Sample records for ln-coordination polymers based

  1. The structures and luminescence properties of lanthanide (Ln = Sm, Eu and Tb) metal-organic coordination polymers based on 5-(2-hydroxyethoxy)isophthalate ligand

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhang, Yu-Jie; Qin, Jie; Chen, Yong; Zhao, Ying

    2015-03-01

    Three unreported isomorphous Ln-containing metal-organic coordination polymeric complexes {LnL(HL)ṡ(H2O)2}n (Ln = Sm (1), Eu (2) and Tb (3), CCDC 971815-971817) were synthesized based on 5-(2-hydroxyethoxy) isophthalic acid (H2L) under hydrothermal conditions. The obtained coordination polymers were characterized by IR, elemental analysis, thermal analysis and X-ray diffraction In solid state, these polymers featured 3-D supramolecular structures constructed by 2-D sheets through H-bonds. Investigation of photoluminescence properties of H2L and 1-3 showed all of them exhibited intense fluorescent emissions in the solid state at room temperature.

  2. Synthesis, structure, and luminescence property of a series of Ag–Ln coordination polymers with the N-heterocyclic carboxylato ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Jing, E-mail: jinjing_crystal@126.com; Chen, Chong; Gao, Yan

    Six Ln–Ag coordination polymers {[LnAg_2(IN)_4(H_2O)_5]·NO_3·2H_2O}{sub n} (Ln=Ho (1) and Tb (2), HIN=isonicotinic acid), {[PrAg_2(IN)_4(H_2O)_2]·NO_3·H_2O}{sub n} (3), [LnAg(pdc){sub 2}]{sub n} (Ln=Eu(4) and Pr (5), H{sub 2}pdc=3,4-pyridine-dicarboxylic acid) and [NdAg(bidc){sub 2}(H{sub 2}O){sub 4}]{sub n} (6) (H{sub 2}bidc=benzimidazole-5,6-dicarboxylic acid) have been hydrothermally synthesized and characterized by single crystal X-ray diffraction, elemental analysis, IR, UV–vis-NIR absorption spectra, fluorescence spectra and thermogravimetric analysis. Structural analyses reveal that the six polymers exhibit 0D (polymer (1)), 1D (polymer (2)), 2D (polymers (3) and (5)) and 3D (polymers (4) and (6)) infinite structures, respectively. Polymers (1)–(6) exhibit the Ln(III) characteristic emission in the near-infrared (NIR) region or inmore » the visible region. Especially, the NIR emission bands of polymers 1, 5 and 6 evidently present shift or splitting due to formation of the Ln–Ag coordination polymers. This can be attributed to the tune of inner levels in Ln–Ag system caused by the interact and influence between the 4d orbital of the Ag(I) ion and the 4f orbital of the Ln(III) ion, which can be confirmed by the UV–vis-NIR absorption spectra of the polymers. In addition, the distortion of coordination geometry as well as difference of the coordination number around the Ag(I) ion affect the structure framework. - Graphical abstract: Six Ag–Ln coordination polymers have been hydrothermally synthesized and characterized. The photoluminescence properties were studied. The distortion of coordination geometry of Ag(I) ion affect structure framework. Introduction of Ag(I) cause wonderful changes to the NIR emission of Ln(III) ions. - Highlights: • Six Ln–Ag polymers have been synthesized and characterized. • The distortion of coordination geometry of Ag(I) ion affect structure framework. • Introduction of Ag(I) cause wonderful changes to the NIR emission of Ln(III) ions.« less

  3. Nanometrization of Lanthanide-Based Coordination Polymers.

    PubMed

    Neaime, Chrystelle; Daiguebonne, Carole; Calvez, Guillaume; Freslon, Stéphane; Bernot, Kevin; Grasset, Fabien; Cordier, Stéphane; Guillou, Olivier

    2015-11-23

    Heteronuclear lanthanide-based coordination polymers are microcrystalline powders, the luminescence properties of which can be precisely tuned by judicious choice of the rare-earth ions. In this study, we demonstrate that such materials can also be obtained as stable solutions of nanoparticles in non-toxic polyols. Bulk powders of the formula [Ln2-2x Ln'2x (bdc)3 ⋅4 H2 O]∞ (where H2 bdc denotes 1,4-benzene-dicarboxylic acid, 0≤x≤1, and Ln and Ln' denote lanthanide ions of the series La to Tm plus Y) afford nanoparticles that have been characterized by dynamic light-scattering (DLS) and transmission electron microscopy (TEM) measurements. Their luminescence properties are similar to those of the bulk materials. Stabilities versus time and versus dilution with another solvent have been studied. This study has revealed that it is possible to tune the size of the nanoparticles. This process offers a reliable means of synthesizing suspensions of nanoparticles with tunable luminescence properties and tunable size distributions in a green solvent (glycerol). The process is also extendable to other coordination polymers and other solvents (ethylene glycol, for example). It constitutes a new route for the facile solubilization of lanthanide-based coordination polymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Syntheses, structures and properties of four 3D microporous lanthanide coordination polymers based on 3,5-pyrazoledicarboxylate and oxalate ligands

    NASA Astrophysics Data System (ADS)

    Song, Juan; Wang, Ji-Jiang; Hu, Huai-Ming; Wu, Qing-Ran; Xie, Juan; Dong, Fa-Xin; Yang, Meng-Lin; Xue, Gang-Lin

    2014-04-01

    Four three-dimensional lanthanide coordination polymers with reversible structural interconversions, [Ln2(Hpdc)2(C2O4)(H2O)4]n·2nH2O [Ln=Sm (1), Eu (2), Tb (3) and Dy (4)], have been synthesized by hydrothermal reactions of lanthanide nitrates with 3,5-pyrazoledicarboxylic (H3pdc) and oxalic acids. It is noteworthy that there is an in situ reaction in 1, in which H3pdc was decomposed into (ox)2- with Cu(II)-Sm(III) synergistic effect under hydrothermal conditions. These compounds are isostructural and crystallized in the monoclinic P21/c space group. The Ln(III) ions are eight-coordinated with dodecahedron coordination geometry. These polyhedra are linked by oxalate groups to form 1D zigzag chain, which are further connected by 3,5-pyrazoledicarboxylate to extend similar 3D frameworks with channels along c-axis in 1-4. These coordination polymers display the characteristic emission bands of the Ln(III) ions in the solid state and possess good thermal stabilities.

  5. Rethinking Sensitized Luminescence in Lanthanide Coordination Polymers and MOFs: Band Sensitization and Water Enhanced Eu Luminescence in [Ln(C15H9O5)3(H2O)3]n (Ln = Eu, Tb).

    PubMed

    Einkauf, Jeffrey D; Kelley, Tanya T; Chan, Benny C; de Lill, Daniel T

    2016-08-15

    A coordination polymer [Ln(C15H9O9)3(H2O)3]n (1-Ln = Eu(III), Tb(III)) assembled from benzophenonedicarboxylate was synthesized and characterized. The organic component is shown to sensitize lanthanide-based emission in both compounds, with quantum yields of 36% (Eu) and 6% (Tb). Luminescence of lanthanide coordination polymers is currently described from a molecular approach. This methodology fails to explain the luminescence of this system. It was found that the band structure of the organic component rather than the molecular triplet state was able to explain the observed luminescence. Deuterated (Ln(C15H9O9)3(D2O)3) and dehydrated (Ln(C15H9O9)3) analogues were also studied. When bound H2O was replaced by D2O, lifetime and emission increased as expected. Upon dehydration, lifetimes increased again, but emission of 1-Eu unexpectedly decreased. This reduction is reasoned through an unprecedented enhancement effect of the compound's luminescence by the OH/OD oscillators in the organic-to-Eu(III) energy transfer process.

  6. Synthesis, crystal structures and luminescent properties of two 4 d-4 f Ln-Ag heterometallic coordination polymers based on anion template

    NASA Astrophysics Data System (ADS)

    Fan, Le-Qing; Chen, Yuan; Wu, Ji-Huai; Huang, Yun-Fang

    2011-04-01

    Two new 4 d-4 f Ln-Ag heterometallic coordination polymers, {[ Ln3Ag 5(IN) 10(H 2O) 7]·4(ClO 4)·4(H 2O)} n ( Ln=Eu ( 1) and Sm ( 2), HIN=isonicotinic acid), have been synthesized under hydrothermal conditions by reactions of Ln2O 3, AgNO 3, HIN and HClO 4, and characterized by elemental analysis, IR, thermal analysis and single-crystal X-ray diffraction. It is proved that HClO 4 not only adjusts the pH value of the reaction mixture, but also acts as anion template. The structure determination reveals that 1 and 2 are isostructural and feature a novel two-dimensional (2D) layered hetrometallic structure constructed from one-dimensional Ln-carboxylate chains and pillared Ag(IN) 2 units. The 2D layers are further interlinked through Ag⋯Ag and Ag⋯O(ClO 4-) multiple weak interactions, which form a rare Ag-ClO 4 ribbon in lanthanide-transition metal coordination polymers, to give rise to a three-dimensional supramolecular architecture. Moreover, the luminescent properties of these two compounds have also been investigated at room temperature.

  7. Building 1D lanthanide chains and non-symmetrical [Ln2] "triple-decker" clusters using salen-type ligands: magnetic cooling and relaxation phenomena.

    PubMed

    Canaj, Angelos B; Siczek, Milosz; Otręba, Marta; Lis, Tadeusz; Lorusso, Giulia; Evangelisti, Marco; Milios, Constantinos J

    2016-11-22

    A solvothermal reaction between Ln(NO 3 ) 3 ·6H 2 O (Ln: Gd, Tb and Dy), 2-hydroxy-1-naphthaldehyde, 2-OH-naphth, and ethylenediamine, en, in MeOH in the presence of a base, NEt 3 , led to the formation of the 1D coordination polymers [Ln(L)(MeO)(MeOH) 0.5 ] n ·MeOH (Ln = Gd (1·MeOH), Tb(2), Dy (3·MeOH); H 2 L = 1,1'-((1E,1'E)-(ethane-1,2-diylbis(azanylylidene))bis(methanylylidene))bis(naphthalen-2-ol), the Schiff-base ligand derived from the condensation of 2-OH-naphth and en), while a similar reaction in an excess of NaN 3 yielded 1D coordination polymers [Ln(L)(N 3 ) 0.75 (MeO) 0.25 (MeOH)] n (Ln = Gd (4), Tb (5), Dy (6)). Finally, upon replacing ethylenediamine with o-phenylenediamine, o-phen, we managed to isolate the discrete dimers [Dy 2 (L') 3 (MeOH)]·2MeOH (7·2MeOH) and [Gd 2 (L') 3 (MeOH)]·2MeOH (8·2MeOH) (H 2 L' = 1,1'-((1E,1'E)-(1,2-phenylenebis(azanylylidene))bis(methanylylidene))bis (naphthalen-2-ol), the Schiff-base ligand from the condensation of 2-OH-naphth and o-phen). Polymers 1-3 describe one-dimensional chains, containing alternating seven- and eight-coordinate Ln III metal centers, polymers 4-6 contain eight-coordinate lanthanide ions, while in both 7 and 8 the two Ln III centers are eight- and seven-coordinate, adopting square antiprismatic and "piano-stool" geometry, respectively. The magnetocaloric properties of the three Gd III analogues were determined from magnetic measurements, yielding the magnetic entropy change -ΔS m = 21.8, 23.0 and 16.0 J kg -1 K -1 at T = 3.0 K on demagnetization of 7 T to 0, for 1, 4 and 8, respectively. The study of the magnetic properties also revealed that all three Dy III analogues (3, 6 and 7) display out-of-phase signals, therefore suggesting slow magnetic relaxation, while such behaviour was not established in the Tb III analogues.

  8. Syntheses, structures and properties of three new two-dimensional Cu(I)-Ln(III) heterometallic coordination polymers based on 2,2'-dipyridyl-5,5'-dicarboxylate ligands.

    PubMed

    Zhao, Junwei; Cheng, Yamin; Shang, Sensen; Zhang, Fang; Chen, Li; Chen, Lijuan

    2013-12-01

    Three new two-dimensional Cu(I)-Ln(III) heterometallic coordination polymers [Ln(III)Cu2(I)(Hbpdc)4] · Cl · xH2O [Ln(III) = La(III), x = 8 (1); Ln(III) = Pr(III), x=9 (2); Ln(III) = Eu(III), x = 8 (3)] (H2bpdc = 2,2'-bipyridyl-5,5'-dicarboxylic acid) have been prepared under hydrothermal conditions and structurally characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP-AES) analyses, IR spectra, X-ray photoelectron spectroscopy (XPS) and single-crystal X-ray diffraction. X-ray diffraction indicates that the isomorphic 1-3 display the two-dimensional sheet structure constructed from [Cu(I)(Hbpdc)2](-) fragments through Ln(3+) connectors. Moreover, the solid-state photoluminescence measurements of 3 indicate that the Eu(III) ions, Hbpdc(-) ligands and Cu(I) cations make contributions to its luminescent properties simultaneously. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Chunying; Lu, Jialin; Han, Jingyu

    Polymeric lanthanide complexes with thiostannate and polyamine mixed ligands, [Ln(peha)(μ–SnS{sub 4}H)]{sub n} [Ln=La (1a), Nd (1b)] and [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n}nH{sub 2}O [Ln=Nd (2a), Sm (2b), Gd (2c), Dy (2d)] (peha=pentaethylenehexamine, tepa=tetraethylenepentamine) were respectively prepared in peha and tepa coordinative solvents by the solvothermal methods. In 1a and 1b, the Ln{sup 3+} ions are coordinated by a hexadentate peha ligand forming [Ln(peha)]{sup 3+} units. The [SnS{sub 4}H]{sup 3−} anion chelates a [Ln(peha)]{sup 3+} unit via two S atoms and coordinates to another [Ln(peha)]{sup 3+} unit via the third S atom. As a result, the [Ln(peha)]{sup 3+} units are connectedmore » into coordination polymers [Ln(peha)(μ–SnS{sub 4}H)]{sub n} by an unprecedented tridentate μ–η{sup 1},η{sup 2}–SnS{sub 4}H bridging ligands. In 2a–2d, the Ln{sup 3+} ions are coordinated by a pentadentate tepa ligand, and two [Ln(tepa)]{sup 3+} units are joined by two μ–OH bridges to form a binuclear [(Ln(tepa)(μ–OH)){sub 2}]{sup 4+} unit. Behaving as a bidentate μ–η{sup 1}, η{sup 1}–Sn{sub 2}S{sub 6} bridging ligand, the Sn{sub 2}S{sub 6} unit connects [(Ln(tepa)(μ–OH)){sub 2}]{sup 4+} units into a neutral coordination polymer [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n} via the trans S atoms. The Ln{sup 3+} ions are in distorted monocapped square antiprismatic and bicapped trigonal prismatic environments in [(Ln(peha)(μ–SnS{sub 4}H)]{sub n} and [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n}, respectively. The denticities of ethylene polyamine play an important role on the formation and complexation of the thiostannate in the presence of lanthanide ions. Compounds 1a–2d show well-defined absorption edges with band gaps between 2.81 and 3.15 eV. - Graphical abstract: Lanthanide coordination polymers concerning thiostannate ligands were prepared by the solvothermal methods, and μ{sub 3}–SnS{sub 4}H and μ–Sn{sub 2}S{sub 6} ligands to Ln(III) centers were obtained. - Highlights: • Lanthanide coordination polymers were prepared in polyamines with higher denticity. • The μ–η{sup 1},η{sup 2}–SnS{sub 4}H and μ–η{sup 1},η{sup 1}–Sn{sub 2}S{sub 6} ligands to Ln(III) centers were obtained. • Effect of amine on the complexation of Ln(III) with thiostannate is observed.« less

  10. Syntheses, structures and properties of four 3D microporous lanthanide coordination polymers based on 3,5-pyrazoledicarboxylate and oxalate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Juan; Wang, Ji-Jiang; Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN

    2014-04-01

    Four three-dimensional lanthanide coordination polymers with reversible structural interconversions, [Ln{sub 2}(Hpdc){sub 2}(C{sub 2}O{sub 4})(H{sub 2}O){sub 4}]{sub n}·2nH{sub 2}O [Ln=Sm (1), Eu (2), Tb (3) and Dy (4)], have been synthesized by hydrothermal reactions of lanthanide nitrates with 3,5-pyrazoledicarboxylic (H{sub 3}pdc) and oxalic acids. It is noteworthy that there is an in situ reaction in 1, in which H{sub 3}pdc was decomposed into (ox){sup 2−} with Cu(II)–Sm(III) synergistic effect under hydrothermal conditions. These compounds are isostructural and crystallized in the monoclinic P2{sub 1}/c space group. The Ln(III) ions are eight-coordinated with dodecahedron coordination geometry. These polyhedra are linked by oxalate groupsmore » to form 1D zigzag chain, which are further connected by 3,5-pyrazoledicarboxylate to extend similar 3D frameworks with channels along c-axis in 1–4. These coordination polymers display the characteristic emission bands of the Ln(III) ions in the solid state and possess good thermal stabilities. - Graphical abstract: Four 3D microporous lanthanide coordination polymers with reversible structural interconversion have been synthesized. They exhibit characteristic emission bands of the lanthanide ions and possess great thermal stability. - Highlights: • Four lanthanide coordination polymers have been hydrothermal synthesized. • There is an in situ reaction in 1 in which H{sub 3}pdc was decomposed into (ox){sup 2−} with the Cu(II)–Sm(III) synergistic effect under hydrothermal conditions. • TGA and XRD studies reveal that upon hydration–dehydration, compounds 1–4 undergo a reversible structural interconversion process through a cooling-heating cycle. • Compounds 1–4 exhibit characteristic lanthanide-centered luminescence.« less

  11. Lanthanide coordination polymers based on multi-donor ligand containing pyridine and phthalate moieties: Structures, luminescence and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Xun; Liu, Lang; College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022

    2013-10-15

    A new family of five lanthanide-organic coordination polymers incorporating multi-functional N-hetrocyclic dicarboxylate ligand, namely, [Ln{sub 2}(Hdpp){sub 2}(dpp){sub 2}]{sub n}Ln=Pr(1), Eu(2), Gd(3), Dy(4), Er(5) (H{sub 2}dpp=1-(3, 4-dicarboxyphenyl) pyridin-4-ol) have been fabricated successfully through solvothermal reaction of 1-(3,4-dicarboxyphenyl)-4-hydroxypyridin-1-ium chloride with trivalent lanthanide salts, and have been characterized systematically. The complexes 1–5 are isomorphous and isostructural. They all feature three dimensional (3D) frameworks based on the interconnection of 1D double chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 4+} basic carboxylate as secondary building unit (SBU). The results of magnetic analysis shows the same bridging fashion of carboxylic group in this casemore » results in the different magnetic properties occurring within lanthanide polymers. Moreover, the Eu(III) and Dy(III) complexes display characteristic luminescence emission in the visible regions. - Graphical abstract: A new family of lanthanide-organic frameworks incorporating multi-donor twisted ligand has been fabricated successfully, and has been characterized systematically. The complexes 1–5 are isostructural, and all feather three dimensional (3D) frameworks based on the interconnection of 1D double stride chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 2+} basic carboxylate as secondary building unit (SBU). Display Omitted - Highlights: • New family of lanthanide–organic coordination polymers incorporating multifunctional N-hetrocyclic dicarboxylate ligand has been fabricated. • They have been characterized systematically. • They all feather three dimensional frameworks based on the binuclear moiety of [Ln{sub 2}(Hdpp){sub 2}]{sup 2+}. • The Eu(III) and Dy(III) analogues exhibit intense photoluminescence.« less

  12. One-dimensional coordination polymers of whole row rare earth tris-pivalates

    NASA Astrophysics Data System (ADS)

    Tsymbarenko, Dmitry; Martynova, Irina; Grebenyuk, Dimitry; Shegolev, Vsevolod; Kuzmina, Natalia

    2018-02-01

    Fourteen 1D coordination polymers of rare earth pivalates [Ln(Piv)3]∞ (Ln = Y, La, Pr, Nd, Sm-Lu) were synthesized and characterized by powder X-ray diffraction, IR spectroscopy, TGA, and conventional elemental analysis. Crystal structures of [La(Piv)3]∞, [Yb(Piv)3]∞, [Lu(Piv)3]∞ were determined by means of single crystal X-ray analysis at 120 K, those of [Y(Piv)3]∞ and [Ho(Piv)3]∞ - from powder XRD data at 293 K. Transformation of [Ln(Piv)3]∞ structure and Piv- anions coordination mode along the whole row has been derived from powder XRD and IR spectroscopy results, and shown to crucially affect the relative location of 1D chains in the crystal structure, as well as the Ln···Ln distance within the single chain. Negative thermal expansion along 1D [Ln(Piv)3]∞ chain was revealed for Ln = Tm, Yb, Lu. Enforcement of 1D polymeric structure with the decrease of Ln ionic radius has been established from solid-state DFT calculations.

  13. Syntheses, crystal structures and properties of series of 4d–4f ln(III)–Ag(I) heterometallic coordination polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ran, Xing-Rui; Wang, Ning; Xie, Wei-Ping

    2015-05-15

    By control of the experimental parameters such as ligands, pH value and reacting temperature, series of three-dimensional (3D) 4d–4f Ln(III)–Ag(I) porous coordination polymers (PCPs) with interesting chain-layer construction, namely, ([Ln{sup III}Ag{sup I}(na)(ina)(ox)]·2(H{sub 2}O)){sub n} [Ln=Sm(1), Eu(2), Gd(3), Tb(4), Dy(5), Ho(6), Y(7), Yb(8)], have been successfully synthesized under hydrothermal conditions and structurally characterized. All the complexes are characterized by elemental analyses, FT-IR spectroscopy, Powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). Furthermore, the luminescence properties of compounds 2 and 4 and the magsnetic properties of complexes 3 and 5 were also investigated in detail. - Graphical abstract: Series of three-dimensional (3D)more » 4d–4f Ln(III)–Ag(I) porous coordination polymers (PCPs) with interesting chain-layer construction which are featured by tetranuclear Ln{sub 2}Ag{sub 2} and ‘non-linear’ N–Ag–N linkages. - Highlights: • Complexes 1–8 are first built by three kinds of organic ligands based on nicotinic acid and isonicotinic acid. • PCPs 1–8 are featured by tetranuclear Ln{sub 2}Ag{sub 2} and ‘non-linear’ N–Ag–N linkages. • The total solvent-accessible volume of PCP 2 comprises 11.6% of the crystal volume after dislodging the free water molecules. • Complexes 2 and 4 exhibit characteristic lanthanide-centered luminescence, while compounds 3 and 5 show antiferromagnetic behaviors.« less

  14. Highly luminescent and triboluminescent coordination polymers assembled from lanthanide β-diketonates and aromatic bidentate O-donor ligands.

    PubMed

    Eliseeva, Svetlana V; Pleshkov, Dmitry N; Lyssenko, Konstantin A; Lepnev, Leonid S; Bünzli, Jean-Claude G; Kuzmina, Natalia P

    2010-10-18

    The reaction of hydrated lanthanide hexafluoroacetylacetonates, [Ln(hfa)(3)(H(2)O)(2)], with 1,4-disubstituted benzenes afforded a new series of one-dimensional coordination polymers [Ln(hfa)(3)(Q)](∞), where Ln = Eu, Gd, Tb, and Lu and Q = 1,4-diacetylbenzene (acbz), 1,4-diacetoxybenzene (acetbz), or 1,4-dimethyltherephtalate (dmtph). X-ray single crystal analyses reveal [Ln(hfa)(3)(acbz)](∞) (Ln = Eu, Gd, Tb) consisting of zigzag polymeric chains with Ln-Ln-Ln angles equal to 128°, while the arrays are more linear in [Eu(hfa)(3)(acetbz)](∞) and [Eu(hfa)(3)(dmtph)](∞), with Ln-Ln-Ln angles of 165° and 180°, respectively. In all structures, Ln(III) ions are 8-coordinate and lie in distorted square-antiprismatic environments. The coordination polymers are thermally stable up to 180-210 °C under a nitrogen atmosphere. Their volatility has been tested in vacuum sublimation experiments at 200-250 °C and 10(-2) Torr: the metal-organic frameworks with acetbz and dmtph can be quantitatively sublimed, while [Ln(hfa)(3)(acbz)](∞) undergoes thermal decomposition. The triplet state energies of the ancillary ligands, 21,600 (acetbz), 22,840 (acbz), and 24,500 (dmtph) cm(-1), lie in an ideal range for sensitizing the luminescence of Eu(III) and/or Tb(III). As a result, all of the [Ln(hfa)(3)(Q)](∞) polymers display bright red or green luminescence due to the characteristic (5)D(0) → (7)F(J) (J = 0-4) or (5)D(4) → (7)F(J) (J = 6-0) transitions, respectively. Absolute quantum yields reach 51(Eu) and 56(Tb) % for the frameworks built from dmtph. Thin films of [Eu(hfa)(3)(Q)](∞) with 100-170 nm thickness can be obtained by thermal evaporation (P < 3 × 10(-5) Torr, 200-250 °C). They are stable over a long period of time, and their photophysical parameters are similar to those of the bulk samples so that their use as active materials in luminescent devices can be envisaged. Mixtures of [Ln(hfa)(3)(dmpth)](∞) with Ln = Eu and Tb yield color-tunable microcrystalline materials from red to green. Finally, the crystalline samples exhibit strong triboluminescence, which could be useful in the design of pressure and/or damage detection probes.

  15. Synthesis, structures and fluorescent properties of two novel lanthanide [Ln = Ce(III), Pr(III)] coordination polymers based on 1,3-benzenedicarboxylate and 2-(4-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline ligands

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ni, Liang; yao, Jia

    2012-09-01

    Two structurally diverse coordination polymers [Ce2(m-BDC)2(m-HBDC)2(MOPIP)2·3/2H2O]n (1) and [Pr2(m-BDC)3(MOPIP)2·H2O]n(2) have been synthesized by hydrothermal reaction of lanthanide chloride with mixed ligands benzene-1,3-dicarboxylic acid and 2-(4-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (MOPIP). The crystal structures of the complexes are zipper-like chains of octacoordinate Ln3+ ions, in which Ln3+ ions are bridged in different coordination modes by m-BDC2+ and decorated by MOPIP ligands. These chains are further assembled into three-dimensional supramolecular framework by π⋯π stacking and hydrogen bonding interactions. The fluorescent property and thermal stability were also investigated. Additionally, Natural bond orbital (NBO) analysis of complex 2 shows a weak covalent interaction between the coordinated atoms and Pr3+ ions.

  16. N-(sulfoethyl) iminodiacetic acid-based lanthanide coordination polymers: Synthesis, magnetism and quantum Monte Carlo studies

    NASA Astrophysics Data System (ADS)

    Zhuang, Gui-lin; Chen, Wu-lin; Zheng, Jun; Yu, Hui-you; Wang, Jian-guo

    2012-08-01

    A series of lanthanide coordination polymers have been obtained through the hydrothermal reaction of N-(sulfoethyl) iminodiacetic acid (H3SIDA) and Ln(NO3)3 (Ln=La, 1; Pr, 2; Nd, 3; Gd, 4). Crystal structure analysis exhibits that lanthanide ions affect the coordination number, bond length and dimension of compounds 1-4, which reveal that their structure diversity can be attributed to the effect of lanthanide contraction. Furthermore, the combination of magnetic measure with quantum Monte Carlo(QMC) studies exhibits that the coupling parameters between two adjacent Gd3+ ions for anti-anti and syn-anti carboxylate bridges are -1.0×10-3 and -5.0×10-3 cm-1, respectively, which reveals weak antiferromagnetic interaction in 4.

  17. Visible and NIR photoluminescence properties of a series of novel lanthanide-organic coordination polymers based on hydroxyquinoline-carboxylate ligands.

    PubMed

    Gai, Yan-Li; Xiong, Ke-Cai; Chen, Lian; Bu, Yang; Li, Xing-Jun; Jiang, Fei-Long; Hong, Mao-Chun

    2012-12-17

    A series of novel two-dimensional (2D) lanthanide coordination polymers with 4-hydroxyquinoline-2-carboxylate (H(2)hqc) ligands, [Ln(Hhqc)(3)(H(2)O)](n)·3nH(2)O (Ln = Eu (1), Tb (2), Sm (3), Nd (4), and Gd (5)) and [Ln(Hhqc)(ox)(H(2)O)(2)](n) (Ln = Eu (6), Tb (7), Sm (8), Tm (9), Dy (10), Nd (11), Yb (12), and Gd (13); H(2)ox = oxalic acid), have been synthesized under hydrothermal conditions. Complexes 1-5 are isomorphous, which can be described as a two-dimensional (2D) hxl/Shubnikov network based on Ln(2)(CO(2))(4) paddle-wheel units, and the isomorphous complexes 6-13 feature a 2D decker layer architecture constructed by Ln-ox infinite chains cross-linked alternatively by bridging Hhqc(-) ligands. The room-temperature photoluminescence spectra of complexes Eu(III) (1 and 6), Tb(III) (2 and 7), and Sm(III) (3 and 8) exhibit strong characteristic emissions in the visible region, whereas Nd(III) (4 and 11) and Yb(III) (12) complexes display NIR luminescence upon irradiation at the ligand band. Moreover, the triplet state of H(2)hqc matches well with the emission level of Eu(III), Tb(III), and Sm(III) ions, which allows the preparation of new optical materials with enhanced luminescence properties.

  18. Intralanthanide Separation on Layered Titanium(IV) Organophosphate Materials via a Selective Transmetalation Process.

    PubMed

    Zhang, Wenzhong; Hietala, Sami; Khriachtchev, Leonid; Hatanpää, Timo; Doshi, Bhairavi; Koivula, Risto

    2018-06-21

    The lanthanides (Ln) are an essential part of many advanced technologies. Our societal transformation toward renewable energy drives their ever-growing demand. The similar chemical properties of the Ln pose fundamental difficulties in separating them from each other, yet high purity elements are crucial for specific applications. Here, we propose an intralanthanide separation method utilizing a group of titanium(IV) butyl phosphate coordination polymers as solid-phase extractants. These materials are characterized, and they contain layered structures directed by the hydrophobic interaction of the alkyl chains. The selective Ln uptake results from the transmetalation reaction (framework metal cation exchange), where the titanium(IV) serves as sacrificial coordination centers. The "tetrad effect" is observed from a dilute Ln 3+ mixture. However, smaller Ln 3+ ions are preferentially extracted in competitive binary separation models between adjacent Ln pairs. The intralanthanide ion-exchange selectivity arises synergistically from the coordination and steric strain preferences, both of which follow the reversed Ln contraction order. A one-step aqueous separation of neodymium (Nd) and dysprosium (Dy) is quantitatively achievable by simply controlling the solution pH in a batch mode, translating into a separation factor of greater than 2000 and 99.1% molar purity of Dy in the solid phase. Coordination polymers provide a versatile platform for further exploring selective Ln separation processes via the transmetalation process.

  19. A new series of lanthanide coordination polymers with 2,2‧-bipyridine and glutaric acid: Synthesis, crystal structures and properties of [Ln(bipy)(glut)(NO3)

    NASA Astrophysics Data System (ADS)

    Wang, Chunguang; Xing, Yongheng; Li, Zhangpeng; Li, Jing; Zeng, Xiaoqing; Ge, Maofa; Niu, Shuyun

    2009-08-01

    A series of new lanthanide coordination polymers, with the formula [Ln(bipy)(glut)(NO 3)] (Ln = Eu ( 1), Tb ( 2), Sm ( 3), Pr ( 4); bipy = 2,2'-bipyridine; H 2glut = glutaric acid), have been synthesized under the hydrothermal condition and characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction, and single-crystal X-ray diffraction. Structural analyses reveal that all four complexes are isostructural and crystallized in monoclinic system, P2 1/ c space group. For these complexes, the Ln 3+ are all linked through glutaric acid ligands to form 1D chain-like polymeric structures, and bipy and NO3- are coordinated on two sides of the chains. The thermogravimetric analysis of 1 and photoluminescent properties of 1 and 2 are discussed in detail.

  20. Lanthanide Organophosphate Spiro Polymers: Synthesis, Structure, and Magnetocaloric Effect in the Gadolinium Polymer.

    PubMed

    Gupta, Sandeep K; Bhat, Gulzar A; Murugavel, Ramaswamy

    2017-08-07

    Spirocyclic lanthanide organophosphate polymers, {[Ln(dipp)(dippH)(CH 3 OH)(H 2 O) 2 ](CH 3 OH) 2 } n [Ln = La (1), Ce (2), Pr (3), Nd (4), Sm (5), Eu (6), Gd (7), Tb (8), Dy (9), Ho (10), Er (11)], have been prepared from the reaction of Ln(NO 3 ) 3 ·xH 2 O with sterically hindered 2,6-diisopropylphenyl phosphate (dippH 2 ) using aqueous NaOH as the base. The one-dimensional chainlike lanthanide (III) organophosphate coordination polymers have been characterized with the aid of analytical and spectroscopic methods. The single crystal structure determination of polymers (2-5 and 7-11) reveals that in these compounds the hydrophobic organic groups of the phosphate provide a protective coating for the inorganic lanthanide phosphate polymeric chain. The encapsulation of inorganic lanthanide phosphate core, which has very low solubility product, within the organic groups assists in the facile crystallization of the polymers. The di- and monoanionic organophosphate ligands dipp 2- and dippH - display [2.111] and [2.110] binding modes, respectively, in 2-5 and 7. However, they exhibit only [2.110] binding mode in the case of 8-11. This results in the formation of two different types of polymers. While the lighter rare-earth metal ions in 2-5 and 7 display eight coordinate biaugmented trigonal prismatic geometry, the heavier rare-earth metal ions in 9-11 exhibit a seven coordinate capped trigonal prismatic environment. The Tb(III) ion in 8 displays distorted pentagonal bipyramidal geometry. Magnetic studies reveal the presence of weak antiferromagnetic interactions between the Ln(III) ions through the organophosphate ligand. The isotropic Gd(III) polymer 7 exhibits a maximum entropy change of 17.83 J kg -1 K -1 for a field change of 7.0 T at 2.5 K, which is significant considering the high molecular weight of the organophosphate ligand. These polymers represent the first family of any structurally characterized rare-earth organophosphate polymers derived from monoesters of phosphoric acid.

  1. Syntheses, crystal structures and properties of series of 4d-4f ln(III)-Ag(I) heterometallic coordination polymers

    NASA Astrophysics Data System (ADS)

    Ran, Xing-Rui; Wang, Ning; Xie, Wei-Ping; Xiong, Yan-Ju; Cheng, Qian; Long, Yi; Yue, Shan-Tang; Liu, Ying-Liang

    2015-05-01

    By control of the experimental parameters such as ligands, pH value and reacting temperature, series of three-dimensional (3D) 4d-4f Ln(III)-Ag(I) porous coordination polymers (PCPs) with interesting chain-layer construction, namely, {[LnIIIAgI(na)(ina)(ox)]·2(H2O)}n [Ln=Sm(1), Eu(2), Gd(3), Tb(4), Dy(5), Ho(6), Y(7), Yb(8)], have been successfully synthesized under hydrothermal conditions and structurally characterized. All the complexes are characterized by elemental analyses, FT-IR spectroscopy, Powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). Furthermore, the luminescence properties of compounds 2 and 4 and the magsnetic properties of complexes 3 and 5 were also investigated in detail.

  2. 1D hetero-bimetallic regularly alternated 4f-3d coordination polymers based on N-oxide-4,4'-bipyridine (bipyMO) as a linker: photoluminescence and magnetic properties.

    PubMed

    Armelao, Lidia; Belli Dell'Amico, Daniela; Bottaro, Gregorio; Bellucci, Luca; Labella, Luca; Marchetti, Fabio; Mattei, Carlo Andrea; Mian, Federica; Pineider, Francesco; Poneti, Giordano; Samaritani, Simona

    2018-06-13

    Heterotopic divergent ligand N-oxide-4,4'-bipyridine (bipyMO) has been herein exploited for the preparation of hetero-bimetallic coordination polymers where Ln(hfac)3 and M(hfac)2 nodes regularly alternate (Hhfac = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione), bipyMO being able to selectively use its two potential coordination sites to discriminate the metal ions. The synthesis of three coordination polymers, [Ln(hfac)3M(hfac)2(bipyMO)2]n (Ln = Eu, M = Zn, 1; Ln = Eu, M = Cu, 2, Ln = Dy, M = Co, 3), was carried out by reacting the appropriate [M(hfac)2(bipyMO)]n and [Ln(hfac)3] precursors in toluene in the presence of a given stoichiometric amount of bipyMO. The products were characterized by elemental analysis, X-ray powder diffraction, and FTIR spectroscopy. Single crystal X-ray diffraction studies carried out on 2 showed that it was formed by chains containing the hexa-coordinated 3d metal (Cu(hfac)2[N]2) and the octa-coordinated lanthanide (Eu(hfac)3[O]2) nodes, where [N] and [O] stand for the donor atom of the bridging divergent ligand. The X-ray powder diffraction patterns of the three compounds and the comparison of their cell constant values allowed establishing that the derivatives were isotypic. Photoluminescence (PL) studies on microcrystalline sample powders evidenced a bright red emission for 1 with an absolute PL quantum yield of 0.24. The sensitized emission of Eu3+ can be excited in a wide wavelength range, from UV to visible, up to ≈450 nm. Conversely, europium emissions are not detectable in 2 due to the presence of Cu(hfac)2(bipyMO) moieties whose strong absorption overlaps Eu3+ transitions. Magnetic measurements conducted on 3 revealed the presence of a weak ferromagnetic interaction below 2.1 K. An ac susceptibility study highlighted a slow relaxation of the magnetization of 3 with an applied static magnetic field of 0.1 T, which could be equally fitted with a Orbach-direct or a Raman-direct mechanism. No relaxation dynamics was detected without the application of a static magnetic field.

  3. N-(sulfoethyl) iminodiacetic acid-based lanthanide coordination polymers: Synthesis, magnetism and quantum Monte Carlo studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang Guilin, E-mail: glzhuang@zjut.edu.cn; Chen Wulin; Zheng Jun

    2012-08-15

    A series of lanthanide coordination polymers have been obtained through the hydrothermal reaction of N-(sulfoethyl) iminodiacetic acid (H{sub 3}SIDA) and Ln(NO{sub 3}){sub 3} (Ln=La, 1; Pr, 2; Nd, 3; Gd, 4). Crystal structure analysis exhibits that lanthanide ions affect the coordination number, bond length and dimension of compounds 1-4, which reveal that their structure diversity can be attributed to the effect of lanthanide contraction. Furthermore, the combination of magnetic measure with quantum Monte Carlo(QMC) studies exhibits that the coupling parameters between two adjacent Gd{sup 3+} ions for anti-anti and syn-anti carboxylate bridges are -1.0 Multiplication-Sign 10{sup -3} and -5.0 Multiplication-Signmore » 10{sup -3} cm{sup -1}, respectively, which reveals weak antiferromagnetic interaction in 4. - Graphical abstract: Four lanthanide coordination polymers with N-(sulfoethyl) iminodiacetic acid were obtained under hydrothermal condition and reveal the weak antiferromagnetic coupling between two Gd{sup 3+} ions by Quantum Monte Carlo studies. Highlights: Black-Right-Pointing-Pointer Four lanthanide coordination polymers of H{sub 3}SIDA ligand were obtained. Black-Right-Pointing-Pointer Lanthanide ions play an important role in their structural diversity. Black-Right-Pointing-Pointer Magnetic measure exhibits that compound 4 features antiferromagnetic property. Black-Right-Pointing-Pointer Quantum Monte Carlo studies reveal the coupling parameters of two Gd{sup 3+} ions.« less

  4. Conversion of lanthanide glutarate chlorides with interstitial THF into lanthanide glutarates with unprecedented topologies

    DOE PAGES

    Zehnder, Ralph A.; Jenkins, James; Zeller, Matthias; ...

    2017-11-26

    Here, using slow diffusion methods at room temperature (RT), we obtained four isomorphous lanthanide glutarate chlorides, accommodating interstitial THF and water molecules, [Ln 2(Glut) 2Cl 2(H 2O) 8]·2H 2O·THF, with Ln = La , Ce, Pr, Nd. They assemble as 3-dimensional (3D) lanthanide (Ln) coordination polymers with LnO 10 coordination polyhedra. Their topology was elucidated to be a 4-coordinated sql net. slowly dissolve in water liberating the entrapped THF molecules and reassemble as regular Ln-glutarate hydrates when the solution is deprived of THF and water by slow evaporation. The new products crystallize as [Ln 2(Glut) 3(H 2O) 3]·5H 2O, withmore » Ln = La, Ce, Pr, and [Nd 2(Glut) 3(H 2O) 2]·3.5H 2O.« less

  5. Conversion of lanthanide glutarate chlorides with interstitial THF into lanthanide glutarates with unprecedented topologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zehnder, Ralph A.; Jenkins, James; Zeller, Matthias

    Here, using slow diffusion methods at room temperature (RT), we obtained four isomorphous lanthanide glutarate chlorides, accommodating interstitial THF and water molecules, [Ln 2(Glut) 2Cl 2(H 2O) 8]·2H 2O·THF, with Ln = La , Ce, Pr, Nd. They assemble as 3-dimensional (3D) lanthanide (Ln) coordination polymers with LnO 10 coordination polyhedra. Their topology was elucidated to be a 4-coordinated sql net. slowly dissolve in water liberating the entrapped THF molecules and reassemble as regular Ln-glutarate hydrates when the solution is deprived of THF and water by slow evaporation. The new products crystallize as [Ln 2(Glut) 3(H 2O) 3]·5H 2O, withmore » Ln = La, Ce, Pr, and [Nd 2(Glut) 3(H 2O) 2]·3.5H 2O.« less

  6. Four one-dimensional lanthanide-phenylacetate polymers exhibiting luminescence and magnetic cooling/spin-glass behavior.

    PubMed

    Li, Zhong-Yi; Xu, Ya-Lan; Zhang, Xiang-Fei; Zhai, Bin; Zhang, Fu-Li; Zhang, Jian-Jun; Zhang, Chi; Li, Su-Zhi; Cao, Guang-Xiu

    2017-12-21

    Four isostructural lanthanide coordination polymers with a phenylacetate (PAA - ) ligand, [Ln(PAA) 3 (H 2 O)] n (Ln = Eu (1); Gd (2); Tb (3); Dy (4)), were synthesized under hydrothermal conditions. Complexes 1-4 display a one-dimensional (1D) wave chain structure bridged by the carboxylate of the PAA - ligand, which was generated via the in situ decarboxylation of phenylmalonic acid. Magnetic studies suggest the presence of ferromagnetic LnLn coupling in the 1D chain of 1-4. Meanwhile, 2 has a significant cryogenic magnetocaloric effect with the maximum -ΔS m of 26.73 at 3 K and 7 T, and 3 and 4 show interesting spin-glass behavior, which is rarely reported for Ln-containing complexes. Additionally, the solid-state photophysical properties of 1 and 3 display strong characteristic Eu 3+ and Tb 3+ photoluminescence emission in the visible region, indicating that Eu- and Tb-based luminescence are sensitized by the effective energy transfer from the ligand to the metal centers.

  7. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN

    2017-01-15

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox){sub 0.5}(H{sub 2}O)]{sub n}·2n(H{sub 2}O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H{sub 2}sfpip)(ox)(H{sub 2}O){sub 4}]{sub n}·2n(H{sub 2}O) (Ln=Nd (8) Sm (9)), [H{sub 2}ox=oxalic acid, H{sub 3}sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H{sub 3}sfpip resulted in two types of structures. Compounds 1–7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox{sup 2−} anions as linkers to bridge themore » adjacent layers. Compounds 8–9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1–9 were also investigated. - Graphical abstract: Nine new lanthanide coordination polymers have been synthesized under hydrothermal conditions. Compounds 1–7 exhibit a 3D tfz-d network. Compounds 8–9 display a 1D chain structure. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. - Highlights: • Nine lanthanide coordination polymers were prepared under hydrothermal conditions. • Their crystal structures have been determined. • The luminescence and thermal stabilities were studied in the solid state.« less

  8. Series of mixed uranyl-lanthanide (Ce, Nd) organic coordination polymers with aromatic polycarboxylates linkers.

    PubMed

    Mihalcea, Ionut; Volkringer, Christophe; Henry, Natacha; Loiseau, Thierry

    2012-09-17

    Three series of mixed uranyl-lanthanide (Ce or Nd) carboxylate coordination polymers have been successfully synthesized by means of a hydrothermal route using either conventional or microwave heating methods. These compounds have been prepared from mixtures of uranyl nitrate, lanthanide nitrate together with phthalic acid (1,2), pyromellitic acid (3,4), or mellitic acid (5,6) in aqueous solution. The X-ray diffraction (XRD) single-crystal revealed that the phthalate complex (UO(2))(4)O(2)Ln(H(2)O)(7)(1,2-bdc)(4)·NH(4)·xH(2)O (Ln = Ce(1), Nd(2); x = 1 for 1, x = 0 for 2), is based on the connection of tetranuclear uranyl-centered building blocks linked to discrete monomeric units LnO(2)(H(2)O)(7) via the organic species to generate infinite chains, intercalated by free ammonium cations. The pyromellitate phase (UO(2))(3)Ln(2)(H(2)O)(12)(btec)(3)·5H(2)O (Ce(3), Nd(4)) contains layers of monomeric uranyl-centered hexagonal and pentagonal bipyramids linked via the carboxylate arms of the organic molecules. The three-dimensionality of the structure is ensured by the connection of remaining free carboxylate groups with isolated monomeric units LnO(2)(H(2)O)(7). The network of the third series (UO(2))(2)(OH)Ln(H(2)O)(7)(mel)·5H(2)O (Ce(5), Nd(6)) is built up from dinuclear uranyl units forming layers through connection with the mellitate ligands, which are further linked to each other through discrete monomers LnO(3)(H(2)O)(6). The thermal decomposition of the various coordination complexes led to the formation of mixed uranium-lanthanide oxide, with the fluorite-type structure at 1500 °C (for 1, 2) or 1400 °C for 3-6. Expected U/Ln ratio from the crystal structures were observed for compounds 1-6.

  9. Syntheses, structures and luminescent properties of a series of 3D lanthanide coordination polymers with tripodal semirigid ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin Junsheng; Department of Applied Chemistry, Jilin Institute of Chemical Technology, Jilin 132022; Du Dongying

    2011-02-15

    Reactions of the tripodal bridging ligand 5-(4-carboxy-phenoxy)-isophthalic acid (abbreviated as H{sub 3}cpia) with lanthanide salts lead to the formation of a family of different coordination polymers, that is, [Ln(cpia)(H{sub 2}O){sub 2}]{sub n}.nH{sub 2}O (Ln=Ce (1), Pr (2), Nd (3), Sm (4), Eu (5), Gd (6), Dy (7), Er (8), Tm (9) and Y (10)) in the presence of formic acid or diethylamine, which are characterized by elemental analysis, IR spectrum, thermogravimetric analysis (TGA), XRPD spectrum and single-crystal X-ray diffraction. Compounds 1-10 are isostructural and exhibit three-dimensional microporous frameworks. Furthermore, the photoluminescent properties of 4, 5 and 7 have been studiedmore » in detail. -- Graphical abstract: Reactions of the tripodal bridging ligand (H{sub 3}cpia) with lanthanide ions lead to the formation of a series of coordination polymers in the presence of formic acid or diethylamine. Display Omitted Research Highlights: {yields} Ten new lanthanides-based coordination polymers (1-10) have been synthesized. {yields} 1-10 exhibit 3D (4,8)-connected fluorite topology networks with 1D channel parallel to the b-axis. {yields} Compounds 4, 5 and 7 exhibit characteristic luminescence of Sm{sup 3+}, Eu{sup 3+} and Dy{sup 3+} ions, respectively.« less

  10. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming; An, Ran; Yang, Meng-Lin; Xue, Ganglin

    2017-01-01

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox)0.5(H2O)]n·2n(H2O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H2sfpip)(ox)(H2O)4]n·2n(H2O) (Ln=Nd (8) Sm (9)), [H2ox=oxalic acid, H3sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H3sfpip resulted in two types of structures. Compounds 1-7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox2- anions as linkers to bridge the adjacent layers. Compounds 8-9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1-7 to 8-9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1-9 were also investigated.

  11. Efficient Rare-Earth-Based Coordination Polymers as Green Photocatalysts for the Synthesis of Imines at Room Temperature.

    PubMed

    Aguirre-Díaz, Lina M; Snejko, Natalia; Iglesias, Marta; Sánchez, Félix; Gutiérrez-Puebla, Enrique; Monge, M Ángeles

    2018-06-18

    Five new rare-earth coordination polymers (CPs) were designed in order to offer a remarkable platform that contains light-harvesting antennas and catalytic active centers to achieve solar-energy conversion as green alternatives in the synthesis of imines. These five new spirobifluorene-containing Ln-CPs, named [Er 3 (Hsfdc) 3 (sfdc) 3 (H 2 O)]· xH 2 O (RPF-30-Er), [Ln(Hsfdc)(sfdc)(EtOH)]·S (RPF-31-Ln, where Ln = La, Nd, and Sm and S = H 2 O or EtOH), and [Ho(Hsfdc)(sfdc)(H 2 O)] (RPF-32-Ho) (RPF = rare-earth polymeric framework and H 2 sfdc = 9,9'-spirobi[9 H-fluorene]-2,2'-dicarboxylic acid), have been solvothermally synthesized, and their structural features can be described as follows: (i) RPF-30-Er shows a 3D framework in which the inorganic trimers (secondary building units) are cross-linked by Hsfdc - and sfdc 2- linkers displaying a pcu topology. (ii) The isostructural RPF-31-Ln series of materials, together with RPF-32-Ho, exhibit a 1D network of chains growing along the a axis with a ribbon-of-rings topology type. The photocatalytic activity of the RPF- n materials was tested in the oxidative coupling of amines using molecular oxygen and air as oxidizing agents under warm light. Among the materials investigated, RPF-31-Nd was chosen to further investigate the approach in the selectivity of different amine derivates.

  12. Synthesis, Structure, White-Light Emission, and Temperature Recognition Properties of Eu/Tb Mixed Coordination Polymers.

    PubMed

    An, Ran; Zhao, Hui; Hu, Huai-Ming; Wang, Xiaofang; Yang, Meng-Lin; Xue, Ganglin

    2016-01-19

    Two series of Eu(III)/Tb(III) coordination polymers, [LnL(glu)]n·2nH2O (Ln = Eu (1), Tb (2)) and [LnL(glu)(H2O)]n (Ln = Eu (3), Tb (4)) [HL = (2-(2-sulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline, H2glu = glutaric acid] have been hydrothermally synthesized by controlling the pH values and characterized by elemental analysis, infrared spectra, and single-crystal X-ray diffraction. Isomorphic compounds 1 and 2 exhibit 6-connected 3D network with the pcu topological net, containing left- and right-handed helical chains. Isomorphic compounds 3 and 4 show 3,4-connected 2D new topology with the point symbol of (4(2)·6(3)·8)(4(2)·6). Multicolor luminescence can be tailored from red to green regions by singly varying the mixing molar ratio of Eu(III)/Tb(III) cations. The mixing component of 1Eu/2Tb = 4:6 not only achieves white-light emission with the CIE coordinate of (0.323, 0.339) upon excitation at 405 nm but also presents a temperature recognition property with the significantly high sensitivity of 0.68% per K in the 50-225 K temperature range upon excitation at 370 nm.

  13. Colorimetric assay for on-the-spot alcoholic strength sensing in spirit samples based on dual-responsive lanthanide coordination polymer particles with ratiometric fluorescence.

    PubMed

    Deng, Jingjing; Shi, Guoyue; Zhou, Tianshu

    2016-10-26

    This study demonstrates a new strategy for colorimetric detection of alcoholic strength (AS) in spirit samples based on dual-responsive lanthanide infinite coordination polymer (Ln-ICP) particles with ratiometric fluorescence. The ICP used in this study are composed of two components: one is the supramolecular Ln-ICP network formed by the coordination between the ligand 2,2'-thiodiacetic acid (TDA) and central metal ion Eu 3+ ; and the other is a fluorescent dye, i.e., coumarin 343 (C343), both as the cofactor ligand and as the sensitizer, doped into the Ln-ICP network through self-adaptive chemistry. Upon being excited at 300 nm, the red fluorescence of Ln-ICP network itself at 617 nm is highly enhanced due to the concomitant energy transfer from C343 to Eu 3+ , while the fluorescence of C343 at 495 nm is supressed. In pure ethanol solvent, the as-formed C343@Eu-TDA is well dispersed and quite stable. However, the addition of water into ethanolic dispersion of C343@Eu-TDA destructs Eu-TDA network structure, resulting in the release of C343 from ICP network into the solvent. Consequently, the fluorescence of Eu-TDA turns off and the fluorescence of C343 turns on, leading to the fluorescent color change of the dispersion from red to blue, which constitutes a new mechanism for colorimetric sensing of AS in commercial spirit samples. With the method developed here, we could clearly distinguish the AS of different spirit samples within a wide linear range from 10% vol to 100% vol directly by "naked eye" with the help of UV-lamp (365 nm). This study not only offers a new method for on-the-spot visible detection of AS, but also provides a strategy for dual-responsive sensing mode by rational designing the optical properties of the Ln-ICP network and the guest, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Toward lanthanide containing coordination polymers and nanomaterials

    NASA Astrophysics Data System (ADS)

    Greig, Natalie E.

    The focus of this thesis is to develop lanthanide (Ln) luminescent materials through the exploration of coordination polymers and nanomaterials. Herein, dimethyl-3,4-furanedicarboxylate acid undergoes hydrolysis under hydrothermal conditions to form coordination polymers with lanthanide ions. The resulting coordination polymers exhibited luminescent properties, with quantum yields and lifetimes for the Eu- and Tb-CP of 1.14±0.31% and 0.387±0.0001 ms, and 3.33±0.82% and 0.769±0.006 ms, respectively. While the incorporation of lanthanides was not achieved in this work, progress toward the production of pure phase InP in the nanoregime has been made, using a low-cost, hydrothermal method. Though SEM and PXRD conflict, it is believed that pure InP particles with a size range of 58-81 nm were successfully synthesized.

  15. First examples of ternary lanthanide 5-aminoisophthalate complexes: Hydrothermal syntheses and structures of lanthanide coordination polymers with 5-aminoisophthalate and oxalate

    NASA Astrophysics Data System (ADS)

    Liu, Chong-Bo; Wen, Hui-Liang; Tan, Sheng-Shui; Yi, Xiu-Guang

    2008-05-01

    Two new lanthanide coordination polymers with mixed-carboxylates, [Ln(OX)(HAPA)(H 2O)] n[Ln = Eu ( 1), Ho ( 2); H 2APA = 5-aminoisophthalic acid; OX = oxalate] were obtained by hydrothermal reactions, and characterized by single crystal X-ray diffraction, elemental analysis and IR spectra. Complexes 1 and 2 are both 3-D supramolecular structure, in which lanthanide ions are bridged by oxalate and 5-aminoisophthalate ligands forming 2-D metal-organic framework, and 2-D networks are further architectured to form 3-D supramolecular structures by hydrogen bonds. The two carboxylate groups of H 2APA ligand are all deprotonated and exhibit chelating and bridging bidentate coordination modes, respectively, and the amino group in HAPA presents - NH3+ in the titled complexes. The thermogravimetric analysis was carried out to examine the thermal stability of the titled complexes. And the photoluminescence property of 1 was investigated.

  16. Solvothermal syntheses, crystal structures, and properties of lanthanide(III) thioarsenates [Ln(dien){sub 2}(μ-1κ,2κ{sup 2}-AsS{sub 4})]{sub n} (Ln==Sm, Eu, Gd) and [Ln(dien){sub 2}(1κ{sup 2}-AsS{sub 4})] (Ln==Tb, Dy, Ho)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Fang; Tang, Chunying; Chen, Ruihong

    2013-10-15

    Solvothermal reactions of Ln{sub 2}O{sub 3}, As and S in diethylenetriamine (dien) at 170 °C for 6 days afforded two structural types of lanthanide thioarsenates with the general formulae [Ln(dien){sub 2}(μ-1κ,2κ{sup 2}-AsS{sub 4})]{sub n} [Ln=Sm(1), Eu(2), Gd(3)] and [Ln(dien){sub 2}(1κ{sup 2}-AsS{sub 4})] [Ln=Tb(4), Dy(5), Ho(6)]. The Ln{sub 2}O{sub 3} oxides were converted to [Ln(dien){sub 2}]{sup 3+} complex units in the solvothermal reactions. The As atom binds four S atoms, forming a tetrahedral AsS{sub 4} unit. In 1−3, the AsS{sub 4} units interconnect the [Ln(dien){sub 2}]{sup 3+} cations via Ln−S bonds as tridentate μ-1κ,2κ{sup 2}-AsS{sub 4} bridging ligands, resulting in themore » neutral coordination polymers [Ln(dien){sub 2}(μ-1κ,2κ{sup 2}-AsS{sub 4})]{sub n} (Ln1). In 4−6, the AsS{sub 4} units coordinate with the Ln{sup 3+} ion of [Ln(dien){sub 2}]{sup 3+} as 1κ{sup 2}-AsS{sub 4} chelating ligands to form neutral coordination compounds [Ln(dien){sub 2}(1κ{sup 2}-AsS{sub 4})] (Ln2). The Ln{sup 3+} ions are in nine- and eight-coordinated environments in Ln1 and Ln2, respectively. The formation of Ln1 and Ln2 is related with ionic size of the Ln{sup 3+} ions. Optical absorption spectra showed that 1−6 have potential use as semiconductors with the band gaps in the range 2.18−3.21 eV. - Graphical abstract: Two types of Ln-thioarsenates [Ln(dien){sub 2}(μ-1κ,2κ{sup 2}-AsS{sub 4})]{sub n} and [Ln(dien){sub 2}(1κ{sup 2}-AsS{sub 4})] were prepared by solvothermal methods and the soft Lewis basic AsS{sub 4}{sup 3–} ligand to Ln(III) centers with polyamine co-ligand was obtained. Display Omitted - Highlights: • Lanthanide thioarsenates were prepared by solvothermal methods. • The soft Lewis basic AsS{sub 4} ligand coordinate Ln{sup 3+} ions with coexistence polyamine ligands. • Two structural types of Ln-thioarsenates with structural turnover at Tb were obtained along Ln series. • The Ln-thioarsenates are potential semiconductors with optical band gaps in the range 2.18−3.21 eV.« less

  17. Nanoscale coordination polymers exhibiting luminescence properties and NMR relaxivity

    NASA Astrophysics Data System (ADS)

    Chelebaeva, Elena; Larionova, Joulia; Guari, Yannick; Ferreira, Rute A. S.; Carlos, Luis D.; Trifonov, Alexander A.; Kalaivani, Thangavel; Lascialfari, Alessandro; Guérin, Christian; Molvinger, Karine; Datas, Lucien; Maynadier, Marie; Gary-Bobo, Magali; Garcia, Marcel

    2011-03-01

    This article presents the first example of ultra-small (3-4 nm) magneto-luminescent cyano-bridged coordination polymer nanoparticles Ln0.333+Gdx3+/[Mo(CN)8]3- (Ln = Eu (x = 0.34), Tb (x = 0.35)) enwrapped by a natural biocompatible polymer chitosan. The aqueous colloidal solutions of these nanoparticles present a luminescence characteristic of the corresponding lanthanides (5D0 --> 7F0-4 (Eu3+) or the 5D4 --> 7F6-2 (Tb3+)) under UV excitation and a green luminescence of the chitosan shell under excitation in the visible region. Magnetic Resonance Imaging (MRI) efficiency, i.e. the nuclear relaxivity, measurements performed for Ln0.333+Gdx3+/[Mo(CN)8]3- nanoparticles show r1p and r2p relaxivities slightly higher than or comparable to the ones of the commercial paramagnetic compounds Gd-DTPA® or Omniscan® indicating that our samples may potentially be considered as a positive contrast agent for MRI. The in vitro studies performed on these nanoparticles show that they maybe internalized into human cancer and normal cells and well detected by fluorescence at the single cell level. They present high stability even at low pH and lack of cytotoxicity both in human cancer and normal cells.This article presents the first example of ultra-small (3-4 nm) magneto-luminescent cyano-bridged coordination polymer nanoparticles Ln0.333+Gdx3+/[Mo(CN)8]3- (Ln = Eu (x = 0.34), Tb (x = 0.35)) enwrapped by a natural biocompatible polymer chitosan. The aqueous colloidal solutions of these nanoparticles present a luminescence characteristic of the corresponding lanthanides (5D0 --> 7F0-4 (Eu3+) or the 5D4 --> 7F6-2 (Tb3+)) under UV excitation and a green luminescence of the chitosan shell under excitation in the visible region. Magnetic Resonance Imaging (MRI) efficiency, i.e. the nuclear relaxivity, measurements performed for Ln0.333+Gdx3+/[Mo(CN)8]3- nanoparticles show r1p and r2p relaxivities slightly higher than or comparable to the ones of the commercial paramagnetic compounds Gd-DTPA® or Omniscan® indicating that our samples may potentially be considered as a positive contrast agent for MRI. The in vitro studies performed on these nanoparticles show that they maybe internalized into human cancer and normal cells and well detected by fluorescence at the single cell level. They present high stability even at low pH and lack of cytotoxicity both in human cancer and normal cells. Electronic supplementary information (ESI) available: TEM images and size distribution histograms, IR and emission spectra, diffraction pattern and HRTEM coupled EDX analysis. See DOI: 10.1039/c0nr00709a

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Che, Guang-Bo, E-mail: guangboche@jlnu.edu.cn; Liu, Shu-Yu; Zhang, Qing

    Four new lanthanide complexes [Ln(O–NCP){sub 2}(NO{sub 3})]{sub n} based on multifunctional N,O-donor ligand 2-(2-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline (O–HNCP) and Ln(NO{sub 3}){sub 3}·6H{sub 2}O (Ln=Nd(1), La(2), Sm(3), Eu(4)) have been achieved under hydrothermal conditions and characterized by elemental analyses, infrared spectra and single crystal X-ray diffraction. Structural analyses revealed that all of these four complexes possess similar two-dimensional layer structures. In addition, thermal stability and luminescent properties of these complexes were also investigated. - Graphical abstract: A series of lanthanide(III) coordination polymers with intriguing structures based on 2-(2-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline ligand have been hydrothermally synthesized. The thermal stabilities and photoluminescence properties of these complexes have beenmore » investigated. - Highlights: • Four lanthanide(III) complexes have been hydrothermally synthesized. • The N,O-donor O–HNCP was used as the ligand. • TGA and PL properties of complexes 1–4 have been investigated.« less

  19. Self-assembly of coordination polymers of Pr(III), Nd(III), Tb(III), Dy(III) and Ho(III) with 5-hydroxyisophthalic acid and adipic acid: Syntheses, structures, porosity, luminescence and magnetic properties

    NASA Astrophysics Data System (ADS)

    Kariem, Mukaddus; Yawer, Mohd; Kumar, Manesh; Nawaz Sheikh, Haq; Sood, Puneet; Kolekar, Sanjay S.

    2017-11-01

    Five novel coordination polymers (CPs) with the formula [Ln (hip) (adip)0.5(H2O)2]n. nH2O [Ln = Pr (1), Nd (2), Tb (3), Dy (4) and Ho (5)] were synthesized by self-organization of lanthanide salts with rigid [5-hydroxyisophthalic acid (H2hip)] and flexible [adipic acid (H2adip)] linkers under solvothermal condition. X-ray diffraction revealed data that all five CPs 1-5 are isostructural and crystallizes in monoclinic C2/c space group. Coordination polymers 1-5 exhibit 1D linear ladder shaped extension with the linkage of lanthanide carboxylate chains having the backbone of H2hip and H2adip ligands. The 1D linear ladder chains get transformed into three dimensional (3D) supramolecular network via non-covalent interactions (π-π and H - bonding). The porosity study showed that 20.34 mL of N2 gets adsorbed per 1.0 g of sample at 1 atm pressure. The CP 3 (Tb) and 4 (Dy) emit strong ligand sensitized characteristic f-f luminescence emission. The CPs 3 and 4 exhibit weak ferromagnetic interactions at lower temperatures.

  20. An unusual 2p-3d-4f heterometallic coordination polymer featuring Ln8Na and Cu8I clusters as nodes

    NASA Astrophysics Data System (ADS)

    Zhao, Mingjuan; Chen, Shimin; Huang, Yutian; Dan, Youmeng

    2017-01-01

    A new cluster-based three-dimensional 2p-3d-4f heterometallic framework {[Ho8Na(OH)6Cu16I2(CPT)24](NO3)9(H2O)6(CH3CN)18}n (1, HCPT = 4-(4-carboxyphenyl)-1,2,4 triazole) has been prepared under solvothermal condition by using a custom-designed bifunctional organic ligand. The single-crystal structure analysis reveals that this framework features novel Ln8Na and Cu8I clusters as nodes, these nodes are further connected by the CPT ligands to give rise to a (6,14)-connected network. The magnetic property of this framework has also been investigated.

  1. Acidic 1,3-propanediaminetetraacetato lanthanides with luminescent and catalytic ester hydrolysis properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mao-Long; Shi, Yan-Ru; Yang, Yu-Chen

    2014-11-15

    In acidic solution, a serials of water-soluble coordination polymers (CPs) were isolated as zonal 1D-CPs 1,3-propanediaminetetraacetato lanthanides [Ln(1,3-H{sub 3}pdta)(H{sub 2}O){sub 5}]{sub n}·2Cl{sub n}·3nH{sub 2}O [Ln=La, 1; Ce, 2; Pr, 3; Nd, 4; Sm, 5] (1,3-H{sub 4}pdta=1,3-propanediaminetetraacetic acid, C{sub 11}H{sub 18}N{sub 2}O{sub 8}) in high yields. When 1 eq. mol potassium hydroxide was added to the solutions of 1D-CPs, respectively, two 1D-CPs [Ln(1,3-H{sub 2}pdta)(H{sub 2}O){sub 3}]{sub n}·Cl{sub n}·2nH{sub 2}O [Ln=Sm, 6; Gd, 7] were isolated at room temperature and seven 2D-CPs [Ln(1,3-H{sub 2}pdta)(H{sub 2}O){sub 2}]{sub n}·Cl{sub n}·2nH{sub 2}O [Ln=La, 8; Ce, 9; Pr, 10; Nd, 11; Sm, 12; Eu, 13; Gd,more » 14] were isolated at 70 °C. When the crystals of 1–4 were hydrothermally heated at 180 °C with 1–2 eq. mol potassium hydroxide, four 3D-CPs [Ln(1,3-Hpdta)]{sub n}·nH{sub 2}O [Ln=La, 15; Ce, 16; Pr, 17; Nd, 18] were obtained. The two 2D-CPs [Ln(1,3-Hpdta)(H{sub 2}O)]{sub n}·4nH{sub 2}O (Sm, 19; Eu, 20) were isolated in similar reaction conditions. With the increments of pH value in the solution and reaction temperature, the structure becomes more complicated. 1–5 are soluble in water and 1 was traced by solution {sup 13}C({sup 1}H) NMR technique, the water-soluble lanthanides 1 and 5 show catalytic activity to ester hydrolysis reaction respectively, which indicate their important roles in the hydrolytic reaction. The europium complexes 13 and 20 show visible fluorescence at an excitation of 394 nm. The structure diversity is mainly caused by the variation of coordinated ligand in different pH values and lanthanide contraction effect. Acidic conditions are favorable for the isolations of lanthanide complexes in different structures and this may helpful to separate different lanthanides. The thermal stability investigations reveal that acidic condition is favorable to obtain the oxides at a lower temperature. - Graphical abstract: A series of water-soluble acidic 1,3-propanediaminetetraacetato lanthanides [Ln(1,3-H{sub 3}pdta)(H{sub 2}O){sub 5}]n·2Cl{sub n}·3nH{sub 2}O have been converted to their 2D and 3D lanthanides, which are active for the catalytic conversion of ester hydrolysis. - Highlights: • Novel acidic propanediaminetetraacetato lanthanides. • Water-soluble 1D coordination polymers. • Acidic conditions are suitable for the isolations of lanthanide complexes in different structures. • 1 and 5 show good catalytic activity to ester hydrolysis. • Europium coordination polymers 13 and 20 give visible fluorescence.« less

  2. A Eu/Tb mixed lanthanide coordination polymer with rare 2D thick layers: Synthesis, characterization and ratiometric temperature sensing

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanyuan; Xia, Tifeng; Zhang, Qi; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2018-03-01

    A series of lanthanide coordination polymers LnBTPTA (Ln = Eu, Tb, EuxTb1-x), was synthesized using a tricarbocylic ligand 4,4‧,4‧‧-(benzene-1,3,5-triyltris(1H-pyrazole-3,1-diyl))tribenzoic acid (H3BTPTA). X-ray single crystal analyses reveal that the asymmetric unit cell contains seven crystallographically independent metal ions and seven crystallographically independent ligands which is quite unusual. The 3D framework is comprised of 2D thick layers stacked through van der Waals force, π-π interactions and hydrogen bonding interactions. Eu0.0316Tb0.9684BTPTA presents a dual-emission of Tb3+ at 543 nm and Eu3+ at 617 nm, and the intensity ratio shows an excellent linear relationship with the temperature changing in 25-225 K. The relative sensitivity 0.45-5.12% K-1 is much higher than those have been reported in the same detection range.

  3. Coordination Polymer Gels with Modular Nanomorphologies, Tunable Emissions, and Stimuli-Responsive Behavior Based on an Amphiphilic Tripodal Gelator.

    PubMed

    Sutar, Papri; Maji, Tapas Kumar

    2017-08-21

    The recent upsurge in research on coordination polymer gels (CPGs) stems from their synthetic modularity, nanoscale processability, and versatile functionalities. Here we report self-assembly of an amphiphilic, tripodal low-molecular weight gelator (L) that consists of 4,4',4-[1,3,5-phenyl-tri(methoxy)]-tris-benzene core and 2,2':6',2″-terpyridyl termini, with different metal ions toward the formation of CPGs that show controllable nanomorphologies, tunable emission, and stimuli-responsive behaviors. L can also act as a selective chemosensor for Zn II with very low limit of detection (0.18 ppm) in aqueous medium. Coordination-driven self-assembly of L with Zn II in H 2 O/MeOH solvent mixture results in a coordination polymer hydrogel (ZnL) that exhibits sheet like morphology and charge-transfer emission. On the other hand, coordination of L with Tb III and Eu III in CHCl 3 /tetrahydrofuran solvent mixture results in green- and red-emissive CPGs, respectively, with nanotubular morphology. Moreover, precise stoichiometric control of L/Eu III /Tb III ratio leads to the formation of bimetallic CPGs that show emissions over a broad spectral range, including white-light-emission. We also explore the multistimuli responsive properties of the white-light-emitting CPG by exploiting the dynamics of Ln III -tpy coordination.

  4. A series of three-dimensional lanthanide coordination polymers with rutile and unprecedented rutile-related topologies.

    PubMed

    Qin, Chao; Wang, Xin-Long; Wang, En-Bo; Su, Zhong-Min

    2005-10-03

    The complexes of formulas Ln(pydc)(Hpydc) (Ln = Sm (1), Eu (2), Gd (3); H2pydc = pyridine-2,5-dicarboxylic acid) and Ln(pydc)(bc)(H2O) (Ln = Sm (4), Gd (5); Hbc = benzenecarboxylic acid) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR, TG analysis, and single-crystal X-ray diffraction. Compounds 1-3 are isomorphous and crystallize in the orthorhombic system, space group Pbcn. Their final three-dimensional racemic frameworks can be considered as being constructed by helix-linked scalelike sheets. Compounds 4 and 5 are isostructural and crystallize in the monoclinic system, space group P2(1)/c. pydc ligands bridge dinuclear lanthanide centers to form the three-dimensional frameworks featuring hexagonal channels along the a-axis that are occupied by one-end-coordinated bc ligands. From the topological point of view, the five three-dimensional nets are binodal with six- and three-connected nodes, the former of which exhibit a rutile-related (4.6(2))(2)(4(2).6(9).8(4)) topology that is unprecedented within coordination frames, and the latter two species display a distorted rutile (4.6(2))(2)(4(2).6(10).8(3)) topology. Furthermore, the luminescent properties of 2 were studied.

  5. Seven 3d-4f coordination polymers of macrocyclic oxamide with polycarboxylates: Syntheses, crystal structures and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xin, Na; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; Tianjin Key Laboratory of Structure and Performance for Functional Molecules

    2016-11-15

    Seven new 3d–4f heterometallic coordination polymers, [Ln(CuL){sub 2}(Hbtca)(btca)(H{sub 2}O)]·2H{sub 2}O (Ln = Tb{sup III}1, Pr{sup III}2, Sm{sup III}3, Eu{sup III}4, Yb{sup III}5), [Nd(NiL)(nip)(Rnip)]·0·25H{sub 2}O·0.25CH{sub 3}OH (R= 0.6CH{sub 3}, 0.4H) 6 and [Nd{sub 2}(NiL)(nip){sub 3}(H{sub 2}O)]·2H{sub 2}O 7(CuL or NiL, H{sub 2}L = 2, 3-dioxo-5, 6, 14, 15-dibenzo-1, 4, 8, 12-tetraazacyclo-pentadeca-7, 13-dien; H{sub 2}btca = benzotriazole-5-carboxylic acid; H{sub 2}nip = 5-nitroisophthalic acid) have been synthesized by a solvothermal method and characterized by single-crystal X-ray diffraction. Complexes 1–5 exhibit a double-strand meso-helical chain structures formed by [Ln{sup III}Cu{sup II}{sub 2}] units via the oxamide and benzotriazole-5-carboxylate bridges, while complex 6 exhibits amore » four-strand meso-helical chain formed by NdNi unit via the oxamide and 5-nitroisophthalate bridges. Complex 7 consists of a 2D layer framework formed by four-strand meso-helical chain via the nip{sup 2−} bridges. Moreover, the magnetic properties of them were investigated, and the best-fit analysis of χ{sub M}T versus T show that the anisotropic contribution of Ln(III) ions (arising from the spin-orbit coupling or the crystal field perturbation) dominates (weak exchange limit) in these complexes(for 3, λ = 214.6 cm{sup −1}, zj’ = −0.33 cm{sup −1}, g{sub av} = 1.94; for 5, Δ = 6.98 cm{sup −1}, zj’ = 1.53 cm{sup −1}, g{sub av} = 1.85). - Graphical-abstract: Seven novel oxamido-bridged 3d-4f heterometallic coordination polymers with benzotriazole-5-carboxylate or 5-nitroisophthalate co-ligands under solvothermal reaction conditions. Polymers 1–7 hold 1D or 2D framework structure, viz., double-strand meso-helical chain of 1–5, four-strand meso-helical chain of 6, and 2D net of 7 consisting of four-strand meso-helical chain. Moreover, the temperature dependences of magnetic susceptibilities of compounds 1–7 were also studied.« less

  6. Ratiometric fluorescence sensing of mercuric ion based on dye-doped lanthanide coordination polymer particles.

    PubMed

    Zhang, Zhenzhen; Wu, Yongmei; He, Shizhen; Xu, Yuanyuan; Li, Gaiping; Ye, Baoxian

    2018-07-19

    This work focused on the development of a novel ratiometric fluorescence sensor for detection of Hg 2+ by using dye-doped lanthanide infinite coordination polymer (Ln-ICP) particles. The dye-doped Ln-ICP used herein was prepared by self-assemble of adenosine monophosphate (AMP) with Ce 3+ and Tb 3+ (Ce/Tb-AMP) through self-adaptive chemistry, in which the fluorescent dye coumarin was encapsulated during the assembly process as a guest molecule. Under 310 nm irradiation, the obtained coumarin@Ce/Tb-AMP itself emitted characteristic green luminescence of Tb 3+ , accompanied with a weak fluorescence at 445 nm originated from coumarin encapsulated in the Ce/Tb-AMP networks. The fluorescence emission of coumarin became strong when it was released to the solution. In the presence of Hg 2+ , the coumarin@Ce/Tb-AMP was destroyed due to the specific coordination interaction between AMP and Hg 2+ , which leaded to the release of coumarin to the solution meanwhile. Consequently, the fluorescence of Ce/Tb-AMP was quenched, while that of coumarin enhanced. On the basis of this strategy, we developed a novel ratiometric fluorescent sensor for the detection of Hg 2+ by measuring the ratio of fluorescent intensity of the coumarin@Ce/Tb-AMP suspension, which showed a wide linear range from 0.08 to 1000 nM and detection limit of 0.03 nM with high selectivity and sensitivity. Furthermore, the constructed ratiometric fluorescent sensor was successfully applied in detecting Hg 2+ in drinking water and human blood serum (HBS) with satisfactory results. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Three novel lanthanide metal-organic frameworks (Ln-MOFs) constructed by unsymmetrical aromatic dicarboxylatic tectonics: synthesis, crystal structures and luminescent properties.

    PubMed

    Wu, Ya-Pan; Li, Dong-Sheng; Xia, Wei; Guo, Sha-Sha; Dong, Wen-Wen

    2014-09-11

    Three novel Ln(III)-based coordination polymers, {[Ln2 (2,4-bpda)3 (H2O)x]·yH2O}n (Ln = La (III) (1), x = 2, y = 0, Ce (III) (2), Pr (III) (3), x = 4, y = 1) (2,4-H2bpda = benzophenone-2,4-dicarboxylic acid) have been prepared via a solvothermal method and characterized by elemental analysis, IR, and single-crystal X-ray diffraction techniques. Complex 1 exhibits a 3D complicated framework with a new 2-nodal (3,7)-connected (42·5) (44·51·66·8) topology. Complexes 2 and 3 are isomorphous, and feature a 3D 4-connected (65·8)-CdSO4 network. Moreover, solid-state properties such as thermal stabilities and luminescent properties of 1 and 2 were also investigated. Complex 1 crystallized in a monoclinic space group P21/c with a = 14.800 (3), b = 14.500 (3), c = 18.800 (4) Å, β = 91.00 (3), V = 4033.9 (14) Å3 and Z = 4. Complex 2 crystallized in a monoclinic space group Cc with a = 13.5432 (4), b = 12.9981 (4), c = 25.7567 (11) Å, β = 104.028 (4), V = 1374.16 (7) Å3 and Z = 4.

  8. Two-dimensional 3d-4f heterometallic coordination polymers: syntheses, crystal structures, and magnetic properties of six new Co(II)-Ln(III) compounds.

    PubMed

    Díaz-Gallifa, Pau; Fabelo, Oscar; Pasán, Jorge; Cañadillas-Delgado, Laura; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2014-06-16

    Six new heterometallic cobalt(II)-lanthanide(III) complexes of formulas [Ln(bta)(H2O)2]2[Co(H2O)6]·10H2O [Ln = Nd(III) (1) and Eu(III) (2)] and [Ln2Co(bta)2(H2O)8]n·6nH2O [Ln = Eu(III) (3), Sm(III) (4), Gd(III) (5), and Tb(III) (6)] (H4bta = 1,2,4,5-benzenetretracaboxylic acid) have been synthesized and characterized via single-crystal X-ray diffraction. 1 and 2 are isostructural compounds with a structure composed of anionic layers of [Ln(bta)(H2O)2]n(n-) sandwiching mononuclear [Co(H2O)6](2+) cations plus crystallization water molecules, which are interlinked by electrostatic forces and hydrogen bonds, leading to a supramolecular three-dimensional network. 3-6 are also isostructural compounds, and their structure consists of neutral layers of formula [Ln2Co(bta)2(H2O)8]n and crystallization water molecules, which are connected through hydrogen bonds to afford a supramolecular three-dimensional network. Heterometallic chains formed by the regular alternation of two nine-coordinate lanthanide(III) polyhedra [Ln(III)O9] and one compressed cobalt(II) octahedron [Co(II)O6] along the crystallographic c-axis are cross-linked by bta ligands within each layer of 3-6. Magnetic susceptibility measurements on polycrystalline samples for 3-6 have been carried out in the temperature range of 2.0-300 K. The magnetic behavior of these types of Ln(III)-Co(II) complexes, which have been modeled by using matrix dagonalization techniques, reveals the lack of magnetic coupling for 3 and 4, and the occurrence of weak antiferromagnetic interactions within the Gd(III)-Gd(III) (5) and Tb(III)-Tb(III) (6) dinuclear units through the exchange pathway provided by the double oxo(carboxylate) and double syn-syn carboxylate bridges.

  9. Covalently-bonded grafting of [Ln3(Benzimidazole)4]-arrayed (Ln = Tb, Nd, Yb or Er) complex monomers into PNBE (poly(norbornene)) with highly luminous color-purity green-light or efficient NIR luminescence

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Fu, Guorui; Feng, Heini; Guan, Jiaqing; Li, Fengping; Lü, Xingqiang; Wong, Wai-Kwok; Jones, Richard A.

    2017-07-01

    Within series of Ln3-grafted polymers Poly({[Ln3(L)4(NO3)6]·(NO3)·(H3O)2}-co-NBE) (Ln = La, 1; Ln = Eu, 2; Ln = Tb, 3; Ln = Nd, 4; Ln = Yb, 5; Ln = Er, 6 or Ln = Gd, 7) obtained from ring-opening metathesis polymerization (ROMP) of norbornene (NBE) with each of allyl-functionalized complex monomers {[Ln3(L)4(NO3)6]·(NO3)·(H3O)2} (HL = 4-allyl-2-(1H-benzo[d]imidazol-2-yl)-6-methoxyphenol), PNBE-assisted effective energy transfer renders Poly(3-co-NBE) Tb3+-centered highly luminous color-purity green-light with an attractive quantum yield of 87% and efficient near-infrared (NIR) luminescence (ΦNdL = 0.61%; ΦYbL = 1.47% and ΦErL = 0.03%) for Nd3+-, Yb3+- or Er3+-grafted polymers.

  10. Lanthanide contraction effect on crystal structures of lanthanide coordination polymers with cyclohexanocucurbit[6]uril ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Li-Mei; Liu, Jing-Xin, E-mail: jxliu411@ahut.edu.cn

    A series of compounds based on the macrocyclic ligand cyclohexanocucurbit[6]uril (Cy6Q[6]) with formulas (Ln(H{sub 2}O){sub 6}Cy6Q[6])·2(CdCl{sub 4})·H{sub 3}O·xH{sub 2}O [isomorphous with Ln=La (1), Ce (2), Pr (3) and Nd (4), x=11 (1), 11 (2), 10 (3) and 11 (4)], (Sm(H{sub 2}O){sub 5}Cy6Q[6])·2(CdCl{sub 4})·H{sub 3}O·10H{sub 2}O (5) and (Ln(H{sub 2}O){sub 5}(NO{sub 3})@Cy6Q[6])·2(CdCl{sub 4})·2H{sub 3}O·xH{sub 2}O [isomorphous with Ln=Gd (6), Tb (7) and Dy (8), x=8 (6), 6 (7) and 6 (8)], have been successfully synthesized by the self-assembly of Cy6Q[6] with the corresponding lanthanide nitrate under hydrochloric acid aqueous solution in the presence of CdCl{sub 2}. Single-crystal X-ray diffraction analyses revealedmore » that compounds 1–8 all crystallize in monoclinic space group P2{sub 1}/c, and display 1D coordination polymer structures. The lanthanide contraction effect on the structures of 1–8 has also been investigated and discussed in detail. In contrast, the reaction of Cy6Q[6] with the Ho(NO){sub 3}, Tm(NO){sub 3}, Yb(NO){sub 3} under the same conditions resulted in the compounds 9–11 with formulas Cy6Q[6]·2(CdCl{sub 4})·2H{sub 3}O·xH{sub 2}O [isomorphous with x=10 (9), 10 (10), and 9 (11)], in which no lanthanide cations are observed. The structural difference of these compounds indicates that the Cy6Q[6] may be used in the separation of lanthanide cations. - Graphical abstract: The reaction of cyclohexanocucurbit[6]uril with lanthanide ions (La{sup 3+}, Ce{sup 3+}, Pr{sup 3+}, Nd{sup 3+}, Sm{sup 3+}, Gd{sup 3+}, Tb{sup 3+}, Dy{sup 3+}, Ho{sup 3+}, Tm{sup 3+} and Yb{sup 3+}) under hydrochloric acid in the presence of CdCl{sub 2} resulted in eleven compounds, which demonstrate interesting lanthanide contraction effect and provide a means of separating lanthanide ions. - Highlights: • Eleven compounds of the Ln{sup 3+} with the Cy6Q[6] were synthesized and described. • Compounds 1-8 demonstrate interesting lanthanide contraction effect. • In solid-state structures of compounds 9-11, no lanthanide ions were observed. • This study provides a means of separating lanthanides cations.« less

  11. Mesoporous stilbene-based lanthanide metal organic frameworks: synthesis, photoluminescence and radioluminescence characteristics.

    PubMed

    Mathis Ii, Stephan R; Golafale, Saki T; Bacsa, John; Steiner, Alexander; Ingram, Conrad W; Doty, F Patrick; Auden, Elizabeth; Hattar, Khalid

    2017-01-03

    Ultra large pore isostructural metal organic frameworks (MOFs) which exhibit both photoluminescence and scintillation properties, were synthesized from trans-4,4'-stilbenedicarboxylic acid (H 2 L) and trivalent lanthanide (Ln) metal salts under solvothermal conditions (Ln = Er 3+ (1) and Tm 3+ (2)). This new class of mesoporous materials is a non-interpenetrating network that features ultra-large diamond shaped pores of dimensions with approximate cross-sectional dimensions of 28 Å × 12 Å. The fully deprotonated ligand, L, is isolated and rigidified as it serves as the organic linker component of the MOF structure. Its low density unit cells possess asymmetric units with two crystallographically independent Ln 3+ ions in seven coordinate arrangements. A distinct feature of the structure is the bis-bidentate carboxylate groups. They serve as a ligand that coordinates two Ln(iii) ions while each L connects four Ln(iii) ions yielding an exceptionally large diamond-shaped rectangular network. The structure exhibits ligand-based photoluminescence with increased lifetime compared to free stilbene molecules on exposure to UV radiation, and also exhibits strong scintillation characteristics, comprising of both prompt and delayed radioluminescence features, on exposure to ionizing radiation.

  12. Coordination Structure and Fragmentation Chemistry of the Tripositive Lanthanide-Thio-Diglycolamide Complexes.

    PubMed

    Chen, Xiuting; Li, Qingnuan; Gong, Yu

    2017-12-14

    Tripositive Ln(TMTDA) 3 3+ complexes (Ln = La-Lu except Pm, TMTDA = tetramethyl 3-thio-diglycolamide) were observed in the gas phase by electrospray ionization of LnCl 3 and TMTDA mixtures. Collision-induced dissociation (CID) was employed to investigate their fragmentation chemistry, which revealed the influence of metal center as well as ligand on the ligated complexes. Ln(TMTDA) 2 (TMTDA-45) 3+ resulting from C carbonyl -N bond cleavage of TMTDA and hydrogen transfer was the major CID product for all Ln(TMTDA) 3 3+ except Eu(TMTDA) 3 3+ , which predominantly formed charge-reducing product Eu II (TMTDA) 2 2+ via electron transfer from TMTDA to Eu 3+ . Density functional theory calculations on the structure of La(TMTDA) 3 3+ and Lu(TMTDA) 3 3+ revealed that Ln 3+ was coordinated by six O carbonyl atoms from three neutral TMTDA ligands, and both complexes possessed C 3h symmetry. The S ether atom deviating from the ligand plane was not coordinated to the metal center. On the basis of the CID results of Ln(TMTDA) 3 3+ , Ln(TMGA) 3 3+ , and Ln(TMOGA) 3 3+ , the fragmentation chemistry associated with the ligand depends on the coordination mode, while the redox chemistry of these tripositive ions is related to the nature of both metal centers and diamide ligands.

