Science.gov

Sample records for living phytoplankton implications

  1. Dynamics of living phytoplankton: Implications for paleoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Barbosa, A. B.

    2009-01-01

    Phytoplankton is the dominant primary producer in aquatic ecosystems and is considered a gauge of ecological condition and change. Some phytoplankton groups, namely diatoms, dinoflagellates, and coccolithophores, produce morphological or chemical fossils that can be used for paleoenvironmental reconstruction. This study aims to review the processes that regulate dynamics in living phytoplankton and to highlight how this knowledge is used in paleoecological studies. The distribution patterns of phytoplankton in present-day aquatic ecosystems are shaped by the interplay between processes that regulate cell growth and cell death. Cell growth and cell death are regulated by the internal environment of phytoplankton (e.g., specific environmental tolerances, resource uptake properties, cell size, density and morphology, alternative nutritional strategies such as mixotrophy or N2 uptake, motility, intracellular storage capacities, grazing resistance properties), and by its external environment. The external environment includes variables dependent on the availability of resources (e.g., light intensity, concentration of CO2 and dissolved inorganic macronutrients and micronutrients, availability of living prey in case of mixotrophs) and variables independent of resources (e.g., temperature, salinity, turbulence, ultraviolet radiation, bioactive compounds, activity of grazers, viruses, and eukaryotic parasites). The importance of recently described loss processes, such as grazing by phagotrophic protists, viral lyses, and programmed cell death, is discussed in the context of its potential impact upon phytoplankton vertical fluxes. Examples of the use of different phytoplankton metrics (e.g. abundance, species composition, species morphology, and elemental composition) to infer contemporaneous as well as past environmental and ecological conditions are critically evaluated.

  2. Warming Oceans, Phytoplankton, and River Discharge: Implications for Cholera Outbreaks

    PubMed Central

    Jutla, Antarpreet S.; Akanda, Ali S.; Griffiths, Jeffrey K.; Colwell, Rita; Islam, Shafiqul

    2011-01-01

    Phytoplankton abundance is inversely related to sea surface temperature (SST). However, a positive relationship is observed between SST and phytoplankton abundance in coastal waters of Bay of Bengal. This has led to an assertion that in a warming climate, rise in SST may increase phytoplankton blooms and, therefore, cholera outbreaks. Here, we explain why a positive SST-phytoplankton relationship exists in the Bay of Bengal and the implications of such a relationship on cholera dynamics. We found clear evidence of two independent physical drivers for phytoplankton abundance. The first one is the widely accepted phytoplankton blooming produced by the upwelling of cold, nutrient-rich deep ocean waters. The second, which explains the Bay of Bengal findings, is coastal phytoplankton blooming during high river discharges with terrestrial nutrients. Causal mechanisms should be understood when associating SST with phytoplankton and subsequent cholera outbreaks in regions where freshwater discharge are a predominant mechanism for phytoplankton production. PMID:21813852

  3. The percentage of living bacterial cells related to organic carbon release from senescent oceanic phytoplankton

    NASA Astrophysics Data System (ADS)

    Lasternas, S.; Agustí, S.

    2014-11-01

    Bacteria recycle vast amounts of organic carbon, playing key biogeochemical and ecological roles in the ocean. Bacterioplankton dynamics are expected to be dependent on phytoplankton primary production, but there is a high diversity of processes (e.g., sloppy feeding, cell exudation, viral lysis) involved in the transfer of primary production to dissolved organic carbon available to bacteria. Here, we show the percentage of living heterotrophic bacterioplankton in the subtropical NE Atlantic Ocean in relation to phytoplankton extracellular carbon release (PER). PER represents the fraction of primary production released as dissolved organic carbon. PER variability was explained by phytoplankton cell death, with communities experiencing higher phytoplankton cell mortality showing a larger proportion of phytoplankton extracellular carbon release. Both PER and the percentage of dead phytoplankton cells increased from eutrophic to oligotrophic waters, while abundance of heterotrophic bacteria was highest in the intermediate waters. The percentage of living heterotrophic bacterial cells (range: 60-95%) increased with increasing phytoplankton extracellular carbon release from productive to oligotrophic waters in the subtropical NE Atlantic. The lower PERs, observed at the upwelling waters, have resulted in a decrease in the flux of phytoplankton dissolved organic carbon (DOC) per bacterial cell. The results highlight phytoplankton cell death as a process influencing the flow of dissolved photosynthetic carbon in this region of the subtropical NE Atlantic Ocean, and suggest a close coupling between the fraction of primary production released and heterotrophic bacterial cell survival.

  4. Zooplankton interactions with toxic phytoplankton: Some implications for food web studies and algal defence strategies of feeding selectivity behaviour, toxin dilution and phytoplankton population diversity

    NASA Astrophysics Data System (ADS)

    Barreiro, A.; Guisande, C.; Maneiro, I.; Vergara, A. R.; Riveiro, I.; Iglesias, P.

    2007-11-01

    implications of these findings are the fact that mesozooplankton may not play an important role in phytoplankton blooms development. Phytoplankton endotoxin production does not seem to be an evolutionary stable strategy as a defence against some herbivores.

  5. Classification of phytoplankton cells as live or dead using the vital stains fluorescein diacetate and 5-chloromethylfluorescein diacetate.

    PubMed

    MacIntyre, Hugh L; Cullen, John J

    2016-08-01

    Regulations for ballast water treatment specify limits on the concentrations of living cells in discharge water. The vital stains fluorescein diacetate (FDA) and 5-chloromethylfluorescein diacetate (CMFDA) in combination have been recommended for use in verification of ballast water treatment technology. We tested the effectiveness of FDA and CMFDA, singly and in combination, in discriminating between living and heat-killed populations of 24 species of phytoplankton from seven divisions, verifying with quantitative growth assays that uniformly live and dead populations were compared. The diagnostic signal, per-cell fluorescence intensity, was measured by flow cytometry and alternate discriminatory thresholds were defined statistically from the frequency distributions of the dead or living cells. Species were clustered by staining patterns: for four species, the staining of live versus dead cells was distinct, and live-dead classification was essentially error free. But overlap between the frequency distributions of living and heat-killed cells in the other taxa led to unavoidable errors, well in excess of 20% in many. In 4 very weakly staining taxa, the mean fluorescence intensity in the heat-killed cells was higher than that of the living cells, which is inconsistent with the assumptions of the method. Applying the criteria of ≤5% false negative plus ≤5% false positive errors, and no significant loss of cells due to staining, FDA and FDA+CMFDA gave acceptably accurate results for only 8-10 of 24 species (i.e., 33%-42%). CMFDA was the least effective stain and its addition to FDA did not improve the performance of FDA alone.

  6. Iron Limitation of a Springtime Bacterial and Phytoplankton Community in the Ross Sea: Implications for Vitamin B12 Nutrition

    PubMed Central

    Bertrand, Erin M.; Saito, Mak A.; Lee, Peter A.; Dunbar, Robert B.; Sedwick, Peter N.; DiTullio, Giacomo R.

    2011-01-01

    The Ross Sea is home to some of the largest phytoplankton blooms in the Southern Ocean. Primary production in this system has previously been shown to be iron limited in the summer and periodically iron and vitamin B12 colimited. In this study, we examined trace metal limitation of biological activity in the Ross Sea in the austral spring and considered possible implications for vitamin B12 nutrition. Bottle incubation experiments demonstrated that iron limited phytoplankton growth in the austral spring while B12, cobalt, and zinc did not. This is the first demonstration of iron limitation in a Phaeocystis antarctica-dominated, early season Ross Sea phytoplankton community. The lack of B12 limitation in this location is consistent with previous Ross Sea studies in the austral summer, wherein vitamin additions did not stimulate P. antarctica growth and B12 was limiting only when bacterial abundance was low. Bottle incubation experiments and a bacterial regrowth experiment also revealed that iron addition directly enhanced bacterial growth. B12 uptake measurements in natural water samples and in an iron fertilized bottle incubation demonstrated that bacteria serve not only as a source for vitamin B12, but also as a significant sink, and that iron additions enhanced B12 uptake rates in phytoplankton but not bacteria. Additionally, vitamin uptake rates did not become saturated upon the addition of up to 95 pM B12. A rapid B12 uptake rate was observed after 13 min, which then decreased to a slower constant uptake rate over the next 52 h. Results from this study highlight the importance of iron availability in limiting early season Ross Sea phytoplankton growth and suggest that rates of vitamin B12 production and consumption may be impacted by iron availability. PMID:21886638

  7. Chromium uptake and adsorption in cultured marine phytoplankton - implications for the marine Cr cycle

    NASA Astrophysics Data System (ADS)

    Semeniuk, D.; Maldonado, M. T.; Jaccard, S.

    2015-12-01

    While chromium (Cr) is a known carcinogen and pervasive industrial contaminant, little is known about the processes that affect the distribution and speciation of Cr in uncontaminated seawater. Given the recent development and application of the stable Cr isotope system in the marine environment, a full account of the sources, sinks, and internal processes affecting the modern marine Cr cycle is prudent. Using the radioisotope 51Cr, we investigated the controls of cellular Cr accumulation in an array of marine phytoplankton grown in environmentally relevant Cr concentrations (1-10 nM). Given the affinity of Cr(III) for amorphous Fe-hydroxide mineral surfaces, and the formation of these mineral phases on the outside of phytoplankton cells, extracellular Cr was monitored in a model diatom species (Thalassiosira weissflogii) as extracellular Fe concentrations varied. Extracellular Cr in T. weissflogii increased with increasing extracellular Fe, demonstrating that Cr may be removed from seawater via extracellular adsorption to phytoplankton. Short-term Cr(VI) and Cr(III) uptake experiments performed with T. weissflogii demonstrated that Cr(III) both adsorbed to and was internalized by the cells ~20x faster than Cr(VI). This suggests that Cr(III) is the dominant oxidation state associated with phytoplankton cells. Cellular Cr:C ratios (<0.5 µmol Cr mol C-1) of the nine phytoplankton species surveyed were significantly lower than previously reported Cr:C ratios of sinking particulate organic matter (~500 µmol Cr mol C-1). Thus, Cr accumulates in sinking particles- likely as Cr(III) - as it travels to the seafloor. Given the large fractionation of stable Cr isotopes during Cr(VI) reduction, Cr associated with exported phytoplankton may be enriched in lighter Cr isotopes. These data will assist investigators using stable Cr isotopes to examine past and present Cr biogeochemical cycles.

  8. Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new production

    SciTech Connect

    Brand, L.E. )

    1991-12-01

    The Fe:PO{sub 4} ratio at which nutrient limitation of final cell yield shifts from one nutrient to the other was determined for 22 species of marine phytoplankton. Among eucaryotic phytoplankton, coastal species have subsistence optimum Fe:P molar ratios of 10{sup {minus}2} to 10{sup {minus}3.1}, but most oceanic species have ratios of <10{sup {minus}4}, indicating that oceanic species have been able to adapt their biochemical composition to the low availability of Fe in the open ocean. In contrast, both coastal and oceanic species of cyanobacteria have relatively high Fe:P molar ratio requirements, ranging from 10{sup {minus}1.4} to 10{sup {minus}2.7}. A simple comparison of these requirement ratios with the ratios of the Fe and PO{sub 4} fluxes to the photic zone from deep water and the atmosphere indicates that new production of cyanobacterial biomass is Fe limited, but new production of eucaryotic algal biomass is not. Because of the large differences among species in their Fe requirements, especially between procaryotes and eucaryotes, changes in the relative inputs of Fe and PO{sub 4} to the photic zone are expected to lead to changes in the species composition of phytoplankton communities. Indeed, the ratio of atmospheric to deep-water inputs of nutrients and the resulting Fe:P input ratios appear to influence the relative abundance of unicellular cyanobacteria and Trichodesmium and their vertical and biogeographic distributions. Because some phytoplankton species have adaptations that reduce their dependence on combined N and Fe but not on P, it is concluded that PO{sub 4} is the ultimate limiting nutrient of new production of organic C on a geochemical and evolutionary time scale, even though N and Fe are important growth rate-limiting nutrients on an ecological time scale.

  9. Chromium uptake and adsorption in marine phytoplankton - Implications for the marine chromium cycle

    NASA Astrophysics Data System (ADS)

    Semeniuk, David M.; Maldonado, Maria T.; Jaccard, Samuel L.

    2016-07-01

    Using the radioisotope 51Cr, we investigated the controls of cellular Cr accumulation in an array of marine phytoplankton grown in environmentally relevant Cr concentrations (1-10 nM). Given the affinity of Cr(III) for amorphous Fe-hydroxide mineral surfaces, and the formation of these mineral phases on the outside of phytoplankton cells, extracellular Cr was monitored in a model diatom species (Thalassiosira weissflogii) as extracellular Fe concentrations varied. Extracellular Cr in T. weissflogii increased with increasing extracellular Fe, demonstrating that Cr may be removed from seawater via extracellular adsorption to phytoplankton. Short-term Cr(VI) and Cr(III) uptake experiments performed with T. weissflogii demonstrated that Cr(III) was the primary oxidation state adsorbing to cells and being internalized by them. Cellular Cr:C ratios (<0.5 μmol Cr mol C-1) of the eight phytoplankton species surveyed were significantly lower than previously reported Cr:C ratios in marine particles with a high biogenic component (10-300 μmol Cr mol C-1). This indicates that Cr(III) likely accumulates in marine particles due to uptake and/or adsorption. Mass balance calculations demonstrate that surface water Cr deficits can be explained via loss of Cr(III) to exported particles, thereby providing a mechanism to account for the nutrient depth profile for Cr in modern seawater. Given the large fractionation of stable Cr isotopes during Cr(VI) reduction, Cr(III) associated with exported organic carbon is likely enriched in lighter isotopes. Most sedimentary Cr isotope studies have thus far neglected internal fractionating processes in the marine Cr cycle, but our data indicate that loss of Cr to exported particles may be traced in the sedimentary δ53Cr record.

  10. Lived religion: implications for nursing ethics.

    PubMed

    Reimer-Kirkham, Sheryl

    2009-07-01

    This article explores how ethics and religion interface in everyday life by drawing on a study examining the negotiation of religious and spiritual plurality in health care. Employing methods of critical ethnography, namely, interviews and participant observation, data were collected from patients, health care providers, administrators and spiritual care providers. The findings revealed the degree to which 'lived religion' was intertwined with 'lived ethics' for many participants; particularly for people from the Sikh faith. For these participants, religion was woven into everyday life, making distinctions between public and private, secular and sacred spaces improbable. Individual interactions, institutional resource allocation, and social discourses are all embedded in social relationships of power that prevent religion from being a solely personal or private matter. Strategies for the reintegration of religion into nursing ethics are: adjusting professional codes and theories of ethics to reflect the influence of religion; and the contribution of critical perspectives, such as postcolonial feminism, to the understanding of lived ethics.

  11. Lived religion: implications for nursing ethics.

    PubMed

    Reimer-Kirkham, Sheryl

    2009-07-01

    This article explores how ethics and religion interface in everyday life by drawing on a study examining the negotiation of religious and spiritual plurality in health care. Employing methods of critical ethnography, namely, interviews and participant observation, data were collected from patients, health care providers, administrators and spiritual care providers. The findings revealed the degree to which 'lived religion' was intertwined with 'lived ethics' for many participants; particularly for people from the Sikh faith. For these participants, religion was woven into everyday life, making distinctions between public and private, secular and sacred spaces improbable. Individual interactions, institutional resource allocation, and social discourses are all embedded in social relationships of power that prevent religion from being a solely personal or private matter. Strategies for the reintegration of religion into nursing ethics are: adjusting professional codes and theories of ethics to reflect the influence of religion; and the contribution of critical perspectives, such as postcolonial feminism, to the understanding of lived ethics. PMID:19528098

  12. MODEL OF PHYTOPLANKTON COMPETITION FOR LIMITING AND NONLIMITING NUTRIENTS: IMPLICATIONS FOR DEVELOPMENT OF ESTUARINE AND NEARSHORE MANAGEMENT SCHEMES

    EPA Science Inventory

    The global increase of noxious bloom occurrences has increased the need for phytoplankton management schemes. Such schemes require the ability to predict phytoplankton succession. Equilibrium Resources Competition theory, which is popular for predicting succession in lake systems...

  13. Temporal Succession of Ancient Phytoplankton Community in Qinghai Lake and Implication for Paleo-environmental Change

    NASA Astrophysics Data System (ADS)

    Li, Gaoyuan; Dong, Hailiang; Hou, Weiguo; Wang, Shang; Jiang, Hongchen; Yang, Jian; Wu, Geng

    2016-01-01

    Tibetan lake sediments in NW China are sensitive recorders of climate change. However, many important plankton members do not leave any microscopic features in sedimentary records. Here we used ancient DNA preserved in Qinghai Lake sediments to reconstruct the temporal succession of plankton communities in the past 18,500 years. Our results showed that seven classes and sixteen genera of phytoplankton in the lake underwent major temporal changes, in correlation with known climatic events. Trebouxiophyceae and Eustigmatophyceae were predominant during the cold periods, whereas Chlorophyceae, Phaeophyceae, Xanthophyceae, Bacillariophyceae, and Cyanophyceae were abundant during the warm periods. The inferred changes in temperature, nutrients, precipitation, and salinity, as driven by the Westerlies and summer Monsoon strength, likely contributed to these observed temporal changes. Based on these correlations, we propose the phytoplankton index as a proxy to reconstruct the stadial versus interstadial climate change history in Qinghai Lake. This taxon-specific index is free of terrestrial contamination, sensitive to short-term climatic oscillations, and continuous in recording all climatic events in the lake. The validity of this index and its applicability to other lakes is demonstrated by its good correlations with multiple climate records of Qinghai Lake and another lake on the Tibetan Plateau, Kusai Lake.

  14. Temporal Succession of Ancient Phytoplankton Community in Qinghai Lake and Implication for Paleo-environmental Change.

    PubMed

    Li, Gaoyuan; Dong, Hailiang; Hou, Weiguo; Wang, Shang; Jiang, Hongchen; Yang, Jian; Wu, Geng

    2016-01-01

    Tibetan lake sediments in NW China are sensitive recorders of climate change. However, many important plankton members do not leave any microscopic features in sedimentary records. Here we used ancient DNA preserved in Qinghai Lake sediments to reconstruct the temporal succession of plankton communities in the past 18,500 years. Our results showed that seven classes and sixteen genera of phytoplankton in the lake underwent major temporal changes, in correlation with known climatic events. Trebouxiophyceae and Eustigmatophyceae were predominant during the cold periods, whereas Chlorophyceae, Phaeophyceae, Xanthophyceae, Bacillariophyceae, and Cyanophyceae were abundant during the warm periods. The inferred changes in temperature, nutrients, precipitation, and salinity, as driven by the Westerlies and summer Monsoon strength, likely contributed to these observed temporal changes. Based on these correlations, we propose the phytoplankton index as a proxy to reconstruct the stadial versus interstadial climate change history in Qinghai Lake. This taxon-specific index is free of terrestrial contamination, sensitive to short-term climatic oscillations, and continuous in recording all climatic events in the lake. The validity of this index and its applicability to other lakes is demonstrated by its good correlations with multiple climate records of Qinghai Lake and another lake on the Tibetan Plateau, Kusai Lake. PMID:26805936

  15. Temporal Succession of Ancient Phytoplankton Community in Qinghai Lake and Implication for Paleo-environmental Change

    PubMed Central

    Li, Gaoyuan; Dong, Hailiang; Hou, Weiguo; Wang, Shang; Jiang, Hongchen; Yang, Jian; Wu, Geng

    2016-01-01

    Tibetan lake sediments in NW China are sensitive recorders of climate change. However, many important plankton members do not leave any microscopic features in sedimentary records. Here we used ancient DNA preserved in Qinghai Lake sediments to reconstruct the temporal succession of plankton communities in the past 18,500 years. Our results showed that seven classes and sixteen genera of phytoplankton in the lake underwent major temporal changes, in correlation with known climatic events. Trebouxiophyceae and Eustigmatophyceae were predominant during the cold periods, whereas Chlorophyceae, Phaeophyceae, Xanthophyceae, Bacillariophyceae, and Cyanophyceae were abundant during the warm periods. The inferred changes in temperature, nutrients, precipitation, and salinity, as driven by the Westerlies and summer Monsoon strength, likely contributed to these observed temporal changes. Based on these correlations, we propose the phytoplankton index as a proxy to reconstruct the stadial versus interstadial climate change history in Qinghai Lake. This taxon-specific index is free of terrestrial contamination, sensitive to short-term climatic oscillations, and continuous in recording all climatic events in the lake. The validity of this index and its applicability to other lakes is demonstrated by its good correlations with multiple climate records of Qinghai Lake and another lake on the Tibetan Plateau, Kusai Lake. PMID:26805936

  16. Light dependence of selenium uptake by phytoplankton and implications for predicting selenium incorporation into food webs

    USGS Publications Warehouse

    Baines, S.B.; Fisher, N.S.; Doblin, M.A.; Cutter, G.A.; Cutter, L.S.; Cole, B.

    2004-01-01

    The potentially toxic element selenium is first concentrated from solution to a large but highly variable degree by algae and bacteria before being passed on to consumers. The large loads of abiotic and detrital suspended particles often present in rivers and estuaries may obscure spatial and temporal patterns in Se concentrations at the base of the food web. We used radiotracers to estimate uptake of both selenite (Se(IV)) and C by intact plankton communities at two sites in the Sacramento/San Joaquin River Delta. Our goals were to determine (1) whether C and Se(IV) uptake were coupled, (2) the role of bacteria in Se(IV) uptake, and (3) the Se:C uptake ratio of newly produced organic material. Se(IV) uptake, like C uptake, was strongly related to irradiance. The shapes of both relationships were very similar except that at least 42-56% of Se(IV) uptake occurred in the dark, whereas C uptake in the dark was negligible. Of this dark Se(IV) uptake, 34-67% occurred in the 0.2-1.0-??m size fraction, indicating significant uptake by bacteria. In addition to dark uptake, total Se(IV) uptake consisted of a light-driven component that was in fixed proportion to C uptake. Our estimates of daily areal Se(IV):C uptake ratios agreed very well with particulate Se:C measured at a site dominated by phytoplankton biomass. Estimates of bacterial Se:C were 2.4-13 times higher than for the phytoplankton, suggesting that bacteriovores may be exposed to higher dietary Se concentrations than herbivores.

  17. Small World Lives: Implications for the Public Library.

    ERIC Educational Resources Information Center

    Pendleton, Victoria EM; Chatman, Elfreda A.

    1998-01-01

    Addresses ways to reexamine the world of information from small world perspectives and suggests implications for public libraries. Highlights include a conceptual scheme to examine small world lives, including social norms, world views, social types, and information behavior; and ethnographic inquiries to illustrate how qualitative methodology can…

  18. Ice cover extent drives phytoplankton and bacterial community structure in a large north-temperate lake: implications for a warming climate.

    PubMed

    Beall, B F N; Twiss, M R; Smith, D E; Oyserman, B O; Rozmarynowycz, M J; Binding, C E; Bourbonniere, R A; Bullerjahn, G S; Palmer, M E; Reavie, E D; Waters, Lcdr M K; Woityra, Lcdr W C; McKay, R M L

    2016-06-01

    Mid-winter limnological surveys of Lake Erie captured extremes in ice extent ranging from expansive ice cover in 2010 and 2011 to nearly ice-free waters in 2012. Consistent with a warming climate, ice cover on the Great Lakes is in decline, thus the ice-free condition encountered may foreshadow the lakes future winter state. Here, we show that pronounced changes in annual ice cover are accompanied by equally important shifts in phytoplankton and bacterial community structure. Expansive ice cover supported phytoplankton blooms of filamentous diatoms. By comparison, ice free conditions promoted the growth of smaller sized cells that attained lower total biomass. We propose that isothermal mixing and elevated turbidity in the absence of ice cover resulted in light limitation of the phytoplankton during winter. Additional insights into microbial community dynamics were gleaned from short 16S rRNA tag (Itag) Illumina sequencing. UniFrac analysis of Itag sequences showed clear separation of microbial communities related to presence or absence of ice cover. Whereas the ecological implications of the changing bacterial community are unclear at this time, it is likely that the observed shift from a phytoplankton community dominated by filamentous diatoms to smaller cells will have far reaching ecosystem effects including food web disruptions.

  19. Does the 14C method estimate net photosynthesis? II. Implications from cyclostat studies of marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Pei, Shaofeng; Laws, Edward A.

    2014-09-01

    Two species of marine phytoplankton, Isochrysis galbana and Chlorella kessleri, were grown in a continuous culture system on a 12-h:12-h light:dark cycle of illumination under nitrate-limited growth conditions. At growth rates of ~1 d-1, production rates estimated from 14C uptake were not significantly different from production rates estimated from changes in particulate organic carbon (POC) and total organic carbon (TOC). At growth rates of ~0.35 d-1, however, production rates based on uptake of 14C significantly (p<0.05) overestimated production rates based on changes in POC and TOC in all cases for C. kessleri and after 24 h for I. galbana. The ratio of production based on 14C uptake to production based on changes in POC and TOC concentrations was in all cases higher after 24 h than after 12 h. The extent of overestimation after a 24-h incubation at ~0.35 d-1 was about 23 and 40% in the cases of I. galbana and C. kessleri, respectively. Dark respiration rates estimated from changes in 14C activity during the dark period were lower than the rates estimated from changes of POC and TOC concentrations during the 12 h of darkness because only about 73% of the carbon respired during the dark period had been fixed during the previous 12-h photoperiod. The fact that the 14C method tends to overestimate net carbon assimilation by a greater percentage at low growth rates than at high growth rates probably reflects the greater efficiency of intracellular recycling of respired CO2 at high growth rates. The fact that the extent of overestimation is greater when cells are grown on a light:dark cycle probably reflects the fact that not all carbon respired in the dark was fixed during the previous photoperiod and that intracellular recycling of respired CO2 during the photoperiod is inefficient during some phases of the synchronized growth that tends to be entrained by light:dark cycles.

  20. FEEDING RATES OF THE MUD SHRIMP UPOGEBIA PUGETTENSIS AND IMPLICATIONS FOR ESTUARINE PHYTOPLANKTON ABUNDANCE

    EPA Science Inventory

    The burrowing shrimp Upogebia pugettensis is an abundant inhabitant of Pacific Northwest bays and estuaries where it lives commensally with the clam Cryptomya californica. Suspension-feeding activities of the shrimp and its commensal clam, as well as particle settlement within t...

  1. High sequence variability, diverse subcellular localizations, and ecological implications of alkaline phosphatase in dinoflagellates and other eukaryotic phytoplankton.

    PubMed

    Lin, Xin; Zhang, Huan; Cui, Yudong; Lin, Senjie

    2012-01-01

    Alkaline phosphatase (AP) is a key enzyme for phytoplankton to utilize dissolved organic phosphorus (DOP) when dissolved inorganic phosphorus is limited. While three major types of AP and their correspondingly diverse subcellular localization have been recognized in bacteria, little is known about AP in eukaryotic phytoplankton such as dinoflagellates. Here, we isolated a full-length AP cDNA from a latest-diverging dinoflagellate genus Alexandrium, and conducted comparative analyses with homologs from a relatively basal (Amphidinium carterae) and late-diverging (Karenia brevis) lineage of dinoflagellates as well as other eukaryotic algae. New data and previous studies indicate that AP is common in dinoflagellates and most other major eukaryotic groups of phytoplankton. AP sequences are more variable than many other genes studied in dinoflagellates, and are divergent among different eukaryotic phytoplankton lineages. Sequence comparison to the other characterized APs suggests that dinoflagellates and some other eukaryotic phytoplankton possess the putative AP as phoA type, but some other eukaryotic phytoplankton seem to have other types. Phylogenetic analyses based on AP amino acid sequences indicated that the "red-type" eukaryotic lineages formed a monophyletic group, suggesting a common origin of their APs. As different amino acid sequences have been found to predictably determine different spatial distribution in the cells, which may facilitate access to different pools of DOP, existing computational models were adopted to predict the subcellular localizations of putative AP in the three dinoflagellates and other eukaryotic phytoplankton. Results showed different subcellular localizations of APs in different dinoflagellates and other lineages. The linkage between AP sequence divergence, subcellular localization, and ecological niche differentiation requires rigorous experimental verification, and this study now provides a framework for such a future effort.

  2. High Sequence Variability, Diverse Subcellular Localizations, and Ecological Implications of Alkaline Phosphatase in Dinoflagellates and Other Eukaryotic Phytoplankton

    PubMed Central

    Lin, Xin; Zhang, Huan; Cui, Yudong; Lin, Senjie

    2012-01-01

    Alkaline phosphatase (AP) is a key enzyme for phytoplankton to utilize dissolved organic phosphorus (DOP) when dissolved inorganic phosphorus is limited. While three major types of AP and their correspondingly diverse subcellular localization have been recognized in bacteria, little is known about AP in eukaryotic phytoplankton such as dinoflagellates. Here, we isolated a full-length AP cDNA from a latest-diverging dinoflagellate genus Alexandrium, and conducted comparative analyses with homologs from a relatively basal (Amphidinium carterae) and late-diverging (Karenia brevis) lineage of dinoflagellates as well as other eukaryotic algae. New data and previous studies indicate that AP is common in dinoflagellates and most other major eukaryotic groups of phytoplankton. AP sequences are more variable than many other genes studied in dinoflagellates, and are divergent among different eukaryotic phytoplankton lineages. Sequence comparison to the other characterized APs suggests that dinoflagellates and some other eukaryotic phytoplankton possess the putative AP as phoA type, but some other eukaryotic phytoplankton seem to have other types. Phylogenetic analyses based on AP amino acid sequences indicated that the “red-type” eukaryotic lineages formed a monophyletic group, suggesting a common origin of their APs. As different amino acid sequences have been found to predictably determine different spatial distribution in the cells, which may facilitate access to different pools of DOP, existing computational models were adopted to predict the subcellular localizations of putative AP in the three dinoflagellates and other eukaryotic phytoplankton. Results showed different subcellular localizations of APs in different dinoflagellates and other lineages. The linkage between AP sequence divergence, subcellular localization, and ecological niche differentiation requires rigorous experimental verification, and this study now provides a framework for such a future effort

  3. Does the 14C method estimate net photosynthesis? Implications from batch and continuous culture studies of marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Pei, Shaofeng; Laws, Edward A.

    2013-12-01

    We carried out batch culture studies with seven species of marine phytoplankton and chemostat studies with two of the seven species to determine whether and to what extent 14C uptake approximated net photosynthesis. In two of seven cases, Isochrysis galbana and Dunaliella tertiolecta, cells uniformly labeled with 14C lost no activity when they were transferred to a 14C-free medium and allowed to grow in the light. In similar experiments with four other species, uniformly labeled cells lost activity when incubated in the light, but the loss rates were only a few percent per day. Thus these six species appear to respire primarily recently fixed carbon. In the case of the remaining species, Chlorella kessleri, loss rates of 14C in the light from uniformly labeled cells were about 29% per day, the apparent ratio of respiration to net photosynthesis being 0.4. Follow-up chemostat studies with I. galbana and C. kessleri grown under both light- and nitrate-limited conditions produced results consistent with the implications of the batch culture work: uptake of 14C by I. galbana after incubations of 24 h yielded estimates of photosynthetic carbon fixation equal to the product of the chemostat dilution rate and the concentration of organic carbon in the growth chamber. Similar experiments with C. kessleri produced 14C-based estimates of photosynthetic carbon fixation that exceeded the net rates of organic carbon production in the growth chamber by roughly 55%. Time-course studies with both species indicated that at high growth rates recently fixed carbon began to enter the respiratory substrate pool after a time lag of several hours, a result consistent with previous work with D. tertiolecta. The lag time appeared to be much shorter at low growth rates. The results with C. kessleri are similar to results previously reported for Chlorella pyrenoidosa and Amphidium carteri. Collectively these results suggest that 14C uptake by species with relatively high ratios of

  4. Metal uptake by phytoplankton during a bloom in South San Francisco Bay: Implications for metal cycling in estuaries

    USGS Publications Warehouse

    Luoma, S.N.; VanGeen, A.; Lee, B.-G.; Cloern, J.E.

    1998-01-01

    The 1994 spring phytoplankton bloom in South San Francisco Bay caused substantial reductions in concentrations of dissolved Cd, Ni, and Zn, but not Cu. We estimate that the equivalent of ~60% of the total annual input of Cd, Ni, and Zn from local waste-water treatment plants is cycled through the phytoplankton in South Bay. The results suggest that processes that affect phytoplankton bloom frequency or intensity in estuaries (e.g. nutrient enrichment) may also affect metal trapping. The bloom was characterized by hydrographic surveys conducted at weekly intervals for 9 weeks. Metal samples were collected from the water column on three occasions, timed to bracket the period when the bloom was predicted. Factors that might confound observations of biological influences, such as freshwater inputs, were relatively constant during the study. Before the bloom, concentrations of dissolved Cd were 0.81 ?? 0.02 nmol kg-1, Zn concentrations were 19.8 ?? 1.5 nmol kg-1, Ni were 42 ?? 1.4 nmol kg-1, and Cu were 37 ?? 1.4 nmol kg-1. The values are elevated relative to riverine and coastal end-members, reflecting inputs from wastewater and(or) sediments. At the height of the bloom, dissolved Zn, Cd, and Ni were reduced to 19, 50, and 75% of their prebloom concentrations, respectively. Dissolved Cu concentrations increased 20%. The mass of Cd taken up by phytoplankton was similar to the mass of Cd removed from solution if particle settling was considered, and Cd concentrations estimated in phytoplankton were higher than concentrations in suspended particulate material (SPM). Particulate concentrations of Zn and Ni during the bloom appeared to be dominated by the influence of changes in resuspension of Zn- and Ni-rich sediments.

  5. The Turbulent Life of Phytoplankton

    NASA Technical Reports Server (NTRS)

    Ghosal, S.; Rogers, M.; Wray, A.

    2000-01-01

    Phytoplankton is a generic name for photosynthesizing microscopic organisms that inhabit the upper sunlit layer (euphotic zone) of almost all oceans and bodies of freshwater. They are agents for "primary production," the incorporation of carbon from the environment into living organisms, a process that, sustains the aquatic food web. It is estimated that phytoplankton contribute about half of the global primary production, the other half being due to terrestrial plants. By sustaining the aquatic food web and controlling the biogeochemical cycles through primary production, phytoplankton exert a dominant influence on life on earth. Turbulence influences this process in three very important ways. First, essential mineral nutrients are transported from the deeper layers to the euphotic zone through turbulence. Second, turbulence helps to suspend phytoplankton in the euphotic zone since in still water, the phytoplankton, especially the larger species, tend to settle out of the sunlit layers. Third, turbulence transports phytoplankton from the surface to the dark sterile waters, and this is an important mechanism of loss. Thus, stable phytoplankton populations are maintained through a delicate dynamic balance between the processes of turbulence, reproduction, and sinking. The first quantitative model for this was introduced by Riley, Stommel and Bumpus in 1949. This is an attempt to extend their efforts through a combination of analysis and computer simulation in order to better understand the principal qualitative aspects of the physical/biological coupling of this natural system.

  6. Distributions of particulate Heme b in the Atlantic and Southern Oceans—Implications for electron transport in phytoplankton

    NASA Astrophysics Data System (ADS)

    Gledhill, Martha; Achterberg, Eric P.; Honey, David J.; Nielsdottir, Maria C.; Rijkenberg, Micha J. A.

    2013-12-01

    Concentrations of heme b, the iron-containing component of b-type hemoproteins, ranged from < 0.4 to 5.3 pM with an average of 1.18 ± 0.8 pM (± 1σ; n = 86) in the Iceland Basin (IB), from < 0.4 to 19.1 pM with an average of 2.24 ± 1.67 pM (n = 269) in the tropical northeast Atlantic (TNA) and from 0.6 to 21 pM with an average of 5.1 ± 4.8 pM (n = 34) in the Scotia Sea (SS). Heme b concentrations were enhanced in the photic zone and decreased with depth. Heme b concentrations correlated positively with chlorophyll a (chl a) in the TNA (r = 0.41, p < 0.01, n = 269). Heme b did not correlate with chl a in the IB or SS. In the IB and SS, stations with high-chlorophyll and low-nutrient (Fe and/or Si) concentrations exhibited low heme b concentrations relative to particulate organic carbon (< 0.1 μmol mol-1), and high chl a:heme b ratios (> 500). High chl a:heme b ratios resulted from relative decreases in heme b, suggesting proteins such as cytochrome b6f, the core complex of photosystem II, and eukaryotic nitrate reductase were depleted relative to proteins containing chlorophyll such as the eukaryotic light-harvesting antenna. Relative variations in heme b, particulate organic carbon, and chl a can thus be indicative of a physiological response of the phytoplankton community to the prevailing growth conditions, within the context of large-scale changes in phytoplankton community composition.

  7. Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene thermal maximum: Implications for global productivity gradients

    USGS Publications Warehouse

    Gibbs, S.J.; Bralower, T.J.; Bown, P.R.; Zachos, J.C.; Bybell, L.M.

    2006-01-01

    Abrupt global warming and profound perturbation of the carbon cycle during the Paleocene-Eocene Thermal Maximum (PETM, ca. 55 Ma) have been linked to a massive release of carbon into the ocean-atmosphere system. Increased phytoplankton productivity has been invoked to cause subsequent CO2 drawdown, cooling, and environmental recovery. However, interpretations of geochemical and biotic data differ on when and where this increased productivity occurred. Here we present high-resolution nannofossil assemblage data from a shelf section (the U.S. Geological Survey [USGS] drill hole at Wilson Lake, New Jersey) and an open-ocean location (Ocean Drilling Program [ODP] Site 1209, paleoequatorial Pacific). These data combined with published biotic records indicate a transient steepening of shelf-offshelf trophic gradients across the PETM onset and peak, with a decrease in open-ocean productivity coeval with increased nutrient availability in shelf areas. Productivity levels recovered in the open ocean during the later stages of the event, which, coupled with intensified continental weathering rates, may have played an important role in carbon sequestration and CO2 drawdown. ?? 2006 Geological Society of America.

  8. Mechanisms of inorganic-carbon acquisition in marine phytoplankton and their implications for the use of other resources

    SciTech Connect

    Raven, J.A.; Johnston, A.M. )

    1991-12-01

    Most of the marine phytoplankton species for which data are available are rate saturated for photosynthesis and probably for growth with inorganic C at normal seawater concentrations; 2 of the 17 species are not saturated. Photosynthesis in these two species can probably be explained by the 17 species not saturated. Photosynthesis in these two species can probably be explained by assuming that CO{sub 2} reaches the site of its reaction with RUBISCO (ribulose bisphosphate carboxylase-oxygenase) by passive diffusion. The kinetics of CO{sub 2} fixation by intact cells are explicable by RUBISCO kinetics typical of algae, and a CO{sub 2}-saturated in vivo RUBISCO activity not more than twice the in vivo light- and inorganic-C-saturated rate of photosynthesis. For the other species, the high affinity in vivo for inorganic C could be other species, the high affinity in vivo for inorganic C could be explained by postulating active influx of inorganic C yielding a higher concentration of CO{sub 2} available to RUBISCO during steady state photosynthesis than in the medium. Although such a higher concentration of internal CO{sub 2} in cells with high affinity for inorganic C is found at low levels of external inorganic C, the situation is more equivocal at normal seawater concentrations. In theory, the occurrence of a CO{sub 2}-concentrating mechanism rather than passive CO{sub 2} entry could reduce the photon, N, Fe, Mn, and Mo costs of growth, but increase the Zn and Se costs. Thus far, data on costs are available only for photons and N; these data generally agree with the predicted lower costs for cells with high affinity for inorganic C.

  9. Contrasting patterns of free-living bacterioplankton diversity in macrophyte-dominated versus phytoplankton blooming regimes in Dianchi Lake, a shallow lake in China

    NASA Astrophysics Data System (ADS)

    Wang, Yujing; Li, Huabing; Xing, Peng; Wu, Qinglong

    2016-04-01

    Freshwater shallow lakes typically exhibit two alternative stable states under certain nutrient loadings: macrophyte-dominated and phytoplankton-dominated water regimes. An ecosystem regime shift from macrophytes to phytoplankton blooming typically reduces the number of species of invertebrates and fishes and results in the homogenization of communities in freshwater lakes. We investigated how microbial biodiversity has responded to a shift of the ecosystem regime in Dianchi Lake, which was previously fully covered with submerged macrophytes but currently harbors both ecological states. We observed marked divergence in the diversity and community composition of bacterioplankton between the two regimes. Although species richness, estimated as the number of operational taxonomic units and phylogenetic diversity (PD), was higher in the phytoplankton dominated ecosystem after this shift, the dissimilarity of bacterioplankton community across space decreased. This decrease in beta diversity was accompanied by loss of planktonic bacteria unique to the macrophyte-dominated ecosystem. Mantel tests between bacterioplankton community distances and Euclidian distance of environmental parameters indicated that this reduced bacterial community diff erentiation primarily reflected the loss of environmental niches, particularly in the macrophyte regime. The loss of this small-scale heterogeneity in bacterial communities should be considered when assessing long-term biodiversity changes in response to ecosystem regime conversions in freshwater lakes.

  10. High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing

    NASA Astrophysics Data System (ADS)

    Thyssen, M.; Alvain, S.; Lefèbvre, A.; Dessailly, D.; Rijkeboer, M.; Guiselin, N.; Creach, V.; Artigas, L.-F.

    2015-07-01

    Phytoplankton observation in the ocean can be a challenge in oceanography. Accurate estimations of its biomass and dynamics will help to understand ocean ecosystems and refine global climate models. Relevant data sets of phytoplankton defined at a functional level and on a sub-meso- and daily scale are thus required. In order to achieve this, an automated, high-frequency, dedicated scanning flow cytometer (SFC, Cytobuoy b.v., the Netherlands) has been developed to cover the entire size range of phytoplankton cells whilst simultaneously taking pictures of the largest of them. This cytometer was directly connected to the water inlet of a PocketFerryBox during a cruise in the North Sea, 08-12 May 2011 (DYMAPHY project, INTERREG IV A "2 Seas"), in order to identify the phytoplankton community structure of near surface waters (6 m) with a high spatial resolution basis (2.2 ± 1.8 km). Ten groups of cells, distinguished on the basis of their optical pulse shapes, were described (abundance, size estimate, red fluorescence per unit volume). Abundances varied depending on the hydrological status of the traversed waters, reflecting different stages of the North Sea blooming period. Comparisons between several techniques analysing chlorophyll a and the scanning flow cytometer, using the integrated red fluorescence emitted by each counted cell, showed significant correlations. For the first time, the community structure observed from the automated flow cytometry data set was compared with PHYSAT reflectance anomalies over a daily scale. The number of matchups observed between the SFC automated high-frequency in situ sampling and remote sensing was found to be more than 2 times better than when using traditional water sampling strategies. Significant differences in the phytoplankton community structure within the 2 days for which matchups were available suggest that it is possible to label PHYSAT anomalies using automated flow cytometry to resolve not only dominant groups but

  11. Sea Soup: Phytoplankton.

    ERIC Educational Resources Information Center

    Cerullo, Mary M.

    This guide, designed for students in grades 3-7, answers intriguing questions about phytoplankton, tiny drifters that have shaped our world. Invisible to the naked eye, phytoplankton are the source of our atmosphere, our climate, our ocean food chain, much of our oil supply, and more. They're also food for zooplankton. Photomicroscopy serves up…

  12. Identifying Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Hargraves, Paul E.

    Until recently, anyone who needed to accurately identify marine phytoplankton had one of four choices: use the outdated Englishlanguage volumes by E. E. Cupp and N. I. Hendey plus the more recent book by J. Dodge, acquire a working knowledge of German and use the old volumes by Schiller and Hustedt, spend huge amounts of time in an exceedingly well-equipped marine science library trying in vain to keep up with the rapidly evolving field of phytoplankton systematics and taxonomy, or track down one of the rarest of endangered species—a phytoplankton taxonomist—and beg for help.To these unfortunate choices is added one considerably more hopeful: Identifying Marine Phytoplankton. This volume, which has seven contributing authors, contains most of the taxonomic groups that make up the planktonic autotrophs and some heterotrophs of the seas, coasts, and estuaries of the world (missing are cyanobacteria and some of the picoplankton groups).

  13. Phytoplankton and Climate

    NASA Technical Reports Server (NTRS)

    Moisan, John R.

    2009-01-01

    Ocean phytoplankton supply about half of the oxygen that humans utilize to sustain life. In this lecture, we will explore how phytoplankton plays a critical role in modulating the Earth's climate. These tiny organisms are the base of the Ocean's food web. They can modulate the rate at which solar heat is absorbed by the ocean, either through direct absorption or through production of highly scattering cellular coverings. They take up and help sequester carbon dioxide, a key greenhouse gas that modulated the Earth's climate. They are the source of cloud nucleation gases that are key to cloud formation/processes. They are also able to modify the nutrient budgets of the ocean through active uptake of inert atmospheric nitrogen. Climate variations have a pronounced impact on phytoplankton dynamics. Long term variations in the climate have been studied through geological interpretations on its influence on phytoplankton populations. The presentation will focus on presenting the numerous linkages that have been observed between climate and phytoplankton and further discuss how present climate change scenarios are likely to impact phytoplankton populations as well as present findings from several studies that have tried to understand how the climate might react to the feedbacks from these numerous climate-phytop|ankton linkages.

  14. Seasonal variations of group-specific phytoplankton cell death in Xiamen Bay, China

    NASA Astrophysics Data System (ADS)

    Huang, Xiaozhou; Liu, Xin; Chen, Jixin; Xiao, Wupeng; Cao, Zhen; Huang, Bangqin

    2016-05-01

    The importance of phytoplankton cell death is being increasingly recognized, however, there are still no published reports on this in Xiamen Bay. In this study, the proportion of dead phytoplankton cells associated with environmental factors was assessed at a station in Xiamen Bay from December 2012 to December 2013, using a cell digestion assay, which is an eff ective method to analyze dead/ living cells in complex natural phytoplankton communities. The percentages of dead cells (% DC) in the total phytoplankton in summer (16%±6%) were lower than those in winter (27%±16%). Six groups of phytoplankton (G1-G6) were categorized by flow cytometry. These phytoplankton communities with diverse seasonal variations in % DC had different responses to environmental constraints. The main factors aff ecting mortality were temperature and salinity, while nutrient concentration showed little influence on phytoplankton death. Additionally, our results provide evidence that chlorophyll a concentrations had an inverse relationship with total phytoplankton % DC and viable cell abundance was more meaningful than total cells to explain variations in environmental parameters (such as Chl a ). Moreover, the lowest mean % DC in total phytoplankton was 16%±6% at our sample site, which is in a subtropical area with high water temperatures, full solar radiation, and rich nutrients. This indicates that phytoplankton cell death is a process that cannot be ignored. In summary, phytoplankton cell death is important in understanding the dynamics of phytoplankton communities and the functioning of subtropical ecosystems.

  15. Lived experiences of street-based female sex workers in Kathmandu: implications for health intervention strategies.

    PubMed

    Basnyat, Iccha

    2014-01-01

    The lived experiences of women sex workers illustrate that sex work is frequently a manifestation of limited access to education, resources and jobs due to violence, oppression and patriarchy. However, some Nepalese sex workers reconstitute sex work as a viable form of work that provides food and shelter for their families and allows fulfillment of their duties as mothers. Through a culture-centred approach to research, which emphasis the voices of the marginalised and their own articulations of how marginalised spaces are negotiated, this paper offers an entry point to locating sex workers as active participants in their day-to-day lives. Thirty-five in-depth, semi-structured interviews were conducted with street-based female sex workers. Thematic analysis revealed the following three themes: (1) surviving through sex work, (2) financial security in sex work and (3) surviving sex work stigma. These findings have implications for health promotion involving members of this population. Lived experiences illustrate the need to move away from traditional, top-down, linear behaviour-change health campaigns to reconstitute health interventions within a participatory bottom-up approach that includes the voices of participants and is situated within their own context and needs.

  16. Resilience Processes Demonstrated by Young Gay and Bisexual Men Living with HIV: Implications for Intervention

    PubMed Central

    Bruce, Douglas; Hosek, Sybil G.; Fernandez, M. Isabel; Rood, Brian A.

    2014-01-01

    Abstract Given the increasing numbers of young gay/bisexual men (YGBM) diagnosed with HIV, it is important to understand the resilience processes enacted by this population in order to develop interventions that support their healthy development. Qualitative interviews were conducted with 54 YGBM (ages 17 to 24; 57% African American, 22% Latino) living with HIV from four geographically diverse clinics in the United States. Resilience processes clustered into four primary thematic areas: (1) engaging in health-promoting cognitive processes; (2) enacting healthy behavioral practices; (3) enlisting social support from others; and (4) empowering other young gay/bisexual men. These data suggest that YGBM living with HIV demonstrate resilience across multiple dimensions, including intrapersonal-level resilience related to individual cognitions and behaviors, as well as interpersonal-level resilience related to seeking support and providing support to others. Implications for the development of culturally-appropriate and strengths-based secondary prevention and other psychosocial interventions for YGBM living with HIV are discussed. PMID:25329778

  17. Andreas Acrivos Dissertation Prize Lecture: Phytoplankton in Flow

    NASA Astrophysics Data System (ADS)

    Durham, William M.

    2012-11-01

    Phytoplankton are small, unicellular organisms that form the base of the marine food web and are cumulatively responsible for half the global oxygen production. While phytoplankton live in an environment characterized by ubiquitous fluid flow, the impact of hydrodynamic conditions on their ecology remain poorly understood. In this talk, I report on two novel biophysical mechanisms based on the interaction between phytoplankton motility and fluid shear. First, I will consider ``thin phytoplankton layers,'' important hotspots of ecological activity that are found meters beneath the ocean surface and contain cell concentrations up to two orders of magnitude above ambient. Using a combination of experiments, individual-based simulations, and continuum modeling, we have shown that layers can form when the vertical migration of phytoplankton is disrupted by hydrodynamic shear. This mechanism which we call ``gyrotactic trapping'' is capable of triggering thin phytoplankton layers under hydrodynamic conditions typical of the environments that often harbor thin layers. Second, I will discuss the potential for turbulent shear to produce patchiness in the spatial distribution of motile phytoplankton. Field measurements have revealed that motile phytoplankton form aggregations at the Kolmogorov scale, whereas non-motile cells do not. We propose a new mechanism for the formation of this small-scale patchiness based on the interplay of gyrotactic motility and turbulent shear. Using laboratory experiments, an analytical model of vortical flow, and isotropic turbulence generated via Direct Numerical Simulations, we found that motile phytoplankton rapidly aggregate, whereas non-motile cells remain randomly distributed. Taken together, these two mechanisms demonstrate that the interaction of cell motility with flow plays a fundamental role in phytoplankton ecology and, as a consequence, can contribute to shape macroscale characteristics of the ocean.

  18. Global Ocean Phytoplankton

    NASA Technical Reports Server (NTRS)

    Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.

    2013-01-01

    Phytoplankton are free-floating algae that grow in the euphotic zone of the upper ocean, converting carbon dioxide, sunlight, and available nutrients into organic carbon through photosynthesis. Despite their microscopic size, these photoautotrophs are responsible for roughly half the net primary production on Earth (NPP; gross primary production minus respiration), fixing atmospheric CO2 into food that fuels our global ocean ecosystems. Phytoplankton thus play a critical role in the global carbon cycle, and their growth patterns are highly sensitive to environmental changes such as increased ocean temperatures that stratify the water column and prohibit the transfer of cold, nutrient richwaters to the upper ocean euphotic zone.

  19. Ecotoxicology of bromoacetic acid on estuarine phytoplankton.

    PubMed

    Gordon, Ana R; Richardson, Tammi L; Pinckney, James L

    2015-11-01

    Bromoacetic acid is formed when effluent containing chlorine residuals react with humics in natural waters containing bromide. The objective of this research was to quantify the effects of bromoacetic acid on estuarine phytoplankton as a proxy for ecosystem productivity. Bioassays were used to measure the EC50 for growth in cultured species and natural marine communities. Growth inhibition was estimated by changes in chlorophyll a concentrations measured by fluorometry and HPLC. The EC50s for cultured Thalassiosira pseudonana were 194 mg L(-1), 240 mg L(-1) for Dunaliella tertiolecta and 209 mg L(-1) for Rhodomonas salina. Natural phytoplankton communities were more sensitive to contamination with an EC50 of 80 mg L(-1). Discriminant analysis suggested that bromoacetic acid additions cause an alteration of phytoplankton community structure with implications for higher trophic levels. A two-fold EC50 decrease in mixed natural phytoplankton populations affirms the importance of field confirmation for establishing water quality criteria.

  20. Ecotoxicology of bromoacetic acid on estuarine phytoplankton.

    PubMed

    Gordon, Ana R; Richardson, Tammi L; Pinckney, James L

    2015-11-01

    Bromoacetic acid is formed when effluent containing chlorine residuals react with humics in natural waters containing bromide. The objective of this research was to quantify the effects of bromoacetic acid on estuarine phytoplankton as a proxy for ecosystem productivity. Bioassays were used to measure the EC50 for growth in cultured species and natural marine communities. Growth inhibition was estimated by changes in chlorophyll a concentrations measured by fluorometry and HPLC. The EC50s for cultured Thalassiosira pseudonana were 194 mg L(-1), 240 mg L(-1) for Dunaliella tertiolecta and 209 mg L(-1) for Rhodomonas salina. Natural phytoplankton communities were more sensitive to contamination with an EC50 of 80 mg L(-1). Discriminant analysis suggested that bromoacetic acid additions cause an alteration of phytoplankton community structure with implications for higher trophic levels. A two-fold EC50 decrease in mixed natural phytoplankton populations affirms the importance of field confirmation for establishing water quality criteria. PMID:26247379

  1. Global Ocean Phytoplankton

    NASA Technical Reports Server (NTRS)

    Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.

    2014-01-01

    Marine phytoplankton are responsible for roughly half the net primary production (NPP) on Earth, fixing atmospheric CO2 into food that fuels global ocean ecosystems and drives the ocean's biogeochemical cycles. Phytoplankton growth is highly sensitive to variations in ocean physical properties, such as upper ocean stratification and light availability within this mixed layer. Satellite ocean color sensors, such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; McClain 2009) and Moderate Resolution Imaging Spectroradiometer (MODIS; Esaias 1998), provide observations of sufficient frequency and geographic coverage to globally monitor physically-driven changes in phytoplankton distributions. In practice, ocean color sensors retrieve the spectral distribution of visible solar radiation reflected upward from beneath the ocean surface, which can then be related to changes in the photosynthetic phytoplankton pigment, chlorophyll- a (Chla; measured in mg m-3). Here, global Chla data for 2013 are evaluated within the context of the 16-year continuous record provided through the combined observations of SeaWiFS (1997-2010) and MODIS on Aqua (MODISA; 2002-present). Ocean color measurements from the recently launched Visible and Infrared Imaging Radiometer Suite (VIIRS; 2011-present) are also considered, but results suggest that the temporal calibration of the VIIRS sensor is not yet sufficiently stable for quantitative global change studies. All MODISA (version 2013.1), SeaWiFS (version 2010.0), and VIIRS (version 2013.1) data presented here were produced by NASA using consistent Chla algorithms.

  2. Major shifts in calcareous phytoplankton assemblages through the Eocene-Oligocene transition of Tanzania and their implications for low-latitude primary production

    NASA Astrophysics Data System (ADS)

    Dunkley Jones, Tom; Bown, Paul R.; Pearson, Paul N.; Wade, Bridget S.; Coxall, Helen K.; Lear, Caroline H.

    2008-12-01

    A high-resolution record of exceptionally well preserved calcareous nannofossil assemblages from Tanzania is marked by two key transitions closely related to the climatic events of the Eocene-Oligocene transition (EOT). The first transition, at ˜34.0 Ma, precedes the first positive shift in δ18O and coincides with a distinct interval of very low nannofossil abundance and a cooling in sea surface temperatures (SST). The second, at ˜33.63 Ma, is immediately above the Eocene-Oligocene boundary (EOB) and is associated with a significant drop in nannofossil diversity. Both transitions involve significant reductions in the abundance of holococcoliths and other oligotrophic taxa. These changes in calcareous phytoplankton assemblages indicate (1) a widespread and significant perturbation to the low-latitude surface ocean closely tied to the EOB, (2) a potential role for reduced carbonate primary production at the onset of global cooling, and (3) a significant increase in nutrient availability in the low-latitude surface ocean through the EOT.

  3. Changes in production and respiration during a spring phytoplankton bloom in San Francisco Bay, California, USA: Implications for net ecosystem metabolism

    USGS Publications Warehouse

    Caffrey, J.M.; Cloern, J.E.; Grenz, C.

    1998-01-01

    We present results of an intensive sampling program designed to measure weekly changes in ecosystem respiration (oxygen consumption in the water column and sediments) around the 1996 spring bloom in South San Francisco Bay, California, USA. Measurements were made at a shallow site (2 m, where mean photic depth was 60% of the water column height) and a deep site (15 m, mean photic depth was only 20% of the water column). We also estimated phytoplankton primary production weekly at both sites to develop estimates of net oxygen flux as the sum of pelagic production (PP), pelagic respiration (PR) and benthic respiration (BR). Over the 14 wk period from February 5 to May 14, PP ranged from 2 to 210, PR from 9 to 289, and BR from 0.1 to 48 mmol O2 m-2 d-1, illustrating large variability of estuarine oxygen fluxes at the weekly time scale. Pelagic production exceeded total respiration at the shallow site, but not at the deep site, demonstrating that the shallow domains are net autotrophic but the deep domains are net heterotrophic, even during the period of the spring bloom. If we take into account the potential primary production by benthic microalgae, the estuary as a whole is net autotrophic during spring, net heterotrophic during the nonbloom seasons, and has a balanced net metabolism over a full annual period. The seasonal shift from net autotrophy to heterotrophy during the transition from spring to summer was accompanied by a large shift from dominance by pelagic respiration to dominance by benthic respiration. This suggests that changes in net ecosystem metabolism can reflect changes in the pathways of energy flow in shallow coastal ecosystems.

  4. Sexual risk related behaviour among youth living with HIV in central Uganda: implications for HIV prevention

    PubMed Central

    Ankunda, Racheal; Atuyambe, Lynn Muhimbuura; Kiwanuka, Noah

    2016-01-01

    Introduction As young people living with HIV grow their sexual behaviour and it's implication on HIV prevention is of concern. This study describes the sexual risk related-behaviours and factors associated with abstinence among Youth Living with HIV in central Uganda. Methods We conducted a cross-sectional study among 338 unmarried youth between 15 and 24 years accessing HIV care in central Uganda. Data was collected using interviewer administered structured questionnaires. Adjusted prevalence proportion ratios (adj. PPRs) of factors associated with sexual abstinence for at least six months were determined by multivariable log-binomial regression. Results Overall, 79% (269/338) of respondents were abstaining from sexual intercourse for atleast six months, although, 45% (150/338) had ever been sexually active. Of the 283 respondents who desired to get married in future, 40% preferred negative marriage partners. Only 31% (39/126) of respondents in boy/girl relationships had disclosed their HIV status to their partners. Among those currently sexually active (n = 69), 57% did not consistently use condoms and 30% had more than one sexual partner in the past six months. The adj.PRR of abstinence was higher among youth between 15 and 19 years compared to those between 20 and 24 years (adj. PPR = 1.26, 95% CI; 1.08-1.46). The prevalence of abstinence was significantly lower among respondent who consumed alcohol (adj. PPR = 0.31, 95% CI 0.16-0.61). Conclusion Tailored interventions promoting disclosure, consistent condoms use and discouraging alcohol consumption among sero-positive youth could reduce HIV transmission risk. PMID:27642390

  5. Viability of marine phytoplankton in zooplankton fecal pellets

    NASA Astrophysics Data System (ADS)

    Fowler, S. W.; Fisher, N. S.

    1983-09-01

    Zooplankton fecal pellets collected from sediment traps or freshly excreted by euphausiids grazing in situ at natural phytoplankton levels in the pelagic Mediterranean were incubated under laboratory conditions and always contained viable marine phytoplankton, usually diatoms. Fecal pellets excreted by euphausiids grazing in the laboratory on unialgal diets also contained living cells, indicating viable gut passage of some species. The rapid sinking of fecal pellets appears to be an effective mechanism for transporting living algae to depth and possibly in seeding marine waters and sediments with such cells.

  6. Phytoplankton and nutrient distributions in a front-eddy area adjacent to the coastal upwelling zone off Concepcion (Chile): implications for ecosystem productivity.

    NASA Astrophysics Data System (ADS)

    Morales, Carmen; Anabalón, Valeria; Hormazábal, Samuel; Cornejo, Marcela; Bento, Joaquim; Silva, Nelson

    2016-04-01

    The impact that sub-mesoscale (1-10 km) to mesocale (50-100 km) oceanographic variability has on plankton and nutrient distributions (horizontal and vertical) in the coastal upwelling and transition zones off Concepcion was the focus of this study. Satellite time-series data (wind, sea-surface temperature (SST), and altimetry) were used to understand the dynamic context of in situ data derived from a short-term front survey (3 d) during the upwelling period (3-6 February, 2014). The survey included two transects perpendicular to the coast, covering the shelf and shelf-break areas just north of Punta Lavapie, a main upwelling center (˜37° S). Wind and SST time-series data indicated that the survey was undertaken just after a moderate upwelling event (end of January) which lead to a relaxation phase during early February. A submesoscale thermal front was detected previous to and during the survey and results from an eddy tracking algorithm based on altimetry data indicated that this front (F1) was flanked on its oceanic side by an anticyclonic, mesoscale eddy (M1), which was ˜25 d old at the sampling time. M1 strengthened the thermal gradient of F1 by bringing warmer oceanic water nearer to the colder coastal upwelling zone. The distributions of hydrographic variables and nutrients in the water column (<300 m depth) also denoted these two features. Phytoplankton biomass (Chl-a) and diatom abundance were highest in the surface layer (<20 m depth) between the coast and F1, with primary maxima in the latter, whereas they were highest at the subsurface (20-40 m depth) towards M1 and associated with secondary maxima. The distribution of dominant diatoms in the top layer (<100 m depth) indicated that both coastal and oceanic species were aggregated at F1 and in M1. These results suggest that the front-eddy interaction creates a complex field of submesoscale processes in the top layer, including vertical nutrient injections and lateral stirring, which contributes to the

  7. Regulation of phytoplankton dynamics by vitamin B12

    NASA Astrophysics Data System (ADS)

    Sañudo-Wilhelmy, S. A.; Gobler, C. J.; Okbamichael, M.; Taylor, G. T.

    2006-02-01

    Despite the biological necessity of vitamin B12 (cobalamin), its importance in phytoplankton ecology has been ignored for nearly three decades. Here we report strong and selective responses of phytoplankton communities to varying low levels (5-87 pM) of dissolved B12 in several coastal embayments. The ecological importance of this vitamin is inferred from observed declines in dissolved B12 levels as field populations of large (>5 μm) phytoplankton increased. In contrast, biomass of small (<5 μm) phytoplankton varied independently of B12 concentrations. These observations were corroborated by field-based nutrient amendment experiments, in which B12 additions stimulated growth of large phytoplankton taxa 6-fold over unamended controls. In contrast, small taxa (<5 μm) were largely unaffected. This study provides the first evidence of vitamin B12's influence on phytoplankton field population dynamics based on direct chemical measurements of cobalamin, and implicates B12 as an important organic regulator of photoautotrophic fertility in marine systems.

  8. Securing a Better Living Environment for Left-Behind Children: Implications and Challenges for Policies

    PubMed Central

    Lam, Theodora; Ee, Miriam; Anh, Hoang Lan; Yeoh, Brenda S.A.

    2014-01-01

    Migration is an increasingly significant driver of transformations in family configurations and caregiving practices as well as living arrangements. The sustainability of geographically-split family formations is dependent on several factors, including the presence and strength of care support networks among migrants and their left-behind families, access to communication infrastructure and the stability of the families’ financial resources. Drawing on both a selective review of relevant academic literature as well as key findings from the CHAMPSEA Project, the article first examines the effects of these three factors on the well-being of migrants’ left-behind family members, especially children. The article also considers major implications of the project’s findings, as well as possible challenges for migration and development policies. One area of concern for migration and development policy arising from our research findings is the need to provide better support for left-behind caregivers or carers who are substituting for the absent migrant in childcare and domestic work but who may also need care and support themselves. Another area relates to the need to improve communication infrastructure to help migrants and their families maintain their relationships across transnational spaces; while a third lies with the importance of minimizing migrant families’ economic stress stemming from the cycle of debts resulting from exorbitant broker fees and the mismanagement of remittances. By acknowledging both the social and economic costs of international labor migration on families, governments of labor-sending countries can create a more effective legal and institutional framework as well as design suitable supporting mechanisms for left-behind families. There is then a stronger possibility that migration can become a sustainable development strategy for transnational families in South-East Asia. PMID:24954965

  9. Phytoplankton Bloom Off Portugal

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Turquoise and greenish swirls marked the presence of a large phytoplankton bloom off the coast of Portugal on April 23, 2002. This true-color image was acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. There are also several fires burning in northwest Spain, near the port city of A Coruna. Please note that the high-resolution scene provided here is 500 meters per pixel. For a copy of this scene at the sensor's fullest resolution, visit the MODIS Rapidfire site.

  10. Phytoplankton succession in recurrently fluctuating environments.

    PubMed

    Roelke, Daniel L; Spatharis, Sofie

    2015-01-01

    Coastal marine systems are affected by seasonal variations in biogeochemical and physical processes, sometimes leading to alternating periods of reproductive growth limitation within an annual cycle. Transitions between these periods can be sudden or gradual. Human activities, such as reservoir construction and interbasin water transfers, influence these processes and can affect the type of transition between resource loading conditions. How such human activities might influence phytoplankton succession is largely unknown. Here, we employ a multispecies, multi-nutrient model to explore how nutrient loading switching mode might affect phytoplankton succession. The model is based on the Monod-relationship, predicting an instantaneous reproductive growth rate from ambient inorganic nutrient concentrations whereas the limiting nutrient at any given time was determined by Liebig's Law of the Minimum. When these relationships are combined with population loss factors, such as hydraulic displacement of cells associated with inflows, a characterization of a species' niche can be achieved through application of the R* conceptual model, thus enabling an ecological interpretation of modeling results. We found that the mode of reversal in resource supply concentrations had a profound effect. When resource supply reversals were sudden, as expected in systems influenced by pulsed inflows or wind-driven mixing events, phytoplankton were characterized by alternating succession dynamics, a phenomenon documented in inland water bodies of temperate latitudes. When resource supply reversals were gradual, as expected in systems influenced by seasonally developing wet and dry seasons, or annually occurring periods of upwelling, phytoplankton dynamics were characterized by mirror-image succession patterns. This phenomenon has not been reported previously in plankton systems but has been observed in some terrestrial plant systems. These findings suggest that a transition from alternating

  11. Phytoplankton succession in recurrently fluctuating environments.

    PubMed

    Roelke, Daniel L; Spatharis, Sofie

    2015-01-01

    Coastal marine systems are affected by seasonal variations in biogeochemical and physical processes, sometimes leading to alternating periods of reproductive growth limitation within an annual cycle. Transitions between these periods can be sudden or gradual. Human activities, such as reservoir construction and interbasin water transfers, influence these processes and can affect the type of transition between resource loading conditions. How such human activities might influence phytoplankton succession is largely unknown. Here, we employ a multispecies, multi-nutrient model to explore how nutrient loading switching mode might affect phytoplankton succession. The model is based on the Monod-relationship, predicting an instantaneous reproductive growth rate from ambient inorganic nutrient concentrations whereas the limiting nutrient at any given time was determined by Liebig's Law of the Minimum. When these relationships are combined with population loss factors, such as hydraulic displacement of cells associated with inflows, a characterization of a species' niche can be achieved through application of the R* conceptual model, thus enabling an ecological interpretation of modeling results. We found that the mode of reversal in resource supply concentrations had a profound effect. When resource supply reversals were sudden, as expected in systems influenced by pulsed inflows or wind-driven mixing events, phytoplankton were characterized by alternating succession dynamics, a phenomenon documented in inland water bodies of temperate latitudes. When resource supply reversals were gradual, as expected in systems influenced by seasonally developing wet and dry seasons, or annually occurring periods of upwelling, phytoplankton dynamics were characterized by mirror-image succession patterns. This phenomenon has not been reported previously in plankton systems but has been observed in some terrestrial plant systems. These findings suggest that a transition from alternating

  12. Phytoplankton Succession in Recurrently Fluctuating Environments

    PubMed Central

    Roelke, Daniel L.; Spatharis, Sofie

    2015-01-01

    Coastal marine systems are affected by seasonal variations in biogeochemical and physical processes, sometimes leading to alternating periods of reproductive growth limitation within an annual cycle. Transitions between these periods can be sudden or gradual. Human activities, such as reservoir construction and interbasin water transfers, influence these processes and can affect the type of transition between resource loading conditions. How such human activities might influence phytoplankton succession is largely unknown. Here, we employ a multispecies, multi-nutrient model to explore how nutrient loading switching mode might affect phytoplankton succession. The model is based on the Monod-relationship, predicting an instantaneous reproductive growth rate from ambient inorganic nutrient concentrations whereas the limiting nutrient at any given time was determined by Liebig’s Law of the Minimum. When these relationships are combined with population loss factors, such as hydraulic displacement of cells associated with inflows, a characterization of a species’ niche can be achieved through application of the R* conceptual model, thus enabling an ecological interpretation of modeling results. We found that the mode of reversal in resource supply concentrations had a profound effect. When resource supply reversals were sudden, as expected in systems influenced by pulsed inflows or wind-driven mixing events, phytoplankton were characterized by alternating succession dynamics, a phenomenon documented in inland water bodies of temperate latitudes. When resource supply reversals were gradual, as expected in systems influenced by seasonally developing wet and dry seasons, or annually occurring periods of upwelling, phytoplankton dynamics were characterized by mirror-image succession patterns. This phenomenon has not been reported previously in plankton systems but has been observed in some terrestrial plant systems. These findings suggest that a transition from

  13. Pathways into living alone in mid-life: diversity and policy implications.

    PubMed

    Demey, Dieter; Berrington, Ann; Evandrou, Maria; Falkingham, Jane

    2013-09-01

    This paper adopts a life course approach to investigate the pathways into living alone in mid-life in Britain and how these vary by gender and socio-economic status. The rise in the proportion of people living alone over the past three decades has been well documented. However, much of the focus of the existing literature has been on either people living solo in young adulthood or in later life. Mid-life has received surprising little scholarly attention, despite the fact that living arrangements in mid-life are changing rapidly, and that household composition and socio-economic circumstances in the period immediately prior to retirement are strongly associated with living arrangements and associated sources of support in later life. This paper therefore aims to fill this gap. We begin with a review of previous research on living alone and present a conceptual framework of the pathways into living alone in mid-life. Data from the United Kingdom Household Longitudinal Survey (UKHLS) are used to analyse the partnership and parenthood histories and socio-economic characteristics of those currently living alone in mid-life. The findings indicate that the dissolution of a marriage with children is the dominant pathway into mid-life solo-living, but that there is also a substantial group of never partnered men living alone. These never partnered men are split between those with low and high socio-economic status. Distinguishing between different groups of individuals living alone in mid-life is important for policy as these groups of men and women will have different social and financial resources as they enter later life. Mid-life men living alone who have not had children, have no educational qualifications, are not economically active and who live in rented housing are likely to be most at risk of needing a social and economic 'safety net' in old age. PMID:24796556

  14. Pathways into living alone in mid-life: diversity and policy implications.

    PubMed

    Demey, Dieter; Berrington, Ann; Evandrou, Maria; Falkingham, Jane

    2013-09-01

    This paper adopts a life course approach to investigate the pathways into living alone in mid-life in Britain and how these vary by gender and socio-economic status. The rise in the proportion of people living alone over the past three decades has been well documented. However, much of the focus of the existing literature has been on either people living solo in young adulthood or in later life. Mid-life has received surprising little scholarly attention, despite the fact that living arrangements in mid-life are changing rapidly, and that household composition and socio-economic circumstances in the period immediately prior to retirement are strongly associated with living arrangements and associated sources of support in later life. This paper therefore aims to fill this gap. We begin with a review of previous research on living alone and present a conceptual framework of the pathways into living alone in mid-life. Data from the United Kingdom Household Longitudinal Survey (UKHLS) are used to analyse the partnership and parenthood histories and socio-economic characteristics of those currently living alone in mid-life. The findings indicate that the dissolution of a marriage with children is the dominant pathway into mid-life solo-living, but that there is also a substantial group of never partnered men living alone. These never partnered men are split between those with low and high socio-economic status. Distinguishing between different groups of individuals living alone in mid-life is important for policy as these groups of men and women will have different social and financial resources as they enter later life. Mid-life men living alone who have not had children, have no educational qualifications, are not economically active and who live in rented housing are likely to be most at risk of needing a social and economic 'safety net' in old age.

  15. Bacterial survival governed by organic carbon release from senescent oceanic phytoplankton

    NASA Astrophysics Data System (ADS)

    Lasternas, S.; Agustí, S.

    2013-10-01

    Bacteria recycle vast amounts of organic carbon, playing key biogeochemical and ecological roles in the ocean. Bacterioplankton dynamics are expected to be dependent on phytoplankton primary production, but there is a high diversity of processes (e.g. sloppy feeding, cell exudation, viral lysis) involved in the transference of primary production to dissolved organic carbon available to bacteria. Here we show cell survival of heterotrophic bacterioplankton in the subtropical Atlantic Ocean to be determined by phytoplankton extracellular carbon release (PER). PER represents the fraction of primary production released as dissolved organic carbon, and changes in the PER variability was explained by phytoplankton cell death, with the communities experiencing the highest phytoplankton cell mortality showing a larger proportion of extracellular carbon release. Both PER and the percent of dead phytoplankton cells increased from eutrophic to oligotrophic waters, while heterotrophic bacteria communities, including 60 to 95% of living cells (%LC), increased from the productive to the most oligotrophic waters. The percentage of living heterotrophic bacterial cells increased with increasing phytoplankton extracellular carbon release, across oligotrophic to productive waters in the NE Atlantic, where lower PER have resulted in a decrease in the flux of phytoplankton DOC per bacterial cell. The results highlight phytoplankton cell death as a process influencing the flow of dissolved photosynthetic carbon in the NE Atlantic Ocean, and demonstrated a close coupling between the fraction of primary production released and heterotrophic bacteria survival.

  16. The Lived Experiences of African American Women with Breast Cancer: Implications for Counselors

    ERIC Educational Resources Information Center

    Clay, LaTasha K.

