology. Studies in several related areas are covered: biological networks; automated construction of three-dimensional cell models using experimental data; modeling of protein complexes; prediction of non-specific and transient protein interactions; thermodynamic and kinetic effects of crowding; cellular membrane modeling; and modeling of chromosomes. The review presents an expert opinion on the current state-of-the-art in these various aspects of structural modeling in cellular biology, and the prospects of future developments in this emerging field. PMID:27255863

  11. Videomicrofluorometry on living cells and discriminant factorial analysis to study cell cycle distributions.

    PubMed

    Savatier, J; Gbankoto, A; Vigo, J; Salmon, J M

    2004-01-01

    After a rapid overview of the approaches used to study cell cycle, a fluorescent digital imaging microscopy method is proposed. This method is improved by a factorial analysis relying on the evaluation of several parameters recorded on each living cell. Single lympho-blastoid living cells are labeled with three fluorescent markers: Hoechst 33342 for nuclear DNA, Rhodamine 123 for mitochondria and Nile Red for plasma membrane. For each cell, morphological and functional information parameters are obtained. A typological analysis is used to separate control cells into four groups: G0-G1, S, G2+M and polyploid cells Gn. These control cells define a learning population used to analyze untreated and adriamycine treated cells as supplementary individuals in a discriminant factorial analysis. Such an approach allows to accurately evidence the change of the values of some cellular parameters.

  12. Challenges in structural approaches to cell modeling.

    PubMed

    Im, Wonpil; Liang, Jie; Olson, Arthur; Zhou, Huan-Xiang; Vajda, Sandor; Vakser, Ilya A

    2016-07-31

    Computational modeling is essential for structural characterization of biomolecular mechanisms across the broad spectrum of scales. Adequate understanding of biomolecular mechanisms inherently involves our ability to model them. Structural modeling of individual biomolecules and their interactions has been rapidly progressing. However, in terms of the broader picture, the focus is shifting toward larger systems, up to the level of a cell. Such modeling involves a more dynamic and realistic representation of the interactomes in vivo, in a crowded cellular environment, as well as membranes and membrane proteins, and other cellular components. Structural modeling of a cell complements computational approaches to cellular mechanisms based on differential equations, graph models, and other techniques to model biological networks, imaging data, etc. Structural modeling along with other computational and experimental approaches will provide a fundamental understanding of life at the molecular level and lead to important applications to biology and medicine. A cross section of diverse approaches presented in this review illustrates the developing shift from the structural modeling of individual molecules to that of cell biology. Studies in several related areas are covered: biological networks; automated construction of three-dimensional cell models using experimental data; modeling of protein complexes; prediction of non-specific and transient protein interactions; thermodynamic and kinetic effects of crowding; cellular membrane modeling; and modeling of chromosomes. The review presents an expert opinion on the current state-of-the-art in these various aspects of structural modeling in cellular biology, and the prospects of future developments in this emerging field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A genetically encoded toolkit for tracking live-cell histidine dynamics in space and time

    PubMed Central

    Hu, Hanyang; Gu, Yanfang; Xu, Lei; Zou, Yejun; Wang, Aoxue; Tao, Rongkun; Chen, Xianjun; Zhao, Yuzheng; Yang, Yi

    2017-01-01

    High-resolution spatiotemporal imaging of histidine in single living mammalian cells faces technical challenges. Here, we developed a series of ratiometric, highly responsive, and single fluorescent protein-based histidine sensors of wide dynamic range. We used these sensors to quantify subcellular free-histidine concentrations in glucose-deprived cells and glucose-fed cells. Results showed that cytosolic free-histidine concentration was higher and more sensitive to the environment than free histidine in the mitochondria. Moreover, histidine was readily transported across the plasma membrane and mitochondrial inner membrane, which had almost similar transport rates and transport constants, and histidine transport was not influenced by cellular metabolic state. These sensors are potential tools for tracking histidine dynamics inside subcellular organelles, and they will open an avenue to explore complex histidine signaling. PMID:28252043

  14. Live-Cell Labeling of Specific Protein Glycoforms by Proximity-Enhanced Bioorthogonal Ligation

    PubMed Central

    Robinson, Peter V.; de Almeida-Escobedo, Gabriela; de Groot, Amber E.; McKechnie, Julia L.

    2016-01-01

    Reagents for detecting post-translational modifications in the context of their protein scaffold are powerful tools, but are challenging to develop for glycosylated epitopes. We describe a strategy for detecting protein-specific glycosylation through the use of cyclooctyne-aptamer conjugates. These molecules selectively ligate to azidosugar-labeled glycans exclusively on a target protein on live cells. We characterized aptamer conjugates against two different cell surface glycoproteins and show that these reagents are amenable to detecting protein sialoforms by mass spectrometry, Western blotting, and flow cytometry. Given the abundance of aptamers that bind cell surface targets, we expect this technology will be a useful platform for investigating the roles of protein-specific glycosylation in various cellular contexts. PMID:26280358

  15. Measuring calcium dynamics in living cells with genetically encodable calcium indicators.

    PubMed

    McCombs, Janet E; Palmer, Amy E

    2008-11-01

    Genetically encoded calcium indicators (GECIs) allow researchers to measure calcium dynamics in specific targeted locations within living cells. Such indicators enable dissection of the spatial and temporal control of calcium signaling processes. Here we review recent progress in the development of GECIs, highlighting which indicators are most appropriate for measuring calcium in specific organelles and localized domains in mammalian tissue culture cells. An overview of recent approaches that have been undertaken to ensure that the GECIs are minimally perturbed by the cellular environment is provided. Additionally, the procedures for introducing GECIs into mammalian cells, conducting calcium imaging experiments, and analyzing data are discussed. Because organelle-targeted indicators often pose an additional challenge, we underscore strategies for calibrating GECIs in these locations.

  16. Measuring calcium dynamics in living cells with Genetically Encodable Calcium Indicators

    PubMed Central

    McCombs, Janet E.

    2008-01-01

    Genetically encoded calcium indicators (GECIs) allow researchers to measure calcium dynamics in specific targeted locations within living cells. Such indicators enable dissection of the spatial and temporal control of calcium signaling processes. Here we review recent progress in the development of GECIs, highlighting which indicators are most appropriate for measuring calcium in specific organelles and localized domains in mammalian tissue culture cells. An overview of recent approaches that have been undertaken to ensure that the GECIs are minimally perturbed by the cellular environment is provided. Additionally, the procedures for introducing GECIs into mammalian cells, conducting calcium imaging experiments, and analyzing data are discussed. Because organelle-targeted indicators often pose an additional challenge, we underscore strategies for calibrating GECIs in these locations. PMID:18848629

  17. Synthetic circuits integrating logic and memory in living cells.

    PubMed

    Siuti, Piro; Yazbek, John; Lu, Timothy K

    2013-05-01

    Logic and memory are essential functions of circuits that generate complex, state-dependent responses. Here we describe a strategy for efficiently assembling synthetic genetic circuits that use recombinases to implement Boolean logic functions with stable DNA-encoded memory of events. Application of this strategy allowed us to create all 16 two-input Boolean logic functions in living Escherichia coli cells without requiring cascades comprising multiple logic gates. We demonstrate long-term maintenance of memory for at least 90 cell generations and the ability to interrogate the states of these synthetic devices with fluorescent reporters and PCR. Using this approach we created two-bit digital-to-analog converters, which should be useful in biotechnology applications for encoding multiple stable gene expression outputs using transient inputs of inducers. We envision that this integrated logic and memory system will enable the implementation of complex cellular state machines, behaviors and pathways for therapeutic, diagnostic and basic science applications.

  18. Nanoparticle PEBBLE sensors in live cells and in vivo.

    PubMed

    Lee, Yong-Eun Koo; Smith, Ron; Kopelman, Raoul

    2009-01-01

    Nanoparticle sensors have been developed for real-time imaging and dynamic monitoring, both in live cells and in vivo, of molecular and ionic components, constructs, forces, and dynamics observed during biological, chemical, and physical processes. With their biocompatible small size and inert matrix, nanoparticle sensors have been successfully applied to noninvasive real-time measurements of analytes and fields in cells and in rodents, with spatial, temporal, physical, and chemical resolution. This review describes the diverse designs of nanoparticle sensors for ions and small molecules, physical fields, and biological features, as well as the characterization, properties, and applications of these nanosensors to in vitro and in vivo measurements. Their floating as well as localization abilities in biological media are captured by the acronym PEBBLE: photonic explorer for bioanalysis with biologically localized embedding.

