Science.gov

Sample records for living phytoplankton implications

  1. Dynamics of living phytoplankton: Implications for paleoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Barbosa, A. B.

    2009-01-01

    Phytoplankton is the dominant primary producer in aquatic ecosystems and is considered a gauge of ecological condition and change. Some phytoplankton groups, namely diatoms, dinoflagellates, and coccolithophores, produce morphological or chemical fossils that can be used for paleoenvironmental reconstruction. This study aims to review the processes that regulate dynamics in living phytoplankton and to highlight how this knowledge is used in paleoecological studies. The distribution patterns of phytoplankton in present-day aquatic ecosystems are shaped by the interplay between processes that regulate cell growth and cell death. Cell growth and cell death are regulated by the internal environment of phytoplankton (e.g., specific environmental tolerances, resource uptake properties, cell size, density and morphology, alternative nutritional strategies such as mixotrophy or N2 uptake, motility, intracellular storage capacities, grazing resistance properties), and by its external environment. The external environment includes variables dependent on the availability of resources (e.g., light intensity, concentration of CO2 and dissolved inorganic macronutrients and micronutrients, availability of living prey in case of mixotrophs) and variables independent of resources (e.g., temperature, salinity, turbulence, ultraviolet radiation, bioactive compounds, activity of grazers, viruses, and eukaryotic parasites). The importance of recently described loss processes, such as grazing by phagotrophic protists, viral lyses, and programmed cell death, is discussed in the context of its potential impact upon phytoplankton vertical fluxes. Examples of the use of different phytoplankton metrics (e.g. abundance, species composition, species morphology, and elemental composition) to infer contemporaneous as well as past environmental and ecological conditions are critically evaluated.

  2. Food web structure in the recently flooded Sep Reservoir as inferred from phytoplankton population dynamics and living microbial biomass.

    PubMed

    Tadonléké, R D; Jugnia, L B; Sime-Ngando, T; Devaux, J; Romagoux, J C

    2002-01-01

    Phytoplankton dynamics, bacterial standing stocks and living microbial biomass (derived from ATP measurements, 0.7-200 mm size class) were examined in 1996 in the newly flooded (1995) Sep Reservoir ('Massif Central,' France), for evidence of the importance of the microbial food web relative to the traditional food chain. Phosphate concentrations were low, N:P ratios were high, and phosphate losses converted into carbon accounted for <50% of phytoplankton biomass and production, indicating that P was limiting phytoplankton development during the study. The observed low availability of P contrasts with the high release of "directly" assimilable P often reported in newly flooded reservoirs, suggesting that factors determining nutrient dynamics in such ecosystems are complex. The phosphate availability, but also the water column stability, seemed to be among the major factors determining phytoplankton dynamics, as (i) large-size phytoplankton species were prominent during the period of increasing water column stability, whereas small-size species dominated phytoplankton assemblages during the period of decreasing stability, and (ii) a Dinobryon divergens bloom occurred during a period when inorganic P was undetectable, coinciding with the lowest values of bacterial standing stocks. Indication of grazing limitation of bacterial populations by the mixotrophic chrysophyte D. divergens (in late spring) and by other potential grazers (mainly rotifers in summer) seemed to be confirmed by the Model II or functional slopes of the bacterial vs phytoplankton regressions, which were always <0.63. Phytoplankton biomass was not correlated with phosphorus sources and its contribution was remarkably low relative to the living microbial biomass which, in contrast, was positively correlated with total phosphorus in summer. We conclude that planktonic microheterotrophs are strongly implicated in the phosphorus dynamics in the Sep Reservoir, and thus support the idea that an important

  3. Quantifying indicatively living phytoplankton cells in ballast water samples--recommendations for Port State Control.

    PubMed

    Gollasch, Stephan; David, Matej; Francé, Janja; Mozetič, Patricija

    2015-12-30

    Different phytoplankton analysis methods (pulse-amplitude modulated fluorometry (PAM) and microscopy) were compared in preparation for compliance monitoring and enforcement with ballast water discharge standards. The key objective was to practically evaluate the performance of different new methods and tools to identify indicatively living phytoplankton cells of the size <50 μm in minimum dimension and ≥ 10 μm in minimum dimension as addressed by the Ballast Water Performance Standard (Regulation D-2, International Convention for the Control and Management of Ships' Ballast Water and Sediments, 2004). Four different PAM instruments were selected for the tests based upon knowledge and experience gained in different ballast water sample processing studies. The measurements of the PAM instruments were compared with epifluorescence microscope algae cell counts using fluorescein diacetate as viability stain. It was concluded that PAM fluorometry is a suitable method for indicative phytoplankton analysis of ballast water and the most accurate PAM instruments were identified.

  4. Estimating solar radiation absorbed by live phytoplankton from satellite ocean-color data

    NASA Astrophysics Data System (ADS)

    Frouin, Robert J.; Ruddorff, Natalia M.; Kampel, Milton

    2014-11-01

    Primary production, PP, or the quantity of organic matter synthesized by phytoplankton per unit of surface and time, depends on the photo-synthetically available radiation absorbed by live phytoplankton, APAR. Computing APAR requires knowledge of the absorption coefficient of live phytoplankton and the total absorption coefficient, quantities that are difficult to retrieve accurately from satellite ocean-color data. In the proposed approach, APAR is estimated directly from a linear combination of marine reflectance in the PAR spectral range. Feasibility is demonstrated theoretically from simulations using a marine reflectance model, and experimentally using data collected at 19 biooptical stations during the February-March 2011 R/V Melville oceanographic cruise in the Southern Atlantic and Southeastern Pacific. Improvements in APAR accuracy are quantified in comparisons with estimates obtained from absorption coefficients or chlorophyll concentration determined from marine reflectance via standard satellite algorithms. The linear combination of marine reflectance is fairly robust to atmospheric correction errors. Due to the linear nature of the algorithm, their impact may be further reduced when using space- or time-averaged reflectance. The methodology is applied to actual MODIS imagery over the Southern Atlantic, and variability in the resulting APAR field is analyzed. The study suggests that determining APAR directly from marine reflectance has the potential to improve PP estimates from space.

  5. Zooplankton interactions with toxic phytoplankton: Some implications for food web studies and algal defence strategies of feeding selectivity behaviour, toxin dilution and phytoplankton population diversity

    NASA Astrophysics Data System (ADS)

    Barreiro, A.; Guisande, C.; Maneiro, I.; Vergara, A. R.; Riveiro, I.; Iglesias, P.

    2007-11-01

    implications of these findings are the fact that mesozooplankton may not play an important role in phytoplankton blooms development. Phytoplankton endotoxin production does not seem to be an evolutionary stable strategy as a defence against some herbivores.

  6. Diversity and dynamics of free-living and particle-associated Betaproteobacteria and Actinobacteria in relation to phytoplankton and zooplankton communities.

    PubMed

    Parveen, Bushra; Reveilliez, Jean-Philippe; Mary, Isabelle; Ravet, Viviane; Bronner, Gisèle; Mangot, Jean-François; Domaizon, Isabelle; Debroas, Didier

    2011-09-01

    The diversity of attached and free-living Actinobacteria and Betaproteobacteria, based on 16S rRNA gene sequences, was investigated in a mesotrophic lake during two periods of contrasting phytoplankton dominance. Comparison analyses showed a phylogenetic difference between attached and free-living communities for the two bacterial groups. For Betaproteobacteria, the betaI clade was detected at all sampling dates in free-living and attached bacterial communities and was the dominant clade contributing to 57.8% of the total retrieved operational taxonomic units (OTUs). For Actinobacteria, the acIV cluster was found to be dominant, followed by acI contributing to 45% and 25% of the total retrieved OTUs, respectively. This study allows the determination of eight new putative clades among the Betaproteobacteria termed lbI-lbVIII and a new putative clade named acLBI belonging to the Actinobacteria. The seasonal dynamics of phytoplankton and zooplankton communities have been reflected as changes in distinct bacterial phylotypes for both attached and free-living communities. For attached communities, relationships were observed between Actinobacteria and Chrysophyceae, and between Betaproteobacteria and Dinophyceae and Chlorophyceae biomass. On the other hand, within free-living communities, few actinobacterial clades were found to be dependent on either nutrients or phytoplankton communities, whereas Betaproteobacteria were mainly associated with biological parameters (i.e. phytoplankton and copepod communities).

  7. Iron Limitation of a Springtime Bacterial and Phytoplankton Community in the Ross Sea: Implications for Vitamin B12 Nutrition

    PubMed Central

    Bertrand, Erin M.; Saito, Mak A.; Lee, Peter A.; Dunbar, Robert B.; Sedwick, Peter N.; DiTullio, Giacomo R.

    2011-01-01

    The Ross Sea is home to some of the largest phytoplankton blooms in the Southern Ocean. Primary production in this system has previously been shown to be iron limited in the summer and periodically iron and vitamin B12 colimited. In this study, we examined trace metal limitation of biological activity in the Ross Sea in the austral spring and considered possible implications for vitamin B12 nutrition. Bottle incubation experiments demonstrated that iron limited phytoplankton growth in the austral spring while B12, cobalt, and zinc did not. This is the first demonstration of iron limitation in a Phaeocystis antarctica-dominated, early season Ross Sea phytoplankton community. The lack of B12 limitation in this location is consistent with previous Ross Sea studies in the austral summer, wherein vitamin additions did not stimulate P. antarctica growth and B12 was limiting only when bacterial abundance was low. Bottle incubation experiments and a bacterial regrowth experiment also revealed that iron addition directly enhanced bacterial growth. B12 uptake measurements in natural water samples and in an iron fertilized bottle incubation demonstrated that bacteria serve not only as a source for vitamin B12, but also as a significant sink, and that iron additions enhanced B12 uptake rates in phytoplankton but not bacteria. Additionally, vitamin uptake rates did not become saturated upon the addition of up to 95 pM B12. A rapid B12 uptake rate was observed after 13 min, which then decreased to a slower constant uptake rate over the next 52 h. Results from this study highlight the importance of iron availability in limiting early season Ross Sea phytoplankton growth and suggest that rates of vitamin B12 production and consumption may be impacted by iron availability. PMID:21886638

  8. Chromium uptake and adsorption in cultured marine phytoplankton - implications for the marine Cr cycle

    NASA Astrophysics Data System (ADS)

    Semeniuk, D.; Maldonado, M. T.; Jaccard, S.

    2015-12-01

    While chromium (Cr) is a known carcinogen and pervasive industrial contaminant, little is known about the processes that affect the distribution and speciation of Cr in uncontaminated seawater. Given the recent development and application of the stable Cr isotope system in the marine environment, a full account of the sources, sinks, and internal processes affecting the modern marine Cr cycle is prudent. Using the radioisotope 51Cr, we investigated the controls of cellular Cr accumulation in an array of marine phytoplankton grown in environmentally relevant Cr concentrations (1-10 nM). Given the affinity of Cr(III) for amorphous Fe-hydroxide mineral surfaces, and the formation of these mineral phases on the outside of phytoplankton cells, extracellular Cr was monitored in a model diatom species (Thalassiosira weissflogii) as extracellular Fe concentrations varied. Extracellular Cr in T. weissflogii increased with increasing extracellular Fe, demonstrating that Cr may be removed from seawater via extracellular adsorption to phytoplankton. Short-term Cr(VI) and Cr(III) uptake experiments performed with T. weissflogii demonstrated that Cr(III) both adsorbed to and was internalized by the cells ~20x faster than Cr(VI). This suggests that Cr(III) is the dominant oxidation state associated with phytoplankton cells. Cellular Cr:C ratios (<0.5 µmol Cr mol C-1) of the nine phytoplankton species surveyed were significantly lower than previously reported Cr:C ratios of sinking particulate organic matter (~500 µmol Cr mol C-1). Thus, Cr accumulates in sinking particles- likely as Cr(III) - as it travels to the seafloor. Given the large fractionation of stable Cr isotopes during Cr(VI) reduction, Cr associated with exported phytoplankton may be enriched in lighter Cr isotopes. These data will assist investigators using stable Cr isotopes to examine past and present Cr biogeochemical cycles.

  9. Chromium uptake and adsorption in marine phytoplankton - Implications for the marine chromium cycle

    NASA Astrophysics Data System (ADS)

    Semeniuk, David M.; Maldonado, Maria T.; Jaccard, Samuel L.

    2016-07-01

    Using the radioisotope 51Cr, we investigated the controls of cellular Cr accumulation in an array of marine phytoplankton grown in environmentally relevant Cr concentrations (1-10 nM). Given the affinity of Cr(III) for amorphous Fe-hydroxide mineral surfaces, and the formation of these mineral phases on the outside of phytoplankton cells, extracellular Cr was monitored in a model diatom species (Thalassiosira weissflogii) as extracellular Fe concentrations varied. Extracellular Cr in T. weissflogii increased with increasing extracellular Fe, demonstrating that Cr may be removed from seawater via extracellular adsorption to phytoplankton. Short-term Cr(VI) and Cr(III) uptake experiments performed with T. weissflogii demonstrated that Cr(III) was the primary oxidation state adsorbing to cells and being internalized by them. Cellular Cr:C ratios (<0.5 μmol Cr mol C-1) of the eight phytoplankton species surveyed were significantly lower than previously reported Cr:C ratios in marine particles with a high biogenic component (10-300 μmol Cr mol C-1). This indicates that Cr(III) likely accumulates in marine particles due to uptake and/or adsorption. Mass balance calculations demonstrate that surface water Cr deficits can be explained via loss of Cr(III) to exported particles, thereby providing a mechanism to account for the nutrient depth profile for Cr in modern seawater. Given the large fractionation of stable Cr isotopes during Cr(VI) reduction, Cr(III) associated with exported organic carbon is likely enriched in lighter isotopes. Most sedimentary Cr isotope studies have thus far neglected internal fractionating processes in the marine Cr cycle, but our data indicate that loss of Cr to exported particles may be traced in the sedimentary δ53Cr record.

  10. Lived religion: implications for nursing ethics.

    PubMed

    Reimer-Kirkham, Sheryl

    2009-07-01

    This article explores how ethics and religion interface in everyday life by drawing on a study examining the negotiation of religious and spiritual plurality in health care. Employing methods of critical ethnography, namely, interviews and participant observation, data were collected from patients, health care providers, administrators and spiritual care providers. The findings revealed the degree to which 'lived religion' was intertwined with 'lived ethics' for many participants; particularly for people from the Sikh faith. For these participants, religion was woven into everyday life, making distinctions between public and private, secular and sacred spaces improbable. Individual interactions, institutional resource allocation, and social discourses are all embedded in social relationships of power that prevent religion from being a solely personal or private matter. Strategies for the reintegration of religion into nursing ethics are: adjusting professional codes and theories of ethics to reflect the influence of religion; and the contribution of critical perspectives, such as postcolonial feminism, to the understanding of lived ethics.

  11. MODEL OF PHYTOPLANKTON COMPETITION FOR LIMITING AND NONLIMITING NUTRIENTS: IMPLICATIONS FOR DEVELOPMENT OF ESTUARINE AND NEARSHORE MANAGEMENT SCHEMES

    EPA Science Inventory

    The global increase of noxious bloom occurrences has increased the need for phytoplankton management schemes. Such schemes require the ability to predict phytoplankton succession. Equilibrium Resources Competition theory, which is popular for predicting succession in lake systems...

  12. Temporal Succession of Ancient Phytoplankton Community in Qinghai Lake and Implication for Paleo-environmental Change.

    PubMed

    Li, Gaoyuan; Dong, Hailiang; Hou, Weiguo; Wang, Shang; Jiang, Hongchen; Yang, Jian; Wu, Geng

    2016-01-25

    Tibetan lake sediments in NW China are sensitive recorders of climate change. However, many important plankton members do not leave any microscopic features in sedimentary records. Here we used ancient DNA preserved in Qinghai Lake sediments to reconstruct the temporal succession of plankton communities in the past 18,500 years. Our results showed that seven classes and sixteen genera of phytoplankton in the lake underwent major temporal changes, in correlation with known climatic events. Trebouxiophyceae and Eustigmatophyceae were predominant during the cold periods, whereas Chlorophyceae, Phaeophyceae, Xanthophyceae, Bacillariophyceae, and Cyanophyceae were abundant during the warm periods. The inferred changes in temperature, nutrients, precipitation, and salinity, as driven by the Westerlies and summer Monsoon strength, likely contributed to these observed temporal changes. Based on these correlations, we propose the phytoplankton index as a proxy to reconstruct the stadial versus interstadial climate change history in Qinghai Lake. This taxon-specific index is free of terrestrial contamination, sensitive to short-term climatic oscillations, and continuous in recording all climatic events in the lake. The validity of this index and its applicability to other lakes is demonstrated by its good correlations with multiple climate records of Qinghai Lake and another lake on the Tibetan Plateau, Kusai Lake.

  13. Temporal Succession of Ancient Phytoplankton Community in Qinghai Lake and Implication for Paleo-environmental Change

    NASA Astrophysics Data System (ADS)

    Li, Gaoyuan; Dong, Hailiang; Hou, Weiguo; Wang, Shang; Jiang, Hongchen; Yang, Jian; Wu, Geng

    2016-01-01

    Tibetan lake sediments in NW China are sensitive recorders of climate change. However, many important plankton members do not leave any microscopic features in sedimentary records. Here we used ancient DNA preserved in Qinghai Lake sediments to reconstruct the temporal succession of plankton communities in the past 18,500 years. Our results showed that seven classes and sixteen genera of phytoplankton in the lake underwent major temporal changes, in correlation with known climatic events. Trebouxiophyceae and Eustigmatophyceae were predominant during the cold periods, whereas Chlorophyceae, Phaeophyceae, Xanthophyceae, Bacillariophyceae, and Cyanophyceae were abundant during the warm periods. The inferred changes in temperature, nutrients, precipitation, and salinity, as driven by the Westerlies and summer Monsoon strength, likely contributed to these observed temporal changes. Based on these correlations, we propose the phytoplankton index as a proxy to reconstruct the stadial versus interstadial climate change history in Qinghai Lake. This taxon-specific index is free of terrestrial contamination, sensitive to short-term climatic oscillations, and continuous in recording all climatic events in the lake. The validity of this index and its applicability to other lakes is demonstrated by its good correlations with multiple climate records of Qinghai Lake and another lake on the Tibetan Plateau, Kusai Lake.

  14. Temporal Succession of Ancient Phytoplankton Community in Qinghai Lake and Implication for Paleo-environmental Change

    PubMed Central

    Li, Gaoyuan; Dong, Hailiang; Hou, Weiguo; Wang, Shang; Jiang, Hongchen; Yang, Jian; Wu, Geng

    2016-01-01

    Tibetan lake sediments in NW China are sensitive recorders of climate change. However, many important plankton members do not leave any microscopic features in sedimentary records. Here we used ancient DNA preserved in Qinghai Lake sediments to reconstruct the temporal succession of plankton communities in the past 18,500 years. Our results showed that seven classes and sixteen genera of phytoplankton in the lake underwent major temporal changes, in correlation with known climatic events. Trebouxiophyceae and Eustigmatophyceae were predominant during the cold periods, whereas Chlorophyceae, Phaeophyceae, Xanthophyceae, Bacillariophyceae, and Cyanophyceae were abundant during the warm periods. The inferred changes in temperature, nutrients, precipitation, and salinity, as driven by the Westerlies and summer Monsoon strength, likely contributed to these observed temporal changes. Based on these correlations, we propose the phytoplankton index as a proxy to reconstruct the stadial versus interstadial climate change history in Qinghai Lake. This taxon-specific index is free of terrestrial contamination, sensitive to short-term climatic oscillations, and continuous in recording all climatic events in the lake. The validity of this index and its applicability to other lakes is demonstrated by its good correlations with multiple climate records of Qinghai Lake and another lake on the Tibetan Plateau, Kusai Lake. PMID:26805936

  15. Light dependence of selenium uptake by phytoplankton and implications for predicting selenium incorporation into food webs

    USGS Publications Warehouse

    Baines, S.B.; Fisher, N.S.; Doblin, M.A.; Cutter, G.A.; Cutter, L.S.; Cole, B.

    2004-01-01

    The potentially toxic element selenium is first concentrated from solution to a large but highly variable degree by algae and bacteria before being passed on to consumers. The large loads of abiotic and detrital suspended particles often present in rivers and estuaries may obscure spatial and temporal patterns in Se concentrations at the base of the food web. We used radiotracers to estimate uptake of both selenite (Se(IV)) and C by intact plankton communities at two sites in the Sacramento/San Joaquin River Delta. Our goals were to determine (1) whether C and Se(IV) uptake were coupled, (2) the role of bacteria in Se(IV) uptake, and (3) the Se:C uptake ratio of newly produced organic material. Se(IV) uptake, like C uptake, was strongly related to irradiance. The shapes of both relationships were very similar except that at least 42-56% of Se(IV) uptake occurred in the dark, whereas C uptake in the dark was negligible. Of this dark Se(IV) uptake, 34-67% occurred in the 0.2-1.0-??m size fraction, indicating significant uptake by bacteria. In addition to dark uptake, total Se(IV) uptake consisted of a light-driven component that was in fixed proportion to C uptake. Our estimates of daily areal Se(IV):C uptake ratios agreed very well with particulate Se:C measured at a site dominated by phytoplankton biomass. Estimates of bacterial Se:C were 2.4-13 times higher than for the phytoplankton, suggesting that bacteriovores may be exposed to higher dietary Se concentrations than herbivores.

  16. Ice cover extent drives phytoplankton and bacterial community structure in a large north-temperate lake: implications for a warming climate.

    PubMed

    Beall, B F N; Twiss, M R; Smith, D E; Oyserman, B O; Rozmarynowycz, M J; Binding, C E; Bourbonniere, R A; Bullerjahn, G S; Palmer, M E; Reavie, E D; Waters, Lcdr M K; Woityra, Lcdr W C; McKay, R M L

    2016-06-01

    Mid-winter limnological surveys of Lake Erie captured extremes in ice extent ranging from expansive ice cover in 2010 and 2011 to nearly ice-free waters in 2012. Consistent with a warming climate, ice cover on the Great Lakes is in decline, thus the ice-free condition encountered may foreshadow the lakes future winter state. Here, we show that pronounced changes in annual ice cover are accompanied by equally important shifts in phytoplankton and bacterial community structure. Expansive ice cover supported phytoplankton blooms of filamentous diatoms. By comparison, ice free conditions promoted the growth of smaller sized cells that attained lower total biomass. We propose that isothermal mixing and elevated turbidity in the absence of ice cover resulted in light limitation of the phytoplankton during winter. Additional insights into microbial community dynamics were gleaned from short 16S rRNA tag (Itag) Illumina sequencing. UniFrac analysis of Itag sequences showed clear separation of microbial communities related to presence or absence of ice cover. Whereas the ecological implications of the changing bacterial community are unclear at this time, it is likely that the observed shift from a phytoplankton community dominated by filamentous diatoms to smaller cells will have far reaching ecosystem effects including food web disruptions.

  17. Does the 14C method estimate net photosynthesis? II. Implications from cyclostat studies of marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Pei, Shaofeng; Laws, Edward A.

    2014-09-01

    Two species of marine phytoplankton, Isochrysis galbana and Chlorella kessleri, were grown in a continuous culture system on a 12-h:12-h light:dark cycle of illumination under nitrate-limited growth conditions. At growth rates of ~1 d-1, production rates estimated from 14C uptake were not significantly different from production rates estimated from changes in particulate organic carbon (POC) and total organic carbon (TOC). At growth rates of ~0.35 d-1, however, production rates based on uptake of 14C significantly (p<0.05) overestimated production rates based on changes in POC and TOC in all cases for C. kessleri and after 24 h for I. galbana. The ratio of production based on 14C uptake to production based on changes in POC and TOC concentrations was in all cases higher after 24 h than after 12 h. The extent of overestimation after a 24-h incubation at ~0.35 d-1 was about 23 and 40% in the cases of I. galbana and C. kessleri, respectively. Dark respiration rates estimated from changes in 14C activity during the dark period were lower than the rates estimated from changes of POC and TOC concentrations during the 12 h of darkness because only about 73% of the carbon respired during the dark period had been fixed during the previous 12-h photoperiod. The fact that the 14C method tends to overestimate net carbon assimilation by a greater percentage at low growth rates than at high growth rates probably reflects the greater efficiency of intracellular recycling of respired CO2 at high growth rates. The fact that the extent of overestimation is greater when cells are grown on a light:dark cycle probably reflects the fact that not all carbon respired in the dark was fixed during the previous photoperiod and that intracellular recycling of respired CO2 during the photoperiod is inefficient during some phases of the synchronized growth that tends to be entrained by light:dark cycles.

  18. FEEDING RATES OF THE MUD SHRIMP UPOGEBIA PUGETTENSIS AND IMPLICATIONS FOR ESTUARINE PHYTOPLANKTON ABUNDANCE

    EPA Science Inventory

    The burrowing shrimp Upogebia pugettensis is an abundant inhabitant of Pacific Northwest bays and estuaries where it lives commensally with the clam Cryptomya californica. Suspension-feeding activities of the shrimp and its commensal clam, as well as particle settlement within t...

  19. Indicators: Phytoplankton

    EPA Pesticide Factsheets

    Phytoplankton are free-floating, microscopic algae that inhabit the sunlit, upper layer of most freshwater and marine environments. They are usually responsible for the color and clarity of lakes, wetlands, rivers, streams and estuaries.

  20. High Sequence Variability, Diverse Subcellular Localizations, and Ecological Implications of Alkaline Phosphatase in Dinoflagellates and Other Eukaryotic Phytoplankton

    PubMed Central

    Lin, Xin; Zhang, Huan; Cui, Yudong; Lin, Senjie

    2012-01-01

    Alkaline phosphatase (AP) is a key enzyme for phytoplankton to utilize dissolved organic phosphorus (DOP) when dissolved inorganic phosphorus is limited. While three major types of AP and their correspondingly diverse subcellular localization have been recognized in bacteria, little is known about AP in eukaryotic phytoplankton such as dinoflagellates. Here, we isolated a full-length AP cDNA from a latest-diverging dinoflagellate genus Alexandrium, and conducted comparative analyses with homologs from a relatively basal (Amphidinium carterae) and late-diverging (Karenia brevis) lineage of dinoflagellates as well as other eukaryotic algae. New data and previous studies indicate that AP is common in dinoflagellates and most other major eukaryotic groups of phytoplankton. AP sequences are more variable than many other genes studied in dinoflagellates, and are divergent among different eukaryotic phytoplankton lineages. Sequence comparison to the other characterized APs suggests that dinoflagellates and some other eukaryotic phytoplankton possess the putative AP as phoA type, but some other eukaryotic phytoplankton seem to have other types. Phylogenetic analyses based on AP amino acid sequences indicated that the “red-type” eukaryotic lineages formed a monophyletic group, suggesting a common origin of their APs. As different amino acid sequences have been found to predictably determine different spatial distribution in the cells, which may facilitate access to different pools of DOP, existing computational models were adopted to predict the subcellular localizations of putative AP in the three dinoflagellates and other eukaryotic phytoplankton. Results showed different subcellular localizations of APs in different dinoflagellates and other lineages. The linkage between AP sequence divergence, subcellular localization, and ecological niche differentiation requires rigorous experimental verification, and this study now provides a framework for such a future effort

  1. Does the 14C method estimate net photosynthesis? Implications from batch and continuous culture studies of marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Pei, Shaofeng; Laws, Edward A.

    2013-12-01

    We carried out batch culture studies with seven species of marine phytoplankton and chemostat studies with two of the seven species to determine whether and to what extent 14C uptake approximated net photosynthesis. In two of seven cases, Isochrysis galbana and Dunaliella tertiolecta, cells uniformly labeled with 14C lost no activity when they were transferred to a 14C-free medium and allowed to grow in the light. In similar experiments with four other species, uniformly labeled cells lost activity when incubated in the light, but the loss rates were only a few percent per day. Thus these six species appear to respire primarily recently fixed carbon. In the case of the remaining species, Chlorella kessleri, loss rates of 14C in the light from uniformly labeled cells were about 29% per day, the apparent ratio of respiration to net photosynthesis being 0.4. Follow-up chemostat studies with I. galbana and C. kessleri grown under both light- and nitrate-limited conditions produced results consistent with the implications of the batch culture work: uptake of 14C by I. galbana after incubations of 24 h yielded estimates of photosynthetic carbon fixation equal to the product of the chemostat dilution rate and the concentration of organic carbon in the growth chamber. Similar experiments with C. kessleri produced 14C-based estimates of photosynthetic carbon fixation that exceeded the net rates of organic carbon production in the growth chamber by roughly 55%. Time-course studies with both species indicated that at high growth rates recently fixed carbon began to enter the respiratory substrate pool after a time lag of several hours, a result consistent with previous work with D. tertiolecta. The lag time appeared to be much shorter at low growth rates. The results with C. kessleri are similar to results previously reported for Chlorella pyrenoidosa and Amphidium carteri. Collectively these results suggest that 14C uptake by species with relatively high ratios of

  2. Metal uptake by phytoplankton during a bloom in South San Francisco Bay: Implications for metal cycling in estuaries

    USGS Publications Warehouse

    Luoma, S.N.; VanGeen, A.; Lee, B.-G.; Cloern, J.E.

    1998-01-01

    The 1994 spring phytoplankton bloom in South San Francisco Bay caused substantial reductions in concentrations of dissolved Cd, Ni, and Zn, but not Cu. We estimate that the equivalent of ~60% of the total annual input of Cd, Ni, and Zn from local waste-water treatment plants is cycled through the phytoplankton in South Bay. The results suggest that processes that affect phytoplankton bloom frequency or intensity in estuaries (e.g. nutrient enrichment) may also affect metal trapping. The bloom was characterized by hydrographic surveys conducted at weekly intervals for 9 weeks. Metal samples were collected from the water column on three occasions, timed to bracket the period when the bloom was predicted. Factors that might confound observations of biological influences, such as freshwater inputs, were relatively constant during the study. Before the bloom, concentrations of dissolved Cd were 0.81 ?? 0.02 nmol kg-1, Zn concentrations were 19.8 ?? 1.5 nmol kg-1, Ni were 42 ?? 1.4 nmol kg-1, and Cu were 37 ?? 1.4 nmol kg-1. The values are elevated relative to riverine and coastal end-members, reflecting inputs from wastewater and(or) sediments. At the height of the bloom, dissolved Zn, Cd, and Ni were reduced to 19, 50, and 75% of their prebloom concentrations, respectively. Dissolved Cu concentrations increased 20%. The mass of Cd taken up by phytoplankton was similar to the mass of Cd removed from solution if particle settling was considered, and Cd concentrations estimated in phytoplankton were higher than concentrations in suspended particulate material (SPM). Particulate concentrations of Zn and Ni during the bloom appeared to be dominated by the influence of changes in resuspension of Zn- and Ni-rich sediments.

  3. The Turbulent Life of Phytoplankton

    NASA Technical Reports Server (NTRS)

    Ghosal, S.; Rogers, M.; Wray, A.

    2000-01-01

    Phytoplankton is a generic name for photosynthesizing microscopic organisms that inhabit the upper sunlit layer (euphotic zone) of almost all oceans and bodies of freshwater. They are agents for "primary production," the incorporation of carbon from the environment into living organisms, a process that, sustains the aquatic food web. It is estimated that phytoplankton contribute about half of the global primary production, the other half being due to terrestrial plants. By sustaining the aquatic food web and controlling the biogeochemical cycles through primary production, phytoplankton exert a dominant influence on life on earth. Turbulence influences this process in three very important ways. First, essential mineral nutrients are transported from the deeper layers to the euphotic zone through turbulence. Second, turbulence helps to suspend phytoplankton in the euphotic zone since in still water, the phytoplankton, especially the larger species, tend to settle out of the sunlit layers. Third, turbulence transports phytoplankton from the surface to the dark sterile waters, and this is an important mechanism of loss. Thus, stable phytoplankton populations are maintained through a delicate dynamic balance between the processes of turbulence, reproduction, and sinking. The first quantitative model for this was introduced by Riley, Stommel and Bumpus in 1949. This is an attempt to extend their efforts through a combination of analysis and computer simulation in order to better understand the principal qualitative aspects of the physical/biological coupling of this natural system.

  4. Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene thermal maximum: Implications for global productivity gradients

    USGS Publications Warehouse

    Gibbs, S.J.; Bralower, T.J.; Bown, P.R.; Zachos, J.C.; Bybell, L.M.

    2006-01-01

    Abrupt global warming and profound perturbation of the carbon cycle during the Paleocene-Eocene Thermal Maximum (PETM, ca. 55 Ma) have been linked to a massive release of carbon into the ocean-atmosphere system. Increased phytoplankton productivity has been invoked to cause subsequent CO2 drawdown, cooling, and environmental recovery. However, interpretations of geochemical and biotic data differ on when and where this increased productivity occurred. Here we present high-resolution nannofossil assemblage data from a shelf section (the U.S. Geological Survey [USGS] drill hole at Wilson Lake, New Jersey) and an open-ocean location (Ocean Drilling Program [ODP] Site 1209, paleoequatorial Pacific). These data combined with published biotic records indicate a transient steepening of shelf-offshelf trophic gradients across the PETM onset and peak, with a decrease in open-ocean productivity coeval with increased nutrient availability in shelf areas. Productivity levels recovered in the open ocean during the later stages of the event, which, coupled with intensified continental weathering rates, may have played an important role in carbon sequestration and CO2 drawdown. ?? 2006 Geological Society of America.

  5. Early Jurassic schizosphaerellid crisis in Cantabria, Spain: Implications for calcification rates and phytoplankton evolution across the Toarcian oceanic anoxic event

    NASA Astrophysics Data System (ADS)

    Tremolada, Fabrizio; van de Schootbrugge, Bas; Erba, Elisabetta

    2005-06-01

    The Toarcian oceanic anoxic event (˜183 Myr ago) represents a global perturbation marked by increasing organic carbon burial and a general decrease in calcium carbonate production likely triggered by elevated carbon dioxide levels in the atmosphere. Here we present quantitative analyses of calcareous nannofossil diversity and abundance from the Castillo de Pedroso section in Cantabria, northern Spain. We compare these data with geochemical data (C and O isotopes) obtained from biogenic and bulk carbonate records in order to highlight the response of calcareous phytoplankton to major climatic and paleoceanographic changes. The Pliensbachian/Toarcian boundary is characterized by an abrupt decrease in abundance of Schizosphaerella punctulata, the most important lithogenic contributor to (hemi) pelagic carbonates in the Early Jurassic. The early Toarcian nannofloral assemblages show an increase in abundance of Mitrolithus jansae and small-sized r-selected taxa and a progressive decrease in S. punctulata percentages. The deep dwellers M. jansae and S. punctulata experienced a major crisis slightly prior to the deposition of the Toarcian black shales that are characterized by high abundances of eutrophic taxa such as Lotharingius spp. and Biscutum spp. The return of S. punctulata associated with lower percentages of eutrophic taxa was observed just above the Toarcian black shales. The Toarcian episode reveals that high CO2 levels and increasing primary productivity probably triggered a shift in abundance from highly calcified nannoliths such as S. punctulata and M. jansae to small-sized r-selected coccoliths that overall record a biocalcification crisis at the onset and during the Toarcian episode.

  6. Contrasting patterns of free-living bacterioplankton diversity in macrophyte-dominated versus phytoplankton blooming regimes in Dianchi Lake, a shallow lake in China

    NASA Astrophysics Data System (ADS)

    Wang, Yujing; Li, Huabing; Xing, Peng; Wu, Qinglong

    2017-03-01

    Freshwater shallow lakes typically exhibit two alternative stable states under certain nutrient loadings: macrophyte-dominated and phytoplankton-dominated water regimes. An ecosystem regime shift from macrophytes to phytoplankton blooming typically reduces the number of species of invertebrates and fishes and results in the homogenization of communities in freshwater lakes. We investigated how microbial biodiversity has responded to a shift of the ecosystem regime in Dianchi Lake, which was previously fully covered with submerged macrophytes but currently harbors both ecological states. We observed marked divergence in the diversity and community composition of bacterioplankton between the two regimes. Although species richness, estimated as the number of operational taxonomic units and phylogenetic diversity (PD), was higher in the phytoplankton dominated ecosystem after this shift, the dissimilarity of bacterioplankton community across space decreased. This decrease in beta diversity was accompanied by loss of planktonic bacteria unique to the macrophyte-dominated ecosystem. Mantel tests between bacterioplankton community distances and Euclidian distance of environmental parameters indicated that this reduced bacterial community differentiation primarily reflected the loss of environmental niches, particularly in the macrophyte regime. The loss of this small-scale heterogeneity in bacterial communities should be considered when assessing long-term biodiversity changes in response to ecosystem regime conversions in freshwater lakes.

  7. Contrasting patterns of free-living bacterioplankton diversity in macrophyte-dominated versus phytoplankton blooming regimes in Dianchi Lake, a shallow lake in China

    NASA Astrophysics Data System (ADS)

    Wang, Yujing; Li, Huabing; Xing, Peng; Wu, Qinglong

    2016-04-01

    Freshwater shallow lakes typically exhibit two alternative stable states under certain nutrient loadings: macrophyte-dominated and phytoplankton-dominated water regimes. An ecosystem regime shift from macrophytes to phytoplankton blooming typically reduces the number of species of invertebrates and fishes and results in the homogenization of communities in freshwater lakes. We investigated how microbial biodiversity has responded to a shift of the ecosystem regime in Dianchi Lake, which was previously fully covered with submerged macrophytes but currently harbors both ecological states. We observed marked divergence in the diversity and community composition of bacterioplankton between the two regimes. Although species richness, estimated as the number of operational taxonomic units and phylogenetic diversity (PD), was higher in the phytoplankton dominated ecosystem after this shift, the dissimilarity of bacterioplankton community across space decreased. This decrease in beta diversity was accompanied by loss of planktonic bacteria unique to the macrophyte-dominated ecosystem. Mantel tests between bacterioplankton community distances and Euclidian distance of environmental parameters indicated that this reduced bacterial community diff erentiation primarily reflected the loss of environmental niches, particularly in the macrophyte regime. The loss of this small-scale heterogeneity in bacterial communities should be considered when assessing long-term biodiversity changes in response to ecosystem regime conversions in freshwater lakes.

  8. Life Events and Interdependent Lives. Implications for Research and Intervention.

    ERIC Educational Resources Information Center

    Pruchno, R. A.; And Others

    1984-01-01

    Argues that a single life event has the capacity to affect not one but several lives. This thesis is related to theories on attachment, roles, and convoys. The concept of life-event webs is introduced to explain complex relations among individuals within networks such as families. (Author/RH)

  9. Diet-Microbiota Interactions and Their Implications for Healthy Living

    PubMed Central

    Jeffery, Ian B.; O’Toole, Paul W.

    2013-01-01

    It is well established that diet influences the health of an individual and that a diet rich in plant-based foods has many advantages in relation to the health and well-being of an individual. What has been unclear until recently is the large contribution of the gut microbiota to this effect. As well as providing basic nutritional requirements, the long-term diet of an animal modifies its gut microbiota. In adults, diets that have a high proportion of fruit and vegetables and a low consumption of meat are associated with a highly diverse microbiota and are defined by a greater abundance of Prevotella compared to Bacteroides, while the reverse is associated with a diet that contains a low proportion of plant-based foods. Furthermore, it is becoming increasingly clear that the effect of the microbial ecology of the gut goes beyond the local gut immune system and is implicated in immune-related disorders, such as IBS, diabetes and inflamm-ageing. In this review, we investigate the evidence that a balanced diet leads to a balanced, diverse microbiota with significant consequences for healthy ageing by focusing on conditions of interest. PMID:23344252

  10. Diet-microbiota interactions and their implications for healthy living.

    PubMed

    Jeffery, Ian B; O'Toole, Paul W

    2013-01-17

    It is well established that diet influences the health of an individual and that a diet rich in plant-based foods has many advantages in relation to the health and well-being of an individual. What has been unclear until recently is the large contribution of the gut microbiota to this effect. As well as providing basic nutritional requirements, the long-term diet of an animal modifies its gut microbiota. In adults, diets that have a high proportion of fruit and vegetables and a low consumption of meat are associated with a highly diverse microbiota and are defined by a greater abundance of Prevotella compared to Bacteroides, while the reverse is associated with a diet that contains a low proportion of plant-based foods. Furthermore, it is becoming increasingly clear that the effect of the microbial ecology of the gut goes beyond the local gut immune system and is implicated in immune-related disorders, such as IBS, diabetes and inflamm-ageing. In this review, we investigate the evidence that a balanced diet leads to a balanced, diverse microbiota with significant consequences for healthy ageing by focusing on conditions of interest.

  11. Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications.

    PubMed

    Kalapos, M P

    1999-11-22

    Despite the growing interest towards methylglyoxal and glyoxalases their real role in metabolic network is still obscure. In the light of developments several reviews have been published in this field mainly dealing with only a narrow segment of this research area. In this article a trial is made to present a comprehensive overview of methylglyoxal research, extending discussion from chemistry to biological implications by reviewing some important characteristics of methylglyoxal metabolism and toxicity in a wide variety of species, and emphasizing the action of methylglyoxal on energy production, free radical generation and cell killing. Special attention is paid to the discussion of alpha-oxoaldehyde production in the environment as a potential risk factor and to the possible role of this a-dicarbonyl in diseases. Concerning the interaction of methylglyoxal with biological macromolecules (DNA, RNA, proteins) an earlier review (Kalapos, Toxicology Letters, 73, 1994, 3-24) means a supplementation to this paper, thus hoping the avoidance of unnecessary bombast. The paper arrives at the conclusion that since the early stage of evolution the function of methylglyoxalase pathway has been related to carbohydrate metabolism, but its significance has been changed over the thousands of years. Namely, at the beginning of evolution methylglyoxalase path was essential for the reductive citric acid cycle as an anaplerotic route, while in the extant metabolism it concerns with the detoxification of methylglyoxal and plays some regulatory role in triose-phosphate household. As there is a tight junction between methylglyoxal and carbohydrate metabolism its pathological role in the events of the development of diabetic complications emerges in a natural manner and further progress is hoped in this field. In contrast, significant advancement cannot be expected in relation to cancer research.

  12. Spatial partitioning between species of the phytoplankton-feeding guild on an estuarine intertidal sand flat and its implication on habitat carrying capacity

    NASA Astrophysics Data System (ADS)

    Tamaki, Akio; Nakaoka, Ayumi; Maekawa, Hideki; Yamada, Fumihiko

    2008-07-01

    The fishery yield of Manila clams, Ruditapes philippinarum, increased considerably in the 1970s but has decreased rapidly since the middle 1980s on extensive intertidal sand flats in Ariake Sound (Kyushu, Japan). A survey conducted in 2004 on a 3.4-km 2 sand flat located in the central part of the Sound (Shirakawa sand flat) revealed four dominant species: two thalassinidean shrimps ( Upogebia major and Nihonotrypaea japonica), which are deep-reaching burrow dwellers with strong bioturbation activities, and two bivalves ( Mactra veneriformis and R. philippinarum). All four species belong to a phytoplankton (diatom)-feeding guild. In the late 1970s, the Manila clam population prevailed in high densities over the entire sand flat, whereas its distribution was restricted to the lowest quarter of the shore in 2004. In contrast, the population sizes and zones of occurrence of the other phytoplankton feeders have expanded in the absence of R. philippinarum, perhaps an indication of competitive release. After establishment, effects of the thalassinidean shrimps on sediment stability appear to have further reduced clam abundances. Across the sand flat in 2004, wet weight population biomass estimates for N. japonica, U. major, M. veneriformis, and R. philippinarum (whole body for shrimps and soft tissue for bivalves) were 304, 111, 378, and 234 tonnes, respectively. Based on Manila clam fishery yield records from Shirakawa, the carrying capacity of the Shirakawa sand flat in the late 1970s was estimated to be two times greater than the sum value for the whole phytoplankton-feeding guild in 2004. It is hypothesized that (1) the amount of phytoplankton determines the carrying capacity for the benthic community on the Shirakawa sand flat, with both phytoplankton and benthic biomass at maxima in the late 1970s, and (2) the subsequent increases in competition for space have caused further declines in the Manila clam population biomass to approximately one-eighth of its past

  13. Sea Soup: Phytoplankton.

    ERIC Educational Resources Information Center

    Cerullo, Mary M.

    This guide, designed for students in grades 3-7, answers intriguing questions about phytoplankton, tiny drifters that have shaped our world. Invisible to the naked eye, phytoplankton are the source of our atmosphere, our climate, our ocean food chain, much of our oil supply, and more. They're also food for zooplankton. Photomicroscopy serves up…

  14. Interactions between specific phytoplankton and bacteria affect lake bacterial community succession.

    PubMed

    Paver, Sara F; Hayek, Kevin R; Gano, Kelsey A; Fagen, Jennie R; Brown, Christopher T; Davis-Richardson, Austin G; Crabb, David B; Rosario-Passapera, Richard; Giongo, Adriana; Triplett, Eric W; Kent, Angela D

    2013-09-01

    Time-series observations and a phytoplankton manipulation experiment were combined to test the hypothesis that phytoplankton succession effects changes in bacterial community composition. Three humic lakes were sampled weekly May-August and correlations between relative abundances of specific phytoplankton and bacterial operational taxonomic units (OTUs) in each time series were determined. To experimentally characterize the influence of phytoplankton, bacteria from each lake were incubated with phytoplankton from one of the three lakes or no phytoplankton. Following incubation, variation in bacterial community composition explained by phytoplankton treatment increased 65%, while the variation explained by bacterial source decreased 64%. Free-living bacteria explained, on average, over 60% of the difference between phytoplankton and corresponding no-phytoplankton control treatments. Fourteen out of the 101 bacterial OTUs that exhibited positively correlated patterns of abundance with specific algal populations in time-series observations were enriched in mesocosms following incubation with phytoplankton, and one out of 59 negatively correlated bacterial OTUs was depleted in phytoplankton treatments. Bacterial genera enriched in mesocosms containing specific phytoplankton assemblages included Limnohabitans (clade betI-A), Bdellovibrio and Mitsuaria. These results suggest that effects of phytoplankton on certain bacterial populations, including bacteria tracking seasonal changes in algal-derived organic matter, result in correlations between algal and bacterial community dynamics.

  15. Identifying Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Hargraves, Paul E.

    Until recently, anyone who needed to accurately identify marine phytoplankton had one of four choices: use the outdated Englishlanguage volumes by E. E. Cupp and N. I. Hendey plus the more recent book by J. Dodge, acquire a working knowledge of German and use the old volumes by Schiller and Hustedt, spend huge amounts of time in an exceedingly well-equipped marine science library trying in vain to keep up with the rapidly evolving field of phytoplankton systematics and taxonomy, or track down one of the rarest of endangered species—a phytoplankton taxonomist—and beg for help.To these unfortunate choices is added one considerably more hopeful: Identifying Marine Phytoplankton. This volume, which has seven contributing authors, contains most of the taxonomic groups that make up the planktonic autotrophs and some heterotrophs of the seas, coasts, and estuaries of the world (missing are cyanobacteria and some of the picoplankton groups).

  16. Phytoplankton and Climate

    NASA Technical Reports Server (NTRS)

    Moisan, John R.

    2009-01-01

    Ocean phytoplankton supply about half of the oxygen that humans utilize to sustain life. In this lecture, we will explore how phytoplankton plays a critical role in modulating the Earth's climate. These tiny organisms are the base of the Ocean's food web. They can modulate the rate at which solar heat is absorbed by the ocean, either through direct absorption or through production of highly scattering cellular coverings. They take up and help sequester carbon dioxide, a key greenhouse gas that modulated the Earth's climate. They are the source of cloud nucleation gases that are key to cloud formation/processes. They are also able to modify the nutrient budgets of the ocean through active uptake of inert atmospheric nitrogen. Climate variations have a pronounced impact on phytoplankton dynamics. Long term variations in the climate have been studied through geological interpretations on its influence on phytoplankton populations. The presentation will focus on presenting the numerous linkages that have been observed between climate and phytoplankton and further discuss how present climate change scenarios are likely to impact phytoplankton populations as well as present findings from several studies that have tried to understand how the climate might react to the feedbacks from these numerous climate-phytop|ankton linkages.

  17. Seasonal variations of group-specific phytoplankton cell death in Xiamen Bay, China

    NASA Astrophysics Data System (ADS)

    Huang, Xiaozhou; Liu, Xin; Chen, Jixin; Xiao, Wupeng; Cao, Zhen; Huang, Bangqin

    2017-03-01

    The importance of phytoplankton cell death is being increasingly recognized, however, there are still no published reports on this in Xiamen Bay. In this study, the proportion of dead phytoplankton cells associated with environmental factors was assessed at a station in Xiamen Bay from December 2012 to December 2013, using a cell digestion assay, which is an effective method to analyze dead/ living cells in complex natural phytoplankton communities. The percentages of dead cells (% DC) in the total phytoplankton in summer (16%±6%) were lower than those in winter (27%±16%). Six groups of phytoplankton (G1-G6) were categorized by flow cytometry. These phytoplankton communities with diverse seasonal variations in % DC had different responses to environmental constraints. The main factors affecting mortality were temperature and salinity, while nutrient concentration showed little influence on phytoplankton death. Additionally, our results provide evidence that chlorophyll a concentrations had an inverse relationship with total phytoplankton % DC and viable cell abundance was more meaningful than total cells to explain variations in environmental parameters (such as Chl a). Moreover, the lowest mean % DC in total phytoplankton was 16%±6% at our sample site, which is in a subtropical area with high water temperatures, full solar radiation, and rich nutrients. This indicates that phytoplankton cell death is a process that cannot be ignored. In summary, phytoplankton cell death is important in understanding the dynamics of phytoplankton communities and the functioning of subtropical ecosystems.

  18. Seasonal variations of group-specific phytoplankton cell death in Xiamen Bay, China

    NASA Astrophysics Data System (ADS)

    Huang, Xiaozhou; Liu, Xin; Chen, Jixin; Xiao, Wupeng; Cao, Zhen; Huang, Bangqin

    2016-05-01

    The importance of phytoplankton cell death is being increasingly recognized, however, there are still no published reports on this in Xiamen Bay. In this study, the proportion of dead phytoplankton cells associated with environmental factors was assessed at a station in Xiamen Bay from December 2012 to December 2013, using a cell digestion assay, which is an eff ective method to analyze dead/ living cells in complex natural phytoplankton communities. The percentages of dead cells (% DC) in the total phytoplankton in summer (16%±6%) were lower than those in winter (27%±16%). Six groups of phytoplankton (G1-G6) were categorized by flow cytometry. These phytoplankton communities with diverse seasonal variations in % DC had different responses to environmental constraints. The main factors aff ecting mortality were temperature and salinity, while nutrient concentration showed little influence on phytoplankton death. Additionally, our results provide evidence that chlorophyll a concentrations had an inverse relationship with total phytoplankton % DC and viable cell abundance was more meaningful than total cells to explain variations in environmental parameters (such as Chl a ). Moreover, the lowest mean % DC in total phytoplankton was 16%±6% at our sample site, which is in a subtropical area with high water temperatures, full solar radiation, and rich nutrients. This indicates that phytoplankton cell death is a process that cannot be ignored. In summary, phytoplankton cell death is important in understanding the dynamics of phytoplankton communities and the functioning of subtropical ecosystems.

  19. Resilience processes demonstrated by young gay and bisexual men living with HIV: implications for intervention.

    PubMed

    Harper, Gary W; Bruce, Douglas; Hosek, Sybil G; Fernandez, M Isabel; Rood, Brian A

    2014-12-01

    Given the increasing numbers of young gay/bisexual men (YGBM) diagnosed with HIV, it is important to understand the resilience processes enacted by this population in order to develop interventions that support their healthy development. Qualitative interviews were conducted with 54 YGBM (ages 17 to 24; 57% African American, 22% Latino) living with HIV from four geographically diverse clinics in the United States. Resilience processes clustered into four primary thematic areas: (1) engaging in health-promoting cognitive processes; (2) enacting healthy behavioral practices; (3) enlisting social support from others; and (4) empowering other young gay/bisexual men. These data suggest that YGBM living with HIV demonstrate resilience across multiple dimensions, including intrapersonal-level resilience related to individual cognitions and behaviors, as well as interpersonal-level resilience related to seeking support and providing support to others. Implications for the development of culturally-appropriate and strengths-based secondary prevention and other psychosocial interventions for YGBM living with HIV are discussed.

  20. Resilience Processes Demonstrated by Young Gay and Bisexual Men Living with HIV: Implications for Intervention

    PubMed Central

    Bruce, Douglas; Hosek, Sybil G.; Fernandez, M. Isabel; Rood, Brian A.

    2014-01-01

    Abstract Given the increasing numbers of young gay/bisexual men (YGBM) diagnosed with HIV, it is important to understand the resilience processes enacted by this population in order to develop interventions that support their healthy development. Qualitative interviews were conducted with 54 YGBM (ages 17 to 24; 57% African American, 22% Latino) living with HIV from four geographically diverse clinics in the United States. Resilience processes clustered into four primary thematic areas: (1) engaging in health-promoting cognitive processes; (2) enacting healthy behavioral practices; (3) enlisting social support from others; and (4) empowering other young gay/bisexual men. These data suggest that YGBM living with HIV demonstrate resilience across multiple dimensions, including intrapersonal-level resilience related to individual cognitions and behaviors, as well as interpersonal-level resilience related to seeking support and providing support to others. Implications for the development of culturally-appropriate and strengths-based secondary prevention and other psychosocial interventions for YGBM living with HIV are discussed. PMID:25329778

  1. Andreas Acrivos Dissertation Prize Lecture: Phytoplankton in Flow

    NASA Astrophysics Data System (ADS)

    Durham, William M.

    2012-11-01

    Phytoplankton are small, unicellular organisms that form the base of the marine food web and are cumulatively responsible for half the global oxygen production. While phytoplankton live in an environment characterized by ubiquitous fluid flow, the impact of hydrodynamic conditions on their ecology remain poorly understood. In this talk, I report on two novel biophysical mechanisms based on the interaction between phytoplankton motility and fluid shear. First, I will consider ``thin phytoplankton layers,'' important hotspots of ecological activity that are found meters beneath the ocean surface and contain cell concentrations up to two orders of magnitude above ambient. Using a combination of experiments, individual-based simulations, and continuum modeling, we have shown that layers can form when the vertical migration of phytoplankton is disrupted by hydrodynamic shear. This mechanism which we call ``gyrotactic trapping'' is capable of triggering thin phytoplankton layers under hydrodynamic conditions typical of the environments that often harbor thin layers. Second, I will discuss the potential for turbulent shear to produce patchiness in the spatial distribution of motile phytoplankton. Field measurements have revealed that motile phytoplankton form aggregations at the Kolmogorov scale, whereas non-motile cells do not. We propose a new mechanism for the formation of this small-scale patchiness based on the interplay of gyrotactic motility and turbulent shear. Using laboratory experiments, an analytical model of vortical flow, and isotropic turbulence generated via Direct Numerical Simulations, we found that motile phytoplankton rapidly aggregate, whereas non-motile cells remain randomly distributed. Taken together, these two mechanisms demonstrate that the interaction of cell motility with flow plays a fundamental role in phytoplankton ecology and, as a consequence, can contribute to shape macroscale characteristics of the ocean.

  2. Global Ocean Phytoplankton

    NASA Technical Reports Server (NTRS)

    Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.

    2013-01-01

    Phytoplankton are free-floating algae that grow in the euphotic zone of the upper ocean, converting carbon dioxide, sunlight, and available nutrients into organic carbon through photosynthesis. Despite their microscopic size, these photoautotrophs are responsible for roughly half the net primary production on Earth (NPP; gross primary production minus respiration), fixing atmospheric CO2 into food that fuels our global ocean ecosystems. Phytoplankton thus play a critical role in the global carbon cycle, and their growth patterns are highly sensitive to environmental changes such as increased ocean temperatures that stratify the water column and prohibit the transfer of cold, nutrient richwaters to the upper ocean euphotic zone.

  3. Ecotoxicology of bromoacetic acid on estuarine phytoplankton.

    PubMed

    Gordon, Ana R; Richardson, Tammi L; Pinckney, James L

    2015-11-01

    Bromoacetic acid is formed when effluent containing chlorine residuals react with humics in natural waters containing bromide. The objective of this research was to quantify the effects of bromoacetic acid on estuarine phytoplankton as a proxy for ecosystem productivity. Bioassays were used to measure the EC50 for growth in cultured species and natural marine communities. Growth inhibition was estimated by changes in chlorophyll a concentrations measured by fluorometry and HPLC. The EC50s for cultured Thalassiosira pseudonana were 194 mg L(-1), 240 mg L(-1) for Dunaliella tertiolecta and 209 mg L(-1) for Rhodomonas salina. Natural phytoplankton communities were more sensitive to contamination with an EC50 of 80 mg L(-1). Discriminant analysis suggested that bromoacetic acid additions cause an alteration of phytoplankton community structure with implications for higher trophic levels. A two-fold EC50 decrease in mixed natural phytoplankton populations affirms the importance of field confirmation for establishing water quality criteria.

  4. Global Ocean Phytoplankton

    NASA Technical Reports Server (NTRS)

    Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.

    2014-01-01

    Marine phytoplankton are responsible for roughly half the net primary production (NPP) on Earth, fixing atmospheric CO2 into food that fuels global ocean ecosystems and drives the ocean's biogeochemical cycles. Phytoplankton growth is highly sensitive to variations in ocean physical properties, such as upper ocean stratification and light availability within this mixed layer. Satellite ocean color sensors, such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; McClain 2009) and Moderate Resolution Imaging Spectroradiometer (MODIS; Esaias 1998), provide observations of sufficient frequency and geographic coverage to globally monitor physically-driven changes in phytoplankton distributions. In practice, ocean color sensors retrieve the spectral distribution of visible solar radiation reflected upward from beneath the ocean surface, which can then be related to changes in the photosynthetic phytoplankton pigment, chlorophyll- a (Chla; measured in mg m-3). Here, global Chla data for 2013 are evaluated within the context of the 16-year continuous record provided through the combined observations of SeaWiFS (1997-2010) and MODIS on Aqua (MODISA; 2002-present). Ocean color measurements from the recently launched Visible and Infrared Imaging Radiometer Suite (VIIRS; 2011-present) are also considered, but results suggest that the temporal calibration of the VIIRS sensor is not yet sufficiently stable for quantitative global change studies. All MODISA (version 2013.1), SeaWiFS (version 2010.0), and VIIRS (version 2013.1) data presented here were produced by NASA using consistent Chla algorithms.

  5. Implications of apathy for everyday functioning outcomes in persons living with HIV infection.

    PubMed

    Kamat, Rujvi; Woods, Steven Paul; Marcotte, Thomas D; Ellis, Ronald J; Grant, Igor

    2012-08-01

    Apathy is a relatively common clinical feature of HIV-Associated Neurocognitive Disorders, but little is known about its implications for everyday functioning outcomes. In the present study, we examined the associations between apathy and self-reported instrumental activities of daily living (IADL) and neurocognitive complaints in 75 participants with HIV infection and 52 demographically comparable seronegative comparison subjects. All volunteers completed the apathy subscale of the Frontal Systems Behavioral Scale as part of a comprehensive neuromedical, psychiatric, and neurocognitive research evaluation. When compared with the seronegative comparison participants, the HIV+ group reported significantly higher current levels of apathy, but did not differ in self-report of prior (i.e., pre-seroconversion) apathy. Higher current apathy self-ratings were associated with greater severity of IADL declines and more numerous cognitive complaints in the HIV+ sample, even after adjusting for potential psychiatric (e.g., depression), medical (e.g., hepatitis C co-infection), and neurocognitive predictors. Cognitive complaints, but not IADLs, were also uniquely associated with ratings of executive dysfunction and disinhibition. All told, these findings suggest that apathy may make a unique contribution to important everyday functioning outcomes among persons living with HIV infection. The clinical detection of apathy may help identify HIV-infected individuals at particular risk for functional impairments who may require additional support to maintain independence.

  6. Implications of Apathy for Everyday Functioning Outcomes in Persons Living with HIV Infection†

    PubMed Central

    Kamat, Rujvi; Woods, Steven Paul; Marcotte, Thomas D.; Ellis, Ronald J.; Grant, Igor

    2012-01-01

    Apathy is a relatively common clinical feature of HIV-Associated Neurocognitive Disorders, but little is known about its implications for everyday functioning outcomes. In the present study, we examined the associations between apathy and self-reported instrumental activities of daily living (IADL) and neurocognitive complaints in 75 participants with HIV infection and 52 demographically comparable seronegative comparison subjects. All volunteers completed the apathy subscale of the Frontal Systems Behavioral Scale as part of a comprehensive neuromedical, psychiatric, and neurocognitive research evaluation. When compared with the seronegative comparison participants, the HIV+ group reported significantly higher current levels of apathy, but did not differ in self-report of prior (i.e., pre-seroconversion) apathy. Higher current apathy self-ratings were associated with greater severity of IADL declines and more numerous cognitive complaints in the HIV+ sample, even after adjusting for potential psychiatric (e.g., depression), medical (e.g., hepatitis C co-infection), and neurocognitive predictors. Cognitive complaints, but not IADLs, were also uniquely associated with ratings of executive dysfunction and disinhibition. All told, these findings suggest that apathy may make a unique contribution to important everyday functioning outcomes among persons living with HIV infection. The clinical detection of apathy may help identify HIV-infected individuals at particular risk for functional impairments who may require additional support to maintain independence. PMID:22705481

  7. From limitation to excess: the consequences of substrate excess and stoichiometry for phytoplankton physiology, trophodynamics and biogeochemistry, and the implications for modeling

    NASA Astrophysics Data System (ADS)

    Glibert, Patricia M.; Kana, Todd M.; Brown, Karlena

    2013-09-01

    Current parameterization of several important physiological rates using rectangular hyperbolic saturation formulations is inadequate to capture our expanding understanding of the dynamic regulation of nutrients and energy at the primary producer level across all substrate levels, from limiting to super-saturating. Nutrient regulation by primary producers can affect chemical composition, in turn affecting predator-prey interactions and biogeochemical feedbacks in complex foodwebs. Anthropogenically altered nutrient loads are accentuating these challenges by altering nutrient stoichiometry. Using examples derived from the development of phytoplankton physiological dynamic regulation, the case is made that dynamic regulatory concepts are relevant at all levels of ecosystem regulation, that elemental stoichiometry must be considered in physiological, trophodynamic and biogeochemical constructs, and that the classical notion that nutrients and nutrient stoichiometry are only regulatory for physiology when at the limiting end of the spectrum must be laid to rest. Advancing models will require new emphasis on physiology including both dissipatory regulation and assimilatory regulation and the feed-back mechanisms between them.

  8. Changes in production and respiration during a spring phytoplankton bloom in San Francisco Bay, California, USA: Implications for net ecosystem metabolism

    USGS Publications Warehouse

    Caffrey, J.M.; Cloern, J.E.; Grenz, C.

    1998-01-01

    We present results of an intensive sampling program designed to measure weekly changes in ecosystem respiration (oxygen consumption in the water column and sediments) around the 1996 spring bloom in South San Francisco Bay, California, USA. Measurements were made at a shallow site (2 m, where mean photic depth was 60% of the water column height) and a deep site (15 m, mean photic depth was only 20% of the water column). We also estimated phytoplankton primary production weekly at both sites to develop estimates of net oxygen flux as the sum of pelagic production (PP), pelagic respiration (PR) and benthic respiration (BR). Over the 14 wk period from February 5 to May 14, PP ranged from 2 to 210, PR from 9 to 289, and BR from 0.1 to 48 mmol O2 m-2 d-1, illustrating large variability of estuarine oxygen fluxes at the weekly time scale. Pelagic production exceeded total respiration at the shallow site, but not at the deep site, demonstrating that the shallow domains are net autotrophic but the deep domains are net heterotrophic, even during the period of the spring bloom. If we take into account the potential primary production by benthic microalgae, the estuary as a whole is net autotrophic during spring, net heterotrophic during the nonbloom seasons, and has a balanced net metabolism over a full annual period. The seasonal shift from net autotrophy to heterotrophy during the transition from spring to summer was accompanied by a large shift from dominance by pelagic respiration to dominance by benthic respiration. This suggests that changes in net ecosystem metabolism can reflect changes in the pathways of energy flow in shallow coastal ecosystems.

  9. Sexual risk related behaviour among youth living with HIV in central Uganda: implications for HIV prevention

    PubMed Central

    Ankunda, Racheal; Atuyambe, Lynn Muhimbuura; Kiwanuka, Noah

    2016-01-01

    Introduction As young people living with HIV grow their sexual behaviour and it's implication on HIV prevention is of concern. This study describes the sexual risk related-behaviours and factors associated with abstinence among Youth Living with HIV in central Uganda. Methods We conducted a cross-sectional study among 338 unmarried youth between 15 and 24 years accessing HIV care in central Uganda. Data was collected using interviewer administered structured questionnaires. Adjusted prevalence proportion ratios (adj. PPRs) of factors associated with sexual abstinence for at least six months were determined by multivariable log-binomial regression. Results Overall, 79% (269/338) of respondents were abstaining from sexual intercourse for atleast six months, although, 45% (150/338) had ever been sexually active. Of the 283 respondents who desired to get married in future, 40% preferred negative marriage partners. Only 31% (39/126) of respondents in boy/girl relationships had disclosed their HIV status to their partners. Among those currently sexually active (n = 69), 57% did not consistently use condoms and 30% had more than one sexual partner in the past six months. The adj.PRR of abstinence was higher among youth between 15 and 19 years compared to those between 20 and 24 years (adj. PPR = 1.26, 95% CI; 1.08-1.46). The prevalence of abstinence was significantly lower among respondent who consumed alcohol (adj. PPR = 0.31, 95% CI 0.16-0.61). Conclusion Tailored interventions promoting disclosure, consistent condoms use and discouraging alcohol consumption among sero-positive youth could reduce HIV transmission risk. PMID:27642390

  10. Seasonal Succession of Free-Living Bacterial Communities in Coastal Waters of the Western Antarctic Peninsula.

    PubMed

    Luria, Catherine M; Amaral-Zettler, Linda A; Ducklow, Hugh W; Rich, Jeremy J

    2016-01-01

    The marine ecosystem along the Western Antarctic Peninsula undergoes a dramatic seasonal transition every spring, from almost total darkness to almost continuous sunlight, resulting in a cascade of environmental changes, including phytoplankton blooms that support a highly productive food web. Despite having important implications for the movement of energy and materials through this ecosystem, little is known about how these changes impact bacterial succession in this region. Using 16S rRNA gene amplicon sequencing, we measured changes in free-living bacterial community composition and richness during a 9-month period that spanned winter to the end of summer. Chlorophyll a concentrations were relatively low until summer when a major phytoplankton bloom occurred, followed 3 weeks later by a high peak in bacterial production. Richness in bacterial communities varied between ~1,200 and 1,800 observed operational taxonomic units (OTUs) before the major phytoplankton bloom (out of ~43,000 sequences per sample). During peak bacterial production, OTU richness decreased to ~700 OTUs. The significant decrease in OTU richness only lasted a few weeks, after which time OTU richness increased again as bacterial production declined toward pre-bloom levels. OTU richness was negatively correlated with bacterial production and chlorophyll a concentrations. Unlike the temporal pattern in OTU richness, community composition changed from winter to spring, prior to onset of the summer phytoplankton bloom. Community composition continued to change during the phytoplankton bloom, with increased relative abundance of several taxa associated with phytoplankton blooms, particularly Polaribacter. Bacterial community composition began to revert toward pre-bloom conditions as bacterial production declined. Overall, our findings clearly demonstrate the temporal relationship between phytoplankton blooms and seasonal succession in bacterial growth and community composition. Our study highlights

  11. Seasonal Succession of Free-Living Bacterial Communities in Coastal Waters of the Western Antarctic Peninsula

    PubMed Central

    Luria, Catherine M.; Amaral-Zettler, Linda A.; Ducklow, Hugh W.; Rich, Jeremy J.

    2016-01-01

    The marine ecosystem along the Western Antarctic Peninsula undergoes a dramatic seasonal transition every spring, from almost total darkness to almost continuous sunlight, resulting in a cascade of environmental changes, including phytoplankton blooms that support a highly productive food web. Despite having important implications for the movement of energy and materials through this ecosystem, little is known about how these changes impact bacterial succession in this region. Using 16S rRNA gene amplicon sequencing, we measured changes in free-living bacterial community composition and richness during a 9-month period that spanned winter to the end of summer. Chlorophyll a concentrations were relatively low until summer when a major phytoplankton bloom occurred, followed 3 weeks later by a high peak in bacterial production. Richness in bacterial communities varied between ~1,200 and 1,800 observed operational taxonomic units (OTUs) before the major phytoplankton bloom (out of ~43,000 sequences per sample). During peak bacterial production, OTU richness decreased to ~700 OTUs. The significant decrease in OTU richness only lasted a few weeks, after which time OTU richness increased again as bacterial production declined toward pre-bloom levels. OTU richness was negatively correlated with bacterial production and chlorophyll a concentrations. Unlike the temporal pattern in OTU richness, community composition changed from winter to spring, prior to onset of the summer phytoplankton bloom. Community composition continued to change during the phytoplankton bloom, with increased relative abundance of several taxa associated with phytoplankton blooms, particularly Polaribacter. Bacterial community composition began to revert toward pre-bloom conditions as bacterial production declined. Overall, our findings clearly demonstrate the temporal relationship between phytoplankton blooms and seasonal succession in bacterial growth and community composition. Our study highlights

  12. Phytoplankton and nutrient distributions in a front-eddy area adjacent to the coastal upwelling zone off Concepcion (Chile): implications for ecosystem productivity.

    NASA Astrophysics Data System (ADS)

    Morales, Carmen; Anabalón, Valeria; Hormazábal, Samuel; Cornejo, Marcela; Bento, Joaquim; Silva, Nelson

    2016-04-01

    The impact that sub-mesoscale (1-10 km) to mesocale (50-100 km) oceanographic variability has on plankton and nutrient distributions (horizontal and vertical) in the coastal upwelling and transition zones off Concepcion was the focus of this study. Satellite time-series data (wind, sea-surface temperature (SST), and altimetry) were used to understand the dynamic context of in situ data derived from a short-term front survey (3 d) during the upwelling period (3-6 February, 2014). The survey included two transects perpendicular to the coast, covering the shelf and shelf-break areas just north of Punta Lavapie, a main upwelling center (˜37° S). Wind and SST time-series data indicated that the survey was undertaken just after a moderate upwelling event (end of January) which lead to a relaxation phase during early February. A submesoscale thermal front was detected previous to and during the survey and results from an eddy tracking algorithm based on altimetry data indicated that this front (F1) was flanked on its oceanic side by an anticyclonic, mesoscale eddy (M1), which was ˜25 d old at the sampling time. M1 strengthened the thermal gradient of F1 by bringing warmer oceanic water nearer to the colder coastal upwelling zone. The distributions of hydrographic variables and nutrients in the water column (<300 m depth) also denoted these two features. Phytoplankton biomass (Chl-a) and diatom abundance were highest in the surface layer (<20 m depth) between the coast and F1, with primary maxima in the latter, whereas they were highest at the subsurface (20-40 m depth) towards M1 and associated with secondary maxima. The distribution of dominant diatoms in the top layer (<100 m depth) indicated that both coastal and oceanic species were aggregated at F1 and in M1. These results suggest that the front-eddy interaction creates a complex field of submesoscale processes in the top layer, including vertical nutrient injections and lateral stirring, which contributes to the

  13. Regulation of phytoplankton dynamics by vitamin B12

    NASA Astrophysics Data System (ADS)

    Sañudo-Wilhelmy, S. A.; Gobler, C. J.; Okbamichael, M.; Taylor, G. T.