    2013-01-01

    Qualitative phenomenological methodology was used to explore the lived experiences of African American women diagnosed with breast cancer. Phenomenology focuses on the meaning of the lived experiences of individuals experiencing a concept, structure, or phenomenon (Creswell, 2007). The purpose of phenomenological research is to identify phenomena…

  17. Why marine phytoplankton calcify.

    PubMed

    Monteiro, Fanny M; Bach, Lennart T; Brownlee, Colin; Bown, Paul; Rickaby, Rosalind E M; Poulton, Alex J; Tyrrell, Toby; Beaufort, Luc; Dutkiewicz, Stephanie; Gibbs, Samantha; Gutowska, Magdalena A; Lee, Renee; Riebesell, Ulf; Young, Jeremy; Ridgwell, Andy

    2016-07-01

    Calcifying marine phytoplankton-coccolithophores- are some of the most successful yet enigmatic organisms in the ocean and are at risk from global change. To better understand how they will be affected, we need to know "why" coccolithophores calcify. We review coccolithophorid evolutionary history and cell biology as well as insights from recent experiments to provide a critical assessment of the costs and benefits of calcification. We conclude that calcification has high energy demands and that coccolithophores might have calcified initially to reduce grazing pressure but that additional benefits such as protection from photodamage and viral/bacterial attack further explain their high diversity and broad spectrum ecology. The cost-benefit aspect of these traits is illustrated by novel ecosystem modeling, although conclusive observations remain limited. In the future ocean, the trade-off between changing ecological and physiological costs of calcification and their benefits will ultimately decide how this important group is affected by ocean acidification and global warming.

  18. Why marine phytoplankton calcify.

    PubMed

    Monteiro, Fanny M; Bach, Lennart T; Brownlee, Colin; Bown, Paul; Rickaby, Rosalind E M; Poulton, Alex J; Tyrrell, Toby; Beaufort, Luc; Dutkiewicz, Stephanie; Gibbs, Samantha; Gutowska, Magdalena A; Lee, Renee; Riebesell, Ulf; Young, Jeremy; Ridgwell, Andy

    2016-07-01

    Calcifying marine phytoplankton-coccolithophores- are some of the most successful yet enigmatic organisms in the ocean and are at risk from global change. To better understand how they will be affected, we need to know "why" coccolithophores calcify. We review coccolithophorid evolutionary history and cell biology as well as insights from recent experiments to provide a critical assessment of the costs and benefits of calcification. We conclude that calcification has high energy demands and that coccolithophores might have calcified initially to reduce grazing pressure but that additional benefits such as protection from photodamage and viral/bacterial attack further explain their high diversity and broad spectrum ecology. The cost-benefit aspect of these traits is illustrated by novel ecosystem modeling, although conclusive observations remain limited. In the future ocean, the trade-off between changing ecological and physiological costs of calcification and their benefits will ultimately decide how this important group is affected by ocean acidification and global warming. PMID:27453937

  19. Identifying Phytoplankton Classes In California Reservoirs Using HPLC Pigment Analysis

    NASA Astrophysics Data System (ADS)

    Siddiqui, S.; Peacock, M. B.; Kudela, R. M.; Negrey, K.

    2014-12-01

    Few bodies of water are routinely monitored for phytoplankton composition due to monetary and time constraints, especially the less accessible bodies of water in central and southern California. These lakes and estuaries are important for economic reasons such as tourism and fishing. This project investigated the composition of phytoplankton present using pigment analysis to identify dominant phytoplankton groups. A total of 28 different sites with a wide range of salinity (0 - 60) in central and southern California were examined. These included 13 different bodies of water in central California: 6 in the Sierras, 7 in the San Francisco Bay Estuary, and 15 from southern California. The samples were analyzed using high-performance liquid-chromatography (HPLC) to quantify the pigments present (using retention time and the spectral thumbprint). Diagnostic pigments were used to indicate the phytoplankton class composition, focusing on diatoms, dinoflagellates, cryptophytes, and cyanobacteria - all key phytoplankton groups indicative of the health of the sampled reservoir. Our results indicated that cyanobacteria dominated four of the seven bodies of central California water (Mono Lake, Bridgeport Reservoir, Steamboat Slough, and Pinto Lake); cryptophytes and nannoflagellates dominated two of the central California bodies of water (Mare Island Strait and Topaz Lake); and diatoms and dinoflagellates dominated one central California body of water, Oakland Inner Harbor, comprising more than 70% of the phytoplankton present. We expect the bodies of water from Southern California to be as disparate. Though this data is only a snapshot, it has significant implications in comparing different ecosystems across California, and it has the potential to provide valuable insight into the composition of phytoplankton communities.

  20. Margalef's mandala and phytoplankton bloom strategies

    NASA Astrophysics Data System (ADS)

    Wyatt, Timothy

    2014-03-01

    Margalef's mandala maps phytoplankton species into a phase space defined by turbulence (A) and nutrient concentrations (Ni); these are the hard axes. The permutations of high and low A and high and low Ni divide the space into four domains. Soft axes indicate some ecological dynamics. A main sequence shows the normal course of phytoplankton succession; the r-K axis of MacArthur and Wilson runs parallel to it. An alternative successional sequence leads to the low A-high Ni domain into which many red tide species are mapped. Astronomical and biological time are implicit. A mathematical transformation of the mandala (rotation) links it to the classical bloom models of Sverdrup (time) and Kierstead and Slobodkin (space).Both rarity and the propensity to form red tides are considered to be species characters, meaning that maximum population abundance can be a target of natural selection. Equally, both the unpredictable appearance of bloom species and their short-lived appearances may be species characters. There may be a correlation too between these features and long-lived dormant stages in the life-cycle; then the vegetative planktonic phase is the 'weak link' in the life-cycle. Red tides are thus due to species which have evolved suites of traits which result in specific demographic strategies.

  1. Health implications of social networks for children living in public housing.

    PubMed

    Kennedy-Hendricks, Alene; Schwartz, Heather L; Griffin, Beth Ann; Burkhauser, Susan; Green, Harold D; Kennedy, David P; Pollack, Craig Evan

    2015-11-01

    This study sought to examine whether: (1) the health composition of the social networks of children living in subsidized housing within market rate developments (among higher-income neighbors) differs from the social network composition of children living in public housing developments (among lower-income neighbors); and (2) children's social network composition is associated with children's own health. We found no significant differences in the health characteristics of the social networks of children living in these different types of public housing. However, social network composition was significantly associated with several aspects of children's own health, suggesting the potential importance of social networks for the health of vulnerable populations.

  2. Spatial variation of phytoplankton community structure in Daya Bay, China.

    PubMed

    Jiang, Zhao-Yu; Wang, You-Shao; Cheng, Hao; Zhang, Jian-Dong; Fei, Jiao

    2015-10-01

    Daya Bay is one of the largest and most important gulfs in the southern coast of China, in the northern part of the South China Sea. The phylogenetic diversity and spatial distribution of phytoplankton from the Daya Bay surface water and the relationship with the in situ water environment were investigated by the clone library of the large subunit of ribulose-1, 5-bisphosphate carboxylase (rbcL) gene. The dominant species of phytoplankton were diatoms and eustigmatophytes, which accounted for 81.9 % of all the clones of the rbcL genes. Prymnesiophytes were widely spread and wide varieties lived in Daya Bay, whereas the quantity was limited. The community structure of phytoplankton was shaped by pH and salinity and the concentration of silicate, phosphorus and nitrite. The phytoplankton biomass was significantly positively affected by phosphorus and nitrite but negatively by salinity and pH. Therefore, the phytoplankton distribution and biomass from Daya Bay were doubly affected by anthropic activities and natural factors.

  3. Live demonstration of microcirculation in the deep fascia and its implication.

    PubMed

    Bhattacharya, V; Watts, Rajesh Kumar; Reddy, G R

    2005-02-01

    The rich vascular network in the deep fascia has been emphasized by various scientists, but the actual demonstration of live circulation in the deep fascia has not previously been witnessed. Encouraged by the sight of live circulation in the web membrane of toad hind limb, a successful attempt was made to demonstrate the live circulation in the vascular network of the deep fascia. Fascial extensions of inferiorly based fasciocutaneous flaps were dissected in five patients with distal leg and heel defects. The fascial extension in continuity with a proximal retrograde fasciocutaneous flap was mounted on a glass slide and examined under a microscope. The authors witnessed the live microcirculation and the movement of individual red blood corpuscles in vascular channels of the deep fascia. The authors also noticed that the deep fascia has two layers with circulations that are independent of one other. A video recording was made to document these important features.

  4. Exceptionally Long-Lived Charge Separated State in Zeolitic Imidazolate Framework: Implication for Photocatalytic Applications.

    PubMed

    Pattengale, Brian; Yang, Sizhuo; Ludwig, John; Huang, Zhuangqun; Zhang, Xiaoyi; Huang, Jier

    2016-07-01

    Zeolitic imidazolate frameworks (ZIFs) have emerged as a novel class of porous metal-organic frameworks (MOFs) for catalysis application because of their exceptional thermal and chemical stability. Inspired by the broad absorption of ZIF-67 in UV-vis-near IR region, we explored its excited state and charge separation dynamics, properties essential for photocatalytic applications, using optical (OTA) and X-ray transient absorption (XTA) spectroscopy. OTA results show that an exceptionally long-lived excited state is formed after photoexcitation. This long-lived excited state was confirmed to be the charge-separated (CS) state with ligand-to-metal charge-transfer character using XTA. The surprisingly long-lived CS state, together with its intrinsic hybrid nature, all point to its potential application in heterogeneous photocatalysis and energy conversion.

  5. Successional changes in live and dead wood carbon stores: implications for net ecosystem productivity.

    PubMed

    Janisch, J E; Harmon, M E

    2002-02-01

    If forests are to be used in CO2 mitigation projects, it is essential to understand and quantify the impacts of disturbance on net ecosystem productivity (NEP; i.e., the change in ecosystem carbon (C) storage with time). We examined the influence of live tree and coarse woody debris (CWD) on NEP during secondary succession based on data collected along a 500-year chronosequence on the Wind River Ranger District, Washington. We developed a simple statistical model of live and dead wood accumulation and decomposition to predict changes in the woody component of NEP, which we call NEP(w). The transition from negative to positive NEP(w), for a series of scenarios in which none to all wood was left after disturbance, occurred between 0 and 57 years after disturbance. The timing of this transition decreased as live-tree growth rates increased, and increased as CWD left after disturbance increased. Maximum and minimum NEP(w) for all scenarios were 3.9 and -14.1 Mg C ha-1 year-1, respectively. Maximum live and total wood C stores of 319 and 393 Mg C ha(-1), respectively, were reached approximately 200 years after disturbance. Decomposition rates (k) of CWD ranged between 0.013 and 0.043 year-1 for individual stands. Regenerating stands took 41 years to attain a mean live wood mass equivalent to the mean mass of CWD left behind after logging, 40 years to equal the mean CWD mass in 500-year-old forest, and more than 150 years to equal the mean total live and dead wood in an old-growth stand. At a rotation age of 80 years, regenerating stands stored approximately half the wood C of the remaining nearby old-growth forests (predominant age 500 years), indicating that conversion of old-growth forests to younger managed forests results in a significant net release of C to the atmosphere. PMID:11830405

  6. Disassembling Iron Availability to Phytoplankton

    PubMed Central

    Shaked, Yeala; Lis, Hagar

    2012-01-01

    The bioavailability of iron to microorganisms and its underlying mechanisms have far reaching repercussions to many natural systems and diverse fields of research, including ocean biogeochemistry, carbon cycling and climate, harmful algal blooms, soil and plant research, bioremediation, pathogenesis, and medicine. Within the framework of ocean sciences, short supply and restricted bioavailability of Fe to phytoplankton is thought to limit primary production and curtail atmospheric CO2 drawdown in vast ocean regions. Yet a clear-cut definition of bioavailability remains elusive, with elements of iron speciation and kinetics, phytoplankton physiology, light, temperature, and microbial interactions, to name a few, all intricately intertwined into this concept. Here, in a synthesis of published and new data, we attempt to disassemble the complex concept of iron bioavailability to phytoplankton by individually exploring some of its facets. We distinguish between the fundamentals of bioavailability – the acquisition of Fe-substrate by phytoplankton – and added levels of complexity involving interactions among organisms, iron, and ecosystem processes. We first examine how phytoplankton acquire free and organically bound iron, drawing attention to the pervasiveness of the reductive uptake pathway in both prokaryotic and eukaryotic autotrophs. Turning to acquisition rates, we propose to view the availability of various Fe-substrates to phytoplankton as a spectrum rather than an absolute “all or nothing.” We then demonstrate the use of uptake rate constants to make comparisons across different studies, organisms, Fe-compounds, and environments, and for gaging the contribution of various Fe-substrates to phytoplankton growth in situ. Last, we describe the influence of aquatic microorganisms on iron chemistry and fate by way of organic complexation and bio-mediated redox transformations and examine the bioavailability of these bio-modified Fe species. PMID:22529839

  7. The Home and School Lives of Women Teachers: Implications for Staff Development.

    ERIC Educational Resources Information Center

    Spencer, Dee Ann

    1984-01-01

    Taking into account teachers' lives inside and outside school, makes suggestions for staff development in four areas: (1) keeping healthy, (2) building self-esteem, (3) managing time, and (4) developing realistic options for change. Suggestions are based on a study in which most teachers described their experiences with staff development as…

  8. English in the Primary Classroom in Vietnam: Students' Lived Experiences and Their Social and Policy Implications

    ERIC Educational Resources Information Center

    Nguyen, Lan Chi; Hamid, M. Obaidul; Renshaw, Peter

    2016-01-01

    Although the teaching of English as a foreign language in primary schools has emerged as one of the major language-in-education policy decisions, students' perspectives on primary English have received very little research attention. Drawing on data from a larger study, this paper depicts primary school students' lived experiences in the English…

  9. Musical Meaning in the Lives of Those Affected by the Holocaust: Implications for Music Education

    ERIC Educational Resources Information Center

    Cunningham, Deborah A.

    2014-01-01

    This qualitative study investigated the role of music in the lives of those affected by the Holocaust. Participants were identified through purposeful and snowball sampling techniques, and a total of five were selected based on their connection to the Holocaust. Participants included those incarcerated in camps and ghettos, those who escaped…

  10. The Lived Experiences of Orphaned Learners in South Africa: Implications for the Provision of Quality Education

    ERIC Educational Resources Information Center

    Motha, Kholofelo Charlotte; Frempong, George

    2014-01-01

    Learners living in impoverished communities and subjected to the kind of disadvantage in operation in their home environment are at risk of receiving education of an inferior quality. The situation is worse for orphans, especially those residing in poor communities in that they bring to school peculiar attributes which poses challenges for the…

  11. Health Implications of Adults' Eating at and Living near Fast Food or Quick Service Restaurants

    PubMed Central

    Jiao, J; Moudon, A V; Kim, S Y; Hurvitz, P M; Drewnowski, A

    2015-01-01

    Background: This paper examined whether the reported health impacts of frequent eating at a fast food or quick service restaurant on health were related to having such a restaurant near home. Methods: Logistic regressions estimated associations between frequent fast food or quick service restaurant use and health status, being overweight or obese, having a cardiovascular disease or diabetes, as binary health outcomes. In all, 2001 participants in the 2008–2009 Seattle Obesity Study survey were included in the analyses. Results: Results showed eating ⩾2 times a week at a fast food or quick service restaurant was associated with perceived poor health status, overweight and obese. However, living close to such restaurants was not related to negative health outcomes. Conclusions: Frequent eating at a fast food or quick service restaurant was associated with perceived poor health status and higher body mass index, but living close to such facilities was not. PMID:26192449

  12. Comparative genomics of the Mycobacterium signaling architecture and implications for a novel live attenuated Tuberculosis vaccine.

    PubMed

    Zhou, Peifu; Xie, Jianping

    2014-01-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), remains a major threat to global public health. A new TB vaccine affording superior immune protection to M. bovis Bacillus Calmette-Guérin (BCG) is imperative. The advantage of a live attenuated vaccine is that it can mimic the bona fide pathogen, elicit immune responses similar to natural infection, and potentially provide more protection than other vaccines. BCG, the only vaccine and a live attenuated vaccine that is the result of cumulative mutations by serial passage of M. bovis, has provided clues for the construction of novel improved vaccines. A strategy is put forward for identifying a new live attenuated TB vaccine generated by cumulative mutation based on M.tb. Given the important role of the M.tb signaling network consisting of a two-component system, eukaryotic-like Ser/Thr protein kinase system and sigma factor system based on comparisons among M.tb H37Rv, M. bovis, and BCG, we have put a premium on this signaling circuit as the starting point for the generation of an attenuated TB vaccine.

  13. Incarceration of people living with HIV/AIDS: Implications for Treatment-As-Prevention

    PubMed Central

    Milloy, M-J; Montaner, Julio S.G.; Wood, Evan

    2015-01-01

    Contact with the criminal justice system, including incarceration, is a common experience for many people living with HIV/AIDS. Optimism has recently been expressed that correctional facilities could be important locations for Treatment-as-Prevention (TasP)-based initiatives. We review recent findings regarding the effect of incarceration on patterns of HIV transmission, testing, treatment initiation and retention. We found that the prevalence of HIV infection among incarcerated individuals remains higher than analogous non-incarcerated populations. Recent studies have shown that voluntary HIV/AIDS testing is feasible in many correctional facilities, although the number of previously undiagnosed individuals identified has been modest. Studies have implied enhanced linkage to HIV/AIDS treatment and care in jails in the United States was associated with improvements in the HIV cascade of care. However, for many individuals living with HIV/AIDS, exposure to the correctional system remains an important barrier to retention in HIV/AIDS treatment and care. Future research should evaluate structural interventions to address these barriers and facilitate the scale-up of TasP-based efforts among individuals living in correctional settings. PMID:24962285

  14. Determinants of fertility intention among women living with hiv in western Ethiopia: implications for service delivery.

    PubMed

    Sufa, Alemu; Wordofa, Muluemebet Abera; Wossen, Bitiya Admassu

    2014-12-01

    Despite increased emphasis on antiretroviral therapy for HIV infected individuals, issues of fertility and childbearing have received relatively little attention in Ethiopia. This study was conducted to assess socio-demographic, reproductive and HIV related characteristics of fertility intention among women living with HIV in Western Ethiopia. Cross sectional study was conducted from May I to May 26, 2012 using structured questionnaire on a sample of 456 women living with HIV who are on follow up care in anti-retroviral therapy clinics. Bivariate and multivariable logistic regression models were fitted to identify significant predictors of fertility desire at 95 CL. Out of 456 respondents 42.1% expressed intention to have children in the future. Educational attainment [AOR (95% CI) = 0.041(0.008-0.220)], partner fertility desire [AOR (95% CI) = 0.012 (0.004-0.034)], number of live children [AOR (95% CI) = 0.344 (0.125-0.950)] and partner sero-status [AOR (95% CI) = 6.578 (4.072-10.881)] were significantly associated with fertility intention. A large proportion of HIV-positive women in the study desired more children in future. Interventions to address this problem include integrated access to contraception methods, and counselling on reproductive health decision-making.

  15. Techniques for Quantifying Phytoplankton Biodiversity

    NASA Astrophysics Data System (ADS)

    Johnson, Zackary I.; Martiny, Adam C.

    2015-01-01

    The biodiversity of phytoplankton is a core measurement of the state and activity of marine ecosystems. In the context of historical approaches, we review recent major advances in the technologies that have enabled deeper characterization of the biodiversity of phytoplankton. In particular, high-throughput sequencing of single loci/genes, genomes, and communities (metagenomics) has revealed exceptional phylogenetic and genomic diversity whose breadth is not fully constrained. Other molecular tools—such as fingerprinting, quantitative polymerase chain reaction, and fluorescence in situ hybridization—have provided additional insight into the dynamics of this diversity in the context of environmental variability. Techniques for characterizing the functional diversity of community structure through targeted or untargeted approaches based on RNA or protein have also greatly advanced. A wide range of techniques is now available for characterizing phytoplankton communities, and these tools will continue to advance through ongoing improvements in both technology and data interpretation.

  16. What is causing the phytoplankton increase in San Francisco Bay?

    USGS Publications Warehouse

    Cloern, J.E.; Jassby, A.D.; Schraga, T.S.; Dallas, K.L.

    2006-01-01

    The largest living component of San Francisco Bay is the phytoplankton, a suspension of microscopic cells that convert sunlight energy into new living biomass through the same process of photosynthesis used by land plants. This primary production is the ultimate source of food for clams, zooplankton, crabs, sardines, halibut, sturgeon, diving ducks, pelicans, and harbor seals. From measurements made in 1980, we estimated that phytoplankton primary production in San Francisco Bay was about 200,000 tons of organic carbon per year (Jassby et al. 1993). This is equivalent to producing the biomass of 5500 adult humpback whales, or the calories to feed 1.8 million people. These numbers may seem large, but primary production in San Francisco Bay is low compared to many other nutrient-enriched estuaries.

  17. Microscale patches of nonmotile phytoplankton.

    PubMed

    Arrieta, Jorge; Barreira, Ana; Tuval, Idan

    2015-03-27

    Phytoplankton cells have evolved sophisticated strategies for actively responding to environmental signals, most notably to mechanical stresses of hydrodynamic origin. A largely unanswered question, however, is the significance of these cellular responses for the largely heterogeneous spatial distribution of cells found in the oceans. Motivated by the physiological regulation of buoyancy prevalent in nonmotile phytoplankton species, we solve here a minimal model for "active" sinking that incorporates these cellular responses. Within this model, we show how buoyancy regulation leads to intense patchiness for nonmotile species as compared to passive tracers, resulting in important variations in settling speeds and, as a consequence, determining escape rates to the deep ocean. PMID:25860773

  18. Microscale patches of nonmotile phytoplankton.

    PubMed

    Arrieta, Jorge; Barreira, Ana; Tuval, Idan

    2015-03-27

    Phytoplankton cells have evolved sophisticated strategies for actively responding to environmental signals, most notably to mechanical stresses of hydrodynamic origin. A largely unanswered question, however, is the significance of these cellular responses for the largely heterogeneous spatial distribution of cells found in the oceans. Motivated by the physiological regulation of buoyancy prevalent in nonmotile phytoplankton species, we solve here a minimal model for "active" sinking that incorporates these cellular responses. Within this model, we show how buoyancy regulation leads to intense patchiness for nonmotile species as compared to passive tracers, resulting in important variations in settling speeds and, as a consequence, determining escape rates to the deep ocean.

  19. Seeds of alpine plants are short lived: implications for long-term conservation

    PubMed Central

    Mondoni, Andrea; Probert, Robin J.; Rossi, Graziano; Vegini, Emanuele; Hay, Fiona R.

    2011-01-01

    Background and Aims Alpine plants are considered one of the groups of species most sensitive to the direct and indirect threats to ecosystems caused by land use and climate change. Collecting and banking seeds of plant species is recognized as an effective tool for providing propagating material to re-establish wild plant populations and for habitat repair. However, seeds from cold wet environments have been shown to be relatively short lived in storage, and therefore successful long-term seed conservation for alpine plants may be difficult. Here, the life spans of 69 seed lots representing 63 related species from alpine and lowland locations from northern Italy are compared. Methods Seeds were placed into experimental storage at 45 °C and 60 % relative humidity (RH) and regularly sampled for germination. The time taken in storage for viability to fall to 50 % (p50) was determined using probit analysis and used as a measure of relative seed longevity between seed lots. Key Results Across species, p50 at 45 °C and 60 % RH varied from 4·7 to 95·5 d. Seed lots from alpine populations/species had significantly lower p50 values compared with those from lowland populations/species; the lowland seed lots showed a slower rate of loss of germinability, higher initial seed viability, or both. Seeds were progressively longer lived with increased temperature and decreased rainfall at the collecting site. Conclusions Seeds of alpine plants are short lived in storage compared with those from lowland populations/related taxa. The lower resistance to ageing in seeds of alpine plants may arise from low selection pressure for seed resistance to ageing and/or damage incurred during seed development due to the cool wet conditions of the alpine climate. Long-term seed conservation of several alpine species using conventional seed banking methods will be problematic. PMID:21081585

  20. Characterization of the live salmonid movement network in Ireland: Implications for disease prevention and control.

    PubMed

    Yatabe, T; More, S J; Geoghegan, F; McManus, C; Hill, A E; Martínez-López, B

    2015-11-01

    Live fish movement is considered as having an important role in the transmission of infectious diseases. For that reason, interventions for cost-effective disease prevention and control rely on a sound understanding of the patterns of live fish movements in a region or country. Here, we characterize the network of live fish movements in the Irish salmonid farming industry during 2013, using social network analysis and spatial epidemiology methods, and identify interventions to limit the risk of disease introduction and spread. In the network there were 62 sites sending and/or receiving fish, with a total of 130 shipments (84 arcs) comprising approx. 17.2 million fish during the year. Atlantic salmon shipments covered longer distances than trout shipments, with some traversing the entire country. The average shipment of Atlantic salmon was 146,186 (SD 194,344) fish, compared to 77,928 (127,009) for trout, however, variability was high. There were 3 periods where shipments peaked (February-April, June-September, and November), which were related to specific stages of fish. The network was disconnected and had two major weak components, the first one with 39 nodes (mostly Atlantic salmon sites), and the second one with 10 nodes (exclusively trout sites). Correlation between in and out-degree at each site and assortativity coefficient were slightly low and non-significant: -0.08 (95% CI: -0.22, 0.06) and -0.13 (95% CI: -0.36, 0.08), respectively, indicating random mixing with regard to node degree. Although competing models also produced a good fit to degree distribution, it is likely that the network possesses both small-world and scale-free topology. This would facilitate the spread and persistence of infection in the salmon production system, but would also facilitate the design of risk-based surveillance strategies by targeting hubs, bridges or cut-points. Using Infomap community detection algorithms, 2 major communities were identified within the giant weak

  1. Characterization of the live salmonid movement network in Ireland: Implications for disease prevention and control.

    PubMed

    Yatabe, T; More, S J; Geoghegan, F; McManus, C; Hill, A E; Martínez-López, B

    2015-11-01

    Live fish movement is considered as having an important role in the transmission of infectious diseases. For that reason, interventions for cost-effective disease prevention and control rely on a sound understanding of the patterns of live fish movements in a region or country. Here, we characterize the network of live fish movements in the Irish salmonid farming industry during 2013, using social network analysis and spatial epidemiology methods, and identify interventions to limit the risk of disease introduction and spread. In the network there were 62 sites sending and/or receiving fish, with a total of 130 shipments (84 arcs) comprising approx. 17.2 million fish during the year. Atlantic salmon shipments covered longer distances than trout shipments, with some traversing the entire country. The average shipment of Atlantic salmon was 146,186 (SD 194,344) fish, compared to 77,928 (127,009) for trout, however, variability was high. There were 3 periods where shipments peaked (February-April, June-September, and November), which were related to specific stages of fish. The network was disconnected and had two major weak components, the first one with 39 nodes (mostly Atlantic salmon sites), and the second one with 10 nodes (exclusively trout sites). Correlation between in and out-degree at each site and assortativity coefficient were slightly low and non-significant: -0.08 (95% CI: -0.22, 0.06) and -0.13 (95% CI: -0.36, 0.08), respectively, indicating random mixing with regard to node degree. Although competing models also produced a good fit to degree distribution, it is likely that the network possesses both small-world and scale-free topology. This would facilitate the spread and persistence of infection in the salmon production system, but would also facilitate the design of risk-based surveillance strategies by targeting hubs, bridges or cut-points. Using Infomap community detection algorithms, 2 major communities were identified within the giant weak

  2. Emerging trends in free-living amebic infections of the brain: implications for organ transplantation.

    PubMed

    Diaz, James H; Boudreaux, J Philip

    2013-01-01

    This epidemiological review analyzed cases of Naegleria fowleri primary amebic meningoencephalitis (PAM) and Balamuthia mandrillaris granulomatous amebic encephalitis (GAE) for behavioral and demographic risk factors for pathogen exposures and potential transmission by organ transplantation. The Centers for Disease Control and Prevention (CDC) Naegleria Workgroup Registry provided 121 cases of laboratory-confirmed PAM over the period, 1937-2007. The CDC and the California Encephalitis Project provided 28 cases of GAE over the period, 1994-2010. There was a statistically significant increase in clusters of PAM cases between the periods, 1937-1996 and 1997-2007. Risk factors for PAM included male gender, freshwater exposures, summer exposures, and exposures in southern-tier US (United States) states. Risk factors for GAE included male gender, exposures in southern-tier US states, Hispanic ethnicity in California, occupational or recreational contacts with soil, and recent organ transplantation. Fatal free-living amebic infections of the brain are increasing today due to more frequent environmental, recreational, and occupational exposures; organ transplantation; and unanticipated clusters of PAM due to N. fowleri inoculations following nasal sinus irrigation using neti pots filled with municipal tap water. Potential organ donors dying from meningoencephalitis of unexplained causes should be screened for free-living amebic infections of the brain capable of hematogenous dissemination in organ recipients. PMID:25073256

  3. Implications of living with a strong family history of breast cancer.

    PubMed

    Maheu, Christine

    2009-06-01

    The findings presented here are from a qualitative study in which data were gathered from 20 women who had received inconclusive genetic testing results for inherited breast cancer susceptibility. Before describing the significance, for them, of their genetic test results, all of the participants related what it was like to live with a strong family history of breast cancer. The focus of this article is the women's experience of living with a personal and strong family history of breast cancer. For these women, having such a history had become a fact of life that could not be ignored.Three themes were identified in the data: expecting and dealing with a diagnosis of breast cancer protecting oneself and others, and increasing exposure to cancer screening procedures. These themes address the underlying reality that having a personal and family history of breast cancer is not an isolated situation but part of one's journey in choosing to undergo genetic testing for inherited breast cancer susceptibility. PMID:19650516

  4. Why and how to compensate living organ donors: ethical implications of the new Australian scheme.

    PubMed

    Giubilini, Alberto

    2015-05-01

    The Australian Federal Government has announced a two-year trial scheme to compensate living organ donors. The compensation will be the equivalent of six weeks paid leave at the rate of the national minimum wage. In this article I analyse the ethics of compensating living organ donors taking the Australian scheme as a reference point. Considering the long waiting lists for organ transplantations and the related costs on the healthcare system of treating patients waiting for an organ, the 1.3 million AUD the Australian Government has committed might represent a very worthwhile investment. I argue that a scheme like the Australian one is sufficiently well designed to avoid all the ethical problems traditionally associated with attaching a monetary value to the human body or to parts of it, namely commodification, inducement, exploitation, and equality issues. Therefore, I suggest that the Australian scheme, if cost-effective, should represent a model for other countries to follow. Nonetheless, although I endorse this scheme, I will also argue that this kind of scheme raises issues of justice in regard to the distribution of organs. Thus, I propose that other policies would be needed to supplement the scheme in order to guarantee not only a higher number of organs available, but also a fair distribution.

  5. Size-differential feeding in Pinna nobilis L. (Mollusca: Bivalvia): Exploitation of detritus, phytoplankton and zooplankton

    NASA Astrophysics Data System (ADS)

    Davenport, John; Ezgeta-Balić, Daria; Peharda, Melita; Skejić, Sanda; Ninčević-Gladan, Živana; Matijević, Slavica

    2011-04-01

    The endangered fan shell Pinna nobilis is a large bivalve mollusc (<120 cm shell length) endemic to the Mediterranean that lives one-third buried in soft substrata, generally in shallow coastal waters. We hypothesised that P. nobilis of different sizes would ingest different food sources, because small fan shells will inhale material from closer to the substratum than do large fan shells. We studied stomach contents and faeces of 18 fan shells, 6 small (mean 23.0 cm length), 6 medium-sized (mean 41.5 cm length) and 6 large (mean 62.7 cm length) living in a small area of a low-energy coastal detritic bottom characterised by mud, sand and macroalgae at Mali Ston Bay, Croatia. We found that all P. nobilis ingested copious quantities of undetermined detritus (probably at least 95% of ingested material), phytoplankton, micro and mesozooplankton and pollen grains. Large P. nobilis stomach contents showed a preponderance of water column calanoid copepods, while small fan shells had higher numbers of bivalve larvae. All fan shells took in high numbers of harpacticoid copepods that are benthonic, feeding on microbial communities of detritus and benthic vegetation. There was also a significant selection of phytoplankton species, some apparently occurring between inhalation and ingestion. The stomach contents of small P. nobilis had a higher organic matter content than either medium-sized or large fan shells; this indicated that small fan shells ingested detritus of higher organic content than did larger P. nobilis. As the faeces of all P. nobilis had similar organic matter content, this also indicates higher assimilation efficiencies in small fan shells. The demonstration of differential dietary selectivity by different sized animals has implications for future trophic studies of this endangered species. This study also provides the first demonstration of predation on zooplankton by P. nobilis.

  6. Ecosystem energetic implications of parasite and free-living biomass in three estuaries

    USGS Publications Warehouse

    Kuris, Armand M.; Hechinger, Ryan F.; Shaw, Jenny C.; Whitney, Kathleen L.; Aguirre-Macedo, Leopoldina; Boch, Charlie A.; Dobson, Andrew P.; Dunham, Eleca J.; Fredensborg, Brian L.; Huspeni, Todd C.; Lorda, Julio; Mababa, Luzviminda; Mancini, Frank T.; Mora, Adrienne B.; Pickering, Maria; Talhouk, Nadia L.; Torchin, Mark E.; Lafferty, Kevin D.

    2008-01-01

    Parasites can have strong impacts but are thought to contribute little biomass to ecosystems. We quantified the biomass of free-living and parasitic species in three estuaries on the Pacific coast of California and Baja California. Here we show that parasites have substantial biomass in these ecosystems. We found that parasite biomass exceeded that of top predators. The biomass of trematodes was particularly high, being comparable to that of the abundant birds, fishes, burrowing shrimps and polychaetes. Trophically transmitted parasites and parasitic castrators subsumed more biomass than did other parasitic functional groups. The extended phenotype biomass controlled by parasitic castrators sometimes exceeded that of their uninfected hosts. The annual production of free-swimming trematode transmission stages was greater than the combined biomass of all quantified parasites and was also greater than bird biomass. This biomass and productivity of parasites implies a profound role for infectious processes in these estuaries.

  7. Depression and Apathy Among People Living with HIV: Implications for Treatment of HIV Associated Neurocognitive Disorders

    PubMed Central

    Whitehead, Nicole E.; Burrell, Larry E.; Dotson, Vonetta M.; Cook, Robert L.; Malloy, Paul; Devlin, Kathryn; Cohen, Ronald A.

    2015-01-01

    Depression and apathy are common among people living with HIV (PLWH). However, in PLWH, it is unclear whether depression and apathy are distinct conditions, which contribute to different patterns of disruption to cognitive processing and brain systems. Understanding these conditions may enable the development of prognostic indicators for HIV associated neurocognitive disorders (HAND). The present study examined substance use behavior and cognitive deficits, associated with depression and apathy, in 120 PLWH, using hierarchical regression analyses. Higher levels of depression were associated with a history of alcohol dependence and greater deficits in processing speed, motor and global cognitive functioning. Higher levels of apathy were associated with a history of cocaine dependence. It is recommended that PLWH get screened appropriately for apathy and depression, in order to receive the appropriate treatment, considering the comorbidities associated with each condition. Future research should examine the neurological correlates of apathy and depression in PLWH. PMID:25533921

  8. Closely related phytoplankton species produce similar suites of dissolved organic matter

    PubMed Central

    Becker, Jamie W.; Berube, Paul M.; Follett, Christopher L.; Waterbury, John B.; Chisholm, Sallie W.; DeLong, Edward F.; Repeta, Daniel J.

    2014-01-01

    Production of dissolved organic matter (DOM) by marine phytoplankton supplies the majority of organic substrate consumed by heterotrophic bacterioplankton in the sea. This production and subsequent consumption converts a vast quantity of carbon, nitrogen, and phosphorus between organic and inorganic forms, directly impacting global cycles of these biologically important elements. Details regarding the chemical composition of DOM produced by marine phytoplankton are sparse, and while often assumed, it is not currently known if phylogenetically distinct groups of marine phytoplankton release characteristic suites of DOM. To investigate the relationship between specific phytoplankton groups and the DOM they release, hydrophobic phytoplankton-derived dissolved organic matter (DOMP) from eight axenic strains was analyzed using high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS). Identification of DOM features derived from Prochlorococcus, Synechococcus, Thalassiosira, and Phaeodactylum revealed DOMP to be complex and highly strain dependent. Connections between DOMP features and the phylogenetic relatedness of these strains were identified on multiple levels of phylogenetic distance, suggesting that marine phytoplankton produce DOM that in part reflects its phylogenetic origin. Chemical information regarding the size and polarity ranges of features from defined biological sources was also obtained. Our findings reveal DOMP composition to be partially conserved among related phytoplankton species, and implicate marine DOM as a potential factor influencing microbial diversity in the sea by acting as a link between autotrophic and heterotrophic microbial community structures. PMID:24748874

  9. Stoichiometric regulation of phytoplankton toxins.

    PubMed

    Van de Waal, Dedmer B; Smith, Val H; Declerck, Steven A J; Stam, Eva C M; Elser, James J

    2014-06-01

    Ecological Stoichiometry theory predicts that the production, elemental structure and cellular content of biomolecules should depend on the relative availability of resources and the elemental composition of their producer organism. We review the extent to which carbon- and nitrogen-rich phytoplankton toxins are regulated by nutrient limitation and cellular stoichiometry. Consistent with theory, we show that nitrogen limitation causes a reduction in the cellular quota of nitrogen-rich toxins, while phosphorus limitation causes an increase in the most nitrogen-rich paralytic shellfish poisoning toxin. In addition, we show that the cellular content of nitrogen-rich toxins increases with increasing cellular N : P ratios. Also consistent with theory, limitation by either nitrogen or phosphorus promotes the C-rich toxin cell quota or toxicity of phytoplankton cells. These observed relationships may assist in predicting and managing toxin-producing phytoplankton blooms. Such a stoichiometric regulation of toxins is likely not restricted to phytoplankton, and may well apply to carbon- and nitrogen-rich secondary metabolites produced by bacteria, fungi and plants.

  10. Experimental evolution meets marine phytoplankton.

    PubMed

    Reusch, Thorsten B H; Boyd, Philip W

    2013-07-01

    Our perspective highlights potentially important links between disparate fields-biological oceanography, climate change research, and experimental evolutionary biology. We focus on one important functional group-photoautotrophic microbes (phytoplankton), which are responsible for ∼50% of global primary productivity. Global climate change currently results in the simultaneous change of several conditions such as warming, acidification, and nutrient supply. It thus has the potential to dramatically change phytoplankton physiology, community composition, and may result in adaptive evolution. Although their large population sizes, standing genetic variation, and rapid turnover time should promote swift evolutionary change, oceanographers have focussed on describing patterns of present day physiological differentiation rather than measure potential adaptation in evolution experiments, the only direct way to address whether and at which rate phytoplankton species will adapt to environmental change. Important open questions are (1) is adaptation limited by existing genetic variation or fundamental constraints? (2) Will complex ecological settings such as gradual versus abrupt environmental change influence adaptation processes? (3) How will increasing environmental variability affect the evolution of phenotypic plasticity patterns? Because marine phytoplankton species display rapid acclimation capacity (phenotypic buffering), a systematic study of reaction norms renders them particularly interesting to the evolutionary biology research community.

  11. Live pig markets in eastern Indonesia: Trader characteristics, biosecurity and implications for disease spread.

    PubMed

    Leslie, Edwina E C; Geong, Maria; Abdurrahman, Muktasam; Ward, Michael P; Toribio, Jenny-Ann L M L

    2016-03-01

    Classical swine fever has been negatively impacting pig production in Nusa Tenggara Timur province in eastern Indonesia since its introduction in the 1990s, with live market trade contributing to disease spread. To understand market trader knowledge and practices regarding pig management, biosecurity, pig movements and pig health (specifically CSF), a repeated survey was conducted with pig sellers and pig buyers at 9 market sites across West Timor and the islands of Flores and Sumba. A total of 292 sellers and 281 buyers were interviewed in 2009 during two periods (rounds), a high-demand month (September) and a low-demand month (November). Information was collected via questionnaire. The majority of traders were male (sellers: 89%; buyers: 87%) with the highest level of completed education being primary school (sellers: 48%; buyers: 41%). The primary occupation of most respondents was farming: 90% of sellers and 87% of buyers were smallholder pig farmers and tended to sell their own home-raised pigs at market (52%). Pigs were sold for monetary gain either for primary (52%) or extra income (44%). Markets tended to be selected based on a good reputation (62%), a location close to residence (62%) and having the desired pig type (59%). Pig sales through markets were reported to be highest from August to October with 31% of sellers trading pigs at two or more markets. Prices at market were significantly higher on Sumba compared to West Timor and cross-bred pigs were significantly more expensive than indigenous pigs. Understanding of CSF and biosecurity was limited: 85% of sellers and 83% of buyers had no prior knowledge of CSF. Fifty-four percent of sellers reported no use of any biosecurity practices at market. Most respondents (88%) were able to recognise at least one clinical sign of a sick pig. Informal pig movements were also identified: 18% of pig buyers purchased pigs directly from other farmers. This study has provided baseline information on market trader

  12. Live pig markets in eastern Indonesia: Trader characteristics, biosecurity and implications for disease spread.

    PubMed

    Leslie, Edwina E C; Geong, Maria; Abdurrahman, Muktasam; Ward, Michael P; Toribio, Jenny-Ann L M L

    2016-03-01

    Classical swine fever has been negatively impacting pig production in Nusa Tenggara Timur province in eastern Indonesia since its introduction in the 1990s, with live market trade contributing to disease spread. To understand market trader knowledge and practices regarding pig management, biosecurity, pig movements and pig health (specifically CSF), a repeated survey was conducted with pig sellers and pig buyers at 9 market sites across West Timor and the islands of Flores and Sumba. A total of 292 sellers and 281 buyers were interviewed in 2009 during two periods (rounds), a high-demand month (September) and a low-demand month (November). Information was collected via questionnaire. The majority of traders were male (sellers: 89%; buyers: 87%) with the highest level of completed education being primary school (sellers: 48%; buyers: 41%). The primary occupation of most respondents was farming: 90% of sellers and 87% of buyers were smallholder pig farmers and tended to sell their own home-raised pigs at market (52%). Pigs were sold for monetary gain either for primary (52%) or extra income (44%). Markets tended to be selected based on a good reputation (62%), a location close to residence (62%) and having the desired pig type (59%). Pig sales through markets were reported to be highest from August to October with 31% of sellers trading pigs at two or more markets. Prices at market were significantly higher on Sumba compared to West Timor and cross-bred pigs were significantly more expensive than indigenous pigs. Understanding of CSF and biosecurity was limited: 85% of sellers and 83% of buyers had no prior knowledge of CSF. Fifty-four percent of sellers reported no use of any biosecurity practices at market. Most respondents (88%) were able to recognise at least one clinical sign of a sick pig. Informal pig movements were also identified: 18% of pig buyers purchased pigs directly from other farmers. This study has provided baseline information on market trader

  13. Reproductive desires of men and women living with HIV: implications for family planning counselling.

    PubMed

    van Zyl, Cornelia; Visser, Maretha J

    2015-09-01

    The reproductive desires of people living with HIV/AIDS (PLHIV) of low socioeconomic standing attending public health facilities in South Africa were studied. HIV-positive men, pregnant and non-pregnant women were recruited from two clinics at a large public hospital in Tshwane, South Africa. Individual interviews were used to explore the reproductive desires of HIV-positive participants. HIV counsellors' perceptions of their clients' reproductive desires were explored during focus group discussions. Parenthood proved to be an important factor to all participants in continuation of the family and establishing their gender identities, despite the possible risk of HIV transmission and community stigmatization. Different cultural procreation rules for men and women and stigmatizing attitudes towards PLHIV affected their reproductive decision making. Women had the dilemma of choosing which community expectations they wanted to fulfil. Community stigmatization towards PLHIV was visible in the negative attitudes of some HIV counsellors regarding HIV and procreation. Because the reproductive desires of PLHIV are currently not given high priority in HIV prevention and family planning in the public health sector in South Africa, the prevention of HIV transmission may be jeopardized. These results necessitate the integration of HIV and sexual and reproductive health counselling on a primary health care level.

  14. Mortality among People Living with HIV and AIDS in China: Implications for Enhancing Linkage

    PubMed Central

    Li, Meng; Tang, Weiming; Bu, Kai; Mahapatra, Tanmay; Zhang, Xiayan; Feng, Yibing; Chen, Fangfang; Guo, Wei; Wang, Liyan; Ding, Zhengwei; Qin, Qianqian; Liu, Shiliang; Tucker, Joseph D.; Wang, Lu; Wang, Ning

    2016-01-01

    To assess the patterns and predictors of AIDS-related mortality and identify its correlates among adult people living with HIV/AIDS (PLWHA) in China, a retrospective record-based cohort study was conducted among 18 years or older PLWHA, who had at least one follow up reported to the national database between January-1989 and June-2012. Cumulative Incidence Function was used to calculate AIDS-related mortality rate. Gray’s test was used to determine the variation in cumulative incidence across strata. The Fine and Gray model was used to measure the burden of cumulative incidence of AIDS-related mortality and strength of its association with potential correlates. Among 375,629 patients, 107,634 died during study period, of which 54,759 (50.87%) deaths were AIDS-related. Cumulative mortality rates of AIDS-related death at one, two, five, 10 and 15 years post-diagnosis were 5.7%, 8.2%, 14.3%, 22.9% and 30.9%, respectively. Among PLWHA, male gender, ethnic minority and having AIDS were associated with significantly higher mortality. Further, homosexual transmission, being on ART and increasing CD4-testing frequency were associated with lower mortality. To reduce mortality among PLWHA, efficient interventions targeting males, ethnic minority, heterosexually infected and AIDS patients should be combined with immunologic monitoring, enhancement of coverage of HIV-testing and ART. PMID:27324204

  15. Preserving the longevity of long-lived type II collagen and its implication for cartilage therapeutics.

    PubMed

    Tiku, Moti L; Madhan, Balaraman

    2016-07-01

    Human life expectancy has been steadily increasing at a rapid rate, but this increasing life span also brings about increases in diseases, dementia, and disability. A global burden of disease 2010 study revealed that hip and knee osteoarthritis ranked the 11th highest in terms of years lived with disability. Wear and tear can greatly influence the quality of life during ageing. In particular, wear and tear of the articular cartilage have adverse effects on joints and result in osteoarthritis. The articular cartilage uses longevity of type II collagen as the foundation around which turnover of proteoglycans and the homeostatic activity of chondrocytes play central roles thereby maintaining the function of articular cartilage in the ageing. The longevity of type II collagen involves a complex interaction of the scaffolding needs of the cartilage and its biochemical, structural and mechanical characteristics. The covalent cross-linking of heterotypic polymers of collagens type II, type IX and type XI hold together cartilage, allowing it to withstand ageing stresses. Discerning the biological clues in the armamentarium for preserving cartilage appears to be collagen cross-linking. Therapeutic methods to crosslink in in-vivo are non-existent. However intra-articular injections of polyphenols in vivo stabilize the cartilage and make it resistant to degradation, opening a new therapeutic possibility for prevention and intervention of cartilage degradation in osteoarthritis of aging. PMID:27133944

  16. Phytoplankton Bloom in Iron Limitation Environment of the Amundsen Polynya, Southern Ocean

    NASA Astrophysics Data System (ADS)

    Park, J.; Gorbunov, M. Y.; Ha, S. Y.; Kim, H. C.; Lee, S.

    2014-12-01

    We have conducted three times intensive Antarctic cruises in the Amundsen Sea (west Antarctic) in early (2010/2011 and 2013/2014) and late (2011/2012) austral summertime. These cruises were conducted as a Korea Polar Research Institute (KOPRI) Amundsen project. Amundsen polynya is one of the most productive Antarctic coastal polynya, and high chlorophylls (observed and satellite induced) were concentrated in polynya center rather than in the edge of polynya both in early and late summer. To examine phytoplankton dynamics in severely iron limited environment, the phytoplankton physiological parameters were measured by Fluorescence Induction and Relaxation (FIRe) system. In addition, we carried out iron assimilation experiments on board to demonstrate that iron enrichment responses of natural phytoplankton assemblages. Possible implications of iron limitation and controlling factors of phytoplankton growth in this polynya system will be discussed.

  17. Production of n-alkyl lipids in living plants and implications for the geologic past

    NASA Astrophysics Data System (ADS)

    Diefendorf, Aaron F.; Freeman, Katherine H.; Wing, Scott L.; Graham, Heather V.

    2011-12-01

    Leaf waxes (i.e., n-alkyl lipids or n-alkanes) are land-plant biomarkers widely used to reconstruct changes in climate and the carbon isotopic composition of the atmosphere. There is little information available, however, on how the production of leaf waxes by different kinds of plants might influence the abundance and isotopic composition of n-alkanes in sedimentary archives. This lack of information increases uncertainty in interpreting n-alkyl lipid abundance and δ 13C signals in ancient settings. We provide here n-alkyl abundance distributions and carbon isotope fractionation data for deciduous and evergreen angiosperm and gymnosperm leaves from 46 tree species, representing 24 families. n-Alkane abundances are significantly higher in angiosperms than gymnosperms; many of the gymnosperm species investigated did not produce any n-alkanes. On average, deciduous angiosperms produce 200 times more n-alkanes than deciduous gymnosperms. Although differences between angiosperms and gymnosperms dominate the variance in n-alkane abundance, leaf life-span is also important, with higher n-alkane abundances in longer-lived leaves. n-Alkanol abundances covary with n-alkanes, but n-alkanoic acids have similar abundances across all plant groups. Isotopic fractionation between leaf tissue and individual alkanes ( ɛlipid) varies by as much as 10‰ among different chain lengths. Overall, ɛlipid values are slightly lower (-4.5‰) for angiosperm than for gymnosperm (-2.5‰) n-alkanes. Angiosperms commonly express slightly higher Δleaf (photosynthetic discrimination) relative to gymnosperms under similar growth conditions. As a result, angiosperm n-alkanes are expected to be generally 3-5‰ more depleted in 13C relative to gymnosperm alkanes for the same locality. Differences in n-alkane production indicate the biomarker record will largely (but not exclusively) reflect angiosperms if both groups were present, and also that evergreen plants will likely be overrepresented

  18. Caregiver satisfaction with paediatric HIV treatment and care in Nigeria and equity implications for children living with HIV

    PubMed Central

    Chamla, Dick; Asadu, Chukwuemeka; Adejuyigbe, Ebun; Davies, Abiola; Ugochukwu, Ebele; Umar, Lawal; Oluwafunke, Ilesanmi; Hassan-Hanga, Fatimah; Onubogu, Chinyere; Tunde-Oremodu, Immaculata; Madubuike, Chinelo; Umeadi, Esther; Epundu, Obed; Omosun, Adenike; Anigilaje, Emmanuel; Adeyinka, Daniel

    2016-01-01

    ABSTRACT Caregiver satisfaction has the potential to promote equity for children living with HIV, by influencing health-seeking behaviour. We measured dimensions of caregiver satisfaction with paediatric HIV treatment in Nigeria, and discuss its implications for equity by conducting facility-based exit interviews for caregivers of children receiving antiretroviral therapy in 20 purposively selected facilities within 5 geopolitical zones. Descriptive analysis and factor analysis were performed. Due to the hierarchical nature of the data, multilevel regression modelling was performed to investigate relationships between satisfaction factors and socio-demographic variables. Of 1550 caregivers interviewed, 63% (95% CI: 60.6–65.4) reported being very satisfied overall; however, satisfaction varied in some dimensions: only 55.6% (53.1–58.1) of caregivers could talk privately with health workers, 56.9% (54.4–59.3) reported that queues to see health workers were too long, and 89.9% (88.4–91.4) said that some health workers did not treat patients living with HIV with sufficient respect. Based on factor analysis, two underlying factors, labelled Availability and Attitude, were identified. In multilevel regression, the satisfaction with availability of services correlated with formal employment status (p < .01), whereas caregivers receiving care in private facilities were less likely satisfied with both availability (p < .01) and attitude of health workers (p < .05). State and facility levels influenced attitudes of the health workers (p < .01), but not availability of services. We conclude that high levels of overall satisfaction among caregivers masked dissatisfaction with some aspects of services. The two underlying satisfaction factors are part of access typology critical for closing equity gaps in access to HIV treatment between adults and children, and across socio-economic groups. PMID:27392010

  19. Caregiver satisfaction with paediatric HIV treatment and care in Nigeria and equity implications for children living with HIV.

    PubMed

    Chamla, Dick; Asadu, Chukwuemeka; Adejuyigbe, Ebun; Davies, Abiola; Ugochukwu, Ebele; Umar, Lawal; Oluwafunke, Ilesanmi; Hassan-Hanga, Fatimah; Onubogu, Chinyere; Tunde-Oremodu, Immaculata; Madubuike, Chinelo; Umeadi, Esther; Epundu, Obed; Omosun, Adenike; Anigilaje, Emmanuel; Adeyinka, Daniel

    2016-03-01

    Caregiver satisfaction has the potential to promote equity for children living with HIV, by influencing health-seeking behaviour. We measured dimensions of caregiver satisfaction with paediatric HIV treatment in Nigeria, and discuss its implications for equity by conducting facility-based exit interviews for caregivers of children receiving antiretroviral therapy in 20 purposively selected facilities within 5 geopolitical zones. Descriptive analysis and factor analysis were performed. Due to the hierarchical nature of the data, multilevel regression modelling was performed to investigate relationships between satisfaction factors and socio-demographic variables. Of 1550 caregivers interviewed, 63% (95% CI: 60.6-65.4) reported being very satisfied overall; however, satisfaction varied in some dimensions: only 55.6% (53.1-58.1) of caregivers could talk privately with health workers, 56.9% (54.4-59.3) reported that queues to see health workers were too long, and 89.9% (88.4-91.4) said that some health workers did not treat patients living with HIV with sufficient respect. Based on factor analysis, two underlying factors, labelled Availability and Attitude, were identified. In multilevel regression, the satisfaction with availability of services correlated with formal employment status (p < .01), whereas caregivers receiving care in private facilities were less likely satisfied with both availability (p < .01) and attitude of health workers (p < .05). State and facility levels influenced attitudes of the health workers (p < .01), but not availability of services. We conclude that high levels of overall satisfaction among caregivers masked dissatisfaction with some aspects of services. The two underlying satisfaction factors are part of access typology critical for closing equity gaps in access to HIV treatment between adults and children, and across socio-economic groups. PMID:27392010

  20. Phytoplankton fuels Delta food web

    USGS Publications Warehouse

    Jassby, Alan D.; Cloern, James E.; Muller-Solger, A. B.

    2003-01-01

    Populations of certain fishes and invertebrates in the Sacramento-San Joaquin Delta have declined in abundance in recent decades and there is evidence that food supply is partly responsible. While many sources of organic matter in the Delta could be supporting fish populations indirectly through the food web (including aquatic vegetation and decaying organic matter from agricultural drainage), a careful accounting shows that phytoplankton is the dominant food source. Phytoplankton, communities of microscopic free-floating algae, are the most important food source on a Delta-wide scale when both food quantity and quality are taken into account. These microscopic algae have declined since the late 1960s. Fertilizer and pesticide runoff do not appear to be playing a direct role in long-term phytoplankton changes; rather, species invasions, increasing water transparency and fluctuations in water transport are responsible. Although the potential toxicity of herbicides and pesticides to plank- ton in the Delta is well documented, the ecological significance remains speculative. Nutrient inputs from agricultural runoff at current levels, in combination with increasing transparency, could result in harmful al- gal blooms. 

  1. Zombies, vampires, werewolves: an adolescent's developmental system for the undead and their ambivalent dependence on the living, and technical implications.

    PubMed

    Szajnberg, Nathan Moses

    2012-12-01

    While vampires haunt contemporary American pop culture, the undead have populated psychoanalytic literature from Abraham's March 15, 1915 letter to Freud to today. PEP lists 439 psychoanalytic references to the undead (99 on zombies; 288 on vampires; 52 on werewolves). A selection of papers are cited, focusing on clinical cases, ethnography media and literature, even breast-feeding fantasized as blood sucking, associated with primitive dynamics. Previous works' libidinal, object relations, and dynamic perspectives on various "undeads" are summarized. This paper's contribution to the psychoanalytic literature is to examine the relationship of the three categories of undead both among each other and in their relation to the living. This paper presents a young adolescent's extensive play and fantasies about the undead, and his sophisticated intrapsychic model for the undead, developed prior to treatment, that kept him in psychical equilibrium, yet also kept him from feeling alive. This model has developmental implications for handling three types of transferences. Also, we may shed light on both contemporary preoccupation with the undead in contemporary American popular culture, and its endurance over time in Western culture. PMID:23253062

  2. Entangled lives: Implications of the developmental origins of health and disease hypothesis for bioarchaeology and the life course.

    PubMed

    Gowland, Rebecca L

    2015-12-01

    Epidemiological research since the 1980s has highlighted the consequences of early life adversity, particularly during gestation and early infancy, for adult health (the "Barker hypothesis"). The fast-evolving field of molecular epigenetics is providing explanatory mechanisms concerning phenotypic plasticity in response to developmental stressors and the accumulation of disease risk throughout life. In addition, there is now evidence for the heritability of poor health across generations via epigenetic modifications. This research has the potential to invoke a paradigmatic shift in how we interpret factors such as growth insults and immune response in past skeletal remains. It demonstrates that health cannot be understood in terms of immediate environmental circumstances alone. Furthermore, it requires both a theoretical and practical re-evaluation of disease biographies and the life course more generally. Individual life courses can no longer be regarded as discrete, bounded, life histories, with clearly defined beginning and end points. If socioeconomic circumstances can have intergenerational effects, including disease susceptibility and growth stunting, then individual biographies should be viewed as nested or "embedded" within the lives of others. This commingling of life courses may prove problematic to unravel; nevertheless, this review aims to consider the potential consequences for bioarchaeological interpretations. These include a greater consideration of: the temporal power of human skeletons and a life course approach to past health; infant health and the implications for maternal well-being; and the impact of non-proximate stressors (e.g., early life and ancestral environments) on the presence of health indicators.

  3. Zombies, vampires, werewolves: an adolescent's developmental system for the undead and their ambivalent dependence on the living, and technical implications.

    PubMed

    Szajnberg, Nathan Moses

    2012-12-01

    While vampires haunt contemporary American pop culture, the undead have populated psychoanalytic literature from Abraham's March 15, 1915 letter to Freud to today. PEP lists 439 psychoanalytic references to the undead (99 on zombies; 288 on vampires; 52 on werewolves). A selection of papers are cited, focusing on clinical cases, ethnography media and literature, even breast-feeding fantasized as blood sucking, associated with primitive dynamics. Previous works' libidinal, object relations, and dynamic perspectives on various "undeads" are summarized. This paper's contribution to the psychoanalytic literature is to examine the relationship of the three categories of undead both among each other and in their relation to the living. This paper presents a young adolescent's extensive play and fantasies about the undead, and his sophisticated intrapsychic model for the undead, developed prior to treatment, that kept him in psychical equilibrium, yet also kept him from feeling alive. This model has developmental implications for handling three types of transferences. Also, we may shed light on both contemporary preoccupation with the undead in contemporary American popular culture, and its endurance over time in Western culture.

  4. State of Climate 2011 - Global Ocean Phytoplankton

    NASA Technical Reports Server (NTRS)

    Siegel, D. A.; Antoine, D.; Behrenfeld, M. J.; d'Andon, O. H. Fanton; Fields, E.; Franz, B. A.; Goryl, P.; Maritorena, S.; McClain, C. R.; Wang, M.; Yoder, J. A.

    2012-01-01

    Phytoplankton photosynthesis in the sun lit upper layer of the global ocean is the overwhelmingly dominant source of organic matter that fuels marine ecosystems. Phytoplankton contribute roughly half of the global (land and ocean) net primary production (NPP; gross photosynthesis minus plant respiration) and phytoplankton carbon fixation is the primary conduit through which atmospheric CO2 concentrations interact with the ocean s carbon cycle. Phytoplankton productivity depends on the availability of sunlight, macronutrients (e.g., nitrogen, phosphorous), and micronutrients (e.g., iron), and thus is sensitive to climate-driven changes in the delivery of these resources to the euphotic zone

  5. Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification.

    PubMed

    Eggers, Sarah L; Lewandowska, Aleksandra M; Barcelos E Ramos, Joana; Blanco-Ameijeiras, Sonia; Gallo, Francesca; Matthiessen, Birte

    2014-03-01

    Ecosystem functioning is simultaneously affected by changes in community composition and environmental change such as increasing atmospheric carbon dioxide (CO2 ) and subsequent ocean acidification. However, it largely remains uncertain how the effects of these factors compare to each other. Addressing this question, we experimentally tested the hypothesis that initial community composition and elevated CO2 are equally important to the regulation of phytoplankton biomass. We full-factorially exposed three compositionally different marine phytoplankton communities to two different CO2 levels and examined the effects and relative importance (ω(2) ) of the two factors and their interaction on phytoplankton biomass at bloom peak. The results showed that initial community composition had a significantly greater impact than elevated CO2 on phytoplankton biomass, which varied largely among communities. We suggest that the different initial ratios between cyanobacteria, diatoms, and dinoflagellates might be the key for the varying competitive and thus functional outcome among communities. Furthermore, the results showed that depending on initial community composition elevated CO2 selected for larger sized diatoms, which led to increased total phytoplankton biomass. This study highlights the relevance of initial community composition, which strongly drives the functional outcome, when assessing impacts of climate change on ecosystem functioning. In particular, the increase in phytoplankton biomass driven by the gain of larger sized diatoms in response to elevated CO2 potentially has strong implications for nutrient cycling and carbon export in future oceans.

  6. Winter severity determines functional trait composition of phytoplankton in seasonally ice-covered lakes.

    PubMed

    Özkundakci, Deniz; Gsell, Alena S; Hintze, Thomas; Täuscher, Helgard; Adrian, Rita

    2016-01-01

    How climate change will affect the community dynamics and functionality of lake ecosystems during winter is still little understood. This is also true for phytoplankton in seasonally ice-covered temperate lakes which are particularly vulnerable to the presence or absence of ice. We examined changes in pelagic phytoplankton winter community structure in a north temperate lake (Müggelsee, Germany), covering 18 winters between 1995 and 2013. We tested how phytoplankton taxa composition varied along a winter-severity gradient and to what extent winter severity shaped the functional trait composition of overwintering phytoplankton communities using multivariate statistical analyses and a functional trait-based approach. We hypothesized that overwintering phytoplankton communities are dominated by taxa with trait combinations corresponding to the prevailing winter water column conditions, using ice thickness measurements as a winter-severity indicator. Winter severity had little effect on univariate diversity indicators (taxon richness and evenness), but a strong relationship was found between the phytoplankton community structure and winter severity when taxon trait identity was taken into account. Species responses to winter severity were mediated by the key functional traits: motility, nutritional mode, and the ability to form resting stages. Accordingly, one or the other of two functional groups dominated the phytoplankton biomass during mild winters (i.e., thin or no ice cover; phototrophic taxa) or severe winters (i.e., thick ice cover; exclusively motile taxa). Based on predicted milder winters for temperate regions and a reduction in ice-cover durations, phytoplankton communities during winter can be expected to comprise taxa that have a relative advantage when the water column is well mixed (i.e., need not be motile) and light is less limiting (i.e., need not be mixotrophic). A potential implication of this result is that winter severity promotes different

  7. Winter severity determines functional trait composition of phytoplankton in seasonally ice-covered lakes.

    PubMed

    Özkundakci, Deniz; Gsell, Alena S; Hintze, Thomas; Täuscher, Helgard; Adrian, Rita

    2016-01-01

    How climate change will affect the community dynamics and functionality of lake ecosystems during winter is still little understood. This is also true for phytoplankton in seasonally ice-covered temperate lakes which are particularly vulnerable to the presence or absence of ice. We examined changes in pelagic phytoplankton winter community structure in a north temperate lake (Müggelsee, Germany), covering 18 winters between 1995 and 2013. We tested how phytoplankton taxa composition varied along a winter-severity gradient and to what extent winter severity shaped the functional trait composition of overwintering phytoplankton communities using multivariate statistical analyses and a functional trait-based approach. We hypothesized that overwintering phytoplankton communities are dominated by taxa with trait combinations corresponding to the prevailing winter water column conditions, using ice thickness measurements as a winter-severity indicator. Winter severity had little effect on univariate diversity indicators (taxon richness and evenness), but a strong relationship was found between the phytoplankton community structure and winter severity when taxon trait identity was taken into account. Species responses to winter severity were mediated by the key functional traits: motility, nutritional mode, and the ability to form resting stages. Accordingly, one or the other of two functional groups dominated the phytoplankton biomass during mild winters (i.e., thin or no ice cover; phototrophic taxa) or severe winters (i.e., thick ice cover; exclusively motile taxa). Based on predicted milder winters for temperate regions and a reduction in ice-cover durations, phytoplankton communities during winter can be expected to comprise taxa that have a relative advantage when the water column is well mixed (i.e., need not be motile) and light is less limiting (i.e., need not be mixotrophic). A potential implication of this result is that winter severity promotes different

  8. An unusually large phytoplankton spring bloom drives rapid changes in benthic diversity and ecosystem function

    NASA Astrophysics Data System (ADS)

    Zhang, Qingtian; Warwick, Richard M.; McNeill, Caroline L.; Widdicombe, Claire E.; Sheehan, Aaron; Widdicombe, Stephen

    2015-09-01

    In 2012, the Western English Channel experienced an unusually large and long-lived phytoplankton spring bloom. When compared with data from the past 20 years, average phytoplankton biomass at Station L4 (part of the Western Channel Observatory) was approximately 3× greater and lasted 50% longer than any previous year. Regular (mostly weekly) box core samples were collected from this site before, during and after the bloom to determine its impact on macrofaunal abundance, diversity, biomass, community structure and function. The spring bloom of 2012 was shown to support a large and rapid response in the majority of benthic taxa and functional groups. However, key differences in the precise nature of this response, as well as in its timing, was observed between different macrofauna feeding groups. Deposit feeders responded almost instantly at the start of the bloom, primarily thorough an increase in abundance. Suspension feeders and opportunistic/predatory/carnivorous taxa responded slightly more slowly and primarily with an increase in biomass. At the end of the bloom a rapid decline in macrobenthic abundance, diversity and biomass closely followed the decline in phytoplankton biomass. With suspension feeders showing evidence of this decline a few weeks before deposit feeders, it was concluded that this collapse in benthic communities was driven primarily by food availability and competition. However, it is possible that environmental hypoxia and the presence of toxic benthic cyanobacteria could also have contributed to this decline. This study shows evidence for strong benthic-pelagic coupling at L4; a shallow (50 m), coastal, fine-sand habitat. It also demonstrates that in such habitats, it is not just planktonic organisms that demonstrate clear community phenology. Different functional groups within the benthic assemblage will respond to the spring bloom in specific manner, with implications for key ecosystem functions and processes, such as secondary production

  9. Phytoplankton assemblage characteristics in recurrently fluctuating environments.

    PubMed

    Roelke, Daniel L; Spatharis, Sofie

    2015-01-01

    Annual variations in biogeochemical and physical processes can lead to nutrient variability and seasonal patterns in phytoplankton productivity and assemblage structure. In many coastal systems river inflow and water exchange with the ocean varies seasonally, and alternating periods can arise where the nutrient most limiting to phytoplankton growth switches. Transitions between these alternating periods can be sudden or gradual and this depends on human activities, such as reservoir construction and interbasin water transfers. How such activities might influence phytoplankton assemblages is largely unknown. Here, we employed a multispecies, multi-nutrient model to explore how nutrient loading switching mode might affect characteristics of phytoplankton assemblages. The model is based on the Monod-relationship, predicting an instantaneous growth rate from ambient inorganic nutrient concentrations whereas the limiting nutrient at any given time was determined by Liebig's Law of the Minimum. Our simulated phytoplankton assemblages self-organized from species rich pools over a 15-year period, and only the surviving species were considered as assemblage members. Using the model, we explored the interactive effects of complementarity level in trait trade-offs within phytoplankton assemblages and the amount of noise in the resource supply concentrations. We found that the effect of shift from a sudden resource supply transition to a gradual one, as observed in systems impacted by watershed development, was dependent on the level of complementarity. In the extremes, phytoplankton species richness and relative overyielding increased when complementarity was lowest, and phytoplankton biomass increased greatly when complementarity was highest. For low-complementarity simulations, the persistence of poorer-performing phytoplankton species of intermediate R*s led to higher richness and relative overyielding. For high-complementarity simulations, the formation of phytoplankton

  10. Phytoplankton Assemblage Characteristics in Recurrently Fluctuating Environments

    PubMed Central

    Roelke, Daniel L.; Spatharis, Sofie

    2015-01-01

    Annual variations in biogeochemical and physical processes can lead to nutrient variability and seasonal patterns in phytoplankton productivity and assemblage structure. In many coastal systems river inflow and water exchange with the ocean varies seasonally, and alternating periods can arise where the nutrient most limiting to phytoplankton growth switches. Transitions between these alternating periods can be sudden or gradual and this depends on human activities, such as reservoir construction and interbasin water transfers. How such activities might influence phytoplankton assemblages is largely unknown. Here, we employed a multispecies, multi-nutrient model to explore how nutrient loading switching mode might affect characteristics of phytoplankton assemblages. The model is based on the Monod-relationship, predicting an instantaneous growth rate from ambient inorganic nutrient concentrations whereas the limiting nutrient at any given time was determined by Liebig’s Law of the Minimum. Our simulated phytoplankton assemblages self-organized from species rich pools over a 15-year period, and only the surviving species were considered as assemblage members. Using the model, we explored the interactive effects of complementarity level in trait trade-offs within phytoplankton assemblages and the amount of noise in the resource supply concentrations. We found that the effect of shift from a sudden resource supply transition to a gradual one, as observed in systems impacted by watershed development, was dependent on the level of complementarity. In the extremes, phytoplankton species richness and relative overyielding increased when complementarity was lowest, and phytoplankton biomass increased greatly when complementarity was highest. For low-complementarity simulations, the persistence of poorer-performing phytoplankton species of intermediate R*s led to higher richness and relative overyielding. For high-complementarity simulations, the formation of phytoplankton

  11. Seasonal mercury levels in phytoplankton and their relationship with algal biomass in two dystrophic shield lakes

    SciTech Connect

    Kirkwood, A.E.; Chow-Fraser, P.; Mierle, G.

    1999-03-01

    This study focused on the seasonal dynamics of total Hg in the phytoplankton (living and dead) of two dystrophic shield lakes (Mouse and Ranger). Phytoplankton samples were taken from metalimnetic and hypolimnetic depths in the euphotic zone and were collected and analyzed using ultraclean techniques. In both lakes, phytoplankton Hg (PHYTO-Hg) levels (pg/L) in the metalimnion did not significantly change among dates over the season, although Ranger Lake exhibited significant differences between Hg values measured at the beginning and end of the season. In contrast, PHYTO-Hg significantly increased in the hypolimnia of both lakes by the end of the season. Combined influences of external Hg inputs, remineralization, phytoplankton sedimentation, and increased methylmercury production in the hypolimnia over the season may have contributed to these trends. A highly significant positive relationship existed between PHYTO-Hg levels and whole-water Hg levels, and the mean bioconcentration factor for Hg between the water column and phytoplankton was significantly higher in the hypolimnion compared to the metalimnion for both lakes. In most cases, parameters associated with algal biomass had significant positive correlations with PHYTO-Hg levels. Weight-specific PHYTO-Hg (pg/mg dry weight) varied significantly over the season, and there were interlake differences with respect to season trends. On the basis of these results, the authors recommend that the future sampling regimes include collection of phytoplankton at different limnetic depths through the season to account for spatial and temporal variations. Weight specific Hg levels in phytoplankton could not be explained well by the parameters tested, and the only significant regressions were with parameters reflecting algal biomass. This study provides in situ evidence of Hg accumulation in lake phytoplankton as a function of algal biomass on a seasonal basis and stresses the need to confirm these trends in other lake

  12. Bacterial community transcription patterns during a marine phytoplankton bloom.

    PubMed

    Rinta-Kanto, Johanna M; Sun, Shulei; Sharma, Shalabh; Kiene, Ronald P; Moran, Mary Ann

    2012-01-01

    Bacterioplankton consume a large proportion of photosynthetically fixed carbon in the ocean and control its biogeochemical fate. We used an experimental metatranscriptomics approach to compare bacterial activities that route energy and nutrients during a phytoplankton bloom compared with non-bloom conditions. mRNAs were sequenced from duplicate bloom and control microcosms 1 day after a phytoplankton biomass peak, and transcript copies per litre of seawater were calculated using an internal mRNA standard. Transcriptome analysis revealed a potential novel mechanism for enhanced efficiency during carbon-limited growth, mediated through membrane-bound pyrophosphatases [V-type H(+)-translocating; hppA]; bloom bacterioplankton participated less in this metabolic energy scavenging than non-bloom bacterioplankton, with possible implications for differences in growth yields on organic substrates. Bloom bacterioplankton transcribed more copies of genes predicted to increase cell surface adhesiveness, mediated by changes in bacterial signalling molecules related to biofilm formation and motility; these may be important in microbial aggregate formation. Bloom bacterioplankton also transcribed more copies of genes for organic acid utilization, suggesting an increased importance of this compound class in the bioreactive organic matter released during phytoplankton blooms. Transcription patterns were surprisingly faithful within a taxon regardless of treatment, suggesting that phylogeny broadly predicts the ecological roles of bacterial groups across 'boom' and 'bust' environmental backgrounds.

  13. Phytoplankton Strategies for Photosynthetic Energy Allocation

    NASA Astrophysics Data System (ADS)

    Halsey, Kimberly H.; Jones, Bethan M.

    2015-01-01

    Phytoplankton physiology is dynamic and highly responsive to the environment. Phytoplankton acclimate to changing environmental conditions by a complex reallocation of carbon and energy through metabolic pathways to optimize growth. Considering the tremendous diversity of phytoplankton, it is not surprising that different phytoplankton taxa use different strategies to partition carbon and energy resources. It has therefore been satisfying to discover that general principles of energetic stoichiometry appear to govern these complex processes and can be broadly applied to interpret phytoplankton distributions, productivity, and food web dynamics. The expectation of future changes in aquatic environments brought on by climate change warrants gathering knowledge about underlying patterns of photosynthetic energy allocation and their impacts on community structure and ecosystem productivity.

  14. Sea Soup: Discovering the Watery World of Phytoplankton and Zooplankton. Teacher's Guide.

    ERIC Educational Resources Information Center

    Stevens, Betsy T.

    This book is an inquiry- and discovery-based teacher's guide. The interesting and fun activities in this teacher's guide meet the challenge of relating tiny, microscopic organisms to the lives of children. The inquiry-based activities range from designing and making a phytoplankter and collecting phytoplankton to designing an experiment for…

  15. [Ecological characteristics of phytoplankton in Shenzhen Bay].