  19. Nanoparticle PEBBLE sensors in live cells and in vivo

    PubMed Central

    Smith, Ron

    2009-01-01

    Nanoparticle sensors have been developed for imaging and dynamic monitoring, in live cells and in vivo, of the molecular or ionic components, constructs, forces and dynamics, all in real time, during biological/chemical/physical processes. With their biocompatible small size and inert matrix, nanoparticle sensors have been successfully applied for non-invasive real-time measurements of analytes and fields in cells and rodents, with spatial, temporal, physical and chemical resolution. This review describes the diverse designs of nanoparticle sensors for ions and small molecules, physical fields and biological features, as well as the characterization, properties, and applications of these nanosensors to in vitro and in vivo measurements. Their floating as well as localization ability in biological media is captured by the acronym PEBBLE: photonic explorer for bioanalysis with biologically localized embedding. PMID:20098636

  20. Penetration of living cell membranes with fortified carbon nanotube tips.

    PubMed

    Vakarelski, Ivan U; Brown, Scott C; Higashitani, Ko; Moudgil, Brij M

    2007-10-23

    We have fabricated robust nanosurgical needles suitable for single cell operations by modifying multiwalled carbon nanotube (MCNT)-terminated atomic force microscopy (AFM) tips. Extra-long MCNT AFM tips were prepared and fortified with molecular layers of carbon to overcome mechanical instabilities and then coated with an outer shell of gold to promote chemical versatility. The terminal diameters of the final fabricated tips were approximately 30-40 nm, and the MCNT probes were several micrometers in length. We illustrate the capability of these modified MCNT tips to carry nanoparticulate payloads and to penetrate the plasma membrane of living pleural mesothelial cells at the smallest indentation depths (100-200 nm) and lowest penetration forces (100-200 pN) currently reported for these procedures.

  1. Amyloplast sedimentation and organelle saltation in living corn columella cells

    NASA Technical Reports Server (NTRS)

    Sack, F. D.; Suyemoto, M. M.; Leopold, A. C.

    1986-01-01

    Amyloplast sedimentation during gravistimulation and organelle movements was studied in living central rootcap cells of Zea mays L. cv. Merit. Cells from sectioned roots were viewed with a horizontally-mounted videomicroscope. The kinetics of gravity-induced amyloplast sedimentation were comparable to those calculated from experiments using fixed material. Individual amyloplasts fell at an average velocity of 5.5 micrometers min-1; the maximal velocity of fall measured was 18.0 micrometers min-1. Amyloplasts often rotated, sometimes rose in the cytoplasm, and occasionally underwent sudden rapid movements as fast as 58 micrometers min-1. Saltations of other organelles were frequently observed. This appears to be the first report of cytoplasmic streaming in the presumptive statocytes of roots.

  2. Amyloplast sedimentation and organelle saltation in living corn columella cells

    NASA Technical Reports Server (NTRS)

    Sack, F. D.; Suyemoto, M. M.; Leopold, A. C.

    1986-01-01

    Amyloplast sedimentation during gravistimulation and organelle movements was studied in living central rootcap cells of Zea mays L. cv. Merit. Cells from sectioned roots were viewed with a horizontally-mounted videomicroscope. The kinetics of gravity-induced amyloplast sedimentation were comparable to those calculated from experiments using fixed material. Individual amyloplasts fell at an average velocity of 5.5 micrometers min-1; the maximal velocity of fall measured was 18.0 micrometers min-1. Amyloplasts often rotated, sometimes rose in the cytoplasm, and occasionally underwent sudden rapid movements as fast as 58 micrometers min-1. Saltations of other organelles were frequently observed. This appears to be the first report of cytoplasmic streaming in the presumptive statocytes of roots.

  3. Deconvolved spatial light interference microscopy for live cell imaging.

    PubMed

    Haldar, Justin P; Wang, Zhuo; Popescu, Gabriel; Liang, Zhi-Pei

    2011-09-01

    Spatial light interference microscopy (SLIM) is a recently developed method for the label-free imaging of live cells, using the quantitative optical path length through the sample as an endogenous source of contrast. In conventional SLIM, spatial resolution is limited by diffraction and aberrations. This paper describes a novel constrained deconvolution method for improving resolution in SLIM. Constrained deconvolution is enabled by experimental measurement of the system point-spread function and the modeling of coherent image formation in SLIM. Results using simulated and experimental data demonstrate that the proposed method leads to significant improvements in the resolution and contrast of SLIM images. The proposed method should prove useful for high-resolution label-free studies of biological cells and subcellular processes.

  4. Probing the interior of living cells with fluorescence correlation spectroscopy.

    PubMed

    Weiss, Matthias

    2008-01-01

    To a large extent the cellular interior is occupied by two complex fluids, the cytoplasm and the nucleoplasm, both of which show a considerable degree of macromolecular crowding. While it is easy to imagine that the chromosomal DNA provides the nucleoplasm with properties similar to a polymer melt, the material properties of the cytoplasm are also affected by the high amount of dissolved macromolecules, the cytoskeletal network, and dispersed organelles. By virtue of the strongly obstructed random motion, reactions in the cytoplasm and nucleoplasm are not comparable to the aqueous conditions commonly used in biochemical experiments. To overcome this gap, a thorough understanding of the material properties of intracellular fluids, and hence transport properties within the cell, is mandatory. Here, we review some recent results on bulk diffusion in living cells and some generic consequences that arise from these observations.

  5. MEMORY T CELLS IN TRANSPLANTATION—PROGRESS AND CHALLENGES

    PubMed Central

    Li, Xian C.; Kloc, Malgosia; Ghobrial, Rafik M.

    2013-01-01

    Purpose of review Memory T cells present a different set of challenges to transplant patients; they are needed for protection again invading pathogens, especially under conditions of immunosuppression. But their presence also threatens transplant survival, as some of them are alloreactive. Efforts to resolve this paradox will be critical in the induction of transplant tolerance. Recent findings There has been significant progress made in the past few years in the areas of population diversity of memory T cells, metabolic control of their induction, and mechanisms and pathways involved in memory cell exhaustion. Multiple targets on memory T cells have been identified and some of which are under vigorous testing in various transplant models. Summary Memory T cells are both friends and foes to transplant patients, and tolerance strategies should selectively target alloreactive memory T cells and leave other memory cells unaltered. This remains a major challenge in the clinic. PMID:23838642

  6. Stoichiometry of Nck-dependent actin polymerization in living cells

    PubMed Central

    Ditlev, Jonathon A.; Michalski, Paul J.; Huber, Greg; Rivera, Gonzalo M.; Mohler, William A.

    2012-01-01

    Regulation of actin dynamics through the Nck/N-WASp (neural Wiskott–Aldrich syndrome protein)/Arp2/3 pathway is essential for organogenesis, cell invasiveness, and pathogen infection. Although many of the proteins involved in this pathway are known, the detailed mechanism by which it functions remains undetermined. To examine the signaling mechanism, we used a two-pronged strategy involving computational modeling and quantitative experimentation. We developed predictions for Nck-dependent actin polymerization using the Virtual Cell software system. In addition, we used antibody-induced aggregation of membrane-targeted Nck SH3 domains to test these predictions and to determine how the number of molecules in Nck aggregates and the density of aggregates affected localized actin polymerization in living cells. Our results indicate that the density of Nck molecules in aggregates is a critical determinant of actin polymerization. Furthermore, results from both computational simulations and experimentation support a model in which the Nck/N-WASp/Arp2/3 stoichiometry is 4:2:1. These results provide new insight into activities involving localized actin polymerization, including tumor cell invasion, microbial pathogenesis, and T cell activation. PMID:22613834

  7. Comparative Efficacy of Intramuscular and Scarification Routes of Administration of Live Smallpox Vaccine in a Murine Challenge Model.