    2006-02-01

    Despite the biological necessity of vitamin B12 (cobalamin), its importance in phytoplankton ecology has been ignored for nearly three decades. Here we report strong and selective responses of phytoplankton communities to varying low levels (5-87 pM) of dissolved B12 in several coastal embayments. The ecological importance of this vitamin is inferred from observed declines in dissolved B12 levels as field populations of large (>5 μm) phytoplankton increased. In contrast, biomass of small (<5 μm) phytoplankton varied independently of B12 concentrations. These observations were corroborated by field-based nutrient amendment experiments, in which B12 additions stimulated growth of large phytoplankton taxa 6-fold over unamended controls. In contrast, small taxa (<5 μm) were largely unaffected. This study provides the first evidence of vitamin B12's influence on phytoplankton field population dynamics based on direct chemical measurements of cobalamin, and implicates B12 as an important organic regulator of photoautotrophic fertility in marine systems.

  14. Phytoplankton Bloom Off Portugal

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Turquoise and greenish swirls marked the presence of a large phytoplankton bloom off the coast of Portugal on April 23, 2002. This true-color image was acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. There are also several fires burning in northwest Spain, near the port city of A Coruna. Please note that the high-resolution scene provided here is 500 meters per pixel. For a copy of this scene at the sensor's fullest resolution, visit the MODIS Rapidfire site.

  15. Phytoplankton Succession in Recurrently Fluctuating Environments

    PubMed Central

    Roelke, Daniel L.; Spatharis, Sofie

    2015-01-01

    Coastal marine systems are affected by seasonal variations in biogeochemical and physical processes, sometimes leading to alternating periods of reproductive growth limitation within an annual cycle. Transitions between these periods can be sudden or gradual. Human activities, such as reservoir construction and interbasin water transfers, influence these processes and can affect the type of transition between resource loading conditions. How such human activities might influence phytoplankton succession is largely unknown. Here, we employ a multispecies, multi-nutrient model to explore how nutrient loading switching mode might affect phytoplankton succession. The model is based on the Monod-relationship, predicting an instantaneous reproductive growth rate from ambient inorganic nutrient concentrations whereas the limiting nutrient at any given time was determined by Liebig’s Law of the Minimum. When these relationships are combined with population loss factors, such as hydraulic displacement of cells associated with inflows, a characterization of a species’ niche can be achieved through application of the R* conceptual model, thus enabling an ecological interpretation of modeling results. We found that the mode of reversal in resource supply concentrations had a profound effect. When resource supply reversals were sudden, as expected in systems influenced by pulsed inflows or wind-driven mixing events, phytoplankton were characterized by alternating succession dynamics, a phenomenon documented in inland water bodies of temperate latitudes. When resource supply reversals were gradual, as expected in systems influenced by seasonally developing wet and dry seasons, or annually occurring periods of upwelling, phytoplankton dynamics were characterized by mirror-image succession patterns. This phenomenon has not been reported previously in plankton systems but has been observed in some terrestrial plant systems. These findings suggest that a transition from

  16. Phytoplankton succession in recurrently fluctuating environments.

    PubMed

    Roelke, Daniel L; Spatharis, Sofie

    2015-01-01

    Coastal marine systems are affected by seasonal variations in biogeochemical and physical processes, sometimes leading to alternating periods of reproductive growth limitation within an annual cycle. Transitions between these periods can be sudden or gradual. Human activities, such as reservoir construction and interbasin water transfers, influence these processes and can affect the type of transition between resource loading conditions. How such human activities might influence phytoplankton succession is largely unknown. Here, we employ a multispecies, multi-nutrient model to explore how nutrient loading switching mode might affect phytoplankton succession. The model is based on the Monod-relationship, predicting an instantaneous reproductive growth rate from ambient inorganic nutrient concentrations whereas the limiting nutrient at any given time was determined by Liebig's Law of the Minimum. When these relationships are combined with population loss factors, such as hydraulic displacement of cells associated with inflows, a characterization of a species' niche can be achieved through application of the R* conceptual model, thus enabling an ecological interpretation of modeling results. We found that the mode of reversal in resource supply concentrations had a profound effect. When resource supply reversals were sudden, as expected in systems influenced by pulsed inflows or wind-driven mixing events, phytoplankton were characterized by alternating succession dynamics, a phenomenon documented in inland water bodies of temperate latitudes. When resource supply reversals were gradual, as expected in systems influenced by seasonally developing wet and dry seasons, or annually occurring periods of upwelling, phytoplankton dynamics were characterized by mirror-image succession patterns. This phenomenon has not been reported previously in plankton systems but has been observed in some terrestrial plant systems. These findings suggest that a transition from alternating

  17. Securing a Better Living Environment for Left-Behind Children: Implications and Challenges for Policies

    PubMed Central

    Lam, Theodora; Ee, Miriam; Anh, Hoang Lan; Yeoh, Brenda S.A.

    2014-01-01

    Migration is an increasingly significant driver of transformations in family configurations and caregiving practices as well as living arrangements. The sustainability of geographically-split family formations is dependent on several factors, including the presence and strength of care support networks among migrants and their left-behind families, access to communication infrastructure and the stability of the families’ financial resources. Drawing on both a selective review of relevant academic literature as well as key findings from the CHAMPSEA Project, the article first examines the effects of these three factors on the well-being of migrants’ left-behind family members, especially children. The article also considers major implications of the project’s findings, as well as possible challenges for migration and development policies. One area of concern for migration and development policy arising from our research findings is the need to provide better support for left-behind caregivers or carers who are substituting for the absent migrant in childcare and domestic work but who may also need care and support themselves. Another area relates to the need to improve communication infrastructure to help migrants and their families maintain their relationships across transnational spaces; while a third lies with the importance of minimizing migrant families’ economic stress stemming from the cycle of debts resulting from exorbitant broker fees and the mismanagement of remittances. By acknowledging both the social and economic costs of international labor migration on families, governments of labor-sending countries can create a more effective legal and institutional framework as well as design suitable supporting mechanisms for left-behind families. There is then a stronger possibility that migration can become a sustainable development strategy for transnational families in South-East Asia. PMID:24954965

  18. Securing a Better Living Environment for Left-Behind Children: Implications and Challenges for Policies.

    PubMed

    Lam, Theodora; Ee, Miriam; Anh, Hoang Lan; Yeoh, Brenda S A

    2013-12-01

    Migration is an increasingly significant driver of transformations in family configurations and caregiving practices as well as living arrangements. The sustainability of geographically-split family formations is dependent on several factors, including the presence and strength of care support networks among migrants and their left-behind families, access to communication infrastructure and the stability of the families' financial resources. Drawing on both a selective review of relevant academic literature as well as key findings from the CHAMPSEA Project, the article first examines the effects of these three factors on the well-being of migrants' left-behind family members, especially children. The article also considers major implications of the project's findings, as well as possible challenges for migration and development policies. One area of concern for migration and development policy arising from our research findings is the need to provide better support for left-behind caregivers or carers who are substituting for the absent migrant in childcare and domestic work but who may also need care and support themselves. Another area relates to the need to improve communication infrastructure to help migrants and their families maintain their relationships across transnational spaces; while a third lies with the importance of minimizing migrant families' economic stress stemming from the cycle of debts resulting from exorbitant broker fees and the mismanagement of remittances. By acknowledging both the social and economic costs of international labor migration on families, governments of labor-sending countries can create a more effective legal and institutional framework as well as design suitable supporting mechanisms for left-behind families. There is then a stronger possibility that migration can become a sustainable development strategy for transnational families in South-East Asia.

  19. Pathways into living alone in mid-life: diversity and policy implications.

    PubMed

    Demey, Dieter; Berrington, Ann; Evandrou, Maria; Falkingham, Jane

    2013-09-01

    This paper adopts a life course approach to investigate the pathways into living alone in mid-life in Britain and how these vary by gender and socio-economic status. The rise in the proportion of people living alone over the past three decades has been well documented. However, much of the focus of the existing literature has been on either people living solo in young adulthood or in later life. Mid-life has received surprising little scholarly attention, despite the fact that living arrangements in mid-life are changing rapidly, and that household composition and socio-economic circumstances in the period immediately prior to retirement are strongly associated with living arrangements and associated sources of support in later life. This paper therefore aims to fill this gap. We begin with a review of previous research on living alone and present a conceptual framework of the pathways into living alone in mid-life. Data from the United Kingdom Household Longitudinal Survey (UKHLS) are used to analyse the partnership and parenthood histories and socio-economic characteristics of those currently living alone in mid-life. The findings indicate that the dissolution of a marriage with children is the dominant pathway into mid-life solo-living, but that there is also a substantial group of never partnered men living alone. These never partnered men are split between those with low and high socio-economic status. Distinguishing between different groups of individuals living alone in mid-life is important for policy as these groups of men and women will have different social and financial resources as they enter later life. Mid-life men living alone who have not had children, have no educational qualifications, are not economically active and who live in rented housing are likely to be most at risk of needing a social and economic 'safety net' in old age.

  20. Phytoplankton's motion in turbulent ocean.

    PubMed

    Fouxon, Itzhak; Leshansky, Alexander

    2015-07-01

    We study the influence of turbulence on upward motion of phytoplankton. Interaction with the flow is described by the Pedley-Kessler model considering spherical microorganisms. We find a range of parameters when the upward drift is only weakly perturbed or when turbulence completely randomizes the drift direction. When the perturbation is small, the drift is either determined by the local vorticity or is Gaussian. We find a range of parameters where the phytoplankton interaction with the flow can be described consistently as diffusion of orientation in effective potential. By solving the corresponding Fokker-Planck equation we find exponential steady-state distribution of phytoplankton's propulsion orientation. We further identify the range of parameters where phytoplankton's drift velocity with respect to the flow is determined uniquely by its position. In this case, one can describe phytoplankton's motion by a smooth flow and phytoplankton concentrates on fractal. We find fractal dimensions and demonstrate that phytoplankton forms vertical stripes in space with a nonisotropic pair-correlation function of concentration increased in the vertical direction. The probability density function of the distance between two particles obeys power law with the negative exponent given by the ratio of integrals of the turbulent energy spectrum. We find the regime of strong clustering where the exponent is of order one so that turbulence increases the rate of collisions by a large factor. The predictions hold for Navier-Stokes turbulence and stand for testing.

  1. Identifying Phytoplankton Classes In California Reservoirs Using HPLC Pigment Analysis

    NASA Astrophysics Data System (ADS)

    Siddiqui, S.; Peacock, M. B.; Kudela, R. M.; Negrey, K.

    2014-12-01

    Few bodies of water are routinely monitored for phytoplankton composition due to monetary and time constraints, especially the less accessible bodies of water in central and southern California. These lakes and estuaries are important for economic reasons such as tourism and fishing. This project investigated the composition of phytoplankton present using pigment analysis to identify dominant phytoplankton groups. A total of 28 different sites with a wide range of salinity (0 - 60) in central and southern California were examined. These included 13 different bodies of water in central California: 6 in the Sierras, 7 in the San Francisco Bay Estuary, and 15 from southern California. The samples were analyzed using high-performance liquid-chromatography (HPLC) to quantify the pigments present (using retention time and the spectral thumbprint). Diagnostic pigments were used to indicate the phytoplankton class composition, focusing on diatoms, dinoflagellates, cryptophytes, and cyanobacteria - all key phytoplankton groups indicative of the health of the sampled reservoir. Our results indicated that cyanobacteria dominated four of the seven bodies of central California water (Mono Lake, Bridgeport Reservoir, Steamboat Slough, and Pinto Lake); cryptophytes and nannoflagellates dominated two of the central California bodies of water (Mare Island Strait and Topaz Lake); and diatoms and dinoflagellates dominated one central California body of water, Oakland Inner Harbor, comprising more than 70% of the phytoplankton present. We expect the bodies of water from Southern California to be as disparate. Though this data is only a snapshot, it has significant implications in comparing different ecosystems across California, and it has the potential to provide valuable insight into the composition of phytoplankton communities.

  2. Why marine phytoplankton calcify.

    PubMed

    Monteiro, Fanny M; Bach, Lennart T; Brownlee, Colin; Bown, Paul; Rickaby, Rosalind E M; Poulton, Alex J; Tyrrell, Toby; Beaufort, Luc; Dutkiewicz, Stephanie; Gibbs, Samantha; Gutowska, Magdalena A; Lee, Renee; Riebesell, Ulf; Young, Jeremy; Ridgwell, Andy

    2016-07-01

    Calcifying marine phytoplankton-coccolithophores- are some of the most successful yet enigmatic organisms in the ocean and are at risk from global change. To better understand how they will be affected, we need to know "why" coccolithophores calcify. We review coccolithophorid evolutionary history and cell biology as well as insights from recent experiments to provide a critical assessment of the costs and benefits of calcification. We conclude that calcification has high energy demands and that coccolithophores might have calcified initially to reduce grazing pressure but that additional benefits such as protection from photodamage and viral/bacterial attack further explain their high diversity and broad spectrum ecology. The cost-benefit aspect of these traits is illustrated by novel ecosystem modeling, although conclusive observations remain limited. In the future ocean, the trade-off between changing ecological and physiological costs of calcification and their benefits will ultimately decide how this important group is affected by ocean acidification and global warming.

  3. The Lived Experiences of African American Women with Breast Cancer: Implications for Counselors

    ERIC Educational Resources Information Center

    Clay, LaTasha K.

    2013-01-01

    Qualitative phenomenological methodology was used to explore the lived experiences of African American women diagnosed with breast cancer. Phenomenology focuses on the meaning of the lived experiences of individuals experiencing a concept, structure, or phenomenon (Creswell, 2007). The purpose of phenomenological research is to identify phenomena…

  4. Spatial variation of phytoplankton community structure in Daya Bay, China.

    PubMed

    Jiang, Zhao-Yu; Wang, You-Shao; Cheng, Hao; Zhang, Jian-Dong; Fei, Jiao

    2015-10-01

    Daya Bay is one of the largest and most important gulfs in the southern coast of China, in the northern part of the South China Sea. The phylogenetic diversity and spatial distribution of phytoplankton from the Daya Bay surface water and the relationship with the in situ water environment were investigated by the clone library of the large subunit of ribulose-1, 5-bisphosphate carboxylase (rbcL) gene. The dominant species of phytoplankton were diatoms and eustigmatophytes, which accounted for 81.9 % of all the clones of the rbcL genes. Prymnesiophytes were widely spread and wide varieties lived in Daya Bay, whereas the quantity was limited. The community structure of phytoplankton was shaped by pH and salinity and the concentration of silicate, phosphorus and nitrite. The phytoplankton biomass was significantly positively affected by phosphorus and nitrite but negatively by salinity and pH. Therefore, the phytoplankton distribution and biomass from Daya Bay were doubly affected by anthropic activities and natural factors.

  5. Estimating Phytoplankton Biomass and Productivity.

    DTIC Science & Technology

    1981-06-01

    Identlfy by block nuusbet) -Estimates of phytoplankton biomass and rates of production can provide a manager with some insight into questions concerning...and growth. Phytoplankton biomass is the amount of algal material present, whereas productivity is the rate at which algal cell material is produced...biomass and productivity parameters. Munawar et al. (1974) reported that cell volume was better correlated to chlorophyll a and photosynthe- sis rates

  6. Health implications of social networks for children living in public housing.

    PubMed

    Kennedy-Hendricks, Alene; Schwartz, Heather L; Griffin, Beth Ann; Burkhauser, Susan; Green, Harold D; Kennedy, David P; Pollack, Craig Evan

    2015-11-01

    This study sought to examine whether: (1) the health composition of the social networks of children living in subsidized housing within market rate developments (among higher-income neighbors) differs from the social network composition of children living in public housing developments (among lower-income neighbors); and (2) children's social network composition is associated with children's own health. We found no significant differences in the health characteristics of the social networks of children living in these different types of public housing. However, social network composition was significantly associated with several aspects of children's own health, suggesting the potential importance of social networks for the health of vulnerable populations.

  7. Live demonstration of microcirculation in the deep fascia and its implication.

    PubMed

    Bhattacharya, V; Watts, Rajesh Kumar; Reddy, G R

    2005-02-01

    The rich vascular network in the deep fascia has been emphasized by various scientists, but the actual demonstration of live circulation in the deep fascia has not previously been witnessed. Encouraged by the sight of live circulation in the web membrane of toad hind limb, a successful attempt was made to demonstrate the live circulation in the vascular network of the deep fascia. Fascial extensions of inferiorly based fasciocutaneous flaps were dissected in five patients with distal leg and heel defects. The fascial extension in continuity with a proximal retrograde fasciocutaneous flap was mounted on a glass slide and examined under a microscope. The authors witnessed the live microcirculation and the movement of individual red blood corpuscles in vascular channels of the deep fascia. The authors also noticed that the deep fascia has two layers with circulations that are independent of one other. A video recording was made to document these important features.

  8. Disassembling iron availability to phytoplankton.

    PubMed

    Shaked, Yeala; Lis, Hagar

    2012-01-01

    The bioavailability of iron to microorganisms and its underlying mechanisms have far reaching repercussions to many natural systems and diverse fields of research, including ocean biogeochemistry, carbon cycling and climate, harmful algal blooms, soil and plant research, bioremediation, pathogenesis, and medicine. Within the framework of ocean sciences, short supply and restricted bioavailability of Fe to phytoplankton is thought to limit primary production and curtail atmospheric CO(2) drawdown in vast ocean regions. Yet a clear-cut definition of bioavailability remains elusive, with elements of iron speciation and kinetics, phytoplankton physiology, light, temperature, and microbial interactions, to name a few, all intricately intertwined into this concept. Here, in a synthesis of published and new data, we attempt to disassemble the complex concept of iron bioavailability to phytoplankton by individually exploring some of its facets. We distinguish between the fundamentals of bioavailability - the acquisition of Fe-substrate by phytoplankton - and added levels of complexity involving interactions among organisms, iron, and ecosystem processes. We first examine how phytoplankton acquire free and organically bound iron, drawing attention to the pervasiveness of the reductive uptake pathway in both prokaryotic and eukaryotic autotrophs. Turning to acquisition rates, we propose to view the availability of various Fe-substrates to phytoplankton as a spectrum rather than an absolute "all or nothing." We then demonstrate the use of uptake rate constants to make comparisons across different studies, organisms, Fe-compounds, and environments, and for gaging the contribution of various Fe-substrates to phytoplankton growth in situ. Last, we describe the influence of aquatic microorganisms on iron chemistry and fate by way of organic complexation and bio-mediated redox transformations and examine the bioavailability of these bio-modified Fe species.

  9. Disassembling Iron Availability to Phytoplankton

    PubMed Central

    Shaked, Yeala; Lis, Hagar

    2012-01-01

    The bioavailability of iron to microorganisms and its underlying mechanisms have far reaching repercussions to many natural systems and diverse fields of research, including ocean biogeochemistry, carbon cycling and climate, harmful algal blooms, soil and plant research, bioremediation, pathogenesis, and medicine. Within the framework of ocean sciences, short supply and restricted bioavailability of Fe to phytoplankton is thought to limit primary production and curtail atmospheric CO2 drawdown in vast ocean regions. Yet a clear-cut definition of bioavailability remains elusive, with elements of iron speciation and kinetics, phytoplankton physiology, light, temperature, and microbial interactions, to name a few, all intricately intertwined into this concept. Here, in a synthesis of published and new data, we attempt to disassemble the complex concept of iron bioavailability to phytoplankton by individually exploring some of its facets. We distinguish between the fundamentals of bioavailability – the acquisition of Fe-substrate by phytoplankton – and added levels of complexity involving interactions among organisms, iron, and ecosystem processes. We first examine how phytoplankton acquire free and organically bound iron, drawing attention to the pervasiveness of the reductive uptake pathway in both prokaryotic and eukaryotic autotrophs. Turning to acquisition rates, we propose to view the availability of various Fe-substrates to phytoplankton as a spectrum rather than an absolute “all or nothing.” We then demonstrate the use of uptake rate constants to make comparisons across different studies, organisms, Fe-compounds, and environments, and for gaging the contribution of various Fe-substrates to phytoplankton growth in situ. Last, we describe the influence of aquatic microorganisms on iron chemistry and fate by way of organic complexation and bio-mediated redox transformations and examine the bioavailability of these bio-modified Fe species. PMID:22529839

  10. Health implications of social networks for children living in public housing

    PubMed Central

    Kennedy-Hendricks, Alene; Schwartz, Heather L.; Griffin, Beth Ann; Burkhauser, Susan; Green, Harold D.; Kennedy, David P.; Pollack, Craig Evan

    2015-01-01

    This study sought to examine whether: (1) the health composition of the social networks of children living in subsidized housing within market rate developments (among higher-income neighbors) differs from the social network composition of children living in public housing developments (among lower-income neighbors); and (2) children’s social network composition is associated with children’s own health. We found no significant differences in the health characteristics of the social networks of children living in these different types of public housing. However, social network composition was significantly associated with several aspects of children’s own health, suggesting the potential importance of social networks for the health of vulnerable populations. PMID:26598958

  11. English in the Primary Classroom in Vietnam: Students' Lived Experiences and Their Social and Policy Implications

    ERIC Educational Resources Information Center

    Nguyen, Lan Chi; Hamid, M. Obaidul; Renshaw, Peter

    2016-01-01

    Although the teaching of English as a foreign language in primary schools has emerged as one of the major language-in-education policy decisions, students' perspectives on primary English have received very little research attention. Drawing on data from a larger study, this paper depicts primary school students' lived experiences in the English…

  12. An Expressed Preference Determination of College Students' Valuation of Statistical Lives: Methods and Implications

    ERIC Educational Resources Information Center

    Brady, Kevin L.

    2008-01-01

    Government agencies typically apply a general value of statistical life (VSL) estimate when performing cost-benefit analysis (CBA). However, theory suggests that college students attach a value to statistical lives that differs from society's VSL; therefore, CBA may lead to inefficient levels of risk reduction among students. A contingent…

  13. Health and treatment implications of food insufficiency among people living with HIV/AIDS, Atlanta, Georgia.

    PubMed

    Kalichman, Seth C; Cherry, Chauncey; Amaral, Christina; White, Denise; Kalichman, Moira O; Pope, Howard; Swetsze, Connie; Jones, Michel; Macy, Rene

    2010-07-01

    HIV/AIDS is concentrated among the inner-city poor and poverty may directly interfere with HIV treatment. This study examined food insufficiency in relation to HIV-related health and treatment. A sample of 344 men and women living with HIV/AIDS in Atlanta, Georgia completed measures of food security, health, and HIV disease progression and treatment. HIV treatment adherence was monitored using unannounced pill counts. Results showed that half of people living with HIV/AIDS in this study lacked sufficient food, and food insufficiency was associated with multiple indicators of poor health, including higher HIV viral loads, lower CD4 cell counts, and poorer treatment adherence. Adjusted analyses showed that food insufficiency predicted HIV treatment non-adherence over and above years of education, employment status, income, housing, depression, social support, and non-alcohol substance use. Hunger and food insecurity are prevalent among people living with HIV/AIDS, and food insufficiency is closely related to multiple HIV-related health indicators, particularly medication adherence. Interventions that provide consistent and sustained meals to people living with HIV/AIDS are urgently needed.

  14. Musical Meaning in the Lives of Those Affected by the Holocaust: Implications for Music Education

    ERIC Educational Resources Information Center

    Cunningham, Deborah A.

    2014-01-01

    This qualitative study investigated the role of music in the lives of those affected by the Holocaust. Participants were identified through purposeful and snowball sampling techniques, and a total of five were selected based on their connection to the Holocaust. Participants included those incarcerated in camps and ghettos, those who escaped…

  15. Acid base activity of live bacteria: Implications for quantifying cell wall charge

    NASA Astrophysics Data System (ADS)

    Claessens, Jacqueline; van Lith, Yvonne; Laverman, Anniet M.; Van Cappellen, Philippe

    2006-01-01

    To distinguish the buffering capacity associated with functional groups in the cell wall from that resulting from metabolic processes, base or acid consumption by live and dead cells of the Gram-negative bacterium Shewanella putrefaciens was measured in a pH stat system. Live cells exhibited fast consumption of acid (pH 4) or base (pH 7, 8, 9, and 10) during the first few minutes of the experiments. At pH 5.5, no acid or base was required to maintain the initial pH constant. The initial amounts of acid or base consumed by the live cells at pH 4, 8, and 10 were of comparable magnitudes as those neutralized at the same pHs by intact cells killed by exposure to gamma radiation or ethanol. Cells disrupted in a French press required higher amounts of acid or base, due to additional buffering by intracellular constituents. At pH 4, acid neutralization by suspensions of live cells stopped after 50 min, because of loss of viability. In contrast, under neutral and alkaline conditions, base consumption continued for the entire duration of the experiments (5 h). This long-term base neutralization was, at least partly, due to active respiration by the cells, as indicated by the build-up of succinate in solution. Qualitatively, the acid-base activity of live cells of the Gram-positive bacterium Bacillus subtilis resembled that of S. putrefaciens. The pH-dependent charging of ionizable functional groups in the cell walls of the live bacteria was estimated from the initial amounts of acid or base consumed in the pH stat experiments. From pH 4 to 10, the cell wall charge increased from near-zero values to about -4 × 10 -16 mol cell -1 and -6.5 × 10 -16 mol cell -1 for S. putrefaciens and B. subtilis, respectively. The similar cell wall charging of the two bacterial strains is consistent with the inferred low contribution of lipopolysaccharides to the buffering capacity of the Gram-negative cell wall (of the order of 10%).

  16. Techniques for Quantifying Phytoplankton Biodiversity

    NASA Astrophysics Data System (ADS)

    Johnson, Zackary I.; Martiny, Adam C.

    2015-01-01

    The biodiversity of phytoplankton is a core measurement of the state and activity of marine ecosystems. In the context of historical approaches, we review recent major advances in the technologies that have enabled deeper characterization of the biodiversity of phytoplankton. In particular, high-throughput sequencing of single loci/genes, genomes, and communities (metagenomics) has revealed exceptional phylogenetic and genomic diversity whose breadth is not fully constrained. Other molecular tools—such as fingerprinting, quantitative polymerase chain reaction, and fluorescence in situ hybridization—have provided additional insight into the dynamics of this diversity in the context of environmental variability. Techniques for characterizing the functional diversity of community structure through targeted or untargeted approaches based on RNA or protein have also greatly advanced. A wide range of techniques is now available for characterizing phytoplankton communities, and these tools will continue to advance through ongoing improvements in both technology and data interpretation.

  17. Techniques for quantifying phytoplankton biodiversity.

    PubMed

    Johnson, Zackary I; Martiny, Adam C

    2015-01-01

    The biodiversity of phytoplankton is a core measurement of the state and activity of marine ecosystems. In the context of historical approaches, we review recent major advances in the technologies that have enabled deeper characterization of the biodiversity of phytoplankton. In particular, high-throughput sequencing of single loci/genes, genomes, and communities (metagenomics) has revealed exceptional phylogenetic and genomic diversity whose breadth is not fully constrained. Other molecular tools-such as fingerprinting, quantitative polymerase chain reaction, and fluorescence in situ hybridization-have provided additional insight into the dynamics of this diversity in the context of environmental variability. Techniques for characterizing the functional diversity of community structure through targeted or untargeted approaches based on RNA or protein have also greatly advanced. A wide range of techniques is now available for characterizing phytoplankton communities, and these tools will continue to advance through ongoing improvements in both technology and data interpretation.

  18. What is causing the phytoplankton increase in San Francisco Bay?

    USGS Publications Warehouse

    Cloern, J.E.; Jassby, A.D.; Schraga, T.S.; Dallas, K.L.

    2006-01-01

    The largest living component of San Francisco Bay is the phytoplankton, a suspension of microscopic cells that convert sunlight energy into new living biomass through the same process of photosynthesis used by land plants. This primary production is the ultimate source of food for clams, zooplankton, crabs, sardines, halibut, sturgeon, diving ducks, pelicans, and harbor seals. From measurements made in 1980, we estimated that phytoplankton primary production in San Francisco Bay was about 200,000 tons of organic carbon per year (Jassby et al. 1993). This is equivalent to producing the biomass of 5500 adult humpback whales, or the calories to feed 1.8 million people. These numbers may seem large, but primary production in San Francisco Bay is low compared to many other nutrient-enriched estuaries.

  19. The short-lived neon damsel Pomacentrus coelestis: implications for population dynamics.

    PubMed

    Kingsford, M J; O'Callaghan, M D; Liggins, L; Gerlach, G

    2017-03-16

    Daily increments of Pomacentrus coelestis, an abundant and well-studied fish, were validated for the life of the fish and depending on the location, age-maxima were estimated to be 127-160 days on reefs separated by tens to hundreds of kilometres on the Great Barrier Reef. This contrasts with congeners and other damselfishes that live for 5 years or more. Otoliths of P. coelestis were thinner and had different patterns of banding when compared with relatively long-lived congeners. It is suggested that banding patterns in P. coelestis may be related to patterns of maturation and spawning. The consequences of a short life would have a great influence on the population dynamics of this widespread species. Further, the demographics and habitat preferences of this species suggest rapid colonization and establishment of breeding populations that would quickly change the relative abundance of sympatric fishes.

  20. Implications of living with a strong family history of breast cancer.

    PubMed

    Maheu, Christine

    2009-06-01

    The findings presented here are from a qualitative study in which data were gathered from 20 women who had received inconclusive genetic testing results for inherited breast cancer susceptibility. Before describing the significance, for them, of their genetic test results, all of the participants related what it was like to live with a strong family history of breast cancer. The focus of this article is the women's experience of living with a personal and strong family history of breast cancer. For these women, having such a history had become a fact of life that could not be ignored.Three themes were identified in the data: expecting and dealing with a diagnosis of breast cancer protecting oneself and others, and increasing exposure to cancer screening procedures. These themes address the underlying reality that having a personal and family history of breast cancer is not an isolated situation but part of one's journey in choosing to undergo genetic testing for inherited breast cancer susceptibility.

  1. Predator-induced fleeing behaviors in phytoplankton: a new mechanism for harmful algal bloom formation?

    PubMed

    Harvey, Elizabeth L; Menden-Deuer, Susanne

    2012-01-01

    In the plankton, heterotrophic microbes encounter and ingest phytoplankton prey, which effectively removes >50% of daily phytoplankton production in the ocean and influences global primary production and biochemical cycling rates. Factors such as size, shape, nutritional value, and presence of chemical deterrents are known to affect predation pressure. Effects of movement behaviors of either predator or prey on predation pressure, and particularly fleeing behaviors in phytoplankton are thus far unknown. Here, we quantified individual 3D movements, population distributions, and survival rates of the toxic phytoplankton species, Heterosigma akashiwo in response to a ciliate predator and predator-derived cues. We observed predator-induced defense behaviors previously unknown for phytoplankton. Modulation of individual phytoplankton movements during and after predator exposure resulted in an effective separation of predator and prey species. The strongest avoidance behaviors were observed when H. akashiwo co-occurred with an actively grazing predator. Predator-induced changes in phytoplankton movements resulted in a reduction in encounter rate and a 3-fold increase in net algal population growth rate. A spatially explicit population model predicted rapid phytoplankton bloom formation only when fleeing behaviors were incorporated. These model predictions reflected field observations of rapid H. akashiwo harmful algal bloom (HAB) formation in the coastal ocean. Our results document a novel behavior in phytoplankton that can significantly reduce predation pressure and suggests a new mechanism for HAB formation. Phytoplankton behaviors that minimize predatory losses, maximize resource acquisition, and alter community composition and distribution patterns could have major implications for our understanding and predictive capacity of marine primary production and biochemical cycling rates.

  2. Comparative genomics of the Mycobacterium signaling architecture and implications for a novel live attenuated Tuberculosis vaccine.

    PubMed

    Zhou, Peifu; Xie, Jianping

    2014-01-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), remains a major threat to global public health. A new TB vaccine affording superior immune protection to M. bovis Bacillus Calmette-Guérin (BCG) is imperative. The advantage of a live attenuated vaccine is that it can mimic the bona fide pathogen, elicit immune responses similar to natural infection, and potentially provide more protection than other vaccines. BCG, the only vaccine and a live attenuated vaccine that is the result of cumulative mutations by serial passage of M. bovis, has provided clues for the construction of novel improved vaccines. A strategy is put forward for identifying a new live attenuated TB vaccine generated by cumulative mutation based on M.tb. Given the important role of the M.tb signaling network consisting of a two-component system, eukaryotic-like Ser/Thr protein kinase system and sigma factor system based on comparisons among M.tb H37Rv, M. bovis, and BCG, we have put a premium on this signaling circuit as the starting point for the generation of an attenuated TB vaccine.

  3. Determinants of fertility intention among women living with hiv in western Ethiopia: implications for service delivery.

    PubMed

    Sufa, Alemu; Wordofa, Muluemebet Abera; Wossen, Bitiya Admassu

    2014-12-01

    Despite increased emphasis on antiretroviral therapy for HIV infected individuals, issues of fertility and childbearing have received relatively little attention in Ethiopia. This study was conducted to assess socio-demographic, reproductive and HIV related characteristics of fertility intention among women living with HIV in Western Ethiopia. Cross sectional study was conducted from May I to May 26, 2012 using structured questionnaire on a sample of 456 women living with HIV who are on follow up care in anti-retroviral therapy clinics. Bivariate and multivariable logistic regression models were fitted to identify significant predictors of fertility desire at 95 CL. Out of 456 respondents 42.1% expressed intention to have children in the future. Educational attainment [AOR (95% CI) = 0.041(0.008-0.220)], partner fertility desire [AOR (95% CI) = 0.012 (0.004-0.034)], number of live children [AOR (95% CI) = 0.344 (0.125-0.950)] and partner sero-status [AOR (95% CI) = 6.578 (4.072-10.881)] were significantly associated with fertility intention. A large proportion of HIV-positive women in the study desired more children in future. Interventions to address this problem include integrated access to contraception methods, and counselling on reproductive health decision-making.

  4. Incarceration of people living with HIV/AIDS: Implications for Treatment-As-Prevention

    PubMed Central

    Milloy, M-J; Montaner, Julio S.G.; Wood, Evan

    2015-01-01

    Contact with the criminal justice system, including incarceration, is a common experience for many people living with HIV/AIDS. Optimism has recently been expressed that correctional facilities could be important locations for Treatment-as-Prevention (TasP)-based initiatives. We review recent findings regarding the effect of incarceration on patterns of HIV transmission, testing, treatment initiation and retention. We found that the prevalence of HIV infection among incarcerated individuals remains higher than analogous non-incarcerated populations. Recent studies have shown that voluntary HIV/AIDS testing is feasible in many correctional facilities, although the number of previously undiagnosed individuals identified has been modest. Studies have implied enhanced linkage to HIV/AIDS treatment and care in jails in the United States was associated with improvements in the HIV cascade of care. However, for many individuals living with HIV/AIDS, exposure to the correctional system remains an important barrier to retention in HIV/AIDS treatment and care. Future research should evaluate structural interventions to address these barriers and facilitate the scale-up of TasP-based efforts among individuals living in correctional settings. PMID:24962285

  5. Incarceration of people living with HIV/AIDS: implications for treatment-as-prevention.

    PubMed

    Milloy, M-J; Montaner, Julio S G; Wood, Evan

    2014-09-01

    Contact with the criminal justice system, including incarceration, is a common experience for many people living with HIV/AIDS. Optimism has recently been expressed that correctional facilities could be important locations for treatment-as-prevention (TasP)-based initiatives. We review recent findings regarding the effect of incarceration on patterns of HIV transmission, testing, treatment initiation and retention. We found that the prevalence of HIV infection among incarcerated individuals remains higher than analogous non-incarcerated populations. Recent studies have shown that voluntary HIV/AIDS testing is feasible in many correctional facilities, although the number of previously undiagnosed individuals identified has been modest. Studies have implied enhanced linkage to HIV/AIDS treatment and care in jails in the United States was associated with improvements in the HIV cascade of care. However, for many individuals living with HIV/AIDS, exposure to the correctional system remains an important barrier to retention in HIV/AIDS treatment and care. Future research should evaluate structural interventions to address these barriers and facilitate the scale-up of TasP-based efforts among individuals living in correctional settings.

  6. Microscale patches of nonmotile phytoplankton.

    PubMed

    Arrieta, Jorge; Barreira, Ana; Tuval, Idan

    2015-03-27

    Phytoplankton cells have evolved sophisticated strategies for actively responding to environmental signals, most notably to mechanical stresses of hydrodynamic origin. A largely unanswered question, however, is the significance of these cellular responses for the largely heterogeneous spatial distribution of cells found in the oceans. Motivated by the physiological regulation of buoyancy prevalent in nonmotile phytoplankton species, we solve here a minimal model for "active" sinking that incorporates these cellular responses. Within this model, we show how buoyancy regulation leads to intense patchiness for nonmotile species as compared to passive tracers, resulting in important variations in settling speeds and, as a consequence, determining escape rates to the deep ocean.

  7. Do marine phytoplankton follow Bergmann's rule sensu lato?

    PubMed

    Sommer, Ulrich; Peter, Kalista H; Genitsaris, Savvas; Moustaka-Gouni, Maria

    2016-03-30

    Global warming has revitalized interest in the relationship between body size and temperature, proposed by Bergmann's rule 150 years ago, one of the oldest manifestations of a 'biogeography of traits'. We review biogeographic evidence, results from clonal cultures and recent micro- and mesocosm experiments with naturally mixed phytoplankton communities regarding the response of phytoplankton body size to temperature, either as a single factor or in combination with other factors such as grazing, nutrient limitation, and ocean acidification. Where possible, we also focus on the comparison between intraspecific size shifts and size shifts resulting from changes in species composition. Taken together, biogeographic evidence, community-level experiments and single-species experiments indicate that phytoplankton average cell sizes tend to become smaller in warmer waters, although temperature is not necessarily the proximate environmental factor driving size shifts. Indirect effects via nutrient supply and grazing are important and often dominate. In a substantial proportion of field studies, resource availability is seen as the only factor of relevance. Interspecific size effects are greater than intraspecific effects. Direct temperature effects tend to be exacerbated by indirect ones, if warming leads to intensified nutrient limitation or copepod grazing while ocean acidification tends to counteract the temperature effect on cell size in non-calcifying phytoplankton. We discuss the implications of the temperature-related size trends in a global-warming context, based on known functional traits associated with phytoplankton size. These are a higher affinity for nutrients of smaller cells, highest maximal growth rates of moderately small phytoplankton (ca. 10(2)  µm(3) ), size-related sensitivities for different types of grazers, and impacts on sinking rates. For a phytoplankton community increasingly dominated by smaller algae we predict that: (i) a higher

  8. Size-differential feeding in Pinna nobilis L. (Mollusca: Bivalvia): Exploitation of detritus, phytoplankton and zooplankton

    NASA Astrophysics Data System (ADS)

    Davenport, John; Ezgeta-Balić, Daria; Peharda, Melita; Skejić, Sanda; Ninčević-Gladan, Živana; Matijević, Slavica

    2011-04-01

    The endangered fan shell Pinna nobilis is a large bivalve mollusc (<120 cm shell length) endemic to the Mediterranean that lives one-third buried in soft substrata, generally in shallow coastal waters. We hypothesised that P. nobilis of different sizes would ingest different food sources, because small fan shells will inhale material from closer to the substratum than do large fan shells. We studied stomach contents and faeces of 18 fan shells, 6 small (mean 23.0 cm length), 6 medium-sized (mean 41.5 cm length) and 6 large (mean 62.7 cm length) living in a small area of a low-energy coastal detritic bottom characterised by mud, sand and macroalgae at Mali Ston Bay, Croatia. We found that all P. nobilis ingested copious quantities of undetermined detritus (probably at least 95% of ingested material), phytoplankton, micro and mesozooplankton and pollen grains. Large P. nobilis stomach contents showed a preponderance of water column calanoid copepods, while small fan shells had higher numbers of bivalve larvae. All fan shells took in high numbers of harpacticoid copepods that are benthonic, feeding on microbial communities of detritus and benthic vegetation. There was also a significant selection of phytoplankton species, some apparently occurring between inhalation and ingestion. The stomach contents of small P. nobilis had a higher organic matter content than either medium-sized or large fan shells; this indicated that small fan shells ingested detritus of higher organic content than did larger P. nobilis. As the faeces of all P. nobilis had similar organic matter content, this also indicates higher assimilation efficiencies in small fan shells. The demonstration of differential dietary selectivity by different sized animals has implications for future trophic studies of this endangered species. This study also provides the first demonstration of predation on zooplankton by P. nobilis.

  9. Characterization of the live salmonid movement network in Ireland: Implications for disease prevention and control.

    PubMed

    Yatabe, T; More, S J; Geoghegan, F; McManus, C; Hill, A E; Martínez-López, B

    2015-11-01

    Live fish movement is considered as having an important role in the transmission of infectious diseases. For that reason, interventions for cost-effective disease prevention and control rely on a sound understanding of the patterns of live fish movements in a region or country. Here, we characterize the network of live fish movements in the Irish salmonid farming industry during 2013, using social network analysis and spatial epidemiology methods, and identify interventions to limit the risk of disease introduction and spread. In the network there were 62 sites sending and/or receiving fish, with a total of 130 shipments (84 arcs) comprising approx. 17.2 million fish during the year. Atlantic salmon shipments covered longer distances than trout shipments, with some traversing the entire country. The average shipment of Atlantic salmon was 146,186 (SD 194,344) fish, compared to 77,928 (127,009) for trout, however, variability was high. There were 3 periods where shipments peaked (February-April, June-September, and November), which were related to specific stages of fish. The network was disconnected and had two major weak components, the first one with 39 nodes (mostly Atlantic salmon sites), and the second one with 10 nodes (exclusively trout sites). Correlation between in and out-degree at each site and assortativity coefficient were slightly low and non-significant: -0.08 (95% CI: -0.22, 0.06) and -0.13 (95% CI: -0.36, 0.08), respectively, indicating random mixing with regard to node degree. Although competing models also produced a good fit to degree distribution, it is likely that the network possesses both small-world and scale-free topology. This would facilitate the spread and persistence of infection in the salmon production system, but would also facilitate the design of risk-based surveillance strategies by targeting hubs, bridges or cut-points. Using Infomap community detection algorithms, 2 major communities were identified within the giant weak

  10. Why and how to compensate living organ donors: ethical implications of the new Australian scheme.

    PubMed

    Giubilini, Alberto

    2015-05-01

    The Australian Federal Government has announced a two-year trial scheme to compensate living organ donors. The compensation will be the equivalent of six weeks paid leave at the rate of the national minimum wage. In this article I analyse the ethics of compensating living organ donors taking the Australian scheme as a reference point. Considering the long waiting lists for organ transplantations and the related costs on the healthcare system of treating patients waiting for an organ, the 1.3 million AUD the Australian Government has committed might represent a very worthwhile investment. I argue that a scheme like the Australian one is sufficiently well designed to avoid all the ethical problems traditionally associated with attaching a monetary value to the human body or to parts of it, namely commodification, inducement, exploitation, and equality issues. Therefore, I suggest that the Australian scheme, if cost-effective, should represent a model for other countries to follow. Nonetheless, although I endorse this scheme, I will also argue that this kind of scheme raises issues of justice in regard to the distribution of organs. Thus, I propose that other policies would be needed to supplement the scheme in order to guarantee not only a higher number of organs available, but also a fair distribution.

  11. Perceived threat in childhood: a review of research and implications for children living in violent households.

    PubMed

    Miller, Laura E

    2015-04-01

    The current study is a review of existing literature on perceived threat across childhood (0-19 years). There is strong evidence from this body of research that threat detection emerges in infancy and is present throughout childhood, with meaningful links to child adjustment. The wide range of methodologies employed to assess threat include biological measures (event-related potential and functional magnetic resonance imaging), observational data (gaze duration and response time), and a range of ways of gathering cognitive data (threat appraisal). Across methodologies, a uniform finding is that children who have higher threat attenuation are at increased risk for the development of anxiety disorders. It also seems that children's attention to threatening stimuli may vary across development, with heightened attention in infancy and early childhood. These findings have meaningful extensions for children who are living in violent families. Since many children living in violent homes are exposed to the threat of violence beginning in infancy, these children may be at heightened risk as compared to their nonexposed peers for the development of maladaptive patterns of threat detection and response. There is some evidence that this long-standing pattern of vigilance toward threat in key developmental periods may in part explain the increased risk of the development of anxiety disorders and posttraumatic stress disorder following exposure to violence.

  12. Closely related phytoplankton species produce similar suites of dissolved organic matter

    PubMed Central

    Becker, Jamie W.; Berube, Paul M.; Follett, Christopher L.; Waterbury, John B.; Chisholm, Sallie W.; DeLong, Edward F.; Repeta, Daniel J.

    2014-01-01

    Production of dissolved organic matter (DOM) by marine phytoplankton supplies the majority of organic substrate consumed by heterotrophic bacterioplankton in the sea. This production and subsequent consumption converts a vast quantity of carbon, nitrogen, and phosphorus between organic and inorganic forms, directly impacting global cycles of these biologically important elements. Details regarding the chemical composition of DOM produced by marine phytoplankton are sparse, and while often assumed, it is not currently known if phylogenetically distinct groups of marine phytoplankton release characteristic suites of DOM. To investigate the relationship between specific phytoplankton groups and the DOM they release, hydrophobic phytoplankton-derived dissolved organic matter (DOMP) from eight axenic strains was analyzed using high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS). Identification of DOM features derived from Prochlorococcus, Synechococcus, Thalassiosira, and Phaeodactylum revealed DOMP to be complex and highly strain dependent. Connections between DOMP features and the phylogenetic relatedness of these strains were identified on multiple levels of phylogenetic distance, suggesting that marine phytoplankton produce DOM that in part reflects its phylogenetic origin. Chemical information regarding the size and polarity ranges of features from defined biological sources was also obtained. Our findings reveal DOMP composition to be partially conserved among related phytoplankton species, and implicate marine DOM as a potential factor influencing microbial diversity in the sea by acting as a link between autotrophic and heterotrophic microbial community structures. PMID:24748874

  13. Stoichiometric regulation of phytoplankton toxins.

    PubMed

    Van de Waal, Dedmer B; Smith, Val H; Declerck, Steven A J; Stam, Eva C M; Elser, James J

    2014-06-01

    Ecological Stoichiometry theory predicts that the production, elemental structure and cellular content of biomolecules should depend on the relative availability of resources and the elemental composition of their producer organism. We review the extent to which carbon- and nitrogen-rich phytoplankton toxins are regulated by nutrient limitation and cellular stoichiometry. Consistent with theory, we show that nitrogen limitation causes a reduction in the cellular quota of nitrogen-rich toxins, while phosphorus limitation causes an increase in the most nitrogen-rich paralytic shellfish poisoning toxin. In addition, we show that the cellular content of nitrogen-rich toxins increases with increasing cellular N : P ratios. Also consistent with theory, limitation by either nitrogen or phosphorus promotes the C-rich toxin cell quota or toxicity of phytoplankton cells. These observed relationships may assist in predicting and managing toxin-producing phytoplankton blooms. Such a stoichiometric regulation of toxins is likely not restricted to phytoplankton, and may well apply to carbon- and nitrogen-rich secondary metabolites produced by bacteria, fungi and plants.

  14. Experimental evolution meets marine phytoplankton.

    PubMed

    Reusch, Thorsten B H; Boyd, Philip W

    2013-07-01

    Our perspective highlights potentially important links between disparate fields-biological oceanography, climate change research, and experimental evolutionary biology. We focus on one important functional group-photoautotrophic microbes (phytoplankton), which are responsible for ∼50% of global primary productivity. Global climate change currently results in the simultaneous change of several conditions such as warming, acidification, and nutrient supply. It thus has the potential to dramatically change phytoplankton physiology, community composition, and may result in adaptive evolution. Although their large population sizes, standing genetic variation, and rapid turnover time should promote swift evolutionary change, oceanographers have focussed on describing patterns of present day physiological differentiation rather than measure potential adaptation in evolution experiments, the only direct way to address whether and at which rate phytoplankton species will adapt to environmental change. Important open questions are (1) is adaptation limited by existing genetic variation or fundamental constraints? (2) Will complex ecological settings such as gradual versus abrupt environmental change influence adaptation processes? (3) How will increasing environmental variability affect the evolution of phenotypic plasticity patterns? Because marine phytoplankton species display rapid acclimation capacity (phenotypic buffering), a systematic study of reaction norms renders them particularly interesting to the evolutionary biology research community.

  15. Depression and Apathy Among People Living with HIV: Implications for Treatment of HIV Associated Neurocognitive Disorders

    PubMed Central

    Whitehead, Nicole E.; Burrell, Larry E.; Dotson, Vonetta M.; Cook, Robert L.; Malloy, Paul; Devlin, Kathryn; Cohen, Ronald A.

    2015-01-01

    Depression and apathy are common among people living with HIV (PLWH). However, in PLWH, it is unclear whether depression and apathy are distinct conditions, which contribute to different patterns of disruption to cognitive processing and brain systems. Understanding these conditions may enable the development of prognostic indicators for HIV associated neurocognitive disorders (HAND). The present study examined substance use behavior and cognitive deficits, associated with depression and apathy, in 120 PLWH, using hierarchical regression analyses. Higher levels of depression were associated with a history of alcohol dependence and greater deficits in processing speed, motor and global cognitive functioning. Higher levels of apathy were associated with a history of cocaine dependence. It is recommended that PLWH get screened appropriately for apathy and depression, in order to receive the appropriate treatment, considering the comorbidities associated with each condition. Future research should examine the neurological correlates of apathy and depression in PLWH. PMID:25533921

  16. Microfinance: a general overview and implications for impoverished individuals living with HIV/AIDS.

    PubMed

    Caldas, Adolfo; Arteaga, Fernando; Muñoz, Maribel; Zeladita, Jhon; Albujar, Mayler; Bayona, Jaime; Shin, Sonya

    2010-08-01

    Microfinance among people living with HIV/AIDS (PLWHA) faces some opposition and remains understudied. This literature review examines microfinance's evolution and impact on a variety of social and health indicators and its emerging implementation as a primary prevention tool for HIV and economic intervention for PLWHA. There is an abundance of literature supporting the apparent utility of microfinance. However, our understanding of the subject remains clouded by the heterogeneity and methodological limitations of existing impact studies, and access limitations to microfinance curbs our understanding of microfinance for this population. Existing literature suggests PLWHA could attain economic stability from microfinance and achieve successful repayment rates in some settings. The precarious socioeconomic and health issues of PLWHA pose unique challenges to minimizing loan default risk. Carefully-designed clinical studies are needed to assess whether PLWHA can be as successful with microfinance as healthy individuals.

  17. Depression and Apathy Among People Living with HIV: Implications for Treatment of HIV Associated Neurocognitive Disorders.

    PubMed

    Bryant, Vaughn E; Whitehead, Nicole E; Burrell, Larry E; Dotson, Vonetta M; Cook, Robert L; Malloy, Paul; Devlin, Kathryn; Cohen, Ronald A

    2015-08-01

    Depression and apathy are common among people living with HIV (PLWH). However, in PLWH, it is unclear whether depression and apathy are distinct conditions, which contribute to different patterns of disruption to cognitive processing and brain systems. Understanding these conditions may enable the development of prognostic indicators for HIV associated neurocognitive disorders (HAND). The present study examined substance use behavior and cognitive deficits, associated with depression and apathy, in 120 PLWH, using hierarchical regression analyses. Higher levels of depression were associated with a history of alcohol dependence and greater deficits in processing speed, motor and global cognitive functioning. Higher levels of apathy were associated with a history of cocaine dependence. It is recommended that PLWH get screened appropriately for apathy and depression, in order to receive the appropriate treatment, considering the comorbidities associated with each condition. Future research should examine the neurological correlates of apathy and depression in PLWH.

  18. Ecosystem energetic implications of parasite and free-living biomass in three estuaries

    USGS Publications Warehouse

    Kuris, Armand M.; Hechinger, Ryan F.; Shaw, Jenny C.; Whitney, Kathleen L.; Aguirre-Macedo, Leopoldina; Boch, Charlie A.; Dobson, Andrew P.; Dunham, Eleca J.; Fredensborg, Brian L.; Huspeni, Todd C.; Lorda, Julio; Mababa, Luzviminda; Mancini, Frank T.; Mora, Adrienne B.; Pickering, Maria; Talhouk, Nadia L.; Torchin, Mark E.; Lafferty, Kevin D.

    2008-01-01

    Parasites can have strong impacts but are thought to contribute little biomass to ecosystems. We quantified the biomass of free-living and parasitic species in three estuaries on the Pacific coast of California and Baja California. Here we show that parasites have substantial biomass in these ecosystems. We found that parasite biomass exceeded that of top predators. The biomass of trematodes was particularly high, being comparable to that of the abundant birds, fishes, burrowing shrimps and polychaetes. Trophically transmitted parasites and parasitic castrators subsumed more biomass than did other parasitic functional groups. The extended phenotype biomass controlled by parasitic castrators sometimes exceeded that of their uninfected hosts. The annual production of free-swimming trematode transmission stages was greater than the combined biomass of all quantified parasites and was also greater than bird biomass. This biomass and productivity of parasites implies a profound role for infectious processes in these estuaries.

  19. Live pig markets in eastern Indonesia: Trader characteristics, biosecurity and implications for disease spread.

    PubMed

    Leslie, Edwina E C; Geong, Maria; Abdurrahman, Muktasam; Ward, Michael P; Toribio, Jenny-Ann L M L

    2016-03-01

    Classical swine fever has been negatively impacting pig production in Nusa Tenggara Timur province in eastern Indonesia since its introduction in the 1990s, with live market trade contributing to disease spread. To understand market trader knowledge and practices regarding pig management, biosecurity, pig movements and pig health (specifically CSF), a repeated survey was conducted with pig sellers and pig buyers at 9 market sites across West Timor and the islands of Flores and Sumba. A total of 292 sellers and 281 buyers were interviewed in 2009 during two periods (rounds), a high-demand month (September) and a low-demand month (November). Information was collected via questionnaire. The majority of traders were male (sellers: 89%; buyers: 87%) with the highest level of completed education being primary school (sellers: 48%; buyers: 41%). The primary occupation of most respondents was farming: 90% of sellers and 87% of buyers were smallholder pig farmers and tended to sell their own home-raised pigs at market (52%). Pigs were sold for monetary gain either for primary (52%) or extra income (44%). Markets tended to be selected based on a good reputation (62%), a location close to residence (62%) and having the desired pig type (59%). Pig sales through markets were reported to be highest from August to October with 31% of sellers trading pigs at two or more markets. Prices at market were significantly higher on Sumba compared to West Timor and cross-bred pigs were significantly more expensive than indigenous pigs. Understanding of CSF and biosecurity was limited: 85% of sellers and 83% of buyers had no prior knowledge of CSF. Fifty-four percent of sellers reported no use of any biosecurity practices at market. Most respondents (88%) were able to recognise at least one clinical sign of a sick pig. Informal pig movements were also identified: 18% of pig buyers purchased pigs directly from other farmers. This study has provided baseline information on market trader

  20. Preserving the longevity of long-lived type II collagen and its implication for cartilage therapeutics.

    PubMed

    Tiku, Moti L; Madhan, Balaraman

    2016-07-01

    Human life expectancy has been steadily increasing at a rapid rate, but this increasing life span also brings about increases in diseases, dementia, and disability. A global burden of disease 2010 study revealed that hip and knee osteoarthritis ranked the 11th highest in terms of years lived with disability. Wear and tear can greatly influence the quality of life during ageing. In particular, wear and tear of the articular cartilage have adverse effects on joints and result in osteoarthritis. The articular cartilage uses longevity of type II collagen as the foundation around which turnover of proteoglycans and the homeostatic activity of chondrocytes play central roles thereby maintaining the function of articular cartilage in the ageing. The longevity of type II collagen involves a complex interaction of the scaffolding needs of the cartilage and its biochemical, structural and mechanical characteristics. The covalent cross-linking of heterotypic polymers of collagens type II, type IX and type XI hold together cartilage, allowing it to withstand ageing stresses. Discerning the biological clues in the armamentarium for preserving cartilage appears to be collagen cross-linking. Therapeutic methods to crosslink in in-vivo are non-existent. However intra-articular injections of polyphenols in vivo stabilize the cartilage and make it resistant to degradation, opening a new therapeutic possibility for prevention and intervention of cartilage degradation in osteoarthritis of aging.

  1. A reassessment of living hominoid postcranial variability: implications for ape evolution.

    PubMed

    Young, Nathan M

    2003-12-01

    In an analysis of hominoid postcranial variation, 'Evol. Anthrop. 6 (1998) 87' argued that many purportedly unique features of the hominoid postcranium are actually much more variable than previously reported and in many instances overlap with both suspensory (Ateles) and non-suspensory primates. Based on these results, it was concluded that parallelism in the living ape postcranium was a plausible and even likely possibility given the Miocene hominoid postcranial record. However, this analysis did not distinguish whether within-hominoid variability or overlap with non-hominoids involved one or all ape taxa, a distinction which has potentially important effects on the interpretation of results. To address this issue, primate postcranial morphometric data from the trunk and forelimb were reanalyzed using three techniques: cladistic analysis, principle components analysis, and cluster analysis. Results reveal that these postcranial characters distinguish not only suspensory and quadrupedal primates but also discriminate hominoids and Ateles from all other taxa, great apes from lesser apes and Ateles, cercopithecines from colobines, and cercopithecoids from platyrrhines. The majority of hominoid variability and overlap with Ateles occurs with Hylobates humeral head and shoulder joint characters related to brachiation. This suggests that Hylobates' specializations may skew analyses of hominoid postcranial uniqueness and variability, and that great apes are relatively similar in their postcranium.

  2. Mortality among People Living with HIV and AIDS in China: Implications for Enhancing Linkage

    PubMed Central

    Li, Meng; Tang, Weiming; Bu, Kai; Mahapatra, Tanmay; Zhang, Xiayan; Feng, Yibing; Chen, Fangfang; Guo, Wei; Wang, Liyan; Ding, Zhengwei; Qin, Qianqian; Liu, Shiliang; Tucker, Joseph D.; Wang, Lu; Wang, Ning

    2016-01-01

    To assess the patterns and predictors of AIDS-related mortality and identify its correlates among adult people living with HIV/AIDS (PLWHA) in China, a retrospective record-based cohort study was conducted among 18 years or older PLWHA, who had at least one follow up reported to the national database between January-1989 and June-2012. Cumulative Incidence Function was used to calculate AIDS-related mortality rate. Gray’s test was used to determine the variation in cumulative incidence across strata. The Fine and Gray model was used to measure the burden of cumulative incidence of AIDS-related mortality and strength of its association with potential correlates. Among 375,629 patients, 107,634 died during study period, of which 54,759 (50.87%) deaths were AIDS-related. Cumulative mortality rates of AIDS-related death at one, two, five, 10 and 15 years post-diagnosis were 5.7%, 8.2%, 14.3%, 22.9% and 30.9%, respectively. Among PLWHA, male gender, ethnic minority and having AIDS were associated with significantly higher mortality. Further, homosexual transmission, being on ART and increasing CD4-testing frequency were associated with lower mortality. To reduce mortality among PLWHA, efficient interventions targeting males, ethnic minority, heterosexually infected and AIDS patients should be combined with immunologic monitoring, enhancement of coverage of HIV-testing and ART. PMID:27324204

  3. HIV stigma among substance abusing people living with HIV/AIDS: implications for HIV treatment.

    PubMed

    Levi-Minzi, Maria A; Surratt, Hilary L

    2014-08-01

    HIV-related stigma has a major impact on quality of life and health among people living with HIV and AIDS (PLWHA). This study examines demographic, mental health, behavioral, contextual, and HIV care-related correlates of HIV stigma among 503 substance abusing PLWHA. Stigma was measured with the HIV Internalized Stigma Measure which has four subscales: stereotypes about HIV, self-acceptance, disclosure concerns, and social relationships. Severe substance dependence (55.3%) and depression (54.7%) were associated with higher HIV stigma across all domains. 49.9% of the sample reported antiretroviral (ARV) medication diversion (the unlawful sale and trading of ARV medications); diverters endorsed significantly higher stigma related to disclosure. 54.1% of the sample reported ≥95% ARV adherence; these individuals reported significantly lower stigma for self-acceptance, disclosure, and social relationships. Multivariate linear regression showed that depression and social support demonstrated significant main effects across stigma domains. Findings suggest that interventions to decrease HIV related stigma may be an important component of initiatives to increase engagement in HIV care.

  4. Flowering patterns of long-lived Heliconia inflorescences: implications for visiting and resident nectarivores.

    PubMed

    Dobkin, David S

    1984-10-01

    Flowering patterns of four Heliconia (Heliconiaceae) species in Trinidad, West Indies were examined for their predictability and availability to the nectarivores that rely on Heliconia floral nectar. Principal flower visitors are trapling hermit hummingbirds; inflorescences are inhabited by nectarivorous hummingbird flower mites that move between inflorescences by riding in the hummingbirds' nares. Heliconia inflorescences flower for 40-200 days, providing long-term sources of copious nectar (30-60 μl per flower), but each Heliconia flower lasts only a single day. As an inflorescence ages the interval increases between open flowers within a bract; wet-season inflorescences produce open flowers more slowly than dry-season conspecifics.Estimated daily energy expenditures for hermit hummingbirds demonstrate that slow production of short-lived open flowers plus low inflorescence density preclude territorial defense of Heliconia by the hermits. Heliconia flowering patterns are viewed as a means of (i) regulating reproductive investment by the plants through staggered flower production over long periods of time, and (ii) maintaining outcrossing by necessitating a traplining visitation pattern by its hummingbird pollinators. I suggest that Heliconia exhibit a two-tiered pollination system by using hermit hummingbirds primarily for outcrossing and using hummingbird flower mites primarily for self-pollination.

  5. Direct Heme Uptake by Phytoplankton-Associated Roseobacter Bacteria

    PubMed Central

    Brahamsha, Bianca; Barbeau, Katherine A.

    2017-01-01

    ABSTRACT Iron is an essential micronutrient and can limit the growth of both marine phytoplankton and heterotrophic bacterioplankton. In this study, we investigated the molecular basis of heme transport, an organic iron acquisition pathway, in phytoplankton-associated Roseobacter bacteria and explored the potential role of bacterial heme uptake in the marine environment. We searched 153 Roseobacter genomes and found that nearly half contained putative complete heme transport systems with nearly the same synteny. We also examined a publicly available coculture transcriptome and found that Roseobacter strain Sulfitobacter sp. strain SA11 strongly downregulated a putative heme transport gene cluster during mutualistic growth with a marine diatom, suggesting that the regulation of heme transport might be influenced by host cues. We generated a mutant of phytoplankton-associated Roseobacter strain Ruegeria sp. strain TM1040 by insertionally inactivating its homolog of the TonB-dependent heme transporter hmuR and confirmed the role of this gene in the uptake of heme and hemoproteins. We performed competition experiments between iron-limited wild-type and mutant TM1040 strains and found that the wild type maintains a growth advantage when competing with the mutant for iron compounds derived solely from lysed diatom cells. Heme transport systems were largely absent from public marine metagenomes and metatranscriptomes, suggesting that marine bacteria with the potential for heme transport likely have small standing populations in the free-living bacterioplankton. Heme transport is likely a useful strategy for phytoplankton-associated bacteria because it provides direct access to components of the host intracellular iron pool after lysis. IMPORTANCE Ecosystem productivity in large regions of the surface ocean is fueled by iron that has been microbially regenerated from biomass. Currently, the specific microbes and molecules that mediate the transfer of recycled iron between

  6. The role of phytoplankton photosynthesis in global biogeochemical cycles.

    PubMed

    Falkowski, P G

    1994-03-01

    Phytoplankton biomass in the world's oceans amounts to only ∽1-2% of the total global plant carbon, yet these organisms fix between 30 and 50 billion metric tons of carbon annually, which is about 40% of the total. On geological time scales there is profound evidence of the importance of phytoplankton photosynthesis in biogeochemical cycles. It is generally assumed that present phytoplankton productivity is in a quasi steady-state (on the time scale of decades). However, in a global context, the stability of oceanic photosynthetic processes is dependent on the physical circulation of the upper ocean and is therefore strongly influenced by the atmosphere. The net flux of atmospheric radiation is critical to determining the depth of the upper mixed layer and the vertical fluxes of nutrients. These latter two parameters are keys to determining the intensity, and spatial and temporal distributions of phytoplankton blooms. Atmospheric radiation budgets are not in steady-state. Driven largely by anthropogenic activities in the 20th century, increased levels of IR- absorbing gases such as CO2, CH4 and CFC's and NOx will potentially increase atmospheric temperatures on a global scale. The atmospheric radiation budget can affect phytoplankton photosynthesis directly and indirectly. Increased temperature differences between the continents and oceans have been implicated in higher wind stresses at the ocean margins. Increased wind speeds can lead to higher nutrient fluxes. Throughout most of the central oceans, nitrate concentrations are sub-micromolar and there is strong evidence that the quantum efficiency of Photosystem II is impaired by nutrient stress. Higher nutrient fluxes would lead to both an increase in phytoplankton biomass and higher biomass-specific rates of carbon fixation. However, in the center of the ocean gyres, increased radiative heating could reduce the vertical flux of nutrients to the euphotic zone, and hence lead to a reduction in phytoplankton

  7. Phytoplankton fuels Delta food web

    USGS Publications Warehouse

    Jassby, Alan D.; Cloern, James E.; Muller-Solger, A. B.

    2003-01-01

    Populations of certain fishes and invertebrates in the Sacramento-San Joaquin Delta have declined in abundance in recent decades and there is evidence that food supply is partly responsible. While many sources of organic matter in the Delta could be supporting fish populations indirectly through the food web (including aquatic vegetation and decaying organic matter from agricultural drainage), a careful accounting shows that phytoplankton is the dominant food source. Phytoplankton, communities of microscopic free-floating algae, are the most important food source on a Delta-wide scale when both food quantity and quality are taken into account. These microscopic algae have declined since the late 1960s. Fertilizer and pesticide runoff do not appear to be playing a direct role in long-term phytoplankton changes; rather, species invasions, increasing water transparency and fluctuations in water transport are responsible. Although the potential toxicity of herbicides and pesticides to plank- ton in the Delta is well documented, the ecological significance remains speculative. Nutrient inputs from agricultural runoff at current levels, in combination with increasing transparency, could result in harmful al- gal blooms. 

  8. Caregiver satisfaction with paediatric HIV treatment and care in Nigeria and equity implications for children living with HIV.

    PubMed

    Chamla, Dick; Asadu, Chukwuemeka; Adejuyigbe, Ebun; Davies, Abiola; Ugochukwu, Ebele; Umar, Lawal; Oluwafunke, Ilesanmi; Hassan-Hanga, Fatimah; Onubogu, Chinyere; Tunde-Oremodu, Immaculata; Madubuike, Chinelo; Umeadi, Esther; Epundu, Obed; Omosun, Adenike; Anigilaje, Emmanuel; Adeyinka, Daniel

    2016-03-01

    Caregiver satisfaction has the potential to promote equity for children living with HIV, by influencing health-seeking behaviour. We measured dimensions of caregiver satisfaction with paediatric HIV treatment in Nigeria, and discuss its implications for equity by conducting facility-based exit interviews for caregivers of children receiving antiretroviral therapy in 20 purposively selected facilities within 5 geopolitical zones. Descriptive analysis and factor analysis were performed. Due to the hierarchical nature of the data, multilevel regression modelling was performed to investigate relationships between satisfaction factors and socio-demographic variables. Of 1550 caregivers interviewed, 63% (95% CI: 60.6-65.4) reported being very satisfied overall; however, satisfaction varied in some dimensions: only 55.6% (53.1-58.1) of caregivers could talk privately with health workers, 56.9% (54.4-59.3) reported that queues to see health workers were too long, and 89.9% (88.4-91.4) said that some health workers did not treat patients living with HIV with sufficient respect. Based on factor analysis, two underlying factors, labelled Availability and Attitude, were identified. In multilevel regression, the satisfaction with availability of services correlated with formal employment status (p < .01), whereas caregivers receiving care in private facilities were less likely satisfied with both availability (p < .01) and attitude of health workers (p < .05). State and facility levels influenced attitudes of the health workers (p < .01), but not availability of services. We conclude that high levels of overall satisfaction among caregivers masked dissatisfaction with some aspects of services. The two underlying satisfaction factors are part of access typology critical for closing equity gaps in access to HIV treatment between adults and children, and across socio-economic groups.

  9. State of Climate 2011 - Global Ocean Phytoplankton

    NASA Technical Reports Server (NTRS)

    Siegel, D. A.; Antoine, D.; Behrenfeld, M. J.; d'Andon, O. H. Fanton; Fields, E.; Franz, B. A.; Goryl, P.; Maritorena, S.; McClain, C. R.; Wang, M.; Yoder, J. A.

    2012-01-01

    Phytoplankton photosynthesis in the sun lit upper layer of the global ocean is the overwhelmingly dominant source of organic matter that fuels marine ecosystems. Phytoplankton contribute roughly half of the global (land and ocean) net primary production (NPP; gross photosynthesis minus plant respiration) and phytoplankton carbon fixation is the primary conduit through which atmospheric CO2 concentrations interact with the ocean s carbon cycle. Phytoplankton productivity depends on the availability of sunlight, macronutrients (e.g., nitrogen, phosphorous), and micronutrients (e.g., iron), and thus is sensitive to climate-driven changes in the delivery of these resources to the euphotic zone

  10. Zombies, vampires, werewolves: an adolescent's developmental system for the undead and their ambivalent dependence on the living, and technical implications.

    PubMed

    Szajnberg, Nathan Moses

    2012-12-01

    While vampires haunt contemporary American pop culture, the undead have populated psychoanalytic literature from Abraham's March 15, 1915 letter to Freud to today. PEP lists 439 psychoanalytic references to the undead (99 on zombies; 288 on vampires; 52 on werewolves). A selection of papers are cited, focusing on clinical cases, ethnography media and literature, even breast-feeding fantasized as blood sucking, associated with primitive dynamics. Previous works' libidinal, object relations, and dynamic perspectives on various "undeads" are summarized. This paper's contribution to the psychoanalytic literature is to examine the relationship of the three categories of undead both among each other and in their relation to the living. This paper presents a young adolescent's extensive play and fantasies about the undead, and his sophisticated intrapsychic model for the undead, developed prior to treatment, that kept him in psychical equilibrium, yet also kept him from feeling alive. This model has developmental implications for handling three types of transferences. Also, we may shed light on both contemporary preoccupation with the undead in contemporary American popular culture, and its endurance over time in Western culture.

  11. Entangled lives: Implications of the developmental origins of health and disease hypothesis for bioarchaeology and the life course.

    PubMed

    Gowland, Rebecca L

    2015-12-01

    Epidemiological research since the 1980s has highlighted the consequences of early life adversity, particularly during gestation and early infancy, for adult health (the "Barker hypothesis"). The fast-evolving field of molecular epigenetics is providing explanatory mechanisms concerning phenotypic plasticity in response to developmental stressors and the accumulation of disease risk throughout life. In addition, there is now evidence for the heritability of poor health across generations via epigenetic modifications. This research has the potential to invoke a paradigmatic shift in how we interpret factors such as growth insults and immune response in past skeletal remains. It demonstrates that health cannot be understood in terms of immediate environmental circumstances alone. Furthermore, it requires both a theoretical and practical re-evaluation of disease biographies and the life course more generally. Individual life courses can no longer be regarded as discrete, bounded, life histories, with clearly defined beginning and end points. If socioeconomic circumstances can have intergenerational effects, including disease susceptibility and growth stunting, then individual biographies should be viewed as nested or "embedded" within the lives of others. This commingling of life courses may prove problematic to unravel; nevertheless, this review aims to consider the potential consequences for bioarchaeological interpretations. These include a greater consideration of: the temporal power of human skeletons and a life course approach to past health; infant health and the implications for maternal well-being; and the impact of non-proximate stressors (e.g., early life and ancestral environments) on the presence of health indicators.

  12. Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification.