    PubMed

    Sun, Jin-Shui; Wai, Onyx Wing-Hong; Dai, Ji-Cui; Ni, Jin-Ren

    2010-01-01

    Based on the data of surface phytoplankton investigated by Hong Kong Environmental Protection Department in Shenzhen Bay in 2006, variation characteristics of phytoplankton communities and the relationship between the phytoplankton diversity indices and environmental factors were analyzed in the present paper. Results showed that a total of 27 genera and 34 species of phytoplankton were identified. Of these, 18 were diatoms (52.94%), 10 were dinoflagellates (29.41%), 6 were from other minor groups (17.65%). The cell abundance was estimated to be from 2.13 x 10(6) to 4.15 x 10(6) cells/L, with an average of 2.92 x 10(6) cells/L. The maximum cell abundance appeared in the autumn (October), followed in spring (May). The cell abundance showed double abundance peaks annually. The cell abundance of phytoplankton decreased from the middle bay to the bay mouth. In the marine area, the diversity index of the phytoplankton ranged from 0.76 to 2.52; the evenness of phytoplankton ranged from 0.29 to 0.74; the diversity and evenness of phytoplankton community were rather low, which indicated that the relative abundances of the species diverged from evenness, phytoplankton community were not steady, and only few dominant species increased rapidly. The species richness index ranged from 0.57 to 2.17, the high eutrophic water body caused the species richness index declined. Better relationship was found between phytoplankton diversity indices and nutrient, salinity, dissolved oxygen. PMID:20329517

  16. Control of the phytoplankton response during the SAGE experiment: A synthesis

    NASA Astrophysics Data System (ADS)

    Peloquin, Jill; Hall, Julie; Safi, Karl; Ellwood, Michael; Law, Cliff S.; Thompson, Karen; Kuparinen, Jorma; Harvey, Michael; Pickmere, Stuart

    2011-03-01

    . Phytoplankton biomass, estimated by chlorophyll a, only accumulated when phytoplankton growth exceeded grazing and when net algal growth exceeded dilution rate. The SAGE results highlight the function of the smallest phytoplankton size fraction described by the ecumenical Iron Hypothesis. Thus, adding iron to HNLC-low silicic acid regions during certain times of the year may simply transfer more carbon through the microbial food web. A primary implication of this study is that any iron-mediated gain in fixed carbon with this set of environmental conditions has a high probability of being recycled in surface waters.

  17. Phytoplankton bloom in Persian Gulf

    NASA Technical Reports Server (NTRS)

    2002-01-01

    There is a large amount of sediment clearly visible in the true-color image of the Persian Gulf, acquired on November 1, 2001, by MODIS. Carried by the confluence of the Tigris and Euphrates Rivers (at center), the sediment-laden waters appear light brown where they enter the northern end of the Persian Gulf and then gradually dissipate into turquoise swirls as they drift southward. The nutrients these sediments carry are helping to support a phytoplankton bloom in the region, which adds some darker green hues in the rich kaleidoscope of colors on the surface (see the high resolution image). The confluence of the Tigris and Euphrates Rivers marks the southernmost boundary between Iran (upper right) and Iraq (upper left). South of Iraq are the countries of Kuwait and Saudi Arabia. The red dots indicate the probable locations of fires burning at oil refineries. Thin black plumes of smoke can be seen streaming away from several of these.

  18. The trace element fingerprint of phytoplankton in ocean particulate matter: positive ID or smudged residue?

    NASA Astrophysics Data System (ADS)

    Sherrell, R. M.; Jimonet, A.

    2004-12-01

    The biogeochemical cycles of many trace metals are directly or indirectly driven by the growth, vertical transport, and remineralization of phytoplankton. One of Jack Dymond's research interests was how the geochemical signals of biological processes determine the composition of sinking particulate matter and ultimately the sedimentary record. It seems obvious that there must be links between fundamental aspects of the physiology and biochemistry of phytoplankton growing under a range of oceanic conditions, and the composition of bulk oceanic particulate matter. However, too few attempts have been made to use experimental or observational elemental data to constrain predictions of particulate metal fluxes and their relationship to primary biological processes. On one hand, laboratory-determined metal quotas may suffer from unrealistic species composition and metal availability, and on the other hand attempts to analyze phytoplankton in field samples are typically frustrated by the inability to separate living cells from the abundant organic and inorganic nonliving particles found in most natural waters. Using multi-element analyses of suspended particles in Mid-Atlantic Bight shelf-slope surface waters, and correction factors for non-living particles, we argue that phytoplankton dominate bulk particulate composition for some metals (Zn, Cu, Cd), that non-living particles dominate for other metals (Ti, Fe), and that some metals may fall into either group (Mn, Co). The results show quantitative consistencies with results from diatom lab cultures, and hold promise for improved predictions of vertical metal fluxes associated with carbon export from the euphotic zone of characteristic oceanic regimes.

  19. Characteristics of phytoplankton physiology inferred from chlorophyll fluorescence in the western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Park, Jisoo; Gorbunov, Maxim Y.; Ko, Eunho; Cho, Kyoung-Ho; Yang, Eun Jin; Jung, Jinyoung; Kang, Sung Ho

    2016-04-01

    A recent Arctic survey in the Chukchi and East Siberian Sea using icebreaker R/V Araon revealed some interesting feature of vertical distribution of phytoplankton physiology in 2015 summer. A custom-built Fluorescence Induction and Relaxation (FIRe) system was used for measuring photochemical parameters such as maximum photochemical efficiency of photosystem II (Fv/Fm) and functional absorption cross section in near-surface ocean. These parameters provide an express diagnostic of the effects of environmental factors, including nutrient limitation and light acclimation on phytoplankton assemblages. Time-series of satellite ocean colour data were also used for observing large scaled spatial distribution of phytoplankton and its seasonality related with sea ice distributions. Possible implications of these results will be discussed.

  20. Composition of phytoplankton communities and their contribution to secondary productivity in Carolina Bays on the Savannah River Plant

    SciTech Connect

    Williams, J.B. . Dept. of Natural Sciences)

    1989-08-01

    The overall goal of this three-year project is to determine the importance of phytoplankton (microscopic algae) as a component of the food chain base in SRS Carolina Bays (shallow temporary ponds endemic to the Southeastern US). Previous investigations and ongoing SREL studies have determined the importance of Carolina bay zooplankton (microscopic crustacean herbivores) to the early life stages of amphibians. Our project is testing the hypothesis that phytoplankton are the primary component of zooplankton diets in these bays. Carolina Bays represent critical habitats for a whole class of vertebrates at SRS, the amphibians. Details of phytoplankton dynamics and productivity gained from our project will advance our understanding of ecological energetics within Carolina Bay systems. These results will also help determine the potential impact that these minute, but productive plants can have on SRS biota beyond the bounds of these aquatic ecosystems. Additional implications can be made concerning chemical elemental uptake and transfer from phytoplankton to higher trophic levels. 12 figs.

  1. Influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of persistent organic pollutants

    SciTech Connect

    Dachs, J.; Eisenreich, S.J.; Hoff, R.M.

    2000-03-15

    The influence of eutrophication on the biogeochemical cycles of persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) is largely unknown. In this paper, the application of a dynamic air-water-phytoplankton exchange model to Lake Ontario is used as a framework to study the influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of POPs. The results of these simulations demonstrate that air-water exchange controls phytoplankton concentrations in remote aquatic environments with little influence from land-based sources of pollutants and supports levels in even historically contaminated systems. Furthermore, eutrophication or high biomass leads to a disequilibrium between the gas and dissolved phase, enhanced air-water exchange, and vertical sinking fluxes of PCBs. Increasing biomass also depletes the water concentrations leading to lower than equilibrium PCB concentrations in phytoplankton. Implications to future trends in PCB pollution in Lake Ontario are also discussed.

  2. Linking Quality of Life and Standard of Living Priorities with Rates of Return in Education: Implications for Ontario's Community Colleges

    ERIC Educational Resources Information Center

    Menna, Agostino

    2012-01-01

    This study begins to develop a way to measure the returns and benefits of education using a standard of living and quality of life approach. It sought identification of school priorities among senior level managers at postsecondary institutions in Ontario, Canada, and found that these administrators prioritized standard of living over quality of…

  3. Factors affecting phytoplankton distribution and production in the Elephant Island area, Antarctica

    SciTech Connect

    Helbling, E.W.

    1993-01-01

    During the austral summer of four years, 1990 to 1993, studies on phytoplankton were performed in the Elephant Island area as one component of the US Antarctica Marine Living Resources program. In addition to continuous measurements (temperature, salinity, chlorophyll-a, beam attenuation) made on ship's intake water, a profiling CTD-rosette unit was used to obtain water column characteristics (temperature, salinity, chlorophyll-a, attenuation of solar radiation, beam attenuation) from the surface to 750m depth and also water samples from at least 10 depths for chemical and biological analyses. The sampling grid consisted of an average of 70 stations, all of which were occupied two times each year. The Elephant Island area is a transition zone between the rich coastal areas, where phytoplankton can develop dense blooms, and pelagic waters where the phytoplankton biomass is in general very low. A frontal zone was usually found to the north of Elephant Island and over the continental slope, and high phytoplankton biomass was in general associated with this frontal region. Although the location of this frontal system showed seasonal movement in a north-south direction, it seems to be a consistent feature from year to year. There seems to be considerable year-to-year variability in physical (water temperatures and salinity) and phytoplankton characteristics within the study area, in regard to both distributional patterns in surface waters and to profile characteristics in the upper 100m of the water column. With shallow upper mixed layer depths of less than 50 m, phytoplankton can attain relatively high concentrations. Optimum light conditions for growth occurred when the mixed layer was less than 55% of the euphotic zone. As the area around Elephant Island is characterized by relatively strong and frequent winds, the depth of the upper mixed layer at many stations approached the depth of the euphotic zone, with the result that growth of phytoplankton was light limited.

  4. Carbon Concentrating Mechanisms & C4 Enzymes In Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Moolna, A.; Hermoso, M.; Rickaby, R.

    2009-12-01

    Photosynthetic CO2 assimilation by marine phytoplankton is a major sink in the Earth’s carbon cycle. Understanding the molecular biogeochemistry of this carbon capture is crucial to predicting how the Earth will respond to the carbon emissions driving human-induced climate change. We are investigating the connection of phytoplankton photosynthesis to different CO2 levels using the diatom Thalassiosira weissflogii and the coccolithophores Emiliania huxleyi and Gephyrocapsa oceanica. Phytoplankton in equilibrium with present-day atmospheric CO2 levels have carbon concentrating mechanisms (CCMs) that increase their internal concentration of dissolved inorganic carbon (DIC) relative to their surrounding seawater. By acclimating cultures to seawater with quadrupled DIC availability, the CCM physiology is relaxed. This is demonstrated by resuspending the phytoplankton in CO2-free seawater and then plotting the response curve of photosynthetic O2 evolution rate against the addition of specific concentrations of DIC (Figure 1). Relaxation implies less energy used for CCMs and so more energy may be available for carbon fixation. Scanning electron micrographs of high DIC G. oceanica cultures, for example, show that the size of both the coccosphere and of individual coccoliths is unchanged; but the external shield of the coccolith extends further into the central area. This suggests an increase in calcification, with implications for carbon partition between organic and inorganic fluxes to the seafloor. Of particular interest is the possibility that C4 photosynthesis could provide a CCM for marine phytoplankton. The carbon-fixing Rubisco enzyme can only use CO2 as a substrate but, due to reaction between CO2 and H2O, most of the CO2 dissolved in seawater is actually present as HCO3-. In C4 land plants, CO2 for Rubisco is provided via a four-carbon intermediate compound generated from HCO3-; and the basic C4 machinery is found in all photosynthetic life because of

  5. Elemental analysis of single phytoplankton cells using the Lund nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Pallon, Jan; Elfman, Mikael; Kristiansson, Per; Malmqvist, Klas; Granéli, Edna; Sellborn, Anders; Karlsson, Chatarina

    1999-10-01

    The occurrence of annual marine phytoplankton blooms is becoming a global problem. In Europe, the NUTOX project supported by the EC investigates if unbalanced nutrient compositions in the water promote the dominance of harmful phytoplankton species. One of the tasks is the determination of the elemental composition of single phytoplankton cells. This is carried out using the Lund Nuclear Microprobe with a special focus on C, N, P and K. The overall aim is to understand the mechanism leading to toxin production, model it and eventually propose a counteracting method. The preparative method, used to isolate single living cells while reducing their salt environment, is an important part of the analytical procedure. A comparison of light element detection using backscattering from protons and nuclear reaction analysis using deuterons is made.

  6. The impact of temperature on marine phytoplankton resource allocation and metabolism

    NASA Astrophysics Data System (ADS)

    Toseland, A.; Daines, S. J.; Clark, J. R.; Kirkham, A.; Strauss, J.; Uhlig, C.; Lenton, T. M.; Valentin, K.; Pearson, G. A.; Moulton, V.; Mock, T.

    2013-11-01

    Marine phytoplankton are responsible for ~50% of the CO2 that is fixed annually worldwide, and contribute massively to other biogeochemical cycles in the oceans. Their contribution depends significantly on the interplay between dynamic environmental conditions and the metabolic responses that underpin resource allocation and hence biogeochemical cycling in the oceans. However, these complex environment-biome interactions have not been studied on a larger scale. Here we use a set of integrative approaches that combine metatranscriptomes, biochemical data, cellular physiology and emergent phytoplankton growth strategies in a global ecosystems model, to show that temperature significantly affects eukaryotic phytoplankton metabolism with consequences for biogeochemical cycling under global warming. In particular, the rate of protein synthesis strongly increases under high temperatures even though the numbers of ribosomes and their associated rRNAs decreases. Thus, at higher temperatures, eukaryotic phytoplankton seem to require a lower density of ribosomes to produce the required amounts of cellular protein. The reduction of phosphate-rich ribosomes in warmer oceans will tend to produce higher organismal nitrogen (N) to phosphate (P) ratios, in turn increasing demand for N with consequences for the marine carbon cycle due to shifts towards N-limitation. Our integrative approach suggests that temperature plays a previously unrecognized, critical role in resource allocation and marine phytoplankton stoichiometry, with implications for the biogeochemical cycles that they drive.

  7. Biochemical oxygen demand and algae: Fractionation of phytoplankton and nonphytoplankton respiration in a large river

    SciTech Connect

    Cohen, R.R.H. )

    1990-04-01

    Mass balance equations for dissolved oxygen in streams are formulated to account for, among other variables, algal respiration (R), and biochemical oxygen demand (BOD). The oxygen consumption measured in primary productivity-respiration analyses is not R but is total community oxygen consumption (TCOC), and BOD measurements are complicated by undefined algal components. Ultimate BOD was found to be 0.24 mg of O{sub 2} consumed per {mu}g chlorophyll a and carbonaceous BOD was 0.20 per {mu}g chlorophyll a in excess of background BOD. The results were similar for live and dead algae. Phytoplankton respiration was fractionated from nonphytoplankton oxygen consumption (NPOC) by the regression of respiration against chlorophyll a to obtain a y intercept of zero chlorophyll. The intercepts, NPOC, closely matched O{sub 2} consumption measured when phytoplankton biomass was very low. Phytoplankton respiration, calculated as the residual of the difference between TCOC and NPOC,ranged from 0.2 to 1.5 (mean = 0.88) mg O{sub 2} per mg chlorophyll a per hour, close to the literature value of 1 (in cultures). Depth-integrated (DI) phytoplankton respiration was 1/4 to 1/3 of DI gross primary productivity and 1-3% of maximum primary productivity. The separation of phytoplankton R and NPOC permitted the demonstration that R probably is not a simple function of productivity.

  8. Determining the Population Size of Pond Phytoplankton.

    ERIC Educational Resources Information Center

    Hummer, Paul J.

    1980-01-01

    Discusses methods for determining the population size of pond phytoplankton, including water sampling techniques, laboratory analysis of samples, and additional studies worthy of investigation in class or as individual projects. (CS)

  9. Atmospheric Dust Impacts on Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Paytan, A.; Mackey, K. R.; Chen, Y.; Mahowald, N.; Doney, S.; Post, A.

    2007-12-01

    Atmospheric dust deposition is an important source of nutrients and trace metals to the ocean. It likely enhances ocean productivity and carbon sequestration, thus influencing atmospheric carbon dioxide concentrations and climate. We used well-characterized aerosol samples in incubation experiments to examine the effect of aerosol on phytoplankton growth and species distribution. Not all dust stimulates growth. The response of phytoplankton to aerosol additions depends on specific aerosol chemistry. Moreover, different species within the phytoplankton community respond differently to dust additions. The variability in the response to dust deposition may account for change in predicted distribution of oceanic primary production. To more accurately predict the impacts of expected future changes in dust deposition on climate global climate models must include these variable and complex interactions between aerosols and marine phytoplankton.

  10. Challenges experienced by rural women in India living with AIDS and implications for the delivery of HIV/AIDS care.

    PubMed

    Nyamathi, Adeline M; Sinha, Sanjeev; Ganguly, Kalyan K; William, Ravi Raj; Heravian, Anisa; Ramakrishnan, Padma; Greengold, Barbara; Ekstrand, Maria; Rao, Pantangi Venkata Rama

    2011-04-01

    Researchers explored the barriers to AIDS care for rural women living with AIDS, and they investigated alternative delivery models to increase the women's adherence to antiretroviral therapy (ART). Community-based participatory research focus groups were conducted by the researchers with a convenience sample of 39 women living with AIDS from a primary health center (PHC) near Chennai, India, and with nurses, physicians, and Accredited Social Health Activists (Ashas), who are lay health care workers. The most prevalent barriers expressed by the women were sickness-related, psychological, financial issues with childcare, and distance, or transportation to the site. Women living with AIDS reviewed Ashas favorably.

  11. A Re-examination of the Fine Structure of the Living Cell and its Implications for Biological Education.

    ERIC Educational Resources Information Center

    Hillman, Harold; Sartory, Peter

    1980-01-01

    Presents a summary of evidence suggesting that certain cellular parts may be artifacts arising during preparation of tissues for electron microscopy and discusses implications of same for biology curriculum and instruction. (SK)

  12. Estimating phytoplankton biomass and productivity. Final report

    SciTech Connect

    Janik, J.J.; Taylor, W.D.; Lambou, V.W.

    1981-06-01

    Estimates of phytoplankton biomass and rates of production can provide a manager with some insight into questions concerning trophic state, water quality, and aesthetics. Methods for estimation of phytoplankton biomass include a gravimetric approach, microscopic enumeration, and chlorophyll analysis, Strengths and weaknesses of these and other methods are presented. Productivity estimation techniques are discussed including oxygen measurement, carbon dioxide measurements, carbon 14 measurements, and the chlorophyll method. Again, strengths and weaknesses are presented.

  13. Phytoplankton bloom along the coast of Namibia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This MODIS true-color image, acquired March 4, 2002, shows a phytoplankton bloom along the coast of Namibia. Phytoplankton is a microscopic organism that utilizes chlorophyll, which sunlight reflects off of to create this intense blue-green color in the water. Also prominent in this image is the Skeleton Coast Game Park, which runs along Namibia's northern coast and here glows a beautiful coral-orange color.

  14. Nearshore phytoplankton of Hammond Bay, Lake Huron

    USGS Publications Warehouse

    Brown, Charles L.; Manny, Bruce A.

    1983-01-01

    To predict the effects of increased nutrient loading on nearshore phytoplankton populations in northern Lake Huron, we collected phytoplankton from a small, nearshore water intake at Hammond Bay four times per week from August 1973 to July 1975. Phytoplankton density, taxonomic composition, and biomass in the nearshore waters followed predictable, seasonal fluctuations during each of two 12-month periods. The density of total phytoplankton was high (450600 cells/mL) in June and low (60 to 210 cells/mL) from January to April each year. The mean annual composition of the phytoplankton assemblage by number for the study period was 33% cryptomonads, 24% diatoms, 16% chrysophytes, 16% blue-green algae, and 10% green algae. Phytoplankton biomass was low through each year (range, 0.09 to 0.66 g/m3), resembling values previously reported from Lake Superior. Pennate diatoms contributed 60 to 80% of the total biomass from December to April and in July. Phytoflagellates consisting of chrysophytes and cryptomonads accounted for 35% of the biomass throughout the 2-year study.

  15. Qualitative differences in the early immune response to live and killed Leishmania major: Implications for vaccination strategies against Leishmaniasis.

    PubMed

    Okwor, Ifeoma; Liu, Dong; Uzonna, Jude

    2009-04-28

    Recovery from natural or deliberate infection with Leishmania major leads to the development of lifelong immunity against rechallenge infections. In contrast, vaccination with killed parasites or defined leishmanial antigens generally induces only short-term protection. The reasons for this difference are currently not known but may be related to differences in the quality of the early immune responses to live and killed parasites. Here, we report that live and killed L. major parasites elicit comparable early inflammatory response as evidenced by influx and/or proliferation of cells in the draining lymph nodes (dLNs). In contrast, the early cytokine responses were qualitatively different. Cells from mice inoculated with killed parasites produced significantly more antigen-specific IL-4 and less IFN-gamma than those from mice injected with live parasites. Inclusion of CpG ODN into killed parasite preparations changed the early response to killed parasites from IL-4 to a predominantly IFN-gamma response, resulting in better protection following secondary high dose virulent L. major challenge. Interestingly, CpG-mediated enhancement of killed parasites-induced protection was short-lived and waned after 12 weeks. Taken together, these results suggest that the nature of primary immunity induced by killed and live parasites are qualitatively different and that these differences may account for the differential protection seen in mice following vaccination with live and killed parasites. They further suggest that modulating the early response with an appropriate adjuvant could enhance efficacy of killed parasite vaccines.

  16. Living in space: scientific, medical and cultural implications. A selection of papers presented at the 14th IAA Humans in Space Symposium.

    PubMed

    2005-01-01

    The Humans In Space 2003 symposium, entitled "Living in Space: Scientific, Medical and Cultural Implications," was sponsored by the Canadian Space Agency and held in Banff, Alberta, from May 18-22, 2003. There were 150 papers presented in six theme areas: education, missions, physiology, psychology, radiation, and technology. The 32 papers in this volume are organized into Education/Outreach, Medical Care (Bedrest), Medical Care (Countermeasures), Medical Care, Missions (Mars), Missions (Neurolab), Missions (Historical Lessons), Physiology, Psychology, Radiation, Technology (Human Factors), and Technology. PMID:15834992

  17. Iron, phytoplankton growth, and the carbon cycle.

    PubMed

    Street, Joseph H; Paytan, Adina

    2005-01-01

    Iron is an essential nutrient for all living organisms. Iron is required for the synthesis of chlorophyll and of several photosynthetic electron transport proteins and for the reduction of CO2, SO4(2-), and NO3(-) during the photosynthetic production of organic compounds. Iron concentrations in vast areas of the ocean are very low (<1 nM) due to the low solubility of iron in oxic seawater. Low iron concentrations have been shown to limit primary production rates, biomass accumulation, and ecosystem structure in a variety of open-ocean environments, including the equatorial Pacific, the subarctic Pacific and the Southern Ocean and even in some coastal areas. Oceanic primary production, the transfer of carbon dioxide into organic carbon by photosynthetic plankton (phytoplankton), is one process by which atmospheric CO2 can be transferred to the deep ocean and sequestered for long periods of time. Accordingly, iron limitation of primary producers likely plays a major role in the global carbon cycle. It has been suggested that variations in oceanic primary productivity, spurred by changes in the deposition of iron in atmospheric dust, control atmospheric CO2 concentrations, and hence global climate, over glacial-interglacial timescales. A contemporary application of this "iron hypothesis" promotes the large-scale iron fertilization of ocean regions as a means of enhancing the ability of the ocean to store anthropogenic CO2 and mitigate 21st century climate change. Recent in situ iron enrichment experiments in the HNLC regions, however, cast doubt on the efficacy and advisability of iron fertilization schemes. The experiments have confirmed the role of iron in regulating primary productivity, but resulted in only small carbon export fluxes to the depths necessary for long-term sequestration. Above all, these experiments and other studies of iron biogeochemistry over the last two decades have begun to illustrate the great complexity of the ocean system. Attempts to

  18. Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton

    PubMed Central

    Cuvelier, Marie L.; Allen, Andrew E.; Monier, Adam; McCrow, John P.; Messié, Monique; Tringe, Susannah G.; Woyke, Tanja; Welsh, Rory M.; Ishoey, Thomas; Lee, Jae-Hyeok; Binder, Brian J.; DuPont, Chris L.; Latasa, Mikel; Guigand, Cédric; Buck, Kurt R.; Hilton, Jason; Thiagarajan, Mathangi; Caler, Elisabet; Read, Betsy; Lasken, Roger S.; Chavez, Francisco P.; Worden, Alexandra Z.

    2010-01-01

    Among eukaryotes, four major phytoplankton lineages are responsible for marine photosynthesis; prymnesiophytes, alveolates, stramenopiles, and prasinophytes. Contributions by individual taxa, however, are not well known, and genomes have been analyzed from only the latter two lineages. Tiny “picoplanktonic” members of the prymnesiophyte lineage have long been inferred to be ecologically important but remain poorly characterized. Here, we examine pico-prymnesiophyte evolutionary history and ecology using cultivation-independent methods. 18S rRNA gene analysis showed pico-prymnesiophytes belonged to broadly distributed uncultivated taxa. Therefore, we used targeted metagenomics to analyze uncultured pico-prymnesiophytes sorted by flow cytometry from subtropical North Atlantic waters. The data reveal a composite nuclear-encoded gene repertoire with strong green-lineage affiliations, which contrasts with the evolutionary history indicated by the plastid genome. Measured pico-prymnesiophyte growth rates were rapid in this region, resulting in primary production contributions similar to the cyanobacterium Prochlorococcus. On average, pico-prymnesiophytes formed 25% of global picophytoplankton biomass, with differing contributions in five biogeographical provinces spanning tropical to subpolar systems. Elements likely contributing to success include high gene density and genes potentially involved in defense and nutrient uptake. Our findings have implications reaching beyond pico-prymnesiophytes, to the prasinophytes and stramenopiles. For example, prevalence of putative Ni-containing superoxide dismutases (SODs), instead of Fe-containing SODs, seems to be a common adaptation among eukaryotic phytoplankton for reducing Fe quotas in low-Fe modern oceans. Moreover, highly mosaic gene repertoires, although compositionally distinct for each major eukaryotic lineage, now seem to be an underlying facet of successful marine phytoplankton. PMID:20668244

  19. Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton.

    PubMed

    Cuvelier, Marie L; Allen, Andrew E; Monier, Adam; McCrow, John P; Messié, Monique; Tringe, Susannah G; Woyke, Tanja; Welsh, Rory M; Ishoey, Thomas; Lee, Jae-Hyeok; Binder, Brian J; DuPont, Chris L; Latasa, Mikel; Guigand, Cédric; Buck, Kurt R; Hilton, Jason; Thiagarajan, Mathangi; Caler, Elisabet; Read, Betsy; Lasken, Roger S; Chavez, Francisco P; Worden, Alexandra Z

    2010-08-17

    Among eukaryotes, four major phytoplankton lineages are responsible for marine photosynthesis; prymnesiophytes, alveolates, stramenopiles, and prasinophytes. Contributions by individual taxa, however, are not well known, and genomes have been analyzed from only the latter two lineages. Tiny "picoplanktonic" members of the prymnesiophyte lineage have long been inferred to be ecologically important but remain poorly characterized. Here, we examine pico-prymnesiophyte evolutionary history and ecology using cultivation-independent methods. 18S rRNA gene analysis showed pico-prymnesiophytes belonged to broadly distributed uncultivated taxa. Therefore, we used targeted metagenomics to analyze uncultured pico-prymnesiophytes sorted by flow cytometry from subtropical North Atlantic waters. The data reveal a composite nuclear-encoded gene repertoire with strong green-lineage affiliations, which contrasts with the evolutionary history indicated by the plastid genome. Measured pico-prymnesiophyte growth rates were rapid in this region, resulting in primary production contributions similar to the cyanobacterium Prochlorococcus. On average, pico-prymnesiophytes formed 25% of global picophytoplankton biomass, with differing contributions in five biogeographical provinces spanning tropical to subpolar systems. Elements likely contributing to success include high gene density and genes potentially involved in defense and nutrient uptake. Our findings have implications reaching beyond pico-prymnesiophytes, to the prasinophytes and stramenopiles. For example, prevalence of putative Ni-containing superoxide dismutases (SODs), instead of Fe-containing SODs, seems to be a common adaptation among eukaryotic phytoplankton for reducing Fe quotas in low-Fe modern oceans. Moreover, highly mosaic gene repertoires, although compositionally distinct for each major eukaryotic lineage, now seem to be an underlying facet of successful marine phytoplankton.

  20. Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton.

    PubMed

    Bielmyer-Fraser, Gretchen K; Jarvis, Tayler A; Lenihan, Hunter S; Miller, Robert J

    2014-11-18

    Discharges of metal oxide nanoparticles into aquatic environments are increasing with their use in society, thereby increasing exposure risk for aquatic organisms. Separating the impacts of nanoparticle from dissolved metal pollution is critical for assessing the environmental risks of the rapidly growing nanomaterial industry, especially in terms of ecosystem effects. Metal oxides negatively affect several species of marine phytoplankton, which are responsible for most marine primary production. Whether such toxicity is generally due to nanoparticles or exposure to dissolved metals liberated from particles is uncertain. The type and severity of toxicity depends in part on whether phytoplankton cells take up and accumulate primarily nanoparticles or dissolved metal ions. We compared the responses of the marine diatom, Thalassiosira weissflogii, exposed to ZnO, AgO, and CuO nanoparticles with the responses of T. weissflogii cells exposed to the dissolved metals ZnCl2, AgNO3, and CuCl2 for 7 d. Cellular metal accumulation, metal distribution, and algal population growth were measured to elucidate differences in exposure to the different forms of metal. Concentration-dependent metal accumulation and reduced population growth were observed in T. weissflogii exposed to nanometal oxides, as well as dissolved metals. Significant effects on population growth were observed at the lowest concentrations tested for all metals, with similar toxicity for both dissolved and nanoparticulate metals. Cellular metal distribution, however, markedly differed between T. weissflogii exposed to nanometal oxides versus those exposed to dissolved metals. Metal concentrations were highest in the algal cell wall when cells were exposed to metal oxide nanoparticles, whereas algae exposed to dissolved metals had higher proportions of metal in the organelle and endoplasmic reticulum fractions. These results have implications for marine plankton communities as well as higher trophic levels, since

  1. Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton.

    PubMed

    Bielmyer-Fraser, Gretchen K; Jarvis, Tayler A; Lenihan, Hunter S; Miller, Robert J

    2014-11-18

    Discharges of metal oxide nanoparticles into aquatic environments are increasing with their use in society, thereby increasing exposure risk for aquatic organisms. Separating the impacts of nanoparticle from dissolved metal pollution is critical for assessing the environmental risks of the rapidly growing nanomaterial industry, especially in terms of ecosystem effects. Metal oxides negatively affect several species of marine phytoplankton, which are responsible for most marine primary production. Whether such toxicity is generally due to nanoparticles or exposure to dissolved metals liberated from particles is uncertain. The type and severity of toxicity depends in part on whether phytoplankton cells take up and accumulate primarily nanoparticles or dissolved metal ions. We compared the responses of the marine diatom, Thalassiosira weissflogii, exposed to ZnO, AgO, and CuO nanoparticles with the responses of T. weissflogii cells exposed to the dissolved metals ZnCl2, AgNO3, and CuCl2 for 7 d. Cellular metal accumulation, metal distribution, and algal population growth were measured to elucidate differences in exposure to the different forms of metal. Concentration-dependent metal accumulation and reduced population growth were observed in T. weissflogii exposed to nanometal oxides, as well as dissolved metals. Significant effects on population growth were observed at the lowest concentrations tested for all metals, with similar toxicity for both dissolved and nanoparticulate metals. Cellular metal distribution, however, markedly differed between T. weissflogii exposed to nanometal oxides versus those exposed to dissolved metals. Metal concentrations were highest in the algal cell wall when cells were exposed to metal oxide nanoparticles, whereas algae exposed to dissolved metals had higher proportions of metal in the organelle and endoplasmic reticulum fractions. These results have implications for marine plankton communities as well as higher trophic levels, since

  2. Experiences of African immigrant women living with HIV in the U.K.: implications for health professionals.

    PubMed

    Ndirangu, Eunice W; Evans, Catrin

    2009-04-01

    In the U.K. immigrant women from Africa constitute an increasingly large proportion of newly diagnosed cases of HIV. A significant minority of these are refugees and asylum seekers. Very little is known about their experiences of living with HIV/AIDS, their psychosocial needs or their views of health care provision. This paper reports the results of a qualitative study that explored these issues by interviewing eight African women living with HIV in the British city of Nottingham. Women's ability to live positively with HIV was found to be strongly shaped by their migration history, their legal status, their experience of AIDS-related stigma and their Christian faith. Significantly, health services were represented as a safe social space, and were highly valued as a source of advice and support. The findings indicate that non-judgemental, personalised health care plays a key role in encouraging migrant African women to access psychosocial support and appropriate HIV services.

  3. Systematic Evaluation of Bioorthogonal Reactions in Live Cells with Clickable HaloTag Ligands: Implications for Intracellular Imaging.

    PubMed

    Murrey, Heather E; Judkins, Joshua C; Am Ende, Christopher W; Ballard, T Eric; Fang, Yinzhi; Riccardi, Keith; Di, Li; Guilmette, Edward R; Schwartz, Joel W; Fox, Joseph M; Johnson, Douglas S

    2015-09-01

    Bioorthogonal reactions, including the strain-promoted azide-alkyne cycloaddition (SPAAC) and inverse electron demand Diels-Alder (iEDDA) reactions, have become increasingly popular for live-cell imaging applications. However, the stability and reactivity of reagents has never been systematically explored in the context of a living cell. Here we report a universal, organelle-targetable system based on HaloTag protein technology for directly comparing bioorthogonal reagent reactivity, specificity, and stability using clickable HaloTag ligands in various subcellular compartments. This system enabled a detailed comparison of the bioorthogonal reactions in live cells and informed the selection of optimal reagents and conditions for live-cell imaging studies. We found that the reaction of sTCO with monosubstituted tetrazines is the fastest reaction in cells; however, both reagents have stability issues. To address this, we introduced a new variant of sTCO, Ag-sTCO, which has much improved stability and can be used directly in cells for rapid bioorthogonal reactions with tetrazines. Utilization of Ag complexes of conformationally strained trans-cyclooctenes should greatly expand their usefulness especially when paired with less reactive, more stable tetrazines.

  4. How Home Economics Undergraduates Picture Their Work Lives in the Year 2,000: Implications for Curriculum Development.

    ERIC Educational Resources Information Center

    Blinn, Lynn Marie; Pike, Gary R.

    The objective of a research project was to describe how undergraduate home economics students perceive their work lives in the year 2000 according to age, race, gender, marital status, and geographic region of the country. A valid, field-tested survey instrument developed specifically for this project was administered to 324 volunteer…

  5. Systematic Evaluation of Bioorthogonal Reactions in Live Cells with Clickable HaloTag Ligands: Implications for Intracellular Imaging

    PubMed Central

    Murrey, Heather E.; Judkins, Joshua C.; am Ende, Christopher W.; Ballard, T. Eric; Fang, Yinzhi; Riccardi, Keith; Di, Li; Guilmette, Edward R.; Schwartz, Joel W.; Fox, Joseph M.; Johnson, Douglas S.

    2015-01-01

    Bioorthogonal reactions, including the strain-promoted azide-alkyne cycloaddition (SPAAC) and inverse electron demand Diels-Alder (iEDDA) reactions, have become increasingly popular for live cell imaging applications. However, the stability and reactivity of reagents has never been systematically explored in the context of a living cell. Here we report a universal, organelle-targetable system based on HaloTag protein technology for directly comparing biorthogonal reagent reactivity, specificity, and stability using clickable HaloTag ligands in various subcellular compartments. This system enabled a detailed comparison of the bioorthogonal reactions in live cells and informed the selection of optimal reagents and conditions for live cell imaging studies. We found that the reaction of sTCO with monosubstituted tetrazines is the fastest reaction in cells, however both reagents have stability issues. To address this, we introduced a new variant of sTCO, Ag-sTCO, which has much improved stability and can be used directly in cells for rapid biorthogonal reactions with tetrazines. Utilization of Ag complexes of conformationally strained trans-cyclooctenes should greatly expand their usefulness especially when paired with less reactive, more stable tetrazines. PMID:26270632

  6. Influence of vitamin B auxotrophy on nitrogen metabolism in eukaryotic phytoplankton

    PubMed Central

    Bertrand, Erin M.; Allen, Andrew E.

    2012-01-01

    While nitrogen availability is known to limit primary production in large parts of the ocean, vitamin starvation amongst eukaryotic phytoplankton is becoming increasingly recognized as an oceanographically relevant phenomenon. Cobalamin (B12) and thiamine (B1) auxotrophy are widespread throughout eukaryotic phytoplankton, with over 50% of cultured isolates requiring B12 and 20% requiring B1. The frequency of vitamin auxotrophy in harmful algal bloom species is even higher. Instances of colimitation between nitrogen and B vitamins have been observed in marine environments, and interactions between these nutrients have been shown to impact phytoplankton species composition. This review surveys available data, including relevant gene expression patterns, to evaluate the potential for interactive effects of nitrogen and vitamin B12 and B1 starvation in eukaryotic phytoplankton. B12 plays essential roles in amino acid and one-carbon metabolism, while B1 is important for primary carbohydrate and amino acid metabolism and likely useful as an anti-oxidant. Here we will focus on three potential metabolic interconnections between vitamin, nitrogen, and sulfur metabolism that may have ramifications for the role of vitamin and nitrogen scarcities in driving ocean productivity and species composition. These include: (1) B12, B1, and N starvation impacts on osmolyte and antioxidant production, (2) B12 and B1 starvation impacts on polyamine biosynthesis, and (3) influence of B12 and B1 starvation on the diatom urea cycle and amino acid recycling through impacts on the citric acid cycle. We evaluate evidence for these interconnections and identify oceanographic contexts in which each may impact rates of primary production and phytoplankton community composition. Major implications include that B12 and B1 deprivation may impair the ability of phytoplankton to recover from nitrogen starvation and that changes in vitamin and nitrogen availability may synergistically impact harmful

  7. Tidal variation of phytoplankton in the coastal waters of South Andaman, India.

    PubMed

    Chakraborty, Arindam; Padmavati, Gadi; Ghosh, Amit K

    2015-01-01

    Tidal variations of phytoplankton were studied at two stations i.e., Station 1 (Science Centre) and Station 2 (Junglighat Bay) during the period of December 2010 to February 2011 in the coastal waters of South Andaman Islands, India. Phytoplankton biomass (Chlorophyll-a) was observed low (avg. 0.02- 0.1 mg m(-3)) at the stations during the sampling period. Low values of dissolved oxygen and biochemical oxygen demand were recorded during low tide. In all 114 species belonging to 42 genera of diatoms, 16 genera of dinoflagellates and 4 genera of cyanobacteria were identified. Phytoplankton population density ranged from 827cells I(-1) to 11,790 cells l(-1) and was high during high tide in comparison to low tide. Diatoms were dominant (70.86-88.0%) and contributed more towards phytoplankton biomass followed by dinoflagellates (10.8-19.53%) and cyanobacteria (0.73-9.4%). Dinoflagellates were visualised more in the samples when diatom population had declined. Diversity indices such as species diversity (H') ranged from 0.68-3.1; species richness (d) varied from 2.18-6.54 and Pielou's evenness (J') ranged from 0.24-0.94. H' was more during high tide than at low tide at Station 2. On the other hand, low diversity and equitability in phytoplankton population were observed at Station 1 during the month of January, 2011. It may be due to dominance of mono specific cells of Rhizosolenia sp. The study indicates low production of phytoplankton in coastal waters. Variation of tides may leave implications on sampling, because it has an influence on species diversity and proportion of specific micro algal groups at different times.

  8. Astaxanthin production in marine pelagic copepods grazing on two different phytoplankton diets

    NASA Astrophysics Data System (ADS)

    Van Nieuwerburgh, Lies; Wänstrand, Ingrid; Liu, Jianguo; Snoeijs, Pauli

    2005-02-01

    The red carotenoid astaxanthin is a powerful natural antioxidant of great importance in aquatic food webs where it is abundant in eggs and body tissues of fish and crustaceans. Little is known about the impact of the phytoplankton diet on astaxanthin production in copepods, its major pelagic producers. We followed the transfer of carotenoids from phytoplankton to copepods in a mesocosm experiment on the northern Atlantic coast (Norway) and recorded the astaxanthin production in copepods. Wild copepods grazed on nutrient-manipulated phytoplankton blooms, which differed in community composition and nutrient status (nitrogen or silicate limitation). The copepod pigments consisted mainly of free astaxanthin and mono- and diesters of astaxanthin. We found no significant difference in astaxanthin production per copepod individual or per unit C depending on the phytoplankton community. However, in the mesocosms astaxanthin per unit C decreased compared with natural levels, probably through a lower demand for photoprotection by the copepods in the dense phytoplankton blooms. The total astaxanthin production per litre was higher in the silicate-limited mesocosms through increased copepod density. Pigment ratio comparisons suggested that the copepod diet here consisted more of diatoms than in the nitrogen-limited mesocosms. Silicate-saturated diatoms were less grazed, possibly because they could invest more in defence mechanisms against their predators. Our study suggests that the production of astaxanthin in aquatic systems can be affected by changes in nutrient dynamics mediated by phytoplankton community composition and copepod population growth. This bottom-up force may have implications for antioxidant protection at higher trophic levels in the food web.

  9. Tidal variation of phytoplankton in the coastal waters of South Andaman, India.

    PubMed

    Chakraborty, Arindam; Padmavati, Gadi; Ghosh, Amit K

    2015-01-01

    Tidal variations of phytoplankton were studied at two stations i.e., Station 1 (Science Centre) and Station 2 (Junglighat Bay) during the period of December 2010 to February 2011 in the coastal waters of South Andaman Islands, India. Phytoplankton biomass (Chlorophyll-a) was observed low (avg. 0.02- 0.1 mg m(-3)) at the stations during the sampling period. Low values of dissolved oxygen and biochemical oxygen demand were recorded during low tide. In all 114 species belonging to 42 genera of diatoms, 16 genera of dinoflagellates and 4 genera of cyanobacteria were identified. Phytoplankton population density ranged from 827cells I(-1) to 11,790 cells l(-1) and was high during high tide in comparison to low tide. Diatoms were dominant (70.86-88.0%) and contributed more towards phytoplankton biomass followed by dinoflagellates (10.8-19.53%) and cyanobacteria (0.73-9.4%). Dinoflagellates were visualised more in the samples when diatom population had declined. Diversity indices such as species diversity (H') ranged from 0.68-3.1; species richness (d) varied from 2.18-6.54 and Pielou's evenness (J') ranged from 0.24-0.94. H' was more during high tide than at low tide at Station 2. On the other hand, low diversity and equitability in phytoplankton population were observed at Station 1 during the month of January, 2011. It may be due to dominance of mono specific cells of Rhizosolenia sp. The study indicates low production of phytoplankton in coastal waters. Variation of tides may leave implications on sampling, because it has an influence on species diversity and proportion of specific micro algal groups at different times. PMID:26536794

  10. Generalized receptor law governs phototaxis in the phytoplankton Euglena gracilis

    PubMed Central

    Giometto, Andrea; Altermatt, Florian; Maritan, Amos; Stocker, Roman; Rinaldo, Andrea

    2015-01-01

    Phototaxis, the process through which motile organisms direct their swimming toward or away from light, is implicated in key ecological phenomena (including algal blooms and diel vertical migration) that shape the distribution, diversity, and productivity of phytoplankton and thus energy transfer to higher trophic levels in aquatic ecosystems. Phototaxis also finds important applications in biofuel reactors and microbiopropellers and is argued to serve as a benchmark for the study of biological invasions in heterogeneous environments owing to the ease of generating stochastic light fields. Despite its ecological and technological relevance, an experimentally tested, general theoretical model of phototaxis seems unavailable to date. Here, we present accurate measurements of the behavior of the alga Euglena gracilis when exposed to controlled light fields. Analysis of E. gracilis’ phototactic accumulation dynamics over a broad range of light intensities proves that the classic Keller–Segel mathematical framework for taxis provides an accurate description of both positive and negative phototaxis only when phototactic sensitivity is modeled by a generalized “receptor law,” a specific nonlinear response function to light intensity that drives algae toward beneficial light conditions and away from harmful ones. The proposed phototactic model captures the temporal dynamics of both cells’ accumulation toward light sources and their dispersion upon light cessation. The model could thus be of use in integrating models of vertical phytoplankton migrations in marine and freshwater ecosystems, and in the design of bioreactors. PMID:25964338

  11. Light-mediated release of dissolved organic carbon by phytoplankton

    NASA Astrophysics Data System (ADS)

    Cherrier, Jennifer; Valentine, SarahKeith; Hamill, Barbara; Jeffrey, Wade H.; Marra, John F.

    2015-07-01

    Laboratory and field studies were carried out to examine the effects of irradiance variability on dissolved organic carbon (DOC) extracellular release by phytoplankton (ER) and the response of natural bacteria assemblages. In axenic laboratory cultures, ER was 3× greater in cultures shifted to 330 μmol photons m-2 s-1 compared to cultures kept at their cultured irradiance, 110 μmol photons m-2 s-1. Natural bacterial assemblages incubated in the dark for 24 h in algal-free culture filtrate generated from both light treatments consumed the DOC from the high-light treatment at a faster rate than that for the low-light treatment. Field measurements in the coastal waters of the northeastern Gulf of Mexico (GOM) and the Eastern North Pacific (ENP) mirrored the laboratory findings, with short-term increases in DOC concentrations occurring concurrently with short-term increases in irradiance, followed by rapid consumption by bacteria. Where no diurnal irradiance increase was observed (overcast skies), no increase in DOC concentration was observed. An experiment using 14C as a tracer for plankton interactions (GOM) was consistent with data on bulk DOC concentrations. For all the field measurements, the rate of irradiance change was correlated with the quantity of DOC released. Collectively these results indicated that release of DOC by phytoplankton populations as a function of incident irradiance can be significant and may have important implications for estimates of ocean carbon flux.

  12. Phytoplankton Bloom in North Sea off Scotland

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The northern and western highlands of Scotland were still winter-brown and even dusted with snow in places, but the waters of the North Sea were blooming with phytoplankton on May 8, 2008, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite passed over the region and captured this image. The tiny, plant-like organisms swirled in the waters off the country's east coast, coloring the shallow coastal waters shades of bright blue and green. Phytoplankton are tiny organisms--many are just a single cell--that use chlorophyll and other pigments to capture light for photosynthesis. Because these pigments absorb sunlight, they change the color of the light reflected from the sea surface back to the satellite. Scientists have used observations of 'ocean color' from satellites for more than 20 years to track worldwide patterns in phytoplankton blooms. Phytoplankton are important to the Earth system for a host of reasons, including their status as the base of the ocean food web. In the North Sea, they are the base of the food web that supports Scotland's commercial fisheries, including monkfish and herring. As photosynthesizers, they also play a crucial role in the carbon cycle, removing carbon dioxide from the atmosphere. Some oceanographers are concerned that rising ocean temperatures will slow phytoplankton growth rates, harming marine ecosystems and causing carbon dioxide to accumulate more rapidly in the atmosphere.

  13. β -Decay Half-Lives of 110 Neutron-Rich Nuclei across the N =82 Shell Gap: Implications for the Mechanism and Universality of the Astrophysical r Process

    NASA Astrophysics Data System (ADS)

    Lorusso, G.; Nishimura, S.; Xu, Z. Y.; Jungclaus, A.; Shimizu, Y.; Simpson, G. S.; Söderström, P.-A.; Watanabe, H.; Browne, F.; Doornenbal, P.; Gey, G.; Jung, H. S.; Meyer, B.; Sumikama, T.; Taprogge, J.; Vajta, Zs.; Wu, J.; Baba, H.; Benzoni, G.; Chae, K. Y.; Crespi, F. C. L.; Fukuda, N.; Gernhäuser, R.; Inabe, N.; Isobe, T.; Kajino, T.; Kameda, D.; Kim, G. D.; Kim, Y.-K.; Kojouharov, I.; Kondev, F. G.; Kubo, T.; Kurz, N.; Kwon, Y. K.; Lane, G. J.; Li, Z.; Montaner-Pizá, A.; Moschner, K.; Naqvi, F.; Niikura, M.; Nishibata, H.; Odahara, A.; Orlandi, R.; Patel, Z.; Podolyák, Zs.; Sakurai, H.; Schaffner, H.; Schury, P.; Shibagaki, S.; Steiger, K.; Suzuki, H.; Takeda, H.; Wendt, A.; Yagi, A.; Yoshinaga, K.

    2015-05-01

    The β -decay half-lives of 110 neutron-rich isotopes of the elements from Rb 37 to Sn 50 were measured at the Radioactive Isotope Beam Factory. The 40 new half-lives follow robust systematics and highlight the persistence of shell effects. The new data have direct implications for r -process calculations and reinforce the notion that the second (A ≈130 ) and the rare-earth-element (A ≈160 ) abundance peaks may result from the freeze-out of an (n ,γ )⇄(γ ,n ) equilibrium. In such an equilibrium, the new half-lives are important factors determining the abundance of rare-earth elements, and allow for a more reliable discussion of the r process universality. It is anticipated that universality may not extend to the elements Sn, Sb, I, and Cs, making the detection of these elements in metal-poor stars of the utmost importance to determine the exact conditions of individual r -process events.

  14. Biomarkers of safety and immune protection for genetically modified live attenuated leishmania vaccines against visceral leishmaniasis - discovery and implications.

    PubMed

    Gannavaram, Sreenivas; Dey, Ranadhir; Avishek, Kumar; Selvapandiyan, Angamuthu; Salotra, Poonam; Nakhasi, Hira L

    2014-01-01

    Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood-borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, subunit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in Leishmania donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters, and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines, e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen(-/-) in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated in normal

  15. Phytoplankton Communities in Louisiana coastal waters and the continental shelf

    EPA Science Inventory

    Louisiana coastal waters and the adjacent continental shelf receive large freshwater and nutrient inputs from the Mississippi and Atchafalaya Rivers, creating favorable conditions for increased phytoplankton productivity. To examine inshore-offshore patterns in phytoplankton comm...

  16. Phytoplankton and cloudiness in the Southern Ocean.

    PubMed

    Meskhidze, Nicholas; Nenes, Athanasios

    2006-12-01

    The effect of ocean biological productivity on marine clouds is explored over a large phytoplankton bloom in the Southern Ocean with the use of remotely sensed data. Cloud droplet number concentration over the bloom was twice what it was away from the bloom, and cloud effective radius was reduced by 30%. The resulting change in the short-wave radiative flux at the top of the atmosphere was -15 watts per square meter, comparable to the aerosol indirect effect over highly polluted regions. This observed impact of phytoplankton on clouds is attributed to changes in the size distribution and chemical composition of cloud condensation nuclei. We propose that secondary organic aerosol, formed from the oxidation of phytoplankton-produced isoprene, can affect chemical composition of marine cloud condensation nuclei and influence cloud droplet number. Model simulations support this hypothesis, indicating that 100% of the observed changes in cloud properties can be attributed to the isoprene secondary organic aerosol.

  17. Iron-Nutrient Interactions within Phytoplankton.

    PubMed

    Schoffman, Hanan; Lis, Hagar; Shaked, Yeala; Keren, Nir

    2016-01-01

    Iron limits photosynthetic activity in up to one third of the world's oceans and in many fresh water environments. When studying the effects of Fe limitation on phytoplankton or their adaptation to low Fe environments, we must take into account the numerous cellular processes within which this micronutrient plays a central role. Due to its flexible redox chemistry, Fe is indispensable in enzymatic catalysis and electron transfer reactions and is therefore closely linked to the acquisition, assimilation and utilization of essential resources. Iron limitation will therefore influence a wide range of metabolic pathways within phytoplankton, most prominently photosynthesis. In this review, we map out four well-studied interactions between Fe and essential resources: nitrogen, manganese, copper and light. Data was compiled from both field and laboratory studies to shed light on larger scale questions such as the connection between metabolic pathways and ambient iron levels and the biogeographical distribution of phytoplankton species.

  18. The evolution of modern eukaryotic phytoplankton.

    PubMed

    Falkowski, Paul G; Katz, Miriam E; Knoll, Andrew H; Quigg, Antonietta; Raven, John A; Schofield, Oscar; Taylor, F J R

    2004-07-16

    The community structure and ecological function of contemporary marine ecosystems are critically dependent on eukaryotic phytoplankton. Although numerically inferior to cyanobacteria, these organisms are responsible for the majority of the flux of organic matter to higher trophic levels and the ocean interior. Photosynthetic eukaryotes evolved more than 1.5 billion years ago in the Proterozoic oceans. However, it was not until the Mesozoic Era (251 to 65 million years ago) that the three principal phytoplankton clades that would come to dominate the modern seas rose to ecological prominence. In contrast to their pioneering predecessors, the dinoflagellates, coccolithophores, and diatoms all contain plastids derived from an ancestral red alga by secondary symbiosis. Here we examine the geological, geochemical, and biological processes that contributed to the rise of these three, distantly related, phytoplankton groups.

  19. Iron–Nutrient Interactions within Phytoplankton

    PubMed Central

    Schoffman, Hanan; Lis, Hagar; Shaked, Yeala; Keren, Nir

    2016-01-01

    Iron limits photosynthetic activity in up to one third of the world’s oceans and in many fresh water environments. When studying the effects of Fe limitation on phytoplankton or their adaptation to low Fe environments, we must take into account the numerous cellular processes within which this micronutrient plays a central role. Due to its flexible redox chemistry, Fe is indispensable in enzymatic catalysis and electron transfer reactions and is therefore closely linked to the acquisition, assimilation and utilization of essential resources. Iron limitation will therefore influence a wide range of metabolic pathways within phytoplankton, most prominently photosynthesis. In this review, we map out four well-studied interactions between Fe and essential resources: nitrogen, manganese, copper and light. Data was compiled from both field and laboratory studies to shed light on larger scale questions such as the connection between metabolic pathways and ambient iron levels and the biogeographical distribution of phytoplankton species. PMID:27588022

  20. Iron-Nutrient Interactions within Phytoplankton.

    PubMed

    Schoffman, Hanan; Lis, Hagar; Shaked, Yeala; Keren, Nir

    2016-01-01

    Iron limits photosynthetic activity in up to one third of the world's oceans and in many fresh water environments. When studying the effects of Fe limitation on phytoplankton or their adaptation to low Fe environments, we must take into account the numerous cellular processes within which this micronutrient plays a central role. Due to its flexible redox chemistry, Fe is indispensable in enzymatic catalysis and electron transfer reactions and is therefore closely linked to the acquisition, assimilation and utilization of essential resources. Iron limitation will therefore influence a wide range of metabolic pathways within phytoplankton, most prominently photosynthesis. In this review, we map out four well-studied interactions between Fe and essential resources: nitrogen, manganese, copper and light. Data was compiled from both field and laboratory studies to shed light on larger scale questions such as the connection between metabolic pathways and ambient iron levels and the biogeographical distribution of phytoplankton species. PMID:27588022

  1. Bivalve grazing can shape phytoplankton communities

    USGS Publications Warehouse

    Lucas, Lisa; Cloern, James E.; Thompson, Janet K.; Stacey, Mark T.; Koseff, Jeffrey K.

    2016-01-01

    The ability of bivalve filter feeders to limit phytoplankton biomass in shallow waters is well-documented, but the role of bivalves in shaping phytoplankton communities is not. The coupled effect of bivalve grazing at the sediment-water interface and sinking of phytoplankton cells to that bottom filtration zone could influence the relative biomass of sinking (diatoms) and non-sinking phytoplankton. Simulations with a pseudo-2D numerical model showed that benthic filter feeding can interact with sinking to alter diatom:non-diatom ratios. Cases with the smallest proportion of diatom biomass were those with the fastest sinking speeds and strongest bivalve grazing rates. Hydrodynamics modulated the coupled sinking-grazing influence on phytoplankton communities. For example, in simulations with persistent stratification, the non-sinking forms accumulated in the surface layer away from bottom grazers while the sinking forms dropped out of the surface layer toward bottom grazers. Tidal-scale stratification also influenced vertical gradients of the two groups in opposite ways. The model was applied to Suisun Bay, a low-salinity habitat of the San Francisco Bay system that was transformed by the introduction of the exotic clam Potamocorbula amurensis. Simulation results for this Bay were similar to (but more muted than) those for generic habitats, indicating that P. amurensis grazing could have caused a disproportionate loss of diatoms after its introduction. Our model simulations suggest bivalve grazing affects both phytoplankton biomass and community composition in shallow waters. We view these results as hypotheses to be tested with experiments and more complex modeling approaches.

  2. [Tools for determining health of phytoplankton cells

    SciTech Connect

    Not Available

    1992-01-01

    The primary purpose of the proposed research is to develop molecular tools for determining the health of marine phytoplankton on an individual cell basis. Since the definition of healthy in phytoplankton cells is elusive, we propose to develop markers for several different metabolic processes indicative of physiological state: photosynthetic activity, esterase activity, membrane permeability, and mitochondrial activity. One underlying motivation is to develop methods which will allow us to evaluate the hypothesis that, while healthy cells release very little dissolved organic carbon (DOC), many phytoplankton communities are comprised of unhealthy or physiologically stressed cells which release a large proportion of total photosynthate directly into the pool of labile DOC. This is proposed to be especially true in continental shelf and coastal environments where zones of productivity are patchy and phytoplankton populations adapted to one regime can be easily transported into waters which differ in salinity, nutrient supply, and/or turbidity. The significance of the work, however, extends beyond this immediate goal since there are presently relatively few methods which allow us to estimate the physiological state of phytoplankton cells.When we evaluate population sizes of phytoplankton in the water column or examine fecal pellets, particulate aggregates, or other material, we generally work in ignorance of the activity of the cells except as the average cell-specific activity is estimated from bulk measurements. This approach effectively hides any differences in the relative contribution of different taxa or individuals to overall productivity eventhough most flux processes are sensitive to physiological and taxonomically determined differences among members of the community.

  3. [Tools for determining health of phytoplankton cells

    SciTech Connect

    Not Available

    1992-12-31

    The primary purpose of the proposed research is to develop molecular tools for determining the health of marine phytoplankton on an individual cell basis. Since the definition of healthy in phytoplankton cells is elusive, we propose to develop markers for several different metabolic processes indicative of physiological state: photosynthetic activity, esterase activity, membrane permeability, and mitochondrial activity. One underlying motivation is to develop methods which will allow us to evaluate the hypothesis that, while healthy cells release very little dissolved organic carbon (DOC), many phytoplankton communities are comprised of unhealthy or physiologically stressed cells which release a large proportion of total photosynthate directly into the pool of labile DOC. This is proposed to be especially true in continental shelf and coastal environments where zones of productivity are patchy and phytoplankton populations adapted to one regime can be easily transported into waters which differ in salinity, nutrient supply, and/or turbidity. The significance of the work, however, extends beyond this immediate goal since there are presently relatively few methods which allow us to estimate the physiological state of phytoplankton cells.When we evaluate population sizes of phytoplankton in the water column or examine fecal pellets, particulate aggregates, or other material, we generally work in ignorance of the activity of the cells except as the average cell-specific activity is estimated from bulk measurements. This approach effectively hides any differences in the relative contribution of different taxa or individuals to overall productivity eventhough most flux processes are sensitive to physiological and taxonomically determined differences among members of the community.

  4. The annual cycles of phytoplankton biomass

    USGS Publications Warehouse

    Winder, M.; Cloern, J.E.

    2010-01-01

    Terrestrial plants are powerful climate sentinels because their annual cycles of growth, reproduction and senescence are finely tuned to the annual climate cycle having a period of one year. Consistency in the seasonal phasing of terrestrial plant activity provides a relatively low-noise background from which phenological shifts can be detected and attributed to climate change. Here, we ask whether phytoplankton biomass also fluctuates over a consistent annual cycle in lake, estuarine-coastal and ocean ecosystems and whether there is a characteristic phenology of phytoplankton as a consistent phase and amplitude of variability. We compiled 125 time series of phytoplankton biomass (chloro-phyll a concentration) from temperate and subtropical zones and used wavelet analysis to extract their dominant periods of variability and the recurrence strength at those periods. Fewer than half (48%) of the series had a dominant 12-month period of variability, commonly expressed as the canonical spring-bloom pattern. About 20 per cent had a dominant six-month period of variability, commonly expressed as the spring and autumn or winter and summer blooms of temperate lakes and oceans. These annual patterns varied in recurrence strength across sites, and did not persist over the full series duration at some sites. About a third of the series had no component of variability at either the six-or 12-month period, reflecting a series of irregular pulses of biomass. These findings show that there is high variability of annual phytoplankton cycles across ecosystems, and that climate-driven annual cycles can be obscured by other drivers of population variability, including human disturbance, aperiodic weather events and strong trophic coupling between phytoplankton and their consumers. Regulation of phytoplankton biomass by multiple processes operating at multiple time scales adds complexity to the challenge of detecting climate-driven trends in aquatic ecosystems where the noise to

  5. The regrowth of phytoplankton cultures after UV disinfection.

    PubMed

    Martínez, Lucía F; Mahamud, Manuel M; Lavín, Antonio G; Bueno, Julio L

    2013-02-15

    This study addresses how cultures of three phytoplankton species -Chaetoceros calcitrans, Chlorella autotrophica and Phaeocystis globosa - can recover from the effects of UV-C exposure if the cells are placed in a rich medium. Flow cytometry and pulse amplitude modulation (PAM) were used to determine cell recovery after UV treatment. The recovery of C. calcitrans was complete 9 days after treatment. For C. autotrophica, the recovery was noticeable 5 days after treatment. P. globosa only recovered if the UV dose did not exceed 7.3×10(5) μWs/cm(2). The recovery of the UV-treated cultures introduced to a regrowth medium, compared with the recovery of the irradiated cultures kept in their original environment, had two main characteristics: cell recovery was slower but was more efficient. This pattern of recovery has very important implications for real ballast water management systems because such systems discharge treated water into the environment.

  6. Mind the gap: The impact of missing data on the calculation of phytoplankton phenology metrics

    NASA Astrophysics Data System (ADS)

    Cole, Harriet; Henson, Stephanie; Martin, Adrian; Yool, Andrew

    2012-08-01

    Annual phytoplankton blooms are key events in marine ecosystems and interannual variability in bloom timing has important implications for carbon export and the marine food web. The degree of match or mismatch between the timing of phytoplankton and zooplankton annual cycles may impact larval survival with knock-on effects at higher trophic levels. Interannual variability in phytoplankton bloom timing may also be used to monitor changes in the pelagic ecosystem that are either naturally or anthropogenically forced. Seasonality metrics that use satellite ocean color data have been developed to quantify the timing of phenological events which allow for objective comparisons between different regions and over long periods of time. However, satellite data sets are subject to frequent gaps due to clouds and atmospheric aerosols, or persistent data gaps in winter due to low sun angle. Here we quantify the impact of these gaps on determining the start and peak timing of phytoplankton blooms. We use the NASA Ocean Biogeochemical Model that assimilates SeaWiFS data as a gap-free time series and derive an empirical relationship between the percentage of missing data and error in the phenology metric. Applied globally, we find that the majority of subpolar regions have typical errors of 30 days for the bloom initiation date and 15 days for the peak date. The errors introduced by intermittent data must be taken into account in phenological studies.

  7. Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Le Quéré, C.; Buitenhuis, E. T.; Moriarty, R.; Alvain, S.; Aumont, O.; Bopp, L.; Chollet, S.; Enright, C.; Franklin, D. J.; Geider, R. J.; Harrison, S. P.; Hirst, A.; Larsen, S.; Legendre, L.; Platt, T.; Prentice, I. C.; Rivkin, R. B.; Sathyendranath, S.; Stephens, N.; Vogt, M.; Sailley, S.; Vallina, S. M.

    2015-07-01

    Global ocean biogeochemistry models currently employed in climate change projections use highly simplified representations of pelagic food webs. These food webs do not necessarily include critical pathways by which ecosystems interact with ocean biogeochemistry and climate. Here we present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types (PFTs); six types of phytoplankton, three types of zooplankton, and heterotrophic bacteria. We improved the representation of zooplankton dynamics in our model through (a) the explicit inclusion of large, slow-growing zooplankton, and (b) the introduction of trophic cascades among the three zooplankton types. We use the model to quantitatively assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean High Nutrient Low Chlorophyll (HNLC) region during summer. When model simulations do not represent crustacean macrozooplankton grazing, they systematically overestimate Southern Ocean chlorophyll biomass during the summer, even when there was no iron deposition from dust. When model simulations included the developments of the zooplankton component, the simulation of phytoplankton biomass improved and the high chlorophyll summer bias in the Southern Ocean HNLC region largely disappeared. Our model results suggest that the observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community rather than iron limitation. This result has implications for the representation of global biogeochemical cycles in models as zooplankton faecal pellets sink rapidly and partly control the carbon export to the intermediate and deep ocean.

  8. A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species.

    PubMed

    Peng, Rui; Zhao, Xiao-Qiang

    2016-02-01

    In this article, we are concerned with a nonlocal reaction-diffusion-advection model which describes the evolution of a single phytoplankton species in a eutrophic vertical water column where the species relies solely on light for its metabolism. The new feature of our modeling equation lies in that the incident light intensity and the death rate are assumed to be time periodic with a common period. We first establish a threshold type result on the global dynamics of this model in terms of the basic reproduction number R0. Then we derive various characterizations of R0 with respect to the vertical turbulent diffusion rate, the sinking or buoyant rate and the water column depth, respectively, which in turn give rather precise conditions to determine whether the phytoplankton persist or become extinct. Our theoretical results not only extend the existing ones for the time-independent case, but also reveal new interesting effects of the modeling parameters and the time-periodic heterogeneous environment on persistence and extinction of the phytoplankton species, and thereby suggest important implications for phytoplankton growth control.

  9. Boundary influences on HAB phytoplankton ecology in a stratification-enhanced upwelling shadow

    NASA Astrophysics Data System (ADS)

    Ryan, J. P.; McManus, M. A.; Kudela, R. M.; Lara Artigas, M.; Bellingham, J. G.; Chavez, F. P.; Doucette, G.; Foley, D.; Godin, M.; Harvey, J. B. J.; Marin, R.; Messié, M.; Mikulski, C.; Pennington, T.; Py, F.; Rajan, K.; Shulman, I.; Wang, Z.; Zhang, Y.

    2014-03-01

    Coastal marine ecosystems are profoundly influenced by processes that originate from their boundaries. These include fluid boundaries—with the atmosphere, oceanic boundary currents and terrestrial aquatic systems, as well as solid boundaries—with the seafloor and coast. Phytoplankton populations transfer complexly interacting boundary influences into the biosphere. In this contribution, we apply data from an ocean observing and modeling system to examine boundary influences driving phytoplankton ecology in Monterey Bay, CA, USA. The study was focused on species that may cause harmful algal blooms (HABs). During September-October 2010, autonomous molecular analytical devices were moored at two locations characterized by different degrees of stratification and exposure to upwelling dynamics. The time-series revealed multiple transitions in local HAB phytoplankton communities, involving diatoms (Pseudo-nitzschia spp.), dinoflagellates (Alexandrium catenella), and raphidophytes (Heterosigma akashiwo). Observational and model results showed that the biological transitions were closely related to environmental changes that resulted from a variety of boundary processes—responses of oceanic circulation to wind forcing, influxes of different water types that originated outside the bay, and emergence of strongly stratified nearshore water into the greater bay. Boundary processes were further implicated at patch scales. High-resolution mapping and sampling of a phytoplankton-enriched patch were conducted in a Lagrangian framework using autonomous underwater vehicles. These highly resolved measurements showed that small-scale spatial patterns in the toxicity of Pseudo-nitzschia populations were related to the coupling of resuspended sediments from the bottom boundary layer to the surface mixed layer.

  10. Stable Carbon Isotope Constraints on the Timing and Magnitude of Phytoplankton Blooms in San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Goodwin, D.; Roopnarine, P. D.

    2010-12-01

    Recent work on phytoplankton dynamics in San Francisco Bay (SFB) revealed new seasonal blooms. Historic observations (1978-1998) of chlorophyll a (Chl a) showed an annual pattern of short-lived spring blooms. In 1999, this pattern changed with the appearance of autumnal blooms in addition to the characteristic large vernal blooms. This change was attributed to decreases in bivalve mollusk populations concurrent with increases in macro invertebrate and vertebrate mollusk predators. Previous work, however, suggests that inter-annual variation in phytoplankton biomass is a function of river discharge. These observations suggest phytoplankton abundances in SFB reflect multiple forcing mechanisms and underscore the importance of understanding prehistoric variations in bloom dynamics. Here, we present stable isotope data from the exotic oyster Crassostrea gigas, which record the timing and magnitude of past phytoplankton blooms. These data may be useful for identifying patterns of phytoplankton bloom dynamics prior to instrumental observations. Stable oxygen (δ18O) and carbon (δ13C) isotope profiles from recent live-collected (2006) specimens of the oyster C. gigas collected in southern SFB were analyzed in conjunction with in situ records of environmental variability (water temperature and δ18Owater calculated from salinity). Their observed δ18Ocarb profiles are characterized by several unique features that correlate with predicted δ18Ocarb values calculated from water temperature and δ18Owater measurements indicating that these oysters were recruited at the end of 2001 or early in 2002. A prominent 1-2 ‰ spike characterizes the carbon isotope profile from each of these specimens. These positive excursions most likely reflect a large phytoplankton bloom, during which algae preferentially assimilated 12C, resulting in the enrichment of 13C in the dissolved inorganic carbon (DIC) of seawater. Furthermore, phytoplankton blooms may appear as positive spikes in a

  11. Temperature-sensitive mutations for live-attenuated Rift Valley fever vaccines: implications from other RNA viruses

    PubMed Central

    Nishiyama, Shoko; Ikegami, Tetsuro

    2015-01-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to the African continent. RVF is characterized by high rate of abortions in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by the Rift Valley fever virus (RVFV: genus Phlebovirus, family Bunyaviridae). Vaccination is the only known effective strategy to prevent the disease, but there are no licensed RVF vaccines available for humans. A live-attenuated vaccine candidate derived from the wild-type pathogenic Egyptian ZH548 strain, MP-12, has been conditionally licensed for veterinary use in the U.S. MP-12 displays a temperature-sensitive (ts) phenotype and does not replicate at 41°C. The ts mutation limits viral replication at a specific body temperature and may lead to an attenuation of the virus. Here we will review well-characterized ts mutations for RNA viruses, and further discuss the potential in designing novel live-attenuated vaccines for RVF. PMID:26322023

  12. [Household solid waste bagging and collection and their health implications for children living in outlying urban settlements in Salvador, Bahia State, Brazil].

    PubMed

    Moraes, Luiz Roberto Santos

    2007-01-01

    This paper presents a study on the bagging and collection of household solid waste and the health implications for children. The research was conducted in nine human settlements on the outskirts of Salvador, Bahia State, Brazil. Intestinal nematode infection, predominantly involving Ascaris lumbricoides, Trichuris trichiura, and hookworms, was used as an epidemiological indicator in 1,893 children from 5 to 14 years of age. The study also included diarrhea incidence and nutritional status as shown by anthropometric indicators in 1,204 children less than 5 years of age. There was a higher prevalence of the three nematodes in children living in households without proper bagging/isolation and collection of household solid waste as compared to those in areas with regular garbage collection and adequate isolation of solid waste. The differences were statistically significant when other socioeconomic, cultural, demographic, and environmental risks factors were considered in the analysis. Similar results were also observed for epidemiological indicators, diarrhea incidence, and nutritional status.

  13. Remote sensing of phytoplankton using laser-induced fluorescence

    SciTech Connect

    Babichenko, S.; Poryvkina, L.; Arikese, V. ); Kaitala, S. ); Kuosa, H. )

    1993-06-01

    The results of remote laser sensing of brackish-water phytoplankton on board a research vessel are presented. Field data of laser-induced fluorescence of phytoplankton obtained during the several cruises in the mouth of tile Gulf of Finland are compared with the results of standard chlorophyll a analysis of water samples and phytoplankton species determination by microscopy. The approach of fluorescence excitation by tunable laser radiation is applied to study the spatial distribution of a natural phytoplankton community. The remote analysis of the pigment composition of a phytoplankton community using the method of selective pigment excitation is described. The possibility of elaborating methods of quantitative laser remote biomonitoring is discussed.

  14. The dynamical landscape of marine phytoplankton diversity.

    PubMed

    Lévy, Marina; Jahn, Oliver; Dutkiewicz, Stephanie; Follows, Michael J; d'Ovidio, Francesco

    2015-10-01

    Observations suggest that the landscape of marine phytoplankton assemblage might be strongly heterogeneous at the dynamical mesoscale and submesoscale (10-100 km, days to months), with potential consequences in terms of global diversity and carbon export. But these variations are not well documented as synoptic taxonomic data are difficult to acquire. Here, we examine how phytoplankton assemblage and diversity vary between mesoscale eddies and submesoscale fronts. We use a multi-phytoplankton numerical model embedded in a mesoscale flow representative of the North Atlantic. Our model results suggest that the mesoscale flow dynamically distorts the niches predefined by environmental contrasts at the basin scale and that the phytoplankton diversity landscape varies over temporal and spatial scales that are one order of magnitude smaller than those of the basin-scale environmental conditions. We find that any assemblage and any level of diversity can occur in eddies and fronts. However, on a statistical level, the results suggest a tendency for larger diversity and more fast-growing types at fronts, where nutrient supplies are larger and where populations of adjacent water masses are constantly brought into contact; and lower diversity in the core of eddies, where water masses are kept isolated long enough to enable competitive exclusion.

  15. Programmed Cell Death in Unicellular Phytoplankton.

    PubMed

    Bidle, Kay D

    2016-07-11

    Unicellular, planktonic, prokaryotic and eukaryotic photoautotrophs (phytoplankton) have an ancient evolutionary history on Earth during which time they have played key roles in the regulation of marine food webs, biogeochemical cycles, and Earth's climate. Since they represent the basis of aquatic ecosystems, the manner in which phytoplankton die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining nutrient flow. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of abiotic (nutrient, light, osmotic) and biotic (virus infection, allelopathy) environmental stresses, have an integral grip on cell fate, and have shaped the ecological success and evolutionary trajectory of diverse phytoplankton lineages. A combination of physiological, biochemical, and genetic techniques in model algal systems has demonstrated a conserved molecular and mechanistic framework of stress surveillance, signaling, and death activation pathways, involving collective and coordinated participation of organelles, redox enzymes, metabolites, and caspase-like proteases. This mechanistic understanding has provided insight into the integration of sensing and transduction of stress signals into cellular responses, and the mechanistic interfaces between PCD, cell stress and virus infection pathways. It has also provided insight into the evolution of PCD in unicellular photoautotrophs, the impact of PCD on the fate of natural phytoplankton assemblages and its role in aquatic biogeochemical cycles. PMID:27404255

  16. Phytoplankton and sediments in Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Affected both by terrestrial factors like agriculture, deforestation, and erosion, and by marine factors like salinity levels, ocean temperature and water pollution, coastal environments are the dynamic interface between land and sea. In this MODIS image from January 15, 2002, the Gulf of Mexico is awash in a mixture of phytoplankton and sediment. Tan-colored sediment is flowing out into the Gulf from the Mississippi River, whose floodplain cuts a pale, wide swath to the right of center in the image, and also from numerous smaller rivers along the Louisiana coast (center). Mixing with the sediment are the multi-colored blue and green swirls that reveal the presence of large populations of marine plants called phytoplankton. Phytoplankton populations bloom and then fade, and these cycles affect fish and mammals-including humans-higher up the food chain. Certain phytoplankton are toxic to both fish and humans, and coastal health departments must monitor ecosystems carefully, often restricting fishing or harvesting of shellfish until the blooms have subsided.