    PubMed

    Phelps, A; Gates, A J; Eastaugh, L; Hillier, M; Ulaeto, D O

    2017-07-05

    In recent years concern has mounted regarding the possibility of a re-emergence of smallpox through biowarfare or bioterrorism. There is also concern over the incidence of human monkeypox in endemic areas and the potential for monkeypox to be accidentally transported to non-endemic areas. In the event of re-emergence of smallpox or emergence of monkeypox, the accepted route of administration for live replicating smallpox vaccine is dermal scarification, which generates a virus-shedding lesion that persists for several days at the vaccination site. The lesion is a potential source of contact transmission of vaccine to individuals who may be contra-indicated for receipt of the live vaccine. In this study, we compare dermal scarification with intramuscular vaccination for replicating smallpox vaccine in a mouse lethal challenge model. Comparisons are made over multiple vaccine and challenge doses and data recorded for lethality, disease severity, and antibody responses. Qualitative and quantitative differences between the two routes are observed, and for the intramuscular route the febrile response is not suppressed after subsequent virulent vaccinia virus challenge. However both routes generate an immune response and protect from severe disease and death. Although dermal scarification is the preferred route of vaccination for the general population, intramuscular vaccination may be an option for people who are not contraindicated for the live vaccine, but who are close contacts of people who are contraindicated for the live vaccine, in an emergency situation. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  8. TCSPC based approaches for multiparameter detection in living cells

    NASA Astrophysics Data System (ADS)

    Jahn, Karolina; Buschmann, Volker; Koberling, Felix; Hille, Carsten

    2014-03-01

    In living cells a manifold of processes take place simultaneously. This implies a precise regulation of intracellular ion homeostasis. In order to understand their spatio-temporal pattern comprehensively, the development of multiplexing concepts is essential. Due to the multidimensional characteristics of fluorescence dyes (absorption and emission spectra, decay time, anisotropy), the highly sensitive and non-invasive fluorescence microscopy is a versatile tool for realising multiplexing concepts. A prerequisite are analyte-specific fluorescence dyes with low cross-sensitivity to other dyes and analytes, respectively. Here, two approaches for multiparameter detection in living cells are presented. Insect salivary glands are well characterised secretory active tissues which were used as model systems to evaluate multiplexing concepts. Salivary glands secrete a KCl-rich or NaCl-rich fluid upon stimulation which is mainly regulated by intracellular Ca2+ as second messenger. Thus, pairwise detection of intracellular Na+, Cl- and Ca2+ with the fluorescent dyes ANG2, MQAE and ACR were tested. Therefore, the dyes were excited simultaneously (2-photon excitation) and their corresponding fluorescence decay times were recorded within two spectral ranges using time-correlated singlephoton counting (TCSPC). A second approach presented here is based on a new TCSPC-platform covering decay time detection from picoseconds to milliseconds. Thereby, nanosecond decaying cellular fluorescence and microsecond decaying phosphorescence of Ruthenium-complexes, which is quenched by oxygen, were recorded simultaneously. In both cases changes in luminescence decay times can be linked to changes in analyte concentrations. In consequence of simultaneous excitation as well as detection, it is possible to get a deeper insight into spatio-temporal pattern in living tissues.

  9. Live-cell Imaging Approaches for the Investigation of ...

    EPA Pesticide Factsheets

    BACKGROUND: Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular techniques. However, there is increasing evidence that low-level exposure to a variety of toxicants dysregulates cellular physiology by interfering with redox-dependent processes.SCOPE OF REVIEW: The study of events involved in redox toxicology requires methodology capable of detecting transient modifications at relatively low signal strength. This article reviews the advantages of live-cell imaging for redox toxicology studies.MAJOR CONCLUSIONS: Toxicological studies with xenobiotics of supra-physiological reactivity require careful consideration when using fluorogenic sensors in order to avoid potential artifacts and false negatives. Fortunately, experiments conducted for the purpose of validating the use of these sensors in toxicological applications often yield unexpected insights into the mechanisms through which xenobiotic exposure induces oxidant stress.GENERAL SIGNIFICANCE: Live-cell imaging using a new generation of small molecule and genetically encoded fluorophores with excellent sensitivity and specificity affords unprecedented spatiotemporal resolution that is optimal for redox toxicology studies. This article is part of a Special Issue entitled Air Pollution, edited by Wenju

  10. Microspectrofluorometric analysis of drug phototoxicity in single living cells

    NASA Astrophysics Data System (ADS)

    Morliere, Patrice; Santus, Rene C.; Maziere, J. C.; Geze, Marc; Bazin, M.; Kohen, Elli

    1993-03-01

    The study of primary photobiological processes on the basis of structure-activity relationship is important for a better understanding of drug phototoxicity. An ideal approach for the understanding of the phototoxic response is provided by the study of drugs purposely used in photochemotherapeuties for which the determination of primary photochemical targets is a prerequisite for the investigation of the phototherapeutic action. For instance, in the so-called 'photodynamic therapy' of cancers, the photodynamic properties of porphyrins more or less specifically localized in tumors are responsible for their photocytotoxicity. Microfluorometry and particularly microspectrofluorometry are powerful non invasive techniques for carrying out quantitative photobiological investigations in real time in single living cells. This approach allows one to monitor the drug localization, to follow the drug fate, and to study photosensitized events in living cells. We illustrate some aspects of such investigations with photofrin II, a mixture of porphyrins currently used in phase III clinical trials, and other porphyrins including protoporphyrin which is encountered in genetic and drug-induced cutaneous porphyrias. To demonstrate the usefulness of microspectrofluorometry in such studies, we present data on the photosensitizer localization, on the photosensitizer photobleaching, and on structural or functional photosensitized damage to organelles.

  11. Carotenoid Distribution in Living Cells of Haematococcus pluvialis (Chlorophyceae)

    SciTech Connect

    Collins, Aaron M.; Jones, Howland D. T.; Han, Danxiang; Hu, Qiang; Beechem, Thomas E.; Timlin, Jerilyn A.; Evens, Terence

    2011-09-06

    Haematococcus pluvialis is a freshwater unicellular green microalga belonging to the class Chlorophyceae and is of commercial interest for its ability to accumulate massive amounts of the red ketocarotenoid astaxanthin (3,3'-dihydroxy-β,β-carotene-4,4'-dione). Using confocal Raman microscopy and multivariate analysis, we demonstrate the ability to spectrally resolve resonance–enhanced Raman signatures associated with astaxanthin and β-carotene along with chlorophyll fluorescence. By mathematically isolating these spectral signatures, in turn, it is possible to locate these species independent of each other in living cells of H. pluvialis in various stages of the life cycle. Chlorophyll emission was found only in the chloroplast whereas astaxanthin was identified within globular and punctate regions of the cytoplasmic space. Moreover, we found evidence for β-carotene to be co-located with both the chloroplast and astaxanthin in the cytosol. These observations imply that β-carotene is a precursor for astaxanthin and the synthesis of astaxanthin occurs outside the chloroplast. Finally, our work demonstrates the broad utility of confocal Raman microscopy to resolve spectral signatures of highly similar chromophores in living cells.

  12. Single-molecule imaging in live cell using gold nanoparticles.

    PubMed

    Leduc, Cécile; Si, Satyabrata; Gautier, Jérémie J; Gao, Zhenghong; Shibu, Edakkattuparambil S; Gautreau, Alexis; Giannone, Grégory; Cognet, Laurent; Lounis, Brahim

    2015-01-01

    Optimal single particle tracking experiments in live cells requires small and photostable probes, which do not modify the behavior of the molecule of interest. Current fluorescence-based microscopy of single molecules and nanoparticles is often limited by bleaching and blinking or by the probe size. As an alternative, we present in this chapter the synthesis of a small and highly specific gold nanoprobe whose detection is based on its absorption properties. We first present a protocol to synthesize 5-nm-diameter gold nanoparticles and functionalize them with a nanobody, a single-domain antibody from camelid, targeting the widespread green fluorescent protein (GFP)-tagged proteins with a high affinity. Then we describe how to detect and track these individual gold nanoparticles in live cell using photothermal imaging microscopy. The combination of a probe with small size, perfect photostability, high specificity, and versatility through the vast existing library of GFP-proteins, with a highly sensitive detection technique enables long-term tracking of proteins with minimal hindrance in confined and crowded environments such as intracellular space.

  13. Advances in radiation biology: Radiosensitization in DNA and living cells

    NASA Astrophysics Data System (ADS)

    Lacombe, S.; Sech, C. Le

    2009-06-01

    One fundamental goal of radiation biology is the evolution of concepts and methods for the elaboration of new approaches and protocols for the treatment of cancers. In this context, the use of fast ions as ionizing particles offers the advantage of optimizing cell killing inside the tumor whilst preserving the surrounding healthy tissues. One extremely promising strategy investigated recently is the addition of radiosensitizers in the targeted tissue. The optimization of radiotherapy with fast ions implies a multidisciplinary approach to ionizing radiation effects on complex living systems, ranging from studies on single molecules to investigations of entire organisms. In this article we review recent studies on ion induced damages in simple and complex biological systems, from DNA to living cells. The specific aspect of radiosensitization induced by metallic atoms is described. As a fundamental result, the addition of sensitizing compounds with ion irradiation may improve therapeutic index in cancer therapy. In conclusion, new perspectives are proposed based on the experience and contribution of different communities including Surface Sciences, to improve the development of radiation biology.