  13. Luminescent properties and structure of new CAPh-based lanthanide complexes [LnL3Q], containing additional bis-heterocyclic aromatic ligand-antenna 2-(1,3,4-oxadiazole-2-yl) pyridine

    NASA Astrophysics Data System (ADS)

    Yakovlev, Oleksii O.; Kariaka, Nataliia S.; Trush, Victor A.; Smola, Sergii S.; Siczek, Milosz; Amirkhanov, Vladimir M.

    2018-01-01

    The new lanthanide coordination compounds of general formula [LnL3Q], where Ln = Eu, Gd, Tb; L = dimethyl-N-trichloroacetylamidophosphate and Q = 2-(1,3,4-oxadiazole-2-yl)pyridine, have been synthesized and isolated in crystalline state with the purpose of finding new interesting optical materials. X-ray data reveal that complexes have molecular structure with numerous Van-der-Vaals contacts between molecules. All the ligands are coordinated in bidentate chelate manner, coordination polyhedron was interpreted as distored square antiprism (CN 8). The obtained complexes were investigated by means of IR, absorption and luminescence spectroscopy as well and thermal gravimetric analysis. It was found that complex [TbL3Q] is resistant to temperature of 200 °C. The Eu3+ and Tb3+ complexes exhibit bright metal-centered emission with decay time 1.65 and 1.74 ms respectively. Intrinsic quantum yield for [EuL3Q] equals 85% that is one of the highest values, known to date for CAPh based europium complexes.

  14. A General Model of Sensitized Luminescence in Lanthanide-Based Coordination Polymers and Metal-Organic Framework Materials.

    PubMed

    Einkauf, Jeffrey D; Clark, Jessica M; Paulive, Alec; Tanner, Garrett P; de Lill, Daniel T

    2017-05-15

    Luminescent lanthanides containing coordination polymers and metal-organic frameworks hold great potential in many applications due to their distinctive spectroscopic properties. While the ability to design coordination polymers for specific functions is often mentioned as a major benefit bestowed on these compounds, the lack of a meaningful understanding of the luminescence in lanthanide coordination polymers remains a significant challenge toward functional design. Currently, the study of these compounds is based on the antenna effect as derived from molecular systems, where organic antennae are used to facilitate lanthanide-centered luminescence. This molecular-based approach does not take into account the unique features of extended network solids, particularly the formation of band structure. While guidelines for the antenna effect are well established, they require modification before being applied to coordination polymers. A series of nine coordination polymers with varying topologies and organic linkers were studied to investigate the accuracy of the antenna effect in coordination polymer systems. By comparing a molecular-based approach to a band-based one, it was determined that the band structure that occurs in aggregated organic solids needs to be considered when evaluating the luminescence of lanthanide coordination polymers.

  15. Phosphorus-supported ligands for the assembly of multimetal architectures.

    PubMed

    Chandrasekhar, Vadapalli; Murugesapandian, Balasubramanian

    2009-08-18

    Modeled after boron-based scorpionate ligands, acyclic and cyclic phosphorus-containing compounds possessing reactive groups can serve as excellent precursors for the assembly of novel phosphorus-supported ligands that can coordinate multiple sites. In such ligands, the phosphorus atom does not have any role in coordination but is used as a structural support to assemble one or more coordination platforms. In this Account, we describe the utility of inorganic heterocyclic rings such as cyclophosphazenes and carbophosphazenes as well as acyclic phosphorus-containing compounds such as (S)PCl(3), RP(O)Cl(2), and R(2)P(O)Cl for building such multisite coordination platforms. We can modulate the number and orientation of such coordination platforms through the choice of the phosphorus-containing precursor. This methodology is quite general and modular and allows the creation of well-defined libraries of multisite coordination ligands. Phosphorus-supported pyrazolyl ligands are quite useful for building multimetallic architectures. Some of these ligands are prone to P-N bond hydrolysis upon metalation, but we have exploited the P-N bond sensitivity to generate hydrolyzed ligands in situ, which are useful to build multimetal assemblies. In addition, the intimate relationship between small molecule cyclophosphazenes and the corresponding pendant cyclophosphazene-containing polymer systems facilitated our design of polymer-supported catalysts for phosphate ester hydrolysis, plasmid DNA modification, and C-C bond formation reactions. Phosphorus hydrazides containing reactive amine groups are ideal precursors for integration into more complex ligand systems. The ligand (S)P[N(Me)N=CH-C(6)H(4)-2-OH](3) (LH(3)) contains six coordination sites, and its coordination response depends upon the oxidation state of the metal ion employed. LH(3) reacts with divalent transition metal ions to afford neutral trimetallic derivatives L(2)M(3), where the three metal ions are arranged in a perfectly linear manner in many cases. Incorporating an additional methoxy group into LH(3) affords the ligand (S)P[N(Me)N=CH-C(6)H(3)-2-OH-3-OMe](3) (L'H(3)), which contains nine coordination sites: three imino nitrogen atoms, three phenolate oxygen atoms, and three methoxy oxygen atoms. The reaction of L'H(3) with transition metal salts in 1:1 ratio leads to the in situ formation of a metalloligand (L'M), which on further treatment with lanthanide salts gives heterobimetallic trinuclear cationic complexes [L'(2)M(2)Ln](+) containing a M-Ln-M linear array (M = transition metal ion in a +2 oxidation state). Many of these 3d-4f compounds behave as single-molecule magnets at low temperatures. Although challenges remain in the development of synthetic methods and in the architectural control of the coordination platforms, we see opportunities for further research into coordination platforms supported by main group elements such as phosphorus. As we have shown in this Account, one potential disadvantage, sensitivity of P-N bonds to hydrolysis, can be used successfully to build larger assemblies.

  16. Tuning the structure, dimensionality and luminescent properties of lanthanide metal-organic frameworks under ancillary ligand influence.

    PubMed

    D'Vries, Richard F; Gomez, German E; Hodak, José H; Soler-Illia, Galo J A A; Ellena, Javier

    2016-01-14

    This manuscript addresses the synthesis, structural characterization and optical properties of a 1D coordination polymer (CPs) and 2D and 3D Metal-Organic Frameworks (MOFs) obtained from lanthanide metals, 3-hydroxinaftalene-2,7-disulfonic acid (3-OHNDS) and two different phenanthroline derivates as ancillary ligands. The first is a family of 2D compounds with formula [Ln(3-OHNDS)(H2O)2], where Ln = La(), Pr(), Nd() and Sm(). The addition of 1,10-phenanthroline (phen) in the reaction produces 1D compounds with general formula [Ln(3-OHNDS)(phen)(H2O)]·3H2O, where Ln = La(), Pr(), Nd() and Sm(). Finally, the synthesis with 3,4,7,8-tetramethyl-1,10-phenanthroline (3,4,7,8-TMPhen) as an ancillary ligand results in the formation of the 3D [La(3-OHNDS)(3,4,7,8-TMphen)(H2O)] () compound. The photoluminescence (PL) properties of 1D and 2D compounds were fully investigated in comparison with the 3-OHNDS ligand. One of the most important results was the obtaining of a white-light single-emitter without adding dopant atoms in the structure. With all these results in mind it was possible to establish structure-property relationships.

  17. Generalized spherical and simplicial coordinates

    NASA Astrophysics Data System (ADS)

    Richter, Wolf-Dieter

    2007-12-01

    Elementary trigonometric quantities are defined in l2,p analogously to that in l2,2, the sine and cosine functions are generalized for each p>0 as functions sinp and cosp such that they satisfy the basic equation cosp([phi])p+sinp([phi])p=1. The p-generalized radius coordinate of a point [xi][set membership, variant]Rn is defined for each p>0 as . On combining these quantities, ln,p-spherical coordinates are defined. It is shown that these coordinates are nearly related to ln,p-simplicial coordinates. The Jacobians of these generalized coordinate transformations are derived. Applications and interpretations from analysis deal especially with the definition of a generalized surface content on ln,p-spheres which is nearly related to a modified co-area formula and an extension of Cavalieri's and Torricelli's indivisibeln method, and with differential equations. Applications from probability theory deal especially with a geometric interpretation of the uniform probability distribution on the ln,p-sphere and with the derivation of certain generalized statistical distributions.

  18. Coordination geometries of solvated lanthanide(II) ions: Molecular structures of the cationic species [(DIME)[sub 3]Ln][sup 2+] (DIME = diethylene glycol dimethyl ether; Ln[sup 2+] = Sm, Yb), [(DIME)[sub 2]Yb(CH[sub 3]CN)[sub 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, J.P. III; Deng, H.; Boyd, E.P.

    1994-04-13

    The first lanthanide(II) cationic species with coordination numbers 7,8, and 9 have been structurally characterized. Mercury amalgams of the elemental lanthanides (Ln(Hg) where Ln = Sm, Eu, Yb) cleanly reduce Mn[sub 2](CO)[sub 10] and Co[sub 2](CO)[sub 8] in polydentate ethers to [Mn(CO)[sub 5

  19. Novel Cobalt(II) complexes containing N,N-di(2-picolyl)amine based ligands; Synthesis, characterization and application towards methyl methacrylate polymerisation

    NASA Astrophysics Data System (ADS)

    Ahn, Seoung Hyun; Choi, Sang-Il; Jung, Maeng Joon; Nayab, Saira; Lee, Hyosun

    2016-06-01

    The reaction of [CoCl2·6H2O] with N‧-substituted N,N-di(2-picolyl)amine ligands such as 1-cyclohexyl-N,N-bis(pyridin-2-ylmethyl)methanamine (LA), 2-methoxy-N,N-bis(pyridin-2-ylmethyl)ethan-1-amine (LB), and 3-methoxy-N,N-bis(pyridin-2-ylmethyl)propan-1-amine (LC), yielded [LnCoCl2] (Ln = LA, LB and LC), respectively. The Co(II) centre in [LnCoCl2] (Ln = LA, and LC) adopted distorted bipyramidal geometries through coordination of nitrogen atoms of di(2-picolyl)amine moiety to the Co(II) centre along with two chloro ligands. The 6-coordinated [LBCoCl2] showed a distorted octahedral geometry, achieved through coordination of the two pyridyl units, two chloro units, and bidentate coordination of nitrogen and oxygen in the N‧-methoxyethylamine to the Co(II) centre. [LCCoCl2] (6.70 × 104 gPMMA/molCo h) exhibited higher catalytic activity for the polymerisation of methyl methacrylate (MMA) in the presence of modified methylaluminoxane (MMAO) compared to rest of Co(II) complexes. The catalytic activity was considered as a function of steric properties of ligand architecture and increased steric bulk around the metal centre resulted in the decrease catalytic activity. All Co(II) initiators yielded syndiotactic poly(methylmethacrylate) (PMMA).

  20. Reinvestigation of the uranium(3.5+) rare-earth oxysulfides "(UO)2LnS3" (Ln = Yb, Y).

    PubMed

    Jin, Geng Bang; Choi, Eun Sang; Ibers, James A

    2009-09-07

    Dark-red square plates of the previously reported compounds "(UO)(2)LnS(3)" (Ln = Yb, Y) have been synthesized by solid-state reactions of UOS and YbS or Y(2)S(3) with Sb(2)S(3) as a flux at 1273 K. The structure of these isotypic compounds was reinvestigated by single-crystal X-ray diffraction methods and an inductively coupled plasma experiment. The actual formula of "(UO)(2)LnS(3)" (Ln = Yb, Y) is (U(0.5)Ln(0.5)O)(2)LnS(3), that is, ULn(2)O(2)S(3), which can be charge-balanced with U(4+) and Ln(3+). The layered structure comprises (U/Ln)O(4)S(4) square antiprisms alternating with LnS(6) octahedra. U and Ln1 atoms disorder on the eight-coordinate metal position, but Ln2 atoms occupy the six-coordinate metal position exclusively. UYb(2)O(2)S(3) is a modified Curie-Weiss paramagnet between 293 and 32 K, below which part of the paramagnetic moments go through a possible ferromagnetic transition. The band gaps of ULn(2)O(2)S(3) (Ln = Yb, Y) are around 2 eV.

  1. Steric modulation of coordination number and reactivity in the synthesis of lanthanoid(III) formamidinates.

    PubMed

    Cole, Marcus L; Deacon, Glen B; Forsyth, Craig M; Junk, Peter C; Konstas, Kristina; Wang, Jun

    2007-01-01

    Reactions of a range of the readily prepared and sterically tunable N,N'-bis(aryl)formamidines with lanthanoid metals and bis(pentafluorophenyl)mercury (Hg(C6F5)2) in THF have given an extensive series of tris(formamidinato)lanthanoid(III) complexes, [Ln(Form)3(thf)n], namely [La(o-TolForm)3(thf)2], [Er(o-TolForm)3(thf)], [La(XylForm)3(thf)], [Sm(XylForm)3], [Ln(MesForm)3] (Ln=La, Nd, Sm and Yb), [Ln(EtForm)3] (Ln=La, Nd, Sm, Ho and Yb), and [Ln(o-PhPhForm)3] (Ln=La, Nd, Sm and Er). [For an explanation of the N,N'-bis(aryl)formamidinate abbreviations used see Scheme 1.] Analogous attempts to prepare [Yb(o-TolForm)3] by this method invariably yielded [{Yb(o-TolForm)2(mu-OH)(thf)}2], but [Yb(o-TolForm)3] was isolated from a metathesis synthesis. X-ray crystal structures show exclusively N,N'-chelation of the Form ligands and a gradation in coordination number with Ln3+ size and with Form ligand bulk. The largest ligands, MesForm, EtForm and o-PhPhForm give solely homoleptic complexes, the first two being six-coordinate, the last having an eta1-pi-Ar--Ln interaction. Reaction of lanthanoid elements and Hg(C6F5)2 with the still bulkier DippFormH in THF resulted in C--F activation and formation of [Ln(DippForm)2F(thf)] (Ln=La, Ce, Nd, Sm and Tm) complexes, and o-HC6F4O(CH2)4DippForm in which the formamidine is functionalised by a ring-opened THF that has trapped tetrafluorobenzyne. Analogous reactions between Ln metals, Hg(o-HC6F4)2 and DippFormH yielded [Ln(DippForm)2F(thf)] (Ln=La, Sm and Nd) and 3,4,5-F3C6H2O(CH2)4DippForm. X-ray crystal structures of the heteroleptic fluorides show six-coordinate monomers with two chelating DippForm ligands and cisoid fluoride and THF ligands in a trigonal prismatic array. The organometallic species [Ln(DippForm)2(C[triple chemical bond]CPh)(thf)] (Ln=Nd or Sm) are obtained from reaction of Nd metal, bis(phenylethynyl)mercury (Hg(C[triple chemical bond]CPh)2) and DippFormH, and the oxidation of [Sm(DippForm)2(thf)2] with Hg(C[triple chemical bond]CPh)2, respectively. The monomeric, six-coordinate, cisoid [Ln(DippForm)2(C[triple chemical bond]CPh)(thf)] complexes have trigonal prismatic geometries and rare (for Ln) terminal C[triple chemical bond]CPh groups with contrasting Ln--C[triple chemical bond]C angles (Ln=Nd, 170.9(4) degrees; Ln=Sm, 142.9(7) degrees). Their formation lends support to the view that [Ln(DippForm)2F(thf)] complexes arise from oxidative formation and C--F activation of [Ln(DippForm)2(C6F5)] intermediates.

  2. Metal-chelating polymers by anionic ring-opening polymerization and their use in quantitative mass cytometry.

    PubMed

    Illy, Nicolas; Majonis, Daniel; Herrera, Isaac; Ornatsky, Olga; Winnik, Mitchell A

    2012-08-13

    Metal-chelating polymers (MCPs) are important reagents for multiplexed immunoassays based on mass cytometry. The role of the polymer is to carry multiple copies of individual metal isotopes, typically as lanthanide ions, and to provide a reactive functionality for convenient attachment to a monoclonal antibody (mAb). For this application, the optimum combination of chain length, backbone structure, end group, pendant groups, and synthesis strategy has yet to be determined. Here we describe the synthesis of a new type of MCP based on anionic ring-opening polymerization of an activated cyclopropane (the diallyl ester of 1,1-cyclopropane dicarboxylic acid) using a combination of 2-furanmethanethiol and a phosphazene base as the initiator. This reaction takes place with rigorous control over molecular weight, yielding a polymer with a narrow molecular weight distribution, reactive pendant groups for introducing a metal chelator, and a functional end group with orthogonal reactivity for attaching the polymer to the mAbs. Following the ring-opening polymerization, a two-step transformation introduced diethylenetriaminepentaacetic acid (DTPA) chelating groups on each pendant group. The polymers were characterized by NMR, size exclusion chromatography (SEC), and thermogravimetric analysis (TGA). The binding properties toward Gd(3+) as a prototypical lanthanide (Ln) ion were also studied by isothermal titration calorimetry (ITC). Attachment to a mAb involves a Diels-Alder reaction of the terminal furan with a bismaleimide, followed by a Michael addition of a thiol on the mAb, generated by mild reduction of a disulfide bond in the hinge region. Polymer samples with a number average degree of polymerization of 35, with a binding capacity of 49.5 ± 6 Ln(3+) ions per chain, were loaded with 10 different types of Ln ions and conjugated to 10 different mAbs. A suite of metal-tagged Abs was tested by mass cytometry in a 10-plex single cell analysis of human adult peripheral blood, allowing us to quantify the antibody binding capacity of 10 different cell surface antigens associated with specific cell types.

  3. Complexation Enhancement Drives Water-to-Oil Ion Transport: A Simulation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Baofu; Ferru, Geoffroy; Ellis, Ross J.

    We address the structures and energetics of ion solvation in aqueous and organic solutions to understand liquid-liquid ion transport. Atomistic molecular dynamics (MD) simulations with polarizable force field are performed to study the coordination transformations driving lanthanide (Ln(III)) and nitrate ion transport between aqueous and an alkylamide-oil solution. An enhancement of the coordination behavior in the organic phase is achieved in contrast with the aqueous solution. In particular, the coordination number of Ce3+ increases from 8.9 in the aqueous to 9.9 in the organic solutions (from 8 in the aqueous to 8.8 in the organic systems for Yb3+). Moreover, themore » local coordination environ ment changes dramatically. Potential of mean force calculations show that the Ln(III)-ligand coordination interaction strengths follow the order of Ln(III-)nitrate> Ln(III)-water>Ln(III)-DMDBTDMA. They increase 2-fold in the lipophilic environment in comparison to the aqueous phase, and we attribute this to the shedding of the outer solvation shell. Our findings highlight the importance of outer sphere interactions on the competitive solvation energetics that cause ions to migrate between immiscible phases; an essential ingredient for advancing important applications such as rare earth metal separations. Some open questions in simulating the coordination behavior of heavy metals are also addressed.« less

  4. Lanthanide complexes of macrocyclic polyoxovanadates by VO4 units: synthesis, characterization, and structure elucidation by X-ray crystallography and EXAFS spectroscopy.

    PubMed

    Nishio, Masaki; Inami, Shinnosuke; Katayama, Misaki; Ozutsumi, Kazuhiko; Hayashi, Yoshihito

    2012-01-16

    Reactions of a tetravanadate anion, [V(4)O(12)](4-), with a series of lanthanide(III) salts yield three types of lanthanide complexes of macrocyclic polyoxovanadates: (Et(4)N)(6)[Ln(III)V(9)O(27)] [Ln = Nd (1), Sm (2), Eu (3), Gd (4), Tb (5), Dy (6)], (Et(4)N)(5)[(H(2)O)Ho(III)(V(4)O(12))(2)] (7), and (Et(4)N)(7)[Ln(III)V(10)O(30)] [Ln = Er (8), Tm (9), Yb (10), Lu (11)]. Lanthanide complexes 1-11 are isolated and characterized by IR, elemental analysis, single-crystal X-ray diffraction, and extended X-ray absorption fine structure spectroscopy (EXAFS). Lanthanide complexes 1-6 are composed of a square-antiprism eight-coordinated Ln(III) center with a macrocyclic polyoxovanadate that is constructed from nine VO(4) tetrahedra through vertex sharing. The structure of 7 is composed of a seven-coordinated Ho(III) center, which exhibits a capped trigonal-prism coordination environment by the sandwiching of two cyclic tetravanadates with a capping H(2)O ligand. Lanthanide complexes 8-11 have a six-coordinated Ln(III) center with a 10-membered vanadate ligand. The structural trend to adopt a larger coordination number for a larger lanthanide ion among the three types of structures is accompanied by a change in the vanadate ring sizes. These lanthanide complexes are examined by EXAFS spectroscopies on lanthanide L(III) absorption edges, and the EXAFS oscillations of each of the samples in the solid state and in acetonitrile are identical. The Ln-O and Ln···V bond lengths obtained from fits of the EXAFS data are consistent with the data from the single-crystal X-ray studies, reflecting retention of the structures in acetonitrile.

  5. Unusual undecanuclear heterobimetallic Zn4Ln7 (Ln = Gd, Dy) nano-sized clusters encapsulating two peroxide anions through spontaneous intake of dioxygen.

    PubMed

    Ke, Hongshan; Lu, Xiaohua; Wei, Wen; Wang, Wenyuan; Xie, Gang; Chen, Sanping

    2017-06-27

    The synthesis, characterization and properties of two unprecedented undecanuclear heterobimetallic Zn 4 Ln 7 complexes of formula [Zn 4 Ln 7 (L) 8 (O 2 ) 2 (OH) 4 (Cl) 4 (H 2 O) 4 ]·Cl·4H 2 O·4CH 3 CN (Ln = Gd (1), Dy (2)) encapsulating two peroxide anions are presented, representing a very rare example of a 3d-peroxo-Ln system and expanding the realm of metal-peroxo complexes. These eleven metal ions are arranged in a peculiar structural motif, where Zn 4 is located at the peripheral shell wrapping Ln 7 in the inner core. The Zn ions are penta-coordinate in all cases, linked to the NO 2 donor atoms from the L 2- ligand and to a hydroxyl group, and the apical position is occupied by a chloride anion. All Ln III ions in these systems are octa-coordinate with LnO 8 and LnNO 7 coordination spheres. Magnetocaloric effect (MCE) behavior has been found in the Gd analogue due to multiple low lying excited states arising from antiferromagnetic Gd-Gd exchange interactions. The Dy derivative shows frequency dependent out-of-phase signals indicating the presence of slow relaxation of magnetization below 8 K under zero applied direct current (dc) field, but without reaching a maximum, which is due to a faster quantum tunneling relaxation. The effective barrier extracted from the frequency dependent data is U eff = 11.2 K and a τ 0 of 4.18 × 10 -6 s.

  6. Solvothermal syntheses, and characterization of [Ln(en){sub 4}(SbSe{sub 4})] (Ln=Ce, Pr) and [Ln(en){sub 4}]SbSe{sub 4}.0.5en (Ln=Eu, Gd, Er, Tm, Yb): The effect of lanthanide contraction on the crystal structures of lanthanide selenidoantimonates(V)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia Dingxian; Zhu Aimei; Jin Qinyan

    Two types of lanthanide selenidoantimonates [Ln(en){sub 4}(SbSe{sub 4})] (Ln=Ce(1a), Pr(1b)) and [Ln(en){sub 4}]SbSe{sub 4}.0.5en (Ln=Eu(2a), Gd(2b), Er(2c), Tm(2d), Yb(2e); en=ethylenediamine) were solvothermally synthesized by reactions of LnCl{sub 3}, Sb and Se with the stoichiometric ratio in en solvent at 140 deg. C. The four-en coordinated lanthanide complex cation [Ln(en){sub 4}]{sup 3+} formed in situ balances the charge of SbSe{sub 4}{sup 3-} anion. In compounds 1a and 1b, the SbSe{sub 4}{sup 3-} anion act as a monodentate ligand to coordinate complex [Ln(en){sub 4}]{sup 3+} and the neutral compound [Ln(en){sub 4}(SbSe{sub 4})] is formed. The Ln{sup 3+} ion has a nine-coordinated environmentmore » involving eight N atoms and one Se atom forming a distorted monocapped square antiprism. In 2a-2e the lanthanide(III) ion exists as isolated complex [Ln(en){sub 4}]{sup 3+}, in which the Ln{sup 3+} ion is in a bicapped trigonal prism geometry. A systematic investigation of the crystal structures reveals that two types of structural features of these lanthanide selenidoantimonates are related with lanthanides contraction across the lanthanide series. TG curves show that compounds 1a-1b and 2a-2e remove their organic components in one and two steps, respectively. - Graphical abstract: Two types of lanthanide selenidoantimonates [Ln(en){sub 4}(SbSe{sub 4})] (Ln=Ce, Pr) and [Ln(en){sub 4}]SbSe{sub 4}.0.5en (Ln=Eu, Gd, Er, Tm, Yb; en=ethylenediamine) have been synthesized under the mild solvothermal conditions, and a systematic investigation of the crystal structures reveals that two types of structural features of these lanthanide selenidoantimonates are related with lanthanides contraction across the lanthanide series.« less

  7. Effect of lanthanide contraction on the mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien): Syntheses and characterizations of lanthanide complexes with a tetraelenidoantimonate ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Jing; Liang Jingjing; Pan Yingli

    Mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) (Ln=lanthanide, en=ethylenediamine, dien=diethylenetriamine, trien=triethylenetetramine) were investigated under solvothermal conditions, and novel mixed-coordinated lanthanide(III) complexes [Ln(en){sub 2}(dien)({eta}{sup 2}-SbSe{sub 4})] (Ln=Ce(1a), Nd(1b)), [Ln(en){sub 2}(dien)(SbSe{sub 4})] (Ln=Sm(2a), Gd(2b), Dy(2c)), [Ln(en)(trien)({mu}-{eta}{sup 1},{eta}{sup 2}-SbSe{sub 4})]{sub {infinity}} (Ln=Ce(3a), Nd(3b)) and [Sm(en)(trien)({eta}{sup 2}-SbSe{sub 4})] (4a) were prepared. Two structural types of lanthanide selenidoantimonates were obtained across the lanthanide series in both en+dien and en+trien systems. The tetrahedral anion [SbSe{sub 4}]{sup 3-} acts as a monodentate ligand mono-SbSe{sub 4}, a bidentate chelating ligand {eta}{sup 2}-SbSe{sub 4} or a tridentate bridging ligand {mu}-{eta}{sup 1},{eta}{sup 2}-SbSe{sub 4} to the lanthanide(III) center depending on themore » Ln{sup 3+} ions and the mixed ethylene polyamines, indicating the effect of lanthanide contraction on the structures of the lanthanide(III) selenidoantimonates. The lanthanide selenidoantimonates exhibit semiconducting properties with E{sub g} between 2.08 and 2.51 eV. - Graphical Abstract: Two structural types of lanthanide(III) selenidoantimonates are formed in both en-dien and en-trien mixed polyamines across lanthanide series, indicating the lanthanide contraction effect on the structures of the lanthanide(III) selenidoantimonates. Highlights: > Two structural types of lanthanide selenidoantimonates are prepared across the lanthanide series in both Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) systems. > The [SbSe{sub 4}]{sup 3-} anion acts as a mono-SbSe{sub 4}, a {eta}{sup 2}-SbSe{sub 4} or a {mu}-{eta}{sup 1},{eta}{sup 2}-SbSe{sub 4} ligand to the Ln{sup 3+} ions. > The soft base ligand [SbSe{sub 4}]{sup 3-} can be controlled to coordinate to the Ln{sup 3+} ions with en+dien and en+trien as co-ligands.« less

  8. Bimetallic lanthanide amido complexes as highly active initiators for the ring-opening polymerization of lactides.

    PubMed

    Sun, Song; Nie, Kun; Tan, Yufang; Zhao, Bei; Zhang, Yong; Shen, Qi; Yao, Yingming

    2013-02-28

    A series of neutral bimetallic lanthanide amido complexes supported by rigid phenylene bridged bis(β-diketiminate) ligands were synthesized, and their catalytic behavior for the polymerization of L-lactide and rac-lactide was explored. The amine elimination reaction of Ln[N(TMS)(2)](3)(μ-Cl)Li(THF)(3) with PARA-H(2), [PARA-H(2) = 2[2,6-(i)Pr(2)C(6)H(3)NHC(Me)C(H)C(Me)N]-(para-phenylene)] in a 2:1 molar ratio in THF at 25 °C afforded the corresponding bimetallic lanthanide amido complexes PARA-{Ln[N(SiMe(3))(2)](2)}(2) [Ln = Nd(1), Sm(2), Y(3)] in high isolated yields. Similar reaction of Nd[N(TMS)(2)](3)(μ-Cl)Li(THF)(3) with META-H(2), [META-H(2) = 2[2,6-(i)Pr(2)C(6)H(3)NHC(Me)C(H)C(Me)N]-(meta-phenylene)] at 90 °C in toluene for about 48 h gave META-{Nd[N(SiMe(3))(2)](2)}(2) (4). Complexes 1-4 were well characterized by elemental analysis, IR spectroscopy, and their definitive structures were confirmed by an X-ray crystal structure analysis. The coordination environment and coordination geometry around the metal atoms are similar in these complexes. Each of the metal atoms is four-coordinated with two nitrogen atoms from the N,N-chelating β-diketiminate unit, and two nitrogen atoms from two (Me(3)Si)(2)N- groups to form a distorted tetrahedron. These complexes can serve as highly active initiators for L-lactide polymerization in toluene. In addition, they also showed high activity towards rac-lactide polymerization in THF at room temperature, giving heterotactic-enriched polymers (P(r) ≈ 0.70), and complex 4 displays obviously higher activity in comparison with complex 1.

  9. New family of lanthanide-based inorganic-organic hybrid frameworks: Ln2(OH)4[O3S(CH2)nSO3]·2H2O (Ln = La, Ce, Pr, Nd, Sm; n = 3, 4) and their derivatives.

    PubMed

    Liang, Jianbo; Ma, Renzhi; Ebina, Yasuo; Geng, Fengxia; Sasaki, Takayoshi

    2013-02-18

    We report the synthesis and structure characterization of a new family of lanthanide-based inorganic-organic hybrid frameworks, Ln(2)(OH)(4)[O(3)S(CH(2))(n)SO(3)]·2H(2)O (Ln = La, Ce, Pr, Nd, Sm; n = 3, 4), and their oxide derivatives. Highly crystallized samples were synthesized by homogeneous precipitation of Ln(3+) ions from a solution containing α,ω-organodisulfonate salts promoted by slow hydrolysis of hexamethylenetetramine. The crystal structure solved from powder X-ray diffraction data revealed that this material comprises two-dimensional cationic lanthanide hydroxide {[Ln(OH)(2)(H(2)O)](+)}(∞) layers, which are cross-linked by α,ω-organodisulfonate ligands into a three-dimensional pillared framework. This hybrid framework can be regarded as a derivative of UCl(3)-type Ln(OH)(3) involving penetration of organic chains into two {LnO(9)} polyhedra. Substitutional modification of the lanthanide coordination promotes a 2D arrangement of the {LnO(9)} polyhedra. A new hybrid oxide, Ln(2)O(2)[O(3)S(CH(2))(n)SO(3)], which is supposed to consist of alternating {[Ln(2)O(2)](2+)}(∞) layers and α,ω-organodisulfonate ligands, can be derived from the hydroxide form upon dehydration/dehydroxylation. These hybrid frameworks provide new opportunities to engineer the interlayer chemistry of layered structures and achieve advanced functionalities coupled with the advantages of lanthanide elements.

  10. Complexation of Curium(III) with DTPA at 10–70 °C: Comparison with Eu(III)–DTPA in Thermodynamics, Luminescence, and Coordination Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Guoxin; Zhang, Zhiyong; Martin, Leigh R.

    Separation of trivalent actinides (An(III)) from trivalent lanthanides (Ln(III)) is a challenging task because of their nearly identical chemical properties. Diethylenetriaminepentaacetate (DTPA), a key reagent used in the TALSPEAK process that effectively separates An(III) from Ln(III), is believed to play a critical role in the An(III)/Ln(III) separation. However, the underlying principles for the separation based on the difference in the complexation of DTPA with An(III) and Ln(III) remain unclear. In this work, the complexation of DTPA with Cm(III) at 10-70 ºC was investigated by spectrophotometry, luminescence spectroscopy, and microcalorimetry, in conjunction with computational methods. The binding strength, the enthalpy ofmore » complexation, the coordination modes, and the luminescence properties are compared between the Cm(III)-DTPA and Eu(III)-DTPA systems. The experimental and computational data have demonstrated that the difference between Cm(III) and Eu(III) in the binding strength with DTPA can be attributed to the stronger covalence bonding between Cm(III) and the nitrogen donors of DTPA.« less

  11. Cooperative loading of multisite receptors with lanthanide containers: an approach for organized luminescent metallopolymers.

    PubMed

    Babel, Lucille; Guénée, Laure; Besnard, Céline; Eliseeva, Svetlana V; Petoud, Stéphane; Piguet, Claude

    2018-01-14

    Metal-containing (bio)organic polymers are materials of continuously increasing importance for applications in energy storage and conversion, drug delivery, shape-memory items, supported catalysts, organic conductors and smart photonic devices. The embodiment of luminescent components provides a revolution in lighting and signaling with the ever-increasing development of polymeric light-emitting devices. Despite the unique properties expected from the introduction of optically and magnetically active lanthanides into organic polymers, the deficient control of the metal loading currently limits their design to empirical and poorly reproducible materials. We show here that the synthetic efforts required for producing soluble multi-site host systems L k are largely overcome by the virtue of reversible thermodynamics for mastering the metal loading with the help of only two parameters: (1) the affinity of the luminescent lanthanide container for a single binding site and (2) the cooperative effect which modulates the successive fixation of metallic units to adjacent sites. When unsymmetrical perfluorobenzene-trifluoroacetylacetonate co-ligands (pbta - ) are selected for balancing the charge of the trivalent lanthanide cations, Ln 3+ , in six-coordinate [Ln(pbta) 3 ] containers, the explored anti-cooperative complexation processes induce nearest-neighbor intermetallic interactions twice as large as thermal energy at room temperature ( RT = 2.5 kJ mol -1 ). These values have no precedent when using standard symmetrical containers and they pave the way for programming metal alternation in luminescent lanthanidopolymers.

  12. A Facile Strategy for Catalyst Separation and Recycling Suitable for ATRP of Hydrophilic Monomers Using a Macroligand.

    PubMed

    Jiang, Xiaowu; Wu, Jian; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2016-01-01

    How to simply and efficiently separate and recycle catalyst has still been a constraint for the wide application of atom transfer radical polymerization (ATRP), especially for the polymerization systems with hydrophilic monomers because the polar functional groups may coordinate with transition metal salts, resulting in abundant catalyst residual in the resultant water-soluble polymers. In order to overcome this problem, a latent-biphasic system is developed, which can be successfully used for ATRP catalyst separation and recycling in situ for various kinds of hydrophilic monomers for the first time, such as poly(ethylene glycol) monomethyl ether methacrylate (PEGMA), 2-hydroxyethyl methacrylate (HEMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA), N,N-dimethyl acrylamide (DMA), and N-isopropylacrylamide (NIPAM). Herein, random copolymer of octadecyl acrylate (OA), MA-Ln (2-(bis(pyridin-2-ylmethyl)amino)ethyl acrylate), and POA-ran-P(MA-Ln) is designed as the macroligand, and heptane/ethanol is selected as the biphasic solvent. Copper(II) bromide (CuBr2 ) is employed as the catalyst, PEG-bound 2-bromo-2-methylpropanoate (PEG350 -Br) as the water-soluble ATRP initiator and 2,2'-azobis(isobutyronitrile) (AIBN) as the azo-initiator to establish an ICAR (initiators for continuous activator regeneration) ATRP system. Importantly, well-defined water-soluble polymers are obtained even though the recyclable catalyst is used for sixth times. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Three series of heterometallic NiII-LnIII Schiff base complexes: synthesis, crystal structures and magnetic characterization.

    PubMed

    Jiang, Lin; Liu, Yue; Liu, Xin; Tian, Jinlei; Yan, Shiping

    2017-09-26

    Three series of Ni II -Ln III complexes were synthesized with the general formulae [(μ 3 -CO 3 ) 2 {Ni(HL)(CH 3 -CH 2 OH)Ln(CH 3 COO)} 2 ]·2CH 3 CH 2 OH (1-6) (Ln = Tb (1), Dy (2), Ho (3), Er (4), Tm (5), Yb (6); H 3 L = N,N'-bis(3-methoxysalicylidene)-1,3-diamino-2-prop-anol), [Ni(HL)Ln(dbm) 3 ]·CH 3 OH 2 ·2CH 2 Cl 2 (7-10) (Ln = Tb (7), Eu (8), Gd (9), Ho (10); Hdbm = 1,3-diphenyl-1,3-propanedione) and [Ni(HL)(H 2 O)(tfa)Ln(hfac) 2 ] (11-15) (Ln = Tb (11), Dy (12), Eu (13), Gd (14), Ho (15); Hhfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione, tfa - = trifluoroacetate) using compartmental Schiff base ligands in conjunction with auxiliary ligands. For the NiLn series, the tetranuclear structure could be considered as two Ni II -Ln III dinuclear subunits bridged by two carbonates derived from atmospheric carbon dioxide. The Ln III ions of complexes 1-6 were octa-coordinated with distorted triangular dodecahedral geometry, while the Ln III ions of the dinuclear complexes 7-15 were nona-coordinated with distorted muffin geometry. The magnetic properties of the three series complexes were studied using dc and ac magnetic measurements. For the Ni II -Gd III complexes, the dc magnetic susceptibility measurements suggested the existence of the anticipated ferromagnetic interaction between Ni II and Gd III ions. The fitting of the χ M T vs. T data processed by PHI software provided the parameters g = 2.08 (J = +0.87 cm -1 ) for 9 and g = 2.02 (J = +1.83 cm -1 ) for 14. The interaction exchange was magneto-structurally correlated to the Ni-O-Gd angle (α) and Ni(μ-O)Gd dihedral angle (β). With an applied dc field, complexes 1 (Tb), 2 (Dy), 7 (Tb) and 12 (Dy) exhibited single magnetic relaxation with SMM parameters of U eff /k = 13.60 K, 11.52 K, 7.69 K and 5.14 K, respectively. Analysis of the Cole-Cole plots for complexes 2 and 7 suggested that a single relaxation process was mainly involved in the relaxation process, with α values in the range of 0.37-0.17 and 0.14-0.11, respectively.

  14. Some metal complexes of three new potentially heptadentate (N4O3) tripodal Schiff base ligands; synthesis, characterizatin and X-ray crystal structure of a novel eight coordinate Gd(III) complex

    NASA Astrophysics Data System (ADS)

    Golbedaghi, Reza; Moradi, Somaeyh; Salehzadeh, Sadegh; Blackman, Allan G.

    2016-03-01

    The symmetrical and asymmetrical potentially heptadentate (N4O3) tripodal Schiff base ligands (H3L1-H3L3) were synthesized from the condensation reaction of three tripodal tetraamine ligands tpt (trpn), tris (3-aminopropyl) amine; ppe (abap), (2-aminoethyl)bis(3-aminopropyl)amine, and tren, tris(2-aminoethyl)amine, with 5-methoxysalicylaldehyde. Then, the reaction of Ln(III) (Ln = Gd, La and Sm), Al(III), and Fe(III) metal ions with the above ligands was investigated. The resulting compounds were characterized by IR, mass spectrometry and elemental analysis in all cases and NMR spectroscopy in the case of the Schiff base ligands. The X-ray crystal structure of the Gd complex of H3L3 ligand showed that in addition to all donor atoms of the ligand one molecule of H2O is also coordinated to the metal ion and a neutral eight-coordinate complex is formed.

  15. Lanthanide-organic complexes based on polyoxometalates: Solvent effect on the luminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Qun; Liu Shuxia, E-mail: liusx@nenu.edu.cn; Liang Dadong

    2012-06-15

    A series of lanthanide-organic complexes based on polyoxometalates (POMs) [Ln{sub 2}(DNBA){sub 4}(DMF){sub 8}][W{sub 6}O{sub 19}] (Ln=La(1), Ce(2), Sm(3), Eu(4), Gd(5); DNBA=3,5-dinitrobenzoate; DMF=N,N-dimethylformamide) has been synthesized. These complexes consist of [W{sub 6}O{sub 19}]{sup 2-} and dimeric [Ln{sub 2}(DNBA){sub 4}(DMF){sub 8}]{sup 2+} cations. The luminescence properties of 4 are measured in solid state and different solutions, respectively. Notably, the emission intensity increases gradually with the increase of solvent permittivity, and this solvent effect can be directly observed by electrospray mass spectrometry (ESI-MS). The analyses of ESI-MS show that the eight coordinated solvent DMF units of dimeric cation are active. They can movemore » away from dimeric cations and exchange with solvent molecules. Although the POM anions escape from 3D supramolecular network, the dimeric state structure of [Ln{sub 2}(DNBA){sub 4}]{sup 2+} remains unchanged in solution. The conservation of red luminescence is attributed to the maintenance of the aggregated state structures of dimeric cations. - Graphical abstract: 3D POMs-based lanthanide-organic complexes performed the solvent effect on the luminescence property. The origin of such solvent effect can be understood and explained on the basis of the existence of coordinated active sites by the studies of ESI-MS. Highlights: Black-Right-Pointing-Pointer The solvent effect on the luminescence property of POMs-based lanthanide-organic complexes. Black-Right-Pointing-Pointer ESI-MS analyses illuminate the correlation between the structure and luminescence property. Black-Right-Pointing-Pointer The dimeric cations have eight active sites of solvent coordination. Black-Right-Pointing-Pointer The aggregated state structure of dimer cation remains unchanged in solution. Black-Right-Pointing-Pointer Luminescence associating with ESI-MS is a new method for investigating the interaction of complex and solvent.« less

  16. Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers.

    PubMed

    Medishetty, Raghavender; Park, In-Hyeok; Lee, Shim Sung; Vittal, Jagadese J

    2016-03-14

    Highly crystalline metal ions containing organic polymers are potentially useful to manipulate the magnetic and optical properties to make advanced multifunctional materials. However, it is challenging to synthesise monocrystalline metal complexes of organic polymers and single-phase hybrid materials made up of both coordination and organic polymers by traditional solution crystallisation. This requires an entirely different approach in the solid-state by thermal or photo polymerisation of the ligands. Among the photochemical methods available, [2+2] cycloaddition reaction has been recently employed to generate cyclobutane based coordination polymers from the metal complexes. Cyclobutane polymers have also been integrated into coordination polymers in this way. Recent advancements in the construction of polymeric chains of cyclobutane rings through photo-dimerisation reaction in the monocrystalline solids containing metal complexes, coordination polymers and metal-organic framework structures are discussed here.

  17. Tellurium-containing polymer micelles: competitive-ligand-regulated coordination responsive systems.

    PubMed

    Cao, Wei; Gu, Yuwei; Meineck, Myriam; Li, Tianyu; Xu, Huaping

    2014-04-02

    Nanomaterials capable of achieving tunable cargo release kinetics are of significance in a fundamental sense and various biological or medical applications. We report a competitive coordination system based on a novel tellurium-containing polymer and its ligand-regulated release manners. Tellurium was introduced to water-soluble polymers for the first time as drug delivery vehicles. The coordination chemistry between platinum and tellurium was designed to enable the load of platinum-based drugs. Through the competitive coordination of biomolecules, the drugs could be released in a controlled manner. Furthermore, the release kinetics could be modulated by the competitive ligands involved due to their different coordination ability. This tellurium-containing polymer may enrich the family of delivery systems and provide a new platform for future biomedical nanotechnologies.

  18. Enhanced anti-counterfeiting measures for additive manufacturing: coupling lanthanide nanomaterial chemical signatures with blockchain technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Zachary C.; Stephenson, David E.; Christ, Josef F.

    The significant rise of additive manufacturing (AM) in recent years is in part due to the open sourced nature of the printing processes and reduced cost and capital barriers relative to traditional manufacturing. However, this democratization of manufacturing spurs an increased demand for producers and end-users to verify the authenticity and quality of individual parts. To this end, we introduce an anti-counterfeiting method composed of first embedding engineered nanomaterials into features of a 3D-printed part followed by non-destructive interrogation of these features to quantify a chemical signature profile. The part specific chemical signature data is then linked to a securitized,more » distributed, and time-stamped blockchain ledger entry. To demonstrate the utility of this approach, lanthanide-aspartic acid nanoscale coordination polymers (Ln3+- Asp NCs) / poly(lactic) acid (PLA) composites were formulated and transformed into a filament feedstock for fused deposition modeling (FDM) 3D printing. In the present case, a quick-response (QR) code containing the doped Ln3+-Asp NCs was printed using a dual-extruder FDM printer into pure PLA parts. The QR code provides a searchable reference to an Ethereum-based blockchain entry. The QR code physical features also serve as defined areas to probe the signatures arising from the embedded Ln3+-Asp NCs. Visible fluorescence emission with UV-excitation was quantified in terms of color using a smartphone camera and incorporated into blockchain entries. Ultimately, linking unique chemical signature data to blockchain databases is anticipated to make the costs of counterfeiting AM materials significantly more prohibitive and transactions between those in the supply chain more trustworthy.« less

  19. Silver baits for the "miraculous draught" of amphiphilic lanthanide helicates.

    PubMed

    Terazzi, Emmanuel; Guénée, Laure; Varin, Johan; Bocquet, Bernard; Lemonnier, Jean-François; Emery, Daniel; Mareda, Jiri; Piguet, Claude

    2011-01-03

    The axial connection of flexible thioalkyls chains of variable length (n=1-12) within the segmental bis-tridentate 2-benzimidazole-8-hydroxyquinoline ligands [L12(Cn) -2 H](2-) provides amphiphilic receptors designed for the synthesis of neutral dinuclear lanthanides helicates. However, the stoichiometric mixing of metals and ligands in basic media only yields intricate mixtures of poorly soluble aggregates. The addition of Ag(I) in solution restores classical helicate architectures for n=3, with the quantitative formation of the discrete D(3) -symmetrical [Ln(2) Ag2(L12(C3) -2 H)(3) ](2+) complexes at millimolar concentration (Ln=La, Eu, Lu). The X-ray crystal structure supports the formation of [La(2) Ag(2) (L12(C3) -2 H)(3) ][OTf](2) , which exists in the solid state as infinite linear polymers bridged by S-Ag-S bonds. In contrast, molecular dynamics (MD) simulations in the gas phase and in solution confirm the experimental diffusion measurements, which imply the formation of discrete molecular entities in these media, in which the sulfur atoms of each lipophilic ligand are rapidly exchanged within the Ag(I) coordination sphere. Turned as a predictive tool, MD suggests that this Ag(I) templating effect is efficient only for n=1-3, while for n>3 very loose interactions occur between Ag(I) and the thioalkyl residues. The subsequent experimental demonstration that only 25 % of the total ligand speciation contributes to the formation of [Ln(2) Ag(2) (L12(C12) -2 H)(3) ](2+) in solution puts the bases for a rational approach for the design of amphiphilic helical complexes with predetermined molecular interfaces. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Role of the ancillary ligand N,N-dimethylaminoethanol in the sensitization of Eu(III) and Tb(III) luminescence in dimeric beta-diketonates.

    PubMed

    Eliseeva, Svetlana V; Kotova, Oxana V; Gumy, Frédéric; Semenov, Sergey N; Kessler, Vadim G; Lepnev, Leonid S; Bünzli, Jean-Claude G; Kuzmina, Natalia P

    2008-04-24

    Two types of dimeric complexes [Ln2(hfa)6(mu2-O(CH2)2NHMe2)2] and [Ln(thd)2(mu2,eta2-O(CH2)2NMe2)]2 (Ln = YIII, EuIII, GdIII, TbIII, TmIII, LuIII; hfa- = hexafluoroacetylacetonato, thd- = dipivaloylmethanato) are obtained by reacting [Ln(hfa)3(H2O)2] and [Ln(thd)3], respectively, with N,N-dimethylaminoethanol in toluene and are fully characterized. X-ray single crystal analysis performed for the TbIII compounds confirms their dimeric structure. The coordination mode of N,N-dimethylaminoethanol depends on the nature of the beta-diketonate. In [Tb2(hfa)6(mu2-O(CH2)2NHMe2)2], eight-coordinate TbIII ions adopt distorted square antiprismatic coordination environments and are O-bridged by two zwitterionic N,N-dimethylaminoethanol ligands with a Tb1...Tb2 separation of 3.684(1) A. In [Tb(thd)2(mu2,eta2-O(CH2)2NMe2)]2, the N,N-dimethylaminoethanol acts as chelating-bridging O,N-donor anion and the TbIII ions are seven-coordinate; the Tb1...Tb1A separation amounts to 3.735(2) A within centrosymmetric dimers. The dimeric complexes are thermally stable up to 180 degrees C, as shown by thermogravimetric analysis, and their volatility is sufficient for quantitative sublimation under reduced pressure. The EuIII and TbIII dimers display metal-centered luminescence, particularly [Eu2(hfa)6(O(CH2)2NHMe2)2] (quantum yield Q(L)Ln = 58%) and [Tb(thd)2(O(CH2)2NMe2)]2 (32%). Consideration of energy migration paths within the dimers, based on the study of both pure and EuIII- or TbIII-doped (0.01-0.1 mol %) LuIII analogues, leads to the conclusion that both the beta-diketone and N,N-dimethylaminoethanol ligands contribute significantly to the sensitization process of the EuIII luminescence. The ancillary ligand increases considerably the luminescence of [Eu2(hfa)6(O(CH2)2NHMe2)2], compared to [Ln(hfa)3(H2O)2], through the formation of intra-ligand states while it is detrimental to TbIII luminescence in both beta-diketonates. Thin films of the most luminescent compound [Eu2(hfa)6(O(CH2)2NHMe2)2] obtained by vacuum sublimation display photophysical properties analogous to those of the solid-state sample, thus opening perspectives for applications in electroluminescent devices.

  1. Coordination-supported organic polymers: mesoporous inorganic–organic materials with preferred stability

    DOE PAGES

    Chen, Dong; Zhang, Pengfei; Fang, Qianrong; ...

    2018-01-01

    A simple and versatile strategy is developed for the synthesis of coordination-supported organic polymers(COPs) via coordination between Al 3+ and 5-amino-8-hydroxyquinoline together with organic imine- or imide-based polycondensation.

  2. Coordination-supported organic polymers: mesoporous inorganic–organic materials with preferred stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dong; Zhang, Pengfei; Fang, Qianrong

    A simple and versatile strategy is developed for the synthesis of coordination-supported organic polymers(COPs) via coordination between Al 3+ and 5-amino-8-hydroxyquinoline together with organic imine- or imide-based polycondensation.

  3. Complexation of Sn{sub 2}Se{sub 6} with lanthanide(III) centers influenced by ethylene polyamines: Solvothermal syntheses, crystal structures, and optical properties of lanthanide selenidostannates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Chunying; Wang, Fang; Chen, Ruihong

    Lanthanide selenidostannates (H{sub 3}O){sub n}[Ce(tepa)(μ-1κ{sup 2}:2κ{sup 2}-Sn{sub 2}Se{sub 6})]{sub n} (1), [(Yb(tepa)(μ-OH)){sub 2}(μ-1κ:2κ-Sn{sub 2}Se{sub 6})]{sub n}·nH{sub 2}O (2), [Htrien]{sub 2}[(Ln(trien)(tren)){sub 2}(μ-1κ:2κ-Sn{sub 2}Se{sub 6})][Sn{sub 2}Se{sub 6}] (Ln=Ce(3), Nd(4)) and [(Yb(dien){sub 2}){sub 2}(μ-OH){sub 2}]Sn{sub 2}Se{sub 6} (5) were solvothermally prepared in different ethylene polyamines. The Sn{sub 2}Se{sub 6} unit connects [Ce(tepa)]{sup 3+} and [(Yb(tepa)(μ-OH)){sub 2}]{sup 4+} fragments with tetradentate μ-1κ{sup 2}Se{sup 1},Se{sup 2}:2κ{sup 2}Se{sup 5},Se{sup 6} and bidentate μ-1κSe{sup 1}:2κSe{sup 5} bridging coordination modes in tepa, to form polymers 1 and 2, respectively. It joins two [Ln(trien)(tren)]{sup 3+} fragments as a μ-1κSe{sup 1}:2κSe{sup 5} ligand to form binuclear complexes 3 and 4more » in trien. Unlike the Sn{sub 2}Se{sub 6} units in 1–4 that bind with Ln(III) centers as Se-donor ligands, the Sn{sub 2}Se{sub 6} unit in 5 exists as a discrete ion. The syntheses of 1–5 show that the ethylene polyamines play an important role in the complexation of Sn{sub 2}Se{sub 6} ligand with Ln(III) centers. Compounds 1–5 exhibit optical band gaps in the range of 2.09–2.42 eV, which are influenced by the complexation of Sn{sub 2}Se{sub 6} with Ln(III) centers. - Graphical abstract: New lanthanide complexes concerning the Sn{sub 2}Se{sub 6} ligand were solvothermally prepared, and the effect of ethylene polyamines on the complexation of Sn{sub 2}Se{sub 6} with Ln(III) centers are observed. Highlights: • Lanthanide complexes concerning the selenidostannates have been solvothermally prepared in different ethylene polyamines. • A tetradentate μ-1κ{sup 2}Se{sup 1},Se{sup 2}:2κ{sup 2}Se{sup 5},Se{sup 6} and a bidentate μ-1κSe{sup 1}:2κSe{sup 5} bridging coordination modes for the Sn{sub 2}Se{sub 6} ligand is obtained. • The complexation of the Sn{sub 2}Se{sub 6} ligand with Ln(III) centers are influenced by the ethylene polyamines.« less

  4. Freezing transition of the directed polymer in a 1+d random medium: Location of the critical temperature and unusual critical properties

    NASA Astrophysics Data System (ADS)

    Monthus, Cécile; Garel, Thomas

    2006-07-01

    In dimension d⩾3 , the directed polymer in a random medium undergoes a phase transition between a free phase at high temperature and a low-temperature disorder-dominated phase. For the latter phase, Fisher and Huse have proposed a droplet theory based on the scaling of the free-energy fluctuations ΔF(l)˜lθ at scale l . On the other hand, in related growth models belonging to the Kardar-Parisi-Zhang universality class, Forrest and Tang have found that the height-height correlation function is logarithmic at the transition. For the directed polymer model at criticality, this translates into logarithmic free-energy fluctuations ΔFTc(l)˜(lnl)σ with σ=1/2 . In this paper, we propose a droplet scaling analysis exactly at criticality based on this logarithmic scaling. Our main conclusion is that the typical correlation length ξ(T) of the low-temperature phase diverges as lnξ(T)˜[-ln(Tc-T)]1/σ˜[-ln(Tc-T)]2 , instead of the usual power law ξ(T)˜(Tc-T)-ν . Furthermore, the logarithmic dependence of ΔFTc(l) leads to the conclusion that the critical temperature Tc actually coincides with the explicit upper bound T2 derived by Derrida and co-workers, where T2 corresponds to the temperature below which the ratio ZL2¯/(ZL¯)2 diverges exponentially in L . Finally, since the Fisher-Huse droplet theory was initially introduced for the spin-glass phase, we briefly mention the similarities with and differences from the directed polymer model. If one speculates that the free energy of droplet excitations for spin glasses is also logarithmic at Tc , one obtains a logarithmic decay for the mean square correlation function at criticality, C2(r)¯˜1/(lnr)σ , instead of the usual power law 1/rd-2+η .

  5. Design and synthesis of heterobimetallic Ru(II)-Ln(III) complexes as chemodosimetric ensembles for the detection of biogenic amine odorants.

    PubMed

    Chow, Cheuk-Fai; Lam, Michael H W; Wong, Wai-Yeung

    2013-09-03

    The detection of neutral biogenic amines plays a crucial role in food safety. Three new heterobimetallic Ru(II)-Ln(III) donor-acceptor complexes, KPrRu, KNdRu, and KSmRu, K{[Ru((II))((t)Bubpy)(CN)4]2-Ln((III))(H2O)4} (where (t)Bubpy = 4,4'-di-tert-butyl-2,2'-bipyridine), have been synthesized and characterized. Their photophysical and X-ray crystallographic data were reported in this study. These complexes were found to be selective for biogenic amine vapors, such as histamine, putrescine, and spermidine, with a detection limit down to the ppb level. The sensitivities of these complexes to the amines were recorded as ~log K = 3.6-5.0. Submicron rods of the complexes, with a nanoscale diameter and microscale length, were obtained through a simple precipitation process. Free-standing polymeric films with different degrees of porosity were fabricated by blending the submicron rods with polystyrene polymer. The polymer with the highest level of porosity exhibited the strongest luminescence enhancement after amine exposure. Real time monitoring of gaseous biogenic amines was applied to real fish samples (Atlantic mackerel) by studying the spectrofluorimetric responses of the Ru(II)-Ln(III) blended polymer film.

  6. Polymer complexes.. XXXX. Supramolecular assembly on coordination models of mixed-valence-ligand poly[1-acrylamido-2-(2-pyridyl)ethane] complexes

    NASA Astrophysics Data System (ADS)

    El-Sonbati, A. Z.; El-Bindary, A. A.; Diab, M. A.

    2003-02-01

    The build-up of polymer metallic supramolecules based on homopolymer (1-acrylamido-2-(2-pyridyl)ethane (AEPH)) and ruthenium, rhodium, palladium as well as platinum complexes has been pursued with great interest. The homopolymer shows three types of coordination behaviour. In the mixed valence paramagnetic trinuclear polymer complexes [( 11)+( 12)] in the paper and in mononuclear polymer complexes ( 1)-( 5) it acts as a neutral bidentate ligand coordinating through the N-pyridine and NH-imino atoms, while in the mixed ligand diamagnetic poly-chelates, which are obtained from the reaction of AEPH with PdX 2 and KPtCl 4 in the presence of N-heterocyclic base consisting of polymer complexes ( 9)+( 10), and in monouclear compounds ( 6)-( 8), it behaves as a monobasic bidentate ligand coordinating through the same donor atoms. In mononuclear compounds ( 13)+( 14) it acts as a monobasic and neutral bidentate ligand coordinating only through the same donor atoms. Monomeric distorted octahedral or trimeric chlorine-bridged, approximately octahedral structures are proposed for these polymer complexes. The poly-chelates are of 1:1, 1:2 and 3:2 (metal-homopolymer) stoichiometry and exhibit six coordination. The values of ligand field parameters were calculated. The homopolymer and their polymer complexes have been characterized physicochemically.

  7. Polymer complexes. XXXX. Supramolecular assembly on coordination models of mixed-valence-ligand poly[1-acrylamido-2-(2-pyridyl)ethane] complexes.

    PubMed

    El-Sonbati, A Z; El-Bindary, A A; Diab, M A

    2003-02-01

    The build-up of polymer metallic supramolecules based on homopolymer (1-acrylamido-2-(2-pyridyl)ethane (AEPH)) and ruthenium, rhodium, palladium as well as platinum complexes has been pursued with great interest. The homopolymer shows three types of coordination behaviour. In the mixed valence paramagnetic trinuclear polymer complexes [(11)+(12)] in the paper and in mononuclear polymer complexes (1)-(5) it acts as a neutral bidentate ligand coordinating through the N-pyridine and NH-imino atoms, while in the mixed ligand diamagnetic poly-chelates, which are obtained from the reaction of AEPH with PdX2 and KPtCl4 in the presence of N-heterocyclic base consisting of polymer complexes (9)+(10), and in monouclear compounds (6)-(8), it behaves as a monobasic bidentate ligand coordinating through the same donor atoms. In mononuclear compounds (13)+(14) it acts as a monobasic and neutral bidentate ligand coordinating only through the same donor atoms. Monomeric distorted octahedral or trimeric chlorine-bridged, approximately octahedral structures are proposed for these polymer complexes. The poly-chelates are of 1:1, 1:2 and 3:2 (metal-homopolymer) stoichiometry and exhibit six coordination. The values of ligand field parameters were calculated. The homopolymer and their polymer complexes have been characterized physicochemically.

  8. Polymer complexes. LVII. Supramolecular assemblies of novel polymer complexes of dioxouranium(VI) with some substituted allyl azo dye compounds

    NASA Astrophysics Data System (ADS)

    Diab, M. A.; El-Sonbati, A. Z.; El-Bindary, A. A.; Balboula, M. Z.

    2013-05-01

    A novel method to synthesize some dioxouranium(VI) polymer complexes of the general formula [UO2(Ln)2(OAc)2] (where HLn = azo allyl rhodanine). The structure of the novel mononuclear dioxoutranium(VI) polymer complexes was characterized using elemental analysis, spectral (electronic, infrared, 1H &13C NMR) studies, magnetic susceptibility measurements and thermal analysis. The molar conductivities show that all the polymer complexes are non-electrolytes. The IR showed that the ligand HLn act as bidentate neutral through carbonyl group and imine group nitrogen atom forming thereby a six-membered chelating ring and concomitant formation of an intramolecular hydrogen bond. The υ3 frequency of UO2+2 has been shown to be an excellent molecular probe for studying the coordinating power of the ligands. The values of υ3 of the prepared complexes containing UO2+2 were successfully used to calculate the force constant, FUO (10-8 N/Å) and the bond length RUO (Å) of the Usbnd O bond. A strategy based upon both theoretical and experimental investigations has been adopted. The theoretical aspects are described in terms of the well-known theory of 5d-4f transitions. Wilson's, matrix method, Badger's formula, and Jones and El-Sonbati equations were used to calculate the Usbnd O bond distances from the values of the stretching and interaction force constants. The most probable correlation between Usbnd O force constant to Usbnd O bond distance were satisfactorily discussed in term of Badger's rule and the equations suggested by Jones and El-Sonbati. The effect of Hammet constant is also discussed.

  9. Solid polymeric electrolytes for lithium batteries

    DOEpatents

    Angell, Charles A.; Xu, Wu; Sun, Xiaoguang

    2006-03-14

    Novel conductive polyanionic polymers and methods for their preparion are provided. The polyanionic polymers comprise repeating units of weakly-coordinating anionic groups chemically linked to polymer chains. The polymer chains in turn comprise repeating spacer groups. Spacer groups can be chosen to be of length and structure to impart desired electrochemical and physical properties to the polymers. Preferred embodiments are prepared from precursor polymers comprising the Lewis acid borate tri-coordinated to a selected ligand and repeating spacer groups to form repeating polymer chain units. These precursor polymers are reacted with a chosen Lewis base to form a polyanionic polymer comprising weakly coordinating anionic groups spaced at chosen intervals along the polymer chain. The polyanionic polymers exhibit high conductivity and physical properties which make them suitable as solid polymeric electrolytes in lithium batteries, especially secondary lithium batteries.

  10. Extending lifetimes of lanthanide-based near-infrared emitters (Nd, Yb) in the millisecond range through Cr(III) sensitization in discrete bimetallic edifices.

    PubMed

    Imbert, Daniel; Cantuel, Martine; Bünzli, Jean-Claude G; Bernardinelli, Gérald; Piguet, Claude

    2003-12-24

    A [Cr(alpha,alpha'-diimine)3]3+ chromophore is used as a donor for sensitizing NdIII and YbIII near-infrared (NIR) emitters in the heterobimetallic helicates [LnCrIIIL3]6+. The intramolecular CrIII --> LnIII energy transfer process controls the population of the lanthanide-centered emitting levels, thus leading to unprecedented extension of the NIR luminescence decay times in the millisecond range for Nd and Yb ions incorporated in coordination complexes.

  11. Comparisons of lanthanide/actinide +2 ions in a tris(aryloxide)arene coordination environment† †Electronic supplementary information (ESI) available: Additional computational details, spectroscopic information, crystallographic data collection, structure solution, and refinement (PDF), X-ray diffraction details of compounds 1-Ln (Ln = Nd, Gd, Dy, and Er), 2-Nd, 2-Ln/3-Ln (Ln = Gd, Dy, Er), 2-Dy/4-Dy, and 5-Dy/6-Dy. CCDC (CIF, 1538987–1538995 and 1566075 for 2-Dy/3-Dy), and DFT-optimized structural coordinates for 2-Nd and 2-Gd. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc02337e Click here for additional data file. Click here for additional data file. Click here for additional data file.

    PubMed Central

    Fieser, Megan E.; Palumbo, Chad T.; La Pierre, Henry S.; Halter, Dominik P.; Voora, Vamsee K.; Ziller, Joseph W.

    2017-01-01

    A new series of Ln3+ and Ln2+ complexes has been synthesized using the tris(aryloxide)arene ligand system, ((Ad,MeArO)3mes)3–, recently used to isolate a complex of U2+. The triphenol precursor, (Ad,MeArOH)3mes, reacts with the Ln3+ amides, Ln(NR2)3 (R = SiMe3), to form a series of [((Ad,MeArO)3mes)Ln] complexes, 1-Ln. Crystallographic characterization was achieved for Ln = Nd, Gd, Dy, and Er. The complexes 1-Ln can be reduced with potassium graphite in the presence of 2.2.2-cryptand (crypt) to form highly absorbing solutions with properties consistent with Ln2+ complexes, [K(crypt)][((Ad,MeArO)3mes)Ln], 2-Ln. The synthesis of the Nd2+ complex [K(crypt)][((Ad,MeArO)3mes)Nd], 2-Nd, was unambiguously confirmed by X-ray crystallography. In the case of the other lanthanides, crystals were found to contain mixtures of 2-Ln co-crystallized with either a Ln3+ hydride complex, [K(crypt)][((Ad,MeArO)3mes)LnH], 3-Ln, for Ln = Gd, Dy, and Er, or a hydroxide complex, [K(crypt)][((Ad,MeArO)3mes)Ln(OH)], 4-Ln, for Ln = Dy. A Dy2+ complex with 18-crown-6 as the potassium chelator, [K(18-crown-6)(THF)2][((Ad,MeArO)3mes)Dy], 5-Dy, was isolated as a co-crystallized mixture with the Dy3+ hydride complex, [K(18-crown-6)(THF)2][((Ad,MeArO)3mes)DyH], 6-Dy. Structural comparisons of 1-Ln and 2-Ln are presented with respect to their uranium analogs and correlated with density functional theory calculations on their electronic structures. PMID:29163894

  12. Coordination modes of multidentate ligands in fac-[Re(CO)(3)(polyaminocarboxylate)] analogues of (99m)Tc radiopharmaceuticals. dependence on aqueous solution reaction conditions.

    PubMed

    Lipowska, Malgorzata; He, Haiyang; Xu, Xiaolong; Taylor, Andrew T; Marzilli, Patricia A; Marzilli, Luigi G

    2010-04-05

    We study Re analogues of (99m)Tc renal agents to interpret previous results at the (99m)Tc tracer level. The relative propensities of amine donors versus carboxylate oxygen donors of four L = polyaminocarboxylate ligands to coordinate in fac-[Re(I)(CO)(3)L](n) complexes were assessed by examining the reaction of fac-[Re(I)(CO)(3)(H(2)O)(3)](+) under conditions differing in acidity and temperature. All four L [N,N-bis-(2-aminoethyl)glycine (DTGH), N,N-ethylenediaminediacetic acid, diethylenetriamine-N-malonic acid, and diethylenetriamine-N-acetic acid] can coordinate as tridentate ligands while creating a dangling chain terminated in a carboxyl group. Dangling carboxyl groups facilitate renal clearance in fac-[(99m)Tc(I)(CO)(3)L](n) agents. Under neutral conditions, the four ligands each gave two fac-[Re(I)(CO)(3)L](n) products with HPLC traces correlating well with known traces of the fac-[(99m)Tc(I)(CO)(3)L](n) mixtures. Such mixtures are common in renal agents because the needed dangling carboxyl group can compete for a coordination site. However, the HPLC separations needed to assess the biodistribution of a single tracer are impractical in a clinical setting. One goal in investigating this Re chemistry is to identify conditions for avoiding this problem of mixtures in preparations of fac-[(99m)Tc(I)(CO)(3)L](n) renal tracers. After separation and isolation of the fac-[Re(I)(CO)(3)L](n) products, NMR analysis of all products and single crystal X-ray crystallographic analysis of both DTGH products, as well as one product each from the other L, allowed us to establish coordination mode unambiguously. The product favored in acidic conditions has a dangling amine chain and more bound oxygen. The product favored in basic conditions has a dangling carboxyl chain and more bound nitrogen. At the elevated temperatures used for simulating tracer preparation, equilibration was facile (ca. 1 h or less), allowing selective formation of one product by utilizing acidic or basic conditions. The results of this fundamental study offer protocols and guidance useful for the design and preparation of fac-[(99m)Tc(I)(CO)(3)L](n) agents consisting of a single tracer.

  13. Metal-coordination: Using one of nature’s tricks to control soft material mechanics

    PubMed Central

    Holten-Andersen, Niels; Jaishankar, Aditya; Harrington, Matthew; Fullenkamp, Dominic E.; DiMarco, Genevieve; He, Lihong; McKinley, Gareth H.; Messersmith, Phillip B.; Lee, Ka Yee C.

    2015-01-01

    Growing evidence supports a critical role of dynamic metal-coordination crosslinking in soft biological material properties such as self-healing and underwater adhesion1. Using bio-inspired metal-coordinating polymers, initial efforts to mimic these properties have shown promise2. Here we demonstrate how bio-inspired aqueous polymer network mechanics can be easily controlled via metal-coordination crosslink dynamics; metal ion-based crosslink stability control allows aqueous polymer network relaxation times to be finely tuned over several orders of magnitude. In addition to further biological material insights, our demonstration of this compositional scaling mechanism should provide inspiration for new polymer material property-control designs. PMID:26413297

  14. Aromatic carboxylate effect on dimensionality of three bis(benzimidazole)-based cobalt(II) coordination polymers: Syntheses, structures and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ju-Wen; Gong, Chun-Hua; Hou, Li-Li

    2013-09-15

    Three new metal-organic coordination polymers [Co(4-bbc){sub 2}(bbbm)] (1), [Co(3,5-pdc)(bbbm)]·2H{sub 2}O (2) and [Co(1,4-ndc)(bbbm)] (3) (4-Hbbc=4-bromobenzoic acid, 3,5-H{sub 2}pdc=3,5-pyridinedicarboxylic acid, 1,4-H{sub 2}ndc=1,4-naphthalenedicarboxylic acid and bbbm=1,1-(1,4-butanediyl)bis-1H-benzimidazole) were hydrothermally synthesized and structurally characterized. Polymer 1 is a 1D chain formed by the bbbm ligands and Co{sup II} ions. Polymer 2 exhibits a 2D network with a (3·4·5)(3{sup 2}·4·5·6{sup 2}·7{sup 4}) topology. Polymer 3 possesses a 3D three-fold interpenetrating framework. The versatile structures of title polymers indicate that the aromatic carboxylates have an important influence on the dimensionality of 1–3. Moreover, the thermal stability, electrochemical and luminescent properties of 1–3 were investigated. - graphicalmore » abstract: Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were hydrothermally synthesized and structurally characterized. The aromatic carboxylates play a key role in the dimensionality of three polymers. The electrochemical and luminescent properties of three polymers were investigated. Display Omitted - Highlights: • Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were obtained. • The aromatic carboxylates have an important influence on the dimensionality of three polymers. • The electrochemical and luminescent properties of three polymers were investigated.« less

  15. Synthesis, spectroscopic, thermal and antimicrobial studies of neodymium(III) and samarium(III) complexes derived from tetradentate ligands containing N and S donor atoms

    NASA Astrophysics Data System (ADS)

    Ain, Qurratul; Pandey, S. K.; Pandey, O. P.; Sengupta, S. K.

    2015-04-01

    Trivalent lanthanide complexes of the type [Ln(L)Cl(H2O)2] (where Ln = Nd(III) or Sm(III) and LH2 = Schiff bases derived by the condensation of 3-(phenyl/substitutedphenyl)-4-amino-5-mercapto-1,2,4-triazole with diacetyl/benzil) have been synthesized by the reactions of anhydrous lanthanide(III) chloride with Schiff bases in methanol. The structures of the complexes have been proposed on the basis of elemental analysis, electrical conductance, magnetic moment, spectroscopic measurements (IR, 1H, 13C NMR and UV-vis spectra) and X-ray diffraction studies. The spectral data reveal that the Schiff base ligands behave as dibasic tetradentate chelating agents having coordination sites at two thiol sulfur atoms and two azomethine nitrogen atoms. The presence of coordinated water in metal complexes was confirmed by thermal and IR data of the complexes. All the Schiff bases and their metal complexes have also been screened for their antibacterial activity against Bacillus subtilis, Staphylococcus aureus and antifungal activities against Aspergillus niger, Curvularia pallescens and Colletotrichum capsici.

  16. Supramolecular structures for determination and identification of the bond lengths in novel uranyl complexes from their infrared spectra

    NASA Astrophysics Data System (ADS)

    El-Sonbati, A. Z.; Diab, M. A.; Morgan, Sh. M.; Seyam, H. A.

    2018-02-01

    Novel dioxouranium (VI) heterochelates with neutral bidentate compounds (Ln) have been synthesized. The ligands and the heterochelates [UO2(Ln)2(O2NO)2] were confirmed and characterized by elemental analysis, 1H NMR, UV.-Vis, IR, mass spectroscopy, X-ray diffraction and thermogravimetric analysis (TGA). IR spectral data suggest that the molecules of the Schiff base are coordinated to the central uranium atom (ON donor). The nitrato groups are coordinated as bidentate ligands. The thermodynamic parameters were calculated using Coats-Redfern and Horowitz-Metzger methods. The ligands (Ln) and their complexes (1-3) showed the υ3 frequency of UO22+ has been shown to be an excellent molecular probe for studying the coordinating power of the ligands. The values of υ3 of the prepared complexes containing UO22+ were successfully used to calculate the force constant, FUO (1n 10-8N/Å) and the bond length RUO (Å) of the Usbnd O bond. A strategy based upon both theoretical and experimental investigations has been adopted. The theoretical aspects are described in terms of the well-known theory of 5d-4f transitions. Wilson's, matrix method, Badger's formula, and Jones and El-Sonbati equations were used to calculate the Usbnd O bond distances from the values of the stretching and interaction force constants. The most probable correlation between Usbnd O force constant to Usbnd O bond distance were satisfactorily discussed in term of Badger's rule and the equations suggested by Jones and El-Sonbati. The effect of Hammett's constant is also discussed.

  17. Slow magnetic relaxation and luminescence properties in lanthanide(iii)/anil complexes.

    PubMed

    Maniaki, Diamantoula; Mylonas-Margaritis, Ioannis; Mayans, Julia; Savvidou, Aikaterini; Raptopoulou, Catherine P; Bekiari, Vlasoula; Psycharis, Vassilis; Escuer, Albert; Perlepes, Spyros P

    2018-05-22

    The initial use of anils, i.e. bidentate Schiff bases derived from the condensation of anilines with salicylaldehyde or its derivatives, in 4f-metal chemistry is described. The 1 : 1 reactions between Ln(NO3)3·xH2O (Ln = lanthanide) or Y(NO3)3·6H2O and N-(5-bromosalicylidene)aniline (5BrsalanH) in MeCN has provided access to complexes [Ln(NO3)3(5BrsalanH)2(H2O)]·MeCN (Ln = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) and [Y(NO3)3(5BrsalanH)2(H2O)]·MeCN, respectively, in good yields. The structures of the isomorphous complexes with Ln = Pr(1·MeCN), Sm(3·MeCN), Gd(5·MeCN), Dy(7·MeCN) and Er(9·MeCN) have been determined by single-crystal X-ray crystallography. The other complexes were proven to be isostructural with the fully structurally characterized compounds based on elemental analyses, IR spectra, unit cell determinations and powder X-ray patterns. The 9-coordinate LnIII centre in the [Ln(NO3)3(5BrsalanH)2(H2O)] molecules is bound to six oxygen atoms from the three bidentate chelating nitrato groups, two oxygen atoms that belong to the organic ligands and one oxygen atom from the aquo ligand. The 5BrsalanH molecules behave as monodentate O-donors; the acidic H atom is clearly located on the imino N atom and thus the formally neutral ligands adopt an extremely rare coordination mode participating in the zwitterionic form. The coordination polyhedra defined by the nine donor atoms around the LnIII centres are best described as spherical capped square antiprisms. Various intermolecular interactions build the crystal structures and Hirshfeld surface analysis was applied to evaluate the magnitude of interactions between the molecules. Solid-state IR and UV/VIS data are discussed in terms of structural features. 1H NMR data prove that the diamagnetic [Y(NO3)3(5BrsalanH)2(H2O)] complex decomposes in DMSO. Combined dc and ac magnetic susceptibility, as well as magnetization data for 7 suggest that this complex shows field-induced slow magnetic relaxation. Two magnetization relaxation processes are evident. The fit to the Arrhenius law has been performed using the 6.5-8.5 K ac data, affording an effective barrier for the magnetization reversal of 27 cm-1. Cole-Cole plot analysis in the temperature range in which the Orbach relaxation process is assumed, reveals a narrow distribution of relaxation times. The solid Dy(iii) complex 7 emits green light at 338 nm, the emission being ligand-centered. The perspectives of the present, first results in the lanthanide(iii)-anil chemistry are critically discussed.

  18. Coordinating properties of uridine 5'-monophosphate with selected Ln(3+) ions in ionic micellar media.

    PubMed

    Sudhiranjan Singh, M; Homendra, Naorem; Lonibala, R K

    2012-12-01

    Coordinating properties of uridine 5'-monophosphate (UMP) towards trivalent La, Pr, Nd, Sm, Eu and Gd ions in presence of cationic and anionic micelles have been investigated by potentiometric pH-titration and spectroscopic methods. Stability constants of the 2:1 complexes have been determined and the change in free energy, enthalpy and entropy associated with the complexation are also calculated. Nd(III) complexes isolated from aqueous and aqueous-micellar media do not show any significant structural difference. Formation of Ln(III) complexes in all cases completes below pH 7.5 showing that UMP best interacts with Ln(3+) ions at the physiological pH range 7.3-7.5. The nucleobase is not involved in the complexation and the metal ion coordination of UMP is through the phosphate moiety only. Coordinating tendency of UMP with lanthanides, Nd(III) ion in particular, at different pH is also discussed. Luminescent properties of Eu(III) complex and its decay lifetime are also presented. This information may prove helpful regarding the use of lanthanides as biological probes for calcium/magnesium ions.

  19. Immobilization of metals in contaminated soils using natural polymer-based stabilizers.

    PubMed

    Tao, Xue; Li, Aimin; Yang, Hu

    2017-03-01

    Three low-cost natural polymer materials, namely, lignin (Ln), carboxymethyl cellulose, and sodium alginate, were used for soil amendment to immobilize lead and cadmium in two contaminated soil samples collected from a mining area in Nanjing, China. The remediation effects of the aforementioned natural polymers were evaluated by toxicity characteristic leaching procedure (TCLP) and sequential extractions. The stabilizers could lower the bioavailability of Pb and Cd in the contaminated soils, and the amount of the exchangeable forms of the aforementioned two metals were reduced evidently. TCLP results showed that the leaching concentrations of Pb and Cd were decreased by 5.46%-71.1% and 4.25%-49.6%, respectively, in the treated soils. The contents of the organic forms of the two metals both increased with the increase in stabilizer dose on the basis of the redistribution of metal forms by sequential extractions. These findings were due to the fact that the abundant oxygen-containing groups on the polymeric amendments were effective in chelating and immobilizing Pb and Cd, which have been further confirmed from the metal adsorptions in aqueous solutions. Moreover, Ln achieved the greatest effect among the three polymers under study because of the former's distinct three-dimensional molecular structure, showing the preferential immobilization of Pb over Cd in soils also. Thus, the above-mentioned natural polymers hold great application potentials for reducing metal ion entry into the food chain at a field scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Photocatalytic activity of PANI loaded coordination polymer composite materials: Photoresponse region extension and quantum yields enhancement via the loading of PANI nanofibers on surface of coordination polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Zhongping; Qi, Ji; Xu, Xinxin, E-mail: xuxx@mail.neu.edu.cn

    2013-09-15

    To enhance photocatalytic property of coordination polymer in visible light region, polyaniline (PANI) loaded coordination polymer photocatalyst was synthesized through in-situ chemical oxidation of aniline on the surface of coordination polymer. The photocatalytic activity of PANI loaded coordination polymer composite material for degradation of Rhodamine B (RhB) was investigated. Compared with pure coordination polymer photocatalyst, which can decompose RhB merely under UV light irradiation, PANI loaded coordination polymer photocatalyst displays more excellent photocatalytic activity in visible light region. Furthermore, PANI loaded coordination polymer photocatalyst exhibits outstanding stability during the degradation of RhB. - Graphical abstract: PANI loaded coordination polymer compositemore » material, which displays excellent photocatalytic activity under visible light was firstly synthesized through in-situ chemical oxidation of aniline on surface of coordination polymer. Display Omitted - Highlights: • This PANI loaded coordination polymer composite material represents the first conductive polymer loaded coordination polymer composite material. • PANI/coordination polymer composite material displays more excellent photocatalytic activity for the degradation of MO in visible light region. • The “combination” of coordination polymer and PANI will enable us to design high-activity, high-stability and visible light driven photocatalyst in the future.« less

  1. Construction of Polynuclear Lanthanide (Ln = Dy(III), Tb(III), and Nd(III)) Cage Complexes Using Pyridine-Pyrazole-Based Ligands: Versatile Molecular Topologies and SMM Behavior.

    PubMed

    Bala, Sukhen; Sen Bishwas, Mousumi; Pramanik, Bhaskar; Khanra, Sumit; Fromm, Katharina M; Poddar, Pankaj; Mondal, Raju

    2015-09-08

    Employment of two different pyridyl-pyrazolyl-based ligands afforded three octanuclear lanthanide(III) (Ln = Dy, Tb) cage compounds and one hexanuclear neodymium(III) coordination cage, exhibiting versatile molecular architectures including a butterfly core. Relatively less common semirigid pyridyl-pyrazolyl-based asymmetric ligand systems show an interesting trend of forming polynuclear lanthanide cage complexes with different coordination environments around the metal centers. It is noteworthy here that construction of lanthanide complex itself is a challenging task in a ligand system as soft N-donor rich as pyridyl-pyrazol. We report herein some lanthanide complexes using ligand containing only one or two O-donors compare to five N-coordinating sites. The resultant multinuclear lanthanide complexes show interesting magnetic and spectroscopic features originating from different spatial arrangements of the metal ions. Alternating current (ac) susceptibility measurements of the two dysprosium complexes display frequency- and temperature-dependent out-of-phase signals in zero and 0.5 T direct current field, a typical characteristic feature of single-molecule magnet (SMM) behavior, indicating different energy reversal barriers due to different molecular topologies. Another aspect of this work is the occurrence of the not-so-common SMM behavior of the terbium complex, further confirmed by ac susceptibility measurement.

  2. Immobilization of Polyoxometalates on Tailored Polymeric Surfaces.

    PubMed

    Aguado-Ureta, Saioa; Rodríguez-Hernández, Juan; Del Campo, Adolfo; Perez-Álvarez, Leyre; Ruiz-Rubio, Leire; Vilas, José Luis; Artetxe, Beñat; Reinoso, Santiago; Gutiérrez-Zorrilla, Juan M

    2018-03-02

    Herein we describe the preparation of hybrid polymer-inorganic interfaces by the immobilization of polyoxometalate nanoclusters on functionalized polymer surfaces. The polymeric surfaces were made of polystyrene- b -poly(acrylic acid)/polystyrene (PS- b -PAA/PS) blends by spin coating on a silicon wafer. The functionalization of the polymer film was obtained by interfacial migration of the amphiphilic block copolymer toward the interface upon water vapor annealing. The carboxylic acid functional groups contained in the PAA block were then employed to anchor the [Ln III (α-SiW 11 O 39 )] 5- polyoxometalates (Ln: Ce, Er). This purpose was achieved by immersing the films in aqueous solutions of the in situ-formed inorganic nanoclusters. X-ray photoelectron and confocal Raman spectroscopies, together with atomic force microscopy, confirmed the immobilization of the inorganic species at the interface.

  3. One-Pot Synthesis of Co-Based Coordination Polymer Nanowire for Li-Ion Batteries with Great Capacity and Stable Cycling Stability

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Lou, Xiaobing; Li, Chao; Hu, Xiaoshi; Yang, Qi; Hu, Bingwen

    2018-06-01

    Nanowire coordination polymer cobalt-terephthalonitrile (Co-BDCN) was successfully synthesized using a simple solvothermal method and applied as anode material for lithium-ion batteries (LIBs). A reversible capacity of 1132 mAh g-1 was retained after 100 cycles at a rate of 100 mA g-1, which should be one of the best LIBs performances among metal organic frameworks and coordination polymers-based anode materials at such a rate. On the basis of the comprehensive structural and morphology characterizations including fourier transform infrared spectroscopy, 1H NMR, 13C NMR, and scanning electron microscopy, we demonstrated that the great electrochemical performance of the as-synthesized Co-BDCN coordination polymer can be attributed to the synergistic effect of metal centers and organic ligands, as well as the stability of the nanowire morphology during cycling.[Figure not available: see fulltext.

  4. Experimental and theoretical studies of the products of reaction between Ln(hfa) 3 and Cu(acac) 2 (Ln = La, Y; acac = acetylacetonate, hfa = hexafluoroacetylacetonate)

    NASA Astrophysics Data System (ADS)

    Rogachev, Andrey Yu.; Mironov, Andrey V.; Nemukhin, Alexander V.

    2007-04-01

    The new unusual heterobimetallic complex [La(hfa) 3Cu(acac) 2(H 2O)] ( I) was obtained in the reaction La(hfa) 3·2H 2O with Cu(acac) 2 in CHCl 3. This is the first example of such type of heterobimetallic complexes based on the Cu(acac) 2 species. According to the X-ray single crystal analysis, complex I crystallizes in the monoclinic space group P2 1/c, with a = 12.516(3) Å, b = 17.757(4) Å, c = 17.446(4) Å, β = 93.90(3)° and Z = 4. The structure consists of isolated heterobinuclear molecules with the coordination number of La being 9. The molecules are further assembled into dimers via hydrogen bonds. The theoretical modeling of the structure and the properties of parent monometallic complexes Ln(hfa) 3 (Ln = La, Y) and Cu(acac) 2 is described. The comparative theoretical study of lanthanide complexes indicates relations in formation of a heterobimetallic complex to the Lewis acidity of original monometallic complexes. In particular, the Lewis acidity and charge of the central metal ion in Ln(hfa) 3 are the key parameters accounting for the formation of [Ln(hfa) 3Cu(acac) 2].

  5. Hexanuclear, heterometallic, Ni₃Ln₃ complexes possessing O-capped homo- and heterometallic structural subunits: SMM behavior of the dysprosium analogue.