  17. The dynamical landscape of marine phytoplankton diversity

    PubMed Central

    Lévy, Marina; Jahn, Oliver; Dutkiewicz, Stephanie; Follows, Michael J.; d'Ovidio, Francesco

    2015-01-01

    Observations suggest that the landscape of marine phytoplankton assemblage might be strongly heterogeneous at the dynamical mesoscale and submesoscale (10–100 km, days to months), with potential consequences in terms of global diversity and carbon export. But these variations are not well documented as synoptic taxonomic data are difficult to acquire. Here, we examine how phytoplankton assemblage and diversity vary between mesoscale eddies and submesoscale fronts. We use a multi-phytoplankton numerical model embedded in a mesoscale flow representative of the North Atlantic. Our model results suggest that the mesoscale flow dynamically distorts the niches predefined by environmental contrasts at the basin scale and that the phytoplankton diversity landscape varies over temporal and spatial scales that are one order of magnitude smaller than those of the basin-scale environmental conditions. We find that any assemblage and any level of diversity can occur in eddies and fronts. However, on a statistical level, the results suggest a tendency for larger diversity and more fast-growing types at fronts, where nutrient supplies are larger and where populations of adjacent water masses are constantly brought into contact; and lower diversity in the core of eddies, where water masses are kept isolated long enough to enable competitive exclusion. PMID:26400196

  18. Phytoplankton off the West Coast of Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Just off the coast of West Africa, persistent northeasterly trade winds often churn up deep ocean water. When the nutrients in these deep waters reach the ocean's surface, they often give rise to large blooms of phytoplankton. This image of the Mauritanian coast shows swirls of phytoplankton fed by the upwelling of nutrient-rich water. The scene was acquired by the Medium Resolution Imaging Spectrometer (MERIS) aboard the European Space Agency's ENVISAT. MERIS will monitor changes in phytoplankton across Earth's oceans and seas, both for the purpose of managing fisheries and conducting global change research. NASA scientists will use data from this European instrument in the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) program. The mission of SIMBIOS is to construct a consistent long-term dataset of ocean color (phytoplankton abundance) measurements made by multiple satellite instruments, including the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and the Moderate-Resolution Imaging Spectroradiometer (MODIS). For more information about MERIS and ENVISAT, visit the ENVISAT home page. Image copyright European Space Agency

  19. Phytoplankton adapt to changing ocean environments.

    PubMed

    Irwin, Andrew J; Finkel, Zoe V; Müller-Karger, Frank E; Troccoli Ghinaglia, Luis

    2015-05-01

    Model projections indicate that climate change may dramatically restructure phytoplankton communities, with cascading consequences for marine food webs. It is currently not known whether evolutionary change is likely to be able to keep pace with the rate of climate change. For simplicity, and in the absence of evidence to the contrary, most model projections assume species have fixed environmental preferences and will not adapt to changing environmental conditions on the century scale. Using 15 y of observations from Station CARIACO (Carbon Retention in a Colored Ocean), we show that most of the dominant species from a marine phytoplankton community were able to adapt their realized niches to track average increases in water temperature and irradiance, but the majority of species exhibited a fixed niche for nitrate. We do not know the extent of this adaptive capacity, so we cannot conclude that phytoplankton will be able to adapt to the changes anticipated over the next century, but community ecosystem models can no longer assume that phytoplankton cannot adapt.

  20. The dynamical landscape of marine phytoplankton diversity.

    PubMed

    Lévy, Marina; Jahn, Oliver; Dutkiewicz, Stephanie; Follows, Michael J; d'Ovidio, Francesco

    2015-10-01

    Observations suggest that the landscape of marine phytoplankton assemblage might be strongly heterogeneous at the dynamical mesoscale and submesoscale (10-100 km, days to months), with potential consequences in terms of global diversity and carbon export. But these variations are not well documented as synoptic taxonomic data are difficult to acquire. Here, we examine how phytoplankton assemblage and diversity vary between mesoscale eddies and submesoscale fronts. We use a multi-phytoplankton numerical model embedded in a mesoscale flow representative of the North Atlantic. Our model results suggest that the mesoscale flow dynamically distorts the niches predefined by environmental contrasts at the basin scale and that the phytoplankton diversity landscape varies over temporal and spatial scales that are one order of magnitude smaller than those of the basin-scale environmental conditions. We find that any assemblage and any level of diversity can occur in eddies and fronts. However, on a statistical level, the results suggest a tendency for larger diversity and more fast-growing types at fronts, where nutrient supplies are larger and where populations of adjacent water masses are constantly brought into contact; and lower diversity in the core of eddies, where water masses are kept isolated long enough to enable competitive exclusion. PMID:26400196

  1. Programmed Cell Death in Unicellular Phytoplankton.

    PubMed

    Bidle, Kay D

    2016-07-11

    Unicellular, planktonic, prokaryotic and eukaryotic photoautotrophs (phytoplankton) have an ancient evolutionary history on Earth during which time they have played key roles in the regulation of marine food webs, biogeochemical cycles, and Earth's climate. Since they represent the basis of aquatic ecosystems, the manner in which phytoplankton die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining nutrient flow. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of abiotic (nutrient, light, osmotic) and biotic (virus infection, allelopathy) environmental stresses, have an integral grip on cell fate, and have shaped the ecological success and evolutionary trajectory of diverse phytoplankton lineages. A combination of physiological, biochemical, and genetic techniques in model algal systems has demonstrated a conserved molecular and mechanistic framework of stress surveillance, signaling, and death activation pathways, involving collective and coordinated participation of organelles, redox enzymes, metabolites, and caspase-like proteases. This mechanistic understanding has provided insight into the integration of sensing and transduction of stress signals into cellular responses, and the mechanistic interfaces between PCD, cell stress and virus infection pathways. It has also provided insight into the evolution of PCD in unicellular photoautotrophs, the impact of PCD on the fate of natural phytoplankton assemblages and its role in aquatic biogeochemical cycles.

  2. Earth's Most Important Producers: Meet the Phytoplankton!

    ERIC Educational Resources Information Center

    Marrero, Meghan E.; Stevens, Nicole

    2011-01-01

    The ocean is home to some of Earth's most important producers. Single-celled organisms in the ocean are responsible for more than half of Earth's productivity, as well as most of its oxygen. Phytoplankton are single-celled, plantlike organisms. That is, they have chloroplasts and perform photosynthesis, but are not true plants, which are typically…

  3. The consistency of self-reported preferences for everyday living: implications for person-centered care delivery.

    PubMed

    Van Haitsma, Kimberly; Abbott, Katherine M; Heid, Allison R; Carpenter, Brian; Curyto, Kimberly; Kleban, Morton; Eshraghi, Karen; Duntzee, Christina I; Spector, Abby

    2014-10-01

    Preferences are the expression of an individual's basic psychosocial needs and are related to care outcomes. The current study tested the consistency of 87 individuals' everyday preferences over 1 week, comparing responses of nursing home residents (n = 37; mean age = 82) and university students (n = 50; mean age = 20). Participants completed the Preferences for Everyday Living Inventory at baseline and 5 to 7 days later. Preference consistency was calculated three ways: (a) correlations (range = 0.11 to 0.90); (b) overall percent of exact agreement (e.g., response was "very important" at both time points) (66.1%); and (c) responses collapsed as "important" or "not important" (increase in percent agreement to 86.6%). Personal care preferences were more stable, whereas leisure activities were less stable. The groups did not have significant differences in consistency. Some preferences are more consistent than others; age and frailty do not appear to be related to preference instability.

  4. Co-occurrence of free-living protozoa and foodborne pathogens on dishcloths: implications for food safety.

    PubMed

    Chavatte, N; Baré, J; Lambrecht, E; Van Damme, I; Vaerewijck, M; Sabbe, K; Houf, K

    2014-11-17

    In the present study, the occurrence of free-living protozoa (FLP) and foodborne bacterial pathogens on dishcloths was investigated. Dishcloths form a potentially important source of cross-contamination with FLP and foodborne pathogens in food-related environments. First various protocols for recovering and quantifying FLP from dishcloths were assessed. The stomacher technique is recommended to recover flagellates and amoebae from dishcloths. Ciliates, however, were more efficiently recovered using centrifugation. For enumeration of free-living protozoa on dishcloths, the Most Probable Number method is a convenient method. Enrichment was used to assess FLP diversity on dishcloths (n=38). FLP were found on 89% of the examined dishcloths; 100% of these tested positive for amoebae, 71% for flagellates and 47% for ciliates. Diversity was dominated by amoebae: vahlkampfiids, vannellids, Acanthamoeba spp., Hyperamoeba sp. and Vermamoeba vermiformis were most common. The ciliate genus Colpoda was especially abundant on dishcloths while heterotrophic nanoflagellates mainly belonged to the genus Bodo, the glissomonads and cercomonads. The total number of FLP in used dishcloths ranged from 10 to 10(4) MPN/cm(2). Flagellates were the most abundant group, and ciliates the least abundant. Detergent use was identified as a prime determinant of FLP concentrations on used dishcloths. Bacterial load on dishcloths was high, with a mean total of aerobic bacteria of 7.47 log 10 cfu/cm(2). Escherichia coli was detected in 68% (26/38) of the used dishcloths, with concentrations up to 4 log 10 cfu/cm(2). Foodborne pathogens including Staphylococcus aureus (19/38), Arcobacter butzleri (5/38) and Salmonella enterica subsp. enterica ser. Halle (1/38) were also present. This study showed for the first time that FLP, including some opportunistic pathogens, are a common and diverse group on dishcloths. Moreover, important foodborne pathogens are also regularly recovered. This simultaneous

  5. Co-occurrence of free-living protozoa and foodborne pathogens on dishcloths: implications for food safety.

    PubMed

    Chavatte, N; Baré, J; Lambrecht, E; Van Damme, I; Vaerewijck, M; Sabbe, K; Houf, K

    2014-11-17

    In the present study, the occurrence of free-living protozoa (FLP) and foodborne bacterial pathogens on dishcloths was investigated. Dishcloths form a potentially important source of cross-contamination with FLP and foodborne pathogens in food-related environments. First various protocols for recovering and quantifying FLP from dishcloths were assessed. The stomacher technique is recommended to recover flagellates and amoebae from dishcloths. Ciliates, however, were more efficiently recovered using centrifugation. For enumeration of free-living protozoa on dishcloths, the Most Probable Number method is a convenient method. Enrichment was used to assess FLP diversity on dishcloths (n=38). FLP were found on 89% of the examined dishcloths; 100% of these tested positive for amoebae, 71% for flagellates and 47% for ciliates. Diversity was dominated by amoebae: vahlkampfiids, vannellids, Acanthamoeba spp., Hyperamoeba sp. and Vermamoeba vermiformis were most common. The ciliate genus Colpoda was especially abundant on dishcloths while heterotrophic nanoflagellates mainly belonged to the genus Bodo, the glissomonads and cercomonads. The total number of FLP in used dishcloths ranged from 10 to 10(4) MPN/cm(2). Flagellates were the most abundant group, and ciliates the least abundant. Detergent use was identified as a prime determinant of FLP concentrations on used dishcloths. Bacterial load on dishcloths was high, with a mean total of aerobic bacteria of 7.47 log 10 cfu/cm(2). Escherichia coli was detected in 68% (26/38) of the used dishcloths, with concentrations up to 4 log 10 cfu/cm(2). Foodborne pathogens including Staphylococcus aureus (19/38), Arcobacter butzleri (5/38) and Salmonella enterica subsp. enterica ser. Halle (1/38) were also present. This study showed for the first time that FLP, including some opportunistic pathogens, are a common and diverse group on dishcloths. Moreover, important foodborne pathogens are also regularly recovered. This simultaneous

  6. Energy allocation during the maturation of adults in a long-lived insect: implications for dispersal and reproduction.

    PubMed

    David, G; Giffard, B; van Halder, I; Piou, D; Jactel, H

    2015-10-01

    Energy allocation strategies have been widely documented in insects and were formalized in the context of the reproduction process by the terms 'capital breeder' and 'income breeder'. We propose here the extension of this framework to dispersal ability, with the concepts of 'capital disperser' and 'income disperser', and explore the trade-off in resource allocation between dispersal and reproduction. We hypothesized that flight capacity was sex-dependent, due to a trade-off in energy allocation between dispersal and egg production in females. We used Monochamus galloprovincialis as model organism, a long-lived beetle which is the European vector of the pine wood nematode. We estimated the flight capacity with a flight mill and used the number of mature eggs as a proxy for the investment in reproduction. We used the ratio between dry weights of the thorax and the abdomen to investigate the trade-off. The probability of flying increased with the adult weight at emergence, but was not dependent on insect age or sex. Flight distance increased with age in individuals but did not differ between sexes. It was also positively associated with energy allocation to thorax reserves, which increased with age. In females, the abdomen weight and the number of eggs also increase with age with no negative effect on flight capacity, indicating a lack of trade-off. This long-lived beetle has a complex strategy of energy allocation, being a 'capital disperser' in terms of flight ability, an 'income disperser' in terms of flight performance and an 'income breeder' in terms of egg production.

  7. Effect of Phytoplankton Richness on Phytoplankton Biomass Is Weak Where the Distribution of Herbivores is Patchy

    PubMed Central

    Weis, Jerome J.

    2016-01-01

    Positive effects of competitor species richness on competitor productivity can be more pronounced at a scale that includes heterogeneity in ‘bottom-up’ environmental factors, such as the supply of limiting nutrients. The effect of species richness is not well understood in landscapes where variation in ‘top-down’ factors, such as the abundance of predators or herbivores, has a strong influence competitor communities. I asked how phytoplankton species richness directly influenced standing phytoplankton biomass in replicate microcosm regions where one patch had a population of herbivores (Daphnia pulicaria) and one patch did not have herbivores. The effect of phytoplankton richness on standing phytoplankton biomass was positive but weak and not statistically significant at this regional scale. Among no-Daphnia patches, there was a significant positive effect of phytoplankton richness that resulted from positive selection effects for two dominant and productive species in polycultures. Among with-Daphnia patches there was not a significant effect of phytoplankton richness. The same two species dominated species-rich polycultures in no- and with-Daphnia patches but both species were relatively vulnerable to consumption by Daphnia. Consistent with previous studies, this experiment shows a measurable positive influence of primary producer richness on biomass when herbivores were absent. It also shows that given the patchy distribution of herbivores at a regional scale, a regional positive effect was not detected. PMID:27196376

  8. Effect of Phytoplankton Richness on Phytoplankton Biomass Is Weak Where the Distribution of Herbivores is Patchy.

    PubMed

    Weis, Jerome J

    2016-01-01

    Positive effects of competitor species richness on competitor productivity can be more pronounced at a scale that includes heterogeneity in 'bottom-up' environmental factors, such as the supply of limiting nutrients. The effect of species richness is not well understood in landscapes where variation in 'top-down' factors, such as the abundance of predators or herbivores, has a strong influence competitor communities. I asked how phytoplankton species richness directly influenced standing phytoplankton biomass in replicate microcosm regions where one patch had a population of herbivores (Daphnia pulicaria) and one patch did not have herbivores. The effect of phytoplankton richness on standing phytoplankton biomass was positive but weak and not statistically significant at this regional scale. Among no-Daphnia patches, there was a significant positive effect of phytoplankton richness that resulted from positive selection effects for two dominant and productive species in polycultures. Among with-Daphnia patches there was not a significant effect of phytoplankton richness. The same two species dominated species-rich polycultures in no- and with-Daphnia patches but both species were relatively vulnerable to consumption by Daphnia. Consistent with previous studies, this experiment shows a measurable positive influence of primary producer richness on biomass when herbivores were absent. It also shows that given the patchy distribution of herbivores at a regional scale, a regional positive effect was not detected.

  9. The science of Stewardship: due diligence for kidney donors and kidney function in living kidney donation--evaluation, determinants, and implications for outcomes.

    PubMed

    Poggio, Emilio D; Braun, William E; Davis, Connie

    2009-10-01

    Living kidney donor transplantation is now a common treatment for ESRD because it provides excellent outcomes to transplant recipients and is considered a safe procedure for prospective donors. The short- and long-term safety of prospective donors is paramount to the continued success of this procedure. Whereas the initial experiences with living kidney donors mostly included the healthiest, the increase in the need for organs and the changing demographic characteristics of the general population have subtly reshaped the suitability for donation. Kidney function assessment is a critical component of the evaluation of prospective donors; therefore, special emphasis is usually placed on this aspect of the evaluation. At the same time, consideration of kidney function after donation is important because it assists with the determination of renal health in donors. This review summarizes the process of predonation kidney function assessment, determinants of pre- and postdonation renal function, and, importantly, the potential implications of kidney function to the long-term outcomes of kidney donors.

  10. Temperature influence on phytoplankton community growth rates

    NASA Astrophysics Data System (ADS)

    Sherman, Elliot; Moore, J. Keith; Primeau, Francois; Tanouye, David

    2016-04-01

    A large database of field estimates of phytoplankton community growth rates in natural populations was compiled and analyzed to determine the apparent temperature effect on phytoplankton community growth rate. We conducted an ordinary least squares regression to optimize the parameters in two commonly used growth-temperature relations (Arrhenius and Q10 models). Both equations fit the observational data equally with the optimized parameter values. The optimum apparent Q10 value was 1.47 ± 0.08 (95% confidence interval, CI). Microzooplankton grazing rates closely matched the temperature trends for phytoplankton growth. This likely reflects a dynamic adjustment of biomass and grazing rates by the microzooplankton to match their available food source, illustrating tight coupling of phytoplankton growth and microzooplankton grazing rates. The field-measured temperature effect and growth rates were compared with estimates from the satellite Carbon-based Productivity Model (CbPM) and three Earth System Models (ESMs), with model output extracted at the same month and sampling locations as the observations. The optimized, apparent Q10 value calculated for the CbPM was 1.51, with overestimation of growth rates. The apparent Q10 value in the Community Earth System Model (V1.0) was 1.65, with modest underestimation of growth rates. The GFDL-ESM2M and GFDL-ESM2G models produced apparent Q10 values of 1.52 and 1.39, respectively. Models with an apparent Q10 that is significantly greater than ~1.5 will overestimate the phytoplankton community growth response to the ongoing climate warming and will have spatial biases in estimated growth rates for the current era.

  11. A sociocultural historical examination of youth argumentation across the settings of their lives: Implications for science education

    NASA Astrophysics Data System (ADS)

    Bricker, Leah A.

    In this dissertation, I examine youth argumentative practices as employed over time and across settings. Specifically, I examine youth perspective on argumentation and their own argumentative practices, the relationship between argumentation and learning, and the relationship between argumentation and youth, family, and community cultures. The theoretical framework I employ enables me to analyze argumentation as a set of practices employed in situated activity systems and framed by culturally-influenced ways of understanding activity associated with argumentative practice. I utilize data from a long-term team ethnography of youth science and technology learning across settings and time. Research fieldwork was conducted across dozens of social settings over the course of three years. Data includes approximately 700 hours of participant observations and interviews with thirteen upper elementary and middle school young people, as well as 128 of their parents, extended family members, peers, and teachers. Findings highlight the multitude of meanings youth associate with argumentation as it occurs in their lives (e.g., at home, in classrooms, in neighborhoods), as well as the detailed accounts of their argumentative practices and how these practices are differentially used across the social settings youth frequent. Additionally, findings highlight how historically rooted cultural practices help to frame youth perspectives on argumentation and their argumentative practices. Findings also include details about the specific communicative features of youth argumentation (e.g., linguistic elements such as discourse markers, evidentials, and indexicals, as well as non-verbal gestures) and how communicative features relate to youth learning across settings and over time. I use this dissertation in part to dialogue with the science education community, which currently argues that youth in science classrooms should learn how to argue scientifically. Designs of learning

  12. Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants

    PubMed Central

    Smith, Kirk R.; Jerrett, Michael; Anderson, H Ross; Burnett, Richard T.; Stone, Vicki; Derwent, Richard; Atkinson, Richard W.; Cohen, Aaron; Shonkoff, Seth B.; Krewski, Daniel; Pope, C. Arden; Thun, Michael J.; Thurston, George

    2014-01-01

    In this report we review the health effects of three short-lived greenhouse pollutants—black carbon, ozone, and sulphates. We undertook new meta-analyses of existing time-series studies and an analysis of a cohort of 352 000 people in 66 US cities during 18 years of follow-up. This cohort study provides estimates of mortality effects from long-term exposure to elemental carbon, an indicator of black carbon mass, and evidence that ozone exerts an independent risk of mortality. Associations among these pollutants make drawing conclusions about their individual health effects difficult at present, but sulphate seems to have the most robust effects in multiple-pollutant models. Generally, the toxicology of the pure compounds and their epidemiology diverge because atmospheric black carbon, ozone, and sulphate are associated and could interact with related toxic species. Although sulphate is a cooling agent, black carbon and ozone could together exert nearly half as much global warming as carbon dioxide. The complexity of these health and climate effects needs to be recognised in mitigation policies. PMID:19942276

  13. Age changes of facial measurements in European young adult males: implications for the identification of the living.

    PubMed

    Gibelli, D; Mapelli, A; Obertovà, Z; Poppa, P; Gabriel, P; Ratnayake, M; Tutkuviene, J; Sforza, C; Ritz-Timme, S; Cattaneo, C

    2012-12-01

    Metric and morphological analyses of facial features are currently applied in cases of personal identification of the living on images acquired from video surveillance systems. However, facial assessment in the forensic context needs to be based on reliable comparative data for facial measurements. Facial changes in the age range of early adulthood (20-30 years) have been rarely described so far, although such knowledge would be beneficial for comparative personal identification on images. This study investigates changes in facial measurements in European males aged between 20 and 30 years in order to identify metric characters that can be used for personal identification in young adults. A sample of 404 males of European ancestry, aged between 20 and 30 years from Germany, Italy and Lithuania were recruited for this project. Fourteen facial measurements were taken and correlation coefficients were calculated for each cranial measurement with age. Only two measurements - labial width and physiognomic ear length - seem to change between 20 and 30 years with a positive statistically significant correlation (p<0.05). These results suggest caution for what may concern personal identification by assessment of ear and mouth morphology. PMID:22990009

  14. Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants.

    PubMed

    Smith, Kirk R; Jerrett, Michael; Anderson, H Ross; Burnett, Richard T; Stone, Vicki; Derwent, Richard; Atkinson, Richard W; Cohen, Aaron; Shonkoff, Seth B; Krewski, Daniel; Pope, C Arden; Thun, Michael J; Thurston, George

    2009-12-19

    In this report we review the health effects of three short-lived greenhouse pollutants-black carbon, ozone, and sulphates. We undertook new meta-analyses of existing time-series studies and an analysis of a cohort of 352,000 people in 66 US cities during 18 years of follow-up. This cohort study provides estimates of mortality effects from long-term exposure to elemental carbon, an indicator of black carbon mass, and evidence that ozone exerts an independent risk of mortality. Associations among these pollutants make drawing conclusions about their individual health effects difficult at present, but sulphate seems to have the most robust effects in multiple-pollutant models. Generally, the toxicology of the pure compounds and their epidemiology diverge because atmospheric black carbon, ozone, and sulphate are associated and could interact with related toxic species. Although sulphate is a cooling agent, black carbon and ozone could together exert nearly half as much global warming as carbon dioxide. The complexity of these health and climate effects needs to be recognised in mitigation policies.

  15. Spatial variability in growth-increment chronologies of long-lived freshwater mussels: Implications for climate impacts and reconstructions

    USGS Publications Warehouse

    Black, Bryan A.; Dunham, Jason B.; Blundon, Brett W.; Raggon, Mark F.; Zima, Daniela

    2010-01-01

    Estimates of historical variability in river ecosystems are often lacking, but long-lived freshwater mussels could provide unique opportunities to understand past conditions in these environments. We applied dendrochronology techniques to quantify historical variability in growth-increment widths in valves (shells) of western pearlshell freshwater mussels (Margaritifera falcata). A total of 3 growth-increment chronologies, spanning 19 to 26 y in length, were developed. Growth was highly synchronous among individuals within each site, and to a lesser extent, chronologies were synchronous among sites. All 3 chronologies negatively related to instrumental records of stream discharge, while correlations with measures of water temperature were consistently positive but weaker. A reconstruction of stream discharge was performed using linear regressions based on a mussel growth chronology and the regional Palmer Drought Severity Index (PDSI). Models based on mussel growth and PDSI yielded similar coefficients of prediction (R2Pred) of 0.73 and 0.77, respectively, for predicting out-ofsample observations. From an ecological perspective, we found that mussel chronologies provided a rich source of information for understanding climate impacts. Responses of mussels to changes in climate and stream ecosystems can be very site- and process-specific, underscoring the complex nature of biotic responses to climate change and the need to understand both regional and local processes in projecting climate impacts on freshwater species.

  16. Apparent diffusive motion of centrin foci in living cells: implications for diffusion-based motion in centriole duplication

    NASA Astrophysics Data System (ADS)

    Rafelski, Susanne M.; Keller, Lani C.; Alberts, Jonathan B.; Marshall, Wallace F.

    2011-04-01

    The degree to which diffusion contributes to positioning cellular structures is an open question. Here we investigate the question of whether diffusive motion of centrin granules would allow them to interact with the mother centriole. The role of centrin granules in centriole duplication remains unclear, but some proposed functions of these granules, for example, in providing pre-assembled centriole subunits, or by acting as unstable 'pre-centrioles' that need to be captured by the mother centriole (La Terra et al 2005 J. Cell Biol. 168 713-22), require the centrin foci to reach the mother. To test whether diffusive motion could permit such interactions in the necessary time scale, we measured the motion of centrin-containing foci in living human U2OS cells. We found that these centrin foci display apparently diffusive undirected motion. Using the apparent diffusion constant obtained from these measurements, we calculated the time scale required for diffusion to capture by the mother centrioles and found that it would greatly exceed the time available in the cell cycle. We conclude that mechanisms invoking centrin foci capture by the mother, whether as a pre-centriole or as a source of components to support later assembly, would require a form of directed motility of centrin foci that has not yet been observed.

  17. Age changes of facial measurements in European young adult males: implications for the identification of the living.

    PubMed

    Gibelli, D; Mapelli, A; Obertovà, Z; Poppa, P; Gabriel, P; Ratnayake, M; Tutkuviene, J; Sforza, C; Ritz-Timme, S; Cattaneo, C

    2012-12-01

    Metric and morphological analyses of facial features are currently applied in cases of personal identification of the living on images acquired from video surveillance systems. However, facial assessment in the forensic context needs to be based on reliable comparative data for facial measurements. Facial changes in the age range of early adulthood (20-30 years) have been rarely described so far, although such knowledge would be beneficial for comparative personal identification on images. This study investigates changes in facial measurements in European males aged between 20 and 30 years in order to identify metric characters that can be used for personal identification in young adults. A sample of 404 males of European ancestry, aged between 20 and 30 years from Germany, Italy and Lithuania were recruited for this project. Fourteen facial measurements were taken and correlation coefficients were calculated for each cranial measurement with age. Only two measurements - labial width and physiognomic ear length - seem to change between 20 and 30 years with a positive statistically significant correlation (p<0.05). These results suggest caution for what may concern personal identification by assessment of ear and mouth morphology.

  18. Direct Effect of Carbon Dioxide Concentration on Phytoplankton Community Structure in the Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Riesselman, C. R.; Tortell, P. D.; Payne, C. D.; Dunbar, R. B.; Ditullio, G. R.

    2006-12-01

    As the largest high-nutrient low-chlorophyll (HNLC) region on the planet, the Southern Ocean plays a critical role in global biogeochemical cycling and climate modulation. Primary productivity and phytoplankton community structure in the waters surrounding Antarctica have demonstrated unique sensitivity to small changes in major and trace element availability and vertical mixing. However, the capacity of changing atmospheric CO2 to restructure Antarctic phytoplankton communities has only recently been proposed. During the austral summer of 2005-2006, the "Controls on Ross Sea Algal Community Structure" (CORSACS) project performed an integrated series of shipboard incubations coupled with polynya water column sampling designed to investigate the interplay of iron, light, and CO2 levels as determinants of primary production and phytoplankton community structure. Results from the CORSACS CO2 manipulation incubation experiment demonstrate substantial shifts in the taxonomic distribution of phytoplankton exposed to an experimental CO2 gradient. Triplicate semi-continuous culture bottles were bubbled with air mixtures containing 100, 370, and 800 ppm CO2, designed to approximate bloom conditions under glacial, modern, and projected future levels of carbon dioxide. At the conclusion of the 18-day incubation, the 100 ppm community was dominated by the small, finely silicified pennate diatom Pseudonitzschia subcurvata, while the abundance of larger, colonial Chaetoceros species increased significantly in the 800 ppm community. These results represent the first evidence that perturbations in atmospheric CO2 have the potential to reorganize phytoplankton community structure in the Southern Ocean, and have implications for both the glacial productivity paradox and the future of polar trophic structure.

  19. Prevalence and Contexts of Inconsistent Condom Use Among Heterosexual Men and Women Living with HIV in India: Implications for Prevention

    PubMed Central

    Chakrapani, Venkatesan; Newman, Peter A.; Shunmugam, Murali

    2010-01-01

    Abstract This investigation examined sexual behaviors among heterosexual persons living with HIV (PLHIV) in India. Study participants (mostly married) were interviewed during August to November 2006 in five Indian states using a quantitative survey (n = 100 men and 100 women), eight focus groups (n = 58 participants), and in-depth interviews (n = 31). One third of men and one fourth of women reported inconsistent condom use with regular sexual partners. Facilitators of condom use with regular partners included a feeling of personal responsibility to protect the health of the partner, desire to prevent acquisition and/or transmission of sexually transmitted infections, and the belief that condoms are needed for antiretroviral therapy to be effective. Barriers to consistent condom use with regular partners included the belief that condoms are unnecessary in HIV-positive seroconcordant relationships; lack of sexual satisfaction with condoms; the desire to have a child; husband's alcohol use, depression, and anxiety; fear that disclosure of HIV status will bring marital discord and family shame; and inadequate counseling by health care providers. Positive prevention programs should include counseling about benefits of safer sex in HIV-positive seroconcordant relationships, counseling about integrating condom use with sexual satisfaction and intimacy, condom use self-efficacy and negotiation skills-building, family planning counseling, mental health and alcohol dependence treatment, and counseling and skills-building about disclosure. Health care providers must be trained to provide these services. Furthermore, efforts are needed to promote tolerance for family planning choices made by couples and to counter the stigma associated with HIV/AIDS and condoms in the broader society. PMID:20095889

  20. Prevalence and contexts of inconsistent condom use among heterosexual men and women living with HIV in India: implications for prevention.

    PubMed

    Chakrapani, Venkatesan; Newman, Peter A; Shunmugam, Murali; Dubrow, Robert

    2010-01-01

    This investigation examined sexual behaviors among heterosexual persons living with HIV (PLHIV) in India. Study participants (mostly married) were interviewed during August to November 2006 in five Indian states using a quantitative survey (n = 100 men and 100 women), eight focus groups (n = 58 participants), and in-depth interviews (n = 31). One third of men and one fourth of women reported inconsistent condom use with regular sexual partners. Facilitators of condom use with regular partners included a feeling of personal responsibility to protect the health of the partner, desire to prevent acquisition and/or transmission of sexually transmitted infections, and the belief that condoms are needed for antiretroviral therapy to be effective. Barriers to consistent condom use with regular partners included the belief that condoms are unnecessary in HIV-positive seroconcordant relationships; lack of sexual satisfaction with condoms; the desire to have a child; husband's alcohol use, depression, and anxiety; fear that disclosure of HIV status will bring marital discord and family shame; and inadequate counseling by health care providers. Positive prevention programs should include counseling about benefits of safer sex in HIV-positive seroconcordant relationships, counseling about integrating condom use with sexual satisfaction and intimacy, condom use self-efficacy and negotiation skills-building, family planning counseling, mental health and alcohol dependence treatment, and counseling and skills-building about disclosure. Health care providers must be trained to provide these services. Furthermore, efforts are needed to promote tolerance for family planning choices made by couples and to counter the stigma associated with HIV/AIDS and condoms in the broader society.

  1. High-pressure metamorphism in the southern New England Orogen: Implications for long-lived accretionary orogenesis in eastern Australia

    NASA Astrophysics Data System (ADS)

    Phillips, G.; Offler, R.; Rubatto, D.; Phillips, D.

    2015-09-01

    New geochemical, metamorphic, and isotopic data are presented from high-pressure metamorphic rocks in the southern New England Orogen (eastern Australia). Conventional and optimal thermobarometry are augmented by U-Pb zircon and 40Ar/39Ar phengite dating to define pressure-temperature-time (P-T-t) histories for the rocks. The P-T-t histories are compared with competing geodynamic models for the Tasmanides, which can be summarized as (i) a retreating orogen model, the Tasmanides formed above a continuous, west dipping, and eastward retreating subduction zone, and (ii) a punctuated orogen model, the Tasmanides formed by several arc accretion, subduction flip, and/or transference events. Whereas both scenarios are potentially supported by the new data, an overlap between the timing of metamorphic recrystallization and key stages of Tasmanides evolution favors a relationship between a single, long-lived subduction zone and the formation, exhumation, and exposure of the high-pressure rocks. By comparison with the retreating orogen model, the following links with the P-T-t histories emerge: (i) exhumation and underplating of oceanic eclogite during the Delamerian Orogeny, (ii) recrystallization of underplated and exhuming high-pressure rocks at amphibolite facies conditions coeval with a period of rollback, and (iii) selective recrystallization of high-pressure rocks at blueschist facies conditions, reflecting metamorphism in a cooled subduction zone. The retreating orogen model can also account for the anomalous location of the Cambrian-Ordovician high-pressure rocks in the Devonian-Carboniferous New England Orogen, where sequential rollback cycles detached and translated parts of the leading edge of the overriding plate to the next, younger orogenic cycle.

  2. An Inverse Modeling Approach to Estimating Phytoplankton Pigment Concentrations from Phytoplankton Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.

    2011-01-01

    Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.

  3. Recent decadal trends in global phytoplankton composition

    NASA Astrophysics Data System (ADS)

    Rousseaux, Cecile S.; Gregg, Watson W.

    2015-10-01

    Identifying major trends in biogeochemical composition of the oceans is essential to improve our understanding of biological responses to climate forcing. Using the NASA Ocean Biogeochemical Model combined with ocean color remote sensing data assimilation, we assessed the trends in phytoplankton composition (diatoms, cyanobacteria, coccolithophores, and chlorophytes) at a global scale for the period 1998-2012. We related these trends in phytoplankton to physical conditions (surface temperature, surface photosynthetically available radiation (PAR), and mixed layer depth (MLD)) and nutrients (iron, silicate, and nitrate). We found a significant global decline in diatoms (-1.22% yr-1, p < 0.05). This trend was associated with a significant (p < 0.05) shallowing of the MLD (-0.20% yr-1), a significant increase in PAR (0.09% yr-1), and a significant decline in nitrate (-0.38% yr-1). The global decline in diatoms was mostly attributed to their decline in the North Pacific (-1.00% yr-1, p < 0.05), where the MLD shallowed significantly and resulted in a decline in all three nutrients (p < 0.05). None of the other phytoplankton groups exhibited a significant change globally, but regionally there were considerable significant trends. A decline in nutrients in the northernmost latitudes coincided with a significant decline in diatoms (North Pacific, -1.00% yr-1) and chlorophytes (North Atlantic, -9.70% yr-1). In the northern midlatitudes (North Central Pacific and Atlantic) where nutrients were more scarce, a decline in nutrients was associated with a decline in smaller phytoplankton: cyanobacteria declined significantly in the North Central Pacific (-0.72% yr-1) and Atlantic (-1.56% yr-1), and coccolithophores declined significantly in the North Central Atlantic (-2.06% yr-1). These trends represent the diversity and complexity of mechanisms that drives phytoplankton communities to adapt to variable conditions of nutrients, light, and mixed layer depth. These results provide

  4. Interactions between mercury and phytoplankton: speciation, bioavailability, and internal handling.

    PubMed

    Le Faucheur, Séverine; Campbell, Peter G C; Fortin, Claude; Slaveykova, Vera I

    2014-06-01

    The present review describes and discusses key interactions between mercury (Hg) and phytoplankton to highlight the role of phytoplankton in the biogeochemical cycle of Hg and to understand direct or indirect Hg effects on phytoplankton. Phytoplankton are exposed to various Hg species in surface waters. Through Hg uptake, phytoplankton affect the concentration, speciation, and fate of Hg in aquatic systems. The mechanisms by which phytoplankton take up Hg are still not well known, but several studies have suggested that both facilitated transport and passive diffusion could be involved. Once internalized, Hg will impact several physiological processes, including photosynthesis. To counteract these negative effects, phytoplankton have developed several detoxification strategies, such as the reduction of Hg to elemental Hg or its sequestration by intracellular ligands. Based on the toxicological studies performed so far in the laboratory, Hg is unlikely to be toxic to phytoplankton when they are exposed to environmentally relevant Hg concentrations. However, this statement should be taken with caution because questions remain as to which Hg species control Hg bioavailability and about Hg uptake mechanisms. Finally, phytoplankton are primary producers, and accumulated Hg will be transferred to higher consumers. Phytoplankton are a key component in aquatic systems, and their interactions with Hg need to be further studied to fully comprehend the biogeochemical cycle of Hg and the impact of this ubiquitous metal on ecosystems. PMID:24127330

  5. Implications of variability on many time scales for scientific advice on sustainable management of living marine resources

    NASA Astrophysics Data System (ADS)

    Rice, Jake

    The conceptual basis for understanding and management of living marine resources is built on three basic ecological principles developed in the first half of the past century: the law of the minimum, competitive exclusion, and succession. This paper highlights aspects of these principles that make them insufficient as a sound foundation for understanding and managing marine ecosystems, points out dangers of continuing to use approaches built on them, and presents alternatives which might be more appropriate and of lower risk. To do this, the paper considers variability of marine ecosystems on annual, medium and long-term time scales, highlighting that these scales correspond to less than, approximately equal to, and much greater than, the generation times of dominant predators in the systems. It also considers how each interval of variability may affect directly ecosystems which are controlled from the bottom up, top down, and middle outward, and how position and duration of forcing affect five types of responses: growth, maturation, recruitment, predation, and competition. Generally these five processes have manifestations at the scale of individuals, populations, and ecosystems, attention is drawn to which manifestations are the most significant for each duration and position of forcing. Effects of some combinations of duration of forcing and position of forcing can be explained reasonably well by conventional ecological theory. For other combinations, particularly forcing at time scales of predator generations on top-down or middle-out ecosystems, theory based on contest competition and equilibria are likely to be misleading. In these systems the major dynamics are transients, when many ecosystems are far from their carrying capacities, so scramble competition dominates, and the carrying capacity is not helpful in explaining the system dynamics. This review clarifies the sorts of questions that we should be asking, in order to begin to understand the transient

  6. Spatial interaction among nontoxic phytoplankton, toxic phytoplankton, and zooplankton: emergence in space and time.

    PubMed

    Roy, Shovonlal

    2008-10-01

    In homogeneous environments, by overturning the possibility of competitive exclusion among phytoplankton species, and by regulating the dynamics of overall plankton population, toxin-producing phytoplankton (TPP) potentially help in maintaining plankton diversity-a result shown recently. Here, I explore the competitive effects of TPP on phytoplankton and zooplankton species undergoing spatial movements in the subsurface water. The spatial interactions among the species are represented in the form of reaction-diffusion equations. Suitable parametric conditions under which Turing patterns may or may not evolve are investigated. Spatiotemporal distributions of species biomass are simulated using the diffusivity assumptions realistic for natural planktonic systems. The study demonstrates that spatial movements of planktonic systems in the presence of TPP generate and maintain inhomogeneous biomass distribution of competing phytoplankton, as well as grazer zooplankton, thereby ensuring the persistence of multiple species in space and time. The overall results may potentially explain the sustainability of biodiversity and the spatiotemporal emergence of phytoplankton and zooplankton species under the influence of TPP combined with their physical movement in the subsurface water.

  7. Spatial interaction among nontoxic phytoplankton, toxic phytoplankton, and zooplankton: emergence in space and time.

    PubMed

    Roy, Shovonlal

    2008-10-01

    In homogeneous environments, by overturning the possibility of competitive exclusion among phytoplankton species, and by regulating the dynamics of overall plankton population, toxin-producing phytoplankton (TPP) potentially help in maintaining plankton diversity-a result shown recently. Here, I explore the competitive effects of TPP on phytoplankton and zooplankton species undergoing spatial movements in the subsurface water. The spatial interactions among the species are represented in the form of reaction-diffusion equations. Suitable parametric conditions under which Turing patterns may or may not evolve are investigated. Spatiotemporal distributions of species biomass are simulated using the diffusivity assumptions realistic for natural planktonic systems. The study demonstrates that spatial movements of planktonic systems in the presence of TPP generate and maintain inhomogeneous biomass distribution of competing phytoplankton, as well as grazer zooplankton, thereby ensuring the persistence of multiple species in space and time. The overall results may potentially explain the sustainability of biodiversity and the spatiotemporal emergence of phytoplankton and zooplankton species under the influence of TPP combined with their physical movement in the subsurface water. PMID:19669506

  8. Salient region detection for phytoplankton microscopic image

    NASA Astrophysics Data System (ADS)

    Chu, Jingjing; Ji, Guangrong; Zheng, Haiyong; Yu, Kun; Lu, Hongguang

    2013-07-01

    IG method is an excellent salient region detection method as its good generality and well-defined boundaries. In this paper, an improved method based on IG method is proposed to generate saliency map for phytoplankton microscopic images. This method utilizes the characteristics of phytoplankton microscopic images, through Gaussian low-pass filter to reduce high frequency components corresponding to water stains and dust specks. On the basis of luminance and color used in IG method, saturation is added to determine saliency due to that the saturation of background is lower than that of cells. The experimental results show that the proposed method can not only improve visual quality significantly, but also obtain higher precision and better recall rates compared with IG method.

  9. Does phytoplankton photosynthesis influence the global climate

    SciTech Connect

    Falkowski, P.G. )

    1990-05-01

    Next to water vapor, carbon dioxide is the most abundant greenhouse gas in the atmosphere. Over the last 150,000 years atmospheric CO{sub 2} levels have fluctuated between 180 and 290 ppmv. Within the last 150 years CO{sub 2} has increased exponentially from 275 to 360 ppmv. Prior to the industrial revolution, fluctuations in CO{sub 2} were a consequence of disequilibrium between global photosynthesis and respiration. Phytoplankton fix 40% of the carbon on the globe, yet account for less than 0.5% of the plant biomass. The geological record suggests that natural variations in atmospheric CO{sub 2} are inversely related to oceanic primary production. I will examine, within the context of plant molecular biology and biochemistry, various hypotheses which seek to explain the variability in phytoplankton production, including atmospheric inputs of iron to the surface ocean, increased nitrogen supply from the deep ocean, and temperature limitation.

  10. Revaluating ocean warming impacts on global phytoplankton

    NASA Astrophysics Data System (ADS)

    Behrenfeld, Michael J.; O'Malley, Robert T.; Boss, Emmanuel S.; Westberry, Toby K.; Graff, Jason R.; Halsey, Kimberly H.; Milligan, Allen J.; Siegel, David A.; Brown, Matthew B.

    2016-03-01

    Global satellite observations document expansions of the low-chlorophyll central ocean gyres and an overall inverse relationship between anomalies in sea surface temperature and phytoplankton chlorophyll concentrations. These findings can provide an invaluable glimpse into potential future ocean changes, but only if the story they tell is accurately interpreted. Chlorophyll is not simply a measure of phytoplankton biomass, but also registers changes in intracellular pigmentation arising from light-driven (photoacclimation) and nutrient-driven physiological responses. Here, we show that the photoacclimation response is an important component of temporal chlorophyll variability across the global ocean. This attribution implies that contemporary relationships between chlorophyll changes and ocean warming are not indicative of proportional changes in productivity, as light-driven decreases in chlorophyll can be associated with constant or even increased photosynthesis. Extension of these results to future change, however, requires further evaluation of how the multifaceted stressors of a warmer, higher-CO2 world will impact plankton communities.

  11. B Vitamins as Regulators of Phytoplankton Dynamics

    NASA Astrophysics Data System (ADS)

    Panzeca, Caterina; Tovar-Sanchez, Antonio; Agustí, Susana; Reche, Isabel; Duarte, Carlos M.; Taylor, Gordon T.; Sañudo-Wilhelmy, Sergio A.

    2006-12-01

    Without an adequate supply of dissolved vitamins, many species of phytoplankton do not grow. Additions of inorganic nutrients like phosphorus and nitrogen, and trace metals like iron, are not alone adequate to sustain life-a practical lesson learned quickly by experimental biologists when they try to keep eukaryotic phytoplankton cultures alive in their labs. The reason is that coenzymes such as B vitamins are also required for many metabolic pathways. For example, vitamin B1 serves as a cofactor for a large number of enzymatic systems, including the pyruvate dehydrogenase complex required for the metabolism of carbohydrates (glycolysis) and amino acid synthesis [Vandamme, 1989]. Vitamin B12 is used primarily to assist two enzymes: methionine synthase, which is involved in DNA synthesis, and methylmalonyl CoA mutase, which is required for inorganic carbon assimilation [Lindemans and Abels, 1985].

  12. Cross-species transfer of viruses: implications for the use of viral vectors in biomedical research, gene therapy and as live-virus vaccines.

    PubMed

    Louz, Derrick; Bergmans, Hans E; Loos, Birgit P; Hoeben, Rob C

    2005-10-01

    All living organisms are continuously exposed to a plethora of viruses. In general, viruses tend to be restricted to the natural host species which they infect. From time to time viruses cross the host-range barrier expanding their host range. However, in very rare cases cross-species transfer is followed by the establishment and persistence of a virus in the new host species, which may result in disease. Recent examples of viruses that have crossed the species barrier from animal reservoirs to humans are hantavirus, haemorrhagic fever viruses, arboviruses, Nipah and Hendra viruses, avian influenza virus (AI), monkeypox virus, and the SARS-associated coronavirus (SARS-CoV). The opportunities for cross-species transfer of mammalian viruses have increased in recent years due to increased contact between humans and animal reservoirs. However, it is difficult to predict when such events will take place since the viral adaptation that is needed to accomplish this is multifactorial and stochastic. Against this background the intensified use of viruses and their genetically modified variants as viral gene transfer vectors for biomedical research, experimental gene therapy and for live-vector vaccines is a cause for concern. This review addresses a number of potential risk factors and their implications for activities with viral vectors from the perspective of cross-species transfer of viruses in nature, with emphasis on the occurrence of host-range mutants resulting from either cell culture or tropism engineering. The issues are raised with the intention to assist in risk assessments for activities with vector viruses. PMID:15986492

  13. Cross-species transfer of viruses: implications for the use of viral vectors in biomedical research, gene therapy and as live-virus vaccines.

    PubMed

    Louz, Derrick; Bergmans, Hans E; Loos, Birgit P; Hoeben, Rob C

    2005-10-01

    All living organisms are continuously exposed to a plethora of viruses. In general, viruses tend to be restricted to the natural host species which they infect. From time to time viruses cross the host-range barrier expanding their host range. However, in very rare cases cross-species transfer is followed by the establishment and persistence of a virus in the new host species, which may result in disease. Recent examples of viruses that have crossed the species barrier from animal reservoirs to humans are hantavirus, haemorrhagic fever viruses, arboviruses, Nipah and Hendra viruses, avian influenza virus (AI), monkeypox virus, and the SARS-associated coronavirus (SARS-CoV). The opportunities for cross-species transfer of mammalian viruses have increased in recent years due to increased contact between humans and animal reservoirs. However, it is difficult to predict when such events will take place since the viral adaptation that is needed to accomplish this is multifactorial and stochastic. Against this background the intensified use of viruses and their genetically modified variants as viral gene transfer vectors for biomedical research, experimental gene therapy and for live-vector vaccines is a cause for concern. This review addresses a number of potential risk factors and their implications for activities with viral vectors from the perspective of cross-species transfer of viruses in nature, with emphasis on the occurrence of host-range mutants resulting from either cell culture or tropism engineering. The issues are raised with the intention to assist in risk assessments for activities with vector viruses.

  14. Qualitative Analysis of Nutrient-Phytoplankton Models

    NASA Astrophysics Data System (ADS)

    Cai, Qinghua; Mohamad, Zakaria; Yuan, Yuan

    2011-11-01

    We propose two nutrient-phytoplankton models with instantaneous and time delayed recyclings, investigate the dynamics and examine the responses to model complexities. We use geometrical and analytical methods to discuss the existence and stability of the possible steady state solutions and study the occurrence of Hopf bifurcation. Numerical simulations illustrate the analytical results and provide further insight into the dynamics of the model, biological interpretations are given.

  15. Phytoplankton Bloom Phenology near Palmer Station Antarctica

    NASA Astrophysics Data System (ADS)

    Crews, L.; Doney, S. C.; Kavanaugh, M.; Ducklow, H. W.; Schofield, O.; Glover, D. M.

    2015-12-01

    West Antarctic Peninsula (WAP) phytoplankton bloom phenology is coupled to growing season water column stratification precipitated by seasonal warming and the melting of winter sea-ice. Previous studies document declining bloom magnitude over decadal timescales in conjunction with decreasing sea-ice extent and duration in the Northern WAP, but less work has been to done explain the observed inter-annual variability in this region. Here we use a high-resolution in situ time series collected by the Palmer Station Antarctica Long Term Ecological Research program and satellite ocean color imagery to investigate the underlying mechanisms controlling phytoplankton bloom timing and magnitude near Palmer Station. We pair chlorophyll and CTD measurements collected twice per week during the austral summer, 1992—2003, with satellite ocean color and ice fractional cover data to examine bloom development and within-season trends in mixed layer depth. Initial results suggest a possible shift over time with spring/summer blooms occurring earlier in the growing season reflecting earlier sea-ice free conditions. Net phytoplankton accumulation rates are also computed and compared against growth estimates. Our results can be used to develop and validate models of coastal Antarctic primary production that better represent inter-annual primary production variability.

  16. The role of chronic self-propagating glial responses in neurodegeneration: implications for long-lived survivors of human immunodeficiency virus.

    PubMed

    Mrak, R E; Griffin, W S

    1997-08-01

    Within the last decade there has arisen increasing appreciation of the role of glia-derived immune and neurotrophic cytokines, especially microglia-derived interleukin-1 and astrocyte-derived S100beta, in the pathophysiology of Alzheimer's disease and of neurodegeneration in general. Available evidence now suggests that these neurotrophic and immune cytokines, produced in response to neuronal cell dysfunction or death, may elicit cellular and molecular responses resulting in further activation of glia and glial cytokine secretion, producing a cytokine cycle. In conditions characterized by chronic glial activation this cycle becomes self propagating, promoting further neurodegeneration and subsequent further induction of glial cell activation with production of cytokines. In Alzheimer's disease, for instance, such self-propagation is essential to the progressive accumulation of neuropathological changes that underlie progressive dementia. Conditions that predispose one to Alzheimer-type 'senile' neuropathological changes, and to later development of Alzheimer's disease, also exhibit glial activation and overexpression of glial cytokines, providing further evidence of a pathogenic role for glial activation and cytokine cycle elements in the initiation and propagation of Alzheimer lesions. HIV produces a chronic viral infection of the central nervous system that has been associated with chronic glial activation and overexpression of some of the same cytokines that have been implicated in Alzheimer pathogenesis. These observations, together with established functions of cytokine cycle elements, suggest that chronic HIV infection in sufficiently long-lived HIV-infected individuals might confer additional risk for later development of Alzheimer's disease.

  17. Coupling of heterotrophic bacteria to phytoplankton bloom development at different pCO2 levels: a mesocosm study

    NASA Astrophysics Data System (ADS)

    Allgaier, M.; Riebesell, U.; Vogt, M.; Thyrhaug, R.; Grossart, H.-P.

    2008-07-01

    The predicted rise in anthropogenic CO2 emissions will increase CO2 concentrations and decrease seawater pH in the upper ocean. Recent studies have revealed effects of pCO2 induced changes in seawater chemistry on a variety of marine life forms, in particular calcifying organisms. To test whether the predicted increase in pCO2 will directly or indirectly (via changes in phytoplankton dynamics) affect abundance, activities, and community composition of heterotrophic bacteria during phytoplankton bloom development, we have aerated mesocosms with CO2 to obtain triplicates with three different partial pressures of CO2 (pCO2): 350 μatm (1×CO2), 700 μatm (2×CO2) and 1050 μatm (3×CO2). The development of a phytoplankton bloom was initiated by the addition of nitrate and phosphate. In accordance to an elevated carbon to nitrogen drawdown at increasing pCO2, bacterial production (BPP) of free-living and attached bacteria as well as cell-specific BPP (csBPP) of attached bacteria were related to the C:N ratio of suspended matter. These relationships significantly differed among treatments. However, bacterial abundance and activities were not statistically different among treatments. Solely community structure of free-living bacteria changed with pCO2 whereas that of attached bacteria seemed to be independent of pCO2 but tightly coupled to phytoplankton bloom development. Our findings imply that changes in pCO2, although reflected by changes in community structure of free-living bacteria, do not directly affect bacterial activity. Furthermore, bacterial activity and dynamics of heterotrophic bacteria, especially of attached bacteria, were tightly correlated to phytoplankton development and, hence, may also potentially depend on changes in pCO2.

  18. Coupling of heterotrophic bacteria to phytoplankton bloom development at different pCO2 levels: a mesocosm study

    NASA Astrophysics Data System (ADS)

    Allgaier, M.; Riebesell, U.; Vogt, M.; Thyrhaug, R.; Grossart, H.-P.

    2008-01-01

    The predicted rise in anthropogenic CO2 emissions will increase CO2 concentrations and decrease seawater pH in the upper ocean. Recent studies have revealed effects of pCO2 induced changes in seawater chemistry on a variety of marine life forms, in particular calcifying organisms. To test whether the predicted increase in pCO2 will directly or indirectly (via changes in phytoplankton dynamics) affect abundance, activities, and community composition of heterotrophic bacteria during phytoplankton bloom development, we have aerated mesocosms with CO2 to obtain triplicates with three different partial pressures of CO2 (pCO2): 350 µatm (1×CO2), 700 µatm (2×CO2) and 1050 µatm (3×CO2). The development of a phytoplankton bloom was initiated by the addition of nitrate and phosphate. In accordance to an elevated carbon to nitrogen drawdown at increasing pCO2, bacterial production (BPP) of free-living and attached bacteria as well as cell-specific BPP (csBPP) of attached bacteria were related to the C:N ratio of suspended matter. These relationships significantly differed among treatments. However, bacterial abundance and activities were not statistically different among treatments. Solely community structure of free-living bacteria changed with pCO2 whereas that of attached bacteria seemed to be independent of pCO2 but tightly coupled to phytoplankton bloom development. Our findings imply that changes in pCO2, although reflected by changes in community structure of free-living bacteria, do not directly affect bacterial activity. Furthermore, bacterial activity and dynamics of heterotrophic bacteria, especially of attached bacteria, were tightly linked to phytoplankton development and, hence, may also potentially depend on changes in pCO2.

  19. Calcareous phytoplankton perturbations through the Eocene/Oligocene Transition

    NASA Astrophysics Data System (ADS)

    Bown, P. R.; Dunkley Jones, T.; Expedition 320/321 Shipboard Party

    2010-12-01

    The Eocene-Oligocene transition (E/OT) witnessed the most significant climatic change in the Cenozoic with a fundamental reordering of the planet’s oceanic and atmospheric circulation, the cooling of deep and high-latitude waters and the formation of continental scale ice sheets on Antarctica. Records from the equatorial Pacific show rapid and highly correlated increases in deep-ocean oxygen and carbon isotopes and a drop in the Calcium Carbonate Compensation Depth (CCD) of over a kilometre (Coxall et al. 2005). The role of surface ocean productivity changes, especially at low latitudes, within this carbon cycle perturbation remains open to question. Detailed micropalaeontological analyses from shelf-slope sections of Tanzania, which host exceptionally well preserved calcareous microfossils, indicate a significant reorganization of planktonic niches coincident with the E/OT (Pearson et al. 2008). These include major assemblage shifts within the calcareous phytoplankton closely coupled to the isotopic excursions (Dunkley Jones et al. 2008). Here, we integrate the Tanzanian records with patterns of calcareous nannofossil turnover observed in historic DSDP Site 242 (Davie Ridge, Indian Ocean), the US Gulf Coast and preliminary data from new E/OT successions recovered during the recent IODP Expedition 320 in the eastern equatorial Pacific and discuss their implications for nutrient cycling and surface ocean productivity across the E/OT. Coxall, H. K., Wilson, P. A., Palike, H., Lear, C. H. & Backman, J. 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433: 53-57. Dunkley Jones, T., Bown, P. R., Pearson, P. N., Wade, B. S., Coxall, H. K. & Lear, C. H. 2008. Major shifts in calcareous phytoplankton assemblages through the Eocene-Oligocene transition of Tanzania and their implications for low-latitude primary production, Paleoceanography, 23, PA4204, doi:10.1029/2008PA001640. Pearson, P.N, McMillan, I. K

  20. Nitrogen and phosphorus intake by phytoplankton in the Xiamen Bay

    NASA Astrophysics Data System (ADS)

    Lin, Cai; Li, Hui; He, Qing; Xu, Kuncan; Wu, Shengsan; Zhang, Yuanbiao; Chen, Jinmin; Chen, Baohong; Lin, Libin; Lu, Meiluan; Chen, Weifen; Tang, Rongkun; Ji, Weidong

    2010-01-01

    This paper describes a time series experiment examining the nitrogen and phosphorus intake of natural phytoplankton communities by a microcosms approach. Seawater samples containing natural phytoplankton communities were collected from waters around Baozhu Islet in inner Xiamen Bay and around Qingyu Islet in the outer bay. The goal was to elucidate the relationship between phytoplankton population enhancement, the biological removal of nitrogen and phosphorus from the seawater, and the phytoplankton nitrogen and phosphorus intake ratio based on nitrogen and phosphorus removal from seawater by phytoplankton, to provide a basis for detecting prewarning conditions for red tide and the assessment of red tide events. Two key results were obtained: 1. During the experiment, the nitrogen and phosphorus seawater concentrations in samples from these two sites were negatively and closely correlated to the logarithm of the phytoplankton cell concentration and to the value of the apparent oxygen increment. The ratio of the intake coefficients was 3.5:1 for phosphorus and 1.1:1 for nitrogen for the phytoplankton between these samples from around Baozhu Islet and Qingyu Islet, respectively. This indicates that the intake capabilities of phytoplankton for nitrogen in the two waters are essentially identical. However, for phosphorus, the capability was much higher in the Baozhu Islet waters than the Qingyu Islet waters. In other words, the phytoplankton in Qingyu Islet waters produced more biomass while consuming the same amount of phosphorus as the other waters; 2. The phytoplankton nitrogen and phosphorus intake ratio from the Baozhu Islet and Qingyu Islet waters was 20:1 and 36:1, respectively. The latter waters had a significantly higher ratio than the former and both were higher than the Redfield Ratio. These results indicate that nitrogen and phosphorus intake ratios by phytoplankton can vary significantly from region to region.

  1. Phytoplankton dynamics in contrasting early stage North Atlantic spring blooms: composition, succession, and potential drivers

    NASA Astrophysics Data System (ADS)

    Daniels, C. J.; Poulton, A. J.; Esposito, M.; Paulsen, M. L.; Bellerby, R.; St John, M.; Martin, A. P.

    2015-04-01

    , and that large diatoms may be absent in NWB spring blooms. Despite both phytoplankton communities being in the early stages of bloom formation, different physicochemical and biological factors controlled bloom formation at the two sites. If these differences in phytoplankton composition persist, the subsequent spring blooms are likely to be significantly different in terms of biogeochemistry and trophic interactions throughout the growth season, with important implications for carbon cycling and organic matter export.

  2. Phytoplankton dynamics in contrasting early stage North Atlantic spring blooms: composition, succession, and potential drivers

    NASA Astrophysics Data System (ADS)

    Daniels, C. J.; Poulton, A. J.; Esposito, M.; Paulsen, M. L.; Bellerby, R.; St. John, M.; Martin, A. P.

    2015-01-01

    may be absent in NWB spring blooms. Despite both phytoplankton communities being in the early stages of bloom formation, different physicochemical and biological factors controlled bloom formation at the two sites. If these differences in phytoplankton composition persist, the subsequent spring blooms are likely to be significantly different in terms of biogeochemistry and trophic interactions throughout the growth season, with important implications for carbon cycling and organic matter export.

  3. Seasonality, phytoplankton succession and the biogeochemical impacts of an autumn storm in the northeast Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Painter, Stuart C.; Finlay, Madelaine; Hemsley, Victoria S.; Martin, Adrian P.

    2016-03-01

    phytoplankton growth in surface waters should be tempered with greater understanding of the role of storm driven vertical reorganization of the water column and of resident phytoplankton communities. Crucially, in this case we observed no change in integrated chlorophyll, particulate organic carbon or biogenic silica concentrations despite also observing a ∼50% increase in surface chlorophyll concentrations which indicated that the surface enhancement in chlorophyll concentrations was most likely fed from below rather than resulting from in situ growth. Though not measured directly there was no evidence of enhanced export fluxes associated with this storm. These observations have implications for the growing practice of using chlorophyll fluorescence from remote platforms to determine ocean productivity late in the annual productivity period and in response to storm mixing.

  4. Thin layers and species-specific characterization of the phytoplankton community in Monterey Bay, California, USA

    NASA Astrophysics Data System (ADS)

    Rines, J. E. B.; McFarland, M. N.; Donaghay, P. L.; Sullivan, J. M.

    2010-01-01

    During the summers of 2005 and 2006, experiments designed to understand the properties of densely concentrated, thin layers of plankton and the processes governing their dynamics were conducted in Monterey Bay, California, USA. Our goal was to elucidate the role that species-specific properties of phytoplankton play in thin layer dynamics. Using adaptive sampling, we collected water samples from inside and outside bio-optical features of the water column. Characterization of the phytoplankton was compiled from live and preserved samples, and analyzed within a framework of physical, optical, chemical and acoustical data. In both years, Monterey Bay was home to an extraordinarily diverse assemblage of phytoplankton and other protists. Bioluminescent dinoflagellates, and Harmful Algal Bloom (HAB) taxa were common. In 2005, community assemblages were widespread, thus advection of water through the experimental mooring array did not result in floristic changes. In 2006 phytoplankton were very patchy in horizontal distribution, and advection of water through the array was at times accompanied by dramatic shifts in community composition. Individual taxa often exhibited disparate patterns of vertical distribution, with some found throughout the water column, whereas others were restricted to narrow depth intervals. Thin layers were observed in both years. In 2005, the dinoflagellate Akashiwo sanguinea formed intense thin layers near the pycnocline at night, and migrated to near surface waters at dawn. In 2006, layer composition was more complex, and related to the water mass present at the time of sampling. Optically detected thin layers of phytoplankton can be studied from the perspective of the impact their high biomass has on both ecological processes, and ocean optics. But thin layers can also be studied from the species-specific perspective of each organism, its role within the thin layer habitat, and the impact that life within a thin layer has on its life history

  5. Acclimation of marine phytoplankton to ultraviolet radiation

    SciTech Connect

    Hazzard, C.E.

    1993-01-01

    The ability of marine phytoplankton to acclimate to ultraviolet radiation (UVR) was examined. Monocultures of a subtropical diatom, Chaetoceros gracilis, were maintained under photosynthetically available radiation (PAR-only) and PAR plus UVR (PAR + UVR) for a 48 h exposure period. By 24 h, and for the remainder of the 48 h exposure period, growth rate, pigment concentrations, Rubisco activity and carbon fixation capability were not affected by PAR + UVR. After 48 h of UVR exposure turnover rates of the putative D1 protein of photosystem II (PSII) and Chlorophyll (Chl) a were higher than controls, suggesting continual damage by UVR. Maximum rate of oxygen evolution and the efficiency of PSII increased following acclimation to UVR. The maximum rate of carbon fixation was not affected on a per cell basis and decreased on a per Chl a basis following UVR acclimation. Chlorophyll a specific photosynthesis over a 5 h exposure period was equal between the two acclimation treatments (PAR-only and PAR + UV). Transfer of PAR-only acclimated cells to PAR + UVR for the same 5 h period lead to a reduction in Chl a specific photosynthesis, indicating acute inhibition of photosynthesis by UVR. Chlorophyll a specific photosynthesis of cells acclimated to PAR + UVR and transferred to PAR-only was 24% higher than cells maintained in PAR + UVR during the determination of photosynthesis, indicating enhancement of productivity following the removal of UVR. Effect of ambient subtropical UVR on natural phytoplankton populations was examined. Rates of primary production by assemblages Natural phytoplankton assemblages from Hawaii, exposed to PAR-only and PAR + UVR were equal. Assemblages acclimated to PAR + UVR and then transferred to PAR-only fixed 67% more carbon per Chl a than assemblages acclimated to PAR + UVR and maintained in PAR + UVR. Acclimation to ambient PAR + UVR resulted in a 171% increase in Chl a concentration compared to assemblages maintained under PAR-only conditions.

  6. Phytoplankton off the Coast of Washington State

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Clear weather over the Pacific Northwest yesterday gave the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) a good view of this mountain region of the United States. Also, there are several phytoplankton blooms visible offshore. The white areas hugging the California coastline toward the bottom of the image are low-level stratus clouds. SeaWiFS acquired this true-color scene on October 3, 2001. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  7. Phytoplankton-Fluorescence-Lifetime Vertical Profiler

    NASA Technical Reports Server (NTRS)

    Fernandez, Salvador M.; Guignon, Ernest F.; St. Louis, Ernest

    2004-01-01

    A battery-operated optoelectronic instrument is designed to be lowered into the ocean to measure the intensity and lifetime of fluorescence of chlorophyll A in marine phytoplankton as a function of depth from 0 to 300 m. Fluorescence lifetimes are especially useful as robust measures of photosynthetic productivity of phytoplankton and of physical and chemical mechanisms that affect photosynthesis. The knowledge of photosynthesis in phytoplankton gained by use of this and related instruments is expected to contribute to understanding of global processes that control the time-varying fluxes of carbon and associated biogenic elements in the ocean. The concentration of chlorophyll in the ocean presents a major detection challenge because in order to obtain accurate values of photosynthetic parameters, the intensity of light used to excite fluorescence must be kept very low so as not to disturb the photosynthetic system. Several innovations in fluorometric instrumentation were made in order to make it possible to reach the required low detection limit. These innovations include a highly efficient optical assembly with an integrated flow-through sample interface, and a high-gain, low-noise electronic detection subsystem. The instrument also incorporates means for self-calibration during operation, and electronic hardware and software for control, acquisition and analysis of data, and communications. The electronic circuitry is highly miniaturized and designed to minimize power demand. The instrument is housed in a package that can withstand the water pressure at the maximum depth of 300 m. A light-emitting diode excites fluorescence in the sample flow cell, which is placed at one focal point of an ellipsoidal reflector. A photomultiplier tube is placed at the other focal point. This optical arrangement enables highly efficient collection of fluorescence emitted over all polar directions. Fluorescence lifetime is measured indirectly, by use of a technique based on the

  8. Iron from melting glaciers fuels phytoplankton blooms in the Amundsen Sea (Southern Ocean): Phytoplankton characteristics and productivity

    NASA Astrophysics Data System (ADS)

    Alderkamp, Anne-Carlijn; Mills, Matthew M.; van Dijken, Gert L.; Laan, Patrick; Thuróczy, Charles-Edouard; Gerringa, Loes J. A.; de Baar, Hein J. W.; Payne, Christopher D.; Visser, Ronald J. W.; Buma, Anita G. J.; Arrigo, Kevin R.

    2012-09-01

    The phytoplankton community composition and productivity in waters of the Amundsen Sea and surrounding sea ice zone were characterized with respect to iron (Fe) input from melting glaciers. High Fe input from glaciers such as the Pine Island Glacier, and the Dotson and Crosson ice shelves resulted in dense phytoplankton blooms in surface waters of Pine Island Bay, Pine Island Polynya, and Amundsen Polynya. Phytoplankton biomass distribution was the opposite of the distribution of dissolved Fe (DFe), confirming the uptake of glacial DFe in surface waters by phytoplankton. Phytoplankton biomass in the polynyas ranged from 0.6 to 14 μg Chl a L-1, with lower biomass at glacier sites where strong upwelling of Modified Circumpolar Deep Water from beneath glacier tongues was observed. Phytoplankton blooms in the polynyas were dominated by the haptophyte Phaeocystis antarctica, whereas the phytoplankton community in the sea ice zone was a mix of P. antarctica and diatoms, resembling the species distribution in the Ross Sea. Water column productivity based on photosynthesis versus irradiance characteristics averaged 3.00 g C m-2 d-1 in polynya sites, which was approximately twice as high as in the sea ice zone. The highest water column productivity was observed in the Pine Island Polynya, where both thermally and salinity stratified waters resulted in a shallow surface mixed layer with high phytoplankton biomass. In contrast, new production based on NO3 uptake was similar between different polynya sites, where a deeper UML in the weakly, thermally stratified Pine Island Bay resulted in deeper NO3 removal, thereby offsetting the lower productivity at the surface. These are the first in situ observations that confirm satellite observations of high phytoplankton biomass and productivity in the Amundsen Sea. Moreover, the high phytoplankton productivity as a result of glacial input of DFe is the first evidence that melting glaciers have the potential to increase phytoplankton

  9. PHYTOPLANKTON DEPOSITION TO CHESAPEAKE BAY SEDIMENTS DURING WINTER-SPRING

    EPA Science Inventory

    The often rapid deposition of phytoplankton to sediments at the conclusion of the spring phytoplankton bloom is an important component of benthic-pelagic coupling in temperate and high latitude estuaries and other aquatic systems. However, quantifying the flux is difficult, parti...

  10. Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Le Quéré, Corinne; Buitenhuis, Erik T.; Moriarty, Róisín; Alvain, Séverine; Aumont, Olivier; Bopp, Laurent; Chollet, Sophie; Enright, Clare; Franklin, Daniel J.; Geider, Richard J.; Harrison, Sandy P.; Hirst, Andrew G.; Larsen, Stuart; Legendre, Louis; Platt, Trevor; Prentice, I. Colin; Rivkin, Richard B.; Sailley, Sévrine; Sathyendranath, Shubha; Stephens, Nick; Vogt, Meike; Vallina, Sergio M.

    2016-07-01

    Global ocean biogeochemistry models currently employed in climate change projections use highly simplified representations of pelagic food webs. These food webs do not necessarily include critical pathways by which ecosystems interact with ocean biogeochemistry and climate. Here we present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types (PFTs): six types of phytoplankton, three types of zooplankton, and heterotrophic procaryotes. We improved the representation of zooplankton dynamics in our model through (a) the explicit inclusion of large, slow-growing macrozooplankton (e.g. krill), and (b) the introduction of trophic cascades among the three zooplankton types. We use the model to quantitatively assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean high-nutrient low-chlorophyll (HNLC) region during summer. When model simulations do not include macrozooplankton grazing explicitly, they systematically overestimate Southern Ocean chlorophyll biomass during the summer, even when there is no iron deposition from dust. When model simulations include a slow-growing macrozooplankton and trophic cascades among three zooplankton types, the high-chlorophyll summer bias in the Southern Ocean HNLC region largely disappears. Our model results suggest that the observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community, despite iron limitation of phytoplankton community growth rates. This result has implications for the representation of global biogeochemical cycles in models as zooplankton faecal pellets sink rapidly and partly control the carbon export to the intermediate and deep ocean.

  11. Using LANDSAT to expand the historical record of phytoplankton blooms in Lake Erie

    NASA Astrophysics Data System (ADS)

    Ho, J. C.; Michalak, A. M.; Stumpf, R. P.; Bridgeman, T. B.

    2014-12-01

    Freshwater harmful algal blooms are occurring with increasing frequency worldwide, intensifying the need for deeper understanding of the processes driving bloom formation. Such understanding is a prerequisite for developing management strategies for limiting bloom occurrence. Unfortunately, however, data for developing robust predictive models of bloom formation are lacking. Even in the well-studied Lake Erie, where diatom and cyanobacteria blooms have occurred for several decades in the Western Basin, previous in-situ and remote-sensing data collection efforts have been hampered by spatial and temporal sampling limitations, resulting in a sparse historical record. Leveraging available data to expand the historical record of algal blooms would thus make it possible to better evaluate hypotheses about factors influencing bloom formation. In this work, remotely-sensed observations of phytoplankton obtained using LANDSAT imagery are presented for 1984-2011. Several phytoplankton detection algorithms based on LANDSAT 5 imagery are evaluated during the period also covered by MERIS (2002-2011), which offers a relatively detailed assessment of bloom occurrence over the last decade. The best algorithm is then applied to historical LANDSAT data, and results are used to obtain new information about historical conditions and assess implications for developing improved models of bloom formation. Estimates of historical bloom occurrence and bloom seasonality shed new light on the widely-held view that phosphorus controls and invasive mussels resulted in substantial bloom reductions in the early 1990s. The new estimated records are not consistent with limited in-situ phytoplankton measurements from that period, and provide additional information on bloom occurrence during years with little to no supporting literature. This work demonstrates the potential to unearth new insights about historical phytoplankton blooms in Lake Erie, as well as in freshwater lakes broadly, and is a

  12. Heterotrophic bacterial responses to the winter-spring phytoplankton bloom in open waters of the NW Mediterranean

    NASA Astrophysics Data System (ADS)

    Gomes, Ana; Gasol, Josep M.; Estrada, Marta; Franco-Vidal, Leticia; Díaz-Pérez, Laura; Ferrera, Isabel; Morán, Xosé Anxelu G.

    2015-02-01

    The response of planktonic heterotrophic prokaryotes to the NW Mediterranean winter-spring offshore phytoplankton bloom was assessed in 3 cruises conducted in March, April-May and September 2009. Bulk measurements of phytoplankton and bacterioplankton biomass and production were complemented with an insight into bacterial physiological structure by single-cell analysis of nucleic acid content [low (LNA) vs. high (HNA)] and membrane integrity ("Live" vs. "Dead" cells). Bacterial production empirical conversion factors (0.82±0.25 SE kg C mol leucine-1) were almost always well below the theoretical value. Major differences in most microbial variables were found among the 3 periods, which varied from extremely high phytoplankton biomass and production during the bloom in March (>1 g C m-2 d-1 primary production) to typically oligotrophic conditions during September stratification (<200 mg C m-2 d-1). In both these periods bacterial production was ~30 mg C m-2 d-1 while very large bacterial production (mean 228, with some stations exceeding 500 mg C m-2 d-1) but low biomass was observed during the April-May post-bloom phase. The contribution of HNA (30-67%) and "Live" cells (47-97%) were temporally opposite in the study periods, with maxima in March and September, respectively. Different relationships were found between physiological structure and bottom-up variables, with HNA bacteria apparently more responsive to phytoplankton only during the bloom, coinciding with larger average cell sizes of LNA bacteria. Moderate phytoplankton-bacterioplankton coupling of biomass and activity was only observed in the bloom and post-bloom phases, while relationships between both compartments were not significant under stratification. With all data pooled, bacteria were only weakly bottom-up controlled. Our analyses show that the biomass and production of planktonic algae and bacteria followed opposite paths in the transition from bloom to oligotrophic conditions.