    PubMed

    Eggers, Sarah L; Lewandowska, Aleksandra M; Barcelos E Ramos, Joana; Blanco-Ameijeiras, Sonia; Gallo, Francesca; Matthiessen, Birte

    2014-03-01

    Ecosystem functioning is simultaneously affected by changes in community composition and environmental change such as increasing atmospheric carbon dioxide (CO2 ) and subsequent ocean acidification. However, it largely remains uncertain how the effects of these factors compare to each other. Addressing this question, we experimentally tested the hypothesis that initial community composition and elevated CO2 are equally important to the regulation of phytoplankton biomass. We full-factorially exposed three compositionally different marine phytoplankton communities to two different CO2 levels and examined the effects and relative importance (ω(2) ) of the two factors and their interaction on phytoplankton biomass at bloom peak. The results showed that initial community composition had a significantly greater impact than elevated CO2 on phytoplankton biomass, which varied largely among communities. We suggest that the different initial ratios between cyanobacteria, diatoms, and dinoflagellates might be the key for the varying competitive and thus functional outcome among communities. Furthermore, the results showed that depending on initial community composition elevated CO2 selected for larger sized diatoms, which led to increased total phytoplankton biomass. This study highlights the relevance of initial community composition, which strongly drives the functional outcome, when assessing impacts of climate change on ecosystem functioning. In particular, the increase in phytoplankton biomass driven by the gain of larger sized diatoms in response to elevated CO2 potentially has strong implications for nutrient cycling and carbon export in future oceans.

  13. Winter severity determines functional trait composition of phytoplankton in seasonally ice-covered lakes.

    PubMed

    Özkundakci, Deniz; Gsell, Alena S; Hintze, Thomas; Täuscher, Helgard; Adrian, Rita

    2016-01-01

    How climate change will affect the community dynamics and functionality of lake ecosystems during winter is still little understood. This is also true for phytoplankton in seasonally ice-covered temperate lakes which are particularly vulnerable to the presence or absence of ice. We examined changes in pelagic phytoplankton winter community structure in a north temperate lake (Müggelsee, Germany), covering 18 winters between 1995 and 2013. We tested how phytoplankton taxa composition varied along a winter-severity gradient and to what extent winter severity shaped the functional trait composition of overwintering phytoplankton communities using multivariate statistical analyses and a functional trait-based approach. We hypothesized that overwintering phytoplankton communities are dominated by taxa with trait combinations corresponding to the prevailing winter water column conditions, using ice thickness measurements as a winter-severity indicator. Winter severity had little effect on univariate diversity indicators (taxon richness and evenness), but a strong relationship was found between the phytoplankton community structure and winter severity when taxon trait identity was taken into account. Species responses to winter severity were mediated by the key functional traits: motility, nutritional mode, and the ability to form resting stages. Accordingly, one or the other of two functional groups dominated the phytoplankton biomass during mild winters (i.e., thin or no ice cover; phototrophic taxa) or severe winters (i.e., thick ice cover; exclusively motile taxa). Based on predicted milder winters for temperate regions and a reduction in ice-cover durations, phytoplankton communities during winter can be expected to comprise taxa that have a relative advantage when the water column is well mixed (i.e., need not be motile) and light is less limiting (i.e., need not be mixotrophic). A potential implication of this result is that winter severity promotes different

  14. Seasonal mercury levels in phytoplankton and their relationship with algal biomass in two dystrophic shield lakes

    SciTech Connect

    Kirkwood, A.E.; Chow-Fraser, P.; Mierle, G.

    1999-03-01

    This study focused on the seasonal dynamics of total Hg in the phytoplankton (living and dead) of two dystrophic shield lakes (Mouse and Ranger). Phytoplankton samples were taken from metalimnetic and hypolimnetic depths in the euphotic zone and were collected and analyzed using ultraclean techniques. In both lakes, phytoplankton Hg (PHYTO-Hg) levels (pg/L) in the metalimnion did not significantly change among dates over the season, although Ranger Lake exhibited significant differences between Hg values measured at the beginning and end of the season. In contrast, PHYTO-Hg significantly increased in the hypolimnia of both lakes by the end of the season. Combined influences of external Hg inputs, remineralization, phytoplankton sedimentation, and increased methylmercury production in the hypolimnia over the season may have contributed to these trends. A highly significant positive relationship existed between PHYTO-Hg levels and whole-water Hg levels, and the mean bioconcentration factor for Hg between the water column and phytoplankton was significantly higher in the hypolimnion compared to the metalimnion for both lakes. In most cases, parameters associated with algal biomass had significant positive correlations with PHYTO-Hg levels. Weight-specific PHYTO-Hg (pg/mg dry weight) varied significantly over the season, and there were interlake differences with respect to season trends. On the basis of these results, the authors recommend that the future sampling regimes include collection of phytoplankton at different limnetic depths through the season to account for spatial and temporal variations. Weight specific Hg levels in phytoplankton could not be explained well by the parameters tested, and the only significant regressions were with parameters reflecting algal biomass. This study provides in situ evidence of Hg accumulation in lake phytoplankton as a function of algal biomass on a seasonal basis and stresses the need to confirm these trends in other lake

  15. Phytoplankton assemblage characteristics in recurrently fluctuating environments.

    PubMed

    Roelke, Daniel L; Spatharis, Sofie

    2015-01-01

    Annual variations in biogeochemical and physical processes can lead to nutrient variability and seasonal patterns in phytoplankton productivity and assemblage structure. In many coastal systems river inflow and water exchange with the ocean varies seasonally, and alternating periods can arise where the nutrient most limiting to phytoplankton growth switches. Transitions between these alternating periods can be sudden or gradual and this depends on human activities, such as reservoir construction and interbasin water transfers. How such activities might influence phytoplankton assemblages is largely unknown. Here, we employed a multispecies, multi-nutrient model to explore how nutrient loading switching mode might affect characteristics of phytoplankton assemblages. The model is based on the Monod-relationship, predicting an instantaneous growth rate from ambient inorganic nutrient concentrations whereas the limiting nutrient at any given time was determined by Liebig's Law of the Minimum. Our simulated phytoplankton assemblages self-organized from species rich pools over a 15-year period, and only the surviving species were considered as assemblage members. Using the model, we explored the interactive effects of complementarity level in trait trade-offs within phytoplankton assemblages and the amount of noise in the resource supply concentrations. We found that the effect of shift from a sudden resource supply transition to a gradual one, as observed in systems impacted by watershed development, was dependent on the level of complementarity. In the extremes, phytoplankton species richness and relative overyielding increased when complementarity was lowest, and phytoplankton biomass increased greatly when complementarity was highest. For low-complementarity simulations, the persistence of poorer-performing phytoplankton species of intermediate R*s led to higher richness and relative overyielding. For high-complementarity simulations, the formation of phytoplankton

  16. Phytoplankton Assemblage Characteristics in Recurrently Fluctuating Environments

    PubMed Central

    Roelke, Daniel L.; Spatharis, Sofie

    2015-01-01

    Annual variations in biogeochemical and physical processes can lead to nutrient variability and seasonal patterns in phytoplankton productivity and assemblage structure. In many coastal systems river inflow and water exchange with the ocean varies seasonally, and alternating periods can arise where the nutrient most limiting to phytoplankton growth switches. Transitions between these alternating periods can be sudden or gradual and this depends on human activities, such as reservoir construction and interbasin water transfers. How such activities might influence phytoplankton assemblages is largely unknown. Here, we employed a multispecies, multi-nutrient model to explore how nutrient loading switching mode might affect characteristics of phytoplankton assemblages. The model is based on the Monod-relationship, predicting an instantaneous growth rate from ambient inorganic nutrient concentrations whereas the limiting nutrient at any given time was determined by Liebig’s Law of the Minimum. Our simulated phytoplankton assemblages self-organized from species rich pools over a 15-year period, and only the surviving species were considered as assemblage members. Using the model, we explored the interactive effects of complementarity level in trait trade-offs within phytoplankton assemblages and the amount of noise in the resource supply concentrations. We found that the effect of shift from a sudden resource supply transition to a gradual one, as observed in systems impacted by watershed development, was dependent on the level of complementarity. In the extremes, phytoplankton species richness and relative overyielding increased when complementarity was lowest, and phytoplankton biomass increased greatly when complementarity was highest. For low-complementarity simulations, the persistence of poorer-performing phytoplankton species of intermediate R*s led to higher richness and relative overyielding. For high-complementarity simulations, the formation of phytoplankton

  17. The physiology of dimethylsulfoniopropionate (DMSP) production in phytoplankton

    SciTech Connect

    Keller, M.D.; Bellows, W.K. )

    1990-06-01

    Dimethylsulfoniopropionate (DMSP) is the precursor of dimethyl sulfide (DMS), the primary volatile organic sulfur compound released from the world's oceans. DMS flux from the oceans is estimated currently at {approximately}1.2 Tmol S.y{sup {minus}1}, or about half the amount of sulfur resulting from anthroprogenic activities, and has been implicated in important global atmospheric processes. Significant production of DMSP is confined to a few classes of marine phytoplankton, primarily the Dinophyceae and Prymnesiophyceae. In these groups, DMSP can account for up to 80% of total organic sulfur. DMSP remains intracellular and fairly constant over the growth cycle until late stationary phase when extracellular levels begin to rise, suggesting leakage. We have examined the effects of a number of environmental variables on DMSP production and release in several marine phytoplankton. In particular the effects of perturbations in light, temperature and nutrient status have been determined. These results will be discussed in relation to marine sulfur chemistry, with ancillary comments on freshwater phytoplankton.

  18. Spring phytoplankton communities of the Labrador Sea (2005-2014): pigment signatures, photophysiology and elemental ratios

    NASA Astrophysics Data System (ADS)

    Fragoso, Glaucia M.; Poulton, Alex J.; Yashayaev, Igor M.; Head, Erica J. H.; Purdie, Duncan A.

    2017-03-01

    The Labrador Sea is an ideal region to study the biogeographical, physiological, and biogeochemical implications of phytoplankton community composition due to sharp transitions between distinct water masses across its shelves and central basin. We have investigated the multi-year (2005-2014) distributions of late spring and early summer (May to June) phytoplankton communities in the various hydrographic settings of the Labrador Sea. Our analysis is based on pigment markers (using CHEMTAX analysis), and photophysiological and biogeochemical characteristics associated with each phytoplankton community. Diatoms were the most abundant group, blooming first in shallow mixed layers of haline-stratified Arctic shelf waters. Along with diatoms, chlorophytes co-dominated at the western end of the section (particularly in the polar waters of the Labrador Current (LC)), whilst Phaeocystis co-dominated in the east (modified polar waters of the West Greenland Current (WGC)). Pre-bloom conditions occurred in deeper mixed layers of the central Labrador Sea in May, where a mixed assemblage of flagellates (dinoflagellates, prasinophytes, prymnesiophytes, particularly coccolithophores, and chrysophytes/pelagophytes) occurred in low-chlorophyll areas, succeeding to blooms of diatoms and dinoflagellates in thermally stratified Atlantic waters in June. Light-saturated photosynthetic rates and saturation irradiance levels were highest at stations where diatoms were the dominant phytoplankton group ( > 70 % of total chlorophyll a), as opposed to stations where flagellates were more abundant (from 40 up to 70 % of total chlorophyll a). Phytoplankton communities from the WGC (Phaeocystis and diatoms) had lower light-limited photosynthetic rates, with little evidence of photoinhibition, indicating greater tolerance to a high light environment. By contrast, communities from the central Labrador Sea (dinoflagellates and diatoms), which bloomed later in the season (June), appeared to be more

  19. Phytoplankton and sediments in Yellow Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Sediment and phytoplankton cloud the waters of the Yellow Sea in this true-color MODIS image acquired March 18, 2002. The swirls of sediment appear as a murky brownish blue color, while the phytoplankton are purely blue green and are concentrated around the small island in the lower right corner of the image.

  20. Iron bioavailability to phytoplankton: an empirical approach.

    PubMed

    Lis, Hagar; Shaked, Yeala; Kranzler, Chana; Keren, Nir; Morel, François M M

    2015-03-17

    Phytoplankton are often limited by iron in aquatic environments. Here we examine Fe bioavailability to phytoplankton by analyzing iron uptake from various Fe substrates by several species of phytoplankton grown under conditions of Fe limitation and comparing the measured uptake rate constants (Fe uptake rate/ substrate concentration). When unchelated iron, Fe', buffered by an excess of the chelating agent EDTA is used as the Fe substrate, the uptake rate constants of all the eukaryotic phytoplankton species are tightly correlated and proportional to their respective surface areas (S.A.). The same is true when FeDFB is the substrate, but the corresponding uptake constants are one thousand times smaller than for Fe'. The uptake rate constants for the other substrates we examined fall mostly between the values for Fe' and FeDFB for the same S.A. These two model substrates thus empirically define a bioavailability envelope with Fe' at the upper and FeDFB at the lower limit of iron bioavailability. This envelope provides a convenient framework to compare the relative bioavailabilities of various Fe substrates to eukaryotic phytoplankton and the Fe uptake abilities of different phytoplankton species. Compared with eukaryotic species, cyanobacteria have similar uptake constants for Fe' but lower ones for FeDFB. The unique relationship between the uptake rate constants and the S.A. of phytoplankton species suggests that the uptake rate constant of Fe-limited phytoplankton has reached a universal upper limit and provides insight into the underlying uptake mechanism.

  1. Iron bioavailability to phytoplankton: an empirical approach

    PubMed Central

    Lis, Hagar; Shaked, Yeala; Kranzler, Chana; Keren, Nir; Morel, François M M

    2015-01-01

    Phytoplankton are often limited by iron in aquatic environments. Here we examine Fe bioavailability to phytoplankton by analyzing iron uptake from various Fe substrates by several species of phytoplankton grown under conditions of Fe limitation and comparing the measured uptake rate constants (Fe uptake rate/ substrate concentration). When unchelated iron, Fe′, buffered by an excess of the chelating agent EDTA is used as the Fe substrate, the uptake rate constants of all the eukaryotic phytoplankton species are tightly correlated and proportional to their respective surface areas (S.A.). The same is true when FeDFB is the substrate, but the corresponding uptake constants are one thousand times smaller than for Fe′. The uptake rate constants for the other substrates we examined fall mostly between the values for Fe′ and FeDFB for the same S.A. These two model substrates thus empirically define a bioavailability envelope with Fe′ at the upper and FeDFB at the lower limit of iron bioavailability. This envelope provides a convenient framework to compare the relative bioavailabilities of various Fe substrates to eukaryotic phytoplankton and the Fe uptake abilities of different phytoplankton species. Compared with eukaryotic species, cyanobacteria have similar uptake constants for Fe′ but lower ones for FeDFB. The unique relationship between the uptake rate constants and the S.A. of phytoplankton species suggests that the uptake rate constant of Fe-limited phytoplankton has reached a universal upper limit and provides insight into the underlying uptake mechanism. PMID:25350155

  2. Sea Soup: Discovering the Watery World of Phytoplankton and Zooplankton. Teacher's Guide.

    ERIC Educational Resources Information Center

    Stevens, Betsy T.

    This book is an inquiry- and discovery-based teacher's guide. The interesting and fun activities in this teacher's guide meet the challenge of relating tiny, microscopic organisms to the lives of children. The inquiry-based activities range from designing and making a phytoplankter and collecting phytoplankton to designing an experiment for…

  3. "Trophic overyielding": phytoplankton diversity promotes zooplankton productivity.

    PubMed

    Striebel, Maren; Singer, Gabriel; Stibor, Herwig; Andersen, Tom

    2012-12-01

    Diversity-productivity relationships at the primary producer level have been extensively studied, especially for terrestrial systems. Here, we explore whether the diversity of aquatic primary producers (phytoplankton) has effects on higher trophic levels (zooplankton). We investigated the effect of phytoplankton diversity on an artificial zooplankton community in a laboratory experiment where phytoplankton biomass and elemental composition (carbon-to-phosphorus ratio) were kept constant. Phytoplankton diversity increased the means of both zooplankton growth rate and abundance while suppressing their variability, and sustained higher zooplankton diversity. Likely explanations include resource complementarity effects among phytoplankton species as food entities, as well as niche complementarity effects among Daphnia species as competitors. By affecting the productivity as well as the variability of the next trophic level, biodiversity of primary producers may have far-reaching consequences in aquatic food webs.

  4. Phytoplankton strategies for photosynthetic energy allocation.

    PubMed

    Halsey, Kimberly H; Jones, Bethan M

    2015-01-01

    Phytoplankton physiology is dynamic and highly responsive to the environment. Phytoplankton acclimate to changing environmental conditions by a complex reallocation of carbon and energy through metabolic pathways to optimize growth. Considering the tremendous diversity of phytoplankton, it is not surprising that different phytoplankton taxa use different strategies to partition carbon and energy resources. It has therefore been satisfying to discover that general principles of energetic stoichiometry appear to govern these complex processes and can be broadly applied to interpret phytoplankton distributions, productivity, and food web dynamics. The expectation of future changes in aquatic environments brought on by climate change warrants gathering knowledge about underlying patterns of photosynthetic energy allocation and their impacts on community structure and ecosystem productivity.

  5. [Ecological characteristics of phytoplankton in Shenzhen Bay].

    PubMed

    Sun, Jin-Shui; Wai, Onyx Wing-Hong; Dai, Ji-Cui; Ni, Jin-Ren

    2010-01-01

    Based on the data of surface phytoplankton investigated by Hong Kong Environmental Protection Department in Shenzhen Bay in 2006, variation characteristics of phytoplankton communities and the relationship between the phytoplankton diversity indices and environmental factors were analyzed in the present paper. Results showed that a total of 27 genera and 34 species of phytoplankton were identified. Of these, 18 were diatoms (52.94%), 10 were dinoflagellates (29.41%), 6 were from other minor groups (17.65%). The cell abundance was estimated to be from 2.13 x 10(6) to 4.15 x 10(6) cells/L, with an average of 2.92 x 10(6) cells/L. The maximum cell abundance appeared in the autumn (October), followed in spring (May). The cell abundance showed double abundance peaks annually. The cell abundance of phytoplankton decreased from the middle bay to the bay mouth. In the marine area, the diversity index of the phytoplankton ranged from 0.76 to 2.52; the evenness of phytoplankton ranged from 0.29 to 0.74; the diversity and evenness of phytoplankton community were rather low, which indicated that the relative abundances of the species diverged from evenness, phytoplankton community were not steady, and only few dominant species increased rapidly. The species richness index ranged from 0.57 to 2.17, the high eutrophic water body caused the species richness index declined. Better relationship was found between phytoplankton diversity indices and nutrient, salinity, dissolved oxygen.

  6. Spatial dynamics of a nutrient-phytoplankton system with toxic effect on phytoplankton.

    PubMed

    Chakraborty, Subhendu; Tiwari, P K; Misra, A K; Chattopadhyay, J

    2015-06-01

    The production of toxins by some species of phytoplankton is known to have several economic, ecological, and human health impacts. However, the role of toxins on the spatial distribution of phytoplankton is not well understood. In the present study, the spatial dynamics of a nutrient-phytoplankton system with toxic effect on phytoplankton is investigated. We analyze the linear stability of the system and obtain the condition for Turing instability. In the presence of toxic effect, we find that the distribution of nutrient and phytoplankton becomes inhomogeneous in space and results in different patterns, like stripes, spots, and the mixture of them depending on the toxicity level. We also observe that the distribution of nutrient and phytoplankton shows spatiotemporal oscillation for certain toxicity level.

  7. Phytoplankton bloom in Persian Gulf

    NASA Technical Reports Server (NTRS)

    2002-01-01

    There is a large amount of sediment clearly visible in the true-color image of the Persian Gulf, acquired on November 1, 2001, by MODIS. Carried by the confluence of the Tigris and Euphrates Rivers (at center), the sediment-laden waters appear light brown where they enter the northern end of the Persian Gulf and then gradually dissipate into turquoise swirls as they drift southward. The nutrients these sediments carry are helping to support a phytoplankton bloom in the region, which adds some darker green hues in the rich kaleidoscope of colors on the surface (see the high resolution image). The confluence of the Tigris and Euphrates Rivers marks the southernmost boundary between Iran (upper right) and Iraq (upper left). South of Iraq are the countries of Kuwait and Saudi Arabia. The red dots indicate the probable locations of fires burning at oil refineries. Thin black plumes of smoke can be seen streaming away from several of these.

  8. Massive phytoplankton blooms under Arctic sea ice.

    PubMed

    Arrigo, Kevin R; Perovich, Donald K; Pickart, Robert S; Brown, Zachary W; van Dijken, Gert L; Lowry, Kate E; Mills, Matthew M; Palmer, Molly A; Balch, William M; Bahr, Frank; Bates, Nicholas R; Benitez-Nelson, Claudia; Bowler, Bruce; Brownlee, Emily; Ehn, Jens K; Frey, Karen E; Garley, Rebecca; Laney, Samuel R; Lubelczyk, Laura; Mathis, Jeremy; Matsuoka, Atsushi; Mitchell, B Greg; Moore, G W K; Ortega-Retuerta, Eva; Pal, Sharmila; Polashenski, Chris M; Reynolds, Rick A; Schieber, Brian; Sosik, Heidi M; Stephens, Michael; Swift, James H

    2012-06-15

    Phytoplankton blooms over Arctic Ocean continental shelves are thought to be restricted to waters free of sea ice. Here, we document a massive phytoplankton bloom beneath fully consolidated pack ice far from the ice edge in the Chukchi Sea, where light transmission has increased in recent decades because of thinning ice cover and proliferation of melt ponds. The bloom was characterized by high diatom biomass and rates of growth and primary production. Evidence suggests that under-ice phytoplankton blooms may be more widespread over nutrient-rich Arctic continental shelves and that satellite-based estimates of annual primary production in these waters may be underestimated by up to 10-fold.

  9. Factors affecting phytoplankton distribution and production in the Elephant Island area, Antarctica

    SciTech Connect

    Helbling, E.W.

    1993-01-01

    During the austral summer of four years, 1990 to 1993, studies on phytoplankton were performed in the Elephant Island area as one component of the US Antarctica Marine Living Resources program. In addition to continuous measurements (temperature, salinity, chlorophyll-a, beam attenuation) made on ship's intake water, a profiling CTD-rosette unit was used to obtain water column characteristics (temperature, salinity, chlorophyll-a, attenuation of solar radiation, beam attenuation) from the surface to 750m depth and also water samples from at least 10 depths for chemical and biological analyses. The sampling grid consisted of an average of 70 stations, all of which were occupied two times each year. The Elephant Island area is a transition zone between the rich coastal areas, where phytoplankton can develop dense blooms, and pelagic waters where the phytoplankton biomass is in general very low. A frontal zone was usually found to the north of Elephant Island and over the continental slope, and high phytoplankton biomass was in general associated with this frontal region. Although the location of this frontal system showed seasonal movement in a north-south direction, it seems to be a consistent feature from year to year. There seems to be considerable year-to-year variability in physical (water temperatures and salinity) and phytoplankton characteristics within the study area, in regard to both distributional patterns in surface waters and to profile characteristics in the upper 100m of the water column. With shallow upper mixed layer depths of less than 50 m, phytoplankton can attain relatively high concentrations. Optimum light conditions for growth occurred when the mixed layer was less than 55% of the euphotic zone. As the area around Elephant Island is characterized by relatively strong and frequent winds, the depth of the upper mixed layer at many stations approached the depth of the euphotic zone, with the result that growth of phytoplankton was light limited.

  10. Influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of persistent organic pollutants

    SciTech Connect

    Dachs, J.; Eisenreich, S.J.; Hoff, R.M.

    2000-03-15

    The influence of eutrophication on the biogeochemical cycles of persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) is largely unknown. In this paper, the application of a dynamic air-water-phytoplankton exchange model to Lake Ontario is used as a framework to study the influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of POPs. The results of these simulations demonstrate that air-water exchange controls phytoplankton concentrations in remote aquatic environments with little influence from land-based sources of pollutants and supports levels in even historically contaminated systems. Furthermore, eutrophication or high biomass leads to a disequilibrium between the gas and dissolved phase, enhanced air-water exchange, and vertical sinking fluxes of PCBs. Increasing biomass also depletes the water concentrations leading to lower than equilibrium PCB concentrations in phytoplankton. Implications to future trends in PCB pollution in Lake Ontario are also discussed.

  11. Composition of phytoplankton communities and their contribution to secondary productivity in Carolina Bays on the Savannah River Plant

    SciTech Connect

    Williams, J.B. . Dept. of Natural Sciences)

    1989-08-01

    The overall goal of this three-year project is to determine the importance of phytoplankton (microscopic algae) as a component of the food chain base in SRS Carolina Bays (shallow temporary ponds endemic to the Southeastern US). Previous investigations and ongoing SREL studies have determined the importance of Carolina bay zooplankton (microscopic crustacean herbivores) to the early life stages of amphibians. Our project is testing the hypothesis that phytoplankton are the primary component of zooplankton diets in these bays. Carolina Bays represent critical habitats for a whole class of vertebrates at SRS, the amphibians. Details of phytoplankton dynamics and productivity gained from our project will advance our understanding of ecological energetics within Carolina Bay systems. These results will also help determine the potential impact that these minute, but productive plants can have on SRS biota beyond the bounds of these aquatic ecosystems. Additional implications can be made concerning chemical elemental uptake and transfer from phytoplankton to higher trophic levels. 12 figs.

  12. The impact of temperature on marine phytoplankton resource allocation and metabolism

    NASA Astrophysics Data System (ADS)

    Toseland, A.; Daines, S. J.; Clark, J. R.; Kirkham, A.; Strauss, J.; Uhlig, C.; Lenton, T. M.; Valentin, K.; Pearson, G. A.; Moulton, V.; Mock, T.

    2013-11-01

    Marine phytoplankton are responsible for ~50% of the CO2 that is fixed annually worldwide, and contribute massively to other biogeochemical cycles in the oceans. Their contribution depends significantly on the interplay between dynamic environmental conditions and the metabolic responses that underpin resource allocation and hence biogeochemical cycling in the oceans. However, these complex environment-biome interactions have not been studied on a larger scale. Here we use a set of integrative approaches that combine metatranscriptomes, biochemical data, cellular physiology and emergent phytoplankton growth strategies in a global ecosystems model, to show that temperature significantly affects eukaryotic phytoplankton metabolism with consequences for biogeochemical cycling under global warming. In particular, the rate of protein synthesis strongly increases under high temperatures even though the numbers of ribosomes and their associated rRNAs decreases. Thus, at higher temperatures, eukaryotic phytoplankton seem to require a lower density of ribosomes to produce the required amounts of cellular protein. The reduction of phosphate-rich ribosomes in warmer oceans will tend to produce higher organismal nitrogen (N) to phosphate (P) ratios, in turn increasing demand for N with consequences for the marine carbon cycle due to shifts towards N-limitation. Our integrative approach suggests that temperature plays a previously unrecognized, critical role in resource allocation and marine phytoplankton stoichiometry, with implications for the biogeochemical cycles that they drive.

  13. Linking Quality of Life and Standard of Living Priorities with Rates of Return in Education: Implications for Ontario's Community Colleges

    ERIC Educational Resources Information Center

    Menna, Agostino

    2012-01-01

    This study begins to develop a way to measure the returns and benefits of education using a standard of living and quality of life approach. It sought identification of school priorities among senior level managers at postsecondary institutions in Ontario, Canada, and found that these administrators prioritized standard of living over quality of…

  14. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment.

    PubMed

    Arandia-Gorostidi, Nestor; Weber, Peter K; Alonso-Sáez, Laura; Morán, Xosé Anxelu G; Mayali, Xavier

    2017-03-01

    Quantifying the contribution of marine microorganisms to carbon and nitrogen cycles and their response to predicted ocean warming is one of the main challenges of microbial oceanography. Here we present a single-cell NanoSIMS isotope analysis to quantify C and N uptake by free-living and attached phytoplankton and heterotrophic bacteria, and their response to short-term experimental warming of 4 °C. Elevated temperature increased total C fixation by over 50%, a small but significant fraction of which was transferred to heterotrophs within 12 h. Cell-to-cell attachment doubled the secondary C uptake by heterotrophic bacteria and increased secondary N incorporation by autotrophs by 68%. Warming also increased the abundance of phytoplankton with attached heterotrophs by 80%, and promoted C transfer from phytoplankton to bacteria by 17% and N transfer from bacteria to phytoplankton by 50%. Our results indicate that phytoplankton-bacteria attachment provides an ecological advantage for nutrient incorporation, suggesting a mutualistic relationship that appears to be enhanced by temperature increases.

  15. Biochemical oxygen demand and algae: Fractionation of phytoplankton and nonphytoplankton respiration in a large river

    SciTech Connect

    Cohen, R.R.H. )

    1990-04-01

    Mass balance equations for dissolved oxygen in streams are formulated to account for, among other variables, algal respiration (R), and biochemical oxygen demand (BOD). The oxygen consumption measured in primary productivity-respiration analyses is not R but is total community oxygen consumption (TCOC), and BOD measurements are complicated by undefined algal components. Ultimate BOD was found to be 0.24 mg of O{sub 2} consumed per {mu}g chlorophyll a and carbonaceous BOD was 0.20 per {mu}g chlorophyll a in excess of background BOD. The results were similar for live and dead algae. Phytoplankton respiration was fractionated from nonphytoplankton oxygen consumption (NPOC) by the regression of respiration against chlorophyll a to obtain a y intercept of zero chlorophyll. The intercepts, NPOC, closely matched O{sub 2} consumption measured when phytoplankton biomass was very low. Phytoplankton respiration, calculated as the residual of the difference between TCOC and NPOC,ranged from 0.2 to 1.5 (mean = 0.88) mg O{sub 2} per mg chlorophyll a per hour, close to the literature value of 1 (in cultures). Depth-integrated (DI) phytoplankton respiration was 1/4 to 1/3 of DI gross primary productivity and 1-3% of maximum primary productivity. The separation of phytoplankton R and NPOC permitted the demonstration that R probably is not a simple function of productivity.

  16. Global change and the biogeochemistry of the North Sea: the possible role of phytoplankton and phytoplankton grazing

    NASA Astrophysics Data System (ADS)

    van Beusekom, Justus E. E.; Diel-Christiansen, Sabine

    2009-03-01

    Phytoplankton plays a dominant role in shelf biogeochemistry by producing the major part of organic matter. Part of the organic matter will reach the sediment where diagenetic processes like denitrification, apatite formation or burial will remove nutrients from the biogeochemical cycle. In this article current knowledge on the decadal plankton variability in the North Sea is summarized and possible implications of these changes for the biogeochemistry of the North Sea are discussed. Most of the observed interdecadal dynamics seem to be linked to large-scale oceanographic and atmospheric processes. Prominent changes in the North Sea ecosystem have taken place around 1979 and 1988. In general, the phytoplankton color (CPRS indicator of phytoplankton biomass) reached minimum values during the end of the 1970s and has increased especially since the mid 1980s. Changes with a similar timing have been identified in many time series from the North Sea through the entire ecosystem and are sometimes referred to as regime shifts. It is suggested that the impact of global change on the local biogeochemistry is largely driven by the phyto- and zooplankton dynamics during spring and early summer. At that time the extent of zooplankton-phytoplankton interaction either allows that a large part of the new production is settling to the sediment, or that a significant part of the new production including the fixed nutrients is kept within the pelagic system. The origin of the extent of the phytoplankton-zooplankton interaction in spring is probably set in the previous autumn and winter. In coastal areas, both large-scale atmospheric and oceanographic changes as well as anthropogenic factors influence the long-term dynamics. Due to eutrophication, local primary production nowadays still is up to five times higher than during pre-industrial conditions, despite a decreasing trend. Recently, introduced species have strengthened the filter feeder component of coastal ecosystems

  17. Marine biogeochemistry: Phytoplankton in a witch's brew

    NASA Astrophysics Data System (ADS)

    Behrenfeld, Michael

    2016-03-01

    Natural seafloor hydrocarbon seeps are responsible for roughly half of the oil released into the ocean. As these oils and gases rise to the surface, they transport nutrients upwards, benefiting phytoplankton in the upper sunlit layer.

  18. Determining the Population Size of Pond Phytoplankton.

    ERIC Educational Resources Information Center

    Hummer, Paul J.

    1980-01-01

    Discusses methods for determining the population size of pond phytoplankton, including water sampling techniques, laboratory analysis of samples, and additional studies worthy of investigation in class or as individual projects. (CS)

  19. Phytoplankton bloom along the coast of Namibia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This MODIS true-color image, acquired March 4, 2002, shows a phytoplankton bloom along the coast of Namibia. Phytoplankton is a microscopic organism that utilizes chlorophyll, which sunlight reflects off of to create this intense blue-green color in the water. Also prominent in this image is the Skeleton Coast Game Park, which runs along Namibia's northern coast and here glows a beautiful coral-orange color.

  20. Copper sensitivity of Oregon coastal phytoplankton

    SciTech Connect

    Riedel, G.F.

    1983-01-01

    The copper sensitivity of natural populations of Oregon coastal phytoplankton was studied using both additions of ionic copper and Cu-TRIS free ion activity buffers in coastal seawater. Phytoplankton growth rate, taxonomic composition and copper content were examined in treatment additions. The growth rate results suggested that the deficiency of another trace metal increased the apparent toxicity of copper to phytoplankton, especially in TRIS-free ion activity buffered seawater. Laboratory experiments with isolated coastal phytoplankton species indicated that manganese deficiency exacerbated copper toxicity, and that manganese deficiency was induced in TRIS buffered seawater by a TRIS-catalyzed oxidation of Mn. When manganese additions to natural populations were employed inconjunction with ionic copper additions and TRIS-free ion regulated seawater, they showed that ambient manganese concentrations were low enough to shift the onset of copper toxicity to lower copper concentrations. The results suggest that while acute toxicity to phytoplankton by ambient concentrations of copper is unlikely, the interactions of copper and other metals, especially manganese, may influence natural coastal phytoplankton populations in more subtle ways, such as taxonomic composition.

  1. Nearshore phytoplankton of Hammond Bay, Lake Huron

    USGS Publications Warehouse

    Brown, Charles L.; Manny, Bruce A.

    1983-01-01

    To predict the effects of increased nutrient loading on nearshore phytoplankton populations in northern Lake Huron, we collected phytoplankton from a small, nearshore water intake at Hammond Bay four times per week from August 1973 to July 1975. Phytoplankton density, taxonomic composition, and biomass in the nearshore waters followed predictable, seasonal fluctuations during each of two 12-month periods. The density of total phytoplankton was high (450600 cells/mL) in June and low (60 to 210 cells/mL) from January to April each year. The mean annual composition of the phytoplankton assemblage by number for the study period was 33% cryptomonads, 24% diatoms, 16% chrysophytes, 16% blue-green algae, and 10% green algae. Phytoplankton biomass was low through each year (range, 0.09 to 0.66 g/m3), resembling values previously reported from Lake Superior. Pennate diatoms contributed 60 to 80% of the total biomass from December to April and in July. Phytoflagellates consisting of chrysophytes and cryptomonads accounted for 35% of the biomass throughout the 2-year study.

  2. Iron, phytoplankton growth, and the carbon cycle.

    PubMed

    Street, Joseph H; Paytan, Adina

    2005-01-01

    Iron is an essential nutrient for all living organisms. Iron is required for the synthesis of chlorophyll and of several photosynthetic electron transport proteins and for the reduction of CO2, SO4(2-), and NO3(-) during the photosynthetic production of organic compounds. Iron concentrations in vast areas of the ocean are very low (<1 nM) due to the low solubility of iron in oxic seawater. Low iron concentrations have been shown to limit primary production rates, biomass accumulation, and ecosystem structure in a variety of open-ocean environments, including the equatorial Pacific, the subarctic Pacific and the Southern Ocean and even in some coastal areas. Oceanic primary production, the transfer of carbon dioxide into organic carbon by photosynthetic plankton (phytoplankton), is one process by which atmospheric CO2 can be transferred to the deep ocean and sequestered for long periods of time. Accordingly, iron limitation of primary producers likely plays a major role in the global carbon cycle. It has been suggested that variations in oceanic primary productivity, spurred by changes in the deposition of iron in atmospheric dust, control atmospheric CO2 concentrations, and hence global climate, over glacial-interglacial timescales. A contemporary application of this "iron hypothesis" promotes the large-scale iron fertilization of ocean regions as a means of enhancing the ability of the ocean to store anthropogenic CO2 and mitigate 21st century climate change. Recent in situ iron enrichment experiments in the HNLC regions, however, cast doubt on the efficacy and advisability of iron fertilization schemes. The experiments have confirmed the role of iron in regulating primary productivity, but resulted in only small carbon export fluxes to the depths necessary for long-term sequestration. Above all, these experiments and other studies of iron biogeochemistry over the last two decades have begun to illustrate the great complexity of the ocean system. Attempts to

  3. Qualitative differences in the early immune response to live and killed Leishmania major: Implications for vaccination strategies against Leishmaniasis.

    PubMed

    Okwor, Ifeoma; Liu, Dong; Uzonna, Jude

    2009-04-28

    Recovery from natural or deliberate infection with Leishmania major leads to the development of lifelong immunity against rechallenge infections. In contrast, vaccination with killed parasites or defined leishmanial antigens generally induces only short-term protection. The reasons for this difference are currently not known but may be related to differences in the quality of the early immune responses to live and killed parasites. Here, we report that live and killed L. major parasites elicit comparable early inflammatory response as evidenced by influx and/or proliferation of cells in the draining lymph nodes (dLNs). In contrast, the early cytokine responses were qualitatively different. Cells from mice inoculated with killed parasites produced significantly more antigen-specific IL-4 and less IFN-gamma than those from mice injected with live parasites. Inclusion of CpG ODN into killed parasite preparations changed the early response to killed parasites from IL-4 to a predominantly IFN-gamma response, resulting in better protection following secondary high dose virulent L. major challenge. Interestingly, CpG-mediated enhancement of killed parasites-induced protection was short-lived and waned after 12 weeks. Taken together, these results suggest that the nature of primary immunity induced by killed and live parasites are qualitatively different and that these differences may account for the differential protection seen in mice following vaccination with live and killed parasites. They further suggest that modulating the early response with an appropriate adjuvant could enhance efficacy of killed parasite vaccines.

  4. Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton.

    PubMed

    Bielmyer-Fraser, Gretchen K; Jarvis, Tayler A; Lenihan, Hunter S; Miller, Robert J

    2014-11-18

    Discharges of metal oxide nanoparticles into aquatic environments are increasing with their use in society, thereby increasing exposure risk for aquatic organisms. Separating the impacts of nanoparticle from dissolved metal pollution is critical for assessing the environmental risks of the rapidly growing nanomaterial industry, especially in terms of ecosystem effects. Metal oxides negatively affect several species of marine phytoplankton, which are responsible for most marine primary production. Whether such toxicity is generally due to nanoparticles or exposure to dissolved metals liberated from particles is uncertain. The type and severity of toxicity depends in part on whether phytoplankton cells take up and accumulate primarily nanoparticles or dissolved metal ions. We compared the responses of the marine diatom, Thalassiosira weissflogii, exposed to ZnO, AgO, and CuO nanoparticles with the responses of T. weissflogii cells exposed to the dissolved metals ZnCl2, AgNO3, and CuCl2 for 7 d. Cellular metal accumulation, metal distribution, and algal population growth were measured to elucidate differences in exposure to the different forms of metal. Concentration-dependent metal accumulation and reduced population growth were observed in T. weissflogii exposed to nanometal oxides, as well as dissolved metals. Significant effects on population growth were observed at the lowest concentrations tested for all metals, with similar toxicity for both dissolved and nanoparticulate metals. Cellular metal distribution, however, markedly differed between T. weissflogii exposed to nanometal oxides versus those exposed to dissolved metals. Metal concentrations were highest in the algal cell wall when cells were exposed to metal oxide nanoparticles, whereas algae exposed to dissolved metals had higher proportions of metal in the organelle and endoplasmic reticulum fractions. These results have implications for marine plankton communities as well as higher trophic levels, since

  5. "Social jetlag" in morning-type college students living on campus: implications for physical and psychological well-being.

    PubMed

    Lau, Esther Yuet Ying; Wong, Mark Lawrence; Ng, Eddie Chi Wai; Hui, Chi-chiu Harry; Cheung, Shu Fai; Mok, Doris Shui Ying

    2013-08-01

    Although on-campus residence allows easier access to campus facilities, existing studies showed mixed results regarding the relationship between college residence and students' well-being indicators, such as sleep behaviors and mood. There was also a lack of studies investigating the role of chronotype in the relationship between on-campus residence and well-being. In particular, the temporal relationships among these factors were unclear. Hence, this longitudinal study aims to fill in these gaps by first reporting the well-being (measured in terms of mood, sleep, and quality of life) among students living on and off campus across two academic semesters. We explored factors predicting students' dropout in university residences. Although students living on campus differ in their chronotypes, activities in campus residence (if any) are mostly scheduled in the nighttime. We therefore tested if individual differences in chronotype interact with campus residence in affecting well-being. Our final sample consisted of 215 campus residents and 924 off-campus-living students from 10 different universities or colleges in Hong Kong or Macau. Their mean age was 20.2 years (SD=2.3); 6.5% of the participants are female. Participants completed self-reported questionnaires online on their sleep duration, sleep quality, chronotype, mood, and physical and psychological quality of life. Across two academic semesters, we assessed if students living on and off campus differed in our well-being measures after we partialed out the effects of demographic information (including age, sex, family income, and parents' education) and the well-being measures at baseline (T1). The results showed that, campus residents exhibited longer sleep duration, greater sleep efficiency, better sleep quality, and less feeling of stress than off-campus-living students. From one semester to the next, around 10% of campus residents did not continue to live on campus. Logistic regression showed that a morning

  6. Experiences of African immigrant women living with HIV in the U.K.: implications for health professionals.

    PubMed

    Ndirangu, Eunice W; Evans, Catrin

    2009-04-01

    In the U.K. immigrant women from Africa constitute an increasingly large proportion of newly diagnosed cases of HIV. A significant minority of these are refugees and asylum seekers. Very little is known about their experiences of living with HIV/AIDS, their psychosocial needs or their views of health care provision. This paper reports the results of a qualitative study that explored these issues by interviewing eight African women living with HIV in the British city of Nottingham. Women's ability to live positively with HIV was found to be strongly shaped by their migration history, their legal status, their experience of AIDS-related stigma and their Christian faith. Significantly, health services were represented as a safe social space, and were highly valued as a source of advice and support. The findings indicate that non-judgemental, personalised health care plays a key role in encouraging migrant African women to access psychosocial support and appropriate HIV services.

  7. Phytoplankton Enumeration and Evaluation Experiments

    DTIC Science & Technology

    2009-05-01

    dead cell concentrations involved the serial dilution of live and dead Tetraselmis stocks (strain PLY 429) purchased by NRLKW from Reed Mariculture ...demonstrated that using serial dilutions and the concentration values provided by Reed Mariculture allowed preparation of samples with total live or dead... Mariculture were adequate for determining the dilutions required to produce the test samples of approximately known values for use by the workshop

  8. Tidal variation of phytoplankton in the coastal waters of South Andaman, India.

    PubMed

    Chakraborty, Arindam; Padmavati, Gadi; Ghosh, Amit K

    2015-01-01

    Tidal variations of phytoplankton were studied at two stations i.e., Station 1 (Science Centre) and Station 2 (Junglighat Bay) during the period of December 2010 to February 2011 in the coastal waters of South Andaman Islands, India. Phytoplankton biomass (Chlorophyll-a) was observed low (avg. 0.02- 0.1 mg m(-3)) at the stations during the sampling period. Low values of dissolved oxygen and biochemical oxygen demand were recorded during low tide. In all 114 species belonging to 42 genera of diatoms, 16 genera of dinoflagellates and 4 genera of cyanobacteria were identified. Phytoplankton population density ranged from 827cells I(-1) to 11,790 cells l(-1) and was high during high tide in comparison to low tide. Diatoms were dominant (70.86-88.0%) and contributed more towards phytoplankton biomass followed by dinoflagellates (10.8-19.53%) and cyanobacteria (0.73-9.4%). Dinoflagellates were visualised more in the samples when diatom population had declined. Diversity indices such as species diversity (H') ranged from 0.68-3.1; species richness (d) varied from 2.18-6.54 and Pielou's evenness (J') ranged from 0.24-0.94. H' was more during high tide than at low tide at Station 2. On the other hand, low diversity and equitability in phytoplankton population were observed at Station 1 during the month of January, 2011. It may be due to dominance of mono specific cells of Rhizosolenia sp. The study indicates low production of phytoplankton in coastal waters. Variation of tides may leave implications on sampling, because it has an influence on species diversity and proportion of specific micro algal groups at different times.

  9. Influence of vitamin B auxotrophy on nitrogen metabolism in eukaryotic phytoplankton

    PubMed Central

    Bertrand, Erin M.; Allen, Andrew E.

    2012-01-01

    While nitrogen availability is known to limit primary production in large parts of the ocean, vitamin starvation amongst eukaryotic phytoplankton is becoming increasingly recognized as an oceanographically relevant phenomenon. Cobalamin (B12) and thiamine (B1) auxotrophy are widespread throughout eukaryotic phytoplankton, with over 50% of cultured isolates requiring B12 and 20% requiring B1. The frequency of vitamin auxotrophy in harmful algal bloom species is even higher. Instances of colimitation between nitrogen and B vitamins have been observed in marine environments, and interactions between these nutrients have been shown to impact phytoplankton species composition. This review surveys available data, including relevant gene expression patterns, to evaluate the potential for interactive effects of nitrogen and vitamin B12 and B1 starvation in eukaryotic phytoplankton. B12 plays essential roles in amino acid and one-carbon metabolism, while B1 is important for primary carbohydrate and amino acid metabolism and likely useful as an anti-oxidant. Here we will focus on three potential metabolic interconnections between vitamin, nitrogen, and sulfur metabolism that may have ramifications for the role of vitamin and nitrogen scarcities in driving ocean productivity and species composition. These include: (1) B12, B1, and N starvation impacts on osmolyte and antioxidant production, (2) B12 and B1 starvation impacts on polyamine biosynthesis, and (3) influence of B12 and B1 starvation on the diatom urea cycle and amino acid recycling through impacts on the citric acid cycle. We evaluate evidence for these interconnections and identify oceanographic contexts in which each may impact rates of primary production and phytoplankton community composition. Major implications include that B12 and B1 deprivation may impair the ability of phytoplankton to recover from nitrogen starvation and that changes in vitamin and nitrogen availability may synergistically impact harmful

  10. Generalized receptor law governs phototaxis in the phytoplankton Euglena gracilis

    PubMed Central

    Giometto, Andrea; Altermatt, Florian; Maritan, Amos; Stocker, Roman; Rinaldo, Andrea

    2015-01-01

    Phototaxis, the process through which motile organisms direct their swimming toward or away from light, is implicated in key ecological phenomena (including algal blooms and diel vertical migration) that shape the distribution, diversity, and productivity of phytoplankton and thus energy transfer to higher trophic levels in aquatic ecosystems. Phototaxis also finds important applications in biofuel reactors and microbiopropellers and is argued to serve as a benchmark for the study of biological invasions in heterogeneous environments owing to the ease of generating stochastic light fields. Despite its ecological and technological relevance, an experimentally tested, general theoretical model of phototaxis seems unavailable to date. Here, we present accurate measurements of the behavior of the alga Euglena gracilis when exposed to controlled light fields. Analysis of E. gracilis’ phototactic accumulation dynamics over a broad range of light intensities proves that the classic Keller–Segel mathematical framework for taxis provides an accurate description of both positive and negative phototaxis only when phototactic sensitivity is modeled by a generalized “receptor law,” a specific nonlinear response function to light intensity that drives algae toward beneficial light conditions and away from harmful ones. The proposed phototactic model captures the temporal dynamics of both cells’ accumulation toward light sources and their dispersion upon light cessation. The model could thus be of use in integrating models of vertical phytoplankton migrations in marine and freshwater ecosystems, and in the design of bioreactors. PMID:25964338

  11. Generalized receptor law governs phototaxis in the phytoplankton Euglena gracilis.

    PubMed

    Giometto, Andrea; Altermatt, Florian; Maritan, Amos; Stocker, Roman; Rinaldo, Andrea

    2015-06-02

    Phototaxis, the process through which motile organisms direct their swimming toward or away from light, is implicated in key ecological phenomena (including algal blooms and diel vertical migration) that shape the distribution, diversity, and productivity of phytoplankton and thus energy transfer to higher trophic levels in aquatic ecosystems. Phototaxis also finds important applications in biofuel reactors and microbiopropellers and is argued to serve as a benchmark for the study of biological invasions in heterogeneous environments owing to the ease of generating stochastic light fields. Despite its ecological and technological relevance, an experimentally tested, general theoretical model of phototaxis seems unavailable to date. Here, we present accurate measurements of the behavior of the alga Euglena gracilis when exposed to controlled light fields. Analysis of E. gracilis' phototactic accumulation dynamics over a broad range of light intensities proves that the classic Keller-Segel mathematical framework for taxis provides an accurate description of both positive and negative phototaxis only when phototactic sensitivity is modeled by a generalized "receptor law," a specific nonlinear response function to light intensity that drives algae toward beneficial light conditions and away from harmful ones. The proposed phototactic model captures the temporal dynamics of both cells' accumulation toward light sources and their dispersion upon light cessation. The model could thus be of use in integrating models of vertical phytoplankton migrations in marine and freshwater ecosystems, and in the design of bioreactors.

  12. Light-mediated release of dissolved organic carbon by phytoplankton

    NASA Astrophysics Data System (ADS)

    Cherrier, Jennifer; Valentine, SarahKeith; Hamill, Barbara; Jeffrey, Wade H.; Marra, John F.

    2015-07-01

    Laboratory and field studies were carried out to examine the effects of irradiance variability on dissolved organic carbon (DOC) extracellular release by phytoplankton (ER) and the response of natural bacteria assemblages. In axenic laboratory cultures, ER was 3× greater in cultures shifted to 330 μmol photons m-2 s-1 compared to cultures kept at their cultured irradiance, 110 μmol photons m-2 s-1. Natural bacterial assemblages incubated in the dark for 24 h in algal-free culture filtrate generated from both light treatments consumed the DOC from the high-light treatment at a faster rate than that for the low-light treatment. Field measurements in the coastal waters of the northeastern Gulf of Mexico (GOM) and the Eastern North Pacific (ENP) mirrored the laboratory findings, with short-term increases in DOC concentrations occurring concurrently with short-term increases in irradiance, followed by rapid consumption by bacteria. Where no diurnal irradiance increase was observed (overcast skies), no increase in DOC concentration was observed. An experiment using 14C as a tracer for plankton interactions (GOM) was consistent with data on bulk DOC concentrations. For all the field measurements, the rate of irradiance change was correlated with the quantity of DOC released. Collectively these results indicated that release of DOC by phytoplankton populations as a function of incident irradiance can be significant and may have important implications for estimates of ocean carbon flux.

  13. Phytoplankton niche generation by interspecific stoichiometric variation

    NASA Astrophysics Data System (ADS)

    GöThlich, L.; Oschlies, A.

    2012-06-01

    For marine biogeochemical models used in simulations of climate change scenarios, the ability to account for adaptability of marine ecosystems to environmental change becomes a concern. The potential for adaptation is expected to be larger for a diverse ecosystem compared to a monoculture of a single type of (model) algae, such as typically included in biogeochemical models. Recent attempts to simulate phytoplankton diversity in global marine ecosystem models display remarkable qualitative agreement with observed patterns of species distributions. However, modeled species diversity tends to be systematically lower than observed and, in many regions, is smaller than the number of potentially limiting nutrients. According to resource competition theory, the maximum number of coexisting species at equilibrium equals the number of limiting resources. By simulating phytoplankton communities in a chemostat model and in a global circulation model, we show here that a systematic underestimate of phytoplankton diversity may result from the standard modeling assumption of identical stoichiometry for the different phytoplankton types. Implementing stoichiometric variation among the different marine algae types in the models allows species to generate different resource supply niches via their own ecological impact. This is shown to increase the level of phytoplankton coexistence both in a chemostat model and in a global self-assembling ecosystem model.

  14. Phytoplankton Bloom in North Sea off Scotland

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The northern and western highlands of Scotland were still winter-brown and even dusted with snow in places, but the waters of the North Sea were blooming with phytoplankton on May 8, 2008, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite passed over the region and captured this image. The tiny, plant-like organisms swirled in the waters off the country's east coast, coloring the shallow coastal waters shades of bright blue and green. Phytoplankton are tiny organisms--many are just a single cell--that use chlorophyll and other pigments to capture light for photosynthesis. Because these pigments absorb sunlight, they change the color of the light reflected from the sea surface back to the satellite. Scientists have used observations of 'ocean color' from satellites for more than 20 years to track worldwide patterns in phytoplankton blooms. Phytoplankton are important to the Earth system for a host of reasons, including their status as the base of the ocean food web. In the North Sea, they are the base of the food web that supports Scotland's commercial fisheries, including monkfish and herring. As photosynthesizers, they also play a crucial role in the carbon cycle, removing carbon dioxide from the atmosphere. Some oceanographers are concerned that rising ocean temperatures will slow phytoplankton growth rates, harming marine ecosystems and causing carbon dioxide to accumulate more rapidly in the atmosphere.

  15. Global phytoplankton decline over the past century.

    PubMed

    Boyce, Daniel G; Lewis, Marlon R; Worm, Boris

    2010-07-29

    In the oceans, ubiquitous microscopic phototrophs (phytoplankton) account for approximately half the production of organic matter on Earth. Analyses of satellite-derived phytoplankton concentration (available since 1979) have suggested decadal-scale fluctuations linked to climate forcing, but the length of this record is insufficient to resolve longer-term trends. Here we combine available ocean transparency measurements and in situ chlorophyll observations to estimate the time dependence of phytoplankton biomass at local, regional and global scales since 1899. We observe declines in eight out of ten ocean regions, and estimate a global rate of decline of approximately 1% of the global median per year. Our analyses further reveal interannual to decadal phytoplankton fluctuations superimposed on long-term trends. These fluctuations are strongly correlated with basin-scale climate indices, whereas long-term declining trends are related to increasing sea surface temperatures. We conclude that global phytoplankton concentration has declined over the past century; this decline will need to be considered in future studies of marine ecosystems, geochemical cycling, ocean circulation and fisheries.

  16. Systematic Evaluation of Bioorthogonal Reactions in Live Cells with Clickable HaloTag Ligands: Implications for Intracellular Imaging

    PubMed Central

    2015-01-01

    Bioorthogonal reactions, including the strain-promoted azide–alkyne cycloaddition (SPAAC) and inverse electron demand Diels–Alder (iEDDA) reactions, have become increasingly popular for live-cell imaging applications. However, the stability and reactivity of reagents has never been systematically explored in the context of a living cell. Here we report a universal, organelle-targetable system based on HaloTag protein technology for directly comparing bioorthogonal reagent reactivity, specificity, and stability using clickable HaloTag ligands in various subcellular compartments. This system enabled a detailed comparison of the bioorthogonal reactions in live cells and informed the selection of optimal reagents and conditions for live-cell imaging studies. We found that the reaction of sTCO with monosubstituted tetrazines is the fastest reaction in cells; however, both reagents have stability issues. To address this, we introduced a new variant of sTCO, Ag-sTCO, which has much improved stability and can be used directly in cells for rapid bioorthogonal reactions with tetrazines. Utilization of Ag complexes of conformationally strained trans-cyclooctenes should greatly expand their usefulness especially when paired with less reactive, more stable tetrazines. PMID:26270632

  17. Systematic Evaluation of Bioorthogonal Reactions in Live Cells with Clickable HaloTag Ligands: Implications for Intracellular Imaging.

    PubMed

    Murrey, Heather E; Judkins, Joshua C; Am Ende, Christopher W; Ballard, T Eric; Fang, Yinzhi; Riccardi, Keith; Di, Li; Guilmette, Edward R; Schwartz, Joel W; Fox, Joseph M; Johnson, Douglas S

    2015-09-09

    Bioorthogonal reactions, including the strain-promoted azide-alkyne cycloaddition (SPAAC) and inverse electron demand Diels-Alder (iEDDA) reactions, have become increasingly popular for live-cell imaging applications. However, the stability and reactivity of reagents has never been systematically explored in the context of a living cell. Here we report a universal, organelle-targetable system based on HaloTag protein technology for directly comparing bioorthogonal reagent reactivity, specificity, and stability using clickable HaloTag ligands in various subcellular compartments. This system enabled a detailed comparison of the bioorthogonal reactions in live cells and informed the selection of optimal reagents and conditions for live-cell imaging studies. We found that the reaction of sTCO with monosubstituted tetrazines is the fastest reaction in cells; however, both reagents have stability issues. To address this, we introduced a new variant of sTCO, Ag-sTCO, which has much improved stability and can be used directly in cells for rapid bioorthogonal reactions with tetrazines. Utilization of Ag complexes of conformationally strained trans-cyclooctenes should greatly expand their usefulness especially when paired with less reactive, more stable tetrazines.

  18. Phytoplankton Communities in Louisiana coastal waters and the continental shelf

    EPA Science Inventory

    Louisiana coastal waters and the adjacent continental shelf receive large freshwater and nutrient inputs from the Mississippi and Atchafalaya Rivers, creating favorable conditions for increased phytoplankton productivity. To examine inshore-offshore patterns in phytoplankton comm...

  19. β -Decay Half-Lives of 110 Neutron-Rich Nuclei across the N =82 Shell Gap: Implications for the Mechanism and Universality of the Astrophysical r Process

    NASA Astrophysics Data System (ADS)

    Lorusso, G.; Nishimura, S.; Xu, Z. Y.; Jungclaus, A.; Shimizu, Y.; Simpson, G. S.; Söderström, P.-A.; Watanabe, H.; Browne, F.; Doornenbal, P.; Gey, G.; Jung, H. S.; Meyer, B.; Sumikama, T.; Taprogge, J.; Vajta, Zs.; Wu, J.; Baba, H.; Benzoni, G.; Chae, K. Y.; Crespi, F. C. L.; Fukuda, N.; Gernhäuser, R.; Inabe, N.; Isobe, T.; Kajino, T.; Kameda, D.; Kim, G. D.; Kim, Y.-K.; Kojouharov, I.; Kondev, F. G.; Kubo, T.; Kurz, N.; Kwon, Y. K.; Lane, G. J.; Li, Z.; Montaner-Pizá, A.; Moschner, K.; Naqvi, F.; Niikura, M.; Nishibata, H.; Odahara, A.; Orlandi, R.; Patel, Z.; Podolyák, Zs.; Sakurai, H.; Schaffner, H.; Schury, P.; Shibagaki, S.; Steiger, K.; Suzuki, H.; Takeda, H.; Wendt, A.; Yagi, A.; Yoshinaga, K.

    2015-05-01

    The β -decay half-lives of 110 neutron-rich isotopes of the elements from Rb 37 to Sn 50 were measured at the Radioactive Isotope Beam Factory. The 40 new half-lives follow robust systematics and highlight the persistence of shell effects. The new data have direct implications for r -process calculations and reinforce the notion that the second (A ≈130 ) and the rare-earth-element (A ≈160 ) abundance peaks may result from the freeze-out of an (n ,γ )⇄(γ ,n ) equilibrium. In such an equilibrium, the new half-lives are important factors determining the abundance of rare-earth elements, and allow for a more reliable discussion of the r process universality. It is anticipated that universality may not extend to the elements Sn, Sb, I, and Cs, making the detection of these elements in metal-poor stars of the utmost importance to determine the exact conditions of individual r -process events.

  20. Imaging flow cytometry for phytoplankton analysis.

    PubMed

    Dashkova, Veronika; Malashenkov, Dmitry; Poulton, Nicole; Vorobjev, Ivan; Barteneva, Natasha S

    2017-01-01

    This review highlights the concepts and instrumentation of imaging flow cytometry technology and in particular its use for phytoplankton analysis. Imaging flow cytometry, a hybrid technology combining speed and statistical capabilities of flow cytometry with imaging features of microscopy, is rapidly advancing as a cell imaging platform that overcomes many of the limitations of current techniques and contributed significantly to the advancement of phytoplankton analysis in recent years. This review presents the various instrumentation relevant to the field and currently used for assessment of complex phytoplankton communities' composition and abundance, size structure determination, biovolume estimation, detection of harmful algal bloom species, evaluation of viability and metabolic activity and other applications. Also we present our data on viability and metabolic assessment of Aphanizomenon sp. cyanobacteria using Imagestream X Mark II imaging cytometer. Herein, we highlight the immense potential of imaging flow cytometry for microalgal research, but also discuss limitations and future developments.

  1. The species concept in phytoplankton ecology

    SciTech Connect

    Wood, A.M.; Leatham, T. )

    1992-12-01

    The authors discuss the broad aspects and difficulties of phytoplankton species identification. Phytoplankton ecology relies heavily on the use of taxon-insensitive indicies like chlorophyll a concentration, [sup 14]C incubations, and light-dark bottles for measurement of abundance and productivity. Numerous excellent studies have been done in comparative algal physiology, but none of them actually demonstrate species level differences in the traits of interest. Many of the studies underestimate genetic diversity within taxa because they rely on genotypes that can be cultured and maintained in the laboratory. Significant interclonal variablity is found every time that strains from the same putative taxon are compared, and the magnitude of these differences is not trivial. The authors follow this discussion by detailing several specific ways of approaching speciation in phytoplankton including identifying the ecological significance of morphological traits and ecologically important traits consistently correlated with mprphological features used to distinguish among speiceis or sub-species. 82 refs., 2 figs., 1 tab.

  2. Iron–Nutrient Interactions within Phytoplankton

    PubMed Central

    Schoffman, Hanan; Lis, Hagar; Shaked, Yeala; Keren, Nir

    2016-01-01

    Iron limits photosynthetic activity in up to one third of the world’s oceans and in many fresh water environments. When studying the effects of Fe limitation on phytoplankton or their adaptation to low Fe environments, we must take into account the numerous cellular processes within which this micronutrient plays a central role. Due to its flexible redox chemistry, Fe is indispensable in enzymatic catalysis and electron transfer reactions and is therefore closely linked to the acquisition, assimilation and utilization of essential resources. Iron limitation will therefore influence a wide range of metabolic pathways within phytoplankton, most prominently photosynthesis. In this review, we map out four well-studied interactions between Fe and essential resources: nitrogen, manganese, copper and light. Data was compiled from both field and laboratory studies to shed light on larger scale questions such as the connection between metabolic pathways and ambient iron levels and the biogeographical distribution of phytoplankton species. PMID:27588022

  3. Biomarkers of safety and immune protection for genetically modified live attenuated leishmania vaccines against visceral leishmaniasis - discovery and implications.

    PubMed

    Gannavaram, Sreenivas; Dey, Ranadhir; Avishek, Kumar; Selvapandiyan, Angamuthu; Salotra, Poonam; Nakhasi, Hira L

    2014-01-01

    Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood-borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, subunit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in Leishmania donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters, and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines, e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen(-/-) in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated in normal

  4. Modeled Chl:C ratio and derived estimates of phytoplankton carbon biomass and its contribution to total particulate organic carbon in the global surface ocean

    NASA Astrophysics Data System (ADS)

    Arteaga, Lionel; Pahlow, Markus; Oschlies, Andreas

    2016-12-01

    Chlorophyll (Chl) is a distinctive component of autotrophic organisms, often used as an indicator of phytoplankton biomass in the ocean. However, assessment of phytoplankton biomass from Chl relies on the accurate estimation of the Chl:carbon(C) ratio. Here we present global patterns of Chl:C ratios in the surface ocean obtained from a phytoplankton growth model that accounts for the optimal acclimation of phytoplankton to ambient nutrient, light, and temperature conditions. The model agrees largely with observed/expected global patterns of Chl:C. Combining our Chl:C estimates with satellite Chl and particulate organic carbon (POC), we infer phytoplankton C concentration in the surface ocean and its contribution to the total POC pool. Our results suggest that the portion of POC corresponding to living phytoplankton is higher in subtropical latitudes and less productive regions (˜30-70%) and decreases to ˜10-30% toward high latitudes and productive regions. An important caveat of our model is the lack of iron limiting effects on phytoplankton physiology. Comparison of our predicted phytoplankton biomass with an independent estimate of total POC reveals a positive correlation between nitrate concentrations and nonphotosynthetic POC in the surface ocean. This correlation disappears when a constant Chl:C is applied. Our analysis is not constrained by assumptions of constant Chl:C or phytoplankton:POC ratio, providing a novel independent analysis of phytoplankton biomass in the surface ocean. These results highlight the importance of accounting for the variability in Chl:C and its application in distinguishing the autotrophic and heterotrophic components in the assemblage of the marine plankton ecosystem.

  5. The annual cycles of phytoplankton biomass

    USGS Publications Warehouse

    Winder, M.; Cloern, J.E.

    2010-01-01

    Terrestrial plants are powerful climate sentinels because their annual cycles of growth, reproduction and senescence are finely tuned to the annual climate cycle having a period of one year. Consistency in the seasonal phasing of terrestrial plant activity provides a relatively low-noise background from which phenological shifts can be detected and attributed to climate change. Here, we ask whether phytoplankton biomass also fluctuates over a consistent annual cycle in lake, estuarine-coastal and ocean ecosystems and whether there is a characteristic phenology of phytoplankton as a consistent phase and amplitude of variability. We compiled 125 time series of phytoplankton biomass (chloro-phyll a concentration) from temperate and subtropical zones and used wavelet analysis to extract their dominant periods of variability and the recurrence strength at those periods. Fewer than half (48%) of the series had a dominant 12-month period of variability, commonly expressed as the canonical spring-bloom pattern. About 20 per cent had a dominant six-month period of variability, commonly expressed as the spring and autumn or winter and summer blooms of temperate lakes and oceans. These annual patterns varied in recurrence strength across sites, and did not persist over the full series duration at some sites. About a third of the series had no component of variability at either the six-or 12-month period, reflecting a series of irregular pulses of biomass. These findings show that there is high variability of annual phytoplankton cycles across ecosystems, and that climate-driven annual cycles can be obscured by other drivers of population variability, including human disturbance, aperiodic weather events and strong trophic coupling between phytoplankton and their consumers. Regulation of phytoplankton biomass by multiple processes operating at multiple time scales adds complexity to the challenge of detecting climate-driven trends in aquatic ecosystems where the noise to

  6. [Tools for determining health of phytoplankton cells

    SciTech Connect

    Not Available

    1992-01-01

    The primary purpose of the proposed research is to develop molecular tools for determining the health of marine phytoplankton on an individual cell basis. Since the definition of healthy in phytoplankton cells is elusive, we propose to develop markers for several different metabolic processes indicative of physiological state: photosynthetic activity, esterase activity, membrane permeability, and mitochondrial activity. One underlying motivation is to develop methods which will allow us to evaluate the hypothesis that, while healthy cells release very little dissolved organic carbon (DOC), many phytoplankton communities are comprised of unhealthy or physiologically stressed cells which release a large proportion of total photosynthate directly into the pool of labile DOC. This is proposed to be especially true in continental shelf and coastal environments where zones of productivity are patchy and phytoplankton populations adapted to one regime can be easily transported into waters which differ in salinity, nutrient supply, and/or turbidity. The significance of the work, however, extends beyond this immediate goal since there are presently relatively few methods which allow us to estimate the physiological state of phytoplankton cells.When we evaluate population sizes of phytoplankton in the water column or examine fecal pellets, particulate aggregates, or other material, we generally work in ignorance of the activity of the cells except as the average cell-specific activity is estimated from bulk measurements. This approach effectively hides any differences in the relative contribution of different taxa or individuals to overall productivity eventhough most flux processes are sensitive to physiological and taxonomically determined differences among members of the community.

  7. [Tools for determining health of phytoplankton cells

    SciTech Connect

    Not Available

    1992-12-31

    The primary purpose of the proposed research is to develop molecular tools for determining the health of marine phytoplankton on an individual cell basis. Since the definition of healthy in phytoplankton cells is elusive, we propose to develop markers for several different metabolic processes indicative of physiological state: photosynthetic activity, esterase activity, membrane permeability, and mitochondrial activity. One underlying motivation is to develop methods which will allow us to evaluate the hypothesis that, while healthy cells release very little dissolved organic carbon (DOC), many phytoplankton communities are comprised of unhealthy or physiologically stressed cells which release a large proportion of total photosynthate directly into the pool of labile DOC. This is proposed to be especially true in continental shelf and coastal environments where zones of productivity are patchy and phytoplankton populations adapted to one regime can be easily transported into waters which differ in salinity, nutrient supply, and/or turbidity. The significance of the work, however, extends beyond this immediate goal since there are presently relatively few methods which allow us to estimate the physiological state of phytoplankton cells.When we evaluate population sizes of phytoplankton in the water column or examine fecal pellets, particulate aggregates, or other material, we generally work in ignorance of the activity of the cells except as the average cell-specific activity is estimated from bulk measurements. This approach effectively hides any differences in the relative contribution of different taxa or individuals to overall productivity eventhough most flux processes are sensitive to physiological and taxonomically determined differences among members of the community.

  8. Bivalve grazing can shape phytoplankton communities

    USGS Publications Warehouse

    Lucas, Lisa; Cloern, James E.; Thompson, Janet K.; Stacey, Mark T.; Koseff, Jeffrey K.

    2016-01-01

    The ability of bivalve filter feeders to limit phytoplankton biomass in shallow waters is well-documented, but the role of bivalves in shaping phytoplankton communities is not. The coupled effect of bivalve grazing at the sediment-water interface and sinking of phytoplankton cells to that bottom filtration zone could influence the relative biomass of sinking (diatoms) and non-sinking phytoplankton. Simulations with a pseudo-2D numerical model showed that benthic filter feeding can interact with sinking to alter diatom:non-diatom ratios. Cases with the smallest proportion of diatom biomass were those with the fastest sinking speeds and strongest bivalve grazing rates. Hydrodynamics modulated the coupled sinking-grazing influence on phytoplankton communities. For example, in simulations with persistent stratification, the non-sinking forms accumulated in the surface layer away from bottom grazers while the sinking forms dropped out of the surface layer toward bottom grazers. Tidal-scale stratification also influenced vertical gradients of the two groups in opposite ways. The model was applied to Suisun Bay, a low-salinity habitat of the San Francisco Bay system that was transformed by the introduction of the exotic clam Potamocorbula amurensis. Simulation results for this Bay were similar to (but more muted than) those for generic habitats, indicating that P. amurensis grazing could have caused a disproportionate loss of diatoms after its introduction. Our model simulations suggest bivalve grazing affects both phytoplankton biomass and community composition in shallow waters. We view these results as hypotheses to be tested with experiments and more complex modeling approaches.

  9. Production of volatile organohalogens by phytoplankton cultures

    SciTech Connect

    Tokarczyk, R.; Moore, R.M. )

    1994-02-15

    The authors report on laboratory experiments which have demonstrated that types of unialgal cultures of marine phytoplankton can produce a range of halocarbons, including CHBr[sub 3], CHBr[sub 2]Cl, CH[sub 2]Br[sub 2]. In the laboratory environment the production rate is shown to be dependent upon the species of phytoplankton, and the development stage. Such volatile halocarbons, coming from natural sources in the seas, are thought to be important sources of reactive halogens in the troposphere, and perhaps even in the stratosphere, if the compounds are stable enough.

  10. Copepod grazing and their impact on phytoplankton standing stock and production in a tropical coastal water during the different seasons.

    PubMed

    Jagadeesan, L; Jyothibabu, R; Arunpandi, N; Parthasarathi, S

    2017-03-01

    of the seasons, dominant calanoid copepods showed a negative selection of pico-phytoplankton fraction. The cyclopoid O. similis and Poecilostomatoid Corycaeus danae showed a positive selection of nano- and pico-phytoplankton fractions rather than micro-fraction. The grazing pressure of copepod community ingestion on micro-fraction was less (0.56% of the phytoplankton biomass and 1.06% of the phytoplankton production) during the PKSWM. This study provides, for the first time, clear findings on the seasonal variation in the top-down control of phytoplankton by copepods in a tropical coastal water ecosystem and discusses its implications on phytoplankton blooming, plankton food web, and biogeochemistry.

  11. A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species.

    PubMed

    Peng, Rui; Zhao, Xiao-Qiang

    2016-02-01

    In this article, we are concerned with a nonlocal reaction-diffusion-advection model which describes the evolution of a single phytoplankton species in a eutrophic vertical water column where the species relies solely on light for its metabolism. The new feature of our modeling equation lies in that the incident light intensity and the death rate are assumed to be time periodic with a common period. We first establish a threshold type result on the global dynamics of this model in terms of the basic reproduction number R0. Then we derive various characterizations of R0 with respect to the vertical turbulent diffusion rate, the sinking or buoyant rate and the water column depth, respectively, which in turn give rather precise conditions to determine whether the phytoplankton persist or become extinct. Our theoretical results not only extend the existing ones for the time-independent case, but also reveal new interesting effects of the modeling parameters and the time-periodic heterogeneous environment on persistence and extinction of the phytoplankton species, and thereby suggest important implications for phytoplankton growth control.