    PubMed

    Goura, Joydeb; Guillaume, Rogez; Rivière, Eric; Chandrasekhar, Vadapalli

    2014-08-04

    The reaction of hetero donor chelating mannich base ligand 6,6'-{(2-(dimethylamino)ethylazanediyl)bis(methylene)}bis(2-methoxy-4-methylphenol) with Ni(ClO4)2·6H2O and lanthanide(III) salts [Dy(III) (1); Tb(III) (2); Gd (III) (3); Ho(III) (4); and Er(III) (5)] in the presence of triethylamine and pivalic acid afforded a series of heterometallic hexanuclear Ni(II)-Ln(III) coordination compounds, [Ni3Ln3(μ3-O)(μ3-OH)3(L)3(μ-OOCCMe3)3]·(ClO4)·wCH3CN·xCH2Cl2·yCH3OH·zH2O [for 1, w = 8, x = 3, y = 0, z = 5.5; for 2, w = 0, x = 5, y = 0, z = 6.5; for 3, w = 15, x = 18, y = 3, z = 7.5; for 4, w = 15, x = 20, y = 6, z = 9.5; and for 5, w = 0, x = 3, y = 2, z = 3]. The molecular structure of these complexes reveals the presence of a monocationic hexanuclear derivative containing one perchlorate counteranion. The asymmetric unit of each of the hexanuclear derivatives comprises the dinuclear motif [NiLn(L)(μ3-O)(μ3-OH)(μ-Piv)]. The cation contains three interlinked O-capped clusters: one Ln(III)3O and three Ni(II)Ln(III)2O. Each of the lanthanide centers is eight- coordinated (distorted trigonal-dodecahedron), while the nickel centers are hexacoordinate (distorted octahedral). The study of the magnetic properties of all compounds are reported and suggests single molecule magnet behavior for the Dy(III) derivative (1).

  6. Steric hindrances create a discrete linear Dy4 complex exhibiting SMM behaviour.

    PubMed

    Lin, Shuang-Yan; Zhao, Lang; Ke, Hongshan; Guo, Yun-Nan; Tang, Jinkui; Guo, Yang; Dou, Jianmin

    2012-03-21

    Two linear tetranuclear lanthanide complexes of general formula [Ln(4)(L)(2)(C(6)H(5)COO)(12)(MeOH)(4)], where HL = 2,6-bis((furan-2-ylmethylimino)methyl)-4-methylphenol, () and Ln(III) = Dy(III) (1) and Gd(III) (2), have been synthesized and characterized. The crystal structural analysis demonstrates that two Schiff-base ligands inhibit the growth of benzoate bridged 1D chains, leading to the isolation of discrete tetranuclear complexes due to their steric hindrances. Every Ln(III) ion is coordinated by eight donor atoms in a distorted bicapped trigonal-prismatic arrangement. Alternating current (ac) susceptibility measurements of complex 1 reveal a frequency- and temperature-dependent out-of-phase signal under zero dc field, typical of single-molecule magnet (SMM) behaviour with an anisotropic barrier Δ(eff) = 17.2 K.

  7. Trace Detection of Metalloporphyrin-Based Coordination Polymer Particles via Modified Surface-Enhanced Raman Scattering Assisted by Surface Metallization.

    PubMed

    Sun, Yu; Caravella, Alessio

    2016-01-01

    This study proposed a facile method to detect metalloporphyrin-based coordination polymer particles (Z-CPPs) in aqueous solution by modified surface-enhanced Raman scattering (SERS). The SERS-active particles are photodeposited on the surface of Z-CPPs, offering an enhanced Raman signal for the trace detection of Z-CPPs.

  8. Heteropentanuclear Oxalato-Bridged nd–4f (n=4, 5) Metal Complexes with NO Ligand: Synthesis, Crystal Structures, Aqueous Stability and Antiproliferative Activity

    PubMed Central

    Kuhn, Paul-Steffen; Cremer, Laura; Gavriluta, Anatolie; Jovanović, Katarina K; Filipović, Lana; Hummer, Alfred A; Büchel, Gabriel E; Dojčinović, Biljana P; Meier, Samuel M; Rompel, Annette; Radulović, Siniša; Tommasino, Jean Bernard; Luneau, Dominique; Arion, Vladimir B

    2015-01-01

    A series of heteropentanuclear oxalate-bridged Ru(NO)-Ln (4d–4f) metal complexes of the general formula (nBu4N)5[Ln{RuCl3(μ-ox)(NO)}4], where Ln=Y (2), Gd (3), Tb (4), Dy (5) and ox=oxalate anion, were obtained by treatment of (nBu4N)2[RuCl3(ox)(NO)] (1) with the respective lanthanide salt in 4:1 molar ratio. The compounds were characterized by elemental analysis, IR spectroscopy, electrospray ionization (ESI) mass spectrometry, while 1, 2, and 5 were in addition analyzed by X-ray crystallography, 1 by Ru K-edge XAS and 1 and 2 by 13C NMR spectroscopy. X-ray diffraction showed that in 2 and 5 four complex anions [RuCl3(ox)(NO)]2− are coordinated to YIII and DyIII, respectively, with formation of [Ln{RuCl3(μ-ox)(NO)}4]5− (Ln=Y, Dy). While YIII is eight-coordinate in 2, DyIII is nine-coordinate in 5, with an additional coordination of an EtOH molecule. The negative charge is counterbalanced by five nBu4N+ ions present in the crystal structure. The stability of complexes 2 and 5 in aqueous medium was monitored by UV/Vis spectroscopy. The antiproliferative activity of ruthenium-lanthanide complexes 2–5 were assayed in two human cancer cell lines (HeLa and A549) and in a noncancerous cell line (MRC-5) and compared with those obtained for the previously reported Os(NO)-Ln (5d–4f) analogues (nBu4N)5[Ln{OsCl3(ox)(NO)}4] (Ln=Y (6), Gd (7), Tb (8), Dy (9)). Complexes 2–5 were found to be slightly more active than 1 in inhibiting the proliferation of HeLa and A549 cells, and significantly more cytotoxic than 5d–4f metal complexes 6–9 in terms of IC50 values. The highest antiproliferative activity with IC50 values of 20.0 and 22.4 μM was found for 4 in HeLa and A549 cell lines, respectively. These cytotoxicity results are in accord with the presented ICP-MS data, indicating five- to eightfold greater accumulation of ruthenium versus osmium in human A549 cancer cells. PMID:26260662

  9. Ferromagnetic interactions and slow magnetic relaxation behaviors of two lanthanide coordination polymers bridged by 2,6-naphthalenedicarboxylate ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Ming; Li, Xiuhua; Cui, Ping

    2015-03-15

    Two lanthanide-based frameworks: (Ln(phen)(NDA){sub 1.5}(H{sub 2}O)){sub n} (Ln=Gd(1), NDA=2,6-naphthalenedicarboxylate anion, phen=1,10-phenanthroline), and ([Dy(phen)(NDA){sub 1.5}]·0.5H{sub 2}NDA){sub n} (2) were structurally and magnetically characterized. Compound 1 exhibits 2D layer structure, belonging to the triclinic system with space group P−1, while compound 2 features a 3D framework with space group P−1. The magnetic studies revealed that ferromagnetic coupling existed between adjacent lanthanide ions in 1 and 2, and frequency-dependence out-of-phase signals in the measurement of alternate-current susceptibilities were observed for 2, albeit without reaching the characteristic maxima above 2 K, implying slow magnetic relaxation behavior in 2. After the application of a dcmore » field, good peak shapes of ac signal were obtained and got the energy barrier ΔE/k{sub B}=29 K and the pre-exponential factor τ{sub 0}=4.47×10{sup −7} s at 2000 Oe field; and when the dc field was in 5000 Oe, giving ΔE/k{sub B}=40 K and τ{sub 0}=2.82×10{sup −6}. - Graphical abstract: Two novel lanthanide-based frameworks 1 and 2 were structurally and magnetically characterized. The results revealed that ferromagnetic coupling exists between adjacent lanthanide ions in 1 and 2, and 2 displayed slow magnetic relaxation behavior with the energy barrier of 29 K. - Highlights: • Two lanthanide frameworks were synthesized and magnetically characterized. • The magnetism studies indicate slow magnetic relaxation behavior in 2. • Weak ferromagnetic coupling existing between adjacent lanthanide centers.« less

  10. Communication: Relationship between solute localization and diffusion in a dynamically constrained polymer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saylor, David M.; Jawahery, Sudi; Silverstein, Joshua S.

    2016-07-21

    We investigate the link between dynamic localization, characterized by the Debye–Waller factor, 〈u{sup 2}〉, and solute self-diffusivity, D, in a polymer system using atomistic molecular dynamics simulations and vapor sorption experiments. We find a linear relationship between lnD and 1/〈u{sup 2}〉 over more than four decades of D, encompassing most of the glass formation regime. The observed linearity is consistent with the Langevin dynamics in a periodically varying potential field and may offer a means to rapidly assess diffusion based on the characterization of dynamic localization.

  11. A new redox-active coordination polymer with cobalticinium dicarboxylate.

    PubMed

    Kondo, Mitsuru; Hayakawa, Yuri; Miyazawa, Makoto; Oyama, Aiko; Unoura, Kei; Kawaguchi, Hiroyuki; Naito, Tetsuyoshi; Maeda, Kenji; Uchida, Fumio

    2004-09-20

    A new two-dimensional coordination polymer with cobalticinium 1,1'-dicarboxylate (ccdc) incorporated in the framework has been prepared, the ccdc functioning as unique monoanionic dicarboxylate ligands. The compound shows a high redox activity based on the ccdc units. Copyright 2004 American Chemical Society

  12. Hand-Ground Nanoscale ZnII -Based Coordination Polymers Derived from NSAIDs: Cell Migration Inhibition of Human Breast Cancer Cells.

    PubMed

    Paul, Mithun; Sarkar, Koushik; Deb, Jolly; Dastidar, Parthasarathi

    2017-04-27

    Increased levels of intracellular prostaglandin E 2 (PGE 2 ) have been linked with the unregulated cancer cell migration that often leads to metastasis. Non-steroidal anti-inflammatory drugs (NSAIDs) are known inhibitors of cyclooxygenase (COX) enzymes, which are responsible for the increased PGE 2 concentration in inflamed as well as cancer cells. Here, we demonstrate that NSAID-derived Zn II -based coordination polymers are able to inhibit cell migration of human breast cancer cells. Various NSAIDs were anchored to a series of 1D Zn II coordination polymers through carboxylate-Zn coordination, and these structures were fully characterized by single-crystal X-ray diffraction. Hand grinding in a pestle and mortar resulted in the first reported example of nanoscale coordination polymers that were suitable for biological studies. Two such hand-ground nanoscale coordination polymers NCP1 a and NCP2 a, which contained naproxen (a well-studied NSAID), were successfully internalized by the human breast cancer cells MDA-MB-231, as was evident from cellular imaging by using a fluorescence microscope. They were able to kill the cancer cells (MTT assay) more efficiently than the corresponding mother drug naproxen, and most importantly, they significantly inhibited cancer cell migration thereby displaying anticancer activity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Syntheses, structures and luminescence of three copper(I) cyanide coordination polymers based on trigonal 1,3,5-tris(1H-imidazol-1-yl)benzene ligand

    NASA Astrophysics Data System (ADS)

    Shao, Min; Li, Ming-Xing; Lu, Li-Ruo; Zhang, Heng-Hua

    2016-09-01

    Three Cu(I)-cyanide coordination polymers based on trigonal 1,3,5-tris(1H-imidazol-1-yl)benzene (tib) ligand, namely [Cu3(CN)3(tib)]n (1), [Cu4(CN)4(tib)]n (2), and [Cu2(CN)2(tib)]n (3), have been prepared and characterized by elemental analysis, IR, PXRD, thermogravimetry and single-crystal X-ray diffraction analysis. Complex 1 displays a 3D metal-organic framework with nanosized pores. Complex 2 is a 3D coordination polymer assembled by three μ2-cyanides and a μ3-cyanide with a very short Cu(I)···Cu(I) metal bond(2.5206 Å). Complex 3 is a 2D coordination polymer constructing from 1D Cu(I)-cyanide zigzag chain and bidentate tib spacer. Three Cu(I) complexes are thermally stable up to 250-350 °C. Complexes 1-3 show similar orange emission band at 602 nm originating from LMCT mechanism.

  14. Amorphous-amorphous transition in a porous coordination polymer.

    PubMed

    Ohtsu, Hiroyoshi; Bennett, Thomas D; Kojima, Tatsuhiro; Keen, David A; Niwa, Yasuhiro; Kawano, Masaki

    2017-07-04

    The amorphous state plays a key role in porous coordination polymer and metal-organic framework phase transitions. We investigate a crystalline-to-amorphous-to-amorphous-to-crystalline (CAAC) phase transition in a Zn based coordination polymer, by X-ray absorption fine structure (XAFS) and X-ray pair distribution function (PDF) analysis. We show that the system shows two distinct amorphous phases upon heating. The first involves a reversible transition to a desolvated form of the original network, followed by an irreversible transition to an intermediate phase which has elongated Zn-I bonds.

  15. Synthesis, structure, luminescent, and magnetic properties of carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2] (Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato).

    PubMed

    Ehama, Kiyomi; Ohmichi, Yusuke; Sakamoto, Soichiro; Fujinami, Takeshi; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Tsuchimoto, Masanobu; Re, Nazzareno

    2013-11-04

    Carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2]·solvent were synthesized through atmospheric CO2 fixation reaction of [Zn(II)L(n)(H2O)2]·xH2O, Ln(III)(NO3)3·6H2O, and triethylamine, where Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato. Each Zn(II)2Ln(III)2 structure possessing an inversion center can be described as two di-μ-phenoxo-bridged {Zn(II)L(n)Ln(III)(NO3)} binuclear units bridged by two carbonato CO3(2-) ions. The Zn(II) ion has square pyramidal coordination geometry with N2O2 donor atoms of L(n) and one oxygen atom of a bridging carbonato ion at the axial site. Ln(III) ion is coordinated by nine oxygen atoms consisting of four from the deprotonated Schiff-base L(n), two from a chelating nitrate, and three from two carbonate groups. The temperature-dependent magnetic susceptibilities in the range 1.9-300 K, field-dependent magnetization from 0 to 5 T at 1.9 K, and alternating current magnetic susceptibilities under the direct current bias fields of 0 and 1000 Oe were measured. The magnetic properties of the Zn(II)2Ln(III)2 complexes are analyzed on the basis of the dicarbonato-bridged binuclear Ln(III)-Ln(III) structure, as the Zn(II) ion with d(10) electronic configuration is diamagnetic. ZnGd1 (L(1)) and ZnGd2 (L(2)) show a ferromagnetic Gd(III)-Gd(III) interaction with J(Gd-Gd) = +0.042 and +0.028 cm(-1), respectively, on the basis of the Hamiltonian H = -2J(Gd-Gd)ŜGd1·ŜGd2. The magnetic data of the Zn(II)2Ln(III)2 complexes (Ln(III) = Tb(III), Dy(III)) were analyzed by a spin Hamiltonian including the crystal field effect on the Ln(III) ions and the Ln(III)-Ln(III) magnetic interaction. The Stark splitting of the ground state was so evaluated, and the energy pattern indicates a strong easy axis (Ising type) anisotropy. Luminescence spectra of Zn(II)2Tb(III)2 complexes were observed, while those of Zn(II)2Dy(III)2 were not detected. The fine structure assignable to the (5)D4 → (7)F6 transition of ZnTb1 and ZnTb2 is in good accord with the energy pattern from the magnetic analysis. The Zn(II)2Ln(III)2 complexes (Ln(III) = Tb(III), Dy(III)) showed an out-of-phase signal with frequency-dependence in alternating current susceptibility, indicative of single molecule magnet. Under a dc bias field of 1000 Oe, the signals become significantly more intense and the energy barrier, Δ/kB, for the magnetic relaxation was estimated from the Arrhenius plot to be 39(1) and 42(8) K for ZnTb1 and ZnTb2, and 52(2) and 67(2) K for ZnDy1 and ZnDy2, respectively.

  16. Insight into substrate binding in Shibasaki's Li3(THF)n(BINOLate)3Ln complexes and implications in catalysis.

    PubMed

    Wooten, Alfred J; Carroll, Patrick J; Walsh, Patrick J

    2008-06-11

    Heterobimetallic Lewis acids M 3(THF) n (BINOLate) 3Ln [M = Li, Na, K; Ln = lanthanide(III)] are exceptionally useful asymmetric catalysts that exhibit high levels of enantioselectivity across a wide range of reactions. Despite their prominence, important questions remain regarding the nature of the catalyst-substrate interactions and, therefore, the mechanism of catalyst operation. Reported herein are the isolation and structural characterization of 7- and 8-coordinate heterobimetallic complexes Li 3(THF) 4(BINOLate) 3Ln(THF) [Ln = La, Pr, and Eu], Li 3(py) 5(BINOLate) 3Ln(py) [Ln = Eu and Yb], and Li 3(py) 5(BINOLate) 3La(py) 2 [py = pyridine]. Solution binding studies of cyclohexenone, DMF, and pyridine with Li 3(THF) n (BINOLate) 3Ln [Ln = Eu, Pr, and Yb] and Li 3(DMEDA) 3(BINOLate) 3Ln [Ln = La and Eu; DMEDA = N, N'-dimethylethylene diamine] demonstrate binding of these Lewis basic substrate analogues to the lanthanide center. The paramagnetic europium, ytterbium, and praseodymium complexes Li 3(THF) n (BINOLate) 3Ln induce relatively large lanthanide-induced shifts on substrate analogues that ranged from 0.5 to 4.3 ppm in the (1)H NMR spectrum. X-ray structure analysis and NMR studies of Li 3(DMEDA) 3(BINOLate) 3Ln [Ln = Lu, Eu, La, and the transition metal analogue Y] reveal selective binding of DMEDA to the lithium centers. Upon coordination of DMEDA, six new stereogenic nitrogen centers are formed with perfect diastereoselectivity in the solid state, and only a single diastereomer is observed in solution. The lithium-bound DMEDA ligands are not displaced by cyclohexenone, DMF, or THF on the NMR time scale. Use of the DMEDA adduct Li 3(DMEDA) 3(BINOLate) 3La in three catalytic asymmetric reactions led to enantioselectivities similar to those obtained with Shibasaki's Li 3(THF) n (BINOLate) 3La complex. Also reported is a unique dimeric [Li 6(en) 7(BINOLate) 6Eu 2][mu-eta (1),eta (1)-en] structure [en = ethylenediamine]. On the basis of these studies, it is hypothesized that the lanthanide in Shibasaki's Li 3(THF) n (BINOLate) 3Ln complexes cannot bind bidentate substrates in a chelating fashion. A hypothesis is also presented to explain why the lanthanide catalyst, Li 3(THF) n (BINOLate) 3La, is often the most enantioselective of the Li 3(THF) n (BINOLate) 3Ln derivatives.

  17. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz, E-mail: hnsheikh@rediffmail.com

    2015-11-15

    Three new coordination polymers [Mn(hip)(phen) (H{sub 2}O)]{sub n} (1), [Co(hip)(phen) (H{sub 2}O)]{sub n} (2), and [Cd(hip) (phen) (H{sub 2}O)]{sub n} (3) (H{sub 2}hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H{sub 2}O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π–π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π–π stacking provide thermal stability to polymers. Compounds 1 and 2more » are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift. - Graphical abstract: 1D helical chains of coordination polymers were synthesized by solvo-hydrothermal reaction of 5-hydroxyisopthalic acid and 1,10-phenanthroline with MnCl{sub 2}·4H{sub 2}O / CoCl{sub 2}·6H{sub 2}O / Cd(NO{sub 3}){sub 2}·6H{sub 2}O. - Highlights: • Solvent induced synthesis of three coordination polymers with 1D zig-zag structure. • Crystal structures of coordination polymers are reported and discussed. • 1,10-Phenanthroline influences magnetic and luminescent properties of polymers. • Coordination polymer of Cd is luminescent exhibiting large Stokes shift.« less

  18. Two Zn coordination polymers with meso-helical chains based on mononuclear or dinuclear cluster units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Ling, E-mail: qinling@hfut.edu.cn; Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093

    2016-07-15

    Two zinc coordination polymers {[Zn_2(TPPBDA)(oba)_2]·DMF·1.5H_2O}{sub n} (1), {[Zn(TPPBDA)_1_/_2(tpdc)]·DMF}{sub n} (2) have been synthesized by zinc metal salt, nanosized tetradentate pyridine ligand with flexible or rigid V-shaped carboxylate co-ligands. These complexes were characterized by elemental analyses and X-ray single-crystal diffraction analyses. Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. Compound 2 can be defined as a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. These mononuclear or dinuclear cluster units are linked by mix-ligands, resulting in various degrees of interpenetration. In addition, the photoluminescent properties for TPPBDA ligand under different state and coordination polymersmore » have been investigated in detail. - Graphical abstract: Two zinc coordination polymers have been synthesized by zinc metal salt, nanosized tetradentate pyridine ligand with flexible or rigid V-shaped carboxylate co-ligands. Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. Compound 2 can be defined as a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. In addition, the photoluminescent properties for TPPBDA ligand under different status and coordination polymers have been investigated in detail. Display Omitted - Highlights: • Two Zn coordination polymers based on mononuclear or dinuclear cluster units have been synthesized. • Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. • Compound 2 is a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. • The photoluminescent properties for TPPBDA with different state and two coordination polymers have been investigated.« less

  19. Origin of Blue-Green Emission in α-Zn2P2O7 and Local Structure of Ln3+ Ion in α-Zn2P2O7:Ln3+ (Ln = Sm, Eu): Time-Resolved Photoluminescence, EXAFS, and DFT Measurements.

    PubMed

    Gupta, Santosh Kumar; Ghosh, Partha Sarathi; Yadav, Ashok Kumar; Jha, Shambhu Nath; Bhattacharyya, Dibyendu; Kadam, Ramakant Mahadeo

    2017-01-03

    Considering the fact that pyrophosphate-based hosts are in high demand for making highly efficient luminescence materials, we doped two visible lanthanide ions, viz. Sm 3+ and Eu 3+ , in Zn 2 P 2 O 7 . Interestingly, it was oberved that pure Zn 2 P 2 O 7 displayed blue-green dual emission on irradiation with ultraviolet light. Emission and lifetime spectroscopy shows the presence of defects in pyrophosphate samples which are responsible for such emission. DFT calculations clearly pinpointed that the electronic transitions between defect states located at just below the conduction band minimum (arises due to V O 1+ and V O 2+ defects) and valence band maximum, as well as impurity states situated in the band gap, can lead to dual emission in the blue-green region, as is also indicated by emission and lifetime spectra. X-ray absorption near edge spectroscopy (XANES) shows the stabilization of europium as well as samarium ion in the +3 oxidation state in α-Zn 2 P 2 O 7 . The fact that α-Zn 2 P 2 O 7 has two different coordination numbers for zinc ions, i.e. five- and six-coordinate, the study of dopant ion distribution in this particular matrix will be an important step in realizing a highly efficient europium- and samarium-based red-emitting phosphor. Time resolved photoluminescence (TRPL) shows that both of these ions are heterogeneously distributed between five- and six-coordinated Zn 2+ sites and it is the six-coordinated Zn 2+ site which is the most favorable for lanthanide ion doping. Extended X-ray absorption fine structure (EXAFS) measurements also suggested that a six-coordinated zinc ion is the preferred site occupied by trivalent lanthanide ions, which is in complete agreement with TRPL results. It was observed that there is almost complete transfer of photon energy from Zn 2 P 2 O 7 to Eu 3+ , whereas this transfer is inefficient and almost incomplete in case of Sm 3+ , which is indeed important information for the realization of pyrophosphate-based tunable phosphors.

  20. Enhancement of TbIII–CuII Single‐Molecule Magnet Performance through Structural Modification

    PubMed Central

    Heras Ojea, María José; Milway, Victoria A.; Velmurugan, Gunasekaran; Thomas, Lynne H.; Coles, Simon J.; Wilson, Claire; Wernsdorfer, Wolfgang

    2016-01-01

    Abstract We report a series of 3d–4f complexes {Ln2Cu3(H3L)2Xn} (X=OAc−, Ln=Gd, Tb or X=NO3 −, Ln=Gd, Tb, Dy, Ho, Er) using the 2,2′‐(propane‐1,3‐diyldiimino)bis[2‐(hydroxylmethyl)propane‐1,3‐diol] (H6L) pro‐ligand. All complexes, except that in which Ln=Gd, show slow magnetic relaxation in zero applied dc field. A remarkable improvement of the energy barrier to reorientation of the magnetisation in the {Tb2Cu3(H3L)2Xn} complexes is seen by changing the auxiliary ligands (X=OAc− for NO3 −). This leads to the largest reported relaxation barrier in zero applied dc field for a Tb/Cu‐based single‐molecule magnet. Ab initio CASSCF calculations performed on mononuclear TbIII models are employed to understand the increase in energy barrier and the calculations suggest that the difference stems from a change in the TbIII coordination environment (C 4v versus Cs). PMID:27484259

  1. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peresypkina, Eugenia V.; Samsonenko, Denis G.; Novosibirsk State University, Novosibirsk 630090

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [(Mn(acacen)){sub 2}Ru(NO)(CN){sub 5}]{sub n} and two complexes composed of different cyanorhenates, [Ni(cyclam)]{sub 2}[ReO(OH)(CN){sub 4}](ClO{sub 4}){sub 2}(H{sub 2}O){sub 1.25} and [Cu(cyclam)]{sub 2}[Re(CN){sub 7}](H{sub 2}O){sub 12}, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds.more » However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN){sub n}]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu{sub 4}N){sub 2}[Ru(NO)(CN){sub 5}], soluble in organic media. - Graphical abstract: The very first results in the design of 2D coordination polymers based on penta- and heptacyanometallates of 4d and5d transitions metals are presented. - Highlights: • Design of coordination polymers based on penta- and heptacyanometallates. • New Ru and Re cyanide based heterobimetallic coordination complexes. • Hydrolysis and ox/red processes involving [Re(CN){sub 7}]{sup 3+} during crystallization. • High magnetic anisotropy of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2}(H{sub 2}O){sub n}, M=Cu, Ni, complexes.« less

  2. Targeted replacement: systematic studies of dodecanuclear {MLn} coordination clusters (M = Cr, Co; Ln = Dy, Y).

    PubMed

    Chen, Sihuai; Mereacre, Valeriu; Zhao, Zhiying; Zhang, Wanwan; Zhang, Mengsi; He, Zhangzhen

    2018-06-05

    Three dodecanuclear 3d-4f coordination clusters, [CrIII6LnIII6(μ3-OH)8(tbdea)6(C6H5COO)16]·2H2O (Ln = Dy (1), Y (2)) and [CoIII6DyIII6(μ3-OH)8(nbdea)6(m-CH3C6H4COO)16]·2H2O·2CH3CN (3), have been synthesized under solvothermal conditions and characterized. Single-crystal X-ray diffraction analysis revealed that all three compounds possess an analogous {MIII6LnIII6} core (M = Cr, Co; Ln = Dy, Y) and dc magnetic susceptibility studies indicated that the magnetic exchange couplings between DyIII ions are dominant antiferromagnetic, while the CrIII-DyIII interactions are weakly ferromagnetic. Furthermore, the ac magnetic susceptibility measurements showed that both CrIII6DyIII6 compound 1 and CoIIi6DyIII6 compound 3 containing highly anisotropic DyIII ions displayed single-molecule magnetic (SMM) behavior with the energy barrier Ueff increasing from 12.8 K (for 1) to 20.8 K (for 3), indicating that weak 3d-4f exchange couplings enhance the QTM and reduce the energy barrier.

  3. Heteropentanuclear Oxalato-Bridged nd-4f (n=4, 5) Metal Complexes with NO Ligand: Synthesis, Crystal Structures, Aqueous Stability and Antiproliferative Activity.

    PubMed

    Kuhn, Paul-Steffen; Cremer, Laura; Gavriluta, Anatolie; Jovanović, Katarina K; Filipović, Lana; Hummer, Alfred A; Büchel, Gabriel E; Dojčinović, Biljana P; Meier, Samuel M; Rompel, Annette; Radulović, Siniša; Tommasino, Jean Bernard; Luneau, Dominique; Arion, Vladimir B

    2015-09-21

    A series of heteropentanuclear oxalate-bridged Ru(NO)-Ln (4d-4f) metal complexes of the general formula (nBu4N)5[Ln{RuCl3(μ-ox)(NO)}4], where Ln=Y (2), Gd (3), Tb (4), Dy (5) and ox=oxalate anion, were obtained by treatment of (nBu4N)2[RuCl3(ox)(NO)] (1) with the respective lanthanide salt in 4:1 molar ratio. The compounds were characterized by elemental analysis, IR spectroscopy, electrospray ionization (ESI) mass spectrometry, while 1, 2, and 5 were in addition analyzed by X-ray crystallography, 1 by Ru K-edge XAS and 1 and 2 by (13)C NMR spectroscopy. X-ray diffraction showed that in 2 and 5 four complex anions [RuCl3(ox)(NO)](2-) are coordinated to Y(III) and Dy(III), respectively, with formation of [Ln{RuCl3(μ-ox)(NO)}4](5-) (Ln=Y, Dy). While Y(III) is eight-coordinate in 2, Dy(III) is nine-coordinate in 5, with an additional coordination of an EtOH molecule. The negative charge is counterbalanced by five nBu4N(+) ions present in the crystal structure. The stability of complexes 2 and 5 in aqueous medium was monitored by UV/Vis spectroscopy. The antiproliferative activity of ruthenium-lanthanide complexes 2-5 were assayed in two human cancer cell lines (HeLa and A549) and in a noncancerous cell line (MRC-5) and compared with those obtained for the previously reported Os(NO)-Ln (5d-4f) analogues (nBu4N)5[Ln{OsCl3(ox)(NO)}4] (Ln=Y (6), Gd (7), Tb (8), Dy (9)). Complexes 2-5 were found to be slightly more active than 1 in inhibiting the proliferation of HeLa and A549 cells, and significantly more cytotoxic than 5d-4f metal complexes 6-9 in terms of IC50 values. The highest antiproliferative activity with IC50 values of 20.0 and 22.4 μM was found for 4 in HeLa and A549 cell lines, respectively. These cytotoxicity results are in accord with the presented ICP-MS data, indicating five- to eightfold greater accumulation of ruthenium versus osmium in human A549 cancer cells. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  4. Multivalent Ion Transport in Polymers via Metal-Ligand Coordination

    NASA Astrophysics Data System (ADS)

    Sanoja, Gabriel; Schauser, Nicole; Evans, Christopher; Majumdar, Shubhaditya; Segalman, Rachel

    Elucidating design rules for multivalent ion conducting polymers is critical for developing novel high-performance materials for electrochemical devices. Herein, we molecularly engineer multivalent ion conducting polymers based on metal-ligand interactions and illustrate that both segmental dynamics and ion coordination kinetics are essential for ion transport through polymers. We present a novel statistical copolymer, poly(ethylene oxide-stat-imidazole glycidyl ether) (i.e., PEO-stat-PIGE), that synergistically combines the structural hierarchy of PEO with the Lewis basicity of tethered imidazole ligands (xIGE = 0.17) required to coordinate a series of transition metal salts containing bis(trifluoromethylsulfonyl)imide anions. Complexes of PEO-stat-PIGE with salts exhibit a nanostructure in which ion-enriched regions alternate with ion-deficient regions, and an ionic conductivity above 10-5 S/cm. Novel normalization schemes that account for ion solvation kinetics are presented to attain a universal scaling relationship for multivalent ion transport in polymers via metal-ligand coordination. AFOSR MURI program under FA9550-12-1.

  5. Heterospin systems constructed from [Cu2Ln]3+ and [Ni(mnt)2]1-,2- Tectons: First 3p-3d-4f complexes (mnt = maleonitriledithiolato).

    PubMed

    Madalan, Augustin M; Avarvari, Narcis; Fourmigué, Marc; Clérac, Rodolphe; Chibotaru, Liviu F; Clima, Sergiu; Andruh, Marius

    2008-02-04

    New heterospin complexes have been obtained by combining the binuclear complexes [{Cu(H(2)O)L(1)}Ln(O(2)NO)(3)] or [{CuL(2)}Ln(O(2)NO)(3)] (L(1) = N,N'-propylene-di(3-methoxysalicylideneiminato); L(2) = N,N'-ethylene-di(3-methoxysalicylideneiminato); Ln = Gd(3+), Sm(3+), Tb(3+)), with the mononuclear [CuL(1)(2)] and the nickel dithiolene complexes [Ni(mnt)(2)](q)- (q = 1, 2; mnt = maleonitriledithiolate), as follows: (1)infinity[{CuL(1)}(2)Ln(O(2)NO){Ni(mnt)(2)}].Solv.CH(3)CN (Ln = Gd(3+), Solv = CH(3)OH (1), Ln = Sm(3+), Solv = CH(3)CN (2)) and [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)][Ni(mnt)(2)] (3) with [Ni(mnt)2]2-, [{(CH(3)CN)CuL(1)}(2)Ln(H(2)O)][Ni(mnt)(2)]3.2CH(3)CN (Ln = Gd(3+) (4), Sm(3+) (5), Tb(3+) (6)), and [{(CH(3)OH)CuL(2)}{CuL(2)}Gd(O(2)NO){Ni(mnt)(2)}][Ni(mnt)(2)].CH(2)Cl(2) (7) with [Ni(mnt))(2]*-. Trinuclear, almost linear, [CuLnCu] motifs are found in all the compounds. In the isostructural 1 and 2, two trans cyano groups from a [Ni(mnt)2]2- unit bridge two trimetallic nodes through axial coordination to the Cu centers, thus leading to the establishment of infinite chains. 3 is an ionic compound, containing discrete [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)](2+) cations and [Ni(mnt)(2)](2-) anions. Within the series 4-6, layers of discrete [CuLnCu](3+) motifs alternate with stacks of interacting [Ni(mnt)(2)](*-) radical anions, for which two overlap modes, providing two different types of stacks, can be disclosed. The strength of the intermolecular interactions between the open-shell species is estimated through extended Hückel calculations. In compound 7, [Ni(mnt)(2)](*-) radical anions coordinate group one of the Cu centers of a trinuclear [Cu(2)Gd] motif through a CN, while discrete [Ni(mnt)(2)](*-) units are also present, overlapping in between, but also with the coordinated ones. Furthermore, the [Cu(2)Gd] moieties dimerize each other upon linkage by two nitrato groups, both acting as chelate toward the gadolinium ion from one unit and monodentate toward a Cu ion from the other unit. The magnetic properties of the gadolinium-containing complexes have been determined. Ferromagnetic exchange interactions within the trinuclear [Cu(2)Gd] motifs occur. In the compounds 4 and 7, the [Ni(mnt)(2)](*-) radical anions contribution to the magnetization is clearly observed in the high-temperature regime, and most of it vanishes upon temperature decrease, very likely because of the rather strong antiferromagnetic exchange interactions between the open-shell species. The extent of the exchange interaction in the compound 7, which was found to be antiferromagnetic, between the coordinated Cu center and the corresponding [Ni(mnt)(2)](*-) radical anion, bearing mostly a 3p spin type, was estimated through CASSCF/CASPT2 calculations. Compound 6 exhibits a slow relaxation of the magnetization.

  6. Tunable emission in lanthanide coordination polymer gels based on a rationally designed blue emissive gelator.

    PubMed

    Sutar, Papri; Suresh, Venkata M; Maji, Tapas Kumar

    2015-06-18

    Rational design and synthesis of a new low molecular weight gelator (LMWG) having 9,10-diphenylanthracene core and terminal terpyridine is reported. Tb(III) and Eu(III) ion coordination to a LMWG results in green and pink emissive coordination polymer gels, respectively, with coiled nanofiber morphology. Further, control over stoichiometry of LMWG:Tb(III):Eu(III) leads to yellow and white light emitting bimetallic gels.

  7. Facile hydrothermal crystallization of NaLn(WO4)2 (Ln=La-Lu, and Y), phase/morphology evolution, and photoluminescence

    NASA Astrophysics Data System (ADS)

    Shi, Xiaofei; Li, Ji-Guang; Wang, Xuejiao; Zhu, Qi; Kim, Byung-Nam; Sun, Xudong

    2017-12-01

    Hydrothermal reaction of Ln nitrate and Na2WO4 at pH=8 and 200 °C for 24 hours, in the absence of any additive, has directly produced the scheelite-type sodium lanthanide tungstate of NaLn(WO4)2 for the larger Ln3+ of Ln=La-Dy (including Y, Group I) and an unknown compound that can be transformed into NaLn(WO4)2 by calcination at the low temperature of 600 °C for the smaller Ln3+ of Ln=Ho-Lu (Group II). With the successful synthesis of NaLn(WO4)2 for the full spectrum of Ln, the effects of lanthanide contraction on the structural features, crystal morphology, and IR responses of the compounds were clarified. The temperature- and time-course phase/morphology evolutions and the phase conversion upon calcination were thoroughly studied for the Group I and Group II compounds with Ln=La and Lu for example, respectively. Unknown intermediates were characterized by elemental analysis, IR absorption, thermogravimetry, and differential scanning calorimetry to better understand their chemical composition and coordination. The photoluminescence properties of NaEu(WO4)2 and NaTb(WO4)2, including excitation, emission, fluorescence decay, and quantum efficiency of luminescence, were also comparatively studied for the as-synthesized and calcination products.

  8. Formation and Fragmentation Chemistry of Tripositive Ln(TMGA)33+ Complexes in the Gas Phase.

    PubMed

    Chen, Xiuting; Li, Qingnuan; Gong, Yu

    2017-08-01

    Electrospray ionization (ESI) of LnCl 3 (Ln = La-Lu except Pm) and TMGA (tetramethyl glutaramide) mixtures resulted in the formation of gas-phase Ln(TMGA) 3 3+ complexes, where tripositive lanthanide cation was coordinated by three neutral TMGA ligands. Collision induced dissociation (CID) was employed to investigate the fragmentation chemistry of these tripositive complexes. Ln(TMGA) 2 (TMGA- 45) 3+ resulting from C carbonyl -N bond cleavage of TMGA and hydrogen transfer is the major CID product for all Ln(TMGA) 3 3+ except Eu(TMGA) 3 3+ which predominantly forms divalent Eu II (TMGA) 2 2+ complex via loss of TMGA + . Analogous Yb II (TMGA) 2 2+ and Sm II (TMGA) 2 2+ complexes arising from charge reduction were also observed, in competition with the formation of charge conserving Yb III (TMGA)(TMGA-H) 2+ and Sm III (TMGA)(TMGA-H) 2+ products. The yield of these charge reducing products follows their reduction potentials in condensed phase. In addition to Ln(TMGA) 3 3+ , tripositive ions such as Ln(TMGA) 4 3+ and Ln(TMGA) 2 3+ were experimentally identified as well. While the former was observed along with Ln(TMGA) 3 3+ during ESI, the latter was observed upon CID of Ln(TMGA) 3 3+ , suggesting two TMGA molecules can stabilize Ln 3+ in the gas phase. Graphical Abstract ᅟ.

  9. Synthesis, crystal structure, optical and thermal properties of lanthanide hydrogen-polyphosphates Ln[H(PO3)4] (Ln = Tb, Dy, Ho).

    PubMed

    Förg, Katharina; Höppe, Henning A

    2015-11-28

    Lanthanide hydrogen-polyphosphates Ln[H(PO3)4] (Ln = Tb, Dy, Ho) were synthesised as colourless (Ln = Tb, Dy) and light pink (Ln = Ho) crystalline powders by reaction of Tb4O7/Dy2O3/Ho2O3 with H3PO3 at 380 °C. All compounds crystallise isotypically (P2(1)/c (no. 14), Z = 4, a(Tb) = 1368.24(4) pm, b(Tb) = 710.42(2) pm, c(Tb) = 965.79(3) pm, β(Tb) = 101.200(1)°, 3112 data, 160 parameters, wR2 = 0.062, a(Ho) = 1363.34(5) pm, b(Ho) = 709.24(3) pm, c(Ho) = 959.07(4) pm, β(Ho) = 101.055(1)°, 1607 data, 158 parameters, wR2 = 0.058). The crystal structure comprises two different infinite helical chains of corner-sharing phosphate tetrahedra. In-between these chains the lanthanide ions are located, coordinated by seven oxygen atoms belonging to four different polyphosphate chains. Vibrational, UV/Vis and fluorescence spectra of Ln[H(PO3)4] (Ln = Tb, Dy, Ho) as well as Dy[H(PO3)4]:Ln (Ln = Ce, Eu) and the magnetic and thermal behaviour of Tb[H(PO3)4] are reported.

  10. Spin-Parity Behavior in the Exchange-Coupled Lanthanoid-Nitroxide Molecular Magnets

    NASA Astrophysics Data System (ADS)

    Ishida, T.

    2017-05-01

    To develop lanthanoid-based magnetic materials and relevant devices, reliable prescriptions for molecular/crystal design have long been desired. Ln3+-ion dependence on the molecular magnetism was investigated in the isomorphous series [Ln(hfac)3(2pyNO)] (Ln = Tb, Dy, Ho, Er), where 2pyNO stands for tert-butyl 2-pyridyl nitroxide as a paramagnetic ligand, and hfac for 1,1,1,5,5,5-hexafluoropentane-2,4-dionate. The slow magnetization reversal was evaluated as an indication of single-molecule magnets (SMMs) by out-of-phase ac magnetic susceptibility χ”. Whereas the Tb3+ (4f8) and Ho3+ (4f10) derivatives exhibited frequency-dependent χ”, practically null χ” was recorded for the Dy3+(4f9) and Er3+ (4f11) derivatives. As for another series with Ln/radical = 1/2, [Ln(hfac)3(TEMPO)2] complexes were prepared (Ln = Tb, Dy, Ho, Er, Tm; TEMPO = 2,2,6,6-tetramethylpiperidin-1-oxyl). The Dy3+ and Er3+ derivatives showed appreciable χ”, but the Tb3+, Ho3+, and Tm3+ derivatives did not. Thus, the S = 1/2 paramagnetic ligands play a role of a spin-parity switch to regulate whether the compound behaves as an SMM. In the strongly exchange-coupled regime owing to the direct radical coordination bond, the whole molecular electron counting may provide a useful criterion to predict Kramers molecules and accordingly to explore potential SMM candidates.

  11. Synthesis, structural characterization and antitumor activity of a Ca(II) coordination polymer based on 4-formyl-1,3-benzenedisulfonate-2-furoic acid hydrazide ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Xi-Shi, E-mail: taixs@wfu.edu.cn; Wang, Xin

    2017-03-15

    A new Ca(II) coordination polymer, ([CaL(H{sub 2}O){sub 4}] · (H{sub 2}O){sub 4}){sub n} (L = 4-formyl-1,3-benzenedisulfonate-2-furoic acid hydrazide) has been prepared by one-pot synthesis method. And it was characterized by elemental analysis, IR and thermal analysis. The result of X-ray single-crystal diffraction analysis shows that the Ca(II) complex molecules form one-dimensional chain structure by the bridging oxygen atoms. The anti-tumor activity of L ligand and the Ca(II) coordination polymer has also been studied.

  12. Dimensional modulation and magnetic properties of triazole- and bis(triazole)-based copper(II) coordination polymers tuned by aromatic polycarboxylates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ju-Wen; Zhao, Wei; Lu, Qi-Lin

    2014-04-01

    Five new metal–organic coordination polymers ([Cu{sub 3}(μ{sub 2}-OH){sub 2}(atrz){sub 2}(nph){sub 2}(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n} (1), ([Cu{sub 2}(μ{sub 3}-OH)(atrz)(1,2,4-btc)]·2H{sub 2}O){sub n} (2), ([Cu{sub 2}(μ{sub 3}-OH)(atrz)(1,2,4-btc)(H{sub 2}O)]·H{sub 2}O){sub n} (3), [Cu(dth){sub 0.5}(nph)(H{sub 2}O)]{sub n} (4) and [Cu(dth)(Hnip){sub 2}]{sub n} (5) [atrz=4-amino-1,2,4-triazole, dth=N,N'-di(4H-1,2,4-triazole)hexanamide, H{sub 2}nph=3-nitrophthalic acid, 1,2,4-H{sub 3}btc=1,2,4-benzenetricarboxylic acid and H{sub 2}nip=5-nitroisophthalic acid] were hydrothermally synthesized and structurally characterized. Polymer 1 shows a one-dimensional (1D) chain. Polymers 2 and 3 exhibit similar tetranuclear Cu{sup II}{sub 4} cluster-based three-dimensional (3D) frameworks with the same components. Polymer 4 possesses a 3D framework with a 4{sup 12}·6{sup 3}-pcu topology. Polymer 5 displays a 3D frameworkmore » with a 4{sup 4}·6{sup 10}·8-mab topology. The magnetic properties of 1–4 were investigated. - Graphical abstract: Five triazole-based copper(II) polymers modulated by polycarboxylates were synthesized. Bis-triazole-bis-amide ligand and polycarboxylates play important roles in tuning dimensionality of polymers. Magnetic properties of polymers were investigated. - Highlights: • Five triazole- and bis(triazole)-based copper(II) coordination polymers tuned by aromatic polycarboxylates were obtained. • The aromatic polycarboxylates have an important influence on the dimensionality of five polymers. • The magnetic properties of four polymers were investigated.« less

  13. Rare-earth organic frameworks involving three types of architecture tuned by the lanthanide contraction effect: hydrothermal syntheses, structures and luminescence.

    PubMed

    Deng, Zhao-Peng; Kang, Wei; Huo, Li-Hua; Zhao, Hui; Gao, Shan

    2010-07-21

    The first example of rare-earth organic frameworks with 3-aminopyrazine-2-carboxylic acid (Hapca) was synthesized under hydrothermal conditions and characterized by elemental analysis, IR, PL, TG, powder and single-crystal X-ray diffraction. These ten complexes exhibit three different structure types with decreasing lanthanide radii: [La(apca)(3)](n) () for type I, {[Ln(apca)(ox)(H(2)O)(2)].H(2)O}(n) (Ln = Pr (2), Nd (3), ox = oxalate) for type II, and [Ln(2)(apca)(4)(OH)(2)(H(2)O)(2)](n) (Ln = Sm (4), Eu (5), Gd (6), Tb (7), Dy (8), Er (9), Y (10)) for type III. The structure of type I consists of 1D "snowflake" chains along a-axis, which are further interconnected by hydrogen bonds to produce a 3D sra net topology containing infinite (-C-O-La-)(n) rod-shaped SBU. Type II has 2D Ln-apca-ox 4(4)-net, in which a planar udud water tetramers (H(2)O)(4) are formed by coordinated and free water molecules. Type III also comprises of 2D 4(4)-layer network constructed from Ln-apca-OH. The structure diversity is mainly caused by the variation of coordinated ligand and lanthanide contraction effect. Remarkably, the oxalate in type II was in situ synthesized from 3-aminopyrazine-2-carboxylic acid through an oxidation-hydrolysis reaction. The luminescent investigations reveal that complex exhibits strong blue emission and complex exhibits characteristic luminescence of Eu(3+).

  14. Bio-Functional, Lanthanide-Labeled Polymer Particles by Seeded Emulsion Polymerization and their Characterization by Novel ICP-MS Detection.

    PubMed

    Thickett, Stuart C; Abdelrahman, Ahmed I; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A

    2010-01-01

    We present the synthesis and characterization of monodisperse, sub-micron poly(styrene) (PS) particles loaded with up to and including 10(7) lanthanide (Ln) ions per particle. These particles have been synthesized by seeded emulsion polymerization with a mixture of monomer and a pre-formed Ln complex, and analyzed on a particle-by-particle basis by a unique inductively coupled plasma mass cytometer. Seed particles were prepared by surfactant-free emulsion polymerization (SFEP) to obtain large particle sizes in aqueous media. Extensive surface acid functionality was introduced using the acid-functional initiator ACVA, either during seed latex synthesis or in the second stage of polymerization. The loading of particles with three different Ln ions (Eu, Tb, and Ho) has proven to be close to 100 % efficient on an individual and combined basis. Covalent attachment of metal-tagged peptides and proteins such as Neutravidin to the particle surface was shown to be successful and the number of bound species can be readily determined. We believe these particles can serve as precursors for multiplexed, bead-based bio-assays utilizing mass cytometric detection.

  15. Bio-Functional, Lanthanide-Labeled Polymer Particles by Seeded Emulsion Polymerization and their Characterization by Novel ICP-MS Detection

    PubMed Central

    Thickett, Stuart C.; Abdelrahman, Ahmed I.; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A.

    2010-01-01

    We present the synthesis and characterization of monodisperse, sub-micron poly(styrene) (PS) particles loaded with up to and including 107 lanthanide (Ln) ions per particle. These particles have been synthesized by seeded emulsion polymerization with a mixture of monomer and a pre-formed Ln complex, and analyzed on a particle-by-particle basis by a unique inductively coupled plasma mass cytometer. Seed particles were prepared by surfactant-free emulsion polymerization (SFEP) to obtain large particle sizes in aqueous media. Extensive surface acid functionality was introduced using the acid-functional initiator ACVA, either during seed latex synthesis or in the second stage of polymerization. The loading of particles with three different Ln ions (Eu, Tb, and Ho) has proven to be close to 100 % efficient on an individual and combined basis. Covalent attachment of metal-tagged peptides and proteins such as Neutravidin to the particle surface was shown to be successful and the number of bound species can be readily determined. We believe these particles can serve as precursors for multiplexed, bead-based bio-assays utilizing mass cytometric detection. PMID:20396648

  16. Synthesis, crystal structure and catalytic effect on thermal decomposition of RDX and AP: An energetic coordination polymer [Pb{sub 2}(C{sub 5}H{sub 3}N{sub 5}O{sub 5}){sub 2}(NMP)·NMP]{sub n}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jin-jian; Yancheng Teachers College, Yancheng 224002; Liu, Zu-Liang, E-mail: liuzl@mail.njust.edu.cn

    2013-04-15

    An energetic lead(II) coordination polymer based on the ligand ANPyO has been synthesized and its crystal structure has been got. The polymer was characterized by FT-IR spectroscopy, elemental analysis, DSC and TG-DTG technologies. Thermal analysis shows that there are one endothermic process and two exothermic decomposition stages in the temperature range of 50–600 °C with final residues 57.09%. The non-isothermal kinetic has also been studied on the main exothermic decomposition using the Kissinger's and Ozawa–Doyle's methods, the apparent activation energy is calculated as 195.2 KJ/mol. Furthermore, DSC measurements show that the polymer has significant catalytic effect on the thermal decompositionmore » of ammonium perchlorate. - Graphical abstract: An energetic lead(II) coordination polymer of ANPyO has been synthesized, structurally characterized and properties tested. Highlights: ► We have synthesized and characterized an energetic lead(II) coordination polymer. ► We have measured its molecular structure and thermal decomposition. ► It has significant catalytic effect on thermal decomposition of AP.« less

  17. Rhombus-shaped tetranuclear [Ln4] complexes [Ln = Dy(III) and Ho(III)]: synthesis, structure, and SMM behavior.

    PubMed

    Chandrasekhar, Vadapalli; Hossain, Sakiat; Das, Sourav; Biswas, Sourav; Sutter, Jean-Pascal

    2013-06-03

    The reaction of a new hexadentate Schiff base hydrazide ligand (LH3) with rare earth(III) chloride salts in the presence of triethylamine as the base afforded two planar tetranuclear neutral complexes: [{(LH)2Dy4}(μ2-O)4](H2O)8·2CH3OH·8H2O (1) and [{(LH)2Ho4}(μ2-O)4](H2O)8·6CH3OH·4H2O (2). These neutral complexes possess a structure in which all of the lanthanide ions and the donor atoms of the ligand remain in a perfect plane. Each doubly deprotonated ligand holds two Ln(III) ions in its two distinct chelating coordination pockets to form [LH(Ln)2](4+) units. Two such units are connected by four [μ2-O](2-) ligands to form a planar tetranuclear assembly with an Ln(III)4 core that possesses a rhombus-shaped structure. Detailed static and dynamic magnetic analysis of 1 and 2 revealed single-molecule magnet (SMM) behavior for complex 1. A peculiar feature of the χM" versus temperature curve is that two peaks that are frequency-dependent are revealed, indicating the occurrence of two relaxation processes that lead to two energy barriers (16.8 and 54.2 K) and time constants (τ0 = 1.4 × 10(-6) s, τ0 = 7.2 × 10(-7) s). This was related to the presence of two distinct geometrical sites for Dy(III) in complex 1.

  18. Towards hybrid biocompatible magnetic rHuman serum albumin-based nanoparticles: use of ultra-small (CeLn)3/4+ cation-doped maghemite nanoparticles as functional shell

    NASA Astrophysics Data System (ADS)

    Israel, Liron L.; Kovalenko, Elena I.; Boyko, Anna A.; Sapozhnikov, Alexander M.; Rosenberger, Ina; Kreuter, Jörg; Passoni, Lorena; Lellouche, Jean-Paul

    2015-01-01

    Human serum albumin (HSA) is a protein found in human blood. Over the last decade, HSA has been evaluated as a promising drug carrier. However, not being magnetic, HSA cannot be used for biomedical applications such as magnetic resonance imaging (MRI) and magnetic drug targeting. Therefore, subsequent composites building on iron oxide nanoparticles that are already used clinically as MRI contrast agents are extensively studied. Recently and in this context, innovative fully hydrophilic ultra-small CAN-stabilized maghemite ((CeLn)3/4+-γ-Fe2O3) nanoparticles have been readily fabricated. The present study discusses the design, fabrication, and characterization of a dual phase hybrid core (rHSA)-shell ((CeLn)3/4+-γ-Fe2O3 NPs) nanosystem. Quite importantly and in contrast to widely used encapsulation strategies, rHSA NP surface-attached (CeLn)3/4+-γ-Fe2O3 NPs enabled to exploit both rHSA (protein functionalities) and (CeLn)3/4+-γ-Fe2O3 NP surface functionalities (COOH and ligand L coordinative exchange) in addition to very effective MRI contrast capability due to optimal accessibility of H2O molecules with the outer magnetic phase. Resulting hybrid nanoparticles might be used as a platform modular system for therapeutic (drug delivery system) and MR diagnostic purposes.

  19. Porphyrin coordination polymer nanospheres and nanorods

    DOEpatents

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2012-12-04

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  20. Porphyrin coordination polymer nanospheres and nanorods

    DOEpatents

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2013-09-10

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  1. Charge-separated and molecular heterobimetallic rare earth-rare earth and alkaline earth-rare earth aryloxo complexes featuring intramolecular metal-pi-arene interactions.

    PubMed

    Deacon, Glen B; Junk, Peter C; Moxey, Graeme J; Ruhlandt-Senge, Karin; St Prix, Courtney; Zuniga, Maria F

    2009-01-01

    Treatment of a rare earth metal (Ln) and a potential divalent rare earth metal (Ln') or an alkaline earth metal (Ae) with 2,6-diphenylphenol (HOdpp) at elevated temperatures (200-250 degrees C) afforded heterobimetallic aryloxo complexes, which were structurally characterised. A charge-separated species [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] was obtained for a range of metals, demonstrating the similarities between the chemistry of the divalent rare earth metals and the alkaline earth metals. The [(Ln'/Ae)(2)(Odpp)(3)](+) cation in the heterobimetallic structures is unusual in that it consists solely of bridging aryloxide ligands. A molecular heterobimetallic species [AeEu(Odpp)(4)] (Ae = Ca, Sr, Ba) was obtained by treating an alkaline earth metal and Eu metal with HOdpp at elevated temperatures. Similarly, [BaSr(Odpp)(4)] was prepared by treating Ba metal and Sr metal with HOdpp. Treatment of [Ba(2)(Odpp)(4)] with [Mg(Odpp)(2)(thf)(2)] in toluene afforded [Ba(2)(Odpp)(3)][Mg(Odpp)(3)(thf)]. Analogous solution-based syntheses were not possible for [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] complexes, for which the free-metal route was essential. As a result of the absence of additional donor ligands, the crystal structures of the heterobimetallic complexes feature extensive pi-Ph-metal interactions involving the pendant phenyl groups of the Odpp ligands, thus enabling the large electropositive metal atoms to attain coordination saturation. The charge-separated heterobimetallic species were purified by extraction with toluene/thf mixtures at ambient temperature (Ba-containing compounds) or by extraction with toluene under pressure above the boiling point of the solvent (other products). In donor solvents, heterobimetallic complexes other than those containing barium were found to fragment into homometallic species.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosario-Amorin, Daniel; Ouizem, Sabrina; Dickie, D. A.

    Syntheses for new ligands based upon dibenzothiophene and dibenzothiophene sulfone platforms, decorated with phosphine oxide and methylphosphine oxide donor groups, are described. Coordination chem. of 4, 6- bis(diphenylphosphinoylmethyl) dibenzothiophene (8) , 4, 6- bis(diphenylphosphinoylmethyl) dibenzothiophene- 5, 5- dioxide (9) and 4, 6- bis(diphenylphosphinoyl) dibenzothiophene- 5, 5- dioxide (10) with lanthanide nitrates, Ln(NO3) 3 (H2O) n is outlined, and crystal structure detns. reveal a range of chelation interactions on Ln(III) ions. The HNO3 dependence of the solvent extn. performance of 9 and 10 in 1, 2- dichloroethane for Eu(III) and Am(III) is described and compared against the extn. behavior of relatedmore » dibenzofuran ligands (2, 3; R = Ph) and n- octyl(phenyl) - N, N- diisobutylcarbamoylmethyl phosphine oxide (4) measured under identical conditions.« less

  3. Series of coordination polymers based on 4-(5-sulfo-quinolin-8-yloxy) phthalate and bipyridinyl coligands: Structure diversity and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Xun; Liu, Jing; College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022

    2015-10-15

    Reactions between later metal salts and conjugational N-hetrocyclic sulfonate/ carboxylic acid under the presence of bipyridyl auxiliary ligands afforded a series of manganese, nickel, zinc, silver, cadmium coordination polymers bearing with phenyl pendant arm attached to quinoline skeletons, and they have been characterized by elements analysis, thermogravimetry, infrared spectroscopy and single-crystal X-ray diffraction studying. The series of polymers show interesting structural diversity in coordination environment, dimensions and topologies. They are all built from 2-D networks constructed from metal cluster through sulfonate or carboxylate groups, as the secondary building unit (SBU). The thermalgravimetric analyses show that they display framework stabilities inmore » solid state. Variable-temperature magnetic susceptibility studies reveal the existence of antiferromagnetic interactions between adjacent Mn (II) ions in 1, and ferromagnetic interactions between Ni(II) ions for 2, respectively. The photo-luminescence properties of 3-5 have also been investigated systemically. - Highlights: • A series of coordination polymers based on later transition metal ions have been obtained. • They contain conjugational N-hetrocyclic sulfonate-carboxylic acid and bipyridyl auxiliary ligands. • They have been characterized systemically. • They exhibit structure diversity and interesting properties.« less

  4. Coordination Polymer: Synthesis, Spectral Characterization and Thermal Behaviour of Starch-Urea Based Biodegradable Polymer and Its Polymer Metal Complexes

    PubMed Central

    Malik, Ashraf; Parveen, Shadma; Ahamad, Tansir; Alshehri, Saad M.; Singh, Prabal Kumar; Nishat, Nahid

    2010-01-01

    A starch-urea-based biodegradable coordination polymer modified by transition metal Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) was prepared by polycondensation of starch and urea. All the synthesized polymeric compounds were characterized by Fourier transform-infrared spectroscopy (FT-IR), 1H-NMR spectroscopy, 13C-NMR spectroscopy, UV-visible spectra, magnetic moment measurements, differential scanning calorimeter (DSC), and thermogravimetric analysis (TGA). The results of electronic spectra and magnetic moment measurements indicate that Mn(II), Co(II), and Ni(II) complexes show octahedral geometry, while Cu(II) and Zn(II) complexes show square planar and tetrahedral geometry, respectively. The thermogravimetric analysis revealed that all the polymeric metal complexes are more thermally stable than the parental ligand. In addition, biodegradable studies of all the polymeric compounds were also carried out through ASTM standards of biodegradable polymers by CO2 evolution method. PMID:20414461

  5. Alkaline earth-based coordination polymers derived from a cyclotriphosphazene-functionalized hexacarboxylate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Yajing; Bai, Dongjie; Feng, Yunlong

    Combination of hexakis(4-carboxylatephenoxy)cyclotriphosphazene with alkaline earth ions of increasing ionic radii (Mg{sup 2+}, Ca{sup 2+} and Ba{sup 2+}) under different solvothermal conditions yielded three new coordination polymers, and their crystal structures were determined by single-crystal X-ray diffraction analysis. The magnesium compound displays a three dimensional (3D) network structure constructed from the deprotonated ligand and the secondary building block Mg(COO){sub 4}, which can be rationalized as a (4,6)-connected topological net with the Schläfli symbol of (4{sup 4}·6{sup 2}){sub 3}(4{sup 9}·6{sup 6}){sub 2}. The calcium compound consists of 1D infinite “Ca-O” inorganic chains connected by the deprotonated ligands to from a 3Dmore » framework. The barium compound exhibits a 3D framework in which 1D “Ba-O” inorganic chains are connected together by the deprotonated organic linkers. Due to the semi-rigid nature, the ligand adopts distinctly different conformations in the three compounds. The metal ions’ influence exerted on the final structure of the resulting coordination polymers is also discussed. When the radii of alkaline earth ions increases descending down the group from Mg(II) to Ba(II), the coordination number becomes larger and more versatile: from 6 in the magnesium compound, to 6,7 and 10 in the calcium compound, and to 8 and 9 in the barium compound, thus substantially influencing the resulting final framework structures. Also, the photophysical properties were investigated systematically, revealing that the three compounds are photoluminscent in the solid state at room temperature. This work demonstrates that although the multiplicity of conformation in the hexacarboxylate ligand based on the inorganic scaffold cyclotriphosphazene makes it difficult to predict how this ligand will form extended network, but provides unique opportunities for the formation of diverse inorganic-organic hybrids exhibiting rich structural topologies. - Graphical abstract: Three alkaline earth-based coordination polymers were constructed from a semirigid cyclotriphosphazene-functionalized hexacarboxylate exhibiting different inorganic nodes as well as distinct ligand conformations relying on the metal ions, which presents the first example of such a ligand incorporated into alkaline earth–based coordination polymers. - Highlights: • Three alkaline earth-based coordination polymers were synthesized. • The three compounds exhibit different inorganic nodes and ligand conformations. • The three compounds are photoluminscent in the solid state.« less

  6. Hybrid materials based on novel 2D lanthanide coordination polymers covalently bonded to amine-modified SBA-15 and MCM-41: assembly, characterization, structural features, thermal and luminescence properties.

    PubMed

    Wang, Jun; Dou, Wei; Kirillov, Alexander M; Liu, Weisheng; Xu, Cailing; Fang, Ran; Yang, Lizi

    2016-11-22

    Three novel 2D coordination polymers [Tb 2 (μ 4 -L) 2 (μ-HL)(μ-HCOO)(DEF)] n (Tb-L), [Eu(μ 4 -L)(L)(H 2 O) 2 ] n (Eu-L), and [Nd(μ 4 -L)(L)(H 2 O) 2 ] n (Nd-L) were assembled from the corresponding lanthanide(iii) nitrates and 5 methoxy-(4-benzaldehyde)-1,3-benzenedicarboxylic acid (H 2 L) as a main multifunctional building block bearing carboxylate and aldehyde functional groups, using H 2 O/DEF {DEF = N,N-diethylformamide} as a reaction medium. The obtained coordination polymers were isolated as stable microcrystalline solids and fully characterized by elemental analysis, FT-IR spectroscopy, TGA, BET, PXRD, and single-crystal X-ray diffraction methods. Their structures feature intricate 2D metal-organic networks, which were topologically classified as underlying layers with the 4,6L26 (for Tb-L) or sql (for Eu-L and Nd-L) topologies. Besides, a novel series of mesoporous hybrid materials wherein the Tb-L, Eu-L, or Nd-L coordination polymers are covalently grafted into the amine-functionalized SBA-15-NH 2 or MCM-41-NH 2 matrices (via the formation of Schiff-base groups) was also synthesized and fully characterized. These hybrid materials show high thermal and photoluminescence stability, as well as remarkable chemical resistance to boiling water, and acidic or alkaline medium. Luminescent properties of the parent coordination polymers and derived hybrid materials are investigated in detail, showing that the latter combine the luminescent characteristics (intense green or red emissions and excellent stability) of lanthanide coordination polymers and structural features of ordered mesoporous silica molecular sieves. Moreover, light emitting devices were assembled, by coating the hybrid materials onto the surface of UV-LED bulbs, and showed excellent light emitting properties.

  7. Redox-active porous coordination polymer based on trinuclear pivalate: Temperature-dependent crystal rearrangement and redox-behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lytvynenko, Anton S.; Kiskin, Mikhail A., E-mail: mkiskin@igic.ras.ru; Dorofeeva, Victoria N.

    2015-03-15

    Linking of trinuclear pivalate Fe{sub 2}NiO(Piv){sub 6} (Piv=O{sub 2}CC(CH{sub 3}){sub 3}) by 2,6-bis(4-pyridyl)-4-(1-naphthyl)pyridine (L) resulted in formation of 1D-porous coordination polymer Fe{sub 2}NiO(Piv){sub 6}(L)·Solv, which was characterized in two forms: DMSO solvate Fe{sub 2}NiO(Piv){sub 6}(L)(DMSO)·2.5DMSO (1) or water solvate Fe{sub 2}NiO(Piv){sub 6}(L)(H{sub 2}O) (2). X-ray structure of 1 was determined. Crystal lattice of 1 at 160 K contained open channels, filled by captured solvent, while temperature growth to 296 K led to the crystal lattice rearrangement and formation of closed voids. Redox-behavior of 2 was studied by cyclic voltammetry for a solid compound, deposited on glassy-carbon electrode. Redox-activity of Lmore » preserved upon incorporation in the coordination polymer. The presence of pores in desolvated sample Fe{sub 2}NiO(Piv){sub 6}(L) was confirmed by the measurements of N{sub 2} and H{sub 2} adsorption at 77 K. Potential barriers of the different molecules diffusion through pores were estimated by the means of molecular mechanics. - Graphical abstract: Redox-behavior of 1D-porous coordination polymer Fe{sub 2}NiO(Piv){sub 6}(L)(H{sub 2}O) was studied by cyclic voltammetry in thin film, deposited on glassy-carbon electrode. Redox-activity of L preserved upon incorporation in the coordination polymer. Potential barriers of different molecules diffusion through pores were estimated by the means of molecular mechanics. - Highlights: • Porous 1D coordination polymer was synthesized. • Temperature growth led to pores closing due to crystal lattice rearrangement. • Redox-activity of ligand preserved upon incorporation into coordination polymer. • Redox-properties of solid coordination polymer were studied in thin film. • Diffusion barriers were evaluated by molecular mechanics.« less

  8. Hydrazinium lanthanide oxalates: synthesis, structure and thermal reactivity of N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce, Nd.

    PubMed

    De Almeida, Lucie; Grandjean, Stéphane; Rivenet, Murielle; Patisson, Fabrice; Abraham, Francis

    2014-03-28

    New hydrazinium lanthanide oxalates N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce (Ce-HyOx) and Nd (Nd-HyOx), were synthesized by hydrothermal reaction at 150 °C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2₁/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Å, β = 116.638(4)°, V = 2021.4(7) Å(3), Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO9 and NdO8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm(-1) confirms the coordination of N2H5(+) to the metal. These polyhedra are connected through μ2 and μ3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-HyOx) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO2 and Ce(0.5)Nd(0.5)O(1.75) are formed at low temperature from Ce-HyOx and CeNd-HyOx, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxymonocyanamides Ln2O2CN2 are formed.

  9. Immobilization of Polyoxometalates on Tailored Polymeric Surfaces

    PubMed Central

    Aguado-Ureta, Saioa; Rodríguez-Hernández, Juan; del Campo, Adolfo; Perez-Álvarez, Leyre

    2018-01-01

    Herein we describe the preparation of hybrid polymer–inorganic interfaces by the immobilization of polyoxometalate nanoclusters on functionalized polymer surfaces. The polymeric surfaces were made of polystyrene-b-poly(acrylic acid)/polystyrene (PS-b-PAA/PS) blends by spin coating on a silicon wafer. The functionalization of the polymer film was obtained by interfacial migration of the amphiphilic block copolymer toward the interface upon water vapor annealing. The carboxylic acid functional groups contained in the PAA block were then employed to anchor the [LnIII(α-SiW11O39)]5− polyoxometalates (Ln: Ce, Er). This purpose was achieved by immersing the films in aqueous solutions of the in situ-formed inorganic nanoclusters. X-ray photoelectron and confocal Raman spectroscopies, together with atomic force microscopy, confirmed the immobilization of the inorganic species at the interface. PMID:29498656

  10. Plastic Electronics and Optoelectronics: New Science and Technology from Soluble Semiconducting Polymers and Bulk Heterojunction Solar Cells Fabricated from Soluble Semiconducting Polymers

    DTIC Science & Technology

    2011-11-03

    fundamental discovery of photoinduced ultrafast electron transfer from conjugated polymers to fullerenes . Many groups in the U.S., Europe and Asia are...electron transfer from conjugated polymers to fullerenes . Many groups in the U.S., Europe and Asia are now making important contributions. Nevertheless...This confirms that the middle curve in Fig. 1 utilizes the correct assumptions.          2ln 1 c heBPolymer HOMO Fullerene LUMOoc N

  11. NMR and TRLFS studies of Ln(iii) and An(iii) C5-BPP complexes.

    PubMed

    Adam, Christian; Beele, Björn B; Geist, Andreas; Müllich, Udo; Kaden, Peter; Panak, Petra J

    2015-02-01

    C5-BPP is a highly efficient N-donor ligand for the separation of trivalent actinides, An(iii), from trivalent lanthanides, Ln(iii). The molecular origin of the selectivity of C5-BPP and many other N-donor ligands of the BTP-type is still not entirely understood. We present here the first NMR studies on C5-BPP Ln(iii) and An(iii) complexes. C5-BPP is synthesized with 10% 15 N labeling and characterized by NMR and LIFDI-MS methods. 15 N NMR spectroscopy gives a detailed insight into the bonding of C5-BPP with lanthanides and Am(iii) as a representative for trivalent actinide cations, revealing significant differences in 15 N chemical shift for coordinating nitrogen atoms compared to Ln(iii) complexes. The temperature dependence of NMR chemical shifts observed for the Am(iii) complex indicates a weak paramagnetism. This as well as the observed large chemical shift for coordinating nitrogen atoms show that metal-ligand bonding in Am(C5-BPP) 3 has a larger share of covalence than in lanthanide complexes, confirming earlier studies. The Am(C5-BPP) 3 NMR sample is furthermore spiked with Cm(iii) and characterized by time-resolved laser fluorescence spectroscopy (TRLFS), yielding important information on the speciation of trace amounts of minor complex species.

  12. Antiandrogen and Antimicrobial Aspects of Coordination Compounds of Palladium(II), Platinum(II) and Lead(II)

    PubMed Central

    Joshi, S. C.; Kulshrestha, Shalini; Nagpal, Pooja; Bansal, Anil

    2001-01-01

    Synthesis, characterization and antimicrobial activities of an interesting class of biologically potent macrocyclic complexes have been carried out. All the complexes have been evaluated for their antimicrobial effects on different species of pathogenic fungi and bacteria. The testicular sperm density, testicular sperm morphology, sperm motility, density of cauda epididymal spermatozoa and fertility in mating trails and biochemical parameters of reproductive organs have been examined and discussed. The resulting biologically active [M(MaLn)(R2)]Cl2 and [Pb(MaLn)(R2)X2] (where, M = PdII or PtII and X = Cl or NO3) type of complexes have been synthesized by the reactions of macrocyclic ligands (MaLn) with metal salts and different diamines in 1:1:1 molar ratio in methanol. Initially the complexes were characterized by elemental analyses, molecular weight determinations and conductivity measurements. The mode of bonding was established on the basis of IR, 1H NMR, 13C NMR, 195Pt NMR, 207Pb NMR, XRD and electronic spectral studies. The macrocyclic ligand coordinates through the four azomethine nitrogen atoms which are bridged by benzil moieties. IR spectra suggest that the pyridine nitrogen is not coordinating. The palladium and platinum complexes exhibit tetracoordinated square-planar geometry, whereas a hexacoordinated octahedral geometry is suggested for lead complexes. PMID:18475989

  13. Metal-Organic Polyhedral Core as a Versatile Scaffold for Divergent and Convergent Star Polymer Synthesis.

    PubMed

    Hosono, Nobuhiko; Gochomori, Mika; Matsuda, Ryotaro; Sato, Hiroshi; Kitagawa, Susumu

    2016-05-25

    We herein report the divergent and convergent synthesis of coordination star polymers (CSP) by using metal-organic polyhedrons (MOPs) as a multifunctional core. For the divergent route, copper-based great rhombicuboctahedral MOPs decorated with dithiobenzoate or trithioester chain transfer groups at the periphery were designed. Subsequent reversible addition-fragmentation chain transfer (RAFT) polymerization of monomers mediated by the MOPs gave star polymers, in which 24 polymeric arms were grafted from the MOP core. On the other hand, the convergent route provided identical CSP architectures by simple mixing of a macroligand and copper ions. Isophthalic acid-terminated polymers (so-called macroligands) immediately formed the corresponding CSPs through a coordination reaction with copper(II) ions. This convergent route enabled us to obtain miktoarm CSPs with tunable chain compositions through ligand mixing alone. This powerful method allows instant access to a wide variety of multicomponent star polymers that conventionally have required highly skilled and multistep syntheses. MOP-core CSPs are a new class of star polymer that can offer a design strategy for highly processable porous soft materials by using coordination nanocages as a building component.

  14. Synthesis, crystal and electronic structure of the quaternary sulfides Ln{sub 2}CuMS{sub 5} (Ln=La, Ce; M=Sb, Bi)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kussainova, Ardak M.; Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716; Akselrud, Lev G.

    2016-01-15

    The series of quaternary sulfides with general formula Ln{sub 2}CuMS{sub 5} (Ln=La, Ce; M=Sb, Bi) have been synthesized by solid-state reactions. Three representative members have been structurally characterized by single-crystal X-ray diffraction. La{sub 2}CuSbS{sub 5} crystallizes in a new structure type (space group Ima2 (no. 46), Z=4, a=13.401(2) Å, b=7.592(1) Å, c=7.598(1) Å, V=773.1(3) Å{sup 3}). The bismuth analogs of composition La{sub 2}CuBiS{sub 5} and Ce{sub 2}CuBiS{sub 5} crystallize with the La{sub 2}CuInSe{sub 5} structure type (space group Pnma (no. 62), Z=4). Lattice parameters for La{sub 2}CuBiS{sub 5}: a=11.9213(5) Å, b=3.9967(2) Å, c=17.0537(8) Å, V=812.56(7) Å{sup 3}; lattice parameters formore » Ce{sub 2}CuBiS{sub 5}: a=11.9179(15) Å, b=3.9596(5) Å, c=16.955(2) Å, V=800.13(17) Å{sup 3}). The similarities and the differences between the two structures are discussed. Electronic structure calculations for La{sub 2}CuSbS{sub 5} and La{sub 2}CuBiS{sub 5} are also presented; they suggest semiconducting behavior with energy gaps exceeding 1.7 eV. - Graphical abstract: La{sub 2}CuSbS{sub 5} crystallizes in a new structure type (space group Ima2 (no. 46). Its bismuth analog La{sub 2}CuBiS{sub 5} crystallizes in the La{sub 2}CuInSe{sub 5} structure type (space group Pnma (no. 62)). Z=4, a=11.9213(5) Å, b=3.9967(2) Å, c=17.0536(10) Å, V=813.53(10) Å{sup 3}). The structures are based on rare-earth metal atoms coordinated by S atoms in a trigonal-prismatic and/or square-antiprismatic fashion, Cu-centered tetrahedra, and pnictogen atoms in pyramidal or distorted octahedral coordination. - Highlights: • Ln{sub 2}CuSbS{sub 5} are complex quarternary phases crystallizing in their own structure type. • Ln{sub 2}CuSbS{sub 5} and Ce{sub 2}CuBiS{sub 5} are new compound in the respective ternary phase diagrams. • Ln{sub 2}CuSbS{sub 5} on one side, and Ln{sub 2}CuBiS{sub 5} on the other are not isotypic.« less

  15. Polymeric nanocomposites loaded with fluoridated hydroxyapatite Ln3+ (Ln = Eu or Tb)/iron oxide for magnetic targeted cellular imaging

    PubMed Central

    Pan, Jie; Liu, Wei-Jiao; Hua, Chao; Wang, Li-Li; Wan, Dong; Gong, Jun-Bo

    2015-01-01

    Objective To fabricate polymeric nanocomposites with excellent photoluminescence, magnetic properties, and stability in aqueous solutions, in order to improve specificity and sensitivity of cellular imaging under a magnetic field. Methods Fluoridated Ln3+-doped HAP (Ln3+-HAP) NPs and iron oxides (IOs) can be encapsulated with biocompatible polymers via a modified solvent exaction/evaporation technique to prepare polymeric nanocomposites with fluoridated Ln3+-HAP/iron oxide. The nanocomposites were characterized for surface morphology, fluorescence spectra, magnetic properties and in vitro cytotoxicity. Magnetic targeted cellular imaging of such nanocomposites was also evaluated with confocal laser scanning microscope using A549 cells with or without magnetic field. Results The fabricated nanocomposites showed good stability and excellent luminescent properties, as well as low in vitro cytotoxicity, indicating that the nanocomposites are suitable for biological applications. Nanocomposites under magnetic field achieved much higher cellular uptake via an energy-dependent pathway than those without magnetic field. Conclusion The nanocomposites fabricated in this study will be a promising tool for magnetic targeted cellular imaging with improved specificity and enhanced selection. PMID:26487962

  16. One- and two-dimensional divalent copper coordination polymers based on kinked organodiimine and long flexible aliphatic dicarboxylate ligands

    NASA Astrophysics Data System (ADS)

    Mallika Krishnan, Subhashree; Supkowski, Ronald M.; LaDuca, Robert L.

    2008-11-01

    Hydrothermal synthesis under acidic conditions has afforded a pair of divalent copper coordination polymers containing the kinked dipodal tethering organodiimine 4,4'-dipyridylamine (dpa) and flexible long-chain aliphatic dicarboxylate ligands. The new materials were characterized by single crystal X-ray structure determination, infrared spectroscopy, and thermogravimetric analysis. [CuCl(suberate) 0.5(dpa)] ( 1) manifests 1-D ladder-like motifs aggregated into 3-D through hydrogen bonding and copper-mediated supramolecular interactions. Extension of the aliphatic chain within the dicarboxylate ligand by one methylene unit resulted in {[Cu(azelate)(dpa)(H 2O)] · 3H 2O} ( 2), a (4,4) rhomboid grid 2-D coordination polymer encapsulating acyclic water molecule trimers.

  17. Group 10 Metal Benzene-1,2-dithiolate Derivatives in the Synthesis of Coordination Polymers Containing Potassium Countercations.

    PubMed

    Castillo, Oscar; Delgado, Esther; Gómez-García, Carlos J; Hernández, Diego; Hernández, Elisa; Martín, Avelino; Martínez, José I; Zamora, Félix

    2017-10-02

    The use of theoretical calculations has allowed us to predict the coordination behavior of dithiolene [M(SC 6 H 4 S) 2 ] 2- (M = Ni, Pd, Pt) entities, giving rise to the first organometallic polymers {[K 2 (μ-H 2 O) 2 ][Ni(SC 6 H 4 S) 2 ]} n and {[K 2 (μ-H 2 O) 2 (thf)] 2 [K 2 (μ-H 2 O) 2 (thf) 2 ][Pd 3 (SC 6 H 4 S) 6 ]} n by one-pot reactions of the corresponding d 10 metal salts, 1,2-benzenedithiolene, and KOH. The polymers are based on σ,π interactions between potassium atoms and [M(SC 6 H 4 S) 2 ] 2- (M = Ni, Pd) entities. In contrast, only σ interactions are observed when the analogous platinum derivative is used instead, yielding the coordination polymer {[K 2 (μ-thf) 2 ][Pt(SC 6 H 4 S) 2 ]} n .

  18. Strongly Circularly Polarized Emission from Water-Soluble Eu(III)- and Tb(III)-Based Complexes: A Structural and Spectroscopic Study.

    PubMed

    Leonzio, Marco; Melchior, Andrea; Faura, Georgina; Tolazzi, Marilena; Zinna, Francesco; Di Bari, Lorenzo; Piccinelli, Fabio

    2017-04-17

    Water-soluble Eu(III) and Tb(III) complexes with N,N'-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane-N,N'-diacetic acid (H 2 bpcd) have been synthesized and characterized in their racemic and enantiopure forms. The ligand has been designed to bind Ln(III) ions, providing a dissymmetric environment able to solicit strong chiroptical features while at the same time leaving a few coordination sites available for engaging further ancillary ligands. Potentiometric studies show that Ln(III) complexes have a relatively good stability and that at pH 7 the [Ln(bpcd)] + species is largely dominant. DFT calculations carried out on the (S,S)-[Y(bpcd)(H 2 O) 5 ] + complexes (the closed-shell equivalents of [Eu(bpcd)(H 2 O) 5 ] + and [Tb(bpcd)(H 2 O) 5 ] + ) indicate that the two trans-O,O and trans-N py ,N py configurations are equally stable in solution and present two coordinated water molecules. This is in agreement with the hydration number ∼2.6 determined by luminescence lifetime measurements on Tb(III) and Eu(III) complexes. A detailed optical and chiroptical spectroscopic characterization has been carried out and reveals that the complexes display an efficient luminescence in the visible spectral range accompanied by a strong CPL activity. A value for g lum (around 0.1 on the top of the 546 nm band) for the Tb-based complex has been found. This is one of the highest g lum values measured up to now for chiral Tb complexes. These results suggest that in principle Tb(bpcd)Cl is suitable to be employed as a CPL bioprobe for relevant analytes in aqueous media.

  19. Phase transformation pathways of ultrafast-laser-irradiated Ln2O3 (Ln =Er -Lu )

    NASA Astrophysics Data System (ADS)

    Rittman, Dylan R.; Tracy, Cameron L.; Chen, Chien-Hung; Solomon, Jonathan M.; Asta, Mark; Mao, Wendy L.; Yalisove, Steven M.; Ewing, Rodney C.

    2018-01-01

    Ultrafast laser irradiation causes intense electronic excitations in materials, leading to transient high temperatures and pressures. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln2O3 (Ln =Er -Lu ), and explore the mechanism by which the phase transformation occurs. A combination of grazing incidence x-ray diffraction and transmission electron microscopy are used to determine the magnitude and depth-dependence of the phase transformation, respectively. Although all compositions undergo the same transformation, their transformation mechanisms differ. The transformation is pressure-driven for Ln =Tm -Lu , consistent with the material's phase behavior under equilibrium conditions. However, the transformation is thermally driven for Ln =Er , revealing that the nonequilibrium conditions of ultrafast laser irradiation can lead to novel transformation pathways. Ab initio molecular-dynamics simulations are used to examine the atomic-scale effects of electronic excitation, showing the production of oxygen Frenkel pairs and the migration of interstitial oxygen to tetrahedrally coordinated constitutional vacancy sites, the first step in a defect-driven phase transformation.

  20. Phase transformation pathways of ultrafast-laser-irradiated Ln 2 O 3 ( Ln = Er – Lu )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittman, Dylan R.; Tracy, Cameron L.; Chen, Chien-Hung

    Ultrafast laser irradiation causes intense electronic excitations in materials, leading to transient high temperatures and pressures. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln 2O 3 ( Ln = Er – Lu ) , and explore the mechanism by which the phase transformation occurs. A combination of grazing incidence x-ray diffraction and transmission electron microscopy are used to determine the magnitude and depth-dependence of the phase transformation, respectively. Although all compositions undergo the same transformation, their transformation mechanisms differ. The transformation is pressure-driven for Ln = Tm – Lu , consistent with themore » material's phase behavior under equilibrium conditions. However, the transformation is thermally driven for Ln = Er , revealing that the nonequilibrium conditions of ultrafast laser irradiation can lead to novel transformation pathways. Ab initio molecular-dynamics simulations are used to examine the atomic-scale effects of electronic excitation, showing the production of oxygen Frenkel pairs and the migration of interstitial oxygen to tetrahedrally coordinated constitutional vacancy sites, the first step in a defect-driven phase transformation.« less

  1. New Composites LnBDC@AC and CB[6]@AC: From Design toward Selective Adsorption of Methylene Blue or Methyl Orange

    PubMed Central

    Santos, Guilherme de C.; Barros, Amanda L.; de Oliveira, Carlos A. F.; da Luz, Leonis L.; da Silva, Fausthon F.; Demets, Grégoire J.-F.; Alves Júnior, Severino

    2017-01-01

    New porous composites LnBDC@AC (AC = Activated carbon, Ln = Eu and Gd and BDC = 1,4-benzenedicaboxylate) and CB[6]@AC (CB[6] = Cucurbit[6]uril) were obtained using hydrothermal route. The LnBDC and CB[B] are located inside the pore of the carbon materials as was observed in SEM-EDS, XRPD and FT-IR analysis. Porosimetry analysis showed values typically between AC and LnBDC material, with pore size and surface area, respectively, 29,56 Å and 353.98 m2g-1 for LnBDC@AC and 35,53 Å and 353.98 m2g-1 for CB[6]@AC. Both materials showed good absorptive capacity of metil orange (MO) and methylene blue (MB) with selectivity as a function of pH. For acid pH, both materials present selectivity by MB and alkaline pH for MO, with notable performance for CB[6]@AC. Additionally, europium luminescence was used as structural probe to investigate the coordination environment of Eu3+ ions in the EuBDC@AC composite after adsorption experiment. PMID:28107440

  2. Phase transformation pathways of ultrafast-laser-irradiated Ln 2 O 3 ( Ln = Er – Lu )

    DOE PAGES

    Rittman, Dylan R.; Tracy, Cameron L.; Chen, Chien-Hung; ...

    2018-01-10

    Ultrafast laser irradiation causes intense electronic excitations in materials, leading to transient high temperatures and pressures. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln 2O 3 ( Ln = Er – Lu ) , and explore the mechanism by which the phase transformation occurs. A combination of grazing incidence x-ray diffraction and transmission electron microscopy are used to determine the magnitude and depth-dependence of the phase transformation, respectively. Although all compositions undergo the same transformation, their transformation mechanisms differ. The transformation is pressure-driven for Ln = Tm – Lu , consistent with themore » material's phase behavior under equilibrium conditions. However, the transformation is thermally driven for Ln = Er , revealing that the nonequilibrium conditions of ultrafast laser irradiation can lead to novel transformation pathways. Ab initio molecular-dynamics simulations are used to examine the atomic-scale effects of electronic excitation, showing the production of oxygen Frenkel pairs and the migration of interstitial oxygen to tetrahedrally coordinated constitutional vacancy sites, the first step in a defect-driven phase transformation.« less

  3. A new 1D manganese(II) coordination polymer with end-to-end azide bridge and isonicotinoylhydrazone Schiff base ligand: Crystal structure, Hirshfeld surface, NBO and thermal analyses

    NASA Astrophysics Data System (ADS)

    Khani, S.; Montazerozohori, M.; Masoudiasl, A.; White, J. M.