  13. The interaction of light with phytoplankton in the marine environment

    NASA Technical Reports Server (NTRS)

    Carder, Kendall L.; Collins, Donald J.; Perry, Mary Jane; Clark, H. Lawrence; Mesias, Jorge M.

    1986-01-01

    In many regions of the ocean, the phytoplankton population dominates both the attenuation and scattering of light. In other regions, non-phytoplankton contributions to the absorption and scattering may change the remote sensing reflectance and thus affect the ability to interpret remotely sensed ocean color. Hence, variations in the composition of both the phytoplankton population and of the non-phytoplankton material in the water can affect the optical properties of the sea. The effects of these contributions to the remote sensing reflectance and the submarine light field are modeled using scattering and absorption measurements of phytoplankton cultures obtained at the Friday Harbor Laboratory of the University of Washington. These measurements are used to develop regional chlorophyll algorithms specific to the summer waters of Puget Sound for the Coastal Zone Color Scanner, Thematic Mapper and future Ocean Color Imager, and their accuracies are compared for high chlorophyll waters with little or no Gelbstoff, but with variable detrital and suspended material.

  14. Toxicity of atmospheric aerosols on marine phytoplankton

    USGS Publications Warehouse

    Paytan, A.; Mackey, K.R.M.; Chen, Y.; Lima, I.D.; Doney, S.C.; Mahowald, N.; Labiosa, R.; Post, A.F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus.We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.

  15. Toxic phytoplankton in San Francisco Bay

    USGS Publications Warehouse

    Rodgers, Kristine M.; Garrison, David L.; Cloern, James E.

    1996-01-01

    The Regional Monitoring Program (RMP) was conceived and designed to document the changing distribution and effects of trace substances in San Francisco Bay, with focus on toxic contaminants that have become enriched by human inputs. However, coastal ecosystems like San Francisco Bay also have potential sources of naturally-produced toxic substances that can disrupt food webs and, under extreme circumstances, become threats to public health. The most prevalent source of natural toxins is from blooms of algal species that can synthesize metabolites that are toxic to invertebrates or vertebrates. Although San Francisco Bay is nutrient-rich, it has so far apparently been immune from the epidemic of harmful algal blooms in the world’s nutrient-enriched coastal waters. This absence of acute harmful blooms does not imply that San Francisco Bay has unique features that preclude toxic blooms. No sampling program has been implemented to document the occurrence of toxin-producing algae in San Francisco Bay, so it is difficult to judge the likelihood of such events in the future. This issue is directly relevant to the goals of RMP because harmful species of phytoplankton have the potential to disrupt ecosystem processes that support animal populations, cause severe illness or death in humans, and confound the outcomes of toxicity bioassays such as those included in the RMP. Our purpose here is to utilize existing data on the phytoplankton community of San Francisco Bay to provide a provisional statement about the occurrence, distribution, and potential threats of harmful algae in this Estuary.

  16. Limited reversibility of bioconcentration of hydrophobic organic chemicals in phytoplankton.

    PubMed

    Koelmans, Albert A

    2014-07-01

    Aging, reversibility, and desorption rates for the binding of hydrophobic chemicals (HOC) to phytoplankton cells have not been directly measured. Here the effect of bioconcentration time on subsequent desorption of hexachlorobenzene (HCB) and polychlorinated biphenyls (PCBs) was studied for the alga Monoraphidium minutum. Cell suspensions were exposed to HCB and PCBs spanning a range of log Kow values of 5.7 to 8.2, for 0.13 to 14 d. Subsequently, reversibility and desorption rates were assessed by extracting the chemicals from the cells using infinite sink extractions with Tenax beads or Empore disks employed in the cell suspension. Uptake was biphasic with constant relative contributions of fast surface sorption. Desorption was biphasic too and well fitted to a first order two compartment model. Increasing exposure times resulted in increasing slowly desorbing chemical fractions and decreased desorption rates from these fractions. For the most hydrophobic PCBs, slowly desorbing fractions were >80-90%, whereas desorption half-lives from these fractions ranged up to 120 days. The slow desorption rates directly prove that bioconcentration to algae can be rate limited and imply that already after a few hours of exposure, HOCs may become practically unavailable for repartitioning. PMID:24915281

  17. Photo-oxidation of Sb(III) in the seawater by marine phytoplankton-transition metals-light system.

    PubMed

    Li, Shun-Xing; Zheng, Feng-Ying; Hong, Hua-Sheng; Deng, Nan-Sheng; Zhou, Xia-Yi

    2006-11-01

    The photo-oxidation of Sb(III) to Sb(V) by marine microalgae (diatom, green and red algae) with or without the presence of transition metals (Fe(III), Cu(II) and Mn(II)). The influence of marine phytoplankton on the photochemistry of antimony was confirmed for the first time. The conversion ratio of Sb(III) to Sb(V) increased with increasing algae concentration and irradiation time. Different species of marine phytoplankton were found to have different photo-oxidizing abilities. The photochemical redox of transition metals could induce the species transformation of antimony. After photo-induced oxidation by marine phytoplankton and transition metals, the ratio of Sb(V) to Sb(III) was in the range of 1.07-5.48 for six algae (Tetraselmis levis, Chlorella autotrophica, Nannochloropsis sp., Tetraselmis subcordiformis, Phaeodactylum tricornutum, and Porphyridium purpureum), and only 0.92 for Dunaliella salina. The distribution of antimony in the sunlit surface seawater was greatly affected by combined effects of marine phytoplankton (main contributor) and transition metals; both synergistic and antagonistic effects were observed. The results provided further insights into the distribution of Sb(III) and Sb(V) and the biogeochemical cycle of antimony, and have significant implications for the risk assessment of antimony in the sunlit surface seawater.

  18. A simple optical index shows spatial and temporal heterogeneity in phytoplankton community composition during the 2008 North Atlantic Bloom Experiment

    NASA Astrophysics Data System (ADS)

    Cetinić, I.; Perry, M. J.; D'Asaro, E.; Briggs, N.; Poulton, N.; Sieracki, M. E.; Lee, C. M.

    2015-04-01

    The ratio of two in situ optical measurements - chlorophyll fluorescence (Chl F) and optical particulate backscattering (bbp) - varied with changes in phytoplankton community composition during the North Atlantic Bloom Experiment in the Iceland Basin in 2008. Using ship-based measurements of Chl F, bbp, chlorophyll a (Chl), high-performance liquid chromatography (HPLC) pigments, phytoplankton composition and carbon biomass, we found that oscillations in the ratio varied with changes in plankton community composition; hence we refer to Chl F/bbp as an "optical community index". The index varied by more than a factor of 2, with low values associated with pico- and nanophytoplankton and high values associated with diatom-dominated phytoplankton communities. Observed changes in the optical index were driven by taxa-specific chlorophyll-to-autotrophic carbon ratios and by physiological changes in Chl F associated with the silica limitation. A Lagrangian mixed-layer float and four Seagliders, operating continuously for 2 months, made similar measurements of the optical community index and followed the evolution and later demise of the diatom spring bloom. Temporal changes in optical community index and, by implication, the transition in community composition from diatom to post-diatom bloom communities were not simultaneous over the spatial domain surveyed by the ship, float and gliders. The ratio of simple optical properties measured from autonomous platforms, when carefully validated, provides a unique tool for studying phytoplankton patchiness on extended temporal scales and ecologically relevant spatial scales and should offer new insights into the processes regulating patchiness.

  19. Phytoplankton and the Macondo oil spill: A comparison of the 2010 phytoplankton assemblage to baseline conditions on the Louisiana shelf.

    PubMed

    Parsons, M L; Morrison, W; Rabalais, N N; Turner, R E; Tyre, K N

    2015-12-01

    The Macondo oil spill was likely the largest oil spill to ever occur in United States territorial waters. We report herein our findings comparing the available baseline phytoplankton data from coastal waters west of the Mississippi River, and samples collected monthly from the same sampling stations, during and after the oil spill (May-October, 2010). Our results indicate that overall, the phytoplankton abundance was 85% lower in 2010 versus the baseline, and that the species composition of the phytoplankton community moved towards diatoms and cyanobacteria and away from ciliates and phytoflagellates. The results of this study reaffirm the view that phytoplankton responses will vary by the seasonal timing of the oil spill and the specific composition of the spilled oil. The trophic impacts of the purported lower abundance of phytoplankton in 2010 coupled with the observed assemblage shift remain unknown. PMID:26378966

  20. Phytoplankton succession in the Ob-Yenisei Shallow zone of the Kara Sea based on Russian databases

    NASA Astrophysics Data System (ADS)

    Makarevich, P. R.; Larionov, V. V.; Moiseev, D. V.

    2015-07-01

    Here, data about the taxonomic composition and spatial distribution of planktonic microalgae in the Ob Bay and the southern Kara Sea in north Russia were analyzed during all hydrological seasons over 11 years (1996-2006). Data were obtained through detailed in situ observations. These data are part of our arctic phytoplankton database. Phytoplankton inhabiting the near shore continental area of the Kara Sea exhibited four phases in the annual succession cycle: a prevernal phase (cryoflora bloom), a vernal phase (ice-edge bloom), a summer-fall phase (mixed synthesis phase), and a winter phase (dormant phase). These phases were clearly differentiated based on the composition of dominant phytoplankton species complexes and quantitative characteristics (i.e., microalgal number and biomass). In the study region, which is completely covered by ice for most of the year (from October to June), the process of primary production begins at the same time as in ice-free coastal areas. Sub-ice blooming and growth of cryoflora initiate beneath the ice cover, long before it breaks down. In addition, from July to October, high phytoplankton biomass was recorded in Ob Bay and in areas adjacent to the Ob-Yenisei shallows. This information provides quantitative evidence for the higher productivity of waters off the Obestuary, compared to other coastal areas in the Kara Sea. The main factor responsible for this phenomenon is the permanent (during the warm season) transport of living and dead organic matter by river runoff to shelf waters.

  1. Phytoplankton. The fate of photons absorbed by phytoplankton in the global ocean.

    PubMed

    Lin, Hanzhi; Kuzminov, Fedor I; Park, Jisoo; Lee, SangHoon; Falkowski, Paul G; Gorbunov, Maxim Y

    2016-01-15

    Solar radiation absorbed by marine phytoplankton can follow three possible paths. By simultaneously measuring the quantum yields of photochemistry and chlorophyll fluorescence in situ, we calculate that, on average, ~60% of absorbed photons are converted to heat, only 35% are directed toward photochemical water splitting, and the rest are reemitted as fluorescence. The spatial pattern of fluorescence yields and lifetimes strongly suggests that photochemical energy conversion is physiologically limited by nutrients. Comparison of in situ fluorescence lifetimes with satellite retrievals of solar-induced fluorescence yields suggests that the mean values of the latter are generally representative of the photophysiological state of phytoplankton; however, the signal-to-noise ratio is unacceptably low in extremely oligotrophic regions, which constitute 30% of the open ocean.

  2. Climate Variability and Phytoplankton in the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Rousseaux, Cecile

    2012-01-01

    The effect of climate variability on phytoplankton communities was assessed for the tropical and sub-tropical Pacific Ocean between 1998 and 2005 using an established biogeochemical assimilation model. The phytoplankton communities exhibited wide range of responses to climate variability, from radical shifts in the Equatorial Pacific, to changes of only a couple of phytoplankton groups in the North Central Pacific, to no significant changes in the South Pacific. In the Equatorial Pacific, climate variability dominated the variability of phytoplankton. Here, nitrate, chlorophyll and all but one of the 4 phytoplankton types (diatoms, cyanobacteria and coccolithophores) were strongly correlated (p<0.01) with the Multivariate El Nino Southern Oscillation Index (MEI). In the North Central Pacific, MEI and chlorophyll were significantly (p<0.01) correlated along with two of the phytoplankton groups (chlorophytes and coccolithophores). Ocean biology in the South Pacific was not significantly correlated with MEI. During La Nina events, diatoms increased and expanded westward along the cold tongue (correlation with MEI, r=-0.81), while cyanobacteria concentrations decreased significantly (r=0.78). El Nino produced the reverse pattern, with cyanobacteria populations increasing while diatoms plummeted. The diverse response of phytoplankton in the different major basins of the Pacific suggests the different roles climate variability can play in ocean biology.

  3. Pigment signatures of phytoplankton communities in the Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Coupel, P.; Matsuoka, A.; Ruiz-Pino, D.; Gosselin, M.; Marie, D.; Tremblay, J.-É.; Babin, M.

    2015-02-01

    Phytoplankton are expected to respond to recent environmental changes of the Arctic Ocean. In terms of bottom-up control, modifying the phytoplankton distribution will ultimately affect the entire food web and carbon export. However, detecting and quantifying changes in phytoplankton communities in the Arctic Ocean remains difficult because of the lack of data and the inconsistent identification methods used. Based on pigment and microscopy data sampled in the Beaufort Sea during summer 2009, we optimized the chemotaxonomic tool CHEMTAX (CHEMical TAXonomy) for the assessment of phytoplankton community composition in an Arctic setting. The geographical distribution of the main phytoplankton groups was determined with clustering methods. Four phytoplankton assemblages were determined and related to bathymetry, nutrients and light availability. Surface waters across the whole survey region were dominated by prasinophytes and chlorophytes, whereas the subsurface chlorophyll maximum was dominated by the centric diatoms Chaetoceros socialis on the shelf and by two populations of nanoflagellates in the deep basin. Microscopic counts showed a high contribution of the heterotrophic dinoflagellates Gymnodinium and Gyrodinium spp. to total carbon biomass, suggesting high grazing activity at this time of the year. However, CHEMTAX was unable to detect these dinoflagellates because they lack peridinin. In heterotrophic dinoflagellates, the inclusion of the pigments of their prey potentially leads to incorrect group assignments and some misinterpretation of CHEMTAX. Thanks to the high reproducibility of pigment analysis, our results can serve as a baseline to assess change and spatial or temporal variability in several phytoplankton populations that are not affected by these misinterpretations.

  4. Phytoplankton assemblage of a small, shallow, tropical African reservoir.

    PubMed

    Mustapha, Moshood K

    2009-12-01

    I measured physico-chemical properties and phytoplankton in the small, shallow tropical reservoir of Oyun (Offa, Nigeria) between January 2002 and December 2003. I identified 25 phytoplankton genera in three sampling stations. Bacillariophyceae dominated (75.3%), followed by Chlorophyceae (12.2%), Cyanobacteria (11.1%) and Desmidiaceae (0.73%). The high amount of nutrients (e.g. nitrate, phosphate, sulphate and silica) explain phytoplankton heterogeneity (p<0.05). Phytoplankton was abundant during the rainy season, but the transition period had the richest assemblage and abundance. Fluctuations in phytoplankton density were a result of seasonal changes in concentration of nutrients, grazing pressure and reservoir hydrology. The reservoir is eutrophic with excellent water quality and a diverse phytoplankton assemblage: fish production would be high. These conditions resulted from strategies such as watershed best management practices (BMPs) to control eutrophication and sedimentation, and priorities for water usage established through legislation. Additional measures are recommended to prevent oligotrophy, hypereutrophy, excessive phytoplankton bloom, toxic cyanobacteria, and run-off of organic waste and salts. PMID:20073331

  5. [Phytoplankton community structure and eutrophication risk assessment of Beijiang River].

    PubMed

    Gou, Ting; Ma, Qian-Li; Xu, Zhen-Cheng; Wang, Li; Li, Jie; Zhao, Xue-Min

    2015-03-01

    To study the distribution of phytoplankton and water quality of Beijiang River, the community structure of phytoplankton was investigated and analyzed in wet and dry seasons. The results showed that a total of 74 species belonging to six phyla, 29 family and 48 genera of phytoplankton were identified, including 58 species of five phyla, 23 family and 41 genera in wet season and 59 species of six phyla, 26 family and 40 genera in dry season. Phytoplankton community structure in Beijiang River was represented by Bacillariophyta, Chlorophyta and Cyanophyta. Bacillariophyta dominanted the phytoplankton, and the dominant species were Aulacoseira granulate, Fragilaria virescens, Surirella biseriata, Nitzschia amphibia, Navicula simplex, Cyclotella meneghiniana, Synedra ulna, Gomphonema angustatum and Cymbella tumida. There was little difference in phytoplankton density between both seasons with the mean values being 3.54 x 10(5) and 4.87 x 10(5) cells L(-1) in dry and wet seasons, respectively. Based on the RDA results, DO, permanganate index, nitrogen and phosphorus were the important environmental factors affecting the distribution of phytoplankton in Beijiang River. The water quality of Beijiang River was classified as oligo-mesotrophic level even if this river was subjected to nitrogen and phosphorus pollution mainly from agricultural non-point source.

  6. [Phytoplankton community structure and eutrophication risk assessment of Beijiang River].

    PubMed

    Gou, Ting; Ma, Qian-Li; Xu, Zhen-Cheng; Wang, Li; Li, Jie; Zhao, Xue-Min

    2015-03-01

    To study the distribution of phytoplankton and water quality of Beijiang River, the community structure of phytoplankton was investigated and analyzed in wet and dry seasons. The results showed that a total of 74 species belonging to six phyla, 29 family and 48 genera of phytoplankton were identified, including 58 species of five phyla, 23 family and 41 genera in wet season and 59 species of six phyla, 26 family and 40 genera in dry season. Phytoplankton community structure in Beijiang River was represented by Bacillariophyta, Chlorophyta and Cyanophyta. Bacillariophyta dominanted the phytoplankton, and the dominant species were Aulacoseira granulate, Fragilaria virescens, Surirella biseriata, Nitzschia amphibia, Navicula simplex, Cyclotella meneghiniana, Synedra ulna, Gomphonema angustatum and Cymbella tumida. There was little difference in phytoplankton density between both seasons with the mean values being 3.54 x 10(5) and 4.87 x 10(5) cells L(-1) in dry and wet seasons, respectively. Based on the RDA results, DO, permanganate index, nitrogen and phosphorus were the important environmental factors affecting the distribution of phytoplankton in Beijiang River. The water quality of Beijiang River was classified as oligo-mesotrophic level even if this river was subjected to nitrogen and phosphorus pollution mainly from agricultural non-point source. PMID:25929062

  7. Free-living and particle-associated prokaryote metabolism in giant kelp forests: Implications for carbon flux in a sub-Antarctic coastal area

    NASA Astrophysics Data System (ADS)

    Schapira, Mathilde; McQuaid, Christopher D.; Froneman, Pierre W.

    2012-06-01

    Extensive beds of large subtidal kelps are characteristic of many temperate and subpolar coastlines. They provide habitats for a wide range of other species and are sites of high primary production that generate large quantities of water-borne particles and dissolved organic compounds that support distinctive communities of prokaryotes. We measured prokaryotic metabolism along transects from the shore to the outside of three giant kelp forests (Macrocystis pyrifera) located in the shelf waters of the Prince Edward Islands (Southern Ocean). Abundance, heterotrophic production (PHP), respiration rates (R-ETS) and growth efficiencies (PGE) were investigated within the particle-associated (PA) and the free-living (FL) communities. Temperature, salinity and inorganic nutrient concentrations indicated distinct hydrological differences among the kelp forests that were related to different levels of freshwater input through island run-off. In contrast, detritus and particulate organic matter concentrations showed a common pattern, decreasing from the near-shore to offshore at all sampling sites, suggesting the retention of organically enriched water masses inshore of the kelp forests. While FL and PA abundances did not differ significantly along transects, FL and PA-PHP and PGE all varied significantly across the kelp forests, following the same pattern across each forest. PA-PGE was significantly higher than FL-PGE in the near-shore waters and farther offshore, while FL-PGE was higher or equal to PA-PGE inside the kelp. This shift can be interpreted in terms of gradients in both the age and origins of organic material across the kelp forests. Higher PA-PGE implies that a larger fraction of organic carbon on colonized particles is converted into prokaryotic biomass and so becomes available to higher trophic levels inshore and offshore of M. pyrifera forests than inside the kelp bed. In contrast, low PA-PGE suggests that a large quantity of carbon passes through the PA

  8. Self-care practices and experiences of people living with HIV not receiving antiretroviral therapy in an urban community of Lusaka, Zambia: implications for HIV treatment programmes

    PubMed Central

    2013-01-01

    Background Despite the increasingly wider availability of antiretroviral therapy (ART), some people living with HIV (PLHIV) and eligible for treatment have opted to adopt self-care practices thereby risking early AIDS-related mortality. Methods A qualitative study was conducted in urban Zambia to gain insights into PLHIV self-care practices and experiences and explore the implications for successful delivery of ART care. Between March 2010 and September 2011, in-depth interviews were conducted with PLHIV who had dropped out of treatment (n=25) and those that had opted not to initiate medication (n=37). Data was entered into and managed using Atlas ti, and analysed inductively using latent content analysis. Results PHIV used therapeutic and physical health maintenance, psychological well-being and healthy lifestyle self-care practices to maintain physical health and mitigate HIV-related symptoms. Herbal remedies, faith healing and self-prescription of antibiotics and other conventional medicines to treat HIV-related ailments were used for therapeutic and physical health maintenance purposes. Psychological well-being self-care practices used were religiosity/spirituality and positive attitudes towards HIV infection. These practices were modulated by close social network relationships with other PLHIV, family members and peers, who acted as sources of emotional, material and financial support. Cessations of sexual relationships, adoption of safe sex to avoid re-infections and uptake of nutritional supplements were the commonly used risk reduction and healthy lifestyle practices respectively. Conclusions While these self-care practices may promote physical and psychosocial well-being and mitigate AIDS-related symptoms, at least in the short term, they however undermine PLHIV access to ART care thereby putting PLHIV at risk of early AIDS-related mortality. The use of scientifically unproven herbal remedies raises health and safety concerns; faith healing may create

  9. Phytoplankton bloom in the Black Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Brightly colored waters in the Black Sea give evidence of the growth of tiny marine plants called phytoplankton, which contain chlorophyll and other pigments that reflect light different ways, producing the colorful displays. The very bright blue waters could be an organism called a coccolithophores, which has a highly reflective calcium carbonate coating that appears bright blue (or sometimes white) in true-color (visible) imagery. However, other organisms, such as cyanobacteria can also appear that color, and so often scientists will compare the ratios of reflectance at one wavelength of light to another to decide what organisms might be present. This series of images shows a bloom occurring in the Black Sea from May 11, 2002, to May 18.

  10. Absorption of ultraviolet radiation by antarctic phytoplankton

    SciTech Connect

    Vernet, M.; Mitchell, B.G. )

    1990-01-09

    Antarctic phytoplankton contain UV-absorbing compounds that may block damaging radiation. Compounds that absorb from 320-340 nm were observed in spectral absorption of both particulates and in methanol extracts of the particulates. The decrease in the total concentration of these UV compounds with respect to chlorophyll a, as measured by the ratio of in vitro absorption at 335 nm to absorption at 665 nm is variable and decreases with depth. We observed up to 5-fold decrease in this ratio for samples within the physically mixes surface layer. The absorption of UV radiation in methanol extracts, which peaks from 320 to 340 nm, may be composed of several compounds. Shifts in peak absorption with depth (for example, from 331 nm at surface to 321 nm at 75 m), may be interpreted as a change in composition. Ratios of protective yellow xanthophylls (diadinoxanthin + diatoxanthin) to photosynthetic fucoxanthin-like pigments have highest values in surface waters. As these pigments also absorb in the near UV, their function might extend to protection as well as utilization of UV radiation for photosynthesis. We document strong absorption in the UV from 320-330 nm for Antarctic marine particulates. Below this region of the solar energy spectrum, absolute energy levels of incident radiation drop off dramatically. Only wavelengths shorter than about 320 nm will be significantly enhanced due to ozone depletion. If the absorption we observed serves a protective role for phytoplankton photosynthesis, it appears the peak band is in the region where solar energy increases rapidly, and not in the region where depletion would cause significant variations in absolute flux.

  11. Phytoplankton community responses in a shallow lake following lanthanum-bentonite application.

    PubMed

    Lang, P; Meis, S; Procházková, L; Carvalho, L; Mackay, E B; Woods, H J; Pottie, J; Milne, I; Taylor, C; Maberly, S C; Spears, B M

    2016-06-15

    The release of phosphorus (P) from bed sediments to the overlying water can delay the recovery of lakes for decades following reductions in catchment contributions, preventing water quality targets being met within timeframes set out by environmental legislation (e.g. EU Water Framework Directive: WFD). Therefore supplementary solutions for restoring lakes have been explored, including the capping of sediment P sources using a lanthanum (La)-modified bentonite clay to reduce internal P loading and enhance the recovery process. Here we present results from Loch Flemington where the first long-term field trial documenting responses of phytoplankton community structure and abundance, and the UK WFD phytoplankton metric to a La-bentonite application was performed. A Before-After-Control-Impact (BACI) analysis was used to distinguish natural variability from treatment effect and confirmed significant reductions in the magnitude of summer cyanobacterial blooms in Loch Flemington, relative to the control site, following La-bentonite application. However this initial cyanobacterial response was not sustained beyond two years after application, which implied that the reduction in internal P loading was short-lived; several possible explanations for this are discussed. One reason is that this ecological quality indicator is sensitive to inter-annual variability in weather patterns, particularly summer rainfall and water temperature. Over the monitoring period, the phytoplankton community structure of Loch Flemington became less dominated by cyanobacteria and more functionally diverse. This resulted in continual improvements in the phytoplankton compositional and abundance metrics, which were not observed at the control site, and may suggest an ecological response to the sustained reduction in filterable reactive phosphorus (FRP) concentration following La-bentonite application. Overall, phytoplankton classification indicated that the lake moved from poor to moderate

  12. Phytoplankton community responses in a shallow lake following lanthanum-bentonite application.

    PubMed

    Lang, P; Meis, S; Procházková, L; Carvalho, L; Mackay, E B; Woods, H J; Pottie, J; Milne, I; Taylor, C; Maberly, S C; Spears, B M

    2016-06-15

    The release of phosphorus (P) from bed sediments to the overlying water can delay the recovery of lakes for decades following reductions in catchment contributions, preventing water quality targets being met within timeframes set out by environmental legislation (e.g. EU Water Framework Directive: WFD). Therefore supplementary solutions for restoring lakes have been explored, including the capping of sediment P sources using a lanthanum (La)-modified bentonite clay to reduce internal P loading and enhance the recovery process. Here we present results from Loch Flemington where the first long-term field trial documenting responses of phytoplankton community structure and abundance, and the UK WFD phytoplankton metric to a La-bentonite application was performed. A Before-After-Control-Impact (BACI) analysis was used to distinguish natural variability from treatment effect and confirmed significant reductions in the magnitude of summer cyanobacterial blooms in Loch Flemington, relative to the control site, following La-bentonite application. However this initial cyanobacterial response was not sustained beyond two years after application, which implied that the reduction in internal P loading was short-lived; several possible explanations for this are discussed. One reason is that this ecological quality indicator is sensitive to inter-annual variability in weather patterns, particularly summer rainfall and water temperature. Over the monitoring period, the phytoplankton community structure of Loch Flemington became less dominated by cyanobacteria and more functionally diverse. This resulted in continual improvements in the phytoplankton compositional and abundance metrics, which were not observed at the control site, and may suggest an ecological response to the sustained reduction in filterable reactive phosphorus (FRP) concentration following La-bentonite application. Overall, phytoplankton classification indicated that the lake moved from poor to moderate

  13. Synergistic effects of UVR and simulated stratification on commensalistic phytoplankton-bacteria relationship in two optically contrasting oligotrophic Mediterranean lakes

    NASA Astrophysics Data System (ADS)

    Carrillo, P.; Medina-Sánchez, J. M.; Durán, C.; Herrera, G.; Villafañe, V. E.; Helbling, E. W.

    2015-02-01

    An indirect effect of global warming is a reduction in the depth of the upper mixed layer (UML) causing organisms to be exposed to higher levels of ultraviolet (UVR, 280-400 nm) and photosynthetically active radiation (PAR, 400-700 nm). This can affect primary and bacterial production as well as the commensalistic phytoplankton-bacteria relationship. The combined effects of UVR and reduction in the depth of the UML were assessed on variables related to the metabolism of phytoplankton and bacteria, during in situ experiments performed with natural pico- and nanoplankton communities from two oligotrophic lakes with contrasting UVR transparency (high-UVR versus low-UVR waters) of southern Spain. The negative UVR effects on epilimnetic primary production (PP) and on heterotrophic bacterial production (HBP), intensified under increased stratification, were higher in the low-UVR than in the high-UVR lake, and stronger on the phytoplanktonic than on the heterotrophic bacterial communities. Under UVR and increased stratification, the commensalistic phytoplankton-bacteria relationship was strengthened in the high-UVR lake where excretion of organic carbon (EOC) rates exceeded the bacterial carbon demand (BCD; i.e., BCD : EOC(%) ratio < 100). This did not occur in the low-UVR lake (i.e., BCD : EOC(%) ratio > 100). The greater UVR damage to phytoplankton and bacteria and the weakening of their commensalistic interaction found in the low-UVR lake indicates that these ecosystems would be especially vulnerable to UVR and increased stratification as stressors related to global climate change. Thus, our findings may have important implications for the carbon cycle in oligotrophic lakes of the Mediterranean region.

  14. Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region

    NASA Astrophysics Data System (ADS)

    Fujiwara, A.; Hirawake, T.; Suzuki, K.; Saitoh, S.-I.

    2011-12-01

    Recent ocean warming and subsequent sea ice decline resulting from climate change could affect the northward shift of the ecosystem structure in the Chukchi Sea and Bering Sea shelf region (Grebmeier et al., 2006b). The size structure of phytoplankton communities provides an index of trophic levels that is crucial to understanding the mechanisms underlying such ecosystem changes and their implications for the future. This study proposes a new ocean color algorithm for deriving this characteristic by using the region's optical properties. The size derivation model (SDM) estimates the phytoplankton size index FL on the basis of size-fractionated chlorophyll-a (chl-a) using the light absorption coefficient of phytoplankton, aph(λ), and the backscattering coefficient of suspended particles including algae, bbp(λ). FL was defined as the ratio of algal biomass attributed to cells larger than 5 μm to the total. It was expressed by a multiple regression model using the aph(λ) ratio, aph(488)/aph(555), which varies with phytoplankton pigment composition, and the spectral slope of bbp(λ), γ, which is an index of the mean suspended particle size. A validation study demonstrated that 69% of unknown data are correctly derived within FL range of ±20%. The spatial distributions of FL for the cold August of 2006 and the warm August of 2007 were compared to examine application of the SDM to satellite remote sensing. The results suggested that phytoplankton size was responsive to changes in sea surface temperature. Further analysis of satellite-derived FL values and other environmental factors can advance our understanding of ecosystem structure changes in the shelf region of the Chukchi and Bering Seas.

  15. Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region

    NASA Astrophysics Data System (ADS)

    Fujiwara, A.; Hirawake, T.; Suzuki, K.; Saitoh, S.-I.

    2011-05-01

    Recent ocean warming and subsequent sea ice decline resulting from climate change could affect the northward shift of the ecosystem structure in the Chukchi Sea and Bering Sea shelf region. The size structure of phytoplankton communities provides an index of trophic levels that is crucial to understanding the mechanisms underlying such ecosystem changes and their implications for the future. This study proposes a new ocean color algorithm for deriving this characteristic by using the region's optical properties. The size derivation model (SDM) estimates the phytoplankton size index FL on the basis of size-fractionated chlorophyll-a (chl-a) using the light absorption coefficient of phytoplankton, aph(λ), and the backscattering coefficient of suspended particles including algae, bbp(λ). FL was defined as the ratio of algal biomass attributed to cells larger than 5 μm to the total. It was expressed by a multiple regression model using the aph(λ) ratio, aph(488)/aph(555), which varies with phytoplankton pigment composition, and the spectral slope of bbp(λ), γ, which is an index of the mean suspended particle size. A validation study demonstrated that the SDM successfully derived an FL value of 69 % within an error range of ± 20 % for unknown data. The spatial distributions of FL for the cold August of 2006 and the warm August of 2007 were compared to examine application of the SDM to satellite remote sensing. The results suggested that phytoplankton size was responsive to changes in sea surface temperature. Further analysis of satellite-derived FL values and other environmental factors can advance our understanding of ecosystem structure changes in the shelf region of the Chukchi and Bering Seas.

  16. Influence of marine phytoplankton, transition metals and sunlight on the species distribution of chromium in surface seawater.

    PubMed

    Li, Shun-Xing; Zheng, Feng-Ying; Hong, Hua-Sheng; Deng, Nan-sheng; Lin, Lu-Xiu

    2009-01-01

    The photoreduction of Cr(VI) to Cr(III) by marine phytoplankton (diatoms, red and green algae), with or without the presence of transition metals (Fe(III), Cu(II) and Mn(II)) was studied. The direct influence of marine phytoplankton on the photochemical reduction of Cr(VI) was confirmed for the first time, and two kinds of mechanisms were suggested to be responsible for the species transformation: (a) Cr(VI) in excited state could be reduced by the electron donor in its ground state via photo produced electrons; and (b) the solvated electrons reduce the CrO(4)(2-) anions in their ground state. The conversion ratio of Cr(VI) to Cr(III) increased with increasing algae concentration and irradiation time. Different species of marine phytoplankton were found to have different photo-reducing abilities. The photochemical redox of transition metals could induce the species transformation of chromium. After photoreduction by marine phytoplankton and transition metals, the ratio of Cr(VI) to Cr(III) was in the range of 1.45-2.16 for five green algae (Tetraselmis levis, Chlorella autotrophica, Dunaliella salina, Nannochloropsis sp., and Tetraselmis subcordiformis), and only 0.48 for Phaeodactylum tricornutum (diatom) and 0.71 for Porphyridium purpureum (red alga). The species distribution of chromium in the sunlit surface seawater was greatly affected by combined effects of marine phytoplankton (main contributor) and transition metals; both synergistic and antagonistic effects were observed. The results provided further insights into the species distribution and the biogeochemical cycle of chromium, and have significant implications for the risk assessment of chromium in the sunlit surface seawater. PMID:19307016

  17. Satellite Observations: Oil Spills Impact on Phytoplankton in Bohai Sea

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Tang, Danling; Wang, Sufen; Pan, Gang

    2014-11-01

    This study discussed ecological responses to the Penglai oil spills in the Bohai Sea, occurring on June 4, 2011, using MODIS Chlorophyll-a data. After time intervals of 20 days, 12 months and 14 months, phytoplankton blooms appeared at three locations in the surrounding and distant regions of the oil spills in the Bohai Sea. A bloom with high Chlorophyll-a (13.66 mg m-3) spread over an area of 800 km2 on June 18-25, 2011, about 56 km northeast from the location of the oil spills. A pronounced increase in the monthly Chlorophyll-a concentration (6.40 mg m-3) indicating phytoplankton bloom was observed in the Bohai Sea in June 2012. Phytoplankton blooms depend on the amount and composition of oil, toxicity of petroleum hydrocarbons, micro-organisms, and sea ice. The oil spills impact phytoplankton for a long duration, which impacts the marine ecosystem.

  18. Turbulent mixing, restratification, and phytoplankton growth at a submesoscale eddy

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    2016-06-01

    High-resolution large-eddy simulations are used to study the influence of submesoscale mixed layer instability and small-scale turbulence on phytoplankton growth in light-limited conditions. Four simulations are considered with small-scale turbulence driven by varying levels of surface cooling. Significant small-scale turbulence is seen even without surface forcing, and the downward mixing of phytoplankton is sufficient to briefly delay the developing bloom. Moderate and strong values of the constant surface heat flux (Q =- 10,-100 W/m2) are sufficient to prevent a bloom. In contrast to the critical depth hypothesis, the growth rate for phytoplankton does not appear to be controlled by the mixed layer depth. Instead, a comparison between the turbulent diffusivity above the compensation depth and a critical value predicted by the critical turbulence hypothesis closely matches the timing and magnitude of phytoplankton growth.

  19. Tidal stirring and phytoplankton bloom dynamics in an estuary

    USGS Publications Warehouse

    Cloern, J.E.

    1991-01-01

    In South San Francisco Bay, estuarine phytoplankton biomass fluctuates at the time scale of days to weeks; much of this variability is associated with fluctuations in tidal energy. During the spring seasons of every year from 1980-1990, episodic blooms occurred in which phytoplankton biomass rose from a baseline of 2-4mg chlorophyll a m-3, peaked at 20-40 chlorophyll a m-3, then returned to baseline values, all within several weeks. Each episode of biomass increase occurred during neap tides, and each bloom decline coincided with spring tides. This suggests that daily variations in the rate of vertical mixing by tidal stirring might control phytoplankton bloom dynamics in some estuaries. Simulation experiments with a numerical model of phytoplankton population dynamics support this hypothesis. -from Author

  20. Strong responses of Southern Ocean phytoplankton communities to volcanic ash

    NASA Astrophysics Data System (ADS)

    Browning, T. J.; Bouman, H. A.; Henderson, G. M.; Mather, T. A.; Pyle, D. M.; Schlosser, C.; Woodward, E. M. S.; Moore, C. M.

    2014-04-01

    Volcanic eruptions have been hypothesized as an iron supply mechanism for phytoplankton blooms; however, little direct evidence of stimulatory responses has been obtained in the field. Here we present the results of twenty-one 1-2 day bottle enrichment experiments from cruises in the South Atlantic and Southern Ocean which conclusively demonstrated a photophysiological and biomass stimulation of phytoplankton communities following supply of basaltic or rhyolitic volcanic ash. Furthermore, experiments in the Southern Ocean demonstrated significant phytoplankton community responses to volcanic ash supply in the absence of responses to addition of dissolved iron alone. At these sites, dissolved manganese concentrations were among the lowest ever measured in seawater, and we therefore suggest that the enhanced response to ash may have been a result of the relief of manganese (co)limitation. Our results imply that volcanic ash deposition events could trigger extensive phytoplankton blooms, potentially capable of significant impacts on regional carbon cycling.

  1. Ultrafast quantitative time-stretch imaging flow cytometry of phytoplankton

    NASA Astrophysics Data System (ADS)

    Lai, Queenie T. K.; Lau, Andy K. S.; Tang, Anson H. L.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2016-03-01

    Comprehensive quantification of phytoplankton abundance, sizes and other parameters, e.g. biomasses, has been an important, yet daunting task in aquatic sciences and biofuel research. It is primarily because of the lack of effective tool to image and thus accurately profile individual microalgae in a large population. The phytoplankton species are highly diversified and heterogeneous in terms of their sizes and the richness in morphological complexity. This fact makes time-stretch imaging, a new ultrafast real-time optical imaging technology, particularly suitable for ultralarge-scale taxonomic classification of phytoplankton together with quantitative image recognition and analysis. We here demonstrate quantitative imaging flow cytometry of single phytoplankton based on quantitative asymmetric-detection time-stretch optical microscopy (Q-ATOM) - a new time-stretch imaging modality for label-free quantitative phase imaging without interferometric implementations. Sharing the similar concept of Schlieren imaging, Q-ATOM accesses multiple phase-gradient contrasts of each single phytoplankton, from which the quantitative phase profile is computed. We employ such system to capture, at an imaging line-scan rate of 11.6 MHz, high-resolution images of two phytoplankton populations (scenedesmus and chlamydomonas) in ultrafast microfluidic flow (3 m/s). We further perform quantitative taxonomic screening analysis enabled by this technique. More importantly, the system can also generate quantitative phase images of single phytoplankton. This is especially useful for label-free quantification of biomasses (e.g. lipid droplets) of the particular species of interest - an important task adopted in biofuel applications. Combining machine learning for automated classification, Q-ATOM could be an attractive platform for continuous and real-time ultralarge-scale single-phytoplankton analysis.

  2. Warming will affect phytoplankton differently: evidence through a mechanistic approach

    PubMed Central

    Huertas, I. Emma; Rouco, Mónica; López-Rodas, Victoria; Costas, Eduardo

    2011-01-01

    Although the consequences of global warming in aquatic ecosystems are only beginning to be revealed, a key to forecasting the impact on aquatic communities is an understanding of individual species' vulnerability to increased temperature. Despite their microscopic size, phytoplankton support about half of the global primary production, drive essential biogeochemical cycles and represent the basis of the aquatic food web. At present, it is known that phytoplankton are important targets and, consequently, harbingers of climate change in aquatic systems. Therefore, investigating the capacity of phytoplankton to adapt to the predicted warming has become a relevant issue. However, considering the polyphyletic complexity of the phytoplankton community, different responses to increased temperature are expected. We experimentally tested the effects of warming on 12 species of phytoplankton isolated from a variety of environments by using a mechanistic approach able to assess evolutionary adaptation (the so-called ratchet technique). We found different degrees of tolerance to temperature rises and an interspecific capacity for genetic adaptation. The thermal resistance level reached by each species is discussed in relation to their respective original habitats. Our study additionally provides evidence on the most resistant phytoplankton groups in a future warming scenario. PMID:21508031

  3. Numerical Simulation of phytoplankton productivity in partially mixed estuaries

    USGS Publications Warehouse

    Peterson, D.H.; Festa, J.F.

    1984-01-01

    A two-dimensional steady-state model of light-driven phytoplankton productivity and biomass in partially mixed estuaries has been developed. Effects of variations in river flow, suspended sediment concentration, phytoplankton sinking, self-shading and growth rates on distributions of phytoplankton biomass and productivity are investigated. Numerical simulation experiments show that biomass and productivity are particularly sensitive to variations in suspended sediment concentrations typical of natural river sources and to variations in loss rates assumed to be realistic but poorly known for real systems. Changes in the loss rate term within the range of empirical error (such as from dark bottle incubation experiments) cause phytoplankton biomass to change by a factor of two. In estuaries with adequate light penetration in the water column, it could be an advantage for phytoplankton to sink. Species that sink increase their concentration and form a phytoplankton maximum in a way similar to the formation of the estuarine turbidity maximum. When attenuation is severe, however, sinking species have more difficulty in maintaining their population. ?? 1984.

  4. Amplified Arctic warming by phytoplankton under greenhouse warming

    PubMed Central

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-01-01

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes. PMID:25902494

  5. Warming will affect phytoplankton differently: evidence through a mechanistic approach.

    PubMed

    Huertas, I Emma; Rouco, Mónica; López-Rodas, Victoria; Costas, Eduardo

    2011-12-01

    Although the consequences of global warming in aquatic ecosystems are only beginning to be revealed, a key to forecasting the impact on aquatic communities is an understanding of individual species' vulnerability to increased temperature. Despite their microscopic size, phytoplankton support about half of the global primary production, drive essential biogeochemical cycles and represent the basis of the aquatic food web. At present, it is known that phytoplankton are important targets and, consequently, harbingers of climate change in aquatic systems. Therefore, investigating the capacity of phytoplankton to adapt to the predicted warming has become a relevant issue. However, considering the polyphyletic complexity of the phytoplankton community, different responses to increased temperature are expected. We experimentally tested the effects of warming on 12 species of phytoplankton isolated from a variety of environments by using a mechanistic approach able to assess evolutionary adaptation (the so-called ratchet technique). We found different degrees of tolerance to temperature rises and an interspecific capacity for genetic adaptation. The thermal resistance level reached by each species is discussed in relation to their respective original habitats. Our study additionally provides evidence on the most resistant phytoplankton groups in a future warming scenario.

  6. Winter-spring phytoplankton blooms in Dabob Bay, Washington

    NASA Astrophysics Data System (ADS)

    Horner, Rita A.; Postel, James R.; Halsband-Lenk, Claudia; Pierson, James J.; Pohnert, Georg; Wichard, Thomas

    2005-11-01

    Scientific investigations in Dabob Bay, Washington State, USA, have been extensive since the early 1960s, but phytoplankton blooms have been studied mostly with regard to chlorophyll concentrations and little is known about the phytoplankton species themselves. Here we provide information on the species present, their abundances during blooms, their contribution to organic carbon concentrations and the ability of some phytoplankton species to produce toxic aldehydes that may impact metazoan grazers. Multiple blooms of phytoplankton, dominated by diatoms, occurred in the late winter-early spring period, with depth-integrated chlorophyll levels ranging from <20 to 230 mg m -2 and peaks in February and April. The major bloom species included Skeletonema costatum, Thalassiosira spp. and Chaetoceros spp; Phaeocystis cf. pouchetii occurred in 2002 and 2004. Other taxa or groups of organisms that were sometimes abundant included unidentified small flagellates <10 μm in size and unidentified heterotrophic dinoflagellates. Large diatoms usually comprised most of the cell carbon, but a large, heterotrophic dinoflagellate, identified only as Gyrodinium “tear” because of its shape, was a major contributor to the microplankton carbon when present even in small numbers. Five Thalassiosira species and S. costatum were found to produce polyunsaturated aldehydes (PUA) that are known to affect copepod reproduction and hatching success. Our findings are similar to the few previous studies in the last four decades that included phytoplankton species and suggest long-term similarities and relative stability in the phytoplankton species present and their timing in Dabob Bay.

  7. Amplified Arctic warming by phytoplankton under greenhouse warming.

    PubMed

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  8. Seabird guano enhances phytoplankton production in the Southern Ocean.

    NASA Astrophysics Data System (ADS)

    Shatova, Olga; Wing, Stephen; Hoffmann, Linn; Jack, Lucy; Gault-Ringold, Melanie

    2015-04-01

    Great congregations of seabirds in sub-Antarctic and Antarctic coastal areas result in delivery of nutrient-rich guano to marine ecosystems that potentially enhances productivity and supports biodiversity in the region. Guano-derived bio-available micronutrients and macronutrients might be utilized by marine phytoplankton for photosynthetic production, however, mechanisms and significance of guano fertilization in the Southern Ocean are largely understudied. Over austral summers of 2012 and 2013 we performed a series of guano-enrichment phytoplankton incubation experiments with water samples collected from three different water masses in the Southern Ocean: Antarctic waters of the Ross sea and sub-Antarctic waters offshore the Otago Peninsula, both showing iron limitation of phytoplankton productivity in summer, and in the subtropical frontal zone offshore from the Snares Islands, which is generally micronutrient-repleted. Samples were enriched with known concentrations of guano-derived nutrients. Phytoplankton biomass increased significantly in guano-treated samples during all three incubation experiments (7-10 fold increase), while remained low in control samples. This response indicates that seabird guano provides nutrients that limit primary production in the Southern Ocean and that these nutrients are readily taken up by phytoplankton. Guano additions were compared to Fe and Macronutrient treatments (both added in quantities similar to those in the guano treatment). Phytoplankton biomass increased significantly in response to the Macronutrient treatment in the subtropical frontal zone, however, the response had a smaller magnitude compared to the guano treatment (2.8 µgL-1 vs 5.2 µgL-1) ; there was no significant effect of Fe on phytoplankton growth. This suggests the potential importance of synergistic effects of nutrients in guano. Incubation with sub-Antarctic waters showed that Fe and Macronutrients might be equally important for enhancement of

  9. Links between phytoplankton, CO2 emissions and water properties

    NASA Astrophysics Data System (ADS)

    Oliveira, A. P.; Cabeçadas, L.

    2009-04-01

    Changes in seawater chemistry already emerging in Portuguese coastal waters and trends predicted by the end of the century, might cause shifts in current algal communities and alter the structure and biodiversity of coastal ecosystems. May 2002 sampling in Tagus and Sado estuaries adjacent coastal shelf (SW Portugal) was an example of that. This period was characterized by a moderate but persistent upwelling and low Tagus river discharge (46 m3 s-1) favouring a weak plume and elevatedpCO2 values. These conditions strongly influenced the phytoplankton community. The spring bloom occurred at Tagus plume and close to Lisbon Canyon, where large sized phytoplankton, dominated by chain-forming diatoms, reached values up to 1000cells ml-1, while dinoflagellates reached a local peak over the canyon (>20 cells ml-1). Spatially differentiated from the main phytoplankton bloom, a development of the intermediate sized species Coccolithus braarudii (up to 60 cells ml-1) occurred, associated with the thermally stratified water-mass localised in Tagus Bay. While diatoms proliferated throughout turbulent waters, coccolithophores developed under more stable conditions, being not directly affected by anthropogenic inputs and associated with relatively low nutrient levels. The same trend was also observed for the small sized phytoplankton, which abundance (>106 cells ml-1) increased from inshore to the deeper surface mixed layer offshore where light was dimmer and nutrient concentrations lower. The small sized phytoplankton was made up of cyanobacteria Synechococcus-like and eukaryotes reaching, respectively, 721 and 466 cells ml-1. Regarding the relative importance of each phytoplankton size group in terms of carbon, cocolithophores and small sized phytoplankton represented, respectively, 2% and 0.2% of the total phytoplankton biomass. Despite the low percentage in terms of particulate organic carbon, cocolithophores played an important role in terms of CaCO3 and CO2. It was

  10. Changing restoration rules: exotic bivalves interact with residence time and depth to control phytoplankton productivity

    USGS Publications Warehouse

    Lucas, Lisa V.; Thompson, Janet K.

    2012-01-01

    Non-native species are a prevalent ecosystem stressor that can interact with other stressors to confound resource management and restoration. We examine how interactions between physical habitat attributes and a particular category of non-native species (invasive bivalves) influence primary production in aquatic ecosystems. Using mathematical models, we show how intuitive relationships between phytoplankton productivity and controllable physical factors (water depth, hydraulic transport time) that hold in the absence of bivalves can be complicated—and even reversed—by rapid bivalve grazing. In light-limited environments without bivalves, shallow, hydrodynamically “slow” habitats should generally have greater phytoplankton biomass and productivity than deeper, “faster” habitats. But shallower, slower environments can be less productive than deeper, faster ones if benthic grazing is strong. Moreover, shallower and slower waters exhibit a particularly broad range of possible productivity outcomes that can depend on whether bivalves are present. Since it is difficult to predict the response of non-native bivalves to habitat restoration, outcomes for new shallow, slow environments can be highly uncertain. Habitat depth and transport time should therefore not be used as indicators of phytoplankton biomass and production where bivalve colonization is possible. This study provides for ecosystem management a particular example of a broad lesson: abiotic ecosystem stressors should be managed with explicit consideration of interactions with other major (including biotic) stressors. We discuss the applicability and management implications of our models and results for a range of aquatic system types, with a case study focused on the Sacramento-San Joaquin Delta (California, USA). Simple mathematical models like those used here can illuminate interactions between ecosystem stressors and provide process-based guidance for resource managers as they develop strategies

  11. Direct Numerical Simulations of Phytoplankton Blooms

    NASA Astrophysics Data System (ADS)

    Luna, Christopher; Tang, Wenbo

    2013-04-01

    Motivated by observations of phytoplankton blooms in the North Atlantic obtained through satellite imaging, and by the recent developments with objective extractions of flow topologies using Lagrangian Coherent Structures, we studied the Fisher-Kolmogorov equations inside a double-gyre system. We quantified the variabilities in biochemical reaction processes based on a natural coordinate system extracted from the Lagrangian topologies and examined how the initial placement of a biomass in this coordinate system correlated to its growth rate. The Lagrangian topologies are extracted as the extrema of the Finite-Time Lyapunov Exponent (FTLE) field for the flow, and the natural coordinate system used is based on the extracted invariant barriers. We found the dependence of reaction rates on the hyperbolic finite time invariant manifolds highlighting the largest stretching of scalars as well as the reaction rates in the transversal direction from eddy centers to their edges. It was observed that the biological reaction processes are heavily modulated by Coherent Structures in the flow. With initial placement in repelling structures, the biological species is helped to spread out much faster, hence allowing biochemical reactions to take place more quickly. With initial placement in attracting structures, the biological species is brought to be highly concentrated, hence suppressing the overall growth of the biomass.

  12. Emergent neutrality drives phytoplankton species coexistence

    PubMed Central

    Segura, Angel M.; Calliari, Danilo; Kruk, Carla; Conde, Daniel; Bonilla, Sylvia; Fort, Hugo

    2011-01-01

    The mechanisms that drive species coexistence and community dynamics have long puzzled ecologists. Here, we explain species coexistence, size structure and diversity patterns in a phytoplankton community using a combination of four fundamental factors: organism traits, size-based constraints, hydrology and species competition. Using a ‘microscopic’ Lotka–Volterra competition (MLVC) model (i.e. with explicit recipes to compute its parameters), we provide a mechanistic explanation of species coexistence along a niche axis (i.e. organismic volume). We based our model on empirically measured quantities, minimal ecological assumptions and stochastic processes. In nature, we found aggregated patterns of species biovolume (i.e. clumps) along the volume axis and a peak in species richness. Both patterns were reproduced by the MLVC model. Observed clumps corresponded to niche zones (volumes) where species fitness was highest, or where fitness was equal among competing species. The latter implies the action of equalizing processes, which would suggest emergent neutrality as a plausible mechanism to explain community patterns. PMID:21177680

  13. Phytoplankton bloom in Spencer Gulf, South Australia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Summer in southern Australia is the dry season, and in this true-color MODIS image of South Australia and the Spencer Gulf from October 20,2001, the area's vegetation is losing much of the lushness it possessed in the winter rainy season (See image from September 19, 2001). In southern hemisphere summer, the high pressure systems that dominate the continent's weather move south, and block the rain-bearing westerly winds. The resulting changes in seasonal rainfall are extreme. Many of the rivers are impermanent, and flow into dry or impermanent salt lakes, such as Lake Torrens (long, thin lake bed, roughly in the center of the image), and Lake Eyre (pink and white lake bed to the northwest of Torrens). Between the Eyre Peninsula (lower left) and the Yorke Peninsula further east lies the Spencer Gulf, showing the blue-green swirls that indicate a phytoplankton bloom. Australia gets less rainfall than any continent except Antarctica, and the low and seasonal flows contribute to problems with salinity and algal blooms in the continent's surface waters.

  14. Phytoplankton bloom in Spencer Gulf, Southern Australia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    South Australia occupies the center of the Australian continent. The deserts of the interior give way to more fertile land along the coast of the Southern Ocean. This true-color MODIS image from September 17, 2001, shows the marked contrast between the country's arid interior--where seasonal salt lakes stand out in white against the deserts' vast, red expanse--and the coastal regions, including Spencer Gulf, to the lower left of the image's center. The characteristic blue-green swirls of a phytoplankton bloom can be seen in the Gulf and southeastward along the coast. To Spencer Gulf's east, the brownish-gray pixels on the eastern coast of the Gulf of St. Vincent indicate the location of the city of Adelaide, the region's capital. The large dark areas that stand out amid the green vegetation do not indicate areas where vegetation had been damaged or burned. In fact, the opposite is actually true. In many cases, those areas are land protected by national and state parks and preserves, where the natural vegetation of the semi-arid landscape is allowed to exist undisturbed. For example, due east of Adelaide are Billiat Conservation Park and the semi-rectangular Murray Sunset National Park, which is across the border from South Australia in Victoria. South of those parks are the parks of the Big Desert (top) and Little Desert (bottom).

  15. Phytoplankton dynamics in the Bohai Sea—observations and modelling

    NASA Astrophysics Data System (ADS)

    Wei, Hao; Sun, Jun; Moll, Andreas; Zhao, Liang

    2004-02-01

    A Sino-German cooperative project (AMBOS/AMREB) was carried out to improve the understanding of the nutrient-phytoplankton dynamics with processes and governing factors through observation and modelling. Two cruises in April/May 1999, September 1998 and two 15-month coastal monitoring stations were completed and a three-dimensional model for the nutrients-phytoplankton cycle was established. During the cruises in spring and autumn, increased phytoplankton concentrations were found in the southern Bohai Sea characterized by high biomass in spring and higher production in autumn. The annual cycle of nutrients and chlorophyll a concentrations was monitored at Changdao and Penglai. A sudden depletion of nutrients occurs after spring bloom and is replenished by river discharges from summer to autumn and mixing up from bottom in winter. The concentrations in coastal areas were higher than that in the Central Bohai Sea. The Laizhou Bay and the Central Bohai Sea had the maximum annual mean biomass and primary production, while the Bohai Bay had the lowest values. The Huanghe River, the most turbid one in the world, with large sediment load enters the Bohai Sea and causes the low transparency around its mouth especially during strong wind mixing time. This influences the annual cycle of phytoplankton significantly in that area. Comparing with the historical data of 1982/1983, 1984/1985 and 1992/1993, the annual cycle and horizontal distribution pattern did not change much within two decades. Diatoms and dinoflagellates are the major components of the phytoplankton community in the Bohai Sea and the ecotype of these phytoplankters is temperate and neritic. Nanophytoplankton is a major component and the picophytoplankton is also not negligible. In spring, the phytoplankton community is mainly composed of small cell diatoms and in autumn of big cell diatoms and dinoflagellates. The replacement of diatoms by dinoflagellates is the main feature of phytoplankton changes in recent

  16. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton.

    PubMed

    Lin, Senjie; Litaker, Richard Wayne; Sunda, William G

    2016-02-01

    Phosphorus (P) is an essential nutrient for marine phytoplankton and indeed all life forms. Current data show that P availability is growth-limiting in certain marine systems and can impact algal species composition. Available P occurs in marine waters as dissolved inorganic phosphate (primarily orthophosphate [Pi]) or as a myriad of dissolved organic phosphorus (DOP) compounds. Despite numerous studies on P physiology and ecology and increasing research on genomics in marine phytoplankton, there have been few attempts to synthesize information from these different disciplines. This paper is aimed to integrate the physiological and molecular information on the acquisition, utilization, and storage of P in marine phytoplankton and the strategies used by these organisms to acclimate and adapt to variations in P availability. Where applicable, we attempt to identify gaps in our current knowledge that warrant further research and examine possible metabolic pathways that might occur in phytoplankton from well-studied bacterial models. Physical and chemical limitations governing cellular P uptake are explored along with physiological and molecular mechanisms to adapt and acclimate to temporally and spatially varying P nutrient regimes. Topics covered include cellular Pi uptake and feedback regulation of uptake systems, enzymatic utilization of DOP, P acquisition by phagotrophy, P-limitation of phytoplankton growth in oceanic and coastal waters, and the role of P-limitation in regulating cell size and toxin levels in phytoplankton. Finally, we examine the role of P and other nutrients in the transition of phytoplankton communities from early succession species (diatoms) to late succession ones (e.g., dinoflagellates and haptophytes).

  17. Phytoplankton Assemblage Patterns in the Southern Mid-Atlantic Bight

    NASA Technical Reports Server (NTRS)

    Makinen, Carla; Moisan, Tiffany A. (Editor)

    2012-01-01

    As part of the Wallops Coastal Oceans Observing Laboratory (Wa-COOL) Project, we sampled a time-series transect in the southern Mid-Atlantic Bight (MAB) biweekly. Our 2-year time-series data included physical parameters, nutrient concentrations, and chlorophyll a concentrations. A detailed phytoplankton assemblage structure was examined in the second year. During the 2-year study, chlorophyll a concentration (and ocean color satellite imagery) indicated that phytoplankton blooms occurred in January/February during mixing conditions and in early autumn under stratified conditions. The chlorophyll a concentrations ranged from 0.25 microgram 1(exp -1) to 15.49 microgram 1(exp -1) during the 2-year period. We were able to discriminate approximately 116 different species under phase contrast microscopy. Dominant phytoplankton included Skeletonema costatum, Rhizosolenia spp., and Pseudo-nitzschia pungens. In an attempt to determine phytoplankton species competition/succession within the assemblage, we calculated a Shannon Weaver diversity index for our diatom microscopy data. Diatom diversity was greatest during the winter and minimal during the spring. Diatom diversity was also greater at nearshore stations than at offshore stations. Individual genera appeared patchy, with surface and subsurface patches appearing abruptly and persisting for only 1-2 months at a time. The distribution of individual species differed significantly from bulk variables of the assemblage (chlorophyll a ) and total phytoplankton assemblage (cells), which indicates that phytoplankton species may be limited in growth in ways that differ from those of the total assemblage. Our study demonstrated a highly diverse phytoplankton assemblage throughout the year, with opportunistic species dominating during spring and fall in response to seasonal changes in temperature and nutrients in the southern MAB.

  18. Phytoplankton community ecology: Principles applied in San Francisco Bay

    USGS Publications Warehouse

    Cloern, J.E.; Dufford, R.

    2005-01-01

    In his seminal 1961 paper 'The paradox of the plankton' Am Nat 95:137-147, G. E. Hutchinson asked why many species of phytoplankton can coexist while competing for a small number of limiting resources in an unstructured habitat. Hutchinson anticipated the resolution of his paradox, recognizing that communities are organized by processes beyond resource competition including species interactions, habitat variability and dispersal. Since 1961 we have made fundamental discoveries that have revolutionized our conceptual understanding of pelagic ecology, including (1) habitat heterogeneity at all scales relevant to plankton population dynamics, (2) community shifts in response to global climate cycles, (3) fast and selective predation as a powerful top-down force to shape phytoplankton communities, (4) turbulent mixing as a physical process that selects species on the basis of their size and form, (5) mixotrophy that allows some algal species to tap organic nutrient pools and function at multiple trophic levels, (6) taxon-specific life cycles including alternating vegetative and resting stages, and (7) the pelagic as an open system where communities are continually reshaped by species immigration. Here we synthesize these discoveries to show how they validate and amplify Hutchinson's hypothesis that phytoplankton communities are assembled by many processes. Our synthesis is built around observations of phytoplankton species composition from a decade of study in San Francisco Bay, used as a case study to illustrate the contemporary principles of phytoplankton community ecology. We apply these principles to address 2 central questions: (1) What processes assemble phytoplankton communities? (2) How does phytoplankton community composition influence ecosystem functions such as production in pelagic and benthic food webs?

  19. Assisted Living

    MedlinePlus

    ... but they don't need full-time nursing care. Some assisted living facilities are part of retirement ... change. Assisted living costs less than nursing home care. It is still fairly expensive. Older people or ...

  20. Phytoplankton variability in the central and eastern tropical Pacific

    NASA Astrophysics Data System (ADS)

    Chavez, Francisco P.; Buck, Kurt R.; Service, Susan K.; Newton, Jan; Barber, Richard T.

    An extensive set of measurements of phytoplankton production, biomass and composition, and microzooplankton grazing from the coast of Peru to 170°W during 1992, together with similar data collected over the previous decade, has allowed recalculation of the primary production supported by equatorial upwelling and improved description of the variability in phytoplankton properties. Equatorial region surface chlorophyll and phytoplankton biomass were low, averaging 0.2 μg 1 -1 and 20 μg C 1 -1, respectively, and showed low variance. Phytoplankton in the open ocean of the tropical Pacific were dominated by small < 5 μm) solitary organisms, primarily prochlorophytes, Synechococcus, eukaryotic picoplankton, haptophytes and dinoflagellates, while coastal populations were dominated by larger organisms or colonies (primarily diatoms). At a few open ocean locations high numbers of diatoms were found. The chlorophyll maximum observed in the equatorial Pacific was a function of increased chlorophyll per cell rather than an increase in cell numbers. Surface phytoplankton carbon to chlorophyll was highly variable and a function of available irradiance and upwelling strength. On the order of 40% of the particulate nitrogen retained by GF/F filters was estimated to be phytoplankton nitrogen. Phytoplankton growth rate estimates using daily carbon uptake and phytoplankton carbon estimated from microscopic enumeration ranged from 0.55 to 0.70 day -1. Estimates of growth rates from dilution experiments gave estimates of the order of 1 day -1 and microzooplankton grazing rates that were significantly lower, 0.4 day -1. The mean mass specific grazing rate for microzooplankton was estimated to range from 1.6 to 1.8 day -1. The mean productivity for the equatorial Pacific from 90° to 180°W, 5°N-5°S, was estimated to be 900 mg C m -2 day -1 for the period from 1990 to the present, twice that estimated previously. The maximum f-ratio (new to total production) was estimated to be 0

  1. Effects of simulated increased gravity on the rate of aging of rats - Implications for the rate of living theory of aging

    NASA Technical Reports Server (NTRS)

    Economos, A. C.; Ballard, R. C.; Blunden, M.; Miquel, J.; Lindseth, K. A.; Fleming, J.; Philpott, D. E.; Oyama, J.

    1982-01-01

    It was found that the rate of aging of 17 month old rats which had been exposed to 3.14 times normal gravity in an animal centrifuge for 8 months was larger than that of the controls as determined by the apparently elevated lipofuscin content in heart and kidney, reduced numbers and increased size of mitochondria of heart tissue, and inferior liver mitochondria respiration. Steady-state food intake per day per kg body weight, which is presumably proportional to rate of living or specific basal metabolic expenditure, was found to be about 18 percent higher than in the controls after an initial 2 month adaptation period. Although half of the centrifuged animals lived only a little shorter than the controls (average about 343 vs. 364 days on the average, statistically nonsignificant), the remaining half (longest survivors) lived on the centrifuge an average of 520 days (range 483-572) compared to an average of 574 days (range 502-615) for the controls, computed from the onset of centrifugation, or 11 percent shorter. These findings indicate that a moderate increase of the level of basal metabolism of young adult rats adapted to hypergravity compared to controls in normal gravity is accompanied by a roughly similar increase in the rate of organ aging and reduction of survival, in agreement with Pearl's (1928) rate of living theory of aging, previously experimentally demonstrated only in poikilotherms.

  2. Photosynthetic parameters of northern gulf of California phytoplankton

    NASA Astrophysics Data System (ADS)

    Alvarez-Borrego, Saul; Gaxiola-Castro, Gilberto

    1988-01-01

    At the end of autumn, 1981, and end of spring-beginning of summer, 1982, we generated photosynthesis-irradiance curves for phytoplankton from five locations, in each cruise, of the northern Gulf of California. In general, photosynthetic parameters, phytoplankton abundance and chlorophyll a had large vertical changes within the euphotic zone, even in cases where thermohaline vertical homogeneity indicated high instability. Nutrient concentrations were very high. The assimilation number ( PmB), in general, decreased with depth due to conditioning of phytoplankton to lower irradiances. Surface ( PmB) values had a range of 2-15 mg C ( mg Chla) -1h -1. Where the bottom of the euphotic zone was within the thermocline, PmB was 4-15% of the values for surface waters; and where it was within the mixed layer, PmB was 25-85% of the values for surface waters. This was due to greater residence time of phytoplankton at depth in the first case. Very strong turbulence by storm winds caused relatively low PmB values in a December station, possibly because of mixing of the near-surface phytoplankton with relatively deep populations conditioned to low irradiances. Our data indicate that in the Gulf moderate turbulence causes higher PmB values than strong turbulence or stratification.

  3. Phytoplankton community of Reis Lake in the Brazilian Amazon.

    PubMed

    Silva, Ise G; Moura, Ariadne N; Dantas, Enio W

    2013-01-01

    Reis Lake is located in the municipality of Caracaraí, state of Roraima (Brazil) and is subject to fluctuations in water level. The aim of this study was to analyze the structure of the phytoplankton community on the nictemeral and seasonal scales and determined the influence of limnological variables. Sampling was performed in the rainy season (June/2006) and dry season (November/2006), considering two nictemeral cycles. The phytoplankton community was assessed with regard to composition and density, abiotic variables were analyzed simultaneously. The lake had low concentrations of oxygen, clinograde profile and water stratified during the day and homogenous at night, with low concentrations of nutrients and waters ranging from slightly acidic to alkaline. The phytoplankton was represented by 43 taxa, 35 species in the dry season and 29 species in the rainy season. Low densities of phytoplankton occurred in both nictemeral cycles, with accentuated vertical gradient. The highest densities were recorded in the dry season. Reis Lake exhibits characteristics that classify it as a polymythic and oligotrophic environment. The variability in the data was more important seasonally than on the nictemeral scale, supporting the hypothesis of the influence of the hydrological cycle on the dynamics of phytoplankton communities in floodplain lakes.

  4. Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton.

    PubMed

    Mincer, Tracy J; Aicher, Athena C

    2016-01-01

    Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS) method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus), and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata) produced methanol, ranging from 0.8-13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09-0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world's oceans. PMID:26963515

  5. Phytoplankton Growth and Microzooplankton Grazing in the Subtropical Northeast Atlantic

    PubMed Central

    Cáceres, Carlos; Taboada, Fernando González; Höfer, Juan; Anadón, Ricardo

    2013-01-01

    Dilution experiments were performed to estimate phytoplankton growth and microzooplankton grazing rates during two Lagrangian surveys in inner and eastern locations of the Eastern North Atlantic Subtropical Gyre province (NAST-E). Our design included two phytoplankton size fractions (0.2–5 µm and >5 µm) and five depths, allowing us to characterize differences in growth and grazing rates between size fractions and depths, as well as to estimate vertically integrated measurements. Phytoplankton growth rates were high (0.11–1.60 d−1), especially in the case of the large fraction. Grazing rates were also high (0.15–1.29 d−1), suggesting high turnover rates within the phytoplankton community. The integrated balances between phytoplankton growth and grazing losses were close to zero, although deviations were detected at several depths. Also, O2 supersaturation was observed up to 110 m depth during both Lagrangian surveys. These results add up to increased evidence indicating an autotrophic metabolic balance in oceanic subtropical gyres. PMID:23935946

  6. Evolutionary potential of marine phytoplankton under ocean acidification

    PubMed Central

    Collins, Sinéad; Rost, Björn; Rynearson, Tatiana A

    2014-01-01

    Marine phytoplankton have many obvious characters, such as rapid cell division rates and large population sizes, that give them the capacity to evolve in response to global change on timescales of weeks, months or decades. However, few studies directly investigate if this adaptive potential is likely to be realized. Because of this, evidence of to whether and how marine phytoplankton may evolve in response to global change is sparse. Here, we review studies that help predict evolutionary responses to global change in marine phytoplankton. We find limited support from experimental evolution that some taxa of marine phytoplankton may adapt to ocean acidification, and strong indications from studies of variation and structure in natural populations that selection on standing genetic variation is likely. Furthermore, we highlight the large body of literature on plastic responses to ocean acidification available, and evolutionary theory that may be used to link plastic and evolutionary responses. Because of the taxonomic breadth spanned by marine phytoplankton, and the diversity of roles they fill in ocean ecosystems and biogeochemical cycles, we stress the necessity of treating taxa or functional groups individually. PMID:24454553

  7. Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton.

    PubMed

    Mincer, Tracy J; Aicher, Athena C

    2016-01-01

    Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS) method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus), and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata) produced methanol, ranging from 0.8-13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09-0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world's oceans.

  8. Phytoplankton assemblages in lateral lagoons of a large tropical reservoir.

    PubMed

    Ferrareze, M; Nogueira, M G

    2013-02-01

    This study aimed to analyse the composition and ecological attributes of the phytoplankton assemblages in four lateral lagoons and in the main channel of Rosana Reservoir (Paranapanema River, SE Brazil). Fieldwork was carried out in September and November/2004 and January, March, May and August/2005. A total of 283 taxa was identified. Zygnemaphyta was the most specious group, followed by Chlorophyta and Bacillariophyta. Higher richness, abundance and biomass were observed in the lagoons when compared with the river-reservoir sampling point, especially during the rainy period. Cryptophyceae and Bacillariophyceae dominated numerically. Cryptomonas brasiliensis Castro, Bicudo and Bicudo was the main species of the phytoplankton in terms of abundance and frequency of occurrence. The dynamics of the most important taxa are discussed and the results showed that the phytoplankton assemblages are mainly influenced by meteorological factors and nutrient availability (the main driving forces). Correlation analyses indicated that the assemblage abundance was limited by nutrient (nitrogen and phosphorus). The phytoplankton abundance influenced positively the zooplankton abundance, what indicates the prevalence of bottom-up control routes in the lateral lagoons system. The results validate the hypotheses that lateral lagoons have a prominent ecological role on the phytoplankton diversity, as already previously demonstrated for fish and zooplankton. Therefore, the incorporation of the lateral lagoons in environmental programmes should be a target strategy for the conservation of the regional aquatic biota, minimising the negative impact of the dam.

  9. Phytoplankton productivity in a turbid buoyant coastal plume

    NASA Astrophysics Data System (ADS)

    Schofield, Oscar; Moline, Mark; Cahill, Brownyn; Frazer, Thomas; Kahl, Alex; Oliver, Matthew; Reinfelder, John; Glenn, Scott; Chant, Robert

    2013-07-01

    The complex dynamics associated with coastal buoyant plumes make it difficult to document the interactions between light availability, phytoplankton carbon fixation, and biomass accumulation. Using real-time data, provided by satellites and high frequency radar, we adaptively sampled a low salinity parcel of water that was exported from the Hudson river estuary in April 2005. The water was characterized by high nutrients and high chlorophyll concentrations. The majority of the low salinity water was re-circulated within a nearshore surface feature for 5 days during which nitrate concentrations dropped 7-fold, the maximum quantum yield for photosynthesis dropped 10-fold, and primary productivity rates decreased 5-fold. Associated with the decline in nitrate was an increase in phytoplankton biomass. The phytoplankton combined with the Colored Dissolved Organic Matter (CDOM) and non-algal particles attenuated the light so the 1% light level ranged between 3 and 10m depending on the age of the plume water. As the plume was 10-15m thick, the majority of the phytoplankton were light-limited. Vertical mixing within the plume was high as indicated by the dispersion of injected of rhodamine dye. The mixing within the buoyant plume was more rapid than phytoplankton photoacclimation processes. Mixing rates within the plume was the critical factor determining overall productivity rates within the turbid plume.

  10. Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton

    PubMed Central

    Mincer, Tracy J.; Aicher, Athena C.

    2016-01-01

    Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS) method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus), and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata) produced methanol, ranging from 0.8–13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09–0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world’s oceans. PMID:26963515

  11. 'Faking til you make it': social capital accumulation of individuals on low incomes living in contrasting socio-economic neighbourhoods and its implications for health and wellbeing.

    PubMed

    Browne-Yung, Kathryn; Ziersch, Anna; Baum, Fran

    2013-05-01

    People on low-income living in low socio-economic neighbourhoods have poorer health in comparison with those living in advantaged neighbourhoods. To explore neighbourhood effects on health and social capital creation, the experiences of low-income people living in contrasting socio-economic neighbourhoods were compared, in order to examine how low-income status and differing levels of neighbourhood resources contributed to perceived health and wellbeing. Quantitative and qualitative data were analysed: survey data from 601 individuals living in contrasting socio-economic areas and in-depth interviews with a new sample of 24 individuals on low-incomes. The study was guided by Bourdieu's theory of practice, which examines how social inequalities are created and reproduced through the relationship between individuals' varying resources of economic, social and cultural capital. This included an examination of individual life histories, cultural distinction and how social positions are reproduced. Participants' accounts of their early life experience showed how parental socio-economic position and socially patterned events taking place across the life course, created different opportunities for social network creation, choice of neighbourhood and levels of resources available throughout life, all of which can influence health and wellbeing. A definition of poverty by whether an individual or household has sufficient income at a particular point in time was an inadequate measure of disadvantage. This static measure of 'low income' as a category disguised a number of different ways in which disadvantage was experienced or, conversely, how life course events could mitigate the impact of low-income. This study found that the resources necessary to create social capital such as cultural capital and the ability to socially network, differed according to the socio-economic status of the neighbourhood, and that living in an advantaged area does not automatically guarantee

  12. 'Faking til you make it': social capital accumulation of individuals on low incomes living in contrasting socio-economic neighbourhoods and its implications for health and wellbeing.