  14. Relative microelastic mapping of living cells by atomic force microscopy.

    PubMed Central

    A-Hassan, E; Heinz, W F; Antonik, M D; D'Costa, N P; Nageswaran, S; Schoenenberger, C A; Hoh, J H

    1998-01-01

    The spatial and temporal changes of the mechanical properties of living cells reflect complex underlying physiological processes. Following these changes should provide valuable insight into the biological importance of cellular mechanics and their regulation. The tip of an atomic force microscope (AFM) can be used to indent soft samples, and the force versus indentation measurement provides information about the local viscoelasticity. By collecting force-distance curves on a time scale where viscous contributions are small, the forces measured are dominated by the elastic properties of the sample. We have developed an experimental approach, using atomic force microscopy, called force integration to equal limits (FIEL) mapping, to produce robust, internally quantitative maps of relative elasticity. FIEL mapping has the advantage of essentially being independent of the tip-sample contact point and the cantilever spring constant. FIEL maps of living Madine-Darby canine kidney (MDCK) cells show that elasticity is uncoupled from topography and reveal a number of unexpected features. These results present a mode of high-resolution visualization in which the contrast is based on the mechanical properties of the sample. PMID:9512052

  15. Carotenoid Distribution in Living Cells of Haematococcus pluvialis (Chlorophyceae)

    PubMed Central

    Collins, Aaron M.; Jones, Howland D. T.; Han, Danxiang; Hu, Qiang; Beechem, Thomas E.; Timlin, Jerilyn A.

    2011-01-01

    Haematococcus pluvialis is a freshwater unicellular green microalga belonging to the class Chlorophyceae and is of commercial interest for its ability to accumulate massive amounts of the red ketocarotenoid astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione). Using confocal Raman microscopy and multivariate analysis, we demonstrate the ability to spectrally resolve resonance–enhanced Raman signatures associated with astaxanthin and β-carotene along with chlorophyll fluorescence. By mathematically isolating these spectral signatures, in turn, it is possible to locate these species independent of each other in living cells of H. pluvialis in various stages of the life cycle. Chlorophyll emission was found only in the chloroplast whereas astaxanthin was identified within globular and punctate regions of the cytoplasmic space. Moreover, we found evidence for β-carotene to be co-located with both the chloroplast and astaxanthin in the cytosol. These observations imply that β-carotene is a precursor for astaxanthin and the synthesis of astaxanthin occurs outside the chloroplast. Our work demonstrates the broad utility of confocal Raman microscopy to resolve spectral signatures of highly similar chromophores in living cells. PMID:21915307

  16. Carotenoid distribution in living cells of Haematococcus pluvialis (Chlorophyceae).

    PubMed

    Collins, Aaron M; Jones, Howland D T; Han, Danxiang; Hu, Qiang; Beechem, Thomas E; Timlin, Jerilyn A

    2011-01-01

    Haematococcus pluvialis is a freshwater unicellular green microalga belonging to the class Chlorophyceae and is of commercial interest for its ability to accumulate massive amounts of the red ketocarotenoid astaxanthin (3,3'-dihydroxy-β,β-carotene-4,4'-dione). Using confocal Raman microscopy and multivariate analysis, we demonstrate the ability to spectrally resolve resonance-enhanced Raman signatures associated with astaxanthin and β-carotene along with chlorophyll fluorescence. By mathematically isolating these spectral signatures, in turn, it is possible to locate these species independent of each other in living cells of H. pluvialis in various stages of the life cycle. Chlorophyll emission was found only in the chloroplast whereas astaxanthin was identified within globular and punctate regions of the cytoplasmic space. Moreover, we found evidence for β-carotene to be co-located with both the chloroplast and astaxanthin in the cytosol. These observations imply that β-carotene is a precursor for astaxanthin and the synthesis of astaxanthin occurs outside the chloroplast. Our work demonstrates the broad utility of confocal Raman microscopy to resolve spectral signatures of highly similar chromophores in living cells.

  17. Labeling proteins on live mammalian cells using click chemistry.

    PubMed

    Nikić, Ivana; Kang, Jun Hee; Girona, Gemma Estrada; Aramburu, Iker Valle; Lemke, Edward A

    2015-05-01

    We describe a protocol for the rapid labeling of cell-surface proteins in living mammalian cells using click chemistry. The labeling method is based on strain-promoted alkyne-azide cycloaddition (SPAAC) and strain-promoted inverse-electron-demand Diels-Alder cycloaddition (SPIEDAC) reactions, in which noncanonical amino acids (ncAAs) bearing ring-strained alkynes or alkenes react, respectively, with dyes containing azide or tetrazine groups. To introduce ncAAs site specifically into a protein of interest (POI), we use genetic code expansion technology. The protocol can be described as comprising two steps. In the first step, an Amber stop codon is introduced--by site-directed mutagenesis--at the desired site on the gene encoding the POI. This plasmid is then transfected into mammalian cells, along with another plasmid that encodes an aminoacyl-tRNA synthetase/tRNA (RS/tRNA) pair that is orthogonal to the host's translational machinery. In the presence of the ncAA, the orthogonal RS/tRNA pair specifically suppresses the Amber codon by incorporating the ncAA into the polypeptide chain of the POI. In the second step, the expressed POI is labeled with a suitably reactive dye derivative that is directly supplied to the growth medium. We provide a detailed protocol for using commercially available ncAAs and dyes for labeling the insulin receptor, and we discuss the optimal surface-labeling conditions and the limitations of labeling living mammalian cells. The protocol involves an initial cloning step that can take 4-7 d, followed by the described transfections and labeling reaction steps, which can take 3-4 d.

  18. Live cell imaging of early autophagy events: omegasomes and beyond.

    PubMed

    Karanasios, Eleftherios; Stapleton, Eloise; Walker, Simon A; Manifava, Maria; Ktistakis, Nicholas T

    2013-07-27

    Autophagy is a cellular response triggered by the lack of nutrients, especially the absence of amino acids. Autophagy is defined by the formation of double membrane structures, called autophagosomes, that sequester cytoplasm, long-lived proteins and protein aggregates, defective organelles, and even viruses or bacteria. Autophagosomes eventually fuse with lysosomes leading to bulk degradation of their content, with the produced nutrients being recycled back to the cytoplasm. Therefore, autophagy is crucial for cell homeostasis, and dysregulation of autophagy can lead to disease, most notably neurodegeneration, ageing and cancer. Autophagosome formation is a very elaborate process, for which cells have allocated a specific group of proteins, called the core autophagy machinery. The core autophagy machinery is functionally complemented by additional proteins involved in diverse cellular processes, e.g. in membrane trafficking, in mitochondrial and lysosomal biology. Coordination of these proteins for the formation and degradation of autophagosomes constitutes the highly dynamic and sophisticated response of autophagy. Live cell imaging allows one to follow the molecular contribution of each autophagy-related protein down to the level of a single autophagosome formation event and in real time, therefore this technique offers a high temporal and spatial resolution. Here we use a cell line stably expressing GFP-DFCP1, to establish a spatial and temporal context for our analysis. DFCP1 marks omegasomes, which are precursor structures leading to autophagosomes formation. A protein of interest (POI) can be marked with either a red or cyan fluorescent tag. Different organelles, like the ER, mitochondria and lysosomes, are all involved in different steps of autophagosome formation, and can be marked using a specific tracker dye. Time-lapse microscopy of autophagy in this experimental set up, allows information to be extracted about the fourth dimension, i.e. time. Hence we

  19. Raman spectroscopy of a single living cell in environmentally stressed conditions

    NASA Astrophysics Data System (ADS)

    Singh, Gajendra P.; Creely, Caitriona; Volpe, Giovanni; Grotsch, Helga; Petrov, Dmitri

    2005-08-01

    Living cells initiate a stress response in order to survive environmentally stressful conditions. We monitored changes in the Raman spectra of an optically trapped Saccharomyces cerevisiae yeast cell under normal and hyperosmotic stress conditions. When the yeast cells were challenged with a high concentration of glucose so as to exert hyperosmotic stress, it was shown that two chemical substances - glycerol and ethanol - could be monitored in real time in a single cell. The volume of the detection area of our confocal microspectrometer is approximately 1 fL. The average quantities of detected glycerol and ethanol are about 300 attomol and 700 attomol respectively. This amounts to the detection of approximately 108 glycerol molecules and 4 X 108 ethanol molecules after 36 min of hyper osmotic stress. Besides this, we also optically trapped a single yeast cell for up to three hours under normal conditions and monitored the changes in the Raman spectra during the lag phase of its growth and the G1 phase of its cell cycle. During the lag phase the cell synthesises new proteins and the observed behavior of the peaks corresponding to these proteins as well as those of RNA served as a sensitive indicator of the adaptation of the cell to its changed environment. The changes observed in the Raman spectra of a trapped yeast cell in the late G1 phase or the beginning of S phase corresponded to the growth of a bud.