    2018-02-01

    A new manganese (II) coordination polymer, [MnL2 (μ-1,3-N3)2]n, with co-ligands including azide anion and Schiff base based on isonicotinoylhydrazone has been synthesized and characterized. The crystal structure determination shows that the azide ligand acts as end-to-end (EE) bridging ligand and generates a one-dimensional coordination polymer. In this compound, each manganes (II) metal center is hexa-coordinated by four azide nitrogens and two pyridinic nitrogens for the formation of octahedral geometry. The analysis of crystal packing indicates that the 1D chain of [MnL2 (μ-1,3-N3)2]n, is stabilized as a 3D supramolecular network by intra- and inter-chain intermolecular interactions of X-H···Y (X = N and C, Y = O and N). Hirshfeld surface analysis and 2D fingerprint plots have been used for a more detailed investigation of intermolecular interactions. Also, natural bond orbital (NBO) analysis was performed to get information about atomic charge distributions, hybridizations and the strength of interactions. Finally, thermal analysis of compound showed its complete decomposition during three thermal steps.

  4. Honeycomb-shaped coordination polymers based on the self-assembly of long flexible ligands and alkaline-earth ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Chen; Liu, Liu; Guo, Xu

    2016-01-15

    Two novel coordination polymers, namely, [Ca(NCP){sub 2}]{sub ∞} (I) and [Sr(NCP){sub 2}]{sub ∞} (II) were synthesized under hydrothermal conditions based on 2-(4-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline (HNCP) and characterized by elemental analysis, infrared spectrometry, X-ray powder diffraction and single crystal X-ray diffraction. Findings indicate that I and II are isomorphous and isostructural, containing the unit of M(NCP{sup −}){sub 4} (M=Ca(II) and Sr(II)), based on which to assemble into three-dimensional (3D) porous 4-fold interpenetration honeycomb-shaped neutral coordination polymers (CPs). Between the adjacent lamellar structures in I and II, there exist π–π interactions between the pyridine rings belonging to phenanthroline of NCP{sup −} which stabilize themore » frameworks. Both I and II display stronger fluorescence emissions as well as high thermal stability. - Graphical abstract: One-dimensional nanotubular channels with the cross dimension of 37.1959(20)×23.6141(11)Å{sup 2} in the three-dimensional honeycomb-shaped coordination network of II are observed. The topological analysis of II indicates that there exists a typical diamond framework possessing large adamantanoid cages, which containing four cyclohexane-shaped patterns in chair conformations. - Highlights: • Two isomorphous and isostructural coordination polymers based on flexible ligand and two alkaline-earth metal salts have been synthesized and characterized. • Structural analysis indicates that I and II are assembled into 3D porous honeycomb-shaped metal-organic frameworks. • Both I and II display stronger fluorescence emissions and higher thermal stability.« less

  5. Highly efficient temperature-dependent chiral separation with a nucleotide-based coordination polymer.

    PubMed

    Bruno, Rosaria; Marino, Nadia; Bartella, Lucia; Di Donna, Leonardo; De Munno, Giovanni; Pardo, Emilio; Armentano, Donatella

    2018-06-05

    We report a new chiral coordination polymer, prepared from the cytidine 5'-monophosphate (CMP) nucleotide, capable of separating efficiently (enantiomeric excess of ca. 100%) racemic mixtures of l- and d-Asp in a temperature-dependent manner. The crystal structure of the host-guest adsorbate, with the d-Asp guest molecules loaded within its channels, could be solved allowing a direct visualization of the chiral recognition process.

  6. Homochiral coordination polymers with helixes and metal clusters based on lactate derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhong-Xuan, E-mail: xuzhongxuan4201@163.com; Ma, Yu-Lu; Lv, Guo-ling

    2017-05-15

    Utilizing the lactic acid derivatives (R)-4-(1-carboxyethoxy)benzoic acid (denoted: (R)-H{sub 2}CBA) and (S)-4-(1-carboxyethoxy)benzoic acid (denoted: (S)-H{sub 2}CBA)as chiral linkers to self-assemble with 4, 4′-bipyridine (denoted: BIP) and Cd(II) ions, a couple of three-dimensional homochiral coordination polymers, namely [Cd{sub 3}((R)-CBA){sub 3} (BIP){sub 2}(H{sub 2}O)]·xGuest (1-D) and [Cd{sub 3}((S)-CBA){sub 3}(BIP){sub 2}(H{sub 2}O)]·xGuest (1-L), have been synthesized under solvothermal reaction condition. Single crystal X-ray diffraction analysis reveals the two complexes contain single helical chains based on enantiopure ligands and cadmium clusters. Moreover, some physical characteristics such as PXRD, thermal stability, solid-state circular dichroism (CD) and luminescent were also investigated. - Graphical abstract: Utilizing enantiomericmore » lactic acid derivatives (R)-H{sub 2}CBA and (S)-H{sub 2}CBA to assemble with Cd{sup 2+} ions and ancillary BIP ligands, a couple of 3D homochiral coordination polymers with metal clusters and helical chains have been prepared by hydrothermal reaction. - Highlights: • Chiral lactic acid derivative. • Enantiomeric coordination polymer. • Helical chain. • Trinuclear cadmium cluster.« less

  7. Supramolecular polymeric chemosensor for biomedical applications: design and synthesis of a luminescent zinc metallopolymer as a chemosensor for adenine detection.

    PubMed

    Chow, Cheuk-Fai

    2012-11-01

    Adenine is an important bio-molecule that plays many crucial roles in food safety and biomedical diagnostics. Differentiating adenine from a mixture of adenosine and other nucleic bases (guanine, thymine, cytosine, and uracil) is particularly important for both biological and clinical applications. A neutral Zn(II) metallosupramolecular polymer based on acyl hydrazone derived coordination centres (P1) were generated through self-assembly polymerization. It is a linear coordination polymer that behaves like self-standing film. The synthesis, (1)H-NMR characterization, and spectroscopic properties of this supramolecular material are reported. P1 was found to be a chemosensor specific to adenine, with a luminescent enhancement. The binding properties of P1 with common nucleic bases and nucleosides reveal that this supramolecular polymer is very selective to adenine molecules (~20 to 420 times more selectivity than other nucleic bases). The formation constant (K) of P1 to adenine was found to be log K = 4.10 ± 0.02. This polymeric chemosensor produces a specific response to adenine down to 90 ppb. Spectrofluorimetric and (1)H-NMR titration studies showed that the P1 polymer allows each Zn(II) coordination centre to bind to two adenine molecules through hydrogen bonding with their imine and hydrazone protons.

  8. Synthesis, characterization and cytotoxicity of rare earth metal ion complexes of N,N‧-bis-(2-thiophenecarboxaldimine)-3,3‧-diaminobenzidene, Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Shakir, Mohammad; Abbasi, Ambreen; Faraz, Mohammad; Sherwani, Asif

    2015-12-01

    Lanthanide complexes of La3+, Pr3+, Nd3+, Gd3+, Er3+ of general formula [Ln2 L(H2O)4(NO3)4](NO3)2·2H2O have been synthesized from Schiff base, N,N‧-bis-(2-thiophenecarboxaldimine)-3,3‧-diaminobenzidene. The complexes were characterized by elemental analysis, molar conductance, UV-Vis, fluorescence, FT-IR,1H NMR, mass spectroscopy, EDX, SEM and thermal analysis. FT-IR spectral data suggested that ligand coordinate with metal ions through azomethine nitrogen and uncondensed amino group. Molar conductance data revealed 1:2 electrolytic nature of complexes. From the analytical data, the stoichiometry of the complexes was found to be 1:2 (ligand:metal). Thephysico-chemical data suggested eight coordination number for Ln(III)Schiffbase complexes. SEM analysis shows morphological changes in the surfaces of complexes as compared to free ligand. Thermal decomposition profiles were consistent with proposed formulations. The anticancer activity of the complexes and theSchiffbase ligand has been studied towards human cervical cancer celllines (HeLa) and human breast cancer cell lines (MCF-7) and it was found that complexes exhibited greater activity than theSchiffbase.

  9. Low-coordinate rare-earth complexes of the asymmetric 2,4-di-tert-butylphenolate ligand prepared by redox transmetallation/protolysis reactions, and their reactivity towards ring-opening polymerisation.

    PubMed

    Clark, Lawrence; Deacon, Glen B; Forsyth, Craig M; Junk, Peter C; Mountford, Philip; Townley, Josh P

    2010-08-07

    New trivalent lanthanoid aryloxide complexes have been prepared by redox transmetallation/protolysis (rtp) reactions using 2,4-di-tert-butylphenol (dbpH). Mononuclear octahedral complexes from tetrahydrofuran (thf) were of the type [Ln(dbp)(3)(thf)(3)] (Ln = La (1), Pr (2), Nd (3), Gd (4), Er (5)). The lanthanoid contraction results in the rather subtle change in stereochemistry from meridional (La, Pr, Nd, Gd) to facial (Er). An analogous reaction with neodymium in dimethoxyethane (dme), resulted in the isolation of the seven coordinate [Nd(dbp)(3)(dme)(2)] (6), and this is comparable with the thf complexes in terms of steric crowding. Dinuclear complexes of the type [Ln(2)(dbp)(6)(thf)(2)], (Ln = Nd (7), Er (8)) were obtained when 1 and 5 were recrystallised from toluene. These dimeric complexes contain two bridging and four terminal phenolates, as well as a single coordinated molecule of thf at each metal. A similar structural motif was observed for the products when the reaction was performed in diethyl ether, and in the absence of a solvent, yielding [Nd(2)(dbp)(6)(Et(2)O)(2)] (9) and [Nd(2)(dbp)(6)(dbpH)(2)] (10) respectively. Complexes 3 and 4 alone were efficient but poorly-controlled initiators for the ROP of rac-lactide, but with an excess of BnOH as a co-initiator they showed features consistent with immortal polymerisation. Use of BnNH(2) led to well-controlled, amine-initiated immortal ROP of rac-lactide, only the second report of this type of process for a group 3 or lanthanoid system.

  10. Carbonato-bridged Ni(II)2Ln(III)2 (Ln(III) = Gd(III), Tb(III), Dy(III)) complexes generated by atmospheric CO2 fixation and their single-molecule-magnet behavior: [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(MeOH or H2O)Ln(III)(NO3)}2]·solvent [3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato].

    PubMed

    Sakamoto, Soichiro; Fujinami, Takeshi; Nishi, Koshiro; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Re, Nazzareno

    2013-06-17

    Atmospheric CO2 fixation of [Ni(II)(3-MeOsaltn)(H2O)2]·2.5H2O [3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato], Ln(III)(NO3)3·6H2O, and triethylamine occurred in methanol/acetone, giving a first series of carbonato-bridged Ni(II)2Ln(III)2 complexes [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(MeOH)Ln(III)(NO3)}2] (1Gd, 1Tb, and 1Dy). When the reaction was carried out in acetonitrile/water, it gave a second series of complexes [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(H2O)Ln(III)(NO3)}2]·2CH3CN·2H2O (2Gd, 2Tb, and 2Dy). For both series, each Ni(II)2Ln(III)2 structure can be described as two di-μ-phenoxo-bridged Ni(II)Ln(III) binuclear units bridged by two carbonato CO3(2-) units to form a carbonato-bridged (μ4-CO3)2{Ni(II)2Ln(III)2} structure. The high-spin Ni(II) ion has octahedral coordination geometry, and the Ln(III) ion is coordinated by O9 donor atoms from Ni(II)(3-MeOsaltn), bidentate NO3(-), and one and two oxygen atoms of two CO3(2-) ions. The NO3(-) ion for the first series roughly lie on Ln-O(methoxy) bonds and are tilted toward the outside, while for the second series, the two oxygen atoms roughly lie on one of the Ln-O(phenoxy) bonds due to the intramolecular hydrogen bond. The temperature-dependent magnetic susceptibilities indicated a ferromagnetic interaction between the Ni(II) and Ln(III) ions (Ln(III) = Gd(III), Tb(III), Dy(III)) for all of the complexes, with a distinctly different magnetic behavior between the two series in the lowest-temperature region due to the Ln(III)-Ln(III) magnetic interaction and/or different magnetic anisotropies of the Tb(III) or Dy(III) ion. Alternating-current susceptibility measurements under the 0 and 1000 Oe direct-current (dc) bias fields showed no magnetic relaxation for the Ni(II)2Gd(III)2 complexes but exhibited an out-of-phase signal for Ni(II)2Tb(III)2 and Ni(II)2Dy(III)2, indicative of slow relaxation of magnetization. The energy barriers, Δ/kB, for the spin flipping were estimated from the Arrhenius plot to be 12.2(7) and 6.1(3) K for 1Tb and 2Tb, respectively, and 18.1(6) and 14.5(4) K for 1Dy and 2Dy, respectively, under a dc bias field of 1000 Oe. Compound 1Dy showed relatively slow relaxation of magnetization reorientation even at zero dc applied field with Δ/kB = 6.6(4) K.

  11. Assembly of 4-, 6- and 8-connected Cd(II) pseudo-polymorphic coordination polymers: Synthesis, solvent-dependent structural variation and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhao-Hao; Xue, Li-Ping, E-mail: lpxue@163.com; Miao, Shao-Bin

    2016-08-15

    The reaction of Cd(NO{sub 3}){sub 2}·4H{sub 2}O, 2,5-thiophenedicarboxylic acid (H{sub 2}tdc) and 1,2-bis(imidazol-1′-yl)methane (bimm) by modulating solvent systems yielded three highly connected pseudo-polymorphic coordination polymers based on different dinuclear [Cd{sub 2}(CO{sub 2}){sub 2}] subunits bridged by carboxylate groups. Single crystal structural analyses reveal structural variation from 4-connected 2D sql layer, 6-connected 2-fold interpenetrated 3D pcu to 8-connected 3D bcu-type network in compounds 1–3. The structural dissimilarity in the structures dependent on the coordination environments of Cd(II) ions and linking modes of mixed ligand influenced by different solvent systems during the synthesis process. Moreover, thermogravimetric and photoluminescence behaviors of 1–3 weremore » also investigated for the first time, and all the complexes emit blue luminescence in the solid state. - Graphical abstract: Key Topic. Different solvent systems modulated three Cd(II) pseudo-polymorphic coordination polymers based on thiophene-2,5-dicarboxylate and 1,2-bis(imidazol-1′-yl)methane mixed ligands. Display Omitted - Highlights: • Three solvent-dependent Cd(II) pseudo-polymorphic coordination polymers have been synthesized. • Structural variation from 4-connected 2D layer, 6-connected 2-fold interpenetrated 3D net to 8-connected 3D net. • All complexes emit blue luminescence.« less

  12. Fabrication of a PANI/CPs composite material: a feasible method to enhance the photocatalytic activity of coordination polymers.

    PubMed

    Xu, Xin-Xin; Cui, Zhong-Ping; Qi, Ji; Liu, Xiao-Xia

    2013-03-21

    To improve the photocatalytic activity of a coordination polymer in the visible light region, polyaniline (PANI) was loaded onto its surface through a facile in situ chemical oxidation polymerization process. The resulting PANI loaded coordination polymer composite materials with excellent stability exhibit significantly higher photocatalytic activities than the pure coordination polymer photocatalyst on the degradation of methyl orange (MO) under visible light irradiation. This enhancement can be ascribed to the introduction of PANI on the surface of the coordination polymer, which leads to efficient separation of photogenerated electron-hole pairs as well as a significant expansion of the photoresponse region. Finally, we discussed the influence of acidity on the morphology and photocatalytic activity of the composite material. An optimal condition to obtain the PANI loaded coordination polymer composite material with excellent photocatalytic activity has been obtained.

  13. Isostructural 1D coordination polymers of Zn(II), Cd(II) and Cu(II) with phenylpropynoic acid and DABCO as organic linkers

    NASA Astrophysics Data System (ADS)

    Saravanakumar, Rajendran; Varghese, Babu; Sankararaman, Sethuraman

    2014-11-01

    Using phenylpropynoic acid (PPA) and 1,4-diazabicyclo[2.2.2]octane (DABCO) as organic spacers, isostructural coordination polymers of Zn(II), Cd(II) and Cu(II) were synthesized by solvothermal method and structurally characterized using single crystal XRD, powder XRD, 13C CP-MAS NMR spectroscopy. Single crystal XRD data revealed four PPA units coordinating with two metal ions forming a paddle wheel secondary building unit (SBU). The paddle wheel units are connected through coordination of DABCO nitrogen to the metal centers from the axial positions leading to the formation of the 1D coordination polymers along the c axis. Intermolecular π stacking and Csbnd H…π interactions between the adjacent polymer chains convert the 1D coordination polymer into an interesting 3D network with the Csbnd H…π bonds running along the crystallographic a and b axes. Thermal and nitrogen adsorption studies of these coordination polymers are reported.

  14. Utility of Lithium in Rare-Earth Metal Reduction Reactions to Form Nontraditional Ln2+ Complexes and Unusual [Li(2.2.2-cryptand)]1+ Cations.

    PubMed

    Huh, Daniel N; Darago, Lucy E; Ziller, Joseph W; Evans, William J

    2018-02-19

    The utility of lithium compared to other alkali metals in generating Ln 2+ rare-earth metal complexes via reduction of Ln 3+ precursors in reactions abbreviated as LnA 3 /M (Ln = rare-earth metal; A = anionic ligand; M = alkali metal) is described. Lithium reduction of Cp' 3 Ln (Cp' = C 5 H 4 SiMe 3 ; Ln = Y, Tb, Dy, Ho) under Ar in the presence of 2.2.2-cryptand (crypt) forms new examples of crystallographically characterizable Ln 2+ complexes of these metals, [Li(crypt)][Cp' 3 Ln]. In each complex, lithium is found in an N 2 O 4 donor atom coordination geometry that is unusual for the cryptand ligand. Magnetic susceptibility data on these new examples of nontraditional divalent lanthanide complexes are consistent with 4f n 5d 1 electronic configurations. The Dy and Ho complexes have exceptionally high single-ion magnetic moments, 11.35 and 11.67 μ B , respectively. Lithium reduction of Cp' 3 Y under N 2 at -35 °C forms the Y 2+ complex (Cp' 3 Y) 1- , which reduces dinitrogen upon warming to room temperature to generate the (N 2 ) 2- complex [Cp' 2 Y(THF)] 2 (μ-η 2 :η 2 -N 2 ). These results provide insight on the factors that lead to reduced dinitrogen complexes and/or stable divalent lanthanide complexes as a function of the specific reducing agent and conditions.

  15. White Polymer Light-Emitting Diodes Based on Exciplex Electroluminescence from Polymer Blends and a Single Polymer.

    PubMed

    Liang, Junfei; Zhao, Sen; Jiang, Xiao-Fang; Guo, Ting; Yip, Hin-Lap; Ying, Lei; Huang, Fei; Yang, Wei; Cao, Yong

    2016-03-09

    In this Article, we designed and synthesized a series of polyfluorene derivatives, which consist of the electron-rich 4,4'-(9-alkyl-carbazole-3,6-diyl)bis(N,N-diphenylaniline) (TPA-Cz) in the side chain and the electron-deficient dibenzothiophene-5,5-dioxide (SO) unit in the main chain. The resulting copolymer PF-T25 that did not comprise the SO unit exhibited blue light-emission with the Commission Internationale de L'Eclairage coordinates of (0.16, 0.10). However, by physically blending PF-T25 with a blue light-emitting SO-based oligomer, a novel low-energy emission correlated to exciplex emerged due to the appropriate energy level alignment of TPA-Cz and the SO-based oligomers, which showed extended exciton lifetime as confirmed by time-resolved photoluminescent spectroscopy. The low-energy emission was also identified in copolymers consisting of SO unit in the main chain, which can effectively compensate for the high-energy emission to produce binary white light-emission. Polymer light-emitting diodes based on the exciplex-type single greenish-white polymer exhibit the peak luminous efficiency of 2.34 cd A(-1) and the maximum brightness of 12 410 cd m(-2), with Commission Internationale de L'Eclairage color coordinates (0.27, 0.39). The device based on such polymer showed much better electroluminescent stability than those based on blending films. These observations indicated that developing a single polymer with the generated exciplex emission can be a novel and effective molecular design strategy toward highly stable and efficient white polymer light-emitting diodes.

  16. Femtomolar Ln(III) affinity in peptide-based ligands containing unnatural chelating amino acids.

    PubMed

    Niedźwiecka, Agnieszka; Cisnetti, Federico; Lebrun, Colette; Delangle, Pascale

    2012-05-07

    The incorporation of unnatural chelating amino acids in short peptide sequences leads to lanthanide-binding peptides with a higher stability than sequences built exclusively from natural residues. In particular, the hexadentate peptide P(22), which incorporates two unnatural amino acids Ada(2) with aminodiacetate chelating arms, showed picomolar affinity for Tb(3+). To design peptides with higher denticity, expected to show higher affinity for Ln(3+), we synthesized the novel unnatural amino acid Ed3a(2) which carries an ethylenediamine triacetate side-chain and affords a pentadentate coordination site. The synthesis of the derivative Fmoc-Ed3a(2)(tBu)(3)-OH, with appropriate protecting groups for direct use in the solid phase peptide synthesis (Fmoc strategy), is described. The two high denticity peptides P(HD2) (Ac-Trp-Ed3a(2)-Pro-Gly-Ada(2)-Gly-NH(2)) and P(HD5) (Ac-Trp-Ada(2)-Pro-Gly-Ed3a(2)-Gly-NH(2)) led to octadentate Tb(3+) complexes with femtomolar stability in water. The position of the high denticity amino acid Ed3a(2) in the hexapeptide sequence appears to be critical for the control of the metal complex speciation. Whereas P(HD5) promotes the formation of polymetallic species in excess of Ln(3+), P(HD2) forms exclusively the mononuclear complex. The octadentate coordination of Tb(3+) by both P(HD) leads to total dehydration of the metal ion in the mononuclear complexes with long luminescence lifetimes (>2 ms). Hence, we demonstrated that unnatural amino acids carrying polyaminocarboxylate side-chains are interesting building blocks to design high affinity Ln-binding peptides. In particular the novel peptide P(HD2) forms a unique octadentate Tb(3+) complex with femtomolar stability in water and an improvement of the luminescence properties with respect to the trisaquo TbP(22) complex by a factor of 4.

  17. Rare Earth Arylsilazido Compounds with Inequivalent Secondary Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boteju, Kasuni Chathurika; Wan, Suchen; Venkatesh, Amrit

    Here, a new bulky silazido ligand, –N(SiHMe 2)Dipp (Dipp = C 6H 3-2,6- iPr 2) supports planar, three-coordinate homoleptic rare earth complexes Ln{N(SiHMe 2)Dipp} 3 (Ln = Sc, Y, Lu) that each contain three secondary Ln←HSi interactions and one agostic CH bond. Y{N(SiHMe 2)Dipp} 3 and acetophenone react via hydrosilylation, rather than by insertion into the Y–N bond or enolate formation.

  18. Rare Earth Arylsilazido Compounds with Inequivalent Secondary Interactions

    DOE PAGES

    Boteju, Kasuni Chathurika; Wan, Suchen; Venkatesh, Amrit; ...

    2018-06-05

    Here, a new bulky silazido ligand, –N(SiHMe 2)Dipp (Dipp = C 6H 3-2,6- iPr 2) supports planar, three-coordinate homoleptic rare earth complexes Ln{N(SiHMe 2)Dipp} 3 (Ln = Sc, Y, Lu) that each contain three secondary Ln←HSi interactions and one agostic CH bond. Y{N(SiHMe 2)Dipp} 3 and acetophenone react via hydrosilylation, rather than by insertion into the Y–N bond or enolate formation.

  19. Syntheses, structures, and magnetic properties of a family of heterometallic heptanuclear [Cu5Ln2] (Ln = Y(III), Lu(III), Dy(III), Ho(III), Er(III), and Yb(III)) complexes: observation of SMM behavior for the Dy(III) and Ho(III) analogues.

    PubMed

    Chandrasekhar, Vadapalli; Dey, Atanu; Das, Sourav; Rouzières, Mathieu; Clérac, Rodolphe

    2013-03-04

    Sequential reaction of the multisite coordination ligand (LH3) with Cu(OAc)2·H2O, followed by the addition of a rare-earth(III) nitrate salt in the presence of triethylamine, afforded a series of heterometallic heptanuclear complexes containing a [Cu5Ln2] core {Ln = Y(1), Lu(2), Dy(3), Ho(4), Er(5), and Yb(6)}. Single-crystal X-ray crystallography reveals that all the complexes are dicationic species that crystallize with two nitrate anions to compensate the charge. The heptanuclear aggregates in 1-6 are centrosymmetrical complexes, with a hexagonal-like arrangement of six peripheral metal ions (two rare-earth and four copper) around a central Cu(II) situated on a crystallographic inversion center. An all-oxygen environment is found to be present around the rare-earth metal ions, which adopt a distorted square-antiprismatic geometry. Three different Cu(II) sites are present in the heptanuclear complexes: two possess a distorted octahedral coordination sphere while the remaining one displays a distorted square-pyramidal geometry. Detailed static and dynamic magnetic properties of all the complexes have been studied and revealed the single-molecule magnet behavior of the Dy(III) and Ho(III) derivatives.

  20. Interplay of structural chemistry and magnetism in perovskites; A study of CaLn2Ni2WO9; Ln=La, Pr, Nd

    NASA Astrophysics Data System (ADS)

    Chin, Chun-Mann; Paria Sena, Robert; Hunter, Emily C.; Hadermann, Joke; Battle, Peter D.

    2017-07-01

    Polycrystalline samples of CaLn2Ni2WO9 (Ln=La, Pr, Nd) have been synthesized and characterised by a combination of X-ray and neutron diffraction, electron microscopy and magnetometry. Each composition adopts a perovskite-like structure with a 5.50, b 5.56, c 7.78 Å, β 90.1° in space group P21/n. Of the two crystallographically distinct six-coordinate sites, one is occupied entirely (Ln=Pr) or predominantly (Ln=La, Nd) by Ni2+ and the other by Ni2+ and W6+ in a ratio of approximately 1:2. None of the compounds shows long-range magnetic order at 5 K. The magnetometry data show that the magnetic moments of the Ni2+ cations form a spin glass below 30 K in each case. The Pr3+ moments in CaPr2Ni2WO9 also freeze but the Nd3+ moments in CaNd2Ni2WO9 do not. This behaviour is contrasted with that observed in other (A,A')B2B'O9 perovskites.

  1. Ordered microporous layered lanthanide 1,3,5-benzenetriphosphonates pillared with cationic organic molecules.

    PubMed

    Araki, Takahiro; Kondo, Atsushi; Maeda, Kazuyuki

    2015-04-13

    Novel isomorphous pillared-layer-type crystalline lanthanide 1,3,5-benzenetriphosphonates were prepared with bpy and dbo as organic pillars (LnBP-bpy and LnBP-dbo; Ln: Ce, Pr, and Nd). Ab initio crystal structure solution using synchrotron X-ray powder diffraction data revealed that the organic pillars do not exist as neutral coordinating ligands but as cationic molecules. Especially the LnBP-dbo phases have ordered interlayer space filled with water molecules between the dbo pillars, and the interlayer water is successfully removed by heating under vacuum with slightly distorted but basically retained pillared layer structures. Microporosity of the materials is confirmed by adsorption of nitrogen, carbon dioxide, and hydrogen gases. Such microporous layered metal phosphonates pillared with cationic molecules should be unprecedented and should offer new strategies to design ordered microporous materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Re-dispersion and film formation of GdVO4 :  Ln3+ (Ln3+ = Dy3+, Eu3+, Sm3+, Tm3+) nanoparticles: particle size and luminescence studies.

    PubMed

    Shanta Singh, N; Ningthoujam, R S; Phaomei, Ganngam; Singh, S Dorendrajit; Vinu, A; Vatsa, R K

    2012-04-21

    GdVO(4) : Ln(3+) (Ln(3+) = Dy(3+), Eu(3+), Sm(3+), Tm(3+)) nanoparticles are prepared by a simple chemical route at 140 °C. The crystallite size can be tuned by varying the pH of the reaction medium. Interestingly, the crystallite size is found to increase significantly when pH increases from 6 to 12. This is related to slower nucleation of the GdVO(4) formation with increase of VO(4)(3-) present in solution. The luminescence study shows an efficient energy transfer from vanadate absorption of GdVO(4) to Ln(3+) and thereby enhanced emissions are obtained. A possible reaction mechanism at different pH values is suggested in this study. As-prepared samples are well dispersed in ethanol, methanol and water, and can be incorporated into polymer films. Luminescence and its decay lifetime studies confirm the decrease in non-radiative transition probability with the increase of heat treatment temperature. Re-dispersed particles will be useful in potential applications of life science and the film will be useful in display devices.

  3. Photoluminescence and Coordination Behaviour of Lanthanide Complexes of Tris (Aminomethyl)Ethane-5-Oxine in Aqueous Solution.

    PubMed

    Akbar, Rifat; Baral, Minati; Kanungo, B K

    2017-01-01

    Photophysical properties of a multidentate tripodal ligand, 5,5'-(2-(((8-hydroxyquinolin-5-yl) methylamino)methyl)-2-methylpropane-1,3-diyl) bis (azanediyl)bis (methylene)diquinolin-8-ol, (TAME5OX), with La 3+ and Er 3+ ions have been examined for photonics applications. The change in behavior in electronic spectra of these complexes reveals the use of TAME5OX as a sensitive optical pH based sensor to detect Ln 3+ ions whereas indication of strong green fluorescence allows simultaneous sensing within the visible region in competitive medium. The intense fluorescence intermittently gets quenched under acidic and basic conditions due to photoinduced intramolecular electron transfer from the excited 8-hydroxyquinoline (8-HQ) moiety to the metal ion. This renders these compounds the OFF-ON-OFF type of pH-dependent fluorescent sensor. The thermodynamic stability and coordination behaviour of the chelator with the said lanthanide ions have also been probed by potentiometric, UV - visible and fluorescence spectrophotometric method. TAME5OX forms protonated complex [Ln (H 4 L)] 4+ below pH ~4.0 which sequentially deprotonates through one proton process with increase of pH. The stability constants of neutral complexes have been determined to be in the range log β 110  = 32-34 and pLn in the range of 14-20, indicating TAME5OX is a good synthetic lanthanide chelator. Theoretical spectra were also calculated by ZINDO/s methodology at single excitations (CIS) level on PM7 as sparkle energy-minimized geometries.

  4. Two-fold interpenetrating btc based cobaltous coordination polymer: A promising catalyst for solvent free oxidation of 1-hexene

    NASA Astrophysics Data System (ADS)

    Bora, Sanchay J.; Paul, Rima; Nandi, Mithun; Bhattacharyya, Pradip K.

    2017-12-01

    This work describes the synthesis of a new 2-D coordination polymer (CP), [Co3(btc)2(dmp)8]n (btc = 1,3,5-benzenetricarboxylate and dmp = 3,5-dimethylpyrazole) and its catalytic activity towards the oxidation reaction of 1-hexene to form oxygenated compounds under solvent free condition. Structural analysis reveals that Co(II) cations in this polymeric compound are linked by btc3- anions with alternate tetrahedral/octahedral coordination forming a two-fold interpenetrated 3-connected hcb underlying net. Electronic spectrum of the cobaltous polymer has been calculated using TDDFT/B3LYP method for making the appropriate assignments of electronic transitions. Catalytic results show good conversions of the starting material to oxygenated products with high selectivities for 1,2-epoxyhexane and 1-hexanal.

  5. Polymer Directed Self-Assembly of pH-Responsive Antioxidant Nanoparticles

    PubMed Central

    Tang, Christina; Amin, Devang; Messersmith, Phillip B.; Anthony, John E.; Prud’homme, Robert K.

    2015-01-01

    We have developed pH-responsive, multifunctional nanoparticles based on encapsulation of an antioxidant, tannic acid (TA), using Flash NanoPrecipitation, a polymer directed self-assembly method. Formation of insoluble coordination complexes of tannic acid and iron during mixing drives nanoparticle assembly. Tuning the core material to polymer ratio, the size of the nanoparticles can be readily tuned between 50 and 265 nm. The resulting nanoparticle is pH-responsive, i.e. stable at pH 7.4 and soluble under acidic conditions due to the nature of the coordination complex. Further, the coordination complex can be coprecipitated with other hydrophobic materials such as therapeutics or imaging agents. For example, coprecipitation with a hydrophobic fluorescent dye creates fluorescent nanoparticles. In vitro, the nanoparticles have low cytotoxicity show antioxidant activity. Therefore, these particles may facilitate intracellular delivery of antioxidants. PMID:25760226

  6. Novel 3D bismuth-based coordination polymers: Synthesis, structure, and second harmonic generation properties

    NASA Astrophysics Data System (ADS)

    Wibowo, Arief C.; Smith, Mark D.; Yeon, Jeongho; Halasyamani, P. Shiv; zur Loye, Hans-Conrad

    2012-11-01

    Two new 3D bismuth containing coordination polymers are reported along with their single crystal structures and SHG properties. Compound 1: Bi2O2(pydc) (pydc=pyridine-2, 5-dicarboxylate), crystallizes in the monoclinic, polar space group, P21 (a=9.6479(9) Å, b=4.2349(4) Å, c=11.9615(11) Å, β=109.587(1)°), which contains Bi2O2 chains that are connected into a 3D structure via the pydc ligands. Compound 2: Bi4Na4(1R3S-cam)8(EtOH)3.1(H2O)3.4 (1R3S cam=1R3S-camphoric acid) crystallizes in the monoclinic, polar space group, P21 (a=19.0855(7) Å, b=13.7706(5) Å, c=19.2429(7) Å, β=90.701(1)°) and is a true 3D coordination polymer. These are two example of SHG compounds prepared using unsymmetric ligands (compound 1) or chiral ligands (compound 2), together with metals that often exhibit stereochemically-active lone pairs, such as Bi3+, a synthetic approach that resulted in polar, non-centrosymmetric, 3D metal-organic coordination polymer.

  7. Sonochemical synthesis and structural characterization of a new nanostructured Co(II) supramolecular coordination polymer with Lewis base sites as a new catalyst for Knoevenagel condensation.

    PubMed

    Joharian, Monika; Abedi, Sedigheh; Morsali, Ali

    2017-11-01

    A new Co(II) mixed-ligand coordination supramolecular polymer with composition [Co 2 (ppda)(4-bpdh) 2 (NO 3 ) 2 ] n (1) (where, ppda=p-phenylenediacrylic acid, 4-bpdh=2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene) was synthesized using solvothermal, mechanochemical and sonochemical methods. Compound 1 and the new nanostructure have been characterized by single-crystal X-ray, infrared spectroscopy (IR), powder X-ray diffraction (PXRD) analysis and scanning electron microscopy (SEM). The thermal stability of compound 1 was also studied by thermal gravimetric analysis (TGA). The surface area of these compounds was determined by BET. The single-crystal X-ray data shows a new interesting two-dimensional coordination polymer (CP). In addition, the effect of various sonication concentrations of initial reagents, power of ultrasound irradiation and also the time on the size and morphology of nano-structured coordination polymer 1 were evaluated. Moreover, it has been demonstrated that the nanostructure of the CP1 can be used as a catalyst in Knoevenagel condensation reaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A coordination polymer based magnetic adsorbent material for hemoglobin isolation from human whole blood, highly selective and recoverable

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxing; Tan, Jipeng; Xu, Xinxin; Shi, Fanian; Li, Guanglu; Yang, Yiqiao

    2017-09-01

    A composite material has been obtained successfully through the loading of nanoscale coordination polymer on magnetic Fe3O4@SiO2 core-shell particle. In this composite material, coordination polymer nanoparticles distribute uniformly on Fe3O4@SiO2 and these two components are "tied" together firmly with chemical bonds. Adsorption experiments suggest this composite material exhibits very excellent selectivity to hemoglobin. But under the same condition, its adsorption to bovine serum albumin can almost be ignored. This selectivity can be attributed to the existence of hydrophobic interactions between coordination polymer nanoparticle and hemoglobin. For composite material, the hemoglobin adsorption process follows Langmuir model perfectly with high speed. The adsorbed hemoglobin can be eluted easily by sodium dodecyl sulfate stripping reagent with structure and biological activity of hemoglobin keeps well. The composite material was also employed to separate hemoglobin from human whole blood, which receives a very satisfactory result. Furthermore, magnetic measurement reveals ferromagnetic character of this composite material with magnetization saturation 3.56 emu g-1 and this guarantees its excellent magnetic separation performance from the treated solution.

  9. Structural study of complexes formed by acidic and neutral organophosphorus reagents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braatz, Alexander D.; Antonio, Mark R.; Nilsson, Mikael

    The coordination of the trivalent 4f ions, Ln = La 3+, Dy 3+, and Lu 3+, with neutral and acidic organophosphorus reagents, both individually and combined, was studied by use of X-ray absorption spectroscopy. These studies provide metrical information about the interatomic interactions between these cations and the ligands tri- n-butyl phosphate (TBP) and di- n-butyl phosphoric acid (HDBP), whose behavior are of practical importance to chemical separation processes that are currently used on an industrial scale. Previous studies have suggested the existence of complexes involving a mixture of ligands, accounting for extraction synergy. Through systematic variation of the aqueousmore » phase acidity and extractant concentration and combination, we have found that complexes with Ln and TBP : HDBP at any mixture and HDBP alone involve direct Ln–O interactions involving 6 oxygen atoms and distant Ln–P interactions involving on average 3–5 phosphorus atoms per Ln ion. It was also found that Ln complexes formed by TBP alone seem to favor eight oxygen coordination, though we were unable to obtain metrical results regarding the distant Ln–P interactions due to the low signal attributed to a lower concentration of Ln ions in the organic phases. Our study does not support the existence of mixed Ln–TBP–HDBP complexes but, rather, indicates that the lanthanides are extracted as either Ln–HDBP complexes or Ln–TBP complexes and that these complexes exist in different ratios depending on the conditions of the extraction system. Furthermore, this fundamental structural information offers insight into the solvent extraction processes that are taking place and are of particular importance to issues arising from the separation and disposal of radioactive materials from used nuclear fuel.« less

  10. Structural study of complexes formed by acidic and neutral organophosphorus reagents

    DOE PAGES

    Braatz, Alexander D.; Antonio, Mark R.; Nilsson, Mikael

    2016-12-23

    The coordination of the trivalent 4f ions, Ln = La 3+, Dy 3+, and Lu 3+, with neutral and acidic organophosphorus reagents, both individually and combined, was studied by use of X-ray absorption spectroscopy. These studies provide metrical information about the interatomic interactions between these cations and the ligands tri- n-butyl phosphate (TBP) and di- n-butyl phosphoric acid (HDBP), whose behavior are of practical importance to chemical separation processes that are currently used on an industrial scale. Previous studies have suggested the existence of complexes involving a mixture of ligands, accounting for extraction synergy. Through systematic variation of the aqueousmore » phase acidity and extractant concentration and combination, we have found that complexes with Ln and TBP : HDBP at any mixture and HDBP alone involve direct Ln–O interactions involving 6 oxygen atoms and distant Ln–P interactions involving on average 3–5 phosphorus atoms per Ln ion. It was also found that Ln complexes formed by TBP alone seem to favor eight oxygen coordination, though we were unable to obtain metrical results regarding the distant Ln–P interactions due to the low signal attributed to a lower concentration of Ln ions in the organic phases. Our study does not support the existence of mixed Ln–TBP–HDBP complexes but, rather, indicates that the lanthanides are extracted as either Ln–HDBP complexes or Ln–TBP complexes and that these complexes exist in different ratios depending on the conditions of the extraction system. Furthermore, this fundamental structural information offers insight into the solvent extraction processes that are taking place and are of particular importance to issues arising from the separation and disposal of radioactive materials from used nuclear fuel.« less

  11. Non-Markovian closure kinetics of flexible polymers with hydrodynamic interactions.

    PubMed

    Levernier, N; Dolgushev, M; Bénichou, O; Blumen, A; Guérin, T; Voituriez, R

    2015-11-28

    This paper presents a theoretical analysis of the closure kinetics of a polymer with hydrodynamic interactions. This analysis, which takes into account the non-Markovian dynamics of the end-to-end vector and relies on the preaveraging of the mobility tensor (Zimm dynamics), is shown to reproduce very accurately the results of numerical simulations of the complete nonlinear dynamics. It is found that Markovian treatments based on a Wilemski-Fixman approximation significantly overestimate cyclization times (up to a factor 2), showing the importance of memory effects in the dynamics. In addition, this analysis provides scaling laws of the mean first cyclization time (MFCT) with the polymer size N and capture radius b, which are identical in both Markovian and non-Markovian approaches. In particular, it is found that the scaling of the MFCT for large N is given by T ∼ N(3/2)ln(N/b(2)), which differs from the case of the Rouse dynamics where T ∼ N(2). The extension to the case of the reaction kinetics of a monomer of a Zimm polymer with an external target in a confined volume is also presented.

  12. Toward the Prediction of Water Exchange Rates in Magnetic Resonance Imaging Contrast Agents: A Density Functional Theory Study.

    PubMed

    Regueiro-Figueroa, Martín; Platas-Iglesias, Carlos

    2015-06-18

    We present a theoretical investigation of Gd-Owater bonds in different complexes relevant as contrast agents in magnetic resonance imaging (MRI). The analysis of the Ln-Owater distances, electron density (ρBCP), and electron localization function (ELF) at the bond critical points of [Ln(DOTA)(H2O)](-) and [Ln(DTPA-BMA)(H2O)] indicates that the strength of the Ln-Owater bonds follows the order DTPA-BMA > DOTA (M isomer) > DOTA (m isomer). The ELF values decrease along the 4f period as the Ln-Owater bonds get shorter, in line with the labile capping bond phenomenon. Extension of these calculations to other Gd(3+) complexes allowed us to correlate the experimentally observed water exchange rates and the calculated ρBCP and ELF values. The water exchange reaction becomes faster as the Gd-Owater bonds are weakened, which is reflected in longer bond distances and lower values of ρBCP and ELF. DKH2 calculations show that the two coordinated water molecules may also have significantly different (17)O hyperfine coupling constants (HFCCs).

  13. Recyclable Cu(II)-Coordination Crosslinked Poly(benzimidazolyl pyridine)s as High-Performance Polymers.

    PubMed

    Wang, Cheng; Yang, Li; Chang, Guanjun

    2018-03-01

    Crosslinked high-performance polymers have many industrial applications, but are difficult to recycle or rework. A novel class of recyclable crosslinking Cu(II)-metallo-supramolecular coordination polymers are successfully prepared, which possess outstanding thermal stability and mechanical property. More importantly, the Cu 2+ coordination interactions can be further removed via external pyrophosphate to recover the linear polymers, which endow the crosslinking polymers with recyclability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Bio-Inspired Metal-Coordination Dynamics: A Unique Tool for Engineering Soft Matter Mechanics

    NASA Astrophysics Data System (ADS)

    Holten-Andersen, Niels

    Growing evidence supports a critical role of metal-coordination in soft biological material properties such as self-healing, underwater adhesion and autonomous wound plugging. Using bio-inspired metal-binding polymers, initial efforts to mimic these properties with metal-coordination crosslinked polymer materials have shown promise. In addition, with polymer network mechanics strongly coupled to coordinate crosslink dynamics material properties can be easily tuned from visco-elastic fluids to solids. Given their exploitation in desirable material applications in Nature, bio-inspired metal-coordinate complex crosslinking provides an opportunity to further advance synthetic polymer materials design. Early lessons from this pursuit are presented.

  15. Synthesis, characterization and heterogeneous base catalysis of amino functionalized lanthanide metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Huang, Jinping; Li, Chunmei; Tao, Lingling; Zhu, Huilin; Hu, Gang

    2017-10-01

    Lanthanide metal-organic frameworks (Ln-MOFs) are featured by their tolerance to water and dense structure. In this work, an amine-functionalized Ln-MOF was facilely synthesized by coordination of terbium with 2-aminoterephthalic acid under the condition of microwave irradiation. The crystal structure was characterized by single crystal X-ray diffraction, FT-IR, Raman, TG-DTA and XPS analysis. The basic catalytic activity of the NH2-Tb-MOF was evaluated for Knoevenagel condensation and Henry reactions. Apart from the high activity and 100% selectivity to the condensation product, the NH2-Tb-MOF catalyst could be easily recycled and reused owing to the high stability of the MOF framework formed by coordination of Tb3+ with carboxylic groups. Remarkably, the NH2-Tb-MOF exhibited size-selective catalysis to substrates. For the small-sized reactants, it displayed comparable activity to the homogeneous catalyst of aniline owing to the high dispersion of NH2- active sites and the low diffusion limits. However, in the same reaction system, extremely poor activity in Knoevenagel condensation and Henry reaction for the bulky substrate 4-(tert-butyl) benzaldehyde was observed due to the both effects of substitute and inhibition of diffusion into the micropores. Crystal structure analysis provided a mechanistic evidence that the heterogeneous base catalysis arose from the amino groups densely distributed inside the micropores.

  16. A new three-dimensional bis(benzimidazole)-based cadmium(II) coordination polymer

    NASA Astrophysics Data System (ADS)

    Hao, Shao Yun; Hou, Suo Xia; Hao, Zeng Chuan; Cui, Guang Hua

    2018-01-01

    A new coordination polymer (CP), formulated as [Cd(L)(DCTP)]n (1) (L = 1,1‧-(1,4-butanediyl)bis(2-methylbenzimidazole), H2DCTP = 2,5-dichloroterephthalic acid), was synthesized under hydrothermal conditions and the performance as luminescent probe was also investigated. Single-crystal X-ray diffraction reveals CP 1 is a 3D 3-fold interpenetrated dia network with large well-defined pores. It is found that CP 1 revealed highly sensitive luminescence sensing for Fe3 + ions in acetonitrile solution with a high quenching efficiency of KSV = 2541.238 L·mol- 1 and a low detection limit of 3.2 μM (S/N = 3). Moreover, the photocatalytic efficiency of 1 for degradation of methylene blue could reach 82.8% after 135 min. Therefore, this coordination polymer could be viewed as multifunctional material for selectively sensing Fe3 + ions and effectively degrading dyes.

  17. Extending the lanthanide-terephthalate system: Isolation of an unprecedented Tb(III)-based coordination polymer with high potential porosity and luminescence properties

    NASA Astrophysics Data System (ADS)

    Le Natur, François; Calvez, Guillaume; Freslon, Stéphane; Daiguebonne, Carole; Bernot, Kevin; Guillou, Olivier

    2015-04-01

    A novel coordination polymer with chemical formula {[Tb(bdc)1.5(H2O)]ṡ(DMF)(H2O)}∞ (1) has been synthesized by reaction between 1,4-benzene-dicarboxylic acid (H2bdc) and di-cationic hexanuclear entity [Tb6O(OH)8(NO3)6(H2O)12]2+ in an ethylene glycol (EG)/N,N-dimethylformamide (DMF) mixture. This compound has been obtained as single crystals by slow evaporation in air at room temperature. If the hexanuclear entity is destroyed during the reaction, the coordination polymer that is obtained is original and presents promising potential micro-porosity and luminescent properties. It crystallizes in the monoclinic system, space group C12/c1 (No. 15) with the cell parameters a = 23.7540(1) Å, b = 10.5390(4) Å, c = 19.7580(3) Å, β = 125.8100(1)° and Z = 8.

  18. NMR and TRLFS studies of Ln(iii) and An(iii) C5-BPP complexes† †Electronic supplementary information (ESI) available: LIFDI-MS spectra and additional NMR spectra. See DOI: 10.1039/c4sc03103b

    PubMed Central

    Beele, Björn B.; Geist, Andreas; Müllich, Udo; Kaden, Peter; Panak, Petra J.

    2015-01-01

    C5-BPP is a highly efficient N-donor ligand for the separation of trivalent actinides, An(iii), from trivalent lanthanides, Ln(iii). The molecular origin of the selectivity of C5-BPP and many other N-donor ligands of the BTP-type is still not entirely understood. We present here the first NMR studies on C5-BPP Ln(iii) and An(iii) complexes. C5-BPP is synthesized with 10% 15N labeling and characterized by NMR and LIFDI-MS methods. 15N NMR spectroscopy gives a detailed insight into the bonding of C5-BPP with lanthanides and Am(iii) as a representative for trivalent actinide cations, revealing significant differences in 15N chemical shift for coordinating nitrogen atoms compared to Ln(iii) complexes. The temperature dependence of NMR chemical shifts observed for the Am(iii) complex indicates a weak paramagnetism. This as well as the observed large chemical shift for coordinating nitrogen atoms show that metal–ligand bonding in Am(C5-BPP)3 has a larger share of covalence than in lanthanide complexes, confirming earlier studies. The Am(C5-BPP)3 NMR sample is furthermore spiked with Cm(iii) and characterized by time-resolved laser fluorescence spectroscopy (TRLFS), yielding important information on the speciation of trace amounts of minor complex species. PMID:29560242

  19. Stepwise assembly of a semiconducting coordination polymer [Cd8S(SPh)14(DMF)(bpy)]n and its photodegradation of organic dyes.

    PubMed

    Xu, Chao; Hedin, Niklas; Shi, Hua-Tian; Xin, ZhiFeng; Zhang, Qian-Feng

    2015-04-14

    Chalcogenolate clusters can be interlinked with organic linkers into semiconducting coordination polymers with photocatalytic properties. Here, discrete clusters of Cd8S(SPh)14(DMF)3 were interlinked with 4,4'-bipyridine into a one dimensional coordination polymer of [Cd8S(SPh)14(DMF)(bpy)]n with helical chains. A stepwise mechanism for the assembly of the coordination polymer in DMF was revealed by an ex situ dynamic light scattering study. The cluster was electrostatically neutral and showed a penta-supertetrahedral structure. During the assembly each cluster was interlinked with two 4,4'-bipyridine molecules, which replaced the two terminal DMF molecules of the clusters. In their solid-state forms, the cluster and the coordination polymer were semiconductors with wide band gaps of 3.08 and 2.80 ev. They photocatalytically degraded rhodamine B and methylene blue in aqueous solutions. The moderate conditions used for the synthesis could allow for further in situ studies of the reaction-assembly of related clusters and coordination polymers.

  20. A copper-based layered coordination polymer: synthesis, magnetic properties and electrochemical performance in supercapacitors.

    PubMed

    Liu, Qi; Liu, Xiuxiu; Shi, Changdong; Zhang, Yanpeng; Feng, Xuejun; Cheng, Mei-Ling; Su, Seng; Gu, Jiande

    2015-11-28

    A copper-based layered coordination polymer ([Cu(hmt)(tfbdc)(H2O)]; hmt = hexamethylenetetramine, tfbdc = 2,3,5,6-tetrafluoroterephthalate; Cu-LCP) has been synthesized, and it has been structurally and magnetically characterized. The Cu-LCP shows ferromagnetic interactions between the adjacent copper(II) ions. Density functional theory calculations on the special model of Cu-LCP support the occurrence of ferromagnetic interactions. As an electrode material for supercapacitors, Cu-LCP exhibits a high specific capacitance of 1274 F g(-1) at a current density of 1 A g(-1) in 1 M LiOH electrolyte, and the capacitance retention is about 88% after 2000 cycles.

  1. Pyro-electrification of polymer membranes for cell patterning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rega, R.; Gennari, O.; Mecozzia, L.

    2016-05-18

    In the recent years, much attention has been devoted to the possibility of charging polymer-based materials, due to their potential in developing large-scale and inexpensive flexible thin-film technology. The availability of localized electrostatic fields is in of great interest for a huge amount of applications such as distribution of biomolecules and cells from the liquid phase. Here we report a voltage-free pyro-electrification (PE) process able to induce permanent dipoles into polymer layers; the lithium niobate (LN) crystal is the key component that plays the multi-purpose role of sustaining, heating and poling the polymer layer that is then peeled-off easily inmore » order to have a free-standing charged membrane. The results show the fascinating application for the living cell patterning. It well known that cell behaviour is affected by chemical and topographical cues of substrate. In fact, polymers, such as polystyrene (PS) and poly(methyl methacrylate) (PMMA), are naturally cytophobic and require specific functionalization treatments in order to promote cell adhesion. Through our proposal technique, it’s possible to obtain spontaneous organization and a driven growth of SH-SY5Y cells that is solely dictated by the nature of the charge polymer surface, opening, in this way, the innovative chance to manipulate and transfer biological samples on a free-standing polymer layer [1].« less

  2. High voltage insulation of bushing for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Jin; Choi, Jae-Hyeong; Kim, Sang-Hyun

    2012-12-01

    For the operation of high temperature superconducting (HTS) power equipments, it is necessary to develop insulating materials and high voltage (HV) insulation technology at cryogenic temperature of bushing. Liquid nitrogen (LN2) is an attractive dielectric liquid. Also, the polymer insulating materials are expected to be used as solid materials such as glass fiber reinforced plastic (GFRP), polytetra-fluoroethylene (PTFE, Teflon), Silicon (Si) rubber, aromatic polyamide (Nomex), EPDM/Silicon alloy compound (EPDM/Si). In this paper, the surface flashover characteristics of various insulating materials in LN2 are studied. These results are studied at both AC and impulse voltage under a non-uniform field. The use of GFRP and Teflon as insulation body for HTS bushing should be much desirable. Especially, GFRP is excellent material not only surface flashover characteristics but also mechanical characteristics at cryogenic temperature. The surface flashover is most serious problem for the shed design in LN2 and operation of superconducting equipments.

  3. Functional Two-Dimensional Coordination Polymeric Layer as a Charge Barrier in Li-S Batteries.

    PubMed

    Huang, Jing-Kai; Li, Mengliu; Wan, Yi; Dey, Sukumar; Ostwal, Mayur; Zhang, Daliang; Yang, Chih-Wen; Su, Chun-Jen; Jeng, U-Ser; Ming, Jun; Amassian, Aram; Lai, Zhiping; Han, Yu; Li, Sean; Li, Lain-Jong

    2018-01-23

    Ultrathin two-dimensional (2D) polymeric layers are capable of separating gases and molecules based on the reported size exclusion mechanism. What is equally important but missing today is an exploration of the 2D layers with charge functionality, which enables applications using the charge exclusion principle. This work demonstrates a simple and scalable method of synthesizing a free-standing 2D coordination polymer Zn 2 (benzimidazolate) 2 (OH) 2 at the air-water interface. The hydroxyl (-OH) groups are stoichiometrically coordinated and implement electrostatic charges in the 2D structures, providing powerful functionality as a charge barrier. Electrochemical performance of the Li-S battery shows that the Zn 2 (benzimidazolate) 2 (OH) 2 coordination polymer layers efficiently mitigate the polysulfide shuttling effects and largely enhance the battery capacity and cycle performance. The synthesis of the proposed coordination polymeric layers is simple, scalable, cost saving, and promising for practical use in batteries.

  4. Double layer zinc-UDP coordination polymers: structure and properties.

    PubMed

    Qiu, Qi-Ming; Gu, Leilei; Ma, Hongwei; Yan, Li; Liu, Minghua; Li, Hui

    2018-05-17

    A homochiral Zn-UDP coordination polymer with an alternating parallel ABAB sequence was constructed and studied by X-ray single crystal diffraction analysis. Its crystal structure shows that there are potentially open sites in the 2D layers. The activation of the sites makes the coordination polymer a fluorescent sensor for novel heterogeneous detection of amino acids.

  5. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    NASA Astrophysics Data System (ADS)

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz

    2015-11-01

    Three new coordination polymers [Mn(hip)(phen) (H2O)]n (1), [Co(hip)(phen) (H2O)]n (2), and [Cd(hip) (phen) (H2O)]n (3) (H2hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H2O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π-π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π-π stacking provide thermal stability to polymers. Compounds 1 and 2 are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift.

  6. Synthesis, characterization and antitumor activity of Ln(III) complexes with hydrazone Schiff base derived from 2-acetylpyridine and isonicotinohydrazone

    PubMed Central

    Xie, Jing; Shen, Shanshan; Chen, Ruhua; Xu, Jun; Dong, Kun; Huang, Jiancui; Lu, Qin; Zhu, Wenjiao; Ma, Tieliang; Jia, Lei; Cai, Hongxin; Zhu, Taofeng

    2017-01-01

    In the present study, two isostructural lanthanide (Ln)(III) complexes, namely Ln(HL)2(NO3)(CH3OH)2)·CH3OH, where Ln = La in complex 1 and Ce in complex 2, and hydrogen ligand (HL) = (E)-N'-[1-(2-pyridinyl)ethylidene]isonicotinohydrazone, have been isolated and characterized by elemental analysis, infrared spectra and single-crystal X-ray diffraction analysis. The results revealed that the acylhydrazone ligand HL in each complex was deprotonated as an anionic ligand and coordinated to the central La(III) ion via enolization of oxygen and nitrogen atoms. Furthermore, the antitumor effects and potential mechanisms of the two complexes were explored in the human lung cancer cell line A549 and in the human gastric cancer cell lines BGC823 and SGC7901. In the present study, the roles the two complexes on the proliferation and apoptosis of the above tumor cell lines were determined by MTT assay and Annexin V/propidium iodide flow cytometry, respectively. Furthermore, various apoptosis-associated key genes, including caspase 3, B cell lymphoma (Bcl)-2-associated X protein (Bax) and Bcl-2, were detected by western blotting to explore the possible antitumor mechanisms of the two complexes. The results revealed that the two complexes had comparable antitumor activities in terms of inhibiting proliferation and inducing apoptosis in tumor cell lines. The changes in the protein expression levels of caspase 3, Bax and Bcl-2 further verified the apoptosis-promoting mechanisms of the two complexes in tumor cell lines. These findings have a great potential in biomedical applications of novel Ln(III) complexes. PMID:28599443

  7. Coordinative nanoporous polymers synthesized with hydrogen-bonded columnar liquid crystals.

    PubMed

    Ishihara, Shinsuke; Furuki, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko; Takeoka, Shinji

    2012-10-01

    In this paper, we report the development of nanoporous polymer which demonstrates the coordination property toward zinc porphyrin. A hydrogen-bonded columnar liquid crystalline precursor composed of a triphenylene template and three equivalent of the surrounding dendric amphiphile bearing a pyridyl head group and a polymerizable aliphatic chain, was covalently fixed by photopolymerization, and then the subsequent selective removal of the template successively resulted in a nanoporous polymer in which the pore wall is modified with pyridyl groups. The nanoporous polymer reflected the conformation of template, and displayed considerable coordination ability of the pyridyl groups towards zinc porphyrin. The coordinative nanoporous polymer is promising as a nano-scaled scaffold for the organization of dyes into functional supramolecular architectures.

  8. Theoretical estimates of equilibrium sulfur isotope effects in aqueous sulfur systems: Highlighting the role of isomers in the sulfite and sulfoxylate systems

    NASA Astrophysics Data System (ADS)

    Eldridge, D. L.; Guo, W.; Farquhar, J.

    2016-12-01

    We present theoretical calculations for all three isotope ratios of sulfur (33S/32S, 34S/32S, 36S/32S) at the B3LYP/6-31+G(d,p) level of theory for aqueous sulfur compounds modeled in 30-40H2O clusters spanning the range of sulfur oxidation state (Sn, n = -2 to +6) for estimating equilibrium fractionation factors in aqueous systems. Computed 34β values based on major isotope (34S/32S) reduced partition function ratios (RPFRs) scale to a first order with sulfur oxidation state and coordination, where 34β generally increase with higher oxidation state and increasing coordination of the sulfur atom. Exponents defining mass dependent relationships based on β values (x/34κ = ln(xβ)/ln(34β), x = 33 or 36) conform to tight ranges over a wide range of temperature for all aqueous compounds (33/34κ ≈ 0.5148-0.5159, 36/34κ ≈ 1.89-1.90 from T ⩾ 0 °C). The exponents converge near a singular value for all compounds at the high temperature limit (33/34κT→∞ = 0.51587 ± 0.00003 and 36/34κT→∞ = 1.8905 ± 0.0002; 1 s.d. of all computed compounds), and typically follow trends based on oxidation state and coordination similar to those seen in 34β values at lower temperatures. Theoretical equilibrium fractionation factors computed from these β-values are compared to experimental constraints for HSO3-T(aq)/SO2(g, aq), SO2(aq)/SO2(g), H2S(aq)/H2S(g), H2S(aq)/HS-(aq), SO42-(aq)/H2ST(aq), S2O32-(aq) (intramolecular), and S2O32-(aq)/H2ST(aq), and generally agree within a reasonable estimation of uncertainties. We make predictions of fractionation factors where other constraints are unavailable. Isotope partitioning of the isomers of protonated compounds in the sulfite and sulfoxylate systems depend strongly on whether protons are bound to either sulfur or oxygen atoms. The magnitude of the HSO3-T/SO32- major isotope (34S/32S) fractionation factor is predicted to increase with temperature from 0 to 70 °C due to the combined effects of the large magnitude (HS)O3-/SO32- fractionation factor (1000ln34α(HS)bisulfite-sulfite = 19.9‰, 25 °C) relative to the (HO)SO2-/SO32- fractionation factor (1000ln34α(HO)bisulfite-sulfite = -2.2‰, 25 °C), and the increased stability of the (HS)O3- isomer with increasing temperature. We argue that isomerization phenomenon should be considered in models of the sulfur cycle, including models that describe the overall sulfur isotope fractionations associated with microbial metabolism (e.g., microbial sulfate reduction).

  9. Chemical anchoring of organic conducting polymers to semiconducting surfaces

    DOEpatents

    Frank, A.J.; Honda, K.

    1984-01-01

    According to the present invention, an improved method of coating electrodes with conductive polymer films and/or preselected catalysts is provided. The charge conductive polymer is covalently or coordinatively attached to the electrode surface to strengthen the adhesion characteristics of the polymer to the electrode surface or to improve charge conductive properties between the conductive polymer and the electrode surface. Covalent or coordinative attachment is achieved by a number of alternative methods including covalently or coordinatively attaching the desired monomer to the electrode by means of a suitable coupling reagent and, thereafter, electrochemically polymerizing the monomer in situ.

  10. Chemical anchoring of organic conducting polymers to semiconducting surfaces

    DOEpatents

    Frank, Arthur J.; Honda, Kenji

    1984-01-01

    According to the present invention, an improved method of coating electrodes with conductive polymer films and/or preselected catalysts is provided. The charge-conductive polymer is covalently or coordinatively attached to the electrode surface to strengthen the adhesion characteristics of the polymer to the electrode surface or to improve charge-conductive properties between the conductive polymer and the electrode surface. Covalent or coordinative attachment is achieved by a number of alternative methods including covalently or coordinatively attaching the desired monomer to the electrode by means of a suitable coupling reagent and, thereafter, electrochemically polymerizing the monomer in situ.

  11. Room temperature synthesis of a Zn(II) metal-organic coordination polymer for dye removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbasi, Alireza, E-mail: aabbasi@khayam.ut.ac.ir; Gharib, Maniya; Najafi, Mahnaz

    2016-03-15

    A new one-dimensional (1D) coordination polymer, [Zn(4,4′-bpy)(H{sub 2}O){sub 4}](ADC)·4H{sub 2}O (1) (4,4′-bpy=4,4′-bipyridine and H{sub 2}ADC=acetylenedicarboxylic acid), was synthesized at room temperature. The crystal structure of the coordination polymer was determined by single-crystal X-ray diffraction analysis. Compound 1 was also characterized by FT-IR, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The catalytic activity of 1 was evaluated in the color removal of Bismarck brown as a representative of dye pollutant in water under mild conditions. Coordination polymer 1 exhibited good catalytic activity and stability in the decolorization of Bismarck brown and could be easily recovered and reused for at leastmore » three cycles. - Graphical abstract: A new 1D coordination polymer as catalyst for the degradation of Bismarck brown aqueous solution. - Highlights: • A 1D coordination polymer has been synthesized at room temperature. • The prepared compound was utilized for color removal of Bismarck brown dye. • Good catalytic activity and stability in the dye decolorization has been found.« less

  12. Structural variability in Cu(I) and Ag(I) coordination polymers with a flexible dithione ligand: Synthesis, crystal structure, microbiological and theoretical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beheshti, Azizolla, E-mail: a.beheshti@scu.ac.ir; Nozarian, Kimia; Babadi, Susan Soleymani

    Two new compounds namely [Cu(SCN)(µ-L)]{sub n} (1) and ([Ag (µ{sub 2}-L)](ClO{sub 4})){sub n} (2) have been synthesized at room temperature by one-pot reactions between the 1,1-(1,4-butanediyl)bis(1,3-dihydro-3-methyl-1H-imidazole- 2-thione) (L) and appropriate copper(I) and silver(I) salts. These polymers have been characterized by single crystal X-ray diffraction, XRPD, TGA, elemental analysis, infrared spectroscopy, antibacterial activity and scanning probe microscopy studies. In the crystal structure of 1, copper atoms have a distorted trigonal planar geometry with a CuS{sub 2}N coordination environment. Each of the ligands in the structure of 1 acting as a bidentate S-bridging ligand to form a 1D chain structure. Additionally, themore » adjacent 1D chains are interconnected by the intermolecular C-H…S interactions to create a 2D network structure. In contrast to 1, in the cationic 3D structure of 2 each of the silver atoms exhibits an AgS{sub 4} tetrahedral geometry with 4-membered Ag{sub 2}S{sub 2} rings. In the structure of 2, the flexible ligand adopts two different conformations; gauche-anti-gauche and anti-anti-anti. The antibacterial studies of these polymers showed that polymer 2 is more potent antibacterial agent than 1. Scanning probe microscopy (SPM) study of the treated bacteria was carried out to investigate the structural changes cause by the interactions between the polymers and target bacteria. Theoretical study of polymer 1 investigated by the DFT calculations indicates that observed transitions at 266 nm and 302 nm in the UV–vis spectrum could be attributed to the π→π* and MLCT transitions, respectively. - Graphical abstract: Two new Cu(I) and Ag(I) coordination polymers have been have been synthesized by one-pot reactions. Copper complex has a 2D non-covalent structure, but silver compound is a 3D coordination compound. These compounds have effective antibacterial activity. - Highlights: • Cu(I) and Ag(I) based coordination polymers have different network structures. • Ag(I) polymer has more antibacterial activity than Cu(I) polymer. • DFT calculations of Cu(I) polymer has been investigated. • Cu(I) and Ag(I) polymers can destroy the structure of chromosomal and plasmid DNA.« less

  13. Bismuth-, Tin-, and Lead-Containing Metal-Organic Materials: Synthesis, Structure, Photoluminescence, Second Harmonic Generation, and Ferroelectric Properties

    NASA Astrophysics Data System (ADS)

    Wibowo, Arief Cahyo

    Metal-Organic Materials (MOMs) contain metal moieties and organic ligands that combine to form discrete (e.g. metal-organic polyhedra, spheres or nanoballs, metal-organic polygons) or polymeric structures with one-, two-, or three-dimensional periodicities that can exhibit a variety of properties resulting from the presence of the metal moieties and/or ligand connectors in the structure. To date, MOMs with a range of functional attributes have been prepared, including record-breaking porosity, catalytic properties, molecular magnetism, chemical separations and sensing ability, luminescence and NLO properties, multiferroic, ferroelectric, and switchable molecular dielectric properties. We are interested in synthesizing non-centrosymmetric MOM single crystals possessing one of the ten polar space groups required for non-linear optical properties (such as second harmonic generation) and ferroelectric applications. This thesis is divided into two main parts: materials with optical properties, such as photoluminescence and materials for targeted applications such as second harmonic generation and ferroelectric properties. This thesis starts with an introduction describing material having centrosymmetric, non-polar space groups, single crystals structures and their photoluminescence properties. These crystals exhibit very interesting and rare structures as well as interesting photoluminescence properties. Chapters 2-5 of this thesis focus on photoluminescent properties of new MOMs, and detail the exploratory research involving the comparatively rare bismuth, lead, and tin coordination polymers. Specifically, the formation of single white-light emitting phosphors based on the combination of bismuth or lead with pyridine-2,5-dicarboxylate is discussed (Chapter 2). The observation of a new Bi2O2 layer and a new Bi4O 3 chain in bismuth terephthalate-based coordination polymers is presented in Chapter 3, while the formation of diverse structures of tin-based coordination polymer ranging from 1D supramolecular structures to true 3D coordination polymers is covered in Chapter 4. The observation of a new 2D Kagome lattice and unique layered perovskite-type bismuth-based coordination polymers and their photoluminescence properties is the focus of Chapter 5. In chapters 6 and 7, a successful approach to implement our novel hybrid strategy for synthesizing enantiomerically pure single crystals consisting of Second Order Jahn Teller (SOJT)-possessing main group metal cations, specifically bismuth and tin, and homochiral ligands or unsymmetric ligands is discussed. The new MOMs with polar space groups exhibit second harmonic generation and have potential for ferroelectric properties.

  14. [2D correlation spectral study of a coordination polymer [Eu(PCPOA)3 (H2O)]n].

    PubMed

    Sun, Rui-qing; Zhang, Han-hui; Cao, Yan-ning; Chen, Yi-ping; Yang, Qi-yu; Wang, Zhi-yang

    2007-05-01

    A novel two dimensional coordination polymer [Eu(PCPOA)3 (H2O)], was synthesized under hydrothermal condition. Based on the determination of the structure, the 2D correlation FTIR spectra with the perturbation of magnetism and the 2D correlation fluorescence spectra with the perturbation of temperature were investigated. The energy bonds were calculated using CASTEP Program of Material studio. The Europium ions are nine-coordinated and the ligands adopted two different modes to connect the Eu3+ ions to 2D layer structure. The study of the 2D-FTIR reveals that the carboxylates coordinate with the center ions not only as monodentate, but also as bidentate chelate. The 2D fluorescence spectra indicates that the transition of (5)D0-->(7)F2 is influenced intensively by the perturbation of temperature.

  15. Synthesis and Ligand Non-Innocence of Thiolate-Ligated (N4S) Iron(II) and Nickel(II) Bis(imino)pyridine Complexes

    PubMed Central

    Widger, Leland R.; Jiang, Yunbo; Siegler, Maxime; Kumar, Devesh; Latifi, Reza; de Visser, Sam P.; Jameson, Guy N.L.; Goldberg, David P.

    2013-01-01

    The known iron(II) complex [FeII(LN3S)(OTf)] (1) was used as starting material to prepare the new biomimetic (N4S(thiolate)) iron(II) complexes [FeII(LN3S)(py)](OTf) (2) and [FeII(LN3S)(DMAP)](OTf) (3), where LN3S is a tetradentate bis(imino)pyridine (BIP) derivative with a covalently tethered phenylthiolate donor. These complexes were characterized by X-ray crystallography, UV-vis, 1H NMR, and Mössbauer spectroscopy, as well as electrochemistry. A nickel(II) analogue, [NiII(LN3S)](BF4) (5), was also synthesized and characterized by structural and spectroscopic methods. Cyclic voltammetric studies showed 1 – 3 and 5 undergo a single reduction process with E1/2 between −0.9 to −1.2 V versus Fc+/Fc. Treatment of 3 with 0.5% Na/Hg amalgam gave the mono-reduced complex [Fe(LN3S)(DMAP)]0 (4), which was characterized by X-ray crystallography, UV-vis, EPR (g = [2.155, 2.057, 2.038]) and Mössbauer (δ = 0.33 mm s−1; ΔEQ = 2.04 mm s−1) spectroscopies. Computational methods (DFT) were employed to model complexes 3 – 5. The combined experimental and computational studies show that 1 – 3 are 5-coordinate, high-spin (S = 2) FeII complexes, whereas 4 is best described as a 5-coordinate, intermediate-spin (S = 1) FeII complex antiferromagnetically coupled to a ligand radical. This unique electronic configuration leads to an overall doublet spin (Stotal = ½) ground state. Complexes 2 and 3 are shown to react with O2 to give S-oxygenated products, as previously reported for 1. In contrast, the mono-reduced 4 appears to react with O2 to give a mixture of S- and Fe-oxygenates. The nickel(II) complex 5 does not react with O2, and even when the mono-reduced nickel complex is produced, it appears to undergo only outer-sphere oxidation with O2. PMID:23992096

  16. A conjugated microporous polymer based visual sensing platform for aminoglycoside antibiotics in water.

    PubMed

    Bhunia, Subhajit; Dey, Nilanjan; Pradhan, Anirban; Bhattacharya, Santanu

    2018-06-20

    A donor-acceptor based conjugated microporous polymer, PER@NiP-CMOP-1, has been synthesized which can achieve highly sensitive stereo-specific "Turn ON" biosensing of an aminoglycoside up to the ppb level. The coordination-driven inhibition of photo-induced electron transfer (d-PET) for d-electrons and the rotational freezing are the key factors for the recovery of the emission.

  17. Effect of ligand substitution on the SMM properties of three isostructural families of double-cubane Mn4Ln2 coordination clusters.

    PubMed

    Akhtar, Muhammad Nadeem; Lan, Yanhua; AlDamen, Murad A; Zheng, Yan-Zhen; Anson, Christopher E; Powell, Annie K

    2018-03-06

    Three isostructural lanthanide series with a core of MnMnLn 2 are reported. These three families have the formulae of [MnMnLn 2 (μ 4 -O) 2 (H 2 edte) 2 (piv) 6 (NO 3 ) 2 ] {no crystallization solvent, Ln = La, Ce, Pr, Nd, Eu (1-4, 6); solv = 3MeCN, Ln = Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Y (5, 7-13)}, where H 2 edte = N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine and piv = pivalate; [MnMnLn 2 (μ 4 -O) 2 (H 2 edte) 2 (benz) 6 (NO 3 ) 2 ], where benz = benzoate, or [MnMnLn 2 (μ 4 -O) 2 (edteH 2 ) 2 (benz) 6 (NO 3 ) 2 ]·2MeCN {Ln = Gd, Tb, Dy (14-16); and [MnMnLn 2 (μ 4 -O) 2 (edteH 2 ) 2 (piv) 8 ].solv {solv = 4MeCN, Ln = La (17); solv = 2MeCN·tol·H 2 O, Ln = Pr, Nd, Sm, Tb (18-20, 22); solv = 2MeCN·H 2 O, Ln = Gd (21). These compounds crystallize in two different systems, namely, monoclinic in the space groups P2 1 /n for 1-4, 6, and 14-16 and C2/c for 5, 7-13, 18-20, and 22 and triclinic in the space group P1[combining macron] for 17 and 21. The crystal structures of these compounds display a face-fused dicubane structure connected by different types of bridged oxygen atoms. Solid-state dc magnetic susceptibility characterization was carried out for 1-22, and fitting showed that Mn III Mn III is antiferromagnetically (AF) coupled and Mn II Mn III , Mn II Ln and Mn III Ln are weakly ferromagnetically coupled. In addition, ac measurements were carried out and showed that only 7, 15, and 22 for Tb, 8 and 16 for Dy, and 20 for Sm exhibited slow magnetization relaxation. In the case of 15, it was possible to determine the energy barrier of the slow-relaxation behavior by fitting peak temperatures to the Arrhenius law, which gave a value of U eff = 21.2 K and a pre-exponential factor of τ 0 = 4.0 × 10 -9 s.

  18. Cobalt-cadmium bimetallic porphyrin coordination polymers for electrochemistry application

    NASA Astrophysics Data System (ADS)

    Wang, C. Y.; Cui, G. Y.; Ding, D.; Zhou, B.

    2018-01-01

    In this paper, we used tetra (4-carboxyphenyl) porphyrin (H2TCPP) and metal cadmium, cobalt as reactants to synthesize metal porphyrin coordination polymers that they had different metal ratio. They were expressed as Co1Cd3TCPP, Co1Cd1TCPP, Co3Cd1TCPP, respectively. The results were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and inductively coupled plasma atomic emission spectrometer (ICP). Herein, a series of metal porphyrin coordination polymers has multiple metal active centers and constructs electrochemistry sensors. In order to increase the conductivity, multi-walled carbon nanotubes (MWCNTs) can be used to modify the electrodes. The polymer/MWCNTs/GCE electrode was studied by cyclic voltammetry and chronoamperometry as sensor for sodium nitrite. The performance of Co1Cd1TCPP/MWCNTs/GCE electrode is best, the sensitivity for sodium nitrite is 350.95 mA M-1 cm-2 and the. The results indicate that metal porphyrin coordination polymers have excellent performance. It also enriches the application of metal porphyrin coordination polymer in electrochemistry sensor.

  19. A triple helical calcium-based coordination polymer with strong blue fluorescent emission

    NASA Astrophysics Data System (ADS)

    Yu, Liang-Cai; Chen, Zhen-Feng; Liang, Hong; Zhou, Chun-Shan; Li, Yan

    2005-08-01

    A hydrothermal reaction of 1,3-dicyanobenzene and Ca(OH)2 yielded a triple helical calcium-based coordination polymer of the formula, C20H25Ca2.50O18.50 (1). The 1,3-benzenecarboxylate anion, found in the final product was generated in situ during the synthesis by the hydrolysis of 1,3-dicyanobenzene. X-ray diffraction study shows that the complex 1 crystallizes in the monoclinic system, C2/c space group, a=15.5701(5), b=21.4445(7), c=17.1601(6) Å, β=111.7400(7)°, V=5322.1(3) Å3, Z=8, Dc=1.651 Mg/m3. The calcium atoms show differences in the coordination environments. Complex 1 emits strong blue fluorescent light (λem(max)=419 nm) when it is excited by UV light (λex(max)=316 nm) in the solid state at room temperature.

  20. Chiral zinc phenylalanine nanofibers with fluorescence.

    PubMed

    Chen, Erdan; Guo, Beidou; Zhang, Baohong; Gan, Li-Hua; Gong, Jian Ru

    2011-09-01

    Chiral Zn(II)/D-,L-phenylalanine (Phe) bio-coordination polymer nanofibers with fluorescence were prepared by fast coordination-assisted assembly. The synthetic strategy is based on the fact that the Zn2+ ions were linked to oxygen atoms from carboxylate groups of the D- or L-amino acid by coordination interactions to form the chiral polymers. The Zn(II)/D-,L-Phe nanofibers had homogeneous diameters in the range of 700-900 nm and ultra-long length in several hundred micrometers, and the surface of the fiber was extremely smooth. In addition, the enantiomers of Zn(II)/Phe nanofibers exhibited both optical activity and fluorescent property in the solid state, which has great potential for application in the field of biomimetic nanofabrication and micro-/nano-optoelectronics.

  1. A supramolecular miktoarm star polymer based on porphyrin metal complexation in water.

    PubMed

    Hou, Zhanyao; Dehaen, Wim; Lyskawa, Joël; Woisel, Patrice; Hoogenboom, Richard

    2017-07-25

    A novel supramolecular miktoarm star polymer was successfully constructed in water from a pyridine end-decorated polymer (Py-PmDEGA) and a metalloporphyrin based star polymer (ZnTPP-(PEG) 4 ) via metal-ligand coordination. The Py-PmDEGA moiety was prepared via a combination of reversible addition-fragmentation chain transfer polymerization (RAFT) and subsequent aminolysis and Michael addition reactions to introduce the pyridine end-group. The ZnTPP(PEG) 4 star-polymer was synthesized by the reaction between tetrakis(p-hydroxyphenyl)porphyrin and toluenesulfonyl-PEG, followed by insertion of a zinc ion into the porphyrin core. The formation of a well-defined supramolecular AB 4 -type miktoarm star polymer was unambiguously demonstrated via UV-Vis spectroscopic titration, isothermal titration calorimetry (ITC) and diffusion ordered NMR spectroscopy (DOSY).

  2. Lanthanide anilido complexes: synthesis, characterization, and use as highly efficient catalysts for hydrophosphonylation of aldehydes and unactivated ketones.

    PubMed

    Liu, Chengwei; Qian, Qinqin; Nie, Kun; Wang, Yaorong; Shen, Qi; Yuan, Dan; Yao, Yingming

    2014-06-14

    Lanthanide anilido complexes stabilized by the 2,6-diisopropylanilido ligand have been synthesized and characterized, and their catalytic activity for hydrophosphonylation reaction was explored. A reaction of anhydrous LnCl3 with 5 equivalents of LiNHPh-(I)Pr2-2,6 in THF generated the heterobimetallic lanthanide-lithium anilido complexes (2,6-(I)Pr2PhNH)5LnLi2(THF)2 [Ln = Sm(1), Nd(2), Y(3)] in good isolated yields. These complexes are well characterized by elemental analysis, IR, NMR (for complex ) and single-crystal structure determination. Complexes 1 - 3 are isostructural. In these complexes, the lanthanide metal ion is five-coordinated by five nitrogen atoms from five 2,6-diisopropylanilido ligands to form a distorted trigonal bipyramidal geometry. The lithium ion is coordinated by two nitrogen atoms from two 2,6-diisopropylanilido ligands, and one oxygen atom from a THF molecule. It was found that these simple lanthanide anilido complexes are highly efficient for catalyzing hydrophosphonylation reactions of various aldehydes and unactivated ketones to generate α-hydroxyphosphonates in good to excellent yields (up to 99%) within a short time (5 min for aldehydes, 20 min for ketones). Furthermore, the mechanism of hydrophosphonylation reactions has also been elucidated via(1)H NMR monitoring of reaction.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimura, Gen, E-mail: shimura.gen@b.mbox.nagoya-u.ac.jp; Shirako, Yuichi; Niwa, Ken

    ABSTRACT: The synthesis of multicomponent perovskites (Ln{sub 0.25}Mn{sub 0.75})(Al{sub 0.25}Ti{sub 0.75})O{sub 3} (Ln=La, Pr, Nd, Sm, Gd, Tb, Dy, Y) have been investigated using a high-pressure and high-temperature (6 GPa, 1175 °C) technique. When Ln{sup 3+} is larger La{sup 3+}, Pr{sup 3+}, Nd{sup 3+}, the A-site ordered perovskites, LnMn{sub 3}(Al{sub 0.25}Ti{sub 0.75}){sub 4}O{sub 12} in Im-3, have been successfully synthesized. The A-site partially disordered one, (Sm{sub 0.80}Mn{sub 0.20})(Sm{sub 0.07}Mn{sub 0.93}){sub 3}(Al{sub 0.25}Ti{sub 0.75}){sub 4}O{sub 12} is also obtained. In the case of smaller Gd{sup 3+}, Tb{sup 3+}, Dy{sup 3+}, we have obtained no single phase but two decomposed perovskite phases.more » When Ln{sup 3+} is much smaller Y{sup 3+}, it is crystallized as an A-site disorder one in Pnma. The Rietveld structural refinements of the A-site ordered and partially disordered perovskites indicate that the tilting of (Al/Ti)O{sub 6} octahedrons for the A-site ions ordering is correlated with the (Al/Ti)–O and Ln–O bond lengths to optimize the coordination of the A- and A′-sites. The phase stability of the A-site ordered perovskites is discussed from the viewpoint of this correlation. - Graphical abstract: Ln{sup 3+} (VIII) ionic radius dependence of BO{sub 6} octahedron tilt angle and A/B–O distance of Im-3 perovskites (Ln{sub 0.25}Mn{sub 0.75})(Al{sub 0.25}Ti{sub 0.75})O{sub 3} (Ln=La-Sm).« less

  4. β-SiH-containing tris(silazido) rare-earth complexes as homogeneous and grafted single-site catalyst precursors for hydroamination

    DOE PAGES

    Eedugurala, Naresh; Wang, Zhuoran; Yan, KaKing; ...

    2017-01-25

    A series of homoleptic rare-earth silazido compounds and their silica-grafted derivatives were prepared to compare spectroscopic and catalytic features under homogeneous and interfacial conditions. Trivalent tris(silazido) compounds Ln{N(SiHMe 2) tBu} 3 (Ln = Sc (1), Y (2), Lu (3)) are prepared in high yield by salt metathesis reactions. Solution-phase and solid-state characterization of 1–3 by NMR and IR spectroscopy and X-ray diffraction reveals Ln←H–Si interactions. These features are retained in solvent-coordinated 2·Et 2O, 2·THF, and 3·THF. The change in spectroscopic features characterizing the secondary interactions (ν SiH, 1 J SiH) from the unactivated SiH in the silazane HN(SiHMe 2) tBumore » follows the trend 3 > 2 > 1 ≈ 2·Et 2O > 2·THF ≈ 3·THF. Ligand lability follows the same pattern, with Et 2O readily dissociating from 2·Et 2O while THF is displaced only during surface grafting reactions. 1 and 2·THF graft onto mesoporous silica nanoparticles (MSN) to give Ln{N(SiHMe 2) tBu} n@MSN (Ln = Sc (1@MSN), Y (2@MSN)) along with THF and protonated silazido as HN(SiHMe 2) tBu and H 2N tBu. The surface species are characterized by multinuclear and multidimensional solid-state (SS) NMR spectroscopic techniques, as well as diffuse reflectance FTIR, elemental analysis, and reaction stoichiometry. A key 1 J SiH SSNMR measurement reveals that the grafted sites most closely resemble Ln·THF adducts, suggesting that siloxane coordination occurs in grafted compounds. These species catalyze the hydroamination/bicyclization of aminodialkenes, and both solution-phase and interfacial conditions provide the bicyclized product with equivalent cis:trans ratios. As a result, similar diastereoselectivities mediated by catalytic sites under the two conditions suggest similar effective environments.« less

  5. Heterobimetallic thiocyanato-bridged coordination polymers based on [Hg(SCN){sub 4}]{sup 2-}: Synthesis, crystal structure, magnetic properties and ESR studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jian Fangfang; Xiao Hailian; Liu Faqian

    2006-12-15

    Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN){sub 4}Ni(Im){sub 3}] {sub {infinity}} 1, [Hg(SCN){sub 4}Mn(Im){sub 2}] {sub {infinity}} 2, and [Hg(SCN){sub 4}Cu(Me-Im){sub 2} Hg(SCN){sub 4}Cu(Me-Im){sub 4}] {sub {infinity}} 3, (Im=imidazole, Me-Im=N-methyl-imidazole), have been synthesized and characterized by means of elemental analysis, ESR, and single-crystal X-ray. X-ray diffraction analysis reveals that these three complexes all form 3D network structure, and their structures all contain a thiocyanato-bridged Hg...Hg chain (M=Mn, Ni, Cu) in which the metal and mercury centers exhibit different coordination environments. In complex 1, the [Hg(SCN){sub 4}]{sup 2-} anion connects three [Ni(Im){sub 3}]{sup 2+} using three SCN ligands giving risemore » to a 3D structure, and in complex 2, four SCN ligands bridge [Hg(SCN){sub 4}]{sup 2-} and [Mn(Im){sub 2}]{sup 2+} to form a 3D structure. The structure of 3 contains two copper atoms with distinct coordination environment; one is coordinated by four N-methyl-imidazole ligands and two axially elongated SCN groups, and another by four SCN groups (two elongated) and two N-methyl-imidazole ligands. The magnetic property of complex 1 has been investigated. The spin state structure in hetermetallic NiHgNi systems of complex 1 is irregular. The ESR spectra results of complex 3 demonstrate Cu{sup 2+} ion lie on octahedral environment. -- Graphical abstract: Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN){sub 4}Ni(Im){sub 3}] {sub {infinity}} 1, [Hg(SCN){sub 4}Mn(Im){sub 2}] {sub {infinity}} 2, and [Hg(SCN){sub 4}Cu(Me-Im){sub 2} Hg(SCN){sub 4}Cu(Me-Im){sub 4}] {sub {infinity}} 3, (Im=imidazole, Me-Im=N-methyl-imidazole), have been synthesized and characterized by single-crystal X-ray. All coordination polymers possess 3-D structures, and consist of organic base neutral ligands (imidazole and N-methyl-imidazole) and SCN{sup -1} anions. Their structural difference is maicaused by the role of the organic base and metal ions. The complex 1 shows the irregular spin state structure.« less

  6. Structural Peculiarities of Ion-Conductive Organic-Inorganic Polymer Composites Based on Aliphatic Epoxy Resin and Salt of Lithium Perchlorate.