  12. Mind the gap: The impact of missing data on the calculation of phytoplankton phenology metrics

    NASA Astrophysics Data System (ADS)

    Cole, Harriet; Henson, Stephanie; Martin, Adrian; Yool, Andrew

    2012-08-01

    Annual phytoplankton blooms are key events in marine ecosystems and interannual variability in bloom timing has important implications for carbon export and the marine food web. The degree of match or mismatch between the timing of phytoplankton and zooplankton annual cycles may impact larval survival with knock-on effects at higher trophic levels. Interannual variability in phytoplankton bloom timing may also be used to monitor changes in the pelagic ecosystem that are either naturally or anthropogenically forced. Seasonality metrics that use satellite ocean color data have been developed to quantify the timing of phenological events which allow for objective comparisons between different regions and over long periods of time. However, satellite data sets are subject to frequent gaps due to clouds and atmospheric aerosols, or persistent data gaps in winter due to low sun angle. Here we quantify the impact of these gaps on determining the start and peak timing of phytoplankton blooms. We use the NASA Ocean Biogeochemical Model that assimilates SeaWiFS data as a gap-free time series and derive an empirical relationship between the percentage of missing data and error in the phenology metric. Applied globally, we find that the majority of subpolar regions have typical errors of 30 days for the bloom initiation date and 15 days for the peak date. The errors introduced by intermittent data must be taken into account in phenological studies.

  13. Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Le Quéré, C.; Buitenhuis, E. T.; Moriarty, R.; Alvain, S.; Aumont, O.; Bopp, L.; Chollet, S.; Enright, C.; Franklin, D. J.; Geider, R. J.; Harrison, S. P.; Hirst, A.; Larsen, S.; Legendre, L.; Platt, T.; Prentice, I. C.; Rivkin, R. B.; Sathyendranath, S.; Stephens, N.; Vogt, M.; Sailley, S.; Vallina, S. M.

    2015-07-01

    Global ocean biogeochemistry models currently employed in climate change projections use highly simplified representations of pelagic food webs. These food webs do not necessarily include critical pathways by which ecosystems interact with ocean biogeochemistry and climate. Here we present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types (PFTs); six types of phytoplankton, three types of zooplankton, and heterotrophic bacteria. We improved the representation of zooplankton dynamics in our model through (a) the explicit inclusion of large, slow-growing zooplankton, and (b) the introduction of trophic cascades among the three zooplankton types. We use the model to quantitatively assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean High Nutrient Low Chlorophyll (HNLC) region during summer. When model simulations do not represent crustacean macrozooplankton grazing, they systematically overestimate Southern Ocean chlorophyll biomass during the summer, even when there was no iron deposition from dust. When model simulations included the developments of the zooplankton component, the simulation of phytoplankton biomass improved and the high chlorophyll summer bias in the Southern Ocean HNLC region largely disappeared. Our model results suggest that the observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community rather than iron limitation. This result has implications for the representation of global biogeochemical cycles in models as zooplankton faecal pellets sink rapidly and partly control the carbon export to the intermediate and deep ocean.

  14. Using phytoplankton`s fluorescence for remote detection of radioactive pollutions in the ocean

    SciTech Connect

    Tsipenyuk, D.Yu.

    1996-08-01

    One of important ecological problems of our world is unfortunately radioactive pollutions in the ocean from sources of different types. For successful solving this problem it is important to locate precisely pollution areas using remote sensing methods. In the experiments performed we investigated the changes in fluorescence spectra of phytoplankton under an action of radiation. For this purpose we compared fluorescence spectra of samples of phytoplankton`s that were grown and maintained under the same conditions (light temperature, etc.) and the only difference between these samples was different radioactive doze obtained. Gamma irradiations of the samples was performed by bremsstrahlung of 30 Mev electrons or gamma-rays from (Ra-Be)- neutron source. To obtain reliable quantitative results the samples were simultaneously irradiated at different distances from the bremsstrahlung target or radioactive source. In such a way we could avoid possible errors due to different state of phytoplankton and temporal changes of gamma-radiation. The fluorescence spectra of phytoplankton were exited with a nitrogen laser emitting at 337 nm. An optical system focused fluorescence onto the entry slit of the polychromator of optical multichannel spectrum analyzer. A diffraction grating with a relatively weak dispersion (150 lines/mm) was used to record simultaneously spectra in a rather wide range of wavelengths (370-720 nm). We found in our experiments that very characteristic changes were relevant in fluorescence spectra of phytoplankton under radioactive influence in registered range of wavelength. Thus it is possible to use active and passive remote sensing methods of registration of phytoplankton`s fluorescence for express remote location areas of radioactive pollutions in the ocean from satellites or aircrafts.

  15. Temperature-sensitive mutations for live-attenuated Rift Valley fever vaccines: implications from other RNA viruses

    PubMed Central

    Nishiyama, Shoko; Ikegami, Tetsuro

    2015-01-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to the African continent. RVF is characterized by high rate of abortions in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by the Rift Valley fever virus (RVFV: genus Phlebovirus, family Bunyaviridae). Vaccination is the only known effective strategy to prevent the disease, but there are no licensed RVF vaccines available for humans. A live-attenuated vaccine candidate derived from the wild-type pathogenic Egyptian ZH548 strain, MP-12, has been conditionally licensed for veterinary use in the U.S. MP-12 displays a temperature-sensitive (ts) phenotype and does not replicate at 41°C. The ts mutation limits viral replication at a specific body temperature and may lead to an attenuation of the virus. Here we will review well-characterized ts mutations for RNA viruses, and further discuss the potential in designing novel live-attenuated vaccines for RVF. PMID:26322023

  16. Temperature-sensitive mutations for live-attenuated Rift Valley fever vaccines: implications from other RNA viruses.

    PubMed

    Nishiyama, Shoko; Ikegami, Tetsuro

    2015-01-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to the African continent. RVF is characterized by high rate of abortions in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by the Rift Valley fever virus (RVFV: genus Phlebovirus, family Bunyaviridae). Vaccination is the only known effective strategy to prevent the disease, but there are no licensed RVF vaccines available for humans. A live-attenuated vaccine candidate derived from the wild-type pathogenic Egyptian ZH548 strain, MP-12, has been conditionally licensed for veterinary use in the U.S. MP-12 displays a temperature-sensitive (ts) phenotype and does not replicate at 41°C. The ts mutation limits viral replication at a specific body temperature and may lead to an attenuation of the virus. Here we will review well-characterized ts mutations for RNA viruses, and further discuss the potential in designing novel live-attenuated vaccines for RVF.

  17. Remote sensing of phytoplankton using laser-induced fluorescence

    SciTech Connect

    Babichenko, S.; Poryvkina, L.; Arikese, V. ); Kaitala, S. ); Kuosa, H. )

    1993-06-01

    The results of remote laser sensing of brackish-water phytoplankton on board a research vessel are presented. Field data of laser-induced fluorescence of phytoplankton obtained during the several cruises in the mouth of tile Gulf of Finland are compared with the results of standard chlorophyll a analysis of water samples and phytoplankton species determination by microscopy. The approach of fluorescence excitation by tunable laser radiation is applied to study the spatial distribution of a natural phytoplankton community. The remote analysis of the pigment composition of a phytoplankton community using the method of selective pigment excitation is described. The possibility of elaborating methods of quantitative laser remote biomonitoring is discussed.

  18. Phytoplankton and sediments in Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Affected both by terrestrial factors like agriculture, deforestation, and erosion, and by marine factors like salinity levels, ocean temperature and water pollution, coastal environments are the dynamic interface between land and sea. In this MODIS image from January 15, 2002, the Gulf of Mexico is awash in a mixture of phytoplankton and sediment. Tan-colored sediment is flowing out into the Gulf from the Mississippi River, whose floodplain cuts a pale, wide swath to the right of center in the image, and also from numerous smaller rivers along the Louisiana coast (center). Mixing with the sediment are the multi-colored blue and green swirls that reveal the presence of large populations of marine plants called phytoplankton. Phytoplankton populations bloom and then fade, and these cycles affect fish and mammals-including humans-higher up the food chain. Certain phytoplankton are toxic to both fish and humans, and coastal health departments must monitor ecosystems carefully, often restricting fishing or harvesting of shellfish until the blooms have subsided.

  19. Phytoplankton off the West Coast of Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Just off the coast of West Africa, persistent northeasterly trade winds often churn up deep ocean water. When the nutrients in these deep waters reach the ocean's surface, they often give rise to large blooms of phytoplankton. This image of the Mauritanian coast shows swirls of phytoplankton fed by the upwelling of nutrient-rich water. The scene was acquired by the Medium Resolution Imaging Spectrometer (MERIS) aboard the European Space Agency's ENVISAT. MERIS will monitor changes in phytoplankton across Earth's oceans and seas, both for the purpose of managing fisheries and conducting global change research. NASA scientists will use data from this European instrument in the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) program. The mission of SIMBIOS is to construct a consistent long-term dataset of ocean color (phytoplankton abundance) measurements made by multiple satellite instruments, including the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and the Moderate-Resolution Imaging Spectroradiometer (MODIS). For more information about MERIS and ENVISAT, visit the ENVISAT home page. Image copyright European Space Agency

  20. The dynamical landscape of marine phytoplankton diversity

    PubMed Central

    Lévy, Marina; Jahn, Oliver; Dutkiewicz, Stephanie; Follows, Michael J.; d'Ovidio, Francesco

    2015-01-01

    Observations suggest that the landscape of marine phytoplankton assemblage might be strongly heterogeneous at the dynamical mesoscale and submesoscale (10–100 km, days to months), with potential consequences in terms of global diversity and carbon export. But these variations are not well documented as synoptic taxonomic data are difficult to acquire. Here, we examine how phytoplankton assemblage and diversity vary between mesoscale eddies and submesoscale fronts. We use a multi-phytoplankton numerical model embedded in a mesoscale flow representative of the North Atlantic. Our model results suggest that the mesoscale flow dynamically distorts the niches predefined by environmental contrasts at the basin scale and that the phytoplankton diversity landscape varies over temporal and spatial scales that are one order of magnitude smaller than those of the basin-scale environmental conditions. We find that any assemblage and any level of diversity can occur in eddies and fronts. However, on a statistical level, the results suggest a tendency for larger diversity and more fast-growing types at fronts, where nutrient supplies are larger and where populations of adjacent water masses are constantly brought into contact; and lower diversity in the core of eddies, where water masses are kept isolated long enough to enable competitive exclusion. PMID:26400196

  1. The dynamical landscape of marine phytoplankton diversity.

    PubMed

    Lévy, Marina; Jahn, Oliver; Dutkiewicz, Stephanie; Follows, Michael J; d'Ovidio, Francesco

    2015-10-06

    Observations suggest that the landscape of marine phytoplankton assemblage might be strongly heterogeneous at the dynamical mesoscale and submesoscale (10-100 km, days to months), with potential consequences in terms of global diversity and carbon export. But these variations are not well documented as synoptic taxonomic data are difficult to acquire. Here, we examine how phytoplankton assemblage and diversity vary between mesoscale eddies and submesoscale fronts. We use a multi-phytoplankton numerical model embedded in a mesoscale flow representative of the North Atlantic. Our model results suggest that the mesoscale flow dynamically distorts the niches predefined by environmental contrasts at the basin scale and that the phytoplankton diversity landscape varies over temporal and spatial scales that are one order of magnitude smaller than those of the basin-scale environmental conditions. We find that any assemblage and any level of diversity can occur in eddies and fronts. However, on a statistical level, the results suggest a tendency for larger diversity and more fast-growing types at fronts, where nutrient supplies are larger and where populations of adjacent water masses are constantly brought into contact; and lower diversity in the core of eddies, where water masses are kept isolated long enough to enable competitive exclusion.

  2. Programmed Cell Death in Unicellular Phytoplankton.

    PubMed

    Bidle, Kay D

    2016-07-11

    Unicellular, planktonic, prokaryotic and eukaryotic photoautotrophs (phytoplankton) have an ancient evolutionary history on Earth during which time they have played key roles in the regulation of marine food webs, biogeochemical cycles, and Earth's climate. Since they represent the basis of aquatic ecosystems, the manner in which phytoplankton die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining nutrient flow. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of abiotic (nutrient, light, osmotic) and biotic (virus infection, allelopathy) environmental stresses, have an integral grip on cell fate, and have shaped the ecological success and evolutionary trajectory of diverse phytoplankton lineages. A combination of physiological, biochemical, and genetic techniques in model algal systems has demonstrated a conserved molecular and mechanistic framework of stress surveillance, signaling, and death activation pathways, involving collective and coordinated participation of organelles, redox enzymes, metabolites, and caspase-like proteases. This mechanistic understanding has provided insight into the integration of sensing and transduction of stress signals into cellular responses, and the mechanistic interfaces between PCD, cell stress and virus infection pathways. It has also provided insight into the evolution of PCD in unicellular photoautotrophs, the impact of PCD on the fate of natural phytoplankton assemblages and its role in aquatic biogeochemical cycles.

  3. Phytoplankton in the northwestern Kara Sea

    NASA Astrophysics Data System (ADS)

    Sukhanova, I. N.; Flint, M. V.; Druzhkova, E. I.; Sazhin, A. F.; Sergeeva, V. M.

    2015-07-01

    Studies were conducted in the northwestern Kara Sea in late September of 2007 and 2011. The assessment of species, size, structure, abundance, and biomass of phytoplankton and the role of autotrophic and heterotrophic components in phytocenoses was conducted. The abundance of autotrophic micro-, nanoand picoplankton increased by more than an order of magnitude in each of the following smaller-sized groups of algae. Microphytoplankton dominated in the total biomass of autotrophic phytoplankton. The wet biomass of microphytoplankton was 2.5 times higher than the wet biomass of nanophytoplankton and 5 times higher than that of picoplankton. Nanophytoplankton dominated in abundance and biomass in the heterotrophic component of phytoplankton. The ratio of the total abundance of autotrophic and heterotrophic phytotoplankton was 7: 1, the ratio of the wet biomass of the both groups was 2.5: 1, and the proportion of the carbon biomass was 2: 1. Three biotopes were distinguished in the area of the outer shelf, the continental slope, and the deepwater area adjacent to the St. Anna Trough, which differed in composition and quantitative characteristics of phytocenoses. Frontal zones dividing the biotopes are characterized by high phytoplankton biomass and the dominance of diatoms in the community (more than 40% of the total biomass), which indicates the local availability of "new" nutrients for planktonic algae.

  4. Color Difference in Bering Sea Phytoplankton Blooms

    NASA Technical Reports Server (NTRS)

    2002-01-01

    There is considerable color variation in the phytoplankton blooms in the Bering Sea -- from the aquamarine west of Nunivak Island to the almost reddish patch west of St. Matthew Island to the green eddy astride the International dateline at 60 North latitude and 178 East longitude. Credit: Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  5. Phytoplankton adapt to changing ocean environments.

    PubMed

    Irwin, Andrew J; Finkel, Zoe V; Müller-Karger, Frank E; Troccoli Ghinaglia, Luis

    2015-05-05

    Model projections indicate that climate change may dramatically restructure phytoplankton communities, with cascading consequences for marine food webs. It is currently not known whether evolutionary change is likely to be able to keep pace with the rate of climate change. For simplicity, and in the absence of evidence to the contrary, most model projections assume species have fixed environmental preferences and will not adapt to changing environmental conditions on the century scale. Using 15 y of observations from Station CARIACO (Carbon Retention in a Colored Ocean), we show that most of the dominant species from a marine phytoplankton community were able to adapt their realized niches to track average increases in water temperature and irradiance, but the majority of species exhibited a fixed niche for nitrate. We do not know the extent of this adaptive capacity, so we cannot conclude that phytoplankton will be able to adapt to the changes anticipated over the next century, but community ecosystem models can no longer assume that phytoplankton cannot adapt.

  6. Production of isoprene by marine phytoplankton cultures

    SciTech Connect

    Moore, R.M.; Oram, D.E.; Penkett, S.A.

    1994-11-15

    The authors report experiments which demonstrate the production of light volatile hydrocarbons, including isoprene, by different marine phytoplankton cultures. This indicates that the ocean is a potential source of natural releases of isoprene to the atmosphere. Laboratory results do not allow extrapolation to atmospheric release rates.

  7. Earth's Most Important Producers: Meet the Phytoplankton!

    ERIC Educational Resources Information Center

    Marrero, Meghan E.; Stevens, Nicole

    2011-01-01

    The ocean is home to some of Earth's most important producers. Single-celled organisms in the ocean are responsible for more than half of Earth's productivity, as well as most of its oxygen. Phytoplankton are single-celled, plantlike organisms. That is, they have chloroplasts and perform photosynthesis, but are not true plants, which are typically…

  8. Effect of Phytoplankton Richness on Phytoplankton Biomass Is Weak Where the Distribution of Herbivores is Patchy

    PubMed Central

    Weis, Jerome J.

    2016-01-01

    Positive effects of competitor species richness on competitor productivity can be more pronounced at a scale that includes heterogeneity in ‘bottom-up’ environmental factors, such as the supply of limiting nutrients. The effect of species richness is not well understood in landscapes where variation in ‘top-down’ factors, such as the abundance of predators or herbivores, has a strong influence competitor communities. I asked how phytoplankton species richness directly influenced standing phytoplankton biomass in replicate microcosm regions where one patch had a population of herbivores (Daphnia pulicaria) and one patch did not have herbivores. The effect of phytoplankton richness on standing phytoplankton biomass was positive but weak and not statistically significant at this regional scale. Among no-Daphnia patches, there was a significant positive effect of phytoplankton richness that resulted from positive selection effects for two dominant and productive species in polycultures. Among with-Daphnia patches there was not a significant effect of phytoplankton richness. The same two species dominated species-rich polycultures in no- and with-Daphnia patches but both species were relatively vulnerable to consumption by Daphnia. Consistent with previous studies, this experiment shows a measurable positive influence of primary producer richness on biomass when herbivores were absent. It also shows that given the patchy distribution of herbivores at a regional scale, a regional positive effect was not detected. PMID:27196376

  9. Temperature influence on phytoplankton community growth rates

    NASA Astrophysics Data System (ADS)

    Sherman, Elliot; Moore, J. Keith; Primeau, Francois; Tanouye, David

    2016-04-01

    A large database of field estimates of phytoplankton community growth rates in natural populations was compiled and analyzed to determine the apparent temperature effect on phytoplankton community growth rate. We conducted an ordinary least squares regression to optimize the parameters in two commonly used growth-temperature relations (Arrhenius and Q10 models). Both equations fit the observational data equally with the optimized parameter values. The optimum apparent Q10 value was 1.47 ± 0.08 (95% confidence interval, CI). Microzooplankton grazing rates closely matched the temperature trends for phytoplankton growth. This likely reflects a dynamic adjustment of biomass and grazing rates by the microzooplankton to match their available food source, illustrating tight coupling of phytoplankton growth and microzooplankton grazing rates. The field-measured temperature effect and growth rates were compared with estimates from the satellite Carbon-based Productivity Model (CbPM) and three Earth System Models (ESMs), with model output extracted at the same month and sampling locations as the observations. The optimized, apparent Q10 value calculated for the CbPM was 1.51, with overestimation of growth rates. The apparent Q10 value in the Community Earth System Model (V1.0) was 1.65, with modest underestimation of growth rates. The GFDL-ESM2M and GFDL-ESM2G models produced apparent Q10 values of 1.52 and 1.39, respectively. Models with an apparent Q10 that is significantly greater than ~1.5 will overestimate the phytoplankton community growth response to the ongoing climate warming and will have spatial biases in estimated growth rates for the current era.

  10. Student attitudes regarding the educational value and welfare implications in the use of model eyes and live dogs in teaching practical fundus examination: evaluation of responses from 40 students

    PubMed Central

    Williams, D.L.; Wager, C.; Brearley, J.

    2016-01-01

    This study sought to document student opinions on the educational value and welfare implications of use of artificial model eyes and live dogs in the training of veterinary students in examination of the canine fundus. Forty students who had undertaken a practical class on canine fundoscopy involving both use of artificial model eyes and live dogs were asked to complete a short questionnaire using a Likert scale to gauge their opinion on whether the use of live dogs and artificial eyes was very valuable (scoring 2), valuable (1), a neutral response (0), not particularly valuable (-1) or not at all valuable (-2) and to write a free text response on their views of the educational value and welfare implications of using artificial model eyes or live dogs in training for ophthalmic examination of the canine ocular fundus. Likert responses were 1.84±0.37 for using live greyhounds and 0.58±0.79 for using simulator eyes (p<0.0001). Thematic analysis of the written responses showed that while the artificial eyes were considered somewhat valuable in initial training, the live dogs were significantly preferred for their realism and the opportunity to examine the eye while handling a live animal. In conclusion, while model eyes are valuable initial training in use of the ophthalmoscope for funduscopic examination, students consider that examining the eye in the live dog is significantly more valuable and that the welfare of dogs thus used is not in their view unduly compromised. PMID:27822453

  11. Student attitudes regarding the educational value and welfare implications in the use of model eyes and live dogs in teaching practical fundus examination: evaluation of responses from 40 students.

    PubMed

    Williams, D L; Wager, C; Brearley, J

    2016-01-01

    This study sought to document student opinions on the educational value and welfare implications of use of artificial model eyes and live dogs in the training of veterinary students in examination of the canine fundus. Forty students who had undertaken a practical class on canine fundoscopy involving both use of artificial model eyes and live dogs were asked to complete a short questionnaire using a Likert scale to gauge their opinion on whether the use of live dogs and artificial eyes was very valuable (scoring 2), valuable (1), a neutral response (0), not particularly valuable (-1) or not at all valuable (-2) and to write a free text response on their views of the educational value and welfare implications of using artificial model eyes or live dogs in training for ophthalmic examination of the canine ocular fundus. Likert responses were 1.84±0.37 for using live greyhounds and 0.58±0.79 for using simulator eyes (p<0.0001). Thematic analysis of the written responses showed that while the artificial eyes were considered somewhat valuable in initial training, the live dogs were significantly preferred for their realism and the opportunity to examine the eye while handling a live animal. In conclusion, while model eyes are valuable initial training in use of the ophthalmoscope for funduscopic examination, students consider that examining the eye in the live dog is significantly more valuable and that the welfare of dogs thus used is not in their view unduly compromised.

  12. (223)Ra-dichloride spectrometric characterization: Searching for the presence of long-lived isotopes with radiological protection implications.

    PubMed

    Sánchez-Jiménez, J; López-Montes, A; Núñez-Martínez, L; Villa-Abaunza, A; Fraile, L M; Sánchez-Tembleque, V; Udías, J M

    2017-03-01

    (223)Ra-dichloride was approved with the commercial name of Xofigo in 2014 for treatment of metastatic castration-resistant prostate cancer. (223)Ra is obtained by neutron irradiation of (226)Ra yielding (227)Ac, which decays to (227)Th and (223)Fr, both decaying to (223)Ra. Since (223)Ra is predominantly (95.3%) an alpha emitter with a 11.42days long half-life, the radiopharmaceutical, its remnants, the patient, and waste material can be managed and disposed with low radiation protection requirements. (227)Ac is a long-lived (T1/2=21.77years) beta emitter that demands strong radiation protection measures. In particular waste disposal has to follow the International Atomic Energy Agency (IAEA) and European Commission (EC) regulations. Since (227)Ac is involved in the production of (223)Ra, an impurity analysis of each batch is required after production. Due to time restrictions, the manufacturer's detection limit (<0.001%) exceeds the one required to assure that (227)Ac concentrations are below direct disposal levels. To improve the detection limit, long-term accurate spectroscopy is required. Alpha and gamma spectroscopy measurements were carried out at the Complutense University Nuclear Physics Laboratory. After twelve months follow up of a sample, (227)Ac concentration was found to be smaller than 10(-9). This allows for direct waste disposal and no additional radiation protection restrictions than those required for (223)Ra. The presence of contamination by other radioisotopes was also ruled out by this experiment. Specifically (226)Ra, involved in (223)Ra production as the original parent and with a very long-lived (T1/2=1577years) alpha emitter, was also below the experimental detection limit.

  13. Energy allocation during the maturation of adults in a long-lived insect: implications for dispersal and reproduction.

    PubMed

    David, G; Giffard, B; van Halder, I; Piou, D; Jactel, H

    2015-10-01

    Energy allocation strategies have been widely documented in insects and were formalized in the context of the reproduction process by the terms 'capital breeder' and 'income breeder'. We propose here the extension of this framework to dispersal ability, with the concepts of 'capital disperser' and 'income disperser', and explore the trade-off in resource allocation between dispersal and reproduction. We hypothesized that flight capacity was sex-dependent, due to a trade-off in energy allocation between dispersal and egg production in females. We used Monochamus galloprovincialis as model organism, a long-lived beetle which is the European vector of the pine wood nematode. We estimated the flight capacity with a flight mill and used the number of mature eggs as a proxy for the investment in reproduction. We used the ratio between dry weights of the thorax and the abdomen to investigate the trade-off. The probability of flying increased with the adult weight at emergence, but was not dependent on insect age or sex. Flight distance increased with age in individuals but did not differ between sexes. It was also positively associated with energy allocation to thorax reserves, which increased with age. In females, the abdomen weight and the number of eggs also increase with age with no negative effect on flight capacity, indicating a lack of trade-off. This long-lived beetle has a complex strategy of energy allocation, being a 'capital disperser' in terms of flight ability, an 'income disperser' in terms of flight performance and an 'income breeder' in terms of egg production.

  14. Live Healthy, Live Longer

    MedlinePlus

    ... Human Services. More Health News on: Exercise and Physical Fitness Health Screening Healthy Living Recent Health News Related MedlinePlus Health Topics Exercise and Physical Fitness Health Screening Healthy Living About MedlinePlus Site Map ...

  15. A sociocultural historical examination of youth argumentation across the settings of their lives: Implications for science education

    NASA Astrophysics Data System (ADS)

    Bricker, Leah A.

    In this dissertation, I examine youth argumentative practices as employed over time and across settings. Specifically, I examine youth perspective on argumentation and their own argumentative practices, the relationship between argumentation and learning, and the relationship between argumentation and youth, family, and community cultures. The theoretical framework I employ enables me to analyze argumentation as a set of practices employed in situated activity systems and framed by culturally-influenced ways of understanding activity associated with argumentative practice. I utilize data from a long-term team ethnography of youth science and technology learning across settings and time. Research fieldwork was conducted across dozens of social settings over the course of three years. Data includes approximately 700 hours of participant observations and interviews with thirteen upper elementary and middle school young people, as well as 128 of their parents, extended family members, peers, and teachers. Findings highlight the multitude of meanings youth associate with argumentation as it occurs in their lives (e.g., at home, in classrooms, in neighborhoods), as well as the detailed accounts of their argumentative practices and how these practices are differentially used across the social settings youth frequent. Additionally, findings highlight how historically rooted cultural practices help to frame youth perspectives on argumentation and their argumentative practices. Findings also include details about the specific communicative features of youth argumentation (e.g., linguistic elements such as discourse markers, evidentials, and indexicals, as well as non-verbal gestures) and how communicative features relate to youth learning across settings and over time. I use this dissertation in part to dialogue with the science education community, which currently argues that youth in science classrooms should learn how to argue scientifically. Designs of learning

  16. Tight Coupling of Glaciecola spp. and Diatoms during Cold-Water Phytoplankton Spring Blooms.

    PubMed

    von Scheibner, Markus; Sommer, Ulrich; Jürgens, Klaus

    2017-01-01

    Early spring phytoplankton blooms can occur at very low water temperatures but they are often decoupled from bacterial growth, which is assumed to be often temperature controlled. In a previous mesocosm study with Baltic Sea plankton communities, an early diatom bloom was associated with a high relative abundance of Glaciecola sequences (Gammaproteobacteria), at both low (2°C) and elevated (8°C) temperatures, suggesting an important role for this genus in phytoplankton-bacteria coupling. In this study, the temperature-dependent dynamics of free-living Glaciecola spp. during the bloom were analyzed by catalyzed reporter deposition fluorescence in situ hybridization using a newly developed probe. The analysis revealed the appearance of Glaciecola spp. in this and in previous spring mesocosm experiments as the dominating bacterial clade during diatom blooms, with a close coupling between the population dynamics of Glaciecola and phytoplankton development. Although elevated temperature resulted in a higher abundance and a higher net growth rate of Glaciecola spp. (Q10 ∼ 2.2), their growth was, in contrast to that of the bulk bacterial assemblages, not suppressed at 2°C and showed a similar pattern at 8°C. Independent of temperature, the highest abundance of Glaciecola spp. (24.0 ± 10.0% of total cell number) occurred during the peak of the phytoplankton bloom. Together with the slightly larger cell size of Glaciecola, this resulted in a ∼30% contribution of Glaciecola to total bacterial biomass. Overall, the results of this and previous studies suggest that Glaciecola has an ecological niche during early diatom blooms at low temperatures, when it becomes a dominant consumer of phytoplankton-derived dissolved organic matter.

  17. Tight Coupling of Glaciecola spp. and Diatoms during Cold-Water Phytoplankton Spring Blooms

    PubMed Central

    von Scheibner, Markus; Sommer, Ulrich; Jürgens, Klaus

    2017-01-01

    Early spring phytoplankton blooms can occur at very low water temperatures but they are often decoupled from bacterial growth, which is assumed to be often temperature controlled. In a previous mesocosm study with Baltic Sea plankton communities, an early diatom bloom was associated with a high relative abundance of Glaciecola sequences (Gammaproteobacteria), at both low (2°C) and elevated (8°C) temperatures, suggesting an important role for this genus in phytoplankton-bacteria coupling. In this study, the temperature-dependent dynamics of free-living Glaciecola spp. during the bloom were analyzed by catalyzed reporter deposition fluorescence in situ hybridization using a newly developed probe. The analysis revealed the appearance of Glaciecola spp. in this and in previous spring mesocosm experiments as the dominating bacterial clade during diatom blooms, with a close coupling between the population dynamics of Glaciecola and phytoplankton development. Although elevated temperature resulted in a higher abundance and a higher net growth rate of Glaciecola spp. (Q10 ∼ 2.2), their growth was, in contrast to that of the bulk bacterial assemblages, not suppressed at 2°C and showed a similar pattern at 8°C. Independent of temperature, the highest abundance of Glaciecola spp. (24.0 ± 10.0% of total cell number) occurred during the peak of the phytoplankton bloom. Together with the slightly larger cell size of Glaciecola, this resulted in a ∼30% contribution of Glaciecola to total bacterial biomass. Overall, the results of this and previous studies suggest that Glaciecola has an ecological niche during early diatom blooms at low temperatures, when it becomes a dominant consumer of phytoplankton-derived dissolved organic matter. PMID:28154558

  18. An Inverse Modeling Approach to Estimating Phytoplankton Pigment Concentrations from Phytoplankton Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.

    2011-01-01

    Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.

  19. Apparent diffusive motion of centrin foci in living cells: implications for diffusion-based motion in centriole duplication

    NASA Astrophysics Data System (ADS)

    Rafelski, Susanne M.; Keller, Lani C.; Alberts, Jonathan B.; Marshall, Wallace F.

    2011-04-01

    The degree to which diffusion contributes to positioning cellular structures is an open question. Here we investigate the question of whether diffusive motion of centrin granules would allow them to interact with the mother centriole. The role of centrin granules in centriole duplication remains unclear, but some proposed functions of these granules, for example, in providing pre-assembled centriole subunits, or by acting as unstable 'pre-centrioles' that need to be captured by the mother centriole (La Terra et al 2005 J. Cell Biol. 168 713-22), require the centrin foci to reach the mother. To test whether diffusive motion could permit such interactions in the necessary time scale, we measured the motion of centrin-containing foci in living human U2OS cells. We found that these centrin foci display apparently diffusive undirected motion. Using the apparent diffusion constant obtained from these measurements, we calculated the time scale required for diffusion to capture by the mother centrioles and found that it would greatly exceed the time available in the cell cycle. We conclude that mechanisms invoking centrin foci capture by the mother, whether as a pre-centriole or as a source of components to support later assembly, would require a form of directed motility of centrin foci that has not yet been observed.

  20. Age changes of facial measurements in European young adult males: implications for the identification of the living.

    PubMed

    Gibelli, D; Mapelli, A; Obertovà, Z; Poppa, P; Gabriel, P; Ratnayake, M; Tutkuviene, J; Sforza, C; Ritz-Timme, S; Cattaneo, C

    2012-12-01

    Metric and morphological analyses of facial features are currently applied in cases of personal identification of the living on images acquired from video surveillance systems. However, facial assessment in the forensic context needs to be based on reliable comparative data for facial measurements. Facial changes in the age range of early adulthood (20-30 years) have been rarely described so far, although such knowledge would be beneficial for comparative personal identification on images. This study investigates changes in facial measurements in European males aged between 20 and 30 years in order to identify metric characters that can be used for personal identification in young adults. A sample of 404 males of European ancestry, aged between 20 and 30 years from Germany, Italy and Lithuania were recruited for this project. Fourteen facial measurements were taken and correlation coefficients were calculated for each cranial measurement with age. Only two measurements - labial width and physiognomic ear length - seem to change between 20 and 30 years with a positive statistically significant correlation (p<0.05). These results suggest caution for what may concern personal identification by assessment of ear and mouth morphology.

  1. Prevalence and Characteristics of CAM Use among People Living with HIV and AIDS in Lebanon: Implications for Patient Care

    PubMed Central

    Alameddine, Mohamad

    2016-01-01

    This study aimed to assess the prevalence and determinants of Complementary and Alternative Medicine (CAM) use among People Living with HIV and AIDS (PLWHA) in Lebanon and to identify related issues that may affect patient care. A cross-sectional survey design was used to interview 116 PLWHA in Beirut. The questionnaire addressed sociodemographic and disease characteristics as well as CAM use. The main outcome of the study was CAM use since diagnosis. Data analysis included descriptive statistics and logistic regression analyses. Overall, 46.6% of participants reported using one or more CAM therapies, with herbs and herbal products being the most commonly used (63%). A higher education level was associated with a 3-fold increase in the odds of CAM use. Among users, 20% used CAM as alternative to conventional treatment, 48% were not aware of CAM-drug interactions, 89% relied on nonhealth care sources for their choice of CAM, and 44% did not disclose CAM use to their physician. CAM use is prevalent among Lebanese PLWHA. Findings of this study highlighted the need to educate health care practitioners to have an open communication and a patient-centered approach discussing CAM use during routine care and to enhance awareness of PLWHA on safe use of CAM. PMID:28050191

  2. Impact of Amorphous SiO2 Nanoparticles on a Living Organism: Morphological, Behavioral, and Molecular Biology Implications.

    PubMed

    Ambrosone, Alfredo; Scotto di Vettimo, Maria Rosaria; Malvindi, Maria Ada; Roopin, Modi; Levy, Oren; Marchesano, Valentina; Pompa, Pier Paolo; Tortiglione, Claudia; Tino, Angela

    2014-01-01

    It is generally accepted that silica (SiO2) is not toxic. But the increasing use of silica nanoparticles (SiO2NPs) in many different industrial fields has prompted the careful investigation of their toxicity in biological systems. In this report, we describe the effects elicited by SiO2NPs on animal and cell physiology. Stable and monodisperse amorphous silica nanoparticles, 25 nM in diameter, were administered to living Hydra vulgaris (Cnidaria). The dose-related effects were defined by morphological and behavioral assays. The results revealed an all-or-nothing lethal toxicity with a rather high threshold (35 nM NPs) and a LT50 of 38 h. At sub lethal doses, the morphophysiological effects included: animal morphology alterations, paralysis of the gastric region, disorganization and depletion of tentacle specialized cells, increase of apoptotic and collapsed cells, and reduction of the epithelial cell proliferation rate. Transcriptome analysis (RNAseq) revealed 45 differentially expressed genes, mostly involved in stress response and cuticle renovation. Our results show that Hydra reacts to SiO2NPs, is able to rebalance the animal homeostasis up to a relatively high doses of SiO2NPs, and that the physiological modifications are transduced to gene expression modulation.

  3. Impact of Amorphous SiO2 Nanoparticles on a Living Organism: Morphological, Behavioral, and Molecular Biology Implications

    PubMed Central

    Ambrosone, Alfredo; Scotto di Vettimo, Maria Rosaria; Malvindi, Maria Ada; Roopin, Modi; Levy, Oren; Marchesano, Valentina; Pompa, Pier Paolo; Tortiglione, Claudia; Tino, Angela

    2014-01-01

    It is generally accepted that silica (SiO2) is not toxic. But the increasing use of silica nanoparticles (SiO2NPs) in many different industrial fields has prompted the careful investigation of their toxicity in biological systems. In this report, we describe the effects elicited by SiO2NPs on animal and cell physiology. Stable and monodisperse amorphous silica nanoparticles, 25 nM in diameter, were administered to living Hydra vulgaris (Cnidaria). The dose-related effects were defined by morphological and behavioral assays. The results revealed an all-or-nothing lethal toxicity with a rather high threshold (35 nM NPs) and a LT50 of 38 h. At sub lethal doses, the morphophysiological effects included: animal morphology alterations, paralysis of the gastric region, disorganization and depletion of tentacle specialized cells, increase of apoptotic and collapsed cells, and reduction of the epithelial cell proliferation rate. Transcriptome analysis (RNAseq) revealed 45 differentially expressed genes, mostly involved in stress response and cuticle renovation. Our results show that Hydra reacts to SiO2NPs, is able to rebalance the animal homeostasis up to a relatively high doses of SiO2NPs, and that the physiological modifications are transduced to gene expression modulation. PMID:25325055

  4. Rights-based services for adolescents living with HIV: adolescent self-efficacy and implications for health systems in Zambia.

    PubMed

    Mburu, Gitau; Hodgson, Ian; Teltschik, Anja; Ram, Mala; Haamujompa, Choolwe; Bajpai, Divya; Mutali, Beatrice

    2013-05-01

    A rights-based approach in HIV service delivery for adults is increasingly taking root in sub-Saharan Africa in the context of greater availability of antiretroviral therapy. Yet there has been comparatively little progress in strengthening a rights-based approach to adolescent HIV services, which we learned during a qualitative study in 2010 among 111 adolescents living with HIV, 21 parents and 38 health providers in three districts in Zambia. Adolescents in the study expressed a range of information and support needs and wanted locally relevant interventions to meet those needs. They wanted greater access to HIV, sexual and reproductive health information, information on how to protect themselves, privacy and confidentiality in service sites, skills training so as to be able to earn money, and better control over disclosure of their HIV status to others. Both health workers and parents acknowledged that information and services needed to be improved to meet those needs far better. This paper provides examples of successful programmes in Zimbabwe, Uganda, Tanzania, Botswana and South Africa and calls for adolescent services to be linked to both paediatric and adult services, peer networks to be established to increase adolescents' ability to collectively voice their concerns and support each other, interventions supporting adolescents' control over self-disclosure, and lastly that adolescent health should become a training specialty in sub-Saharan Africa.

  5. Spatial variability in growth-increment chronologies of long-lived freshwater mussels: Implications for climate impacts and reconstructions

    USGS Publications Warehouse

    Black, Bryan A.; Dunham, Jason B.; Blundon, Brett W.; Raggon, Mark F.; Zima, Daniela

    2010-01-01

    Estimates of historical variability in river ecosystems are often lacking, but long-lived freshwater mussels could provide unique opportunities to understand past conditions in these environments. We applied dendrochronology techniques to quantify historical variability in growth-increment widths in valves (shells) of western pearlshell freshwater mussels (Margaritifera falcata). A total of 3 growth-increment chronologies, spanning 19 to 26 y in length, were developed. Growth was highly synchronous among individuals within each site, and to a lesser extent, chronologies were synchronous among sites. All 3 chronologies negatively related to instrumental records of stream discharge, while correlations with measures of water temperature were consistently positive but weaker. A reconstruction of stream discharge was performed using linear regressions based on a mussel growth chronology and the regional Palmer Drought Severity Index (PDSI). Models based on mussel growth and PDSI yielded similar coefficients of prediction (R2Pred) of 0.73 and 0.77, respectively, for predicting out-ofsample observations. From an ecological perspective, we found that mussel chronologies provided a rich source of information for understanding climate impacts. Responses of mussels to changes in climate and stream ecosystems can be very site- and process-specific, underscoring the complex nature of biotic responses to climate change and the need to understand both regional and local processes in projecting climate impacts on freshwater species.

  6. Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants

    PubMed Central

    Smith, Kirk R.; Jerrett, Michael; Anderson, H Ross; Burnett, Richard T.; Stone, Vicki; Derwent, Richard; Atkinson, Richard W.; Cohen, Aaron; Shonkoff, Seth B.; Krewski, Daniel; Pope, C. Arden; Thun, Michael J.; Thurston, George

    2014-01-01

    In this report we review the health effects of three short-lived greenhouse pollutants—black carbon, ozone, and sulphates. We undertook new meta-analyses of existing time-series studies and an analysis of a cohort of 352 000 people in 66 US cities during 18 years of follow-up. This cohort study provides estimates of mortality effects from long-term exposure to elemental carbon, an indicator of black carbon mass, and evidence that ozone exerts an independent risk of mortality. Associations among these pollutants make drawing conclusions about their individual health effects difficult at present, but sulphate seems to have the most robust effects in multiple-pollutant models. Generally, the toxicology of the pure compounds and their epidemiology diverge because atmospheric black carbon, ozone, and sulphate are associated and could interact with related toxic species. Although sulphate is a cooling agent, black carbon and ozone could together exert nearly half as much global warming as carbon dioxide. The complexity of these health and climate effects needs to be recognised in mitigation policies. PMID:19942276

  7. Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants.

    PubMed

    Smith, Kirk R; Jerrett, Michael; Anderson, H Ross; Burnett, Richard T; Stone, Vicki; Derwent, Richard; Atkinson, Richard W; Cohen, Aaron; Shonkoff, Seth B; Krewski, Daniel; Pope, C Arden; Thun, Michael J; Thurston, George

    2009-12-19

    In this report we review the health effects of three short-lived greenhouse pollutants-black carbon, ozone, and sulphates. We undertook new meta-analyses of existing time-series studies and an analysis of a cohort of 352,000 people in 66 US cities during 18 years of follow-up. This cohort study provides estimates of mortality effects from long-term exposure to elemental carbon, an indicator of black carbon mass, and evidence that ozone exerts an independent risk of mortality. Associations among these pollutants make drawing conclusions about their individual health effects difficult at present, but sulphate seems to have the most robust effects in multiple-pollutant models. Generally, the toxicology of the pure compounds and their epidemiology diverge because atmospheric black carbon, ozone, and sulphate are associated and could interact with related toxic species. Although sulphate is a cooling agent, black carbon and ozone could together exert nearly half as much global warming as carbon dioxide. The complexity of these health and climate effects needs to be recognised in mitigation policies.

  8. Interactions between mercury and phytoplankton: speciation, bioavailability, and internal handling.

    PubMed

    Le Faucheur, Séverine; Campbell, Peter G C; Fortin, Claude; Slaveykova, Vera I

    2014-06-01

    The present review describes and discusses key interactions between mercury (Hg) and phytoplankton to highlight the role of phytoplankton in the biogeochemical cycle of Hg and to understand direct or indirect Hg effects on phytoplankton. Phytoplankton are exposed to various Hg species in surface waters. Through Hg uptake, phytoplankton affect the concentration, speciation, and fate of Hg in aquatic systems. The mechanisms by which phytoplankton take up Hg are still not well known, but several studies have suggested that both facilitated transport and passive diffusion could be involved. Once internalized, Hg will impact several physiological processes, including photosynthesis. To counteract these negative effects, phytoplankton have developed several detoxification strategies, such as the reduction of Hg to elemental Hg or its sequestration by intracellular ligands. Based on the toxicological studies performed so far in the laboratory, Hg is unlikely to be toxic to phytoplankton when they are exposed to environmentally relevant Hg concentrations. However, this statement should be taken with caution because questions remain as to which Hg species control Hg bioavailability and about Hg uptake mechanisms. Finally, phytoplankton are primary producers, and accumulated Hg will be transferred to higher consumers. Phytoplankton are a key component in aquatic systems, and their interactions with Hg need to be further studied to fully comprehend the biogeochemical cycle of Hg and the impact of this ubiquitous metal on ecosystems.

  9. High-pressure metamorphism in the southern New England Orogen: Implications for long-lived accretionary orogenesis in eastern Australia

    NASA Astrophysics Data System (ADS)

    Phillips, G.; Offler, R.; Rubatto, D.; Phillips, D.

    2015-09-01

    New geochemical, metamorphic, and isotopic data are presented from high-pressure metamorphic rocks in the southern New England Orogen (eastern Australia). Conventional and optimal thermobarometry are augmented by U-Pb zircon and 40Ar/39Ar phengite dating to define pressure-temperature-time (P-T-t) histories for the rocks. The P-T-t histories are compared with competing geodynamic models for the Tasmanides, which can be summarized as (i) a retreating orogen model, the Tasmanides formed above a continuous, west dipping, and eastward retreating subduction zone, and (ii) a punctuated orogen model, the Tasmanides formed by several arc accretion, subduction flip, and/or transference events. Whereas both scenarios are potentially supported by the new data, an overlap between the timing of metamorphic recrystallization and key stages of Tasmanides evolution favors a relationship between a single, long-lived subduction zone and the formation, exhumation, and exposure of the high-pressure rocks. By comparison with the retreating orogen model, the following links with the P-T-t histories emerge: (i) exhumation and underplating of oceanic eclogite during the Delamerian Orogeny, (ii) recrystallization of underplated and exhuming high-pressure rocks at amphibolite facies conditions coeval with a period of rollback, and (iii) selective recrystallization of high-pressure rocks at blueschist facies conditions, reflecting metamorphism in a cooled subduction zone. The retreating orogen model can also account for the anomalous location of the Cambrian-Ordovician high-pressure rocks in the Devonian-Carboniferous New England Orogen, where sequential rollback cycles detached and translated parts of the leading edge of the overriding plate to the next, younger orogenic cycle.

  10. Entrainment of cell division in phytoplankton with dynamic energy budgets

    NASA Astrophysics Data System (ADS)

    Muller, Erik B.; Ananthasubramaniam, Bharath; Klanjšček, Tin; Nisbet, Roger M.

    2011-11-01

    We explore the entrainment behavior of cell division in phytoplankton in the context of Dynamic Energy Budget (DEB) theory. In particular, we explore the range of DEB and environmental parameter values within which a cell divides at regular intervals in a periodic light environment with abundant nutrients and investigate the impact of parameter values on the phase of cell division. We consider three types of cells that differ in the evolution of surface area to volume ratio during the cell cycle: cells with a constant shape (isomorphs), cells with a constant surface area (V0-morphs) and cells with a constant surface area to volume ratio (V1-morphs), the latter being the default choice in studies on the population dynamics of unicellular organisms because of its desirable mathematical implications. Only in isomorphs and V0-morphs, however, cell division can be entrained to a periodic light. Regular cell division in V1 is purely coincidental, as it depends on exact choices for parameter values. We attribute this to the fact that V1-morphs lack the negative feedback of size on the dynamics of reserves in V0-morphs and isomorphs. Because entrained isomorphs and V0-morphs divide during the dark hours in our simulations, these two shapes can represent the division behavior of phytoplankton species that complete the cell cycle during the night, such as dinoflagellates and coccolithophores. A description of the division behavior of species completing the cell cycle during the day, such as silicon dependent diatoms and cyanobacteria, requires a more complex model than used in this paper. Furthermore, we explore the robustness of our findings by randomizing model parameters and introducing unevenness in biomass separation between daughter cells during cell division. We conclude that especially the entrainment in V0-morphs is relatively insensitive to perturbations.

  11. Assessing phytoplankton realized niches using a French national phytoplankton monitoring network

    NASA Astrophysics Data System (ADS)

    Hernández Fariñas, Tania; Bacher, Cédric; Soudant, Dominique; Belin, Catherine; Barillé, Laurent

    2015-06-01

    Relating environmental factors to species occurrence is a fundamental step in a better understanding of the community structure, the spatial and temporal dynamics of populations and how species may respond to environmental changes. In this paper, we used phytoplankton occurrence data, from a French national phytoplankton monitoring network, and environmental variables with the aim of characterizing the realized ecological niches of phytoplankton groups. We selected 35 phytoplankton taxa representing the most important taxa in terms of occurrence frequency and abundance along the French coast of the eastern English Channel, the Southern Bight of the North Sea and the Atlantic Ocean. We show that environmental variables such as nutrient concentration, water temperature, irradiance and turbidity can be considered key factors controlling phytoplankton dynamics and influencing the community structure. By using a statistical framework based on an ordination technique the community structure was analyzed and interpreted in terms of niche overlap, marginality and tolerance. The most marginal taxon was Dactyliosolen and the most tolerant was Skeletonema. Non-marginal taxonomic units could be generalist and specialist, while marginal taxa were rather specialist. Specialist and marginal taxa globally showed lower values of overlap.

  12. Optical determination of phytoplankton floristic composition

    NASA Astrophysics Data System (ADS)

    Smith, P. S. D.; Bowers, D. G.; Mitchelson-Jacob, E. G.

    1997-02-01

    Radiance and irradiance measurements are collected using a seven channel profiling radiometer and a four channel moored irradiance sensor which both use Sea-viewing Wide Field-of- View Sensor (SeaWiFS) wavebands. The instruments were deployed as part of the Land-Ocean Interaction Study, shelf edge study on the Malin Shelf, off the west coast of Scotland, during spring and simmer 1995 and 1996. Changes in in-situ reflectance ratios, calculated from the blue, cyan and green wavebands of the moored color sensors, suggest a diatom-dominated spring bloom, followed by an early summer coccolithophore bloom, with a flagellate-dominated phytoplankton population during the summer. Similar changes are also seen in attenuance ratios and specific attenuation coefficients calculated from the profiling radiometer data. The use of these optical properties to determine phytoplankton floristic composition is discussed.

  13. B Vitamins as Regulators of Phytoplankton Dynamics

    NASA Astrophysics Data System (ADS)

    Panzeca, Caterina; Tovar-Sanchez, Antonio; Agustí, Susana; Reche, Isabel; Duarte, Carlos M.; Taylor, Gordon T.; Sañudo-Wilhelmy, Sergio A.

    2006-12-01

    Without an adequate supply of dissolved vitamins, many species of phytoplankton do not grow. Additions of inorganic nutrients like phosphorus and nitrogen, and trace metals like iron, are not alone adequate to sustain life-a practical lesson learned quickly by experimental biologists when they try to keep eukaryotic phytoplankton cultures alive in their labs. The reason is that coenzymes such as B vitamins are also required for many metabolic pathways. For example, vitamin B1 serves as a cofactor for a large number of enzymatic systems, including the pyruvate dehydrogenase complex required for the metabolism of carbohydrates (glycolysis) and amino acid synthesis [Vandamme, 1989]. Vitamin B12 is used primarily to assist two enzymes: methionine synthase, which is involved in DNA synthesis, and methylmalonyl CoA mutase, which is required for inorganic carbon assimilation [Lindemans and Abels, 1985].

  14. Phytoplankton bloom off the coast of Ireland

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Irish Sea (right) is full of phytoplankton in this true-color image from January 15, 2002. The Irish Sea separates Ireland (center) from the United Kingdom (right). In this image the water of both the Irish and Celtic (lower right) Seas appears quite turbid, being a milky blue-green compared to the clearer waters of the open Atlantic (left). This milky appearance is likely due to the growth of marine plants called phytoplankton. Despite the fact that Ireland is at the same latitude as southern Hudson Bay, Canada, it remains green year round, thanks to the moderating effect on temperatures of the Atlantic Ocean. The Gulf Stream bring warmer waters up from the tropics, and southwesterly winds bring warmer air to the country, thus moderating seasonal temperature extremes.

  15. Salient region detection for phytoplankton microscopic image

    NASA Astrophysics Data System (ADS)

    Chu, Jingjing; Ji, Guangrong; Zheng, Haiyong; Yu, Kun; Lu, Hongguang

    2013-07-01

    IG method is an excellent salient region detection method as its good generality and well-defined boundaries. In this paper, an improved method based on IG method is proposed to generate saliency map for phytoplankton microscopic images. This method utilizes the characteristics of phytoplankton microscopic images, through Gaussian low-pass filter to reduce high frequency components corresponding to water stains and dust specks. On the basis of luminance and color used in IG method, saturation is added to determine saliency due to that the saturation of background is lower than that of cells. The experimental results show that the proposed method can not only improve visual quality significantly, but also obtain higher precision and better recall rates compared with IG method.

  16. Revaluating ocean warming impacts on global phytoplankton

    NASA Astrophysics Data System (ADS)

    Behrenfeld, Michael J.; O'Malley, Robert T.; Boss, Emmanuel S.; Westberry, Toby K.; Graff, Jason R.; Halsey, Kimberly H.; Milligan, Allen J.; Siegel, David A.; Brown, Matthew B.

    2016-03-01

    Global satellite observations document expansions of the low-chlorophyll central ocean gyres and an overall inverse relationship between anomalies in sea surface temperature and phytoplankton chlorophyll concentrations. These findings can provide an invaluable glimpse into potential future ocean changes, but only if the story they tell is accurately interpreted. Chlorophyll is not simply a measure of phytoplankton biomass, but also registers changes in intracellular pigmentation arising from light-driven (photoacclimation) and nutrient-driven physiological responses. Here, we show that the photoacclimation response is an important component of temporal chlorophyll variability across the global ocean. This attribution implies that contemporary relationships between chlorophyll changes and ocean warming are not indicative of proportional changes in productivity, as light-driven decreases in chlorophyll can be associated with constant or even increased photosynthesis. Extension of these results to future change, however, requires further evaluation of how the multifaceted stressors of a warmer, higher-CO2 world will impact plankton communities.

  17. Implications of variability on many time scales for scientific advice on sustainable management of living marine resources

    NASA Astrophysics Data System (ADS)

    Rice, Jake

    The conceptual basis for understanding and management of living marine resources is built on three basic ecological principles developed in the first half of the past century: the law of the minimum, competitive exclusion, and succession. This paper highlights aspects of these principles that make them insufficient as a sound foundation for understanding and managing marine ecosystems, points out dangers of continuing to use approaches built on them, and presents alternatives which might be more appropriate and of lower risk. To do this, the paper considers variability of marine ecosystems on annual, medium and long-term time scales, highlighting that these scales correspond to less than, approximately equal to, and much greater than, the generation times of dominant predators in the systems. It also considers how each interval of variability may affect directly ecosystems which are controlled from the bottom up, top down, and middle outward, and how position and duration of forcing affect five types of responses: growth, maturation, recruitment, predation, and competition. Generally these five processes have manifestations at the scale of individuals, populations, and ecosystems, attention is drawn to which manifestations are the most significant for each duration and position of forcing. Effects of some combinations of duration of forcing and position of forcing can be explained reasonably well by conventional ecological theory. For other combinations, particularly forcing at time scales of predator generations on top-down or middle-out ecosystems, theory based on contest competition and equilibria are likely to be misleading. In these systems the major dynamics are transients, when many ecosystems are far from their carrying capacities, so scramble competition dominates, and the carrying capacity is not helpful in explaining the system dynamics. This review clarifies the sorts of questions that we should be asking, in order to begin to understand the transient

  18. Phytoplankton off the Coast of Portugal

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A large phytoplankton bloom off of the coast of Portugal can be seen in this true-color image taken on April 23, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra satellite. The bloom is roughly half the size of Portugal and forms a bluish-green cloud in the water. The red spots in northwest Spain denote what are likely small agricultural fires. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  19. Phytoplankton dynamics in the NE subarctic Pacific

    NASA Astrophysics Data System (ADS)

    Boyd, Philip; Harrison, P. J.

    1999-11-01

    Ocean Station Papa (OSP, 50°N 145°W) in the NE subarctic Pacific is characterised as high nitrate low chlorophyll (HNLC). However, little is known about the spatial extent of these HNLC waters or the phytoplankton dynamics on the basin scale. Algal biomass, production and size-structure data are presented from winter, spring and summer between 1992 and 1997 for five stations ranging from coastal to open-ocean conditions. The inshore stations (P04-P16) are characterised by the classical seasonal cycle of spring and late summer blooms (production >3 g C m -2 d -1), diatoms are not Fe-stressed, and growth rate is probably controlled by macronutrient supply. The fate of the phytoplankton is likely sedimentation by diatom-dominated spring blooms, with a pelagic recycling system predominating at other times. The offshore stations (P20/OSP) display low seasonality in biomass and production (OSP, mean winter production 0.3 g C m -2 d -1, mean spring/summer production 0.85 g C m -2 d -1), and are dominated by small algal cells. Low Fe availability prevents the occurrence of diatom blooms observed inshore. The main fate of phytoplankton is probably recycling through the microbial food web, with relatively low sedimentation compared to inshore. However, the supply of macro- and micro-nutrients to the coastal and open ocean, respectively, may vary between years. Variability in macro-nutrient supply to the coastal ocean may result in decreased winter reserve nitrate, summer nitrate limitation, subsequent floristic shifts towards small cells, and reduced primary production. Offshore, higher diatom abundances are occasionally observed, perhaps indicating episodic Fe supply. The two distinct oceanic regimes have different phytoplankton dynamics resulting in different seasonality, community structure and fate of algal carbon. These differences will strongly influence the biogeochemical signatures of the coastal and open-oceanic NE subarctic Pacific.

  20. Fluid dynamical niches of phytoplankton types

    PubMed Central

    De Monte, Silvia; Alvain, Séverine; Dandonneau, Yves; Lévy, Marina

    2010-01-01

    The biogeochemical role of phytoplanktonic organisms strongly varies from one plankton type to another, and their relative abundance and distribution have fundamental consequences at the global and climatological scales. In situ observations find dominant types often associated to specific physical and chemical water properties. However, the mechanisms and spatiotemporal scales by which marine ecosystems are organized are largely not known. Here we investigate the spatiotemporal organization of phytoplankton communities by combining multisatellite data, notably high-resolution ocean-color maps of dominant types and altimetry-derived Lagrangian diagnostics of the surface transport. We find that the phytoplanktonic landscape is organized in (sub-)mesoscale patches (10–100 km) of dominant types separated by physical fronts induced by horizontal stirring. These physical fronts delimit niches supported by water masses of similar history and whose lifetimes are comparable with the timescale of the bloom onset (few weeks). The resonance between biological activity and physical processes suggest that the spatiotemporal (sub-)mesoscales associated to stirring are determinant in the observation and modeling of marine ecosystems. PMID:20974927

  1. Cross-species transfer of viruses: implications for the use of viral vectors in biomedical research, gene therapy and as live-virus vaccines.

    PubMed

    Louz, Derrick; Bergmans, Hans E; Loos, Birgit P; Hoeben, Rob C

    2005-10-01

    All living organisms are continuously exposed to a plethora of viruses. In general, viruses tend to be restricted to the natural host species which they infect. From time to time viruses cross the host-range barrier expanding their host range. However, in very rare cases cross-species transfer is followed by the establishment and persistence of a virus in the new host species, which may result in disease. Recent examples of viruses that have crossed the species barrier from animal reservoirs to humans are hantavirus, haemorrhagic fever viruses, arboviruses, Nipah and Hendra viruses, avian influenza virus (AI), monkeypox virus, and the SARS-associated coronavirus (SARS-CoV). The opportunities for cross-species transfer of mammalian viruses have increased in recent years due to increased contact between humans and animal reservoirs. However, it is difficult to predict when such events will take place since the viral adaptation that is needed to accomplish this is multifactorial and stochastic. Against this background the intensified use of viruses and their genetically modified variants as viral gene transfer vectors for biomedical research, experimental gene therapy and for live-vector vaccines is a cause for concern. This review addresses a number of potential risk factors and their implications for activities with viral vectors from the perspective of cross-species transfer of viruses in nature, with emphasis on the occurrence of host-range mutants resulting from either cell culture or tropism engineering. The issues are raised with the intention to assist in risk assessments for activities with vector viruses.

  2. Nitrogen and phosphorus intake by phytoplankton in the Xiamen Bay

    NASA Astrophysics Data System (ADS)

    Lin, Cai; Li, Hui; He, Qing; Xu, Kuncan; Wu, Shengsan; Zhang, Yuanbiao; Chen, Jinmin; Chen, Baohong; Lin, Libin; Lu, Meiluan; Chen, Weifen; Tang, Rongkun; Ji, Weidong

    2010-01-01

    This paper describes a time series experiment examining the nitrogen and phosphorus intake of natural phytoplankton communities by a microcosms approach. Seawater samples containing natural phytoplankton communities were collected from waters around Baozhu Islet in inner Xiamen Bay and around Qingyu Islet in the outer bay. The goal was to elucidate the relationship between phytoplankton population enhancement, the biological removal of nitrogen and phosphorus from the seawater, and the phytoplankton nitrogen and phosphorus intake ratio based on nitrogen and phosphorus removal from seawater by phytoplankton, to provide a basis for detecting prewarning conditions for red tide and the assessment of red tide events. Two key results were obtained: 1. During the experiment, the nitrogen and phosphorus seawater concentrations in samples from these two sites were negatively and closely correlated to the logarithm of the phytoplankton cell concentration and to the value of the apparent oxygen increment. The ratio of the intake coefficients was 3.5:1 for phosphorus and 1.1:1 for nitrogen for the phytoplankton between these samples from around Baozhu Islet and Qingyu Islet, respectively. This indicates that the intake capabilities of phytoplankton for nitrogen in the two waters are essentially identical. However, for phosphorus, the capability was much higher in the Baozhu Islet waters than the Qingyu Islet waters. In other words, the phytoplankton in Qingyu Islet waters produced more biomass while consuming the same amount of phosphorus as the other waters; 2. The phytoplankton nitrogen and phosphorus intake ratio from the Baozhu Islet and Qingyu Islet waters was 20:1 and 36:1, respectively. The latter waters had a significantly higher ratio than the former and both were higher than the Redfield Ratio. These results indicate that nitrogen and phosphorus intake ratios by phytoplankton can vary significantly from region to region.

  3. Seasonality, phytoplankton succession and the biogeochemical impacts of an autumn storm in the northeast Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Painter, Stuart C.; Finlay, Madelaine; Hemsley, Victoria S.; Martin, Adrian P.

    2016-03-01

    phytoplankton growth in surface waters should be tempered with greater understanding of the role of storm driven vertical reorganization of the water column and of resident phytoplankton communities. Crucially, in this case we observed no change in integrated chlorophyll, particulate organic carbon or biogenic silica concentrations despite also observing a ∼50% increase in surface chlorophyll concentrations which indicated that the surface enhancement in chlorophyll concentrations was most likely fed from below rather than resulting from in situ growth. Though not measured directly there was no evidence of enhanced export fluxes associated with this storm. These observations have implications for the growing practice of using chlorophyll fluorescence from remote platforms to determine ocean productivity late in the annual productivity period and in response to storm mixing.

  4. Phytoplankton dynamics in contrasting early stage North Atlantic spring blooms: composition, succession, and potential drivers

    NASA Astrophysics Data System (ADS)

    Daniels, C. J.; Poulton, A. J.; Esposito, M.; Paulsen, M. L.; Bellerby, R.; St John, M.; Martin, A. P.

    2015-04-01

    , and that large diatoms may be absent in NWB spring blooms. Despite both phytoplankton communities being in the early stages of bloom formation, different physicochemical and biological factors controlled bloom formation at the two sites. If these differences in phytoplankton composition persist, the subsequent spring blooms are likely to be significantly different in terms of biogeochemistry and trophic interactions throughout the growth season, with important implications for carbon cycling and organic matter export.

  5. Phytoplankton dynamics in contrasting early stage North Atlantic spring blooms: composition, succession, and potential drivers

    NASA Astrophysics Data System (ADS)

    Daniels, C. J.; Poulton, A. J.; Esposito, M.; Paulsen, M. L.; Bellerby, R.; St. John, M.; Martin, A. P.

    2015-01-01

    may be absent in NWB spring blooms. Despite both phytoplankton communities being in the early stages of bloom formation, different physicochemical and biological factors controlled bloom formation at the two sites. If these differences in phytoplankton composition persist, the subsequent spring blooms are likely to be significantly different in terms of biogeochemistry and trophic interactions throughout the growth season, with important implications for carbon cycling and organic matter export.

  6. Thin layers and species-specific characterization of the phytoplankton community in Monterey Bay, California, USA

    NASA Astrophysics Data System (ADS)

    Rines, J. E. B.; McFarland, M. N.; Donaghay, P. L.; Sullivan, J. M.

    2010-01-01

    During the summers of 2005 and 2006, experiments designed to understand the properties of densely concentrated, thin layers of plankton and the processes governing their dynamics were conducted in Monterey Bay, California, USA. Our goal was to elucidate the role that species-specific properties of phytoplankton play in thin layer dynamics. Using adaptive sampling, we collected water samples from inside and outside bio-optical features of the water column. Characterization of the phytoplankton was compiled from live and preserved samples, and analyzed within a framework of physical, optical, chemical and acoustical data. In both years, Monterey Bay was home to an extraordinarily diverse assemblage of phytoplankton and other protists. Bioluminescent dinoflagellates, and Harmful Algal Bloom (HAB) taxa were common. In 2005, community assemblages were widespread, thus advection of water through the experimental mooring array did not result in floristic changes. In 2006 phytoplankton were very patchy in horizontal distribution, and advection of water through the array was at times accompanied by dramatic shifts in community composition. Individual taxa often exhibited disparate patterns of vertical distribution, with some found throughout the water column, whereas others were restricted to narrow depth intervals. Thin layers were observed in both years. In 2005, the dinoflagellate Akashiwo sanguinea formed intense thin layers near the pycnocline at night, and migrated to near surface waters at dawn. In 2006, layer composition was more complex, and related to the water mass present at the time of sampling. Optically detected thin layers of phytoplankton can be studied from the perspective of the impact their high biomass has on both ecological processes, and ocean optics. But thin layers can also be studied from the species-specific perspective of each organism, its role within the thin layer habitat, and the impact that life within a thin layer has on its life history

  7. Effects of phytoplankton cell size and chloride concentration on the bioaccumulation of methylmercury in marine phytoplankton.

    PubMed

    Kim, Hyunji; Van Duong, Hieu; Kim, Eunhee; Lee, Byeong-Gweon; Han, Seunghee

    2014-08-01

    In the current study, the effects of phytoplankton cell size and methylmercury (MeHg) speciation on the bioaccumulation of MeHg by marine phytoplankton were investigated. Volume concentration factors (VCFs) of MeHg were determined in relation to the surface area to volume ratio of the cells for four species of diatom and a cyanobacteria species cultured in unenriched seawater. The VCFs of MeHg, ranging from 7.3 × 10(4) to 1.6 × 10(6) , increased linearly as the cell surface area-to-volume ratio increased. It suggests that pico- and nano-dominated phytoplankton communities may lead to larger MeHg accumulation than the one dominated by microphytoplankton. MeHg VCFs increased with increasing chloride concentration from 0.47 to 470 mM, indicating that MeHg bioaccumulation is enhanced under conditions that facilitate membrane permeability by the formation of neutral MeHgCl species. Overall results suggest that the size distributions of the planktonic community as well as the seawater chemistry affect MeHg bioaccumulation by marine phytoplankton.

  8. Unusual phytoplankton bloom phenology in the northern Greenland Sea during 2010

    NASA Astrophysics Data System (ADS)

    Qu, Bo; Gabric, Albert J.; Lu, Zhifeng; Li, Hehe; Zhao, Li

    2016-12-01

    Arctic marine ecosystems are disproportionately impacted by global warming. Sea ice plays an important role in the regional climate system and the loss of perennial sea ice has diverse ecological implications. Here we investigate the causes of an unusually early and strong phytoplankton bloom in the northern Greenland Sea (20°W-10°E, 75°N-80°N) during the 2010 season. In order to better understand the anomalous bloom in 2010, we examine the correlation between satellite-derived biomass and several possible environmental factors for the period 2003-2012. Results show that the timing of sea ice melt played an important role in promoting the growth of phytoplankton. Multivariate lagged regression analysis shows that phytoplankton biomass (CHL) is correlated with ice concentration (ICE) and ice melting, as well as sea surface temperature (SST) and photosynthetically active radiation (PAR). During 2010, the spring peak in biomass came much earlier and achieved a higher value than most other years in the satellite archive record, which was due to earlier and more extensive sea ice melt in that year. Relative lower SST and PAR in spring and early summer in year 2010 associated with a persistent negative North Atlantic Oscillation (NAO) index were possible drivers of the bloom. Wind direction changed from the southeast to southwest direction in spring, possibly transporting nutrient enriched melt runoff from glaciers on Greenland and other sources from the south to northern coastal regions.

  9. Responding to flow: How phytoplankton adapt migration strategies to tackle turbulence

    NASA Astrophysics Data System (ADS)

    Sengupta, Anupam; Carrara, Francesco; Stocker, Roman

    2014-11-01

    Phytoplankton are among the ocean's most important organisms and it has long been recognized that turbulence is a primary determinant of their fitness. Yet, mechanisms by which phytoplankton may adapt to turbulence have remained unknown. We present experiments that demonstrate how phytoplankton are capable of rapid adaptive behavior in response to fluid flow disturbances that mimic turbulence. Our study organism was the toxic marine alga Heterosigma akashiwo, known to exhibit ``negative gravitaxis,'' i . e . , to frequently migrate upwards against gravity. To mimic the effect of Kolmogorov-scale turbulent eddies, which expose cells to repeated reorientations, we observed H. akashiwo in a ``flip chamber,'' whose orientation was periodically flipped. Tracking of single cells revealed a striking, robust behavioral adaptation, whereby within tens of minutes half of the population reversed its direction of migration to swim downwards, demonstrating an active response to fluid flow. Using confocal microscopy, we provide a physiological rationalization of this behavior in terms of the redistribution of internal organelles, and speculate on the motives for this bet-hedging-type strategy. This work suggests that the effects of fluid flow - not just passive but also active - on plankton represents a rich area of investigation with considerable implications for some of earth's most important organisms.

  10. Eutrophication Increases Phytoplankton Methylmercury Concentrations in a Coastal Sea-A Baltic Sea Case Study.

    PubMed

    Soerensen, Anne L; Schartup, Amina T; Gustafsson, Erik; Gustafsson, Bo G; Undeman, Emma; Björn, Erik

    2016-11-01

    Eutrophication is expanding worldwide, but its implication for production and bioaccumulation of neurotoxic monomethylmercury (MeHg) is unknown. We developed a mercury (Hg) biogeochemical model for the Baltic Sea and used it to investigate the impact of eutrophication on phytoplankton MeHg concentrations. For model evaluation, we measured total methylated Hg (MeHgT) in the Baltic Sea and found low concentrations (39 ± 16 fM) above the halocline and high concentrations in anoxic waters (1249 ± 369 fM). To close the Baltic Sea MeHgT budget, we inferred an average normoxic water column Hg(II) methylation rate constant of 2 × 10(-4) d(-1). We used the model to compare Baltic Sea's present-day (2005-2014) eutrophic state to an oligo/mesotrophic scenario. Eutrophication increases primary production and export of organic matter and associated Hg to the sediment effectively removing Hg from the active biogeochemical cycle; this results in a 27% lower present-day water column Hg reservoir. However, increase in organic matter production and remineralization stimulates microbial Hg methylation resulting in a seasonal increase in both water and phytoplankton MeHg reservoirs above the halocline. Previous studies of systems dominated by external MeHg sources or benthic production found eutrophication to decrease MeHg levels in plankton. This Baltic Sea study shows that in systems with MeHg production in the normoxic water column eutrophication can increase phytoplankton MeHg content.