    PubMed

    Browne-Yung, Kathryn; Ziersch, Anna; Baum, Fran

    2013-05-01

    People on low-income living in low socio-economic neighbourhoods have poorer health in comparison with those living in advantaged neighbourhoods. To explore neighbourhood effects on health and social capital creation, the experiences of low-income people living in contrasting socio-economic neighbourhoods were compared, in order to examine how low-income status and differing levels of neighbourhood resources contributed to perceived health and wellbeing. Quantitative and qualitative data were analysed: survey data from 601 individuals living in contrasting socio-economic areas and in-depth interviews with a new sample of 24 individuals on low-incomes. The study was guided by Bourdieu's theory of practice, which examines how social inequalities are created and reproduced through the relationship between individuals' varying resources of economic, social and cultural capital. This included an examination of individual life histories, cultural distinction and how social positions are reproduced. Participants' accounts of their early life experience showed how parental socio-economic position and socially patterned events taking place across the life course, created different opportunities for social network creation, choice of neighbourhood and levels of resources available throughout life, all of which can influence health and wellbeing. A definition of poverty by whether an individual or household has sufficient income at a particular point in time was an inadequate measure of disadvantage. This static measure of 'low income' as a category disguised a number of different ways in which disadvantage was experienced or, conversely, how life course events could mitigate the impact of low-income. This study found that the resources necessary to create social capital such as cultural capital and the ability to socially network, differed according to the socio-economic status of the neighbourhood, and that living in an advantaged area does not automatically guarantee

  13. Estimating phytoplankton photosynthesis by active fluorescence

    SciTech Connect

    Falkowski, P.G.; Kolber, Z.

    1992-01-01

    Photosynthesis can be described by target theory, At low photon flux densities, photosynthesis is a linear function of irradiance (I), The number of reaction centers (n), their effective absorption capture cross section {sigma}, and a quantum yield {phi}. As photosynthesis becomes increasingly light saturated, an increased fraction of reaction centers close. At light saturation the maximum photosynthetic rate is given as the product of the number of reaction centers (n) and their maximum electron transport rate (I/{tau}). Using active fluorometry it is possible to measure non-destructively and in real time the fraction of open or closed reaction centers under ambient irradiance conditions in situ, as well as {sigma} and {phi} {tau} can be readily, calculated from knowledge of the light saturation parameter, I{sub k} (which can be deduced by in situ by active fluorescence measurements) and {sigma}. We built a pump and probe fluorometer, which is interfaced with a CTD. The instrument measures the fluorescence yield of a weak probe flash preceding (f{sub 0}) and succeeding (f{sub 0}) a saturating pump flash. Profiles of the these fluorescence yields are used to derive the instantaneous rate of gross photosynthesis in natural phytoplankton communities without any incubation. Correlations with short-term simulated in situ radiocarbon measurements are extremely high. The average slope between photosynthesis derived from fluorescence and that measured by radiocarbon is 1.15 and corresponds to the average photosynthetic quotient. The intercept is about 15% of the maximum radiocarbon uptake and corresponds to the average net community respiration. Profiles of photosynthesis and sections showing the variability in its composite parameters reveal a significant effect of nutrient availability on biomass specific rates of photosynthesis in the ocean.

  14. Estimating phytoplankton photosynthesis by active fluorescence

    SciTech Connect

    Falkowski, P.G.; Kolber, Z.

    1992-10-01

    Photosynthesis can be described by target theory, At low photon flux densities, photosynthesis is a linear function of irradiance (I), The number of reaction centers (n), their effective absorption capture cross section {sigma}, and a quantum yield {phi}. As photosynthesis becomes increasingly light saturated, an increased fraction of reaction centers close. At light saturation the maximum photosynthetic rate is given as the product of the number of reaction centers (n) and their maximum electron transport rate (I/{tau}). Using active fluorometry it is possible to measure non-destructively and in real time the fraction of open or closed reaction centers under ambient irradiance conditions in situ, as well as {sigma} and {phi} {tau} can be readily, calculated from knowledge of the light saturation parameter, I{sub k} (which can be deduced by in situ by active fluorescence measurements) and {sigma}. We built a pump and probe fluorometer, which is interfaced with a CTD. The instrument measures the fluorescence yield of a weak probe flash preceding (f{sub 0}) and succeeding (f{sub 0}) a saturating pump flash. Profiles of the these fluorescence yields are used to derive the instantaneous rate of gross photosynthesis in natural phytoplankton communities without any incubation. Correlations with short-term simulated in situ radiocarbon measurements are extremely high. The average slope between photosynthesis derived from fluorescence and that measured by radiocarbon is 1.15 and corresponds to the average photosynthetic quotient. The intercept is about 15% of the maximum radiocarbon uptake and corresponds to the average net community respiration. Profiles of photosynthesis and sections showing the variability in its composite parameters reveal a significant effect of nutrient availability on biomass specific rates of photosynthesis in the ocean.

  15. Synchronized Regulation of Different Zwitterionic Metabolites in the Osmoadaption of Phytoplankton

    PubMed Central

    Gebser, Björn; Pohnert, Georg

    2013-01-01

    The ability to adapt to different seawater salinities is essential for cosmopolitan marine phytoplankton living in very diverse habitats. In this study, we examined the role of small zwitterionic metabolites in the osmoadaption of two common microalgae species Emiliania huxleyi and Prorocentrum minimum. By cultivation of the algae under salinities between 16‰ and 38‰ and subsequent analysis of dimethylsulfoniopropionate (DMSP), glycine betaine (GBT), gonyol, homarine, trigonelline, dimethylsulfonioacetate, trimethylammonium propionate, and trimethylammonium butyrate using HPLC-MS, we could reveal two fundamentally different osmoadaption mechanisms. While E. huxleyi responded with cell size reduction and a nearly constant ratio between the major metabolites DMSP, GBT and homarine to increasing salinity, osmolyte composition of P. minimum changed dramatically. In this alga DMSP concentration remained nearly constant at 18.6 mM between 20‰ and 32‰ but the amount of GBT and dimethylsulfonioacetate increased from 4% to 30% of total investigated osmolytes. Direct quantification of zwitterionic metabolites via LC-MS is a powerful tool to unravel the complex osmoadaption and regulation mechanisms of marine phytoplankton. PMID:23774888

  16. β-Decay Half-Lives of 110 Neutron-Rich Nuclei across the N=82 Shell Gap: Implications for the Mechanism and Universality of the Astrophysical r Process.

    PubMed

    Lorusso, G; Nishimura, S; Xu, Z Y; Jungclaus, A; Shimizu, Y; Simpson, G S; Söderström, P-A; Watanabe, H; Browne, F; Doornenbal, P; Gey, G; Jung, H S; Meyer, B; Sumikama, T; Taprogge, J; Vajta, Zs; Wu, J; Baba, H; Benzoni, G; Chae, K Y; Crespi, F C L; Fukuda, N; Gernhäuser, R; Inabe, N; Isobe, T; Kajino, T; Kameda, D; Kim, G D; Kim, Y-K; Kojouharov, I; Kondev, F G; Kubo, T; Kurz, N; Kwon, Y K; Lane, G J; Li, Z; Montaner-Pizá, A; Moschner, K; Naqvi, F; Niikura, M; Nishibata, H; Odahara, A; Orlandi, R; Patel, Z; Podolyák, Zs; Sakurai, H; Schaffner, H; Schury, P; Shibagaki, S; Steiger, K; Suzuki, H; Takeda, H; Wendt, A; Yagi, A; Yoshinaga, K

    2015-05-15

    The β-decay half-lives of 110 neutron-rich isotopes of the elements from _{37}Rb to _{50}Sn were measured at the Radioactive Isotope Beam Factory. The 40 new half-lives follow robust systematics and highlight the persistence of shell effects. The new data have direct implications for r-process calculations and reinforce the notion that the second (A≈130) and the rare-earth-element (A≈160) abundance peaks may result from the freeze-out of an (n,γ)⇄(γ,n) equilibrium. In such an equilibrium, the new half-lives are important factors determining the abundance of rare-earth elements, and allow for a more reliable discussion of the r process universality. It is anticipated that universality may not extend to the elements Sn, Sb, I, and Cs, making the detection of these elements in metal-poor stars of the utmost importance to determine the exact conditions of individual r-process events.

  17. β-Decay Half-Lives of 110 Neutron-Rich Nuclei across the N=82 Shell Gap: Implications for the Mechanism and Universality of the Astrophysical r Process.

    PubMed

    Lorusso, G; Nishimura, S; Xu, Z Y; Jungclaus, A; Shimizu, Y; Simpson, G S; Söderström, P-A; Watanabe, H; Browne, F; Doornenbal, P; Gey, G; Jung, H S; Meyer, B; Sumikama, T; Taprogge, J; Vajta, Zs; Wu, J; Baba, H; Benzoni, G; Chae, K Y; Crespi, F C L; Fukuda, N; Gernhäuser, R; Inabe, N; Isobe, T; Kajino, T; Kameda, D; Kim, G D; Kim, Y-K; Kojouharov, I; Kondev, F G; Kubo, T; Kurz, N; Kwon, Y K; Lane, G J; Li, Z; Montaner-Pizá, A; Moschner, K; Naqvi, F; Niikura, M; Nishibata, H; Odahara, A; Orlandi, R; Patel, Z; Podolyák, Zs; Sakurai, H; Schaffner, H; Schury, P; Shibagaki, S; Steiger, K; Suzuki, H; Takeda, H; Wendt, A; Yagi, A; Yoshinaga, K

    2015-05-15

    The β-decay half-lives of 110 neutron-rich isotopes of the elements from _{37}Rb to _{50}Sn were measured at the Radioactive Isotope Beam Factory. The 40 new half-lives follow robust systematics and highlight the persistence of shell effects. The new data have direct implications for r-process calculations and reinforce the notion that the second (A≈130) and the rare-earth-element (A≈160) abundance peaks may result from the freeze-out of an (n,γ)⇄(γ,n) equilibrium. In such an equilibrium, the new half-lives are important factors determining the abundance of rare-earth elements, and allow for a more reliable discussion of the r process universality. It is anticipated that universality may not extend to the elements Sn, Sb, I, and Cs, making the detection of these elements in metal-poor stars of the utmost importance to determine the exact conditions of individual r-process events. PMID:26024165

  18. Microbial biomarkers from the East China Sea and implications for paleoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Hu, W. J.; Duan, S. S.; Cao, L. Y.; Wang, Y. Y.; Zhao, S. Z.; Xing, L.

    2015-12-01

    We report the vertical and spatial distributions of isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs), ladderanes and phytoplankton biomarkers in suspended particulates from the East China Sea (ECS) to evaluate the living habitat and environments of the planktonic archaea Thaumarchaeota and anaerobic ammonium oxidation (anammox) bacteria, respectively. Maximum GDGT concentration mostly occurred in bottom waters while maximum phytoplankton biomarker concentration occurred in the surface layers; and these results from the ECS provides further evidence for the use of the TEX86 index as a proxy for bottom water temperature in shallow shelf sea environments. Ladderanes were detected in both surface and subsurface particulates, suggesting that anammox activity was widespread in both the hypoxia zone near the Changjiang Estuary and in the mid-shelf of the ECS. Thus, anaerobic condition is not a requirement for anammox bacteria; however, ladderane-derived anammox activity was higher in lower oxygen environments, confirming ladderanes as useful proxies for reconstructing hypoxia changes. Statistical analysis will be presented to assess the link between archaea (Thaumarchaeota) performing aerobic ammonia oxidation and bacteria (anammox) performing anaerobic ammonium oxidation in the ECS, the implications for both carbon and nitrogen cycles.

  19. REMOTE MEASUREMENT OF PHYTOPLANKTON PIGMENTS IN THE PAMLICO SOUND, NC USING HYPERSPECTRAL IMAGERY

    EPA Science Inventory

    Monitoring of phytoplankton concentrations in estuarine environments is important for managing both recreational and commercial fishery resources. Impacts on estuarine areas from phytoplankton blooms include neurotoxic shellfish poisoning; fish, bird, and vegetation kills; and p...

  20. Phytoplankton Community Structure, Biomass and Diversity on the Louisiana Continental Shelf

    EPA Science Inventory

    Phytoplankton communities on the Louisiana continental shelf (LCS) respond to nutrient loading from the Mississippi and Atchafalaya River Basin (MARB). Enhanced phytoplankton biomass is a source of organic matter contributing to the development of seasonal hypoxia. Samples were ...

  1. Metal contents of phytoplankton and labile particulate material in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Twining, Benjamin S.; Rauschenberg, Sara; Morton, Peter L.; Vogt, Stefan

    2015-09-01

    quotas are in-line with those measured in laboratory cultures at comparable Fe concentrations. Particulate Zn, Cu, Ni, and Co are primarily associated with cellular material, but less than 30% of labile particulate Fe and Mn are biogenic. Particulate Al was primarily associated with lithogenic material, but the labile fraction was highly correlated with P, as well as with biogenic silica, suggesting that some particulate Al (perhaps around 20%) may occur adsorbed to biogenic material. Cellular element maps indicate that externally scavenged Fe was not a significant fraction of the metal associated with live phytoplankton, but adsorbed or precipitated phases are likely to be important in particulate detrital material. Such abiotic scavenging, along with differential remineralization of cellular nutrients in the water column, results in estimates of cellular metal/nutrient ratios from dissolved concentrations that significantly underestimate the ratios in phytoplankton. These data demonstrate the response of phytoplankton to the unique metal inputs to the North Atlantic Ocean.

  2. Global patterns of phytoplankton dynamics in coastal ecosystems

    USGS Publications Warehouse

    Paerl, H.; Yin, Kedong; Cloern, J.

    2011-01-01

    Scientific Committee on Ocean Research Working Group 137 Meeting; Hangzhou, China, 17-21 October 2010; Phytoplankton biomass and community structure have undergone dramatic changes in coastal ecosystems over the past several decades in response to climate variability and human disturbance. These changes have short- and long-term impacts on global carbon and nutrient cycling, food web structure and productivity, and coastal ecosystem services. There is a need to identify the underlying processes and measure the rates at which they alter coastal ecosystems on a global scale. Hence, the Scientific Committee on Ocean Research (SCOR) formed Working Group 137 (WG 137), "Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems: A Comparative Analysis of Time Series Observations" (http://wg137.net/). This group evolved from a 2007 AGU-sponsored Chapman Conference entitled "Long Time-Series Observations in Coastal Ecosystems: Comparative Analyses of Phytoplankton Dynamics on Regional to Global Scales.".

  3. Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    Paerl, Hans; Yin, Kedong; Cloern, James

    2011-03-01

    Scientific Committee on Ocean Research Working Group 137 Meeting; Hangzhou, China, 17-21 October 2010; Phytoplankton biomass and community structure have undergone dramatic changes in coastal ecosystems over the past several decades in response to climate variability and human disturbance. These changes have short- and long-term impacts on global carbon and nutrient cycling, food web structure and productivity, and coastal ecosystem services. There is a need to identify the underlying processes and measure the rates at which they alter coastal ecosystems on a global scale. Hence, the Scientific Committee on Ocean Research (SCOR) formed Working Group 137 (WG 137), “Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems: A Comparative Analysis of Time Series Observations” (http://wg137.net/). This group evolved from a 2007 AGU-sponsored Chapman Conference entitled “Long Time-Series Observations in Coastal Ecosystems: Comparative Analyses of Phytoplankton Dynamics on Regional to Global Scales.”

  4. Phytoplankton pigment patterns and wind forcing off central California

    NASA Technical Reports Server (NTRS)

    Abbott, Mark R.; Barksdale, Brett

    1991-01-01

    Mesoscale variability in phytoplankton pigment distributions of central California during the spring-summer upwelling season are studied via a 4-yr time series of high-resolution coastal zone color scanner imagery. Empirical orthogonal functions are used to decompose the time series of spatial images into its dominant modes of variability. The coupling between wind forcing of the upper ocean and phytoplankton distribution on mesoscales is investigated. Wind forcing, in particular the curl of the wind stress, was found to play an important role in the distribution of phytoplankton pigment in the California Current. The spring transition varies in timing and intensity from year to year but appears to be a recurrent feature associated with the rapid onset of the upwelling-favorable winds. Although the underlying dynamics may be dominated by processes other than forcing by wind stress curl, it appears that curl may force the variability of the filaments and hence the pigment patterns.

  5. Algal viruses hitchhiking on zooplankton across phytoplankton blooms

    PubMed Central

    Frada, Miguel J; Vardi, Assaf

    2015-01-01

    Viruses infecting marine phytoplankton are key biogeochemical ‘engines’ of the oceans, regulating the dynamics of algal populations and the fate of their extensive blooms. In addition they are important ecological and evolutionary drivers of microbial diversification. Yet, little is known about mechanisms influencing viral dispersal in aquatic systems, enabling the rapid infection and demise of vast phytoplankton blooms. In a recent study we showed that migrating zooplankton as copepods that graze on marine phytoplankton can act as transmission vectors for algal viruses. We demonstrated that these grazers can concentrate virions through topical adsorption and by ingesting infected cells and then releasing back to the medium, via detachment or defecation, high viral titers that readily infect host populations. We proposed that this zooplankton-driven process can potentially boost viral dispersal over wide oceanic scales and enhance bloom termination. Here, we highlight key results and further discuss the ecological and evolutionary consequences of our findings. PMID:26479489

  6. Phytoplankton photocompensation from space-based fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Morrison, J. Ruairidh; Goodwin, Deborah S.

    2010-03-01

    Recent satellite-derived observations linked global scale phytoplankton fluorescence variability with iron stress and hinted at photophysiological responses associated with changing light levels. These photocompensation reactions, the sum of photoacclimation and photoadaptation, were examined with climatological data for the Gulf of Maine. Significant seasonal variability was observed in the fluorescence quantum yield that was unrelated to patterns of biomass. Up to 89% of the variability in the fluorescence quantum yield was explained by a physiology-based photocompensation model. Spatial variability in seasonal patterns was associated with differing hydrodynamic regimes. This variability in the quantum yield demonstrates that satellite-based fluorescence is inappropriate for phytoplankton biomass determinations. More importantly, the work presented here provides the modeling foundation for fluorescence-based investigations of temporal and spatial variability in phytoplankton physiology associated with growth irradiance. These space-based physiological observations have the potential to decrease uncertainties in future ocean color derived primary productivity estimates.

  7. Algal viruses hitchhiking on zooplankton across phytoplankton blooms.

    PubMed

    Frada, Miguel J; Vardi, Assaf

    2015-01-01

    Viruses infecting marine phytoplankton are key biogeochemical 'engines' of the oceans, regulating the dynamics of algal populations and the fate of their extensive blooms. In addition they are important ecological and evolutionary drivers of microbial diversification. Yet, little is known about mechanisms influencing viral dispersal in aquatic systems, enabling the rapid infection and demise of vast phytoplankton blooms. In a recent study we showed that migrating zooplankton as copepods that graze on marine phytoplankton can act as transmission vectors for algal viruses. We demonstrated that these grazers can concentrate virions through topical adsorption and by ingesting infected cells and then releasing back to the medium, via detachment or defecation, high viral titers that readily infect host populations. We proposed that this zooplankton-driven process can potentially boost viral dispersal over wide oceanic scales and enhance bloom termination. Here, we highlight key results and further discuss the ecological and evolutionary consequences of our findings.

  8. The community prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in older people living in their own homes: implications for treatment, screening and surveillance in the UK.

    PubMed

    Maudsley, J; Stone, S P; Kibbler, C C; Iliffe, S R; Conaty, S J; Cookson, B D; Duckworth, G J; Johnson, A; Wallace, P G

    2004-07-01

    Methicillin-resistant Staphylococcus aureus (MRSA) predominantly affects those over 65 years old. There may be a substantial pool of older people with MRSA in the community. We studied the prevalence in one London general practice, screening 258 older people living in their own home. MRSA (E-MRSA 15) was found in two participants (0.78%). Past history of MRSA was the only significant risk factor. The results of this and other studies suggest that national guidelines recommending early discharge for MRSA carriers have not resulted in widespread community acquisition amongst elderly people living in their own home. Community antibiotic policies for skin and soft-tissue infection do not require amendment. Patients with previous MRSA should be isolated and screened on admission especially to high-risk units.

  9. Shelters of leaf-tying herbivores decompose faster than leaves damaged by free-living insects: Implications for nutrient turnover in polluted habitats.

    PubMed

    Kozlov, Mikhail V; Zverev, Vitali; Zvereva, Elena L

    2016-10-15

    Leaf-eating insects can influence decomposition processes by modifying quality of leaf litter, and this impact can be especially pronounced in habitats where leaf-eating insects reach high densities, for example in heavily polluted areas. We hypothesized that the decomposition rate is faster for shelters of leaf-tying larvae than for leaves damaged by free-living insects, in particular due to the accumulation of larval frass within shelters. We exposed litter bags containing samples of three different compositions (shelters built by moth larvae, leaves damaged by free-living insects and intact leaves of mountain birch, Betula pubescens ssp. czerepanovii) for one year at two heavily polluted sites near the nickel-copper smelter at Monchegorsk in north-western Russia and at two unpolluted sites. The decomposition rate of leaves damaged by free-living insects was 91% of that of undamaged leaves, whereas the mass loss of leaves composing shelters did not differ of that of undamaged leaves. These differences between leaves damaged by different guilds of herbivorous insects were uniform across the study sites, although the decomposition rate in polluted sites was reduced to 77% of that in unpolluted sites. Addition of larval frass to undamaged leaves had no effect on the subsequent decomposition rate. Therefore we suggest that damaged leaves tied by shelter-building larvae decompose faster than untied damaged leaves due to a looser physical structure of the litter, which creates favourable conditions for detritivores and soil decomposers. Thus, while leaf damage by insects per se reduces litter quality and its decomposition rate, structuring of litter by leaf-tying insects counterbalances these negative effects. We conclude that leaf-tying larvae, in contrast to free-living defoliators, do not impose negative effects on nutrient turnover rate even at their high densities, which are frequently observed in heavily polluted sites. PMID:27288287

  10. Shelters of leaf-tying herbivores decompose faster than leaves damaged by free-living insects: Implications for nutrient turnover in polluted habitats.

    PubMed

    Kozlov, Mikhail V; Zverev, Vitali; Zvereva, Elena L

    2016-10-15

    Leaf-eating insects can influence decomposition processes by modifying quality of leaf litter, and this impact can be especially pronounced in habitats where leaf-eating insects reach high densities, for example in heavily polluted areas. We hypothesized that the decomposition rate is faster for shelters of leaf-tying larvae than for leaves damaged by free-living insects, in particular due to the accumulation of larval frass within shelters. We exposed litter bags containing samples of three different compositions (shelters built by moth larvae, leaves damaged by free-living insects and intact leaves of mountain birch, Betula pubescens ssp. czerepanovii) for one year at two heavily polluted sites near the nickel-copper smelter at Monchegorsk in north-western Russia and at two unpolluted sites. The decomposition rate of leaves damaged by free-living insects was 91% of that of undamaged leaves, whereas the mass loss of leaves composing shelters did not differ of that of undamaged leaves. These differences between leaves damaged by different guilds of herbivorous insects were uniform across the study sites, although the decomposition rate in polluted sites was reduced to 77% of that in unpolluted sites. Addition of larval frass to undamaged leaves had no effect on the subsequent decomposition rate. Therefore we suggest that damaged leaves tied by shelter-building larvae decompose faster than untied damaged leaves due to a looser physical structure of the litter, which creates favourable conditions for detritivores and soil decomposers. Thus, while leaf damage by insects per se reduces litter quality and its decomposition rate, structuring of litter by leaf-tying insects counterbalances these negative effects. We conclude that leaf-tying larvae, in contrast to free-living defoliators, do not impose negative effects on nutrient turnover rate even at their high densities, which are frequently observed in heavily polluted sites.

  11. Distributional shifts in size structure of phytoplankton community

    NASA Astrophysics Data System (ADS)

    Waga, H.; Hirawake, T.; Fujiwara, A.; Nishino, S.; Kikuchi, T.; Suzuki, K.; Takao, S.

    2015-12-01

    Increased understanding on how marine species shift their distribution is required for effective conservation of fishery resources under climate change. Previous studies have often predicted distributional shifts of fish using satellite derived sea surface temperature (SST). However, SST may not fully represent the changes in species distribution through food web structure and as such this remains an open issue due to lack of ecological perspective on energy transfer process in the earlier studies. One of the most important factors in ecosystem is composition of phytoplankton community, and its size structure determines energy flow efficiency from base to higher trophic levels. To elucidate spatiotemporal variation in phytoplankton size structure, chlorophyll-a size distribution (CSD) algorithm was developed using spectral variance of phytoplankton absorption coefficient through principal component analysis. Slope of CSD (CSD slope) indicates size structure of phytoplankton community where, strong and weak magnitudes of CSD slope indicate smaller and larger phytoplankton structure, respectively. Shifts in CSD slope and SST were derived as the ratio of temporal trend over the 12-year period (2003-2014) to 2-dimensional spatial gradient and the resulting global median velocity of CSD slope and SST were 0.361 and 0.733 km year-1, respectively. In addition, the velocity of CSD slope monotonically increases with increasing latitude, while relatively complex latitudinal pattern for SST emerged. Moreover, angle of shifts suggest that species are required to shift their distribution toward not limited to simple pole-ward migration, and some regions exhibit opposite direction between the velocity of CSD slope and SST. These findings further imply that combined phytoplankton size structure and SST may contribute for more accurate prediction of species distribution shifts relative to existing studies which only considering variations in thermal niches.

  12. Ammonium uptake by phytoplankton regulates nitrification in the sunlit ocean.

    PubMed

    Smith, Jason M; Chavez, Francisco P; Francis, Christopher A

    2014-01-01

    Nitrification, the microbial oxidation of ammonium to nitrate, is a central part of the nitrogen cycle. In the ocean's surface layer, the process alters the distribution of inorganic nitrogen species available to phytoplankton and produces nitrous oxide. A widely held idea among oceanographers is that nitrification is inhibited by light in the ocean. However, recent evidence that the primary organisms involved in nitrification, the ammonia-oxidizing archaea (AOA), are present and active throughout the surface ocean has challenged this idea. Here we show, through field experiments coupling molecular genetic and biogeochemical approaches, that competition for ammonium with phytoplankton is the strongest regulator of nitrification in the photic zone. During multiday experiments at high irradiance a single ecotype of AOA remained active in the presence of rapidly growing phytoplankton. Over the course of this three day experiment, variability in the intensity of competition with phytoplankton caused nitrification rates to decline from those typical of the lower photic zone (60 nmol L-1 d-1) to those in well-lit layers (<1 nmol L-1 d-1). During another set of experiments, nitrification rates exhibited a diel periodicity throughout much of the photic zone, with the highest rates occurring at night when competition with phytoplankton is lowest. Together, the results of our experiments indicate that nitrification rates in the photic zone are more strongly regulated by competition with phytoplankton for ammonium than they are by light itself. This finding advances our ability to model the impact of nitrification on estimates of new primary production, and emphasizes the need to more strongly consider the effects of organismal interactions on nutrient standing stocks and biogeochemical cycling in the surface of the ocean.

  13. Macromolecular compositions of phytoplankton in the Amundsen Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Bo Kyung; Lee, Jang Han; Joo, HuiTae; Song, Ho Jung; Yang, Eun Jin; Lee, Sang Hoon; Lee, Sang H.

    2016-01-01

    The biochemical compositions (proteins, carbohydrates, and lipids) of phytoplankton provide useful information for their environmental growth conditions and nutritional status as a basic food source for upper trophic consumers. Concentrations of these compositions were assessed at 100, 30, and 1% light penetration depths within the euphotic zone in the Amundsen Sea, Antarctica, using colorimetric techniques. The major inorganic nutrients were generally abundant throughout the study area. The average chlorophyll a (chl-a) concentration was 49.2 mg m-2 (S.D.=±27.6 mg m-2) and large phytoplankton (>20 μm) accounted for 64.1% of the total chl-a concentration. The biochemical compositions of the phytoplankton were not significantly different among different light depths or productivity stations. The overall compositions of proteins, carbohydrates, and lipids from all stations averaged 65.9% (S.D.=±12.5%), 22.4% (S.D.=±10.9%), and 11.7% (S.D.=±6.5%), respectively. Regardless of dominant phytoplankton species, nitrogen-abundant conditions sustained high protein compositions of phytoplankton in the Amundsen Sea during the cruise period. Based on the macromolecular compositions, the average food material (FM) concentration was 219.4 μg L-1 (S.D.=±151.1 μg L-1) and correlated positively with the primary productivity in the Amundsen Sea. High protein/carbohydrate ratios (>1) and large proportions of proteins suggest that phytoplankton provide nitrogen-sufficient foods to higher trophic consumers through a higher efficiency of protein carbon incorporated into herbivores.

  14. Seasonal dynamics of phytoplankton community in a tropical wetland.

    PubMed

    Bhat, Najeeb Ahmad; Wanganeo, Ashwani; Raina, Rajni

    2015-01-01

    Phytoplankton species composition and seasonal changes were investigated in the Bhoj wetland Bhopal. Taxonomic composition, diversity, and abundance of phytoplankton were studied at nine stations from March 2008 to February 2010, in relation to various physico-chemical factors. Total phytoplankton species composition in the Bhoj wetland was represented by 360 species. Among phytoplankton, diversity belonged to seven groups. Chlorophyceae was the dominant group (48%) followed by Bacillariophyceae (26%), Cyanophyceae (15%), and Euglenophyceae (9%), while Pyrophyceae, Chrysophyceae, and Xanthophyceae contributed 2% of the population. Phytoplankton on the basis of seasonal studies recorded 1651 units l(-1) during summer season which was contributed mainly by Chlorophyceae (39.3%), with Spirogyra sp. (14.2%) and Closteriopsis sp. (9.1%) contributing maximum to the total group in the first year, while during the second year of summer period, a total of 2095 units l(-1) was recorded which was contributed mainly by group Pyrophyceae (51%) with the main dominant species represented by Ceratium hirundinella (98.46%). The highest Shannon-Wiener diversity index (H') value (4.27) was recorded. Simpson values are approaching 1, signifying that sites have high relative diversity due to its supporting surrounding components. The trend of variation in evenness values was more or less the same as Shannon diversity index. Thus, the highest diversity indices recoded at all the stations in the present study justify the diverse nature of species inhabiting the different ecological niches in the ecosystem. The very high phosphate and nitrate concentrations in the wetland are indicators of pollution which may be due to the discharge of agricultural and sewage wastes enriched with nutrients as well as the human activities there. Our recommendation is to avoid as far as possible the discharge of sewage and agriculture wastes into the Bhoj wetland. The effects of various physicochemical

  15. Physiological Ecology of Dimethylsulfoniopropionate (DMSP) and Dimethylsulfide (DMS) Production by Phytoplankton

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The main objectives of the previously funded work were: (1) to determine the rates of DMSP and DMS production as a function of phytoplankton growth rate; (2) to determine the light dependence (quantity and quality) of DiMethylSulfonioPropionate (DMSP) and DiMethylSulfide (DMS) production by phytoplankton; and (3) to study intraspecific differences in DMSP and DMS production by phytoplankton.

  16. Multiwavelength LIDAR for remote sensing of chlorophyll A in algae and phytoplankton

    NASA Technical Reports Server (NTRS)

    Mumola, P. B.; Jarrett, O., Jr.; Brown, C. A., Jr.

    1975-01-01

    A theoretical and experimental analysis of laser induced fluorescence for remote detection of chlorophyll A in living algae and phytoplankton is presented. The fluorescent properties of various species of algae representative of the different color groups are described. Laboratory measurements of fluorescent scattering cross sections is discussed and quantitive data presented. A scattering matrix model is developed to demonstrate the essential requirement of multiwavelength laser excitation in order to make accurate quantitative measurements of chlorophyll A concentration when more than one color group of algae is present in the water. A practical airborne laser fluorosensor design is considered and analysis of field data discussed. Successful operation of the Langley ALOPE (airborne LIDAR oceanographic probing experiment) system is described and field measurements presented. Accurate knowledge of alpha, the optical attenuation coefficient of the water, is shown to be essential for quantitative analysis of chlorophyll A concentration. The feasibility of remotely measuring alpha by laser radar is discussed.

  17. Beyond symptom management: Family relations, unmet needs of persons living with severe mental illnesses, and potential implications for social work in South Africa.

    PubMed

    Tomita, Andrew; Burns, Jonathan K; King, Howard; Baumgartner, Joy Noel; Davis, Glen P; Mtshemla, Sisanda; Nene, Siphumelele; Susser, Ezra

    2016-01-01

    This study examined the quality of family relationships and its associations with the severity of unmet needs of individuals admitted to a tertiary psychiatric hospital in South Africa. The quality of family relations and perceived unmet needs were assessed using the Lehman Quality of Life Interview and Camberwell Assessment of Needs, respectively. The results show that higher total unmet needs were associated with lower quality of family relations. The main areas of serious unmet needs included accessing government benefits and information, and establishing social relations. The results have implications for hospital-based social workers beyond managing psychiatric symptoms in South Africa.

  18. Automated, in-water determination of colored dissolved organic material and phytoplankton community structure using the optical phytoplankton discriminator

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Gary J.; Millie, David F.; Moline, Mark A.; Lohrenz, Steven E.; Schofield, Oscar M.

    2011-06-01

    Optical Phytoplankton Discriminator (OPD, a.k.a. BreveBuster) determines colored dissolved organic material (CDOM) absorption spectra and particulate light absorbance spectra. The CDOM absorption spectra and correlation coefficients (referred to as 'similarity indexes') between the particulate absorbance spectra and known phytoplankton classes are available in real-time. Post-deployment processing calculates the best fit of multiple absorbance spectra from known phytoplankton taxonomic classes. Through this process the OPD provides an estimate of the phytoplankton community chlorophyll distribution among the classes included in the fit process. The major components of the OPD include: a liquid-waveguide capillary cell (LWCC), a fiber-optic spectrometer, a tungsten-deuterium fiber-optic light and a 0.2 micrometer pore cross-flow filter. In-water operation of the OPD began in May 2003. Since that date 25 of these instruments have been deployed on a variety of autonomous underwater vehicles, buoys, piers, channel markers and boats and ships. It has been utilized in CDOM studies off the New Jersey coast, in HAB monitoring efforts in the Gulf of Mexico and the Great Lakes, and in phytoplankton community structure studies in the Galapagos Islands and the Mediterranean Sea. Most recently, it has been deployed to Veracruz, Mexico for HAB monitoring. Presently, several OPD's operating on Slocum gliders and coastal buoys make up a local HAB observatory south of Tampa Bay, Florida, partially supported by the NOAA/IOOS through GCOOS. This presentation will detail the OPD's capabilities and report results from several of the deployments listed above. The ongoing effort to effectively visualize 4-D phytoplankton community structure will be discussed.

  19. 182Hf–182W age dating of a 26Al-poor inclusion and implications for the origin of short-lived radioisotopes in the early Solar System

    PubMed Central

    Holst, Jesper C.; Olsen, Mia B.; Paton, Chad; Nagashima, Kazuhide; Schiller, Martin; Wielandt, Daniel; Larsen, Kirsten K.; Connelly, James N.; Jørgensen, Jes K.; Krot, Alexander N.; Nordlund, Åke; Bizzarro, Martin

    2013-01-01

    Refractory inclusions [calcium–aluminum-rich inclusions, (CAIs)] represent the oldest Solar System solids and provide information regarding the formation of the Sun and its protoplanetary disk. CAIs contain evidence of now extinct short-lived radioisotopes (e.g., 26Al, 41Ca, and 182Hf) synthesized in one or multiple stars and added to the protosolar molecular cloud before or during its collapse. Understanding how and when short-lived radioisotopes were added to the Solar System is necessary to assess their validity as chronometers and constrain the birthplace of the Sun. Whereas most CAIs formed with the canonical abundance of 26Al corresponding to 26Al/27Al of ∼5 × 10−5, rare CAIs with fractionation and unidentified nuclear isotope effects (FUN CAIs) record nucleosynthetic isotopic heterogeneity and 26Al/27Al of <5 × 10−6, possibly reflecting their formation before canonical CAIs. Thus, FUN CAIs may provide a unique window into the earliest Solar System, including the origin of short-lived radioisotopes. However, their chronology is unknown. Using the 182Hf–182W chronometer, we show that a FUN CAI recording a condensation origin from a solar gas formed coevally with canonical CAIs, but with 26Al/27Al of ∼3 × 10−6. The decoupling between 182Hf and 26Al requires distinct stellar origins: steady-state galactic stellar nucleosynthesis for 182Hf and late-stage contamination of the protosolar molecular cloud by a massive star(s) for 26Al. Admixing of stellar-derived 26Al to the protoplanetary disk occurred during the epoch of CAI formation and, therefore, the 26Al–26Mg systematics of CAIs cannot be used to define their formation interval. In contrast, our results support 182Hf homogeneity and chronological significance of the 182Hf–182W clock. PMID:23671077

  20. 182Hf-182W age dating of a 26Al-poor inclusion and implications for the origin of short-lived radioisotopes in the early Solar System.

    PubMed

    Holst, Jesper C; Olsen, Mia B; Paton, Chad; Nagashima, Kazuhide; Schiller, Martin; Wielandt, Daniel; Larsen, Kirsten K; Connelly, James N; Jørgensen, Jes K; Krot, Alexander N; Nordlund, Ake; Bizzarro, Martin

    2013-05-28

    Refractory inclusions [calcium-aluminum-rich inclusions, (CAIs)] represent the oldest Solar System solids and provide information regarding the formation of the Sun and its protoplanetary disk. CAIs contain evidence of now extinct short-lived radioisotopes (e.g., (26)Al, (41)Ca, and (182)Hf) synthesized in one or multiple stars and added to the protosolar molecular cloud before or during its collapse. Understanding how and when short-lived radioisotopes were added to the Solar System is necessary to assess their validity as chronometers and constrain the birthplace of the Sun. Whereas most CAIs formed with the canonical abundance of (26)Al corresponding to (26)Al/(27)Al of ∼5 × 10(-5), rare CAIs with fractionation and unidentified nuclear isotope effects (FUN CAIs) record nucleosynthetic isotopic heterogeneity and (26)Al/(27)Al of <5 × 10(-6), possibly reflecting their formation before canonical CAIs. Thus, FUN CAIs may provide a unique window into the earliest Solar System, including the origin of short-lived radioisotopes. However, their chronology is unknown. Using the (182)Hf-(182)W chronometer, we show that a FUN CAI recording a condensation origin from a solar gas formed coevally with canonical CAIs, but with (26)Al/(27)Al of ∼3 × 10(-6). The decoupling between (182)Hf and (26)Al requires distinct stellar origins: steady-state galactic stellar nucleosynthesis for (182)Hf and late-stage contamination of the protosolar molecular cloud by a massive star(s) for (26)Al. Admixing of stellar-derived (26)Al to the protoplanetary disk occurred during the epoch of CAI formation and, therefore, the (26)Al-(26)Mg systematics of CAIs cannot be used to define their formation interval. In contrast, our results support (182)Hf homogeneity and chronological significance of the (182)Hf-(182)W clock. PMID:23671077

  1. 182Hf-182W age dating of a 26Al-poor inclusion and implications for the origin of short-lived radioisotopes in the early Solar System.

    PubMed

    Holst, Jesper C; Olsen, Mia B; Paton, Chad; Nagashima, Kazuhide; Schiller, Martin; Wielandt, Daniel; Larsen, Kirsten K; Connelly, James N; Jørgensen, Jes K; Krot, Alexander N; Nordlund, Ake; Bizzarro, Martin

    2013-05-28

    Refractory inclusions [calcium-aluminum-rich inclusions, (CAIs)] represent the oldest Solar System solids and provide information regarding the formation of the Sun and its protoplanetary disk. CAIs contain evidence of now extinct short-lived radioisotopes (e.g., (26)Al, (41)Ca, and (182)Hf) synthesized in one or multiple stars and added to the protosolar molecular cloud before or during its collapse. Understanding how and when short-lived radioisotopes were added to the Solar System is necessary to assess their validity as chronometers and constrain the birthplace of the Sun. Whereas most CAIs formed with the canonical abundance of (26)Al corresponding to (26)Al/(27)Al of ∼5 × 10(-5), rare CAIs with fractionation and unidentified nuclear isotope effects (FUN CAIs) record nucleosynthetic isotopic heterogeneity and (26)Al/(27)Al of <5 × 10(-6), possibly reflecting their formation before canonical CAIs. Thus, FUN CAIs may provide a unique window into the earliest Solar System, including the origin of short-lived radioisotopes. However, their chronology is unknown. Using the (182)Hf-(182)W chronometer, we show that a FUN CAI recording a condensation origin from a solar gas formed coevally with canonical CAIs, but with (26)Al/(27)Al of ∼3 × 10(-6). The decoupling between (182)Hf and (26)Al requires distinct stellar origins: steady-state galactic stellar nucleosynthesis for (182)Hf and late-stage contamination of the protosolar molecular cloud by a massive star(s) for (26)Al. Admixing of stellar-derived (26)Al to the protoplanetary disk occurred during the epoch of CAI formation and, therefore, the (26)Al-(26)Mg systematics of CAIs cannot be used to define their formation interval. In contrast, our results support (182)Hf homogeneity and chronological significance of the (182)Hf-(182)W clock.

  2. Remote-sensing-based measurement of phytoplankton size spectrum and cell diameter in the global oceans

    NASA Astrophysics Data System (ADS)

    Roy, S.; Sathyendranath, S.; Bouman, H. A.; Platt, T.

    2012-12-01

    Oceanic phytoplankton regulate the spectral quality of the submarine light field because light absorption by phytoplankton is spectrally structured, with a maximum in the blue and a secondary maximum in the red. The spectral characteristics of absorption are variable with phytoplankton taxa, and also with cell size and growth conditions. The intra-cellular concentration of light-absorbing pigments varies with phytoplankton size, which in turn modulates its specific absorption. The changes in phytoplankton cell size alter not only the bio-optical properties of the water column, but also the trophic interactions within the ecosystem. It is thus important to study the time evolution of phytoplankton size structure over the global ocean. We have developed a novel model that uses the light absorption coefficient of phytoplankton to retrieve quantitative information about phytoplankton size structure from satellite-derived ocean-colour data. The application of the method to satellite remote sensing at any given spatial location depends on the estimates of the concentration of chlorophyll-a, which is an operational index of phytoplankton biomass, and the remote sensing reflectance at different wavelengths in the visible domain. Using our method we have computed the equivalent spherical diameter of phytoplankton cells and the exponent of particle-size spectrum of phytoplankton, and thereby estimated the chlorophyll distribution in different phytoplankton size classes on a global scale. The spatial distribution of the size-spectrum exponent and the biomass fractions of pico-, nano- and micro-phytoplankton estimated are consistent with our current understanding of phytoplankton functional types in the global oceans. The study will enhance our understanding of the distribution and time evolution of phytoplankton size structure in the global oceans.

  3. Climatic influences on development and survival of free-living stages of equine strongyles: implications for worm control strategies and managing anthelmintic resistance.

    PubMed

    Nielsen, Martin K; Kaplan, Ray M; Thamsborg, Stig M; Monrad, Jesper; Olsen, Susanne N

    2007-07-01

    Development of resistance to anthelmintic drugs by horse strongyles constitutes a growing threat to equine health because it is unknown when new drug classes can be expected on the market. Consequently, parasite control strategies should attempt to maintain drug efficacy for as long as possible. The proportion of a parasite population that is not exposed to anthelmintic treatment is described as being "in refugia" and although many factors affect the rate at which resistance develops, levels of refugia are considered the most important as these parasites are not selected by treatment and so provide a pool of sensitive genes in the population. Accordingly, treatment should be avoided when pasture refugia are small because such treatments will place significant selection pressure for resistance on worm populations. Given this new paradigm for parasite control, it has become important to identify seasons and circumstances wherein refugia are diminished. Free-living stages of equine strongyles are highly dependent on climatic influences, and this review summarises studies of strongyle development and survival under laboratory and field conditions in Northern (cool) temperate, Southern (warm) temperate and subtropical/tropical climates. In Northern temperate climates, refugia are smallest during the winter. In contrast, refugia are lowest during the summer in warm temperate and subtropical/tropical climates. Although adverse seasonal changes clearly have significant effects on the ability of free living stages of strongyle nematode parasites to survive and develop, available data suggest that climatic influences cannot effectively "clean" pastures from one grazing season to the next. PMID:16815051

  4. A systematic review of factors influencing fertility desires and intentions among people living with HIV/AIDS: implications for policy and service delivery.

    PubMed

    Nattabi, Barbara; Li, Jianghong; Thompson, Sandra C; Orach, Christopher Garimoi; Earnest, Jaya

    2009-10-01

    With availability of antiretroviral treatments, HIV is increasingly recognised as a chronic disease people live with for many years. This paper critically reviews the current literature on fertility desires and reproductive intentions among people living with HIV/AIDS (PLHIV) and critiques the theoretical frameworks and methodologies used. A systematic review was conducted using electronic databases: ISI Web of Knowledge, Science Direct, Proquest, Jstor and CINAHL for articles published between 1990 and 2008. The search terms used were fertility desire, pregnancy, HIV, reproductive decision making, reproductive intentions, motherhood, fatherhood and parenthood. Twenty-nine studies were reviewed. Fertility desires were influenced by a myriad of demographic, health, stigma-associated and psychosocial factors. Cultural factors were also important, particularly in Sub-Saharan Africa and Asia. Future research that examines fertility desires among PLHIV should include cultural beliefs and practices in the theoretical framework in order to provide a holistic understanding and to enable development of services that meet the reproductive needs of PLHIV. PMID:19330443

  5. A systematic review of factors influencing fertility desires and intentions among people living with HIV/AIDS: implications for policy and service delivery.

    PubMed

    Nattabi, Barbara; Li, Jianghong; Thompson, Sandra C; Orach, Christopher Garimoi; Earnest, Jaya

    2009-10-01

    With availability of antiretroviral treatments, HIV is increasingly recognised as a chronic disease people live with for many years. This paper critically reviews the current literature on fertility desires and reproductive intentions among people living with HIV/AIDS (PLHIV) and critiques the theoretical frameworks and methodologies used. A systematic review was conducted using electronic databases: ISI Web of Knowledge, Science Direct, Proquest, Jstor and CINAHL for articles published between 1990 and 2008. The search terms used were fertility desire, pregnancy, HIV, reproductive decision making, reproductive intentions, motherhood, fatherhood and parenthood. Twenty-nine studies were reviewed. Fertility desires were influenced by a myriad of demographic, health, stigma-associated and psychosocial factors. Cultural factors were also important, particularly in Sub-Saharan Africa and Asia. Future research that examines fertility desires among PLHIV should include cultural beliefs and practices in the theoretical framework in order to provide a holistic understanding and to enable development of services that meet the reproductive needs of PLHIV.

  6. Assisted Living

    MedlinePlus

    ... it, too. Back to top What is the Cost for Assisted Living? Although assisted living costs less than nursing home care, it is still ... of services an older person chooses, the price costs can range from less than $25,000 a ...

  7. Phytoplankton community composition in nearshore coastal waters of Louisiana

    EPA Science Inventory

    Phytoplankton community compositions within near-shore coastal and estuarine waters of Louisiana were characterized by relative abundance, biovolume, and taxonomic identification to genus and species when possible. The range of total nitrogen was 0.5 to 1.3 mg L-1 and total phos...

  8. Observations and Models of Highly Intermittent Phytoplankton Distributions

    PubMed Central

    Mandal, Sandip; Locke, Christopher; Tanaka, Mamoru; Yamazaki, Hidekatsu

    2014-01-01

    The measurement of phytoplankton distributions in ocean ecosystems provides the basis for elucidating the influences of physical processes on plankton dynamics. Technological advances allow for measurement of phytoplankton data to greater resolution, displaying high spatial variability. In conventional mathematical models, the mean value of the measured variable is approximated to compare with the model output, which may misinterpret the reality of planktonic ecosystems, especially at the microscale level. To consider intermittency of variables, in this work, a new modelling approach to the planktonic ecosystem is applied, called the closure approach. Using this approach for a simple nutrient-phytoplankton model, we have shown how consideration of the fluctuating parts of model variables can affect system dynamics. Also, we have found a critical value of variance of overall fluctuating terms below which the conventional non-closure model and the mean value from the closure model exhibit the same result. This analysis gives an idea about the importance of the fluctuating parts of model variables and about when to use the closure approach. Comparisons of plot of mean versus standard deviation of phytoplankton at different depths, obtained using this new approach with real observations, give this approach good conformity. PMID:24787740

  9. High protein production of phytoplankton in the Amundsen Sea

    NASA Astrophysics Data System (ADS)

    Jung Song, Ho; Jung Kang, Jae; Kyung Kim, Bo; Joo, HuiTae; Jin Yang, Eun; Park, Jisoo; Hoon Lee, Sang; Heon Lee, Sang

    2016-01-01

    The Amundsen Sea polynya is one of the largest and most productive polynyas in the Southern Ocean and has recently experienced a rapid change in sea ice coverage. However, very little is known about current physiological status of phytoplankton and its quality as food for pelagic herbivores and consequently higher trophic levels in the Amundsen Sea. Using a 13C isotope tracer technique, macromolecular production measurements of phytoplankton at eleven stations were conducted at three light depths (100, 30, and 1%) onboard R/V ARAON in the Amundsen Sea, 2012. The concentrations of major inorganic nutrients were replete at all the productivity stations and no substantial difference in macromolecular production was found between polynya and non-polynya regions. Distinct vertical trends were not observed in low-molecular-weight metabolites (LMWM) and polysaccharide productions, but weak vertical patterns in lipid and protein productions were found during our cruise period. The vertical patterns of lipids slightly increased with depth whereas decreased for protein synthesis in this study, and these vertical trends were not consistent with the results reported previously in the Arctic Ocean. Overall, phytoplankton allocated more photosynthetic carbon into proteins (60.0%) than other macromolecules in the Amundsen Sea, which is markedly higher than those reported previously in the Antarctic Ocean, ranging from 7 to 23%. The high protein synthesis appears to be sustained by high concentrations of major nutrients, which might be a strong factor for general patterns of macromolecular productions of phytoplankton in polar oceans, even under potential iron limitation.

  10. Lake Superior Phytoplankton Characterization from the 2006 Probability Based Survey

    EPA Science Inventory

    We conducted a late summer probability based survey of Lake Superior in 2006 which consisted of 52 sites stratified across 3 depth zones. As part of this effort, we collected composite phytoplankton samples from the epilimnion and the fluorescence maxima (Fmax) at 29 of the site...

  11. Coherent assembly of phytoplankton communities in diverse temperate ocean ecosystems.

    PubMed

    Li, William K W; Harrison, W Glen; Head, Erica J H

    2006-08-01

    The annual cycle of phytoplankton cell abundance is coherent across diverse ecosystems in the temperate North Atlantic Ocean. In Bedford Basin, on the Scotian Shelf and in the Labrador Sea, the numerical abundance of phytoplankton is low in spring and high in autumn, thus in phase with the temperature cycle. Temperature aligns abundance on a common basis, effectively adjusting apparent cell discrepancies in waters that are colder or warmer than the regional norm. As an example of holistic simplicity arising from underlying complexity, the variance in a community variable (total abundance) is explained by a single predictor (temperature) to the extent of 75% in the marginal seas. In the estuarine basin, weekly averages of phytoplankton and temperature computed from a 13 year time-series yield a predictive relationship with 91% explained variance. Temperature-directed assembly of individual phytoplankton cells to form communities is statistically robust, consistent with observed biomass changes, amenable to theoretical analysis, and a sentinel for long-term change. Since cell abundance is a community property in the same units for all marine microbes at any trophic level and at any phylogenetic position, it promises to integrate biological oceanography into general ecology and evolution.

  12. Copper aerosols inhibit phytoplankton growth in the Mediterranean Sea

    PubMed Central

    Jordi, Antoni; Basterretxea, Gotzon; Tovar-Sánchez, Antonio; Alastuey, Andrés; Querol, Xavier

    2012-01-01

    Aerosol deposition plays an important role in climate and biogeochemical cycles by supplying nutrients to the open ocean, in turn stimulating ocean productivity and carbon sequestration. Aerosol particles also contain elements such as copper (Cu) that are essential in trace amounts for phytoplankton physiology but that can be toxic at high concentrations. Although the toxicity of Cu associated with aerosols has been demonstrated in bioassay experiments, extrapolation of these laboratory results to natural conditions is not straightforward. This study provides observational evidence of the negative effect of aerosols containing high Cu concentrations on marine phytoplankton over a vast region of the western Mediterranean Sea. Direct aerosol measurements were combined with satellite observations, resulting in the detection of significant declines in phytoplankton biomass after atmospheric aerosol events characterized by high Cu concentrations. The declines were more evident during summer, when nanoflagellates predominate in the phytoplankton population and stratification and oligotrophic conditions prevail in the study region. Together with previous findings concerning atmospheric Cu deposition, these results demonstrate that the toxicity of Cu-rich aerosols can involve large areas of the world’s oceans. Moreover, they highlight the present vulnerability of oceanic ecosystems to Cu-rich aerosols of anthropogenic origins. Because anthropogenic emissions are increasing, large-scale negative effects on marine ecosystems can be anticipated. PMID:23236141

  13. A turbulence-induced switch in phytoplankton swimming behavior

    NASA Astrophysics Data System (ADS)

    Carrara, Francesco; Sengupta, Anupam; Stocker, Roman

    2015-11-01

    Phytoplankton, unicellular photosynthetic organisms that form the basis of life in aquatic environments, are frequently exposed to turbulence, which has long been known to affect phytoplankton fitness and species succession. Yet, mechanisms by which phytoplankton may adapt to turbulence have remained unknown. Here we present a striking behavioral response of a motile species - the red-tide-producing raphidophyte Heterosigma akashiwo - to hydrodynamic cues mimicking those experienced in ocean turbulence. In the absence of turbulence, H. akashiwo exhibits preferential upwards swimming (`negative gravitaxis'), observable as a strong accumulation of cells at the top of an experimental container. When cells were exposed to overturning in an automated chamber - representing a minimum experimental model of rotation by Kolmogorov-scale turbulent eddies - the population robustly split in two nearly equi-abundant subpopulations, one swimming upward and one swimming downward. Microscopic observations at the single-cell level showed that the behavioral switch was accompanied by a rapid morphological change. A mechanistic model that takes into account cell shape confirms that modulation of morphology can alter the hydrodynamic stress distribution over the cell body, which, in turn, triggers the observed switch in phytoplankton migration direction. This active response to fluid flow, whereby microscale morphological changes influence ocean-scale migration dynamics, could be part of a bet-hedging strategy to maximize the chances of at least a fraction of the population evading high-turbulence microzones.

  14. Light utilization and photoinhibition of photosynthesis in marine phytoplankton

    SciTech Connect

    Falkowski, P.G., Greene, R., Kolber, Z.

    1993-12-31

    Introduction to Phytoplankton. Based on the record of the oldest identifiable fossils, the first oxygenic photosynthetic organisms appeared about 2 {times} l0{sup 9} years ago in the form of marine single celled, planktonic procaryotes (Riding, 1992; Sarmiento and Bender, 1993). In the intervening eons, phytoplankton have evolved and diversified; presently they represent at least 11 classes of procaryotic and euacaryotic photoautotrophs. While the carbon of these organisms cumulatively amounts to only 1 to 2% of the global plant biomass, they fix between 35 and 50 gigatonnes ({times} 10{sup 9} metric tons) of carbon annually, about 40% of the global total (Falkowski and Woodhead, 1992). On average, each gram of phytoplankton chlorophyll converts about 6% of the photosynthetically active radiation (440 to 700 nm) incident on the sea surface to photochemical energy (Morel, 1978). Despite a great deal of variability in ocean environments, this photosynthetic conversion efficiency is relatively constant for integrated water column production (Morel, 1978; Falkowski, 1981; Platt, 1986; Morel, 1991). Here we review the factors determining light utilization efficiency of phytoplankton in the oceans, and the physiological acclimations which have evolved to optimize light utilization efficiency.

  15. Revisiting the Chesapeake Bay phytoplankton index of biotic integrity.

    PubMed

    Johnson, Jacqueline M; Buchanan, Claire

    2014-03-01

    In 2006, a phytoplankton index of biotic integrity (PIBI) was published for Chesapeake Bay Lacouture et al. (Estuaries 29(4):598-616, 2006). The PIBI was developed from data collected during the first 18 years (1985-2002) of the Chesapeake Bay Program long-term phytoplankton and water quality monitoring programs. Combinations of up to nine phytoplankton metrics were selected to characterize bay habitat health according to plankton community condition in spring and summer seasons across four salinity zones. The independent data available at the time for index validation was not sufficient to test the PIBI because they lacked critical index parameters (pheophytin and dissolved organic carbon) and reference samples for some seasons and salinity zones. An additional 8 years of monitoring data (2003-2010) are now available to validate the original index, reassess index performance and re-examine long-term trends in PIBI conditions in the Bay. The PIBI remains sensitive to changes in nutrient and light conditions. Evaluation of the PIBI results over the entire 1985-2010 time period shows no discernible trends in the overall health of Bay habitat based on phytoplankton community conditions. This lack of overall PIBI trend appears to be a combined response to declines in water clarity and improvements in dissolved inorganic nitrogen and dissolved phosphorus conditions in the bay.

  16. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Quigg, Antonietta; Finkel, Zoe V.; Irwin, Andrew J.; Rosenthal, Yair; Ho, Tung-Yuan; Reinfelder, John R.; Schofield, Oscar; Morel, Francois M. M.; Falkowski, Paul G.

    2003-09-01

    Phytoplankton is a nineteenth century ecological construct for a biologically diverse group of pelagic photoautotrophs that share common metabolic functions but not evolutionary histories. In contrast to terrestrial plants, a major schism occurred in the evolution of the eukaryotic phytoplankton that gave rise to two major plastid superfamilies. The green superfamily appropriated chlorophyll b, whereas the red superfamily uses chlorophyll c as an accessory photosynthetic pigment. Fossil evidence suggests that the green superfamily dominated Palaeozoic oceans. However, after the end-Permian extinction, members of the red superfamily rose to ecological prominence. The processes responsible for this shift are obscure. Here we present an analysis of major nutrients and trace elements in 15 species of marine phytoplankton from the two superfamilies. Our results indicate that there are systematic phylogenetic differences in the two plastid types where macronutrient (carbon:nitrogen:phosphorus) stoichiometries primarily reflect ancestral pre-symbiotic host cell phenotypes, but trace element composition reflects differences in the acquired plastids. The compositional differences between the two plastid superfamilies suggest that changes in ocean redox state strongly influenced the evolution and selection of eukaryotic phytoplankton since the Proterozoic era.

  17. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton.

    PubMed

    Quigg, Antonietta; Finkel, Zoe V; Irwin, Andrew J; Rosenthal, Yair; Ho, Tung-Yuan; Reinfelder, John R; Schofield, Oscar; Morel, Francois M M; Falkowski, Paul G

    2003-09-18

    Phytoplankton is a nineteenth century ecological construct for a biologically diverse group of pelagic photoautotrophs that share common metabolic functions but not evolutionary histories. In contrast to terrestrial plants, a major schism occurred in the evolution of the eukaryotic phytoplankton that gave rise to two major plastid superfamilies. The green superfamily appropriated chlorophyll b, whereas the red superfamily uses chlorophyll c as an accessory photosynthetic pigment. Fossil evidence suggests that the green superfamily dominated Palaeozoic oceans. However, after the end-Permian extinction, members of the red superfamily rose to ecological prominence. The processes responsible for this shift are obscure. Here we present an analysis of major nutrients and trace elements in 15 species of marine phytoplankton from the two superfamilies. Our results indicate that there are systematic phylogenetic differences in the two plastid types where macronutrient (carbon:nitrogen:phosphorus) stoichiometries primarily reflect ancestral pre-symbiotic host cell phenotypes, but trace element composition reflects differences in the acquired plastids. The compositional differences between the two plastid superfamilies suggest that changes in ocean redox state strongly influenced the evolution and selection of eukaryotic phytoplankton since the Proterozoic era. PMID:13679916

  18. Ocean Biogeochemistry and Phytoplankton Ecology in a Global Simulation

    NASA Astrophysics Data System (ADS)

    Moore, J. K.; Doney, S. C.; Lindsay, K.

    2005-05-01

    A coupled Biogeochemistry/Ecosystem/Circulation (BEC) model is used to examine ocean biogeochemistry and phytoplankton ecology at the global scale. Phytoplankton groups represented in the model include diatoms, diazotrophs, coccolithophores and picoplankton. The groups experience differential grazing pressure and compete for light and the potentially growth-limiting nutrients iron, nitrate, ammonium, phosphate, and silicate. The model includes several key aspects of the global nitrogen cycle including nitrogen fixation (by the diazotrophs), water column denitrification under low oxygen conditions, and atmospheric nitrogen deposition to the oceans. We examine how these nitrogen fluxes influence ecosystem structure and also how light and nutrient availability restrict phytoplankton growth rates over seasonal timescales. Atmospheric deposition of mineral dust also inputs dissolved iron to the ocean model. These iron additions modify phytoplankton community composition, and rates of production and export in the iron-limited High Nitrate, Low Chlorophyll regions, and indirectly modify ecosystem dynamics by altering rates of nitrogen fixation in nitrogen-depleted, tropical and subtropical regions. We will examine the links between dust/iron deposition and nitrogen cycling in the oceans.

  19. The Molecular Ecophysiology of Programmed Cell Death in Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Bidle, Kay D.

    2015-01-01

    Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.

  20. Effects of UV radiation on phytoplankton

    NASA Astrophysics Data System (ADS)

    Smith, Raymond C.; Cullen, John J.

    1995-07-01

    et al., 1986; Worrest, 1986; NOAA, 1987; Smith, 1989; Smith and Baker, 1989; Voytek, 1990; Häder, 1993; Acevedo and Nolan, 1993; Holm-Hansen et al., 1993; Vincent and Roy, 1993; Biggs and Joyner, 1994; Williamson and Zagarese, 1994; Karentz, 1994; Cullen and Neale, 1993; Cullen and Neale, 1994]. As Hader et al. have summarized [UNEP, 1989; UNEP, 1991], "UV-B radiation in aquatic systems: 1) affects adaptive strategies (e.g., motility, orientation); 2) impairs important physiological functions (e.g., photosynthesis and enzymatic reactions); and 3) threatens marine organisms during their developmental stages (e.g., the young of finfish, shrimp larvae, crab larvae)". Possible consequences to aquatic systems include: reduced biomass production; changes in species composition and biodiversity; and alterations of aquatic ecosystems and biogeochemical cycles associated with the above changes. Within the past four years, our knowledge with respect to the environmental effects of ozone-related increased levels of UV-B has increased significantly, and numerous efforts have been directed toward process-oriented studies of UV responses in plants and animals. Consensus is building toward the view that current levels of UV play a major role as an ecological determinant, influencing both survival and distribution, and are thus deserving of increased study independent of ozone-related UV-B increases. This review outlines U.S. research subsequent to 1991 and emphasizes studies concerned with phytoplankton.

  1. Live bird markets characterization and trading network analysis in Mali: Implications for the surveillance and control of avian influenza and Newcastle disease.

    PubMed

    Molia, Sophie; Boly, Ismaël Ardho; Duboz, Raphaël; Coulibaly, Boubacar; Guitian, Javier; Grosbois, Vladimir; Fournié, Guillaume; Pfeiffer, Dirk Udo

    2016-03-01

    Live bird markets (LBMs) play an important role in the transmission of avian influenza (AI) and Newcastle disease (ND) viruses in poultry. Our study had two objectives: (1) characterizing LBMs in Mali with a focus on practices influencing the risk of transmission of AI and ND, and (2) identifying which LBMs should be targeted for surveillance and control based on properties of the live poultry trade network. Two surveys were conducted in 2009-2010: a descriptive study in all 96 LBMs of an area encompassing approximately 98% of the Malian poultry population and a network analysis study in Sikasso county, the main poultry supplying county for the capital city Bamako. Regarding LBMs' characteristics, risk factors for the presence of AI and ND viruses (being open every day, more than 2 days before a bird is sold, absence of zoning to segregate poultry-related work flow areas, waste removal or cleaning and disinfecting less frequently than on a daily basis, trash disposal of dead birds and absence of manure processing) were present in 80-100% of the LBMs. Furthermore, LBMs tended to have wide catchment areas because of consumers' preference for village poultry meat, thereby involving a large number of villages in their supply chain. In the poultry trade network from/to Sikasso county, 182 traders were involved and 685 links were recorded among 159 locations. The network had a heterogeneous degree distribution and four hubs were identified based on measures of in-degrees, out-degrees and betweenness: the markets of Medine and Wayerma and the fairs of Farakala and Niena. These results can be used to design biosecurity-improvement interventions and to optimize the prevention, surveillance and control of transmissible poultry diseases in Malian LBMs. Further studies should investigate potential drivers (seasonality, prices) of the poultry trade network and the acceptability of biosecurity and behavior-change recommendations in the Malian socio-cultural context. PMID

  2. Demographic and genetic status of an isolated population of bog turtles (Glyptemys muhlenbergii): Implications for managing small populations of long-lived animals

    USGS Publications Warehouse

    Pittman, Shannon E.; King, T.L.; Faurby, S.; Dorcas, M.E.

    2011-01-01

    In this study, we sought to determine the population stability and genetic diversity of one isolated population of the federally-threatened bog turtle (Glyptemys muhlenbergii) in North Carolina. Using capture-recapture data, we estimated adult survival and population growth rate from 1992 to 2007. We found that the population decreased from an estimated 36 adult turtles in 1994 to approximately 11 adult turtles in 2007. We found a constant adult survival of 0. 893 (SE = 0. 018, 95% confidence interval, 0. 853-0. 924) between 1992 and 2007. Using 18 microsatellite markers, we compared the genetic status of this population with five other bog turtle populations. The target population displayed allelic richness (4. 8 ?? 0. 5) and observed heterozygosity (0. 619 ?? 0. 064) within the range of the other bog turtle populations. Coalescent analysis of population growth rate, effective population size, and timing of population structuring event also indicated the genetics of the target population were comparable to the other populations studied. Estimates of effective population size were a proportion of the census size in all populations except the target population, in which the effective population size was larger than the census size (30 turtles vs. 11 turtles). We attribute the high genetic diversity in the target population to the presence of multiple generations of old turtles. This study illustrates that the demographic status of populations of long-lived species may not be reflected genetically if a decline occurred recently. Consequently, the genetic integrity of populations of long-lived animals experiencing rapid demographic bottlenecks may be preserved through conservation efforts effective in addressing demographic problems. ?? 2011 Springer Science+Business Media B.V.

  3. Live bird markets characterization and trading network analysis in Mali: Implications for the surveillance and control of avian influenza and Newcastle disease.

    PubMed

    Molia, Sophie; Boly, Ismaël Ardho; Duboz, Raphaël; Coulibaly, Boubacar; Guitian, Javier; Grosbois, Vladimir; Fournié, Guillaume; Pfeiffer, Dirk Udo

    2016-03-01

    Live bird markets (LBMs) play an important role in the transmission of avian influenza (AI) and Newcastle disease (ND) viruses in poultry. Our study had two objectives: (1) characterizing LBMs in Mali with a focus on practices influencing the risk of transmission of AI and ND, and (2) identifying which LBMs should be targeted for surveillance and control based on properties of the live poultry trade network. Two surveys were conducted in 2009-2010: a descriptive study in all 96 LBMs of an area encompassing approximately 98% of the Malian poultry population and a network analysis study in Sikasso county, the main poultry supplying county for the capital city Bamako. Regarding LBMs' characteristics, risk factors for the presence of AI and ND viruses (being open every day, more than 2 days before a bird is sold, absence of zoning to segregate poultry-related work flow areas, waste removal or cleaning and disinfecting less frequently than on a daily basis, trash disposal of dead birds and absence of manure processing) were present in 80-100% of the LBMs. Furthermore, LBMs tended to have wide catchment areas because of consumers' preference for village poultry meat, thereby involving a large number of villages in their supply chain. In the poultry trade network from/to Sikasso county, 182 traders were involved and 685 links were recorded among 159 locations. The network had a heterogeneous degree distribution and four hubs were identified based on measures of in-degrees, out-degrees and betweenness: the markets of Medine and Wayerma and the fairs of Farakala and Niena. These results can be used to design biosecurity-improvement interventions and to optimize the prevention, surveillance and control of transmissible poultry diseases in Malian LBMs. Further studies should investigate potential drivers (seasonality, prices) of the poultry trade network and the acceptability of biosecurity and behavior-change recommendations in the Malian socio-cultural context.

  4. Regional species pools control community saturation in lake phytoplankton

    PubMed Central

    Ptacnik, Robert; Andersen, Tom; Brettum, Pål; Lepistö, Liisa; Willén, Eva

    2010-01-01

    Recent research has highlighted that positive biodiversity–ecosystem functioning relationships hold for all groups of organisms, including microbes. Yet, we still lack understanding regarding the drivers of microbial diversity, in particular, whether diversity of microbial communities is a matter of local factors, or whether metacommunities are of similar importance to what is known from higher organisms. Here, we explore the driving forces behind spatial variability in lake phytoplankton diversity in Fennoscandia. While phytoplankton biovolume is best predicted by local phosphorus concentrations, phytoplankton diversity (measured as genus richness, G) only showed weak correlations with local concentrations of total phosphorus. By estimating spatial averages of total phosphorus concentrations on various scales from an independent, spatially representative lake survey, we found that close to 70 per cent of the variability in local phytoplankton diversity can be explained by regionally averaged phosphorus concentrations on a scale between 100 and 400 km. Thus, the data strongly indicate the existence of metacommunities on this scale. Furthermore, we show a strong dependency between lake productivity and spatial community turnover. Thus, regional productivity affects beta-diversity by controlling spatial community turnover, resulting in scale-dependent productivity-diversity relationships. As an illustration of the interaction between local and regional processes in shaping microbial diversity, our results offer both empirical support and a plausible mechanism for the existence of common scaling rules in both the macrobial and the microbial worlds. We argue that awareness of regional species pools in phytoplankton and other unicellular organisms may critically improve our understanding of ecosystems and their susceptibility to anthropogenic stressors. PMID:20630887

  5. Modelling the production of dimethylsulfide during a phytoplankton bloom

    NASA Astrophysics Data System (ADS)

    Gabric, Albert; Murray, Nicholas; Stone, Lewi; Kohl, Manfred

    1993-12-01

    Dimethylsulfide (DMS) is an important sulfur-containing atmospheric trace gas of marine biogenic origin. DMS emitted from the oceans may be a precursor of tropospheric aerosols and cloud condensation nuclei (CCN), thereby affecting the Earth's radiative balance and possibly constituting a negative feedback to global warming, although this hypothesis is still somewhat controversial. The revised conceptual model of the marine pelagic food web gives a central role to planktonic bacteria. Recent experiments have shown that consumption of dissolved DMS by microbial metabolism may be more important than atmospheric exchange in controlling its concentration in surface waters and hence its ventilation to the atmosphere. In this paper we investigate the effect of the marine food web on cycling of dissolved DMS in surface waters during a phytoplankton bloom episode. A nitrogen-based flow network simulation model has been used to analyze the relative importance of the various biological and chemical processes involved. The model predictions suggest that the concentration of DMS in marine surface waters is indeed governed by bacterial metabolism. Environmental factors that affect the bacterial compartment are thus likely to have a relatively large influence on dissolved DMS concentrations. The ecological succession is particularly sensitive to the ratio of phytoplankton to bacterial nutrient uptake rates as well the interaction between herbivore food chain and the microbial loop. Importantly for the design of field studies, the model predicts that peak DMS concentrations are achieved during the decline of the phytoplankton bloom with a typical time lag between peak DMS and peak phytoplankton biomass of 1 to 2 days. Significantly, the model predicts a relatively high DMS concentration persisting after the phytoplankton bloom due to excretion from large protozoa and zooplankton, which may be an additional explanation for the lack of correlation between DMS and chlorophyll a

  6. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate.

    PubMed

    Wang, Cong; Lin, Xin; Li, Ling; Lin, Senjie

    2016-01-01

    Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton

  7. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate.

    PubMed

    Wang, Cong; Lin, Xin; Li, Ling; Lin, Senjie

    2016-01-01

    Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton

  8. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate

    PubMed Central

    Wang, Cong; Lin, Xin; Li, Ling; Lin, Senjie

    2016-01-01

    Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton

  9. Controls on phytoplankton cell size distributions in contrasting physical environments

    NASA Astrophysics Data System (ADS)

    Clark, J. R.; Daines, S. J.; Lenton, T. M.

    2012-04-01

    A key challenge for marine ecosystem and biogeochemical models is to capture the multiple ecological and evolutionary processes driving the adaptation of diverse communities to changed environmental conditions over different spatial and temporal scales. These range from short-term acclimation in individuals, to population-level selection, immigration and ecological succession on intermediate scales, to shifts in the global biogeochemical cycling of key elements. As part of the "EVE" project, we have been working toward improving the representation of ecological and evolutionary processes in models, with a focus on understanding the role of marine ecosystems in the past, present, and future Earth system. Our approach is to develop a mechanistic understanding of trade-offs between different functional traits through the explicit representation of resource investment in sub-cellular components controlled by a synthetic genome. Trait expression (including size, metabolic strategies on a continuum from autotrophy to heterotrophy, and predation strategies) and adaptation to the environment are then emergent properties of the model, following from natural selection operating in the model environment. Here we show results relating to controls on phytoplankton cell size - a key phytoplankton trait which is inextricably linked to the structuring and functioning of marine ecosystems. Coupled to the MIT OGCM, we use the model to derive dynamic optimal size-class distributions at representative oligotrophic and high-latitude time series sites, which are then compared with in situ data. Particular attention is given to the relative importance of top-down vs bottom-up drivers for phytoplankton cell size, and their influence on global patterns in phytoplankton cell size, as well as changes in the cell size distribution during phytoplankton bloom periods.