    PubMed

    Matkovska, Liubov; Iurzhenko, Maksym; Mamunya, Yevgen; Tkachenko, Igor; Demchenko, Valeriy; Synyuk, Volodymyr; Shadrin, Andriy; Boiteux, Gisele

    2017-12-01

    The article is concerned with hybrid amorphous polymers synthesized basing on epoxy oligomer of diglycide aliphatic ester of polyethylene glycol that was cured by polyethylene polyamine and lithium perchlorate salt. Structural peculiarities of organic-inorganic polymer composites were studied by differential scanning calorimetry, wide-angle X-ray spectra, infrared spectroscopic, scanning electron microscopy, elemental analysis, and transmission and reflective optical microscopy. On the one hand, the results showed that the introduction of LiClO 4 salt into epoxy polymer leads to formation of the coordinative metal-polymer complexes of donor-acceptor type between central Li + ion and ligand. On the other hand, the appearance of amorphous microinclusions, probably of inorganic nature, was also found.

  7. A new (4, 6)-connected Cu(I) coordination polymer based on rare tetranuclear [Cu4I2] clusters: Synthesis, crystal structure, luminescent and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Cui, Li-Jing; Liu, Chun-Yan; Bian, Ming; Yu, Li-Jun

    2018-03-01

    A new Cu(I) coordination polymer, namely [Cu5I3(L)2]n (1 HL = 3-(4-pyridyl)-5-(3-pyridyl)-1,2,4-triazolyl), was solvothermally synthesized using CuI, HL and NaI as the starting materials. Single crystal X-ray structural analysis shows that compound 1 features a (4, 6)-connected 3D framework employing rare tetranuclear [Cu4I2] clusters as building subunits. It exhibits intense metal-to-ligand luminescence and excellent photocatalytic activity on degradation of methylene blue (MB).

  8. Box-like gel capsules from heterostructures based on a core-shell MOF as a template of crystal crosslinking.

    PubMed

    Ishiwata, Takumi; Michibata, Ayano; Kokado, Kenta; Ferlay, Sylvie; Hosseini, Mir Wais; Sada, Kazuki

    2018-02-06

    New polymer capsules (PCs) were obtained using a crystal crosslinking (CC) method on core-shell MOF crystals. The latter are based on the epitaxial growth of two isostructural coordination polymers which are then selectively crosslinked. Decomposition of the non-reticulated phase leads to new PCs, possessing a well-defined hollow cubic shape reflecting the heterostructure of the template.

  9. Mesoporous imine-based organic polymer: catalyst-free synthesis in water and application in CO2 conversion.

    PubMed

    Yu, Xiaoxiao; Yang, Zhenzhen; Guo, Shien; Liu, Zhenghui; Zhang, Hongye; Yu, Bo; Zhao, Yanfei; Liu, Zhimin

    2018-06-22

    A mesoporous imine-functionalized organic polymer (Imine-POP) was prepared based on the reaction of an aryl ammonium salt with an aromatic aldehyde in water without any catalyst and template. The Pd coordinated Imine-POP exhibited high catalytic activity for the N-formylation of amines with CO2/H2 at 100 °C, affording a series of formamides in high yields.

  10. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    NASA Astrophysics Data System (ADS)

    Peresypkina, Eugenia V.; Samsonenko, Denis G.; Vostrikova, Kira E.

    2015-04-01

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [{Mn(acacen)}2Ru(NO)(CN)5]n and two complexes composed of different cyanorhenates, [Ni(cyclam)]2[ReO(OH)(CN)4](ClO4)2(H2O)1.25 and [Cu(cyclam)]2[Re(CN)7](H2O)12, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]3[Re(CN)7]2 (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds. However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]3[Re(CN)7]2 complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN)n]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu4N)2[Ru(NO)(CN)5], soluble in organic media.

  11. One-dimensional Cu(II) coordination polymers containing C2h-symmetric 1,1':4',1''-terphenyl-3,3'-dicarboxylate linkers.

    PubMed

    Kim, Hyun Chul; Gu, Ja Min; Huh, Seong; Yo, Chul Hyun; Kim, Youngmee

    2015-10-01

    Two new one-dimensional Cu(II) coordination polymers (CPs) containing the C2h-symmetric terphenyl-based dicarboxylate linker 1,1':4',1''-terphenyl-3,3'-dicarboxylate (3,3'-TPDC), namely catena-poly[[bis(dimethylamine-κN)copper(II)]-μ-1,1':4',1''-terphenyl-3,3'-dicarboxylato-κ(4)O,O':O'':O'''] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena-poly[[aquabis(dimethylamine-κN)copper(II)]-μ-1,1':4',1''-terphenyl-3,3'-dicarboxylato-κ(2)O(3):O(3')] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X-ray crystallography. The 3,3'-TPDC bridging ligands coordinate the Cu(II) ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one-dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one-dimensional coordination polymer chains, forming a two-dimensional network in (I) and a three-dimensional network in (II).

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Ya-Jing; Zheng, Yue-Qing, E-mail: zhengyueqing@nbu.edu.cn; Wang, Jin-Jian

    A new bismuth-based polymer, [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O (H{sub 2}pydc=pyridine-2,5-dicarboxylic acid, bpe=trans-bis(4-pyridyl) ethylene) has been hydrothermally synthesized. Transient photocurrent response and electrochemical impedance spectroscopy studies indicate that the synthesized polymer with efficient charge separation and transportation can be used as a potential photocatalyst. So we use it for the degradation of rhodamine B (RhB) dye wastewater under visible light. The comparative study on commercial Bi{sub 2}O{sub 3} shows [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O has the higher photocatalytic performance, with the degradation rate of 97% and 2% within 100 min for [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O and commercial Bi{sub 2}O{sub 3} respectively. Additionally, the five cyclemore » reproducibility results of [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O implies that it can be used as a stable photocatalyst. - Graphical abstract: We report a new 1D coordination polymer [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O by a facile hydrothermal method. The Bi-CP shows good photoelectric property and photocatalytic activity for RhB degradation under visible white LED lamp irradiation. And the stability of the visible-light-responsive bismuth-based coordination polymer has also been examined. - Highlights: • A new Bi(III) coordination polymer is hydrothermally synthesized. • The Bi-CP shows good photoelectric and photocatalytic properties. • Bi-CP shows higher activity than the commercial Bi{sub 2}O{sub 3} for RhB degradation.« less

  13. Structural and spectroscopic investigation of new luminescent hybrid materials based on calix[4]arene-tetracarboxylate and Ln3+ ions (Ln = Gd, Tb or Eu)

    NASA Astrophysics Data System (ADS)

    Viana, R. S.; Oliveira, C. A. F.; Chojnacki, J.; Barros, B. S.; Alves-Jr, S.; Kulesza, J.

    2017-07-01

    Lanthanide-calixarene hybrid materials are of particular interest due to the combination of the interesting properties of the ligand cavity-like structure and the luminescent features of lanthanides. The aim of this study was to synthesize and investigate the photophysical properties of Eu3+, Tb3+ and Gd3+ hybrids based on calix[4]arene-tetracarboxylate. The preparation of two structurally different Tb3+ compounds (calix-TA-SC-Tb and calix-TA-Tb) was dictated by the ligand to metal molar ratio and the synthesis time. Analysis of calix-TA-SC-Tb monocrystals revealed the formation of a mononuclear complex of C2 symmetry containing Tb3+ coordinated by four calixarene ionized groups and formate anion encapsulated within the upper cavity. Syntheses of other hybrids failed in producing high-quality crystals and the structures could not be solved. The solid-state luminescent properties of hybrids were evaluated, and the structure/property relationship was investigated. Based on the emission and excitation spectra, the energy diagrams for calix-TA-Eu, calix-TA-Tb and calix-TA-Gd were proposed.

  14. "Plug and play" logic gates based on fluorescence switching regulated by self-assembly of nucleotide and lanthanide ions.

    PubMed

    Pu, Fang; Ren, Jinsong; Qu, Xiaogang

    2014-06-25

    Molecular logic gates in response to chemical, biological, or optical input signals at a molecular level have received much interest over the past decade. Herein, we construct "plug and play" logic systems based on the fluorescence switching of guest molecules confined in coordination polymer nanoparticles generated from nucleotide and lanthanide ions. In the system, the addition of new modules directly enables new logic functions. PASS 0, YES, PASS 1, NOT, IMP, OR, and AND gates are successfully constructed in sequence. Moreover, different logic gates (AND, INH, and IMP) can be constructed using different guest molecules and the same input combinations. The work will be beneficial to the future logic design and expand the applications of coordination polymers.

  15. Syntheses, structures and photoluminescence properties of three M(II)-coordination polymers (M dbnd Zn(II), Mn(II)) based on a pyridine N-oxide bridging ligand

    NASA Astrophysics Data System (ADS)

    Ren, Xiu-Hui; Wang, Peng; Cheng, Jun-Yan; Dong, Yu-Bin

    2018-06-01

    Three M(II)-coordination polymers (M dbnd Zn(II), Mn(II)) were synthesized based on a pyridine N-oxide bridging ligand 3,5-bis(4-carboxylphenyl)-pyridine N-oxide (L1). Compounds 1-3 all have novel complicated structures. Compound 1 (Zn(L1)2(H2O)2) and 2 (Zn2(L1)2(H2O)2) are two single crystals obtained in "one pot" and 1 features 1D double chains motif and 2 features 3D network structure. Compound 3 shows 3D network structure with triangular tunnels. The thermogravimetric analyses and photoluminescence properties were also used to investigate the title compounds.

  16. Nucleation-dependant chemical bonding paradigm: the effect of rare earth ions on the nucleation of urea in aqueous solution.

    PubMed

    Chen, Xiaoyan; Sun, Congting; Wu, Sixin; Xue, Dongfeng

    2017-03-29

    Rare earth ions can be used to construct a variety of novel structures and are favorable to chemical bonding regulation and design. In this study, the chemical bonding paradigm between rare earth ions (Ln 3+ ) and urea molecules in an aqueous solution can be tracked by the evolution of C[double bond, length as m-dash]O, NH 2 , and CN vibration bands during the urea nucleation stage. Rare earth ions such as La 3+ , Gd 3+ , and Lu 3+ can manipulate the nucleation time of urea via regulating the nucleation-dependant N-C[double bond, length as m-dash]OH-N hydrogen-bonding between urea molecules. Two types of chemical bondings between Ln 3+ and urea molecules have been confirmed, which are Ln 3+ O[double bond, length as m-dash]C-N and Ln 3+ NH 2 -C. Compared with Ln 3+ NH 2 -C, Ln 3+ prefers to coordinate with the O[double bond, length as m-dash]C bond in urea. With a higher concentration of rare earth ions in the solution, some N-C[double bond, length as m-dash]OH-N hydrogen bonds are broken as a consequence of the incorporation of Ln 3+ into the lattice, resulting in the decreased symmetry of local urea molecules in the crystalline nuclei and the consequent Ln 3+ concentration-dependent nucleation time of urea. Moreover, using the ionic electronegativity scale of Ln 3+ , the different effects of La 3+ , Gd 3+ , and Lu 3+ on urea nucleation can be further distinguished. The present study provides basic data for unrevealing the chemical bonding regulation role of rare earth ions in the formation of hydrogen bonded materials, which may give insight into the design and fabrication of novel materials utilizing rare earth ions to adjust the chemical bonding process.

  17. Magnetic and upconverted luminescent properties of multifunctional lanthanide doped cubic KGdF4 nanocrystals.

    PubMed

    Yang, L W; Zhang, Y Y; Li, J J; Li, Y; Zhong, J X; Chu, Paul K

    2010-12-01

    Lanthanide (Ln3+) doped KGdF4 (Ln=Yb3+, Er3+, Ho3+, Tm3+) nanocrystals with a mean diameter of approximately 12 nm were synthesized by a hydrothermal method using oleic acid as a stabilizing agent at 180 °C. The nanocrystals crystallize in the cubic phase as α-NaGdF4. When excited by a 980 nm laser, these Ln3+ doped nanocrystals exhibit multicolor up-conversion (UC) emissions in red, yellow, blue and white. The calculated color coordinates demonstrate that white UC emission (CIE-X=0.352, CIE-Y=0.347) can be obtained by varying the dopant concentrations in the Yb3+/Ho3+/Tm3+ triply-doped nanocrystals to yield different RGB emission intensities. The measured field dependence of magnetization (M-H curves) of the KGdF4 nanocrystals shows their paramagnetic characteristics that can be ascribed to the non-interacting localized nature of the magnetic moment of Gd3+ ions. Moreover, low temperature thermal treatment can enhance UC properties, magnetization and magnetic mass susceptibility of Ln3+ doped KGdF4 nanocrystals. The multifunctional Ln3+ doped KGdF4 nanocrystals have potential applications in color displays, bioseparation, and optical-magnetic dual modal nanoprobes in biomedical imaging.

  18. Magnetic and upconverted luminescent properties of multifunctional lanthanide doped cubic KGdF4nanocrystals

    NASA Astrophysics Data System (ADS)

    Yang, L. W.; Zhang, Y. Y.; Li, J. J.; Li, Y.; Zhong, J. X.; Chu, Paul K.

    2010-12-01

    Lanthanide (Ln3+) doped KGdF4 (Ln = Yb3+, Er3+, Ho3+, Tm3+) nanocrystals with a mean diameter of approximately 12 nm were synthesized by a hydrothermal method using oleic acid as a stabilizing agent at 180 °C. The nanocrystals crystallize in the cubic phase as α-NaGdF4. When excited by a 980 nm laser, these Ln3+ doped nanocrystals exhibit multicolor up-conversion (UC) emissions in red, yellow, blue and white. The calculated color coordinates demonstrate that white UC emission (CIE-X = 0.352, CIE-Y = 0.347) can be obtained by varying the dopant concentrations in the Yb3+/Ho3+/Tm3+ triply-doped nanocrystals to yield different RGB emission intensities. The measured field dependence of magnetization (M-H curves) of the KGdF4nanocrystals shows their paramagnetic characteristics that can be ascribed to the non-interacting localized nature of the magnetic moment of Gd3+ ions. Moreover, low temperature thermal treatment can enhance UC properties, magnetization and magnetic mass susceptibility of Ln3+ doped KGdF4nanocrystals. The multifunctional Ln3+ doped KGdF4nanocrystals have potential applications in color displays, bioseparation, and optical-magnetic dual modal nanoprobes in biomedical imaging.

  19. Design and its limitations in the construction of bi- and poly-nuclear coordination complexes and coordination polymers (aka MOFs): a personal view.

    PubMed

    Robson, R

    2008-10-14

    This article, presented from a personal point of view, is concerned with the design of ligands intended to give specifically either binuclear or tetranuclear metal complexes or coordination polymers. No attempt is made to provide a comprehensive coverage of these topics, the focus being mainly upon results from our laboratory. Some emphasis is placed upon aspects of the historical development of the deliberate construction of coordination polymers (aka MOFs)--materials promising useful applications, the study of which continues to expand exponentially. Some of our recent research is described in which the carbonate ion and the tetracyanoquinodimethane dianion are used as bridging ligands to generate targeted coordination polymers. It is intended that Dalton Perspectives be easily comprehensible to non-specialists in the field; an average second year university chemistry student should be easily able to understand the present contribution.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilfong, Walter Christopher; Kail, Brian W.; Bank, Tracy L.

    Recovering aqueous rare earth elements (REEs) from domestic water sources is one key strategy to diminish the U.S.’s foreign reliance of these precious commodities. Herein, we synthesized an array of porous, amine–epoxy monolith and particle REE recovery sorbents from different polyamine, namely tetraethylenepentamine, and diepoxide (E2), triepoxide (E3), and tetra-epoxide (E4) monomer combinations via a polymer-induced phase separation (PIPS) method. The polyamines provided -NH 2 (primary amine) plus -NH (secondary amine) REE adsorption sites, which were partially reacted with C–O–C (epoxide) groups at different amine/epoxide ratios to precipitate porous materials that exhibited a wide range of apparent porosities and REEmore » recoveries/affinities. Specifically, polymer particles (ground monoliths) were tested for their recovery of La 3+, Nd 3+, Eu 3+, Dy 3+, and Yb 3+ (Ln 3+) species from ppm-level, model REE solutions (pH ≈ 2.4, 5.5, and 6.4) and a ppb-level, simulated acid mine drainage (AMD) solution (pH ≈ 2.6). Screening the sorbents revealed that E3/TEPA-88 (88% theoretical reaction of -NH 2 plus -NH) recovered, overall, the highest percentage of Ln 3+ species of all particles from model 100 ppm- and 500 ppm-concentrated REE solutions. Water swelling (monoliths) and ex situ, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) (ground monoliths/particles) data revealed the high REE uptake by the optimized particles was facilitated by effective distribution of amine and hydroxyl groups within a porous, phase-separated polymer network. In situ DRIFTS results clarified that phase separation, in part, resulted from polymerization of the TEPA-E3 (N-N-diglycidyl-4-glycidyloxyaniline) species in the porogen via C–N bond formation, especially at higher temperatures. Most importantly, the E3/TEPA-88 material cyclically recovered >93% of ppb-level Ln 3+ species from AMD solution in a recovery–strip–recovery scheme, highlighting the efficacy of these materials for practical applications.« less

  1. Recovering Rare Earth Elements from Aqueous Solution with Porous Amine–Epoxy Networks

    DOE PAGES

    Wilfong, Walter Christopher; Kail, Brian W.; Bank, Tracy L.; ...

    2017-05-12

    Recovering aqueous rare earth elements (REEs) from domestic water sources is one key strategy to diminish the U.S.’s foreign reliance of these precious commodities. Herein, we synthesized an array of porous, amine–epoxy monolith and particle REE recovery sorbents from different polyamine, namely tetraethylenepentamine, and diepoxide (E2), triepoxide (E3), and tetra-epoxide (E4) monomer combinations via a polymer-induced phase separation (PIPS) method. The polyamines provided -NH 2 (primary amine) plus -NH (secondary amine) REE adsorption sites, which were partially reacted with C–O–C (epoxide) groups at different amine/epoxide ratios to precipitate porous materials that exhibited a wide range of apparent porosities and REEmore » recoveries/affinities. Specifically, polymer particles (ground monoliths) were tested for their recovery of La 3+, Nd 3+, Eu 3+, Dy 3+, and Yb 3+ (Ln 3+) species from ppm-level, model REE solutions (pH ≈ 2.4, 5.5, and 6.4) and a ppb-level, simulated acid mine drainage (AMD) solution (pH ≈ 2.6). Screening the sorbents revealed that E3/TEPA-88 (88% theoretical reaction of -NH 2 plus -NH) recovered, overall, the highest percentage of Ln 3+ species of all particles from model 100 ppm- and 500 ppm-concentrated REE solutions. Water swelling (monoliths) and ex situ, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) (ground monoliths/particles) data revealed the high REE uptake by the optimized particles was facilitated by effective distribution of amine and hydroxyl groups within a porous, phase-separated polymer network. In situ DRIFTS results clarified that phase separation, in part, resulted from polymerization of the TEPA-E3 (N-N-diglycidyl-4-glycidyloxyaniline) species in the porogen via C–N bond formation, especially at higher temperatures. Most importantly, the E3/TEPA-88 material cyclically recovered >93% of ppb-level Ln 3+ species from AMD solution in a recovery–strip–recovery scheme, highlighting the efficacy of these materials for practical applications.« less

  2. A series of Zn/Cd coordination polymers constructed from 1,4-naphthalenedicarboxylate and N-donor ligands: Syntheses, structures and luminescence sensing of Cr{sup 3+} in aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Dong-Cheng; Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063; Fan, Yan

    A novel series of Zn/Cd coordination polymers based on H{sub 3}L, namely, [Zn{sub 2}(HL){sub 2}(bipy){sub 2}(H{sub 2}O){sub 6}]{sub n} (1), [Zn(HL)(phen)]{sub n} (2), [Cd{sub 3}L{sub 2}(bbi){sub 3}]{sub n} (3), [Zn{sub 3}L{sub 2}(bbi){sub 3}]{sub n} (4) [(H{sub 3}L =4-[(1-carboxynaphthalen-2-yl)oxy]phthalic acid, bipy =4,4′-bipyridine, phen =1,10-phenanthroline, bbi =1,1′-(1,4-butanediyl)bis(imidazole] have been successfully synthesized by solvothermal reaction. Compound 1 possesses two diverse 1D chains constructed by different bipy coligands, which were further connected to form a 3D supramolecular architecture by hydrogen bonding interactions. Compound 2 possesses a complicated 1D chain based on secondary building unit (SBU) with binuclear Zn cluster. Compounds 3 and 4 exhibitmore » similar 2D→3D framework, which can be rationalized as (3,4,4)-connected 3D net with a Schläfli symbol of (6{sup 3}.8.10{sup 2}){sub 2}(6{sup 3}){sub 2}(6{sup 4}.8.10). In particular, compound 3 exhibited a high sensitivity for Cr{sup 3+} in aqueous solutions, which suggest that compound 3 is a promising luminescent probe for selectively sensing Cr{sup 3+}. - Graphical abstract: A series of novel Zn/Cd coordination polymers have been successfully synthesized by solvothermal reaction. The unique 3D Cd{sup 2+} polymer containing bbi as second ligand demonstrates high sensitivity for detection of toxic Cr{sup 3+} in aqueous solutions. Display Omitted - Highlights: • π-conjugated semirigid tricarboxylate ligands with naphthalene rings(H{sub 3}L) were rationally designed. • Four Zn/Cd coordination polymers based on H{sub 3}L have been successfully synthesized by solvothermal reaction. • Compound 3 is a promising luminescent probe for selectively sensing Cr{sup 3+} with high sensitivity in aqueous solutions.« less

  3. Composite Materials Handbook. Volume 1. Polymer Matrix Composites Guidelines for Characterization of Structural Materials

    DTIC Science & Technology

    2002-06-17

    power law type (References 6.8.6.1(h) and (i)). Various attempts have been made to use fracture mechanics based methods for predicting failure of...participate in the MIL-HDBK-17 coordination activity . 7. All information and data contained in this handbook have been coordinated with industry and the U.S...for statistically- based properties ............................. 6 2.2.3 Issues of data equivalence

  4. Tuning the chromaticity of the emission color of the copolymers containing Eu(III), Tb(III), Be(II) ions based on colorimetric principle

    NASA Astrophysics Data System (ADS)

    Zhang, Aiqin; Yang, Yamin; Zhai, Guangmei; Jia, Husheng; Xu, Bingshe

    2016-02-01

    In this work, a method of tuning the chromaticity of the emission color of the copolymers containing Eu(III), Tb(III), Be(II) ions based on colorimetric principle was proposed. The technological route from coordination to copolymerization was employed to obtain the white light macromolecular phosphor. The three primary color monomers have been synthesized and their Commission Internationale de L'Eclairage (CIE) coordinates are respectively (0.540, 0.314), (0.231, 0.463), and (0.161, 0.054). The molar feed ratios of the three primary color monomers were calculated from the CIE coordinates based on colorimetric principle. Serial copolymers have been synthesized by free radical copolymerization of the three primary color monomers and methyl methacrylate. The quantum efficiency of the copolymers was higher than that of the complex monomers. The complexes were directly boned to the polymer chain, in which the energy transfer was reduced significantly compared to the doped-polymers. The experimental values of copolymers' CIE coordinates were located in the white light region in good agreement with theoretical values. The results indicate that the chromaticity of the emission color of the copolymers containing Eu(III), Tb(III), Be(II) ions could be tuned by theoretical calculation based on colorimetric principle.

  5. Bio-inspired Self-healing Composite Hydrogel with Iron Oxide Nanoparticle as Coordination Crosslinker

    NASA Astrophysics Data System (ADS)

    Li, Qiaochu; Barret, Devin G.; Messersmith, Phillip B.; Holten-Andersen, Niels

    2014-03-01

    Polymer-nanoparticle (NP) composites have attracted renewed attention due to enhanced mechanical strength combined with various functionalities, but controlling the interfacial chemistry between NPs and polymer matrix, which is crucial for the composite's mechanical behavior, remains a major challenge. Inspired by the adhesion chemistry of mussel fibers, we investigated a novel approach to incorporate Fe3O4 NPs into hydrogel matrix. A polyethylene glycol polymer is designed with both ends conjugated by catechol groups, which have strong coordination affinity to Fe. The polymer network is crosslinked via coordination bonding at the surface of Fe3O4 NPs, yielding a stiff nanocomposite hydrogel. Due to the reversible nature of coordination bonding, the hydrogel presents self-healing behavior. Oscillatory rheology allows comparative kinetic studies of self-healing driven by catechol bonding at Fe3O4 NP interfaces and by catechol-Fe3+ coordination complexes. Furthermore, the superparamagnetic property of Fe3O4 NP is preserved after gelation, allowing for response to external stimuli. This gelation motif can serve as a versatile platform for tuning functional and mechanical properties for future polymer nanocomposite materials.

  6. Linking 1D Transition-Metal Coordination Polymers and Different Inorganic Boron Oxides To Construct a Series of 3D Inorganic-Organic Hybrid Borates.

    PubMed

    Zhi, Shao-Chen; Wang, Yue-Lin; Sun, Li; Cheng, Jian-Wen; Yang, Guo-Yu

    2018-02-05

    Three inorganic-organic hybrid borates, M(1,4-dab)[B 5 O 7 (OH) 3 ] [M = Zn (1), Cd (2), 1,4-dab = 1,4-diaminobutane)] and Co(1,3-dap)[B 4 O 7 ] (3, 1,3-dap = 1,3-diaminopropane), which integrated characteristics of 1D coordination polymers and 1D/3D inorganic boron oxides have been obtained under solvothermal conditions. Compounds 1 and 2 are isostructural and crystallize in a centrosymmetric space group P2 1 /c; the 3D achiral structures of 1 and 2 consist of the nonhelical Zn/Cd-1,4-dap coordination polymers and 1D B-O chains. Compound 3 crystallizes in a chiral space group P4 3 2 1 2; the helical Co-1,3-dap coordination polymer chains are entrained within a 3D B-O network and finally form the chiral framework. Compounds 1-3 represent good examples of using coordination polymers to construct mixed-motif inorganic-organic hybrid borates. Compounds 1 and 2 display blue luminescence when excited with UV light.

  7. Main-chain metallopolymers at the static-dynamic boundary based on nickelocene

    NASA Astrophysics Data System (ADS)

    Musgrave, Rebecca A.; Russell, Andrew D.; Hayward, Dominic W.; Whittell, George R.; Lawrence, Paul G.; Gates, Paul J.; Green, Jennifer C.; Manners, Ian

    2017-08-01

    Interactions between metal ions and ligands in metal-containing polymers involve two bonding extremes: persistent covalent bonding, in which the polymers are essentially static in nature, or labile coordination bonding, which leads to dynamic supramolecular materials. Main-chain polymetallocenes based on ferrocene and cobaltocene fall into the former category because of the presence of strong metal-cyclopentadienyl bonds. Herein, we describe a main-chain polynickelocene—formed by ring-opening polymerization of a moderately strained [3]nickelocenophane monomer—that can be switched between static and dynamic states because of the relatively weak nickel-cyclopentadienyl ligand interactions. This is illustrated by the observation that, at a low concentration or at an elevated temperature in a coordinating or polar solvent, depolymerization of the polynickelocene occurs. A study of this dynamic polymer-monomer equilibrium by 1H NMR spectroscopy allowed the determination of the associated thermodynamic parameters. Microrheology data, however, indicated that under similar conditions the polynickelocene is considered to be static on the shorter rheological timescale.

  8. Metal-Organic Framework-Polymer Composite as a Highly Efficient Sorbent for Sulfonamide Adsorption and Desorption: Effect of Coordinatively Unsaturated Metal Site and Topology.

    PubMed

    Shih, Yung-Han; Wang, Kuen-Yun; Singco, Brenda; Lin, Chia-Her; Huang, Hsi-Ya

    2016-11-08

    In this study, we first demonstrated the effect of two types of metal-organic framework-polymer (MOF-polymer) monoliths on in-tube solid-phase microextraction (IT-SPME) of sulfonamides. Sulfonamides were successfully adsorbed onto MIL-101(Cr)-polymer but were difficult to elute due to these sulfonamides could interact via Lewis acid-base interaction with the presence of Cr(III) coordinatively unsaturated metal sites (CUS). Moreover, the cage-type topology of MIL-101(Cr) that could produce multiple pathways thus complicates the desorption of the test analytes from the sorbent. Contrastingly, MIL-53(Al)-polymer provided weaker Al(III) CUS, and its one-dimensional channel pore structure could provide an unhindered pathway for sulfonamides transfer during elution. After optimizing the IT-SPME condition such as MOF content, pH of sample matrix, column length, extraction flow rate, and elution volume, the calculated extraction recovery of sulfonamides in MIL-53(Al)-polymer as analyzed by microemulsion electrokinetic chromatography (MEEKC) were in the range of 40%-90% with relative standard deviations (RSDs) below 5% and a reusability of at least 30 times.

  9. Local-feature analysis for automated coarse-graining of bulk-polymer molecular dynamics simulations.

    PubMed

    Xue, Y; Ludovice, P J; Grover, M A

    2012-12-01

    A method for automated coarse-graining of bulk polymers is presented, using the data-mining tool of local feature analysis. Most existing methods for polymer coarse-graining define superatoms based on their covalent bonding topology along the polymer backbone, but here superatoms are defined based only on their correlated motions, as observed in molecular dynamics simulations. Correlated atomic motions are identified in the simulation data using local feature analysis, between atoms in the same or in different polymer chains. Groups of highly correlated atoms constitute the superatoms in the coarse-graining scheme, and the positions of their seed coordinates are then projected forward in time. Based on only the seed positions, local feature analysis enables the full reconstruction of all atomic positions. This reconstruction suggests an iterative scheme to reduce the computation of the simulations to initialize another short molecular dynamic simulation, identify new superatoms, and again project forward in time.

  10. Three-dimensional iron(ii) porous coordination polymer exhibiting carbon dioxide-dependent spin crossover.

    PubMed

    Shin, Jong Won; Jeong, Ah Rim; Jeoung, Sungeun; Moon, Hoi Ri; Komatsumaru, Yuki; Hayami, Shinya; Moon, Dohyun; Min, Kil Sik

    2018-04-24

    We report a three-dimensional Fe(ii) porous coordination polymer that exhibits a spin crossover temperature change following CO2 sorption (though not N2 sorption). Furthermore, single crystals of the desolvated polymer with CO2 molecules at three different temperatures were characterised by X-ray crystallography.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; Zhao, Jun, E-mail: junzhao08@126.com; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002

    Three new coordination polymers, namely, {[Ni(H_2L)(bix)(H_2O)_2]·2h_2O}{sub n} (1), {[Ni(HL)(Hdpa)(H_2O)_2]·H_2O}{sub n} (2), {[Ni(L)_0_._5(bpp)(H_2O)]·H_2O}{sub n} (3) (H{sub 4}L=terphenyl-2,2′,4,4′-tetracarboxylic acid; bix=1,4-bis(imidazol-1-ylmethyl)benzene; dpa =4,4′-dipyridylamine; bpp=1,3-bis(4-pyridyl)propane), based on rigid H{sub 4}L ligand and different N-donor co-ligands, have been synthesized under hydrothermal conditions. Compound 1 features a 3D 4-connected 6{sup 6}-dia-type framework with H{sub 4}L ligand adopts a μ{sub 2}-bridging mode with two symmetry-related carboxylate groups in μ{sub 1}-η{sup 1}:η{sup 0} monodentate mode. Compound 2 displays a 1D [Ni(HL)(Hdpa)]{sub n} ribbon chains motif, in which the H{sub 4}L ligand adopts a μ{sub 2}-bridging mode with two carboxylate groups in μ{sub 1}-η{sup 1}:η{sup 1} and μ{sub 1}-η{supmore » 1}:η{sup 0} monodentate modes, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology, with H{sub 4}L ligand displays a μ{sub 4}-bridging coordination mode. The H{sub 4}L ligand displays not only different deprotonated forms but also diverse coordination modes and conformations. The structural diversities among 1–3 have been carefully discussed, and the roles of N-donor co-ligands in the self-assembly of coordination polymers have been well documented. - Graphical abstract: Three nickel coordination polymers with different architectures based on mixed ligand system were synthesized and structurally characterized. Topology analyses indicate that 1 shows the 4-connected 6{sup 6}-dia net, 1D ribbon chains for 2 and 3D (4,4)-connected bbf network for 3. Display Omitted - Highlights: • Three Ni-based coordination polymers with distinct features have been prepared. • Compound 1 features a 3D 4-connected 66-dia-type framework, 2 displays a 1D [Ni(HL)(Hdpa)]{sub n} ribbon chains motif, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology. • The “mixed ligand assembled” strategy is significant potential for network design.« less

  12. Two-dimensional Zn(II) and one-dimensional Co(II) coordination polymers based on benzene-1,4-dicarboxylate and pyridine ligands.

    PubMed

    Zhou, Li-Juan; Han, Chang-Bao; Wang, Yu-Ling

    2016-02-01

    Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene-1,4-dicarboxylic acid (H2BDC) and pyridine (py) with Zn(II) or Co(II) yielded two new coordination polymers, namely, poly[(μ4-benzene-1,4-dicarboxylato-κ(4)O:O':O'':O''')(pyridine-κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena-poly[aqua(μ3-benzene-1,4-dicarboxylato-κ(3)O:O':O'')bis(pyridine-κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the Zn(II) cation is five-coordinated by four carboxylate O atoms from four BDC(2-) ligands and one pyridine N atom in a distorted square-pyramidal coordination geometry. Four carboxylate groups bridge two Zn(II) ions to form centrosymmetric paddle-wheel-like Zn2(μ2-COO)4 units, which are linked by the benzene rings of the BDC(2-) ligands to generate a two-dimensional layered structure. The two-dimensional layer is extended into a three-dimensional supramolecular structure with the help of π-π stacking interactions between the aromatic rings. Compound (II) has a one-dimensional double-chain structure based on Co2(μ2-COO)2 units. The Co(II) cations are bridged by BDC(2-) ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC(2-) ligands, one water O atom and two pyridine N atoms. Interchain O-H...O hydrogen-bonding interactions link these chains to form a three-dimensional supramolecular architecture.

  13. Pyrolysis of Helical Coordination Polymers for Metal-Sulfide-Based Helices with Broadband Chiroptical Activity.

    PubMed

    Hirai, Kenji; Yeom, Bongjun; Sada, Kazuki

    2017-06-27

    Fabrication of chiroptical materials with broadband response in the visible light region is vital to fully realize their potential applications. One way to achieve broadband chiroptical activity is to fabricate chiral nanostructures from materials that exhibit broadband absorption in the visible light region. However, the compounds used for chiroptical materials have predominantly been limited to materials with narrowband spectral response. Here, we synthesize Ag 2 S-based nanohelices derived from helical coordination polymers. The right- and left-handed coordination helices used as precursors are prepared from l- and d-glutathione with Ag + and a small amount of Cu 2+ . The pyrolysis of the coordination helices yields right- and left-handed helices of Cu 0.12 Ag 1.94 S/C, which exhibit chiroptical activity spanning the entire visible light region. Finite element method simulations substantiate that the broadband chiroptical activity is attributed to synergistic broadband light absorption and light scattering. Furthermore, another series of Cu 0.10 Ag 1.90 S/C nanohelices are synthesized by choosing the l- or d-Glu-Cys as starting materials. The pitch length of nanohelicies is controlled by changing the peptides, which alters their chiroptical properties. The pyrolysis of coordination helices enables one to fabricate helical Ag 2 S-based materials that enable broadband chiroptical activity but have not been explored owing to the lack of synthetic routes.

  14. Syntheses, structures and properties of two new coordination polymers based on D-camphoric acid and 2-phenyl-4,6-diamino-1,3,5-triazine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lun, Huijie; Yang, Jinghe; Jin, Linyu

    2015-05-15

    By hydrothermal method, two new coordination polymers [Co(ca)(phdat)]{sub n} (1), [Ni(ca)(phdat).0.125H{sub 2}O]{sub n} (2) (H{sub 2}ca=D-camphoric acid, phdat=2-phenyl-4,6-diamino-1,3,5-triazine) have been achieved and structurally characterized by IR, elemental analyses, X-ray single-crystal diffraction and TGA. The X-ray single-crystal diffraction reveals that compounds 1 and 2 are isostructural, both of which exhibit two-dimensional layered network built up from paddle-wheel Co{sub 2}(CO{sub 2}){sub 4}/Ni{sub 2}(CO{sub 2}){sub 4} SBUs by ca{sup 2−} ligand. In the existence of π…π stacking interactions between triazine rings and phenyl rings, the 3D networks are constructed with the hanging phdat filled between the neighboring layers. Furthermore, compounds 1–2 exhibit antiferromagneticmore » behavior and compound 2 displays a good activity for methanol oxidation. - Graphical abstract: Two new coordination compounds 1–2 have been synthesized and characterized by single-crystal X-ray diffractions, IR spectra, elemental analyses, thermogravimetric analyses, magnetic and electrochemical measurement. - Highlights: • This paper reports two new coordination polymers based on D-camphoric acid. • Both the compounds feather two-dimensional layered networks built up from paddle-wheel SBUs. • The magnetism and electrochemical property are investigated.« less

  15. Effect of lanthanides on the aromatic system of benzoic acid

    NASA Astrophysics Data System (ADS)

    Lewandowski, Włlodzimierz

    1983-08-01

    The stucture of lanthanide complexes with benzoic acid was investigated by IR and UV absorption spectra. To determine the effect of metal coordination on the aromatic system of benzoic acid, IR spectra of Ln(OBz) 3 (Ln is a lanthanide except promethium; BzO is benzoic acid radical) were compared with ligand and sodium benzoate spectra. Also, changes in frequency and relative intensity of the ? bands in the 1600-1400 cm -1 region, were analyzed in terms of the atomic number of lanthanides. It is shown that lanthanides disturb the aromatic system of the benzoate ligand less than sodium. This effect is discussed in terms of the bonds formed.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Shuang; Yi, Fei-Yan; Li, Guanghua

    Two coordination polymers [Co{sub 2}(TA)(4,4′-bipy){sub 2}(H{sub 2}O){sub 2}]·H{sub 2}O (1) and [Ni{sub 2}(TA)(4,4′-bipy){sub 2}(H{sub 2}O){sub 4}]·3H{sub 2}O (2) were prepared by hydrothermal reactions of MCl{sub 2}·6H{sub 2}O (M = Co, Ni) with a V-shaped ligand TDPA (3,3′,4,4′-thiodiphthalic anhydride) and a I-shaped N-donor co-ligand (4,4′-bipy). They were characterized by elemental analyses, thermogravinetric analyses, and magnetic behavior. As is expected, TDPA hydrolyzes into the corresponding tetra-carboxylate acid H{sub 4}TA (3,3′,4,4′-thiodiphthalic acid) during the reactions. Co{sub 2} dimer and Ni mononuclear center are connected into two-dimensional (2D) layers by H{sub 4}TA and 4,4′-bipy bridge in 1 and 2, respectively. The most amazing featuremore » is that 1 and 2 exhibit interesting spin-canting metamagnetism and weak ferromagnetic behavior, respectively, with the critical Néel temperature of T{sub N} =4 K for 1 and T{sub N} =13 K for 2, based on variable temperature magnetic susceptibility measurements. In low mono- or dinuclear metal system, such magnetic behaviors have rare been observed. Furthermore, complex 1 will be a potential metamagnet material. - Graphical abstract: Two Co(II) and Ni(II) coordination polymers were synthesized by hydrothermal reactions from a V-shape ligand (3,3′,4,4′-thiodiphthalic anhydride) and a I-shape ligand (4,4′-bipy), which were characterized by single crystal X-ray diffraction, elemental analyses, thermogravinetric analyses, and magnetic behavior, and exhibit interesting spin-canting metamagnetism and weak ferromagnetic behavior, respectively. - Highlights: • Two Co(II) and Ni(II) coordination polymers were successfully synthesized. • Co(II) coordination polymer shows an interesting spin-canting metamagnetism. • Ni(II) coordination polymer exhibits a weak ferromagnetic behavior.« less

  17. Syntheses, structures and characterization of isomorphous CoII and NiII coordination polymers based on 2-[(1H-imidazol-1-yl)methyl]-6-methyl-1H-benzimidazole and benzene-1,4-dicarboxylate.

    PubMed

    Huang, Qiu Ying; Zhao, Yang; Meng, Xiang Ru

    2017-08-01

    Careful choice of the organic ligands is one of the most important parameters in the rational design and synthesis of coordination polymers. Aromatic polycarboxylates have been widely used in the preparation of metal-organic polymers since they can utilize various coordination modes to form diverse structures and can act as hydrogen-bond acceptors and donors in the assembly of supramolecular structures. Nitrogen-heterocyclic organic compounds have also been used extensively as ligands for the construction of polymers with interesting structures. In the polymers catena-poly[[[diaquabis{2-[(1H-imidazol-1-yl)methyl]-6-methyl-1H-benzimidazole-κN 3 }cobalt(II)]-μ 2 -benzene-1,4-dicarboxylato-κ 2 O 1 :O 4 ] dihydrate], {[Co(C 8 H 4 O 4 )(C 12 H 11 N 4 ) 2 (H 2 O) 2 ]·2H 2 O} n , (I), and catena-poly[[[diaquabis{2-[(1H-imidazol-1-yl)methyl]-6-methyl-1H-benzimidazole-κN 3 }nickel(II)]-μ 2 -benzene-1,4-dicarboxylato-κ 2 O 1 :O 4 ] dihydrate], {[Ni(C 8 H 4 O 4 )(C 12 H 11 N 4 ) 2 (H 2 O) 2 ]·2H 2 O} n , (II), the Co II or Ni II ion lies on an inversion centre and exhibits a slightly distorted octahedral coordination geometry, coordinated by two N atoms from two imidazole rings and four O atoms from two monodentate carboxylate groups and two water molecules. The dicarboxylate ligands bridge metal ions forming a polymeric chain. The 2-[(1H-imidazol-1-yl)methyl]-6-methyl-1H-benzimidazole ligands coordinate to the Co II or Ni II centres in monodentate modes through an imidazole N atom and are pendant on opposite sides of the main chain. The two structures are isomorphous. In the crystal, the one-dimensional chains are further connected through O-H...O, O-H...N and N-H...O hydrogen bonds, leading to a three-dimensional supramolecular architecture. In addition, the IR spectroscopic properties, PXRD patterns, thermogravimetric behaviours and fluorescence properties of both polymers have been investigated.

  18. DNA/RNA binding and anticancer/antimicrobial activities of polymer-copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Lakshmipraba, Jagadeesan; Arunachalam, Sankaralingam; Riyasdeen, Anvarbatcha; Dhivya, Rajakumar; Vignesh, Sivanandham; Akbarsha, Mohammad Abdulkader; James, Rathinam Arthur

    2013-05-01

    Water soluble polymer-copper(II) complexes with various degrees of coordination in the polymer chain were synthesized and characterized by elemental analysis, IR, UV-visible and EPR spectra. The DNA/RNA binding behavior of these polymer-copper(II) complexes was examined by UV-visible absorption, emission and circular dichroism spectroscopic methods, and cyclic voltammetry techniques. The binding of the polymer-copper(II) complexes with DNA/RNA was mainly through intercalation but some amount of electrostatic interaction was also observed. This binding capacity increased with the degree of coordination of the complexes. The polymer-copper(II) complex having the highest degree of coordination was subjected to analysis of cytotoxic and antimicrobial properties. The cytotoxicity study indicated that the polymer-copper(II) complexes affected the viability of MCF-7 mammary carcinoma cells, and the cells responded to the treatment with mostly through apoptosis although a few cells succumbed to necrosis. The antimicrobial screening showed activity against some human pathogens.

  19. Water-Free Rare Earth-Prussian Blue Type Analogues: Synthesis, Structure, Computational Analysis, and Magnetic Data of {Ln[superscript III](DMF)[subscript 6]Fe[superscript III](CN)[subcsript 6]}[subscript infinity] (Ln = Rare Earths Excluding Pm)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Duane C.; Liu, Shengming; Chen, Xuenian

    2009-11-04

    Water-free rare earth(III) hexacyanoferrate(III) complexes, {l_brace}Ln(DMF){sub 6}({mu}-CN){sub 2}Fe(CN){sub 4}{r_brace}{sub {infinity}} (DMF = N,N-dimethylformamide; Ln = Sm, 1; Eu, 2; Gd, 3; Tb, 4; Dy, 5; Ho, 6; Er, 7; Tm, 8; Yb, 9; Lu, 10; Y, 11; La, 12; Ce, 13; Pr, 14; Nd, 15), were synthesized in dry DMF through the metathesis reactions of [(18-crown-6)K]{sub 3}Fe(CN){sub 6} with LnX{sub 3}(DMF){sub n} (X = Cl or NO{sub 3}). Anhydrous DMF solutions of LnX{sub 3}(DMF){sub n} were prepared at room temperature from LnCl{sub 3} or LnX{sub 3} {center_dot} nH{sub 2}O under a dynamic vacuum. All compounds were characterized by IR, X-raymore » powder diffraction (except for 10), and single crystal X-ray diffraction (except for 2, 7, 10). Infrared spectra reveal that a monotonic, linear relationship exists between the ionic radius of the lanthanide and the {nu}{sub {mu}-CN} stretching frequency of 1-10, 12-15 while 11 deviates slightly from the ionic radius relationship. X-ray powder diffraction data are in agreement with powder patterns calculated from single crystal X-ray diffraction results, a useful alternative for bulk sample confirmation when elemental analysis data are difficult to obtain. Eight-coordinate Ln(III) metal centers are observed for all structures. trans-cyanide units of [Fe(CN){sub 6}]{sup 3-} formed isocyanide linkages to Ln(III) resulting in one-dimensional polymeric chains. Structures of compounds 1-9 and 11 are isomorphous, crystallizing in the space group C2/c. Structures of compounds 12-15 are also isomorphous, crystallizing in the space group P2/n. One unique polymeric chain exists in the structures of 1-9 and 11 while two unique polymeric chains exist in structures of 12-15. One of the polymeric chains of 12-15 is similar to that observed for 1-9, 11 while the other is more distorted and has a shorter Ln-Fe distance. Magnetic susceptibility measurements for compounds 3-6, 8, 11 were performed on polycrystalline samples of the compounds.« less

  20. Chiral Silver-Lanthanide Metal-Organic Frameworks Comprised of One-Dimensional Triple Right-Handed Helical Chains Based on [Ln7(μ3-OH)8]13+ Clusters.

    PubMed

    Guo, Yan; Zhang, Lijuan; Muhammad, Nadeem; Xu, Yan; Zhou, Yunshan; Tang, Fang; Yang, Shaowei

    2018-02-05

    Three new isostructural chiral silver-lanthanide heterometal-organic frameworks [Ag 3 Ln 7 (μ 3 -OH) 8 (bpdc) 6 (NO 3 ) 3 (H 2 O) 6 ](NO 3 )·2H 2 O [Ln = Eu (1), Tb (2, Sm (3); H 2 bpdc = 2,2'-bipyridine-3,3'-dicarboxylic acid] based on heptanuclear lanthanide clusters [Ln 7 (μ 3 -OH) 8 ] 13+ comprised of one-dimensional triple right-handed helical chains were hydrothermally synthesized. Various means such as UV-vis spectroscopy, IR spectroscopy, elemental analysis, powder X-ray diffraction, and thermogravimetric/differential thermal analysis were used to characterize the compounds, wherein compound 3 was crystallographically characterized. In the structure of compound 3, eight μ 3 -OH - groups link seven Sm 3+ ions, forming a heptanuclear cluster, [Sm 7 (μ 3 -OH) 8 ] 13+ , and the adjacent [Sm 7 (μ 3 -OH) 8 ] 13+ clusters are linked by the carboxylic groups of bpdc 2- ligands, leading to the formation of a one-dimensional triple right-handed helical chain. The adjacent triple right-handed helical chains are further joined together by coordinating the pyridyl N atoms of the bpdc 2- ligands with Ag + , resulting in a chiral three-dimensional silver(I)-lanthanide(III) heterometal-organic framework with one-dimensional channels wherein NO 3 - anions and crystal lattice H 2 O molecules are trapped. The compounds were studied systematically with respect to their photoluminescence properties and energy-transfer mechanism, and it was found that H 2 bpdc (the energy level for the triplet states of the ligand H 2 bpdc is 21505 cm -1 ) can sensitize Eu 3+ luminescence more effectively than Tb 3+ and Sm 3+ luminescence because of effective energy transfer from bpdc 2- to Eu 3+ under excitation in compound 1.

  1. Two- and three-dimensional lanthanide-organic frameworks constructed using 1-hydro-6-oxopyridine-3-carboxylate and oxalate ligands.

    PubMed

    Liu, Cai-Ming; Xiong, Ming; Zhang, De-Qing; Du, Miao; Zhu, Dao-Ben

    2009-08-07

    6-Hydroxypyridine-3-carboxylic acid (6-HOPy-3-CO(2)H) reacts with Ln(2)O(3) (Ln = Nd, Sm, Eu, Gd) and oxalic acid (H(2)OX) under hydrothermal conditions to generate four novel lanthanide-organic coordination polymeric networks [Ln(2)(1H-6-Opy-3-CO(2))(2)(OX)(2)(H(2)O)(3)] x 2.5 H(2)O (Ln = Nd, 1; Sm, 2; 1H-6-Opy-3-CO(2)(-) = 1-hydro-6-oxopyridine-3-carboxylate) and [Ln(1H-6-Opy-3-CO(2))(OX)(H(2)O)(2)] x H(2)O (Ln = Eu, 3; Gd, 4). The new co-ligand 1H-6-Opy-3-CO(2)(-) anion was generated by the autoisomerization of the single deprotonated 6-HOPy-3-CO(2)(-) anion (from the enol form into the ketone one). 1 and 2 are isomorphous, they possess a three-dimensional architecture constructed from Ln(3+) ions bridged by oxalate anions and two types of 1H-6-Opy-3-CO(2)(-) bridges, showing a three-nodal (4,5)-connected topology (3.4(2).5(2).6(3).7.8)(2)(3.5(3).6(2))(2)(3(2).6.7(2).8) or a simplified uninodal 6-connected topology (3(3).4(6).5(5).6), both topologies are completely new; while only one type of 1H-6-Opy-3-CO(2)(-) bridge is used to construct the two-dimensional layer networks of 3 and 4 besides oxalate bridges, both complexes 3 and 4 are isostructural, exhibiting the honeycomb topology 6(3). The lanthanide contraction effect is believed to play a key role in directing the formation of a particular structure. A magnetic study of 1-3 indicated that the coupling interaction between Ln(3+) ions is weak.

  2. Utilization of mixed ligands to construct diverse Ni(II)-coordination polymers based on terphenyl-2,2‧,4,4‧-tetracarboxylic acid and varied N-donor co-ligands

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhao, Jun; Xia, Liang; Wu, Xue-Qian; Wang, Jian-Fang; Dong, Wen-Wen; Wu, Ya-Pan

    2016-06-01

    Three new coordination polymers, namely, {[Ni(H2L)(bix)(H2O)2]·2h2O}n (1), {[Ni(HL)(Hdpa)(H2O)2]·H2O}n (2), {[Ni(L)0.5(bpp)(H2O)]·H2O}n (3) (H4L=terphenyl-2,2‧,4,4‧-tetracarboxylic acid; bix=1,4-bis(imidazol-1-ylmethyl)benzene; dpa =4,4‧-dipyridylamine; bpp=1,3-bis(4-pyridyl)propane), based on rigid H4L ligand and different N-donor co-ligands, have been synthesized under hydrothermal conditions. Compound 1 features a 3D 4-connected 66-dia-type framework with H4L ligand adopts a μ2-bridging mode with two symmetry-related carboxylate groups in μ1-η1:η0 monodentate mode. Compound 2 displays a 1D [Ni(HL)(Hdpa)]n ribbon chains motif, in which the H4L ligand adopts a μ2-bridging mode with two carboxylate groups in μ1-η1:η1 and μ1-η1:η0 monodentate modes, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology, with H4L ligand displays a μ4-bridging coordination mode. The H4L ligand displays not only different deprotonated forms but also diverse coordination modes and conformations. The structural diversities among 1-3 have been carefully discussed, and the roles of N-donor co-ligands in the self-assembly of coordination polymers have been well documented.

  3. To bend or not to bend: experimental and computational studies of structural preference in Ln(Tp(iPr)2)2 (Ln = Sm, Tm).

    PubMed

    Momin, Aurélien; Carter, Lee; Yang, Yi; McDonald, Robert; Essafi Labouille, Stéphanie; Nief, François; Del Rosal, Iker; Sella, Andrea; Maron, Laurent; Takats, Josef

    2014-11-17

    The synthesis and characterization of Ln(Tp(iPr2))2 (Ln = Sm, 3Sm; Tm, 3Tm) are reported. While the simple (1)H NMR spectra of the compounds indicate a symmetrical solution structure, with equivalent pyrazolyl groups, the solid-state structure revealed an unexpected, "bent sandwich-like" geometry. By contrast, the structure of the less sterically congested Tm(Tp(Me2,4Et))2 (4) adopts the expected symmetrical structure with a linear B-Tm-B arrangement. Computational studies to investigate the origin of the unexpected bent structure of the former compounds indicate that steric repulsion between the isopropyl groups forces the Tp ligands apart and permits the development of unusual interligand C-H···N hydrogen-bonding interactions that help stabilize the structure. These results find support in the similar geometry of the Tm(III) analogue [Tm(Tp(iPr2))2]I, 3Tm(+), and confirm that the low symmetry is not the result of a metal-ligand interaction. The relevance of these results to the general question of the coordination geometry of MX2 and M(C5R5)2 (M = heavy alkaline earth and Ln(II), X = halide, and C5R5 = bulky persubstituted cyclopentadienyl) complexes and the importance of secondary H-bonding and nonbonding interactions on the structure are highlighted.

  4. Cd (II) and holodirected lead (II) 3D-supramolecular coordination polymers based on nicotinic acid: Structure, fluorescence property and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Etaiw, Safaa El-din H.; Abd El-Aziz, Dina M.; Marie, Hassan; Ali, Elham

    2018-05-01

    Two new supramolecular coordination polymers namely {[Cd(NA)2(H2O)]}, SCP 1 and {[Pb(NA)2]}, SCP 2, (NA = nicotinate ligand) were synthesized by self-assembly method and structurally characterized by different analytical and spectroscopic methods. Single-crystal X-ray diffraction showed that SCP 1 extend in three dimensions containing bore structure where the 3D- network is constructed via interweaving zigzag chains. The Cd atom coordinates to (O4N2) atoms forming distorted-octahedral configuration. The structure of SCP 2 extend down the projection of the b-axis creating parallel zigzag 1D-chains connected by μ2-O2 atoms and H-bonds forming a holodirected lead (II) hexagonal bi-pyramid configuration. SCP 2 extend to 3D-network via coordinate and hydrogen bonds. The thermal stability, photoluminescence properties, photocatalytic activity for the degradation of methylene blue dye (MB) under UV-irradiation and sunlight irradiation were also studied.

  5. Crystal structure and magnetic properties of a unique 3D coordination polymer constructed from flexible aliphatic tricarballylic acid ligands featuring linear trimeric Manganese(II)-based, metal carboxylate chains

    NASA Astrophysics Data System (ADS)

    Zou, Hua-Hong; Zhang, Shu-Hua; Zeng, Ming-Hua; Zhou, Yan-Ling; Liang, Hong

    2008-08-01

    A novel linear trimeric-based, Mn(II)-carboxylate chain well separated by long-linking flexible aliphatic tricarballylic acid ligands in a 3D coordination polymer [Mn 3(C 6H 5O 6) 2(H 2O) 4] n ( 1, C 6H 5O 6dbnd CH (COO -)(CH 2COO -) 2, TCA) exhibits low-dimensional antiferromagnetic order at 3.0 K. Such magnetic behavior is arises from the alternate Antiferro-Antiferro-Antiferro' ( J1J1J2) repeating interactions sequence, based on the nature of the binding modes of Mn(II)-carboxylate chain and the effect of interchains arrangement of 1. The reported carboxylate-bridged metal chain systems display a new structurally authenticated example of linear homometallic spin arranged antiferromagnet among metal carboxylates.

  6. New 3-D coordination polymers based on semi-rigid V-shape tetracarboxylates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jing-Jing; Xu, Wei; Wang, Yan-Ning

    Under the hydrothermal conditions, the reactions of transition-metal salts, tetracarboxylic acids and N,N′-donor ligands yielded three new coordination polymers as [Cu{sub 4}(fph){sub 2}(bpe){sub 3}(H{sub 2}O){sub 2}]·2H{sub 2}O (fph=4,4′-(hexafluoroisopropylidene)diphthalate, bpe=1,2-bis(pyridyl)ethylene) 1, [Co{sub 2}(fph)(bpa){sub 2}(H{sub 2}O){sub 2}]·3H{sub 2}O (bpa=1,2-bis(pyridyl)ethylane) 2, and [Ni(H{sub 2}O)(H{sub 2}oph)(bpa)] (oph=4,4′-oxydiphthalate) 3. X-ray single-crystal diffraction analysis revealed that the title three compounds all possess the three-dimensional (3-D) network structures. For compound 1, the fph molecules first link the Cu{sup 2+} ions into a two-dimensional (2-D) wave-like layer with a (4,4) topology. The bpe molecules act as the second linkers, extending the 2-D layers into a 3-D network. Formore » compound 2, the fph molecules still serve as the first connectors, linking the Co{sup 2+} ions into a one-dimensional (1-D) tube-like chain. Then the bpa molecules propagate the chains into a 3-D (4,4,4)-connected network. In the formation of the 3-D network of compound 3, the oph molecule does not play a role. The bpa molecules as well as the water molecules act as a mixed bridge. Only a kind of 4-connected metal node is observed in compound 3. The magnetic properties of compounds 1–3 were investigated and all exhibit the predominant antiferromegnetic magnetic behaviors. - Graphical abstract: Structures of three semi-rigid V-shape tetracarboxylate-based coordination polymers were reported, and their magnetic properties were investigated. - Highlights: • Structures of three tetracarboxylate-based coordination polymers were reported. • Role of organic bases in metal–tetracarboxylate compounds was discussed. • Characters of V-shape and semi-rigidity for tetracarboxylate play a key role in crystal growth. • Their magnetic properties were investigated.« less

  7. Coordination Polymerization of Renewable 3-Methylenecyclopentene with Rare-Earth-Metal Precursors.

    PubMed

    Liu, Bo; Li, Shihui; Wang, Meiyan; Cui, Dongmei

    2017-04-10

    Coordination polymerization of renewable 3-methylenecyclopentene has been investigated for the first time using rare-earth metal-based precursors bearing various bulky ligands. All the prepared complexes catalyze controllable polymerization of 3-methylenecyclopentene into high molecular weight polymers, of which the NPN- and NSN-tridentate non-Cp ligated lutetium-based catalytic systems exhibited extremely high activities up to 11 520 kg/(mol Lu ⋅h) in a dilute toluene solution (3.2 g/100 mL) at room temperature. The resultant polymers have pure 1,4-regioregularity (>99 %) and tailorable number average molecular weights (1-20×10 4 ) with narrow molecular weight distributions (polydispersity index (PDI)=1.45-1.79). DFT simulations were employed to study the polymerization mechanism and stereoregularity control. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ligand-controlled assembly of Cd(II) coordination polymers based on mixed ligands of naphthalene-dicarboxylate and dipyrido[3,2-d:2‧,3‧-f]quinoxaline: From 0D+1D cocrystal, 2D rectangular network (4,4), to 3D PtS-type architecture

    NASA Astrophysics Data System (ADS)

    Liu, Guocheng; Chen, Yongqiang; Wang, Xiuli; Chen, Baokuan; Lin, Hongyan

    2009-03-01

    Three novel Cd(II) coordination polymers, namely, [Cd(Dpq)(1,8-NDC)(H 2O) 2][Cd(Dpq)(1,8-NDC)]·2H 2O ( 1), [Cd(Dpq)(1,4-NDC)(H 2O)] ( 2), and [Cd(Dpq)(2,6-NDC)] ( 3) have been obtained from hydrothermal reactions of cadmium(II) nitrate with the mixed ligands dipyrido [3,2-d:2',3'-f]quinoxaline (Dpq) and three structurally related naphthalene-dicarboxylate ligands [1,8-naphthalene-dicarboxylic acid (1,8-H 2NDC), 1,4-naphthalene-dicarboxylic acid (1,4-H 2NDC), and 2,6-naphthalene-dicarboxylic acid (2,6-H 2NDC)]. Single-crystal X-ray diffraction analysis reveals that the three polymers exhibit novel structures due to different naphthalene-dicarboxylic acid. Compound 1 is a novel cocrystal of left- and right-handed helical chains and binuclear complexes and ultimately packed into a 3D supramolecular structure through hydrogen bonds and π- π stacking interactions. Compound 2 shows a 2D rectangular network (4,4) bridged by 1,4-NDC with two kinds of coordination modes and ultimately packed into a 3D supramolecular structure through inter-layer π- π stacking interactions. Compound 3 is a new 3D coordination polymer with distorted PtS-type network. In addition, the title compounds exhibit blue/green emission in solid state at room temperature.

  9. Towards Acid-Tolerated Ethanol Dehydration: Chitosan-Based Mixed Matrix Membranes Containing Cyano-Bridged Coordination Polymer Nanoparticles.

    PubMed

    Wu, C-W; Kang, Chao-Hsiang; Lin, Yi-Feng; Tung, Kuo-Lun; Deng, Yu-Heng; Ahamad, Tansir; Alshehri, Saad M; Suzuki, Norihiro; Yamauchi, Yusuke

    2016-04-01

    Prussian blue (PB) nanoparticles, one of many cyano-bridged coordination polymers, are successfully incorporated into chitosan (CS) polymer to prepare PB/CS mixed matrix membranes (MMMs). The PB nanoparticles are uniformly distributed in the MMMs without the collapse of the original PB structure. As-prepared PB/CS MMMs are used for ethanol dehydration at 25 °C in the pervaporation process. The effect of loading PB in CS matrix on pervaporation performance is carefully investigated. The PB/CS membrane with 30 wt% PB loading shows the best performance with a permeate flux of 614 g. m-2 . h-1 and a separation factor of 1472. The pervaporation using our PB/CS membranes exhibits outstanding performance in comparison with the previously reported CS-based membranes and MMMs. Furthermore, the addition of PB allows PB/CS MMMs to be tolerant of acidic environment. The present work demonstrates good pervaporation performance of PB/CS MMMs for the separation of an ethanol/water (90:10 in wt%) solution. Our new system provides an opportunity for dehydration of bioethanol in the future.

  10. Nitrogen Separation and Liquefaction Apparatus for Medical Applications and Its Thermodynamic Optimization

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Piotrowska, A.; Polinski, J.

    2006-04-01

    Low temperature medicine is becoming a widely appreciated method in surgery, dermatology, gynecology and rheumatology. The cryomedical equipment is usually supplied with liquid nitrogen LN2 stored in a dewar and transferred to a tip, where it is evaporated providing a cooling power. LN2 in quantities sufficient for cryo-surgical and cryo-therapeutical applications can be first separated from air and then liquefied using a system combining polymer membrane gas separation technology and a Joule-Thomson closed-cycle refrigerator filled with a nitrogen-hydrocarbons gas mixture. Nitrogen is separated from the compressed air, then liquefied and throttled to atmospheric pressure. The paper analyzes the demanded cooling capacity of the system resulting from cryomedical treatment requirements. Thermal design and flow scheme of the apparatus are given. The system is thermodynamically optimized.

  11. Homoleptic Trivalent Tris(alkyl) Rare Earth Compounds

    DOE PAGES

    Pindwal, Aradhana; Yan, KaKing; Patnaik, Smita; ...

    2017-10-09

    Homoleptic tris(alkyl) rare earth complexes Ln{C(SiHMe 2) 3} 3 (Ln = La, 1a; Ce, 1b; Pr, 1c; Nd, 1d) are synthesized in high yield from LnI 3THF n and 3 equiv of KC(SiHMe 2) 3. X-ray diffraction studies reveal 1a–d are isostructural, pseudo-C 3-symmetric molecules that contain two secondary Ln←HSi interactions per alkyl ligand (six total). Spectroscopic assignments are supported by comparison with Ln{C(SiDMe 2) 3} 3 and DFT calculations. Here, the Ln←HSi and terminal SiH exchange rapidly on the NMR time scale at room temperature, but the two motifs are resolved at low temperature. Variable-temperature NMR studies provide activationmore » parameters for the exchange process in 1a (ΔH ‡ = 8.2(4) kcal·mol –1; ΔS ‡ = –1(2) cal·mol –1K –1) and 1a-d 9 (ΔH ‡ = 7.7(3) kcal·mol –1; ΔS ‡ = –4(2) cal·mol –1K –1). Comparisons of lineshapes, rate constants (kH/kD), and slopes of ln(k/T) vs 1/T plots for 1a and 1a-d 9 reveal that an inverse isotope effect dominates at low temperature. DFT calculations identify four low-energy intermediates containing five β-Si–H→Ln and one γ-C–H→Ln. The calculations also suggest the pathway for Ln←HSi/SiH exchange involves rotation of a single C(SiHMe 2) 3 ligand that is coordinated to the Ln center through the Ln–C bond and one secondary interaction. These robust organometallic compounds persist in solution and in the solid state up to 80 °C, providing potential for their use in a range of synthetic applications. For example, reactions of Ln{C(SiHMe 2) 3} 3 and ancillary proligands, such as bis-1,1-(4,4-dimethyl-2-oxazolinyl)ethane (HMeC(Ox Me2) 2) give {MeC(Ox Me2) 2}Ln{C(SiHMe 2) 3} 2, and reactions with disilazanes provide solvent-free lanthanoid tris(disilazides).« less

  12. Homoleptic Trivalent Tris(alkyl) Rare Earth Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pindwal, Aradhana; Yan, KaKing; Patnaik, Smita

    Homoleptic tris(alkyl) rare earth complexes Ln{C(SiHMe 2) 3} 3 (Ln = La, 1a; Ce, 1b; Pr, 1c; Nd, 1d) are synthesized in high yield from LnI 3THF n and 3 equiv of KC(SiHMe 2) 3. X-ray diffraction studies reveal 1a–d are isostructural, pseudo-C 3-symmetric molecules that contain two secondary Ln←HSi interactions per alkyl ligand (six total). Spectroscopic assignments are supported by comparison with Ln{C(SiDMe 2) 3} 3 and DFT calculations. Here, the Ln←HSi and terminal SiH exchange rapidly on the NMR time scale at room temperature, but the two motifs are resolved at low temperature. Variable-temperature NMR studies provide activationmore » parameters for the exchange process in 1a (ΔH ‡ = 8.2(4) kcal·mol –1; ΔS ‡ = –1(2) cal·mol –1K –1) and 1a-d 9 (ΔH ‡ = 7.7(3) kcal·mol –1; ΔS ‡ = –4(2) cal·mol –1K –1). Comparisons of lineshapes, rate constants (kH/kD), and slopes of ln(k/T) vs 1/T plots for 1a and 1a-d 9 reveal that an inverse isotope effect dominates at low temperature. DFT calculations identify four low-energy intermediates containing five β-Si–H→Ln and one γ-C–H→Ln. The calculations also suggest the pathway for Ln←HSi/SiH exchange involves rotation of a single C(SiHMe 2) 3 ligand that is coordinated to the Ln center through the Ln–C bond and one secondary interaction. These robust organometallic compounds persist in solution and in the solid state up to 80 °C, providing potential for their use in a range of synthetic applications. For example, reactions of Ln{C(SiHMe 2) 3} 3 and ancillary proligands, such as bis-1,1-(4,4-dimethyl-2-oxazolinyl)ethane (HMeC(Ox Me2) 2) give {MeC(Ox Me2) 2}Ln{C(SiHMe 2) 3} 2, and reactions with disilazanes provide solvent-free lanthanoid tris(disilazides).« less

  13. Two novel two-dimensional copper(II) coordination polymers with 1-(4-aminobenzyl)-1,2,4-triazole: Synthesis, crystal structure, magnetic characterization and absorption of anion pollutants

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Wu, Xiang Xia; Guo, Jian-Hua; Huo, Jian-Zhong; Ding, Bin

    2017-01-01

    In this work a flexible multi-dentate 1-(4-aminobenzyl)-1,2,4-triazole (abtz) ligand has been employed, two novel triazole-Cu(II) coordination polymers {[Cu(abtz)2(Br)2]·(H2O)2}n (1) and {[Cu(abtz)2]·(SiF6)·(H2O)2}n (2) have been isolated under solvo-thermal conditions. 1 is a 2D neutral CuII coordination polymer while 2 is 2D cation micro-porous CuII coordination polymer with the channel dimensionalities of 11.852(1) Å × 11.852(1) Å (metal-metal distances). Variable-temperature magnetic susceptibility data of 1 and 2 have been recorded in the 2-300 K temperature range indicating weak anti-ferromagnetic interactions. Further absorption properties of anion pollutants for 2 also have been investigated. 2 presents the novel example of cationic triazole-copper(II) coordination framework for effectively capturing anion pollutants Cr2O72- in the water solutions and selectively capturing Congo Red in the methanol solutions.

  14. Five novel lanthanide complexes with 2-chloroquinoline-4-carboxylic acid and 1,10-phenanthroline: Crystal structures, molecular spectra, thermal properties and bacteriostatic activities

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Jin, Cheng-Wei; He, Shu-Mei; Ren, Ning; Zhang, Jian-Jun

    2016-12-01

    Five novel lanthanide complexes [Ln2(2-ClQL)6(phen)2(H2O)2]·2H2O (Ln = Pr(1), Sm(2), Eu(3), Ho(4), Er(5)); 2-ClQL: 2-chloroquinoline-4-carboxylate; phen: 1,10-phenanthroline; were synthesized by conventional solution method at room temperature and characterized via elemental analysis, powder x-ray diffraction, Infrared spectroscopy and Raman spectrometry. The results indicate that complexes 1-5 are isostructural, and each Ln3+ ion is eight-coordinated adopting a distorted square antiprismatic molecular geometry. Binuclear complex 1 are stitched together via hydrogen bonding interactions to form 1D chains, and further to form 2D sheets by the π-π interactions. Luminescence investigation reveals that complex 3 displays strong red emission. TG/DTG-FTIR, reveal the thermal decomposition processes and products of title complexes. The bacteriostatic activities of the complexes were evaluated against Candida albicans, Escherichia coli, and Staphylococcus aureus.

  15. Fluorescent nanoscale zinc(II)-carboxylate coordination polymers for explosive sensing.

    PubMed

    Zhang, Chengyi; Che, Yanke; Zhang, Zengxing; Yang, Xiaomei; Zang, Ling

    2011-02-28

    Fluorescent nanoscale coordination polymers with cubic morphology and long range ordered structure were fabricated and exhibited efficient sensing for both nitroaromatic explosive and nitromethane due to large surface area to volume ratio and strong binding affinity to explosive molecules.

  16. Influence of lanthanides on spin-relaxation and spin-structure in a family of Fe 7Ln 4 single molecule magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodius, Denis; Mereacre, Valeriu; Singh, Prashant

    A family of isostructural undecanuclear 3d–4f coordination clusters of formula [Fe III 7Ln III 4O 4(OH) 3(tea) 2(Htea) 3(Piv) 7(H 2O) 2(NO 3) 3], where Ln = Y (1), Gd (2), Tb (3), Dy (4); PivH ≡ pivalic acid and H 3tea ≡ triethanolamine, was synthesised in this paper. The central Fe7 core of the coordination cluster can be described in terms of two {Fe 4O 2} butterfly motifs sharing a common body Fe atom. The two Fe 4 mean-planes subtend a dihedral angle of ca. 72°. The Tb (3) and Dy (4) compounds show Single Molecule Magnet (SMM) behaviourmore » as confirmed by ac-susceptibility and μ-SQUID measurements. Furthermore, 57Fe Mössbauer spectra of 1–4 confirm the presence of high-spin Fe III sites. The spectra of all complexes in the high temperature range (30–300 K) show broad overlapping doublets which were assigned to the body and wing-tip pairs of metal ions within the Fe 7 core. The low temperature Mössbauer spectra show dependence on the nature of the rare-earth metal as a result of its interaction with the iron sites. Finally, we observed a transition from fast (2), to intermediate (1) and very slow (frozen) (3, 4) spin fluctuation phenomena in these compounds.« less

  17. Influence of lanthanides on spin-relaxation and spin-structure in a family of Fe 7Ln 4 single molecule magnets

    DOE PAGES

    Prodius, Denis; Mereacre, Valeriu; Singh, Prashant; ...

    2018-03-01

    A family of isostructural undecanuclear 3d–4f coordination clusters of formula [Fe III 7Ln III 4O 4(OH) 3(tea) 2(Htea) 3(Piv) 7(H 2O) 2(NO 3) 3], where Ln = Y (1), Gd (2), Tb (3), Dy (4); PivH ≡ pivalic acid and H 3tea ≡ triethanolamine, was synthesised in this paper. The central Fe7 core of the coordination cluster can be described in terms of two {Fe 4O 2} butterfly motifs sharing a common body Fe atom. The two Fe 4 mean-planes subtend a dihedral angle of ca. 72°. The Tb (3) and Dy (4) compounds show Single Molecule Magnet (SMM) behaviourmore » as confirmed by ac-susceptibility and μ-SQUID measurements. Furthermore, 57Fe Mössbauer spectra of 1–4 confirm the presence of high-spin Fe III sites. The spectra of all complexes in the high temperature range (30–300 K) show broad overlapping doublets which were assigned to the body and wing-tip pairs of metal ions within the Fe 7 core. The low temperature Mössbauer spectra show dependence on the nature of the rare-earth metal as a result of its interaction with the iron sites. Finally, we observed a transition from fast (2), to intermediate (1) and very slow (frozen) (3, 4) spin fluctuation phenomena in these compounds.« less

  18. Deciphering three beneficial effects of 2,2'-bipyridine-N,N'-dioxide on the luminescence sensitization of lanthanide(III) hexafluoroacetylacetonate ternary complexes.

    PubMed

    Eliseeva, Svetlana V; Pleshkov, Dmitry N; Lyssenko, Konstantin A; Lepnev, Leonid S; Bünzli, Jean-Claude G; Kuzmina, Natalia P

    2011-06-06

    Lanthanide hexafluoroacetylacetonate ternary complexes with 2,2'-bipyridine-N,N'-dioxide, [Ln(hfa)(3)(bpyO2)], were synthesized for Ln = Eu, Gd, Tb, and Lu and fully characterized by elemental, thermal, and mass-spectrometric analyses. The X-ray crystal structure of [Eu(hfa)(3)(bpyO2)]·0.5C(6)H(6) reveals an octa-coordinate metal ion lying in a severely distorted trigonal dodecahedron geometry; the Eu-O distances lie in the range 2.36-2.44 Å with no significant difference between hfa(-) and bpyO2. A detailed comparative photophysical investigation has been carried out to determine the exact influence of the introduction of bpyO2 in the inner coordination sphere of the metal ion in replacement of the two water molecules in [Ln(hfa)(3)(H(2)O)(2)]. While this replacement is detrimental for Tb, it leads to a 15-fold increase in the overall quantum yield for Eu. This large improvement originates from (i) a better sensitization efficiency, the ancillary ligand being responsible for 3/4 of the energy transfer, (ii) elimination of nonradiative deactivation pathways through harmonics of O-H vibrations, and (iii) reduction in the radiative lifetime. The latter influence is rarely documented, but it accounts here for a ≈25% increase in the intrinsic quantum yield, so that more attention should be given to this parameter when designing highly luminescent lanthanide complexes. © 2011 American Chemical Society

  19. Interfraction Displacement of Primary Tumor and Involved Lymph Nodes Relative to Anatomic Landmarks in Image Guided Radiation Therapy of Locally Advanced Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan, Nuzhat; Balik, Salim; Hugo, Geoffrey D.

    Purpose: To analyze primary tumor (PT) and lymph node (LN) position changes relative to each other and relative to anatomic landmarks during conventionally fractionated radiation therapy for patients with locally advanced lung cancer. Methods and Materials: In 12 patients with locally advanced non-small cell lung cancer PT, LN, carina, and 1 thoracic vertebra were manually contoured on weekly 4-dimensional fan-beam CT scans. Systematic and random interfraction displacements of all contoured structures were identified in the 3 cardinal directions, and resulting setup margins were calculated. Time trends and the effect of volume changes on displacements were analyzed. Results: Three-dimensional displacement vectorsmore » and systematic/random interfraction displacements were smaller for carina than for vertebra both for PT and LN. For PT, mean (SD) 3-dimensional displacement vectors with carina-based alignment were 7 (4) mm versus 9 (5) mm with bony anatomy (P<.0001). For LN, smaller displacements were found with carina- (5 [3] mm, P<.0001) and vertebra-based (6 [3] mm, P=.002) alignment compared with using PT for setup (8 [5] mm). Primary tumor and LN displacements relative to bone and carina were independent (P>.05). Displacements between PT and bone (P=.04) and between PT and LN (P=.01) were significantly correlated with PT volume regression. Displacements between LN and carina were correlated with LN volume change (P=.03). Conclusions: Carina-based setup results in a more reproducible PT and LN alignment than bony anatomy setup. Considering the independence of PT and LN displacement and the impact of volume regression on displacements over time, repeated CT imaging even with PT-based alignment is recommended in locally advanced disease.« less

  20. An integrated logic system for time-resolved fluorescent "turn-on" detection of cysteine and histidine base on terbium (III) coordination polymer-copper (II) ensemble.

    PubMed

    Xue, Shi-Fan; Lu, Ling-Fei; Wang, Qi-Xian; Zhang, Shengqiang; Zhang, Min; Shi, Guoyue

    2016-09-01

    Cysteine (Cys) and histidine (His) both play indispensable roles in many important biological activities. An enhanced Cys level can result in Alzheimer's and cardiovascular diseases. Likewise, His plays a significant role in the growth and repair of tissues as well as in controlling the transmission of metal elements in biological bases. Therefore, it is meaningful to detect Cys and His simultaneously. In this work, a novel terbium (III) coordination polymer-Cu (II) ensemble (Tb(3+)/GMP-Cu(2+)) was proposed. Guanosine monophosphate (GMP) can self-assemble with Tb(3+) to form a supramolecular Tb(3+) coordination polymer (Tb(3+)/GMP), which can be suited as a time-resolved probe. The fluorescence of Tb(3+)/GMP would be quenched upon the addition of Cu(2+), and then the fluorescence of the as-prepared Tb(3+)/GMP-Cu(2+) ensemble would be restored again in the presence of Cys or His. By incorporating N-Ethylmaleimide and Ni(2+) as masking agents, Tb(3+)/GMP-Cu(2+) was further exploited as an integrated logic system and a specific time-resolved fluorescent "turn-on" assay for simultaneously sensing His and Cys was designed. Meanwhile it can also be used in plasma samples, showing great potential to meet the need of practical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Four thiophene-pyridyl-amide-based Zn{sup II}/Cd{sup II} coordination polymers: Assembly, structures, photocatalytic properties and fluorescent recognition for Fe{sup 3+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiu-Li; Wu, Xiao-Mei; Liu, Guo-Cheng

    By tuning metal ions and combining with different dicarboxylates, four new semi-rigid thiophene-bis-pyridyl-bis-amide-based coordination polymers, namely, [Zn(3-bptpa)(1,3-BDC)]·DMA·2H{sub 2}O (1), [Zn(3-bptpa)(5-MIP)] (2), [Cd(3-bptpa)(1,3-BDC)]·2H{sub 2}O (3) and [Cd(3-bptpa)(5-MIP)]·4H{sub 2}O (4) (3-bptpa=N,N′-bis(pyridine-3-yl)thiophene-2,5-dicarboxamide, 1,3-H{sub 2}BDC=1,3-benzenedicarboxylic acid, 5-H{sub 2}MIP=5-methylisophthalic acid, DMA=N,N-dimethylacetamide), were solvothermally/hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction analyses, IR spectra, UV–vis diffuse-reflectance spectra (DRS), powder X-ray diffraction (PXRD) and thermal gravimetric analyses (TG). The structural analysis reveals that Zn-complexes 1 and 2 are similar 2D networks. While Cd-complexes 3 and 4 exhibit similar 2-fold interpenetrating 3D α-Po frameworks with the (4{sup 12}·6{sup 3}) topology. The photocatalytic properties for the degradation ofmore » methylene blue (MB) under ultraviolet light irradiation of the title complexes have been investigated in detail. Furthermore, the luminescent sensing behaviors for metal cations of 1–4 have been studied, the results indicate that 3 is an excellent fluorescent probe, with high sensitivity, selectivity, and simple regeneration, for environmentally relevant Fe{sup 3+} ions. - Graphical abstract: Four Zn{sup II}/Cd{sup II} coordination polymers with a thiophene-pyridyl-amide ligand have been prepared. The photocatalytic activities and fluorescent sensing properties for metal ions of the title complexes have been investigated. - Highlights: • Four coordination polymers with thiophene-pyridyl-amide ligands have been obtained. • The central metal ions play an important role in the formation of the frameworks. • The photoluminescent sensing and the photocatalytic properties have been investigated.« less

  2. Lanthanide co-ordination frameworks: Opportunities and diversity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Robert J.; Long, De-Liang; Hubberstey, Peter

    2005-08-15

    Significant successes have been made over recent years in preparing co-ordination framework polymers that show macroscopic material properties, but in the vast majority of cases this has been achieved with d-block metal-based systems. Lanthanide co-ordination frameworks also offer attractive properties in terms of their potential applications as luminescent, non-linear optical and porous materials. However, lanthanide-based systems have been far less studied to date than their d-block counterparts. One possible reason for this is that the co-ordination spheres of lanthanide cations are more difficult to control and, in the absence of design strategies for lanthanide co-ordination frameworks, it is significantly moremore » difficult to target materials with specific properties. However, this article highlights some of the exciting possibilities that have emerged from the earliest investigations in this field with new topological families of compounds being discovered from relatively simple framework components, including unusual eight, seven and five-connected framework systems. Our own research, as well as others, is leading to a much greater appreciation of the factors that control framework formation and the resultant observed topologies of these polymers. As this understanding develops targeting particular framework types will become more straightforward and the development of designed polyfunctional materials more accessible. Thus, it can be seen that lanthanide co-ordination frameworks have the potential to open up previously unexplored directions for materials chemistry. This article focuses on the underlying concepts for the construction of these enticing and potentially highly important materials.« less

  3. Fabrication of optical microlenses by a new inkjet printing technique based on pyro-electrohydrodynamic (PEHD) effect

    NASA Astrophysics Data System (ADS)

    Coppola, S.; Vespini, V.; Grimaldi, I. A.; Loffredo, F.; Villani, F.; Miccio, L.; Grilli, S.; Ferraro, P.

    2012-06-01

    Here the pyroelectric functionality of a Lithium Niobate (LN) substrate is used for non-contact manipulation of liquids. In this work we introduced the use of a pyro-electrohydrodynamc (PEHD) dispenser for the manipulation of high viscous polymer materials leading to the fabrication of arrays of microlenses. The set-up used for the experiment is described and the fabricated microlenses are analyzed by means of the Digital Holography (DH) set-up in transmission mode and through profilometric analysis. PMMA based ink was employed for the realization of optical quality microsctructures whose geometrical properties and, hence, the focal lengths were controlled by modifying the printing configuration of the PEHD method. The profilometric results are in agreement with those calculated using the digital holography technique.

  4. Optimization of mechanical performance of oxidative nano-particle electrode nitrile butadiene rubber conducting polymer actuator.

    PubMed

    Kim, Baek-Chul; Park, S J; Cho, M S; Lee, Y; Nam, J D; Choi, H R; Koo, J C

    2009-12-01

    Present work delivers a systematical evaluation of actuation efficiency of a nano-particle electrode conducting polymer actuator fabricated based on Nitrile Butadiene Rubber (NBR). Attempts are made for maximizing mechanical functionality of the nano-particle electrode conducting polymer actuator that can be driven in the air. As the conducting polymer polypyrrole of the actuator is to be fabricated through a chemical oxidation polymerization process that may impose certain limitations on both electrical and mechanical functionality of the actuator, a coordinated study for optimization process of the actuator is necessary for maximizing its performance. In this article actuation behaviors of the nano-particle electrode polypyrrole conducting polymer is studied and an optimization process for the mechanical performance maximization is performed.

  5. Structural diversification and photocatalytic properties of three Cd(II) coordination polymers decorated with different auxiliary ligands

    NASA Astrophysics Data System (ADS)

    Yin, Wen-Yu; Zhuang, Guo-Yong; Huang, Zuo-Long; Cheng, Hong-Jian; Zhou, Li; Ma, Man-Hong; Wang, Hao; Tang, Xiao-Yan; Ma, Yun-Sheng; Yuan, Rong-Xin

    2016-03-01

    Three cadmium coordination polymers, [Cd(bismip)]n (1), {[Cd(bismip)(phen)]·H2O}n (2) and {[Cd2(bismip)2(4,4‧-bipy)]·2H2O}n (3) (H2bismip=5-(1H-benzoimidazol-2-ylsulfanylmethyl)-isophthalic acid, phen=1,10-phenanthroline, 4,4‧-bipy=4,4‧-bipyridine) have been prepared under solvothermal conditions. In 1, the [Cd4(bismip)3] units are jointed by bismip ligands to afford a three-dimensional (3D) architecture. Complex 2 exhibits a 3D supramolecular framework based on the interconnection of 1D chains through hydrogen bonding interactions and π-π packing interactions. 3 is a two-fold interpenetrating 3D architecture with a (4·82)(42·84) Schläfli symbol in which 2D layers are interlinked by 4,4‧-bipy ligands. The diverse structures of compounds 1-3 indicate that the auxiliary ligands have significant effects on the final structures. The photoluminescent properties and photocatalytic properties of these coordination polymers in the solid state were also investigated. Remarkably, 3 shows the wide gap semiconductor nature and exhibit excellent photocatalytic performance.