  11. Stoichiometry is crucial for modelling phytoplankton coexistence

    NASA Astrophysics Data System (ADS)

    Göthlich, Lena; Oschlies, Andreas

    2010-05-01

    Owing to global warming, conditions in the pelagial are expected to change significantly. Rising temperatures will trigger shoaling of mixed layer depths, leading to increased light intensity and decreased nutrient supply. Adaptations of the pelagic ecosystems may include shifts in phytoplankton community composition, such as shifting dominance towards species tolerating more light and heat and/or lower nutrient concentrations, as well as changes in the extents of biogeochemical provinces and corresponding distributions of species abundances. Modelling adaptive responses to climate change requires representing phytoplankton biodiversity in global biogeochemical models. Modelling several species over longer time scales has proven to be difficult, since one species will usually outcompete all others, especially in oligotrophic areas, where the system is almost in equilibrium, resembling a chemostat. The R* concept as part of Tilman's resource competition theory (D Tilman, Am. Nat. 1980, Vol 116(3) pp. 362-393) predicts that for any given limiting resource, only the species with the lowest requirement for that resource will survive: In equilibrium, a monoculture of any species will reduce the concentration of its limiting resource to the lowest concentration allowing for its survival (R*), such that growth rate equals losses. In a multi-species assemblage, the species requiring the lowest resource concentration to survive will set the equilibrium resource concentration to its R*, which however is too low to allow for any other species to survive. The R* concept implies that in equilibrium, there can be at maximum one species for every given limiting resource. Thus, including several potentially limiting resources and parameterising the phytoplankton species such that each species is limited by a different resource, i.e. each species has the highest requirement for one resource among all species, is a necessary condition for the existence of an equilibrium including

  12. Phytoplankton-Fluorescence-Lifetime Vertical Profiler

    NASA Technical Reports Server (NTRS)

    Fernandez, Salvador M.; Guignon, Ernest F.; St. Louis, Ernest

    2004-01-01

    A battery-operated optoelectronic instrument is designed to be lowered into the ocean to measure the intensity and lifetime of fluorescence of chlorophyll A in marine phytoplankton as a function of depth from 0 to 300 m. Fluorescence lifetimes are especially useful as robust measures of photosynthetic productivity of phytoplankton and of physical and chemical mechanisms that affect photosynthesis. The knowledge of photosynthesis in phytoplankton gained by use of this and related instruments is expected to contribute to understanding of global processes that control the time-varying fluxes of carbon and associated biogenic elements in the ocean. The concentration of chlorophyll in the ocean presents a major detection challenge because in order to obtain accurate values of photosynthetic parameters, the intensity of light used to excite fluorescence must be kept very low so as not to disturb the photosynthetic system. Several innovations in fluorometric instrumentation were made in order to make it possible to reach the required low detection limit. These innovations include a highly efficient optical assembly with an integrated flow-through sample interface, and a high-gain, low-noise electronic detection subsystem. The instrument also incorporates means for self-calibration during operation, and electronic hardware and software for control, acquisition and analysis of data, and communications. The electronic circuitry is highly miniaturized and designed to minimize power demand. The instrument is housed in a package that can withstand the water pressure at the maximum depth of 300 m. A light-emitting diode excites fluorescence in the sample flow cell, which is placed at one focal point of an ellipsoidal reflector. A photomultiplier tube is placed at the other focal point. This optical arrangement enables highly efficient collection of fluorescence emitted over all polar directions. Fluorescence lifetime is measured indirectly, by use of a technique based on the

  13. Phytoplankton off the Coast of Washington State

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Clear weather over the Pacific Northwest yesterday gave the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) a good view of this mountain region of the United States. Also, there are several phytoplankton blooms visible offshore. The white areas hugging the California coastline toward the bottom of the image are low-level stratus clouds. SeaWiFS acquired this true-color scene on October 3, 2001. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  14. Iron from melting glaciers fuels phytoplankton blooms in the Amundsen Sea (Southern Ocean): Phytoplankton characteristics and productivity

    NASA Astrophysics Data System (ADS)

    Alderkamp, Anne-Carlijn; Mills, Matthew M.; van Dijken, Gert L.; Laan, Patrick; Thuróczy, Charles-Edouard; Gerringa, Loes J. A.; de Baar, Hein J. W.; Payne, Christopher D.; Visser, Ronald J. W.; Buma, Anita G. J.; Arrigo, Kevin R.

    2012-09-01

    The phytoplankton community composition and productivity in waters of the Amundsen Sea and surrounding sea ice zone were characterized with respect to iron (Fe) input from melting glaciers. High Fe input from glaciers such as the Pine Island Glacier, and the Dotson and Crosson ice shelves resulted in dense phytoplankton blooms in surface waters of Pine Island Bay, Pine Island Polynya, and Amundsen Polynya. Phytoplankton biomass distribution was the opposite of the distribution of dissolved Fe (DFe), confirming the uptake of glacial DFe in surface waters by phytoplankton. Phytoplankton biomass in the polynyas ranged from 0.6 to 14 μg Chl a L-1, with lower biomass at glacier sites where strong upwelling of Modified Circumpolar Deep Water from beneath glacier tongues was observed. Phytoplankton blooms in the polynyas were dominated by the haptophyte Phaeocystis antarctica, whereas the phytoplankton community in the sea ice zone was a mix of P. antarctica and diatoms, resembling the species distribution in the Ross Sea. Water column productivity based on photosynthesis versus irradiance characteristics averaged 3.00 g C m-2 d-1 in polynya sites, which was approximately twice as high as in the sea ice zone. The highest water column productivity was observed in the Pine Island Polynya, where both thermally and salinity stratified waters resulted in a shallow surface mixed layer with high phytoplankton biomass. In contrast, new production based on NO3 uptake was similar between different polynya sites, where a deeper UML in the weakly, thermally stratified Pine Island Bay resulted in deeper NO3 removal, thereby offsetting the lower productivity at the surface. These are the first in situ observations that confirm satellite observations of high phytoplankton biomass and productivity in the Amundsen Sea. Moreover, the high phytoplankton productivity as a result of glacial input of DFe is the first evidence that melting glaciers have the potential to increase phytoplankton

  15. A prospective study of marine phytoplankton and reported ...

    EPA Pesticide Factsheets

    BACKGROUND: Blooms of marine phytoplankton may adversely affect human health. The potential public health impact of low-level exposures is not well established, and few prospective cohort studies of recreational exposures to marine phytoplankton have been conducted.OBJECTIVE: We evaluated the association between phytoplankton cell counts and subsequent illness among recreational beachgoers.METHODS:We recruited beachgoers at Boquer6n Beach, Puerto Rico, during the summer of 2009. We conducted interviews at three time points to assess baseline health, water activities, and subsequent illness. Daily water samples were quantitatively assayed for phytoplankton cell count. Logistic regression models, adjusted for age and sex, were used to assess the association between exposure to three categories of phytoplankton concentration and subsequent illness.RESULTS: During 26 study days, 15,726 individuals successfully completed all three interviews. Daily total phytoplankton cell counts ranged from 346 to 2,012 cells/ml (median, 712 cells/ml). The category with the highest (≥75th percentile) total phytoplankton cell count was associated with eye irritation [adjusted odds ratio (OR) = 1.30; 95% confidence interval (Cl): 1.01, 1.66], rash (OR = 1.27; 95% Cl: 1.02, 1.57), and earache (OR = 1.25; 95% Cl: 0.88, 1.77). In phytoplankton group-specific analyses, the category with the highest Cyanobacteria counts was associated with respiratory illness (OR = 1.37; 95% Cl: 1.12, 1

  16. PHYTOPLANKTON DEPOSITION TO CHESAPEAKE BAY SEDIMENTS DURING WINTER-SPRING

    EPA Science Inventory

    The often rapid deposition of phytoplankton to sediments at the conclusion of the spring phytoplankton bloom is an important component of benthic-pelagic coupling in temperate and high latitude estuaries and other aquatic systems. However, quantifying the flux is difficult, parti...

  17. Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Le Quéré, Corinne; Buitenhuis, Erik T.; Moriarty, Róisín; Alvain, Séverine; Aumont, Olivier; Bopp, Laurent; Chollet, Sophie; Enright, Clare; Franklin, Daniel J.; Geider, Richard J.; Harrison, Sandy P.; Hirst, Andrew G.; Larsen, Stuart; Legendre, Louis; Platt, Trevor; Prentice, I. Colin; Rivkin, Richard B.; Sailley, Sévrine; Sathyendranath, Shubha; Stephens, Nick; Vogt, Meike; Vallina, Sergio M.

    2016-07-01

    Global ocean biogeochemistry models currently employed in climate change projections use highly simplified representations of pelagic food webs. These food webs do not necessarily include critical pathways by which ecosystems interact with ocean biogeochemistry and climate. Here we present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types (PFTs): six types of phytoplankton, three types of zooplankton, and heterotrophic procaryotes. We improved the representation of zooplankton dynamics in our model through (a) the explicit inclusion of large, slow-growing macrozooplankton (e.g. krill), and (b) the introduction of trophic cascades among the three zooplankton types. We use the model to quantitatively assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean high-nutrient low-chlorophyll (HNLC) region during summer. When model simulations do not include macrozooplankton grazing explicitly, they systematically overestimate Southern Ocean chlorophyll biomass during the summer, even when there is no iron deposition from dust. When model simulations include a slow-growing macrozooplankton and trophic cascades among three zooplankton types, the high-chlorophyll summer bias in the Southern Ocean HNLC region largely disappears. Our model results suggest that the observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community, despite iron limitation of phytoplankton community growth rates. This result has implications for the representation of global biogeochemical cycles in models as zooplankton faecal pellets sink rapidly and partly control the carbon export to the intermediate and deep ocean.

  18. Using LANDSAT to expand the historical record of phytoplankton blooms in Lake Erie

    NASA Astrophysics Data System (ADS)

    Ho, J. C.; Michalak, A. M.; Stumpf, R. P.; Bridgeman, T. B.

    2014-12-01

    Freshwater harmful algal blooms are occurring with increasing frequency worldwide, intensifying the need for deeper understanding of the processes driving bloom formation. Such understanding is a prerequisite for developing management strategies for limiting bloom occurrence. Unfortunately, however, data for developing robust predictive models of bloom formation are lacking. Even in the well-studied Lake Erie, where diatom and cyanobacteria blooms have occurred for several decades in the Western Basin, previous in-situ and remote-sensing data collection efforts have been hampered by spatial and temporal sampling limitations, resulting in a sparse historical record. Leveraging available data to expand the historical record of algal blooms would thus make it possible to better evaluate hypotheses about factors influencing bloom formation. In this work, remotely-sensed observations of phytoplankton obtained using LANDSAT imagery are presented for 1984-2011. Several phytoplankton detection algorithms based on LANDSAT 5 imagery are evaluated during the period also covered by MERIS (2002-2011), which offers a relatively detailed assessment of bloom occurrence over the last decade. The best algorithm is then applied to historical LANDSAT data, and results are used to obtain new information about historical conditions and assess implications for developing improved models of bloom formation. Estimates of historical bloom occurrence and bloom seasonality shed new light on the widely-held view that phosphorus controls and invasive mussels resulted in substantial bloom reductions in the early 1990s. The new estimated records are not consistent with limited in-situ phytoplankton measurements from that period, and provide additional information on bloom occurrence during years with little to no supporting literature. This work demonstrates the potential to unearth new insights about historical phytoplankton blooms in Lake Erie, as well as in freshwater lakes broadly, and is a

  19. Heterotrophic bacterial responses to the winter-spring phytoplankton bloom in open waters of the NW Mediterranean

    NASA Astrophysics Data System (ADS)

    Gomes, Ana; Gasol, Josep M.; Estrada, Marta; Franco-Vidal, Leticia; Díaz-Pérez, Laura; Ferrera, Isabel; Morán, Xosé Anxelu G.

    2015-02-01

    The response of planktonic heterotrophic prokaryotes to the NW Mediterranean winter-spring offshore phytoplankton bloom was assessed in 3 cruises conducted in March, April-May and September 2009. Bulk measurements of phytoplankton and bacterioplankton biomass and production were complemented with an insight into bacterial physiological structure by single-cell analysis of nucleic acid content [low (LNA) vs. high (HNA)] and membrane integrity ("Live" vs. "Dead" cells). Bacterial production empirical conversion factors (0.82±0.25 SE kg C mol leucine-1) were almost always well below the theoretical value. Major differences in most microbial variables were found among the 3 periods, which varied from extremely high phytoplankton biomass and production during the bloom in March (>1 g C m-2 d-1 primary production) to typically oligotrophic conditions during September stratification (<200 mg C m-2 d-1). In both these periods bacterial production was ~30 mg C m-2 d-1 while very large bacterial production (mean 228, with some stations exceeding 500 mg C m-2 d-1) but low biomass was observed during the April-May post-bloom phase. The contribution of HNA (30-67%) and "Live" cells (47-97%) were temporally opposite in the study periods, with maxima in March and September, respectively. Different relationships were found between physiological structure and bottom-up variables, with HNA bacteria apparently more responsive to phytoplankton only during the bloom, coinciding with larger average cell sizes of LNA bacteria. Moderate phytoplankton-bacterioplankton coupling of biomass and activity was only observed in the bloom and post-bloom phases, while relationships between both compartments were not significant under stratification. With all data pooled, bacteria were only weakly bottom-up controlled. Our analyses show that the biomass and production of planktonic algae and bacteria followed opposite paths in the transition from bloom to oligotrophic conditions.

  20. Global biodiversity patterns of marine phytoplankton and zooplankton.

    PubMed

    Irigoien, Xabier; Huisman, Jef; Harris, Roger P

    2004-06-24

    Although the oceans cover 70% of the Earth's surface, our knowledge of biodiversity patterns in marine phytoplankton and zooplankton is very limited compared to that of the biodiversity of plants and herbivores in the terrestrial world. Here, we present biodiversity data for marine plankton assemblages from different areas of the world ocean. Similar to terrestrial vegetation, marine phytoplankton diversity is a unimodal function of phytoplankton biomass, with maximum diversity at intermediate levels of phytoplankton biomass and minimum diversity during massive blooms. Contrary to expectation, we did not find a relation between phytoplankton diversity and zooplankton diversity. Zooplankton diversity is a unimodal function of zooplankton biomass. Most strikingly, these marine biodiversity patterns show a worldwide consistency, despite obvious differences in environmental conditions of the various oceanographic regions. These findings may serve as a new benchmark in the search for global biodiversity patterns of plants and herbivores.

  1. [Early growth of phytoplankton community in Dianshan Lake].

    PubMed

    Cheng, Xi; Li, Xiao-Ping

    2011-11-01

    Seasonal variation of phytoplankton community biomass (Chla) in Dianshan Lake was simulated based on data of 2004-2009. The result showed that early growths of the phytoplankton community in spring and summer seasons could be well described by the Logistic growth model. General speaking, phytoplankton community dominated by diatom and green algae may enter its exponential phase in the late February, doubling its density within 18 days, and reaching its maximum growth rate of 29.4 microg x (L x month) (-1) in the middle of March, blooming in June. Phytoplankton community dominated by blue green algae may enter its exponential phase in the middle June, doubling its density within 26 days, and reaching its maximum growth rate of 22.8 microg x (L x month) (-1) in the middle of July, blooming during August-September. The general pattern of early growth of phytoplankton community may offer sound information for early warning and prevention of algal bloom.

  2. A Fluorescent Live Imaging Screening Assay Based on Translocation Criteria Identifies Novel Cytoplasmic Proteins Implicated in G Protein-coupled Receptor Signaling Pathways.

    PubMed

    Lecat, Sandra; Matthes, Hans W D; Pepperkok, Rainer; Simpson, Jeremy C; Galzi, Jean-Luc

    2015-05-01

    Several cytoplasmic proteins that are involved in G protein-coupled receptor signaling cascades are known to translocate to the plasma membrane upon receptor activation, such as beta-arrestin2. Based on this example and in order to identify new cytoplasmic proteins implicated in the ON-and-OFF cycle of G protein-coupled receptor, a live-imaging screen of fluorescently labeled cytoplasmic proteins was performed using translocation criteria. The screening of 193 fluorescently tagged human proteins identified eight proteins that responded to activation of the tachykinin NK2 receptor by a change in their intracellular localization. Previously we have presented the functional characterization of one of these proteins, REDD1, that translocates to the plasma membrane. Here we report the results of the entire screening. The process of cell activation was recorded on videos at different time points and all the videos can be visualized on a dedicated website. The proteins BAIAP3 and BIN1, partially translocated to the plasma membrane upon activation of NK2 receptors. Proteins ARHGAP12 and PKM2 translocated toward membrane blebs. Three proteins that associate with the cytoskeleton were of particular interest : PLEKHH2 rearranged from individual dots located near the cell-substrate adhesion surface into lines of dots. The speriolin-like protein, SPATC1L, redistributed to cell-cell junctions. The Chloride intracellular Channel protein, CLIC2, translocated from actin-enriched plasma membrane bundles to cell-cell junctions upon activation of NK2 receptors. CLIC2, and one of its close paralogs, CLIC4, were further shown to respond with the same translocation pattern to muscarinic M3 and lysophosphatidic LPA receptors. This screen allowed us to identify potential actors in signaling pathways downstream of G protein-coupled receptors and could be scaled-up for high-content screening.

  3. Alpine Lake Phytoplankton Responses to the 2002 Drought in Colorado

    NASA Astrophysics Data System (ADS)

    Flanagan, C. M.

    2005-05-01

    Because the hydrologic regime of alpine catchments is dominated by snow melt, their terrestrial and aquatic ecosystems are extremely sensitive to physical and climatic fluctuations in the amount of snow and timing of snowmelt. The drought of 2002 in Colorado was the most extreme drought of the past 100 years of record for the state. Measured at the outflow of Green Lake 4, an alpine lake in Green Lake Valley, located within the Niwot Ridge Long Term Ecological Research (LTER) site in the Front Range of Colorado, the 2002 drought resulted in snowmelt discharge that was just 60% of recent historical averages for stream discharge. We examined how the drought affected the phytoplankton population in this alpine lake. Algal biomass was quantified and samples for community composition analysis were collected during the summers of 2000, 2001 and 2002. The results of the statistical comparison indicate a significant increase in total density of algal cells, possibly caused by drought-induced factors such as earlier ice-out and hence higher irradiance, higher hydraulic residence time and lower wash-outs, plus higher surface water temperatures. Species in three divisions, Bacillariophyta, Chlorophyta and Cyanophyta, showed significant responses. A principal components analysis confirmed a shift in the community composition during the drought. Although based on only three seasons of monitoring data, these results may foreshadow climate change and implicate subsequent biological effects in high altitude watersheds.

  4. Toxicity of atmospheric aerosols on marine phytoplankton

    PubMed Central

    Paytan, Adina; Mackey, Katherine R. M.; Chen, Ying; Lima, Ivan D.; Doney, Scott C.; Mahowald, Natalie; Labiosa, Rochelle; Post, Anton F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus. We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere–ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia. PMID:19273845

  5. Dynamic model of flexible phytoplankton nutrient uptake

    PubMed Central

    Bonachela, Juan A.; Raghib, Michael; Levin, Simon A.

    2011-01-01

    The metabolic machinery of marine microbes can be remarkably plastic, allowing organisms to persist under extreme nutrient limitation. With some exceptions, most theoretical approaches to nutrient uptake in phytoplankton are largely dominated by the classic Michaelis–Menten (MM) uptake functional form, whose constant parameters cannot account for the observed plasticity in the uptake apparatus. Following seminal ideas by earlier researchers, we propose a simple cell-level model based on a dynamic view of the uptake process whereby the cell can regulate the synthesis of uptake proteins in response to changes in both internal and external nutrient concentrations. In our flexible approach, the maximum uptake rate and nutrient affinity increase monotonically as the external nutrient concentration decreases. For low to medium nutrient availability, our model predicts uptake and growth rates larger than the classic MM counterparts, while matching the classic MM results for large nutrient concentrations. These results have important consequences for global coupled models of ocean circulation and biogeochemistry, which lack this regulatory mechanism and are thus likely to underestimate phytoplankton abundances and growth rates in oligotrophic regions of the ocean. PMID:22143781

  6. Title: Freshwater phytoplankton responses to global warming.

    PubMed

    Wagner, Heiko; Fanesi, Andrea; Wilhelm, Christian

    2016-09-20

    Global warming alters species composition and function of freshwater ecosystems. However, the impact of temperature on primary productivity is not sufficiently understood and water quality models need to be improved in order to assess the quantitative and qualitative changes of aquatic communities. On the basis of experimental data, we demonstrate that the commonly used photosynthetic and water chemistry parameters alone are not sufficient for modeling phytoplankton growth under changing temperature regimes. We present some new aspects of the acclimation process with respect to temperature and how contrasting responses may be explained by a more complete physiological knowledge of the energy flow from photons to new biomass. We further suggest including additional bio-markers/traits for algal growth such as carbon allocation patterns to increase the explanatory power of such models. Although carbon allocation patterns are promising and functional cellular traits for growth prediction under different nutrient and light conditions, their predictive power still waits to be tested with respect to temperature. A great challenge for the near future will be the prediction of primary production efficiencies under the global change scenario using a uniform model for phytoplankton assemblages.

  7. Toxicity of atmospheric aerosols on marine phytoplankton

    USGS Publications Warehouse

    Paytan, A.; Mackey, K.R.M.; Chen, Y.; Lima, I.D.; Doney, S.C.; Mahowald, N.; Labiosa, R.; Post, A.F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus.We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.

  8. A simple optical index shows spatial and temporal heterogeneity in phytoplankton community composition during the 2008 North Atlantic Bloom Experiment

    NASA Astrophysics Data System (ADS)

    Cetinić, I.; Perry, M. J.; D'Asaro, E.; Briggs, N.; Poulton, N.; Sieracki, M. E.; Lee, C. M.

    2015-04-01

    The ratio of two in situ optical measurements - chlorophyll fluorescence (Chl F) and optical particulate backscattering (bbp) - varied with changes in phytoplankton community composition during the North Atlantic Bloom Experiment in the Iceland Basin in 2008. Using ship-based measurements of Chl F, bbp, chlorophyll a (Chl), high-performance liquid chromatography (HPLC) pigments, phytoplankton composition and carbon biomass, we found that oscillations in the ratio varied with changes in plankton community composition; hence we refer to Chl F/bbp as an "optical community index". The index varied by more than a factor of 2, with low values associated with pico- and nanophytoplankton and high values associated with diatom-dominated phytoplankton communities. Observed changes in the optical index were driven by taxa-specific chlorophyll-to-autotrophic carbon ratios and by physiological changes in Chl F associated with the silica limitation. A Lagrangian mixed-layer float and four Seagliders, operating continuously for 2 months, made similar measurements of the optical community index and followed the evolution and later demise of the diatom spring bloom. Temporal changes in optical community index and, by implication, the transition in community composition from diatom to post-diatom bloom communities were not simultaneous over the spatial domain surveyed by the ship, float and gliders. The ratio of simple optical properties measured from autonomous platforms, when carefully validated, provides a unique tool for studying phytoplankton patchiness on extended temporal scales and ecologically relevant spatial scales and should offer new insights into the processes regulating patchiness.

  9. Phytoplankton and the Macondo oil spill: A comparison of the 2010 phytoplankton assemblage to baseline conditions on the Louisiana shelf.

    PubMed

    Parsons, M L; Morrison, W; Rabalais, N N; Turner, R E; Tyre, K N

    2015-12-01

    The Macondo oil spill was likely the largest oil spill to ever occur in United States territorial waters. We report herein our findings comparing the available baseline phytoplankton data from coastal waters west of the Mississippi River, and samples collected monthly from the same sampling stations, during and after the oil spill (May-October, 2010). Our results indicate that overall, the phytoplankton abundance was 85% lower in 2010 versus the baseline, and that the species composition of the phytoplankton community moved towards diatoms and cyanobacteria and away from ciliates and phytoflagellates. The results of this study reaffirm the view that phytoplankton responses will vary by the seasonal timing of the oil spill and the specific composition of the spilled oil. The trophic impacts of the purported lower abundance of phytoplankton in 2010 coupled with the observed assemblage shift remain unknown.

  10. Phytoplankton succession in the Ob-Yenisei Shallow zone of the Kara Sea based on Russian databases

    NASA Astrophysics Data System (ADS)

    Makarevich, P. R.; Larionov, V. V.; Moiseev, D. V.

    2015-07-01

    Here, data about the taxonomic composition and spatial distribution of planktonic microalgae in the Ob Bay and the southern Kara Sea in north Russia were analyzed during all hydrological seasons over 11 years (1996-2006). Data were obtained through detailed in situ observations. These data are part of our arctic phytoplankton database. Phytoplankton inhabiting the near shore continental area of the Kara Sea exhibited four phases in the annual succession cycle: a prevernal phase (cryoflora bloom), a vernal phase (ice-edge bloom), a summer-fall phase (mixed synthesis phase), and a winter phase (dormant phase). These phases were clearly differentiated based on the composition of dominant phytoplankton species complexes and quantitative characteristics (i.e., microalgal number and biomass). In the study region, which is completely covered by ice for most of the year (from October to June), the process of primary production begins at the same time as in ice-free coastal areas. Sub-ice blooming and growth of cryoflora initiate beneath the ice cover, long before it breaks down. In addition, from July to October, high phytoplankton biomass was recorded in Ob Bay and in areas adjacent to the Ob-Yenisei shallows. This information provides quantitative evidence for the higher productivity of waters off the Obestuary, compared to other coastal areas in the Kara Sea. The main factor responsible for this phenomenon is the permanent (during the warm season) transport of living and dead organic matter by river runoff to shelf waters.

  11. Phytoplankton. The fate of photons absorbed by phytoplankton in the global ocean.

    PubMed

    Lin, Hanzhi; Kuzminov, Fedor I; Park, Jisoo; Lee, SangHoon; Falkowski, Paul G; Gorbunov, Maxim Y

    2016-01-15

    Solar radiation absorbed by marine phytoplankton can follow three possible paths. By simultaneously measuring the quantum yields of photochemistry and chlorophyll fluorescence in situ, we calculate that, on average, ~60% of absorbed photons are converted to heat, only 35% are directed toward photochemical water splitting, and the rest are reemitted as fluorescence. The spatial pattern of fluorescence yields and lifetimes strongly suggests that photochemical energy conversion is physiologically limited by nutrients. Comparison of in situ fluorescence lifetimes with satellite retrievals of solar-induced fluorescence yields suggests that the mean values of the latter are generally representative of the photophysiological state of phytoplankton; however, the signal-to-noise ratio is unacceptably low in extremely oligotrophic regions, which constitute 30% of the open ocean.

  12. Phytoplankton size impact on export flux in the global ocean

    NASA Astrophysics Data System (ADS)

    Mouw, Colleen B.; Barnett, Audrey; McKinley, Galen A.; Gloege, Lucas; Pilcher, Darren

    2016-10-01

    Efficiency of the biological pump of carbon to the deep ocean depends largely on biologically mediated export of carbon from the surface ocean and its remineralization with depth. Global satellite studies have primarily focused on chlorophyll concentration and net primary production (NPP) to understand the role of phytoplankton in these processes. Recent satellite retrievals of phytoplankton composition now allow for the size of phytoplankton cells to be considered. Here we improve understanding of phytoplankton size structure impacts on particle export, remineralization, and transfer. A global compilation of particulate organic carbon (POC) flux estimated from sediment traps and 234Th are utilized. Annual climatologies of NPP, percent microplankton, and POC flux at four time series locations and within biogeochemical provinces are constructed. Parameters that characterize POC flux versus depth (export flux ratio, labile fraction, and remineralization length scale) are fit for time series locations, biogeochemical provinces, and times of the year dominated by small and large phytoplankton cells where phytoplankton cell size show enough dynamic range over the annual cycle. Considering all data together, our findings support the idea of high export flux but low transfer efficiency in productive regions and vice versa for oligotrophic regions. However, when parsing by dominant size class, we find periods dominated by small cells to have both greater export flux efficiency and lower transfer efficiency than periods when large cells comprise a greater proportion of the phytoplankton community.

  13. [Phytoplankton community structure and eutrophication risk assessment of Beijiang River].

    PubMed

    Gou, Ting; Ma, Qian-Li; Xu, Zhen-Cheng; Wang, Li; Li, Jie; Zhao, Xue-Min

    2015-03-01

    To study the distribution of phytoplankton and water quality of Beijiang River, the community structure of phytoplankton was investigated and analyzed in wet and dry seasons. The results showed that a total of 74 species belonging to six phyla, 29 family and 48 genera of phytoplankton were identified, including 58 species of five phyla, 23 family and 41 genera in wet season and 59 species of six phyla, 26 family and 40 genera in dry season. Phytoplankton community structure in Beijiang River was represented by Bacillariophyta, Chlorophyta and Cyanophyta. Bacillariophyta dominanted the phytoplankton, and the dominant species were Aulacoseira granulate, Fragilaria virescens, Surirella biseriata, Nitzschia amphibia, Navicula simplex, Cyclotella meneghiniana, Synedra ulna, Gomphonema angustatum and Cymbella tumida. There was little difference in phytoplankton density between both seasons with the mean values being 3.54 x 10(5) and 4.87 x 10(5) cells L(-1) in dry and wet seasons, respectively. Based on the RDA results, DO, permanganate index, nitrogen and phosphorus were the important environmental factors affecting the distribution of phytoplankton in Beijiang River. The water quality of Beijiang River was classified as oligo-mesotrophic level even if this river was subjected to nitrogen and phosphorus pollution mainly from agricultural non-point source.

  14. Pigment signatures of phytoplankton communities in the Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Coupel, P.; Matsuoka, A.; Ruiz-Pino, D.; Gosselin, M.; Claustre, H.; Marie, D.; Tremblay, J.-É.; Babin, M.

    2014-10-01

    Phytoplankton are expected to respond to recent environmental changes of the Arctic Ocean. In terms of bottom-up control, modifying the phytoplankton distribution will ultimately affect the entire food web and carbon export. However, detecting and quantifying change in phytoplankton communities in the Arctic Ocean remains difficult because of the lack of data and the inconsistent identification methods used. Based on pigment and microscopy data sampled in the Beaufort Sea during summer 2009, we optimized the chemotaxonomic tool CHEMTAX for the assessment of phytoplankton community composition in an Arctic setting. The geographical distribution of the main phytoplankton groups was determined with clustering methods. Four phytoplankton assemblages were determined and related to bathymetry, nutrients and light availability. Surface waters across the whole survey region were dominated by prasinophytes and chlorophytes, whereas the subsurface chlorophyll maximum was dominated by the centric diatoms Chaetoceros socialis on the shelf and by two populations of nanoflagellates in the deep basin. Microscopic count showed a high contribution of the heterotrophic dinoflagellates Gymnodinium and Gyrodinium spp. to total carbon biomass, suggesting high grazing activity at this time of the year. However, CHEMTAX was unable to detect these dinoflagellates because they lack peridinin. The inclusion in heterotrophic dinoflagellates of the pigments of their prey potentially leads to incorrect group assignments and some misinterpretation of CHEMTAX. Thanks to the high reproducibility of pigment analysis, our results can serve as a baseline to assess change and spatial or temporal variability in phytoplankton populations.

  15. Pigment signatures of phytoplankton communities in the Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Coupel, P.; Matsuoka, A.; Ruiz-Pino, D.; Gosselin, M.; Marie, D.; Tremblay, J.-É.; Babin, M.

    2015-02-01

    Phytoplankton are expected to respond to recent environmental changes of the Arctic Ocean. In terms of bottom-up control, modifying the phytoplankton distribution will ultimately affect the entire food web and carbon export. However, detecting and quantifying changes in phytoplankton communities in the Arctic Ocean remains difficult because of the lack of data and the inconsistent identification methods used. Based on pigment and microscopy data sampled in the Beaufort Sea during summer 2009, we optimized the chemotaxonomic tool CHEMTAX (CHEMical TAXonomy) for the assessment of phytoplankton community composition in an Arctic setting. The geographical distribution of the main phytoplankton groups was determined with clustering methods. Four phytoplankton assemblages were determined and related to bathymetry, nutrients and light availability. Surface waters across the whole survey region were dominated by prasinophytes and chlorophytes, whereas the subsurface chlorophyll maximum was dominated by the centric diatoms Chaetoceros socialis on the shelf and by two populations of nanoflagellates in the deep basin. Microscopic counts showed a high contribution of the heterotrophic dinoflagellates Gymnodinium and Gyrodinium spp. to total carbon biomass, suggesting high grazing activity at this time of the year. However, CHEMTAX was unable to detect these dinoflagellates because they lack peridinin. In heterotrophic dinoflagellates, the inclusion of the pigments of their prey potentially leads to incorrect group assignments and some misinterpretation of CHEMTAX. Thanks to the high reproducibility of pigment analysis, our results can serve as a baseline to assess change and spatial or temporal variability in several phytoplankton populations that are not affected by these misinterpretations.

  16. Influences of sea ice on eastern Bering Sea phytoplankton

    NASA Astrophysics Data System (ADS)

    Zhou, Qianqian; Wang, Peng; Chen, Changping; Liang, Junrong; Li, Bingqian; Gao, Yahui

    2015-03-01

    The influence of sea ice on the species composition and cell density of phytoplankton was investigated in the eastern Bering Sea in spring 2008. Diatoms, particularly pennate diatoms, dominated the phytoplankton community. The dominant species were Grammonema islandica (Grunow in Van Heurck) Hasle, Fragilariopsis cylindrus (Grunow) Krieger, F. oceanica (Cleve) Hasle, Navicula vanhoeffenii Gran, Thalassiosira antarctica Comber, T. gravida Cleve, T. nordenskiöeldii Cleve, and T. rotula Meunier. Phytoplankton cell densities varied from 0.08×104 to 428.8×104 cells/L, with an average of 30.3×104 cells/L. Using cluster analysis, phytoplankton were grouped into three assemblages defined by ice-forming conditions: open water, ice edge, and sea ice assemblages. In spring, when the sea ice melts, the phytoplankton dispersed from the sea ice to the ice edge and even into open waters. Thus, these phytoplankton in the sea ice may serve as a "seed bank" for phytoplankton population succession in the subarctic ecosystem. Moreover, historical studies combined with these results suggest that the sizes of diatom species have become smaller, shifting from microplankton to nannoplankton-dominated communities.

  17. Climate Variability and Phytoplankton in the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Rousseaux, Cecile

    2012-01-01

    The effect of climate variability on phytoplankton communities was assessed for the tropical and sub-tropical Pacific Ocean between 1998 and 2005 using an established biogeochemical assimilation model. The phytoplankton communities exhibited wide range of responses to climate variability, from radical shifts in the Equatorial Pacific, to changes of only a couple of phytoplankton groups in the North Central Pacific, to no significant changes in the South Pacific. In the Equatorial Pacific, climate variability dominated the variability of phytoplankton. Here, nitrate, chlorophyll and all but one of the 4 phytoplankton types (diatoms, cyanobacteria and coccolithophores) were strongly correlated (p<0.01) with the Multivariate El Nino Southern Oscillation Index (MEI). In the North Central Pacific, MEI and chlorophyll were significantly (p<0.01) correlated along with two of the phytoplankton groups (chlorophytes and coccolithophores). Ocean biology in the South Pacific was not significantly correlated with MEI. During La Nina events, diatoms increased and expanded westward along the cold tongue (correlation with MEI, r=-0.81), while cyanobacteria concentrations decreased significantly (r=0.78). El Nino produced the reverse pattern, with cyanobacteria populations increasing while diatoms plummeted. The diverse response of phytoplankton in the different major basins of the Pacific suggests the different roles climate variability can play in ocean biology.

  18. Do high concentrations of microcystin prevent Daphnia control of phytoplankton?

    PubMed

    Chislock, Michael F; Sarnelle, Orlando; Jernigan, Lauren M; Wilson, Alan E

    2013-04-15

    Toxin-producing cyanobacteria have frequently been hypothesized to limit the ability of herbivorous zooplankton (such as Daphnia) to control phytoplankton biomass by inhibiting feeding, and in extreme cases, causing zooplankton mortality. Using limnocorral experiments in hyper-eutrophic ponds located in Alabama and Michigan (U.S.A.), we tested the hypothesis that high levels of cyanobacteria and microcystin, a class of hepatotoxins produced by several cyanobacterial genera, prevent Daphnia from strongly reducing phytoplankton abundance. At the start of the first experiment (Michigan), phytoplankton communities were dominated by toxic Microcystis and Anabaena (∼96% of total phytoplankton biomass), and concentrations of microcystin were ∼3 μg L⁻¹. Two weeks after adding Daphnia pulicaria from a nearby eutrophic lake, microcystin levels increased to ∼6.5 μg L⁻¹, yet Daphnia populations increased exponentially (r = 0.24 day⁻¹). By the third week, Daphnia had suppressed phytoplankton biomass by ∼74% relative to the no Daphnia controls and maintained reduced phytoplankton biomass until the conclusion of the five-week experiment. In the second experiment (Alabama), microcystin concentrations were greater than 100 μg L⁻¹, yet a mixture of three D. pulicaria clones from eutrophic lakes in southern MI increased and again reduced phytoplankton biomass, in this case by over 80%. The ability of Daphnia to increase in abundance and suppress phytoplankton biomass, despite high initial levels of cyanobacteria and microcystin, indicates that the latter does not prevent strong control of phytoplankton biomass by Daphnia genotypes that are adapted to environments with abundant cyanobacteria and associated cyanotoxins.

  19. Observing and modelling phytoplankton community structure in the North Sea

    NASA Astrophysics Data System (ADS)

    Ford, David A.; van der Molen, Johan; Hyder, Kieran; Bacon, John; Barciela, Rosa; Creach, Veronique; McEwan, Robert; Ruardij, Piet; Forster, Rodney

    2017-03-01

    Phytoplankton form the base of the marine food chain, and knowledge of phytoplankton community structure is fundamental when assessing marine biodiversity. Policy makers and other users require information on marine biodiversity and other aspects of the marine environment for the North Sea, a highly productive European shelf sea. This information must come from a combination of observations and models, but currently the coastal ocean is greatly under-sampled for phytoplankton data, and outputs of phytoplankton community structure from models are therefore not yet frequently validated. This study presents a novel set of in situ observations of phytoplankton community structure for the North Sea using accessory pigment analysis. The observations allow a good understanding of the patterns of surface phytoplankton biomass and community structure in the North Sea for the observed months of August 2010 and 2011. Two physical-biogeochemical ocean models, the biogeochemical components of which are different variants of the widely used European Regional Seas Ecosystem Model (ERSEM), were then validated against these and other observations. Both models were a good match for sea surface temperature observations, and a reasonable match for remotely sensed ocean colour observations. However, the two models displayed very different phytoplankton community structures, with one better matching the in situ observations than the other. Nonetheless, both models shared some similarities with the observations in terms of spatial features and inter-annual variability. An initial comparison of the formulations and parameterizations of the two models suggests that diversity between the parameter settings of model phytoplankton functional types, along with formulations which promote a greater sensitivity to changes in light and nutrients, is key to capturing the observed phytoplankton community structure. These findings will help inform future model development, which should be coupled

  20. Seasonal phytoplanktonic diversity of Kitham lake, Agra.

    PubMed

    Tiwari, Ashesh; Chauhan, S V S

    2006-01-01

    Two years (Jan. 2000 - Dec. 2001) data on the seasonal studies of phytoplanktonic diversity of Kitham lake (Sur Sarovar) Agra revealed the presence of 73 algal species. A limited number of these were recorded throughout the year, while others were distributed in different seasons mainly in winter and summer seasons. During winters, Chlorophyceae was the most dominant group followed by Bacillariophyceae. On the other hand, Cyanophyceae and Euglenophyceae were the most dominant during summers. Certain species e.g. Pandorina morum, Pediastrum tetras, Gonium sp., Chlorella vulgaris, Scendesmus quadricauda, Oedogonium cardiocum, Synedra ulna, Oscillatoria agardhii and Euglena gracillis were recorded throughout the year. Chlorella, Stigeoclonium, Pandorina, Micratinium, Oscillatoria, Anacystis, Nitzschia and Cymbella were found to be good indicators of water pollution.

  1. Phytoplankton bloom in the Black Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Brightly colored waters in the Black Sea give evidence of the growth of tiny marine plants called phytoplankton, which contain chlorophyll and other pigments that reflect light different ways, producing the colorful displays. The very bright blue waters could be an organism called a coccolithophores, which has a highly reflective calcium carbonate coating that appears bright blue (or sometimes white) in true-color (visible) imagery. However, other organisms, such as cyanobacteria can also appear that color, and so often scientists will compare the ratios of reflectance at one wavelength of light to another to decide what organisms might be present. This series of images shows a bloom occurring in the Black Sea from May 11, 2002, to May 18.

  2. Genomic insights into photosynthesis in eukaryotic phytoplankton.

    PubMed

    Finazzi, Giovanni; Moreau, Hervé; Bowler, Chris

    2010-10-01

    The evolution of photosynthesis completely altered the biogeochemistry of our planet and permitted the evolution of more complex multicellular organisms. Curiously, terrestrial photosynthesis is carried out largely by green algae and their descendents the higher plants, whereas in the ocean the most abundant photosynthetic eukaryotes are microscopic and have red algal affiliations. Although primary productivity is approximately equal between the land and the ocean, the marine microbes represent less than 1% of the photosynthetic biomass found on land. This review focuses on this highly successful and diverse group of organisms collectively known as phytoplankton and reviews how insights from whole genome analyses have improved our understanding of the novel innovations employed by them to maximize photosynthetic efficiency in variable light environments.

  3. The uptake and bioaccumulation of PCBs by phytoplankton

    SciTech Connect

    Swackhamer, D.L.; Skoglund, R.S.; Stange, K. )

    1990-01-01

    Phytoplankton play a major role in the fate and transport of hydrophobic organic compounds such as polychlorinated biphenyls (PCBs) due to their large biomass, their high lipid content, and their place as the primary step in the aquatic food web. Phytoplankton accumulate PCBs in the water column most likely as a result of water-lipid partitioning, and can pass the contaminants up through the food web by consumers or transport them to bottom waters by sedimentation. The process of PCB uptake and bioaccumulation by phytoplankton has been the focus of our study.

  4. Free-living and particle-associated prokaryote metabolism in giant kelp forests: Implications for carbon flux in a sub-Antarctic coastal area

    NASA Astrophysics Data System (ADS)

    Schapira, Mathilde; McQuaid, Christopher D.; Froneman, Pierre W.

    2012-06-01

    Extensive beds of large subtidal kelps are characteristic of many temperate and subpolar coastlines. They provide habitats for a wide range of other species and are sites of high primary production that generate large quantities of water-borne particles and dissolved organic compounds that support distinctive communities of prokaryotes. We measured prokaryotic metabolism along transects from the shore to the outside of three giant kelp forests (Macrocystis pyrifera) located in the shelf waters of the Prince Edward Islands (Southern Ocean). Abundance, heterotrophic production (PHP), respiration rates (R-ETS) and growth efficiencies (PGE) were investigated within the particle-associated (PA) and the free-living (FL) communities. Temperature, salinity and inorganic nutrient concentrations indicated distinct hydrological differences among the kelp forests that were related to different levels of freshwater input through island run-off. In contrast, detritus and particulate organic matter concentrations showed a common pattern, decreasing from the near-shore to offshore at all sampling sites, suggesting the retention of organically enriched water masses inshore of the kelp forests. While FL and PA abundances did not differ significantly along transects, FL and PA-PHP and PGE all varied significantly across the kelp forests, following the same pattern across each forest. PA-PGE was significantly higher than FL-PGE in the near-shore waters and farther offshore, while FL-PGE was higher or equal to PA-PGE inside the kelp. This shift can be interpreted in terms of gradients in both the age and origins of organic material across the kelp forests. Higher PA-PGE implies that a larger fraction of organic carbon on colonized particles is converted into prokaryotic biomass and so becomes available to higher trophic levels inshore and offshore of M. pyrifera forests than inside the kelp bed. In contrast, low PA-PGE suggests that a large quantity of carbon passes through the PA

  5. Self-care practices and experiences of people living with HIV not receiving antiretroviral therapy in an urban community of Lusaka, Zambia: implications for HIV treatment programmes

    PubMed Central

    2013-01-01

    Background Despite the increasingly wider availability of antiretroviral therapy (ART), some people living with HIV (PLHIV) and eligible for treatment have opted to adopt self-care practices thereby risking early AIDS-related mortality. Methods A qualitative study was conducted in urban Zambia to gain insights into PLHIV self-care practices and experiences and explore the implications for successful delivery of ART care. Between March 2010 and September 2011, in-depth interviews were conducted with PLHIV who had dropped out of treatment (n=25) and those that had opted not to initiate medication (n=37). Data was entered into and managed using Atlas ti, and analysed inductively using latent content analysis. Results PHIV used therapeutic and physical health maintenance, psychological well-being and healthy lifestyle self-care practices to maintain physical health and mitigate HIV-related symptoms. Herbal remedies, faith healing and self-prescription of antibiotics and other conventional medicines to treat HIV-related ailments were used for therapeutic and physical health maintenance purposes. Psychological well-being self-care practices used were religiosity/spirituality and positive attitudes towards HIV infection. These practices were modulated by close social network relationships with other PLHIV, family members and peers, who acted as sources of emotional, material and financial support. Cessations of sexual relationships, adoption of safe sex to avoid re-infections and uptake of nutritional supplements were the commonly used risk reduction and healthy lifestyle practices respectively. Conclusions While these self-care practices may promote physical and psychosocial well-being and mitigate AIDS-related symptoms, at least in the short term, they however undermine PLHIV access to ART care thereby putting PLHIV at risk of early AIDS-related mortality. The use of scientifically unproven herbal remedies raises health and safety concerns; faith healing may create

  6. Synergistic effects of UVR and simulated stratification on commensalistic phytoplankton-bacteria relationship in two optically contrasting oligotrophic Mediterranean lakes

    NASA Astrophysics Data System (ADS)

    Carrillo, P.; Medina-Sánchez, J. M.; Durán, C.; Herrera, G.; Villafañe, V. E.; Helbling, E. W.

    2015-02-01

    An indirect effect of global warming is a reduction in the depth of the upper mixed layer (UML) causing organisms to be exposed to higher levels of ultraviolet (UVR, 280-400 nm) and photosynthetically active radiation (PAR, 400-700 nm). This can affect primary and bacterial production as well as the commensalistic phytoplankton-bacteria relationship. The combined effects of UVR and reduction in the depth of the UML were assessed on variables related to the metabolism of phytoplankton and bacteria, during in situ experiments performed with natural pico- and nanoplankton communities from two oligotrophic lakes with contrasting UVR transparency (high-UVR versus low-UVR waters) of southern Spain. The negative UVR effects on epilimnetic primary production (PP) and on heterotrophic bacterial production (HBP), intensified under increased stratification, were higher in the low-UVR than in the high-UVR lake, and stronger on the phytoplanktonic than on the heterotrophic bacterial communities. Under UVR and increased stratification, the commensalistic phytoplankton-bacteria relationship was strengthened in the high-UVR lake where excretion of organic carbon (EOC) rates exceeded the bacterial carbon demand (BCD; i.e., BCD : EOC(%) ratio < 100). This did not occur in the low-UVR lake (i.e., BCD : EOC(%) ratio > 100). The greater UVR damage to phytoplankton and bacteria and the weakening of their commensalistic interaction found in the low-UVR lake indicates that these ecosystems would be especially vulnerable to UVR and increased stratification as stressors related to global climate change. Thus, our findings may have important implications for the carbon cycle in oligotrophic lakes of the Mediterranean region.

  7. Turbulent mixing, restratification, and phytoplankton growth at a submesoscale eddy

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    2016-06-01

    High-resolution large-eddy simulations are used to study the influence of submesoscale mixed layer instability and small-scale turbulence on phytoplankton growth in light-limited conditions. Four simulations are considered with small-scale turbulence driven by varying levels of surface cooling. Significant small-scale turbulence is seen even without surface forcing, and the downward mixing of phytoplankton is sufficient to briefly delay the developing bloom. Moderate and strong values of the constant surface heat flux (Q =- 10,-100 W/m2) are sufficient to prevent a bloom. In contrast to the critical depth hypothesis, the growth rate for phytoplankton does not appear to be controlled by the mixed layer depth. Instead, a comparison between the turbulent diffusivity above the compensation depth and a critical value predicted by the critical turbulence hypothesis closely matches the timing and magnitude of phytoplankton growth.

  8. A global pattern of thermal adaptation in marine phytoplankton.

    PubMed

    Thomas, Mridul K; Kremer, Colin T; Klausmeier, Christopher A; Litchman, Elena

    2012-11-23

    Rising ocean temperatures will alter the productivity and composition of marine phytoplankton communities, thereby affecting global biogeochemical cycles. Predicting the effects of future ocean warming on biogeochemical cycles depends critically on understanding how existing global temperature variation affects phytoplankton. Here we show that variation in phytoplankton temperature optima over 150 degrees of latitude is well explained by a gradient in mean ocean temperature. An eco-evolutionary model predicts a similar relationship, suggesting that this pattern is the result of evolutionary adaptation. Using mechanistic species distribution models, we find that rising temperatures this century will cause poleward shifts in species' thermal niches and a sharp decline in tropical phytoplankton diversity in the absence of an evolutionary response.

  9. Tidal stirring and phytoplankton bloom dynamics in an estuary

    USGS Publications Warehouse

    Cloern, J.E.

    1991-01-01

    In South San Francisco Bay, estuarine phytoplankton biomass fluctuates at the time scale of days to weeks; much of this variability is associated with fluctuations in tidal energy. During the spring seasons of every year from 1980-1990, episodic blooms occurred in which phytoplankton biomass rose from a baseline of 2-4mg chlorophyll a m-3, peaked at 20-40 chlorophyll a m-3, then returned to baseline values, all within several weeks. Each episode of biomass increase occurred during neap tides, and each bloom decline coincided with spring tides. This suggests that daily variations in the rate of vertical mixing by tidal stirring might control phytoplankton bloom dynamics in some estuaries. Simulation experiments with a numerical model of phytoplankton population dynamics support this hypothesis. -from Author

  10. Assessing impacts of invasive phytoplankton: the Baltic Sea case.

    PubMed

    Olenina, Irina; Wasmund, Norbert; Hajdu, Susanna; Jurgensone, Iveta; Gromisz, Sławomira; Kownacka, Janina; Toming, Kaire; Vaiciūte, Diana; Olenin, Sergej

    2010-10-01

    There is an increasing understanding and requirement to take into account the effects of invasive alien species (IAS) in environmental quality assessments. While IAS are listed amongst the most important factors threatening marine biodiversity, information on their impacts remains unquantified, especially for phytoplankton species. This study attempts to assess the impacts of invasive alien phytoplankton in the Baltic Sea during 1980-2008. A bioinvasion impact assessment method (BPL - biopollution level index) was applied to phytoplankton monitoring data collected from eleven sub-regions of the Baltic Sea. BPL takes into account abundance and distribution range of an alien species and the magnitude of the impact on native communities, habitats and ecosystem functioning. Of the 12 alien/cryptogenic phytoplankton species recorded in the Baltic Sea only one (the dinoflagellate Prorocentrum minimum) was categorized as an IAS, causing a recognizable environmental effect.

  11. Phytoplankton as Particles - A New Approach to Modeling Algal Blooms

    DTIC Science & Technology

    2013-07-01

    behaviors. A particle- tracking model is inserted into the CE-QUAL-ICM eutrophication model. Phytoplankton are quantified as carbonaceous biomass attached to...phytoplankton transport and production is central to the understanding and remediation of a host of environmental problems, including eutrophication ...comprehensive eutrophication model which will provide transport and ambient conditions to the modeled particles. ERDC/EL TR-13-13 3 Figure 1

  12. Latitudinal variation of phytoplankton communities in the western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Min Joo, Hyoung; Lee, Sang H.; Won Jung, Seung; Dahms, Hans-Uwe; Hwan Lee, Jin

    2012-12-01

    Recent studies have shown that photosynthetic eukaryotes are an active and often dominant component of Arctic phytoplankton assemblages. In order to explore this notion at a large scale, samples were collected to investigate the community structure and biovolume of phytoplankton along a transect in the western Arctic Ocean. The transect included 37 stations at the surface and subsurface chlorophyll a maximum (SCM) depths in the Bering Sea, Chukchi Sea, and Canadian Basin from July 19 to September 5, 2008. Phytoplankton (>2 μm) were identified and counted. A cluster analysis of abundance and biovolume data revealed different assemblages over the shelf, slope, and basin regions. Phytoplankton communities were composed of 71 taxa representing Dinophyceae, Cryptophyceae, Bacillariophyceae, Chrysophyceae, Dictyochophyceae, Prasinophyceae, and Prymnesiophyceae. The most abundant species were of pico- to nano-size at the surface and SCM depths at most stations. Nano- and pico-sized phytoplankton appeared to be dominant in the Bering Sea, whereas diatoms and nano-sized plankton provided the majority of taxon diversity in the Bering Strait and in the Chukchi Sea. From the western Bering Sea to the Bering Strait, the abundance, biovolume, and species diversity of phytoplankton provided a marked latitudinal gradient towards the central Arctic. Although pico- and nano-sized phytoplankton contributed most to cell abundance, their chlorophyll a contents and biovolumes were less than those of the larger micro-sized taxa. Micro-sized phytoplankton contributed most to the biovolume in the largely ice-free waters of the western Arctic Ocean during summer 2008.

  13. Ultrafast quantitative time-stretch imaging flow cytometry of phytoplankton

    NASA Astrophysics Data System (ADS)

    Lai, Queenie T. K.; Lau, Andy K. S.; Tang, Anson H. L.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2016-03-01

    Comprehensive quantification of phytoplankton abundance, sizes and other parameters, e.g. biomasses, has been an important, yet daunting task in aquatic sciences and biofuel research. It is primarily because of the lack of effective tool to image and thus accurately profile individual microalgae in a large population. The phytoplankton species are highly diversified and heterogeneous in terms of their sizes and the richness in morphological complexity. This fact makes time-stretch imaging, a new ultrafast real-time optical imaging technology, particularly suitable for ultralarge-scale taxonomic classification of phytoplankton together with quantitative image recognition and analysis. We here demonstrate quantitative imaging flow cytometry of single phytoplankton based on quantitative asymmetric-detection time-stretch optical microscopy (Q-ATOM) - a new time-stretch imaging modality for label-free quantitative phase imaging without interferometric implementations. Sharing the similar concept of Schlieren imaging, Q-ATOM accesses multiple phase-gradient contrasts of each single phytoplankton, from which the quantitative phase profile is computed. We employ such system to capture, at an imaging line-scan rate of 11.6 MHz, high-resolution images of two phytoplankton populations (scenedesmus and chlamydomonas) in ultrafast microfluidic flow (3 m/s). We further perform quantitative taxonomic screening analysis enabled by this technique. More importantly, the system can also generate quantitative phase images of single phytoplankton. This is especially useful for label-free quantification of biomasses (e.g. lipid droplets) of the particular species of interest - an important task adopted in biofuel applications. Combining machine learning for automated classification, Q-ATOM could be an attractive platform for continuous and real-time ultralarge-scale single-phytoplankton analysis.

  14. LOCO: Characterization of Phytoplankton in Thin Optical Layers

    DTIC Science & Technology

    2010-09-30

    Used CytoSense in bench top mode to quantify many different types (e.g. sizes, shapes, pigments , cell coverings) of phytoplankton in both natural...program, Monterey Bay was home to an extraordinarily diverse community of phytoplankton and other protists comprising diatoms, photosynthetic ...out of the setae in response to light levels, and alter the spatial distribution of pigment . Colonies can reach ~ 1 mm in length. Above, a phase

  15. Temperature and species richness effects in phytoplankton communities.

    PubMed

    Schabhüttl, Stefanie; Hingsamer, Peter; Weigelhofer, Gabriele; Hein, Thomas; Weigert, Achim; Striebel, Maren

    2013-02-01

    Phytoplankton play an important role as primary producers and thus can affect higher trophic levels. Phytoplankton growth and diversity may, besides other factors, be controlled by seasonal temperature changes and increasing water temperatures. In this study, we investigated the combined effects of temperature and diversity on phytoplankton growth. In a controlled laboratory experiment, monocultures of 15 freshwater phytoplankton taxa (green algae, cyanobacteria, and diatoms) as well as 25 mixed communities of different species richness (2-12 species) and taxa composition were exposed to constant temperatures of 12, 18, and 24 °C. Additionally, they were exposed to short-term daily temperature peaks of +4 °C. Increased species richness had a positive effect on phytoplankton growth rates and phosphorous content at all temperature levels, with maximum values occurring at 18 °C. Overyielding was observed at almost all temperature levels and could mostly be explained by complementary traits. Higher temperatures resulted in higher fractions of cyanobacteria in communities. This negative effect of temperature on phytoplankton diversity following a shift in community composition was most obvious in communities adapted to cooler temperatures, pointing to the assumption that relative temperature changes may be more important than absolute ones.

  16. An automated platform for phytoplankton ecology and aquatic ecosystem monitoring.

    PubMed

    Pomati, Francesco; Jokela, Jukka; Simona, Marco; Veronesi, Mauro; Ibelings, Bas W

    2011-11-15

    High quality monitoring data are vital for tracking and understanding the causes of ecosystem change. We present a potentially powerful approach for phytoplankton and aquatic ecosystem monitoring, based on integration of scanning flow-cytometry for the characterization and counting of algal cells with multiparametric vertical water profiling. This approach affords high-frequency data on phytoplankton abundance, functional traits and diversity, coupled with the characterization of environmental conditions for growth over the vertical structure of a deep water body. Data from a pilot study revealed effects of an environmental disturbance event on the phytoplankton community in Lake Lugano (Switzerland), characterized by a reduction in cytometry-based functional diversity and by a period of cyanobacterial dominance. These changes were missed by traditional limnological methods, employed in parallel to high-frequency monitoring. Modeling of phytoplankton functional diversity revealed the importance of integrated spatiotemporal data, including circadian time-lags and variability over the water column, to understand the drivers of diversity and dynamic processes. The approach described represents progress toward an automated and trait-based analysis of phytoplankton natural communities. Streamlining of high-frequency measurements may represent a resource for understanding, modeling and managing aquatic ecosystems under impact of environmental change, yielding insight into processes governing phytoplankton community resistance and resilience.

  17. Amplified Arctic warming by phytoplankton under greenhouse warming.

    PubMed

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  18. Numerical Simulation of phytoplankton productivity in partially mixed estuaries

    USGS Publications Warehouse

    Peterson, D.H.; Festa, J.F.

    1984-01-01

    A two-dimensional steady-state model of light-driven phytoplankton productivity and biomass in partially mixed estuaries has been developed. Effects of variations in river flow, suspended sediment concentration, phytoplankton sinking, self-shading and growth rates on distributions of phytoplankton biomass and productivity are investigated. Numerical simulation experiments show that biomass and productivity are particularly sensitive to variations in suspended sediment concentrations typical of natural river sources and to variations in loss rates assumed to be realistic but poorly known for real systems. Changes in the loss rate term within the range of empirical error (such as from dark bottle incubation experiments) cause phytoplankton biomass to change by a factor of two. In estuaries with adequate light penetration in the water column, it could be an advantage for phytoplankton to sink. Species that sink increase their concentration and form a phytoplankton maximum in a way similar to the formation of the estuarine turbidity maximum. When attenuation is severe, however, sinking species have more difficulty in maintaining their population. ?? 1984.

  19. The Effect of Atrazine on Louisiana Gulf Coast Estuarine Phytoplankton.

    PubMed

    Starr, Alexis V; Bargu, Sibel; Maiti, Kanchan; DeLaune, Ronald D

    2017-02-01

    Pesticides may enter water bodies in areas with a high proportion of agricultural land use through surface runoff, groundwater discharge, and erosion and thus negatively impact nontarget aquatic organisms. The herbicide atrazine is used extensively throughout the Midwest and enters the Mississippi River through surface runoff and groundwater discharge. The purpose of this study was to determine the extent of atrazine contamination in Louisiana's estuaries from Mississippi River water under different flow and nutrient regimes (spring and summer) and its effect on the biomass and oxygen production of the local phytoplankton community. The results showed that atrazine was consistently present in these systems at low levels. Microcosm experiments exposed to an atrazine-dilution series under low and high nutrient conditions to determine the phytoplankton stress response showed that high atrazine levels greatly decreased phytoplankton biomass and oxygen production. Phytoplankton exposed to low and moderate atrazine levels under high nutrient conditions were able to recover after an extended acclimation period. Communities grown under high nutrient conditions grew more rapidly and produced greater levels of oxygen than the low nutrient treatment groups, thus indicating that atrazine exposure may induce a greater stress response in phytoplankton communities under low-nutrient conditions. The native community also experienced a shift from more sensitive species, such as chlorophytes, to potentially more resilient species such as diatoms. The phytoplankton response to atrazine exposure at various concentrations can be especially important to greater trophic levels because their growth and abundance can determine the potential productivity of the entire ecosystem.

  20. Warming will affect phytoplankton differently: evidence through a mechanistic approach.

    PubMed

    Huertas, I Emma; Rouco, Mónica; López-Rodas, Victoria; Costas, Eduardo

    2011-12-07

    Although the consequences of global warming in aquatic ecosystems are only beginning to be revealed, a key to forecasting the impact on aquatic communities is an understanding of individual species' vulnerability to increased temperature. Despite their microscopic size, phytoplankton support about half of the global primary production, drive essential biogeochemical cycles and represent the basis of the aquatic food web. At present, it is known that phytoplankton are important targets and, consequently, harbingers of climate change in aquatic systems. Therefore, investigating the capacity of phytoplankton to adapt to the predicted warming has become a relevant issue. However, considering the polyphyletic complexity of the phytoplankton community, different responses to increased temperature are expected. We experimentally tested the effects of warming on 12 species of phytoplankton isolated from a variety of environments by using a mechanistic approach able to assess evolutionary adaptation (the so-called ratchet technique). We found different degrees of tolerance to temperature rises and an interspecific capacity for genetic adaptation. The thermal resistance level reached by each species is discussed in relation to their respective original habitats. Our study additionally provides evidence on the most resistant phytoplankton groups in a future warming scenario.

  1. Large-scale biodiversity patterns in freshwater phytoplankton.

    PubMed

    Stomp, Maayke; Huisman, Jef; Mittelbach, Gary G; Litchman, Elena; Klausmeier, Christopher A

    2011-11-01

    Our planet shows striking gradients in the species richness of plants and animals, from high biodiversity in the tropics to low biodiversity in polar and high-mountain regions. Recently, similar patterns have been described for some groups of microorganisms, but the large-scale biogeographical distribution of freshwater phytoplankton diversity is still largely unknown. We examined the species diversity of freshwater phytoplankton sampled from 540 lakes and reservoirs distributed across the continental United States and found strong latitudinal, longitudinal, and altitudinal gradients in phytoplankton biodiversity, demonstrating that microorganisms can show substantial geographic variation in biodiversity. Detailed analysis using structural equation models indicated that these large-scale biodiversity gradients in freshwater phytoplankton diversity were mainly driven by local environmental factors, although there were residual direct effects of latitude, longitude, and altitude as well. Specifically, we found that phytoplankton species richness was an increasing saturating function of lake chlorophyll a concentration, increased with lake surface area and possibly increased with water temperature, resembling effects of productivity, habitat area, and temperature on diversity patterns commonly observed for macroorganisms. In turn, these local environmental factors varied along latitudinal, longitudinal, and altitudinal gradients. These results imply that changes in land use or climate that affect these local environmental factors are likely to have major impacts on large-scale biodiversity patterns of freshwater phytoplankton.

  2. Warming will affect phytoplankton differently: evidence through a mechanistic approach

    PubMed Central

    Huertas, I. Emma; Rouco, Mónica; López-Rodas, Victoria; Costas, Eduardo

    2011-01-01

    Although the consequences of global warming in aquatic ecosystems are only beginning to be revealed, a key to forecasting the impact on aquatic communities is an understanding of individual species' vulnerability to increased temperature. Despite their microscopic size, phytoplankton support about half of the global primary production, drive essential biogeochemical cycles and represent the basis of the aquatic food web. At present, it is known that phytoplankton are important targets and, consequently, harbingers of climate change in aquatic systems. Therefore, investigating the capacity of phytoplankton to adapt to the predicted warming has become a relevant issue. However, considering the polyphyletic complexity of the phytoplankton community, different responses to increased temperature are expected. We experimentally tested the effects of warming on 12 species of phytoplankton isolated from a variety of environments by using a mechanistic approach able to assess evolutionary adaptation (the so-called ratchet technique). We found different degrees of tolerance to temperature rises and an interspecific capacity for genetic adaptation. The thermal resistance level reached by each species is discussed in relation to their respective original habitats. Our study additionally provides evidence on the most resistant phytoplankton groups in a future warming scenario. PMID:21508031

  3. Links between phytoplankton, CO2 emissions and water properties

    NASA Astrophysics Data System (ADS)

    Oliveira, A. P.; Cabeçadas, L.

    2009-04-01

    Changes in seawater chemistry already emerging in Portuguese coastal waters and trends predicted by the end of the century, might cause shifts in current algal communities and alter the structure and biodiversity of coastal ecosystems. May 2002 sampling in Tagus and Sado estuaries adjacent coastal shelf (SW Portugal) was an example of that. This period was characterized by a moderate but persistent upwelling and low Tagus river discharge (46 m3 s-1) favouring a weak plume and elevatedpCO2 values. These conditions strongly influenced the phytoplankton community. The spring bloom occurred at Tagus plume and close to Lisbon Canyon, where large sized phytoplankton, dominated by chain-forming diatoms, reached values up to 1000cells ml-1, while dinoflagellates reached a local peak over the canyon (>20 cells ml-1). Spatially differentiated from the main phytoplankton bloom, a development of the intermediate sized species Coccolithus braarudii (up to 60 cells ml-1) occurred, associated with the thermally stratified water-mass localised in Tagus Bay. While diatoms proliferated throughout turbulent waters, coccolithophores developed under more stable conditions, being not directly affected by anthropogenic inputs and associated with relatively low nutrient levels. The same trend was also observed for the small sized phytoplankton, which abundance (>106 cells ml-1) increased from inshore to the deeper surface mixed layer offshore where light was dimmer and nutrient concentrations lower. The small sized phytoplankton was made up of cyanobacteria Synechococcus-like and eukaryotes reaching, respectively, 721 and 466 cells ml-1. Regarding the relative importance of each phytoplankton size group in terms of carbon, cocolithophores and small sized phytoplankton represented, respectively, 2% and 0.2% of the total phytoplankton biomass. Despite the low percentage in terms of particulate organic carbon, cocolithophores played an important role in terms of CaCO3 and CO2. It was

  4. Seabird guano enhances phytoplankton production in the Southern Ocean.

    NASA Astrophysics Data System (ADS)

    Shatova, Olga; Wing, Stephen; Hoffmann, Linn; Jack, Lucy; Gault-Ringold, Melanie

    2015-04-01

    Great congregations of seabirds in sub-Antarctic and Antarctic coastal areas result in delivery of nutrient-rich guano to marine ecosystems that potentially enhances productivity and supports biodiversity in the region. Guano-derived bio-available micronutrients and macronutrients might be utilized by marine phytoplankton for photosynthetic production, however, mechanisms and significance of guano fertilization in the Southern Ocean are largely understudied. Over austral summers of 2012 and 2013 we performed a series of guano-enrichment phytoplankton incubation experiments with water samples collected from three different water masses in the Southern Ocean: Antarctic waters of the Ross sea and sub-Antarctic waters offshore the Otago Peninsula, both showing iron limitation of phytoplankton productivity in summer, and in the subtropical frontal zone offshore from the Snares Islands, which is generally micronutrient-repleted. Samples were enriched with known concentrations of guano-derived nutrients. Phytoplankton biomass increased significantly in guano-treated samples during all three incubation experiments (7-10 fold increase), while remained low in control samples. This response indicates that seabird guano provides nutrients that limit primary production in the Southern Ocean and that these nutrients are readily taken up by phytoplankton. Guano additions were compared to Fe and Macronutrient treatments (both added in quantities similar to those in the guano treatment). Phytoplankton biomass increased significantly in response to the Macronutrient treatment in the subtropical frontal zone, however, the response had a smaller magnitude compared to the guano treatment (2.8 µgL-1 vs 5.2 µgL-1) ; there was no significant effect of Fe on phytoplankton growth. This suggests the potential importance of synergistic effects of nutrients in guano. Incubation with sub-Antarctic waters showed that Fe and Macronutrients might be equally important for enhancement of

  5. Changing restoration rules: exotic bivalves interact with residence time and depth to control phytoplankton productivity

    USGS Publications Warehouse

    Lucas, Lisa V.; Thompson, Janet K.

    2012-01-01

    Non-native species are a prevalent ecosystem stressor that can interact with other stressors to confound resource management and restoration. We examine how interactions between physical habitat attributes and a particular category of non-native species (invasive bivalves) influence primary production in aquatic ecosystems. Using mathematical models, we show how intuitive relationships between phytoplankton productivity and controllable physical factors (water depth, hydraulic transport time) that hold in the absence of bivalves can be complicated—and even reversed—by rapid bivalve grazing. In light-limited environments without bivalves, shallow, hydrodynamically “slow” habitats should generally have greater phytoplankton biomass and productivity than deeper, “faster” habitats. But shallower, slower environments can be less productive than deeper, faster ones if benthic grazing is strong. Moreover, shallower and slower waters exhibit a particularly broad range of possible productivity outcomes that can depend on whether bivalves are present. Since it is difficult to predict the response of non-native bivalves to habitat restoration, outcomes for new shallow, slow environments can be highly uncertain. Habitat depth and transport time should therefore not be used as indicators of phytoplankton biomass and production where bivalve colonization is possible. This study provides for ecosystem management a particular example of a broad lesson: abiotic ecosystem stressors should be managed with explicit consideration of interactions with other major (including biotic) stressors. We discuss the applicability and management implications of our models and results for a range of aquatic system types, with a case study focused on the Sacramento-San Joaquin Delta (California, USA). Simple mathematical models like those used here can illuminate interactions between ecosystem stressors and provide process-based guidance for resource managers as they develop strategies

  6. Infection of phytoplankton by aerosolized marine viruses

    PubMed Central

    Sharoni, Shlomit; Trainic, Miri; Schatz, Daniella; Lehahn, Yoav; Flores, Michel J.; Bidle, Kay D.; Ben-Dor, Shifra; Rudich, Yinon; Vardi, Assaf

    2015-01-01

    Marine viruses constitute a major ecological and evolutionary driving force in the marine ecosystems. However, their dispersal mechanisms remain underexplored. Here we follow the dynamics of Emiliania huxleyi viruses (EhV) that infect the ubiquitous, bloom-forming phytoplankton E. huxleyi and show that EhV are emitted to the atmosphere as primary marine aerosols. Using a laboratory-based setup, we showed that the dynamic of EhV aerial emission is strongly coupled to the host–virus dynamic in the culture media. In addition, we recovered EhV DNA from atmospheric samples collected over an E. huxleyi bloom in the North Atlantic, providing evidence for aerosolization of marine viruses in their natural environment. Decay rate analysis in the laboratory revealed that aerosolized viruses can remain infective under meteorological conditions prevailing during E. huxleyi blooms in the ocean, allowing potential dispersal and infectivity over hundreds of kilometers. Based on the combined laboratory and in situ findings, we propose that atmospheric transport of EhV is an effective transmission mechanism for spreading viral infection over large areas in the ocean. This transmission mechanism may also have an important ecological impact on the large-scale host–virus “arms race” during bloom succession and consequently the turnover of carbon in the ocean. PMID:25964340

  7. Phytoplankton bloom in Spencer Gulf, Southern Australia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    South Australia occupies the center of the Australian continent. The deserts of the interior give way to more fertile land along the coast of the Southern Ocean. This true-color MODIS image from September 17, 2001, shows the marked contrast between the country's arid interior--where seasonal salt lakes stand out in white against the deserts' vast, red expanse--and the coastal regions, including Spencer Gulf, to the lower left of the image's center. The characteristic blue-green swirls of a phytoplankton bloom can be seen in the Gulf and southeastward along the coast. To Spencer Gulf's east, the brownish-gray pixels on the eastern coast of the Gulf of St. Vincent indicate the location of the city of Adelaide, the region's capital. The large dark areas that stand out amid the green vegetation do not indicate areas where vegetation had been damaged or burned. In fact, the opposite is actually true. In many cases, those areas are land protected by national and state parks and preserves, where the natural vegetation of the semi-arid landscape is allowed to exist undisturbed. For example, due east of Adelaide are Billiat Conservation Park and the semi-rectangular Murray Sunset National Park, which is across the border from South Australia in Victoria. South of those parks are the parks of the Big Desert (top) and Little Desert (bottom).