  20. Non-invasive single-cell biomechanical analysis using live-imaging datasets.

    PubMed

    Pearson, Yanthe E; Lund, Amanda W; Lin, Alex W H; Ng, Chee P; Alsuwaidi, Aysha; Azzeh, Sara; Gater, Deborah L; Teo, Jeremy C M

    2016-09-01

    The physiological state of a cell is governed by a multitude of processes and can be described by a combination of mechanical, spatial and temporal properties. Quantifying cell dynamics at multiple scales is essential for comprehensive studies of cellular function, and remains a challenge for traditional end-point assays. We introduce an efficient, non-invasive computational tool that takes time-lapse images as input to automatically detect, segment and analyze unlabeled live cells; the program then outputs kinematic cellular shape and migration parameters, while simultaneously measuring cellular stiffness and viscosity. We demonstrate the capabilities of the program by testing it on human mesenchymal stem cells (huMSCs) induced to differentiate towards the osteoblastic (huOB) lineage, and T-lymphocyte cells (T cells) of naïve and stimulated phenotypes. The program detected relative cellular stiffness differences in huMSCs and huOBs that were comparable to those obtained with studies that utilize atomic force microscopy; it further distinguished naïve from stimulated T cells, based on characteristics necessary to invoke an immune response. In summary, we introduce an integrated tool to decipher spatiotemporal and intracellular dynamics of cells, providing a new and alternative approach for cell characterization. © 2016. Published by The Company of Biologists Ltd.

  1. CD8+ T Cells Define an Unexpected Role in Live-Attenuated Vaccine Protective Immunity against Chlamydia trachomatis infection

    PubMed Central

    Olivares-Zavaleta, Norma; Whitmire, William M.; Kari, Laszlo; Sturdevant, Gail L.; Caldwell, Harlan D.

    2014-01-01

    Trachoma, caused by the obligate intracellular organism Chlamydia trachomatis, is the world’s leading cause of preventable blindness for which a vaccine is needed. We have previously shown that a plasmid-deficient live-attenuated trachoma vaccine delivered ocularly to macaques elicited either solid or partial protective immunity against a virulent ocular challenge. Solidly protected macaques shared the same MHC class II alleles implicating CD4+ T cells in superior protective immunity. Understandably, we sought to define T cell immune correlates in these animals to potentially improve vaccine efficacy. Here, following a two year resting period, these macaques were boosted intramuscularly with the live-attenuated trachoma vaccine and their peripheral T cell anamnestic responses studied. Both solidly and partially protected macaques exhibited a CD4+ and CD8+ T cell anamnestic response following booster immunization. CD8+ but not CD4+ T cells from solidly protected macaques proliferated against soluble chlamydial antigen. We observed a more rapid T cell inflammatory cytokine response in tears of solidly protected animals following ocular re-challenge. Most notably, depletion of CD8+ T cells in solidly protected macaques completely abrogated protective immunity. Collectively, our findings support the conclusion that CD8+ T cells play an important but unexpected role in live-attenuated trachoma vaccine mediated protective immunity. PMID:24711617

  2. Translating stem cell research: challenges at the research frontier.

    PubMed

    Magnus, David

    2010-01-01

    This paper will address the translation of basic stem cell research into clinical research. While "stem cell" trials are sometimes used to describe established practices of bone marrow transplantation or transplantation of primary cells derived from bone marrow, for the purposes of this paper, I am primarily focusing on stem cell trials which are far less established, including use of hESC derived stem cells. The central ethical challenges in stem cell clinical trials arise in frontier research, not in standard, well-established areas of research.

  3. Live-cell protein labelling with nanometre precision by cell squeezing

    PubMed Central

    Kollmannsperger, Alina; Sharei, Armon; Raulf, Anika; Heilemann, Mike; Langer, Robert; Jensen, Klavs F.; Wieneke, Ralph; Tampé, Robert

    2016-01-01

    Live-cell labelling techniques to visualize proteins with minimal disturbance are important; however, the currently available methods are limited in their labelling efficiency, specificity and cell permeability. We describe high-throughput protein labelling facilitated by minimalistic probes delivered to mammalian cells by microfluidic cell squeezing. High-affinity and target-specific tracing of proteins in various subcellular compartments is demonstrated, culminating in photoinduced labelling within live cells. Both the fine-tuned delivery of subnanomolar concentrations and the minimal size of the probe allow for live-cell super-resolution imaging with very low background and nanometre precision. This method is fast in probe delivery (∼1,000,000 cells per second), versatile across cell types and can be readily transferred to a multitude of proteins. Moreover, the technique succeeds in combination with well-established methods to gain multiplexed labelling and has demonstrated potential to precisely trace target proteins, in live mammalian cells, by super-resolution microscopy. PMID:26822409

  4. Live-cell protein labelling with nanometre precision by cell squeezing.

    PubMed

    Kollmannsperger, Alina; Sharei, Armon; Raulf, Anika; Heilemann, Mike; Langer, Robert; Jensen, Klavs F; Wieneke, Ralph; Tampé, Robert

    2016-01-29

    Live-cell labelling techniques to visualize proteins with minimal disturbance are important; however, the currently available methods are limited in their labelling efficiency, specificity and cell permeability. We describe high-throughput protein labelling facilitated by minimalistic probes delivered to mammalian cells by microfluidic cell squeezing. High-affinity and target-specific tracing of proteins in various subcellular compartments is demonstrated, culminating in photoinduced labelling within live cells. Both the fine-tuned delivery of subnanomolar concentrations and the minimal size of the probe allow for live-cell super-resolution imaging with very low background and nanometre precision. This method is fast in probe delivery (∼ 1,000,000 cells per second), versatile across cell types and can be readily transferred to a multitude of proteins. Moreover, the technique succeeds in combination with well-established methods to gain multiplexed labelling and has demonstrated potential to precisely trace target proteins, in live mammalian cells, by super-resolution microscopy.

  5. Rapid 3D Refractive‐Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation

    PubMed Central

    Habaza, Mor; Kirschbaum, Michael; Guernth‐Marschner, Christian; Dardikman, Gili; Barnea, Itay; Korenstein, Rafi; Duschl, Claus

    2016-01-01

    A major challenge in the field of optical imaging of live cells is achieving rapid, 3D, and noninvasive imaging of isolated cells without labeling. If successful, many clinical procedures involving analysis and sorting of cells drawn from body fluids, including blood, can be significantly improved. A new label‐free tomographic interferometry approach is presented. This approach provides rapid capturing of the 3D refractive‐index distribution of single cells in suspension. The cells flow in a microfluidic channel, are trapped, and then rapidly rotated by dielectrophoretic forces in a noninvasive and precise manner. Interferometric projections of the rotated cell are acquired and processed into the cellular 3D refractive‐index map. Uniquely, this approach provides full (360°) coverage of the rotation angular range around any axis, and knowledge on the viewing angle. The experimental demonstrations presented include 3D, label‐free imaging of cancer cells and three types of white blood cells. This approach is expected to be useful for label‐free cell sorting, as well as for detection and monitoring of pathological conditions resulting in cellular morphology changes or occurrence of specific cell types in blood or other body fluids. PMID:28251046

  6. An abstract cell model that describes the self-organization of cell function in living systems.

    PubMed

    Wolkenhauer, Olaf; Hofmeyr, Jan-Hendrik S

    2007-06-07

    The principal aim of systems biology is to search for general principles that govern living systems. We develop an abstract dynamic model of a cell, rooted in Mesarović and Takahara's general systems theory. In this conceptual framework the function of the cell is delineated by the dynamic processes it can realize. We abstract basic cellular processes, i.e., metabolism, signalling, gene expression, into a mapping and consider cell functions, i.e., cell differentiation, proliferation, etc. as processes that determine the basic cellular processes that realize a particular cell function. We then postulate the existence of a 'coordination principle' that determines cell function. These ideas are condensed into a theorem: If basic cellular processes for the control and regulation of cell functions are present, then the coordination of cell functions is realized autonomously from within the system. Inspired by Robert Rosen's notion of closure to efficient causation, introduced as a necessary condition for a natural system to be an organism, we show that for a mathematical model of a self-organizing cell the associated category must be cartesian closed. Although the semantics of our cell model differ from Rosen's (M,R)-systems, the proof of our theorem supports (in parts) Rosen's argument that living cells have non-simulable properties. Whereas models that form cartesian closed categories can capture self-organization (which is a, if not the, fundamental property of living systems), conventional computer simulations of these models (such as virtual cells) cannot. Simulations can mimic living systems, but they are not like living systems.