  6. Luminescent Thermochromism of 2D Coordination Polymers Based on Copper(I) Halides with 4-Hydroxythiophenol

    PubMed Central

    Troyano, Javier; Perles, Josefina; Amo-Ochoa, Pilar; Martínez, Jose Ignacio; Concepción Gimeno, Maria; Fernández-Moreira, Vanesa; Zamora, Félix; Delgado, Salomé

    2016-01-01

    Solvothermal reactions between copper(I) halides and 4-mercaptophenol give rise to the formation of three coordination polymers with general formula [Cu3X(HT)2]n (X= Cl, 1; Br, 2; and I, 3). The structures of these coordination polymers have been determined by X-ray diffraction at both room temperature and low temperature (110 K), showing a general shortening in Cu-S, Cu-X and Cu···Cu bond distances at low temperatures. 1 and 2 are isostructural consisting of layers in which the halogen ligands act as μ3-bridges joining two Cu1 and one Cu2 atoms whereas in 3 the iodine ligands is as μ4-mode but the layers are quasi-isostructural with 1 or 2. These compounds show a reversible thermochromic luminescence, with strong orange emission for 1 and 2, but weaker for 3 at room temperature, while upon cooling at 77 K 1 and 2 show stronger yellow as well as 3 displays stronger green emission. DFT calculations have been used to rationalise these observations. These results suggest a high potential for this novel and promising stimuli-responsive materials. PMID:27809369

  7. Luminescent Thermochromism of 2D Coordination Polymers Based on Copper(I) Halides with 4-Hydroxythiophenol.

    PubMed

    Troyano, Javier; Perles, Josefina; Amo-Ochoa, Pilar; Martínez, Jose Ignacio; Concepción Gimeno, Maria; Fernández-Moreira, Vanesa; Zamora, Félix; Delgado, Salomé

    2016-12-12

    Solvothermal reactions between copper(I) halides and 4-mercaptophenol give rise to the formation of three coordination polymers with general formula [Cu 3 X(HT) 2 ] n (X=Cl, 1; Br, 2; and I, 3). The structures of these coordination polymers have been determined by X-ray diffraction at both room- and low temperature (110 K), showing a general shortening in Cu-S, Cu-X and Cu-Cu bond lengths at low temperatures. 1 and 2 are isostructural, consisting of layers in which the halogen ligands act as μ 3 -bridges joining two Cu1 and one Cu2 atoms whereas in 3 the iodine ligands is as μ 4 -mode but the layers are quasi-isostructural with 1 or 2. These compounds show a reversible thermochromic luminescence, with strong orange emission for 1 and 2, but weaker for 3 at room temperature, whereas upon cooling at 77 K 1 and 2 show stronger yellow emission, and 3 displays stronger green emission. DFT calculations have been used to rationalize these observations. These results suggest a high potential for this novel and promising stimuli-responsive materials. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Characterization of bovine serum albumin partitioning behaviors in polymer-salt aqueous two-phase systems.

    PubMed

    Chow, Yin Hui; Yap, Yee Jiun; Tan, Chin Ping; Anuar, Mohd Shamsul; Tejo, Bimo Ario; Show, Pau Loke; Ariff, Arbakariya Bin; Ng, Eng-Poh; Ling, Tau Chuan

    2015-07-01

    In this paper, a linear relationship is proposed relating the natural logarithm of partition coefficient, ln K for protein partitioning in poly (ethylene glycol) (PEG)-phosphate aqueous two-phase system (ATPS) to the square of tie-line length (TLL(2)). This relationship provides good fits (r(2) > 0.98) to the partition of bovine serum albumin (BSA) in PEG (1450 g/mol, 2000 g/mol, 3350 g/mol, and 4000 g/mol)-phosphate ATPS with TLL of 25.0-50.0% (w/w) at pH 7.0. Results also showed that the plot of ln K against pH for BSA partitioning in the ATPS containing 33.0% (w/w) PEG1450 and 8.0% (w/w) phosphate with varied working pH between 6.0 and 9.0 exhibited a linear relationship which is in good agreement (r(2) = 0.94) with the proposed relationship, ln K = α' pH + β'. These results suggested that both the relationships proposed could be applied to correlate and elucidate the partition behavior of biomolecules in the polymer-salt ATPS. The influence of other system parameters on the partition behavior of BSA was also investigated. An optimum BSA yield of 90.80% in the top phase and K of 2.40 was achieved in an ATPS constituted with 33.0% (w/w) PEG 1450 and 8.0% (w/w) phosphate in the presence of 8.5% (w/w) sodium chloride (NaCl) at pH 9.0 for 0.3% (w/w) BSA load. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. White polymer light-emitting diodes based on star-shaped polymers with an orange dendritic phosphorescent core.

    PubMed

    Zhu, Minrong; Li, Yanhu; Cao, Xiaosong; Jiang, Bei; Wu, Hongbin; Qin, Jingui; Cao, Yong; Yang, Chuluo

    2014-12-01

    A series of new star-shaped polymers with a triphenylamine-based iridium(III) dendritic complex as the orange-emitting core and poly(9,9-dihexylfluorene) (PFH) chains as the blue-emitting arms is developed towards white polymer light-emitting diodes (WPLEDs). By fine-tuning the content of the orange phosphor, partial energy transfer and charge trapping from the blue backbone to the orange core is realized to achieve white light emission. Single-layer WPLEDs with the configuration of ITO (indium-tin oxide)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/polymer/CsF/Al exhibit a maximum current efficiency of 1.69 cd A(-1) and CIE coordinates of (0.35, 0.33), which is very close to the pure white-light point of (0.33, 0.33). To the best of our knowledge, this is the first report on star-shaped white-emitting single polymers that simultaneously consist of fluorescent and phosphorescent species. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. An in situ method to quantitatively determine dissolved free drug concentrations in vitro in the presence of polymer excipients using pulsatile microdialysis (PMD).

    PubMed

    Vejani, Charchil; Bellantone, Robert A

    2015-12-30

    In drug formulations containing polymer excipients, the effects of the polymer on the dissolved free drug concentration and resulting dissolution or release can be important, especially for poorly soluble drugs. In this study, an in vitro method based on pulsatile microdialysis (PMD) was developed to quantitatively determine dissolved free concentrations of drugs in the presence of polymers in aqueous media in situ (e.g., in place within the system being characterized). Formulations were made by dissolving various ratios of the drug griseofulvin and polymer PVP K30 in water and allowing the mix to equilibrate. A PMD probe was immersed in each mixture and the dissolved free drug concentrations were determined in the PMD samples. The experimental procedure and the equations used for data analysis are presented. To assess the consistency of data, a binding model was fit to the data obtained using PMD by calculating the dissolved free drug fraction fD for each drug-polymer ratio in solution, and obtaining the product of the binding stoichiometry and binding constant (νK per mole of polymer) from the slope of a plot of (1-fD)/fD vs. the molar polymer concentration. For comparison, equilibrium binding experiments were also performed at 23C, and the determined value of νK was similar to the value found using PMD. Experiments were performed at three temperatures, and a plot of ln (νK) vs. 1/T was linear and a binding enthalpy of -110.9±4.4J/mol of monomer was calculated from its slope. It was concluded that PMD can be used to determine the dissolved free drug concentrations in situ, which allows characterization of the drug-polymer interaction, even for low drug concentrations. This information may be important in modeling the dissolution or release of drugs from formulations containing polymers. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Redox properties of samarium, europium and ytterbium in molten eutectic mixture of sodium, potassium and cesium chlorides

    NASA Astrophysics Data System (ADS)

    Golovanova, O. A.; Tropin, O. A.; Volkovich, V. A.

    2017-09-01

    The redox behavior of samarium, europium and ytterbium ions was investigated in the ternary 6NaCl-9KCl- 5CsCl eutectic based melts between 823 and 1073 K employing cyclic voltammetry on a tungsten working electrode. Ln(II)/Ln(III) (Ln=Sm, Eu, Yb) reduction-oxidation is reversible and controlled by diffusion of the electroactive species at the potential scan rates up to 0.1 V/s. Formal standard redox potentials E*Ln(II)/Ln(III) were determined, and the thermodynamic and transport properties of the corresponding Ln(III) and Ln(II) ions were estimated.

  12. Solid Electrolyte Materials for use in Lithium-water Primary Batteries And the Synthesis and Characterization of Lanthanide Orthoferrite Magnetic Nanomaterials

    NASA Astrophysics Data System (ADS)

    Cook, Clifford Corlin

    This thesis was developed in two parts with the overall goals of this work being (1) synthesize and develop solid electrolyte materials for use in a lithium-water battery and (2) synthesize and characterize ternary magnetic nanomaterials. Lithium metal in combination with water is a highly attractive power source due to its high specific energy. Because of the vigorous nature of the reaction between lithium and water, many obstacles must be overcome in order to harness the energy that this system is capable of producing. Parasitic reactions must be controlled so as not to passivate the lithium or consume it totally. In addition, production of hydrogen gas that accompanies both the electrochemical and parasitic reactions can present a serious challenge. As a result it is difficult to maintain high voltage and control the current density in these systems. In order to overcome these obstacles we have developed composite membranes of various lithium-ion conducting solid electrolytes and polymers. Lithium-ion conducting solid electrolytes are known to achieve ionic conductance as high as 10-3 S/cm2. Utilizing these materials in conjunction with polymers, we have created hydrophobic membranes that allow us to limit the parasitic reactions and maintain low cell impedance. Lanthanide orthoferrite materials are technologically important classes of magnetic materials. They have found application in magneto-optical devices as well as in magnetic recording devices. We have explored the syntheses and magnetic properties of nanocrystalline materials. The synthesis of the nanomaterials was done by co-reduction of lanthanide, Ln3+, and iron, Fe 3+, cations with alkalide solution producing the Ln-Fe alloy of the desired stoichiometry. Removal of the byproducts and oxidization of the alloy was accomplished by washing the product with aerated water. Presented herein, several nanoscale lanthanide orthoferrite materials (LnFeO3, Ln = Gd, Tb, Er, Tm, Sm, Dy, Ho, and La) have been prepared. The products have been characterized by X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and magnetic properties characterized by use of a Superconducting Quantum Interference Device (SQUID).

  13. Self-assembly of metal-organic supramolecules: from a metallamacrocycle and a metal-organic coordination cage to 1D or 2D coordination polymers based on flexible dicarboxylate ligands.

    PubMed

    Dai, Fangna; Dou, Jianmin; He, Haiyan; Zhao, Xiaoliang; Sun, Daofeng

    2010-05-03

    To assemble metal-organic supramolecules such as a metallamacrocycle and metal-organic coordination cage (MOCC), a series of flexible dicarboxylate ligands with the appropriate angle, 2,2'-(2,3,5,6-tetramethyl-1,4-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(1)), 2,2'-(2,5-dimethyl-1,4-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(2)), 2,2'-(2,4,6-trimethyl-1,3-phenylene)bis(methylene)bis(sulfanediyl)dinicotinic acid (H(2)L(3)), and 2,2'-(2,4,6-trimethyl-1,3-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(4)), have been designed and synthesized. Using these flexible ligands to assemble with metal ions, six metal-organic supramolecules, Cd(2)(L(1))(2)(dmf)(4)(H(2)O)(2).H(2)O (1), Mn(3)((1)L(2))(2)((2)L(2))(dmf)(2)(H(2)O)(2).5dmf (2), Cu(4)(L(3))(4)(H(2)O)(4).3dmf (3), Cu(4)(L(4))(4)(dmf)(2)(EtOH)(2).8dmf.6H(2)O (4), Mn(4)(L(4))(4)(dmf)(4)(H(2)O)(4).6dmf.H(2)O (5), and Mn(3)(L(4))(3)(dmf)(4).2dmf.3H(2)O (6), possessing a rectangular macrocycle, MOCCs or their extensions, and 1D or 2D coordination polymers, have been isolated. All complexes have been characterized by single-crystal X-ray diffraction, elemental analysis, and thermogravimetric analysis. Complex 1 is a discrete rectangular macrocycle, while complex 2 is a 2D macrocycle-based coordination polymer in which the L(2) ligand adopts both syn and anti conformations. Complexes 3-5 are discrete MOCCs in which two binuclear metal clusters are engaged by four organic ligands. The different geometries of the secondary building units (SBUs) and the axial coordinated solvates on the SBUs result in their different symmetries. Complex 6 is a 1D coordination polymer, extended from a MOCC made up of two metal ions and three L(4) ligands. All of the flexible dicarboxylate ligands adopt a syn conformation except that in complex 2, indicating that the syn conformational ligand is helpful for the formation of a metallamacrocycle and a MOCC. The magnetic properties of complexes 5 and 6 have also been studied.

  14. Interphase Transformations at Metal (Copper, Iron)-Polymer Gel-Electrolyte Interfaces

    NASA Astrophysics Data System (ADS)

    Lyamina, G. V.; Dubinina, O. V.; Vaitulevich, E. A.; Mokrousov, G. M.

    2018-07-01

    The results from studies of the interface boundaries between metals (copper and iron) and gel electrolyte based on methacrylic copolymers are organized systematically. In contrast to processes in liquid electrolytes, a number of key features of the reactions that occur at such interfaces are revealed: a diffusion limiting stage; a lack of reverse reactions; and the formation of coordination compounds of metal ions with the functional groups of polymers, the stabilities of which are several orders of magnitude greater than that of coordination with their low-molecular weight counterparts. It is shown that processes which employ polymeric organogels can be used for the careful cleaning of the metal surfaces, and for the formation of a desired phase composition on the latter.

  15. A coordination polymer with unusual structural features from imidazolylbutyric acid and titanium isopropoxide.

    PubMed

    Czakler, Matthias; Puchberger, Michael; Artner, Christine; Schubert, Ulrich

    The coordination polymer [Ti(O i Pr) 3 (OOCCH 2 CH 2 CH 2 C 3 N 2 H 3 )] n was prepared from 4-(imidazol-1-yl)butyric acid and titanium isopropoxide. The structure of the compound is remarkable, as the carboxylate group is coordinated in a chelating manner and no dimerization of the Ti(O i Pr) 3 groups through OR bridges was observed.

  16. Lanthanide-based coordination polymers assembled by a flexible multidentate linker: design, structure, photophysical properties, and dynamic solid-state behavior.

    PubMed

    Marchal, Claire; Filinchuk, Yaroslav; Chen, Xiao-Yan; Imbert, Daniel; Mazzanti, Marinella

    2009-01-01

    Four picolinate building blocks were implemented into the multidentate linker N,N',N'-tetrakis[(6-carboxypyridin-2-yl)methyl]butylenediamine (H(4)tpabn) with a linear flexible spacer to promote the assembly of lanthanide-based 1D coordination polymers. The role of the linker in directing the geometry of the final assembly is evidenced by the different results obtained in the presence of Htpabn(3-) and tpabn(4-) ions. The tpabn(4-) ion leads to the desired 1D polymer {[Nd(tpabn)]H(3)O x 6 H(2)O}(infinity) (12). The Htpabn(3-) ion leads to the assembly of Tb(III) and Er(III) ions into 1D zigzag chains of the general formula {[M(Htpabn)] x xH(2)O}(infinity) (M = Tb, x = 14 (1); M = Tb, x = 8 (11); M = Er, x = 14 (2); M = Er, x = 5.5 (4)), a 2D network is formed by the Eu(III) ion (i.e., {[Eu(Htpabn)] x 10 H(2)O}(infinity) (7)), and both supramolecular isomers (1D and 2D) are obtained by the Tb(III) ion. The high flexibility of the polymeric chains results in a dynamic behavior with a solvent-induced reversible structural transition. The Tb(III)- and Eu(III)-containing polymers display high-luminescence quantum yields (38 and 18%, respectively). A sizeable near-IR luminescence emission is observed for the Er(III)- and Nd(III)-containing polymers when lattice water molecules are removed.

  17. Two double and triple interpenetrated Cd(II) and Zn(II) coordination polymers based on mixed O- and N-donor ligands: Syntheses, crystal structures and luminescent properties

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Li, Xiaohui; Zhang, Yan

    2016-01-01

    Two interpenetrated 3D coordination polymers, namely [Cd2(tdc)2(bpp) (DMA)]n (1) and [Zn2(tdc)2(bib)2]n·2n(DMA) (2) (H2tdc = 2,5-thiophenedicarboxylic acid, bpp = 1,3-di(4-pyridyl)propane, bib = 1, 4-bis(imidazolyl)butane, DMA = N,N-dimethylacetamide), have been solvothermally synthesized by the self-assembly of flexible N-donor and dicarboxylate ligands. Single crystal X-ray diffraction analyses revealed that compound 1 features a 2-fold interpenetrated 3D framework based on dinuclear [Cd2(COO)3] subunits and can be simplified into a 6-connected pcu topology, and compound 2 features a 3-fold interpenetrated 3D framework with 4-connected dia topology. Moreover, the thermal stabilities and luminescent properties of these two compounds were also investigated.

  18. High-performance supercapacitors of Cu-based porous coordination polymer nanowires and the derived porous CuO nanotubes.

    PubMed

    Wu, Meng-Ke; Zhou, Jiao-Jiao; Yi, Fei-Yan; Chen, Chen; Li, Yan-Li; Li, Qin; Tao, Kai; Han, Lei

    2017-12-12

    Electrode materials for supercapacitors with one-dimensional porous nanostructures, such as nanowires and nanotubes, are very attractive for high-efficiency storage of electrochemical energy. Herein, ultralong Cu-based porous coordination polymer nanowires (copper-l-aspartic acid) were used as the electrode material for supercapacitors, for the first time. The as-prepared material exhibits a high specific capacitance of 367 F g -1 at 0.6 A g -1 and excellent cycling stability (94% retention over 1000 cycles). Moreover, porous CuO nanotubes were successfully fabricated by the thermal decomposition of this nanowire precursor. The CuO nanotube exhibits good electrochemical performance with high rate capacity (77% retention at 12.5 A g -1 ) and long-term stability (96% retention over 1000 cycles). The strategy developed here for the synthesis of porous nanowires and nanotubes can be extended to the construction of other electrode materials for more efficient energy storage.

  19. Open-Shell Lanthanide(II+) or -(III+) Complexes Bearing σ-Silyl and Silylene Ligands: Synthesis, Structure, and Bonding Analysis

    PubMed Central

    2015-01-01

    Complexes featuring lanthanide (Ln)–Si bonds represent a highly neglected research area. Herein, we report a series of open-shell LnII+ and LnIII+ complexes bearing σ-bonded silyl and base-stabilized N-heterocyclic silylene (NHSi) ligands. The reactions of the LnIII+ complexes Cp3Ln (Ln = Tm, Ho, Tb, Gd; Cp = cyclopentadienide) with the 18-crown-6 (18-cr-6)-stabilized 1,4-oligosilanyl dianion [(18-cr-6)KSi(SiMe3)2SiMe2SiMe2Si(SiMe3)2K(18-cr-6)] (1) selectively afford the corresponding metallacyclopentasilane salts [Cp2Ln({Si(SiMe3)2SiMe2}2)]−[K2(18-cr-6)2Cp]+ [Ln = Tm (2a), Ho (2b), Tb (2c), Gd (2d)]. Complexes 2a–2d represent the first examples of structurally characterized Tm, Ho, Tb, and Gd complexes featuring Ln–Si bonds. Strikingly, the analogous reaction of 1 with the lighter element analogue Cp3Ce affords the acyclic product [Cp3CeSi(SiMe3)2SiMe2SiMe2Si(SiMe3)2-Cp3Ce]2–2[K(18-cr-6)]+ (3) as the first example of a complex featuring a Ce–Si bond. In an alternative synthetic approach, the aryloxy-functionalized benzamidinato NHSi ligand Si(OC6H4-2-tBu){(NtBu)2CPh} (4a) and the alkoxy analogue Si(OtBu){(NtBu)2CPh} (4b) were reacted with Cp*2Sm(OEt2), affording, by OEt2 elimination, the corresponding silylene complexes, both featuring SmII+ centers: Cp*2Sm ← :Si(O–C6H4-2-tBu){(NtBu)2CPh} (6) and Cp*2Sm ← :Si(OtBu){(NtBu)2CPh} (5). Complexes 5 and 6 are the first four-coordinate silylene complexes of any f-block element to date. All complexes were fully characterized by spectroscopic means and by single-crystal X-ray diffraction analysis. In the series 2a–2d, a linear correlation was observed between the Ln–Si bond lengths and the covalent radii of the corresponding Ln metals. Moreover, in complexes 5 and 6, notably long Sm–Si bonds are observed, in accordance with a donor–acceptor interaction between Si and Sm [5, 3.4396(15) Å; 6, 3.3142(18) Å]. Density functional theory calculations were carried out for complexes 2a–2d, 5, and 6 to elucidate the bonding situation between the LnII+ or LnIII+ centers and Si. In particular, a decrease in the Mayer bond order (MBO) of the Ln–Si bond is observed in the series 2a–2d in moving from the lighter to the heavier lanthanides (Tm = 0.53, Ho = 0.62, Tb = 0.65, and Gd = 0.75), which might indicate decreasing covalency in the Ln–Si bond. In accordance with the long bond lengths observed experimentally in complexes 5 and 6, comparatively low MBOs were determined for both silylene complexes (5, 0.24; 6, 0.25) . PMID:25756230

  20. Varying the Lewis base coordination of the Y2N2 core in the reduced dinitrogen complexes {[(Me3Si)2N]2(L)Y}2(μ-η2:η2-N2) (L = benzonitrile, pyridines, triphenylphosphine oxide, and trimethylamine N-oxide).

    PubMed

    Corbey, Jordan F; Farnaby, Joy H; Bates, Jefferson E; Ziller, Joseph W; Furche, Filipp; Evans, William J

    2012-07-16

    The effect of the neutral donor ligand, L, on the Ln(2)N(2) core in the (N═N)(2-) complexes, [A(2)(L)Ln](2)(μ-η(2):η(2)-N(2)) (Ln = Sc, Y, lanthanide; A = monoanion; L = neutral ligand), is unknown since all of the crystallographically characterized examples were obtained with L = tetrahydrofuran (THF). To explore variation in L, displacement reactions between {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2)), 1, and benzonitrile, pyridine (py), 4-dimethylaminopyridine (DMAP), triphenylphosphine oxide, and trimethylamine N-oxide were investigated. THF is displaced by all of these ligands to form {[(Me(3)Si)(2)N](2)(L)Y}(2)(μ-η(2):η(2)-N(2)) complexes (L = PhCN, 2; py, 3; DMAP, 4; Ph(3)PO, 5; Me(3)NO, 6) that were fully characterized by analytical, spectroscopic, density functional theory, and X-ray crystallographic methods. The crystal structures of the Y(2)N(2) cores in 2-5 are similar to that in 1 with N-N bond distances between 1.255(3) Å and 1.274(3) Å, but X-ray analysis of the N-N distance in 6 shows it to be shorter: 1.198(3) Å.

  1. Report of the Polymer Core Course Committee: Inclusion of Polymer Topics into Undergraduate Inorganic Chemistry Courses.

    ERIC Educational Resources Information Center

    Miller, Norman E.; And Others

    1984-01-01

    Suggests polymer topics for study in inorganic chemistry courses. Commercial materials (including list of inorganic compounds utilized in polymer industry), anchored metal catalysis, polymers modified or formed by coordination, polysiloxanes, phosphazene or phosphonitrilic halide polymers, and hetergeneous polymerization catalysts are considered.…

  2. Cadmium-1,4-cyclohexanedicarboxylato coordination polymers bearing different di-alkyl-2,2'-bipyridines: syntheses, crystal structures and photoluminescence studies.

    PubMed

    Rosales-Vázquez, Luis D; Sánchez-Mendieta, Víctor; Dorazco-González, Alejandro; Martínez-Otero, Diego; García-Orozco, Iván; Morales-Luckie, Raúl A; Jaramillo-Garcia, Jonathan; Téllez-López, Antonio

    2017-09-26

    Four coordination polymers have been synthesized using self-assembly solution reactions under ambient conditions, reacting Cd(ii) ions with 1,4-cyclohexanedicarboxylic acid in the presence of different 2,2'-bipyridine co-ligands: {[Cd(H 2 O)(e,a-cis-1,4-chdc)(2,2'-bpy)]·H 2 O} n (1); [Cd 2 (H 2 O) 2 (e,a-cis-1,4-chdc) 2 (4,4'-dmb) 2 ] n (2); {[Cd(e,a-cis-1,4-chdc)(5,5'-dmb)]·H 2 O·CH 3 OH} n (3) and {[Cd(e,e-trans-1,4-chdc)(4,4'-dtbb)]·CH 3 OH} n (4), where 1,4-chdc = 1,4-cyclohexanedicarboxylato, 2,2'-bpy = 2,2'-bipyridine, 4,4'-dmb = 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dmb = 5,5'-dimethyl-2,2'-bipyridine and 4,4'-dtbb = 4,4'-di-tert-butyl-2,2'-bipyridine. Crystallographic studies show that compound 1 has a 1D structure propagating along the crystallographic b-axis; the Cd ion in 1 is six-coordinated with a distorted-octahedral coordination sphere. Compound 2 has two crystallographic different Cd ions and both are six-coordinated with a distorted-octahedral coordination sphere. Compound 3 exhibits a seven-coordinated Cd ion having a distinctive distorted-monocapped trigonal prismatic geometry. In compound 4, the Cd ion is also seven-coordinated in a distorted monocapped octahedral geometry. Compounds 2, 3 and 4 possess rhombic-shaped dinuclear units (Cd 2 O 2 ) as nodes to generate larger cycles made up of four dinuclear units, a Cd 4 motif, bridged by four 1,4-chdc ligands, accomplishing, thus, 2D structures. Remarkably, in compound 4 the 1,4-chdc ligand conformation changes to the equatorial, equatorial trans, unlike the other compounds where the bridging ligand conformation is the more typical equatorial, axial cis. The solid state luminescence properties of 1-4 were investigated; polymers 3 and 4 exhibited a strong blue emission (λ em = 410-414 nm) compared to 1 and 2; structure-related photoluminescence is attributed to the degree of hydration of the compounds. Furthermore, Cd-polymer 3 suspended in acetone allows the fluorescence selective sensing of acetonitrile over common organic solvents such as alcohols and DMF, based on turn-on fluorescence intensity with a limit of 53 μmol L -1 .

  3. Strategies, linkers and coordination polymers for high-performance sorbents

    DOEpatents

    Matzger, Adam J.; Wong-Foy, Antek G.; Lebel, Oliver

    2015-09-15

    A linking ligand compound includes three bidentate chemical moieties distributed about a central chemical moiety. Another linking ligand compound includes a bidentate linking ligand and a monodentate chemical moiety. Coordination polymers include a plurality of metal clusters linked together by residues of the linking ligand compounds.

  4. Zinc(II) and Cadmium(II) coordination polymers constructed from phenylenediacetate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sezer, Güneş Günay; Department of Chemistry, Eskişehir Osmangazi University, Eskişehir; Yeşilel, Okan Zafer

    ABSTRACT: A series of new coordination polymers {[Zn(μ-opda)(μ-bpa)]·2H_2O}{sub n} (1), [Zn(μ{sub 3}-ppda)(μ-bpa)]{sub n} (2), [Cd(μ{sub 3}-ppda)(μ-bpa)]{sub n} (3), [Cd(μ{sub 3}-mpda)(μ-bpa)]{sub n} (4) and [Cd(μ{sub 3}-mpda)(μ-bipy)]{sub n} (5), (o/m/ppda=1,2/1,3/1,4-phenylenediacetate, bpa=1,2-bi(4-pyridyl)ethane, bipy=4,4′-bipyridine) were synthesized. Their structures were characterized by elemental analysis, IR spectroscopy, single-crystal and powder X-ray diffraction. Furthermore, the effect of metal sources (zinc acetate and zinc oxide) and acidity of the solution on the structure of the coordination polymers was discussed for complexes 1 and 5, respectively. The single-crystal X-ray crystallographic studies revealed that complexes 1, 3, 4 and 5 are uninodal (4)-connected 2D frameworks and display sql topology withmore » the point symbol of (4{sup 4}.6{sup 2}). Complex 2 is 3D coordination polymer and exhibits pcu topology with the point symbol of (4{sup 12}.6{sup 3}). In addition, the luminescent properties and thermal behavior of all complexes were also investigated. - Graphical abstract: Scheme 1. Topologies of Coordination Polymers Reported in This Paper.« less

  5. Ligand-controlled assembly of Cd(II) coordination polymers based on mixed ligands of naphthalene-dicarboxylate and dipyrido[3,2-d:2',3'-f]quinoxaline: From 0D+1D cocrystal, 2D rectangular network (4,4), to 3D PtS-type architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Guocheng; Chen Yongqiang; Wang Xiuli

    Three novel Cd(II) coordination polymers, namely, [Cd(Dpq)(1,8-NDC)(H{sub 2}O){sub 2}][Cd(Dpq)(1,8-NDC)].2H{sub 2}O (1), [Cd(Dpq)(1,4-NDC)(H{sub 2}O)] (2), and [Cd(Dpq)(2,6-NDC)] (3) have been obtained from hydrothermal reactions of cadmium(II) nitrate with the mixed ligands dipyrido [3,2-d:2',3'-f]quinoxaline (Dpq) and three structurally related naphthalene-dicarboxylate ligands [1,8-naphthalene-dicarboxylic acid (1,8-H{sub 2}NDC), 1,4-naphthalene-dicarboxylic acid (1,4-H{sub 2}NDC), and 2,6-naphthalene-dicarboxylic acid (2,6-H{sub 2}NDC)]. Single-crystal X-ray diffraction analysis reveals that the three polymers exhibit novel structures due to different naphthalene-dicarboxylic acid. Compound 1 is a novel cocrystal of left- and right-handed helical chains and binuclear complexes and ultimately packed into a 3D supramolecular structure through hydrogen bonds and {pi}-{pi} stacking interactions. Compoundmore » 2 shows a 2D rectangular network (4,4) bridged by 1,4-NDC with two kinds of coordination modes and ultimately packed into a 3D supramolecular structure through inter-layer {pi}-{pi} stacking interactions. Compound 3 is a new 3D coordination polymer with distorted PtS-type network. In addition, the title compounds exhibit blue/green emission in solid state at room temperature. - Graphical abstract: Three novel Cd(II) compounds have been synthesized under hydrothermal conditions exhibiting a systematic variation of architecture by the employment of three structurally related naphthalene-dicarboxylate ligands.« less

  6. EXAFS study of some coordination polymers of copper

    NASA Astrophysics Data System (ADS)

    Deshpande, A. P.

    1995-02-01

    The EXAFS spectra for (1) azelaic acid bis phenyl hydrazide, (2) azelaic acid bis 2,4 dinitro phenyl hydrazide and (3) sebacic acid bis phenyl hydrazide coordination polymers of copper were obtained using the EXAFS facility of the Daresbury Laboratory. The EXAFS analysis revealed that copper is surrounded by four nitrogen and two oxygen atoms in the first coordination shell, while the second coordination shell consists of two carbon atoms. This information suggests the octahedral geometry for the repeating units of polymeric complexes, in contrast to the square planar geometry previously proposed.

  7. 2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid as linker for Co(II)/Ni(II)/Cu(II) coordination polymers: Synthesis, structures and properties

    NASA Astrophysics Data System (ADS)

    Wang, Duo-Zhi; Wang, Xin-Fang; Du, Jia-Qiang; Dong, Jun-Liang; Xie, Fei

    2018-02-01

    We report the synthesis and characterization of five transition metal coordination polymers (CPs) based on M(II) (M: Co, Ni and Cu), 2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid (H2L) ligand. They are formulated as {[Co2(HL)2(H2O)3(SO4)]·H2O}n (1), {[Co2(HL)2(H2O)2]·SiF6}n (2), {[Ni2(HL)2(H2O)3(SO4)]·2H2O}n (3), {[Ni2(HL)2(H2O)4]·H2O·SiF6}n (4), {[Cu2(HL)2(H2O)2]·SiF6}n (5). The complexes 1-5 structure were characterized by single-crystal X-ray diffraction, elemental analyses, infrared spectroscopy (IR), powder X-ray diffraction (PXRD), and thermogravimetric analyses (TGA). Complexes 1-5 are two-dimensional (2D) network type coordination polymers that 1-3, 5 crystallize in monoclinic system within the centrosymmetric space group P2(1)/c, and 4 in triclinic system P-1 space group, they show the same coordination modes (κ1-κ1)-(κ1)-(κ1)-μ3 in coordination polymers. Complexes 1 and 3 expand to three-dimensional framework by means of hydrogen bond interactions, and can be rationalized to be three-connected {63} topological network, while 2, 4, 5 exhibit the topological network with a four-connected {44·62} topological sql network. The luminescent properties (for complexes 1, 2) and UV diffuse reflectance (for complexes 1-5) in the solid state at room temperature were also investigated and discussed. Complexes 1-5 act as effective heterogeneous catalysts, under mild conditions, for the homocoupling reaction of 4-substituted aryl iodides bearing electron-donating groups (-CH3, -OCH3).

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Wen-Yu; Zhuang, Guo-Yong; Huang, Zuo-Long

    Three cadmium coordination polymers, [Cd(bismip)]{sub n} (1), {[Cd(bismip)(phen)]·H_2O}{sub n} (2) and {[Cd_2(bismip)_2(4,4′-bipy)]·2H_2O}{sub n} (3) (H{sub 2}bismip=5-(1H-benzoimidazol-2-ylsulfanylmethyl)-isophthalic acid, phen=1,10-phenanthroline, 4,4′-bipy=4,4′-bipyridine) have been prepared under solvothermal conditions. In 1, the [Cd{sub 4}(bismip){sub 3}] units are jointed by bismip ligands to afford a three-dimensional (3D) architecture. Complex 2 exhibits a 3D supramolecular framework based on the interconnection of 1D chains through hydrogen bonding interactions and π-π packing interactions. 3 is a two-fold interpenetrating 3D architecture with a (4·8{sup 2})(4{sup 2}·8{sup 4}) Schläfli symbol in which 2D layers are interlinked by 4,4′-bipy ligands. The diverse structures of compounds 1–3 indicate that the auxiliary ligandsmore » have significant effects on the final structures. The photoluminescent properties and photocatalytic properties of these coordination polymers in the solid state were also investigated. Remarkably, 3 shows the wide gap semiconductor nature and exhibit excellent photocatalytic performance. - Graphical abstract: Three cadmium coordination polymers with different architectures based on 5-(1H-benzoimidazol-2-ylsulfanylmethyl)-isophthalic acid have been prepared. Their photoluminescent properties were also investigated. - Highlights: • Three new Cd(II) Cps were synthesized based on H{sub 2}bismip. • Compounds 1 and 3 show 3D networks and 2 exhibits a 1D chain. • Compoud 3 exhibits good catalytic activity of methylene blue photodegradation.« less

  9. Assembly of three new POM-based Ag(I) coordination polymers with antibacterial and photocatalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xin-Xin; Luo, Yu-Hui; Lu, Chen

    Three new silver coordination polymers, namely, {Ag_3(bpy)_6[PW_1_2O_4_0]} (1), {Ag_5(H_2biim)_2(Hbiim-NO_2)_2[PW_1_2O_4_0]} (2), {Ag_7(pytz)_4[PW_1_2O_4_0]} (3) (bpy=2,2′-bipyridine, H{sub 2}biim=2,2′-biimidazole, pytz=4-(1H-tetrazol-5-yl)pyridine), have been synthesized under hydrothermal condition. Compound 1 shows a 3D supramolecular framework based on 0D moieties. Compound 2 exhibits an attractive 2D biologic screw axis. Compound 3 displays a 3D structure, which consists of Ag(I)···π interactions, π···π stacking and weak Ag···Ag interactions. It is noteworthy that nitration happens to compound 2 during the hydrothermal condition, which is quite rare. Through contrasting the antibacterial activities of gram negative and gram positive bacteria, we find compounds 1–3 have better antibacterial property in gram negative bacteriamore » than gram positive bacteria. In addition, compounds 1–3 also exhibit efficiency of photocatalytic decomposition of organic dyes. Those compounds may be used as potential multifunctional materials in wastewater treatment, because they not only can kill bacteria but also degrade organic pollutants. - Highlights: • Three new silver coordination polymers have been synthesized under hydrothermal condition. • Due to different coordination modes of rigid N-donor ligands, structures of the title compounds vary from 0D to 3D frameworks. • It is noteworthy that nitration happens to compound 2 during the hydrothermal condition, which is quite rare. • In addition, these compounds exhibit efficiency of photocatalytic decomposition of dyes and antibacterial activities.« less

  10. Anion dependent self-assembly of 56-metal Cd-Ln nanoclusters with enhanced near-infrared luminescence properties

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoping; Schipper, Desmond; Zhang, Lijie; Yang, Keqin; Huang, Shaoming; Jiang, Jijun; Su, Chengyong; Jones, Richard A.

    2014-08-01

    Two series of Cd-Ln clusters: nano-drum [Ln8Cd24L12(OAc)48] and nano-double-drum [Ln12Cd44L20Cl30(OAc)54] (Ln = Nd and Yb) were prepared using a flexible Schiff base ligand bearing two aryl-Br groups. Chloride (Cl-) ions, together with the interactions of Br with other electronegative atoms, play a key role in the formation of the nano-double-drums. The structures were studied by TEM and photophysical properties were determined.Two series of Cd-Ln clusters: nano-drum [Ln8Cd24L12(OAc)48] and nano-double-drum [Ln12Cd44L20Cl30(OAc)54] (Ln = Nd and Yb) were prepared using a flexible Schiff base ligand bearing two aryl-Br groups. Chloride (Cl-) ions, together with the interactions of Br with other electronegative atoms, play a key role in the formation of the nano-double-drums. The structures were studied by TEM and photophysical properties were determined. Electronic supplementary information (ESI) available: Full experimental and characterization details for 1-4. CCDC 972369-972372. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4nr03075c

  11. Modeling Physical Stability of Amorphous Solids Based on Temperature and Moisture Stresses.

    PubMed

    Zhu, Donghua Alan; Zografi, George; Gao, Ping; Gong, Yuchuan; Zhang, Geoff G Z

    2016-09-01

    Isothermal microcalorimetry was utilized to monitor the crystallization process of amorphous ritonavir (RTV) and its hydroxypropylmethylcellulose acetate succinate-based amorphous solid dispersion under various stressed conditions. An empirical model was developed: ln(τ)=ln(A)+EaRT-b⋅wc, where τ is the crystallization induction period, A is a pre-exponential factor, Ea is the apparent activation energy, b is the moisture sensitivity parameter, and wc is water content. To minimize the propagation of errors associated with the estimates, a nonlinear approach was used to calculate mean estimates and confidence intervals. The physical stability of neat amorphous RTV and RTV in hydroxypropylmethylcellulose acetate succinate solid dispersions was found to be mainly governed by the nucleation kinetic process. The impact of polymers and moisture on the crystallization process can be quantitatively described by Ea and b in this Arrhenius-type model. The good agreement between the measured values under some less stressful test conditions and those predicted, reflected by the slope and R(2) of the correlation plot of these 2 sets of data on a natural logarithm scale, indicates its predictability of long-term physical stability of amorphous RTV in solid dispersions. To further improve the model, more understanding of the impact of temperature and moisture on the amorphous physical stability and fundamentals regarding nucleation and crystallization is needed. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Synthesis and Photoluminescent Properties of Nanorod Bundle Ln4O(OH)9NO3:Eu(Ln = Y, Lu) Prepared by Hydrothermal Method.

    PubMed

    Li, Ling; Noh, Hyeon Mi; Liu, Xiaoguang; Moon, Byung Kee; Choi, Byung Chun; Jeong, Jung Hyun

    2015-07-01

    Well-crystallized nanorod bundles Ln4O(OH)9NO3:1%Eu(Ln = Y, Lu) have been successfully prepared by hydrothermal method. The crystalline phase, size and optical properties were characterized using powder X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), infrared (IR) spectrograph and photoluminescent (PL) spectra. Site occupations of Eu3+ in crystals Ln4O(OH)9NO3:Eu(Ln = Y, Lu) were discussed based on excitation spectra and the empirical relationship formula between the charge transfer (CT) energy and the environmental factor. The emission spectra exhibited that the strongest emission peaks with an excitation wavelength of 395 nm were at 617 and 626 nm in crystal Lu4O(OH)9NO3:1%Eu and Y4O(OH)9NO3:1%Eu, respectively, both of which come from 5D0-7F2 transition of the Eu3+ ions. The broad excitation peaks at about 254 and 255 nm were found when monitored at 617 and 628 nm in crystal Lu4O(OH)9NO3:1%Eu and Y4O(OH)9NO3:1%Eu, respectively, which were due to O-Eu CT transition. Based on the dielectric theory of complex crystal, the CT bands at about 254 and 255 nm in Ln4O(OH)9NO3:1%Eu(Ln = Y, Lu) were assigned to the transition of O-Eu at Ln3(Ln = Y, Lu) site, from which we can conclude that Eu3+ ions occupied the site of Ln3(Ln = Y, Lu) in crystal Ln4O(OH)9NO3:1%Eu(Ln = Y, Lu). It put forward a new route to investigate site occupation of luminescent center ions in rare earth doped complex inorganic luminescence materials.

  13. Bassett Creek Watershed, Hennepin County, Minnesota. Feasibility Report for Flood Control.

    DTIC Science & Technology

    1976-03-01

    acuat ion of oc residence in the upper wnter- hl~t., ail .- [it iliii.lnC (f e loial f lood plain ordtinances moidif i(d to rc.l et ,,rnpo.-,,1 ,,,ni i...groups such as insects , earthworms, clams and snails. ’HISTORICAL AND ARCHAEOLOGICAL RESOURCES Coordination with state and county historical

  14. General synthesis and structural evolution of a layered family of Ln8(OH)20Cl4 x nH2O (Ln = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Y).

    PubMed

    Geng, Fengxia; Matsushita, Yoshitaka; Ma, Renzhi; Xin, Hao; Tanaka, Masahiko; Izumi, Fujio; Iyi, Nobuo; Sasaki, Takayoshi

    2008-12-03

    The synthesis process and crystal structure evolution for a family of stoichiometric layered rare-earth hydroxides with general formula Ln(8)(OH)(20)Cl(4) x nH(2)O (Ln = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Y; n approximately 6-7) are described. Synthesis was accomplished through homogeneous precipitation of LnCl(3) x xH(2)O with hexamethylenetetramine to yield a single-phase product for Sm-Er and Y. Some minor coexisting phases were observed for Nd(3+) and Tm(3+), indicating a size limit for this layered series. Light lanthanides (Nd, Sm, Eu) crystallized into rectangular platelets, whereas platelets of heavy lanthanides from Gd tended to be of quasi-hexagonal morphology. Rietveld profile analysis revealed that all phases were isostructural in an orthorhombic layered structure featuring a positively charged layer, [Ln(8)(OH)(20)(H(2)O)(n)](4+), and interlayer charge-balancing Cl(-) ions. In-plane lattice parameters a and b decreased nearly linearly with a decrease in the rare-earth cation size. The interlamellar distance, c, was almost constant (approximately 8.70 A) for rare-earth elements Nd(3+), Sm(3+), and Eu(3+), but it suddenly decreased to approximately 8.45 A for Tb(3+), Dy(3+), Ho(3+), and Er(3+), which can be ascribed to two different degrees of hydration. Nd(3+) typically adopted a phase with high hydration, whereas a low-hydration phase was preferred for Tb(3+), Dy(3+), Ho(3+), Er(3+), and Tm(3+). Sm(3+), Eu(3+), and Gd(3+) samples were sensitive to humidity conditions because high- and low-hydration phases were interconvertible at a critical humidity of 10%, 20%, and 50%, respectively, as supported by both X-ray diffraction and gravimetry as a function of the relative humidity. In the phase conversion process, interlayer expansion or contraction of approximately 0.2 A also occurred as a possible consequence of absorption/desorption of H(2)O molecules. The hydration difference was also evidenced by refinement results. The number of coordinated water molecules per formula weight, n, changed from 6.6 for the high-hydration Gd sample to 6.0 for the low-hydration Gd sample. Also, the hydration number usually decreased with increasing atomic number; e.g., n = 7.4, 6.3, 7.2, and 6.6 for high-hydration Nd, Sm, Eu, and Gd, and n = 6.0, 5.8, 5.6, 5.4, and 4.9 for low-hydration Gd, Tb, Dy, Ho, and Er. The variation in the average Ln-O bond length with decreasing size of the lanthanide ions is also discussed. This family of layered lanthanide compounds highlights a novel chemistry of interplay between crystal structure stability and coordination geometry with water molecules.

  15. Optical and relaxometric properties of monometallic (Eu(III), Tb(III), Gd(III)) and heterobimetallic (Re(I)/Gd(III)) systems based on a functionalized bipyridine-containing acyclic ligand.

    PubMed

    Leygue, Nadine; Boulay, Alexandre; Galaup, Chantal; Benoist, Eric; Laurent, Sophie; Vander Elst, Luce; Mestre-Voegtlé, Béatrice; Picard, Claude

    2016-05-17

    A series of lanthanide complexes of [LnL(H2O)](2-) composition where Ln = Eu(III), Tb(III) or Gd(III) has been studied for determining their photophysical and relaxometric properties in aqueous solution. The bifunctional ligand L (H5BPMNTA) is an acyclic chelator based on a central functionalized 2,2'-bipyridine core and two iminodiacetate coordinating arms. The mono-aqua Eu(III) and Tb(III) complexes display attractive spectroscopic properties with an excitation wavelength at 316 nm, similar excited state lifetimes and overall quantum yields (in the ranges 0.5-0.6 ms and 10-13%, respectively) in Tris buffer (pH 7.4). The proton longitudinal relaxivity, r1, of the Gd(III) complex is 4.4 mM(-1) s(-1) at 20 MHz and 310 K, which is comparable to that of the clinically used Gd-DTPA (Magnevist®). Interestingly, the water exchange rate between the coordination site and the bulk solvent is very fast (Kex = 2.6 × 10(8) s(-1) at 310 K). The ability of the complex to bind non-covalently to human serum albumin (HSA) was also examined by relaxometric measurements. We also report the synthesis and properties of a bimetallic complex based on Gd-BPMNTA and Re(I)(bpy)(CO)3 components. In this system, the Re core exhibits interesting photophysical properties (λem = 588 nm, Φ = 1.4%) and the Gd-BPMNTA core displays improved relaxivity (r1 = 6.6 mM(-1) s(-1) at 20 MHz and 310 K), due to an increase of the rotational correlation time. Besides these appealing optical and relaxometric properties, the presence of a reactive function on the structure proposes this potential dual imaging probe for conjugation to biomolecules or nanomaterials.

  16. Gram-scale synthesis of coordination polymer nanodots with renal clearance properties for cancer theranostic applications

    NASA Astrophysics Data System (ADS)

    Liu, Fuyao; He, Xiuxia; Chen, Hongda; Zhang, Junping; Zhang, Huimao; Wang, Zhenxin

    2015-08-01

    An ultrasmall hydrodynamic diameter is a critical factor for the renal clearance of nanoparticles from the body within a reasonable timescale. However, the integration of diagnostic and therapeutic components into a single ultrasmall nanoparticle remains challenging. In this study, pH-activated nanodots (termed Fe-CPNDs) composed of coordination polymers were synthesized via a simple and scalable method based on coordination reactions among Fe3+, gallic acid and poly(vinylpyrrolidone) at ambient conditions. The Fe-CPNDs exhibited ultrasmall (5.3 nm) hydrodynamic diameters and electrically neutral surfaces. The Fe-CPNDs also exhibited pH-activatable magnetic resonance imaging contrast and outstanding photothermal performance. The features of Fe-CPNDs greatly increased the tumour-imaging sensitivity and facilitated renal clearance after injection in animal models in vivo. Magnetic resonance imaging-guided photothermal therapy using Fe-CPNDs completely suppressed tumour growth. These findings demonstrate that Fe-CPNDs constitute a new class of renal clearable nanomedicine for photothermal therapy and molecular imaging.

  17. Coordination-Supported Imidazolate Networks: Water- and Heat-Stable Mesoporous Polymers for Catalysis

    DOE PAGES

    Zhang, Pengfei; Yang, Shize; Chisholm, Matthew F.; ...

    2017-05-29

    The poor water stability of most porous coordination polymers (PCPs) or metal-organic frameworks (MOFs) is widely recognised as a barrier hampering their practical applications. Herein, a facile and scalable route to prepare metal-containing polymers with a good stability in boiling water (100°C, 24 h) and air (up to 390°C) is presented. The bifunctional 1-vinylimidazole (VIm) with both a coordinating site and a polymerizable organic group is introduced as the building block. This core strategy includes the synthesis of a rigid monomer with four VIm branches via a coordination process at room temperature, followed by a radical polymerization. Here we callmore » this material Coordination-supported Imidazolate Networks (CINs). Interestingly, CINs are composed of rich mesopores from 2 to 15 nm, as characterized by low-energy (60 kV) STEM-HAADF images. Especially, the stable CINs illustrate a high turnover frequency (TOF) of 779 h -1 in the catalytic oxidation of phenol with H 2O as the green solvent.« less

  18. Four coordination polymers based on 5-tert-butyl isophthalic acid and rigid bis(imidazol-1yl)benzene linkers: Synthesis, luminescence detection of acetone and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arıcı, Mürsel, E-mail: marici@ogu.edu.tr; Zafer Yeşilel, Okan; Büyükgüngör, Orhan

    Four coordination polymers including, [Co(µ-Htbip){sub 2}(µ-dib)]{sub n} (1), [Co(µ-tbip)(µ-dmib){sub 0.5}]{sub n} (2), [Zn{sub 2}(µ-tbip)(µ{sub 3}-tbip)(µ-dmib){sub 1.5}]{sub n} (3) and [Cd(µ{sub 3}-tbip)(µ-dib){sub 0.5} (H{sub 2}O)]{sub n} (4) (tbip: 5-tert-butylisophthalate, dib: 1,4-bis(imidazol-1yl)benzene, dmib: 1,4-bis(imidazol-1yl)-2,5-dimethylbenzene), were hydrothermally synthesized and characterized by elemental analysis, IR spectra, single crystal and powder X-ray diffraction and thermal analysis (TG/DTA). The structural diversity is observed depending on ligands and coordination number of metal centers in the synthesized complexes. The tbip ligand displayed five different coordination modes in its complexes. In 1 and 2, complex 1 is 3D framework with the dia topology while complex 2 has 2D structuremore » with the sql topology depending on coordination geometries of Co ions. Complex 3 is 3D framework with the fsh 4,6-conn topology and complex 4 has 2D 4-connected sql topology. Photoluminescent properties of complex 3 dispersed in various organic solvents were investigated and the results showed that 3 dispersed in methanol could be used as a fluorescent sensor for the detection of acetone. Moreover, thermal and optical properties of the complexes were also studied. - Graphical abstract: Four coordination polymers were hydrothermally synthesized and characterized by various techniques. The complexes showed the structural diversity depending on ligands and coordination number of metal centers. The tbip ligand displayed four different coordination modes in its complexes. In 1 and 2, complexes 1 and 2 are 3D and 2D structures with the dia and sql topologies depending on coordination geometries of Co ions, respectively. Complexes 3 and 4 are 3D and 2D structures with the fsh 4,6-conn and sql topology, respectively. Photoluminescent properties of complex 3 dispersed in various organic solvents were investigated and the results showed that 3 dispersed in methanol could be used as a fluorescent sensor for the detection of acetone. Moreover, thermal and optical properties of the complexes were also studied. - Highlights: • Four new 2D and 3D coordination polymers with 5-tert-butyl isophthalic acid and rigid bis(imidazol-1yl)benzene linkers. • The structural diversity depending on ligands and coordination number of metal centers. • Fluorescent sensor for the detection of acetone.« less

  19. Multiple-decker phthalocyaninato dinuclear lanthanoid(III) single-molecule magnets with dual-magnetic relaxation processes.

    PubMed

    Katoh, Keiichi; Horii, Yoji; Yasuda, Nobuhiro; Wernsdorfer, Wolfgang; Toriumi, Koshiro; Breedlove, Brian K; Yamashita, Masahiro

    2012-11-28

    The SMM behaviour of dinuclear Ln(III)-Pc multiple-decker complexes (Ln = Tb(3+) and Dy(3+)) with energy barriers and slow-relaxation behaviour were explained by using X-ray crystallography and static and dynamic susceptibility measurements. In particular, interactions among the 4f electrons of several dinuclear Ln(III)-Pc type SMMs have never been discussed on the basis of the crystal structure. For dinuclear Tb(III)-Pc complexes, a dual magnetic relaxation process was observed. The relaxation processes are due to the anisotropic centres. Our results clearly show that the two Tb(3+) ion sites are equivalent and are consistent with the crystal structure. On the other hand, the mononuclear Tb(III)-Pc complex exhibited only a single magnetic relaxation process. This is clear evidence that the magnetic relaxation mechanism depends heavily on the dipole-dipole (f-f) interactions between the Tb(3+) ions in the dinuclear systems. Furthermore, the SMM behaviour of dinuclear Dy(III)-Pc type SMMs with smaller energy barriers compared with that of Tb(III)-Pc and slow-relaxation behaviour was explained. Dinuclear Dy(III)-Pc SMMs exhibited single-component magnetic relaxation behaviour. The results indicate that the magnetic relaxation properties of dinuclear Ln(III)-Pc multiple-decker complexes are affected by the local molecular symmetry and are extremely sensitive to tiny distortions in the coordination geometry. In other words, the spatial arrangement of the Ln(3+) ions (f-f interactions) in the crystal is important. Our work shows that the SMM properties can be fine-tuned by introducing weak intermolecular magnetic interactions in a controlled SMM spatial arrangement.

  20. Lanthanide contraction effect on crystal structures, magnetic, and dielectric properties in ordered double perovskites LnPbCoSbO{sub 6} (Ln = La, Pr, Nd)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, L.; Yao, C. G.; Meng, J. L.

    The crystal structures, magnetic, and dielectric properties for the ordered double perovskites LnPbCoSbO{sub 6} (Ln = La, Pr, Nd) have been investigated. The crystal structure has been solved by Rietveld refinements of X-ray diffraction data in the monoclinic space group P2{sub 1}/n (No. 14). The Co{sup 2+} and Sb{sup 5+} ions are almost fully ordered over the B-site, and the octahedral framework displays significant tilting distortion according to the Glazer's tilt system a{sup –}a{sup –}c{sup +}. As the result of lanthanide contraction from La{sup 3+} to Nd{sup 3+}, the B-site sublattice distortions become stronger accompanying with the reduction of themore » tolerance factor and coordination number. The magnetization measurements show an antiferromagnetic ordering with large effective magnetic moments (μ{sub eff}) suggesting that the orbital component is significant. The maximum values of isothermal magnetization increase with the decrease in radii of rare earth ions, which is attributed to the weakening of antiferromagnetic interaction via Co{sup 2+}–O–Sb{sup 5+}–O–Co{sup 2+} paths. The dielectric constants present frequency dependence and monotonically decrease with the ionic radii reduction from La{sup 3+} to Nd{sup 3+} due to the suppression of electron transfer. These results indicate that the magnetic and dielectric properties can be tuned by controlling the degree of lattice distortion, which is realized by introducing different Ln{sup 3+} ions at the A-site.« less

  1. Luminescent Lanthanide MOFs: A Unique Platform for Chemical Sensing

    PubMed Central

    Zhao, Shu-Na; Wang, Guangbo

    2018-01-01

    In recent years, lanthanide metal–organic frameworks (LnMOFs) have developed to be an interesting subclass of MOFs. The combination of the characteristic luminescent properties of Ln ions with the intriguing topological structures of MOFs opens up promising possibilities for the design of LnMOF-based chemical sensors. In this review, we present the most recent developments of LnMOFs as chemical sensors by briefly introducing the general luminescence features of LnMOFs, followed by a comprehensive investigation of the applications of LnMOF sensors for cations, anions, small molecules, nitroaromatic explosives, gases, vapors, pH, and temperature, as well as biomolecules. PMID:29642458

  2. A study on optical properties of poly (ethylene oxide) based polymer electrolyte with different alkali metal iodides

    NASA Astrophysics Data System (ADS)

    Rao, B. Narasimha; Suvarna, R. Padma

    2016-05-01

    Polymer electrolytes were prepared by adding poly (ethylene glycol) dimethyl ether (PEGDME), TiO2 (nano filler), different alkali metal iodide salts RI (R+=Li+, Na+, K+, Rb+, Cs+) and I2 into Acetonitrile gelated with Poly (ethylene oxide) (PEO). Optical properties of poly (ethylene oxide) based polymer electrolytes were studied by FTIR, UV-Vis spectroscopic techniques. FTIR spectrum reveals that the alkali metal cations were coordinated to ether oxygen of PEO. The optical absorption studies were made in the wavelength range 200-800 nm. It is observed that the optical absorption increases with increase in the radius of alkali metal cation. The optical band gap for allowed direct transitions was evaluated using Urbach-edges method. The optical properties such as optical band gap, refractive index and extinction coefficient were determined. The studied polymer materials are useful for solar cells, super capacitors, fuel cells, gas sensors etc.

  3. Isomorphous rare-earth tris[bis(2,6-diisopropylphenyl) phosphate] complexes and their catalytic properties in 1,3-diene polymerization and in the inhibited oxidation of polydimethylsiloxane.

    PubMed

    Minyaev, Mikhail E; Tavtorkin, Alexander N; Korchagina, Sof'ya A; Bondarenko, Galina N; Churakov, Andrei V; Nifant'ev, Ilya E

    2018-05-01

    Crystals of mononuclear tris[bis(2,6-diisopropylphenyl) phosphato-κO]pentakis(methanol-κO)lanthanide methanol monosolvates of lanthanum, [La(C 24 H 34 O 4 P) 3 (CH 3 OH) 5 ]·CH 3 OH, (1), cerium, [Ce(C 24 H 34 O 4 P) 3 (CH 3 OH) 5 ]·CH 3 OH, (2), and neodymium, [Nd(C 24 H 34 O 4 P) 3 (CH 3 OH) 5 ]·CH 3 OH, (3), have been obtained by reactions between LnCl 3 (H 2 O) n (n = 6 or 7) and lithium bis(2,6-diisopropylphenyl) phosphate in a 1:3 molar ratio in methanol media. Compounds (1)-(3) crystallize in the monoclinic P2 1 /c space group and have isomorphous crystal structures. All three bis(2,6-diisopropylphenyl) phosphate ligands display a κO-monodentate coordination mode. The coordination number of the metal atom is 8. Each [Ln{O 2 P(O-2,6- i Pr 2 C 6 H 3 ) 2 } 3 (CH 3 OH) 5 ] molecular unit exhibits four intramolecular O-H...O hydrogen bonds, forming six-membered rings. The unit forms two intermolecular O-H...O hydrogen bonds with one noncoordinating methanol molecule. All six hydroxy H atoms are involved in hydrogen bonding within the [Ln{O 2 P(O-2,6- i Pr 2 C 6 H 3 ) 2 } 3 (CH 3 OH) 5 ]·CH 3 OH unit. This, along with the high steric hindrance induced by the three bulky diaryl phosphate ligands, prevents the formation of a hydrogen-bond network. Complexes (1)-(3) exhibit disorder of two of the isopropyl groups of the phosphate ligands. The cerium compound (2) demonstrates an essential catalytic inhibition in the thermal decomposition of polydimethylsiloxane in air at 573 K. Catalytic systems based on the neodymium complex tris[bis(2,6-diisopropylphenyl) phosphato-κO]neodymium, (3'), which was obtained as a dry powder of (3) upon removal of methanol, display a high catalytic activity in isoprene and butadiene polymerization.

  4. Efficient white-light-emitting diodes based on poly(N-vinylcarbazole) doped with blue fluorescent and orange phosphorescent materials

    NASA Astrophysics Data System (ADS)

    Shih, Ping-I.; Shu, Ching-Fong; Tung, Yung-Liang; Chi, Yun

    2006-06-01

    We have fabricated polymer white-light-emitting devices possessing a single emitting layer containing a hole-transporting host polymer, poly(N-vinylcarbazole), and an electron-transporting auxiliary, 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole, doped with a blue-light-emitting amino-substituted distyrylarylene fluorescent dye and an orange-light-emitting osmium phosphor. The doubly doped device exhibited an intense white emission having Commission Internationale de l'Eclairage coordinates of (0.33, 0.34), a high external quantum efficiency of 6.12% (13.2cd/A), and a maximum brightness of 11306cd/m2. The color coordinates remained unchanged over a range of operating voltages, even at luminance as high as 1×104cd/m2.

  5. Highly Sensitive Detection of UV Radiation Using a Uranium Coordination Polymer.

    PubMed

    Liu, Wei; Dai, Xing; Xie, Jian; Silver, Mark A; Zhang, Duo; Wang, Yanlong; Cai, Yawen; Diwu, Juan; Wang, Jian; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao

    2018-02-07

    The accurate detection of UV radiation is required in a wide range of chemical industries and environmental or biological related applications. Conventional methods taking advantage of semiconductor photodetectors suffer from several drawbacks such as sophisticated synthesis and manufacturing procedure, not being able to measure the accumulated UV dosage as well as high defect density in the material. Searching for new strategies or materials serving as precise UV dosage sensor with extremely low detection limit is still highly desirable. In this work, a radiation resistant uranium coordination polymer [UO 2 (L)(DMF)] (L = 5-nitroisophthalic acid, DMF = N,N-dimethylformamide, denoted as compound 1) was successfully synthesized through mild solvothermal method and investigated as a unique UV probe with the detection limit of 2.4 × 10 -7 J. On the basis of the UV dosage dependent luminescence spectra, EPR analysis, single crystal structure investigation, and the DFT calculation, the UV-induced radical quenching mechanism was confirmed. Importantly, the generated radicals are of significant stability which offers the opportunity for measuring the accumulated UV radiation dosage. Furthermore, the powder material of compound 1 was further upgraded into membrane material without loss in luminescence intensity to investigate the real application potentials. To the best of our knowledge, compound 1 represents the most sensitive coordination polymer based UV dosage probe reported to date.

  6. Switching on fluorescence for selective visual recognition of naringenin and morin with a metal-organic coordination polymer of Zn(bix) [bix = 1,4-bis(imidazol-1-ylmethyl)benzene

    NASA Astrophysics Data System (ADS)

    Zhao, Xi Juan; Wang, Hui Juan; Liang, Li Jiao; Li, Yuan Fang

    2013-02-01

    Flavonoids such as naringenin and morin are ubiquitous in a wide range of foods isolated from plants, and have diverse effects on plants even on human health. Here, we establish a selective visual method for recognition of aringenin and morin based on the "switched on" fluorescence induced by a metal-organic coordination polymer of Zn(bix) [bix = 1,4-bis(imidazol-1-ylmethyl)benzene]. Owing to the coordination interaction of aringenin and morin with Zn(II) from the polymeric structure of Zn(bix), the conformational free rotation of naringenin and morin is restricted leading to relatively rigid structures. And as a consequence, the fluorescence is switched on. While luteolin and quercetin, holding a very similar structure with naringenin and morin, have no such fluorescence enhancement most likely owing to the 3'-hydroxy substitution in the B ring. Under 365 nm UV lamp light, we can visually recognize and discriminate naringenin and morin from them each other and luteolin as well as quercetin based on the colors of their emission. With this recognition system, the detection of naringenin and morin in human urine was made with satisfactory results.

  7. Micro-optical foundry: 3D lithography by freezing liquid instabilities at nanoscale

    NASA Astrophysics Data System (ADS)

    Grilli, S.; Coppola, S.; Vespini, V.; Merola, F.; Finizio, A.; Ferraro, P.

    2012-06-01

    The pyroelectric functionality of a Lithium Niobate (LN) substrate is used for non-contact manipulation of polymeric material. In this work we introduced a novel approach for fabricating a wide variety of soft solid-like microstructures, thus leading to a new concept in 3D lithography. A relatively easy to accomplish technique has been demonstrated for curing different transient stages of polymer fluids by rapid cross-linking of PDMS. The method is twofold innovative thanks to the electrode-less configuration and to the rapid formation of a wide variety of 3D solid-like structures by exploiting polymer instabilities. This new and unique technique is named "pyro-electrohydrodynamic (PEHD) lithography", meaning the generation of structures by using forces produced by electric fields generated by the pyroelectric effect. The fabrication of polymer wires, needles, pillars, cones, or microspheres is reported, and practical proofs of their use in photonics are presented.

  8. Synthesis, crystal structure, and luminescent properties of two coordination polymers based on 1,4-phenylenediacetic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Meili; Ren, Yixia; Ma, Zhenzhen; Qiao, Lei

    2017-06-01

    Two coordination polymers, [Zn(pda)(bib)]n (1) and [Cd(pda)0.5(bib)Cl]n (2)]. (H2pda = 1,4-phenylenediacetic acid, bib = 1,2-bis(imidazol-1-ylmethyl)benzene), have been synthesized by using Zn(II)/Cd(II) salts with two flexible ligands pda and bib under hydrothermal conditions. Their structures have been characterized by elemental analysis, IR spectroscopy, single-crystal X-ray crystallography and powder X-ray diffraction (PXRD) analysis. Due to the coordination geometry around the metal ions and the diverse coordination modes of the flexible ligands, the obtained complex show diverse structures. In the structure of 1, a pair of bib ligands connect two Zn(II) atoms give rise a 22-membered ring, which is further extended by pda ligands in bidentate coordination mode leading a ring-containing 2D layer. In 2, bib ligands join [Cd2Cl2]2+ dimmers generate 1D polymeric ribbon, the pda ligands further extend such ribbon forming a 2D layer network containing rectangular windows, which discovers the effect of the central metal ions on the formation of metal-organic frameworks. In additional, luminescent properties of two complexes have also been studied, they could be potential fluorescence materials.

  9. Current advances in lanthanide ion (Ln(3+))-based upconversion nanomaterials for drug delivery.

    PubMed

    Yang, Dongmei; Ma, Ping'an; Hou, Zhiyou; Cheng, Ziyong; Li, Chunxia; Lin, Jun

    2015-03-21

    Lanthanide ion (Ln(3+))-based upconversion nano/micromaterials that emit higher-energy visible light when excited by low-energy NIR light have aroused considerable attention in the forefront of materials science and biomedical fields, which stems from their unique optical and chemical properties including minimum photodamage to living organisms, low autofluorescence, high signal-to-noise ratio and detection sensitivity, and high penetration depth in biological or environmental samples. Thus, Ln(3+)-based upconversion materials are rising new stars and are quickly emerging as potential candidates to revolutionize novel biomedical applications. In this review article, we mainly focus on the recent progress in various chemical syntheses of Ln(3+)-based upconversion nanomaterials, with special emphasis on their application in stimuli-response controlled drug release and subsequent therapy. Functional groups that are introduced into the stimuli-responsive system can respond to external triggers, such as pH, temperature, light, and even magnetic fields, which can regulate the movement of the pharmaceutical cargo and release the drug at a desired time and in a desired area. This is crucial to boost drug efficacy in cancer treatment while minimizing the side effects of cytotoxic drugs. Many multifunctional (magnetic/upconversion luminescence and porous) composite materials based on Ln(3+) have been designed for controlled drug delivery and multimodal bioimaging. Finally, the challenges and future opportunities for Ln(3+)-based upconversion materials are discussed.

  10. Three isostructural one-dimensional Ln(III) chains with distorted cubane motifs showing dual fluorescence and slow magnetic relaxation/magnetocaloric effect.

    PubMed

    Li, Yan; Yu, Jia-Wen; Liu, Zhong-Yi; Yang, En-Cui; Zhao, Xiao-Jun

    2015-01-05

    Three new homometallic lanthanide complexes with mixed carboxylate-modified rigid ligands, [Ln(μ3-OH)(na)(pyzc)]n (na(-) = 1-naphtholate, pyzc(-) = 2-pyrazinecarboxylate, Ln = Dy (1), Yb (2), and Gd (3)), were solvothermally synthesized, and their structures and magnetic as well as photophysical properties were completely investigated. Complexes 1-3 are crystallographically isostructural, exhibiting linear chains with four bidentate bridging μ-COO(-) moieties encapsulated cubic {Ln4(μ3-OH)4}(8+) clusters repeatedly extended by 4-fold chelating-bridging-pyzc(-) connectors. Magnetically, the former two complexes with highly anisotropic Dy(III) and weak anisotropic Yb(III) ions in the distorted NO7 triangular dodecahedron coordination environment display field-induced slow relaxation of magnetization. Fitting the dynamic magnetic data to the Arrhenius law gives energy barrier ΔE/kB = 39.6 K and pre-exponential factor τo = 1.52 × 10(-8) s for 1 and ΔE/kB = 14.1 K and τo = 2.13 × 10(-7) s for 2. By contrast, complex 3 with isotropic Gd(III) ion and weak intracluster antiferromagnetic coupling shows a significant cryogenic magnetocaloric effect, with a maximum -ΔSm value of 30.0 J kg(-1) K(-1) at 2.5 K and 70 kOe. Additionally, the chromophoric na(-) and pyzc(-) ligands can serve as antenna groups, selectively sensitizing the Dy(III)- and Yb(III)-based luminescence of 1 and 2 in the UV-visible region by an intramolecular energy transfer process. Thus, complexes 1-3, incorporating field-induced slow magnetic magnetization and interesting luminescence together, can be used as composite magneto-optical materials. More importantly, these interesting results further demonstrate that the mixed-ligand system with rigid carboxylate-functionalized chromophores can be excellent candidates for the preparations of new bifunctional magneto-optical materials.

  11. A one-dimensional zinc(II) coordination polymer with a three-dimensional supramolecular architecture incorporating 1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole and adipate.

    PubMed

    Liu, Chun Li; Huang, Qiu Ying; Meng, Xiang Ru

    2016-12-01

    The synthesis of coordination polymers or metal-organic frameworks (MOFs) has attracted considerable interest owing to the interesting structures and potential applications of these compounds. It is still a challenge to predict the exact structures and compositions of the final products. A new one-dimensional coordination polymer, catena-poly[[[bis{1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole-κN 3 }zinc(II)]-μ-hexane-1,6-dicarboxylato-κ 4 O 1 ,O 1' :O 6 ,O 6' ] monohydrate], {[Zn(C 6 H 8 O 4 )(C 9 H 8 N 6 ) 2 ]·H 2 O} n , has been synthesized by the reaction of Zn(Ac) 2 (Ac is acetate) with 1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole (bimt) and adipic acid (H 2 adi) at room temperature. In the polymer, each Zn II ion exhibits an irregular octahedral ZnN 2 O 4 coordination geometry and is coordinated by two N atoms from two symmetry-related bimt ligands and four O atoms from two symmetry-related dianionic adipate ligands. Zn II ions are connected by adipate ligands into a one-dimensional chain which runs parallel to the c axis. The bimt ligands coordinate to the Zn II ions in a monodentate mode on both sides of the main chain. In the crystal, the one-dimensional chains are further connected through N-H...O hydrogen bonds, leading to a three-dimensional supramolecular architecture. In addition, the title polymer exhibits fluorescence, with emissions at 334 and 350 nm in the solid state at room temperature.

  12. Diagnostics of transparent polymer coatings of metal items

    NASA Astrophysics Data System (ADS)

    Varepo, L. G.; Ermakova, I. N.; Nagornova, I. V.; Kondratov, A. P.

    2017-08-01

    The methods of visual and instrumental express diagnostics of safety critical defects and non-uniform thickness of transparent mono- and multilayer polyolefin surface coating of metal items are analyzed in the paper. The instrumental diagnostics method relates to colorimetric measuring based on effects, which appear in the polarized light for extrusion polymer coatings. A color coordinates dependence (in the color system CIE La*b*) on both HDPE / PVC coating thickness fluctuation values (from average ones) and coating interlayer or adhesion layer delaminating is shown. A variation of color characteristics in the polarized light at a liquid penetration into delaminated polymer layers is found. Measuring parameters and critical uncertainties are defined.

  13. Highly effective synthesis of a cobalt(ii) metal-organic coordination polymer by using continuous flow chemistry.

    PubMed

    Gong, Chunhua; Zhang, Junyong; Zeng, Xianghua; Xie, Jingli

    2016-12-20

    The coordination polymer [Co 2 L 4 (H 2 O) 2 ]·CH 3 CN·H 2 O (HL = (E)-2-[2-(4-chlorophenyl)vinyl]-8-hydroxyquinoline) has been achieved with 95% yield by using an Asia flow synthesis system (chip reactor). Compared with the conventional batch-type methods such as diffusion, reflux and solvothermal reactions, higher yielding reactions carried out in a flow reactor have demonstrated that this technique is a powerful strategy to obtain coordination compounds.

  14. Gordon Research Conference on Composites (1984) Held at Santa Barbara, California on January 16-20, 1984.

    DTIC Science & Technology

    1984-12-01

    AUTNoON(e) 4. CONTRACT OR GRANT NUMEER(s) Richard J. Farris DAAG29-83-M-O415 Ln S. oEIroOMING ORGANIZATION NAME ANO ADORESS 10. PROGRAM ELEMENT... Richard J. Farris, Professor Polymer Science and Engineering Department University of Massachusetts, Amherst Chairman 1984 Gordon Research Conference...Hotel, Santa Barbara, California Richard J. Farris, Chairperson 1. Edmund Fitzgerald, Vice-Chairperson Monday Morning, Januaty 16 Discussion Leader

  15. Synthesis, crystal structure, and magnetic properties of two-dimensional divalent metal glutarate/dipyridylamine coordination polymers, with a single crystal-to-single crystal transformation in the copper derivative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montney, Matthew R.; Supkowski, Ronald M.; Staples, Richard J.

    Hydrothermal reaction of divalent metal chlorides with glutaric acid and 4,4'-dipyridylamine (dpa) has afforded an isostructural family of coordination polymers with formulation [M(glu)(dpa)]{sub n} (M=Co (1), Ni (2), Cu (3); glu=glutarate). Square pyramidal coordination is seen in 1-3, with semi-ligation of a sixth donor to produce a '5+1' extended coordination sphere. Neighboring metal atoms are linked into 1D [M(glu)]{sub n} neutral chains through chelating/monodentate bridging glutarate moieties with a syn-anti binding mode, and semi-chelation of the pendant carboxylate oxygen. These chains further connect into 2D layers through dipodal dpa ligands. Neighboring layers stack into the pseudo 3D crystal structure ofmore » 1-3 through supramolecular hydrogen bonding between dpa amine units and the semi-chelated glutarate oxygen atoms. The variable temperature magnetic behavior of 1-3 was explored and modeled as infinite 1D Heisenberg chains. Notably, complex 3 undergoes a thermally induced single crystal-to-single crystal transformation between centric and acentric space groups, with a conformationally disordered unilayer structure at 293 K and an ordered bilayer structure at 173 K. All materials were further characterized via infrared spectroscopy and elemental and thermogravimetric analyses. - Graphical abstract: The coordination polymers [M(glu)(dpa)]{sub n} (M=Co (1), Ni (2), Cu (3); glu=glutarate, dpa=4,4'-dipyridylamine) exhibit 2D layer structures based on 1D [M(glu)]{sub n} chains linked through dpa tethers. Antiferromagnetic coupling is observed for 2 and 3, while ferromagnetism is predominant in 1. Compound 3 undergoes a thermally induced single crystal-to-single crystal transformation from an acentric to a centrosymmetric space group.« less

  16. Near-infrared light stimuli-responsive synergistic therapy nanoplatforms based on the coordination of tellurium-containing block polymer and cisplatin for cancer treatment.

    PubMed

    Li, Feng; Li, Tianyu; Cao, Wei; Wang, Lu; Xu, Huaping

    2017-07-01

    Cisplatin (CDDP) has received worldwide approval for clinical use in the past decades. However, its development in cancer chemotherapy was overshadowed by severe side effects and drug resistance. Herein, we developed a CDDP drug delivery system with high encapsulation efficiency and near-infrared light stimuli-responsive drug release properties based on the coordination of novel tellurium-containing block polymer (PEG-PUTe-PEG) and CDDP. The nanocarriers made from PEG-PUTe-PEG were loaded with CDDP and indocyanine green (ICG) simultaneously. The coordination chemistry between CDDP and tellurium guaranteed the nanocarrier a high stability in plasma and prolonged circulation time in vivo by reducing possible penetration of water molecule into the nanoparticles. Under the stimuli of a near-infrared laser, an amount of ROS can be generated by irradiation of ICG. The tellurium is easily oxidized by ROS because of the low electronegativity of tellurium. The CDDP could be rapidly released from the nanocarriers along with the oxidation of the tellurium at the tumor sites as the oxidized tellurium will weaken the coordination interaction with CDDP. In addition, the encapsulated ICG played a synergistic antitumor effect through photothermal effect with mild laser irradiation. The integrated strategy achieved higher antitumor efficacy and showed minimal side effects compared with the CDDP alone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Intergranular Corrosion Behavior of 304LN Stainless Steel Heat Treated at 623 K (350 °C)

    NASA Astrophysics Data System (ADS)

    Singh, Raghuvir; Kumar, Mukesh; Ghosh, Mainak; Das, Gautam; Singh, P. K.; Chattoraj, I.

    2013-01-01

    Low temperature sensitization of 304LN stainless steel from the two pipes, differing slightly in chemical composition, has been investigated; specimens were aged at 623 K (350 °C) for 20,000 hours and evaluated for intergranular corrosion and degree of sensitization. The base and heat-affected zone (HAZ) of the 304LN-1 appear resistant to sensitization, while 304LN-2 revealed a "dual" type microstructure at the transverse section and HAZ. The microstructure at 5.0-mm distance from the fusion line indicates qualitatively less sensitization as compared to that at 2.0 mm. The 304LN-2 base alloy shows overall lower degree of sensitization values as compared to the 304LN-1. A similar trend of degree of sensitization was observed in the HAZ where it was higher in the 304LN-1 as compared to the 304LN-2. The weld zone of both the stainless steels suffered from cracking during ASTM A262 practice E, while the parent metals and HAZs did not show such fissures. A mottled image within the ferrite lamella showed spinodal decomposition. The practice E test and transmission electron microscopy results indicate that the interdendritic regions may suffer from failure due to carbide precipitation and due to the evolution of brittle phase from spinodal decomposition.

  18. A series of novel lanthanide complexes with 2-bromine-5-methoxybenzoic acid and 2,2‧-bipyridine: Syntheses, crystal structures, and luminescent properties

    NASA Astrophysics Data System (ADS)

    Zhao, Qing-Qing; Zhu, Min-Min; Ren, Ning; Zhang, Jian-Jun

    2017-12-01

    Six new lanthanide complexes [Ln(2-Br-5-MOBA)3(2,2‧-DIPY)]2 (Ln = Nd(1), Eu(2), Gd(3), Tb(4), Ho(5), Er(6); 2-Br-5-MOBA = 2-bromine-5-methoxybenzoate; 2,2‧-DIPY = 2,2‧-bipyridine) have been successfully synthesized and characterized. The complexes 1-5 are isostructural and nine-coordinated by the single-crystal X-ray diffraction analyses, while the complex 6 is eight-coordinated. The difference of crystal structure may be the result of the lanthanide contraction effect. The binuclear units were further assembled into 1D, 2D, 3D supramolecular structures by the π-π stacking and Csbnd H⋯O hydrogen bonding interactions. The thermal decomposition mechanism of complexes 1-6 was studied by TG analysis and further authenticated by TG/DSC-FTIR techniques. The solid-state luminescence properties of complexes 2 and 4 were investigated at room temperature. The results indicate that complexes 2 and 4 show characteristic emission of Eu3+ ion and Tb3+ ion, respectively. What's more, the title complexes have good antibacterial activities against Candida albicans.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Lu; Zhang, Sheng; Qu, Xiaoni

    Lanthanide MOFs, [Eu(TCA)(NDC)·H{sub 2}O]{sub n} (1) and [Tb(TCA)(NDC)·H{sub 2}O]{sub n} (2), have been prepared with the mixed aromatic carboxylate ligands, namely, 4,4′,4″-tricarboxytriphenylamine (H{sub 3}TCA) and 1,4-naphthalenedicarboxylate (H{sub 2}NDC). Single-crystal X-ray diffraction analysis reveals that isomorphic 1 and 2 present pillar-layered 3D framework that Eu/Tb(III) bond with carboxylate in various coordination fashions. Optical investigation indicates that the as-prepared compounds feature characteristic luminescence emission bands of Eu/Tb ions in the visible regions at room temperature. Moreover, compound 2 shows a relatively longer luminescence lifetime (τ=0.342 ms) and significantly enhanced quantum yield (Φ{sub overall}=11%) comparing with those of 1 (τ=0.335 ms, Φ{sub overall}=0.06%).more » - Graphical abstract: Synoptic: Two Ln-MOFs (Ln=Eu{sup III}, Tb{sup III}) with mixed polycarboxylate ligands present different luminescent properties. - Highlights: • Two Eu/Tb-MOFs with H{sub 3}TCA and H{sub 2}NDC ligands have been obtained. • The ancillary ligand is employed to decrease water molecule coordinate numbers. • 2displays superior quantum yield and lifetime than those of 1.« less

  20. Impact of Temperature and Non-Gaussian Statistics on Electron Transfer in Donor-Bridge-Acceptor Molecules.

    PubMed

    Waskasi, Morteza M; Newton, Marshall D; Matyushov, Dmitry V

    2017-03-30

    A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T. This kinetic law is a temperature analogue of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganization energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. The theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waskasi, Morteza M.; Newton, Marshall D.; Matyushov, Dmitry V.

    A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T . This kinetic law is a temperature analog of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganizationmore » energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. Furthermore, the theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.« less

  2. C-H...Cl relevant discrepancy on structure, magnetic and electronic conductivity of two mixed-valence Cu{sup I}Cu{sup II} coordination polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi Ling; Yang Ping; School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510631

    Two mixed-valence Cu{sup I}Cu{sup II} coordination polymers [Cu{sup I}Cu{sup II}(qdiol)ClL]{sub n} (qdiol{sup 2-}=2,3-dioxyquinoxalinate, L=2,2'-bipyridine, 1; L=1,10-phenanthroline, 2) were obtained in basic ethanolic solution of CuCl{sub 2}, 1,4-dihydro-2,3-quinoxalinedione and L under the solvothermal condition. 1 and 2 are similar in composition, but differ remarkably in structure. The coordination modes of Cu{sup II}, qdiol{sup 2-} and L are identical in both complexes. But the Cu{sup I} ions are two- and three-coordinated, and the Cl{sup -} ions are terminal and bridging, in 1 and 2, respectively, which are relevant to the significantly different C-H...Cl hydrogen bonding pattern of bpy and phen. The temperaturemore » variable magnetic susceptibilities show that 1 is paramagnetic and 2 is weakly antiferromagnetic. The complex impedance spectroscopic studies indicate that both 1 and 2 are semiconductors and 2 is more conducting. - Graphical Abstract: Subtly different C-H...Cl bonding nature leads to diverse coordination modes and supramolecular networks, as well as physical properties of two Cu{sup I}Cu{sup II} coordination polymers with similar compositions. Highlights: > Two new Cu(I)-Cu(II) mixed-valence coordination polymers are obtained. > Environments of Cu(I) and Cl are different caused by C-H...Cl H-bonding. > Supramolecular networks are hence diverse. > Magnetic and semiconducting properties are influenced by the structures.« less

  3. Coordination polymer-derived nano-sized zinc ferrite with excellent performance in nitro-explosive detection.

    PubMed

    Singha, Debal Kanti; Mahata, Partha

    2017-08-29

    Herein, a mixed metal coordination polymer, {(H 2 pip)[Zn 1/3 Fe 2/3 (pydc-2,5) 2 (H 2 O)]·2H 2 O} 1 {where H 2 pip = piperazinediium and pydc-2,5 = pyridine-2,5-dicarboxylate}, was successfully synthesized using a hydrothermal technique. To confirm the structure and phase purity of 1, single crystals of an isomorphous pure Fe compound, {(H 2 pip)[Fe(pydc-2,5) 2 (H 2 O)]·2H 2 O} 1a, were synthesized based on similar synthetic conditions. Single crystal X-ray data of 1a confirmed the one-dimensional anionic metal-organic coordination polymer hydrogen bonded with protonated piprazine (piperazinediium) and lattice water molecules. The phase purity of 1 and 1a were confirmed via powder X-ray diffraction. Compound 1 was systematically characterized using IR, TGA, SEM, and EDX elemental mapping analysis. Compound 1 was used as a single source precursor for the preparation of nano-sized ZnFe 2 O 4 via thermal decomposition. The as-obtained ZnFe 2 O 4 was fully characterized using PXRD, SEM, TEM, and EDX elemental mapping analysis. It was found that ZnFe 2 O 4 was formed in its pure form with particle size in the nano-dimension. The aqueous dispersion of nano-sized ZnFe 2 O 4 exhibits a strong emission at 402 nm upon excitation at 310 nm. This emissive property was employed for luminescence-based detection of nitroaromatic explosives in an aqueous medium through luminescence quenching for the first time. Importantly, selective detections have been observed for phenolic nitroaromatics based on differential luminescence quenching behaviour along with a detection limit of 57 ppb for 2,4,6-trinitrophenol (TNP) in water.

  4. Construction and Self-Assembly of Single-Chain Polymer Nanoparticles via Coordination Association and Electrostatic Repulsion in Water.

    PubMed

    Zhu, Zhengguang; Xu, Na; Yu, Qiuping; Guo, Lei; Cao, Hui; Lu, Xinhua; Cai, Yuanli

    2015-08-01

    Simultaneous coordination-association and electrostatic-repulsion interactions play critical roles in the construction and stabilization of enzymatic function metal centers in water media. These interactions are promising for construction and self-assembly of artificial aqueous polymer single-chain nanoparticles (SCNPs). Herein, the construction and self-assembly of dative-bonded aqueous SCNPs are reported via simultaneous coordination-association and electrostatic-repulsion interactions within single chains of histamine-based hydrophilic block copolymer. The electrostatic-repulsion interactions are tunable through adjusting the imidazolium/imidazole ratio in response to pH, and in situ Cu(II)-coordination leads to the intramolecular association and single-chain collapse in acidic water. SCNPs are stabilized by the electrostatic repulsion of dative-bonded block and steric shielding of nonionic water-soluble block, and have a huge specific surface area of function metal centers accessible to substrates in acidic water. Moreover, SCNPs can assemble into micelles, networks, and large particles programmably in response to the solution pH. These unique media-sensitive phase-transformation behaviors provide a general, facile, and versatile platform for the fabrication of enzyme-inspired smart aqueous catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Magnetic properties, water proton relaxivities, and in-vivo MR images of paramagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Gang Ho; Chang, Yongmin

    2015-07-01

    In this mini review, magnetic resonance imaging (MRI) contrast agents based on lanthanideoxide (Ln2O3) nanoparticles are described. Ln2O3 (Ln = Gd, Dy, Ho, and Er) nanoparticles are paramagnetic, but show appreciable magnetic moments at room temperature and even at ultrasmall particle diameters. Among Ln2O3 nanoparticles, Gd2O3 nanoparticles show larger longitudinal water proton relaxivity (r1) values than Gd-chelates because of the large amount of Gd in the nanoparticle, and the other Ln2O3 nanoparticles (Ln = Dy, Ho, and Er) show appreciable transverse water proton relaxivity (r2) values. Therefore, Gd2O3 nanoparticles are potential T1 MRI contrast agents while the other Ln2O3 nanoparticles are potential T2 MRI contrast agents at high MR fields.

  6. Octanuclear Heterobimetallic {Ni4Ln4} Assemblies Possessing Ln4 Square Grid [2 × 2] Motifs: Synthesis, Structure, and Magnetism.