  8. Infection of phytoplankton by aerosolized marine viruses.

    PubMed

    Sharoni, Shlomit; Trainic, Miri; Schatz, Daniella; Lehahn, Yoav; Flores, Michel J; Bidle, Kay D; Ben-Dor, Shifra; Rudich, Yinon; Koren, Ilan; Vardi, Assaf

    2015-05-26

    Marine viruses constitute a major ecological and evolutionary driving force in the marine ecosystems. However, their dispersal mechanisms remain underexplored. Here we follow the dynamics of Emiliania huxleyi viruses (EhV) that infect the ubiquitous, bloom-forming phytoplankton E. huxleyi and show that EhV are emitted to the atmosphere as primary marine aerosols. Using a laboratory-based setup, we showed that the dynamic of EhV aerial emission is strongly coupled to the host-virus dynamic in the culture media. In addition, we recovered EhV DNA from atmospheric samples collected over an E. huxleyi bloom in the North Atlantic, providing evidence for aerosolization of marine viruses in their natural environment. Decay rate analysis in the laboratory revealed that aerosolized viruses can remain infective under meteorological conditions prevailing during E. huxleyi blooms in the ocean, allowing potential dispersal and infectivity over hundreds of kilometers. Based on the combined laboratory and in situ findings, we propose that atmospheric transport of EhV is an effective transmission mechanism for spreading viral infection over large areas in the ocean. This transmission mechanism may also have an important ecological impact on the large-scale host-virus "arms race" during bloom succession and consequently the turnover of carbon in the ocean.

  9. Phytoplankton bloom in Spencer Gulf, South Australia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Summer in southern Australia is the dry season, and in this true-color MODIS image of South Australia and the Spencer Gulf from October 20,2001, the area's vegetation is losing much of the lushness it possessed in the winter rainy season (See image from September 19, 2001). In southern hemisphere summer, the high pressure systems that dominate the continent's weather move south, and block the rain-bearing westerly winds. The resulting changes in seasonal rainfall are extreme. Many of the rivers are impermanent, and flow into dry or impermanent salt lakes, such as Lake Torrens (long, thin lake bed, roughly in the center of the image), and Lake Eyre (pink and white lake bed to the northwest of Torrens). Between the Eyre Peninsula (lower left) and the Yorke Peninsula further east lies the Spencer Gulf, showing the blue-green swirls that indicate a phytoplankton bloom. Australia gets less rainfall than any continent except Antarctica, and the low and seasonal flows contribute to problems with salinity and algal blooms in the continent's surface waters.

  10. Phytoplankton community ecology: Principles applied in San Francisco Bay

    USGS Publications Warehouse

    Cloern, J.E.; Dufford, R.

    2005-01-01

    In his seminal 1961 paper 'The paradox of the plankton' Am Nat 95:137-147, G. E. Hutchinson asked why many species of phytoplankton can coexist while competing for a small number of limiting resources in an unstructured habitat. Hutchinson anticipated the resolution of his paradox, recognizing that communities are organized by processes beyond resource competition including species interactions, habitat variability and dispersal. Since 1961 we have made fundamental discoveries that have revolutionized our conceptual understanding of pelagic ecology, including (1) habitat heterogeneity at all scales relevant to plankton population dynamics, (2) community shifts in response to global climate cycles, (3) fast and selective predation as a powerful top-down force to shape phytoplankton communities, (4) turbulent mixing as a physical process that selects species on the basis of their size and form, (5) mixotrophy that allows some algal species to tap organic nutrient pools and function at multiple trophic levels, (6) taxon-specific life cycles including alternating vegetative and resting stages, and (7) the pelagic as an open system where communities are continually reshaped by species immigration. Here we synthesize these discoveries to show how they validate and amplify Hutchinson's hypothesis that phytoplankton communities are assembled by many processes. Our synthesis is built around observations of phytoplankton species composition from a decade of study in San Francisco Bay, used as a case study to illustrate the contemporary principles of phytoplankton community ecology. We apply these principles to address 2 central questions: (1) What processes assemble phytoplankton communities? (2) How does phytoplankton community composition influence ecosystem functions such as production in pelagic and benthic food webs?

  11. Algorithm development for predicting biodiversity based on phytoplankton absorption

    NASA Astrophysics Data System (ADS)

    Moisan, Tiffany A. H.; Moisan, John R.; Linkswiler, Matthew A.; Steinhardt, Rachel A.

    2013-03-01

    Ocean color remote sensing has provided the scientific community with unprecedented global coverage of chlorophyll a, an indicator of phytoplankton biomass. Together, satellite-derived chlorophyll a and knowledge of Phytoplankton Functional Types (PFTs) will improve our limited understanding of marine ecosystem responses to physiochemical climate drivers involved in carbon cycle dynamics and linkages. Using cruise data from the Gulf of Maine and the Middle Atlantic Bight (N=269 pairs of HPLC and phytoplankton absorption samples), two modeling approaches were utilized to predict phytoplankton absorption and pigments. Algorithm I predicts the chlorophyll-specific absorption coefficient (aph* (m2 mg chl a-1)) using inputs of temperature, light, and chlorophyll a. Modeled r2 values (400-700 nm) ranged from 0.79 to 0.99 when compared to in situ observations with ˜25% lower r2 values in the UV region. Algorithm II-a utilizes matrix inversion analysis to predict a(m-1, 400-700 nm) and r2 values ranged from 0.89 to 0.99. The prediction of phytoplankton pigments with Algorithm II-b produced r2 values that ranged from 0.40 to 0.93. When used in combination, Algorithm I, and Algorithm II-a are able to use satellite products of SST, PAR, and chlorophyll a (Algorithm I) to predict pigment concentrations and ratios to describe the phytoplankton community. The results of this study demonstrate that the spatial variation in modeled pigment ratios differ significantly from the 10-year SeaWiFS average chlorophyll a data set. Contiguous observations of chlorophyll a and phytoplankton biodiversity will elucidate ecosystem responses with unprecedented complexity.

  12. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton.

    PubMed

    Lin, Senjie; Litaker, Richard Wayne; Sunda, William G

    2016-02-01

    Phosphorus (P) is an essential nutrient for marine phytoplankton and indeed all life forms. Current data show that P availability is growth-limiting in certain marine systems and can impact algal species composition. Available P occurs in marine waters as dissolved inorganic phosphate (primarily orthophosphate [Pi]) or as a myriad of dissolved organic phosphorus (DOP) compounds. Despite numerous studies on P physiology and ecology and increasing research on genomics in marine phytoplankton, there have been few attempts to synthesize information from these different disciplines. This paper is aimed to integrate the physiological and molecular information on the acquisition, utilization, and storage of P in marine phytoplankton and the strategies used by these organisms to acclimate and adapt to variations in P availability. Where applicable, we attempt to identify gaps in our current knowledge that warrant further research and examine possible metabolic pathways that might occur in phytoplankton from well-studied bacterial models. Physical and chemical limitations governing cellular P uptake are explored along with physiological and molecular mechanisms to adapt and acclimate to temporally and spatially varying P nutrient regimes. Topics covered include cellular Pi uptake and feedback regulation of uptake systems, enzymatic utilization of DOP, P acquisition by phagotrophy, P-limitation of phytoplankton growth in oceanic and coastal waters, and the role of P-limitation in regulating cell size and toxin levels in phytoplankton. Finally, we examine the role of P and other nutrients in the transition of phytoplankton communities from early succession species (diatoms) to late succession ones (e.g., dinoflagellates and haptophytes).

  13. Remote sensing observations of phytoplankton increases triggered by successive typhoons

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Zhao, Hui; Pan, Jiayi; Devlin, Adam

    2016-11-01

    Phytoplankton blooms in the Western North Pacific, triggered by two successive typhoons with different intensities and translation speeds under different pre-existing oceanic conditions, were observed and analyzed using remotely sensed chlorophyll-a (Chl-a), sea surface temperature (SST), and sea surface height anomaly (SSHA) data, as well as typhoon parameters and CTD (conductivity, temperature, and depth) profiles. Typhoon Sinlaku, with relatively weaker intensity and slower translation speed, induced a stronger phytoplankton bloom than Jangmi with stronger intensity and faster translation speed (Chl-a>0.18 mg•m‒3 versus Chla<0.15 mg•m‒3) east of Taiwan Island. Translation speed may be one of the important mechanisms that affect phytoplankton blooms in the study area. Pre-existing cyclonic circulations provided a relatively unstable thermodynamic structure for Sinlaku, and therefore cold water with rich nutrients could be brought up easily. The mixed-layer deepening caused by Typhoon Sinlaku, which occurred first, could have triggered an unfavorable condition for the phytoplankton bloom induced by Typhoon Jangmi which followed afterwards. The sea surface temperature cooling by Jangmi was suppressed due to the presence of the thick upper-ocean mixed-layer, which prevented the deeper cold water from being entrained into the upper-ocean mixed layer, leading to a weaker phytoplankton augment. The present study suggests that both wind (including typhoon translation speed and intensity) and pre-existing conditions (e.g., mixedlayer depths, eddies, and nutrients) play important roles in the strong phytoplankton bloom, and are responsible for the stronger phytoplankton bloom after Sinlaku's passage than that after Jangmi's passage. A new typhooninfluencing parameter is introduced that combines the effects of the typhoon forcing (including the typhoon intensity and translation speed) and the oceanic precondition. This parameter shows that the forcing effect of

  14. Phytoplankton Assemblage Patterns in the Southern Mid-Atlantic Bight

    NASA Technical Reports Server (NTRS)

    Makinen, Carla; Moisan, Tiffany A. (Editor)

    2012-01-01

    As part of the Wallops Coastal Oceans Observing Laboratory (Wa-COOL) Project, we sampled a time-series transect in the southern Mid-Atlantic Bight (MAB) biweekly. Our 2-year time-series data included physical parameters, nutrient concentrations, and chlorophyll a concentrations. A detailed phytoplankton assemblage structure was examined in the second year. During the 2-year study, chlorophyll a concentration (and ocean color satellite imagery) indicated that phytoplankton blooms occurred in January/February during mixing conditions and in early autumn under stratified conditions. The chlorophyll a concentrations ranged from 0.25 microgram 1(exp -1) to 15.49 microgram 1(exp -1) during the 2-year period. We were able to discriminate approximately 116 different species under phase contrast microscopy. Dominant phytoplankton included Skeletonema costatum, Rhizosolenia spp., and Pseudo-nitzschia pungens. In an attempt to determine phytoplankton species competition/succession within the assemblage, we calculated a Shannon Weaver diversity index for our diatom microscopy data. Diatom diversity was greatest during the winter and minimal during the spring. Diatom diversity was also greater at nearshore stations than at offshore stations. Individual genera appeared patchy, with surface and subsurface patches appearing abruptly and persisting for only 1-2 months at a time. The distribution of individual species differed significantly from bulk variables of the assemblage (chlorophyll a ) and total phytoplankton assemblage (cells), which indicates that phytoplankton species may be limited in growth in ways that differ from those of the total assemblage. Our study demonstrated a highly diverse phytoplankton assemblage throughout the year, with opportunistic species dominating during spring and fall in response to seasonal changes in temperature and nutrients in the southern MAB.

  15. Assisted Living

    MedlinePlus

    ... but they don't need full-time nursing care. Some assisted living facilities are part of retirement ... change. Assisted living costs less than nursing home care. It is still fairly expensive. Older people or ...

  16. Phytoplankton and eutrophication degree assessment of Baiyangdian Lake wetland, China.

    PubMed

    Wang, Xing; Wang, Yu; Liu, Lusan; Shu, Jianmin; Zhu, Yanzhong; Zhou, Juan

    2013-01-01

    Eight typical sampling sites were chosen to investigate the phytoplankton community structure and to assess the eutrophication degree of Baiyangdian Lake in 2009. Our results showed that among the total 133 species identified, Cyanophyta, Chlorophyta, and Bacillariophyta dominated the phytoplankton community. In spring, Chlorophyta and Bacillariophyta were the dominant phyla, and the dominant species included Chlorella sp., Chroomonas acuta Uterm., and Microcystis incerta Lemm.; the density of the phytoplankton ranged from 496 × 10(4) to 6256 × 10(4) cells/L with an average of 2384 × 10(4) cells/L. However, Chlorophyta and Cyanophyta became the dominant phyla in summer, and the dominant species were Chlorella sp., Leptolyngbya valderiana Anagn., and Nephrocytium agardhianum Nageli.; the density of the phytoplankton varied from 318 × 10(4) to 4630 × 10(4) cells/L with an average of 1785 × 10(4) cells/L. The density of the phytoplankton has increased significantly compared to the previous investigations in 2005. The index of Carlson nutritional status (TSIM) and the dominant genus assessment indicated that the majority of Baiyangdian Lake was in eutrophic state.

  17. Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton

    PubMed Central

    Mincer, Tracy J.; Aicher, Athena C.

    2016-01-01

    Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS) method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus), and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata) produced methanol, ranging from 0.8–13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09–0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world’s oceans. PMID:26963515

  18. Phytoplankton growth and microzooplankton grazing in the subtropical Northeast Atlantic.

    PubMed

    Cáceres, Carlos; Taboada, Fernando González; Höfer, Juan; Anadón, Ricardo

    2013-01-01

    Dilution experiments were performed to estimate phytoplankton growth and microzooplankton grazing rates during two Lagrangian surveys in inner and eastern locations of the Eastern North Atlantic Subtropical Gyre province (NAST-E). Our design included two phytoplankton size fractions (0.2-5 µm and >5 µm) and five depths, allowing us to characterize differences in growth and grazing rates between size fractions and depths, as well as to estimate vertically integrated measurements. Phytoplankton growth rates were high (0.11-1.60 d(-1)), especially in the case of the large fraction. Grazing rates were also high (0.15-1.29 d(-1)), suggesting high turnover rates within the phytoplankton community. The integrated balances between phytoplankton growth and grazing losses were close to zero, although deviations were detected at several depths. Also, O2 supersaturation was observed up to 110 m depth during both Lagrangian surveys. These results add up to increased evidence indicating an autotrophic metabolic balance in oceanic subtropical gyres.

  19. Phytoplankton assemblages in lateral lagoons of a large tropical reservoir.

    PubMed

    Ferrareze, M; Nogueira, M G

    2013-02-01

    This study aimed to analyse the composition and ecological attributes of the phytoplankton assemblages in four lateral lagoons and in the main channel of Rosana Reservoir (Paranapanema River, SE Brazil). Fieldwork was carried out in September and November/2004 and January, March, May and August/2005. A total of 283 taxa was identified. Zygnemaphyta was the most specious group, followed by Chlorophyta and Bacillariophyta. Higher richness, abundance and biomass were observed in the lagoons when compared with the river-reservoir sampling point, especially during the rainy period. Cryptophyceae and Bacillariophyceae dominated numerically. Cryptomonas brasiliensis Castro, Bicudo and Bicudo was the main species of the phytoplankton in terms of abundance and frequency of occurrence. The dynamics of the most important taxa are discussed and the results showed that the phytoplankton assemblages are mainly influenced by meteorological factors and nutrient availability (the main driving forces). Correlation analyses indicated that the assemblage abundance was limited by nutrient (nitrogen and phosphorus). The phytoplankton abundance influenced positively the zooplankton abundance, what indicates the prevalence of bottom-up control routes in the lateral lagoons system. The results validate the hypotheses that lateral lagoons have a prominent ecological role on the phytoplankton diversity, as already previously demonstrated for fish and zooplankton. Therefore, the incorporation of the lateral lagoons in environmental programmes should be a target strategy for the conservation of the regional aquatic biota, minimising the negative impact of the dam.

  20. Phytoplankton productivity in a turbid buoyant coastal plume

    NASA Astrophysics Data System (ADS)

    Schofield, Oscar; Moline, Mark; Cahill, Brownyn; Frazer, Thomas; Kahl, Alex; Oliver, Matthew; Reinfelder, John; Glenn, Scott; Chant, Robert

    2013-07-01

    The complex dynamics associated with coastal buoyant plumes make it difficult to document the interactions between light availability, phytoplankton carbon fixation, and biomass accumulation. Using real-time data, provided by satellites and high frequency radar, we adaptively sampled a low salinity parcel of water that was exported from the Hudson river estuary in April 2005. The water was characterized by high nutrients and high chlorophyll concentrations. The majority of the low salinity water was re-circulated within a nearshore surface feature for 5 days during which nitrate concentrations dropped 7-fold, the maximum quantum yield for photosynthesis dropped 10-fold, and primary productivity rates decreased 5-fold. Associated with the decline in nitrate was an increase in phytoplankton biomass. The phytoplankton combined with the Colored Dissolved Organic Matter (CDOM) and non-algal particles attenuated the light so the 1% light level ranged between 3 and 10m depending on the age of the plume water. As the plume was 10-15m thick, the majority of the phytoplankton were light-limited. Vertical mixing within the plume was high as indicated by the dispersion of injected of rhodamine dye. The mixing within the buoyant plume was more rapid than phytoplankton photoacclimation processes. Mixing rates within the plume was the critical factor determining overall productivity rates within the turbid plume.

  1. Climate Change Effects on Iron Availability to Arctic Phytoplankton

    NASA Astrophysics Data System (ADS)

    Maldonado, Maria Teresa; Li, Jingxuan; Semeniuk, David; Schuback, Nina; Hoppe, Clara; AWI/UBC Collaboration

    2016-09-01

    Phytoplankton, unicellular algae, are responsible for 50% of earth's photosynthesis, and for a significant consumption of atmospheric CO2. Iron (Fe) is essential for phytoplankton, but is extremely depleted in seawater, limiting photosynthesis in 30% of the global ocean. Oceanic Fe bioavailability is determined by physical and chemical processes. The Arctic Ocean is experiencing the greatest decrease in seawater pH (termed ocean acidification). Simultaneously, ice retreat is promoting higher light intensity in Arctic Ocean. We investigated the effects of ocean acidification and high light on Fe availability to Arctic phytoplankton. Iron uptake rates by plankton, using the radionuclide 55Fe, were used as a proxy for Fe bioavailability. In an Arctic summer research cruise, we measured Fe uptake by two phytoplankton populations subjected to two light levels, as well as present CO2 levels (400ppm) or those expected by 2100 (1100 ppm). Our results demonstrated that high CO2 decreases Fe availability, while high light increases it, suggesting that future Fe bioavailability might be similar to present day. However, the detrimental effects of high CO2 were more pronounced in the plankton population exposed to higher seawater temperature. Future studies should investigate the interaction among light, CO2 and temperature on the Fe physiology of Arctic phytoplankton.

  2. Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton.

    PubMed

    Mincer, Tracy J; Aicher, Athena C

    2016-01-01

    Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS) method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus), and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata) produced methanol, ranging from 0.8-13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09-0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world's oceans.

  3. Phytoplankton community of Reis Lake in the Brazilian Amazon.

    PubMed

    Silva, Ise G; Moura, Ariadne N; Dantas, Enio W

    2013-01-01

    Reis Lake is located in the municipality of Caracaraí, state of Roraima (Brazil) and is subject to fluctuations in water level. The aim of this study was to analyze the structure of the phytoplankton community on the nictemeral and seasonal scales and determined the influence of limnological variables. Sampling was performed in the rainy season (June/2006) and dry season (November/2006), considering two nictemeral cycles. The phytoplankton community was assessed with regard to composition and density, abiotic variables were analyzed simultaneously. The lake had low concentrations of oxygen, clinograde profile and water stratified during the day and homogenous at night, with low concentrations of nutrients and waters ranging from slightly acidic to alkaline. The phytoplankton was represented by 43 taxa, 35 species in the dry season and 29 species in the rainy season. Low densities of phytoplankton occurred in both nictemeral cycles, with accentuated vertical gradient. The highest densities were recorded in the dry season. Reis Lake exhibits characteristics that classify it as a polymythic and oligotrophic environment. The variability in the data was more important seasonally than on the nictemeral scale, supporting the hypothesis of the influence of the hydrological cycle on the dynamics of phytoplankton communities in floodplain lakes.

  4. Phytoplankton and Eutrophication Degree Assessment of Baiyangdian Lake Wetland, China

    PubMed Central

    Wang, Xing; Wang, Yu; Liu, Lusan; Shu, Jianmin; Zhu, Yanzhong; Zhou, Juan

    2013-01-01

    Eight typical sampling sites were chosen to investigate the phytoplankton community structure and to assess the eutrophication degree of Baiyangdian Lake in 2009. Our results showed that among the total 133 species identified, Cyanophyta, Chlorophyta, and Bacillariophyta dominated the phytoplankton community. In spring, Chlorophyta and Bacillariophyta were the dominant phyla, and the dominant species included Chlorella sp., Chroomonas acuta Uterm., and Microcystis incerta Lemm.; the density of the phytoplankton ranged from 496 × 104 to 6256 × 104 cells/L with an average of 2384 × 104 cells/L. However, Chlorophyta and Cyanophyta became the dominant phyla in summer, and the dominant species were Chlorella sp., Leptolyngbya valderiana Anagn., and Nephrocytium agardhianum Nageli.; the density of the phytoplankton varied from 318 × 104 to 4630 × 104 cells/L with an average of 1785 × 104 cells/L. The density of the phytoplankton has increased significantly compared to the previous investigations in 2005. The index of Carlson nutritional status (TSIM) and the dominant genus assessment indicated that the majority of Baiyangdian Lake was in eutrophic state. PMID:23983633

  5. Evolutionary potential of marine phytoplankton under ocean acidification

    PubMed Central

    Collins, Sinéad; Rost, Björn; Rynearson, Tatiana A

    2014-01-01

    Marine phytoplankton have many obvious characters, such as rapid cell division rates and large population sizes, that give them the capacity to evolve in response to global change on timescales of weeks, months or decades. However, few studies directly investigate if this adaptive potential is likely to be realized. Because of this, evidence of to whether and how marine phytoplankton may evolve in response to global change is sparse. Here, we review studies that help predict evolutionary responses to global change in marine phytoplankton. We find limited support from experimental evolution that some taxa of marine phytoplankton may adapt to ocean acidification, and strong indications from studies of variation and structure in natural populations that selection on standing genetic variation is likely. Furthermore, we highlight the large body of literature on plastic responses to ocean acidification available, and evolutionary theory that may be used to link plastic and evolutionary responses. Because of the taxonomic breadth spanned by marine phytoplankton, and the diversity of roles they fill in ocean ecosystems and biogeochemical cycles, we stress the necessity of treating taxa or functional groups individually. PMID:24454553

  6. Saccharides enhance iron bioavailability to Southern Ocean phytoplankton

    PubMed Central

    Hassler, Christel S.; Nichols, Carol Mancuso; Butler, Edward C. V.; Boyd, Philip W.

    2011-01-01

    Iron limits primary productivity in vast regions of the ocean. Given that marine phytoplankton contribute up to 40% of global biological carbon fixation, it is important to understand what parameters control the availability of iron (iron bioavailability) to these organisms. Most studies on iron bioavailability have focused on the role of siderophores; however, eukaryotic phytoplankton do not produce or release siderophores. Here, we report on the pivotal role of saccharides—which may act like an organic ligand—in enhancing iron bioavailability to a Southern Ocean cultured diatom, a prymnesiophyte, as well as to natural populations of eukaryotic phytoplankton. Addition of a monosaccharide (>2 nM of glucuronic acid, GLU) to natural planktonic assemblages from both the polar front and subantarctic zones resulted in an increase in iron bioavailability for eukaryotic phytoplankton, relative to bacterioplankton. The enhanced iron bioavailability observed for several groups of eukaryotic phytoplankton (i.e., cultured and natural populations) using three saccharides, suggests it is a common phenomenon. Increased iron bioavailability resulted from the combination of saccharides forming highly bioavailable organic associations with iron and increasing iron solubility, mainly as colloidal iron. As saccharides are ubiquitous, present at nanomolar to micromolar concentrations, and produced by biota in surface waters, they also satisfy the prerequisites to be important constituents of the poorly defined “ligand soup,” known to weakly bind iron. Our findings point to an additional type of organic ligand, controlling iron bioavailability to eukaryotic phytoplankton—a key unknown in iron biogeochemistry. PMID:21169217

  7. Synchronized Regulation of Different Zwitterionic Metabolites in the Osmoadaption of Phytoplankton

    PubMed Central

    Gebser, Björn; Pohnert, Georg

    2013-01-01

    The ability to adapt to different seawater salinities is essential for cosmopolitan marine phytoplankton living in very diverse habitats. In this study, we examined the role of small zwitterionic metabolites in the osmoadaption of two common microalgae species Emiliania huxleyi and Prorocentrum minimum. By cultivation of the algae under salinities between 16‰ and 38‰ and subsequent analysis of dimethylsulfoniopropionate (DMSP), glycine betaine (GBT), gonyol, homarine, trigonelline, dimethylsulfonioacetate, trimethylammonium propionate, and trimethylammonium butyrate using HPLC-MS, we could reveal two fundamentally different osmoadaption mechanisms. While E. huxleyi responded with cell size reduction and a nearly constant ratio between the major metabolites DMSP, GBT and homarine to increasing salinity, osmolyte composition of P. minimum changed dramatically. In this alga DMSP concentration remained nearly constant at 18.6 mM between 20‰ and 32‰ but the amount of GBT and dimethylsulfonioacetate increased from 4% to 30% of total investigated osmolytes. Direct quantification of zwitterionic metabolites via LC-MS is a powerful tool to unravel the complex osmoadaption and regulation mechanisms of marine phytoplankton. PMID:23774888

  8. Synchronized regulation of different zwitterionic metabolites in the osmoadaption of phytoplankton.

    PubMed

    Gebser, Björn; Pohnert, Georg

    2013-06-17

    The ability to adapt to different seawater salinities is essential for cosmopolitan marine phytoplankton living in very diverse habitats. In this study, we examined the role of small zwitterionic metabolites in the osmoadaption of two common microalgae species Emiliania huxleyi and Prorocentrum minimum. By cultivation of the algae under salinities between 16‰ and 38‰ and subsequent analysis of dimethylsulfoniopropionate (DMSP), glycine betaine (GBT), gonyol, homarine, trigonelline, dimethylsulfonioacetate, trimethylammonium propionate, and trimethylammonium butyrate using HPLC-MS, we could reveal two fundamentally different osmoadaption mechanisms. While E. huxleyi responded with cell size reduction and a nearly constant ratio between the major metabolites DMSP, GBT and homarine to increasing salinity, osmolyte composition of P. minimum changed dramatically. In this alga DMSP concentration remained nearly constant at 18.6 mM between 20‰ and 32‰ but the amount of GBT and dimethylsulfonioacetate increased from 4% to 30% of total investigated osmolytes. Direct quantification of zwitterionic metabolites via LC-MS is a powerful tool to unravel the complex osmoadaption and regulation mechanisms of marine phytoplankton.

  9. Estimating phytoplankton photosynthesis by active fluorescence

    SciTech Connect

    Falkowski, P.G.; Kolber, Z.

    1992-01-01

    Photosynthesis can be described by target theory, At low photon flux densities, photosynthesis is a linear function of irradiance (I), The number of reaction centers (n), their effective absorption capture cross section {sigma}, and a quantum yield {phi}. As photosynthesis becomes increasingly light saturated, an increased fraction of reaction centers close. At light saturation the maximum photosynthetic rate is given as the product of the number of reaction centers (n) and their maximum electron transport rate (I/{tau}). Using active fluorometry it is possible to measure non-destructively and in real time the fraction of open or closed reaction centers under ambient irradiance conditions in situ, as well as {sigma} and {phi} {tau} can be readily, calculated from knowledge of the light saturation parameter, I{sub k} (which can be deduced by in situ by active fluorescence measurements) and {sigma}. We built a pump and probe fluorometer, which is interfaced with a CTD. The instrument measures the fluorescence yield of a weak probe flash preceding (f{sub 0}) and succeeding (f{sub 0}) a saturating pump flash. Profiles of the these fluorescence yields are used to derive the instantaneous rate of gross photosynthesis in natural phytoplankton communities without any incubation. Correlations with short-term simulated in situ radiocarbon measurements are extremely high. The average slope between photosynthesis derived from fluorescence and that measured by radiocarbon is 1.15 and corresponds to the average photosynthetic quotient. The intercept is about 15% of the maximum radiocarbon uptake and corresponds to the average net community respiration. Profiles of photosynthesis and sections showing the variability in its composite parameters reveal a significant effect of nutrient availability on biomass specific rates of photosynthesis in the ocean.

  10. Estimating phytoplankton photosynthesis by active fluorescence

    SciTech Connect

    Falkowski, P.G.; Kolber, Z.

    1992-10-01

    Photosynthesis can be described by target theory, At low photon flux densities, photosynthesis is a linear function of irradiance (I), The number of reaction centers (n), their effective absorption capture cross section {sigma}, and a quantum yield {phi}. As photosynthesis becomes increasingly light saturated, an increased fraction of reaction centers close. At light saturation the maximum photosynthetic rate is given as the product of the number of reaction centers (n) and their maximum electron transport rate (I/{tau}). Using active fluorometry it is possible to measure non-destructively and in real time the fraction of open or closed reaction centers under ambient irradiance conditions in situ, as well as {sigma} and {phi} {tau} can be readily, calculated from knowledge of the light saturation parameter, I{sub k} (which can be deduced by in situ by active fluorescence measurements) and {sigma}. We built a pump and probe fluorometer, which is interfaced with a CTD. The instrument measures the fluorescence yield of a weak probe flash preceding (f{sub 0}) and succeeding (f{sub 0}) a saturating pump flash. Profiles of the these fluorescence yields are used to derive the instantaneous rate of gross photosynthesis in natural phytoplankton communities without any incubation. Correlations with short-term simulated in situ radiocarbon measurements are extremely high. The average slope between photosynthesis derived from fluorescence and that measured by radiocarbon is 1.15 and corresponds to the average photosynthetic quotient. The intercept is about 15% of the maximum radiocarbon uptake and corresponds to the average net community respiration. Profiles of photosynthesis and sections showing the variability in its composite parameters reveal a significant effect of nutrient availability on biomass specific rates of photosynthesis in the ocean.

  11. Ocean acidification impacts bacteria-phytoplankton coupling at low-nutrient conditions

    NASA Astrophysics Data System (ADS)

    Hornick, Thomas; Bach, Lennart T.; Crawfurd, Katharine J.; Spilling, Kristian; Achterberg, Eric P.; Woodhouse, Jason N.; Schulz, Kai G.; Brussaard, Corina P. D.; Riebesell, Ulf; Grossart, Hans-Peter

    2017-01-01

    The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm ( ˜ 55 m3) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO2) extending from present to future conditions. The study was conducted in July-August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO2-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO2 treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria-phytoplankton community. However, distance-based linear modelling only identified fCO2 as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO2 impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of

  12. Effects of simulated increased gravity on the rate of aging of rats - Implications for the rate of living theory of aging

    NASA Technical Reports Server (NTRS)

    Economos, A. C.; Ballard, R. C.; Blunden, M.; Miquel, J.; Lindseth, K. A.; Fleming, J.; Philpott, D. E.; Oyama, J.

    1982-01-01

    It was found that the rate of aging of 17 month old rats which had been exposed to 3.14 times normal gravity in an animal centrifuge for 8 months was larger than that of the controls as determined by the apparently elevated lipofuscin content in heart and kidney, reduced numbers and increased size of mitochondria of heart tissue, and inferior liver mitochondria respiration. Steady-state food intake per day per kg body weight, which is presumably proportional to rate of living or specific basal metabolic expenditure, was found to be about 18 percent higher than in the controls after an initial 2 month adaptation period. Although half of the centrifuged animals lived only a little shorter than the controls (average about 343 vs. 364 days on the average, statistically nonsignificant), the remaining half (longest survivors) lived on the centrifuge an average of 520 days (range 483-572) compared to an average of 574 days (range 502-615) for the controls, computed from the onset of centrifugation, or 11 percent shorter. These findings indicate that a moderate increase of the level of basal metabolism of young adult rats adapted to hypergravity compared to controls in normal gravity is accompanied by a roughly similar increase in the rate of organ aging and reduction of survival, in agreement with Pearl's (1928) rate of living theory of aging, previously experimentally demonstrated only in poikilotherms.

  13. Stigmatizing Attitudes towards People Living with HIV/AIDS among College Students in China: Implications for HIV/AIDS Education and Prevention

    ERIC Educational Resources Information Center

    Zhang, Liying; Li, Xiaoming; Mao, Rong; Stanton, Bonita; Zhao, Qun; Wang, Bo; Mathur, Ambika

    2008-01-01

    Purpose: The purpose of this paper is to show that HIV/AIDS-related stigma has persisted world-wide for decades. However, studies on the linkage between stigmatizing attitudes towards people living with HIV/AIDS (PLWHA) and misconceptions about HIV transmission routes in the general population, especially among youth in China, are sparse--a gap…

  14. The Implications for Everyday Life of Incident Self-Reported Visual Decline among People over Age 65 Living in the Community.

    ERIC Educational Resources Information Center

    Branch, Laurence G.; And Others

    1989-01-01

    Examined consequences of vision loss among older adults. Respondents reporting visual decline were older than those reporting good vision, but not different in any other demographic characteristic, use of formal support and health services, or activities of daily living (ADL) functioning. Controlling for age and sex, vision loss was associated…

  15. Quorum Sensing and Quorum Quenching in the Phycosphere of Phytoplankton: a Case of Chemical Interactions in Ecology.

    PubMed

    Rolland, Jean Luc; Stien, Didier; Sanchez-Ferandin, Sophie; Lami, Raphaël

    2016-12-01

    The interactions between bacteria and phytoplankton regulate many important biogeochemical reactions in the marine environment, including those in the global carbon, nitrogen, and sulfur cycles. At the microscopic level, it is now well established that important consortia of bacteria colonize the phycosphere, the immediate environment of phytoplankton cells. In this microscale environment, abundant bacterial cells are organized in a structured biofilm, and exchange information through the diffusion of small molecules called semiochemicals. Among these processes, quorum sensing plays a particular role as, when a sufficient abundance of cells is reached, it allows bacteria to coordinate their gene expression and physiology at the population level. In contrast, quorum quenching mechanisms are employed by many different types of microorganisms that limit the coordination of antagonistic bacteria. This review synthesizes quorum sensing and quorum quenching mechanisms evidenced to date in the phycosphere, emphasizing the implications that these signaling systems have for the regulation of bacterial communities and their activities. The diversity of chemical compounds involved in these processes is examined. We further review the bacterial functions regulated in the phycosphere by quorum sensing, which include biofilm formation, nutrient acquisition, and emission of algaecides. We also discuss quorum quenching compounds as antagonists of quorum sensing, their function in the phycosphere, and their potential biotechnological applications. Overall, the current state of the art demonstrates that quorum sensing and quorum quenching regulate a balance between a symbiotic and a parasitic way of life between bacteria and their phytoplankton host.

  16. 'Faking til you make it': social capital accumulation of individuals on low incomes living in contrasting socio-economic neighbourhoods and its implications for health and wellbeing.

    PubMed

    Browne-Yung, Kathryn; Ziersch, Anna; Baum, Fran

    2013-05-01

    People on low-income living in low socio-economic neighbourhoods have poorer health in comparison with those living in advantaged neighbourhoods. To explore neighbourhood effects on health and social capital creation, the experiences of low-income people living in contrasting socio-economic neighbourhoods were compared, in order to examine how low-income status and differing levels of neighbourhood resources contributed to perceived health and wellbeing. Quantitative and qualitative data were analysed: survey data from 601 individuals living in contrasting socio-economic areas and in-depth interviews with a new sample of 24 individuals on low-incomes. The study was guided by Bourdieu's theory of practice, which examines how social inequalities are created and reproduced through the relationship between individuals' varying resources of economic, social and cultural capital. This included an examination of individual life histories, cultural distinction and how social positions are reproduced. Participants' accounts of their early life experience showed how parental socio-economic position and socially patterned events taking place across the life course, created different opportunities for social network creation, choice of neighbourhood and levels of resources available throughout life, all of which can influence health and wellbeing. A definition of poverty by whether an individual or household has sufficient income at a particular point in time was an inadequate measure of disadvantage. This static measure of 'low income' as a category disguised a number of different ways in which disadvantage was experienced or, conversely, how life course events could mitigate the impact of low-income. This study found that the resources necessary to create social capital such as cultural capital and the ability to socially network, differed according to the socio-economic status of the neighbourhood, and that living in an advantaged area does not automatically guarantee

  17. REMOTE MEASUREMENT OF PHYTOPLANKTON PIGMENTS IN THE PAMLICO SOUND, NC USING HYPERSPECTRAL IMAGERY

    EPA Science Inventory

    Monitoring of phytoplankton concentrations in estuarine environments is important for managing both recreational and commercial fishery resources. Impacts on estuarine areas from phytoplankton blooms include neurotoxic shellfish poisoning; fish, bird, and vegetation kills; and p...

  18. Phytoplankton Community Structure, Biomass and Diversity on the Louisiana Continental Shelf

    EPA Science Inventory

    Phytoplankton communities on the Louisiana continental shelf (LCS) respond to nutrient loading from the Mississippi and Atchafalaya River Basin (MARB). Enhanced phytoplankton biomass is a source of organic matter contributing to the development of seasonal hypoxia. Samples were ...

  19. Metal contents of phytoplankton and labile particulate material in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Twining, Benjamin S.; Rauschenberg, Sara; Morton, Peter L.; Vogt, Stefan

    2015-09-01

    quotas are in-line with those measured in laboratory cultures at comparable Fe concentrations. Particulate Zn, Cu, Ni, and Co are primarily associated with cellular material, but less than 30% of labile particulate Fe and Mn are biogenic. Particulate Al was primarily associated with lithogenic material, but the labile fraction was highly correlated with P, as well as with biogenic silica, suggesting that some particulate Al (perhaps around 20%) may occur adsorbed to biogenic material. Cellular element maps indicate that externally scavenged Fe was not a significant fraction of the metal associated with live phytoplankton, but adsorbed or precipitated phases are likely to be important in particulate detrital material. Such abiotic scavenging, along with differential remineralization of cellular nutrients in the water column, results in estimates of cellular metal/nutrient ratios from dissolved concentrations that significantly underestimate the ratios in phytoplankton. These data demonstrate the response of phytoplankton to the unique metal inputs to the North Atlantic Ocean.

  20. Microbial biomarkers from the East China Sea and implications for paleoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Hu, W. J.; Duan, S. S.; Cao, L. Y.; Wang, Y. Y.; Zhao, S. Z.; Xing, L.

    2015-12-01

    We report the vertical and spatial distributions of isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs), ladderanes and phytoplankton biomarkers in suspended particulates from the East China Sea (ECS) to evaluate the living habitat and environments of the planktonic archaea Thaumarchaeota and anaerobic ammonium oxidation (anammox) bacteria, respectively. Maximum GDGT concentration mostly occurred in bottom waters while maximum phytoplankton biomarker concentration occurred in the surface layers; and these results from the ECS provides further evidence for the use of the TEX86 index as a proxy for bottom water temperature in shallow shelf sea environments. Ladderanes were detected in both surface and subsurface particulates, suggesting that anammox activity was widespread in both the hypoxia zone near the Changjiang Estuary and in the mid-shelf of the ECS. Thus, anaerobic condition is not a requirement for anammox bacteria; however, ladderane-derived anammox activity was higher in lower oxygen environments, confirming ladderanes as useful proxies for reconstructing hypoxia changes. Statistical analysis will be presented to assess the link between archaea (Thaumarchaeota) performing aerobic ammonia oxidation and bacteria (anammox) performing anaerobic ammonium oxidation in the ECS, the implications for both carbon and nitrogen cycles.

  1. The paradox of enrichment in phytoplankton by induced competitive interactions.

    PubMed

    Tubay, Jerrold M; Ito, Hiromu; Uehara, Takashi; Kakishima, Satoshi; Morita, Satoru; Togashi, Tatsuya; Tainaka, Kei-ichi; Niraula, Mohan P; Casareto, Beatriz E; Suzuki, Yoshimi; Yoshimura, Jin

    2013-10-03

    The biodiversity loss of phytoplankton with eutrophication has been reported in many aquatic ecosystems, e.g., water pollution and red tides. This phenomenon seems similar, but different from the paradox of enrichment via trophic interactions, e.g., predator-prey systems. We here propose the paradox of enrichment by induced competitive interactions using multiple contact process (a lattice Lotka-Volterra competition model). Simulation results demonstrate how eutrophication invokes more competitions in a competitive ecosystem resulting in the loss of phytoplankton diversity in ecological time. The paradox is enhanced under local interactions, indicating that the limited dispersal of phytoplankton reduces interspecific competition greatly. Thus, the paradox of enrichment appears when eutrophication destroys an ecosystem either by elevated interspecific competition within a trophic level and/or destabilization by trophic interactions. Unless eutrophication due to human activities is ceased, the world's aquatic ecosystems will be at risk.

  2. Diversity of coastal phytoplankton assemblages - Cross ecosystem comparison

    NASA Astrophysics Data System (ADS)

    Olli, Kalle; Paerl, Hans W.; Klais, Riina

    2015-09-01

    Phytoplankton plays a massively important role in the oceanic carbon cycling and biogeochemistry. Despite its far-reaching importance, regional cross-ecosystem comparisons remain incomplete because the data sets are often scattered and fragmented. Here we compiled and harmonized decadal scale phytoplankton monitoring data sets from seven geographic regions of the world ocean, covering ca 45 thousand quantitative samples from European, North- and South American coastal waters. Nonmetric multidimensional scaling revealed clear regional clustering of sampling locations, both when using compositional relatedness or phylogenetic turnover of communities. Compositional and phylogenetic relatedness of phytoplankton communities had a strong correlation with salinity and temperature gradients (R2 = 0.6-0.8). The regional taxon richness (S) varied by almost an order of magnitude, and scaled with the ecosystem size (A) according to a power law: S = 62 × A0.35. The compositional turnover of species (beta-diversity) was also positively related to ecosystem size, but also to mean regional salinity.

  3. Phytoplankton photocompensation from space-based fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Morrison, J. Ruairidh; Goodwin, Deborah S.

    2010-03-01

    Recent satellite-derived observations linked global scale phytoplankton fluorescence variability with iron stress and hinted at photophysiological responses associated with changing light levels. These photocompensation reactions, the sum of photoacclimation and photoadaptation, were examined with climatological data for the Gulf of Maine. Significant seasonal variability was observed in the fluorescence quantum yield that was unrelated to patterns of biomass. Up to 89% of the variability in the fluorescence quantum yield was explained by a physiology-based photocompensation model. Spatial variability in seasonal patterns was associated with differing hydrodynamic regimes. This variability in the quantum yield demonstrates that satellite-based fluorescence is inappropriate for phytoplankton biomass determinations. More importantly, the work presented here provides the modeling foundation for fluorescence-based investigations of temporal and spatial variability in phytoplankton physiology associated with growth irradiance. These space-based physiological observations have the potential to decrease uncertainties in future ocean color derived primary productivity estimates.

  4. Global patterns of phytoplankton dynamics in coastal ecosystems

    USGS Publications Warehouse

    Paerl, H.; Yin, Kedong; Cloern, J.

    2011-01-01

    Scientific Committee on Ocean Research Working Group 137 Meeting; Hangzhou, China, 17-21 October 2010; Phytoplankton biomass and community structure have undergone dramatic changes in coastal ecosystems over the past several decades in response to climate variability and human disturbance. These changes have short- and long-term impacts on global carbon and nutrient cycling, food web structure and productivity, and coastal ecosystem services. There is a need to identify the underlying processes and measure the rates at which they alter coastal ecosystems on a global scale. Hence, the Scientific Committee on Ocean Research (SCOR) formed Working Group 137 (WG 137), "Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems: A Comparative Analysis of Time Series Observations" (http://wg137.net/). This group evolved from a 2007 AGU-sponsored Chapman Conference entitled "Long Time-Series Observations in Coastal Ecosystems: Comparative Analyses of Phytoplankton Dynamics on Regional to Global Scales.".

  5. Phytoplankton pigment patterns and wind forcing off central California

    NASA Technical Reports Server (NTRS)

    Abbott, Mark R.; Barksdale, Brett

    1991-01-01

    Mesoscale variability in phytoplankton pigment distributions of central California during the spring-summer upwelling season are studied via a 4-yr time series of high-resolution coastal zone color scanner imagery. Empirical orthogonal functions are used to decompose the time series of spatial images into its dominant modes of variability. The coupling between wind forcing of the upper ocean and phytoplankton distribution on mesoscales is investigated. Wind forcing, in particular the curl of the wind stress, was found to play an important role in the distribution of phytoplankton pigment in the California Current. The spring transition varies in timing and intensity from year to year but appears to be a recurrent feature associated with the rapid onset of the upwelling-favorable winds. Although the underlying dynamics may be dominated by processes other than forcing by wind stress curl, it appears that curl may force the variability of the filaments and hence the pigment patterns.

  6. β-Decay Half-Lives of 110 Neutron-Rich Nuclei across the N=82 Shell Gap: Implications for the Mechanism and Universality of the Astrophysical r Process.

    PubMed

    Lorusso, G; Nishimura, S; Xu, Z Y; Jungclaus, A; Shimizu, Y; Simpson, G S; Söderström, P-A; Watanabe, H; Browne, F; Doornenbal, P; Gey, G; Jung, H S; Meyer, B; Sumikama, T; Taprogge, J; Vajta, Zs; Wu, J; Baba, H; Benzoni, G; Chae, K Y; Crespi, F C L; Fukuda, N; Gernhäuser, R; Inabe, N; Isobe, T; Kajino, T; Kameda, D; Kim, G D; Kim, Y-K; Kojouharov, I; Kondev, F G; Kubo, T; Kurz, N; Kwon, Y K; Lane, G J; Li, Z; Montaner-Pizá, A; Moschner, K; Naqvi, F; Niikura, M; Nishibata, H; Odahara, A; Orlandi, R; Patel, Z; Podolyák, Zs; Sakurai, H; Schaffner, H; Schury, P; Shibagaki, S; Steiger, K; Suzuki, H; Takeda, H; Wendt, A; Yagi, A; Yoshinaga, K

    2015-05-15

    The β-decay half-lives of 110 neutron-rich isotopes of the elements from _{37}Rb to _{50}Sn were measured at the Radioactive Isotope Beam Factory. The 40 new half-lives follow robust systematics and highlight the persistence of shell effects. The new data have direct implications for r-process calculations and reinforce the notion that the second (A≈130) and the rare-earth-element (A≈160) abundance peaks may result from the freeze-out of an (n,γ)⇄(γ,n) equilibrium. In such an equilibrium, the new half-lives are important factors determining the abundance of rare-earth elements, and allow for a more reliable discussion of the r process universality. It is anticipated that universality may not extend to the elements Sn, Sb, I, and Cs, making the detection of these elements in metal-poor stars of the utmost importance to determine the exact conditions of individual r-process events.

  7. Distributional shifts in size structure of phytoplankton community

    NASA Astrophysics Data System (ADS)

    Waga, H.; Hirawake, T.; Fujiwara, A.; Nishino, S.; Kikuchi, T.; Suzuki, K.; Takao, S.

    2015-12-01

    Increased understanding on how marine species shift their distribution is required for effective conservation of fishery resources under climate change. Previous studies have often predicted distributional shifts of fish using satellite derived sea surface temperature (SST). However, SST may not fully represent the changes in species distribution through food web structure and as such this remains an open issue due to lack of ecological perspective on energy transfer process in the earlier studies. One of the most important factors in ecosystem is composition of phytoplankton community, and its size structure determines energy flow efficiency from base to higher trophic levels. To elucidate spatiotemporal variation in phytoplankton size structure, chlorophyll-a size distribution (CSD) algorithm was developed using spectral variance of phytoplankton absorption coefficient through principal component analysis. Slope of CSD (CSD slope) indicates size structure of phytoplankton community where, strong and weak magnitudes of CSD slope indicate smaller and larger phytoplankton structure, respectively. Shifts in CSD slope and SST were derived as the ratio of temporal trend over the 12-year period (2003-2014) to 2-dimensional spatial gradient and the resulting global median velocity of CSD slope and SST were 0.361 and 0.733 km year-1, respectively. In addition, the velocity of CSD slope monotonically increases with increasing latitude, while relatively complex latitudinal pattern for SST emerged. Moreover, angle of shifts suggest that species are required to shift their distribution toward not limited to simple pole-ward migration, and some regions exhibit opposite direction between the velocity of CSD slope and SST. These findings further imply that combined phytoplankton size structure and SST may contribute for more accurate prediction of species distribution shifts relative to existing studies which only considering variations in thermal niches.

  8. Temporal organization of phytoplankton communities linked to physical forcing.

    PubMed

    Winder, Monika; Hunter, Deborah A

    2008-05-01

    The performance of individual phytoplankton species is strongly governed by the thermal stratification's impact on vertical mixing within the water column, which alters the position of phytoplankton relative to nutrients and light. The present study documents shifts in phytoplankton structure and vertical positioning that have accompanied intensified long-term stratification in a natural ecosystem. Ordination analysis is used to extract gradients in phytoplankton composition in Lake Tahoe, an extremely nutrient-poor lake, over a 23-year period of records. Community structure in the 1980s was associated most strongly with resource availability (low nitrogen to phosphorus ratios, deeper euphotic zone depth), while intensified stratification dominated the phytoplankton structure since the late 1990s. Within diatoms, small-sized cells increased with reduced mixing, suggesting that suppressed turbulence provides them with a competitive advantage over large-sized cells. Among the morphologically diverse chlorophytes, filamentous and coenobial forms were favored under intensified stratification. The selection for small-sized diatoms is accompanied by a shoaling trend in their vertical position in the water column. In contrast, the motile flagellates displayed a deeper vertical positioning in recent years, indicating that optimal growth conditions shifted likely due to reduced upwelling of nutrients. As the thermal stratification of lakes and oceans is strongly linked to climate variables, the present study confirms that climate warming will alter phytoplankton structure and dynamics largely through effects on nutrient availability and sinking velocities. Intensified stratification should favor the expansion of small-sized species and species with the capability of buoyancy regulation, which may alter primary productivity, nutrient recycling, and higher trophic productivity.

  9. Macromolecular compositions of phytoplankton in the Amundsen Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Bo Kyung; Lee, Jang Han; Joo, HuiTae; Song, Ho Jung; Yang, Eun Jin; Lee, Sang Hoon; Lee, Sang H.

    2016-01-01

    The biochemical compositions (proteins, carbohydrates, and lipids) of phytoplankton provide useful information for their environmental growth conditions and nutritional status as a basic food source for upper trophic consumers. Concentrations of these compositions were assessed at 100, 30, and 1% light penetration depths within the euphotic zone in the Amundsen Sea, Antarctica, using colorimetric techniques. The major inorganic nutrients were generally abundant throughout the study area. The average chlorophyll a (chl-a) concentration was 49.2 mg m-2 (S.D.=±27.6 mg m-2) and large phytoplankton (>20 μm) accounted for 64.1% of the total chl-a concentration. The biochemical compositions of the phytoplankton were not significantly different among different light depths or productivity stations. The overall compositions of proteins, carbohydrates, and lipids from all stations averaged 65.9% (S.D.=±12.5%), 22.4% (S.D.=±10.9%), and 11.7% (S.D.=±6.5%), respectively. Regardless of dominant phytoplankton species, nitrogen-abundant conditions sustained high protein compositions of phytoplankton in the Amundsen Sea during the cruise period. Based on the macromolecular compositions, the average food material (FM) concentration was 219.4 μg L-1 (S.D.=±151.1 μg L-1) and correlated positively with the primary productivity in the Amundsen Sea. High protein/carbohydrate ratios (>1) and large proportions of proteins suggest that phytoplankton provide nitrogen-sufficient foods to higher trophic consumers through a higher efficiency of protein carbon incorporated into herbivores.

  10. Seasonal dynamics of phytoplankton community in a tropical wetland.

    PubMed

    Bhat, Najeeb Ahmad; Wanganeo, Ashwani; Raina, Rajni

    2015-01-01

    Phytoplankton species composition and seasonal changes were investigated in the Bhoj wetland Bhopal. Taxonomic composition, diversity, and abundance of phytoplankton were studied at nine stations from March 2008 to February 2010, in relation to various physico-chemical factors. Total phytoplankton species composition in the Bhoj wetland was represented by 360 species. Among phytoplankton, diversity belonged to seven groups. Chlorophyceae was the dominant group (48%) followed by Bacillariophyceae (26%), Cyanophyceae (15%), and Euglenophyceae (9%), while Pyrophyceae, Chrysophyceae, and Xanthophyceae contributed 2% of the population. Phytoplankton on the basis of seasonal studies recorded 1651 units l(-1) during summer season which was contributed mainly by Chlorophyceae (39.3%), with Spirogyra sp. (14.2%) and Closteriopsis sp. (9.1%) contributing maximum to the total group in the first year, while during the second year of summer period, a total of 2095 units l(-1) was recorded which was contributed mainly by group Pyrophyceae (51%) with the main dominant species represented by Ceratium hirundinella (98.46%). The highest Shannon-Wiener diversity index (H') value (4.27) was recorded. Simpson values are approaching 1, signifying that sites have high relative diversity due to its supporting surrounding components. The trend of variation in evenness values was more or less the same as Shannon diversity index. Thus, the highest diversity indices recoded at all the stations in the present study justify the diverse nature of species inhabiting the different ecological niches in the ecosystem. The very high phosphate and nitrate concentrations in the wetland are indicators of pollution which may be due to the discharge of agricultural and sewage wastes enriched with nutrients as well as the human activities there. Our recommendation is to avoid as far as possible the discharge of sewage and agriculture wastes into the Bhoj wetland. The effects of various physicochemical

  11. Remote sensing of oceanic phytoplankton - Present capabilities and future goals

    NASA Technical Reports Server (NTRS)

    Esaias, W. E.

    1980-01-01

    A description is given of current work in the development of sensors, and their integration into increasingly powerful systems, for oceanic phytoplankton abundance estimation. Among the problems relevant to such work are phytoplankton ecology, the spatial and temporal domains, available sensor platforms, and sensor combinations. Among the platforms considered are satellites, aircraft, tethered balloons, helicopters, ships, and the Space Shuttle. Sensors discussed include microwave radiometers, laser fluorosensors, microwave scatterometers, multispectral scanners, Coastal Ocean Dynamics Radar (CODAR), and linear array detectors. Consideration is also given to the prospects for such future sensor systems as the National Oceanic Satellite System (NOSS) and the Airborne Integrated Mapping System (AIMS).

  12. Adding delayed recall to the ADAS-cog improves measurement precision in mild Alzheimer's disease: Implications for predicting instrumental activities of daily living.

    PubMed

    Lowe, Deborah A; Balsis, Steve; Benge, Jared F; Doody, Rachelle S

    2015-12-01

    As research increasingly focuses on preclinical stages of Alzheimer's disease (AD), instruments must be retooled to identify early cognitive markers of AD. A supplemental delayed recall subtest for the Alzheimer's Disease Assessment Scale-cognitive (ADAS-cog; Mohs, Rosen, & Davis, 1983; Rosen, Mohs, & Davis, 1984) is commonly implemented, but it is not known precisely where along the spectrum of cognitive dysfunction this subtest yields incremental information beyond what is gained from the standard ADAS-cog, or whether it can improve prediction of functional outcomes. An item response theory approach can analyze this in a psychometrically rigorous way. Seven hundred eighty-eight patients with AD or amnestic complaints or impairment completed a battery including the ADAS-cog and 2 activities of daily living measures. The delayed recall subtest slightly improved the ADAS-cog's measurement precision in the mild range of cognitive dysfunction and increased prediction of instrumental activities of daily living for individuals with subjective memory impairment.

  13. Physiological Ecology of Dimethylsulfoniopropionate (DMSP) and Dimethylsulfide (DMS) Production by Phytoplankton

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The main objectives of the previously funded work were: (1) to determine the rates of DMSP and DMS production as a function of phytoplankton growth rate; (2) to determine the light dependence (quantity and quality) of DiMethylSulfonioPropionate (DMSP) and DiMethylSulfide (DMS) production by phytoplankton; and (3) to study intraspecific differences in DMSP and DMS production by phytoplankton.

  14. Multiwavelength LIDAR for remote sensing of chlorophyll A in algae and phytoplankton

    NASA Technical Reports Server (NTRS)

    Mumola, P. B.; Jarrett, O., Jr.; Brown, C. A., Jr.

    1975-01-01

    A theoretical and experimental analysis of laser induced fluorescence for remote detection of chlorophyll A in living algae and phytoplankton is presented. The fluorescent properties of various species of algae representative of the different color groups are described. Laboratory measurements of fluorescent scattering cross sections is discussed and quantitive data presented. A scattering matrix model is developed to demonstrate the essential requirement of multiwavelength laser excitation in order to make accurate quantitative measurements of chlorophyll A concentration when more than one color group of algae is present in the water. A practical airborne laser fluorosensor design is considered and analysis of field data discussed. Successful operation of the Langley ALOPE (airborne LIDAR oceanographic probing experiment) system is described and field measurements presented. Accurate knowledge of alpha, the optical attenuation coefficient of the water, is shown to be essential for quantitative analysis of chlorophyll A concentration. The feasibility of remotely measuring alpha by laser radar is discussed.

  15. Remote-sensing-based measurement of phytoplankton size spectrum and cell diameter in the global oceans

    NASA Astrophysics Data System (ADS)

    Roy, S.; Sathyendranath, S.; Bouman, H. A.; Platt, T.

    2012-12-01

    Oceanic phytoplankton regulate the spectral quality of the submarine light field because light absorption by phytoplankton is spectrally structured, with a maximum in the blue and a secondary maximum in the red. The spectral characteristics of absorption are variable with phytoplankton taxa, and also with cell size and growth conditions. The intra-cellular concentration of light-absorbing pigments varies with phytoplankton size, which in turn modulates its specific absorption. The changes in phytoplankton cell size alter not only the bio-optical properties of the water column, but also the trophic interactions within the ecosystem. It is thus important to study the time evolution of phytoplankton size structure over the global ocean. We have developed a novel model that uses the light absorption coefficient of phytoplankton to retrieve quantitative information about phytoplankton size structure from satellite-derived ocean-colour data. The application of the method to satellite remote sensing at any given spatial location depends on the estimates of the concentration of chlorophyll-a, which is an operational index of phytoplankton biomass, and the remote sensing reflectance at different wavelengths in the visible domain. Using our method we have computed the equivalent spherical diameter of phytoplankton cells and the exponent of particle-size spectrum of phytoplankton, and thereby estimated the chlorophyll distribution in different phytoplankton size classes on a global scale. The spatial distribution of the size-spectrum exponent and the biomass fractions of pico-, nano- and micro-phytoplankton estimated are consistent with our current understanding of phytoplankton functional types in the global oceans. The study will enhance our understanding of the distribution and time evolution of phytoplankton size structure in the global oceans.

  16. Learning the pedagogical implications of student diversity: The lived experience of preservice teachers learning to teach secondary science in diverse classrooms

    NASA Astrophysics Data System (ADS)

    Larkin, Doug

    This study explores the nature of the changes in thinking that occur in prospective teachers during teacher education programs, particularly as these changes pertain to the pedagogical implications of student diversity within the teaching of high school science. The specific research question examined here is: How do preservice secondary science teachers' conceptions about what it means to teach science in diverse classrooms change during a teacher education program, and in what ways are these changes influenced by their science methods courses and student teaching experiences? The theory of conceptual change serves as the framework for understanding preservice teacher learning in this study. In this research, I describe the experiences of six prospective secondary science teachers from four different teacher education programs located in the Midwestern United States using a multiple case study approach. Qualitative data was collected from students through interviews, questionnaires, teaching portfolios, written coursework, lesson planning materials, and naturalistic observations of student teaching. The questionnaire and interview protocols were based on those developed for the Teacher Education and Learning to Teach study (NCRTE, 1991) and adapted for specific science content areas. Findings of this study include the fact that participants came to view the salience of diversity in science teaching primarily in terms of students' interest, motivation, and engagement. Also, it appeared prospective teachers needed to first recognize the role that student thinking plays in learning before being able to understand the pedagogical implications of student diversity became possible. Finally, while all of the participants increasingly valued student ideas, they did so for a wide variety of reasons, not all of which related to student learning. The implications section of this study highlights opportunities for drawing on science education research to inform multicultural

  17. Beyond symptom management: Family relations, unmet needs of persons living with severe mental illnesses, and potential implications for social work in South Africa

    PubMed Central

    Tomita, Andrew; Burns, Jonathan K.; King, Howard; Baumgartner, Joy Noel; Davis, Glen P.; Mtshemla, Sisanda; Nene, Siphumelele; Susser, Ezra

    2016-01-01

    This study examined the quality of family relationships and its associations with the severity of unmet needs of individuals admitted to a tertiary psychiatric hospital in South Africa. The quality of family relations and perceived unmet needs were assessed using the Lehman Quality of Life Interview and Camberwell Assessment of Needs, respectively. The results show that higher total unmet needs were associated with lower quality of family relations. The main areas of serious unmet needs included accessing government benefits and information, and establishing social relations. The results have implications for hospital-based social workers beyond managing psychiatric symptoms in South Africa. PMID:26731612

  18. 182Hf-182W age dating of a 26Al-poor inclusion and implications for the origin of short-lived radioisotopes in the early Solar System.

    PubMed

    Holst, Jesper C; Olsen, Mia B; Paton, Chad; Nagashima, Kazuhide; Schiller, Martin; Wielandt, Daniel; Larsen, Kirsten K; Connelly, James N; Jørgensen, Jes K; Krot, Alexander N; Nordlund, Ake; Bizzarro, Martin

    2013-05-28

    Refractory inclusions [calcium-aluminum-rich inclusions, (CAIs)] represent the oldest Solar System solids and provide information regarding the formation of the Sun and its protoplanetary disk. CAIs contain evidence of now extinct short-lived radioisotopes (e.g., (26)Al, (41)Ca, and (182)Hf) synthesized in one or multiple stars and added to the protosolar molecular cloud before or during its collapse. Understanding how and when short-lived radioisotopes were added to the Solar System is necessary to assess their validity as chronometers and constrain the birthplace of the Sun. Whereas most CAIs formed with the canonical abundance of (26)Al corresponding to (26)Al/(27)Al of ∼5 × 10(-5), rare CAIs with fractionation and unidentified nuclear isotope effects (FUN CAIs) record nucleosynthetic isotopic heterogeneity and (26)Al/(27)Al of <5 × 10(-6), possibly reflecting their formation before canonical CAIs. Thus, FUN CAIs may provide a unique window into the earliest Solar System, including the origin of short-lived radioisotopes. However, their chronology is unknown. Using the (182)Hf-(182)W chronometer, we show that a FUN CAI recording a condensation origin from a solar gas formed coevally with canonical CAIs, but with (26)Al/(27)Al of ∼3 × 10(-6). The decoupling between (182)Hf and (26)Al requires distinct stellar origins: steady-state galactic stellar nucleosynthesis for (182)Hf and late-stage contamination of the protosolar molecular cloud by a massive star(s) for (26)Al. Admixing of stellar-derived (26)Al to the protoplanetary disk occurred during the epoch of CAI formation and, therefore, the (26)Al-(26)Mg systematics of CAIs cannot be used to define their formation interval. In contrast, our results support (182)Hf homogeneity and chronological significance of the (182)Hf-(182)W clock.

  19. 182Hf–182W age dating of a 26Al-poor inclusion and implications for the origin of short-lived radioisotopes in the early Solar System

    PubMed Central

    Holst, Jesper C.; Olsen, Mia B.; Paton, Chad; Nagashima, Kazuhide; Schiller, Martin; Wielandt, Daniel; Larsen, Kirsten K.; Connelly, James N.; Jørgensen, Jes K.; Krot, Alexander N.; Nordlund, Åke; Bizzarro, Martin

    2013-01-01

    Refractory inclusions [calcium–aluminum-rich inclusions, (CAIs)] represent the oldest Solar System solids and provide information regarding the formation of the Sun and its protoplanetary disk. CAIs contain evidence of now extinct short-lived radioisotopes (e.g., 26Al, 41Ca, and 182Hf) synthesized in one or multiple stars and added to the protosolar molecular cloud before or during its collapse. Understanding how and when short-lived radioisotopes were added to the Solar System is necessary to assess their validity as chronometers and constrain the birthplace of the Sun. Whereas most CAIs formed with the canonical abundance of 26Al corresponding to 26Al/27Al of ∼5 × 10−5, rare CAIs with fractionation and unidentified nuclear isotope effects (FUN CAIs) record nucleosynthetic isotopic heterogeneity and 26Al/27Al of <5 × 10−6, possibly reflecting their formation before canonical CAIs. Thus, FUN CAIs may provide a unique window into the earliest Solar System, including the origin of short-lived radioisotopes. However, their chronology is unknown. Using the 182Hf–182W chronometer, we show that a FUN CAI recording a condensation origin from a solar gas formed coevally with canonical CAIs, but with 26Al/27Al of ∼3 × 10−6. The decoupling between 182Hf and 26Al requires distinct stellar origins: steady-state galactic stellar nucleosynthesis for 182Hf and late-stage contamination of the protosolar molecular cloud by a massive star(s) for 26Al. Admixing of stellar-derived 26Al to the protoplanetary disk occurred during the epoch of CAI formation and, therefore, the 26Al–26Mg systematics of CAIs cannot be used to define their formation interval. In contrast, our results support 182Hf homogeneity and chronological significance of the 182Hf–182W clock. PMID:23671077

  20. What Regulates Spatial Gradients in Marine Phytoplankton Diversity?

    NASA Astrophysics Data System (ADS)

    Barton, A. D.; Follows, M. J.; Dutkiewicz, S.; Bragg, J.

    2008-12-01

    A global, three-dimensional self-assembling model of marine phytoplankton communities, initialized with many tens of plausible physiologies, shows a pronounced equator-to-pole decrease in the diversity of phytoplankton species. This pattern is common among many marine taxa. Regions of enhanced phytoplankton diversity also occur in association with areas of energetic flow including western boundary currents. In the three-dimensional model, the most abundant phytoplankton types in the stable, warm waters tend to have similar, low R* values, which indicate a strong ability to compete for scarce nutrients. We use a highly idealized, zero-dimensional model to interpret and illustrate mechanisms causing the broad meridional diversity gradient in terms of the variability of the environment. We demonstrate that in stable, oligotrophic conditions there are very long exclusion timescales (hundreds to thousands of years) for organisms with similar and low R* values if temporal variability in resource supply is either long (inter-annual or longer) or short (comparable to the growth period or shorter). High amplitude variability in resource supply, with seasonal timescales, leads to rapid competitive exclusion.

  1. Hydrologic controls of phytoplankton blooms in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Roesler, C. S.; Barnard, A. H.; Pettigrew, N. R.

    2014-12-01

    The Gulf of Maine is a marginal sea adjacent to the subpolar North Atlantic gyre. It similarly exhibits canonical seasonal phytoplankton blooms. An array of moorings was deployed on the shelf and deep basins in the Gulf of Maine in 2001 with real-time hydrographic and optical sensor packages. Daily climatologies of calibrated chlorophyll fluorescence (a proxy for phytoplankton biomass), temperature and salinity provide quantitative models for the spatial progression of seasonal patterns in stratification and bloom development. Anomaly time series indicate an abrupt change in the seasonal patterns beginning in 2005. Prior to 2005, seasonal blooms were triggered by the onset of thermally-driven stratification, the timing of which was primarily determined by latitude without influence of location on the shelf or deep basins. Spring blooms propagated from southwest to northeast, while fall blooms propagated from northeast to southwest following autumnal cooling and destratification. Beginning in 2005, an increase in the amount and intensity of precipitation yielded significant changes in river discharge patterns, particularly associated with the spring freshet. Springtime stratification patterns , and hence spring phytoplankton blooms, appeared much earlier and synoptically across the Gulf, in some locations up to 2 months earlier than observed prior to 2005. The consequences of such large variations in the timing and spatial patterns of spring phytoplankton blooms include large variations in specific growth rates, mismatch with grazing populations, and cascading changes in ecosystem structure throughout the Gulf of Maine.

  2. [The phytoplankton community of Punta Morales, Nicoya Gulf, Costa Rica ].

    PubMed

    Brugnoli Olivera, E; Morales Ramirez, A

    2001-12-01

    Three daily samplings of the phytoplankton community were made at two consecutive days in March, April, May, September, October, November and December 1997, at Punta Morales, Golfo de Nicoya, Costa Rica. Samples were collected during each tide at depths of 50% and 10% of light penetration using a Niskin bottle. A total of 43 taxa were identified. Centric diatoms, pennates and flagellates represented 90% of total phytoplankton abundance. In the phytoplankton fraction (cells > 30 microm), diatoms were the most abundant group, and Skeletonema costatum (32%) dominated. In nannophytoplankton (cells < 30 microm), Chaetoceros (23.7%) was the most abundant taxon, followed by flagellates (23%) and Cylindrotheca closterium (13.1%). These results agree with previous surveys and suggest that a typical net phytoplankton community persist through time in the Punta Morales zone. The number of nannophytoplankton fraction cells varied seasonally and suggests quantitative changes in species abundance, with possible modifications of cellular size or chain length in filamentous species. The codominance between S. costatum and Chaetoceros spp. during the rainy season suggested the ocurrence of an early ecological sucession, and nutrients could be the factor generating such population changes.

  3. The Molecular Ecophysiology of Programmed Cell Death in Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Bidle, Kay D.

    2015-01-01

    Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.

  4. Competing phytoplankton undermines allelopathy of a bloom-forming dinoflagellate.

    PubMed

    Prince, Emily K; Myers, Tracey L; Naar, Jerome; Kubanek, Julia

    2008-12-07

    Biotic interactions in the plankton can be both complex and dynamic. Competition among phytoplankton is often chemically mediated, but no studies have considered whether allelopathic compounds are modified by biotic interactions. Here, we show that compounds exuded during Karenia brevis blooms were allelopathic to the cosmopolitan diatom Skeletonema costatum, but that bloom allelopathy varied dramatically among collections and years. We investigated several possible causes of this variability and found that neither bloom density nor concentrations of water-borne brevetoxins correlated with allelopathic potency. However, when we directly tested whether the presence of competing phytoplankton influenced bloom allelopathy, we found that S. costatum reduced the growth-inhibiting effects of bloom exudates, suggesting that S. costatum has a mechanism for undermining K. brevis allelopathy. Additional laboratory experiments indicated that inducible changes to K. brevis allelopathy were restricted to two diatoms among five sensitive phytoplankton species, whereas five other species were constitutively resistant to K. brevis allelopathy. Our results suggest that competitors differ in their responses to phytoplankton allelopathy, with S. costatum exhibiting a previously undescribed method of resistance that may influence community structure and alter bloom dynamics.

  5. Impact of Submesoscale Processes on Dynamics of Phytoplankton Filaments

    DTIC Science & Technology

    2015-02-12

    RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 29-04-2015 Journal Article Impact of submesoscale processes on dynamics of phytoplankton...anticyclonic circulation generate ageostrophic secondary circulation (ASC) cells due to submesoscale processes as, for example, flow interaction with... submesoscale processes on the formation of chlorophyll a filaments during late springearlier summer, and late summer time frames. We show that during

  6. Investigations of the uptake of dimethylsulfoniopropionate by phytoplankton.

    PubMed

    Spielmeyer, Astrid; Gebser, Björn; Pohnert, Georg

    2011-10-17

    No change here: Analysis with doubly labeled [(13)C(2)D(6)]DMSP and LC/MS revealed that dissolved DMSP is taken up and stored intracellularly by diverse phytoplankton species without transformation. This is even true for species that produce no quantifiable amounts of DMSP themselves.