  10. Phytoplankton community structure defined by key environmental variables in Tagus estuary, Portugal.

    PubMed

    Brogueira, Maria José; Oliveira, Maria do Rosário; Cabeçadas, Graça

    2007-12-01

    In this work, we analyze environmental (physical and chemical) and biological (phytoplankton) data obtained along Tagus estuary during three surveys, carried out in productive period (May/June/July) at ebb tide. The main objective of this study was to identify the key environmental factors affecting phytoplankton structure in the estuary. BIOENV analysis revealed that, in study period, temperature, salinity, silicate and total phosphorus were the variables that best explained the phytoplankton spatial pattern in the estuary (Spearman correlation, rho=0.803). A generalized linear model (GLM) also identified salinity, silicate and phosphate as having a high explanatory power (63%) of phytoplankton abundance. These selected nutrients appear to be consistent with the requirements of the dominant phytoplankton group, Baccilariophyceae. Apparently, phytoplankton community is adapted to fluctuations in light intensity, as suspended particulate matter did not come out as a key factor in shaping phytoplankton structure along Tagus estuary. PMID:17884159

  11. Assisted Living

    MedlinePlus

    ... Recreational activities Security Transportation How to Choose a Facility A good match between a facility and a resident's needs depends as much on the philosophy and services of the assisted living facility as it does on the quality of care. ...

  12. Bachelor Living

    ERIC Educational Resources Information Center

    Germer, Sondra

    1974-01-01

    Male high school students in a Bachelor Living Class observed methods of child care including bottle feeding, spoon feeding, changing diapers, and method of holding. The purpose was for the students to grasp a better understanding of child development. (EK)

  13. Healthy Living

    MedlinePlus

    ... Environment Kids Health Kids Environment Kids Health Topics Environment & Health Healthy Living Pollution Reduce, Reuse, Recycle Science – How It Works The Natural World Games Brainteasers Puzzles Riddles Songs Activities Be ...

  14. Living Laboratories

    ERIC Educational Resources Information Center

    Mules, B. R.

    1976-01-01

    Presented is a review of various methods of keeping live animals, including scorpions, spiders, crabs, crayfish, shrimp, ants, fish, mice, and birds, as well as plants as a school science project/display. (SL)

  15. Assisted Living

    MedlinePlus

    ... premises. Adult foster care has the advantages of maintaining frail older adults in a more home-like ... pay to live in these communities, though some facilities have beds for skilled care that are funded ...

  16. Sensitivity in forward modeled hyperspectral reflectance due to phytoplankton groups

    NASA Astrophysics Data System (ADS)

    Manzo, Ciro; Bassani, Cristiana; Pinardi, Monica; Giardino, Claudia; Bresciani, Mariano

    2016-04-01

    Phytoplankton is an integral part of the ecosystem, affecting trophic dynamics, nutrient cycling, habitat condition, and fisheries resources. The types of phytoplankton and their concentrations are used to describe the status of water and the processes inside of this. This study investigates bio-optical modeling of phytoplankton functional types (PFT) in terms of pigment composition demonstrating the capability of remote sensing to recognize freshwater phytoplankton. In particular, a sensitivity analysis of simulated hyperspectral water reflectance (with band setting of HICO, APEX, EnMAP, PRISMA and Sentinel-3) of productive eutrophic waters of Mantua lakes (Italy) environment is presented. The bio-optical model adopted for simulating the hyperspectral water reflectance takes into account the reflectance dependency on geometric conditions of light field, on inherent optical properties (backscattering and absorption coefficients) and on concentrations of water quality parameters (WQPs). The model works in the 400-750nm wavelength range, while the model parametrization is based on a comprehensive dataset of WQP concentrations and specific inherent optical properties of the study area, collected in field surveys carried out from May to September of 2011 and 2014. The following phytoplankton groups, with their specific absorption coefficients, a*Φi(λ), were used during the simulation: Chlorophyta, Cyanobacteria with phycocyanin, Cyanobacteria and Cryptophytes with phycoerythrin, Diatoms with carotenoids and mixed phytoplankton. The phytoplankton absorption coefficient aΦ(λ) is modelled by multiplying the weighted sum of the PFTs, Σpia*Φi(λ), with the chlorophyll-a concentration (Chl-a). To highlight the variability of water reflectance due to variation of phytoplankton pigments, the sensitivity analysis was performed by keeping constant the WQPs (i.e., Chl-a=80mg/l, total suspended matter=12.58g/l and yellow substances=0.27m-1). The sensitivity analysis was

  17. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: Implications for replication and genome packaging

    SciTech Connect

    Chaturvedi, Sonali; Rao, A.L.N.

    2014-09-15

    In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein–protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed. - Highlights: • YFP fusion proteins of BMV p1a and p2a are biologically active. • Self-interaction was observed for p1a, p2a and CP. • CP interacts with p2a but not p1a. • Majority of reconstituted YFP resulting from bona fide fusion protein partners localized on ER.

  18. Competition between phytoplankton and bacteria: exclusion and coexistence.

    PubMed

    Grognard, Frédéric; Masci, Pierre; Benoît, Eric; Bernard, Olivier

    2015-04-01

    Resource-based competition between microorganisms species in continuous culture has been studied extensively both experimentally and theoretically, mostly for bacteria through Monod and Contois "constant yield" models, or for phytoplankton through the Droop "variable yield" models. For homogeneous populations of N bacterial species (Monod) or N phytoplanktonic species (Droop), with one limiting substrate and under constant controls, the theoretical studies indicated that competitive exclusion occurs: only one species wins the competition and displaces all the others (Armstrong and McGehee in Am Nat 115:151, 1980; Hsu and Hsu in SIAM J Appl Math 68:1600-1617, 2008). The winning species expected from theory is the one with the lowest "substrate subsistence concentration" s([star]), such that its corresponding equilibrium growth rate is equal to the dilution rate D. This theoretical result was validated experimentally with phytoplankton (Tilman and Sterner in Oecologia 61(2):197-200, 1984) and bacteria (Hansen and Hubell in Science 207(4438):1491-1493, 1980), and observed in a lake with microalgae (Tilman in Ecology 58(22):338-348, 1977). On the contrary for aggregating bacterial species described by a Contois model, theory predicts coexistence between several species (Grognard et al. in Discrete Contin Dyn Syst Ser B 8(1):73-93, 2007). In this paper we present a generalization of these results by studying a competition between three different types of microorganisms: planktonic (or free) bacteria (represented by a generalized Monod model), aggregating bacteria (represented by a Contois model) and free phytoplankton (represented by a Droop model). We prove that the outcome of the competition is a coexistence between several aggregating bacterial species with a free species of bacteria or phytoplankton, all the other free species being washed out. This demonstration is based mainly on the study of the substrate concentration's evolution caused by competition; it

  19. Implication of respiratory syncytial virus (RSV) F transgene sequence heterogeneity observed in Phase 1 evaluation of MEDI-534, a live attenuated parainfluenza type 3 vectored RSV vaccine.

    PubMed

    Yang, Chin-Fen; Wang, C Kathy; Malkin, Elissa; Schickli, Jeanne H; Shambaugh, Cindy; Zuo, Fengrong; Galinski, Mark S; Dubovsky, Filip; Tang, Roderick S

    2013-06-10

    MEDI-534 is the first live vectored RSV vaccine candidate to be evaluated in seronegative children. It consists of the bovine parainfluenza virus type 3 (PIV3) genome with substituted human PIV3 F and HN glycoproteins engineered to express RSV F protein. A Phase 1 study of 49 healthy RSV and PIV3 seronegative children 6 to <24 months of age demonstrated an acceptable safety profile at the following doses: 10(4), 10(5) and 10(6)TCID50. After 3 doses of MEDI-534 at 10(6)TCID50, administered at 0, 2 and 4 month intervals, 100% of subjects seroresponded to PIV3, whereas only 50% seroresponded to RSV. To investigate the discordance in seroresponse rates, the RSV F transgene and its flanking non-coding nucleotides were sequenced from shed virus recovered from the nasal washes of 24 MEDI-534-vaccinated children. Eleven out of 24 samples contained no nucleotide changes in the analyzed region. The other 13 samples contained mixtures of variant subpopulations. Fifty-five percent exhibited changes in the transcription termination poly A gene sequences of the upstream bPIV3N gene while 21% had variant subpopulations in the RSV F open reading frame that resulted in pre-mature stop codons. Both types of changes are expected to reduce RSV F expression. Evaluation of the administered vaccine by dual immunofluorescence staining showed ~2.5% variants with low or no RSV F expression while single nucleotide primer extension detected ~1% variation at nucleotide 2045 that resulted in a pre-mature translational termination at codon 85. An association between shedding of variants and lower RSV F serological response was observed but it was not possible to establish a definitive clinical significance due to the small number of subjects in this study.

  20. A LOWER INITIAL ABUNDANCE OF SHORT-LIVED {sup 41}Ca IN THE EARLY SOLAR SYSTEM AND ITS IMPLICATIONS FOR SOLAR SYSTEM FORMATION

    SciTech Connect

    Liu, Ming-Chang; Chaussidon, Marc; Srinivasan, Gopalan; McKeegan, Kevin D.

    2012-12-20

    The short-lived radionuclide {sup 41}Ca plays an important role in constraining the immediate astrophysical environment and the formation timescale of the nascent solar system due to its extremely short half-life (0.1 Myr). Nearly 20 years ago, the initial ratio of {sup 41}Ca/{sup 40}Ca in the solar system was determined to be (1.41 {+-} 0.14) Multiplication-Sign 10{sup -8}, primarily based on two Ca-Al-rich Inclusions (CAIs) from the CV chondrite Efremovka. With an advanced analytical technique for isotopic measurements, we reanalyzed the potassium isotopic compositions of the two Efremovka CAIs and inferred the initial ratios of {sup 41}Ca/{sup 40}Ca to be (2.6 {+-} 0.9) Multiplication-Sign 10{sup -9} and (1.4 {+-} 0.6) Multiplication-Sign 10{sup -9} (2{sigma}), a factor of 7-10 lower than the previously inferred value. Considering possible thermal processing that led to lower {sup 26}Al/{sup 27}Al ratios in the two CAIs, we propose that the true solar system initial value of {sup 41}Ca/{sup 40}Ca should have been {approx}4.2 Multiplication-Sign 10{sup -9}. Synchronicity could have existed between {sup 26}Al and {sup 41}Ca, indicating a uniform distribution of the two radionuclides at the time of CAI formation. The new initial {sup 41}Ca abundance is 4-16 times lower than the calculated value for steady-state galactic nucleosynthesis. Therefore, {sup 41}Ca could have originated as part of molecular cloud materials with a free decay time of 0.2-0.4 Myr. Alternative possibilities, such as a last-minute input from a stellar source and early solar system irradiation, could not be definitively ruled out. This underscores the need for more data from diverse CAIs to determine the true astrophysical origin of {sup 41}Ca.

  1. The effects of isolation on the demography and genetic diversity of long-lived species: Implications for conservation and management of the gopher tortoise (Gopherus polyphemus)

    USGS Publications Warehouse

    Ennen, J.R.; Birkhead, R.D.; Kreiser, B.R.; Gaillard, D.L.; Qualls, C.P.; Lovich, J.E.

    2011-01-01

    In the southeastern United States, habitat loss has fragmented the landscape and isolated many populations of this region's flora and fauna, which has presumably resulted in smaller population sizes and reduced levels of genetic diversity. For example, forestry practices and anthropogenic disturbances are both cited as factors fragmenting the once extensive range of Gopherus polyphemus. One localized, but extreme, source of fragmentation was the impoundment of the Chattahoochee River in 1963 to form Walter F. George Reservoir along the border of Georgia and Alabama. The formation of this reservoir isolated populations of G. polyphemus on two newly created islands providing a natural laboratory to explore the demographics and genetic effects of fragmentation on a long-lived species. These populations were first surveyed in 1984 and, 21 years later, we revisited them to collect demographic data and tissue samples for genetic analysis. We genotyped all individuals for 10 microsatellite loci, and we tested these data for bottlenecks and compared them to levels of genetic diversity for populations from other portions of the range. We found 45 and two individuals on the larger and smaller islands, respectively. On the large island, however, the population size was identical to the 1984 survey. Only the population structure based on estimated age differed between the 1984 and 2004 surveys, while population size structure based on carapace length, sex ratio, and sex-specific growth rates did not differ. The population of the large island showed genetic evidence of a past bottleneck. The genetic diversity indices from the population of the large island, however, were comparable to or greater than those found at mainland sites, in particular from western populations.

  2. Effects of nano-TiO2 on perfluorooctanesulfonate bioaccumulation in fishes living in different water layers: Implications for enhanced risk of perfluorooctanesulfonate.

    PubMed

    Qiang, Liwen; Pan, Xiaoyu; Zhu, Lingyan; Fang, Shuhong; Tian, Shengyan

    2016-01-01

    Nano-titanium dioxide (nano-TiO2) is one of the most universal engineered nano-materials while perfluorooctanesulfonate (PFOS) is a typical new persistent organic pollutant. They are widely used and present in aquatic environment. In this study, a novel semi-static multilayer microcosm was setup to investigate the impacts of nano-TiO2 on PFOS bioaccumulation in fish species [Danio rerio (D. rerio), Ctenopharyngodon idella (C. idella), Hypostomus plecostomus (H. plecostomus)] living in different vertical layers. As a result of aggregation and deposition, the concentration of TiO2 increased from upper to bottom layers in the water column. Concomitantly, due to adsorption of PFOS on the nano-TiO2 particles, PFOS also displayed an increasing trend from upper to bottom layer. Owing to ingestion of the TiO2-PFOS complexes, more PFOS was taken-up by fish. With the aid of intestinal fluid, PFOS was readily released from TiO2 particles and absorbed by fish. As a result, accumulation of PFOS in whole fish was facilitated and the bioaccumulation factors of PFOS in D. rerio, C. idella and H. plecostomus were 3.01, 2.42 and 1.11 times of that in the groups without TiO2. However, TiO2 aggregates were too large to penetrate biological membranes to participate body circulation, and no significant accumulation of TiO2 was observed in fish muscle. The results suggested that the ecological risk of PFOS could be enhanced due to the presence of nano-TiO2 in water.

  3. Diversity and distribution of winter phytoplankton in the Arabian Gulf and the Sea of Oman

    NASA Astrophysics Data System (ADS)

    Polikarpov, Igor; Saburova, Maria; Al-Yamani, Faiza

    2016-05-01

    The spatial distribution of the phytoplankton (diversity, composition, and cell abundance) was described in relation to local environmental conditions across the Arabian Gulf, the Strait of Hormuz, and the Sea of Oman based on data of ROPME cruise of winter 2006. The 376 phytoplankton taxa identified in these waters represented a diverse composition of species with a prevalence of dinoflagellates and diatoms. Three peaks in the phytoplankton abundance were recorded throughout the studied area associated with diatom-dominated phytoplankton blooms in the central and northwestern part of the Arabian Gulf and in the Sea of Oman and the adjacent waters. The studied area was divided into three main regions by cluster analysis based on differences in the phytoplankton composition and concentration. The Sea of Oman and the Strait of Hormuz were occupied by highly abundant, strongly diatom-dominated phytoplankton assemblage. The Arabian Gulf was divided into two main regions along a diagonal northwest-southeast axis, with rather diatom-dominated phytoplankton assemblage off the south and along the Iranian coast but with flagellate-dominated phytoplankton of the north and along the Arabian coast. The distance-based linear modeling revealed a significant relationship between the phytoplankton composition and water masses as indexed by salinity. Our results demonstrated that abundance and composition of winter phytoplankton were related to water circulation pattern in the Arabian Gulf and the Sea of Oman.

  4. Identifying the factors affecting phytoplankton abundance dynamics in Shihmen Reservoir, Taiwan

    NASA Astrophysics Data System (ADS)

    Kuo, Yi-Ming; Chuang, Illy; Chu, Hone-Jay; Wu, Jiunn-Tzong; Jang, Cheng-Shin

    2013-04-01

    Investigations of multiple temporal distributions of phytoplankton dynamics through environmental variables in water bodies over extensive areas remain relatively scarce. This study focused on the determination of the key factors regulating temporal and spatial variations of phytoplankton abundance at three monitoring sites in Shihmen Reservoir within five years (2006-2010). Dynamic factor analysis (DFA), a dimension-reduction technique, was designed to identify the underlying latent effects in multiple time series and interactions between explanatory variables (i.e., environmental variables) and the response variable (phytoplankton abundance). The optimal DFA model successfully described the dynamics of phytoplankton abundance in the Shihmen Reservoir. The results demonstrated that water temperature, water level, COD, BOD, and DO considerably affected phytoplankton abundance at most of the monitoring sites. Among them, water temperature, water level, and COD significantly affected phytoplankton abundance at all three sites, indicating that these variables contributed more to the long-term dynamics of phytoplankton abundance than other variables at the surface water of Shihmen Reservoir. The influx and efflux of Reservoir altering hydrological conditions in Shihmen Reservoir may attenuate the nutrients effects on phytoplankton abundance. In this study, BOD and DO are the other crucial water quality factors that control variations of phytoplankton. The explanatory variables mainly explain the dynamics of phytoplankton abundance than common trends do. In the future, the water manager may consider these variables to propose strategies to manage water quality in Shihmen Reservoir.

  5. Community stoichiometry in a changing world: combined effects of warming and eutrophication on phytoplankton dynamics.

    PubMed

    Domis, Lisette N De Senerpont; Van de Waal, Dedmer B; Helmsing, Nico R; Van Donk, Ellen; Mooij, Wolf M

    2014-06-01

    The current changes in our climate will likely have far-reaching consequences for aquatic ecosystems. These changes in the climate, however, do not act alone, and are often accompanied by additional stressors such as eutrophication. Both global warming and eutrophication have been shown to affect the timing and magnitude of phytoplankton blooms. Little is known about the combined effects of rising temperatures and eutrophication on the stoichiometry of entire phytoplankton communities. We exposed a natural phytoplankton spring community to different warming and phosphorus-loading scenarios using a full-factorial design. Our results demonstrate that rising temperatures promote the growth rate of an entire phytoplankton community. Furthermore, both rising temperatures and phosphorus loading stimulated the maximum biomass built up by the phytoplankton community. Rising temperatures led to higher carbon: nutrient stoichiometry of the phytoplankton community under phosphorus-limited conditions. Such a shift towards higher carbon: nutrient ratios, in combination with a higher biomass buildup, suggests a temperature-driven increase in nutrient use efficiency, the phytoplankton community. Importantly, with higher carbon: nutrient stoichiometry, phytoplankton is generally of poorer nutritional value for zooplankton. Thus, although warming may result in higher phytoplankton biomass, this may be accompanied by a stoichiometric mismatch between phytoplankton and their grazers, with possible consequences for the entire aquatic food web.

  6. Temporal variation of phytoplankton growth and grazing loss in the west coast of Peninsular Malaysia.

    PubMed

    Lim, Joon Hai; Lee, Choon Weng; Kudo, Isao

    2015-05-01

    Phytoplankton growth (μ) and grazing loss (g) rates were measured monthly by the Landry-Hassett dilution method over a 2-year period at both estuarine (Klang) and coastal water (Port Dickson) systems along the Straits of Malacca. Chlorophyll a (Chl a) concentration ranged from 0.20 to 4.47 μg L(-1) at Klang except on two occasions when Chl a spiked above 10 μg L(-1). In contrast, Chl a concentrations were relatively stable at Port Dickson (0.14 to 2.76 μg L(-1)). From the rate measurements, μ was higher (t = 2.01, df = 43, p < 0.05) at Klang (0.30 to 2.26 day(-1)) than at Port Dickson (0.18 to 1.66 day(-1)), but g was not significantly different (p > 0.80). g ranged from 0.30 to 1.50 and 0.21 to 1.51 day(-1) at Klang and Port Dickson, respectively. In this study, grazing loss was coupled to phytoplankton growth, and the ratio of g/μ or grazing pressure which estimates the proportion of primary production grazed was 50% at Klang and lower than at Port Dickson (68%; t = 2.213, df = 36, p < 0.05). We found that the higher growth rates in a eutrophic system, i.e., Klang, were not matched by higher grazing loss, and this may have implications for the biogeochemical cycling in coastal waters. PMID:25864082

  7. Standing stocks, production, and respiration of phytoplankton and heterotrophic bacteria in the western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Kirchman, David L.; Hill, Victoria; Cottrell, Matthew T.; Gradinger, Rolf; Malmstrom, Rex R.; Parker, Alexander

    2009-08-01

    Standing stocks and production rates for phytoplankton and heterotrophic bacteria were examined during four expeditions in the western Arctic Ocean (Chukchi Sea and Canada Basin) in the spring and summer of 2002 and 2004. Rates of primary production (PP) and bacterial production (BP) were higher in the summer than in spring and in shelf waters than in the basin. Most surprisingly, PP was 3-fold higher in 2004 than in 2002; ice-corrected rates were 1581 and 458 mg C m -2 d -1, respectively, for the entire region. The difference between years was mainly due to low ice coverage in the summer of 2004. The spatial and temporal variation in PP led to comparable variation in BP. Although temperature explained as much variability in BP as did PP or phytoplankton biomass, there was no relationship between temperature and bacterial growth rates above about 0 °C. The average ratio of BP to PP was 0.06 and 0.79 when ice-corrected PP rates were greater than and less than 100 mg C m -2 d -1, respectively; the overall average was 0.34. Bacteria accounted for a highly variable fraction of total respiration, from 3% to over 60% with a mean of 25%. Likewise, the fraction of PP consumed by bacterial respiration, when calculated from growth efficiency (average of 6.9%) and BP estimates, varied greatly over time and space (7% to >500%). The apparent uncoupling between respiration and PP has several implications for carbon export and storage in the western Arctic Ocean.

  8. The complete mitochondrial sequence of the"living fossil" Tricholepidion gertschi: structure, phylogenetic implications, and the description of a novel A/T asymmetrical bias

    SciTech Connect

    Nardi, F.; Frati, F.; Carapelli, A.; Dallai, R.; Boore, J.

    2002-06-23

    Traditionally, the 'Apterygota' has been thought to consist of five orders of wingless hexapods (Protura, Collembola, Diplura, Microcoryphia and Zygentoma) believed to be collectively basal to insects (i.e., the Pterygota). However, some studies have questioned this affinity with insects (Dallai, Abele, Spears, Nardi). Further, within these groups are hotly debated issues, including the monophyly of Entognata (Koch, 1997; Kukalova Peck, 1987), the monophyly of Diplura (Bilinski, 1993; Stys and Bilinski, 1990), the affinity between Collembola and Protura (Dallai, 1994; Kristensen, 1981) and the position of Lepidotrichidae (below). In fact, these relationships constitute one of the most debated issues in hexapod phylogeny. The family Lepidotrichidae was first described by (Silvestri, 1912) (1912: 'Lepidothricinae') from a Baltic Amber fossil (Lepidothrix pilifera Menge). The only living representative of this family is Tricholepidion gertschi Wygodzinski. Since this species was first described (Wygodzinsky, 1961) its phylogenetic position has been difficult to establish, due to an 'array of unique characters' that are difficult to interpret in a phylogenetic framework. Tricholepidion (and therefore the whole family Lepidotrichidae) has been considered either as belonging to the order Zygentoma (Kristensen, 1997; Wygodzinsky, 1961), or basal to the rest of the Zygentoma plus the Pterygota (Beutel, 2001; Bitsch and Bitsch, 2000; Staniczek, 2000), although the significance of some of the morphological characters on which these analyses are based have been questioned (Dallai et al., 2001; Kristensen, 1997). If the latter hypothesis proved to be true, the family Lepidotrichidae, would better deserve the ordinal rank. Since studies based on morphological characters have failed to give a satisfactory answer, a broad scale molecular study is under way ((Nardi et al., 2001), Frati et al, submitted, il Gomphiocephalus) in order to use mitochondrial genome sequences to study

  9. Sources and human exposure implications of concentrations of organophosphate flame retardants in dust from UK cars, classrooms, living rooms, and offices.

    PubMed

    Brommer, Sandra; Harrad, Stuart

    2015-10-01

    Concentrations of a number of organophosphate flame retardants (PFRs) were measured in floor dust collected from UK living rooms (n = 32), cars (n = 21), school and child daycare centre classrooms (n = 28), and offices (n = 61). While concentrations were overall broadly within the range of those reported previously for North America, Japan, and other European countries, median concentrations of TCIPP in all UK microenvironments exceeded those reported elsewhere in the world. Moreover, concentrations of TCIPP and TDCIPP in 2 UK car dust samples were--at 370 μg g(-1) and 740 μg g(-1) respectively--amongst the highest reported globally in indoor dust to date. Consistent with this, concentrations of TDCIPP in dust from UK cars exceed significantly those detected in the other microenvironments studied. Concentrations of EHDPP were shown for the first time to be significantly higher in classroom dust than in samples from other microenvironments. When compared to concentrations of PBDEs determined previously in the classroom dust samples; concentrations of all target PFRs exceeded substantially those of those PBDEs that are the principal constituents of the Penta- and Octa-BDE formulations. Moreover, while mass-based concentrations of BDE-209 exceeded those of most of our target PFRs, they still fell below those of TCIPP and EHDPP. In line with a previous observation in Sweden that indoor air contamination with TNBP was significantly lower in newer buildings; concentrations of TNBP in classroom dust were significantly higher in older compared to more recently-constructed schools. Consistent with the reported extensive use of TCIPP and TDCIPP in polyurethane foam, the highest concentrations of both TCIPP and TDCIPP in the classrooms studied, were observed in rooms containing the highest numbers of foam chairs (n = 31 and 18 respectively). Exposure to PFRs of both adults and young children via ingestion of indoor dust was estimated. While even our high-end exposure

  10. Bio-optical observations of the 2004 Labrador Sea phytoplankton bloom

    NASA Astrophysics Data System (ADS)

    Strutton, Peter G.; Martz, Todd R.; Degrandpre, Michael D.; McGillis, Wade R.; Drennan, William M.; Boss, Emmanuel

    2011-11-01

    A unique time series of moored bio-optical measurements documented the 2004 spring-summer bloom in the southern Labrador Sea. In situ and satellite chlorophyll data show that chlorophyll levels in the 2004 bloom were at the upper end of those typically observed in this region. Satellite chlorophyll and profiling float temperature/salinity data show that the main bloom, which typically peaks in June/July, is often preceded by ephemeral mixed layer shoaling and a lesser, short-lived bloom in May; this was the case in 2004. The particulate backscatter to beam attenuation ratio (bbp[470 nm]/Cp[660 nm]) showed peaks in the relative abundance of small particles at bloom initiation and during the decline of the bloom, while larger particles dominated during the bloom. Chlorophyll/Cp and bbp/chlorophyll were correlated with carbon export and dominated by changes in the pigment per cell associated with lower light levels due to enhanced attenuation of solar radiation during the bloom. An NPZ (nutrients, phytoplankton, zooplankton) model captured the phytoplankton bloom and an early July peak in zooplankton. Moored acoustic Doppler current profiler (ADCP) data showed an additional mid-June peak in zooplankton biomass which was attributed to egg-laying copepods. The data reported here represent one of the few moored time series of Cp, bbp and chlorophyll extending over several months in an open ocean region. Interpretation of data sets such as this will become increasingly important as these deployments become more commonplace via ocean observing systems. Moreover, these data contribute to the understanding of biological-physical coupling in a biogeochemically important, yet poorly studied region.

  11. Hundred Years of Environmental Change and Phytoplankton Ecophysiological Variability Archived in Coastal Sediments

    PubMed Central

    Ribeiro, Sofia; Berge, Terje; Lundholm, Nina; Ellegaard, Marianne

    2013-01-01

    Marine protist species have been used for several decades as environmental indicators under the assumption that their ecological requirements have remained more or less stable through time. However, a growing body of evidence suggests that marine protists, including several phytoplankton species, are in fact highly diverse and may quickly respond to changes in the environment. Predicting how future climate will impact phytoplankton populations is important, but this task has been challenged by a lack of time-series of ecophysiological parameters at time-scales relevant for climate studies (i.e. at least decadal). Here, we report on ecophysiological variability in a marine dinoflagellate over a 100-year period of well-documented environmental change, by using the sedimentary archive of living cysts from a Scandinavian fjord (Koljö Fjord, Sweden). During the past century, Koljö Fjord has experienced important changes in salinity linked to the North Atlantic Oscillation (NAO). We revived resting cysts of Pentapharsodinium dalei preserved in the fjord sediments and determined growth rates for 18 strains obtained from 3 sediment core layers at salinity 15 and 30, which represent extreme sea-surface conditions during periods of predominantly negative and positive NAO phases, respectively. Upper pH tolerance limits for growth were also tested. In general, P. dalei grew at a higher rate in salinity 30 than 15 for all layers, but there were significant differences among strains. When accounting for inter-strain variability, cyst age had no effect on growth performance or upper pH tolerance limits for this species, indicating a stable growth response over the 100-year period in spite of environmental fluctuations. Our findings give some support for the use of morphospecies in environmental studies, particularly at decadal to century scales. Furthermore, the high intra-specific variability found down to sediment layers dated as ca. 50 years-old indicates that cyst-beds of P

  12. Radium isotopes as tracers of iron sources fueling a Southern Ocean phytoplankton bloom

    NASA Astrophysics Data System (ADS)

    Charette, Matthew A.; Gonneea, Meagan E.; Morris, Paul J.; Statham, Peter; Fones, Gary; Planquette, Hélène; Salter, Ian; Garabato, Alberto Naveira

    2007-09-01

    Elevated levels of productivity in the wake of Southern Ocean island systems are common despite the fact that they are encircled by high-nutrient low-chlorophyll (HNLC) waters. In the Crozet Plateau region, it has been hypothesized that iron from island runoff or sediments of the plateau could be fueling the austral summer phytoplankton bloom. Here, we use radium isotopes to quantify the rates of surface-ocean iron supply fueling the bloom in the Crozet Plateau region. A 1-D eddy-diffusion-mixing model applied to a 228Ra profile ( t1/2=5.75 years) at a station north of the islands suggests fast vertical mixing in the upper 300 m ( K z=11-100 cm 2 s -1) with slower mixing between 300 and 1000 m ( K z=1.5 cm 2 s -1). This estimate is discussed in the context of K z derived from the CTD/LADCP data. In combination with the dissolved Fe profile at this location, we estimated a vertical flux of between 5.6 and 31 nmol Fe m -2 d -1. The cross-plateau gradients in the short-lived radium isotopes, 224Ra ( t1/2=3.66 d) and 223Ra ( t1/2=11.4 d), yielded horizontal eddy diffusivities ( Kh) of 39 and 6.6 m 2 s -1, respectively. If we assume that the islands (surface runoff) alone were supplying dissolved Fe to the bloom region, then the flux estimates range from 2.3 to 14 nmol Fe m -2 d -1. If the plateau sediments are considered a source of Fe, and conveyed to the bloom region through deep winter mixing combined with horizontal transport, then this flux may be as high as 64-390 nmol Fe m -2 d -1. Combined, these Fe sources are sufficient to initiate and maintain the annual phytoplankton bloom.

  13. Hundred years of environmental change and phytoplankton ecophysiological variability archived in coastal sediments.

    PubMed

    Ribeiro, Sofia; Berge, Terje; Lundholm, Nina; Ellegaard, Marianne

    2013-01-01

    Marine protist species have been used for several decades as environmental indicators under the assumption that their ecological requirements have remained more or less stable through time. However, a growing body of evidence suggests that marine protists, including several phytoplankton species, are in fact highly diverse and may quickly respond to changes in the environment. Predicting how future climate will impact phytoplankton populations is important, but this task has been challenged by a lack of time-series of ecophysiological parameters at time-scales relevant for climate studies (i.e. at least decadal). Here, we report on ecophysiological variability in a marine dinoflagellate over a 100-year period of well-documented environmental change, by using the sedimentary archive of living cysts from a Scandinavian fjord (Koljö Fjord, Sweden). During the past century, Koljö Fjord has experienced important changes in salinity linked to the North Atlantic Oscillation (NAO). We revived resting cysts of Pentapharsodinium dalei preserved in the fjord sediments and determined growth rates for 18 strains obtained from 3 sediment core layers at salinity 15 and 30, which represent extreme sea-surface conditions during periods of predominantly negative and positive NAO phases, respectively. Upper pH tolerance limits for growth were also tested. In general, P. dalei grew at a higher rate in salinity 30 than 15 for all layers, but there were significant differences among strains. When accounting for inter-strain variability, cyst age had no effect on growth performance or upper pH tolerance limits for this species, indicating a stable growth response over the 100-year period in spite of environmental fluctuations. Our findings give some support for the use of morphospecies in environmental studies, particularly at decadal to century scales. Furthermore, the high intra-specific variability found down to sediment layers dated as ca. 50 years-old indicates that cyst-beds of P

  14. Acid rain stimulation of Lake Michigan phytoplankton growth

    USGS Publications Warehouse

    Manny, Bruce A.; Fahnenstiel, G.L.; Gardner, W.S.

    1987-01-01

    Three laboratory experiments demonstrated that additions of rainwater to epilimnetic lake water collected in southeastern Lake Michigan stimulated chlorophyll a production more than did additions of reagent-grade water during incubations of 12 to 20 d. Chlorophyll a production did not begin until 3–5 d after the rain and lake water were mixed. The stimulation caused by additions of rain acidified to pH 3.0 was greater than that caused by additions of untreated rain (pH 4.0–4.5). Our results support the following hypotheses: (1) Acid rain stimulates the growth of phytoplankton in lake water; (2) phosphorus in rain appears to be the factor causing this stimulation. We conclude that acid rain may accelerate the growth of epilimnetic phytoplankton in Lake Michigan (and other similar lakes) during stratification when other sources of bioavailable phosphorus to the epilimnion are limited

  15. The case against climate regulation via oceanic phytoplankton sulphur emissions.

    PubMed

    Quinn, P K; Bates, T S

    2011-12-01

    More than twenty years ago, a biological regulation of climate was proposed whereby emissions of dimethyl sulphide from oceanic phytoplankton resulted in the formation of aerosol particles that acted as cloud condensation nuclei in the marine boundary layer. In this hypothesis--referred to as CLAW--the increase in cloud condensation nuclei led to an increase in cloud albedo with the resulting changes in temperature and radiation initiating a climate feedback altering dimethyl sulphide emissions from phytoplankton. Over the past two decades, observations in the marine boundary layer, laboratory studies and modelling efforts have been conducted seeking evidence for the CLAW hypothesis. The results indicate that a dimethyl sulphide biological control over cloud condensation nuclei probably does not exist and that sources of these nuclei to the marine boundary layer and the response of clouds to changes in aerosol are much more complex than was recognized twenty years ago. These results indicate that it is time to retire the CLAW hypothesis.

  16. Modeling photosynthesis and the growth of marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Zvalinsky, V. I.; Tishchenko, P. Ya.

    2016-07-01

    The paper analyzes the most popular models of photosynthesis and growth of marine phytoplankton in the literature and demonstrates their limitations. A new approach to modeling is proposed and used to obtain new models of marine phytoplankton photosynthesis and growth. An important feature of the proposed models is their ability to describe coupled multisubstrate cyclical interactions typical of biochemical and physiological processes. As a first approximation, the mathematical models are represented by equations of nonrectangular hyperbolas. The models describe the stoichiometry of extraction of elements from the medium, whatever the degree of their limitation, an important feature in describing biogeochemical cycles of elements. This stoichiometry is governed by measurable internal parameters of an organism (substrate parameters) and can be a key cause of stoichiometric formation of elements in the ambient medium, described, for example, by the Redfield ratio. The substrate constants are fundamental characteristics of the models, which form "automatically" in the construction of model equations in arbitrary units.

  17. Phytoplankton dynamics in three Rocky Mountain Lakes, Colorado, USA

    USGS Publications Warehouse

    McKnight, Diane M.; Smith, R.L.; Bradbury, J.P.; Baron, J.S.; Spaulding, S.

    1990-01-01

    In 1984 and 1985 in Loch Vale, Rocky Mountain National Park, 3 periods were evident: 1) a spring bloom, during snowmelt, of the planktonic diatom Asterionella formosa, 2) a mid-summer period of minimal algal abundance, and 3) a fall bloom of the blue-green alga Oscillatoria limnetica. Seasonal phytoplankton dynamics are controlled partially by the rapid flushing rate during snowmelt and the transport of phytoplankton from the highest lake to the lower lakes by the stream, Icy Brook. During snowmelt, the A. formosa population in the most downstream lake has a net rate of increase of 0.34 d-1. The decline in A. formosa after snowmelt may be related to grazing by developing zooplankton populations. -from Authors

  18. An online calculator for marine phytoplankton iron culturing experiments.

    PubMed

    Rivers, Adam R; Rose, Andrew L; Webb, Eric A

    2013-10-01

    Laboratory experiments with iron offer important insight into the physiology of marine phytoplankton and the biogeochemical cycles they influence. These experiments often rely on chelators to buffer the concentration of available iron, but the buffer can fail when cell density increases, causing the concentration of that iron to drop rapidly. To more easily determine the point when the iron concentration falls, we developed an online calculator to estimate the maximum phytoplankton density that a growth medium can support. The results of the calculator were compared to the numerical simulations of a Fe-limited culture of the diatom Thalassiosira weissflogii (Grunow) Fryxell and Hasle. Modeling reveals that the assumptions behind thermodynamic estimates of unchelated Fe concentration can fail before easily perceptible changes in growth rate, potentially causing physiological changes that could alter the conclusions of culture experiments. The calculator is available at http://www.marsci.uga.edu/fidoplankter.

  19. Phytoplankton natural fluorescence variability in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Westberry, T. K.; Siegel, D. A.

    2003-03-01

    Phytoplankton fluorescence has been used historically as a means of assessing phytoplankton biomass, rates of primary production (PP) and physiological status in laboratory, in situ, and satellite based investigations. Assumptions about the quantum yield of phytoplankton fluorescence, φf, are often overlooked and can become problematic when fluorescence based methods are applied. A time series of φf observations from the northwestern Sargasso Sea is presented with the goal of understanding the controls on fluorescence and its applicability for assessing upper ocean biological processes. Accurate estimates of φf require accounting for Raman scattering and the conversion of planar to scalar irradiance. Variability in φf occurs on both seasonal and episodic time scales. Seasonal variations show maxima in the surface layer during summer months while lower, more uniform values are found throughout the winter when deep mixing occurs. Large episodic variations in φf are observed throughout the record which dwarf seasonal changes. Predictions of depth-dependent and depth-integrated PP rates using φf and natural fluorescence fluxes are only marginally successful ( r2˜50%), although comparable with results from global bio-optical models for the Sargasso Sea. Improvements in PP predictions are hindered by weak statistical relationships with other parameters. φf is largely decoupled from the quantum yield of carbon assimilation, φc, indicating that an inverse relationship between fluorescence and photosynthesis does not exist. Consequently, variability in the quantum yield of thermal de-excitation, φh, is found to be of similar magnitude as φf on the timescales observed. These observations show that assumptions about photochemical energy flow through the phytoplankton community must be made carefully and that the fluorescence-photosynthesis relationship is not straightforward.

  20. Atmospheric effects in the remote sensing of phytoplankton pigments

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Clark, D. K.

    1980-01-01

    The accuracy with which relevant atmospheric parameters must be estimated to derive photoplankton pigment concentrations of a given accuracy, from measurements of the ocean's apparent spectral radiance at satellite altitudes, is examined. A phytoplankton pigment algorithm is developed which relates the pigment concentration (c) to the three ratios of upwelling radiance just beneath the sea surface which can be formed from wavelengths (lambda) 440, 520 and 550 nm.

  1. Phytoplankton as a fluorescent bioindicator of ecotoxicants in natural waters

    NASA Astrophysics Data System (ADS)

    Gostev, T.; Kouzminov, F.; Gorbunov, M.; Fadeev, V.

    2010-04-01

    The newest approach in the saturation fluorimetry of photosynthetic organisms by the example of phytoplankton was developed. The theoretical model and the inverse problem of the saturation fluorimetry are discussed. The results of evaluation of molecular photophysical parameters of alga Chlorella pyrenoidosa under various stress factors, such as presence of DCMU and Cu2+ ions are presented. The correlation between theese parameters and the parameters obtained using Fluorescence Induction and Relaxation technique is discussed.

  2. Variability of phytoplankton light absorption in Canadian Arctic seas

    NASA Astrophysics Data System (ADS)

    Brunelle, Corinne B.; Larouche, Pierre; Gosselin, Michel

    Phytoplankton light absorption spectra (aϕ(λ)) were measured in the Canadian Arctic (i.e., the Amundsen Gulf, Canadian Arctic Archipelago, northern Baffin Bay and the Hudson Bay system) to improve algorithms used in remote-sensing models of primary production. The absorption by algae, dominated by picophytoplankton (<5 μm), was not the major light absorption factor in the four provinces; the colored dissolved organic matter (CDOM) contributed up to 70% of total light absorption. During the fall, the low total chlorophyll a-specific aϕ*(443) (aϕ(443)/TChl a) coefficients of the Canadian High Arctic were associated with photoacclimation processes (i.e., the package effect) occurring in light-limited environments. Low light availability and high proportion of CDOM (absorbing strongly the ultraviolet) seem to allow the growth of phytoplankton with accessory pigments absorbing light at longer wavelengths. The ratio of photoprotective and photosynthetic carotenoids (PPC:PSC) was inversely proportional with the salinity and the cell size, and mostly decreases throughout the Canadian High Arctic during fall. In return, the highest TChl a-specific phytoplankton light absorption coefficients at the blue peak (aϕ*(443)) were observed in the Hudson Bay system from September to October (i.e., fall) as well as in the Amundsen Gulf from May to July (i.e., spring/summer). These results will ultimately allow the accurate monitoring of phytoplankton biomass and productivity evolution that is likely to take place as a result of the fast-changing Arctic environment.

  3. Phytoplankton bloom all along the coast of Southeast United States

    NASA Technical Reports Server (NTRS)

    2002-01-01

    All along the eastern and southern coasts of the United States, marine plants seem impervious to the onslaught of winter weather further north. In this true-color image from January 9, 2002, phytoplankton can be seen growing in the nation's coastal waters; their characteristic blue-green swirls are especially visible off the west coast of Florida. Fire locations are marked with red dots. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  4. Phytoplankton patch patterns: Seascape anatomy in a turbulent ocean

    NASA Astrophysics Data System (ADS)

    Mitchell, James G.; Yamazaki, Hidekatsu; Seuront, Laurent; Wolk, Fabian; Li, Hua

    Marine phytoplankton experience competition, predation, infection and aggregation occurring across distances of micrometres to centimetres. However, the consequences of these interactions influence global processes, such as climate and fisheries productivity. There is a long-standing default assumption that these global processes cannot be traced to plankton distributions and interactions below a few metres because of the homogenising effect of turbulence [Hutchinson, G.E., 1961. The paradox of the plankton. Am. Nat. 95, 137-146.; Siegel, D.A., 1998. Resource competition in a discrete environment: Why are plankton distributions paradoxical? Limnol. Oceanogr. 43, 1133-1146.]. We show that, in active turbulence, phytoplankton patches, on the order of 10 cm, have repeatable asymmetry and regular spacing over distances of centimetres to tens of metres. The regularity and hierarchical nature of the patches in mixed ocean water means that phytoplankton are distributed in a dynamic, but definite seascape topography, where groups of patches coalesce between intermittent turbulent eddies. These patches may link large scale processes and microscale interactions, acting as fundamental components of marine ecosystems that influence grazing efficiency, taxonomic diversity, and the initiation of aggregation and subsequent carbon flux.

  5. [Temporal dynamics of phytoplankton and nutrients during red tides].

    PubMed

    Qiu, Yaowen; Zhu, Liangsheng; Li, Jinrong; Liang, Song; Qi, Yuzao

    2003-07-01

    The relationships between temporal dynamics of phytoplankton density and nutrients (NO3-, NH4+, PO4(3-), SiO3(2-), Fe) contents in the water body at Aotou waters of Daya Bay during red tide were comprehensively analysed based on the fixed position investigation of red tide in the summer of 2000 and the several years investigation data by using grey linear regression model. The relationships between phytoplankton cell density and chlorophyll a content were also analysed. The results showed that the predicted values were well consistent with the measurement values, and their correlation coefficients were between 0.51-0.83. Red tide might break out if chlorophyll a contents in water body were larger than 5.8 micrograms.dm-3. The study could provide a simple effective method to forecast red tide by sampling water samples to analyse chlorophyll a concentration, or using SeaWiFS data, and then, to calculating phytoplankton density. In addition, the primary productivity of the water areas was controlled by phosphorus. PMID:14587335

  6. A microflow cytometer for optical analysis of phytoplankton

    NASA Astrophysics Data System (ADS)

    Golden, Joel P.; Hashemi, Nastaran; Erickson, Jeffrey S.; Ligler, Frances S.

    2012-01-01

    Analysis of the intrinsic scatter and fluorescence profiles of marine algae can be used for general classification of organisms based on cell size and fluorescence properties. We describe the design and fabrication of a Microflow Cytometer on a chip for characterization of phytoplankton. The Microflow Cytometer measured distinct side-scatter and fluorescence properties of Synechococcus sp., Nitzschia d., and Thalassiosira p. Measurements were confirmed using the benchtop Accuri C6 flow cytometer. The Microflow Cytometer proved sensitive enough to detect and characterize picoplankton with diameter approximately 1 mm and larger phytoplankton of up to 80 mm in length. The wide range in size discrimination coupled with detection of intrinsic fluorescent pigments suggests that this Microflow Cytometer will be able to distinguish different populations of phytoplankton on unmanned underwater vehicles. Reversing the orientation of the grooves in the channel walls returns the sample stream to its original unsheathed position allowing separation of the sample stream from the sheath streams and the recycling of the sheath fluid.

  7. Terrestrial carbohydrates support freshwater zooplankton during phytoplankton deficiency

    PubMed Central

    Taipale, Sami J.; Galloway, Aaron W. E.; Aalto, Sanni L.; Kahilainen, Kimmo K.; Strandberg, Ursula; Kankaala, Paula

    2016-01-01

    Freshwater food webs can be partly supported by terrestrial primary production, often deriving from plant litter of surrounding catchment vegetation. Although consisting mainly of poorly bioavailable lignin, with low protein and lipid content, the carbohydrates from fallen tree leaves and shoreline vegetation may be utilized by aquatic consumers. Here we show that during phytoplankton deficiency, zooplankton (Daphnia magna) can benefit from terrestrial particulate organic matter by using terrestrial-origin carbohydrates for energy and sparing essential fatty acids and amino acids for somatic growth and reproduction. Assimilated terrestrial-origin fatty acids from shoreline reed particles exceeded available diet, indicating that Daphnia may convert a part of their dietary carbohydrates to saturated fatty acids. This conversion was not observed with birch leaf diets, which had lower carbohydrate content. Subsequent analysis of 21 boreal and subarctic lakes showed that diet of herbivorous zooplankton is mainly based on high-quality phytoplankton rich in essential polyunsaturated fatty acids. The proportion of low-quality diets (bacteria and terrestrial particulate organic matter) was <28% of the assimilated carbon. Taken collectively, the incorporation of terrestrial carbon into zooplankton was not directly related to the concentration of terrestrial organic matter in experiments or lakes, but rather to the low availability of phytoplankton. PMID:27510848

  8. Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay

    PubMed Central

    Harding, Jr., Lawrence W.; Mallonee, Michael E.; Perry, Elgin S.; Miller, W. David; Adolf, Jason E.; Gallegos, Charles L.; Paerl, Hans W.

    2016-01-01

    Variable climatic conditions strongly influence phytoplankton dynamics in estuaries globally. Our study area is Chesapeake Bay, a highly productive ecosystem providing natural resources, transportation, and recreation for nearly 16 million people inhabiting a 165,000-km2 watershed. Since World War II, nutrient over-enrichment has led to multiple ecosystem impairments caused by increased phytoplankton biomass as chlorophyll-a (chl-a). Doubled nitrogen (N) loadings from 1945–1980 led to increased chl-a, reduced water clarity, and low dissolved oxygen (DO), while decreased N loadings from 1981–2012 suggest modest improvement. The recent 30+ years are characterized by high inter-annual variability of chl-a, coinciding with irregular dry and wet periods, complicating the detection of long-term trends. Here, we synthesize time-series data for historical and recent N loadings (TN, NO2 + NO3), chl-a, floral composition, and net primary productivity (NPP) to distinguish secular changes caused by nutrient over-enrichment from spatio-temporal variability imposed by climatic conditions. Wet years showed higher chl-a, higher diatom abundance, and increased NPP, while dry years showed lower chl-a, lower diatom abundance, and decreased NPP. Our findings support a conceptual model wherein variable climatic conditions dominate recent phytoplankton dynamics against a backdrop of nutrient over-enrichment, emphasizing the need to separate these effects to gauge progress toward improving water quality in estuaries. PMID:27026279

  9. DNA Analyses of Phytoplankton in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Guo, K.; Bench, S.; Saltzman, J.

    2013-12-01

    Microbes and phytoplankton are extremely important for marine life because they produce much of Earth's oxygen and are the foundation for ocean ecosystems, such as the Southern Ocean around Antarctica. As it is undergoing some of the most extreme warming on Earth, the Western Antarctic Peninsula (WAP) is experiencing drastic changes in the ecosystem, which motivates researchers to study its population of microbes and phytoplankton. However, little research has been done on the genetic changes that the microbes and phytoplankton have undergone. The research project I worked on studies the genetic changes of the WAP organisms through three steps: sampling, which is done at the Palmer station in the WAP, sequencing, and microarrays. Throughout the course of the summer, I contributed to the sequencing aspect of the project by conducting DNA extractions and determining the quality and quantity of DNA in the samples. DNA extractions and quality checking are necessary for my project in order to prepare the DNA for sequencing and to use in microarray experiments. Additionally, I performed microscopy and looked at high-performance liquid chromatography (HPLC) pigment ratios to identify which organisms are in the collected samples. The data from the microscopy and the HPLC pigment ratios provide support for the results yielded from the DNA sequences and microarrays.

  10. Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Harding, Lawrence W., Jr.; Mallonee, Michael E.; Perry, Elgin S.; Miller, W. David; Adolf, Jason E.; Gallegos, Charles L.; Paerl, Hans W.

    2016-03-01

    Variable climatic conditions strongly influence phytoplankton dynamics in estuaries globally. Our study area is Chesapeake Bay, a highly productive ecosystem providing natural resources, transportation, and recreation for nearly 16 million people inhabiting a 165,000-km2 watershed. Since World War II, nutrient over-enrichment has led to multiple ecosystem impairments caused by increased phytoplankton biomass as chlorophyll-a (chl-a). Doubled nitrogen (N) loadings from 1945–1980 led to increased chl-a, reduced water clarity, and low dissolved oxygen (DO), while decreased N loadings from 1981–2012 suggest modest improvement. The recent 30+ years are characterized by high inter-annual variability of chl-a, coinciding with irregular dry and wet periods, complicating the detection of long-term trends. Here, we synthesize time-series data for historical and recent N loadings (TN, NO2 + NO3), chl-a, floral composition, and net primary productivity (NPP) to distinguish secular changes caused by nutrient over-enrichment from spatio-temporal variability imposed by climatic conditions. Wet years showed higher chl-a, higher diatom abundance, and increased NPP, while dry years showed lower chl-a, lower diatom abundance, and decreased NPP. Our findings support a conceptual model wherein variable climatic conditions dominate recent phytoplankton dynamics against a backdrop of nutrient over-enrichment, emphasizing the need to separate these effects to gauge progress toward improving water quality in estuaries.

  11. Environmental Conditions Determine the Course and Outcome of Phytoplankton Chytridiomycosis.

    PubMed

    Rohrlack, Thomas; Haande, Sigrid; Molversmyr, Åge; Kyle, Marcia

    2015-01-01

    Chytrid fungi are highly potent parasites of phytoplankton. They are thought to force phytoplankton organisms into an evolutionary arms race with high population diversity as the outcome. The underlying selection regime is known as Red Queen dynamics. However, our study suggests a more complex picture for chytrid parasitism in the cyanobacterium Planktothrix. Laboratory experiments identified a "cold thermal refuge", inside which Planktothrix can grow without chytrid infection. A field study in two Norwegian lakes underlined the ecological significance of this finding. The study utilized sediment DNA as a biological archive in combination with existing monitoring data. In one lake, temperature and light conditions forced Planktothrix outside the thermal refuge for most of the growing season. This probably resulted in Red Queen dynamics as suggested by a high parasitic pressure exerted by chytrids, an increase in Planktothrix genotype diversity over time, and a correlation between Planktothrix genotype diversity and duration of bloom events. In the second lake, a colder climate allowed Planktothrix to largely stay inside the thermal refuge. The parasitic pressure exerted by chytrids and Planktothrix genotype diversity remained low, indicating that Planktothrix successfully evaded the Red Queen dynamics. Episodic Planktothrix blooms were observed during spring and autumn circulation, in the metalimnion or under the ice. Interestingly, both lakes were dominated by the same or related Planktothrix genotypes. Taken together, our data suggest that, depending on environmental conditions, chytrid parasitism can impose distinct selection regimes on conspecific phytoplankton populations with similar genotype composition, causing these populations to behave and perhaps to evolve differently. PMID:26714010

  12. Selection of phytoplankton species in culture by gradual salinity changes

    NASA Astrophysics Data System (ADS)

    Rijstenbil, J. W.

    Continuous cultures of mixed phytoplankton populations were subjected to gradual salinity changes. The phytoplankton was exposed to defined regimes of high, low or fluctuating salinity, in artificial brackish media. In several experiments ammonium was the limiting nutrient. A rapid selection process was observed in natural phytoplankton assemblages. A gradual freshening caused the dominance of Chaetoceros mülleri at low salinity (S = 5). Skeletonema costatum became dominant at higher, constant or fluctuating salinities, accompanied by Ditylum brightwellii in low cell numbers. Ammonium limitation was not achieved in this experiment. Competition for ammonium was studied in a second experiment, using an inoculum of two species. At S = 18 D. brighwellii became the dominant species in this competition. A minor shift towards S = 15 reversed the affinities for ammonium, and S. costatum won the competition. At S = 8 S. costatum had the highest affinity for ammonium after a period of osmotic adjustment. Ammonium became limiting when salinities arrived at constant meso- or polyhaline levels. Both species were able to grow in fluctuating osmotic environments (S = 5 to 19). The growth of D. brightwellii decreased below S = 8 and after repeated variations of the salinity. These salinity fluctuations suppressed growth and ammonium uptake of both species, thus preventing ammonium limitation. These competition experiments indicate that unstable salinity may stimulate the mass development of S. costatum in brackish lakes.

  13. Carbon-based ocean productivity and phytoplankton physiology from space

    NASA Astrophysics Data System (ADS)

    Behrenfeld, Michael J.; Boss, Emmanuel; Siegel, David A.; Shea, Donald M.

    2005-03-01

    Ocean biogeochemical and ecosystem processes are linked by net primary production (NPP) in the ocean's surface layer, where inorganic carbon is fixed by photosynthetic processes. Determinations of NPP are necessarily a function of phytoplankton biomass and its physiological status, but the estimation of these two terms from space has remained an elusive target. Here we present new satellite ocean color observations of phytoplankton carbon (C) and chlorophyll (Chl) biomass and show that derived Chl:C ratios closely follow anticipated physiological dependencies on light, nutrients, and temperature. With this new information, global estimates of phytoplankton growth rates (μ) and carbon-based NPP are made for the first time. Compared to an earlier chlorophyll-based approach, our carbon-based values are considerably higher in tropical oceans, show greater seasonality at middle and high latitudes, and illustrate important differences in the formation and demise of regional algal blooms. This fusion of emerging concepts from the phycological and remote sensing disciplines has the potential to fundamentally change how we model and observe carbon cycling in the global oceans.

  14. Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay.

    PubMed

    Harding, Lawrence W; Mallonee, Michael E; Perry, Elgin S; Miller, W David; Adolf, Jason E; Gallegos, Charles L; Paerl, Hans W

    2016-01-01

    Variable climatic conditions strongly influence phytoplankton dynamics in estuaries globally. Our study area is Chesapeake Bay, a highly productive ecosystem providing natural resources, transportation, and recreation for nearly 16 million people inhabiting a 165,000-km(2) watershed. Since World War II, nutrient over-enrichment has led to multiple ecosystem impairments caused by increased phytoplankton biomass as chlorophyll-a (chl-a). Doubled nitrogen (N) loadings from 1945-1980 led to increased chl-a, reduced water clarity, and low dissolved oxygen (DO), while decreased N loadings from 1981-2012 suggest modest improvement. The recent 30+ years are characterized by high inter-annual variability of chl-a, coinciding with irregular dry and wet periods, complicating the detection of long-term trends. Here, we synthesize time-series data for historical and recent N loadings (TN, NO2 + NO3), chl-a, floral composition, and net primary productivity (NPP) to distinguish secular changes caused by nutrient over-enrichment from spatio-temporal variability imposed by climatic conditions. Wet years showed higher chl-a, higher diatom abundance, and increased NPP, while dry years showed lower chl-a, lower diatom abundance, and decreased NPP. Our findings support a conceptual model wherein variable climatic conditions dominate recent phytoplankton dynamics against a backdrop of nutrient over-enrichment, emphasizing the need to separate these effects to gauge progress toward improving water quality in estuaries. PMID:27026279

  15. Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay.

    PubMed

    Harding, Lawrence W; Mallonee, Michael E; Perry, Elgin S; Miller, W David; Adolf, Jason E; Gallegos, Charles L; Paerl, Hans W

    2016-03-30

    Variable climatic conditions strongly influence phytoplankton dynamics in estuaries globally. Our study area is Chesapeake Bay, a highly productive ecosystem providing natural resources, transportation, and recreation for nearly 16 million people inhabiting a 165,000-km(2) watershed. Since World War II, nutrient over-enrichment has led to multiple ecosystem impairments caused by increased phytoplankton biomass as chlorophyll-a (chl-a). Doubled nitrogen (N) loadings from 1945-1980 led to increased chl-a, reduced water clarity, and low dissolved oxygen (DO), while decreased N loadings from 1981-2012 suggest modest improvement. The recent 30+ years are characterized by high inter-annual variability of chl-a, coinciding with irregular dry and wet periods, complicating the detection of long-term trends. Here, we synthesize time-series data for historical and recent N loadings (TN, NO2 + NO3), chl-a, floral composition, and net primary productivity (NPP) to distinguish secular changes caused by nutrient over-enrichment from spatio-temporal variability imposed by climatic conditions. Wet years showed higher chl-a, higher diatom abundance, and increased NPP, while dry years showed lower chl-a, lower diatom abundance, and decreased NPP. Our findings support a conceptual model wherein variable climatic conditions dominate recent phytoplankton dynamics against a backdrop of nutrient over-enrichment, emphasizing the need to separate these effects to gauge progress toward improving water quality in estuaries.

  16. Terrestrial carbohydrates support freshwater zooplankton during phytoplankton deficiency.

    PubMed

    Taipale, Sami J; Galloway, Aaron W E; Aalto, Sanni L; Kahilainen, Kimmo K; Strandberg, Ursula; Kankaala, Paula

    2016-01-01

    Freshwater food webs can be partly supported by terrestrial primary production, often deriving from plant litter of surrounding catchment vegetation. Although consisting mainly of poorly bioavailable lignin, with low protein and lipid content, the carbohydrates from fallen tree leaves and shoreline vegetation may be utilized by aquatic consumers. Here we show that during phytoplankton deficiency, zooplankton (Daphnia magna) can benefit from terrestrial particulate organic matter by using terrestrial-origin carbohydrates for energy and sparing essential fatty acids and amino acids for somatic growth and reproduction. Assimilated terrestrial-origin fatty acids from shoreline reed particles exceeded available diet, indicating that Daphnia may convert a part of their dietary carbohydrates to saturated fatty acids. This conversion was not observed with birch leaf diets, which had lower carbohydrate content. Subsequent analysis of 21 boreal and subarctic lakes showed that diet of herbivorous zooplankton is mainly based on high-quality phytoplankton rich in essential polyunsaturated fatty acids. The proportion of low-quality diets (bacteria and terrestrial particulate organic matter) was <28% of the assimilated carbon. Taken collectively, the incorporation of terrestrial carbon into zooplankton was not directly related to the concentration of terrestrial organic matter in experiments or lakes, but rather to the low availability of phytoplankton. PMID:27510848

  17. [Temporal dynamics of phytoplankton and nutrients during red tides].

    PubMed

    Qiu, Yaowen; Zhu, Liangsheng; Li, Jinrong; Liang, Song; Qi, Yuzao

    2003-07-01

    The relationships between temporal dynamics of phytoplankton density and nutrients (NO3-, NH4+, PO4(3-), SiO3(2-), Fe) contents in the water body at Aotou waters of Daya Bay during red tide were comprehensively analysed based on the fixed position investigation of red tide in the summer of 2000 and the several years investigation data by using grey linear regression model. The relationships between phytoplankton cell density and chlorophyll a content were also analysed. The results showed that the predicted values were well consistent with the measurement values, and their correlation coefficients were between 0.51-0.83. Red tide might break out if chlorophyll a contents in water body were larger than 5.8 micrograms.dm-3. The study could provide a simple effective method to forecast red tide by sampling water samples to analyse chlorophyll a concentration, or using SeaWiFS data, and then, to calculating phytoplankton density. In addition, the primary productivity of the water areas was controlled by phosphorus.

  18. Standing stock and production rate of phytoplankton and a red tide outbreak in a heavily eutrophic embayment, Dokai Bay, Japan.

    PubMed

    Tada, K; Morishita, M; Hamada, K; Montani, S; Yamada, M

    2001-11-01

    The seasonal variation of phytoplankton biomass and primary productivity in a heavily eutrophic embayment, Dokai Bay, Japan, was determined. Dokai Bay was characterized by high phytoplankton biomass and productivity during summer and low phytoplankton biomass and productivity during other seasons. The results suggested that phytoplankton growth was limited by only irradiance and water temperature under the high nutrient concentrations available for phytoplankton growth in the entire year. Moreover, in spite of sufficient nutrient for phytoplankton growth in the entire year, a red tide occurred only in the summer period in this bay. Our results suggested that a red tide occurred by the high phytoplankton growth rate in the summer season, but in other periods surface phytoplankton was flushed out of the bay before forming the red tide, because phytoplankton growth rate was low and could not form the red tide due to low irradiance and low water temperature.

  19. Phytoplankton depth profiles and their transitions near the critical sinking velocity.

    PubMed

    Kolokolnikov, Theodore; Ou, Chunhua; Yuan, Yuan

    2009-07-01

    We consider a simple phytoplankton model introduced by Shigesada and Okubo which incorporates the sinking and self-shading effect of the phytoplankton. The amount of light the phytoplankton receives is assumed to be controlled by the density of the phytoplankton population above the given depth. We show the existence of non-homogeneous solutions for any water depth and study their profiles and stability. Depending on the sinking rate of the phytoplankton, light intensity and water depth, the plankton can concentrate either near the surface, at the bottom of the water column, or both, resulting in a "double-peak" profile. As the buoyancy passes a certain critical threshold, a sudden change in the phytoplankton profile occurs. We quantify this transition using asymptotic techniques. In all cases we show that the profile is locally stable. This generalizes the results of Shigesada and Okubo where infinite depth was considered.

  20. Flood pulse influence on phytoplankton community of the Aksu Stream, Giresun, Turkey.

    PubMed

    Soylu, Elif Neyran

    2015-01-01

    Flood pulse influence on phytoplankton communities of the Aksu Stream, Giresun, Turkey were studied between December 2008 and December 2009. The phytoplankton communities consisted of 54 species. The number of species and diversity of phytoplankton showed seasonal variation, being high in rainy season. As a consequence of the flood which occurred twice in July 2009, phytoplankton environment changed physically and chemically, which resulted in an alteration in the composition of phytoplankton community. The phytoplankton community that existed previous to the flood event, had been dominated by Hantzschia amphioxys but was replaced by Nitzschia palea and a teratological form of Fragilaria sp. Presence of teratological form of diatom in the stream indicated unfavourable conditions in this region.

  1. The search for phytoplankton applied remote sensing to the Barataria basin

    SciTech Connect

    Massasati, A.S.; Marstall, T.W.

    1997-08-01

    Mapping phytoplankton has been and still is an important issue in determining the productivity of major water bodies in the United States and around the world. While traditional procedures require an immense amount of time and manpower, remote sensing/GIS technology shows promise for a more cost effective and comprehensive solution for the mapping problem. Satellite Thematic Mapper and airborne CAMS data are used to identify and delineate phytoplankton. The physical properties of phytoplankton represented per pixel are measured and characterized into classes so that objective and statistically significant statements are made at the most elementary level. On this qualitative foundation, pixels are aggregated into units of phytoplankton concentration. These pixels are characterized by class groups and compared to well known facts and field observations of phytoplankton to determine its concentration. The procedure has been applied to the Barataria Bay drainage basin in Southern Louisiana and showed strong possibilities in mapping phytoplankton concentrations.

  2. Freezing of living cells

    SciTech Connect

    Mazur, P.

    1985-01-01

    It can be calculated that a living cell will survive more than 5000 years at -196/sup 0/C. This ability to essentially stop biological time has important implications in medicine and agriculture, and in biological research. In medicine the chief implications are in the banking of transplantable tissues and organs and in in vitro fertilization. In agriculture the applications stem in part from the role of frozen embryos in amplifying the number of calves produced by high quanlity cows. The problem is how can cells survive both the cooling to such very low temperatures and the return to normal temperatures. The answers involve fundamental characteristics of cells such as the permeability of their surface membranes to water and solutes. These characteristics determine whether or not cells undergo lethal internal ice formation and other response during freezing and thawing. 27 refs., 12 figs.

  3. Independent Living.

    ERIC Educational Resources Information Center

    Nathanson, Jeanne H., Ed.

    1994-01-01

    This issue of "OSERS" addresses the subject of independent living of individuals with disabilities. The issue includes a message from Judith E. Heumann, the Assistant Secretary of the Office of Special Education and Rehabilitative Services (OSERS), and 10 papers. Papers have the following titles and authors: "Changes in the Rehabilitation Act of…

  4. Healthy Living

    MedlinePlus

    ... health. Some you cannot control, such as your genetic makeup or your age. But you can make changes to your lifestyle. By taking steps toward healthy living, you can help reduce your risk of heart disease, cancer, stroke and other serious diseases: Get ...

  5. Retiring Lives

    ERIC Educational Resources Information Center

    Carnell, Eileen, Ed.; Lodge, Caroline, Ed.

    2009-01-01

    "Retiring Lives" presents fourteen personal real life stories from people at various stages of retiring. Each author recounts their own story about retiring, bringing together many aspects of the experiences: the social, psychological and practical. These inspirational and illustrated stories will encourage the reader to hold up these experiences…

  6. Outdoor Living.

    ERIC Educational Resources Information Center

    Cotter, Kathy

    Course objectives and learning activities are contained in this curriculum guide for a 16-week home economics course which teaches cooking and sewing skills applicable to outdoor living. The course goals include increasing male enrollment in the home economics program, developing students' self-confidence and ability to work in groups, and…

  7. Living History

    ERIC Educational Resources Information Center

    Walsh, Mark

    2005-01-01

    John Tinker and Mary Beth Tinker are back in a classroom in their hometown, once again wearing black armbands and drawing attention to a war. Now in their 50s, the siblings are living symbols of constitutional rights for secondary school students. In 1965, they and a handful of others were suspended for wearing black armbands to their public…

  8. Controls on marine carbon fluxes via phytoplankton-mesoplankton interactions in continental shelf waters

    SciTech Connect

    Shapiro, L.; Sherr, B.F.; Sherr, E.B.

    1992-01-01

    The project is an in-depth evaluation of the phytoplankton [yields] phagotrophic protist trophic link. The principal goals of the first year are to develop methods for the second phase of the Ocean Margins Program: investigations in the field. Our project is focused on: impact of grazing by phagotrophic protists on phytoplankton; impact of grazing by phagotrophic protists on bacterioplankton; taxon-specific growth rates of phytoplankton in situ, as they are affected by phagotrophy rates.

  9. Interannual Variation in Phytoplankton Primary Production at a Global Scale

    NASA Technical Reports Server (NTRS)

    Rousseaux, Cecile Severine; Gregg, Watson W.

    2013-01-01

    We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of four phytoplankton groups to the total primary production. First, we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998-2011. Globally, diatoms contributed the most to the total phytoplankton production ((is)approximately 50%, the equivalent of 20 PgC·y1). Coccolithophores and chlorophytes each contributed approximately 20% ((is) approximately 7 PgC·y1) of the total primary production and cyanobacteria represented about 10% ((is) approximately 4 PgC·y1) of the total primary production. Primary production by diatoms was highest in the high latitudes ((is) greater than 40 deg) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998-2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4% (1-2 PgC·y1). We assessed the effects of climate variability on group-specific primary production using global (i.e., Multivariate El Niño Index, MEI) and "regional" climate indices (e.g., Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation (p (is) less than 0.05) between the MEI and the group-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatoms/cyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by SAM had only a limited effect

  10. Synchronous dynamics and correlations between bacteria and phytoplankton in a subtropical drinking water reservoir.

    PubMed

    Liu, Lemian; Yang, Jun; Lv, Hong; Yu, Zheng

    2014-10-01

    Both phytoplankton and bacteria are key and abundant components of aquatic ecosystems and play pivotal roles in maintaining ecosystem structure and function. However, the extent to which phytoplankton community succession influences changes in bacterial community composition (BCC) is largely unknown. In this study, we evaluated the correlations between bacteria and phytoplankton communities and determined the relative contribution of phytoplankton community succession to temporal variation of BCC in a subtropical drinking water reservoir (Tingxi Reservoir, southeast China). Bacterial communities were investigated by quantitative PCR and 454 pyrosequencing of 16S rRNA genes, while phytoplankton communities were analyzed by light microscopy. A remarkable seasonal succession from Cyanophyta to Bacillariophyta was observed during the study period, and this succession can accurately predict the distribution and abundance of the bacterial OTUs based on the discriminant function analysis. Association networks revealed that 38 of the 46 abundant bacterial OTUs exhibited significant correlations with phytoplankton. More interestingly, the positive correlations dominated the associated network, which may suggest that facilitative correlations between phytoplankton and bacteria are more important than inhibitory correlations in the Tingxi Reservoir. In addition, some bacterial OTUs were closely correlated with the dynamics of Microcystis, and they were affiliated with the divisions Acidobacteria, Actinobacteria, and Proteobacteria. Structural equation model showed that succession of phytoplankton community explained the largest part of temporal variation in BCC. Therefore, our data suggest that the distinct succession of phytoplankton community may mediate the temporal dynamics of bacterial community in the Tingxi Reservoir.

  11. Exploring the Link between Micronutrients and Phytoplankton in the Southern Ocean during the 2007 Austral Summer

    PubMed Central

    Hassler, Christel S.; Sinoir, Marie; Clementson, Lesley A.; Butler, Edward C. V.

    2012-01-01

    Bottle assays and large-scale fertilization experiments have demonstrated that, in the Southern Ocean, iron often controls the biomass and the biodiversity of primary producers. To grow, phytoplankton need numerous other trace metals (micronutrients) required for the activity of key enzymes and other intracellular functions. However, little is known of the potential these other trace elements have to limit the growth of phytoplankton in the Southern Ocean. This study, investigates whether micronutrients other than iron (Zn, Co, Cu, Cd, Ni) need to be considered as parameters for controlling the phytoplankton growth from the Australian Subantarctic to the Polar Frontal Zones during the austral summer 2007. Analysis of nutrient disappearance ratios, suggested differential zones in phytoplankton growth control in the study region with a most intense phytoplankton growth limitation between 49 and 50°S. Comparison of micronutrient disappearance ratios, metal distribution, and biomarker pigments used to identify dominating phytoplankton groups, demonstrated that a complex interaction between Fe, Zn, and Co might exist in the study region. Although iron remains the pivotal micronutrient for phytoplankton growth and community structure, Zn and Co are also important for the nutrition and the growth of most of the dominating phytoplankton groups in the Subantarctic Zone region. Understanding of the parameters controlling phytoplankton is paramount, as it affects the functioning of the Southern Ocean, its marine resources and ultimately the global carbon cycle. PMID:22787456

  12. Exploring the Link between Micronutrients and Phytoplankton in the Southern Ocean during the 2007 Austral Summer.

    PubMed

    Hassler, Christel S; Sinoir, Marie; Clementson, Lesley A; Butler, Edward C V

    2012-01-01

    Bottle assays and large-scale fertilization experiments have demonstrated that, in the Southern Ocean, iron often controls the biomass and the biodiversity of primary producers. To grow, phytoplankton need numerous other trace metals (micronutrients) required for the activity of key enzymes and other intracellular functions. However, little is known of the potential these other trace elements have to limit the growth of phytoplankton in the Southern Ocean. This study, investigates whether micronutrients other than iron (Zn, Co, Cu, Cd, Ni) need to be considered as parameters for controlling the phytoplankton growth from the Australian Subantarctic to the Polar Frontal Zones during the austral summer 2007. Analysis of nutrient disappearance ratios, suggested differential zones in phytoplankton growth control in the study region with a most intense phytoplankton growth limitation between 49 and 50°S. Comparison of micronutrient disappearance ratios, metal distribution, and biomarker pigments used to identify dominating phytoplankton groups, demonstrated that a complex interaction between Fe, Zn, and Co might exist in the study region. Although iron remains the pivotal micronutrient for phytoplankton growth and community structure, Zn and Co are also important for the nutrition and the growth of most of the dominating phytoplankton groups in the Subantarctic Zone region. Understanding of the parameters controlling phytoplankton is paramount, as it affects the functioning of the Southern Ocean, its marine resources and ultimately the global carbon cycle.

  13. PHYTOPLANKTON DYNAMICS IN A GULF OF MEXICO ESTUARY: THE POTENTIAL USE OF PHOTO-PHYSIOLOGY AND ALGAL PHOSPHATASE ACTIVITY TO PREDICT NUTRIENT STATUS.

    EPA Science Inventory

    Development of rapid techniques to determine in situ phytoplankton nutrient status could facilitate understanding of phytoplankton growth and species succession. Variable fluorescence parameters of phytoplankton communities can be easily and rapidly measured, and changes in param...