  7. Direct imaging of APP proteolysis in living cells.

    PubMed

    Parenti, Niccoló; Del Grosso, Ambra; Antoni, Claudia; Cecchini, Marco; Corradetti, Renato; Pavone, Francesco S; Calamai, Martino

    2017-01-01

    Alzheimer's disease is a multifactorial disorder caused by the interaction of genetic, epigenetic and environmental factors. The formation of cytotoxic oligomers consisting of Aβ peptide is widely accepted as being one of the main key events triggering the development of Alzheimer's disease. Aβ peptide production results from the specific proteolytic processing of the amyloid precursor protein (APP). Deciphering the factors governing the activity of the secretases responsible for the cleavage of APP is still a critical issue. Kits available commercially measure the enzymatic activity of the secretases from cells lysates, in vitro. By contrast, we have developed a prototypal rapid bioassay that provides visible information on the proteolytic processing of APP directly in living cells. APP was fused to a monomeric variant of the green fluorescent protein and a monomeric variant of the red fluorescent protein at the C-terminal and N-terminal (mChAPPmGFP), respectively. Changes in the proteolytic processing rate in transfected human neuroblastoma and rat neuronal cells were imaged with confocal microscopy as changes in the red/green fluorescence intensity ratio. The significant decrease in the mean red/green ratio observed in cells over-expressing the β-secretase BACE1, or the α-secretase ADAM10, fused to a monomeric blue fluorescent protein confirms that the proteolytic site is still accessible. Specific siRNA was used to evaluate the contribution of endogenous BACE1. Interestingly, we found that the degree of proteolytic processing of APP is not completely homogeneous within the same single cell, and that there is a high degree of variability between cells of the same type. We were also able to follow with a fluorescence spectrometer the changes in the red emission intensity of the extracellular medium when BACE1 was overexpressed. This represents a complementary approach to fluorescence microscopy for rapidly detecting changes in the proteolytic processing of

  8. Mechanodelivery of nanoparticles to the cytoplasm of living cells

    NASA Astrophysics Data System (ADS)

    Emerson, Nyssa T.; Hsia, Chih-Hao; Rafalska-Metcalf, Ilona U.; Yang, Haw

    2014-04-01

    Nanotechnology has opened up the opportunity to probe, sense, and manipulate the chemical environment of biological systems with an unprecedented level of spatiotemporal control. A major obstacle to the full realization of these novel technologies is the lack of a general, robust, and simple method for the delivery of arbitrary nanostructures to the cytoplasm of intact live cells. Here, we identify a new delivery modality, based on mechanical disruption of the plasma membrane, which efficiently mediates the delivery of nanoparticles to the cytoplasm of mammalian cells. We use two distinct execution modes, two adherent cell lines, and three sizes of semiconducting nanocrystals, or quantum dots, to demonstrate its applicability and effectiveness. As the underlying mechanism is purely physical, we anticipate that such ``mechanodelivery'' can be generalized to other modes of execution as well as to the cytoplasmic introduction of a structurally diverse array of functional nanomaterials.Nanotechnology has opened up the opportunity to probe, sense, and manipulate the chemical environment of biological systems with an unprecedented level of spatiotemporal control. A major obstacle to the full realization of these novel technologies is the lack of a general, robust, and simple method for the delivery of arbitrary nanostructures to the cytoplasm of intact live cells. Here, we identify a new delivery modality, based on mechanical disruption of the plasma membrane, which efficiently mediates the delivery of nanoparticles to the cytoplasm of mammalian cells. We use two distinct execution modes, two adherent cell lines, and three sizes of semiconducting nanocrystals, or quantum dots, to demonstrate its applicability and effectiveness. As the underlying mechanism is purely physical, we anticipate that such ``mechanodelivery'' can be generalized to other modes of execution as well as to the cytoplasmic introduction of a structurally diverse array of functional nanomaterials

  9. Nonmuscle myosin II isoforms coassemble in living cells.

    PubMed

    Beach, Jordan R; Shao, Lin; Remmert, Kirsten; Li, Dong; Betzig, Eric; Hammer, John A

    2014-05-19

    Nonmuscle myosin II (NM II) powers myriad developmental and cellular processes, including embryogenesis, cell migration, and cytokinesis [1]. To exert its functions, monomers of NM II assemble into bipolar filaments that produce a contractile force on the actin cytoskeleton. Mammalian cells express up to three isoforms of NM II (NM IIA, IIB, and IIC), each of which possesses distinct biophysical properties and supports unique as well as redundant cellular functions [2-8]. Despite previous efforts [9-13], it remains unclear whether NM II isoforms assemble in living cells to produce mixed (heterotypic) bipolar filaments or whether filaments consist entirely of a single isoform (homotypic). We addressed this question using fluorescently tagged versions of NM IIA, IIB, and IIC, isoform-specific immunostaining of the endogenous proteins, and two-color total internal reflection fluorescence structured-illumination microscopy, or TIRF-SIM, to visualize individual myosin II bipolar filaments inside cells. We show that NM II isoforms coassemble into heterotypic filaments in a variety of settings, including various types of stress fibers, individual filaments throughout the cell, and the contractile ring. We also show that the differential distribution of NM IIA and NM IIB typically seen in confocal micrographs of well-polarized cells is reflected in the composition of individual bipolar filaments. Interestingly, this differential distribution is less pronounced in freshly spread cells, arguing for the existence of a sorting mechanism acting over time. Together, our work argues that individual NM II isoforms are potentially performing both isoform-specific and isoform-redundant functions while coassembled with other NM II isoforms.

  10. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Junghans, Ann

    Understanding the structure and functionality of biological systems on a nanometer-resolution and short temporal scales is important for solving complex biological problems, developing innovative treatment, and advancing the design of highly functionalized biomimetic materials. For example, adhesion of cells to an underlying substrate plays a crucial role in physiology and disease development, and has been investigated with great interest for several decades. In the talk, we would like to highlight recent advances in utilizing neutron scattering to study bio-related structures in dynamic conditions (e . g . under the shear flow) including in-situ investigations of the interfacial properties of living cells. The strength of neutron reflectometry is its non-pertubative nature, the ability to probe buried interfaces with nanometer resolution and its sensitivity to light elements like hydrogen and carbon. That allows us to study details of cell - substrate interfaces that are not accessible with any other standard techniques. We studied the adhesion of human brain tumor cells (U251) to quartz substrates and their responses to the external mechanical forces. Such cells are isolated within the central nervous system which makes them difficult to reach with conventional therapies and therefore making them highly invasive. Our results reveal changes in the thickness and composition of the adhesion layer (a layer between the cell lipid membrane and the quartz substrate), largely composed of hyaluronic acid and associated proteoglycans, when the cells were subjected to shear stress. Further studies will allow us to determine more conditions triggering changes in the composition of the bio-material in the adhesion layer. This, in turn, can help to identify changes that correlate with tumor invasiveness, which can have significant medical impact for the development of targeted anti-invasive therapies.

  11. Directing the assembly of nanostructured films with living cells

    NASA Astrophysics Data System (ADS)

    Brinker, C. Jeffrey

    2007-03-01

    This talk describes our recent discovery of the ability of living cells to organize extended nanostructures and nano-objects in a manner that creates a unique, highly biocompatible nano//bio interface (Science 313, 337-340, 2006). We find that, using short chain phospholipids to direct the formation of thin film silica mesophases during evaporation-induced self-assembly, the introduction of cells (so far yeast and bacteria) alters profoundly the inorganic self-assembly pathway. Cells actively organize around themselves an ordered, multilayered lipid-membrane that interfaces coherently with a lipid-templated silica mesophase. This bio/nano interface is unique in that it withstands drying (even evacuation) without cracking or the development of tensile stresses -- yet it maintains accessibility to molecules, proteins/antibodies, plasmids, etc - introduced into the 3D silica host. Additionally cell viability is preserved for weeks to months in the absence of buffer, making these constructs useful as standalone cell-based sensors. The bio/nano interfaces we describe do not form `passively' -- rather they are a consequence of the cell's ability to sense and actively respond to external stimuli. During EISA, solvent evaporation concentrates the extracellular environment in osmolytes. In response to this hyperosmotic stress, the cells release water, creating a gradient in pH, which is maintained within the adjoining nanostructured host and serves to localize lipids, proteins, plasmids, lipidized nanocrystals, and a variety of other components at the cellular surface. This active organization of the bio/nano interface can be accomplished during ink-jet printing or selective wetting -- processes allowing patterning of cellular arrays - and even spatially-defined genetic modification.

  12. Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy.