    PubMed

    Biswas, Sourav; Goura, Joydeb; Das, Sourav; Topping, Craig V; Brambleby, Jamie; Goddard, Paul A; Chandrasekhar, Vadapalli

    2016-09-06

    Octanuclear heterobimetallic complexes, [Ln4Ni4(H3L)4(μ3-OH)4(μ2-OH)4]4Cl·xH2O·yCHCl3 (Dy(3+), x = 30.6, y = 2 (1); Tb(3+), x = 28, y = 0 (2) ; Gd(3+), x = 25.3, y = 0 (3); Ho(3+), x = 30.6, y = 3 (4)) (H5L = N1,N3-bis(6-formyl-2-(hydroxymethyl)-4-methylphenol)diethylenetriamine) are reported. These are assembled by the cumulative coordination action of four doubly deprotonated compartmental ligands, [H3L](2-), along with eight exogenous -OH ligands. Within the core of these complexes, four Ln(3+)'s are distributed to the four corners of a perfect square grid while four Ni(2+)'s are projected away from the plane of the Ln4 unit. Each of the four Ni(2+)'s possesses distorted octahedral geometry while all of the Ln(3+)'s are crystallographically equivalent and are present in an elongated square antiprism geometry. The magnetic properties of compound 3 are dominated by an easy-plane single-ion anisotropy of the Ni(2+) ions [DNi = 6.7(7) K] and dipolar interactions between Gd(3+) centers. Detailed ac magnetometry reveals the presence of distinct temperature-dependent out-of-phase signals for compounds 1 and 2, indicative of slow magnetic relaxation. Magnetochemical analysis of complex 1 implies the 3d and the 4f metal ions are engaged in ferromagnetic interactions with SMM behavior, while dc magnetometry of compound 2 is suggestive of an antiferromagnetic Ni-Tb spin-exchange with slow magnetic relaxation due to a field-induced level crossing. Compound 4 exhibits an easy-plane single-ion anisotropy for the Ho(3+) ions and weak interactions between spin centers.

  7. Design and synthesis of two luminescent Zn(II)-based coordination polymers with different structures regulated by different solvent system

    NASA Astrophysics Data System (ADS)

    Wu, Wei-Ping; Wen, Gui-Lin; Liao, Yi; Wang, Jun; Lu, Lu; Wu, Yu; Xie, Bin

    2016-08-01

    Two new coordination polymers (CPs) [Zn(HL)(H2O)]n (1) and [Zn3(L)2(H2O)2]n·(H2O)n (2), based on a multifunctional ligand combined carboxylate groups and a nitrogen donor group 5-(6-carboxypyridin-2-yl)isophthalic acid (H3L), have been synthesized under different solvent media and fully characterized by powder X-ray diffraction (PXRD), infrared (IR) spectra, elemental analyses (EA) and thermogravimetric analyses (TGA). Single-crystal X-ray diffraction analysis reveals that 1 shows 1D dimeric chain structure, while 2 gives a 3D dense packing framework. Topology analysis illustrates that 2 can be simplified as a 3-nodal net (4, 5, 6-connected net) with the point symbol of {44·62}{46·64}2{48·66·8}. In addition, solid state luminescent properties of two complexes have also been studied in detail, which may act as the potential optical materials.

  8. Two intriguing hydroxy-copper(II) coordination polymers with bis(triazole) and bicarboxylate ligands: Syntheses, structures and photocatalytic degradation of organic dyes

    NASA Astrophysics Data System (ADS)

    Zhao, Shan; Zheng, Tian-Rui; Shi, Lu-Lu; Li, Ke; Li, Bao-Long; Li, Hai-Yan

    2017-09-01

    Two intriguing coordination polymers [Cu2(OH)(mbtx)(sip)(H2O)2]n (1) and {[Cu3(OH)2(mbtx)(nip)2]·H2O}n (2) were synthesized by the hydrothermal method and characterized by elementary analysis, IR, PXRD, diffuse reflectance spectra and single-crystal X-ray diffraction (mbtx = 1,3-bis(1,2,4-triazol-4-yl)benzene, sip = sulfoisophthalate, nip = 5-nitroisophthalate). 1 shows an unusual 3-connected 2D network based on the dimeric hydroxy-copper(II) cluster [Cu2(μ-OH)] with the point symbol of 63. 2 exhibits an unusual 3D network based on 1D hydroxyl-copper(II) chains [Cu3(OH)2]n. 1 and 2 are highly efficient and universal photocatalysts for the degradation of the organic dyes such as methyl orange (MO), methylene blue (MB) and rhodamine B (RhB) under UV irradiation. The photocatalytic mechanism was supposed.

  9. Perturbing Tandem Energy Transfer in Luminescent Heterobinuclear Lanthanide Coordination Polymer Nanoparticles Enables Real-Time Monitoring of Release of the Anthrax Biomarker from Bacterial Spores.

    PubMed

    Gao, Nan; Zhang, Yunfang; Huang, Pengcheng; Xiang, Zhehao; Wu, Fang-Ying; Mao, Lanqun

    2018-06-05

    Lanthanide-based luminescent sensors have been widely used for the detection of the anthrax biomarker dipicolinic acid (DPA). However, mainly based on DPA sensitization to the lanthanide core, most of them failed to realize robust detection of DPA in bacterial spores. We proposed a new strategy for reliable detection of DPA by perturbing a tandem energy transfer in heterobinuclear lanthanide coordination polymer nanoparticles simply constructed by two kinds of lanthanide ions, Tb 3+ and Eu 3+ , and guanosine 5'-monophosphate. This smart luminescent probe was demonstrated to exhibit highly sensitive and selective visual luminescence color change upon exposure to DPA, enabling accurate detection of DPA in complex biosystems such as bacterial spores. DPA release from bacterial spores on physiological germination was also successfully monitored in real time by confocal imaging. This probe is thus expected to be a powerful tool for efficient detection of bacterial spores in responding to anthrax threats.

  10. Syntheses, structures and properties of metal-carboxylate chain-based coordination polymers (CPs) with 1,1‧:4‧,1″-terphenyl-2‧,4,4″,5‧-tetracarboxylate

    NASA Astrophysics Data System (ADS)

    Zhou, Xinhui; Song, Lin; Li, Liang; Yang, Tao

    2016-09-01

    Two coordination polymers (CPs) {[Mg2L(μ2-H2O) (μ2-DMA)]·DMA}n (1), and [Ag4L(DMF)2]n (2) (H4L = 1,1‧:4‧,1″-terphenyl-2‧,4,4″,5‧-tetracarboxylic acid, DMA = N,N-dimethylacetamine, DMF = N,N-dimethylformamide) have been synthesized and structurally characterized. In 1 and 2, there exist a series of parallel aligned Msbnd Osbnd C chains, which are linked along two directions by para-terphenyl moieties of L4- ligands to lead to the metal-carboxylate chain-based three-dimensional frameworks. The photoluminescence properties of the compounds 1 and 2 have also been investigated. 1 displays blue-violet light emission with the emission maximum at 380 nm. 2 exhibits a broad emission peak from 300 to 800 nm with an emission maximum at 484 nm and some of the shoulder peaks.

  11. A luminescent zinc(ii) coordination polymer with unusual (3,4,4)-coordinated self-catenated 3D network for selective detection of nitroaromatics and ferric and chromate ions: a versatile luminescent sensor.

    PubMed

    Zhang, Ya-Qian; Blatov, Vladislav A; Zheng, Tian-Rui; Yang, Chang-Hao; Qian, Lin-Lu; Li, Ke; Li, Bao-Long; Wu, Bing

    2018-05-01

    A zinc(ii) coordination polymer {[Zn3(mtrb)3(btc)2]·3H2O}n (1) was synthesized and characterized (mtrb = 1,3-bis(1,2,4-triazole-4-ylmethyl)benzene, btc = 1,3,5-benzenetricarboxylate). The polymer 1 shows an unusual (3,4,4)-coordinated self-catenated 3D network with the point symbol of {63}2{62·82·102}{64·82}2. The polymer 1 is the first luminescent sensor for the detection of 2-amino-4-nitrophenol (ANP). The polymer 1 is also a good luminescence sensor for detection of TNP, 2,4-DNP, 4-NP, ANP and 2-NP in MeOH, particularly for TNP. The order of detection efficiency is TNP > 2,4-DNP > 4-NP > ANP > 2-NP. The polymer 1 also exhibits high sensitivity and selectivity as a luminescence sensor for the detection of Fe3+, Cr2O72- and CrO42- in aqueous solution. Our experiments showed that the presence of interfering ions had no significant effect on the sensing of Fe3+, Cr2O72- or CrO42- ions. The detection limits for TNP, ANP, Fe3+, Cr2O72- and CrO42- are 0.22 μM, 4.12 μM, 1.78 μM, 2.83 μM, and 4.52 μM, respectively. The luminescence sensor is stable and can be recycled for detection at least five times. The possible quenching mechanisms are discussed. The polymer 1 is also an effective photocatalyst for degradation of methylene blue (MB) under visible or UV light irradiation.

  12. A Novel Coordination Polymer Constructed by Hetero-Metal Ions and 2,3-Pyridine Dicarboxylic Acid: Synthesis and Structure of [NiNa2(PDC)2(μ-H2O)(H2O)2] n

    NASA Astrophysics Data System (ADS)

    Dou, Ming-Yu; Lu, Jing

    2017-12-01

    A novel coordination polymer containing hetero-metal ions, [NiNa2(PDC)2(μ-H2O)(H2O)2] n , where PDC is 2,3-pyridine dicarboxylate ion, has been synthesized. In the structure, the PDC ligand chelates and bridges two Ni(II) and two Na(I) centers. Two kinds of metal centers are connected by μ4-PDC and μ2-H2O to form 2D coordination layers. Hydrogen bonds between coordination water molecules and carboxylate oxygen atoms further link these 2D coordination layers to form 3D supramolecular network.

  13. Synthesis, structure, luminescence and photocatalytic properties of an uranyl-2,5-pyridinedicarboxylate coordination polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Si, Zhen-Xiu; Xu, Wei, E-mail: xuwei@nbu.edu.cn; Zheng, Yue-Qing, E-mail: yqzhengmc@163.com

    2016-07-15

    An uranium coordination polymer, namely [(UO{sub 2}(pydc)(H{sub 2}O)]·H{sub 2}O (1) (H{sub 2}pydc=2,5-pyridinedicarboxylic acid), has been obtained by hydrothermal method and characterized by X-ray single crystal structure determination. Structural analysis reveals that complex 1 exhibits 1D chain coordination polymer, in which UO{sub 2}{sup 2+} ions are bridged by 2,5-pyridinedicarboxylate ligands and the chains are connected into a 3D supramolecular network by O–H···O hydrogen bond interactions and π–π stacking interactions. The photocatalytic properties of 1 for degradation of methylene blue (MB), Rhodamine B (RhB) and methyl orange (MO) under Hg-lamp irradiation have been performed, and the amount of the catalyst as wellmore » as Hg-lamp irradiation with different power on the photodegradation efficiency of MB have been investigated. Elemental analyses, infrared spectroscopy, TG-DTA analyses and luminescence properties were also discussed. - Graphical abstract: Complex 1 exhibits 1D chain coordination polymer in which UO{sub 2}{sup 2+} ions are bridged by 2,5-pyridinedicarboxylate ligand. Photoluminescence studies reveal that complex 1 exhibits characteristic emissions of uranyl centers. The compound is selective to degraded dye and displays good photocatalytic activities for the degradation of MB under Hg-lamp. Display Omitted - Highlights: • Complex 1 exhibits 1D chain coordination polymer. • Complex 1 could degrade methylene blue and Rhodamine B under Hg-lamp irradiation. • Luminescent property of 1 has been studied.« less

  14. A robust viologen and Mn-based porous coordination polymer with two types of Lewis acid sites providing high affinity for H2O, CO2 and NH3.

    PubMed

    Leblanc, A; Mercier, N; Allain, M; Dul, M-C; Weber, G; Geoffroy, N; Bellat, J-P; Bezverkhyy, I

    2017-11-21

    A novel porous coordination polymer [Mn(pc3)(H 2 O) 2 ]·xH 2 O (3 < x < 4) is synthesized in water at pH = 7 using the anionic viologen-carboxylate ligand 4,4'-bipyridinium,1,1'-bis-(2,4-dicarboxyphenyl) (pc3 2- ). Dehydration of the material results in the formation of open pores containing two types of accessible Lewis acid sites: exposed Mn 2+ cations and N + atoms of viologen units. Due to this property the PCP shows high affinity and capacity in the adsorption of H 2 O, CO 2 and NH 3 . Despite the presence of strong adsorption sites this material is stable in liquid water and in gaseous NH 3 .

  15. Weak cooperativity in selected iron(II) 1D coordination polymers

    NASA Astrophysics Data System (ADS)

    Dîrtu, Marinela M.; Gillard, Damien; Naik, Anil D.; Rotaru, Aurelian; Garcia, Yann

    2012-03-01

    The spin crossover behaviour of a new class of FeII coordination polymers [Fe(phtptrz)3]I2 ( 1), [Fe(phtptrz)3](ReO4)2•CH3OH ( 2) and [Fe(phtptrz)3]TaF7•6H2O ( 3) based on a novel ligand 4-(3' -N-phtalimido-propyl)-1,2,4-triazole (phtptrz), were investigated by temperature dependent 57Fe Mössbauer spectroscopy and magnetic susceptibility measurements. The adverse effect of bulky substituent on 1,2,4-triazole, favorable supramolecular interactions and influence of increasing anion size on spin crossover profile is discussed. 1 and 2 show thermally induced spin conversions of gradual and incomplete nature with associated thermochromism, and transition temperatures T1/2 ~ 163 K and 137 K, respectively. A spin state crossover is also identified for 3.

  16. Two novel penetrating coordination polymers based on flexible S-containing dicarboxylate acid with sensing properties towards Fe3+ and Cr2O72- ions

    NASA Astrophysics Data System (ADS)

    Chen, Zhiwei; Mi, Xiuna; Wang, Suna; Lu, Jing; Li, Yunwu; Li, Dacheng; Dou, Jianmin

    2018-05-01

    Two new coordination polymers (CPs), namely, {[Zn(L)(bpp)]·DMF}n (1) and {[Zn(L)(bpe)]·DMF}n (2) (L = 2,2'-[benzene-1,3-diylbis(methanediylsulfanediyl)]dibenzoic acid, bpp= 1,3-bis(4-pyridyl)propane, bpe = 1,2-Bis(4-pyridyl)ethylene, DMF = N,N-Dimethylformamide), have been solvothermally synthesized and fully characterized. Complex 1 displays a 2D→2D three-fold"false" interpenetrating structure while complex 2 possesses a novel 3-D 4-connected structure with fascinating self-penetrating moieties. The luminescence studies reveal that these complexes exhibited excellent selectivity for Fe3+ and Cr2O72- ions in DMF. The sensing mechanism was investigated through PXRD, XPS , EDS mapping measurements, and discussed in details.

  17. Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics

    PubMed Central

    Grindy, Scott C.; Learsch, Robert; Mozhdehi, Davoud; Cheng, Jing; Barrett, Devin G.; Guan, Zhibin; Messersmith, Phillip B.; Holten-Andersen, Niels

    2015-01-01

    In conventional polymer materials, mechanical performance is traditionally engineered via material structure, using motifs such as polymer molecular weight, polymer branching, or copolymer-block design1. Here, by means of a model system of 4-arm poly(ethylene glycol) hydrogels crosslinked with multiple, kinetically distinct dynamic metal-ligand coordinate complexes, we show that polymer materials with decoupled spatial structure and mechanical performance can be designed. By tuning the relative concentration of two types of metal-ligand crosslinks, we demonstrate control over the material’s mechanical hierarchy of energy-dissipating modes under dynamic mechanical loading, and therefore the ability to engineer a priori the viscoelastic properties of these materials by controlling the types of crosslinks rather than by modifying the polymer itself. This strategy to decouple material mechanics from structure may inform the design of soft materials for use in complex mechanical environments. PMID:26322715

  18. Mixing of immiscible polymers using nanoporous coordination templates

    NASA Astrophysics Data System (ADS)

    Uemura, Takashi; Kaseda, Tetsuya; Sasaki, Yotaro; Inukai, Munehiro; Toriyama, Takaaki; Takahara, Atsushi; Jinnai, Hiroshi; Kitagawa, Susumu

    2015-07-01

    The establishment of methodologies for the mixing of immiscible substances is highly desirable to facilitate the development of fundamental science and materials technology. Herein we describe a new protocol for the compatibilization of immiscible polymers at the molecular level using porous coordination polymers (PCPs) as removable templates. In this process, the typical immiscible polymer pair of polystyrene (PSt) and poly(methyl methacrylate) (PMMA) was prepared via the successive homopolymerizations of their monomers in a PCP to distribute the polymers inside the PCP particles. Subsequent dissolution of the PCP frameworks in a chelator solution affords a PSt/PMMA blend that is homogeneous in the range of several nanometers. Due to the unusual compatibilization, the thermal properties of the polymer blend are remarkably improved compared with the conventional solvent-cast blend. This method is also applicable to the compatibilization of PSt and polyacrylonitrile, which have very different solubility parameters.

  19. Coordination-Supported Imidazolate Networks: Water- and Heat-Stable Mesoporous Polymers for Catalysis.

    PubMed

    Zhang, Pengfei; Yang, Shize; Chisholm, Matthew F; Jiang, Xueguang; Huang, Caili; Dai, Sheng

    2017-07-26

    The poor water stability of most porous coordination polymers (PCPs) or metal-organic frameworks (MOFs) is widely recognized as a barrier hampering their practical applications. Here, a facile and scalable route to prepare metal-containing polymers with a good stability in boiling water (100 °C, 24 h) and air (up to 390 °C) is presented. The bifunctional 1-vinylimidazole (VIm) with a coordinating site and a polymerizable organic group is introduced as the building block. This core strategy includes the synthesis of a rigid monomer with four VIm branches through a coordination process at room temperature, followed by a radical polymerization. We refer to this material as coordination-supported imidazolate networks (CINs). Interestingly, CINs are composed of rich mesopores from 2-15 nm, as characterized by low-energy (60 kV) STEM-HAADF images. In particular, the stable CINs illustrate a high turnover frequency (TOF) of 779 h -1 in the catalytic oxidation of phenol with H 2 O as the green solvent. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Coordination chemistry of 6-thioguanine derivatives with cobalt: toward formation of electrical conductive one-dimensional coordination polymers.

    PubMed

    Amo-Ochoa, Pilar; Alexandre, Simone S; Hribesh, Samira; Galindo, Miguel A; Castillo, Oscar; Gómez-García, Carlos J; Pike, Andrew R; Soler, José M; Houlton, Andrew; Zamora, Félix; Harrington, Ross W; Clegg, William

    2013-05-06

    In this work we have synthetized and characterized by X-ray diffraction five cobalt complexes with 6-thioguanine (6-ThioGH), 6-thioguanosine (6-ThioGuoH), or 2'-deoxy-6-thioguanosine (2'-d-6-ThioGuoH) ligands. In all cases, these ligands coordinate to cobalt via N7 and S6 forming a chelate ring. However, independently of reagents ratio, 6-ThioGH provided monodimensional cobalt(II) coordination polymers, in which the 6-ThioG(-) acts as bridging ligand. However, for 2'-d-6-ThioGuoH and 6-ThioGuoH, the structure directing effect of the sugar residue gives rise to mononuclear cobalt complexes which form extensive H-bond interactions to generate 3D supramolecular networks. Furthermore, with 2'-d-6-ThioGuoH the cobalt ion remains in the divalent state, whereas with 6-ThioGuoH oxidation occurs and Co(III) is found. The electrical and magnetic properties of the coordination polymers isolated have been studied and the results discussed with the aid of DFT calculations, in the context of molecular wires.

  1. Rare earth separations by selective borate crystallization

    PubMed Central

    Yin, Xuemiao; Wang, Yaxing; Bai, Xiaojing; Wang, Yumin; Chen, Lanhua; Xiao, Chengliang; Diwu, Juan; Du, Shiyu; Chai, Zhifang; Albrecht-Schmitt, Thomas E.; Wang, Shuao

    2017-01-01

    Lanthanides possess similar chemical properties rendering their separation from one another a challenge of fundamental chemical and global importance given their incorporation into many advanced technologies. New separation strategies combining green chemistry with low cost and high efficiency remain highly desirable. We demonstrate that the subtle bonding differences among trivalent lanthanides can be amplified during the crystallization of borates, providing chemical recognition of specific lanthanides that originates from Ln3+ coordination alterations, borate polymerization diversity and soft ligand coordination selectivity. Six distinct phases are obtained under identical reaction conditions across lanthanide series, further leading to an efficient and cost-effective separation strategy via selective crystallization. As proof of concept, Nd/Sm and Nd/Dy are used as binary models to demonstrate solid/aqueous and solid/solid separation processes. Controlling the reaction kinetics gives rise to enhanced separation efficiency of Nd/Sm system and a one-step quantitative separation of Nd/Dy with the aid of selective density-based flotation. PMID:28290448

  2. Studies of the structural and magnetic properties of an unsymmetrical ligand 1,2,4-benzenetricarboxylic acid based chiral 3-D trinickel coordination polymer as an alkali base-influenced hydrothermal reaction product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Yi-Ru; Chien, Po-Hsiu; Chung, Huey-Ting

    2014-04-01

    The reaction of 1,2,4-benzenetricarboxylic acid (H{sub 3}btc), as a ligand, under pH-controlled hydrothermal conditions with nickel salts leads to the formation of a coordination polymer of (CsNi{sub 3}(OH)(H{sub 2}O){sub 3}[C{sub 6}H{sub 3}(CO{sub 2}){sub 3}]{sub 2}·3H{sub 2}O){sub n} (1). The subunit of compound 1 contains a hydroxide- and carboxylate-bridged trinickel clusters that are linked by an unsymmetrical organic carboxylate spacer to form a chiral three-dimensional anionic framework, in which cesium cations and guest water molecules are located in one-dimensional channels. The presence of a hydroxide ion serves both as a deprotonation agent and a cation source during the hydrothermal reaction, thusmore » permitting the extent of deprotonation of the unsymmetrical ligand H{sub 3}btc to be controlled, which is essential for the successful formation of compound 1. The magnetic properties of compound 1 were analyzed. Both dc and ac magnetic susceptibility as well as reduced magnetization measurements confirmed the spin-frustration nature of 1. - Graphical abstract: A chiral three-dimension MOF compound and its magnetic properties are described. - Highlights: • A new chiral three-dimension coordination polymer were made. • An un-symmetric bridging ligand was used. • Alkali metal ion Cs{sup +} was incorporated in the structure. • Magnetic properties were studied.« less

  3. Two interpenetrating Cu{sup II}/Ni{sup II}-coordinated polymers based on an unsymmetrical bifunctional N/O-tectonic: Syntheses, structures and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yong-Liang; Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shang Luo University, Shang Luo 726000; Wu, Ya-Pan

    2015-03-15

    Two new interpenetrating Cu{sup II}/Ni{sup II} coordination polymers, based on a unsymmetrical bifunctional N/O-tectonic 3-(pyrid-4′-yl)-5-(4″-carbonylphenyl)-1,2,4-triazolyl (H{sub 2}pycz), ([Cu-(Hpycz){sub 2}]·2H{sub 2}O){sub n} (1) and ([Ni(Hpycz){sub 2}]·H{sub 2}O){sub n} (2), have been solvothermally synthesized and structure characterization. Single crystal X-ray analysis indicates that compound 1 shows 2-fold parallel interpenetrated 4{sup 4}-sql layers with the same handedness. The overall structure of 1 is achiral—in each layer of doubly interpenetrating nets, the two individual nets have the opposite handedness to the corresponding nets in the adjoining layers—while 2 features a rare 8-fold interpenetrating 6{sup 6}-dia network that belongs to class IIIa interpenetration. In addition,more » compounds 1 and 2 both show similar paramagnetic characteristic properties. - Graphical abstract: Two new Cu(II)/Ni(II) coordination polymers present 2D parallel 2-fold interpenetrated 4{sup 4}-sql layers and a rare 3D 8-fold interpenetrating 6{sup 6}-dia network. In addition, magnetic susceptibility measurements show similar paramagnetic characteristic for two complexes. - Highlights: • A new unsymmetrical bifunctional N/O-tectonic as 4-connected spacer. • A 2-fold parallel interpenetrated sql layer with the same handedness. • A rare 8-fold interpenetrating dia network (class IIIa)« less

  4. Coordination polymer gels with important environmental and biological applications.

    PubMed

    Jung, Jong Hwa; Lee, Ji Ha; Silverman, Julian R; John, George

    2013-02-07

    Coordination Polymer Gels (CPGs) constitute a subset of solid-like metal ion and bridging organic ligand structures (similar to metal-organic frameworks) that form multi-dimensional networks through a trapped solvent as a result of non-covalent interactions. While physical properties of these gels are similar to conventional high molecular weight organic polymer gels, coordination polymer gel systems are often fully reversible and can be assembled and disassembled in the presence of additional energy (heat, sonication, shaking) to give a solution of solvated gelators. Compared to gels resulting from purely organic self-assembled low molecular weight gelators, metal ions incorporated into the fibrilar networks spanning the bulk solvent can impart CPGs with added functionalities. The solid/liquid nature of the gels allows for species to migrate through the gel system and interact with metals, ligands, and the solvent. Chemosensing, catalysis, fluorescence, and drug-delivery applications are some of the many potential uses for these dynamic systems, taking advantage of the metal ion's coordination, the organic polydentate ligand's orientation and functionality, or a combination of these properties. By fine tuning these systems through metal ion and ligand selection and by directing self-assembly with external stimuli the rational synthesis of practical systems can be envisaged.

  5. [Synthesis and study on the interaction of rare earth complexes of N', N-bis(2-pyridinecarboxamide)-1, 2-ethane with DNA].

    PubMed

    Lu, Xiao-Hong; Lin, Qiu-Yue; Hu, Rui-Ding; Liu, Wei-Dong; Feng, Jie

    2007-06-01

    Four rare earth complexes of N', N-bis(2-pyridinecarboxamide)-1, 2-ethane were synthesized and characterized by elemental analysis, conductivity measurement, thermal studies, IR and electronic spectra. The composition of the four complexes is [Ln(H2L)(NO3)2](NO3) x 3H2O (Ln=Sm, Eu, Gd, Tb). Results of spectral measurements indicate that the oxygen of carbonyl and the nitrogen of pyridyl coordinate with Ln(III) respectively, and the NO3- shows bidentate coordination. So the four complexes are 1 : 1 chelated complexes. The interaction between [Sm(H2L) (NO3)2](NO3) x 3H2O and DNA was studied by employing UV-Visible (UV-Vis) spectra, fluorescence spectra and SERS spectra. Experimental results show that with the incremental addition of DNA, the bands at 265 nm show hypochromism accompanied by a small red shift and the binding constant Kb Obtained is 1.24 x 10(5). Meanwhile fluorescence spectra show that the addition of [Sm(H2L) (NO3)2] (NO3) x 3H2O to DNA pretreated with EB causes an appreciable reduction in fluorescence intensity, indicating that the complex competes with ethidium bromide in binding to DNA, and free ethidium bromide increases. The addition of DNA causes the SERS signals of the complex to weaken and the band at 1 282 cm(-1) to disappear, which suggests that the planar pyridine molecule of the ligand may partly be inserted into the double-stranded helix plane in DNA, making pi electronic density of aromatic rings in complex change. The above phenomena indicate that [Sm(H2L) (NO3)] (NO3) x 3H2O interacts intensively with DNA.

  6. A lead (II) 3D coordination polymer based on a marine cyclic peptide motif.

    PubMed

    Chakraborty, Subrata; Tyagi, Pooja; Tai, Dar-Fu; Lee, Gene-Hsiang; Peng, Shie-Ming

    2013-04-26

    The crystal structure of a naturally occurring cyclic tetrapeptide cyclo(Gly-L-Ser-L-Pro-L-Glu) [cyclo(GSPE)] was obtained. The conformation of synthesized cyclo(GSPE) fixes the coordination to lead ion in a 1:1 ratio. This cyclo(GSPE)-Pb complex was constructed as an asymmetric 3D network in the crystalline state. The polymerization of a heavy metal ion with a rigid asymmetric cyclic tetrapeptide represents the first example of a new class of macrocyclic complexes.

  7. Syntheses, structures and properties of four Cd(II) coordination polymers induced by the pH regulator

    NASA Astrophysics Data System (ADS)

    Xu, Yun; Ding, Fang; Liu, Dong; Yang, Pei-Pei; Zhu, Li-Li

    2018-03-01

    Four new coordination polymers [Cd2(CHDC)2(APYZ)(H2O)2](H2O) (1), [Cd(HCHDC)2(APYZ) (H2O)] (2), [Cd2(CHDC)2(PYZ)(H2O)2](H2O) (3), and [Cd(HCHDC)2(PYZ)(H2O)] (4) (H2CHDC = 1,4-cyclohexanedicarboxylic acid, APYZ = 2-aminopyrazine, PYZ = pyrazine) have been synthesized under the hydrothermal conditions by changing the pH regulator and the N-containing ligands. The pH regulator impacted on the degree of deprotonation of the 1,4-cyclohexanedicarboxylic acid ligand and resulted in the formation of the two pairs of different networks. Polymers 1 and 3 crystallize in monoclinic, space group P21/c, exhibit two dimensional 63 net, which further formed three-dimensional supramolecular structure by the Csbnd H⋯O hydrogen bond interactions. While polymers 2 and 4 possess one dimensional chain structures and further link into two dimensional layered supramolecular structures by intermolecular hydrogen bonding interactions. From all three conformers of H2CHDC, e,a-cis is consistently present in the Cd coordination polymers. Furthermore, photoluminescence properties of four polymers are also investigated, the luminescent intensity of polymer 1 (or 2) with amino group in pyrazine is dramatically stronger than that of the similar structure of polymer 3 (or 4) without amino group in pyrazine, the results shown that the presence of the amino group from 2-aminopyrazine play a key role in increasing the luminescence properties.

  8. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide

    PubMed Central

    Tran, Phong D.; Tran, Thu V.; Orio, Maylis; Torelli, Stephane; Truong, Quang Duc; Nayuki, Keiichiro; Sasaki, Yoshikazu; Chiam, Sing Yang; Yi, Ren; Honma, Itaru; Barber, James; Artero, Vincent

    2017-01-01

    Molybdenum sulfides are very attractive noble-metal free electrocatalysts for the hydrogen evolution reaction (HER) from water. Atomic structure and identity of the catalytically active sites have been well established for crystalline molybdenum disulfide (c-MoS2) but not for amorphous molybdenum sulfide (a-MoSx) which displays significantly higher HER activity compared to its crystalline counterpart. Here we show that HER–active a-MoSx, prepared either as nanoparticles or as films, is a molecular–based coordination polymer consisting of discrete [Mo3S13]2– building blocks. Of the three terminal disulfide (S22–) ligands within these clusters, two are shared to form the polymer chain. The third one remains free and generates molybdenum hydride moieties as the active site under H2 evolution conditions. Such a molecular structure therefore provides a basis for revisiting the mechanism of a-MoSx catalytic activity, as well as explaining some of its special properties such as reductive activation and corrosion. Our findings open up new avenues for the rational optimisation of this HER electrocatalyst as an alternative to platinum. PMID:26974410

  9. Radiation processing of natural polymers: The IAEA contribution

    NASA Astrophysics Data System (ADS)

    Haji-Saeid, Mohammad; Safrany, Agnes; Sampa, Maria Helena de O.; Ramamoorthy, Natesan

    2010-03-01

    Radiation processing offers a clean and additive-free method for preparation of value-added novel materials based on renewable, non-toxic, and biodegradable natural polymers. Crosslinked natural polymers can be used as hydrogel wound dressings, face cleaning cosmetic masks, adsorbents of toxins, and non-bedsore mats; while low molecular weight products show antibiotic, antioxidant, and plant-growth promoting properties. Recognizing the potential benefits that radiation technology can offer for processing of natural polymers into useful products, the IAEA implemented a coordinated research project (CRP) on "Development of Radiation-processed products of Natural Polymers for application in Agriculture, Healthcare, Industry and Environment". This CRP was launched at the end of 2007 with participation of 16 MS to help connecting radiation technology and end-users to derive enhanced benefits from these new value-added products of radiation-processed natural materials. In this paper the results of activities in participating MS related to this work will be presented.

  10. Metal Coordination Stoichiometry Controlled Formation of Linear and Hyperbranched Supramolecular Polymers.

    PubMed

    Lin, Cuiling; Xu, Luonan; Huang, Libo; Chen, Jia; Liu, Yuanyuan; Ma, Yifan; Ye, Feixiang; Qiu, Huayu; He, Tian; Yin, Shouchun

    2016-09-01

    Controlling the topologies of polymers is a hot topic in polymer chemistry because the physical and/or chemical properties of polymers are determined (at least partially) by their topologies. This study exploits the host-guest interactions between dibenzo-24-crown-8 and secondary ammonium salts and metal coordination interactions between 2,6-bis(benzimidazolyl)-pyridine units with metal ions (Zn(II) and/or Eu(III) ) as orthogonal non-covalent interactions to prepare supramolecular polymers. By changing the ratios of the metal ion additives (Zn(NO3 )2 and Eu(NO3 )3 ) linkers to join the host-guest dimeric complex, the linear supramolecular polymers (100 mol% Zn(NO3 )2 per ligand) and hyperbranched supramolecular polymers (97 mol% Zn(NO3 )2 and 3 mol% Eu(NO3 )3 per ligand) are separately and successfully constructed. This approach not only expands topological control over polymeric systems, but also paves the way for the functionalization of smart and adaptive materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weigel, Peter O.; Savanier, Marc; DeRose, Christopher T.

    Here, we demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneathmore » an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost.« less

  12. Homochiral coordination polymers constructed from aminocarboxylate derivates: Effect of bipyridine on the amidation reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Jianshan; Sheng Tianlu; Hu Shengmin

    2012-08-15

    Using aminocarboxylate derivates (S)-N-(4-cyanobenzoic)-glutamic acid (denoted as cbg, 1a) and (S)-N-(4-nitrobenzoic)-glutamic acid (denoted as nbg, 1b) as chiral ligands, five new homochiral coordination polymers formulated as [Cu(cbg)(H{sub 2}O){sub 2}]{sub n} (3), [Cu(cbop){sub 2}(4,4 Prime -bipy)(H{sub 2}O)]{sub n} (4) (cbop=(S)-N-(4-cyanobenzoic)-5-oxoproline, 4,4 Prime -bipy=4,4 Prime -bipyridine), {l_brace}[Cu(nbop){sub 2}(4,4 Prime -bipy)]{center_dot}4H{sub 2}O{r_brace}{sub n} (5) (nbop=(S)-N-(4-nitrobenzoic)-5-oxoproline), {l_brace}[Cd(nbop){sub 2}(4,4 Prime -bipy)]{center_dot}2H{sub 2}O{r_brace}{sub n} (6), and [Ni(nbop){sub 2}(4,4 Prime -bipy)(H{sub 2}O){sub 2}]{sub n} (7) have been hydrothermally synthesized and structurally characterized. Single-crystal X-ray diffraction study reveals that the original chirality of aminocarboxylate derivates is maintained in all these complexes. Complexes 3, 4, and 7 are one-dimensionalmore » infinite chain coordination polymers, while complexes 5 and 6 possess two-dimensional network structures. In situ cyclization of 1a and 1b was taken place in the formation of complexes 4-7, which may be due to the competition of 4,4 Prime -bipyridine with chiral ligands during the coordination process. Preliminary optical behavior investigation indicates that ligands 1a, 1b, and complexes 6, 7 are nonlinear optical active. - Graphical abstract: Using aminocarboxylate derivates as chiral ligands, five new homochiral coordination polymers possessing second harmonic generation activities have been hydrothermally synthesized. Highlights: Black-Right-Pointing-Pointer Two new chiral aminocarboxylate derivates were firstly synthesized. Black-Right-Pointing-Pointer Five new homochiral metal organic complexes were obtained hydrothermally based on these ligands. Black-Right-Pointing-Pointer Intramolecular amidation was taken place on the aminocarboxylate derivates during the formation of these complexes. Black-Right-Pointing-Pointer In situ amidation may be due to the impact of 4,4 Prime -bipyridine. Black-Right-Pointing-Pointer The homochiral complexes are nonlinear optical active.« less

  13. Syntheses, structures, electrochemistry and catalytic oxidation degradation of organic dyes of two new coordination polymers derived from Cu(II) and Mn(II) and 1-(tetrazo-5-yl)-4-(triazo-1-yl)benzene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Ming; Mu, Bao; Huang, Ru-Dan, E-mail: huangrd@bit.edu.cn

    Two new coordination polymers (CPs), namely, [Cu{sub 2}(ttbz)(H{sub 2}btc){sub 2}(OH)]{sub n} (1) and [Mn(ttbz){sub 2}(H{sub 2}O){sub 2}]{sub n} (2) (Httbz =1-(tetrazo-5-yl)-4-(triazo-1-yl)benzene, H{sub 3}btc =1,3,5-benzenetricarboxylic acid), have been hydrothermally synthesized and structurally characterized. Complex 1 exhibits a (3,5,5,5)-connected 2D layer with a Schläfli symbol of (3·4{sup 2})(3·4{sup 4}0.5{sup 2}0.6{sup 3})(3{sup 2}0.4{sup 4}0.5{sup 2}0.6{sup 2})(3{sup 2}0.4{sup 4}0.5{sup 3}0.6), in which the ttbz{sup -} ligand can be described as μ{sub 5}-bridge, linking Cu(II) ions into a 2D layer and H{sub 2}btc{sup -} ions play a supporting role in complex 1. The ttbz{sup -} ligand in complex 2 represents the bridging coordination mode, connectingmore » two Mn(II) ions to form the infinite 1D zigzag chains, respectively, which are further connected by two different types of hydrogen bonds to form a 3D supramolecular. Furthermore, catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated at room temperature in aqueous solutions, indicating these complexes may be applicable to color removal in a textile wastewater stream and practical applications in areas of electrocatalytic reduction toward nitrite, respectively. - Graphical abstract: Two new coordination polymers based on different structural characteristics have been hydrothermally synthesized by the mixed ligands. The catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated. - Highlights: • The organic ligand containing the tetrazolyl group and triazolyl group with some advantages has been used. • Two new coordination polymers with different structural characteristics has been discussed in detail. • Catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated.« less

  14. Investigation of the deformation mechanisms of core-shell rubber-modified epoxy at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Brown, Hayley Rebecca

    The industrial demand for high strength-to-weight ratio materials is increasing due to the need for high performance components. Epoxy polymers, although often used in fiber-reinforced polymeric composites, have an inherent low toughness that further decreases with decreasing temperatures. Second-phase additives have been effective in increasing the toughness of epoxies at room temperature; however, the mechanisms at low temperatures are still not understood. In this study, the deformation mechanisms of a DGEBA epoxy modified with MX960 core-shell rubber (CSR) particles were investigated under quasi-static tensile and impact loads at room temperature (RT) and liquid nitrogen (LN 2) temperature. Overall, the CSR had little effect on the tensile properties at RT and LN2 temperature. The impact strength decreased from neat to 3 wt% but increased from neat to 5 wt% at RT and LN2 temperature, with a higher impact strength at RT at all CSR loadings. The CSR particles debonded in front of the crack tip, inducing voids into the matrix. It was found that an increase in shear deformation and void growth likely accounted for the higher impact strength at 5 wt% CSR loading at RT while the thermal stress fields due to the coefficient of thermal expansion mismatch between rubber and epoxy and an increase in secondary cracking is likely responsible for the higher impact strength at 5 wt% tested at LN2 temperature. While a large toughening effect was not seen in this study, the mechanisms analyzed herein will likely be of use for further material investigations at cryogenic temperatures.

  15. Copper coordination polymers constructed from thiazole-5-carboxylic acid: Synthesis, crystal structures, and structural transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meundaeng, Natthaya; Rujiwatra, Apinpus; Prior, Timothy J., E-mail: t.prior@hull.ac.uk

    2017-01-15

    We have successfully prepared crystals of thiazole-5-carboxylic acid (5-Htza) (L) and three new thiazole-5-carboxylate-based Cu{sup 2+} coordination polymers with different dimensionality, namely, 1D [Cu{sub 2}(5-tza){sub 2}(1,10-phenanthroline){sub 2}(NO{sub 3}){sub 2}] (1), 2D [Cu(5-tza){sub 2}(MeOH){sub 2}] (2), and 3D [Cu(5-tza){sub 2}]·H{sub 2}O (3). These have been characterized by single crystal X-ray diffraction and thermogravimetry. Interestingly, the 2D network structure of 2 can directly transform into the 3D framework of 3 upon removal of methanol molecules at room temperature. 2 can also undergo structural transformation to produce the same 2D network present in the known [Cu(5-tza){sub 2}]·1.5H{sub 2}O upon heat treatment for 2more » h. This 2D network can adsorb water and convert to 3 upon exposure to air. - Highlights: • Rare examples of coordination polymers of thiazole-5-carboxylic acid were prepared. • Non-covalent interactions play a key role on the assembly of the complexes in solid state. • Structural transformation of a 2D framework to a 3D upon removal of methanol is observed.« less

  16. Facile construction of terpridine-based metallo-polymers in hydrogels, crystals and solutions directed by metal ions.

    PubMed

    Li, Yajuan; Guo, Jiangbo; Dai, Bo; Geng, Lijun; Shen, Fengjuan; Zhang, Yajun; Yu, Xudong

    2018-07-01

    Driven by tunable metal-ligand interactions, a polydentate ligand TC containing terpyridine and carboxylic acid units was developed to construct metallo-polymers that showed multiple aggregation modes with controlled macroscopic properties. In the presence of different kind of Zn 2+ ions or NaOH, TC could form metallo-polymers via π-π stacking and metal-ligand interaction that further trapped water molecules, resulting in hydrogels and crystals. Moreover, these TC/Zn 2+ hydrogels could transform to soluble and fluorescent aggregates in the presence of NaOH due to the formation of binuclear metallo-polymers with enhanced ICT emission. The metal-ligand interactions tuned by different metal salts in gels, crystals, and sols were also studied and illustrated in detail, it was also proved that water was an essential linker for constructing Na + -based metallo-polymers from the TC/NaOH crystal data. This work demonstrated the engineered coordination pathways in generating controllable hydrogels and metallo-polymers for the first time, which led to novel approach for facilely constructing a number of hydrogels with tailorable macroscopic properties. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Bismuth as a versatile cation for luminescence in coordination polymers from BiX3/4,4'-bipy: understanding of photophysics by quantum chemical calculations and structural parallels to lanthanides.

    PubMed

    Sorg, Jens R; Wehner, Tobias; Matthes, Philipp R; Sure, Rebecca; Grimme, Stefan; Heine, Johanna; Müller-Buschbaum, Klaus

    2018-05-16

    Coordination polymers (CPs) with bismuth(iii) as a connectivity centre have been prepared from BiX3 (X = Cl-I) and 4,4'-bipyridine (bipy) in order to implement Bi-based luminescence. The products were obtained via different synthetic routes such as solution chemistry, melt syntheses or mechanochemical reactions. Five neutral and anionic 1D-CPs are presented that show a chemical parallel to trivalent lanthanides forming isostructural or closely related 1D-CPs, of which five additional compounds are described. Bi3+ proves to be a versatile cation for luminescence resulting from energy transfer processes between a metal and a ligand in the presented CPs. Quantum chemical calculations were carried out to investigate Bi3+-participation in the luminescence processes. The calculated results allow an assignment of the bright transitions composed of mainly metal-to-ligand-charge transfer (MLCT) character. These results show that Bi3+ can form strongly luminescent coordination compounds with N-donor ligands.

  18. Molecular modeling studies of interactions between sodium polyacrylate polymer and calcite surface

    NASA Astrophysics Data System (ADS)

    Ylikantola, A.; Linnanto, J.; Knuutinen, J.; Oravilahti, A.; Toivakka, M.

    2013-07-01

    The interactions between calcite pigment and sodium polyacrylate dispersing agent, widely used in papermaking as paper coating components, were investigated using classical force field and quantum chemical approaches. The objective was to understand interactions between the calcite surface and sodium polyacrylate polymer at 300 K using molecular dynamics simulations. A quantum mechanical ab initio Hartree-Fock method was also used to obtain detailed information about the sodium polyacrylate polymer structure. The effect of water molecules (moisture) on the interactions was also examined. Calculations showed that molecular weight, branching and the orientation of sodium polyacrylate polymers influence the interactions between the calcite surface and the polymer. The force field applied, and also water molecules, were found to have an impact on all systems studied. Ab initio Hartree-Fock calculations indicated that there are two types of coordination between sodium atoms and carboxylate groups of the sodium polyacrylate polymer, inter- and intra-carboxylate group coordination. In addition, ab initio Hartree-Fock calculations of the structure of the sodium polyacrylate polymer produced important information regarding interactions between the polymers and carboxylated styrene-butadiene latex particles.

  19. Yb3+ can be much better than Dy3+: SMM properties and controllable self-assembly of novel lanthanide 3,5-dinitrobenzoate-acetylacetonate complexes.

    PubMed

    Gavrikov, Andrey V; Efimov, Nikolay N; Ilyukhin, Andrey B; Dobrokhotova, Zhanna V; Novotortsev, Vladimir M

    2018-05-01

    The first representatives of the binuclear lanthanide 3,5-dinitrobenzoate-acetylacetonate complexes, namely isostructural compounds [Ln(dnbz)(acac)2(H2O)(EtOH)]2 (Ln = Eu (1), Gd (2), Tb (3), Dy (4), Ho (5), Er (6), Tm (7), and Yb (8); dnbz - 3,5-dinitrobenzoate anion; acac - acetylacetonate (pentane-2,4-dionate) anion) were prepared and characterized. The SMM behavior of the Yb compound 8 was shown to be surprisingly less sensitive to the composition of the Yb3+ coordination environment in comparison with that of the Dy derivative. For Yb compound 8, the anisotropy barrier is Δeff/kB = 26 K under the dc field of 2000 Oe. This value is the highest one currently known for binuclear Yb complexes.

  20. The interactions between the sterically demanding trimesitylphosphine oxide and trimesityphosphine with scandium and selected lanthanide ions

    NASA Astrophysics Data System (ADS)

    Platt, Andrew W. G.; Singh, Kuldip

    2016-05-01

    The reactions between lanthanide nitrates, Ln(NO3)3 and scandium and lanthanide trifluoromethane sulfonates, Ln(Tf)3 with trimesitylphosphine oxide, Mes3PO show that coordination to the metal ions does not lead to crystalline complexes. Investigation of the reactions by 31-P NMR spectroscopy shows that weak complexes are formed in solution. The crystal structures of Mes3PO·0.5CH3CN (1) and [Mes3PO]3H3O·2CH3CN·Tf (2), formed in the reaction between ScTf3 and Mes3PO, are reported. Trimesitylphosphine, Mes3P, is protonated by scandium and lanthanide trifluoromethane sulfonates and lanthanide nitrates in CD3CN and the structure of [Mes3PH]Cl·HCl·2H2O (3) is reported.

  1. Lanthanide-doped NaScF4 nanoprobes: crystal structure, optical spectroscopy and biodetection

    NASA Astrophysics Data System (ADS)

    Ai, Yu; Tu, Datao; Zheng, Wei; Liu, Yongsheng; Kong, Jintao; Hu, Ping; Chen, Zhuo; Huang, Mingdong; Chen, Xueyuan

    2013-06-01

    Trivalent lanthanide ions (Ln3+)-doped inorganic nanoparticles (NPs) as potential luminescent bioprobes have been attracting tremendous interest because of their unique upconversion (UC) and downconversion (DC) luminescence properties. NaScF4, as an important host material, has been rarely reported and its crystal structure remains unclear. Herein, based on the single crystal X-ray diffraction, the space group of NaScF4 crystals was determined to be P31 containing multiple sites of Sc3+ with crystallographic site symmetry of C1, which was verified by high-resolution photoluminescence spectroscopy of Eu3+ at low temperature (10 K). Furthermore, monodisperse and size-controllable NaScF4:Ln3+ NPs were synthesized via a facile thermal decomposition method. The biotinylated NaScF4:Er3+/Yb3+ NPs were demonstrated for their applications as a heterogeneous UC luminescence bioprobe to detect avidin with a detection limit of 180 pM. After bioconjugation with amino-terminal fragment (ATF) of urokinase plasminogen activator (uPA), NaScF4:Ln3+ NPs also exhibited specific recognition of cancer cells overexpressed with uPA receptor (uPAR, an important marker of tumor biology and metastasis), showing great potentials in tumor-targeted bioimaging.Trivalent lanthanide ions (Ln3+)-doped inorganic nanoparticles (NPs) as potential luminescent bioprobes have been attracting tremendous interest because of their unique upconversion (UC) and downconversion (DC) luminescence properties. NaScF4, as an important host material, has been rarely reported and its crystal structure remains unclear. Herein, based on the single crystal X-ray diffraction, the space group of NaScF4 crystals was determined to be P31 containing multiple sites of Sc3+ with crystallographic site symmetry of C1, which was verified by high-resolution photoluminescence spectroscopy of Eu3+ at low temperature (10 K). Furthermore, monodisperse and size-controllable NaScF4:Ln3+ NPs were synthesized via a facile thermal decomposition method. The biotinylated NaScF4:Er3+/Yb3+ NPs were demonstrated for their applications as a heterogeneous UC luminescence bioprobe to detect avidin with a detection limit of 180 pM. After bioconjugation with amino-terminal fragment (ATF) of urokinase plasminogen activator (uPA), NaScF4:Ln3+ NPs also exhibited specific recognition of cancer cells overexpressed with uPA receptor (uPAR, an important marker of tumor biology and metastasis), showing great potentials in tumor-targeted bioimaging. Electronic supplementary information (ESI) available: Crystallographic data (CCDC 931481) in CIF format. EDX analysis of NaScF4:Er3+/Yb3+ NPs. 10 K PL excitation spectra of NaScF4:Eu3+ microcrystals. Selected bond lengths and angles for NaScF4 crystals. Atomic coordinates and equivalent isotropic displacement parameters for NaScF4 crystals. UC quantum yield data of NaScF4:Er3+/Yb3+ NPs. See DOI: 10.1039/c3nr01529g

  2. Snynthesis and magnetization of BaLn2O4 (Ln = lanthanide)

    NASA Astrophysics Data System (ADS)

    Lundberg, Matthew

    The BaLn2O4 family has been synthesized successfully as single crystals by the flux-growth method. The phases crystallize in the CaV2O4 structure prototype in space group Pnma (# 62). The structure has been studied using single-crystal x-ray diffraction, and stoichiometry confirmed with EDS, and the unit cell parameters and atomic positions have been determined for the whole lanthanide series (with the exception of the Lu compound). The effects of the lanthanide ionic radius on the atomic positions in the unit cell has been studied in terms of fractional atomic coordinates, bond lengths and angles, and bond valence sums. Magnetic measurements have been performed on the series with the exception of the La, Eu, and Lu members in the form of susceptibility versus temperature. The crystals all show signs of geometric antiferromagnetic frustration with the Neel temperatures significantly below the temperature predicted by the Weiss constant. Additionally some members of the family, namely BaCe2O4, BaNd2O4, BaPr 2O4, BaSm2O4, BaTb2O 4, and BaYb2O4 show significant crystal field splitting, that causes deviation from Currie-Weiss behavior.

  3. Dependence of crystal size on the catalytic performance of a porous coordination polymer.

    PubMed

    Kiyonaga, Tomokazu; Higuchi, Masakazu; Kajiwara, Takashi; Takashima, Yohei; Duan, Jingui; Nagashima, Kazuro; Kitagawa, Susumu

    2015-02-14

    Submicrosized MOF-76(Yb) exhibits a higher catalytic performance for esterification than microsized MOF-76(Yb). Control of the crystal size of porous heterogeneous catalysts, such as PCP/MOFs, offers a promising approach to fabricating high-performance catalysts based on accessibility to the internal catalytic sites.

  4. Effects of structures of bidentate Schiff base type bonded-ligands derived from benzaldehyde on the photoluminescence performance of polymer-rare earth complexes.

    PubMed

    Gao, Baojiao; Zhang, Liqin; Zhang, Dandan

    2018-02-07

    Two kinds of bidentate Schiff base ligands derived from benzaldehyde, benzaldehyde/m-aminophenol (BAMA) type and benzaldehyde/glutamic acid (BAGL) type ligands, were synchronously synthesized and bonded on the backbone of polysulfone (PSF) through molecular design and by polymer reactions, and two functional polymers, PSF-BAMA and PSF-BAGL, were obtained. Then two series of novel luminescent Schiff base-type polymer-rare earth complexes were prepared via coordination reactions. In this work, the effects of the structures of the bonded ligands on the photoluminescence performance of the complexes were investigated in detail, and for the different photophysical properties of the prepared complexes, relevant theoretical explanations were given. The experimental results show that the bonded ligand BAMA can strongly sensitize the fluorescence emission of Eu(iii) ions, and the binary complex PSF-(BAMA) 3 -Eu(iii) emits strong red fluorescence under UV light. The reason for this lies in the fact that a larger conjugate π-bond system is contained in the structure of BAMA, and so the triplet state of BAMA can be matched with the resonant energy level of the Eu(iii) ion. While the bonded ligand BAGL can effectively sensitize the fluorescence emission of Tb(iii) ions, the binary complex PSF-(BAGL) 3 -Tb(iii) exhibits very strong green fluorescence under UV light. The reason is that a smaller conjugate π-bond system is contained in the structure of BAGL and there is a good energy level matching between the triplet state of BAGL and the resonant energy level of the Tb(iii) ion. The fluorescence intensities of the two ternary complexes, PSF-(BAMA) 3 -Eu(iii)-(Phen) 1 (phenanthroline, Phen) and PSF-(BAGL) 3 -Tb(iii)-(Phen) 1 , are much stronger than that of the corresponding binary complex because Phen as the second ligand has two effects, the effect of synergistic coordination with the first ligand and the effect of replacing the coordinated water around the central ion, and it has been confirmed by fluorescence spectroscopy and thermogravimetric analysis.

  5. Lanthanide coordination polymers: Synthesis, diverse structure and luminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Xue-Qin, E-mail: songxq@mail.lzjtu.cn; Lei, Yao-Kun; Wang, Xiao-Run

    2014-10-15

    The new semirigid exo-bidentate ligand incorporating furfurysalicylamide terminal groups, namely, 1,4-bis([(2′-furfurylaminoformyl)phenoxyl]methyl)-2,5-bismethylbenzene (L) was synthesized and used as building blocks for constructing lanthanide coordination polymers with luminescent properties. The series of lanthanide nitrate complexes have been characterized by elemental analysis, IR spectroscopy, and X-ray diffraction analysis. The semirigid ligand L, as a bridging ligand, reacts with lanthanide nitrates forming three distinct structure types: chiral noninterpenetrated two-dimensional (2D) honeycomblike (6,3) (hcb, Schläfli symbol 6{sup 3}, vertex symbol 6 6 6) topological network as type I, 1D zigzag chain as type II and 1D trapezoid ladder-like chain as type III. The structural diversitiesmore » indicate that lanthanide contraction effect played significant roles in the structural self-assembled process. The luminescent properties of Eu{sup III}, Tb{sup III} and Dy{sup III} complexes are discussed in detail. Due to the good match between the lowest triplet state of the ligand and the resonant energy level of the lanthanide ion, the lanthanide ions in Eu{sup III}, Tb{sup III} and Dy{sup III} complexes can be efficiently sensitized by the ligand. - Graphical abstract: We present herein six lanthanide coordination polymers of a new semirigid exo-bidentate ligand which not only display diverse structures but also possess strong luminescence properties. - Highlights: • We present lanthanide coordination polymers of a new semirigid exo-bidentate ligand. • The lanthanide coordination polymers exhibit diverse structures. • The luminescent properties of Tb{sup III}, Eu{sup III} and Dy{sup III} complexes are discussed in detail.« less

  6. Definition of an intramolecular Eu-to-Eu energy transfer within a discrete [Eu2L] complex in solution.

    PubMed

    Nonat, Aline; Regueiro-Figueroa, Martín; Esteban-Gómez, David; de Blas, Andrés; Rodríguez-Blas, Teresa; Platas-Iglesias, Carlos; Charbonnière, Loïc J

    2012-06-25

    Ligand L, based on two do3a moieties linked by the methylene groups of 6,6'-dimethyl-2,2'-bipyridine, was synthesized and characterized. The addition of Ln salts to an aqueous solution of L (0.01 M Tris-HCl, pH 7.4) led to the successive formation of [LnL] and [Ln(2)L] complexes, as evidenced by UV/Vis and fluorescence titration experiments. Homodinuclear [Ln(2)L] complexes (Ln = Eu, Gd, Tb, Yb, and Lu) were prepared and characterized. The (1)H and (13)C NMR spectra of the Lu and Yb complexes in D(2)O solution (pD = 7.0) showed C(1) symmetry of these species in solution, pointing to two different chemical environments for the two lanthanide cations. The analysis of the chemical shifts of the Yb complex indicated that the two coordination sites present square antiprismatic (SAP) coordination environments around the metal ions. The spectroscopic properties of the [Tb(2)L] complex upon ligand excitation revealed conventional behavior with τ(H2O) = 2.05(1) ms and ϕ(H2O) = 51%, except for the calculation of the hydration number obtained from the luminescent lifetimes in H(2)O and D(2)O, which pointed to a non-integer value of 0.6 water molecules per Tb(III) ion. In contrast, the Eu complex revealed surprising features such as: 1) the presence of two and up to five components in the (5)D(0)→(7)F(0) and (5)D(0)→(7)F(1) emission bands, respectively; 2) marked differences between the normalized spectra obtained in H(2)O and D(2)O solutions; and 3) unconventional temporal evolution of the luminescence intensity at certain wavelengths, the intensity profile first displaying a rising step before the occurrence of the expected decay. Additional spectroscopic experiments performed on [Gd(2-x)Eu(x)L] complexes (x = 0.1 and 1.9) confirmed the presence of two distinct Eu sites with hydration numbers of 0 (site I) and 2 (site II), and showed that the unconventional temporal evolution of the emission intensity is the result of an unprecedented intramolecular Eu-to-Eu energy-transfer process. A mathematical model was developed to interpret the experimental data, leading to energy-transfer rates of 0.98 ms(-1) for the transfer from the site with q=0 to that with q=2 and vice versa. Hartree-Fock (HF) and density functional theory (DFT) calculations performed at the B3LYP level were used to investigate the conformation of the complex in solution, and to estimate the intermetallic distance, which provided Förster radii (R(0)) values of 8.1 Å for the energy transfer from site I to site II, and 6.8 Å for the reverse energy transfer. These results represent the first evidence of an intramolecular energy-transfer equilibrium between two identical lanthanide cations within a discrete molecular complex in solution. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics

    PubMed Central

    Weigel, Peter O.; Savanier, Marc; DeRose, Christopher T.; Pomerene, Andrew T.; Starbuck, Andrew L.; Lentine, Anthony L.; Stenger, Vincent; Mookherjea, Shayan

    2016-01-01

    We demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneath an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost. PMID:26927022

  8. Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics.

    PubMed

    Weigel, Peter O; Savanier, Marc; DeRose, Christopher T; Pomerene, Andrew T; Starbuck, Andrew L; Lentine, Anthony L; Stenger, Vincent; Mookherjea, Shayan

    2016-03-01

    We demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneath an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost.

  9. Determination of the phase transition in Pb{sub 0.88}Ln{sub 0.08}Ti{sub 0.98}Mn{sub 0.02}O{sub 3} (Ln=La, Sm, Eu) piezoceramics based on the Stefan-Boltzmann law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suaste, Ernesto; Castillo, Victor; Gonzalez, Ruben

    2004-07-15

    A method for determination of the phase transition in piezoelectric ceramic based on the relationship expressed by the Stefan-Boltzmann law is reported, i.e., by means of the radiation that the piezoelectric ceramic emits when it is subjected to different temperatures. The experiment is performed in piezoelectric ceramic based on PbTiO{sub 3} modified by the partial substitution of rare earths for Pb in the Pb{sub 0.88}(Ln){sub 0.08}Ti{sub 0.98}Mn{sub 0.02}O{sub 3} system (Ln=La, Sm, Eu). From the measured emitted radiation, the value of the emissivity is calculated for each type of piezoelectric ceramic.

  10. Patterns of Primary Tumor Invasion and Regional Lymph Node Spread Based on Magnetic Resonance Imaging in Early-Stage Nasal NK/T-cell Lymphoma: Implications for Clinical Target Volume Definition and Prognostic Significance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Run-Ye; Liu, Kang; Wang, Wei-Hu

    Purpose: This study aimed to determine the pathways of primary tumor invasion (PTI) and regional lymph node (LN) spread based on magnetic resonance imaging (MRI) in early-stage nasal NK/T-cell lymphoma (NKTCL), to improve clinical target volume (CTV) delineation and evaluate the prognostic value of locoregional extension patterns. Methods and Materials: A total of 105 patients with newly diagnosed early-stage nasal NKTCL who underwent pretreatment MRI were retrospectively reviewed. All patients received radiation therapy with or without chemotherapy. Results: The incidences of PTI and regional LN involvement were 64.7% and 25.7%, respectively. Based on the incidence of PTI, involved sites surroundingmore » the nasal cavity were classified into 3 risk subgroups: high-risk (>20%), intermediate-risk (5%-20%), and low-risk (<5%). The most frequently involved site was the nasopharynx (35.2%), followed by the maxillary (21.9%) and ethmoid (21.9%) sinuses. Local disease and regional LN spread followed an orderly pattern without LN skipping. The retropharyngeal nodes (RPNs) were most frequently involved (19.0%), followed by level II (11.4%). The 5-year overall survival (OS), progression-free survival (PFS), and locoregional control (LRC) rates for all patients were 72.8%, 65.2%, and 90.0%, respectively. The presence of PTI and regional LN involvement based on MRI significantly and negatively affected PFS and OS. Conclusions: Early-stage nasal NKTCL presents with a high incidence of PTI but a relatively low incidence of regional LN spread. Locoregional spread followed an orderly pattern, and PTI and regional LN spread are powerful prognostic factors for poorer survival outcomes. CTV reduction may be feasible for selected patients.« less

  11. Water stability of microporous coordination polymers and the adsorption of pharmaceuticals from water.

    PubMed

    Cychosz, Katie A; Matzger, Adam J

    2010-11-16

    The stability of a variety of microporous coordination polymers (MCPs) to water-containing solutions was studied using powder X-ray diffraction. It was determined that the stability of the MCP is related to the metal cluster present in the structure with trinuclear chromium clusters more stable than copper paddlewheel clusters which are more stable than basic zinc acetate clusters. Zn(2-methylimidizolate)(2) was found to be more water stable than zinc MCPs with carboxylate linkers; however, extended exposure to water led to decomposition of all zinc-based MCPs. Matériaux de l'Institut Lavoisier (MIL)-100 was also found to be completely water stable and was used to adsorb the pharmaceuticals furosemide and sulfasalazine from water with large uptakes achievable at low concentrations, indicating that the adsorption of wastewater contaminants may be a feasible application for these materials.

  12. Structural optimization of interpenetrated pillared-layer coordination polymers for ethylene/ethane separation.

    PubMed

    Kishida, Keisuke; Horike, Satoshi; Watanabe, Yoshihiro; Tahara, Mina; Inubushi, Yasutaka; Kitagawa, Susumu

    2014-06-01

    With the goal of achieving effective ethylene/ethane separation, we evaluated the gas sorption properties of four pillared-layer-type porous coordination polymers with double interpenetration, [Zn2(tp)2(bpy)]n (1), [Zn2(fm)2(bpe)]n (2), [Zn2(fm)2(bpa)]n (3), and [Zn2(fm)2(bpy)]n (4) (tp = terephthalate, bpy = 4,4'-bipyridyl, fm = fumarate, bpe = 1,2-di(4-pyridyl)ethylene and bpa = 1,2-di(4-pyridyl)ethane). It was found that 4, which contains the narrowest pores of all of these compounds, exhibited ethylene-selective sorption profiles. The ethylene selectivity of 4 was estimated to be 4.6 at 298 K based on breakthrough experiments using ethylene/ethane gas mixtures. In addition, 4 exhibited a good regeneration ability compared with a conventional porous material. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Sonochemical synthesis and characterization of a novel hetro-binuclear metal organic nano polymer based on picolinic acid ligand

    NASA Astrophysics Data System (ADS)

    Hayati, Payam; Souri, Bagher; Rezvani, Ali Reza; Morsali, Ali; Gutierrez, Angel

    2017-12-01

    Nanoparticles of one new lead and K coordination polymer (CP), {[Pb6(pyc)6(N3)7K].½H2O}n (1) Hpyc = picolinic acid ligand, has been synthesized by use of a sonochemical process and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) spectroscopy and elemental analyses. The single crystal X-ray data of compound 1 imply that the Pb ion is seven coordinated. The thermal stability of compound 1 has been studied by thermogravimetric (TG) and differential scanning calorimetry (DSC). The role of temperature, reaction time and ultrasound irradiation power on the size and morphfology of the nano-structured compound obtained from 1, have been investigated. Results indicate that an increase of temperature and sonication power and a decrease in time reaction led to a decrease of particle size.

  14. Exploring 3D non-interpenetrated metal-organic framework with malonate-bridged Co(II) coordination polymer: structural elucidation and theoretical study

    NASA Astrophysics Data System (ADS)

    Hossain, Anowar; Mandal, Tripti; Mitra, Monojit; Manna, Prankrishna; Bauzá, Antonio; Frontera, Antonio; Seth, Saikat Kumar; Mukhopadhyay, Subrata

    2017-12-01

    A Co(II)-based coordination polymer with tetranuclear cobalt(II)-malonate cluster has been easily generated by aqueous medium self-assembly from Cobalt(II) chloride hexahydrate and malonic acid. The structure exhibits a non-interpenetrating, highly undulating two-dimensional (2D) bi-layer network with (4,4) topology. The crystal structure is composed of infinite interdigitated 2D metal-organic bi-layers which extended to an intricate 3D framework through the interbilayer hydrogen bonds. We have studied energetically by means of Density Functional Theory (DFT) calculations the H-bonding interactions that connect the 2D metal-organic bi-layers. The finite theoretical models have been used to compute conventional O‒H•••O and unconventional C‒H•••O interactions which plays a key role to build 3D architecture.

  15. Facile synthesis of upconversion nanoparticles with high purity using lanthanide oleate compounds

    NASA Astrophysics Data System (ADS)

    Kang, Ning; Ai, Chao-Chao; Zhou, Ya-Ming; Wang, Zuo; Ren, Lei

    2018-02-01

    A novel strategy for preparing highly pure NaYF4-based upconversion nanoparticles (UCNPs) was developed using lanthanide oleate compounds [Ln(OA)3] as the precursor, denoted as the Ln-OA preparation method. Compared to the conventional solvothermal method for synthesizing UCNPs using lanthanide chloride compounds (LnCl3) as the precursor (denoted as the Ln-Cl method), the Ln-OA strategy exhibited the merits of high purity, reduced purification process and a uniform size in preparing core and core-shell UCNPs excited by a 980 or 808 nm near infrared (NIR) laser. This work sheds new insight on the preparation of UCNPs and promotes their application in biomedical fields.

  16. Fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results of a solid polymer electrolyte fuel cell development program are summarized. A base line design was defined, and materials and components of the base line configuration were fabricated and tested. Concepts representing base line capability extensions in the areas of life, power, specific weight and volume, versatility of operation, field maintenance, and thermal control were identified and evaluated. Liaison and coordination with space shuttle contractors resulted in the exchange of engineering data.

  17. Comparison between laparoscopic and open radical nephrectomy for the treatment of primary renal tumors in children: single-center experience over a 5-year period.

    PubMed

    Romao, R L P; Weber, B; Gerstle, J T; Grant, R; Pippi Salle, J L; Bägli, D J; Figueroa, V H; Braga, L H P; Farhat, W A; Koyle, M A; Lorenzo, A J

    2014-06-01

    To compare the outcomes of laparoscopic nephrectomy (LN) with open radical nephrectomy (ORN) in the management of consecutive pediatric neoplasms. Retrospective cohort study of consecutive children treated for primary renal tumors between 2006 and 2011, segregated based on surgical modality (LN/ORN). Pre-, intra- and postoperative data and outcomes were collected. Demographics from the 45 patients (13 LN, 32 ORN) were similar, and tumors in the LN group were smaller [6.59 ± 1.8 cm vs. 10.99 ± 2.99 cm ORN (p < 0.05)]. Six patients had preoperative chemotherapy (two LN, four ORN). No tumor ruptures occurred with either technique. Wilms tumor (seven LN, 24 ORN) was the most common diagnosis, followed by renal cell carcinoma (four LN, four ORN). Procedure length was similar between groups (282 ± 79 LN, 263 ± 81 min ORN). Mean length of stay was significantly shorter for LN (2.9 vs. 5.9 days; p = 0.002). Postoperative narcotic requirements and use of nasogastric tube were higher in the ORN group. After a median follow-up of 18 (LN) and 33 months (ORN), 1 and 4 recurrences occurred, respectively. LN is an attractive alternative to open surgery in carefully selected cases of pediatric renal tumors. Procedure length and incidence of intra-operative rupture were not increased, while post-operative recovery and hospital stay were shorter for LN. Longer follow-up is mandatory to confirm comparable oncological outcomes to ORN. Copyright © 2013 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  18. Coumarin Derivative Directly Coordinated to Lanthanides Acts as an Excellent Antenna for UV-Vis and Near-IR Emission.

    PubMed

    Guzmán-Méndez, Óscar; González, Federico; Bernès, Sylvain; Flores-Álamo, Marcos; Ordóñez-Hernández, Javier; García-Ortega, Héctor; Guerrero, Joselin; Qian, Wenjie; Aliaga-Alcalde, Nuria; Gasque, Laura

    2018-02-05

    A chelating coumarin-derived ligand sensitizes all emitting lanthanide ions in the solid state and gives high absolute quantum yields for ethanol solutions of complexes of Sm, Eu, Tb, and Dy, above 20% for the last two. Crystal structures of these four complexes are [Ln(Cum) 3 (H 2 O)(X)]·X where X = MeOH or EtOH.

  19. Reduced-order model for inertial locomotion of a slender swimmer

    NASA Astrophysics Data System (ADS)

    Mahalinkam, Raksha; Gong, Felicity; Khair, Aditya S.

    2018-04-01

    The inertial locomotion of an elongated model swimmer in a Newtonian fluid is quantified, wherein self-propulsion is achieved via steady tangential surface treadmilling. The swimmer has a length 2 l and a circular cross section of longitudinal profile a R (z ) , where a is the characteristic width of the cross section, R (z ) is a dimensionless shape function, and z is a dimensionless coordinate, normalized by l , along the centerline of the body. It is assumed that the swimmer is slender, ɛ =a /l ≪1 . Hence, we utilize slender-body theory to analyze the Navier-Stokes equations that describe the flow around the swimmer. Therefrom, we compute an asymptotic approximation to the swimming speed, U , as U /us=1 -β [V (Re ) -1/2 ∫-11z lnR (z ) d z ] /ln(1 /ɛ ) +O [1 /ln2(1 /ɛ ) ], where us is the characteristic speed of the surface treadmilling, Re is the Reynolds number based on the body length, and β is a dimensionless parameter that differentiates between "pusher" (propelled from the rear, β <0 ) and "puller" (propelled from the front, β >0 ) -type swimmers. The function V (Re ) increases monotonically with increasing Re ; hence, fluid inertia causes an increase (decrease) in the swimming speed of a pusher (puller). Next, we demonstrate that the power expenditure of the swimmer increases monotonically with increasing Re . Further, the power expenditures of a puller and pusher with the same value of |β | are equal. Therefore, pushers are superior in inertial locomotion as compared to pullers, in that they achieve a faster swimming speed for the same power expended. Finally, it is demonstrated that the flow structure predicted from our reduced-order model is consistent with that from direct numerical simulation of swimmers at intermediate Re .

  20. Self-assembly of high-nuclearity lanthanide-based nanoclusters for potential bioimaging applications

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoping; Wang, Shiqing; Schipper, Desmond; Zhang, Lijie; Li, Zongping; Huang, Shaoming; Yuan, Daqiang; Chen, Zhongning; Gnanam, Annie J.; Hall, Justin W.; King, Tyler L.; Que, Emily; Dieye, Yakhya; Vadivelu, Jamuna; Brown, Katherine A.; Jones, Richard A.

    2016-05-01

    Two series of Cd-Ln and Ni-Ln clusters [Ln8Cd24L12(OAc)44(48)Cl4(0)] and [Ln8Ni6L6(OAc)24(EtOH)6(H2O)2] were constructed using a flexible ligand. The Cd-Ln clusters exhibit interesting nano-drum-like structures which allows direct visualization by TEM. Luminex MicroPlex Microspheres loaded with the Cd-Sm cluster were visualized using epifluorescence microscopy. Cytotoxicity studies on A549 and AGS cancer cell lines showed that the materials have mild to moderate cytotoxicity.Two series of Cd-Ln and Ni-Ln clusters [Ln8Cd24L12(OAc)44(48)Cl4(0)] and [Ln8Ni6L6(OAc)24(EtOH)6(H2O)2] were constructed using a flexible ligand. The Cd-Ln clusters exhibit interesting nano-drum-like structures which allows direct visualization by TEM. Luminex MicroPlex Microspheres loaded with the Cd-Sm cluster were visualized using epifluorescence microscopy. Cytotoxicity studies on A549 and AGS cancer cell lines showed that the materials have mild to moderate cytotoxicity. Electronic supplementary information (ESI) available: Full experimental and characterization details for 1-5. CCDC 1007468, 1007469 and 1007472-1007474. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6nr00642f

  1. A new Pb{sup II}(ethylenediaminetetraacetate) coordination polymer with a two-dimensional layer structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, D., E-mail: iamzd@hpu.edu.cn; Zhang, R. H.; Li, F. F.

    2016-12-15

    A new Pb{sup II}−edta{sup 4–} coordination polymer, Pb{sub 2}(edta)(H{sub 2}O){sub 0.76} (edta{sup 4–} = ethylenediaminetetraacetate) was synthesized under hydrothermal condition. Single crystal X-ray analysis reveals that it represents a novel two-dimensional (2D) Pb{sup 2+}–edta{sup 4–} layer structure with a (4,8{sup 2})-topology. Each edta{sup 4–} ligand employs its four carboxylate O and two N atoms to chelate one Pb{sup II} atom (hexa-coordinated) and connects five Pb{sup II} atoms (ennea-coordinated) via its four carboxylate groups to form 2D layer framework. Adjacent layers are packed into the overall structure through vander Waals interactions.

  2. Ultra-Short-Term Heart Rate Variability is Sensitive to Training Effects in Team Sports Players.

    PubMed

    Nakamura, Fabio Y; Flatt, Andrew A; Pereira, Lucas A; Ramirez-Campillo, Rodrigo; Loturco, Irineu; Esco, Michael R

    2015-09-01

    The aim of this study was to test the possibility of the ultra-short-term lnRMSSD (measured in 1-min post-1-min stabilization period) to detect training induced adaptations in futsal players. Twenty-four elite futsal players underwent HRV assessments pre- and post-three or four weeks preseason training. From the 10-min HRV recording period, lnRMSSD was analyzed in the following time segments: 1) from 0-5 min (i.e., stabilization period); 2) from 0-1 min; 1-2 min; 2-3 min; 3-4 min; 4-5 min and; 3) from 5-10 min (i.e., criterion period). The lnRMSSD was almost certainly higher (100/00/00) using the magnitude-based inference in all periods at the post- moment. The correlation between changes in ultra-short-term lnRMSSD (i.e., 0-1 min; 1-2 min; 2-3 min; 3-4 min; 4-5 min) and lnRMSSDCriterion ranged between 0.45-0.75, with the highest value (p = 0.75; 90% CI: 0.55 - 0.85) found between ultra-short-term lnRMDSSD at 1-2 min and lnRMSSDCriterion. In conclusion, lnRMSSD determined in a short period of 1-min is sensitive to training induced changes in futsal players (based on the very large correlation to the criterion measure), and can be used to track cardiac autonomic adaptations. Key pointsThe ultra-short-term (1 min) natural log of the root-mean-square difference of successive normal RR intervals (lnRMSSD) is sensitive to training effects in futsal playersThe ultra-short-term lnRMSSD may simplify the assessment of the cardiac autonomic changes in the field compared to the traditional and lengthier (10 min duration) analysisCoaches are encouraged to implement the ultra-short-term heart rate variability in their routines to monitor team sports athletes.

  3. Ultra-Short-Term Heart Rate Variability is Sensitive to Training Effects in Team Sports Players

    PubMed Central

    Nakamura, Fabio Y.; Flatt, Andrew A.; Pereira, Lucas A.; Ramirez-Campillo, Rodrigo; Loturco, Irineu; Esco, Michael R.

    2015-01-01

    The aim of this study was to test the possibility of the ultra-short-term lnRMSSD (measured in 1-min post-1-min stabilization period) to detect training induced adaptations in futsal players. Twenty-four elite futsal players underwent HRV assessments pre- and post-three or four weeks preseason training. From the 10-min HRV recording period, lnRMSSD was analyzed in the following time segments: 1) from 0-5 min (i.e., stabilization period); 2) from 0-1 min; 1-2 min; 2-3 min; 3-4 min; 4-5 min and; 3) from 5-10 min (i.e., criterion period). The lnRMSSD was almost certainly higher (100/00/00) using the magnitude-based inference in all periods at the post- moment. The correlation between changes in ultra-short-term lnRMSSD (i.e., 0-1 min; 1-2 min; 2-3 min; 3-4 min; 4-5 min) and lnRMSSDCriterion ranged between 0.45-0.75, with the highest value (p = 0.75; 90% CI: 0.55 – 0.85) found between ultra-short-term lnRMDSSD at 1-2 min and lnRMSSDCriterion. In conclusion, lnRMSSD determined in a short period of 1-min is sensitive to training induced changes in futsal players (based on the very large correlation to the criterion measure), and can be used to track cardiac autonomic adaptations. Key points The ultra-short-term (1 min) natural log of the root-mean-square difference of successive normal RR intervals (lnRMSSD) is sensitive to training effects in futsal players The ultra-short-term lnRMSSD may simplify the assessment of the cardiac autonomic changes in the field compared to the traditional and lengthier (10 min duration) analysis Coaches are encouraged to implement the ultra-short-term heart rate variability in their routines to monitor team sports athletes PMID:26336347

  4. Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics

    DOE PAGES

    Weigel, Peter O.; Savanier, Marc; DeRose, Christopher T.; ...

    2016-03-01

    Here, we demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneathmore » an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost.« less

  5. A supramolecular Tröger's base derived coordination zinc polymer for fluorescent sensing of phenolic-nitroaromatic explosives in water.

    PubMed

    Shanmugaraju, Sankarasekaran; Dabadie, Charlyne; Byrne, Kevin; Savyasachi, Aramballi J; Umadevi, Deivasigamani; Schmitt, Wolfgang; Kitchen, Jonathan A; Gunnlaugsson, Thorfinnur

    2017-02-01

    A V-Shaped 4-amino-1,8-napthalimide derived tetracarboxylic acid linker ( L ; bis-[ N -(1,3-benzenedicarboxylic acid)]-9,18-methano-1,8-naphthalimide-[ b , f ][1,5]diazocine) comprising the Tröger's base (TB) structural motif was rationally designed and synthesised to access a nitrogen-rich fluorescent supramolecular coordination polymer. By adopting the straight forward precipitation method, a new luminescent nanoscale Zn(ii) coordination polymer ( TB-Zn-CP ) was synthesized in quantitative yield using Zn(OAc) 2 ·2H 2 O and tetraacid linker L (1 : 0.5) in DMF at room temperature. The phase-purity of as-synthesised TB-Zn-CP was confirmed by X-ray powder diffraction analysis, infra-red spectroscopy, and elemental analysis. Thermogravimetric analysis suggests that TB-Zn-CP is thermally stable up to 330 °C and the morphological features of TB-Zn-CP was analysed by SEM and AFM techniques. The N 2 adsorption isotherm of thermally activated TB-Zn-CP at 77 K revealed a type-II reversible adsorption isotherm and the calculated Brunauer-Emmett-Teller (BET) surface area was found to be 72 m 2 g -1 . Furthermore, TB-Zn-CP displayed an excellent CO 2 uptake capacity of 76 mg g -1 at 273 K and good adsorption selectivity for CO 2 over N 2 and H 2 . The aqueous suspension of as-synthesized TB-Zn-CP showed strong green fluorescence ( λ max = 520 nm) characteristics due to the internal-charge transfer (ICT) transition and was used as a fluorescent sensor for the discriminative sensing of nitroaromatic explosives. The aqueous suspension of TB-Zn-CP showed the largest quenching responses with high selectivity for phenolic-nitroaromatics (4-NP, 2,4-DNP and PA) even in the concurrent presence of other potentially competing nitroaromatic analytes. The fluorescence titration studies also provide evidence that TB-Zn-CP detects picric acid as low as the parts per billion (26.3 ppb) range. Furthermore, the observed fluorescence quenching responses of TB-Zn-CP towards picric acid were highly reversible. The highly selective fluorescence quenching responses including the reversible detection efficiency make the nanoscale coordination polymer TB-Zn-CP a potential material for the discriminative fluorescent sensing of nitroaromatic explosives.

  6. A Multi-responsive Regenerable Europium-Organic Framework Luminescent Sensor for Fe3+ , CrVI Anions, and Picric Acid.

    PubMed

    Liu, Wei; Huang, Xin; Xu, Cong; Chen, Chunyang; Yang, Lizi; Dou, Wei; Chen, Wanmin; Yang, Huan; Liu, Weisheng

    2016-12-23

    A novel luminescent microporous lanthanide metal-organic framework (Ln-MOF) based on a urea-containing ligand has been successfully assembled. Structural analysis revealed that the framework features two types of 1D channels, with urea N-H bonds projecting into the pores. Luminescence studies have revealed that the Ln-MOF exhibits high sensitivity, good selectivity, and a fast luminescence quenching response towards Fe 3+ , Cr VI anions, and picric acid. In particular, in the detection of Cr 2 O 7 2- and picric acid, the Ln-MOF can be simply and quickly regenerated, thus exhibiting excellent recyclability. To the best of our knowledge, this is the first example of a multi-responsive luminescent Ln-MOF sensor for Fe 3+ , Cr VI anions, and picric acid based on a urea derivative. This Ln-MOF may potentially be used as a multi-responsive regenerable luminescent sensor for the quantitative detection of toxic and harmful substances. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Dynamic Coordination of Eu-Iminodiacetate to Control Fluorochromic Response of Polymer Hydrogels to Multistimuli.

    PubMed

    Weng, Gengsheng; Thanneeru, Srinivas; He, Jie

    2018-03-01

    New fluorochromic materials that reversibly change their emission properties in response to their environment are of interest for the development of sensors and light-emitting materials. A new design of Eu-containing polymer hydrogels showing fast self-healing and tunable fluorochromic properties in response to five different stimuli, including pH, temperature, metal ions, sonication, and force, is reported. The polymer hydrogels are fabricated using Eu-iminodiacetate (IDA) coordination in a hydrophilic poly(N,N-dimethylacrylamide) matrix. Dynamic metal-ligand coordination allows reversible formation and disruption of hydrogel networks under various stimuli which makes hydrogels self-healable and injectable. Such hydrogels show interesting switchable ON/OFF luminescence along with the sol-gel transition through the reversible formation and dissociation of Eu-IDA complexes upon various stimuli. It is demonstrated that Eu-containing hydrogels display fast and reversible mechanochromic response as well in hydrogels having interpenetrating polymer network. Those multistimuli responsive fluorochromic hydrogels illustrate a new pathway to make smart optical materials, particularly for biological sensors where multistimuli response is required. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. High-Brightness Blue and White LEDs based on Inorganic Perovskite Nanocrystals and their Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, En -Ping; Yang, Zhanlue; Meng, Lei

    Inorganic metal halide perovskite nanocrystals (NCs) have been employed universally in light-emitting applications during the past two years. Here, blue-emission (≈ 470 nm) Cs-based perovskite NCs are derived by directly mixing synthesized bromide and chloride nanocrystals with a weight ratio of 2:1. High-brightness blue perovskite light-emitting diodes (PeLEDs) are obtained by controlling the grain size of the perovskite films. Moreover, a white PeLED is demonstrated for the first time by blending orange polymer materials with the blue perovskite nanocrystals as the active layer. Exciton transfer from the blue nanocrystals to the orange polymers via Forster or Dexter energy transfer ismore » analyzed through time resolved photoluminescence. In conclusion, by tuning the ratio between the perovskite nanocrystals and polymers, pure white light is achieved with the a CIE coordinate at (0.33,0.34).« less

  9. High-Brightness Blue and White LEDs based on Inorganic Perovskite Nanocrystals and their Composites

    DOE PAGES

    Yao, En -Ping; Yang, Zhanlue; Meng, Lei; ...

    2017-04-10

    Inorganic metal halide perovskite nanocrystals (NCs) have been employed universally in light-emitting applications during the past two years. Here, blue-emission (≈ 470 nm) Cs-based perovskite NCs are derived by directly mixing synthesized bromide and chloride nanocrystals with a weight ratio of 2:1. High-brightness blue perovskite light-emitting diodes (PeLEDs) are obtained by controlling the grain size of the perovskite films. Moreover, a white PeLED is demonstrated for the first time by blending orange polymer materials with the blue perovskite nanocrystals as the active layer. Exciton transfer from the blue nanocrystals to the orange polymers via Forster or Dexter energy transfer ismore » analyzed through time resolved photoluminescence. In conclusion, by tuning the ratio between the perovskite nanocrystals and polymers, pure white light is achieved with the a CIE coordinate at (0.33,0.34).« less

  10. Supine MRI for regional breast radiotherapy: imaging axillary lymph nodes before and after sentinel-node biopsy

    NASA Astrophysics Data System (ADS)

    van Heijst, Tristan C. F.; Eschbach-Zandbergen, Debora; Hoekstra, Nienke; van Asselen, Bram; Lagendijk, Jan J. W.; Verkooijen, Helena M.; Pijnappel, Ruud M.; de Waard, Stephanie N.; Witkamp, Arjen J.; van Dalen, Thijs; Desirée van den Bongard, H. J. G.; Philippens, Marielle E. P.

    2017-08-01

    Regional radiotherapy (RT) is increasingly used in breast cancer treatment. Conventionally, computed tomography (CT) is performed for RT planning. Lymph node (LN) target levels are delineated according to anatomical boundaries. Magnetic resonance imaging (MRI) could enable individual LN delineation. The purpose was to evaluate the applicability of MRI for LN detection in supine treatment position, before and after sentinel-node biopsy (SNB). Twenty-three female breast cancer patients (cTis-3N0M0) underwent 1.5 T MRI, before and after SNB, in addition to CT. Endurance for MRI was monitored. Axillary levels were delineated. LNs were identified and delineated on MRI from before and after SNB, and on CT, and compared by Wilcoxon signed-rank tests. LN locations and LN-based volumes were related to axillary delineations and associated volumes. Although postoperative effects were visible, LN numbers on postoperative MRI (median 26 LNs) were highly reproducible compared to preoperative MRI when adding excised sentinel nodes, and higher than on CT (median 11, p  <  0.001). LN-based volumes were considerably smaller than respective axillary levels. Supine MRI of LNs is feasible and reproducible before and after SNB. This may lead to more accurate RT target definition compared to CT, with potentially lower toxicity. With the MRI techniques described here, initiation of novel MRI-guided RT strategies aiming at individual LNs could be possible.