  14. Phytoplankton Distribution in Relation to Environmental Drivers on the North West European Shelf Sea

    PubMed Central

    Siemering, Beatrix; Bresnan, Eileen; Painter, Stuart C.; Daniels, Chris J.; Inall, Mark; Davidson, Keith

    2016-01-01

    The edge of the North West European Shelf (NWES) is characterised by a steep continental slope and a northward flowing slope current. These topographic/hydrographic features separate oceanic water and shelf water masses hence potentially separate phytoplankton communities. The slope current may facilitate the advective transport of phytoplankton, with mixing at the shelf edge supporting nutrient supply and therefore phytoplankton production. On the west Scottish shelf in particular, little is known about the phytoplankton communities in and around the shelf break and adjacent waters. Hence, to improve our understanding of environmental drivers of phytoplankton communities, biological and environmental data were collected on seven cross-shelf transects across the Malin and Hebridean Shelves during autumn 2014. Density profiles indicated that shelf break and oceanic stations had a 100 m deep mixed surface layer while stations on the shelf were generally well mixed. Analysis of similarity and multidimensional scaling of phytoplankton counts revealed that phytoplankton communities on the shelf were significantly different to those found at the shelf break and at oceanic stations. Shelf stations were dominated by dinoflagellates, with diatoms contributing a maximum of 37% of cells. Shelf break and oceanic stations were also dinoflagellate dominated but displayed a lower species diversity. Significant difference between shelf and shelf break stations suggested that the continental slope limited cross shelf phytoplankton exchange. Northern and southern phytoplankton communities on the shelf were approximately 15% dissimilar while there was no latitudinal gradient for stations along the slope current, suggesting this current provided south to north connectivity. Fitting environmental data to phytoplankton ordination showed a significant relationship between phytoplankton community dissimilarities and nutrient concentrations and light availability on the shelf compared to

  15. Survival of Nannochloropsis Phytoplankton in Hypervelocity Impact Events up to Velocities of 6.07 km/s

    NASA Astrophysics Data System (ADS)

    Pasini, D. L. S.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2013-09-01

    Studies have previously been conducted to verify the survivability of living cells during hypervelocity impact events to test the panspermia and lithopanspermia hypothesis [1], [2]. It has been demonstrated that bacteria survive impacts up to 5.4 km s-1 (approx. shock pressure 30 GPa) - albeit with a low probability of survival [1] whilst larger more complex objects (such as seeds) break up at ~1 km s-1 [2]. The survivability of yeast spores in impacts up to 7.4 km s-1 has also recently been shown [3]. We demonstrate here the survivability of Nannochloropsis Phytoplankton, a eukaryotic photosynthesizing autotroph found in the 'euphotic zone'(sunlit surface layers of oceans) [4] at impact velocities up to 6.07 km s-1. Phytoplankton from a culture sample was frozen and then fired into water (to simulate oceanic impacts, as described in [5]) using a light gas gun (LGG) [6]. The water was then retrieved and placed into a sealed culture vessel and left under a constant light source to check the viability of any remnant organisms.

  16. Phytoplankton of the North Sea and its dynamics: A review

    NASA Astrophysics Data System (ADS)

    Reid, P. C.; Lancelot, C.; Gieskes, W. W. C.; Hagmeier, E.; Weichart, G.

    Phytoplankton is the major contributor to algal biomass and primary production of the North Sea, although crops of macroalgae can locally be up to 2000 g C.m -2 along the coast of the U.K. and Norway, and microphytobenthos dominates production in the shallow tidal flat areas bordering the coasts of England, the Netherlands, Germany and Denmark. Data collected since 1932 during the Continuous Plankton Recorder Survey show consistent patterns of geographical, seasonal and annual variation in the distribution of phytoplankton and its major taxonomic components. There is a trend of increased colouration in Recorder silks in the southern North Sea until approximately 1975 since when Colour levels (assumed to be indicative of algal biomass) have declined. In the eutrophic Dutch Wadden Sea the algal crop continued to increase; in Dutch coastal North Sea waters a trend of biomass increase reversed since 1984, apparently due to a reduction in Rhine river outflow. Long-term observations made at Helgoland since the 60's also show trends of increasing nutrients and phytoplankton biomass only to 1984. Adverse effects such as deoxygenation, foam formation and toxin production have been linked to mass concentrations of algae known as blooms. There is no evidence from existing reports for an increase in their frequency, although some years stand out with larger numbers. Occurrence of blooms can partly be explained by hydrographic conditions. More than 30 taxa are recognised as occurring in bloom proportions in the North Sea, approximately one third of which can be toxic. The crop of Bacillariophyceae (diatoms) is not likely to increase with eutrophication due to silicate limitation. An extensive subsurface maximum of armoured dinoflagellates, its abundance gouverned by hydrographic conditions, is the most characteristic feature of the central and northern North Sea in the summer months. Abundance, sometimes dominance, of picoplankton and of species that are not readily detected by

  17. Structure and dynamics of phytoplankton in an Amazon lake, Brazil.

    PubMed

    Silva, Ise de Goreth; Moura, Ariadne do Nascimento; Dantas, Enio Wocyli; Bittencourt-Oliveira, Maria do Carmo

    2010-12-01

    Natural lake systems represent important reservoirs for residential water supply, fish production, recreational activities and enjoyment of their natural beauty. Nevertheless, human impacts may affect their health status resulting in degradation and loss of biodiversity. The aim of the present study was to obtain data on the health status of a natural lake located in an indigenous reservation in the Brazilian Amazon, using the phytoplankton community changes along the rainy (June) and dry (November) seasons of 2006. We collected water (temperature, pH, Secchi depth and conductivity) and phytoplankton samples from the subsurface, middle of the water column, and approximately 30 cm above the bottom, over 24-hour sampling periods, from a central station in the lake. Samples taken from biotic and abiotic variables were correlated using canonical correspondence analysis (CCA). Results showed that the lake exhibited high temperatures in both seasons, and showed thermal stratification only during the rainy season. Dissolved oxygen exhibited a clinograde pattern in the rainy season and high oxygen in the hypolimnion in the dry season. In the rainy season, the water near the bottom was acidic, turbid and had a greater concentration of phosphorus. Dissolved oxygen, conductivity, pH, nitrite, total phosphorus and total dissolved phosphorus exhibited diel variations in the rainy season, whereas water temperature, dissolved oxygen, total nitrogen and total dissolved phosphorus exhibited significant differences between hours of the day in the dry season. The phytoplankton was represented by 39 taxa, and Chlorophyta showed the greatest species richness, totaling 25 taxa. Among Chlorophyta, desmids were the most diverse, accounting 52%. Bacillariophyta (nine species) was the second most diverse group. Cyanophyta was represented by three species, including Merismopedia tenuissima, the most abundant taxon. Despite the occurrence of taxa that indicate organic pollution, their biomass

  18. Environmental Conditions Determine the Course and Outcome of Phytoplankton Chytridiomycosis

    PubMed Central

    Haande, Sigrid; Molversmyr, Åge

    2015-01-01

    Chytrid fungi are highly potent parasites of phytoplankton. They are thought to force phytoplankton organisms into an evolutionary arms race with high population diversity as the outcome. The underlying selection regime is known as Red Queen dynamics. However, our study suggests a more complex picture for chytrid parasitism in the cyanobacterium Planktothrix. Laboratory experiments identified a “cold thermal refuge”, inside which Planktothrix can grow without chytrid infection. A field study in two Norwegian lakes underlined the ecological significance of this finding. The study utilized sediment DNA as a biological archive in combination with existing monitoring data. In one lake, temperature and light conditions forced Planktothrix outside the thermal refuge for most of the growing season. This probably resulted in Red Queen dynamics as suggested by a high parasitic pressure exerted by chytrids, an increase in Planktothrix genotype diversity over time, and a correlation between Planktothrix genotype diversity and duration of bloom events. In the second lake, a colder climate allowed Planktothrix to largely stay inside the thermal refuge. The parasitic pressure exerted by chytrids and Planktothrix genotype diversity remained low, indicating that Planktothrix successfully evaded the Red Queen dynamics. Episodic Planktothrix blooms were observed during spring and autumn circulation, in the metalimnion or under the ice. Interestingly, both lakes were dominated by the same or related Planktothrix genotypes. Taken together, our data suggest that, depending on environmental conditions, chytrid parasitism can impose distinct selection regimes on conspecific phytoplankton populations with similar genotype composition, causing these populations to behave and perhaps to evolve differently. PMID:26714010

  19. Nutrient and Phytoplankton Analysis of a Mediterranean Coastal Area

    NASA Astrophysics Data System (ADS)

    Sebastiá, M. T.; Rodilla, M.

    2013-01-01

    Identifying and quantifying the key anthropogenic nutrient input sources are essential to adopting management measures that can target input for maximum effect in controlling the phytoplankton biomass. In this study, three systems characterized by distinctive main nutrient sources were sampled along a Mediterranean coast transect. These sources were groundwater discharge in the Ahuir area, the Serpis river discharge in the Venecia area, and a submarine wastewater outfall 1,900 m from the coast. The study area includes factors considered important in determining a coastal area as a sensitive area: it has significant nutrient sources, tourism is a major source of income in the region, and it includes an area of high water residence time (Venecia area) which is affected by the harbor facilities and by wastewater discharges. We found that in the Ahuir and the submarine wastewater outfall areas, the effects of freshwater inputs were reduced because of a greater water exchange with the oligotrophic Mediterranean waters. On the other hand, in the Venecia area, the highest levels of nutrient concentration and phytoplankton biomass were attributed to the greatest water residence time. In this enclosed area, harmful dinoflagellates were detected ( Alexandrium sp. and Dinophysis caudata). If the planned enlargement of the Gandia Harbor proceeds, it may increase the vulnerability of this system and provide the proper conditions of confinement for the dinoflagellate blooms' development. Management measures should first target phosphorus inputs as this is the most potential-limiting nutrient in the Venecia area and comes from a point source that is easier to control. Finally, we recommend that harbor environmental management plans include regular monitoring of water quality in adjacent waters to identify adverse phytoplankton community changes.

  20. Nutrient and phytoplankton analysis of a Mediterranean coastal area.

    PubMed

    Sebastiá, M T; Rodilla, M

    2013-01-01

    Identifying and quantifying the key anthropogenic nutrient input sources are essential to adopting management measures that can target input for maximum effect in controlling the phytoplankton biomass. In this study, three systems characterized by distinctive main nutrient sources were sampled along a Mediterranean coast transect. These sources were groundwater discharge in the Ahuir area, the Serpis river discharge in the Venecia area, and a submarine wastewater outfall 1,900 m from the coast. The study area includes factors considered important in determining a coastal area as a sensitive area: it has significant nutrient sources, tourism is a major source of income in the region, and it includes an area of high water residence time (Venecia area) which is affected by the harbor facilities and by wastewater discharges. We found that in the Ahuir and the submarine wastewater outfall areas, the effects of freshwater inputs were reduced because of a greater water exchange with the oligotrophic Mediterranean waters. On the other hand, in the Venecia area, the highest levels of nutrient concentration and phytoplankton biomass were attributed to the greatest water residence time. In this enclosed area, harmful dinoflagellates were detected (Alexandrium sp. and Dinophysis caudata). If the planned enlargement of the Gandia Harbor proceeds, it may increase the vulnerability of this system and provide the proper conditions of confinement for the dinoflagellate blooms' development. Management measures should first target phosphorus inputs as this is the most potential-limiting nutrient in the Venecia area and comes from a point source that is easier to control. Finally, we recommend that harbor environmental management plans include regular monitoring of water quality in adjacent waters to identify adverse phytoplankton community changes.

  1. Remote Sensing the Phytoplankton Seasonal Succession of the Red Sea

    PubMed Central

    Brewin, Robert J. W.; Stenchikov, Georgiy; Hoteit, Ibrahim

    2013-01-01

    The Red Sea holds one of the most diverse marine ecosystems, primarily due to coral reefs. However, knowledge on large-scale phytoplankton dynamics is limited. Analysis of a 10-year high resolution Chlorophyll-a (Chl-a) dataset, along with remotely-sensed sea surface temperature and wind, provided a detailed description of the spatiotemporal seasonal succession of phytoplankton biomass in the Red Sea. Based on MODIS (Moderate-resolution Imaging Spectroradiometer) data, four distinct Red Sea provinces and seasons are suggested, covering the major patterns of surface phytoplankton production. The Red Sea Chl-a depicts a distinct seasonality with maximum concentrations seen during the winter time (attributed to vertical mixing in the north and wind-induced horizontal intrusion of nutrient-rich water in the south), and minimum concentrations during the summer (associated with strong seasonal stratification). The initiation of the seasonal succession occurs in autumn and lasts until early spring. However, weekly Chl-a seasonal succession data revealed that during the month of June, consistent anti-cyclonic eddies transfer nutrients and/or Chl-a to the open waters of the central Red Sea. This phenomenon occurs during the stratified nutrient depleted season, and thus could provide an important source of nutrients to the open waters. Remotely-sensed synoptic observations highlight that Chl-a does not increase regularly from north to south as previously thought. The Northern part of the Central Red Sea province appears to be the most oligotrophic area (opposed to southern and northern domains). This is likely due to the absence of strong mixing, which is apparent at the northern end of the Red Sea, and low nutrient intrusion in comparison with the southern end. Although the Red Sea is considered an oligotrophic sea, sporadic blooms occur that reach mesotrophic levels. The water temperature and the prevailing winds control the nutrient concentrations within the euphotic zone

  2. Short-term changes in population structure and vertical distribution of mesopelagic copepods during the spring phytoplankton bloom in the Oyashio region

    NASA Astrophysics Data System (ADS)

    Abe, Yoshiyuki; Ishii, Ken-ichiro; Yamaguchi, Atsushi; Imai, Ichiro

    To evaluate the responses to the spring phytoplankton bloom, short-term changes in population structure and vertical distribution of mesopelagic copepods (Gaetanus simplex, Gaidius variabilis, Pleuromamma scutullata, Paraeuchaeta elongata, P. birostrata, Heterorhabdus tanneri and Heterostylites major) were studied in the Oyashio region. Samples were collected with a 60 μm mesh VMPS from 9 strata between 0 and 1000 m both day and night on five occasions during March-April 2007. All the species except Heterorhabdidae species performed reproduction during the spring phytoplankton bloom, while no recruitment to copepodid stages was detected because the newly born individuals were eggs or nauplii. The shallower-living species, G. simplex, P. scutullata and P. elongata had nocturnal ascent diel vertical migration (DVM). While suspension feeding copepods cease DVM after 11 April (P. scutullata) or 23 April (G. simplex), carnivorous P. elongata continued DVM over the study period. Since the gut contents of G. simplex showed a nocturnal increment even in the period of no DVM (23 and 29 April), they might be feeding at depth without DVM. Thus, the cessation of DVM in mesopelagic suspension feeding copepods would be induced by the increase of sinking particles (e.g. food for suspension feeders) during the spring phytoplankton bloom.

  3. Variability of chromophytic phytoplankton in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Li, Binglin; Karl, David M.; Letelier, Ricardo M.; Bidigare, Robert R.; Church, Matthew J.

    2013-09-01

    Eukaryotic phytoplankton play important roles in regulating productivity and material export in oligotrophic ocean ecosystems. In this study, we examined the vertical and temporal variability in planktonic Chromalveolate (hereafter chromophyte) assemblages over a 2-year period (2007-2009) at Station ALOHA (22°45'N, 158°W) in the North Pacific Subtropical Gyre (NPSG). Polymerase chain reaction (PCR) amplification, cloning, and sequencing of form ID rbcL genes from samples collected at nearly monthly intervals provided information on the diversity, abundances, and variability associated with chromophytic phytoplankton. Despite persistently oligotrophic conditions, the euphotic zone of this habitat supported a phylogenetically diverse assemblage of chromophytic algae, including representatives of various genera of diatoms, pelagophytes, prymnesiophytes, and dinoflagellates. Quantitative PCR (qPCR) amplification of diatom, prymnesiophyte, and pelagophyte rbcL phylotypes revealed that the population structure of these assemblages was highly variable in time, with gene abundances often varying more than an order of magnitude between successive months. Diatom rbcL genes were typically the most abundant in both the upper and lower regions of the euphotic zone, while rbcL gene abundances of the prymnesiophytes and pelagophytes were significantly greater (One-way ANOVA, P<0.05) in the lower regions of the euphotic zone (75-125 m) than in the upper euphotic zone (5-45 m). Similarly, we observed elevated concentrations of 19-hexanoxyfucoxanthin and 19-butanoxyfucoxanin (diagnostic pigments of prymnesiophytes and pelagophytes, respectively) in the lower euphotic zone, while concentrations of fucoxanthin (a diagnostic diatom pigment) demonstrated less vertical structure. Analyses of samples collected using sediment traps deployed at 150 m revealed that members of diatoms, prymnesiophytes, and pelagophytes all contributed to material export out of the upper ocean. None of the

  4. Temporal and spatial variability of phytoplankton in a subtropical ecosystem

    SciTech Connect

    Bienfang, P.K.; Szyper, J.P.; Okamoto, M.P.; Noda, E.K.

    1984-05-01

    Phytoplankton conditions were examined at two stations off the leeward coast of Oahu, Hawaii. Significant temporal variability was observed in the chlorophyll and pheopigment data. Significant temporal and spatial variability was observed in the ATP and productivity data. Dissimilar inflection depths for nitrate, phosphate, and silicate indicate nitrate availability and phosphate limitation in the lower photic zone. Production between January and May was 11 times that between May and November; productivity below 44 m accounted for most of this variation. Biological and physical analyses indicate that variations in vertical nutrient supply, related to differences in current shear, caused this temporal variaton.

  5. Phosphate and iron limitation of phytoplankton biomass in Lake Tahoe

    USGS Publications Warehouse

    Chang, Cecily C.Y.; Kuwabara, J.S.; Pasilis, S.P.

    1992-01-01

    Bioassays were carried out to assess the response of inoculated, single-species diatom populations (Cyclotella meneghiniana and Aulocosiera italica) to additions of synthetic chelators and phosphate. A chemical speciation model along with the field data was also used to predict how trace metal speciation, and hence bioavailability, was affected by the chelator additions. Results suggest that phosphate was limiting to phytoplankton biomass. Other solutes, Fe in particular, may also exert controls on biomass. Nitrate limitation seems less likely, although Fe-limiting conditions may have led to an effective N limitation because algae require Fe to carry out nitrate reduction. -from Authors

  6. Phytoplankton of the North Sea and its dynamics: A review

    NASA Astrophysics Data System (ADS)

    Reid, P. C.; Lancelot, C.; Gieskes, W. W. C.; Hagmeier, E.; Weichart, G.

    Phytoplankton is the major contributor to algal biomass and primary production of the North Sea, although crops of macroalgae can locally be up to 2000 g C.m -2 along the coast of the U.K. and Norway, and microphytobenthos dominates production in the shallow tidal flat areas bordering the coasts of England, the Netherlands, Germany and Denmark. Data collected since 1932 during the Continuous Plankton Recorder Survey show consistent patterns of geographical, seasonal and annual variation in the distribution of phytoplankton and its major taxonomic components. There is a trend of increased colouration in Recorder silks in the southern North Sea until approximately 1975 since when Colour levels (assumed to be indicative of algal biomass) have declined. In the eutrophic Dutch Wadden Sea the algal crop continued to increase; in Dutch coastal North Sea waters a trend of biomass increase reversed since 1984, apparently due to a reduction in Rhine river outflow. Long-term observations made at Helgoland since the 60's also show trends of increasing nutrients and phytoplankton biomass only to 1984. Adverse effects such as deoxygenation, foam formation and toxin production have been linked to mass concentrations of algae known as blooms. There is no evidence from existing reports for an increase in their frequency, although some years stand out with larger numbers. Occurrence of blooms can partly be explained by hydrographic conditions. More than 30 taxa are recognised as occurring in bloom proportions in the North Sea, approximately one third of which can be toxic. The crop of Bacillariophyceae (diatoms) is not likely to increase with eutrophication due to silicate limitation. An extensive subsurface maximum of armoured dinoflagellates, its abundance gouverned by hydrographic conditions, is the most characteristic feature of the central and northern North Sea in the summer months. Abundance, sometimes dominance, of picoplankton and of species that are not readily detected by

  7. Large yearly production of phytoplankton in the Western bering strait.

    PubMed

    Sambrotto, R N; Goering, J J; McRoy, C P

    1984-09-14

    Production in the western Bering Strait is estimated at 324 grams of carbon per square meter per year over 2.12x 10(4) square kilometers. An ice-reduced growing season makes this large amount of primary production unexpected, but it is consistent with the area's large upper trophic level stocks. The productivity is fueled by a cross-shelf flow of nutrient-rich water from the Bering Sea continental slope. This phytoplankton production system from June through September is analogous to a laboratory continuous culture. PMID:17782420

  8. The method of multispectral image processing of phytoplankton processing for environmental control of water pollution

    NASA Astrophysics Data System (ADS)

    Petruk, Vasil; Kvaternyuk, Sergii; Yasynska, Victoria; Kozachuk, Anastasia; Kotyra, Andrzej; Romaniuk, Ryszard S.; Askarova, Nursanat

    2015-12-01

    The paper presents improvement of the method of environmental monitoring of water bodies based on bioindication by phytoplankton, which identify phytoplankton particles carried out on the basis of comparison array multispectral images using Bayesian classifier of solving function based on Mahalanobis distance. It allows to evaluate objectively complex anthropogenic and technological impacts on aquatic ecosystems.

  9. A prospective study of marine phytoplankton and reported illness among recreational beachgoers in Puerto Rico, 2009

    EPA Science Inventory

    BACKGROUND: Blooms of marine phytoplankton may adversely affect human health. The potential public health impact of low-level exposures is not well established, and few prospective cohort studies of recreational exposures to marine phytoplankton have been conducted.OBJECTIVE: We ...

  10. PHYTOPLANKTON AND ZOOPLANKTON SEASONAL DYNAMICS IN A SUBTROPICAL ESTUARY: IMPORTANCE OF CYANOBACTERIA

    EPA Science Inventory

    Murrell, Michael C. and Emile M. Lores. 2004. Phytoplankton and Zooplankton Seasonal Dynamics in a Subtropical Estuary: Importance of Cyanobacteria. J. Plankton Res. 26(3):371-382. (ERL,GB 1190).

    A seasonal study of phytoplankton and zooplankton was conducted from 1999-20...

  11. Combatting cyanobacteria with hydrogen peroxide: a laboratory study on the consequences for phytoplankton community and diversity

    PubMed Central

    Weenink, Erik F. J.; Luimstra, Veerle M.; Schuurmans, Jasper M.; Van Herk, Maria J.; Visser, Petra M.; Matthijs, Hans C. P.

    2015-01-01

    Experiments with different phytoplankton densities in lake samples showed that a high biomass increases the rate of hydrogen peroxide (HP) degradation and decreases the effectiveness of HP in the selective suppression of dominant cyanobacteria. However, selective application of HP requires usage of low doses only, accordingly this defines the limits for use in lake mitigation. To acquire insight into the impact of HP on other phytoplankton species, we have followed the succession of three phytoplankton groups in lake samples that were treated with different concentrations of HP using a taxa-specific fluorescence emission test. This fast assay reports relatively well on coarse changes in the phytoplankton community; the measured data and the counts from microscopical analysis of the phytoplankton matched quite well. The test was used to pursue HP application in a Planktothrix agardhii-dominated lake sample and displayed a promising shift in the phytoplankton community in only a few weeks. From a low-diversity community, a change to a status with a significantly higher diversity and increased abundance of eukaryotic phytoplankton species was established. Experiments in which treated samples were re-inoculated with original P. agardhii-rich lake water demonstrated prolonged suppression of cyanobacteria, and displayed a remarkable stability of the newly developed post-HP treatment state of the phytoplankton community. PMID:26257710

  12. AUV Measured Variability in Phytoplankton Fluorescence within the ETM of the Columbia River during Summer 2013

    NASA Astrophysics Data System (ADS)

    McNeil, C. L.; Shcherbina, A.; Litchendorf, T. M.; Sanford, T. B.; Martin, D.; Baptista, A. M.; Lopez, J.; Crump, B. C.; Peterson, T. D.; Prahl, F. G.; Cravo, A.

    2014-12-01

    We present highly resolved observations of fluorescence and optical backscatter taken in the estuarine turbidity maxima (ETM) of the North Channel of the Columbia River estuary (USA) during summer 2013. Measurements were made using two REMUS-100 autonomous underwater vehicles (AUVs) equipped with ECO Puck triplets. Concentrations of three phytoplankton pigments were measured by fluorescence emission at wavelengths of 695 nm for chlorophyll, 570 nm for phycoerythrin, and 680 nm for phycocyanin. We use phycocyanin to indicate the presence of freshwater phytoplankton. Optical backscatter at wavelengths of 700 nm and 880 nm are used to characterize turbidity. During flood tide, high phycocyanin concentrations were associated with a strong ETM event which had relatively low salinity waters of approximately 6 psu. These data indicate that this low salinity ETM event contained large concentrations of freshwater phytoplankton. Since freshwater phytoplankton are known to lyse in saltwater, the brackish ETM event may have formed by the accumulation of lysed freshwater phytoplankton that settled out from the river as it mixed in the lower estuary. As the flood tide proceeded, it brought high concentrations of marine phytoplankton into the north channel at mid-depth as indicated by high chlorophyll levels with significantly lower phycoerythrin concentrations in high salinity waters of approximately 30 psu. The data set highlights the potential for large variability in phytoplankton species composition and concentrations within the ETM depending on mixing rates and phytoplankton bloom dynamics. Visualization of the 4-D data is aided by generating interpolated data movies.

  13. Tidal Prism Modeling of Phytoplankton and Nitrogen Concentrations in Narragansett Bay and its Sub-Embayments

    EPA Science Inventory

    A tidal prism model was developed to calculate temporal changes in the spatially averaged concentration of three state variables: phytoplankton, dissolved inorganic nitrogen, and detritus. Our main objective was to develop a model to help us understand the causes of phytoplankton...

  14. Variation of phytoplankton community structure from the Pearl River estuary to South China Sea.

    PubMed

    Jiang, Zhao-Yu; Wang, You-Shao; Cheng, Hao; Sun, Cui-Ci; Wu, Mei-Lin

    2015-10-01

    The Pearl River is located in the northern part of South China Sea. The environment of the Pearl River estuary (PRE) is significantly impacted by nutrients from anthropogenic activities. Along the anthropogenic pollution gradient from the PRE to South China Sea, the phylogenetic diversity and biomass of phytoplankton was examined in relation to physic-chemical variables. The richness of rbcL gene was higher in the open sea than the estuary, while the concentration of chlorophyll a (Chl a) was higher in the estuary than in the open sea. The cluster analysis of the sequences data resulted in seven phytoplankton community types and the dominant species of phytoplankton changed from Cryptophytes and Diatoms to Prymnesiophytes and Diatoms along the gradient. The community structure of phytoplankton was shaped by nutrients and salinity. The phytoplankton biomass was significantly positively affected by phosphorus, nitrite and ammonium (P < 0.01) but negatively by salinity (P < 0.05); the phytoplankton diversity was highly positively affected by salinity (P < 0.05) but negatively by silicate and nitrate (P < 0.01; P < 0.05, respectively). Anthropogenic activities played a critical role in the phytoplankton distribution and biomass of the study area. Further research is necessary to reveal the influence mechanism of environmental factors on the phytoplankton.

  15. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom.

    PubMed

    Needham, David M; Fuhrman, Jed A

    2016-02-29

    Marine phytoplankton perform approximately half of global carbon fixation, with their blooms contributing disproportionately to carbon sequestration(1), and most phytoplankton production is ultimately consumed by heterotrophic prokaryotes(2). Therefore, phytoplankton and heterotrophic community dynamics are important in modelling carbon cycling and the impacts of global change(3). In a typical bloom, diatoms dominate initially, transitioning over several weeks to smaller and motile phytoplankton(4). Here, we show unexpected, rapid community variation from daily rRNA analysis of phytoplankton and prokaryotic community members following a bloom off southern California. Analysis of phytoplankton chloroplast 16S rRNA demonstrated ten different dominant phytoplankton over 18 days alone, including four taxa with animal toxin-producing strains. The dominant diatoms, flagellates and picophytoplankton varied dramatically in carbon export potential. Dominant prokaryotes also varied rapidly. Euryarchaea briefly became the most abundant organism, peaking over a few days to account for about 40% of prokaryotes. Phytoplankton and prokaryotic communities correlated better with each other than with environmental parameters. Extending beyond the traditional view of blooms being controlled primarily by physics and inorganic nutrients, these dynamics imply highly heterogeneous, continually changing conditions over time and/or space and suggest that interactions among microorganisms are critical in controlling plankton diversity, dynamics and fates.

  16. NUTRIENT LIMITATION OF PHYTOPLANKTON GROWTH AND PHYSIOLOGY IN A SUBTROPICAL ESTUARY (PENSACOLA BAY, FL)

    EPA Science Inventory

    Phytoplankton nutrient limitation was studied in a sub-estuary of lower Pensacola Bay using several techniques. Results for <5 um and . 5 um phytoplankton were similar. Nutrient-addition bioassays indicated year-round nutrient limitation, in contrast to seasonal patterns often ...

  17. Phytoplankton Pigment Degradation Patterns in the Oxic and Hypoxic Regions of a Lake Water-Column

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Degradation of senescent phytoplankton occurs as cells sink through the water-column. Once below the photic zone or buried in the sediments, pigment degradation products may be used in paleolimnological studies to elucidate past phytoplankton community composition. Interpretation of the sediment pig...

  18. Shallow water processes govern system-wide phytoplankton bloom dynamics: A field study

    USGS Publications Warehouse

    Thompson, J.K.; Koseff, Jeffrey R.; Monismith, Stephen G.; Lucas, L.V.

    2008-01-01

    Prior studies of the phytoplankton dynamics in South San Francisco Bay, California, USA have hypothesized that bivalve filter-feeders are responsible for the limited phytoplankton blooms in the system. This study was designed to examine the effects of benthic grazing and light attenuation on this shallow, turbid, and nutrient replete system. We found that grazing by shallow water bivalves was important in determining phytoplankton bloom occurrence throughout the system and that above a shallow water bivalve grazing threshold, phytoplankton biomass did not exceed bloom levels. Wind speed, used as a proxy for light attenuation in the shallow water, was similarly important in determining bloom development in the shallow water. Environmental conditions and benthic grazing in the deep water channel had a less discernible effect on system-wide phytoplankton blooms although persistent water column stratification did increase bloom magnitude. The shallow water bivalves, believed to be preyed upon by birds and fish that migrate through the system in fall and winter, disappear each year prior to the spring phytoplankton bloom. Because growth of the phytoplankton depends so strongly on shallow water processes, any change in the shallow-water benthic filter-feeders or their predators has great potential to change the phytoplankton bloom dynamics in this system. ?? 2007 Elsevier B.V. All rights reserved.

  19. Phytoplankton in the cooling pond of a nuclear fuel plant. II. Spectral analysis

    SciTech Connect

    Tokarskaya, Z.B.; Smagin, A.I.; Ryzhkov, E.G.; Nikitina, L.V.

    1995-09-01

    This study continues investigations into the development dynamics of phytoplankton and hydrochemical and meteorological factors over a periods of 26 years in the cooling pond of the Mayak Production Association in the Kyzyl-Trash Lake. The aim is to evaluate the long-term oscillations in phytoplankton owing to changes in hydrochemical and meteorological factors. 6 refs., 2 figs., 1 tab.

  20. A FIVE YEAR RECORD OF PHYTOPLANKTON PIGMENT PATTERNS IN ESCAMBIA/PENSACOLA BAY, FL

    EPA Science Inventory

    Phytoplankton pigments were monitored quarterly at over 50 stations in Escambia/Pensacola Bay System (Pensacola, FL) from spring of 1996 to fall 2000. HPLC accessory pigments were used to analyze the phytoplankton community structure. HPLC data suggest a dominance of blue-green a...

  1. Phylogenetic Diversity and Specificity of Bacteria Closely Associated with Alexandrium spp. and Other Phytoplankton

    PubMed Central

    Jasti, Suresh; Sieracki, Michael E.; Poulton, Nicole J.; Giewat, Michael W.; Rooney-Varga, Juliette N.

    2005-01-01

    While several studies have suggested that bacterium-phytoplankton interactions have the potential to dramatically influence harmful algal bloom dynamics, little is known about how bacteria and phytoplankton communities interact at the species composition level. The objective of the current study was to determine whether there are specific associations between diverse phytoplankton and the bacteria that co-occur with them. We determined the phylogenetic diversity of bacterial assemblages associated with 10 Alexandrium strains and representatives of the major taxonomic groups of phytoplankton in the Gulf of Maine. For this analysis we chose xenic phytoplankton cultures that (i) represented a broad taxonomic range, (ii) represented a broad geographic range for Alexandrium spp. isolates, (iii) grew under similar cultivation conditions, (iv) had a minimal length of time since the original isolation, and (v) had been isolated from a vegetative phytoplankton cell. 16S rRNA gene fragments of most Bacteria were amplified from DNA extracted from cultures and were analyzed by denaturing gradient gel electrophoresis and sequencing. A greater number of bacterial species were shared by different Alexandrium cultures, regardless of the geographic origin, than by Alexandrium species and nontoxic phytoplankton from the Gulf of Maine. In particular, members of the Roseobacter clade showed a higher degree of association with Alexandrium than with other bacterial groups, and many sequences matched sequences reported to be associated with other toxic dinoflagellates. These results provide evidence for specificity in bacterium-phytoplankton associations. PMID:16000752

  2. [Annual changes of phytoplankton's ecological features in Qinzhou Bay of South China].

    PubMed

    Di, Wang; Chen, Pi-Mao; Lu, Jing-Jing; Ma, Yuan

    2013-06-01

    Four cruise surveys were conducted on the phytoplankton in Qinzhou Bay of South China in different seasons in 2008-2009. A total of 131 phytoplankton species were identified, among which, diatom (101 species) accounted for 30.0% of the total, followed by pyrrophyta (23 species), and other groups (7 species). Most of the phytoplankton was of eurytherm or warm-water species. The total species number and the diatom abundance were the smallest in spring, and increased successively in summer, autumn, and winter, being the highest in winter. The phytoplankton density varied from 232.28 x 10(4) cell x m(-3) to 977.0 x 10(4) cell x m(-3), with an average of about 558.57 x 10(4) cell x m(-3). Temporally, the phytoplankton density was the highest in summer, followed by in spring, and the lowest in winter and autumn. Spatially, the phytoplankton density was increased from the inner bay to the open bay, and decreased from the open bay to outside the bay. In summer, the highest density area switched from the open bay to the bay' s entrance. The average Shannon diversity index was 3.18, and the average evenness index was 0.63, suggesting a high diversity of the phytoplankton community. The correlations of the phytoplankton density with the water temperature, salinity, dissolved inorganic phosphorus, and dissolved inorganic phosphorus varied with seasons.

  3. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom.

    PubMed

    Needham, David M; Fuhrman, Jed A

    2016-01-01

    Marine phytoplankton perform approximately half of global carbon fixation, with their blooms contributing disproportionately to carbon sequestration(1), and most phytoplankton production is ultimately consumed by heterotrophic prokaryotes(2). Therefore, phytoplankton and heterotrophic community dynamics are important in modelling carbon cycling and the impacts of global change(3). In a typical bloom, diatoms dominate initially, transitioning over several weeks to smaller and motile phytoplankton(4). Here, we show unexpected, rapid community variation from daily rRNA analysis of phytoplankton and prokaryotic community members following a bloom off southern California. Analysis of phytoplankton chloroplast 16S rRNA demonstrated ten different dominant phytoplankton over 18 days alone, including four taxa with animal toxin-producing strains. The dominant diatoms, flagellates and picophytoplankton varied dramatically in carbon export potential. Dominant prokaryotes also varied rapidly. Euryarchaea briefly became the most abundant organism, peaking over a few days to account for about 40% of prokaryotes. Phytoplankton and prokaryotic communities correlated better with each other than with environmental parameters. Extending beyond the traditional view of blooms being controlled primarily by physics and inorganic nutrients, these dynamics imply highly heterogeneous, continually changing conditions over time and/or space and suggest that interactions among microorganisms are critical in controlling plankton diversity, dynamics and fates. PMID:27572439

  4. Annual and interannual variations of phytoplankton pigment concentration and upwelling along the Pacific equator

    NASA Technical Reports Server (NTRS)

    Halpern, David; Feldman, Gene C.

    1994-01-01

    The following variables along the Pacific equator from 145 deg E to 95 deg W were employed: surface layer phytoplankton pigment concentrations derived from Nimbus 7 coastal zone color scanner (CZCS) measurements of ocean color radiances; vertical velocities simulated at the 90-m bottom of the euphotic layer from a wind-driven ocean general circulation model; and nitrate concentrations estimated from model-simulated temperature. The upward flux of nitrate into the euphotic layer was calculated from the simulated vertical motion and nitrate concentration. The CZCS-derived phytoplankton pigment concentration was uniform from 175 deg to 95 deg W. Longitudinal profiles of upwelling, phytoplankton biomass, and 90-m nitrate flux were of different shapes. The small annual cycles of the phytoplankton pigment and nitrate flux were in phase: increased phytoplankton biomass was associated with increased upward nitrate flux, but the phase was not consistent with the annual cycles of the easterly wind or of the upwelling intensity. Variation of phytoplankton pigment concentration was greater during El Nino than during the annual cycle. The substantially reduced phytoplankton pigment concentration observed during El Nino was associated with smaller upward nitrate flux. Phytoplankton biomass during non-El Nino conditions was not related to nitrate flux into the euphotic layer.

  5. Experimental evidence of site specific preferential processing of either ice algae or phytoplankton by benthic macroinfauna in Lancaster Sound and North Water Polynyas, Canada

    NASA Astrophysics Data System (ADS)

    Mäkelä, Anni; Witte, Ursula; Archambault, Philippe

    2016-04-01

    Rapid warming is dramatically reducing the extent and thickness of summer sea ice of the Arctic Ocean, changing both the quantity and type of marine primary production as the longer open water period favours phytoplankton growth and reduces ice algal production. The benthic ecosystem is dependent on this sinking organic matter for source of energy, and ice algae is thought to be a superior quality food source due to higher essential fatty acid content. The resilience of the benthos to changing quality and quantity of food was investigated through sediment incubation experiments in the summer 2013 in two highly productive Arctic polynyas in the North Water and Lancaster Sound, Canada. The pathways of organic matter processing and contribution of different organisms to these processes was assessed through 13C and 15N isotope assimilation into macroinfaunal tissues. In North Water Polynya, the total and biomass specific uptake of ice algal derived C and N was higher than the uptake of phytoplankton, whereas an opposite trend was observed in Lancaster Sound. Polychaetes, especially individuals of families Sabellidae and Spionidae, unselectively ingested both algal types and were significant in the overall organic matter processing at both sites. Feeding preference was observed in crustaceans, which preferentially fed on ice algae at Lancaster Sound, but preferred phytoplankton in North Water Polynya. Bivalves also had a significant role in the organic matter processing overall, but only showed preferential feeding on phytoplankton at Lancaster Sound polynya. Overall the filter feeders and surface deposit feeders occupying lowest trophic levels were responsible for majority of the processing of both algal types. The results provide direct evidence of preferential resource utilisation by benthic macrofauna and highlight spatial differences in the processes. This helps to predict future patterns of nutrient cycling in Arctic sediments, with implications to benthic

  6. Interannual and cyclone-driven variability in phytoplankton communities of a tropical coastal lagoon.

    PubMed

    Srichandan, Suchismita; Kim, Ji Yoon; Kumar, Abhishek; Mishra, Deepak R; Bhadury, Punyasloke; Muduli, Pradipta R; Pattnaik, Ajit K; Rastogi, Gurdeep

    2015-12-15

    One of the main challenges in phytoplankton ecology is to understand their variability at different spatiotemporal scales. We investigated the interannual and cyclone-derived variability in phytoplankton communities of Chilika, the largest tropical coastal lagoon in Asia and the underlying mechanisms in relation to environmental forcing. Between July 2012 and June 2013, Cyanophyta were most prolific in freshwater northern region of the lagoon. A category-5 very severe cyclonic storm (VSCS) Phailin struck the lagoon on 12th October 2013 and introduced additional variability into the hydrology and phytoplankton communities. Freshwater Cyanophyta further expanded their territory and occupied the northern as well as central region of the lagoon. Satellite remote sensing imagery revealed that the phytoplankton biomass did not change much due to high turbidity prevailing in the lagoon after Phailin. Modeling analysis of species-salinity relationship identified specific responses of phytoplankton taxa to the different salinity regime of lagoon.

  7. Interannual and cyclone-driven variability in phytoplankton communities of a tropical coastal lagoon.

    PubMed

    Srichandan, Suchismita; Kim, Ji Yoon; Kumar, Abhishek; Mishra, Deepak R; Bhadury, Punyasloke; Muduli, Pradipta R; Pattnaik, Ajit K; Rastogi, Gurdeep

    2015-12-15

    One of the main challenges in phytoplankton ecology is to understand their variability at different spatiotemporal scales. We investigated the interannual and cyclone-derived variability in phytoplankton communities of Chilika, the largest tropical coastal lagoon in Asia and the underlying mechanisms in relation to environmental forcing. Between July 2012 and June 2013, Cyanophyta were most prolific in freshwater northern region of the lagoon. A category-5 very severe cyclonic storm (VSCS) Phailin struck the lagoon on 12th October 2013 and introduced additional variability into the hydrology and phytoplankton communities. Freshwater Cyanophyta further expanded their territory and occupied the northern as well as central region of the lagoon. Satellite remote sensing imagery revealed that the phytoplankton biomass did not change much due to high turbidity prevailing in the lagoon after Phailin. Modeling analysis of species-salinity relationship identified specific responses of phytoplankton taxa to the different salinity regime of lagoon. PMID:26611863

  8. Effects of a coastal power plant thermal discharge on phytoplankton community structure in Zhanjiang Bay, China.

    PubMed

    Li, Xue-Ying; Li, Bin; Sun, Xing-Li

    2014-04-15

    The effects of a thermal discharge from a coastal power plant on phytoplankton were determined in Zhanjiang Bay. Monthly cruises were undertaken at four tide times during April-October 2011. There were significant differences for dominant species among seven sampling months and four sampling tides. Species diversity (H') and Evenness showed a distinct increasing gradient from the heated water source to the control zone and fluctuated during four tides with no visible patterns. Species richness, cell count and Chl a at mixed and control zones were significantly higher than heated zones, and showed tidal changes with no obvious patterns. The threshold temperature of phytoplankton species can be regarded as that of phytoplankton community at ebb slack. The average threshold temperature over phytoplankton species, cell count and Chl a, and the threshold temperature of cell count can be regarded as that of phytoplankton community at flood slack during spring and neap respectively.

  9. Cell size dependence of additive versus synergetic effects of UV radiation and PAHs on oceanic phytoplankton.

    PubMed

    Echeveste, Pedro; Agustí, Susana; Dachs, Jordi

    2011-05-01

    Polycyclic Aromatic Hydrocarbons' (PAHs) toxicity is enhanced by the presence of ultraviolet radiation (UVR), which levels have arisen due to the thinning of the ozone layer. In this study, PAHs' phototoxicity for natural marine phytoplankton was tested. Different concentrations of a mixture of 16 PAHs were added to natural phytoplankton communities from the Mediterranean Sea, Atlantic, Arctic and Southern Oceans and exposed to natural sunlight received in situ, including treatments where the UVR bands were removed. PAHs' toxicity was observed for all the phytoplankton groups studied in all the waters and treatments tested, but only for the pico-sized group a synergetic effect of the mixture and UVR was observed (p=0.009). When comparing phototoxicity in phytoplankton from oligotrophic and eutrophic waters, synergy was only observed at the oligotrophic communities (p=0.02) where pico-sized phytoplankton dominated. The degree of sensitivity was related to the trophic degree, decreasing as Chlorophyll a concentration increased.

  10. Effects of a coastal power plant thermal discharge on phytoplankton community structure in Zhanjiang Bay, China.

    PubMed

    Li, Xue-Ying; Li, Bin; Sun, Xing-Li

    2014-04-15

    The effects of a thermal discharge from a coastal power plant on phytoplankton were determined in Zhanjiang Bay. Monthly cruises were undertaken at four tide times during April-October 2011. There were significant differences for dominant species among seven sampling months and four sampling tides. Species diversity (H') and Evenness showed a distinct increasing gradient from the heated water source to the control zone and fluctuated during four tides with no visible patterns. Species richness, cell count and Chl a at mixed and control zones were significantly higher than heated zones, and showed tidal changes with no obvious patterns. The threshold temperature of phytoplankton species can be regarded as that of phytoplankton community at ebb slack. The average threshold temperature over phytoplankton species, cell count and Chl a, and the threshold temperature of cell count can be regarded as that of phytoplankton community at flood slack during spring and neap respectively. PMID:24635985

  11. High bacterivory by the smallest phytoplankton in the North Atlantic Ocean.

    PubMed

    Zubkov, Mikhail V; Tarran, Glen A

    2008-09-11

    Planktonic algae <5 m in size are major fixers of inorganic carbon in the ocean. They dominate phytoplankton biomass in post-bloom, stratified oceanic temperate waters. Traditionally, large and small algae are viewed as having a critical growth dependence on inorganic nutrients, which the latter can better acquire at lower ambient concentrations owing to their higher surface area to volume ratios. Nonetheless, recent phosphate tracer experiments in the oligotrophic ocean have suggested that small algae obtain inorganic phosphate indirectly, possibly through feeding on bacterioplankton. There have been numerous microscopy-based studies of algae feeding mixotrophically in the laboratory and field as well as mathematical modelling of the ecological importance of mixotrophy. However, because of methodological limitations there has not been a direct comparison of obligate heterotrophic and mixotrophic bacterivory. Here we present direct evidence that small algae carry out 40-95% of the bacterivory in the euphotic layer of the temperate North Atlantic Ocean in summer. A similar range of 37-70% was determined in the surface waters of the tropical North-East Atlantic Ocean, suggesting the global significance of mixotrophy. This finding reveals that even the smallest algae have less dependence on dissolved inorganic nutrients than previously thought, obtaining a quarter of their biomass from bacterivory. This has important implications for how we perceive nutrient acquisition and limitation of carbon-fixing protists as well as control of bacterioplankton in the ocean. PMID:18690208

  12. The Temporal Dynamics of Coastal Phytoplankton and Bacterioplankton in the Eastern Mediterranean Sea

    PubMed Central

    Raveh, Ofrat; David, Niv; Rilov, Gil; Rahav, Eyal

    2015-01-01

    This study considers variability in phytoplankton and heterotrophic bacterial abundances and production rates, in one of the most oligotrophic marine regions in the world–the Levantine Basin. The temporal dynamics of these planktonic groups were studied in the coastal waters of the southeastern Mediterranean Sea approximately every two weeks for a total of two years. Heterotrophic bacteria were abundant mostly during late summer and midwinter, and were positively correlated with bacterial production and with N2 fixation. Based on size fractionating, picophytoplankton was abundant during the summer, whereas nano-microphytoplankton predominated during the winter and early spring, which were also evident in the size-fractionated primary production rates. Autotrophic abundance and production correlated negatively with temperature, but did not correlate with inorganic nutrients. Furthermore, a comparison of our results with results from the open Levantine Basin demonstrates that autotrophic and heterotrophic production, as well as N2 fixation rates, are considerably higher in the coastal habitat than in the open sea, while nutrient levels or cell abundance are not different. These findings have important ecological implications for food web dynamics and for biological carbon sequestration in this understudied region. PMID:26474399

  13. High bacterivory by the smallest phytoplankton in the North Atlantic Ocean.

    PubMed

    Zubkov, Mikhail V; Tarran, Glen A

    2008-09-11

    Planktonic algae <5 m in size are major fixers of inorganic carbon in the ocean. They dominate phytoplankton biomass in post-bloom, stratified oceanic temperate waters. Traditionally, large and small algae are viewed as having a critical growth dependence on inorganic nutrients, which the latter can better acquire at lower ambient concentrations owing to their higher surface area to volume ratios. Nonetheless, recent phosphate tracer experiments in the oligotrophic ocean have suggested that small algae obtain inorganic phosphate indirectly, possibly through feeding on bacterioplankton. There have been numerous microscopy-based studies of algae feeding mixotrophically in the laboratory and field as well as mathematical modelling of the ecological importance of mixotrophy. However, because of methodological limitations there has not been a direct comparison of obligate heterotrophic and mixotrophic bacterivory. Here we present direct evidence that small algae carry out 40-95% of the bacterivory in the euphotic layer of the temperate North Atlantic Ocean in summer. A similar range of 37-70% was determined in the surface waters of the tropical North-East Atlantic Ocean, suggesting the global significance of mixotrophy. This finding reveals that even the smallest algae have less dependence on dissolved inorganic nutrients than previously thought, obtaining a quarter of their biomass from bacterivory. This has important implications for how we perceive nutrient acquisition and limitation of carbon-fixing protists as well as control of bacterioplankton in the ocean.

  14. A 150-year record of phytoplankton community succession controlled by hydroclimatic variability in a tropical lake

    NASA Astrophysics Data System (ADS)

    Afrifa Yamoah, Kweku; Callac, Nolwenn; Fru, Ernest Chi; Wohlfarth, Barbara; Wiech, Alan; Chabangborn, Akkaneewut; Smittenberg, Rienk H.

    2016-07-01

    Climate and human-induced environmental change promote biological regime shifts between alternate stable states, with implications for ecosystem resilience, function, and services. While these effects have been shown for present-day ecosystems, the long-term response of microbial communities has not been investigated in detail. This study assessed the decadal variations in phytoplankton communities in a ca. 150 year long sedimentary archive of Lake Nong Thale Prong (NTP), southern Thailand using a combination of bulk geochemical analysis, quantitative polymerase chain reaction (qPCR) and lipid biomarkers techniques including compound-specific hydrogen isotope analysis as a proxy for precipitation. Relatively drier and by inference warmer conditions from ca. 1857 to 1916 Common Era (CE) coincided with a dominance of the green algae Botryococcus braunii, indicating lower nutrient levels in the oxic lake surface waters, possibly related to lake water stratification. A change to higher silica (Si) input around 1916 CE was linked to increased rainfall and concurs with an abrupt takeover by diatom blooms lasting for 50 years. These were increasingly outcompeted by cyanobacteria from the 1970s onwards, most likely because of increased levels of anthropogenic phosphate and a reduction in rainfall. Our results showcase that the multi-proxy approach applied here provides an efficient way to track centennial-scale limnological, geochemical and microbial change, as influenced by hydroclimatic and anthropogenic forcing.

  15. Taxon-specific growth and selective microzooplankton grazing of phytoplankton in the Northeast Atlantic

    NASA Astrophysics Data System (ADS)

    Gaul, Wilhelm; Antia, Avan N.

    2001-10-01

    Taxon-specific microzooplankton dynamics were studied along a transect through the North Atlantic Drift from 70°N 04°E to 40°N 20°W during July 1997 using serial dilution and nutrient-enrichment experiments. Nutrient concentrations and microzooplankton composition indicated postbloom conditions at 40°N, 47°N, and 50°N, a transitional system at 54°N, and bloom conditions at 62°N and 70°N. The ratio of microzooplankton to phytoplankton biomass was inversely related to nitrate and phosphate concentrations. Potential grazing thresholds were observed in four of nine experiments at 40-66% of the initial phytoplankton concentration. Grazing losses were determined for six pigment-specific classes of phytoplankton. Selective grazing losses of phytoplankton taxa ranged from 73% to 248% of the nonselective grazing losses predicted according to their biomass contributions. The grazing selectivity varied considerably between communities, with the microherbivores showing positive selection for cyanobacteria and dinoflagellates and predominantly avoidance of chlorophyta and bacillariophyceae. Microzooplankton did not show a preference for the dominant phytoplankton taxa, but grazed preferentially on fast-growing phytoplankton with minor contributions (<15%) to the phytoplankton biomass. However, bacillariophyceae were the major contributors to phytoplankton biomass and accounted for major fractions of the total losses through microzooplankton grazing. Microzooplankton consumed the equivalent of 0.12-5.5 times their own biomass daily on a carbon basis, amounting to 65-197% of gross phytoplankton production. With the conservative assumption that 20% of the consumed phytoplankton was converted to microzooplankton biomass, the latter was estimated to contribute 27-381% to the net production of the entire microzooplankton community. We therefore conclude that the taxonomic structure and the net production of the microzooplankton communities were significantly affected by the

  16. Impact of climate change on phytoplankton dynamics in an oligotrophic Mediterranean coastal area

    NASA Astrophysics Data System (ADS)

    Goffart, A.; Legendre, L.; Hecq, J. H.

    2003-04-01

    A long-term phytoplankton study was initiated in 1979 in an oligotrophic coastal station of the Western Mediterranean, at one fixed station. The sampling station (42^o34'85N, 08^o43'60E) is situated near the coast, in the northern part of the Bay of Calvi (Western Corsica, France). Purposes of the study are to establish baseline data on phytoplankton population in relation with water masses characteristics, and to determine patterns and trends in phytoplankton populations. Observations of the development of the winter-spring phytoplankton bloom in the Bay of Calvi evidenced a drastic reduction of phytoplankton biomass and biodiversity over the last two decades. Between 1979 and 1998, the monthly averaged chlorophyll α concentrations at 1 m decreased by about 80% during February, March and April. Simultaneously, major changes to hydrodynamic conditions include warmer water, overall decrease of salinity at 10 m depth, longer periods of bright sunshine and lower wind stress. The changes in environmental conditions were large enough to reduce nutrient replenishment of the surface layer prior to the usual period of phytoplankton growth. Decreasing Si availability led to Si limitation, which caused a reduction in diatom abundance. This resulted in the disappearance of the diatom-dominated pulses and in lower phytoplankton biomass and was accompanied by a shift toward non-siliceous phytoplankton (Goffart et al., 2002). Other, associated changes in benthos assemblages are presented. Relationships between phytoplankton fluctuations and NAO index are examined. Reference Goffart A., Hecq J.H., Legendre L. (2002). Changes in the development of the winter-spring phytoplankton bloom in the Bay of Calvi (Northwestern Mediterranean) over the last two decades: a response to the changing climate? Marine Ecology Progress Series, 236: 45-60.

  17. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids.

    PubMed

    Galloway, Aaron W E; Winder, Monika

    2015-01-01

    Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms

  18. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids

    PubMed Central

    Galloway, Aaron W. E.; Winder, Monika

    2015-01-01

    Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms

  19. Influence of mineral suspension on the phytoplankton growth

    NASA Astrophysics Data System (ADS)

    Schure, L. A.; Aponasenko, A. D.; Postnikova, P. V.; Filimonov, V. S.; Lopatin, V. N.

    2006-02-01

    Effect of organomineral suspension on development of plankton community which are included in microbial food web has been studied in the laboratory and in the field. In the course of the model experiment it was found that in samples with adding suspension the chlorophyll concentration (C chl) increase runs more intensively and the longer time period. Increase C chl in the control ran up to 67 days with the following going out to the stationary level at maximum value 220 mkg/l. In samples with adding 100 mg/l suspension the stationary level was not reached to the 80 days of the experiment and the maximum chlorophyll concentration made 520 mkg/l. In field studies it was ascertained that all the parameters related to production characteristics of bacterioplankton as well as to organic matter adsorbed on mineral suspension greatly influence the production characteristics of phytoplankton. The multiplicative model of dependence of a primary production from primary factors of environment: the content of chlorophyll, specific absorption coefficient of light by the dissolved organic matter, content of adsorbed organic matter, bacterial production and destruction, mean size of phytoplankton cells is offered. It would follow from this model that if bacterioplankton production increases twice (at remaining other parameters constant) then primary production will be 2.5 times larger in the Khanka Lake, 1.9 times in the Yenisei River and 1.4 times in Krasnoyarsk water storage.

  20. Network of Interactions Between Ciliates and Phytoplankton During Spring

    PubMed Central

    Posch, Thomas; Eugster, Bettina; Pomati, Francesco; Pernthaler, Jakob; Pitsch, Gianna; Eckert, Ester M.

    2015-01-01

    The annually recurrent spring phytoplankton blooms in freshwater lakes initiate pronounced successions of planktonic ciliate species. Although there is considerable knowledge on the taxonomic diversity of these ciliates, their species-specific interactions with other microorganisms are still not well understood. Here we present the succession patterns of 20 morphotypes of ciliates during spring in Lake Zurich, Switzerland, and we relate their abundances to phytoplankton genera, flagellates, heterotrophic bacteria, and abiotic parameters. Interspecific relationships were analyzed by contemporaneous correlations and time-lagged co-occurrence and visualized as association networks. The contemporaneous network pointed to the pivotal role of distinct ciliate species (e.g., Balanion planctonicum, Rimostrombidium humile) as primary consumers of cryptomonads, revealed a clear overclustering of mixotrophic/omnivorous species, and highlighted the role of Halteria/Pelagohalteria as important bacterivores. By contrast, time-lagged statistical approaches (like local similarity analyses, LSA) proved to be inadequate for the evaluation of high-frequency sampling data. LSA led to a conspicuous inflation of significant associations, making it difficult to establish ecologically plausible interactions between ciliates and other microorganisms. Nevertheless, if adequate statistical procedures are selected, association networks can be powerful tools to formulate testable hypotheses about the autecology of only recently described ciliate species. PMID:26635757

  1. Cell-associated proteolytic enzymes from marine phytoplankton

    SciTech Connect

    Berges, J.A.; Falkowski, P.G.

    1996-08-01

    Despite their central importance in cell metabolism, little is known about proteases in marine phytoplankton. Caseinolytic and leucine aminopeptidase (LAP) activities was surveyed in log-phase cultures of the chlorophyte Dunaliella tertiolecta Butcher, the diatom Thalassiosira weissflogii Fryxell et Hasle, the chrysophyte Isochrysis galbana Parke, the coccolithophorid Emiliania huxleyi Hay et Mohler, and the cyanobacterium Synechococcus sp. LAP activity was very low at pH < 6 and peaked between pH 7.5 and 8.5 in all species, whereas caseinolytic activity in most species showed only minor peaks in the pH 4-5 range and broad maxima above pH 8. Acidic vacuolar proteases apparently represented only a small fraction of total protease activity. Attempts to classify protease using selective inhibitors were inconclusive. Caserinolytic activities were remarkably stable. Casein zymograms were used to identify >200-and <20-kDa proteases in homogenates of log-phase T. weissflogii; only the smaller protease was found in D. tertiolecta. Antibodies in the ATPase subunit (C) of the conserved, chloroplastic Clp protease from Pisum cross-reacted with proteins in Synechococcus, D. tertiolecta, and I. galbana, but no cross-reactions were found for any species with antibodies against the ClpP subunit from either E. coli or Nicotiana. Our results show that phytoplankton contain a diverse complement of proteases with novel characteristics. 46 refs., 6 figs., 1 tab.

  2. Paleolatitudinal Gradients in Marine Phytoplankton Composition and Cell Size

    NASA Astrophysics Data System (ADS)

    Henderiks, J.; Bordiga, M.; Bartol, M.; Šupraha, L.

    2014-12-01

    Coccolithophores, a prominent group of marine calcifying unicellular algae, are widely studied in context of current and past climate change. We know that marine phytoplankton are sensitive to climatic changes, but the complex interplay of several processes such as warming, changes in nutrient content, and ocean acidification, makes future scenarios difficult to predict. Some taxa may be more susceptible to environmental perturbations than others, as evidenced by significantly different species-specific sensitivities observed in laboratory experiments. However, short-term plastic responses may not translate into longer-term climatic adaptation, nor should we readily extrapolate the behavior of single strains in the laboratory to natural, multi-species assemblages and their interactions in the ocean. The extensive fossil record of coccolithophores (in the form of coccoliths) reveals high morphological and taxonomic diversity and allows reconstructing the cell size of individual taxonomic groups. In a suite of deep-sea drilling sites from the Atlantic Ocean, we document distinct latitudinal gradients in phytoplankton composition and cell size across major climate transitions of the late Eocene - earliest Oligocene, and the middle - late Miocene. With these data we test hypotheses of species migration, phenotypic evolution, as well as the rates of species extinction and speciation in relation to concurrent paleoenvironmental changes during the Cenozoic.

  3. Ozone depletion: ultraviolet radiation and phytoplankton biology in antarctic waters.

    PubMed

    Smith, R C; Prézelin, B B; Baker, K S; Bidigare, R R; Boucher, N P; Coley, T; Karentz, D; MacIntyre, S; Matlick, H A; Menzies, D

    1992-02-21

    The springtime stratospheric ozone (O3) layer over the Antarctic is thinning by as much as 50 percent, resulting in increased midultraviolet (UVB) radiation reaching the surface of the Southern Ocean. There is concern that phytoplankton communities confined to near-surface waters of the marginal ice zone will be harmed by increased UVB irradiance penetrating the ocean surface, thereby altering the dynamics of Antarctic marine ecosystems. Results from a 6-week cruise (Icecolors) in the marginal ice zone of the Bellingshausen Sea in austral spring of 1990 indicated that as the O3 layer thinned: (i) sea surface- and depth-dependent ratios of UVB irradiance (280 to 320 nanometers) to total irradiance (280 to 700 nanometers) increased and (ii) UVB inhibition of photosynthesis increased. These and other Icecolors findings suggest that O3-dependent shifts of in-water spectral irradiances alter the balance of spectrally dependent phytoplankton processes, including photoinhibition, photoreactivation, photoprotection, and photosynthesis. A minimum 6 to 12 percent reduction in primary production associated with O3 depletion was estimated for the duration of the cruise.

  4. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria

    NASA Astrophysics Data System (ADS)

    Amin, S. A.; Hmelo, L. R.; van Tol, H. M.; Durham, B. P.; Carlson, L. T.; Heal, K. R.; Morales, R. L.; Berthiaume, C. T.; Parker, M. S.; Djunaedi, B.; Ingalls, A. E.; Parsek, M. R.; Moran, M. A.; Armbrust, E. V.

    2015-06-01

    Interactions between primary producers and bacteria impact the physiology of both partners, alter the chemistry of their environment, and shape ecosystem diversity. In marine ecosystems, these interactions are difficult to study partly because the major photosynthetic organisms are microscopic, unicellular phytoplankton. Coastal phytoplankton communities are dominated by diatoms, which generate approximately 40% of marine primary production and form the base of many marine food webs. Diatoms co-occur with specific bacterial taxa, but the mechanisms of potential interactions are mostly unknown. Here we tease apart a bacterial consortium associated with a globally distributed diatom and find that a Sulfitobacter species promotes diatom cell division via secretion of the hormone indole-3-acetic acid, synthesized by the bacterium using both diatom-secreted and endogenous tryptophan. Indole-3-acetic acid and tryptophan serve as signalling molecules that are part of a complex exchange of nutrients, including diatom-excreted organosulfur molecules and bacterial-excreted ammonia. The potential prevalence of this mode of signalling in the oceans is corroborated by metabolite and metatranscriptome analyses that show widespread indole-3-acetic acid production by Sulfitobacter-related bacteria, particularly in coastal environments. Our study expands on the emerging recognition that marine microbial communities are part of tightly connected networks by providing evidence that these interactions are mediated through production and exchange of infochemicals.

  5. Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria.

    PubMed

    Simis, Stefan G H; Huot, Yannick; Babin, Marcel; Seppälä, Jukka; Metsamaa, Liisa

    2012-04-01

    Excitation-emission fluorescence matrices of phytoplankton communities were simulated from laboratory-grown algae and cyanobacteria cultures, to define the optical configurations of theoretical fluorometers that either minimize or maximize the representation of these phytoplankton groups in community variable fluorescence measurements. Excitation sources that match the photosystem II (PSII) action spectrum of cyanobacteria do not necessarily lead to equal representation of cyanobacteria in community fluorescence. In communities with an equal share of algae and cyanobacteria, inducible PSII fluorescence in algae can be retrieved from community fluorescence under blue excitation (450-470 nm) with high accuracy (R (2) = 1.00). The highest correlation between community and cyanobacterial variable fluorescence is obtained under orange-red excitation in the 590-650 nm range (R (2) = 0.54). Gaussian band decomposition reveals that in the presence of cyanobacteria, the emission detection slit must be narrow (up to 10 nm) and centred on PSII chlorophyll-a emission (~683 nm) to avoid severe dampening of the signal by weakly variable phycobilisomal fluorescence and non-variable photosystem I fluorescence. When these optimizations of the optical configuration of the fluorometer are followed, both cyanobacterial and algal cultures in nutrient replete exponential growth exhibit values of the maximum quantum yield of charge separation in PSII in the range of 0.65-0.7.

  6. In situ Measurements of Phytoplankton Fluorescence Using Low Cost Electronics

    PubMed Central

    Leeuw, Thomas; Boss, Emmanuel S.; Wright, Dana L.

    2013-01-01

    Chlorophyll a fluorometry has long been used as a method to study phytoplankton in the ocean. In situ fluorometry is used frequently in oceanography to provide depth-resolved estimates of phytoplankton biomass. However, the high price of commercially manufactured in situ fluorometers has made them unavailable to some individuals and institutions. Presented here is an investigation into building an in situ fluorometer using low cost electronics. The goal was to construct an easily reproducible in situ fluorometer from simple and widely available electronic components. The simplicity and modest cost of the sensor makes it valuable to students and professionals alike. Open source sharing of architecture and software will allow students to reconstruct and customize the sensor on a small budget. Research applications that require numerous in situ fluorometers or expendable fluorometers can also benefit from this study. The sensor costs US$150.00 and can be constructed with little to no previous experience. The sensor uses a blue LED to excite chlorophyll a and measures fluorescence using a silicon photodiode. The sensor is controlled by an Arduino microcontroller that also serves as a data logger. PMID:23783738

  7. Phytoplankton photosynthetic characteristics from fluorescence induction assays of individual cells

    SciTech Connect

    Olson, R.J.; Chekalyuk, A.M.; Sosik, H.M.

    1996-09-01

    Saturating-flash fluorescence techniques, which can provide information about the physiological state of phytoplankton, at present measure bulk water samples and so provide {open_quotes}averaged{close_quotes} values for all the fluorescent particles present. In analyzing natural samples, however, more detailed information about the distribution of photosynthetic characteristics among different cell types and(or) individual cells is desirable. Therefore we developed two methods for applying a {open_quotes}pump-during-probe{close_quotes} technique on a cell-by-cell basis. We used either an epifluorescence microscope or a flow cytometer to make time-resolved measurements of the increase in chlorophyll fluorescence induced by a rectangular excitation pulse of 100-{mu}s duration. We used a biophysical model of fluorescence induction to obtain information about the quantum yield of photochemistry in photosystem 2 (PS2) and the functional absorption cross-section for PS2. For several species (including the smallest phytoplankton, Prochlorococcus, which are 0.7 {mu}m in diameter), the maximum quantum yield of photochemistry in PS2 obtained by averaging data from many individual cells agreed well with estimates derived from bulk measurements of DCMU enhancement of Chl fluorescence. 40 refs., 9 figs.

  8. Global relationship between phytoplankton diversity and productivity in the ocean

    PubMed Central

    Vallina, S. M.; Follows, M. J.; Dutkiewicz, S.; Montoya, J. M.; Cermeno, P.; Loreau, M.

    2014-01-01

    The shape of the productivity–diversity relationship (PDR) for marine phytoplankton has been suggested to be unimodal, that is, diversity peaking at intermediate levels of productivity. However, there are few observations and there has been little attempt to understand the mechanisms that would lead to such a shape for planktonic organisms. Here we use a marine ecosystem model together with the community assembly theory to explain the shape of the unimodal PDR we obtain at the global scale. The positive slope from low to intermediate productivity is due to grazer control with selective feeding, which leads to the predator-mediated coexistence of prey. The negative slope at high productivity is due to seasonal blooms of opportunist species that occur before they are regulated by grazers. The negative side is only unveiled when the temporal scale of the observation captures the transient dynamics, which are especially relevant at highly seasonal latitudes. Thus selective predation explains the positive side while transient competitive exclusion explains the negative side of the unimodal PDR curve. The phytoplankton community composition of the positive and negative sides is mostly dominated by slow-growing nutrient specialists and fast-growing nutrient opportunist species, respectively. PMID:24980772

  9. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria.

    PubMed

    Amin, S A; Hmelo, L R; van Tol, H M; Durham, B P; Carlson, L T; Heal, K R; Morales, R L; Berthiaume, C T; Parker, M S; Djunaedi, B; Ingalls, A E; Parsek, M R; Moran, M A; Armbrust, E V

    2015-06-01

    Interactions between primary producers and bacteria impact the physiology of both partners, alter the chemistry of their environment, and shape ecosystem diversity. In marine ecosystems, these interactions are difficult to study partly because the major photosynthetic organisms are microscopic, unicellular phytoplankton. Coastal phytoplankton communities are dominated by diatoms, which generate approximately 40% of marine primary production and form the base of many marine food webs. Diatoms co-occur with specific bacterial taxa, but the mechanisms of potential interactions are mostly unknown. Here we tease apart a bacterial consortium associated with a globally distributed diatom and find that a Sulfitobacter species promotes diatom cell division via secretion of the hormone indole-3-acetic acid, synthesized by the bacterium using both diatom-secreted and endogenous tryptophan. Indole-3-acetic acid and tryptophan serve as signalling molecules that are part of a complex exchange of nutrients, including diatom-excreted organosulfur molecules and bacterial-excreted ammonia. The potential prevalence of this mode of signalling in the oceans is corroborated by metabolite and metatranscriptome analyses that show widespread indole-3-acetic acid production by Sulfitobacter-related bacteria, particularly in coastal environments. Our study expands on the emerging recognition that marine microbial communities are part of tightly connected networks by providing evidence that these interactions are mediated through production and exchange of infochemicals.

  10. Plastids of Marine Phytoplankton Produce Bioactive Pigments and Lipids

    PubMed Central

    Heydarizadeh, Parisa; Poirier, Isabelle; Loizeau, Damien; Ulmann, Lionel; Mimouni, Virginie; Schoefs, Benoît; Bertrand, Martine

    2013-01-01

    Phytoplankton is acknowledged to be a very diverse source of bioactive molecules. These compounds play physiological roles that allow cells to deal with changes of the environmental constrains. For example, the diversity of light harvesting pigments allows efficient photosynthesis at different depths in the seawater column. Identically, lipid composition of cell membranes can vary according to environmental factors. This, together with the heterogenous evolutionary origin of taxa, makes the chemical diversity of phytoplankton compounds much larger than in terrestrial plants. This contribution is dedicated to pigments and lipids synthesized within or from plastids/photosynthetic membranes. It starts with a short review of cyanobacteria and microalgae phylogeny. Then the bioactivity of pigments and lipids (anti-oxidant, anti-inflammatory, anti-mutagenic, anti-cancer, anti-obesity, anti-allergic activities, and cardio- neuro-, hepato- and photoprotective effects), alone or in combination, is detailed. To increase the cellular production of bioactive compounds, specific culture conditions may be applied (e.g., high light intensity, nitrogen starvation). Regardless of the progress made in blue biotechnologies, the production of bioactive compounds is still limited. However, some examples of large scale production are given, and perspectives are suggested in the final section. PMID:24022731

  11. Intracellular speciation and transformation of inorganic mercury in marine phytoplankton.

    PubMed

    Wu, Yun; Wang, Wen-Xiong

    2014-03-01

    Metal speciation is closely related to toxicity in aquatic organisms, but quantitative study of mercury transformation has rarely been reported. In this study, the ability of three marine phytoplankton species, including a green alga Chlorella autotrophica, a flagellate Isochrysis galbana and a diatom Thalassiosira weissflogii, to convert inorganic mercury were examined. We found that all algae tested were able to transform Hg(II) into dissolved gaseous mercury (DGM), phytochelatin (PC) complexes and metacinnabar (β-HgS). The most tolerant species, T. weissflogii, generally produced the highest level of PCs and β-HgS. Attributed to the highest DGM production ability, C. autotrophica accumulated the least Hg, but was the most sensitive due to low PC induction and β-HgS formation. Of the added Hg(II), less than 5% was reduced to DGM per day in all species. Of the intracellular Hg, <20% and 20-90% were chelated by PCs and transformed into β-HgS, respectively. These results suggest that intracellular biotransformation might be more important than bioavailability regulation in Hg(II) detoxification in marine phytoplankton.

  12. Studies on phytoplankton characteristics in Ayyampattinam coast, India.

    PubMed

    Kumar, C Santhosh; Perumal, P

    2012-05-01

    Physico-chemical variables in the marine environment are subjected to wide spatio-temporal variations. The various physico-chemical parameters viz: temperature, salinity, pH, dissolved oxygen and nutrients of the environment are the factors which mainly influence the production and successful propagation of planktonic life in the coastal biotopes. The ranges of values of surface water temperature (0 degrees C), salinity (per thousand), pH and dissolved oxygen (ml l(-1)) were: 25.5 - 33.4; 23 - 35; 7.8 - 8.2; 3.6 - 5.2, respectively. The values (microg l(-1)) of nutrients were: nitrate 3.21 - 6.34, nitrite 0.74 - 0.896, phosphate 0.22 and 1.16, silicate 24.85 - 61.92 and ammonia 0.05 - 0.32. The recorded values of primary productivity (mgcm(-3)hr(1)) ranged between 16 - 116 and the chlorophyll "a" varied from 3.74 - 8.52. A total number of 51 species of phytoplankton representing different classes viz: Bacillariophyceae (40); Dinophyceae (8); Chlorophyceae (1) and Cyanophyceae (2) was recorded. Among the four classes, Bacillariophyceae appeared to be the dominant group in respect of total species and cell numbers. The population density of phytoplankton was high during summer season and quite low during monsoon season.

  13. Plastids of marine phytoplankton produce bioactive pigments and lipids.

    PubMed

    Heydarizadeh, Parisa; Poirier, Isabelle; Loizeau, Damien; Ulmann, Lionel; Mimouni, Virginie; Schoefs, Benoît; Bertrand, Martine

    2013-09-01

    Phytoplankton is acknowledged to be a very diverse source of bioactive molecules. These compounds play physiological roles that allow cells to deal with changes of the environmental constrains. For example, the diversity of light harvesting pigments allows efficient photosynthesis at different depths in the seawater column. Identically, lipid composition of cell membranes can vary according to environmental factors. This, together with the heterogenous evolutionary origin of taxa, makes the chemical diversity of phytoplankton compounds much larger than in terrestrial plants. This contribution is dedicated to pigments and lipids synthesized within or from plastids/photosynthetic membranes. It starts with a short review of cyanobacteria and microalgae phylogeny. Then the bioactivity of pigments and lipids (anti-oxidant, anti-inflammatory, anti-mutagenic, anti-cancer, anti-obesity, anti-allergic activities, and cardio- neuro-, hepato- and photoprotective effects), alone or in combination, is detailed. To increase the cellular production of bioactive compounds, specific culture conditions may be applied (e.g., high light intensity, nitrogen starvation). Regardless of the progress made in blue biotechnologies, the production of bioactive compounds is still limited. However, some examples of large scale production are given, and perspectives are suggested in the final section.

  14. Impact of ocean phytoplankton diversity on phosphate uptake

    PubMed Central

    Lomas, Michael W.; Bonachela, Juan A.; Levin, Simon A.; Martiny, Adam C.

    2014-01-01

    We have a limited understanding of the consequences of variations in microbial biodiversity on ocean ecosystem functioning and global biogeochemical cycles. A core process is macronutrient uptake by microorganisms, as the uptake of nutrients controls ocean CO2 fixation rates in many regions. Here, we ask whether variations in ocean phytoplankton biodiversity lead to novel functional relationships between environmental variability and phosphate (Pi) uptake. We analyzed Pi uptake capabilities and cellular allocations among phytoplankton groups and the whole community throughout the extremely Pi-depleted western North Atlantic Ocean. Pi uptake capabilities of individual populations were well described by a classic uptake function but displayed adaptive differences in uptake capabilities that depend on cell size and nutrient availability. Using an eco-evolutionary model as well as observations of in situ uptake across the region, we confirmed that differences among populations lead to previously uncharacterized relationships between ambient Pi concentrations and uptake. Supported by novel theory, this work provides a robust empirical basis for describing and understanding assimilation of limiting nutrients in the oceans. Thus, it demonstrates that microbial biodiversity, beyond cell size, is important for understanding the global cycling of nutrients. PMID:25422472

  15. The Living Ocean.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This teaching guide contains information, activities, and discussion questions and answers about oceans for grades nine and ten. The information section covers the following topics: studying