    PubMed

    Chen, Weili; Long, Kenneth D; Yu, Hojeong; Tan, Yafang; Choi, Ji Sun; Harley, Brendan A; Cunningham, Brian T

    2014-11-21

    We demonstrate photonic crystal enhanced fluorescence (PCEF) microscopy as a surface-specific fluorescence imaging technique to study the adhesion of live cells by visualizing variations in cell-substrate gap distance. This approach utilizes a photonic crystal surface incorporated into a standard microscope slide as the substrate for cell adhesion, and a microscope integrated with a custom illumination source as the detection instrument. When illuminated with a monochromatic light source, angle-specific optical resonances supported by the photonic crystal enable efficient excitation of surface-confined and amplified electromagnetic fields when excited at an on-resonance condition, while no field enhancement occurs when the same photonic crystal is illuminated in an off-resonance state. By mapping the fluorescence enhancement factor for fluorophore-tagged cellular components between on- and off-resonance states and comparing the results to numerical calculations, the vertical distance of labelled cellular components from the photonic crystal substrate can be estimated, providing critical and quantitative information regarding the spatial distribution of the specific components of cells attaching to a surface. As an initial demonstration of the concept, 3T3 fibroblast cells were grown on fibronectin-coated photonic crystals with fluorophore-labelled plasma membrane or nucleus. We demonstrate that PCEF microscopy is capable of providing information about the spatial distribution of cell-surface interactions at the single-cell level that is not available from other existing forms of microscopy, and that the approach is amenable to large fields of view, without the need for coupling prisms, coupling fluids, or special microscope objectives.

  13. Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy†

    PubMed Central

    Chen, Weili; Long, Kenneth D.; Yu, Hojeong; Tan, Yafang; Choi, Ji Sun; Harley, Brendan A.; Cunningham, Brian T.

    2014-01-01

    We demonstrate photonic crystal enhanced fluorescence (PCEF) microscopy as a surface-specific fluorescence imaging technique to study the adhesion of live cells by visualizing variations in cell-substrate gap distance. This approach utilizes a photonic crystal surface incorporated into a standard microscope slide as the substrate for cell adhesion, and a microscope integrated with a custom illumination source as the detection instrument. When illuminated with a monochromatic light source, angle-specific optical resonances supported by the photonic crystal enable efficient excitation of surface-confined and amplified electromagnetic fields when excited at an on-resonance condition, while no field enhancement occurs when the same photonic crystal is illuminated in an off-resonance state. By mapping the fluorescence enhancement factor for fluorophore-tagged cellular components between on- and off-resonance states and comparing the results to numerical calculations, the vertical distance of labelled cellular components from the photonic crystal substrate can be estimated, providing critical and quantitative information regarding the spatial distribution of the specific components of cells attaching to a surface. As an initial demonstration of the concept, 3T3 fibroblast cells were grown on fibronectin-coated photonic crystals with fluorophore-labelled plasma membrane or nucleus. We demonstrate that PCEF microscopy is capable of providing information about the spatial distribution of cell-surface interactions at the single-cell level that is not available from other existing forms of microscopy, and that the approach is amenable to large fields of view, without the need for coupling prisms, coupling fluids, or special microscope objectives. PMID:25265458

  14. Living on three time scales: the dynamics of plasma cell and antibody populations illustrated for hepatitis a virus.

    PubMed

    Andraud, Mathieu; Lejeune, Olivier; Musoro, Jammbe Z; Ogunjimi, Benson; Beutels, Philippe; Hens, Niel

    2012-01-01

    Understanding the mechanisms involved in long-term persistence of humoral immunity after natural infection or vaccination is challenging and crucial for further research in immunology, vaccine development as well as health policy. Long-lived plasma cells, which have recently been shown to reside in survival niches in the bone marrow, are instrumental in the process of immunity induction and persistence. We developed a mathematical model, assuming two antibody-secreting cell subpopulations (short- and long-lived plasma cells), to analyze the antibody kinetics after HAV-vaccination using data from two long-term follow-up studies. Model parameters were estimated through a hierarchical nonlinear mixed-effects model analysis. Long-term individual predictions were derived from the individual empirical parameters and were used to estimate the mean time to immunity waning. We show that three life spans are essential to explain the observed antibody kinetics: that of the antibodies (around one month), the short-lived plasma cells (several months) and the long-lived plasma cells (decades). Although our model is a simplified representation of the actual mechanisms that govern individual immune responses, the level of agreement between long-term individual predictions and observed kinetics is reassuringly close. The quantitative assessment of the time scales over which plasma cells and antibodies live and interact provides a basis for further quantitative research on immunology, with direct consequences for understanding the epidemiology of infectious diseases, and for timing serum sampling in clinical trials of vaccines.

  15. Protein organic chemistry and applications for labeling and engineering in live-cell systems.

    PubMed

    Takaoka, Yousuke; Ojida, Akio; Hamachi, Itaru

    2013-04-08

    The modification of proteins with synthetic probes is a powerful means of elucidating and engineering the functions of proteins both in vitro and in live cells or in vivo. Herein we review recent progress in chemistry-based protein modification methods and their application in protein engineering, with particular emphasis on the following four strategies: 1) the bioconjugation reactions of amino acids on the surfaces of natural proteins, mainly applied in test-tube settings; 2) the bioorthogonal reactions of proteins with non-natural functional groups; 3) the coupling of recognition and reactive sites using an enzyme or short peptide tag-probe pair for labeling natural amino acids; and 4) ligand-directed labeling chemistries for the selective labeling of endogenous proteins in living systems. Overall, these techniques represent a useful set of tools for application in chemical biology, with the methods 2-4 in particular being applicable to crude (living) habitats. Although still in its infancy, the use of organic chemistry for the manipulation of endogenous proteins, with subsequent applications in living systems, represents a worthy challenge for many chemists. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Using Live-Cell Markers in Maize to Analyze Cell Division Orientation and Timing.

    PubMed

    Rasmussen, Carolyn G

    2016-01-01

    Recently developed live-cell markers provide an opportunity to explore the dynamics and localization of proteins in maize, an important crop and model for monocot development. A step-by-step method is outlined for observing and analyzing the process of division in maize cells. The steps include plant growth conditions, sample preparation, time-lapse setup, and calculation of division rates.

  17. Phase separation of equilibrium polymers of proteins in living cells.

    PubMed

    Sear, Richard P

    2008-01-01

    A number of proteins polymerise reversibly in living cells. The equilibrium polymers are functional: if mutant proteins are made that cannot polymerise, then these proteins cannot perform their biological functions. Furthermore, these polymers of proteins appear to phase separate inside the cell. The dynamics of one of these polymerising, phase separating proteins has been studied via fluorescence recovery after photobleaching (FRAP) by Bienz and coworkers. Here, their data is compared with the results of quantitative modelling to gain a better understanding of the dynamics of this protein inside a cell. The protein is called Dishevelled; it is a protein essential to the development of all animals and the name originates in the disruption of hair formation in a mutant version of this protein. It is not known how polymerisation and phase separation enable Dishevelled to perform its biological function but here we propose and discuss two possibilities. The first is that the cell is exploiting the inherently sharp, switch-like nature of a phase transition to respond in a switch-like way to a external signal. The second is that phase separation dynamically creates a compartment (the more concentrated phase) into which other proteins partition.

  18. Following the Dyamics of DNA in Living Cells

    NASA Astrophysics Data System (ADS)

    Milstein, Joshua; Raghunathan, Krishnan; Chu, Mike; Meiners, Jens-Christian

    2012-02-01

    Cells are brimming with molecular activity, but the cellular interior is much more than a test tube for biochemical reactions. The intracellular environment imposes a variety of mechanical constraints and engenders interactions from molecular crowding to a range of motor-driven activity responsible for transcription, replication, cargo transport, cytoskeletal rearrangement, chromosomal remodeling, and so on. We have developed a two-color correlational microscopy technique to follow the dynamics of DNA interacting with the in vivo cellular environment. Substantial differences between live cells and dead, yet structurally intact, cells point to a strong coupling of active, motor-driven fluctuations in the cell. This suggests that the motion of native, cellular DNA may similarly be driven by active processes, instead of relying on purely thermal, passive fluctuations. We also note that the correlations provide a sensitive measure for the effective length of the DNA probe on a length scale around one persistence length (˜ 50 nm). This paves the way for experiments with more complex DNA probes that can bind transcription factors to form protein-mediated DNA loops, the dynamics of which could be observed through this method.

  19. Fluorescence and polarization imaging of membrane dynamics in living cells

    NASA Astrophysics Data System (ADS)

    Wagner, M.; Weber, P.; Bruns, T.; Strauss, W. S. L.; Schneckenburger, H.