  7. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Quigg, Antonietta; Finkel, Zoe V.; Irwin, Andrew J.; Rosenthal, Yair; Ho, Tung-Yuan; Reinfelder, John R.; Schofield, Oscar; Morel, Francois M. M.; Falkowski, Paul G.

    2003-09-01

    Phytoplankton is a nineteenth century ecological construct for a biologically diverse group of pelagic photoautotrophs that share common metabolic functions but not evolutionary histories. In contrast to terrestrial plants, a major schism occurred in the evolution of the eukaryotic phytoplankton that gave rise to two major plastid superfamilies. The green superfamily appropriated chlorophyll b, whereas the red superfamily uses chlorophyll c as an accessory photosynthetic pigment. Fossil evidence suggests that the green superfamily dominated Palaeozoic oceans. However, after the end-Permian extinction, members of the red superfamily rose to ecological prominence. The processes responsible for this shift are obscure. Here we present an analysis of major nutrients and trace elements in 15 species of marine phytoplankton from the two superfamilies. Our results indicate that there are systematic phylogenetic differences in the two plastid types where macronutrient (carbon:nitrogen:phosphorus) stoichiometries primarily reflect ancestral pre-symbiotic host cell phenotypes, but trace element composition reflects differences in the acquired plastids. The compositional differences between the two plastid superfamilies suggest that changes in ocean redox state strongly influenced the evolution and selection of eukaryotic phytoplankton since the Proterozoic era.

  8. Patchiness of phytoplankton and primary production in Liaodong Bay, China

    PubMed Central

    Laws, Edward A.; Zhang, Haibo; Ye, Siyuan; Yuan, Hongming; Liu, Haiyue

    2017-01-01

    A comprehensive study of water quality, phytoplankton biomass, and photosynthetic rates in Liaodong Bay, China, during June and July of 2013 revealed two large patches of high biomass and production with dimensions on the order of 10 km. Nutrient concentrations were above growth-rate-saturating concentrations throughout the bay, with the possible exception of phosphate at some stations. The presence of the patches therefore appeared to reflect the distribution of water temperature and variation of light penetration restricted by water turbidity. There was no patch of high phytoplankton biomass or production in a third, linear patch of water with characteristics suitable for rapid phytoplankton growth; the absence of a bloom in that patch likely reflected the fact that the width of the patch was less than the critical size required to overcome losses of phytoplankton to turbulent diffusion. The bottom waters of virtually all of the eastern half of the bay were below the depth of the mixed layer, and the lowest bottom water oxygen concentrations, 3–5 mg L–1, were found in that part of the bay. The water column in much of the remainder of the bay was within the mixed layer, and oxygen concentrations in both surface and bottom waters exceeded 5 mg L–1. PMID:28235070

  9. A turbulence-induced switch in phytoplankton swimming behavior

    NASA Astrophysics Data System (ADS)

    Carrara, Francesco; Sengupta, Anupam; Stocker, Roman

    2015-11-01

    Phytoplankton, unicellular photosynthetic organisms that form the basis of life in aquatic environments, are frequently exposed to turbulence, which has long been known to affect phytoplankton fitness and species succession. Yet, mechanisms by which phytoplankton may adapt to turbulence have remained unknown. Here we present a striking behavioral response of a motile species - the red-tide-producing raphidophyte Heterosigma akashiwo - to hydrodynamic cues mimicking those experienced in ocean turbulence. In the absence of turbulence, H. akashiwo exhibits preferential upwards swimming (`negative gravitaxis'), observable as a strong accumulation of cells at the top of an experimental container. When cells were exposed to overturning in an automated chamber - representing a minimum experimental model of rotation by Kolmogorov-scale turbulent eddies - the population robustly split in two nearly equi-abundant subpopulations, one swimming upward and one swimming downward. Microscopic observations at the single-cell level showed that the behavioral switch was accompanied by a rapid morphological change. A mechanistic model that takes into account cell shape confirms that modulation of morphology can alter the hydrodynamic stress distribution over the cell body, which, in turn, triggers the observed switch in phytoplankton migration direction. This active response to fluid flow, whereby microscale morphological changes influence ocean-scale migration dynamics, could be part of a bet-hedging strategy to maximize the chances of at least a fraction of the population evading high-turbulence microzones.

  10. LOCO: Characterization of Phytoplankton in Thin Optical Layers

    DTIC Science & Technology

    2007-09-30

    Donaghay & J. Sullivan. Fine scale distribution and abundance of large and small phytoplankton in Monterey Bay, CA. Phycological Society of America...2007 Northeast Algal Society meeting for presentation of his methodology. This award carried a prize of $500 toward the cost of attending the 2007 Phycological Society of America meeting. 9

  11. LOCO: Characterization of Phytoplankton in Thin Optical Layers

    DTIC Science & Technology

    2006-01-01

    P. Donaghay & J. Sullivan. Fine scale distribution and abundance of large and small phytoplankton in Monterey Bay, CA. Phycological Society of...award at the 2007 Northeast Algal Society meeting for presentation of his methodology. This award carried a prize of $500 toward the cost of attending the 2007 Phycological Society of America meeting. 9

  12. Phytoplankton community composition in nearshore coastal waters of Louisiana

    EPA Science Inventory

    Phytoplankton community compositions within near-shore coastal and estuarine waters of Louisiana were characterized by relative abundance, biovolume, and taxonomic identification to genus and species when possible. The range of total nitrogen was 0.5 to 1.3 mg L-1 and total phos...

  13. High protein production of phytoplankton in the Amundsen Sea

    NASA Astrophysics Data System (ADS)

    Jung Song, Ho; Jung Kang, Jae; Kyung Kim, Bo; Joo, HuiTae; Jin Yang, Eun; Park, Jisoo; Hoon Lee, Sang; Heon Lee, Sang

    2016-01-01

    The Amundsen Sea polynya is one of the largest and most productive polynyas in the Southern Ocean and has recently experienced a rapid change in sea ice coverage. However, very little is known about current physiological status of phytoplankton and its quality as food for pelagic herbivores and consequently higher trophic levels in the Amundsen Sea. Using a 13C isotope tracer technique, macromolecular production measurements of phytoplankton at eleven stations were conducted at three light depths (100, 30, and 1%) onboard R/V ARAON in the Amundsen Sea, 2012. The concentrations of major inorganic nutrients were replete at all the productivity stations and no substantial difference in macromolecular production was found between polynya and non-polynya regions. Distinct vertical trends were not observed in low-molecular-weight metabolites (LMWM) and polysaccharide productions, but weak vertical patterns in lipid and protein productions were found during our cruise period. The vertical patterns of lipids slightly increased with depth whereas decreased for protein synthesis in this study, and these vertical trends were not consistent with the results reported previously in the Arctic Ocean. Overall, phytoplankton allocated more photosynthetic carbon into proteins (60.0%) than other macromolecules in the Amundsen Sea, which is markedly higher than those reported previously in the Antarctic Ocean, ranging from 7 to 23%. The high protein synthesis appears to be sustained by high concentrations of major nutrients, which might be a strong factor for general patterns of macromolecular productions of phytoplankton in polar oceans, even under potential iron limitation.

  14. Isolation by Time During an Arctic Phytoplankton Spring Bloom.

    PubMed

    Tammilehto, Anna; Watts, Phillip C; Lundholm, Nina

    2017-03-01

    The arctic phytoplankton spring bloom, which is often diatom-dominated, is a key event that provides the high latitude communities with a fundamental flux of organic carbon. During a bloom, phytoplankton may increase its biomass by orders of magnitude within days. Yet, very little is known about phytoplankton bloom dynamics, including for example how blooming affects genetic composition and diversity of a population. Here, we quantified the genetic composition and temporal changes of the diatom Fragilariopsis cylindrus, which is one of the most important primary producers in the Arctic, during the spring bloom in western Greenland, using 13 novel microsatellite markers developed for this study. We found that genetic differentiation (quantified using sample-specific FST ) decreased between time points as the bloom progressed, with the most drastic changes in FST occurring at the start of the bloom; thus the genetic structure of the bloom is characterized by isolation by time. There was little temporal variation in genetic diversity throughout the bloom (mean HE  = 0.57), despite marked fluctuations in F. cylindrus cell concentrations and the temporal change in sample-specific FST . On the basis of this novel pattern of genetic differentiation, we suggest that blooming behavior may promote genetic diversity of a phytoplankton population.

  15. LOCO: Characterization of Phytoplankton in Thin Optical Layers

    DTIC Science & Technology

    2009-09-30

    specific properties of phytoplankton such as size, shape, pigment composition, biomineralization and toxin production are known to play important...Layers, accepted, refereed. McFarland, M., Rines, J., Donaghay, P. Use of automated image analysis to quantify the distribution of photosynthetic

  16. An empirical model for estimating phytoplankton productivity in estuaries

    USGS Publications Warehouse

    Cole, B.E.; Cloern, J.E.

    1987-01-01

    e have previously shown that primary productivity in San Francisco Bay, USA, is highly correlated with phytoplankton biomass B (chlorophyll a concentration) and an index of light avallability in the photic zone, 2, I, (photic depth times surface irradiance). To test the generality of this relation, we compiled data from San Francisco Bay and 5 other USA estuarine systems (Neuse and South Rivers, Puget Sound, Delaware Bay and Hudson River Plume), and regressed daily produclvity J' P (mg C m-2 d-') against the composite parameter B Z, I,. Regressions for each estuary were significant and typically over 80 % of the varialon in P was correlated with variations in B Z,I,. Moreover, the pooled data (n = 211) from 4 estuaries where methodologies were comparable fell along one regression line (r2= 0.82), indicating that primary productivity can be estimated in a diversity of estuarine waters from simple measures of phytoplankton biomass and hght availability. This implies that physiological variabhty (e. g. responses to variations in nutrient availabhty, temperature, sahnity, photoperiod) is a secondary control on phytoplankton production in nutrient-rich estuaries, and that one empirical function can be used to estimate seasonal variations in productivity or to map productivity along estuarine gradients of phytoplankton biomass and turbidity.

  17. DNA Analyses of Phytoplankton in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Gonzalez, M. F.; Bench, S.

    2014-12-01

    The Western Antarctic Peninsula (WAP) is experiencing the fastest climate warming of any marine environment on Earth, with a 6°C rise in mean winter temperature over the past 60 years (Vaughan et al., 2003). Though poorly understood, these changes may have profound effects on local Antarctic ecosystems. This research project aims to identify these changes through the compositional analysis of Antarctic phytoplankton using DNA sequencing supported by fluorescent microscopy. During the 2013 and 2014 blooming seasons, December to March, water samples were obtained from Palmer Station (located on the WAP) and filtered through 3 μm/0.8 μm filters. DNA was extracted from the water samples using the Qiagen Plant Kit, quantified through use of both Nanodrop and Picogreen technology, quality-checked by gel electrophoresis, and sent to be sequenced. Additionally, major phytoplankton species were identified through microscope imaging and preliminary counts were made for four important dates, two located at the peaks of phytoplankton blooms. From these four samples alone, it appeared that cryptomonads dominated the primary bloom whereas diatoms, both centric and pennate, were more abundant during the second bloom. In the future, these results will be tested against sequencing data. Through continued year-by-year analysis of Antarctic phytoplankton abundance levels, it will be possible to identify trends that may be crucial to understanding the dynamic Antarctic ecosystem.

  18. Light utilization and photoinhibition of photosynthesis in marine phytoplankton

    SciTech Connect

    Falkowski, P.G., Greene, R., Kolber, Z.

    1993-12-31

    Introduction to Phytoplankton. Based on the record of the oldest identifiable fossils, the first oxygenic photosynthetic organisms appeared about 2 {times} l0{sup 9} years ago in the form of marine single celled, planktonic procaryotes (Riding, 1992; Sarmiento and Bender, 1993). In the intervening eons, phytoplankton have evolved and diversified; presently they represent at least 11 classes of procaryotic and euacaryotic photoautotrophs. While the carbon of these organisms cumulatively amounts to only 1 to 2% of the global plant biomass, they fix between 35 and 50 gigatonnes ({times} 10{sup 9} metric tons) of carbon annually, about 40% of the global total (Falkowski and Woodhead, 1992). On average, each gram of phytoplankton chlorophyll converts about 6% of the photosynthetically active radiation (440 to 700 nm) incident on the sea surface to photochemical energy (Morel, 1978). Despite a great deal of variability in ocean environments, this photosynthetic conversion efficiency is relatively constant for integrated water column production (Morel, 1978; Falkowski, 1981; Platt, 1986; Morel, 1991). Here we review the factors determining light utilization efficiency of phytoplankton in the oceans, and the physiological acclimations which have evolved to optimize light utilization efficiency.

  19. Lake Superior Phytoplankton Characterization from the 2006 Probability Based Survey

    EPA Science Inventory

    We conducted a late summer probability based survey of Lake Superior in 2006 which consisted of 52 sites stratified across 3 depth zones. As part of this effort, we collected composite phytoplankton samples from the epilimnion and the fluorescence maxima (Fmax) at 29 of the site...

  20. The molecular ecophysiology of programmed cell death in marine phytoplankton.

    PubMed

    Bidle, Kay D

    2015-01-01

    Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.

  1. Physicochemical conditions in affecting the distribution of spring phytoplankton community

    NASA Astrophysics Data System (ADS)

    Wei, Yuqiu; Liu, Haijiao; Zhang, Xiaodong; Xue, Bing; Munir, Sonia; Sun, Jun

    2017-03-01

    To better understand the physicochemical conditions in affecting regional distribution of phytoplankton community, one research cruise was carried out in the Bohai Sea and Yellow Sea during 3rd and 23th May, 2010. The phytoplankton community, including Bacillariophyta (105 taxa), Pyrrophyta (54 taxa), Chrysophyta (1 taxon) and Chlorophyta (2 taxa), had been identified and clearly described from six ecological provinces. And, the six ecological provinces were partitioned based on the top twenty dominant species related with notable physicochemical parameters. In general, the regional distributions of phytoplankton ecological provinces were predominantly influenced by the physicochemical properties induced by the variable water masses and circulations. The predominant diatoms in most of water samples showed well adaptability in turbulent and eutrophic conditions. However, several species of dinoflagellates e.g., Protoperidinium conicum, Protoperidinium triestinum, Protoperidinium sp. and Gymnodinium lohmanni preferred warmer, saltier and nutrient-poor environment. Moreover, the dinoflagellates with high frequency in the Yellow Sea might be transported from the Yellow Sea Warm Current. The horizontal distribution of phytoplankton was depicted by diatoms and controlled by phosphate concentration, while the vertical distribution was mainly supported by light and nutrients availability in the subsurface and bottom layers, respectively.

  2. Implications of Changes in Households and Living Arrangements for Future Home-based Care Needs and Costs of Disabled Elders in China1

    PubMed Central

    Zeng, Yi; Chen, Huashuai; Wang, Zhenglian; Land, Kenneth C.

    2016-01-01

    Objectives Understand future home-based care needs/costs for disabled elders in China. Method Further develop/apply ProFamy extended cohort-component method. Results (1) Chinese disabled elders and percentage of national GDP devoted to home-based care costs for disabled elders will increase much quicker than growth of total elderly population; (2) Home-based care needs/costs for disabled oldest-old aged 80+ will increase much faster than that for disabled young-old aged 65–79 after 2030; (3) Disabled unmarried elders living alone and their home-based care costs increase substantially faster than disabled unmarried elders living with children; (4) Sensitivity analyses shown that possible changes in mortality and elderly disability status are the major factors affecting home-based care needs and costs; (5) Caregivers resources under two-child policy will be substantially better than under current fertility policy unchanged. Discussion Policy recommendations concerning reductions of prevalence of disability, gender equality, two-child policy, encouraging elder’s residential proximity to their adult children, etc. PMID:25213460

  3. A systematic review of factors influencing fertility desires and intentions among people living with HIV/AIDS: implications for policy and service delivery.

    PubMed

    Nattabi, Barbara; Li, Jianghong; Thompson, Sandra C; Orach, Christopher Garimoi; Earnest, Jaya

    2009-10-01

    With availability of antiretroviral treatments, HIV is increasingly recognised as a chronic disease people live with for many years. This paper critically reviews the current literature on fertility desires and reproductive intentions among people living with HIV/AIDS (PLHIV) and critiques the theoretical frameworks and methodologies used. A systematic review was conducted using electronic databases: ISI Web of Knowledge, Science Direct, Proquest, Jstor and CINAHL for articles published between 1990 and 2008. The search terms used were fertility desire, pregnancy, HIV, reproductive decision making, reproductive intentions, motherhood, fatherhood and parenthood. Twenty-nine studies were reviewed. Fertility desires were influenced by a myriad of demographic, health, stigma-associated and psychosocial factors. Cultural factors were also important, particularly in Sub-Saharan Africa and Asia. Future research that examines fertility desires among PLHIV should include cultural beliefs and practices in the theoretical framework in order to provide a holistic understanding and to enable development of services that meet the reproductive needs of PLHIV.

  4. Effects of UV radiation on phytoplankton

    NASA Astrophysics Data System (ADS)

    Smith, Raymond C.; Cullen, John J.

    1995-07-01

    et al., 1986; Worrest, 1986; NOAA, 1987; Smith, 1989; Smith and Baker, 1989; Voytek, 1990; Häder, 1993; Acevedo and Nolan, 1993; Holm-Hansen et al., 1993; Vincent and Roy, 1993; Biggs and Joyner, 1994; Williamson and Zagarese, 1994; Karentz, 1994; Cullen and Neale, 1993; Cullen and Neale, 1994]. As Hader et al. have summarized [UNEP, 1989; UNEP, 1991], "UV-B radiation in aquatic systems: 1) affects adaptive strategies (e.g., motility, orientation); 2) impairs important physiological functions (e.g., photosynthesis and enzymatic reactions); and 3) threatens marine organisms during their developmental stages (e.g., the young of finfish, shrimp larvae, crab larvae)". Possible consequences to aquatic systems include: reduced biomass production; changes in species composition and biodiversity; and alterations of aquatic ecosystems and biogeochemical cycles associated with the above changes. Within the past four years, our knowledge with respect to the environmental effects of ozone-related increased levels of UV-B has increased significantly, and numerous efforts have been directed toward process-oriented studies of UV responses in plants and animals. Consensus is building toward the view that current levels of UV play a major role as an ecological determinant, influencing both survival and distribution, and are thus deserving of increased study independent of ozone-related UV-B increases. This review outlines U.S. research subsequent to 1991 and emphasizes studies concerned with phytoplankton.

  5. Phytoplankton community structure defined by key environmental variables in Tagus estuary, Portugal.

    PubMed

    Brogueira, Maria José; Oliveira, Maria do Rosário; Cabeçadas, Graça

    2007-12-01

    In this work, we analyze environmental (physical and chemical) and biological (phytoplankton) data obtained along Tagus estuary during three surveys, carried out in productive period (May/June/July) at ebb tide. The main objective of this study was to identify the key environmental factors affecting phytoplankton structure in the estuary. BIOENV analysis revealed that, in study period, temperature, salinity, silicate and total phosphorus were the variables that best explained the phytoplankton spatial pattern in the estuary (Spearman correlation, rho=0.803). A generalized linear model (GLM) also identified salinity, silicate and phosphate as having a high explanatory power (63%) of phytoplankton abundance. These selected nutrients appear to be consistent with the requirements of the dominant phytoplankton group, Baccilariophyceae. Apparently, phytoplankton community is adapted to fluctuations in light intensity, as suspended particulate matter did not come out as a key factor in shaping phytoplankton structure along Tagus estuary.

  6. The dynamics of temperature and light on the growth of phytoplankton.

    PubMed

    Chen, Ming; Fan, Meng; Liu, Rui; Wang, Xiaoyu; Yuan, Xing; Zhu, Huaiping

    2015-11-21

    Motivated by some lab and field observations of the hump shaped effects of water temperature and light on the growth of phytoplankton, a bottom-up nutrient phytoplankton model, which incorporates the combined effects of temperature and light, is proposed and analyzed to explore the dynamics of phytoplankton bloom. The population growth model reasonably captures such observed dynamics qualitatively. An ecological reproductive index is defined to characterize the growth of the phytoplankton which also allows a comprehensive analysis of the role of temperature and light on the growth and reproductive characteristics of phytoplankton in general. The model provides a framework to study the mechanisms of phytoplankton dynamics in shallow lake and may even be employed to study the controlled phytoplankton bloom.

  7. Regional species pools control community saturation in lake phytoplankton.

    PubMed

    Ptacnik, Robert; Andersen, Tom; Brettum, Pål; Lepistö, Liisa; Willén, Eva

    2010-12-22

    Recent research has highlighted that positive biodiversity-ecosystem functioning relationships hold for all groups of organisms, including microbes. Yet, we still lack understanding regarding the drivers of microbial diversity, in particular, whether diversity of microbial communities is a matter of local factors, or whether metacommunities are of similar importance to what is known from higher organisms. Here, we explore the driving forces behind spatial variability in lake phytoplankton diversity in Fennoscandia. While phytoplankton biovolume is best predicted by local phosphorus concentrations, phytoplankton diversity (measured as genus richness, G) only showed weak correlations with local concentrations of total phosphorus. By estimating spatial averages of total phosphorus concentrations on various scales from an independent, spatially representative lake survey, we found that close to 70 per cent of the variability in local phytoplankton diversity can be explained by regionally averaged phosphorus concentrations on a scale between 100 and 400 km. Thus, the data strongly indicate the existence of metacommunities on this scale. Furthermore, we show a strong dependency between lake productivity and spatial community turnover. Thus, regional productivity affects beta-diversity by controlling spatial community turnover, resulting in scale-dependent productivity-diversity relationships. As an illustration of the interaction between local and regional processes in shaping microbial diversity, our results offer both empirical support and a plausible mechanism for the existence of common scaling rules in both the macrobial and the microbial worlds. We argue that awareness of regional species pools in phytoplankton and other unicellular organisms may critically improve our understanding of ecosystems and their susceptibility to anthropogenic stressors.

  8. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate

    PubMed Central

    Wang, Cong; Lin, Xin; Li, Ling; Lin, Senjie

    2016-01-01

    Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton

  9. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate.

    PubMed

    Wang, Cong; Lin, Xin; Li, Ling; Lin, Senjie

    2016-01-01

    Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton

  10. Live bird markets characterization and trading network analysis in Mali: Implications for the surveillance and control of avian influenza and Newcastle disease.

    PubMed

    Molia, Sophie; Boly, Ismaël Ardho; Duboz, Raphaël; Coulibaly, Boubacar; Guitian, Javier; Grosbois, Vladimir; Fournié, Guillaume; Pfeiffer, Dirk Udo

    2016-03-01

    Live bird markets (LBMs) play an important role in the transmission of avian influenza (AI) and Newcastle disease (ND) viruses in poultry. Our study had two objectives: (1) characterizing LBMs in Mali with a focus on practices influencing the risk of transmission of AI and ND, and (2) identifying which LBMs should be targeted for surveillance and control based on properties of the live poultry trade network. Two surveys were conducted in 2009-2010: a descriptive study in all 96 LBMs of an area encompassing approximately 98% of the Malian poultry population and a network analysis study in Sikasso county, the main poultry supplying county for the capital city Bamako. Regarding LBMs' characteristics, risk factors for the presence of AI and ND viruses (being open every day, more than 2 days before a bird is sold, absence of zoning to segregate poultry-related work flow areas, waste removal or cleaning and disinfecting less frequently than on a daily basis, trash disposal of dead birds and absence of manure processing) were present in 80-100% of the LBMs. Furthermore, LBMs tended to have wide catchment areas because of consumers' preference for village poultry meat, thereby involving a large number of villages in their supply chain. In the poultry trade network from/to Sikasso county, 182 traders were involved and 685 links were recorded among 159 locations. The network had a heterogeneous degree distribution and four hubs were identified based on measures of in-degrees, out-degrees and betweenness: the markets of Medine and Wayerma and the fairs of Farakala and Niena. These results can be used to design biosecurity-improvement interventions and to optimize the prevention, surveillance and control of transmissible poultry diseases in Malian LBMs. Further studies should investigate potential drivers (seasonality, prices) of the poultry trade network and the acceptability of biosecurity and behavior-change recommendations in the Malian socio-cultural context.

  11. Demographic and genetic status of an isolated population of bog turtles (Glyptemys muhlenbergii): Implications for managing small populations of long-lived animals

    USGS Publications Warehouse

    Pittman, Shannon E.; King, T.L.; Faurby, S.; Dorcas, M.E.

    2011-01-01

    In this study, we sought to determine the population stability and genetic diversity of one isolated population of the federally-threatened bog turtle (Glyptemys muhlenbergii) in North Carolina. Using capture-recapture data, we estimated adult survival and population growth rate from 1992 to 2007. We found that the population decreased from an estimated 36 adult turtles in 1994 to approximately 11 adult turtles in 2007. We found a constant adult survival of 0. 893 (SE = 0. 018, 95% confidence interval, 0. 853-0. 924) between 1992 and 2007. Using 18 microsatellite markers, we compared the genetic status of this population with five other bog turtle populations. The target population displayed allelic richness (4. 8 ?? 0. 5) and observed heterozygosity (0. 619 ?? 0. 064) within the range of the other bog turtle populations. Coalescent analysis of population growth rate, effective population size, and timing of population structuring event also indicated the genetics of the target population were comparable to the other populations studied. Estimates of effective population size were a proportion of the census size in all populations except the target population, in which the effective population size was larger than the census size (30 turtles vs. 11 turtles). We attribute the high genetic diversity in the target population to the presence of multiple generations of old turtles. This study illustrates that the demographic status of populations of long-lived species may not be reflected genetically if a decline occurred recently. Consequently, the genetic integrity of populations of long-lived animals experiencing rapid demographic bottlenecks may be preserved through conservation efforts effective in addressing demographic problems. ?? 2011 Springer Science+Business Media B.V.

  12. Nuttalliella namaqua: a living fossil and closest relative to the ancestral tick lineage: implications for the evolution of blood-feeding in ticks.

    PubMed

    Mans, Ben J; de Klerk, Daniel; Pienaar, Ronel; Latif, Abdalla A

    2011-01-01

    Ticks are monophyletic and composed of the hard (Ixodidae) and soft (Argasidae) tick families, as well as the Nuttalliellidae, a family with a single species, Nuttalliella namaqua. Significant biological differences in lifestyle strategies for hard and soft ticks suggest that various blood-feeding adaptations occurred after their divergence. The phylogenetic relationships between the tick families have not yet been resolved due to the lack of molecular data for N. namaqua. This tick possesses a pseudo-scutum and apical gnathostoma as observed for ixodids, has a leathery cuticle similar to argasids and has been considered the evolutionary missing link between the two families. Little knowledge exists with regard to its feeding biology or host preferences. Data on its biology and systematic relationship to the other tick families could therefore be crucial in understanding the evolution of blood-feeding behaviour in ticks. Live specimens were collected and blood meal analysis showed the presence of DNA for girdled lizards from the Cordylid family. Feeding of ticks on lizards showed that engorgement occurred rapidly, similar to argasids, but that blood meal concentration occurs via malpighian excretion of water. Phylogenetic analysis of the 18S nuclear and 16S mitochondrial genes indicate that N. namaqua grouped basal to the main tick families. The data supports the monophyly of all tick families and suggests the evolution of argasid-like blood-feeding behaviour in the ancestral tick lineage. Based on the data and considerations from literature we propose an origin for ticks in the Karoo basin of Gondwanaland during the late Permian. The nuttalliellid family almost became extinct during the End Permian event, leaving N. namaqua as the closest living relative to the ancestral tick lineage and the evolutionary missing link between the tick families.

  13. Sensitivity in forward modeled hyperspectral reflectance due to phytoplankton groups

    NASA Astrophysics Data System (ADS)

    Manzo, Ciro; Bassani, Cristiana; Pinardi, Monica; Giardino, Claudia; Bresciani, Mariano

    2016-04-01

    Phytoplankton is an integral part of the ecosystem, affecting trophic dynamics, nutrient cycling, habitat condition, and fisheries resources. The types of phytoplankton and their concentrations are used to describe the status of water and the processes inside of this. This study investigates bio-optical modeling of phytoplankton functional types (PFT) in terms of pigment composition demonstrating the capability of remote sensing to recognize freshwater phytoplankton. In particular, a sensitivity analysis of simulated hyperspectral water reflectance (with band setting of HICO, APEX, EnMAP, PRISMA and Sentinel-3) of productive eutrophic waters of Mantua lakes (Italy) environment is presented. The bio-optical model adopted for simulating the hyperspectral water reflectance takes into account the reflectance dependency on geometric conditions of light field, on inherent optical properties (backscattering and absorption coefficients) and on concentrations of water quality parameters (WQPs). The model works in the 400-750nm wavelength range, while the model parametrization is based on a comprehensive dataset of WQP concentrations and specific inherent optical properties of the study area, collected in field surveys carried out from May to September of 2011 and 2014. The following phytoplankton groups, with their specific absorption coefficients, a*Φi(λ), were used during the simulation: Chlorophyta, Cyanobacteria with phycocyanin, Cyanobacteria and Cryptophytes with phycoerythrin, Diatoms with carotenoids and mixed phytoplankton. The phytoplankton absorption coefficient aΦ(λ) is modelled by multiplying the weighted sum of the PFTs, Σpia*Φi(λ), with the chlorophyll-a concentration (Chl-a). To highlight the variability of water reflectance due to variation of phytoplankton pigments, the sensitivity analysis was performed by keeping constant the WQPs (i.e., Chl-a=80mg/l, total suspended matter=12.58g/l and yellow substances=0.27m-1). The sensitivity analysis was

  14. Healthy Living

    MedlinePlus

    ... Environment & Health Healthy Living Pollution Reduce, Reuse, Recycle Science – How It Works The Natural World Games Brainteasers Puzzles Riddles Songs Activities Be a Scientist Coloring Science Experiments Stories Lessons Topics Games Activities Lessons MENU ...

  15. Bachelor Living

    ERIC Educational Resources Information Center

    Germer, Sondra

    1974-01-01

    Male high school students in a Bachelor Living Class observed methods of child care including bottle feeding, spoon feeding, changing diapers, and method of holding. The purpose was for the students to grasp a better understanding of child development. (EK)

  16. Living Laboratories

    ERIC Educational Resources Information Center

    Mules, B. R.

    1976-01-01

    Presented is a review of various methods of keeping live animals, including scorpions, spiders, crabs, crayfish, shrimp, ants, fish, mice, and birds, as well as plants as a school science project/display. (SL)

  17. Assisted Living

    MedlinePlus

    ... Transportation Back to top How to Choose a Facility? The following suggestions can help you get started ... for a safe, comfortable and appropriate assisted living facility: Think ahead. What will the resident’s future needs ...

  18. Assisted Living

    MedlinePlus

    ... Recreational activities Security Transportation How to Choose a Facility A good match between a facility and a resident's needs depends as much on the philosophy and services of the assisted living facility as it does on the quality of care. ...

  19. Greener Living

    EPA Pesticide Factsheets

    Learn about how to live a more environmentally friendly life by reducing your environmental footprint, enhancing sustainability, using clean energy, water efficiency, composting, selecting a fuel efficient vehicle, and reducing waste.

  20. Microbial players and processes involved in phytoplankton bloom utilization in the water column of a fast-flowing, river-dominated estuary.

    PubMed

    Smith, Maria W; Herfort, Lydie; Fortunato, Caroline S; Crump, Byron C; Simon, Holly M

    2017-03-20

    Fueled by seasonal phytoplankton blooms, the Columbia River estuary is a natural bioreactor for organic matter transformations. Prior metagenome analyses indicated high abundances of diverse Bacteroidetes taxa in estuarine samples containing phytoplankton. To examine the hypothesis that Bacteroidetes taxa have important roles in phytoplankton turnover, we further analyzed metagenomes from water collected along a salinity gradient at 0, 5, 15, 25, and 33 PSU during bloom events. Size fractions were obtained by using a 3-μm prefilter and 0.2-μm collection filter. Although this approach targeted bacteria by removing comparatively large eukaryotic cells, the metagenome from the ES-5 sample (5 PSU) nevertheless contained an abundance of diatom DNA. Biogeochemical measurements and prior studies indicated that this finding resulted from the leakage of cellular material due to freshwater diatom lysis at low salinity. Relative to the other metagenomes, the bacterial fraction of ES-5 was dramatically depleted of genes annotated as Bacteroidetes and lysogenic bacteriophages, but was overrepresented in DNA of protists and Myxococcales bacterivores. We suggest the following equally plausible scenarios for the microbial response to phytoplankton lysis: (1) Bacteroidetes depletion in the free-living fraction may at least in part be caused by their attachment to fluvial diatoms as the latter are lysed upon contact with low-salinity estuarine waters; (2) diatom particle colonization is likely followed by rapid bacterial growth and lytic phage infection, resulting in depletion of lysogenic bacteriophages and host bacteria; and (3) the subsequent availability of labile organic matter attracted both grazers and predators to feed in this estuarine biogeochemical "hotspot," which may have additionally depleted Bacteroidetes populations. These results represent the first detailed molecular analysis of the microbial response to phytoplankton lysis at the freshwater-brackish water

  1. Spin-multipole nuclear matrix elements in the p n quasiparticle random-phase approximation: Implications for β and β β half-lives

    NASA Astrophysics Data System (ADS)

    Kostensalo, Joel; Suhonen, Jouni

    2017-01-01

    Half-lives for 148 potentially measurable 2nd-, 3rd-, 4th-, 5th-, 6th-, and 7th-forbidden unique beta transitions are predicted. To achieve this, the ratio of the nuclear matrix elements (NMEs), calculated by the proton-neutron quasiparticle random-phase approximation (pnQRPA), MpnQRPA, and a two-quasiparticle (two-qp) model, Mqp, is studied and compared with earlier calculations for the allowed Gamow-Teller (GT) 1+ and first-forbidden spin-dipole (SD) 2- transitions. The present calculations are done using realistic single-particle model spaces and G -matrix based microscopic two-body interactions. In terms of the ratio k =MpnQRPA/Mqp the studied decays fall into two groups: for GROUP 1, which consists of transitions involving non-magic nuclei, the ratio turns out to be k =0.29 ±0.15 . For GROUP 2, consisting of transitions involving semimagic nuclei, the ratio is 0.5-0.8 for half of the decays and less than 5 ×10-3 for the other half. The magnitudes of the NMEs for several nuclei of GROUP 2 depend sensitively on the size of the used single-particle space and the energies of few key single-particle orbitals used in the pnQRPA calculation, while no such dependence is found for the transitions involving nuclei of GROUP 1. Comparing the NME ratios k of GROUP 1 with those of the earlier GT and SD calculations, where also experimental data are available, the expected "experimental" half-lives for the decays between the 0+ ground state of the even-even reference nuclei and the Jπ=3+,4-,5+,6-,7+,8- states of the neighboring odd-odd nuclei are derived for possible experimental verification. The present results could also shed light to the magnitudes of the NMEs corresponding to the high-forbidden unique 0+→Jπ=3+,4-,5+,6-,7+,8- virtual transitions taking part in the neutrinoless double beta decays.

  2. Live-cell imaging to detect phosphatidylserine externalization in brain endothelial cells exposed to ionizing radiation: implications for the treatment of brain arteriovenous malformations.

    PubMed

    Zhao, Zhenjun; Johnson, Michael S; Chen, Biyi; Grace, Michael; Ukath, Jaysree; Lee, Vivienne S; McRobb, Lucinda S; Sedger, Lisa M; Stoodley, Marcus A

    2016-06-01

    OBJECT Stereotactic radiosurgery (SRS) is an established intervention for brain arteriovenous malformations (AVMs). The processes of AVM vessel occlusion after SRS are poorly understood. To improve SRS efficacy, it is important to understand the cellular response of blood vessels to radiation. The molecular changes on the surface of AVM endothelial cells after irradiation may also be used for vascular targeting. This study investigates radiation-induced externalization of phosphatidylserine (PS) on endothelial cells using live-cell imaging. METHODS An immortalized cell line generated from mouse brain endothelium, bEnd.3 cells, was cultured and irradiated at different radiation doses using a linear accelerator. PS externalization in the cells was subsequently visualized using polarity-sensitive indicator of viability and apoptosis (pSIVA)-IANBD, a polarity-sensitive probe. Live-cell imaging was used to monitor PS externalization in real time. The effects of radiation on the cell cycle of bEnd.3 cells were also examined by flow cytometry. RESULTS Ionizing radiation effects are dose dependent. Reduction in the cell proliferation rate was observed after exposure to 5 Gy radiation, whereas higher radiation doses (15 Gy and 25 Gy) totally inhibited proliferation. In comparison with cells treated with sham radiation, the irradiated cells showed distinct pseudopodial elongation with little or no spreading of the cell body. The percentages of pSIVA-positive cells were significantly higher (p = 0.04) 24 hours after treatment in the cultures that received 25- and 15-Gy doses of radiation. This effect was sustained until the end of the experiment (3 days). Radiation at 5 Gy did not induce significant PS externalization compared with the sham-radiation controls at any time points (p > 0.15). Flow cytometric analysis data indicate that irradiation induced growth arrest of bEnd.3 cells, with cells accumulating in the G2 phase of the cell cycle. CONCLUSIONS Ionizing radiation

  3. Phytoplankton biomass, production and potential export in the North Water

    NASA Astrophysics Data System (ADS)

    Klein, Bert; LeBlanc, Bernard; Mei, Zhi-Ping; Beret, Rachel; Michaud, Josée; Mundy, C.-J.; von Quillfeldt, Cecilie H.; Garneau, Marie-Ève; Roy, Suzanne; Gratton, Yves; Cochran, J. Kirk; Bélanger, Simon; Larouche, Pierre; Pakulski, J. Dean; Rivkin, Richard B.; Legendre, Louis

    The seasonal patterns of phytoplankton biomass and production were determined in the North Water, located between Greenland and Ellesmere Island (Canadian Arctic), in August 1997, April-July 1998, and August-September 1999. The patterns differed among the four defined regions of this large polynya, i.e. North (>77.5°N), East (>75°W), West (<75°W), and South (<76°N). Phytoplankton biomass and production were low during April throughout the North Water. Biomass first increased in the East during April. From there, the biomass spread north- and westwards during May-June, when the bloom culminated (chlorophyll a concentrations up to 19.8 mg m -3). The large-sized (>5 μm) fraction dominated the biomass and production during the bloom. During July, August, and September, biomass and production decreased over the whole region, with the highest biomass, dominated by large cells, occurring in the North. The annual particulate and dissolved phytoplankton production were the highest ever reported for the high Arctic, reaching maximum values of 254 and 123 g C m -2 yr -1, respectively, in the East. Rates in the North and West were considerably lower than in the East (ca. two- and three-fold, respectively). The f-ratios (i.e. ratio of new to total production), derived from the size structure of phytoplankton, were high north of 76°N (0.4-0.7). Regionally, this indicated a high potential export of particulate organic carbon ( EPOC) from the phytoplankton community to other trophic compartments and/or downwards in the East (155 g C m -2 yr -1), with lower values in the North and West (i.e. 77 and 42 g C m -2 yr -1, respectively). The seasonal and spatial patterns of EPOC were consistent with independent estimates of potential carbon export. Phytoplankton biomass and production were generally dominated by the large size fraction, whereas EPOC seemed to be dominated by the large size fraction early in the season and by the small size fraction (<5 μm) from June until the end

  4. Observing phytoplankton physiology and ocean ecosystem structure from space

    NASA Astrophysics Data System (ADS)

    Schultz, Patrick

    Changes in ocean circulation in response to anthropogenic climate change affect ocean biology on a global scale. Based on a previously published empirical model that links ocean circulation to chlorophyll and chlorophyll to primary production, I predict an increase in primary production of 10--27% at the end of the 23rd century under four times pre-industrial atmospheric CO 2. The uncertainty in this prediction largely stems from the reliance on chlorophyll as the only model constraint. Chlorophyll concentrations are difficult to interpret, as they depend on phytoplankton biomass and cellular pigmentation, which adjusts to growth conditions. The objective of this thesis is to bridge the gap between laboratory-based knowledge of physiological adjustments to growth conditions and global satellite observations to reduce ambiguities in the interpretation of chlorophyll concentrations on a global scale. Satellite estimates of phytoplankton carbon and the chlorophyll to carbon ratio (Chl:C), a measure of pigmentation, are the foundation of this work. My main contribution is a re-evaluation of chlorophyll variability in the eastern subarctic Pacific, which updates the old paradigm for seasonal phytoplankton dynamics in this iron-limited region. In contrast to previous studies, I conclude that the consistently low chlorophyll concentrations are caused by a suppression of Chl:C by iron stress, rather than by reduced accumulation of phytoplankton biomass. Field observations during iron enrichment experiments and model simulations confirm that the satellite-observed suppression of Chl:C is consistent with physiological adjustments to low iron. On a global scale, I analyze how phytoplankton biomass and pigmentation interact to yield the spatial structure in surface chlorophyll and I employ a mechanistic photoacclimation model to diagnose the contributions of light, nutrients and temperature to the spatial structure in Chl:C. I further argue that the temporal variability of

  5. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: Implications for replication and genome packaging

    SciTech Connect

    Chaturvedi, Sonali; Rao, A.L.N.

    2014-09-15

    In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein–protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed. - Highlights: • YFP fusion proteins of BMV p1a and p2a are biologically active. • Self-interaction was observed for p1a, p2a and CP. • CP interacts with p2a but not p1a. • Majority of reconstituted YFP resulting from bona fide fusion protein partners localized on ER.

  6. 'Protective' silence surrounding AIDS: Reasons and implications of non-disclosure among pregnant women living with HIV in Rio de Janeiro (Brazil).

    PubMed

    Monteiro, Simone; Villela, Wilza; Soares, Priscilla; Pinho, Adriana; Fraga, Livia

    2016-07-25

    The persistence of stigma surrounding AIDS remains a challenge in the epidemic's fourth decade. Based on qualitative research, this study analyses how pregnant women living with HIV/AIDS (PWLHA) experience and cope with AIDS stigma. A total of 29 semi-structured interviews were conducted with PWLHA focusing on socioeconomic profiles, the contexts in which they discovered HIV infection, experiences with health-care sites and ways of dealing with AIDS-related stigma. We recruited PWLHA at two prevention of mother-to-child transmission sites in Rio de Janeiro, Brazil. The PWLHA's testimony indicates that access to care and treatment has a profound effect on the deconstruction of their understanding of AIDS as a fatal disease. However, fear of AIDS stigma is still predominant. The law guarantees HIV non-disclosure, and women see it as a way to protect themselves from discrimination. We argue, however, that the silence surrounding HIV diagnosis perpetuates the psychosocial and structural mechanisms that reproduce stigma. We conclude that diverse sectors of society, including health-care facilities, must be involved in confronting stigma by demystifying AIDS, improving patients' knowledge of their rights, and increasing their access to material and symbolic goods.

  7. The initial 41Ca/40Ca ratios in two type A Ca-Al-rich inclusions: Implications for the origin of short-lived 41Ca

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Chang

    2017-03-01

    This paper reports new 41Ca-41K isotopic data for two Type A CAIs, NWA 3118 #1Nb (Compact Type A) and Vigarano 3138 F8 (Fluffy Type A), from reduced CV3 chondrites. The NWA CAI is found to have carried live 41Ca at the level of (4.6 ± 1.9) ×10-9 , consistent with the proposed Solar System initial 41Ca /40Ca = 4.2 ×10-9 by Liu et al. (2012a). On the other hand, the Vigarano CAI does not have resolvable radiogenic 41K excesses that can be attributed to the decay of 41Ca. Combined with the 26Al data that have been reported for these two CAIs, we infer that the 41Ca distribution was not homogeneous when 26Al was widespread at the canonical level of 26Al /27Al = 5.2 ×10-5 . Such a 41Ca heterogeneity can be understood under two astrophysical contexts: in situ charged particle irradiation by the protoSun in the solar nebula that had inherited some baseline 10Be abundance from the molecular cloud, and Solar System formation in a molecular cloud enriched in 26Al and 41Ca contaminated by massive star winds. That said, more high quality 41Ca data are still needed to better understand the origin of this radionuclide.

  8. Phytoplankton succession affects the composition of Polynucleobacter subtypes in humic lakes.

    PubMed

    Paver, Sara F; Youngblut, Nicholas D; Whitaker, Rachel J; Kent, Angela D

    2015-03-01

    Phytoplankton influence the composition of bacterial communities, but the taxonomic specificity of algal-bacterial interactions is unclear due to the aggregation of ecologically distinct bacterial populations by community characterization methods. Here we examine whether phytoplankton seasonal succession affects the composition of subtypes within the cosmopolitan freshwater bacterial genus Polynucleobacter. Changes in the composition of Polynucleobacter subtypes were characterized in samples collected weekly from May to August in 2003 and 2008 from three humic lakes using terminal restriction fragment length polymorphism fingerprinting of the protein-encoding cytochrome c oxidase ccoN gene. Changes in phytoplankton population abundances explained, on average, 30% of temporal variation in the composition of Polynucleobacter subtypes and the interaction between phytoplankton and the environment explained an additional 18% of temporal variation. The effect of phytoplankton on specific Polynucleobacter subtypes was experimentally confirmed by changes in Polynucleobacter subtype composition following incubation with different phytoplankton assemblages or a no-phytoplankton control. Phytoplankton-associated subtypes and differentiation in substrate use among subtypes likely contribute to the effects of phytoplankton on Polynucleobacter subtype composition. Interactions between unique Polynucleobacter populations and phytoplankton highlight the ecological significance and specificity of species interactions in freshwater communities.

  9. Do phytoplankton communities evolve through a self-regulatory abundance-diversity relationship?

    PubMed

    Roy, Shovonlal

    2009-02-01

    A small group of phytoplankton species that produce toxic or allelopathic chemicals has a significant effect on plankton dynamics in marine ecosystems. The species of non-toxic phytoplankton, which are large in number, are affected by the toxin-allelopathy of those species. By analysis of the abundance data of marine phytoplankton collected from the North-West coast of the Bay of Bengal, an empirical relationship between the abundance of the potential toxin-producing species and the species diversity of the non-toxic phytoplankton is formulated. A change-point analysis demonstrates that the diversity of non-toxic phytoplankton increases with the increase of toxic species up to a certain level. However, for a massive increase of the toxin-producing species the diversity of phytoplankton at species level reduces gradually. Following the results, a deterministic relationship between the abundance of toxic phytoplankton and the diversity of non-toxic phytoplankton is developed. The abundance-diversity relationship develops a unimodal pathway through which the abundance of toxic species regulates the diversity of phytoplankton. These results contribute to the current understanding of the coexistence and biodiversity of phytoplankton, the top-down vs. bottom-up debate, and to that of abundance-diversity relationship in marine ecosystems.

  10. Community stoichiometry in a changing world: combined effects of warming and eutrophication on phytoplankton dynamics.

    PubMed

    Domis, Lisette N De Senerpont; Van de Waal, Dedmer B; Helmsing, Nico R; Van Donk, Ellen; Mooij, Wolf M

    2014-06-01

    The current changes in our climate will likely have far-reaching consequences for aquatic ecosystems. These changes in the climate, however, do not act alone, and are often accompanied by additional stressors such as eutrophication. Both global warming and eutrophication have been shown to affect the timing and magnitude of phytoplankton blooms. Little is known about the combined effects of rising temperatures and eutrophication on the stoichiometry of entire phytoplankton communities. We exposed a natural phytoplankton spring community to different warming and phosphorus-loading scenarios using a full-factorial design. Our results demonstrate that rising temperatures promote the growth rate of an entire phytoplankton community. Furthermore, both rising temperatures and phosphorus loading stimulated the maximum biomass built up by the phytoplankton community. Rising temperatures led to higher carbon: nutrient stoichiometry of the phytoplankton community under phosphorus-limited conditions. Such a shift towards higher carbon: nutrient ratios, in combination with a higher biomass buildup, suggests a temperature-driven increase in nutrient use efficiency, the phytoplankton community. Importantly, with higher carbon: nutrient stoichiometry, phytoplankton is generally of poorer nutritional value for zooplankton. Thus, although warming may result in higher phytoplankton biomass, this may be accompanied by a stoichiometric mismatch between phytoplankton and their grazers, with possible consequences for the entire aquatic food web.

  11. Diversity and distribution of winter phytoplankton in the Arabian Gulf and the Sea of Oman

    NASA Astrophysics Data System (ADS)

    Polikarpov, Igor; Saburova, Maria; Al-Yamani, Faiza

    2016-05-01

    The spatial distribution of the phytoplankton (diversity, composition, and cell abundance) was described in relation to local environmental conditions across the Arabian Gulf, the Strait of Hormuz, and the Sea of Oman based on data of ROPME cruise of winter 2006. The 376 phytoplankton taxa identified in these waters represented a diverse composition of species with a prevalence of dinoflagellates and diatoms. Three peaks in the phytoplankton abundance were recorded throughout the studied area associated with diatom-dominated phytoplankton blooms in the central and northwestern part of the Arabian Gulf and in the Sea of Oman and the adjacent waters. The studied area was divided into three main regions by cluster analysis based on differences in the phytoplankton composition and concentration. The Sea of Oman and the Strait of Hormuz were occupied by highly abundant, strongly diatom-dominated phytoplankton assemblage. The Arabian Gulf was divided into two main regions along a diagonal northwest-southeast axis, with rather diatom-dominated phytoplankton assemblage off the south and along the Iranian coast but with flagellate-dominated phytoplankton of the north and along the Arabian coast. The distance-based linear modeling revealed a significant relationship between the phytoplankton composition and water masses as indexed by salinity. Our results demonstrated that abundance and composition of winter phytoplankton were related to water circulation pattern in the Arabian Gulf and the Sea of Oman.

  12. Standing stocks, production, and respiration of phytoplankton and heterotrophic bacteria in the western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Kirchman, David L.; Hill, Victoria; Cottrell, Matthew T.; Gradinger, Rolf; Malmstrom, Rex R.; Parker, Alexander

    2009-08-01

    Standing stocks and production rates for phytoplankton and heterotrophic bacteria were examined during four expeditions in the western Arctic Ocean (Chukchi Sea and Canada Basin) in the spring and summer of 2002 and 2004. Rates of primary production (PP) and bacterial production (BP) were higher in the summer than in spring and in shelf waters than in the basin. Most surprisingly, PP was 3-fold higher in 2004 than in 2002; ice-corrected rates were 1581 and 458 mg C m -2 d -1, respectively, for the entire region. The difference between years was mainly due to low ice coverage in the summer of 2004. The spatial and temporal variation in PP led to comparable variation in BP. Although temperature explained as much variability in BP as did PP or phytoplankton biomass, there was no relationship between temperature and bacterial growth rates above about 0 °C. The average ratio of BP to PP was 0.06 and 0.79 when ice-corrected PP rates were greater than and less than 100 mg C m -2 d -1, respectively; the overall average was 0.34. Bacteria accounted for a highly variable fraction of total respiration, from 3% to over 60% with a mean of 25%. Likewise, the fraction of PP consumed by bacterial respiration, when calculated from growth efficiency (average of 6.9%) and BP estimates, varied greatly over time and space (7% to >500%). The apparent uncoupling between respiration and PP has several implications for carbon export and storage in the western Arctic Ocean.

  13. The effects of isolation on the demography and genetic diversity of long-lived species: Implications for conservation and management of the gopher tortoise (Gopherus polyphemus)

    USGS Publications Warehouse

    Ennen, J.R.; Birkhead, R.D.; Kreiser, B.R.; Gaillard, D.L.; Qualls, C.P.; Lovich, J.E.

    2011-01-01

    In the southeastern United States, habitat loss has fragmented the landscape and isolated many populations of this region's flora and fauna, which has presumably resulted in smaller population sizes and reduced levels of genetic diversity. For example, forestry practices and anthropogenic disturbances are both cited as factors fragmenting the once extensive range of Gopherus polyphemus. One localized, but extreme, source of fragmentation was the impoundment of the Chattahoochee River in 1963 to form Walter F. George Reservoir along the border of Georgia and Alabama. The formation of this reservoir isolated populations of G. polyphemus on two newly created islands providing a natural laboratory to explore the demographics and genetic effects of fragmentation on a long-lived species. These populations were first surveyed in 1984 and, 21 years later, we revisited them to collect demographic data and tissue samples for genetic analysis. We genotyped all individuals for 10 microsatellite loci, and we tested these data for bottlenecks and compared them to levels of genetic diversity for populations from other portions of the range. We found 45 and two individuals on the larger and smaller islands, respectively. On the large island, however, the population size was identical to the 1984 survey. Only the population structure based on estimated age differed between the 1984 and 2004 surveys, while population size structure based on carapace length, sex ratio, and sex-specific growth rates did not differ. The population of the large island showed genetic evidence of a past bottleneck. The genetic diversity indices from the population of the large island, however, were comparable to or greater than those found at mainland sites, in particular from western populations.

  14. Risk factors for gastrointestinal parasite infections of dogs living around protected areas of the Atlantic Forest: implications for human and wildlife health.

    PubMed

    Curi, N H A; Paschoal, A M O; Massara, R L; Santos, H A; Guimarães, M P; Passamani, M; Chiarello, A G

    2016-08-15

    Despite the ubiquity of domestic dogs, their role as zoonotic reservoirs and the large number of studies concerning parasites in urban dogs, rural areas in Brazil, especially those at the wildlife-domestic animal-human interface, have received little attention from scientists and public health managers. This paper reports a cross-sectional epidemiological survey of gastrointestinal parasites of rural dogs living in farms around Atlantic Forest fragments. Through standard parasitological methods (flotation and sedimentation), 13 parasite taxa (11 helminths and two protozoans) were found in feces samples from dogs. The most prevalent were the nematode Ancylostoma (47%) followed by Toxocara (18%) and Trichuris (8%). Other less prevalent (<2%) parasites found were Capillaria, Ascaridia, Spirocerca, Taeniidae, Acantocephala, Ascaris, Dipylidium caninum, Toxascaris, and the protozoans Cystoisospora and Eimeria. Mixed infections were found in 36% of samples, mostly by Ancylostoma and Toxocara. Previous deworming had no association with infections, meaning that this preventive measure is being incorrectly performed by owners. Regarding risk factors, dogs younger than one year were more likely to be infected with Toxocara, and purebred dogs with Trichuris. The number of cats in the households was positively associated with Trichuris infection, while male dogs and low body scores were associated with mixed infections. The lack of associations with dog free-ranging behavior and access to forest or villages indicates that infections are mostly acquired around the households. The results highlight the risk of zoonotic and wildlife parasite infections from dogs and the need for monitoring and controlling parasites of domestic animals in human-wildlife interface areas.

  15. Effects of nano-TiO2 on perfluorooctanesulfonate bioaccumulation in fishes living in different water layers: Implications for enhanced risk of perfluorooctanesulfonate.

    PubMed

    Qiang, Liwen; Pan, Xiaoyu; Zhu, Lingyan; Fang, Shuhong; Tian, Shengyan

    2016-01-01

    Nano-titanium dioxide (nano-TiO2) is one of the most universal engineered nano-materials while perfluorooctanesulfonate (PFOS) is a typical new persistent organic pollutant. They are widely used and present in aquatic environment. In this study, a novel semi-static multilayer microcosm was setup to investigate the impacts of nano-TiO2 on PFOS bioaccumulation in fish species [Danio rerio (D. rerio), Ctenopharyngodon idella (C. idella), Hypostomus plecostomus (H. plecostomus)] living in different vertical layers. As a result of aggregation and deposition, the concentration of TiO2 increased from upper to bottom layers in the water column. Concomitantly, due to adsorption of PFOS on the nano-TiO2 particles, PFOS also displayed an increasing trend from upper to bottom layer. Owing to ingestion of the TiO2-PFOS complexes, more PFOS was taken-up by fish. With the aid of intestinal fluid, PFOS was readily released from TiO2 particles and absorbed by fish. As a result, accumulation of PFOS in whole fish was facilitated and the bioaccumulation factors of PFOS in D. rerio, C. idella and H. plecostomus were 3.01, 2.42 and 1.11 times of that in the groups without TiO2. However, TiO2 aggregates were too large to penetrate biological membranes to participate body circulation, and no significant accumulation of TiO2 was observed in fish muscle. The results suggested that the ecological risk of PFOS could be enhanced due to the presence of nano-TiO2 in water.

  16. A LOWER INITIAL ABUNDANCE OF SHORT-LIVED {sup 41}Ca IN THE EARLY SOLAR SYSTEM AND ITS IMPLICATIONS FOR SOLAR SYSTEM FORMATION

    SciTech Connect

    Liu, Ming-Chang; Chaussidon, Marc; Srinivasan, Gopalan; McKeegan, Kevin D.

    2012-12-20

    The short-lived radionuclide {sup 41}Ca plays an important role in constraining the immediate astrophysical environment and the formation timescale of the nascent solar system due to its extremely short half-life (0.1 Myr). Nearly 20 years ago, the initial ratio of {sup 41}Ca/{sup 40}Ca in the solar system was determined to be (1.41 {+-} 0.14) Multiplication-Sign 10{sup -8}, primarily based on two Ca-Al-rich Inclusions (CAIs) from the CV chondrite Efremovka. With an advanced analytical technique for isotopic measurements, we reanalyzed the potassium isotopic compositions of the two Efremovka CAIs and inferred the initial ratios of {sup 41}Ca/{sup 40}Ca to be (2.6 {+-} 0.9) Multiplication-Sign 10{sup -9} and (1.4 {+-} 0.6) Multiplication-Sign 10{sup -9} (2{sigma}), a factor of 7-10 lower than the previously inferred value. Considering possible thermal processing that led to lower {sup 26}Al/{sup 27}Al ratios in the two CAIs, we propose that the true solar system initial value of {sup 41}Ca/{sup 40}Ca should have been {approx}4.2 Multiplication-Sign 10{sup -9}. Synchronicity could have existed between {sup 26}Al and {sup 41}Ca, indicating a uniform distribution of the two radionuclides at the time of CAI formation. The new initial {sup 41}Ca abundance is 4-16 times lower than the calculated value for steady-state galactic nucleosynthesis. Therefore, {sup 41}Ca could have originated as part of molecular cloud materials with a free decay time of 0.2-0.4 Myr. Alternative possibilities, such as a last-minute input from a stellar source and early solar system irradiation, could not be definitively ruled out. This underscores the need for more data from diverse CAIs to determine the true astrophysical origin of {sup 41}Ca.

  17. Hundred Years of Environmental Change and Phytoplankton Ecophysiological Variability Archived in Coastal Sediments

    PubMed Central

    Ribeiro, Sofia; Berge, Terje; Lundholm, Nina; Ellegaard, Marianne

    2013-01-01

    Marine protist species have been used for several decades as environmental indicators under the assumption that their ecological requirements have remained more or less stable through time. However, a growing body of evidence suggests that marine protists, including several phytoplankton species, are in fact highly diverse and may quickly respond to changes in the environment. Predicting how future climate will impact phytoplankton populations is important, but this task has been challenged by a lack of time-series of ecophysiological parameters at time-scales relevant for climate studies (i.e. at least decadal). Here, we report on ecophysiological variability in a marine dinoflagellate over a 100-year period of well-documented environmental change, by using the sedimentary archive of living cysts from a Scandinavian fjord (Koljö Fjord, Sweden). During the past century, Koljö Fjord has experienced important changes in salinity linked to the North Atlantic Oscillation (NAO). We revived resting cysts of Pentapharsodinium dalei preserved in the fjord sediments and determined growth rates for 18 strains obtained from 3 sediment core layers at salinity 15 and 30, which represent extreme sea-surface conditions during periods of predominantly negative and positive NAO phases, respectively. Upper pH tolerance limits for growth were also tested. In general, P. dalei grew at a higher rate in salinity 30 than 15 for all layers, but there were significant differences among strains. When accounting for inter-strain variability, cyst age had no effect on growth performance or upper pH tolerance limits for this species, indicating a stable growth response over the 100-year period in spite of environmental fluctuations. Our findings give some support for the use of morphospecies in environmental studies, particularly at decadal to century scales. Furthermore, the high intra-specific variability found down to sediment layers dated as ca. 50 years-old indicates that cyst-beds of P

  18. Competition drives clumpy species coexistence in estuarine phytoplankton.

    PubMed

    Segura, A M; Kruk, C; Calliari, D; García-Rodriguez, F; Conde, D; Widdicombe, C E; Fort, H

    2013-01-01

    Understanding the mechanisms that maintain biodiversity is a fundamental problem in ecology. Competition is thought to reduce diversity, but hundreds of microbial aquatic primary producers species coexist and compete for a few essential resources (e.g., nutrients and light). Here, we show that resource competition is a plausible mechanism for explaining clumpy distribution on individual species volume (a proxy for the niche) of estuarine phytoplankton communities ranging from North America to South America and Europe, supporting the Emergent Neutrality hypothesis. Furthermore, such a clumpy distribution was also observed throughout the Holocene in diatoms from a sediment core. A Lotka-Volterra competition model predicted position in the niche axis and functional affiliation of dominant species within and among clumps. Results support the coexistence of functionally equivalent species in ecosystems and indicate that resource competition may be a key process to shape the size structure of estuarine phytoplankton, which in turn drives ecosystem functioning.

  19. Marine phytoplankton and the changing ocean iron cycle

    NASA Astrophysics Data System (ADS)

    Hutchins, D. A.; Boyd, P. W.

    2016-12-01

    The availability of the micronutrient iron governs phytoplankton growth across much of the ocean, but the global iron cycle is changing rapidly due to accelerating acidification, stratification, warming and deoxygenation. These mechanisms of global change will cumulatively affect the aqueous chemistry, sources and sinks, recycling, particle dynamics and bioavailability of iron. Biological iron demand will vary as acclimation to environmental change modifies cellular requirements for photosynthesis and nitrogen acquisition and as adaptive evolution or community shifts occur. Warming, acidification and nutrient co-limitation interactions with iron biogeochemistry will all strongly influence phytoplankton dynamics. Predicting the shape of the future iron cycle will require understanding the responses of each component of the unique biogeochemistry of this trace element to many concurrent and interacting environmental changes.

  20. Effect of ocean acidification on iron availability to marine phytoplankton.

    PubMed

    Shi, Dalin; Xu, Yan; Hopkinson, Brian M; Morel, François M M

    2010-02-05

    The acidification caused by the dissolution of anthropogenic carbon dioxide (CO2) in the ocean changes the chemistry and hence the bioavailability of iron (Fe), a limiting nutrient in large oceanic regions. Here, we show that the bioavailability of dissolved Fe may decline because of ocean acidification. Acidification of media containing various Fe compounds decreases the Fe uptake rate of diatoms and coccolithophores to an extent predicted by the changes in Fe chemistry. A slower Fe uptake by a model diatom with decreasing pH is also seen in experiments with Atlantic surface water. The Fe requirement of model phytoplankton remains unchanged with increasing CO2. The ongoing acidification of seawater is likely to increase the Fe stress of phytoplankton populations in some areas of the ocean.

  1. Effect of Ocean Acidification on Iron Availability to Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Shi, Dalin; Xu, Yan; Hopkinson, Brian M.; Morel, François M. M.

    2010-02-01

    The acidification caused by the dissolution of anthropogenic carbon dioxide (CO2) in the ocean changes the chemistry and hence the bioavailability of iron (Fe), a limiting nutrient in large oceanic regions. Here, we show that the bioavailability of dissolved Fe may decline because of ocean acidification. Acidification of media containing various Fe compounds decreases the Fe uptake rate of diatoms and coccolithophores to an extent predicted by the changes in Fe chemistry. A slower Fe uptake by a model diatom with decreasing pH is also seen in experiments with Atlantic surface water. The Fe requirement of model phytoplankton remains unchanged with increasing CO2. The ongoing acidification of seawater is likely to increase the Fe stress of phytoplankton populations in some areas of the ocean.

  2. Lidar investigations of phytoplankton distribution on the north Norwegian shelf

    SciTech Connect

    Babichenko, S.; Wassmann, P.

    1997-08-01

    The results of field studies of the small-scale spatial variability and seasonal dynamics of phytoplankton on the north Norwegian shelf are presented. The remote sensing has been carried out on board of RV {open_quotes}Jan Mayen{close_quotes} in May, June and September 1995. The tuneable lidar FLS-S based on excimer and dye-lasers has been used to measure the horizontal and vertical profiles of phytoplankton abundance. The data were collected in underway sensing along the tracks of 20 - 30 n.m. with horizontal spatial resolution of 100 m. In stratification measurements the lidar consistently sensed the water layers shifted to the depth with the step of 3 m.

  3. Assessment of phytoplankton diversity as an indicator of water quality

    SciTech Connect

    Yergeau, S.E.; Lang, A.; Teeters, R.

    1997-08-01

    For the measurement of water quality in freshwater systems, there are established indices using macroinvertebrate larvae. There is no such comparable measure for marine and estuarine environments. A phytoplankton diversity index (PDI), whose basic form was conceived by Dr. Ruth Gyure of Save the Sound, Inc., is being investigated as a possible candidate to rectify this situation. Phytoplankton were chosen as the indicators of water quality since algae have short generation times and respond quickly to changing water quality conditions. The methodologies involved in this initial assessment of the PDI are incorporated into the Adopt-a-Harbor water quality monitoring program and its associated laboratory. The virtues of the procedures are that they are simple and quick to use, suitable for trained volunteers to carry out, easily reproducible, and amenable to quality assurance checks.

  4. On the "hidden" phytoplankton blooms on Australia's southern shelves

    NASA Astrophysics Data System (ADS)

    Kämpf, Jochen; Kavi, Ankit

    2017-02-01

    Phytoplankton blooms on Australia's southern shelves are revisited using satellite-derived monthly data of chlorophyll a concentrations for the period 2003-2015. It is known that the region hosts a seasonal coastal upwelling system that develops in austral summer (January-March) with chlorophyll a concentrations of >2 mg/m3. While this summer upwelling is spatially limited to a few hot spots, here we show that widespread phytoplankton blooms of moderate ( 1 mg/m3) chlorophyll a concentrations develop during autumn and early winter on most of Australia's extensive southern shelves—from the vast shelves of the Great Australian Bight (GAB) in the west to Bass Strait in the east. This surprising finding disproves the widespread belief that shelf waters of the GAB are generally oligotrophic and may explain the relatively high abundance of both forage fish (sardines) and upper trophic-level predators (e.g., tuna and whales) in the region.

  5. Phytoplankton Blooms Near the Cape of Good Hope

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Different phytoplankton communities color the ocean different shades of blue and green off the southern coast of South Africa in the December 22, 2000, Sea-viewing Wide Field-of-View Sensor (SeaWiFS) pass over the area. The convergence of two currents-the cold Benguela flowing North along the west coast of Africa, and a branch of the warm Agulhas heading west along the southern tip of the continent-causes upwelling cold, nutrient-rich water which feeds. The phytoplankton. The mixing cam also generate huge waves, making these waters very treacherous to sail. To learn more about the Benguela and Algulhas Currents, read A Clear Day Over the Agulhas Retroflection Image courtesy SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  6. Variability of phytoplankton light absorption in Canadian Arctic seas

    NASA Astrophysics Data System (ADS)

    Brunelle, Corinne B.; Larouche, Pierre; Gosselin, Michel

    Phytoplankton light absorption spectra (aϕ(λ)) were measured in the Canadian Arctic (i.e., the Amundsen Gulf, Canadian Arctic Archipelago, northern Baffin Bay and the Hudson Bay system) to improve algorithms used in remote-sensing models of primary production. The absorption by algae, dominated by picophytoplankton (<5 μm), was not the major light absorption factor in the four provinces; the colored dissolved organic matter (CDOM) contributed up to 70% of total light absorption. During the fall, the low total chlorophyll a-specific aϕ*(443) (aϕ(443)/TChl a) coefficients of the Canadian High Arctic were associated with photoacclimation processes (i.e., the package effect) occurring in light-limited environments. Low light availability and high proportion of CDOM (absorbing strongly the ultraviolet) seem to allow the growth of phytoplankton with accessory pigments absorbing light at longer wavelengths. The ratio of photoprotective and photosynthetic carotenoids (PPC:PSC) was inversely proportional with the salinity and the cell size, and mostly decreases throughout the Canadian High Arctic during fall. In return, the highest TChl a-specific phytoplankton light absorption coefficients at the blue peak (aϕ*(443)) were observed in the Hudson Bay system from September to October (i.e., fall) as well as in the Amundsen Gulf from May to July (i.e., spring/summer). These results will ultimately allow the accurate monitoring of phytoplankton biomass and productivity evolution that is likely to take place as a result of the fast-changing Arctic environment.

  7. Atmospheric effects in the remote sensing of phytoplankton pigments

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Clark, D. K.

    1980-01-01

    The accuracy with which relevant atmospheric parameters must be estimated to derive photoplankton pigment concentrations of a given accuracy, from measurements of the ocean's apparent spectral radiance at satellite altitudes, is examined. A phytoplankton pigment algorithm is developed which relates the pigment concentration (c) to the three ratios of upwelling radiance just beneath the sea surface which can be formed from wavelengths (lambda) 440, 520 and 550 nm.

  8. Phytoplankton bloom all along the coast of Southeast United States

    NASA Technical Reports Server (NTRS)

    2002-01-01

    All along the eastern and southern coasts of the United States, marine plants seem impervious to the onslaught of winter weather further north. In this true-color image from January 9, 2002, phytoplankton can be seen growing in the nation's coastal waters; their characteristic blue-green swirls are especially visible off the west coast of Florida. Fire locations are marked with red dots. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  9. The Use of HPLC for the Characterization of Phytoplankton Pigments.

    PubMed

    Garrido, José L; Roy, Suzanne

    2015-01-01

    HPLC is still the technique of choice for the analysis and characterization of phytoplankton pigments. In this chapter we describe procedures for sample preparation and pigment extraction, and the use of octyl silica columns and pyridine-containing mobile phases to separate chlorophylls and carotenoids. The identification of pigments on the basis of their retention times and visible spectra, the preparation of pigment standards, and the quantitative analysis by either external or internal standard procedures are also described.

  10. The complete mitochondrial sequence of the"living fossil" Tricholepidion gertschi: structure, phylogenetic implications, and the description of a novel A/T asymmetrical bias

    SciTech Connect

    Nardi, F.; Frati, F.; Carapelli, A.; Dallai, R.; Boore, J.

    2002-06-23

    Traditionally, the 'Apterygota' has been thought to consist of five orders of wingless hexapods (Protura, Collembola, Diplura, Microcoryphia and Zygentoma) believed to be collectively basal to insects (i.e., the Pterygota). However, some studies have questioned this affinity with insects (Dallai, Abele, Spears, Nardi). Further, within these groups are hotly debated issues, including the monophyly of Entognata (Koch, 1997; Kukalova Peck, 1987), the monophyly of Diplura (Bilinski, 1993; Stys and Bilinski, 1990), the affinity between Collembola and Protura (Dallai, 1994; Kristensen, 1981) and the position of Lepidotrichidae (below). In fact, these relationships constitute one of the most debated issues in hexapod phylogeny. The family Lepidotrichidae was first described by (Silvestri, 1912) (1912: 'Lepidothricinae') from a Baltic Amber fossil (Lepidothrix pilifera Menge). The only living representative of this family is Tricholepidion gertschi Wygodzinski. Since this species was first described (Wygodzinsky, 1961) its phylogenetic position has been difficult to establish, due to an 'array of unique characters' that are difficult to interpret in a phylogenetic framework. Tricholepidion (and therefore the whole family Lepidotrichidae) has been considered either as belonging to the order Zygentoma (Kristensen, 1997; Wygodzinsky, 1961), or basal to the rest of the Zygentoma plus the Pterygota (Beutel, 2001; Bitsch and Bitsch, 2000; Staniczek, 2000), although the significance of some of the morphological characters on which these analyses are based have been questioned (Dallai et al., 2001; Kristensen, 1997). If the latter hypothesis proved to be true, the family Lepidotrichidae, would better deserve the ordinal rank. Since studies based on morphological characters have failed to give a satisfactory answer, a broad scale molecular study is under way ((Nardi et al., 2001), Frati et al, submitted, il Gomphiocephalus) in order to use mitochondrial genome sequences to study

  11. Phytoplankton and the balance of nature: An opinion

    NASA Astrophysics Data System (ADS)

    Gowen, Richard J.; Tett, Paul; Smayda, Theodore J.