    2009-02-01

    Methods of wide field fluorescence microscopy for measuring membrane dynamics in living cells are described. These methods are based on laser pulse excitation of the membrane marker 6-dodecanoyl-2-dimethylamino naphthalene (laurdan) whose emission spectra, fluorescence decay kinetics and anisotropies are sensitive to membrane stiffness and fluidity. Plasma membranes are selected by illumination with an evanescent electromagnetic field and distinguished from intracellular membranes assessed by whole cell illumination. While fluorescence spectra of laurdan appeared red-shifted with decreasing membrane stiffness, fluorescence anisotropy and rotational relaxation times were reduced with increasing membrane fluidity. Membrane stiffness was found to increase with decreasing temperature and increasing amounts of cholesterol. In addition, membrane stiffness of the plasma membrane was always higher than that of intracellular membranes. These effects may have some influence on pathogenesis of certain diseases, uptake of pharmaceutical agents or cell aging. Present experiments are limited to fluorescence microscopy with total internal reflection (TIR) or epi-illumination, but corresponding methods can also be used for screening of larger cell collectives, e.g. in microtiter plates.

  20. Enlightening intracellular complexity of living cells with quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Martinez Torres, C.; Laperrousaz, B.; Berguiga, L.; Boyer Provera, E.; Elezgaray, J.; Nicolini, F. E.; Maguer-Satta, V.; Arneodo, A.; Argoul, F.

    2016-03-01

    The internal distribution of refractive indices (RIs) of a living cell is much more complex than usually admitted in multi-shell models. The reconstruction of RI maps from single phase images has rarely been achieved for several reasons: (i) we still have very little knowledge of the impact of internal macromolecular complexes on the local RI and (ii) phase changes produced by light propagation through the sample are mixed with diffraction effects by internal cell bodies. We propose the implementation a 2D wavelet-based contour chain detection method to distinguish internal boundaries thanks to their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are morphological indicators for distinguishing cells of different origins and to follow their transformation in pathologic situations. We use this method to compare non adherent blood cells from primary and laboratory culture origins, in healthy and pathological situations (chronic myelogenous leukaemia). In a second part of this presentation, we concentrate on the temporal dynamics of the phase contour chains and we discuss the spectral decomposition of their dynamics in both health and disease.

  1. Establishing guidelines for CAR-T cells: challenges and considerations.

    PubMed

    Wang, Wei; Qin, Di-Yuan; Zhang, Bing-Lan; Wei, Wei; Wang, Yong-Sheng; Wei, Yu-Quan

    2016-04-01

    T cells, genetically modified by chimeric antigen receptors (CAR-T), are endowed with specificity to a desired antigen and are cytotoxic to cells expressing the targeted antigen. CAR-T-based cancer immunotherapy is a promising therapy for curing hematological malignancy, such as acute lymphoid leukemia, and is promising for extending their efficacy to defeat solid tumors. To date, dozens of different CAR-T cells have been evaluated in clinical trials to treat tumors; this necessitates the establishment of guidelines for the production and application of CAR-T cells. However, it is challenging to standardize CAR-T cancer therapy because it involves a combination of gene therapy and cell therapy. In this review, we compare the existing guidelines for CAR-T cells and discuss the challenges and considerations for establishing guidance for CAR-T-based cancer immunotherapy.

  2. Phasor FLIM metabolic mapping of stem cells and cancer cells in live tissues

    NASA Astrophysics Data System (ADS)

    Stringari, Chiara; Donovan, Peter; Gratton, Enrico

    2012-03-01

    We use the phasor approach to fluorescence lifetime imaging and intrinsic biochemical fluorescence biomarkers in conjunction with image segmentation and the concept of cell phasor for deriving metabolic maps of cells and living tissues in vivo. In issues we identify and separate intrinsic fluorophores such as collagen, retinol, retinoic acid, porphyrin, flavins, free and bound nicotinamide adenine dinucleotide (NADH). Metabolic signatures of tissues are obtained by calculating the phasor fingerprint of single cells and by mapping the relative concentration of metabolites. This method detects small changes in metabolic signatures and redox states of cells. Phasor fingerprints of stem cells cluster according to their differentiation state in a living tissue such as the C. elegans germ line and the crypt base of small intestine and colon. Phasor FLIM provides a label-free and fit-free sensitive method to identify metabolic states of cells and to classify stem cells, normal differentiated cells and cancer cells both in vitro and in a live tissue. Our method could identify symmetric and asymmetric divisions, predict cell fate and identify pre-cancer stages in vivo. This method is a promising non-invasive optical tool for monitoring metabolic pathways during differentiation and carcinogenesis, for cell sorting and high throughput screening.

  3. Challenges for the Therapeutic use of Pluripotent Stem Derived Cells.

    PubMed

    Forsberg, Magda; Hovatta, Outi

    2012-01-01

    Human embryonic stem cells (hESC) and induced pluripotent stem cells (hiPSC) are an attractive cell source for regenerative medicine. These cells can be expanded to vast numbers and can be differentiated to many desired pluripotent stem cells (PSC) derived therapeutic cells. Cell replacement bears promises, but also challenges. The introduction of exogenous cells in a recipient must address several different topics; its safety, the exclusion of tumor formation, the immunological response and possible rejection, the cells cleanliness and their biological quality, and quantity representing the functionality of the PSC derived therapeutic cells. Tumor formation requires the removal of any PSC remaining after differentiation. Immunological rejection can be addressed with immunomodulation of the cells and the recipient. Cleanliness can be optimized using good manufacturing practice quality systems. At last, the functionality of the cells must be tested in in vitro and in animal models. After addressing these challenges, precise strategies are developed to monitor the status of the cells at different times and in case of undesired results, corresponding counteracting strategies must exist before any clinical attempt.

  4. Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus.

    PubMed

    Lew, Matthew D; Lee, Steven F; Ptacin, Jerod L; Lee, Marissa K; Twieg, Robert J; Shapiro, Lucy; Moerner, W E

    2011-11-15

    Recently, single-molecule imaging and photocontrol have enabled superresolution optical microscopy of cellular structures beyond Abbe's diffraction limit, extending the frontier of noninvasive imaging of structures within living cells. However, live-cell superresolution imaging has been challenged by the need to image three-dimensional (3D) structures relative to their biological context, such as the cellular membrane. We have developed a technique, termed superresolution by power-dependent active intermittency and points accumulation for imaging in nanoscale topography (SPRAIPAINT) that combines imaging of intracellular enhanced YFP (eYFP) fusions (SPRAI) with stochastic localization of the cell surface (PAINT) to image two different fluorophores sequentially with only one laser. Simple light-induced blinking of eYFP and collisional flux onto the cell surface by Nile red are used to achieve single-molecule localizations, without any antibody labeling, cell membrane permeabilization, or thiol-oxygen scavenger systems required. Here we demonstrate live-cell 3D superresolution imaging of Crescentin-eYFP, a cytoskeletal fluorescent protein fusion, colocalized with the surface of the bacterium Caulobacter crescentus using a double-helix point spread function microscope. Three-dimensional colocalization of intracellular protein structures and the cell surface with superresolution optical microscopy opens the door for the analysis of protein interactions in living cells with excellent precision (20-40 nm in 3D) over a large field of view (12 12 μm).

  5. The influence of dietary locust bean gum and live yeast on some digestive immunological parameters of piglets experimentally challenged with Escherichia coli.

    PubMed

    Badia, R; Lizardo, R; Martinez, P; Badiola, I; Brufau, J

    2012-12-01

    Gums and yeast cells are natural mannose-rich products that can be used as subtracts for adhesion of gram-negative bacteria. The aim of the study was to investigate the role of dietary locust bean gum (LBG; Salmosan, ITPSA, Spain) or live yeast (Saccharomyces cerevisiae Sc47; Actisaf, Lesaffre, France) as immunological enhancers of the intestinal function of piglets. Treatments included a noninfected group fed with a control diet and 4 other groups orally challenged with 1x10(8) cfu of Escherichia coli K88. The challenged groups were fed the control or the control diet supplemented with colistin, LBG, or yeast. Twenty-five Landrace × Duroc piglets weaned at 4 wk were used. The animals were group housed, challenged on day 14, and euthanized 2 d later. Blood, bile, ileum, and mesenteric lymph node (MLN) samples were obtained for analysis of C-reactive protein (CRP), secretory immunoglobulin A (sIgA), and Toll-like receptors 2 (TLR2) and 4 (TLR4). Challenge increased the level of CRP of piglets fed the control diet, but this did not happen in the piglets fed the supplemented diets (P < 0.001). Challenge upregulated TLR2 in MLN and TLR4 in ileum and MLN (P < 0.05). This was prevented by yeast supplementation for the TLR2 in MLN and TLR4 in ileum. Pigs fed colistin and