    2012-11-01

    Recent European Court rulings in the context of eutrophication viewed proliferation of a particular species of algae as a disturbance to the balance of aquatic ecosystems and the proliferation of one or more species as a cause of a reduction in other species. We discuss the scientific basis for this opinion in relation to the growth of marine primary producers and current debates about ecosystem stability. Opposing views in this debate are those of (a) the 'balance of nature' paradigm, in which communities of organisms tend towards a stable climax composition, and (b) communities as dynamic systems that may be governed by 'basins of attraction' in state space. We use data from the Irish Sea and Narragansett Bay, together with a review of the literature, to show that: the dynamics of temperate marine phytoplankton, with seasonal successions, corresponds more to (b) than to (a); the temporary dominance of any one species of micro-alga or cyanobacterium is part of the natural dynamics of phytoplankton communities and does not permanently impact on other species. Understanding the phytoplankton as a dynamic system suggests its status should not be assessed against a 'climax' model and that eutrophication should be diagnosed from fundamental (nutrient-induced) perturbations of ecosystem state and function rather than from changes in fixed assemblages of species and thresholds of abundance.

  12. Photosynthetic efficiency predicts toxic effects of metal nanomaterials in phytoplankton.

    PubMed

    Miller, Robert J; Muller, Erik B; Cole, Bryan; Martin, Tyronne; Nisbet, Roger; Bielmyer-Fraser, Gretchen K; Jarvis, Tayler A; Keller, Arturo A; Cherr, Gary; Lenihan, Hunter S

    2017-02-01

    High Throughput Screening (HTS) using in vitro assessments at the subcellular level has great promise for screening new chemicals and emerging contaminants to identify high-risk candidates, but their linkage to ecological impacts has seldom been evaluated. We tested whether a battery of subcellular HTS tests could be used to accurately predict population-level effects of engineered metal nanoparticles (ENPs) on marine phytoplankton, important primary producers that support oceanic food webs. To overcome well-known difficulties of estimating ecologically meaningful toxicity parameters, we used novel Dynamic Energy Budget and Toxicodynamic (DEBtox) modeling techniques to evaluate impacts of ENPs on population growth rates. Our results show that population growth was negatively impacted by all four ENPs tested, but the HTS tests assessing many cell/physiological functions lacked predictive power at the population level. However, declining photosynthetic efficiency, a traditional physiological endpoint for photoautotrophs, was a good predictor of population level effects in phytoplankton. DEBtox techniques provided robust estimates of EC10 for population growth rates in exponentially growing batch cultures of phytoplankton, and should be widely useful for ecotoxicological testing. Adoption of HTS approaches for ecotoxicological assessment should carefully evaluate the predictive power of specific assays to minimize the risk that effects at higher levels of biological organization may go undetected.

  13. Carbon-based ocean productivity and phytoplankton physiology from space

    NASA Astrophysics Data System (ADS)

    Behrenfeld, Michael J.; Boss, Emmanuel; Siegel, David A.; Shea, Donald M.

    2005-03-01

    Ocean biogeochemical and ecosystem processes are linked by net primary production (NPP) in the ocean's surface layer, where inorganic carbon is fixed by photosynthetic processes. Determinations of NPP are necessarily a function of phytoplankton biomass and its physiological status, but the estimation of these two terms from space has remained an elusive target. Here we present new satellite ocean color observations of phytoplankton carbon (C) and chlorophyll (Chl) biomass and show that derived Chl:C ratios closely follow anticipated physiological dependencies on light, nutrients, and temperature. With this new information, global estimates of phytoplankton growth rates (μ) and carbon-based NPP are made for the first time. Compared to an earlier chlorophyll-based approach, our carbon-based values are considerably higher in tropical oceans, show greater seasonality at middle and high latitudes, and illustrate important differences in the formation and demise of regional algal blooms. This fusion of emerging concepts from the phycological and remote sensing disciplines has the potential to fundamentally change how we model and observe carbon cycling in the global oceans.

  14. Turbulence increases the average settling velocity of phytoplankton cells

    NASA Astrophysics Data System (ADS)

    Ruiz, Javier; Macías, Diego; Peters, Francesc

    2004-12-01

    It is a well known fact that stirring keeps particles suspended in fluids. This is apparent, for instance, when shaking medicine flasks, when agitating tea deposits in a mug, or when heavy winds fill the air with dust particles. The commonplace nature of such observations makes it easy to accept that this feature will apply to any natural phenomenon as long as the flow is turbulent enough. This has been the case for phytoplankton in the surface mixed layers of lakes and oceans. The traditional view assumes that an increase in turbulence bears ecological advantages for nonmotile groups like diatoms that, otherwise, would settle in deep and unlit waters. However, this assumption has no theoretical ground, and the experimental results we present here point in the opposite direction. Phytoplankton settling velocity increases when turbulence intensifies from the low to the higher values recorded in the upper mixed layers of lakes and oceans. Consequently, turbulence does not favor phytoplankton remaining in lit waters but is rather an environmental stress that can only be avoided through morphological and/or physiological adaptations.

  15. Multispectral tracking of phytoplankton in the Colombian Caribbean

    NASA Astrophysics Data System (ADS)

    Ojeda Caicedo, V. V.; Plata, Arturo

    2004-10-01

    In a quantitative research study, the concentration and circulation of group of micro-organisms "phytoplankton" have been found through the images of the ocean color in the Colombian Caribbean Sea. These images have been observed through the Sea Star satellite. The method logical procedure was to collect a number of ocean images at the 1A level of the sensor SeaWifs. This only covered the geographical area of study and the seasons of the year. The selection criterion was to give priority to the absence of clouds in the area. Afterwards, the images were analyzed to create mosaics in convenient periods to visualize the periodical changes of the micro-organisms. Thus, places with higher concentration of phytoplankton in the study site were identified. This led to quantitative analyses of the concentration level of the subject of study. To analyze the images analytic algorithms were used to fit the sensor. The atmospheric correction of the SeaWifs images was made with the SeaDas software to obtain levels two and three of the images. This was done to calculate the primary production of phytoplankton.

  16. Nutrients and phytoplankton in the Gulf of Lions, northwestern Mediterranean

    NASA Astrophysics Data System (ADS)

    Cruzado, Antonio; Velasquez, Zoila R.

    1990-09-01

    The mostly oligotrophic character of the Mediterranean Sea is altered drastically in areas receiving the outflow from large rivers. The Gulf of Lions, receiving discharges from the Rhoˆne River, has nutrient and phytoplankton concentration much higher than the adjacent open northwestern Mediterranean Sea. A surface layer of freshwater, with thickness that varies with the meteorological conditions between 2 and 40 m, overlies the deeper open seawater; this is advected onto the shelf and influences an area that covers the eastern half of the Gulf of Lions. Most of the waters affected by the river discharges show property relationships indicating conservative behaviour, with very little or no loss of nutrients through phytoplankton uptake, particularly in winter. Phytoplankton populations in winter are sparse, with maximum densities just above and below the boundary between the fresh- and seawater. Diatoms are the main group of organisms, although dinoflagellates, coceolithophorids and cyanobacteria are abundant. Small heterotrophs (cilliates, tintinnids, etc.) are also abundant and are positively correlated with the diatoms. A water balance model, linking the river discharge to the advective fluxes of water and nutrients, is proposed. The primary productivity supported by such fluxes is estimated.

  17. Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay

    PubMed Central

    Harding, Jr., Lawrence W.; Mallonee, Michael E.; Perry, Elgin S.; Miller, W. David; Adolf, Jason E.; Gallegos, Charles L.; Paerl, Hans W.

    2016-01-01

    Variable climatic conditions strongly influence phytoplankton dynamics in estuaries globally. Our study area is Chesapeake Bay, a highly productive ecosystem providing natural resources, transportation, and recreation for nearly 16 million people inhabiting a 165,000-km2 watershed. Since World War II, nutrient over-enrichment has led to multiple ecosystem impairments caused by increased phytoplankton biomass as chlorophyll-a (chl-a). Doubled nitrogen (N) loadings from 1945–1980 led to increased chl-a, reduced water clarity, and low dissolved oxygen (DO), while decreased N loadings from 1981–2012 suggest modest improvement. The recent 30+ years are characterized by high inter-annual variability of chl-a, coinciding with irregular dry and wet periods, complicating the detection of long-term trends. Here, we synthesize time-series data for historical and recent N loadings (TN, NO2 + NO3), chl-a, floral composition, and net primary productivity (NPP) to distinguish secular changes caused by nutrient over-enrichment from spatio-temporal variability imposed by climatic conditions. Wet years showed higher chl-a, higher diatom abundance, and increased NPP, while dry years showed lower chl-a, lower diatom abundance, and decreased NPP. Our findings support a conceptual model wherein variable climatic conditions dominate recent phytoplankton dynamics against a backdrop of nutrient over-enrichment, emphasizing the need to separate these effects to gauge progress toward improving water quality in estuaries. PMID:27026279

  18. Study on the phytoplankton · in a large reservoir

    NASA Astrophysics Data System (ADS)

    Xia, Yicheng; Kuang, Qijun

    1992-12-01

    A comprehensive study on the community structure and function of the phytoplankton in Taipinghu Reservoir, the largest reservoir (9400 ha) in Anhui Province, China, was carried out during 1985 1986. A total of 175 species of algae belonging to 8 phyla and 87 genera was noted. The composition of phytoplankton was dominated by species of Chlorophyta, Cyanophyta and Bacillariophyta. The species number, cell density and biomass of the three groups were respectively 88%, 86.5% and 78.9% of the total phytoplankton. The weighted annual average biomass was 1.52 mg/L and cell density was 1.43×106 ind/L. The growth maximum was observed in summer. Diatoms were abundant in the region adjoining a river. A large number of flagellated algae such as Euglena and Chromulina occurred in the artificial fish culture bay. It can be inferred from the algal composition and total nitrogen concentration (1.48 mg/L) that this reservoir is a mesotrophic water body that had undergone slight natural eutrophication. Presented are an equation for the relation between cell density and biomass of algae and a newly developed method based on the energy flow principle in ecology for theoretically estimating algal fishery potential. The algae volumes of 128 species were measured for calculating the biomass.

  19. Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Harding, Lawrence W., Jr.; Mallonee, Michael E.; Perry, Elgin S.; Miller, W. David; Adolf, Jason E.; Gallegos, Charles L.; Paerl, Hans W.

    2016-03-01

    Variable climatic conditions strongly influence phytoplankton dynamics in estuaries globally. Our study area is Chesapeake Bay, a highly productive ecosystem providing natural resources, transportation, and recreation for nearly 16 million people inhabiting a 165,000-km2 watershed. Since World War II, nutrient over-enrichment has led to multiple ecosystem impairments caused by increased phytoplankton biomass as chlorophyll-a (chl-a). Doubled nitrogen (N) loadings from 1945–1980 led to increased chl-a, reduced water clarity, and low dissolved oxygen (DO), while decreased N loadings from 1981–2012 suggest modest improvement. The recent 30+ years are characterized by high inter-annual variability of chl-a, coinciding with irregular dry and wet periods, complicating the detection of long-term trends. Here, we synthesize time-series data for historical and recent N loadings (TN, NO2 + NO3), chl-a, floral composition, and net primary productivity (NPP) to distinguish secular changes caused by nutrient over-enrichment from spatio-temporal variability imposed by climatic conditions. Wet years showed higher chl-a, higher diatom abundance, and increased NPP, while dry years showed lower chl-a, lower diatom abundance, and decreased NPP. Our findings support a conceptual model wherein variable climatic conditions dominate recent phytoplankton dynamics against a backdrop of nutrient over-enrichment, emphasizing the need to separate these effects to gauge progress toward improving water quality in estuaries.

  20. Terrestrial carbohydrates support freshwater zooplankton during phytoplankton deficiency

    PubMed Central

    Taipale, Sami J.; Galloway, Aaron W. E.; Aalto, Sanni L.; Kahilainen, Kimmo K.; Strandberg, Ursula; Kankaala, Paula

    2016-01-01

    Freshwater food webs can be partly supported by terrestrial primary production, often deriving from plant litter of surrounding catchment vegetation. Although consisting mainly of poorly bioavailable lignin, with low protein and lipid content, the carbohydrates from fallen tree leaves and shoreline vegetation may be utilized by aquatic consumers. Here we show that during phytoplankton deficiency, zooplankton (Daphnia magna) can benefit from terrestrial particulate organic matter by using terrestrial-origin carbohydrates for energy and sparing essential fatty acids and amino acids for somatic growth and reproduction. Assimilated terrestrial-origin fatty acids from shoreline reed particles exceeded available diet, indicating that Daphnia may convert a part of their dietary carbohydrates to saturated fatty acids. This conversion was not observed with birch leaf diets, which had lower carbohydrate content. Subsequent analysis of 21 boreal and subarctic lakes showed that diet of herbivorous zooplankton is mainly based on high-quality phytoplankton rich in essential polyunsaturated fatty acids. The proportion of low-quality diets (bacteria and terrestrial particulate organic matter) was <28% of the assimilated carbon. Taken collectively, the incorporation of terrestrial carbon into zooplankton was not directly related to the concentration of terrestrial organic matter in experiments or lakes, but rather to the low availability of phytoplankton. PMID:27510848

  1. Phytoplankton distribution and productivity in a highly turbid, tropical coastal system (Bach Dang Estuary, Vietnam).

    PubMed

    Rochelle-Newall, E J; Chu, V T; Pringault, O; Amouroux, D; Arfi, R; Bettarel, Y; Bouvier, T; Bouvier, C; Got, P; Nguyen, T M H; Mari, X; Navarro, P; Duong, T N; Cao, T T T; Pham, T T; Ouillon, S; Torréton, J-P

    2011-11-01

    Phytoplankton diversity, primary and bacterial production, nutrients and metallic contaminants were measured during the wet season (July) and dry season (March) in the Bach Dang Estuary, a sub-estuary of the Red River system, Northern Vietnam. Using canonical correspondence analysis we show that phytoplankton community structure is potentially influenced by both organometallic species (Hg and Sn) and inorganic metal (Hg) concentrations. During March, dissolved methylmercury and inorganic mercury were important factors for determining phytoplankton community composition at most of the stations. In contrast, during July, low salinity phytoplankton community composition was associated with particulate methylmercury concentrations, whereas phytoplankton community composition in the higher salinity stations was more related to dissolved inorganic mercury and dissolved mono and tributyltin concentrations. These results highlight the importance of taking into account factors other than light and nutrients, such as eco-toxic heavy metals, in understanding phytoplankton diversity and activity in estuarine ecosystems.

  2. Cyanobacteria dominance influences resource use efficiency and community turnover in phytoplankton and zooplankton communities.

    PubMed

    Filstrup, Christopher T; Hillebrand, Helmut; Heathcote, Adam J; Harpole, W Stanley; Downing, John A

    2014-04-01

    Freshwater biodiversity loss potentially disrupts ecosystem services related to water quality and may negatively impact ecosystem functioning and temporal community turnover. We analysed a data set containing phytoplankton and zooplankton community data from 131 lakes through 9 years in an agricultural region to test predictions that plankton communities with low biodiversity are less efficient in their use of limiting resources and display greater community turnover (measured as community dissimilarity). Phytoplankton resource use efficiency (RUE = biomass per unit resource) was negatively related to phytoplankton evenness (measured as Pielou's evenness), whereas zooplankton RUE was positively related to phytoplankton evenness. Phytoplankton and zooplankton RUE were high and low, respectively, when Cyanobacteria, especially Microcystis sp., dominated. Phytoplankton communities displayed slower community turnover rates when dominated by few genera. Our findings, which counter findings of many terrestrial studies, suggest that Cyanobacteria dominance may play important roles in ecosystem functioning and community turnover in nutrient-enriched lakes.

  3. The search for phytoplankton applied remote sensing to the Barataria basin

    SciTech Connect

    Massasati, A.S.; Marstall, T.W.

    1997-08-01

    Mapping phytoplankton has been and still is an important issue in determining the productivity of major water bodies in the United States and around the world. While traditional procedures require an immense amount of time and manpower, remote sensing/GIS technology shows promise for a more cost effective and comprehensive solution for the mapping problem. Satellite Thematic Mapper and airborne CAMS data are used to identify and delineate phytoplankton. The physical properties of phytoplankton represented per pixel are measured and characterized into classes so that objective and statistically significant statements are made at the most elementary level. On this qualitative foundation, pixels are aggregated into units of phytoplankton concentration. These pixels are characterized by class groups and compared to well known facts and field observations of phytoplankton to determine its concentration. The procedure has been applied to the Barataria Bay drainage basin in Southern Louisiana and showed strong possibilities in mapping phytoplankton concentrations.

  4. Flood pulse influence on phytoplankton community of the Aksu Stream, Giresun, Turkey.

    PubMed

    Soylu, Elif Neyran

    2015-01-01

    Flood pulse influence on phytoplankton communities of the Aksu Stream, Giresun, Turkey were studied between December 2008 and December 2009. The phytoplankton communities consisted of 54 species. The number of species and diversity of phytoplankton showed seasonal variation, being high in rainy season. As a consequence of the flood which occurred twice in July 2009, phytoplankton environment changed physically and chemically, which resulted in an alteration in the composition of phytoplankton community. The phytoplankton community that existed previous to the flood event, had been dominated by Hantzschia amphioxys but was replaced by Nitzschia palea and a teratological form of Fragilaria sp. Presence of teratological form of diatom in the stream indicated unfavourable conditions in this region.

  5. Water quality, phytoplankton and zooplankton of Par Pond and Pond B. Volume 2. Phytoplankton. Final report, January 1984-June 1985

    SciTech Connect

    Chimney, M.J.; Cody, W.R.; Starkel, W.M.

    1985-08-01

    This document reports on the Par Pond and Pond B phytoplankton community. The objectives of this study were to (1) characterize the biological communities and environmental conditions in Par Pond and Pond B; (2) assess the impact and significance of entrainment losses of plankton at the Par Pond pumphouse; (3) assess the impact of heated discharge on the biotic communities throughout the reservoir; and (4) help determine if Par Pond maintains an indigenous balanced biological community as defined in state and federal regulations. A total of 368 phytoplankton taxa, representing all the major taxonomic groups characteristic of North American freshwaters, were identified from Par Pond and Pond B during this study (73 Bacillariophyta, 166 Chlorophyta, 30 Chrysophyta, 5 Cryptophyta, 47 Cyanophyta, 18 Euglenophyta, 11 phytoflaggelates and 18 Pyrrophyta).

  6. Freezing of living cells

    SciTech Connect

    Mazur, P.

    1985-01-01

    It can be calculated that a living cell will survive more than 5000 years at -196/sup 0/C. This ability to essentially stop biological time has important implications in medicine and agriculture, and in biological research. In medicine the chief implications are in the banking of transplantable tissues and organs and in in vitro fertilization. In agriculture the applications stem in part from the role of frozen embryos in amplifying the number of calves produced by high quanlity cows. The problem is how can cells survive both the cooling to such very low temperatures and the return to normal temperatures. The answers involve fundamental characteristics of cells such as the permeability of their surface membranes to water and solutes. These characteristics determine whether or not cells undergo lethal internal ice formation and other response during freezing and thawing. 27 refs., 12 figs.

  7. Independent Living.

    ERIC Educational Resources Information Center

    Nathanson, Jeanne H., Ed.

    1994-01-01

    This issue of "OSERS" addresses the subject of independent living of individuals with disabilities. The issue includes a message from Judith E. Heumann, the Assistant Secretary of the Office of Special Education and Rehabilitative Services (OSERS), and 10 papers. Papers have the following titles and authors: "Changes in the…

  8. Retiring Lives

    ERIC Educational Resources Information Center

    Carnell, Eileen, Ed.; Lodge, Caroline, Ed.

    2009-01-01

    "Retiring Lives" presents fourteen personal real life stories from people at various stages of retiring. Each author recounts their own story about retiring, bringing together many aspects of the experiences: the social, psychological and practical. These inspirational and illustrated stories will encourage the reader to hold up these…

  9. Living History

    ERIC Educational Resources Information Center

    Walsh, Mark

    2005-01-01

    John Tinker and Mary Beth Tinker are back in a classroom in their hometown, once again wearing black armbands and drawing attention to a war. Now in their 50s, the siblings are living symbols of constitutional rights for secondary school students. In 1965, they and a handful of others were suspended for wearing black armbands to their public…

  10. Controls on marine carbon fluxes via phytoplankton-mesoplankton interactions in continental shelf waters

    SciTech Connect

    Shapiro, L.; Sherr, B.F.; Sherr, E.B.

    1992-01-01

    The project is an in-depth evaluation of the phytoplankton [yields] phagotrophic protist trophic link. The principal goals of the first year are to develop methods for the second phase of the Ocean Margins Program: investigations in the field. Our project is focused on: impact of grazing by phagotrophic protists on phytoplankton; impact of grazing by phagotrophic protists on bacterioplankton; taxon-specific growth rates of phytoplankton in situ, as they are affected by phagotrophy rates.

  11. Productivity and Diversity of Phytoplankton in Relation to Copper Levels in San Diego Bay.

    DTIC Science & Technology

    1980-03-01

    Analyses. . . 25 Temperature... 32 Salinity... 33 pH ... 34 Tidal Stage... 35 Nutrients... 35 DISCUSSION... 39 Phytoplankton -Copper Interactions... 39...analysis, phytoplankton identification, chlorophyll extractions, salinity, and pH determinations, with three 50-mk samples taken for nutrient...copper that is in solution and available for phytoplankton interaction. By acidi- fying the unfiltered sample to pH 2, copper that is complexed with

  12. Interannual Variation in Phytoplankton Primary Production at a Global Scale

    NASA Technical Reports Server (NTRS)

    Rousseaux, Cecile Severine; Gregg, Watson W.

    2013-01-01

    We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of four phytoplankton groups to the total primary production. First, we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998-2011. Globally, diatoms contributed the most to the total phytoplankton production ((is)approximately 50%, the equivalent of 20 PgC·y1). Coccolithophores and chlorophytes each contributed approximately 20% ((is) approximately 7 PgC·y1) of the total primary production and cyanobacteria represented about 10% ((is) approximately 4 PgC·y1) of the total primary production. Primary production by diatoms was highest in the high latitudes ((is) greater than 40 deg) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998-2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4% (1-2 PgC·y1). We assessed the effects of climate variability on group-specific primary production using global (i.e., Multivariate El Niño Index, MEI) and "regional" climate indices (e.g., Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation (p (is) less than 0.05) between the MEI and the group-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatoms/cyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by SAM had only a limited effect

  13. Failure to bloom: Intense upwelling results in negligible phytoplankton response and prolonged CO2 outgassing over the Oregon shelf

    NASA Astrophysics Data System (ADS)

    Evans, Wiley; Hales, Burke; Strutton, Peter G.; Shearman, R. Kipp; Barth, John A.

    2015-03-01

    During summer, upwelled water with elevated CO2 partial pressure (pCO2) and nutrients outcrops over the Oregon (OR) inner shelf. As this water transits across the shelf, high rates of primary production fueled by the upwelled nutrients results in net atmospheric CO2 drawdown. Upwelled source-waters typically have pCO2 approaching 1000 µatm that is then reduced to ˜200 µatm. For almost the entire month of July 2008, strong and persistent upwelling brought cold (˜8°C), saline (˜33.5), high-pCO2 (>600 µatm) water to our midshelf buoy site, and high-pCO2 water was broadly distributed over the shelf. Chlorophyll levels, as a proxy for phytoplankton biomass, were low (< 2 mg m-3) on the shelf during the period of most intense upwelling, and satellite data showed no evidence of a downstream phytoplankton bloom. A small chlorophyll increase to ˜4 mg m-3 was observed at our buoy site following a decrease in the strength of southward wind stress 10 days after upwelling initiated. Chlorophyll levels further increased to ˜10 mg m-3 only after a cease in upwelling. These higher levels were coincident with the appearance of water masses having temperature and salinity properties distinct from recently upwelled water. We suggest that rapid offshore transport and subsequent subduction before phytoplankton populations could respond is the most likely explanation for the persistent low chlorophyll and elevated surface-water pCO2 throughout the July upwelling event. This mechanism likely dominates under conditions of strong and persistent upwelling-favorable winds that coincide with close proximity of low-density offshore waters, which may have implications for the biogeochemical functioning of this system under future climate scenarios.

  14. Living My Family's Story

    PubMed Central

    Underhill, Meghan L.; Lally, Robin M.; Kiviniemi, Marc T.; Murekeyisoni, Christine; Dickerson, Suzanne S.

    2013-01-01

    Background Based on known or suggested genetic risk factors, a growing number of women now live with knowledge of a potential cancer diagnosis that may never occur. Given this, it is important to understand the meaning of living with high risk for hereditary breast cancer. Objective The objective of the study was to explore how women at high risk for hereditary breast cancer (1) form self-identity, (2) apply self-care strategies toward risk, and (3) describe the meaning of care through a high-risk breast program. Methods Interpretive hermeneutic phenomenology guided the qualitative research method. Women at high risk for hereditary breast cancer were recruited from a high-risk breast program. Open-ended interview questions focused on experiences living as women managing high risk for breast cancer. Consistent with hermeneutic methodology, the principal investigator led a team to analyze the interview transcripts. Results Twenty women participated in in-depth interviews. Analysis revealed that women describe their own identity based on their family story and grieve over actual and potential familial loss. This experience influences self-care strategies, including seeking care from hereditary breast cancer risk experts for early detection and prevention, as well as maintaining a connection for early treatment “when” diagnosis occurs. Conclusions Healthy women living with high risk for hereditary breast cancer are living within the context of their family cancer story, which influences how they define themselves and engage in self-care. Implications for Practice Findings present important practical, research, and policy information regarding health promotion, psychosocial assessment, and support for women living with this risk. PMID:22544165

  15. Temporal and spatial variations in phytoplankton: correlations with environmental factors in Shengjin Lake, China.

    PubMed

    Wang, Lan; Wang, Chao; Deng, Daogui; Zhao, Xiuxia; Zhou, Zhongze

    2015-09-01

    Temporal and spatial variations in the phytoplankton community and environmental variables were investigated from February to July 2014, in the upper lake of Shengjin Lake, China. We identified 192 species of phytoplankton belonging to 8 phyla and 84 genera, of which 46.4% of Chlorophyta, 29.2% of Bacillariophyta, and 12.5% of Cyanophyta. There were 14 predominant species. Marked temporal and spatial variations were observed in the phytoplankton community. The total abundance of phytoplankton ranged from 3.66 × 10(5) to 867.93 × 10(5) cells/L and total biomass ranging from 0.40 to 20.89 mg/L. The Shannon-Wiener diversity index varied from 3.50 to 8.35 with an average of 5.58, revealing high biodiversity in the phytoplankton community. There were substantial temporal changes in the dominant species, from Bacillariophyta and Cryptophyta to Cyanophyta and Chlorophyta. Phytoplankton biomass and abundance showed a similar increasing trend from February to July. Pearson correlations and Redundancy analysis revealed that the most significant environmental factors influencing phytoplankton community were water temperature (T), transparency (SD), and nutrient concentration. The positive correlation between the key water bird areas and phytoplankton biomass indicated that the droppings of wintering water birds had an important influence on the phytoplankton community in the upper lake of Shengjin Lake.

  16. Phytoplankton Diversity Effects on Community Biomass and Stability along Nutrient Gradients in a Eutrophic Lake.

    PubMed

    Tian, Wang; Zhang, Huayong; Zhao, Lei; Zhang, Feifan; Huang, Hai

    2017-01-20

    The relationship between biodiversity and ecosystem functioning is a central issue in ecology, but how this relationship is affected by nutrient stress is still unknown. In this study, we analyzed the phytoplankton diversity effects on community biomass and stability along nutrient gradients in an artificial eutrophic lake. Four nutrient gradients, varying from slightly eutrophic to highly eutrophic states, were designed by adjusting the amount of polluted water that flowed into the lake. Mean phytoplankton biomass, species richness, and Shannon diversity index all showed significant differences among the four nutrient gradients. Phytoplankton community biomass was correlated with diversity (both species richness and Shannon diversity index), varying from positive to negative along the nutrient gradients. The influence of phytoplankton species richness on resource use efficiency (RUE) also changed from positive to negative along the nutrient gradients. However, the influence of phytoplankton Shannon diversity on RUE was not significant. Both phytoplankton species richness and Shannon diversity had a negative influence on community turnover (measured as community dissimilarity), i.e., a positive diversity-stability relationship. Furthermore, phytoplankton spatial stability decreased along the nutrient gradients in the lake. With increasing nutrient concentrations, the variability (standard deviation) of phytoplankton community biomass increased more rapidly than the average total biomass. Results in this study will be helpful in understanding the phytoplankton diversity effects on ecosystem functioning and how these effects are influenced by nutrient conditions in aquatic ecosystems.

  17. Phytoplankton Diversity Effects on Community Biomass and Stability along Nutrient Gradients in a Eutrophic Lake

    PubMed Central

    Tian, Wang; Zhang, Huayong; Zhao, Lei; Zhang, Feifan; Huang, Hai

    2017-01-01

    The relationship between biodiversity and ecosystem functioning is a central issue in ecology, but how this relationship is affected by nutrient stress is still unknown. In this study, we analyzed the phytoplankton diversity effects on community biomass and stability along nutrient gradients in an artificial eutrophic lake. Four nutrient gradients, varying from slightly eutrophic to highly eutrophic states, were designed by adjusting the amount of polluted water that flowed into the lake. Mean phytoplankton biomass, species richness, and Shannon diversity index all showed significant differences among the four nutrient gradients. Phytoplankton community biomass was correlated with diversity (both species richness and Shannon diversity index), varying from positive to negative along the nutrient gradients. The influence of phytoplankton species richness on resource use efficiency (RUE) also changed from positive to negative along the nutrient gradients. However, the influence of phytoplankton Shannon diversity on RUE was not significant. Both phytoplankton species richness and Shannon diversity had a negative influence on community turnover (measured as community dissimilarity), i.e., a positive diversity–stability relationship. Furthermore, phytoplankton spatial stability decreased along the nutrient gradients in the lake. With increasing nutrient concentrations, the variability (standard deviation) of phytoplankton community biomass increased more rapidly than the average total biomass. Results in this study will be helpful in understanding the phytoplankton diversity effects on ecosystem functioning and how these effects are influenced by nutrient conditions in aquatic ecosystems. PMID:28117684

  18. Exploring the Link between Micronutrients and Phytoplankton in the Southern Ocean during the 2007 Austral Summer

    PubMed Central

    Hassler, Christel S.; Sinoir, Marie; Clementson, Lesley A.; Butler, Edward C. V.

    2012-01-01

    Bottle assays and large-scale fertilization experiments have demonstrated that, in the Southern Ocean, iron often controls the biomass and the biodiversity of primary producers. To grow, phytoplankton need numerous other trace metals (micronutrients) required for the activity of key enzymes and other intracellular functions. However, little is known of the potential these other trace elements have to limit the growth of phytoplankton in the Southern Ocean. This study, investigates whether micronutrients other than iron (Zn, Co, Cu, Cd, Ni) need to be considered as parameters for controlling the phytoplankton growth from the Australian Subantarctic to the Polar Frontal Zones during the austral summer 2007. Analysis of nutrient disappearance ratios, suggested differential zones in phytoplankton growth control in the study region with a most intense phytoplankton growth limitation between 49 and 50°S. Comparison of micronutrient disappearance ratios, metal distribution, and biomarker pigments used to identify dominating phytoplankton groups, demonstrated that a complex interaction between Fe, Zn, and Co might exist in the study region. Although iron remains the pivotal micronutrient for phytoplankton growth and community structure, Zn and Co are also important for the nutrition and the growth of most of the dominating phytoplankton groups in the Subantarctic Zone region. Understanding of the parameters controlling phytoplankton is paramount, as it affects the functioning of the Southern Ocean, its marine resources and ultimately the global carbon cycle. PMID:22787456

  19. Synchronous dynamics and correlations between bacteria and phytoplankton in a subtropical drinking water reservoir.

    PubMed

    Liu, Lemian; Yang, Jun; Lv, Hong; Yu, Zheng

    2014-10-01

    Both phytoplankton and bacteria are key and abundant components of aquatic ecosystems and play pivotal roles in maintaining ecosystem structure and function. However, the extent to which phytoplankton community succession influences changes in bacterial community composition (BCC) is largely unknown. In this study, we evaluated the correlations between bacteria and phytoplankton communities and determined the relative contribution of phytoplankton community succession to temporal variation of BCC in a subtropical drinking water reservoir (Tingxi Reservoir, southeast China). Bacterial communities were investigated by quantitative PCR and 454 pyrosequencing of 16S rRNA genes, while phytoplankton communities were analyzed by light microscopy. A remarkable seasonal succession from Cyanophyta to Bacillariophyta was observed during the study period, and this succession can accurately predict the distribution and abundance of the bacterial OTUs based on the discriminant function analysis. Association networks revealed that 38 of the 46 abundant bacterial OTUs exhibited significant correlations with phytoplankton. More interestingly, the positive correlations dominated the associated network, which may suggest that facilitative correlations between phytoplankton and bacteria are more important than inhibitory correlations in the Tingxi Reservoir. In addition, some bacterial OTUs were closely correlated with the dynamics of Microcystis, and they were affiliated with the divisions Acidobacteria, Actinobacteria, and Proteobacteria. Structural equation model showed that succession of phytoplankton community explained the largest part of temporal variation in BCC. Therefore, our data suggest that the distinct succession of phytoplankton community may mediate the temporal dynamics of bacterial community in the Tingxi Reservoir.

  20. Living with migraine headache: a phenomenological study of women's experiences.

    PubMed

    Ramsey, Anthony R

    2012-01-01

    This qualitative study explored the lived experience of women who had migraine headache. The guiding framework was phenomenological inquiry and story theory. The transcripts of audiotaped stories gathered from 8 women living with migraine headache were analyzed. Seven interrelated themes comprised the findings of the study. Implications for holistic nursing practice emphasizing assessment of lived time, lived body, lived space, and lived relations in the context of the findings of the study are discussed.

  1. PHYTOPLANKTON DYNAMICS IN A GULF OF MEXICO ESTUARY: THE POTENTIAL USE OF PHOTO-PHYSIOLOGY AND ALGAL PHOSPHATASE ACTIVITY TO PREDICT NUTRIENT STATUS.

    EPA Science Inventory

    Development of rapid techniques to determine in situ phytoplankton nutrient status could facilitate understanding of phytoplankton growth and species succession. Variable fluorescence parameters of phytoplankton communities can be easily and rapidly measured, and changes in param...

  2. Seasonal distribution of phytoplankton assemblages and nutrient-enriched bioassays as indicators of nutrient limitation of phytoplankton growth in Gwangyang Bay, Korea

    NASA Astrophysics Data System (ADS)

    Baek, Seung Ho; Kim, Dongseon; Son, Moonho; Yun, Suk Min; Kim, Young Ok

    2015-09-01

    To assess the effect of nutrient limitation on phytoplankton growth, and its influence on seasonal variation in phytoplankton community structure, we investigated abiotic and biotic factors in surface and bottom waters at 20 stations in inner and offshore areas of Gwangyang Bay, Korea. Algal bioassay experiments were also conducted using surface water, to assess the effects of nutrient addition on the phytoplankton assemblages. The fate of major nutrients in the bay was strongly dependent on the discharge of freshwater from the Seomjin River. River flow during the rainy season provides a high nitrogen (N) influx, pushing the system toward stoichiometric phosphorus (P) limitation. However, at some times during the rainy season there was insufficient N to maintain phytoplankton growth because it was rapidly consumed through nutrient uptake by phytoplankton under stratified environmental conditions. Diatoms made a relatively large contribution to total phytoplankton biomass. The dominant diatoms, particularly in winter and summer, were Skeletonema marinoi-dohrnii complex and Skeletonema tropicum, respectively, while Eucampia zodiacus and the cryptophyte Cryptomonas spp. dominated in spring and autumn, respectively, comprising more than 75% of the community at most stations. In the bioassay experiments the phytoplankton biomass increased by 30-600% in the +N (added nitrogen) and +NP (added nitrogen and phosphorus) treatments relative to the control and the +P (added phosphorus) treatments, indicating that phytoplankton growth can respond rapidly to pulsed nitrate loading events. Based on the algal bioassay and the field survey, the abrupt input of high nutrient levels following rainfall stimulated the growth of diatom assemblages including the Skeletonema genus. Our results demonstrate that the growth of centric diatoms was enhanced by inputs of N and Si, and that the concentrations of these nutrients may be among the most important factors controlling phytoplankton

  3. Survival of Nannochloropsis Phytoplankton in Hypervelocity Impact Events up to Velocities of 6.07 km/s

    NASA Astrophysics Data System (ADS)

    Pasini, D. L. S.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2013-09-01

    Studies have previously been conducted to verify the survivability of living cells during hypervelocity impact events to test the panspermia and lithopanspermia hypothesis [1], [2]. It has been demonstrated that bacteria survive impacts up to 5.4 km s-1 (approx. shock pressure 30 GPa) - albeit with a low probability of survival [1] whilst larger more complex objects (such as seeds) break up at ~1 km s-1 [2]. The survivability of yeast spores in impacts up to 7.4 km s-1 has also recently been shown [3]. We demonstrate here the survivability of Nannochloropsis Phytoplankton, a eukaryotic photosynthesizing autotroph found in the 'euphotic zone'(sunlit surface layers of oceans) [4] at impact velocities up to 6.07 km s-1. Phytoplankton from a culture sample was frozen and then fired into water (to simulate oceanic impacts, as described in [5]) using a light gas gun (LGG) [6]. The water was then retrieved and placed into a sealed culture vessel and left under a constant light source to check the viability of any remnant organisms.

  4. Phytoplankton response to whole lake inorganic N fertilization along a gradient in dissolved organic carbon.

    PubMed

    Deininger, A; Faithfull, C L; Bergström, A-K

    2017-04-01

    Global change has increased inorganic nitrogen (N) and dissolved organic carbon (DOC; i.e., "browning") inputs to northern hemisphere boreal lakes. However, we do not know how phytoplankton in nutrient poor lake ecosystems of different DOC concentration respond to increased N availability. Here, we monitored changes in phytoplankton production, biomass and community composition in response to whole lake inorganic N fertilization in six boreal unproductive Swedish lakes divided into three lake pairs (control, N enriched) at three DOC levels (low, medium, high), with one reference year (2011) and 2 impact yr (2012, 2013). We found that phytoplankton biomass and production decreased with DOC concentration before N fertilization. Further, phytoplankton community composition also differed with respect to DOC, with a dominance of non-flagellated autotrophs at low DOC towards an increasing dominance of flagellated autotrophs with increased lake DOC concentration. The N fertilization increased phytoplankton biomass and production in all lakes, but did not affect phytoplankton community composition. However, the net response in biomass and production to N fertilization declined with increasing DOC, implying that the lake DOC concentration is critical in order to infer phytoplankton responses to N fertilization, and that the system switches from being primarily nutrient limited to becoming increasingly light limited with increased DOC concentration. In conclusion, our results show that browning will reduce phytoplankton production and biomass and influence phytoplankton community composition, whereas increased inorganic N loadings from deposition, forestry or other land use will primarily enhance phytoplankton biomass and production. Together, any change in the landscape that enhances inorganic N availability will increase phytoplankton production and biomass, but the positive effects of N will be much weaker or even neutralized in browner lakes as caused by light limitation.

  5. Phytoplankton community structure and dynamics in the North Atlantic subtropical gyre

    NASA Astrophysics Data System (ADS)

    Cáceres, Carlos; Rivera, Antonella; González, Sonia; Anadón, Ricardo

    2017-02-01

    Phytoplankton fuel epipelagic ecosystems and affect global biogeochemical cycles. Nevertheless, there is still a lack of quantitative information about the factors that determine both phytoplankton community structure and dynamics, particularly in subtropical gyres. Here, we estimated size fractionated phytoplankton growth (μ) and microzooplankton grazing rates (m) along a transect in the subtropical North Atlantic, from the island of Hispaniola to the Iberian Peninsula, by conducting dilution experiments and fitting mixed models. We also examined the relationship between nutrient availability and the differences in both phytoplankton community structure and size fractionated phytoplankton growth rates at two spatial scales (i.e. subtropical gyre and within-province spatial scale). Our results revealed high values for both phytoplankton growth and microzooplankton grazing rates. Phytoplankton growth (0.00-1.19 d-1) displayed higher variability among stations, biogeochemical provinces and size fractions than the microzooplankton grazing rate (0.32-0.74 d-1). Differences in phytoplankton community structure were associated with dissolved inorganic nitrogen (0.72-5.85 μM; R2 = 0.19) and squared Brunt-Väisälä frequency (R2 = 0.21) at the whole gyre scale. Conversely, the differences in phytoplankton growth rate showed a weak relationship with those properties (R2 ⩽ 0.05) at that scale, but a stronger relationship at the within province scale (R2 ⩾ 0.07). These results support the idea that phytoplankton grow at high rates in oligotrophic subtropical gyres, this is likely due to the selection of phytoplankton groups with functional traits suited to exploit low nutrient availability. Thus, shedding new, multi-scale knowledge on the commonly misunderstood "ocean deserts".

  6. Phytoplankton Distribution in Relation to Environmental Drivers on the North West European Shelf Sea

    PubMed Central

    Siemering, Beatrix; Bresnan, Eileen; Painter, Stuart C.; Daniels, Chris J.; Inall, Mark; Davidson, Keith

    2016-01-01

    The edge of the North West European Shelf (NWES) is characterised by a steep continental slope and a northward flowing slope current. These topographic/hydrographic features separate oceanic water and shelf water masses hence potentially separate phytoplankton communities. The slope current may facilitate the advective transport of phytoplankton, with mixing at the shelf edge supporting nutrient supply and therefore phytoplankton production. On the west Scottish shelf in particular, little is known about the phytoplankton communities in and around the shelf break and adjacent waters. Hence, to improve our understanding of environmental drivers of phytoplankton communities, biological and environmental data were collected on seven cross-shelf transects across the Malin and Hebridean Shelves during autumn 2014. Density profiles indicated that shelf break and oceanic stations had a 100 m deep mixed surface layer while stations on the shelf were generally well mixed. Analysis of similarity and multidimensional scaling of phytoplankton counts revealed that phytoplankton communities on the shelf were significantly different to those found at the shelf break and at oceanic stations. Shelf stations were dominated by dinoflagellates, with diatoms contributing a maximum of 37% of cells. Shelf break and oceanic stations were also dinoflagellate dominated but displayed a lower species diversity. Significant difference between shelf and shelf break stations suggested that the continental slope limited cross shelf phytoplankton exchange. Northern and southern phytoplankton communities on the shelf were approximately 15% dissimilar while there was no latitudinal gradient for stations along the slope current, suggesting this current provided south to north connectivity. Fitting environmental data to phytoplankton ordination showed a significant relationship between phytoplankton community dissimilarities and nutrient concentrations and light availability on the shelf compared to

  7. Phytoplankton Distribution in Relation to Environmental Drivers on the North West European Shelf Sea.

    PubMed

    Siemering, Beatrix; Bresnan, Eileen; Painter, Stuart C; Daniels, Chris J; Inall, Mark; Davidson, Keith

    2016-01-01

    The edge of the North West European Shelf (NWES) is characterised by a steep continental slope and a northward flowing slope current. These topographic/hydrographic features separate oceanic water and shelf water masses hence potentially separate phytoplankton communities. The slope current may facilitate the advective transport of phytoplankton, with mixing at the shelf edge supporting nutrient supply and therefore phytoplankton production. On the west Scottish shelf in particular, little is known about the phytoplankton communities in and around the shelf break and adjacent waters. Hence, to improve our understanding of environmental drivers of phytoplankton communities, biological and environmental data were collected on seven cross-shelf transects across the Malin and Hebridean Shelves during autumn 2014. Density profiles indicated that shelf break and oceanic stations had a 100 m deep mixed surface layer while stations on the shelf were generally well mixed. Analysis of similarity and multidimensional scaling of phytoplankton counts revealed that phytoplankton communities on the shelf were significantly different to those found at the shelf break and at oceanic stations. Shelf stations were dominated by dinoflagellates, with diatoms contributing a maximum of 37% of cells. Shelf break and oceanic stations were also dinoflagellate dominated but displayed a lower species diversity. Significant difference between shelf and shelf break stations suggested that the continental slope limited cross shelf phytoplankton exchange. Northern and southern phytoplankton communities on the shelf were approximately 15% dissimilar while there was no latitudinal gradient for stations along the slope current, suggesting this current provided south to north connectivity. Fitting environmental data to phytoplankton ordination showed a significant relationship between phytoplankton community dissimilarities and nutrient concentrations and light availability on the shelf compared to

  8. Biodiversity increases the productivity and stability of phytoplankton communities.

    PubMed

    Corcoran, Alina A; Boeing, Wiebke J

    2012-01-01

    Global biodiversity losses provide an immediate impetus to elucidate the relationships between biodiversity, productivity and stability. In this study, we quantified the effects of species richness and species combination on the productivity and stability of phytoplankton communities subject to predation by a single rotifer species. We also tested one mechanism of the insurance hypothesis: whether large, slow-growing, potentially-defended cells would compensate for the loss of small, fast-growing, poorly-defended cells after predation. There were significant effects of species richness and species combination on the productivity, relative yield, and stability of phytoplankton cultures, but the relative importance of species richness and combination varied with the response variables. Species combination drove patterns of productivity, whereas species richness was more important for stability. Polycultures containing the most productive single species, Dunaliella, were consistently the most productive. Yet, the most species rich cultures were the most stable, having low temporal variability in measures of biomass. Polycultures recovered from short-term negative grazing effects, but this recovery was not due to the compensation of large, slow-growing cells for the loss of small, fast-growing cells. Instead, polyculture recovery was the result of reduced rotifer grazing rates and persisting small species within the polycultures. Therefore, although an insurance effect in polycultures was found, this effect was indirect and unrelated to grazing tolerance. We hypothesize that diverse phytoplankton assemblages interfered with efficient rotifer grazing and that this "interference effect" facilitated the recovery of the most productive species, Dunaliella. In summary, we demonstrate that both species composition and species richness are important in driving patterns of productivity and stability, respectively, and that stability in biodiverse communities can result from an

  9. Remote sensing the phytoplankton seasonal succession of the Red Sea.

    PubMed

    Raitsos, Dionysios E; Pradhan, Yaswant; Brewin, Robert J W; Stenchikov, Georgiy; Hoteit, Ibrahim

    2013-01-01

    The Red Sea holds one of the most diverse marine ecosystems, primarily due to coral reefs. However, knowledge on large-scale phytoplankton dynamics is limited. Analysis of a 10-year high resolution Chlorophyll-a (Chl-a) dataset, along with remotely-sensed sea surface temperature and wind, provided a detailed description of the spatiotemporal seasonal succession of phytoplankton biomass in the Red Sea. Based on MODIS (Moderate-resolution Imaging Spectroradiometer) data, four distinct Red Sea provinces and seasons are suggested, covering the major patterns of surface phytoplankton production. The Red Sea Chl-a depicts a distinct seasonality with maximum concentrations seen during the winter time (attributed to vertical mixing in the north and wind-induced horizontal intrusion of nutrient-rich water in the south), and minimum concentrations during the summer (associated with strong seasonal stratification). The initiation of the seasonal succession occurs in autumn and lasts until early spring. However, weekly Chl-a seasonal succession data revealed that during the month of June, consistent anti-cyclonic eddies transfer nutrients and/or Chl-a to the open waters of the central Red Sea. This phenomenon occurs during the stratified nutrient depleted season, and thus could provide an important source of nutrients to the open waters. Remotely-sensed synoptic observations highlight that Chl-a does not increase regularly from north to south as previously thought. The Northern part of the Central Red Sea province appears to be the most oligotrophic area (opposed to southern and northern domains). This is likely due to the absence of strong mixing, which is apparent at the northern end of the Red Sea, and low nutrient intrusion in comparison with the southern end. Although the Red Sea is considered an oligotrophic sea, sporadic blooms occur that reach mesotrophic levels. The water temperature and the prevailing winds control the nutrient concentrations within the euphotic zone

  10. Hydrodynamics and light climate structure alongshore phytoplankton blooms in spring

    NASA Astrophysics Data System (ADS)

    Brandt, G.; Wirtz, K. W.

    2009-05-01

    Phytoplankton blooms are a recurring phenomenon that have significant impact on annual biogeochemistry and food-web dynamics in many aquatic ecosystems. The causes for their variability, which is high especially in coastal seas, remain poorly understood. We present an example for distinct differences in the spatio-temporal chlorophyll-a (CHL-a) distribution on an interannual scale, integrating high-frequency data from an autonomous measuring device (FerryBox), which operated on an alongshore route in the coastal North Sea. While in one year CHL-a was spatially homogeneous (2004), a bloom only developed in one part of the transect in the following spring period (2005). In this study, we use a one-dimensional Lagrangian particle tracking model, which operates along the mean current direction, combined with a NPZ-model to identify the mechanisms controlling interannual bloom variability on an alongshore transect. The model results clearly indicate that in 2004, the local light climate triggered phytoplankton growth, whereas in the following year, advective transport determined the spatial structure of the spring bloom. A pronounced eastward inflow event in 2005 imported a high CHL-a patch into the western half of the study area from the adjacent Southern Bight. It did, however, not last long enough to also spread the bloom into the eastern part, where high turbidity prevented local phytoplankton growth. The model identified two interacting mechanisms, light climate and hydrodynamics that control the alongshore dynamics. Especially the occurrence of a pronounced spring bloom despite unfavourable light conditions in 2005 underlines the need to carefully consider hydrodynamics to understand ecosystem functioning in coastal environments.

  11. Probabilistic analysis of phytoplankton biomass at the Frisian Inlet (NL)

    NASA Astrophysics Data System (ADS)

    Niu, Lixia; Van Gelder, P. H. A. J. M.; Guan, Yiqing; Zhang, Changkuan; Vrijling, J. K.

    2015-03-01

    The BLOOM II model is applied in this study to interrogate the variation of phytoplankton biomass (in terms of chlorophyll a) at the Frisian Inlet (NL), located in the north of the Netherlands. The validation results of the model show that more than 90% of the comparisons between model results and observations have a good agreement, while only 3.1% are classified as poor. Chlorophyll a is significantly correlated with the ecological indicators of Si and NH4 by observational analysis. The modelled chlorophyll a is fitted well by a normal distribution function (μ = 3.95 mg m-3, σ = 2.96 mg m-3). Relationships between the modelled ecological indicators are investigated. Secchi depth as another important indicator is closely linked with chlorophyll a, PAR and Kd . Moreover, particular attention is paid to the phytoplankton biomass in response to nutrient availability. The decrease rate of chlorophyll a is from 16.8% to 19.2% for N-reduction, 17.4%-21.3% for P-reduction and 21.7%-28.0% for both N- and P-reduction. In the presence of uncertainty, the improved prediction of chlorophyll a is derived by Bayesian Markov Chain Monte Carlo (BMCMC) in this study. The improved prediction of chlorophyll a concentrations vary from 0.147 to 15.34 mg m-3 within the 95% confidence interval. This study emphasises the use of an ecological model to predict the variation of phytoplankton biomass, and improves the prediction with the integration of uncertainty analysis.

  12. Environmental Conditions Determine the Course and Outcome of Phytoplankton Chytridiomycosis

    PubMed Central

    Haande, Sigrid; Molversmyr, Åge

    2015-01-01

    Chytrid fungi are highly potent parasites of phytoplankton. They are thought to force phytoplankton organisms into an evolutionary arms race with high population diversity as the outcome. The underlying selection regime is known as Red Queen dynamics. However, our study suggests a more complex picture for chytrid parasitism in the cyanobacterium Planktothrix. Laboratory experiments identified a “cold thermal refuge”, inside which Planktothrix can grow without chytrid infection. A field study in two Norwegian lakes underlined the ecological significance of this finding. The study utilized sediment DNA as a biological archive in combination with existing monitoring data. In one lake, temperature and light conditions forced Planktothrix outside the thermal refuge for most of the growing season. This probably resulted in Red Queen dynamics as suggested by a high parasitic pressure exerted by chytrids, an increase in Planktothrix genotype diversity over time, and a correlation between Planktothrix genotype diversity and duration of bloom events. In the second lake, a colder climate allowed Planktothrix to largely stay inside the thermal refuge. The parasitic pressure exerted by chytrids and Planktothrix genotype diversity remained low, indicating that Planktothrix successfully evaded the Red Queen dynamics. Episodic Planktothrix blooms were observed during spring and autumn circulation, in the metalimnion or under the ice. Interestingly, both lakes were dominated by the same or related Planktothrix genotypes. Taken together, our data suggest that, depending on environmental conditions, chytrid parasitism can impose distinct selection regimes on conspecific phytoplankton populations with similar genotype composition, causing these populations to behave and perhaps to evolve differently. PMID:26714010

  13. Nutrient and phytoplankton analysis of a Mediterranean coastal area.

    PubMed

    Sebastiá, M T; Rodilla, M

    2013-01-01

    Identifying and quantifying the key anthropogenic nutrient input sources are essential to adopting management measures that can target input for maximum effect in controlling the phytoplankton biomass. In this study, three systems characterized by distinctive main nutrient sources were sampled along a Mediterranean coast transect. These sources were groundwater discharge in the Ahuir area, the Serpis river discharge in the Venecia area, and a submarine wastewater outfall 1,900 m from the coast. The study area includes factors considered important in determining a coastal area as a sensitive area: it has significant nutrient sources, tourism is a major source of income in the region, and it includes an area of high water residence time (Venecia area) which is affected by the harbor facilities and by wastewater discharges. We found that in the Ahuir and the submarine wastewater outfall areas, the effects of freshwater inputs were reduced because of a greater water exchange with the oligotrophic Mediterranean waters. On the other hand, in the Venecia area, the highest levels of nutrient concentration and phytoplankton biomass were attributed to the greatest water residence time. In this enclosed area, harmful dinoflagellates were detected (Alexandrium sp. and Dinophysis caudata). If the planned enlargement of the Gandia Harbor proceeds, it may increase the vulnerability of this system and provide the proper conditions of confinement for the dinoflagellate blooms' development. Management measures should first target phosphorus inputs as this is the most potential-limiting nutrient in the Venecia area and comes from a point source that is easier to control. Finally, we recommend that harbor environmental management plans include regular monitoring of water quality in adjacent waters to identify adverse phytoplankton community changes.

  14. Remote Sensing the Phytoplankton Seasonal Succession of the Red Sea

    PubMed Central

    Brewin, Robert J. W.; Stenchikov, Georgiy; Hoteit, Ibrahim

    2013-01-01

    The Red Sea holds one of the most diverse marine ecosystems, primarily due to coral reefs. However, knowledge on large-scale phytoplankton dynamics is limited. Analysis of a 10-year high resolution Chlorophyll-a (Chl-a) dataset, along with remotely-sensed sea surface temperature and wind, provided a detailed description of the spatiotemporal seasonal succession of phytoplankton biomass in the Red Sea. Based on MODIS (Moderate-resolution Imaging Spectroradiometer) data, four distinct Red Sea provinces and seasons are suggested, covering the major patterns of surface phytoplankton production. The Red Sea Chl-a depicts a distinct seasonality with maximum concentrations seen during the winter time (attributed to vertical mixing in the north and wind-induced horizontal intrusion of nutrient-rich water in the south), and minimum concentrations during the summer (associated with strong seasonal stratification). The initiation of the seasonal succession occurs in autumn and lasts until early spring. However, weekly Chl-a seasonal succession data revealed that during the month of June, consistent anti-cyclonic eddies transfer nutrients and/or Chl-a to the open waters of the central Red Sea. This phenomenon occurs during the stratified nutrient depleted season, and thus could provide an important source of nutrients to the open waters. Remotely-sensed synoptic observations highlight that Chl-a does not increase regularly from north to south as previously thought. The Northern part of the Central Red Sea province appears to be the most oligotrophic area (opposed to southern and northern domains). This is likely due to the absence of strong mixing, which is apparent at the northern end of the Red Sea, and low nutrient intrusion in comparison with the southern end. Although the Red Sea is considered an oligotrophic sea, sporadic blooms occur that reach mesotrophic levels. The water temperature and the prevailing winds control the nutrient concentrations within the euphotic zone

  15. Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production.

    PubMed

    Brett, Michael T; Kainz, Martin J; Taipale, Sami J; Seshan, Hari

    2009-12-15

    Terrestrial organic matter inputs have long been thought to play an important role in aquatic food web dynamics. Results from recent whole lake (13)C addition experiments suggest terrestrial particulate organic carbon (t-POC) inputs account for a disproportionate portion of zooplankton production. For example, several studies concluded that although t-POC only represented approximately 20% of the flux of particulate carbon available to herbivorous zooplankton, this food source accounted for approximately 50% of the C incorporated by zooplankton. We tested the direct dietary impact of t-POC (from the leaves of riparian vegetation) and various phytoplankton on Daphnia magna somatic growth, reproduction, growth efficiency, and lipid composition. By itself, t-POC was a very poor quality resource compared to cryptophytes, diatoms, and chlorophytes, but t-POC had similar food quality compared to cyanobacteria. Small additions of high quality Cryptomonas ozolinii to t-POC-dominated diets greatly increased Daphnia growth and reproduction. When offered alone, t-POC resulted in a Daphnia growth efficiency of 5 +/- 1%, whereas 100% Cryptomonas and Scenedesmus obliquus diets resulted in growth efficiencies of 46 +/- 8% (+/- SD) and 36 +/- 3%, respectively. When offered in a 50:50 mixed diet with Cryptomonas or Scenedesmus, the t-POC fraction resulted in a partial growth efficiency of 22 +/- 9% and 15 +/- 6%, respectively. Daphnia that obtained 80% of their available food from t-POC assimilated 84% of their fatty acids from the phytoplankton component of their diet. Overall, our results suggest Daphnia selectively allocate phytoplankton-derived POC and lipids to enhance somatic growth and reproduction, while t-POC makes a minor contribution to zooplankton production.

  16. Phosphate and iron limitation of phytoplankton biomass in Lake Tahoe

    USGS Publications Warehouse

    Chang, Cecily C.Y.; Kuwabara, J.S.; Pasilis, S.P.

    1992-01-01

    Bioassays were carried out to assess the response of inoculated, single-species diatom populations (Cyclotella meneghiniana and Aulocosiera italica) to additions of synthetic chelators and phosphate. A chemical speciation model along with the field data was also used to predict how trace metal speciation, and hence bioavailability, was affected by the chelator additions. Results suggest that phosphate was limiting to phytoplankton biomass. Other solutes, Fe in particular, may also exert controls on biomass. Nitrate limitation seems less likely, although Fe-limiting conditions may have led to an effective N limitation because algae require Fe to carry out nitrate reduction. -from Authors

  17. Phytoplankton of the North Sea and its dynamics: A review

    NASA Astrophysics Data System (ADS)

    Reid, P. C.; Lancelot, C.; Gieskes, W. W. C.; Hagmeier, E.; Weichart, G.

    Phytoplankton is the major contributor to algal biomass and primary production of the North Sea, although crops of macroalgae can locally be up to 2000 g C.m -2 along the coast of the U.K. and Norway, and microphytobenthos dominates production in the shallow tidal flat areas bordering the coasts of England, the Netherlands, Germany and Denmark. Data collected since 1932 during the Continuous Plankton Recorder Survey show consistent patterns of geographical, seasonal and annual variation in the distribution of phytoplankton and its major taxonomic components. There is a trend of increased colouration in Recorder silks in the southern North Sea until approximately 1975 since when Colour levels (assumed to be indicative of algal biomass) have declined. In the eutrophic Dutch Wadden Sea the algal crop continued to increase; in Dutch coastal North Sea waters a trend of biomass increase reversed since 1984, apparently due to a reduction in Rhine river outflow. Long-term observations made at Helgoland since the 60's also show trends of increasing nutrients and phytoplankton biomass only to 1984. Adverse effects such as deoxygenation, foam formation and toxin production have been linked to mass concentrations of algae known as blooms. There is no evidence from existing reports for an increase in their frequency, although some years stand out with larger numbers. Occurrence of blooms can partly be explained by hydrographic conditions. More than 30 taxa are recognised as occurring in bloom proportions in the North Sea, approximately one third of which can be toxic. The crop of Bacillariophyceae (diatoms) is not likely to increase with eutrophication due to silicate limitation. An extensive subsurface maximum of armoured dinoflagellates, its abundance gouverned by hydrographic conditions, is the most characteristic feature of the central and northern North Sea in the summer months. Abundance, sometimes dominance, of picoplankton and of species that are not readily detected by

  18. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate

    NASA Astrophysics Data System (ADS)

    Charlson, Robert J.; Warren, Stephen G.; Lovelock, James E.; Andreae, Meinrat O.

    1987-04-01

    The major source of cloud-condensation nuclei (CCN) over the oceans appears to be dimethylsulphide, which is produced by planktonic algae in sea water and oxidizes in the atmosphere to form a sulphate aerosol. Because the reflectance (albedo) of clouds (and thus the earth's radiation budget) is sensitive to CCN density, biological regulation of the climate is possible through the effects of temperature and sunlight on phytoplankton population and dimethylsulphide production. To counteract the warming due to doubling of atmospheric CO2, an approximate doubling of CCN would be needed.

  19. AUV Measured Variability in Phytoplankton Fluorescence within the ETM of the Columbia River during Summer 2013

    NASA Astrophysics Data System (ADS)

    McNeil, C. L.; Shcherbina, A.; Litchendorf, T. M.; Sanford, T. B.; Martin, D.; Baptista, A. M.; Lopez, J.; Crump, B. C.; Peterson, T. D.; Prahl, F. G.; Cravo, A.

    2014-12-01

    We present highly resolved observations of fluorescence and optical backscatter taken in the estuarine turbidity maxima (ETM) of the North Channel of the Columbia River estuary (USA) during summer 2013. Measurements were made using two REMUS-100 autonomous underwater vehicles (AUVs) equipped with ECO Puck triplets. Concentrations of three phytoplankton pigments were measured by fluorescence emission at wavelengths of 695 nm for chlorophyll, 570 nm for phycoerythrin, and 680 nm for phycocyanin. We use phycocyanin to indicate the presence of freshwater phytoplankton. Optical backscatter at wavelengths of 700 nm and 880 nm are used to characterize turbidity. During flood tide, high phycocyanin concentrations were associated with a strong ETM event which had relatively low salinity waters of approximately 6 psu. These data indicate that this low salinity ETM event contained large concentrations of freshwater phytoplankton. Since freshwater phytoplankton are known to lyse in saltwater, the brackish ETM event may have formed by the accumulation of lysed freshwater phytoplankton that settled out from the river as it mixed in the lower estuary. As the flood tide proceeded, it brought high concentrations of marine phytoplankton into the north channel at mid-depth as indicated by high chlorophyll levels with significantly lower phycoerythrin concentrations in high salinity waters of approximately 30 psu. The data set highlights the potential for large variability in phytoplankton species composition and concentrations within the ETM depending on mixing rates and phytoplankton bloom dynamics. Visualization of the 4-D data is aided by generating interpolated data movies.

  20. Shallow water processes govern system-wide phytoplankton bloom dynamics: A field study

    USGS Publications Warehouse

    Thompson, J.K.; Koseff, Jeffrey R.; Monismith, Stephen G.; Lucas, L.V.

    2008-01-01

    Prior studies of the phytoplankton dynamics in South San Francisco Bay, California, USA have hypothesized that bivalve filter-feeders are responsible for the limited phytoplankton blooms in the system. This study was designed to examine the effects of benthic grazing and light attenuation on this shallow, turbid, and nutrient replete system. We found that grazing by shallow water bivalves was important in determining phytoplankton bloom occurrence throughout the system and that above a shallow water bivalve grazing threshold, phytoplankton biomass did not exceed bloom levels. Wind speed, used as a proxy for light attenuation in the shallow water, was similarly important in determining bloom development in the shallow water. Environmental conditions and benthic grazing in the deep water channel had a less discernible effect on system-wide phytoplankton blooms although persistent water column stratification did increase bloom magnitude. The shallow water bivalves, believed to be preyed upon by birds and fish that migrate through the system in fall and winter, disappear each year prior to the spring phytoplankton bloom. Because growth of the phytoplankton depends so strongly on shallow water processes, any change in the shallow-water benthic filter-feeders or their predators has great potential to change the phytoplankton bloom dynamics in this system. ?? 2007 Elsevier B.V. All rights reserved.

  1. Phytoplankton Pigment Degradation Patterns in the Oxic and Hypoxic Regions of a Lake Water-Column

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Degradation of senescent phytoplankton occurs as cells sink through the water-column. Once below the photic zone or buried in the sediments, pigment degradation products may be used in paleolimnological studies to elucidate past phytoplankton community composition. Interpretation of the sediment pig...

  2. A prospective study of marine phytoplankton and reported illness among recreational beachgoers in Puerto Rico, 2009

    EPA Science Inventory

    BACKGROUND: Blooms of marine phytoplankton may adversely affect human health. The potential public health impact of low-level exposures is not well established, and few prospective cohort studies of recreational exposures to marine phytoplankton have been conducted.OBJECTIVE: We ...

  3. Variation of phytoplankton community structure from the Pearl River estuary to South China Sea.

    PubMed

    Jiang, Zhao-Yu; Wang, You-Shao; Cheng, Hao; Sun, Cui-Ci; Wu, Mei-Lin

    2015-10-01

    The Pearl River is located in the northern part of South China Sea. The environment of the Pearl River estuary (PRE) is significantly impacted by nutrients from anthropogenic activities. Along the anthropogenic pollution gradient from the PRE to South China Sea, the phylogenetic diversity and biomass of phytoplankton was examined in relation to physic-chemical variables. The richness of rbcL gene was higher in the open sea than the estuary, while the concentration of chlorophyll a (Chl a) was higher in the estuary than in the open sea. The cluster analysis of the sequences data resulted in seven phytoplankton community types and the dominant species of phytoplankton changed from Cryptophytes and Diatoms to Prymnesiophytes and Diatoms along the gradient. The community structure of phytoplankton was shaped by nutrients and salinity. The phytoplankton biomass was significantly positively affected by phosphorus, nitrite and ammonium (P < 0.01) but negatively by salinity (P < 0.05); the phytoplankton diversity was highly positively affected by salinity (P < 0.05) but negatively by silicate and nitrate (P < 0.01; P < 0.05, respectively). Anthropogenic activities played a critical role in the phytoplankton distribution and biomass of the study area. Further research is necessary to reveal the influence mechanism of environmental factors on the phytoplankton.

  4. Phytoplankton in the cooling pond of a nuclear fuel plant. II. Spectral analysis

    SciTech Connect

    Tokarskaya, Z.B.; Smagin, A.I.; Ryzhkov, E.G.; Nikitina, L.V.

    1995-09-01

    This study continues investigations into the development dynamics of phytoplankton and hydrochemical and meteorological factors over a periods of 26 years in the cooling pond of the Mayak Production Association in the Kyzyl-Trash Lake. The aim is to evaluate the long-term oscillations in phytoplankton owing to changes in hydrochemical and meteorological factors. 6 refs., 2 figs., 1 tab.

  5. NUTRIENT LIMITATION OF PHYTOPLANKTON GROWTH AND PHYSIOLOGY IN A SUBTROPICAL ESTUARY (PENSACOLA BAY, FL)

    EPA Science Inventory

    Phytoplankton nutrient limitation was studied in a sub-estuary of lower Pensacola Bay using several techniques. Results for <5 um and . 5 um phytoplankton were similar. Nutrient-addition bioassays indicated year-round nutrient limitation, in contrast to seasonal patterns often ...

  6. PHYTOPLANKTON AND ZOOPLANKTON SEASONAL DYNAMICS IN A SUBTROPICAL ESTUARY: IMPORTANCE OF CYANOBACTERIA

    EPA Science Inventory

    Murrell, Michael C. and Emile M. Lores. 2004. Phytoplankton and Zooplankton Seasonal Dynamics in a Subtropical Estuary: Importance of Cyanobacteria. J. Plankton Res. 26(3):371-382. (ERL,GB 1190).

    A seasonal study of phytoplankton and zooplankton was conducted from 1999-20...

  7. Combatting cyanobacteria with hydrogen peroxide: a laboratory study on the consequences for phytoplankton community and diversity

    PubMed Central

    Weenink, Erik F. J.; Luimstra, Veerle M.; Schuurmans, Jasper M.; Van Herk, Maria J.; Visser, Petra M.; Matthijs, Hans C. P.

    2015-01-01

    Experiments with different phytoplankton densities in lake samples showed that a high biomass increases the rate of hydrogen peroxide (HP) degradation and decreases the effectiveness of HP in the selective suppression of dominant cyanobacteria. However, selective application of HP requires usage of low doses only, accordingly this defines the limits for use in lake mitigation. To acquire insight into the impact of HP on other phytoplankton species, we have followed the succession of three phytoplankton groups in lake samples that were treated with different concentrations of HP using a taxa-specific fluorescence emission test. This fast assay reports relatively well on coarse changes in the phytoplankton community; the measured data and the counts from microscopical analysis of the phytoplankton matched quite well. The test was used to pursue HP application in a Planktothrix agardhii-dominated lake sample and displayed a promising shift in the phytoplankton community in only a few weeks. From a low-diversity community, a change to a status with a significantly higher diversity and increased abundance of eukaryotic phytoplankton species was established. Experiments in which treated samples were re-inoculated with original P. agardhii-rich lake water demonstrated prolonged suppression of cyanobacteria, and displayed a remarkable stability of the newly developed post-HP treatment state of the phytoplankton community. PMID:26257710

  8. The method of multispectral image processing of phytoplankton processing for environmental control of water pollution

    NASA Astrophysics Data System (ADS)

    Petruk, Vasil; Kvaternyuk, Sergii; Yasynska, Victoria; Kozachuk, Anastasia; Kotyra, Andrzej; Romaniuk, Ryszard S.; Askarova, Nursanat

    2015-12-01

    The paper presents improvement of the method of environmental monitoring of water bodies based on bioindication by phytoplankton, which identify phytoplankton particles carried out on the basis of comparison array multispectral images using Bayesian classifier of solving function based on Mahalanobis distance. It allows to evaluate objectively complex anthropogenic and technological impacts on aquatic ecosystems.

  9. Mechanisms and Factors Regulating the Uptake and Toxicity of Heavy Metals in Phytoplankton

    DTIC Science & Technology

    1998-09-30

    Science of the Total Environment 219: 95-115. Sunda, W. G., and S. A. Huntsman. 1996...Huntsman. 1998. Processes regulating cellular metal accumulation and physiological effects: Phytoplankton as model systems. Science of the Total Environment 219...and physiological effects: Phytoplankton as model systems. Science of the Total Environment 219: 165-181. 4. Sunda, W.G. and S.A. Huntsman.

  10. Annual and interannual variations of phytoplankton pigment concentration and upwelling along the Pacific equator

    NASA Technical Reports Server (NTRS)

    Halpern, David; Feldman, Gene C.

    1994-01-01

    The following variables along the Pacific equator from 145 deg E to 95 deg W were employed: surface layer phytoplankton pigment concentrations derived from Nimbus 7 coastal zone color scanner (CZCS) measurements of ocean color radiances; vertical velocities simulated at the 90-m bottom of the euphotic layer from a wind-driven ocean general circulation model; and nitrate concentrations estimated from model-simulated temperature. The upward flux of nitrate into the euphotic layer was calculated from the simulated vertical motion and nitrate concentration. The CZCS-derived phytoplankton pigment concentration was uniform from 175 deg to 95 deg W. Longitudinal profiles of upwelling, phytoplankton biomass, and 90-m nitrate flux were of different shapes. The small annual cycles of the phytoplankton pigment and nitrate flux were in phase: increased phytoplankton biomass was associated with increased upward nitrate flux, but the phase was not consistent with the annual cycles of the easterly wind or of the upwelling intensity. Variation of phytoplankton pigment concentration was greater during El Nino than during the annual cycle. The substantially reduced phytoplankton pigment concentration observed during El Nino was associated with smaller upward nitrate flux. Phytoplankton biomass during non-El Nino conditions was not related to nitrate flux into the euphotic layer.