  11. Hybrid nanocomposites of CdSe nanocrystals distributed in complexing thiophene-based copolymers.

    PubMed

    Aldakov, Dmitry; Jiu, Tonggang; Zagorska, Malgorzata; de Bettignies, Rémi; Jouneau, Pierre-Henri; Pron, Adam; Chandezon, Frédéric

    2010-07-21

    Two types of conjugated polymers were prepared with the goal to blend them with rod-like CdSe nanocrystals. The polymers of the first type were synthesized through copolymerization of 3-octylthiophene and 3-methylene-ethylcarboxylate-thiophene to give polythiophene with solubilizing alkyl groups and methylene ester functional groups (PE series). Post-polymerization hydrolysis of the ester type polymers yielded acid-type ones (PA series). Photoluminescence (PL) quenching in these polymers induced by their titration with nanocrystals solution was chosen as a measure of the polymer-nanocrystal interactions. PL of polyacids turned out to be more efficiently quenched as compared to the case of polymers with ester groups which was interpreted as an indication of better electronic communication between the hybrid components. Infrared (IR) spectroscopy confirmed efficient coordination of the carboxylic groups to CdSe. Voltammetric studies combined with UV-vis spectroelectrochemistry enabled the determination of energy levels alignment of the molecular composite components which turned out to be of staggered type-appropriate for photovoltaic applications. The obtained blends of polyacids with CdSe nanocrystals, when studied by transmission electron microscopy (TEM), revealed the presence of an interpenetrating network in which nanorods were homogeneously distributed within the polymer matrix without any indication of agglomerates formation both on the film surface and in the cross-section. Blends with polymers containing ester groups were less homogeneous which could be explained by weaker polymer-nanocrystals interactions. Photovoltaic cells based on these hybrid materials are also discussed.

  12. Impact of Temperature and Non-Gaussian Statistics on Electron Transfer in Donor–Bridge–Acceptor Molecules

    DOE PAGES

    Waskasi, Morteza M.; Newton, Marshall D.; Matyushov, Dmitry V.

    2017-03-16

    A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T . This kinetic law is a temperature analog of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganizationmore » energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. Furthermore, the theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.« less

  13. Optical, Structural and Paramagnetic Properties of Eu-Doped Ternary Sulfides ALnS2 (A = Na, K, Rb; Ln = La, Gd, Lu, Y)

    PubMed Central

    Jarý, Vítězslav; Havlák, Lubomír; Bárta, Jan; Buryi, Maksym; Mihóková, Eva; Rejman, Martin; Laguta, Valentin; Nikl, Martin

    2015-01-01

    Eu-doped ternary sulfides of general formula ALnS2 (A = Na, K, Rb; Ln = La, Gd, Lu, Y) are presented as a novel interesting material family which may find usage as X-ray phosphors or solid state white light emitting diode (LED) lighting. Samples were synthesized in the form of transparent crystalline hexagonal platelets by chemical reaction under the flow of hydrogen sulfide. Their physical properties were investigated by means of X-ray diffraction, time-resolved photoluminescence spectroscopy, electron paramagnetic resonance, and X-ray excited fluorescence. Corresponding characteristics, including absorption, radioluminescence, photoluminescence excitation and emission spectra, and decay kinetics curves, were measured and evaluated in a broad temperature range (8–800 K). Calculations including quantum local crystal field potential and spin-Hamiltonian for a paramagnetic particle in D3d local symmetry and phenomenological model dealing with excited state dynamics were performed to explain the experimentally observed features. Based on the results, an energy diagram of lanthanide energy levels in KLuS2 is proposed. Color model xy-coordinates are used to compare effects of dopants on the resulting spectrum. The application potential of the mentioned compounds in the field of white LED solid state lighting or X-ray phosphors is thoroughly discussed. PMID:28793612

  14. Syntheses, structures and magnetic properties of four coordination polymers based on nitrobenzene dicarboxylate and various N-donor coligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Gui-Lian; Yin, Wei-Dong; Liu, Guang-Zhen

    Four new coordination polymers ([Ni(4-Nbdc)(bpa)(H{sub 2}O)]){sub n} (1), ([Co(4-Nbdc)(bpp) (H{sub 2}O)]){sub n} (2), ([Ni(4-Nbdc)(bpp)(H{sub 2}O)]·H{sub 2}O){sub n} (3), and ([Mn{sub 2}(3-Nbdc){sub 2}(bib){sub 3}]·2H{sub 2}O){sub n} (4) (4-Nbdc=4-nitrobenzene-1,2-dicarboxylate, 3-Nbdc=3-nitrobenzene-1,2-dicarboxylate, bpa=1,2-bi(4-pyridyl)ethane, bpp=1,3-bis(4-pyridyl)propane, and bib=1,4-bis(1-imidazoly)benzene), were synthesized by hydrothermal reactions, and characterized by single-crystal X-ray diffractions, elemental analysis, FT-IR, PXRD, TGA and magnetic analysis. Complexes 1 and 2 display quasi-trapezoidal chain and brick-wall layer, and both of them contain metal–carboxylate binuclear units. Complexes 3 and 4 exhibit three-dimensional frameworks with the (6{sup 6}) dia topology and (4{sup 4}.6{sup 10}.8)(4{sup 4}.6{sup 2}) fsc topology, and both of them contain metal–carboxylate chains. The carboxyl groupsmore » with syn-anti coordination mode mediate effectively the weak ferromagnetic coupling interaction within Ni(II)–carboxylate binuclear in 1 (J=1.27 cm{sup −1}) and Ni(II)–carboxylate chain in 3 (J=1.44 cm{sup −1}), respectively, and the carboxyl groups with anti-anti coordination mode leads to the classic antiferromagnetic coupling interaction within Mn(II)–carboxylate chain in 4 (J=−0.77 cm{sup −1}). - Highlights: • Four novel coordination polymers were hydrothermally synthesized. • 1 is 1D quasi-trapezoidal chain and 2 is brick-wall layer both with dinuclear units. • 3 and 4 show 3D frameworks both with 1D metal–carboxylate chains. • 1 and 3 exhibit ferromagnetic coupling, while 4 shows antiferromagnetic coupling.« less

  15. Water molecule-enhanced CO{sub 2} insertion in lanthanide coordination polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo Liushan; Huang Xiaoyuan; Wang Ning

    2009-08-15

    Two new lanthanide coordination polymers H{sub 2}N(CH{sub 3}){sub 2}.[Eu{sup III}{sub 2}(L{sub 1}){sub 3}(L{sub 2})] (1, L{sub 1}=isophthalic acid dianion, L{sub 2}=formic acid anion) and [La{sup III}(2,5-PDC)(L{sub 2})](2, 2,5-PDC=2,5-pyridinedicarboxylate dianion) were synthesized under solvothermal conditions. It is of interest that the formic ligand (L{sub 2}) is not contained in the stating materials, but arises from the water molecule-enhanced CO{sub 2} insertion during the solvothermal process. Both of the two compounds exhibit complicated three dimensional sandwich-like frameworks. - Graphical abstract: Two new lanthanide coordination polymers involving water molecule-enhanced CO{sub 2} insertion resulting in the formation of formic anion and dimethylammonium cation weremore » synthesized under solvothermal conditions.« less

  16. Zinc coordination polymers containing substituted isophthalate ligands and fragments from in situ hydrolysis of 4-pyridylisonicotinamide

    NASA Astrophysics Data System (ADS)

    O'Donovan, Megan E.; LaDuca, Robert L.

    2015-03-01

    Hydrothermal treatment of zinc nitrate, a 5-substituted isophthalic acid, and 4-pyridylisonicotinamide (4-pina) resulted in crystalline coordination polymers that incorporated different fragments formed by in situ hydrolysis of the 4-pina precursor. These materials were characterized by single crystal X-ray diffraction. In the case of {[4-ampyrH]2[Zn(hip)2]·H2O}n (1, 4-ampyrH = 4-aminopyridinium, hip = 5-hydroxyisophthalate), anionic [Zn(hip)2]n2n- (4,4) grid layers co-crystallize with protonated 4-ampyr cations. Using 5-nitroisophthalic acid (H2nip), [Zn7(isonic)4(OH)6(nip)2]n (2, isonic = isonicotinate) was formed. This material manifests [Zn7(OH)6]n cationic inorganic chain motifs linked by isonic and nip ligands into a non-interpenetrated 3-D coordination polymer network with pcu topology. Luminescent behavior is attributed to intra-ligand molecular orbital transitions.

  17. Recovery of metals from simulant spent lithium-ion battery as organophosphonate coordination polymers in aqueous media.

    PubMed

    Perez, Emilie; Andre, Marie-Laure; Navarro Amador, Ricardo; Hyvrard, François; Borrini, Julien; Carboni, Michaël; Meyer, Daniel

    2016-11-05

    An innovative approach is proposed for the recycling of metals from a simulant lithium-ion battery (LIBs) waste aqueous solution. Phosphonate organic linkers are introduced as precipitating agents to selectively react with the metals to form coordination polymers from an aqueous solution containing Ni, Mn and Co in a hydrothermal process. The supernatant is analyzed by ICP-AES to quantify the efficiency and the selectivity of the precipitation and the materials are characterized by Scanning Electron Microscopy (SEM), Powder X-Ray Diffraction (PXRD), Thermogravimetric Analyses (TGA) and nitrogen gas sorption (BET). Conditions have been achieved to selectively precipitate Manganese or Manganese/Cobalt from this solution with a high efficiency. This work describes a novel method to obtain potentially valuable coordination polymers from a waste metal solution that can be generalized on any waste solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Three novel coordination polymers based on tris(p-carboxyphenyl)phosphane oxide: Syntheses, structural characterization and magnetic properties

    NASA Astrophysics Data System (ADS)

    Huo, Liangqin; Fan, Liming; Zhang, Jie; Gao, Lingling; Zhai, Lijun; Wang, Xiaoqing; Hu, Tuoping

    2018-05-01

    Three coordination polymers (CPs), namely, {[Co3(HL)2(bib)3 (H2O)7]·12H2O}n (1), {[Co(HL)(bib)]·H2O}n (2), and {[Co1.5(L)(bibp)1.5 (H2O)]·1.5DMF·2EtOH·3H2O}n (3), have been synthesized from the tripodal ligand of tris(p-carboxyphenyl)phosphane oxide (H3L) with the help of 1,4-bis(imidazol-1-yl)benzene (bib) or 4,4‧-bis(imidazol-1-yl)biphenyl (bibp). Structural analyses reveal that complex 1 features a 3D 4-connected {650.8}-cds net. 2 displays a 2D 6-connected {360.460.53}-hxl sheet based on the binuclear {Co2(COO)2} SBUs. Complex 3 shows a 3D (3,4,4)-connected net with {6·82}2{6·840.10}2{620.820.102} point symbol. Furthermore, the results of the variable-temperature magnetic susceptibilities indicate that complexes 1-3 have antiferromagnetic behavior between Co(II) ions.

  19. Barium coordination polymers based on fluorinated and fluorine-free benzene-dicarboxylates: Mechanochemical synthesis and spectroscopic characterization

    NASA Astrophysics Data System (ADS)

    Al-Terkawi, Abdal-Azim; Scholz, Gudrun; Emmerling, Franziska; Kemnitz, Erhard

    2018-05-01

    A series of new Ba-based coordination polymers (CPs) were mechanochemically synthesized by milling Ba-hydroxide samples with perfluorinated and fluorine-free benzene-dicarboxylic acids, including tetrafluoroisophthalic acid (H2mBDC-F4), tetrafluorophthalic acid (H2oBDC-F4), isophthalic acid (H2mBDC) and phthalic acid (H2oBDC). The new fluorinated CPs: [Ba(mBDC-F4)·0.5H2O] (1) and [Ba(oBDC-F4)·1.5H2O] (2) are compared to their nonfluorinated counterparts: [Ba(mBDC)·2.5H2O] (3), and [Ba(oBDC)·1H2O] (4). These materials are thoroughly characterized using powder X-ray diffraction. The products obtained by milling are all hydrated but vary in their water contents. Compositions and local structures are investigated by elemental analysis, thermal analysis, MAS NMR and attenuated total reflection-infrared spectroscopy. These materials exhibit high thermal stabilities but small surface areas that remain unchanged even after thermal treatments.

  20. Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels

    NASA Astrophysics Data System (ADS)

    Vasudevan, M.

    2017-03-01

    The specific activated flux has been developed for enhancing the penetration performance of TIG welding process for autogenous welding of type 304LN and 316LN stainless steels through systematic study. Initially single-component fluxes were used to study their effect on depth of penetration and tensile properties. Then multi-component activated flux was developed which was found to produce a significant increase in penetration of 10-12 mm in single-pass TIG welding of type 304LN and 316LN stainless steels. The significant improvement in penetration achieved using the activated flux developed in the present work has been attributed to the constriction of the arc and as well as reversal of Marangoni flow in the molten weld pool. The use of activated flux has been found to overcome the variable weld penetration observed in 316LN stainless steel with <50 ppm of sulfur. There was no degradation in the microstructure and mechanical properties of the A-TIG welds compared to that of the welds produced by conventional TIG welding on the contrary the transverse strength properties of the 304LN and 316LN stainless steel welds produced by A-TIG welding exceeded the minimum specified strength values of the base metals. Improvement in toughness values were observed in 316LN stainless steel produced by A-TIG welding due to refinement in the weld microstructure in the region close to the weld center. Thus, activated flux developed in the present work has greater potential for use during the TIG welding of structural components made of type 304LN and 316LN stainless steels.

  1. Topological Constraints in Directed Polymer Melts

    NASA Astrophysics Data System (ADS)

    Serna, Pablo; Bunin, Guy; Nahum, Adam

    2015-11-01

    Polymers in a melt may be subject to topological constraints, as in the example of unlinked polymer rings. How to do statistical mechanics in the presence of such constraints remains a fundamental open problem. We study the effect of topological constraints on a melt of directed polymers, using simulations of a simple quasi-2D model. We find that fixing the global topology of the melt to be trivial changes the polymer conformations drastically. Polymers of length L wander in the transverse direction only by a distance of order (ln L )ζ with ζ ≃1.5 . This is strongly suppressed in comparison with the Brownian L1 /2 scaling which holds in the absence of the topological constraint. It is also much smaller than the predictions of standard heuristic approaches—in particular the L1 /4 of a mean-field-like "array of obstacles" model—so our results present a sharp challenge to theory. Dynamics are also strongly affected by the constraints, and a tagged monomer in an infinite system performs logarithmically slow subdiffusion in the transverse direction. To cast light on the suppression of the strands' wandering, we analyze the topological complexity of subregions of the melt: the complexity is also logarithmically small, and is related to the wandering by a power law. We comment on insights the results give for 3D melts, directed and nondirected.

  2. Topological Constraints in Directed Polymer Melts.

    PubMed

    Serna, Pablo; Bunin, Guy; Nahum, Adam

    2015-11-27

    Polymers in a melt may be subject to topological constraints, as in the example of unlinked polymer rings. How to do statistical mechanics in the presence of such constraints remains a fundamental open problem. We study the effect of topological constraints on a melt of directed polymers, using simulations of a simple quasi-2D model. We find that fixing the global topology of the melt to be trivial changes the polymer conformations drastically. Polymers of length L wander in the transverse direction only by a distance of order (lnL)^{ζ} with ζ≃1.5. This is strongly suppressed in comparison with the Brownian L^{1/2} scaling which holds in the absence of the topological constraint. It is also much smaller than the predictions of standard heuristic approaches-in particular the L^{1/4} of a mean-field-like "array of obstacles" model-so our results present a sharp challenge to theory. Dynamics are also strongly affected by the constraints, and a tagged monomer in an infinite system performs logarithmically slow subdiffusion in the transverse direction. To cast light on the suppression of the strands' wandering, we analyze the topological complexity of subregions of the melt: the complexity is also logarithmically small, and is related to the wandering by a power law. We comment on insights the results give for 3D melts, directed and nondirected.

  3. Different water clusters dependent on long-chain dicarboxylates in two Ag(I) coordination polymers: Synthesis, structure and thermal stability

    NASA Astrophysics Data System (ADS)

    Sun, Di; Liu, Fu-Jing; Hao, Hong-Jun; Huang, Rong-Bin; Zheng, Lan-Sun

    2011-10-01

    Two mixed-ligand Ag(I) coordination polymers (CPs), [Ag 2(bipy) 2(sub)·5H 2O] n ( 1), [Ag 2(bipy) 2(aze)·3H 2O] n ( 2), (bipy = 4,4'-bipyridine, H 2sub = suberic acid, H 2aze = azelaic acid) have been synthesized and structurally characterized by elemental analysis, infrared (IR) spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric (TG) analysis, and single crystal X-ray diffraction. Both 1 and 2 are two-dimensional (2D) sheets based on infinite [Ag(bipy)] n double chain incorporating Ag⋯Ag interactions. Interestingly, two different water clusters are encapsulated in the voids between the sheets of 1 and 2. For 1, one water decamer (H 2O) 10 based on a cyclic water tetramer was hydrogen-bonded with the host 2D sheet. While, one water hexamer (H 2O) 6 also based on a cyclic water tetramer was observed in 2. Comparing the experimental results, it is comprehensible that the dicarboxylates play a crucial role in the formation of the different water clusters. Moreover, the thermal stabilities of them were also discussed.

  4. Bioreducible Zinc(II)-Coordinative Polyethylenimine with Low Molecular Weight for Robust Gene Delivery of Primary and Stem Cells.

    PubMed

    Liu, Shuai; Zhou, Dezhong; Yang, Jixiang; Zhou, Hao; Chen, Jiatong; Guo, Tianying

    2017-03-30

    To transform common low-molecular-weight (LMW) cationic polymers, such as polyethylenimine (PEI), to highly efficient gene vectors would be of great significance but remains challenging. Because LMW cationic polymers perform far less efficiently than their high-molecular-weight counterparts, mainly due to weaker nucleic acid encapsulation, herein we report the design and synthesis of a dipicolylamine-based disulfide-containing zinc(II) coordinative module (Zn-DDAC), which is used to functionalize LMW PEI (M w ≈ 1800 Da) to give a non-viral vector (Zn-PD) with high efficiency and safety in primary and stem cells. Given its high phosphate binding affinity, Zn-DDAC can significantly promote the DNA packaging functionality of PEI 1.8k and improve the cellular uptake of formulated polyplexes, which is particularly critical for hard-to-transfect cell types. Furthermore, Zn-PD polymer can be cleaved by glutathione in cytoplasm to facilitate DNA release post internalization and diminish the cytotoxicity. Consequently, the optimal Zn-PD mediates 1-2 orders of magnitude higher gluciferase activity than commercial transfection reagents, Xfect and PEI 25k , across diverse cell types, including primary and stem cells. Our findings provide a valuable insight into the exploitation of LMW cationic polymers for gene delivery and demonstrate great promise for the development of next-generation non-viral vectors for clinically viable gene therapy.

  5. No Evidence for Extensions to the Standard Cosmological Model.

    PubMed

    Heavens, Alan; Fantaye, Yabebal; Sellentin, Elena; Eggers, Hans; Hosenie, Zafiirah; Kroon, Steve; Mootoovaloo, Arrykrishna

    2017-09-08

    We compute the Bayesian evidence for models considered in the main analysis of Planck cosmic microwave background data. By utilizing carefully defined nearest-neighbor distances in parameter space, we reuse the Monte Carlo Markov chains already produced for parameter inference to compute Bayes factors B for many different model-data set combinations. The standard 6-parameter flat cold dark matter model with a cosmological constant (ΛCDM) is favored over all other models considered, with curvature being mildly favored only when cosmic microwave background lensing is not included. Many alternative models are strongly disfavored by the data, including primordial correlated isocurvature models (lnB=-7.8), nonzero scalar-to-tensor ratio (lnB=-4.3), running of the spectral index (lnB=-4.7), curvature (lnB=-3.6), nonstandard numbers of neutrinos (lnB=-3.1), nonstandard neutrino masses (lnB=-3.2), nonstandard lensing potential (lnB=-4.6), evolving dark energy (lnB=-3.2), sterile neutrinos (lnB=-6.9), and extra sterile neutrinos with a nonzero scalar-to-tensor ratio (lnB=-10.8). Other models are less strongly disfavored with respect to flat ΛCDM. As with all analyses based on Bayesian evidence, the final numbers depend on the widths of the parameter priors. We adopt the priors used in the Planck analysis, while performing a prior sensitivity analysis. Our quantitative conclusion is that extensions beyond the standard cosmological model are disfavored by Planck data. Only when newer Hubble constant measurements are included does ΛCDM become disfavored, and only mildly, compared with a dynamical dark energy model (lnB∼+2).

  6. No Evidence for Extensions to the Standard Cosmological Model

    NASA Astrophysics Data System (ADS)

    Heavens, Alan; Fantaye, Yabebal; Sellentin, Elena; Eggers, Hans; Hosenie, Zafiirah; Kroon, Steve; Mootoovaloo, Arrykrishna

    2017-09-01

    We compute the Bayesian evidence for models considered in the main analysis of Planck cosmic microwave background data. By utilizing carefully defined nearest-neighbor distances in parameter space, we reuse the Monte Carlo Markov chains already produced for parameter inference to compute Bayes factors B for many different model-data set combinations. The standard 6-parameter flat cold dark matter model with a cosmological constant (Λ CDM ) is favored over all other models considered, with curvature being mildly favored only when cosmic microwave background lensing is not included. Many alternative models are strongly disfavored by the data, including primordial correlated isocurvature models (ln B =-7.8 ), nonzero scalar-to-tensor ratio (ln B =-4.3 ), running of the spectral index (ln B =-4.7 ), curvature (ln B =-3.6 ), nonstandard numbers of neutrinos (ln B =-3.1 ), nonstandard neutrino masses (ln B =-3.2 ), nonstandard lensing potential (ln B =-4.6 ), evolving dark energy (ln B =-3.2 ), sterile neutrinos (ln B =-6.9 ), and extra sterile neutrinos with a nonzero scalar-to-tensor ratio (ln B =-10.8 ). Other models are less strongly disfavored with respect to flat Λ CDM . As with all analyses based on Bayesian evidence, the final numbers depend on the widths of the parameter priors. We adopt the priors used in the Planck analysis, while performing a prior sensitivity analysis. Our quantitative conclusion is that extensions beyond the standard cosmological model are disfavored by Planck data. Only when newer Hubble constant measurements are included does Λ CDM become disfavored, and only mildly, compared with a dynamical dark energy model (ln B ˜+2 ).

  7. High degree of polymerization in a fullerene-containing supramolecular polymer.

    PubMed

    Isla, Helena; Pérez, Emilio M; Martín, Nazario

    2014-05-26

    Supramolecular polymers based on dispersion forces typically show lower molecular weights (MW) than those based on hydrogen bonding or metal-ligand coordination. We present the synthesis and self-assembling properties of a monomer featuring two complementary units, a C60 derivative and an exTTF-based macrocycle, that interact mainly through π-π, charge-transfer, and van der Waals interactions. Thanks to the preorganization in the host part, a remarkable log K(a)=5.1±0.5 in CHCl3 at room temperature is determined for the host-guest couple. In accordance with the large binding constant, the monomer self-assembles in the gas phase, in solution, and in the solid state to form linear supramolecular polymers with a very high degree of polymerization. A MW above 150 kDa has been found experimentally in solution, while in the solid state the monomer forms extraordinarily long, straight, and uniform fibers with lengths reaching several microns. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Easy access to silicon(0) and silicon(II) compounds.

    PubMed

    Mondal, Kartik Chandra; Samuel, Prinson P; Tretiakov, Mykyta; Singh, Amit Pratap; Roesky, Herbert W; Stückl, A Claudia; Niepötter, Benedikt; Carl, Elena; Wolf, Hilke; Herbst-Irmer, Regine; Stalke, Dietmar

    2013-04-15

    Two different synthetic methodologies of silicon dihalide bridged biradicals of the general formula (L(n)•)2SiX2 (n = 1, 2) have been developed. First, the metathesis reaction between NHC:SiX2 and L(n): (L(n): = cyclic akyl(amino) carbene in a 1:3 molar ratio leads to the products 2 (n = 1, X = Cl), 4 (n = 2, X = Cl), 6 (n = 1, X = Br), and 7 (n = 2, X = Br). These reactions also produce coupled NHCs (3, 5) under C-C bond formation. The formation of the coupled NHCs (L(m) = cyclic alkyl(amino) carbene substituted N-heterocyclic carbene; m = 3, n = 1 (3) and m = 4, n =2 (5)) is faster during the metathesis reaction between NHC:SiBr2 and L(n): when compared with that of NHC:SiCl2. Second, the reaction of L(1):SiCl4 (8) (L(1): =:C(CH2)(CMe2)2N-2,6-iPr2C6H3) with a non-nucleophilic base LiN(iPr)2 in a 1:1 molar ratio shows an unprecedented methodology for the synthesis of the biradical (L(1)•)2SiCl2 (2). The blue blocks of silicon dichloride bridged biradicals (2, 4) are stable for more than six months under an inert atmosphere and in air for one week. Compounds 2 and 4 melt in the temperature range of 185 to 195 °C. The dibromide (6, 7) analogue is more prone to decomposition in the solution but comparatively more stable in the solid state than in the solution. Decomposition of the products has been observed in the UV-vis spectra. Moreover, compounds 2 and 4 were further converted to stable singlet biradicaloid dicarbene-coordinated (L(n):)2Si(0) (n = 1 (9), 2 (10)) under KC8 reduction. Compounds 2 and 4 were also reduced to dehalogenated products 9 and 10, respectively when treated with RLi (R = Ph, Me, tBu). Cyclic voltametry measurements show that 10 can irreversibly undergo both one electron oxidation and reduction.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, Ross J.; Brigham, Derek M.; Delmau, Laetitia

    The subtle energetic differences underpinning adjacent lanthanide discrimination are explored with diglycolamide ligands. Our approach converges liquid–liquid extraction experiments with solution-phase X-ray absorption spectroscopy (XAS) and density functional theory (DFT) simulations, spanning the lanthanide series. The homoleptic [(DGA)3Ln]3+ complex was confirmed in the organic extractive solution by XAS, and this was modeled using DFT. An interplay between steric strain and coordination energies apparently gives rise to a nonlinear trend in discriminatory lanthanide ion complexation across the series. Our results highlight the importance of optimizing chelate molecular geometry to account for both coordination interactions and strain energies when designing new ligandsmore » for efficient adjacent lanthanide separation for rare-earth refining.« less

  10. Blue Thermally Activated Delayed Fluorescence Polymers with Nonconjugated Backbone and Through-Space Charge Transfer Effect.

    PubMed

    Shao, Shiyang; Hu, Jun; Wang, Xingdong; Wang, Lixiang; Jing, Xiabin; Wang, Fosong

    2017-12-13

    We demonstrate novel molecular design for thermally activated delayed fluorescence (TADF) polymers based on a nonconjugated polyethylene backbone with through-space charge transfer effect between pendant electron donor (D) and acceptor (A) units. Different from conventional conjugated D-A polymers with through-bond charge transfer effect, the nonconjugated architecture avoids direct conjugation between D and A units, enabling blue emission. Meanwhile, spatial π-π interaction between the physically separated D and A units results in both small singlet-triplet energy splitting (0.019 eV) and high photoluminescence quantum yield (up to 60% in film state). The resulting polymer with 5 mol % acceptor unit gives efficient blue electroluminescence with Commission Internationale de l'Eclairage coordinates of (0.176, 0.269), together with a high external quantum efficiency of 12.1% and low efficiency roll-off of 4.9% (at 1000 cd m -2 ), which represents the first example of blue TADF nonconjugated polymer.

  11. Investigating the geometrical preferences of a flexible benzimidazolone-based linker in the synthesis of coordination polymers

    PubMed Central

    Jones, Corey L.; Marsden, Elizabeth A.; Nevin, Adam C.; Kariuki, Benson M.; Bhadbhade, Mohan M.; Martin, Adam D.

    2017-01-01

    A series of new group 2 coordination polymers, MgL ={MgL(H2O)(DMF)0.75}∞, CaL = {CaL(DMF)2}∞, SrL = {SrL(H2O)0.5}∞ and BaL = {BaL(H2O)0.5}∞, were synthesized using a flexible benzimidazolone diacetic acid linker (H2L) in which the two carboxylic acid binding sites are connected to a planar core via {–CH2–} spacers that can freely rotate in solution. In a ‘curiosity-led' diversion from group 2 metals, the first row transition metal salts Mn2+, Cu2+ and Zn2+ were also reacted with L to yield crystals of MnL = {MnL(DMF)(H2O)3.33}∞, Cu3L2 = {Cu3L2(DMF)2(CHO2)2}∞ and ZnL = {ZnL(DMF)}∞. Crystal structures were obtained for all seven materials. All structures form as two-dimensional sheets and contain six-coordinate centres, with the exception of ZnL, which displays tetrahedrally coordinated metal centres, and Cu3L2, which contains square planar coordinated metal centres and Cu paddle-wheels. In each structure, the linker adopts one of two distinct conformations, with the carboxylate groups either cis or trans with respect to the planar core. All materials were also characterized by powder X-ray diffraction and thermogravimetric analysis. PMID:29308246

  12. Heterobimetallic thiocyanato-bridged coordination polymers based on [Hg(SCN) 4] 2-: Synthesis, crystal structure, magnetic properties and ESR studies

    NASA Astrophysics Data System (ADS)

    Jian, Fang-Fang; Xiao, Hai-Lian; Liu, Fa Qian

    2006-12-01

    Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN) 4Ni(Im) 3] ∞1, [Hg(SCN) 4Mn(Im) 2] ∞2, and [Hg(SCN) 4Cu(Me-Im) 2 Hg(SCN) 4Cu(Me-Im) 4] ∞3, (Im=imidazole, Me-Im= N-methyl-imidazole), have been synthesized and characterized by means of elemental analysis, ESR, and single-crystal X-ray. X-ray diffraction analysis reveals that these three complexes all form 3D network structure, and their structures all contain a thiocyanato-bridged Hg⋯M⋯Hg chain ( M=Mn, Ni, Cu) in which the metal and mercury centers exhibit different coordination environments. In complex 1, the [Hg(SCN) 4] 2- anion connects three [Ni(Im) 3] 2+ using three SCN ligands giving rise to a 3D structure, and in complex 2, four SCN ligands bridge [Hg(SCN) 4] 2- and [Mn(Im) 2] 2+ to form a 3D structure. The structure of 3 contains two copper atoms with distinct coordination environment; one is coordinated by four N-methyl-imidazole ligands and two axially elongated SCN groups, and another by four SCN groups (two elongated) and two N-methyl-imidazole ligands. The magnetic property of complex 1 has been investigated. The spin state structure in hetermetallic NiHgNi systems of complex 1 is irregular. The ESR spectra results of complex 3 demonstrate Cu 2+ ion lie on octahedral environment.

  13. The coordination behaviour of ferrocene-based pyridylphosphine ligands towards Zn(II), Cd(II) and Hg(II).

    PubMed

    Siemeling, Ulrich; Klemann, Thorsten; Bruhn, Clemens; Schulz, Jiří; Štěpnička, Petr

    2011-05-07

    The reaction of Group 12 metal dihalides MX(2) with the P,N-ligands [Fe(C(5)H(4)-PPh(2))(C(5)H(4)-2-py)] (1) (2-py = pyrid-2-yl), [Fe(C(5)H(4)-PPh(2))(C(5)H(4)-CH(2)-2-py)] (2) and [Fe(C(5)H(4)-PPh(2))(C(5)H(4)-3-py)] (3) (3-py = pyrid-3-yl) was investigated. For a 1 : 1 molar ratio of MX(2) and the respective ligand, three structure types were found in the solid state, viz. chelate, cyclic dimer and chain-like coordination polymer. The M(II) coordination environment is distorted pseudo-tetrahedral in each case. The P-M-N angle is much larger in the chelates (≥119°) than in the ligand-bridged structures (≤109°). 1 prefers the formation of chelates [MX(2)(1-κ(2)N,P)]. 3 forms coordination polymers [MX(2)(μ-3)](n). With the more flexible 2 all three structure types can occur. Dynamic coordination equilibria were observed in solution for the molecular complexes obtained with 1 and 2. NMR data indicate that the N- and P-donor sites interact most strongly with Zn(II) and Hg(II), respectively. While the formation of bis(phosphine)mercury complexes (soft-soft) was easily achieved, no bis(pyridine)zinc complex (borderline-borderline) could be obtained, which is surprising in view of the HSAB principle.

  14. Rapid detection of urinary soluble intercellular adhesion molecule-1 for determination of lupus nephritis activity.

    PubMed

    Wang, Yanyun; Tao, Ye; Liu, Yi; Zhao, Yi; Song, Chao; Zhou, Bin; Wang, Tao; Gao, Linbo; Zhang, Lin; Hu, Huaizhong

    2018-06-01

    The current methods of monitoring the activity of lupus nephritis (LN) may cause unnecessary hospital visits or delayed immunosuppressive therapy. We aimed to find a urinary biomarker that could be developed as a home-based test for monitoring the activity of LN.Urine samples were collected immediately before a renal biopsy from patients of suspected active LN, and also from patients with inactive LN, systemic lupus erythematous without LN or healthy controls. Biomarker search was conducted on a cytokine antibody array and confirmation was done by quantitative evaluation with enzyme-linked immunosorbent assay. The Mann-Whiney test or Student t test was used to compare the levels of 9 cytokines between different groups. The sensitivity and specificity of each cytokine for diagnosis of LN was evaluated by receiver operating characteristic curve. A rapid test based on colloidal gold immunochromatography was then developed for bedside or home use. Furthermore, an experimental e-healthcare system was constructed for recording and sharing the results of the rapid test a cloud-assisted internet of things (IoT) consisting of a sensing device, an IoT device and a cloud server.Adiponectin (Acrp30), soluble intercellular cell adhesion molecule-1 (sICAM-1), neural cell adhesion molecule 1 (NCAM-1), and CD26 were significantly higher in urine samples of active LN patients. sICAM-1 appeared more sensitive and specific among these candidates. When the cut-off value of sICAM-1 was set at 1.44 ng/mL, the sensitivity reached 98.33% with a specificity at 85.71%. The sICAM-1 strip test showed comparable sensitivity of 95% and a specificity of 83.3% for assessing the LN activity. Meanwhile, the e-healthcare system was able to conveniently digitize and share the sICAM-1 rapid test results.sICAM-1 appeared to be an excellent biomarker for monitoring LN activity. The e-healthcare system with cloud-assisted IoT could assist the digitalization and sharing of the bedside or home-based sICAM-1 test results.

  15. Aqueous speciation is likely to control the stable isotopic fractionation of cerium at varying pH

    NASA Astrophysics Data System (ADS)

    Nakada, Ryoichi; Tanaka, Masato; Tanimizu, Masaharu; Takahashi, Yoshio

    2017-12-01

    Cerium (Ce) can be used as a plaeoredox proxy as shown by a recent study of stable isotopic fractionation of Ce during adsorption and precipitation. However, the experiments in that study were performed at pH conditions lower than that of natural seawater. In the current study, adsorption and precipitation experiments were performed at pH 6.80, 8.20, and 11.00 with 2.25 mM dissolved carbonate to simulate Ce isotopic fractionation in the natural environment and examine the relationship between isotopic fractionation and Ce speciation in the liquid phase. Mean isotopic fractionation factors between liquid and solid phases (αLq-So) of Ce adsorbed on ferrihydrite did not depend on pH conditions or dissolved Ce species. In the Ce/δ-MnO2 system,αLq-So values decreased from 1.000411 (±0.000079) to 1.000194 (±0.000067) with increasing pH or number of carbonate ions, from Ce3+ to Ce(CO3)2-. In the Ce/precipitation system at pH 8.20 and 11.00 where Ce(CO3)2- is present in solution, the αLq-So values were 0.999821 (±0.000071) and 0.999589 (±0.000074), respectively, meaning that lighter isotope enrichment was observed in the liquid phase, which is the contrary to those of the other systems. Extended X-ray absorption fine structure (EXAFS) analyses were also performed to investigate the coordination structure of the adsorbed or precipitated Ce species that control the isotopic fractionation during adsorption. Even at higher pH, where Ce(CO3)+ or Ce(CO3)2- are the dominant dissolved species, the first coordination sphere of Ce in the solid phase in the Ce/ferrihydrite and Ce/precipitation systems was similar to that observed at pH 5.00 where Ce3+ was the main species in solution. A slight elongation in the Cesbnd O bond length in the solid phase at pH 11.00, where negatively charged dissolved species are dominant in the liquid phase, may cause a decrease in isotopic fractionation in the Ce/δ-MnO2 system. The coordination environment of Ce may not change significantly during the adsorption onto ferrihydrite, because Ce binds to the neutral surface OH group on ferrihydrite at pH below 8.5-8.8 (i.e. the pH of the point of zero charge (PZC) for ferrihydrite), similar to other cations when the metal-O distance was similar in hydrated and adsorbed species. At pH above PZC, Ce bonds to the negatively charged surface OH group, while Ce also bonds with CO32- in dissolved species. The reduced partition functions (ln β) for dissolved species (ln βLq) and adsorbed species (ln βSo) with the same trends canceled each other, because ln β of hydrated cation was reduced by the binding anion, resulting in small isotope fractionations. Thus, isotope fractionations for Ce/ferrihydrite may be quite small at the entire pH conditions in this study. The direction of the isotopic fractionation was estimated based on density functional theory (DFT) calculations, which confirmed that lighter Ce is enriched in the liquid phase when Ce forms a complex with carbonate ions. Therefore, this study indicates that the dissolved species can control stable Ce isotopic fractionation during precipitation reactions.

  16. Carboxylate ligands induced structural diversity of zinc(II) coordination polymers based on 3,6-bis(imidazol-1-yl)carbazole: Syntheses, structures and photocatalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Hong-Jian, E-mail: hjcheng@cslg.cn; Tang, Hui-Xiang; Shen, Ya-Li

    2015-12-15

    Solvothermal reactions of Zn(NO{sub 3}){sub 2}·6H{sub 2}O with 3,6-bis(1-imidazolyl)carbazole (3,6-bmcz) and 1,4-benzenedicarboxylic acid (1,4-H{sub 2}bdc), p-phenylenediacetic acid (p-H{sub 2}pda), benzophenone-4,4-dicarboxylic acid (H{sub 2}bpda) afforded three coordination polymers [Zn(1,4-bdc)(3,6-bmcz)]{sub n} (1), {[Zn(p-pda)(3,6-bmcz)]·1.5H_2O}{sub n} (2) and {[Zn(bpda)(3,6-bmcz)]·0.25H_2O}{sub n} (3). Complexes 1–3 were characterized by elemental analysis, IR, powder X-ray diffraction, and single-crystal X-ray diffraction. Complex 1 shows 3D structure with 2D nets inclined polycatenation. Complexes 2 and 3 possess an extended 3D supramolecular architecture based on their respective 2D layers through hydrogen-bonding interactions and the π···π stacking interactions. The solid state luminescent and optical properties of 1–3 at ambient temperature were alsomore » investigated. A comparative study on their photocatalytic activity toward the degradation of methylene blue in polluted water was explored. - Graphical abstract: Reactions of Zn(NO{sub 3}){sub 2} and 3,6-(1-imidazolyl)carbazole with 1,4-benzenedicarboxylic acid, p-phenylenediacetic acid or benzophenone-4,4-dicarboxylic acid afforded three coordination polymers with different topologies and photocatalytic activity. - Highlights: • Reactions of 1,4-H{sub 2}bdc, p-H{sub 2}pda or H{sub 2}bpda with 3,6-bmcz and Zn(II) gave three CPs. • Complex 1 is a 3D entanglement. • Complex 2 or 3 is a 3D supramolecular structure based on different 2D layers. • Complex 2 exhibited good catalytic activity of methylene blue photodegradation.« less

  17. Lymph node ratio predicts disease-specific survival in melanoma patients.

    PubMed

    Xing, Yan; Badgwell, Brian D; Ross, Merrick I; Gershenwald, Jeffrey E; Lee, Jeffrey E; Mansfield, Paul F; Lucci, Anthony; Cormier, Janice N

    2009-06-01

    The objectives of this analysis were to compare various measures associated with lymph node (LN) dissection and to identify threshold values associated with disease-specific survival (DSS) outcomes in patients with melanoma. Patients with lymph node-positive melanoma who underwent therapeutic LN dissection of the neck, axilla, and inguinal region were identified from the SEER database (1988-2005). We performed Cox multivariate analyses to determine the impact of the total number of LNs removed, number of negative LNs removed, and LN ratio on DSS. Multivariate cut-point analyses were conducted for each anatomic region to identify the threshold values associated with the largest improvement in DSS. The LN ratio was significantly associated with DSS for all LN regions. The LN ratio thresholds resulting in the greatest difference in 5-year DSS were .07, .13, and .18 for neck, axillary, and inguinal regions, respectively, corresponding to 15, 8, and 6 LNs removed per positive lymph node. After adjustment for other clinicopathologic factors, the hazard ratios (HRs) were .53 (95% confidence interval [CI], .40 to .71) in the neck, .52 (95% CI, .42 to .65) in the axillary, and .47 (95% CI, .36 to .61) in the inguinal regions for patients who met the LN ratio threshold. Among the prognostic factors examined, LN ratio was the best indicator of the extent of LN dissection, regardless of anatomic nodal region. These data provide evidence-based guidelines for defining adequate LN dissections in melanoma patients. (c) 2009 American Cancer Society.

  18. Dinuclear lanthanide complexes based on amino alcoholate ligands: Structure, magnetic and fluorescent properties

    NASA Astrophysics Data System (ADS)

    Sun, Gui-Fang; Zhang, Cong-Ming; Guo, Jian-Ni; Yang, Meng; Li, Li-Cun

    2017-05-01

    Two binuclear lanthanide complexes [Ln2(hfac)6(HL)2] (LnIII = Dy(1), Tb(2); hfac = hexafluoroacetylacetonate, HL = (R)-2-amino-2-phenylethanol) have been successfully obtained by using amino alcoholate ligand. In two complexes, the Ln(III) ions are bridged by two alkoxido groups from HL ligands, resulting in binuclear complexes. The variable-temperature magnetic susceptibility studies indicate that there exists ferromagnetic interaction between two Ln(III) ions. Frequency dependent out-of-phase signals are observed for complex 1, suggesting SMM type behavior. Complexes 1 and 2 display intensely characteristic luminescent properties.

  19. Series of edge-sharing bi-triangle Ln4 clusters with a μ4-NO3- bridge: syntheses, structures, luminescence, and the SMM behavior of the Dy4 analogue.

    PubMed

    Zou, Hua-Hong; Wang, Rong; Chen, Zi-Lu; Liu, Dong-Cheng; Liang, Fu-Pei

    2014-02-14

    A series of Ln4 clusters, [Ln4L2(μ3-OH)2(μ4-NO3)(NO3)4(OCH3)(H2O)]·xMeCN·yMeOH (Ln = Gd (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), L = 2-{[2-(2-hydroxy-ethoxy)-ethylimino]-methyl}-6-methoxyphenol), have been synthesized by the reaction of Ln(NO)3 and a Schiff-base ligand formed in situ. The six complexes display similar structures, with an overall metal core comprising two edge-sharing triangular Ln3 units linked by a μ4-NO3(-) bridge. The luminescence spectrum of complex 2 shows the characteristic emission of the Tb(III) ions. The magnetic susceptibility studies reveal that the Ln(III) ions are very weakly interacting in all six compounds. Frequency dependence of the ac-susceptibility was found for 3, suggesting a typical single-molecule magnet (SMM) behavior with an anisotropic barrier of 28 K.

  20. FAK Is Required for Schwann Cell Spreading on Immature Basal Lamina to Coordinate the Radial Sorting of Peripheral Axons with Myelination

    PubMed Central

    Grove, Matthew

    2014-01-01

    Without Focal Adhesion Kinase (FAK), developing murine Schwann cells (SCs) proliferate poorly, sort axons inefficiently, and cannot myelinate peripheral nerves. Here we show that FAK is required for the development of SCs when their basal lamina (BL) is fragmentary, but not when it is mature in vivo. Mutant SCs fail to spread on fragmentary BL during development in vivo, and this is phenocopied by SCs lacking functional FAK on low laminin (LN) in vitro. Furthermore, SCs without functional FAK initiate differentiation prematurely, both in vivo and in vitro. In contrast to their behavior on high levels of LN, SCs lacking functional FAK grown on low LN display reduced spreading, proliferation, and indicators of contractility (i.e., stress fibers, arcs, and focal adhesions) and are primed to differentiate. Growth of SCs lacking functional FAK on increasing LN concentrations in vitro revealed that differentiation is not regulated by G1 arrest but rather by cell spreading and the level of contractile actomyosin. The importance of FAK as a critical regulator of the specific response of developing SCs to fragmentary BL was supported by the ability of adult FAK mutant SCs to remyelinate demyelinated adult nerves on mature BL in vivo. We conclude that FAK promotes the spreading and actomyosin contractility of immature SCs on fragmentary BL, thus maintaining their proliferation, and preventing differentiation until they reach high density, thereby promoting radial sorting. Hence, FAK has a critical role in the response of SCs to limiting BL by promoting proliferation and preventing premature SC differentiation. PMID:25274820

  1. Nanopatterning of Surfaces with Monometallic and Heterobimetallic 1D Coordination Polymers: A Molecular Tectonics Approach at the Solid/Liquid Interface.

    PubMed

    El Garah, Mohamed; Marets, Nicolas; Mauro, Matteo; Aliprandi, Alessandro; Bonacchi, Sara; De Cola, Luisa; Ciesielski, Artur; Bulach, Véronique; Hosseini, Mir Wais; Samorì, Paolo

    2015-07-08

    The self-assembly of multiple molecular components into complex supramolecular architectures is ubiquitous in nature and constitutes one of the most powerful strategies to fabricate multifunctional nanomaterials making use of the bottom-up approach. When spatial confinement in two dimensions on a solid substrate is employed, this approach can be exploited to generate periodically ordered structures from suitably designed molecular tectons. In this study we demonstrate that physisorbed directional periodic arrays of monometallic or heterobimetallic coordination polymers can be generated on a highly oriented pyrolitic graphite surface by combinations of a suitably designed directional organic tecton or metallatecton based on a porphyrin or nickel(II) metalloporphyrin backbone bearing both a pyridyl unit and a terpyridyl unit acting as coordinating sites for CoCl2. The periodic architectures were visualized at the solid/liquid interface with a submolecular resolution by scanning tunneling microscopy and corroborated by combined density functional and time-dependent density functional theory calculations. The capacity to nanopattern the surface for the first time with two distinct metallic centers exhibiting different electronic and optical properties is a key step toward the bottom-up construction of robust multicomponent and, thus, multifunctional molecular nanostructures and nanodevices.

  2. White-emissive tandem-type hybrid organic/polymer diodes with (0.33, 0.33) chromaticity coordinates.

    PubMed

    Guo, Tzung-Fang; Wen, Ten-Chin; Huang, Yi-Shun; Lin, Ming-Wei; Tsou, Chuan-Cheng; Chung, Chia-Tin

    2009-11-09

    This study reports fabrication of white-emissive, tandem-type, hybrid organic/polymer light-emitting diodes (O/PLED). The tandem devices are made by stacking a blue-emissive OLED on a yellow-emissive phenyl-substituted poly(para-phenylene vinylene) copolymer-based PLED and applying an organic oxide/Al/molybdenum oxide (MoO(3)) complex structure as a connecting structure or charge-generation layer (CGL). The organic oxide/Al/MoO(3) CGL functions as an effective junction interface for the transport and injection of opposite charge carriers through the stacked configuration. The electroluminescence (EL) spectra of the tandem-type devices can be tuned by varying the intensity of the emission in each emissive component to yield the visible-range spectra from 400 to 750 nm, with Commission Internationale de l'Eclairage chromaticity coordinates of (0.33, 0.33) and a high color rendering capacity as used for illumination. The EL spectra also exhibit good color stability under various bias conditions. The tandem-type device of emission with chromaticity coordinates, (0.30, 0.31), has maximum brightness and luminous efficiency over 25,000 cd/m(2) and approximately 4.2 cd/A, respectively.

  3. Mercury coordination polymers with flexible ethane-1,2-diyl-bis-(pyridyl-3-carboxylate): Synthesis, structures, thermal and luminescent properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallejos, Javier; Brito, Iván, E-mail: ivanbritob@yahoo.com; Cárdenas, Alejandro

    2015-03-15

    The reaction of the flexible ligand, ethane-1,2-diyl-bis-(pyridyl-3-carboxylate), (L) with HgI{sub 2} and HgBr{sub 2} salts under the same experimental conditions leads to the formation of two coordination polymers with different motifs: ([Hg(L)(Br{sub 2})]){sub n}(1) and ([Hg(L)(I{sub 2})]){sub n}(2). In both compounds, the ligand, (L) acts in a μ2-N:N′-bidentate fashion to link HgBr{sub 2} and HgI{sub 2} units to form a linear and helical chain motif, along [1 0 0] for (1) and [0 0 1] for (2). The ethylene moiety of (L) has gauche and trans conformation in compounds (1) and (2), respectively. The flexible conformation of L produces differencesmore » in the optical and crystal properties of the two compounds. - Graphical abstract: This work demonstrates how the HgX{sub 2} units are coordinates by bi-dentate ligand forming polymeric coordination complexes by self-assembly of both chemical units.- Highlights: • News 1-D d{sup 10} transition metal coordination polymers. • The photoluminescent properties have been measured. • The thermal properties have been measured.« less

  4. Metal–organic frameworks assembled from lanthanide and 2,5-pyridinedicaboxylate with cubane-like [Ln{sub 4}(OH){sub 4}] building units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelbaky, Mohammed S.M.; Amghouz, Zakariae, E-mail: amghouz.uo@uniovi.es; Servicios Científico-Técnicos, University of Oviedo—CINN, Oviedo 33006

    Lanthanide–organic frameworks based on 2,5-pyridinedicaboxylate (25p) ligand, formulated as [Yb{sub 4}(OH){sub 4}(25p){sub 4}(H{sub 2}O){sub 3}]·H{sub 2}O (25pYb), [Y{sub 4}(OH){sub 4}(25p){sub 4}(H{sub 2}O){sub 3}]·H{sub 2}O (25pY-1) and [Y{sub 6}(OH){sub 8}(25p){sub 5}(H{sub 2}O){sub 2}] (25pY-2), have been obtained as single phases under hydrothermal conditions. 25pYb and 25pY-1 are isostructural, and crystallize in the triclinic space group, P-1, with a=8.6075(5) Å, b=14.8478(7) Å, c=15.9164(9) Å, α=86.277(4)°, β=80.196(5)°, γ=81.785(4)°, and a=8.7166(6) Å, b=14.966(1) Å, c=15.966(1) Å, α=86.260(6)°, β=80.036(6)°, γ=81.599(6)°, respectively. 25pY-2 crystallizes in the monoclinic space group, P2{sub 1}/c, with a=24.9117(17) Å, b=13.7340(8) Å, c=14.3385(10) Å, β=100.551(7)°. 25pYb and 25pY-2 have been structurally characterizedmore » by single-crystal X-ray diffraction. The 25pYb structure is based on tetranuclear cubane-like [Yb{sub 4}(OH){sub 4}]{sup 8+} clusters, which are interconnected to eight neighbouring clusters through teen surrounding 25p ligands leading to neutral 3D framework, while the structure of 25pY-2 is based on two independent cuban-like [Y{sub 4}(OH){sub 4}]{sup 8+} clusters, which are joined together through Y1 cation leading to the formation of hexanuclear [Y{sub 6}(OH){sub 8}]{sup 10+} clusters, which in turn are joined via Y2 cation resulting in infinite inorganic chain extending along c-axis, and each chain is interconnected to six adjacent chains through 25p ligands leading finally to 3D framework. The luminescence properties of Eu{sup 3+} and Tb{sup 3+} doped 25pY-1 and 25pY-2 compounds have also been investigated. All materials has been characterized by powder X-ray diffraction, thermal analyses (TG–SDTA–MS), FTIR spectroscopy, C–H–N elemental analysis, scanning electron microscopy (SEM-EDX), and powder X-ray thermodiffraction. - Graphical abstract: Nowadays, lanthanide–organic frameworks (LOFs) attract tremendous attention due to the unique characteristic of lanthanide cations, such as variable coordination numbers and geometries which often lead to novel complex structures, and also to their magnetic and photoluminescence properties. Herein, three LOFs formulated as [Ln{sub 4}(OH){sub 4}(25p){sub 4}(H{sub 2}O){sub 3}]·H{sub 2}O (Ln=Y, Yb) and [Y{sub 6}(OH){sub 8}(25p){sub 5}(H{sub 2}O){sub 2}] have been obtained by hydrothermal method and characterized, and the photoluminescence properties of the Eu and Tb doped compounds are discussed. - Highlights: • Three novel LnOFs has been synthesized and characterized. • Crystal structures are based on tetranuclear cuban-like [Ln{sub 4}(OH){sub 4}]{sup 8+} clusters. • 25pYb and 25pY-1 are based on isolated [Ln{sub 4}(OH){sub 4}]{sup 8+} clusters. • 25pY-2 is based on infinite inorganic chains built up from [Y{sub 4}(OH){sub 4}]{sup 8+} clusters. • Photoluminescence studies show strong red and green light emissions.« less

  5. On the relationships between the Michaelis–Menten kinetics, reverse Michaelis–Menten kinetics, equilibrium chemistry approximation kinetics, and quadratic kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, J. Y.

    The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use either of the two are often ambiguous. Here I show that these two kinetics are special approximations to the equilibrium chemistry approximation (ECA) kinetics, which is the first-order approximation to the quadratic kinetics that solves the equation of an enzyme–substrate complex exactly for a single-enzyme and single-substrate biogeochemical reaction with the law of mass action and the assumption of a quasi-steadymore » state for the enzyme–substrate complex and that the product genesis from enzyme–substrate complex is much slower than the equilibration between enzyme–substrate complexes, substrates, and enzymes. In particular, I show that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in deriving the equilibrium chemistry approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln k 2 + of the reaction velocity v with respect to the maximum product genesis rate k 2 +, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln k 1 + of v with respect to the intrinsic substrate affinity k 1 +, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln [ E] T of v with respect the total enzyme concentration [ E] T, and persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln [ S] T of v with respect to the total substrate concentration [ S] T. Meanwhile, the reverse Michaelis–Menten kinetics persistently underpredicts ∂ ln v / ∂ ln k 2 + and ∂ ln v / ∂ ln [ E] T, and persistently overpredicts ∂ ln v / ∂ ln k 1 + and ∂ ln v / ∂ ln [ S] T. In contrast, the equilibrium chemistry approximation kinetics always gives consistent predictions of ∂ ln v / ∂ ln k 2 +, ∂ ln v / ∂ ln k 1 +, ∂ ln v / ∂ ln [ E] T, and ∂ ln v / ∂ ln [ S] T, indicating that ECA-based models will be more calibratable if the modeled processes do obey the law of mass action. Since the equilibrium chemistry approximation kinetics includes advantages from both the Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics and it is applicable for almost the whole range of substrate and enzyme abundances, land biogeochemical modelers therefore no longer need to choose when to use the Michaelis–Menten kinetics or the reverse Michaelis–Menten kinetics. I expect that removing this choice ambiguity will make it easier to formulate more robust and consistent land biogeochemical models.« less

  6. On the relationships between the Michaelis–Menten kinetics, reverse Michaelis–Menten kinetics, equilibrium chemistry approximation kinetics, and quadratic kinetics

    DOE PAGES

    Tang, J. Y.

    2015-12-01

    The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use either of the two are often ambiguous. Here I show that these two kinetics are special approximations to the equilibrium chemistry approximation (ECA) kinetics, which is the first-order approximation to the quadratic kinetics that solves the equation of an enzyme–substrate complex exactly for a single-enzyme and single-substrate biogeochemical reaction with the law of mass action and the assumption of a quasi-steadymore » state for the enzyme–substrate complex and that the product genesis from enzyme–substrate complex is much slower than the equilibration between enzyme–substrate complexes, substrates, and enzymes. In particular, I show that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in deriving the equilibrium chemistry approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln k 2 + of the reaction velocity v with respect to the maximum product genesis rate k 2 +, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln k 1 + of v with respect to the intrinsic substrate affinity k 1 +, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln [ E] T of v with respect the total enzyme concentration [ E] T, and persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln [ S] T of v with respect to the total substrate concentration [ S] T. Meanwhile, the reverse Michaelis–Menten kinetics persistently underpredicts ∂ ln v / ∂ ln k 2 + and ∂ ln v / ∂ ln [ E] T, and persistently overpredicts ∂ ln v / ∂ ln k 1 + and ∂ ln v / ∂ ln [ S] T. In contrast, the equilibrium chemistry approximation kinetics always gives consistent predictions of ∂ ln v / ∂ ln k 2 +, ∂ ln v / ∂ ln k 1 +, ∂ ln v / ∂ ln [ E] T, and ∂ ln v / ∂ ln [ S] T, indicating that ECA-based models will be more calibratable if the modeled processes do obey the law of mass action. Since the equilibrium chemistry approximation kinetics includes advantages from both the Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics and it is applicable for almost the whole range of substrate and enzyme abundances, land biogeochemical modelers therefore no longer need to choose when to use the Michaelis–Menten kinetics or the reverse Michaelis–Menten kinetics. I expect that removing this choice ambiguity will make it easier to formulate more robust and consistent land biogeochemical models.« less

  7. Mussel-inspired histidine-based transient network metal coordination hydrogels

    PubMed Central

    Fullenkamp, Dominic E.; He, Lihong; Barrett, Devin G.; Burghardt, Wesley R.; Messersmith, Phillip B.

    2013-01-01

    Transient network hydrogels cross-linked through histidine-divalent cation coordination bonds were studied by conventional rheologic methods using histidine-modified star poly(ethylene glycol) (PEG) polymers. These materials were inspired by the mussel, which is thought to use histidine-metal coordination bonds to impart self-healing properties in the mussel byssal thread. Hydrogel viscoelastic mechanical properties were studied as a function of metal, pH, concentration, and ionic strength. The equilibrium metal-binding constants were determined by dilute solution potentiometric titration of monofunctional histidine-modified methoxy-PEG and were found to be consistent with binding constants of small molecule analogs previously studied. pH-dependent speciation curves were then calculated using the equilibrium constants determined by potentiometric titration, providing insight into the pH dependence of histidine-metal ion coordination and guiding the design of metal coordination hydrogels. Gel relaxation dynamics were found to be uncorrelated with the equilibrium constants measured, but were correlated to the expected coordination bond dissociation rate constants. PMID:23441102

  8. Synthesis and characterization of multifunctional coordination polymer of the type [CuxNi1-x(dedb)·2H2O]n

    NASA Astrophysics Data System (ADS)

    Singh, Deepshikha; Kushwaha, Anita; Banerjee, A.; Prasad, R. L.

    2015-07-01

    New series of multifunctional homometallic and heterobimetallic coordination polymers of the type [CuxNi1-x(dedb)·2H2O]n {where dedb = dianion of 2,5-dichloro-3,6-bis(ethylamino)-1,4-benzoquinone (1); x = 1, (2); 0 (3); 0.5 (4); 0.25 (5); 0.125 (6); 0.0625 (7) and n = degree of polymerization} have been synthesized and characterized by Powder X-ray diffraction, IR, UV-visible and ESR spectroscopic techniques. Variable temperature susceptibility measurement indicates presence of strong ferromagnetic interaction. The effects of copper doping on thermal, magnetic and conducting properties of these polymers have been investigated in this communication. A rare co-existence of ferromagnetism as well as electrical conductivity has been observed in these polymers.

  9. Two New Families of Lanthanide Mixed-Ligand Complexes, Oxalate-Carbonate and Oxalate-Formate: Synthesis and Structure of [Ce(H 2O)] 2(C 2O 4) 2(CO 3)·2.5 H 2O and Ce(C 2O 4)(HCO 2)

    NASA Astrophysics Data System (ADS)

    Romero, S.; Mosset, A.; Trombe, J. C.

    1996-12-01

    Two new families of lanthanide complexes associating the ligands oxalate and carbonate or oxalate and formate have been prepared under autogenous pressure at 200°C using a pseudo-hydrothermal method. The two families have been extended to some lanthanides ( Ln): oxalate-carbonate Ln= Ce, Pr, Nd, and Eu; oxalate-formate Ln= La, Ce, and Sm. The starting suspension contains either oxalate or a mixture of oxalate and oxalic acid. The structures have been solved for the element cerium. In both cases, the structure is built up from cerium atoms sharing all their oxygen atoms with oxalate and carbonate or oxalate and formate ligands, thus forming a three-dimensional network. The cerium polyhedra share either faces or edges or corners. The coordination scheme of the oxalate ligands is variable: bischelating, bischelating and monodentate, or bischelating and bismonodentate. The carbonate group acts as a bischelating and bismonodentate ligand while the formate group is chelating and monodentate. The characterization of these two original families by infrared spectra and thermal behavior is presented for some pure phases. A tentative explanation of the synthesis of these two phases will be emphasized.

  10. Enhancement of superconductivity near the pressure-induced semiconductor-metal transition in the BiS₂-based superconductors LnO₀.₅F₀.₅BiS₂ (Ln = La, Ce, Pr, Nd).

    PubMed

    Wolowiec, C T; White, B D; Jeon, I; Yazici, D; Huang, K; Maple, M B

    2013-10-23

    Measurements of electrical resistivity were performed between 3 and 300 K at various pressures up to 2.8 GPa on the BiS2-based superconductors LnO0.5F0.5BiS2 (Ln=Pr, Nd). At lower pressures, PrO0.5F0.5BiS2 and NdO0.5F0.5BiS2 exhibit superconductivity with critical temperatures Tc of 3.5 and 3.9 K, respectively. As pressure is increased, both compounds undergo a transition at a pressure Pt from a low Tc superconducting phase to a high Tc superconducting phase in which Tc reaches maximum values of 7.6 and 6.4 K for PrO0.5F0.5BiS2 and NdO0.5F0.5BiS2, respectively. The pressure-induced transition is characterized by a rapid increase in Tc within a small range in pressure of ∼0.3 GPa for both compounds. In the normal state of PrO0.5F0.5BiS2, the transition pressure Pt correlates with the pressure where the suppression of semiconducting behaviour saturates. In the normal state of NdO0.5F0.5BiS2, Pt is coincident with a semiconductor-metal transition. This behaviour is similar to the results recently reported for the LnO0.5F0.5BiS2 (Ln=La, Ce) compounds. We observe that Pt and the size of the jump in Tc between the two superconducting phases both scale with the lanthanide element in LnO0.5F0.5BiS2 (Ln=La, Ce, Pr, Nd).

  11. Validation of the Lupus Nephritis Clinical Indices in Childhood-Onset Systemic Lupus Erythematosus

    PubMed Central

    Mina, Rina; Abulaban, Khalid; Klein-Gitelman, Marisa; Eberhard, Anne; Ardoin, Stacy; Singer, Nora; Onel, Karen; Tucker, Lori; O’Neil, Kathleen; Wright, Tracey; Brooks, Elizabeth; Rouster-Stevens, Kelly; Jung, Lawrence; Imundo, Lisa; Rovin, Brad; Witte, David; Ying, Jun; Brunner, Hermine I.

    2015-01-01

    Objective To validate clinical indices of lupus nephritis (LN) activity and damage when used in children against the criterion standard of kidney biopsy findings. Methods In 83 children requiring kidney biopsy the SLE Disease Activity Index Renal Domain (SLEDAI-R); British Isles Lupus Assessment Group index Renal Domain (BILAG-R), Systemic Lupus International Collaborating Clinics Renal Activity (SLICC-RAS) and Damage Index Renal Domain (SDI-R) were measured. Fixed effect and logistic models were done to predict International Society of Nephrology/Renal Pathology Society (ISN/RPS) class; low/moderate vs. high LN-activity [NIH Activity Index (NIH-AI) score: ≤ 10 vs. > 10; Tubulointerstitial Activity Index (TIAI) score: ≤ 5 vs. > 5) or the absence vs. presence of LN chronicity [NIH Chronicity Index (NIH-CI) score: 0 vs. ≥ 1]. Results There were 10, 50 and 23 patients with class I/II, III/IV and V, respectively. Scores of the clinical indices did not differentiate among patients by ISN/RPS class. The SLEDAI-R and SLICC-RAS but not the BILAG-R differed with LN-activity status defined by NIH-AI scores, while only the SLEDAI-R scores differed between LN-activity status based on TIAI scores. The sensitivity and specificity of the SDI-R to capture LN chronicity was 23.5% and 91.7%, respectively. Despite designed to measure LN-activity, SLICC-RAS and SLEDAI-R scores significantly differed with LN chronicity status. Conclusion Current clinical indices of LN fail to discriminate ISN/RPS Class in children. Despite its shortcomings, the SLEDAI-R appears to best for measuring LN activity in a clinical setting. The SDI-R is a poor correlate of LN chronicity. PMID:26213987

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wen-Hua; Yan, Hao-Jie; Chen, Hui

    Dipyridyl sulphide ligands 4-(pyridin-4-ylmethylthio)pyridine (abbreviated as L1) and 3-(pyridin-4-ylmethylthio)pyridine (abbreviated as L2) have been designed and used as μ-{sub N},{sub N}-bridging linkages to construct coordination polymers with free –S–CH{sub 2}– groups as secondary donor sites. By use solvent control method, coordination polymers ([Ag{sub 3}SO{sub 4}(L1){sub 3}](Cl)·4.5H{sub 2}O){sub ∞}(1), ([Ag{sub 2}SO{sub 4}(L1){sub 2}]·6H{sub 2}O·2CH{sub 3}OH){sub ∞}(2), ([Ag{sub 2}SO{sub 4}(L2){sub 2}]·H{sub 2}O){sub ∞}(3) and ([Ag{sub 4}(SO{sub 4}){sub 2}(L2){sub 4}]·5H{sub 2}O){sub ∞}(4) with different architectures were obtained. Complexes 1, 3 and 4 feature 1D channel with different sizes and structures. Complex 1 exhibits guest exchange by THF and 1,4-dioxane, and Hg{sup 2+} sorptionmore » ability from solution due to its relative larger channel and available bonding sites of –S– exposed to the channel region. All complexes have been characterized through single-crystal and powder X-ray diffraction (PXRD), FT-IR spectra, X-ray photoelectron spectroscopy (XPS), elemental and thermogravimetric analyses. The guest exchange and Hg{sup 2+} sorption were monitored and identified, and the structure-property relationship of coordination polymers 1–4 are discussed. - Graphical abstract: Coordination polymers of silver(I) sulfate with secondary donor sites are shown guest exchange property and Hg{sup 2+} absorb ability from solution. This work provides a new method to construct functional materials with potential application. - Highlights: • New example of constructing functional coordination polymer with secondary donor methylthio group. • Guest exchange and interesting Hg(II) absorb ability from solution are investigated. • New method to construct functional materials with potential application.« less

  13. Three coordination polymers constructed from 5-(4-(tetrazol-5-yl)phenyl)isophthalic acid: Synthesis, crystal structure and properties

    NASA Astrophysics Data System (ADS)

    Zhai, Dandan; Sun, Wujuan; Fan, Fei; Liao, Xuzhao; Chen, Sanping; Yang, Xuwu

    2017-04-01

    Three new coordination polymers, namely, {[Co2(TPA)(μ3-O)3]·0.5DMA}n (1), {[Co(H2TPA)(bibp)(H2O)3]·H2O}n (2) and {[Cd3(TPA)2(phen)4]·4H2O}n (3), (H3TPA = 5-(4-(tetrazol-5-yl)phenyl)isophthalic acid, bibp = 4,4'-bis(imidazolyl)biphenyl, phen = 1,10-phenanthroline and DMA = N,N-dimethylacetamide), have been synthesized under solvothermal conditions and structurally characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction analysis. Polymer 1 exhibits a three-dimensional (3D) structure constructed from 5-connected secondary building units (SBUs) [Co3(μ3-O)] and 3-connected H3TPA ligands. Polymer 2 has a 1D zigzag polymer chain connected by H3TPA and bibp ligands. Polymer 3 features an unusual 3D framework with a (3,4,2)-connected {4; 6;8}{4; 62;83} topology. Moreover, the thermal stabilities of 1-3 and photoluminescence properties of 3 have been investigated. Magnetic susceptibility measurements indicate that polymers 1-2 display antiferromagnetic exchange properties.

  14. Syntheses, structures and magnetic properties of four coordination polymers based on nitrobenzene dicarboxylate and various N-donor coligands

    NASA Astrophysics Data System (ADS)

    Li, Gui-Lian; Yin, Wei-Dong; Liu, Guang-Zhen; Ma, Lu-Fang; Wang, Li-Ya

    2014-12-01

    Four new coordination polymers {[Ni(4-Nbdc)(bpa)(H2O)]}n (1), {[Co(4-Nbdc)(bpp) (H2O)]}n (2), {[Ni(4-Nbdc)(bpp)(H2O)]·H2O}n (3), and {[Mn2(3-Nbdc)2(bib)3]·2H2O}n (4) (4-Nbdc=4-nitrobenzene-1,2-dicarboxylate, 3-Nbdc=3-nitrobenzene-1,2-dicarboxylate, bpa=1,2-bi(4-pyridyl)ethane, bpp=1,3-bis(4-pyridyl)propane, and bib=1,4-bis(1-imidazoly)benzene), were synthesized by hydrothermal reactions, and characterized by single-crystal X-ray diffractions, elemental analysis, FT-IR, PXRD, TGA and magnetic analysis. Complexes 1 and 2 display quasi-trapezoidal chain and brick-wall layer, and both of them contain metal-carboxylate binuclear units. Complexes 3 and 4 exhibit three-dimensional frameworks with the (66) dia topology and (44.610.8)(44.62) fsc topology, and both of them contain metal-carboxylate chains. The carboxyl groups with syn-anti coordination mode mediate effectively the weak ferromagnetic coupling interaction within Ni(II)-carboxylate binuclear in 1 (J=1.27 cm-1) and Ni(II)-carboxylate chain in 3 (J=1.44 cm-1), respectively, and the carboxyl groups with anti-anti coordination mode leads to the classic antiferromagnetic coupling interaction within Mn(II)-carboxylate chain in 4 (J=-0.77 cm-1).

  15. N-donor co-ligands driven two new Co(II)- coordination polymers with bi- and trinuclear units: Crystal structures, and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Zhi-Hang; Han, Min-Le; Wu, Ya-Pan

    2016-10-15

    Two new Co(II) coordination polymers(CPs), namely [Co{sub 2}(bpe){sub 2}(Hbppc)]{sub n} (1) and [Co{sub 3}(μ{sub 3}-OH)(bppc)(bpm)(H{sub 2}O)]·3H{sub 2}O (2) (H{sub 5}bppc=biphenyl-2,4,6,3′,5′-pentacarboxylic acid, bpe=1,2-bis(4-pyridyl)ethene, bpm=bis(4-pyridyl)amine), have been obtained and characterized by elemental analysis, single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), IR spectra and thermogravimetric analysis (TGA). 1 shows a binodal (4,6)-connected fsc net with a (4{sup 4}·6{sup 10}·8)(4{sup 4}·6{sup 2}) topology, while 2 shows a binodal (5,7)-connected 3D network based on trinuclear [Co{sub 3}(μ{sub 3}-OH)]{sup 5+} units with unusual (3.4{sup 6}.5{sup 2}.6)(3{sup 2}.4{sup 6}.5{sup 7}.6{sup 5}.7) topology. Variable-temperature magnetic susceptibility measurements reveals that complex 1 shows ferromagnetic interactions between the adjacent Co(II)more » ions, whereas 2 is a antiferromagnetic system. - Graphical abstract: Two new Co(II) coordination polymers with bi- and trinuclear units have been obtained. 1 shows a binodal (4,6)-connected fsc net with a (4{sup 4}·6{sup 10}·8)(4{sup 4}·6{sup 2}) topology and antiferromagnetic interactions between the adjacent Co(II) ions, while 2 is a binodal (5,7)-connected 3D network with unusual (3.4{sup 6}.5{sup 2}.6)(3{sup 2}.4{sup 6}.5{sup 7}.6{sup 5}.7) topology and a ferromagnetic system. - Highlights: • Two Co(II) coordination polymers with different multimetallic clusters as building units. • A (4,6)-connected fsc net and a (5,7)-connected 3D network. • A antiferromagnetic coupling for 1 and A ferromagnetic coupling for 2.« less

  16. 3d-4f {Co(II)3Ln(OR)4} Cubanes as Bio-Inspired Water Oxidation Catalysts.

    PubMed

    Evangelisti, Fabio; Moré, René; Hodel, Florian; Luber, Sandra; Patzke, Greta Ricarda

    2015-09-02

    Although the {CaMn4O5} oxygen evolving complex (OEC) of photosystem II is a major paradigm for water oxidation catalyst (WOC) development, the comprehensive translation of its key features into active molecular WOCs remains challenging. The [Co(II)3Ln(hmp)4(OAc)5H2O] ({Co(II)3Ln(OR)4}; Ln = Ho-Yb, hmp = 2-(hydroxymethyl)pyridine) cubane WOC series is introduced as a new springboard to address crucial design parameters, ranging from nuclearity and redox-inactive promoters to operational stability and ligand exchange properties. The {Co(II)3Ln(OR)4} cubanes promote bioinspired WOC design by newly combining Ln(3+) centers as redox-inactive Ca(2+) analogues with flexible aqua-/acetate ligands into active and stable WOCs (max. TON/TOF values of 211/9 s(-1)). Furthermore, they open up the important family of 3d-4f complexes for photocatalytic applications. The stability of the {Co(II)3Ln(OR)4} WOCs under photocatalytic conditions is demonstrated with a comprehensive analytical strategy including trace metal analyses and solution-based X-ray absorption spectroscopy (XAS) investigations. The productive influence of the Ln(3+) centers is linked to favorable ligand mobility, and the experimental trends are substantiated with Born-Oppenheimer molecular dynamics studies.

  17. Highly active self-immobilized FI-Zr catalysts in a PCP framework for ethylene polymerization.

    PubMed

    Li, He; Xu, Bo; He, Jianghao; Liu, Xiaoming; Gao, Wei; Mu, Ying

    2015-12-04

    A series of zirconium-based porous coordination polymers (PCPs) containing FI catalysts in the frameworks have been developed and studied as catalysts for ethylene polymerization. These PCPs exhibit good catalytic activities and long life times, producing polyethylenes with high molecular weights and bimodal molecular weight distribution in the form of particles.

  18. Colloidal Dynamics Simulations of Rheology and Stability of Concentrated Fuel Slurries.

    DTIC Science & Technology

    1987-04-10

    Weals potential as the adsorbed polymer concentration and Hamaker con- stant are changed. These calculations provide quantitative evidence for the...derived by Hamaker : 3 6 U (r) A d 2 2 +2Ln( 2- d2(3 A T2 2 2 2 2 A value of 5.0 x 10" 2 0 j was used for the Hamaker constant, A. A plot of Eq. (31) is...parameter controlling the strength of the repulsive steric potential. The Hamaker constant A (Eq. (33)) is the nat- ural choice for the attractive

  19. Chemical Substitution and High Pressure Effects on Superconductors in the LnOBiS$$_2$$ (Ln = La-Nd) System

    DOE PAGES

    Fang, Yuankan; Wolowiec, Christian T.; Yazici, Duygu; ...

    2015-12-14

    A large number of compounds which contain BiSmore » $$_2$$ layers exhibit enhanced superconductivity upon electron doping. Much interest and research effort has been focused on BiS$$_2$$-based compounds which provide new opportunities for exploring the nature of superconductivity. Important to the study of BiS2-based superconductors is the relation between structure and superconductivity. By modifying either the superconducting BiS$$_2$$ layers or the blocking layers in these layered compounds, one can effectively tune the lattice parameters, local atomic environment, electronic structure, and other physical properties of these materials. In this article, we will review some of the recent progress on research of the effects of chemical substitution in BiS$$_2$$-based compounds, with special attention given to the compounds in the LnOBiSS$$_2$$ (Ln = La-Nd) system. Strategies which are reported to be essential in optimizing superconductivity of these materials will also be discussed.« less

  20. Four unexpected lanthanide coordination polymers involving in situ reaction of solvent N, N-Dimethylformamide

    NASA Astrophysics Data System (ADS)

    Jin, Jun-Cheng; Tong, Wen-Quan; Fu, Ai-Yun; Xie, Cheng-Gen; Chang, Wen-Gui; Wu, Ju; Xu, Guang-Nian; Zhang, Ya-Nan; Li, Jun; Li, Yong; Yang, Peng-Qi

    2015-05-01

    Four unexpected 2D lanthanide coordination polymers have been synthesized through in situ reactions of DMF solvent under solvothermal conditions. The isostructural complexes 1-3 contain four types of 21 helical chains. While the Nd(III) ions are bridged through μ2-HIDC2- and oxalate to form a 2D sheet along the bc plane without helical character in 4. Therefore, complex 1 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature.

  1. Synthesis and photoluminescence properties of novel Schiff base type polymer-rare earth complexes containing furfural-based bidentate Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Gao, Baojiao; Zhang, Dandan; Li, Yanbin

    2018-03-01

    Luminescent polymer-rare earth complexes are an important class of photoluminescence and electroluminescence materials. Via molecular design, two furfural-based bidentate Schiff base ligands, furfural-aniline (FA) type ligand and furfural-cyclohexylamine (FC) type ligand, were bonded on the side chains of polysulfone (PSF), respectively, forming two functionalized macromolecules, PSF-FA and PSF-FC. And then through respective coordination reactions of the two functionalized macromolecules with Eu(Ⅲ) ion and Tb(Ⅲ) ion, novel luminescent binary and ternary (with 1,10-phenanthroline as the second ligand) polymer-rare earth complexes were synthesized. For these complexes, on basis of the characterization of their chemical structures, they photoluminescence properties were main researched, and the relationship between their luminescent properties and structures was explored. The experimental results show that the complexes coming from PSF-FA and Eu(Ⅲ) ion including binary and ternary complexes emit strong red luminescence, indicating that the bonded bidentate Schiff base ligand FA can sensitize the fluorescence emission of Eu(III) ion. While the complexes coming from PSF-FC and Tb(Ⅲ) ion produce green luminescence, displaying that the bonded bidentate Schiff base ligand FC can sensitize the fluorescence emission of Tb(Ⅲ) ion. The fluorescence emission intensities of the ternary complexes were stronger than that of binary complexes, reflecting the important effect of the second ligand. The fluorescence emission of the solid film of complexes is much stronger than that of the solutions of complexes. Besides, by comparison, it is found that the furfural (as a heteroaromatic compound)-based Schiff base type polymer-rare earth complexes have stronger fluorescence emission and higher energy transfer efficiency than salicylaldehyde (as a common aromatic compound)-based Schiff base type polymer-rare earth complexes.

  2. Epitaxial ZnO/LiNbO{sub 3}/ZnO stacked layer waveguide for application to thin-film Pockels sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akazawa, Housei, E-mail: akazawa.housei@lab.ntt.co.jp; Fukuda, Hiroshi

    We produced slab waveguides consisting of a LiNbO{sub 3} (LN) core layer that was sandwiched with Al-doped ZnO cladding layers. The ZnO/LN/ZnO stacked layers were grown on sapphire C-planes by electron cyclotron resonance (ECR) plasma sputtering and were subjected to structural, electrical, and optical characterizations. X-ray diffraction confirmed that the ZnO and LN layers were epitaxial without containing misoriented crystallites. The presence of 60°-rotational variants of ZnO and LN crystalline domains were identified from X-ray pole figures. Cross-sectional transmission electron microscopy images revealed a c-axis orientated columnar texture for LN crystals, which ensured operation as electro-optic sensors based on opticalmore » anisotropy along longitudinal and transversal directions. The interfacial roughness between the LN core and ZnO bottom layers as well as that between the ZnO top and the LN core layers was less than 20 nm, which agreed with surface images observed with atomic force microscopy. Outgrowth of triangular LN crystalline domains produced large roughness at the LN film surface. The RMS roughness of the LN film surface was twice that of the same structure grown on sapphire A-planes. Vertical optical transmittance of the stacked films was higher than 85% within the visible and infrared wavelength range. Following the approach adopted by Teng and Man [Appl. Phys. Lett. 56, 1734 (1990)], ac Pockels coefficients of r{sub 33} = 24-28 pm/V were derived for c-axis oriented LN films grown on low-resistive Si substrates. Light propagation within a ZnO/LN/ZnO slab waveguide as well as within a ZnO single layer waveguide was confirmed. The birefringence of these waveguides was 0.11 for the former and 0.05 for the latter.« less

  3. Synthesis and characterization of two new zinc(II) coordination polymers with bidentate flexible ligands: Formation of a 2D structure with (44.62)-sql topology

    NASA Astrophysics Data System (ADS)

    Lalegani, Arash; Khaledi Sardashti, Mohammad; Gajda, Roman; Woźniak, Krzysztof

    2017-12-01

    Zinc(II) coordination polymers [Zn(bip)2(NCS)2]n (1) and [Zn(μ-bbd)(N3)2]n (2) were synthesized by using the neutral flexible bidentate N-donor ligands 1,4-bis(3,5-dimethylpyrazolyl)butane (bbd) and 1,3-bis(imidazolyl)propane (bip), mono-anionic NCS- or N3-ligand and zinc(II) chloride salts. The results of the X-ray analyses demonstrate that in the structure of 1, the zinc(II) ion is located on an inversion center and exhibits an ZnN6 octahedral arrangement while, in the structure of 2, the zinc(II) ion adopts an ZnN4 tetrahedral geometry. In the polymer 1, the NCS groups are terminally N-bonded to the metal center and the each bip with anti-gauche conformation acts as bridging connecting four zinc(II) ions to form a two-dimensional network with a sql [point symbol (44.62)] topology while, in the polymer 1, the N3 groups are terminally bonded to the metal center and each bbd with anti-anti-anti conformation acts as bridging ligand connecting two zinc(II) ions to form a one-dimensional zig-zag chain. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analyses of polymers were also presented.

  4. Poly[[sesqui[mu2-1,4-bis(imidazol-1-ylmethyl)benzene-kappa(2)N:N'](carbonato-kappa(2)O,O')copper(II)] 1,4-bis(imidazol-1-ylmethyl)benzene hemisolvate pentahydrate].

    PubMed

    Dai, Yu-Mei; Tang, En; Huang, Jin-Feng; Yang, Qiu-Yan

    2008-10-01

    The asymmetric unit of the title compound, {[Cu(CO(3))(C(14)H(14)N(4))(1.5)] x 0.5 C(14)H(14)N(4) x 5 H(2)O}(n), contains one Cu(II) cation in a slightly distorted square-pyramidal coordination environment, one CO(3)(2-) anion, one full and two half 1,4-bis(imidazol-1-ylmethyl)benzene (bix) ligands, one half-molecule of which is uncoordinated, and five uncoordinated water molecules. One of the coordinated bix ligands and the uncoordinated bix molecule are situated about centers of symmetry, located at the centers of the benzene rings. The coordinated bix ligands link the copper(II) ions into a [Cu(bix)(1.5)](n) molecular ladder. These molecular ladders do not form interpenetrated ladders but are arranged in an ABAB parallel terrace, i.e. with the ladders arranged one above another, with sequence A translated with respect to B by 8 A. To best of our knowledge, this arrangement has not been observed in any of the molecular ladder frameworks synthesized to date. The coordination environment of the Cu(II) atom is completed by two O atoms of the CO(3)(2-) anion. The framework is further strengthened by extensive O-H...O and O-H...N hydrogen bonds involving the water molecules, the O atoms of the CO(3)(2-) anion and the N atoms of the bix ligands. This study describes the first example of a molecular ladder coordination polymer based on bix and therefore demonstrates further the usefulness of bix as a versatile multidentate ligand for constructing coordination polymers with interesting architectures.

  5. Synthesis and characterization of a novel aminopolycarboxylate complexant for efficient trivalent f-element differentiation: N-butyl-2-acetamide-diethylenetriamine- N, N', N", N"-tetraacetic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heathman, Colt R.; Grimes, Travis S.; Jansone-Popova, Santa

    The novel metal ion complexant N-butyl-2-acetamide-diethylenetriamine-N,N',N",N"-tetraacetic acid (DTTA-BuA) uses an amide functionalization to increase the total ligand acidity and attain efficient 4f/5f differentiation in low pH conditions. The amide, when located on the diethylenetriamine platform containing four acetate pendant arms maintains the octadentate coordination sphere for all investigated trivalent f-elements. This compact coordination environment inhibits the protonation of LnL- complexes, as indicated by lower K 111 constants relative to the corresponding protonation site of the free ligand. For actinide ions, the enhanced stability of AnL- lowers the K 111 for americium and curium beyond the aptitude of potentiometric detection. Densitymore » functional theory computations indicate the difference in the back-donation ability of Am 3+ and Eu 3+ f-orbitals is mainly responsible for stronger proton affinity of EuL- compared to AmL-. The measured stability constants for the formation of AmL- and CmL- complexes are consistently higher, relative to ML- complexes with lanthanides of similar charge density. When compared with the conventional aminopolycarboxylate diethylenetriamine pentaacetic acid (DTPA), the modified DTTA-BuA complexant features higher ligand acidity and the important An 3+/Ln 3+ differentiation when deployed on a liquid–liquid distribution platform.« less

  6. N-donor co-ligands driven two new Co(II)- coordination polymers with bi- and trinuclear units: Crystal structures, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi-Hang; Han, Min-Le; Wu, Ya-Pan; Dong, Wen-Wen; Li, Dong-Sheng; Lu, Jack Y.

    2016-10-01

    Two new Co(II) coordination polymers(CPs), namely [Co2(bpe)2(Hbppc)]n (1) and [Co3(μ3-OH)(bppc)(bpm)(H2O)]·3H2O (2) (H5bppc=biphenyl-2,4,6,3‧,5‧-pentacarboxylic acid, bpe=1,2-bis(4-pyridyl)ethene, bpm=bis(4-pyridyl)amine), have been obtained and characterized by elemental analysis, single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), IR spectra and thermogravimetric analysis (TGA). 1 shows a binodal (4,6)-connected fsc net with a (44·610·8)(44·62) topology, while 2 shows a binodal (5,7)-connected 3D network based on trinuclear [Co3(μ3-OH)]5+ units with unusual (3.46.52.6)(32.46.57.65.7) topology. Variable-temperature magnetic susceptibility measurements reveals that complex 1 shows ferromagnetic interactions between the adjacent Co(II) ions, whereas 2 is a antiferromagnetic system.

  7. Three coordination polymers based on a star-like geometry 4, 4', 4'' -nitrilotribenzoic acid ligand and their framework dependent luminescent properties

    NASA Astrophysics Data System (ADS)

    Hu, Zhiyong; Zhao, Meng; Su, Jian; Xu, Shasha; Hu, Lei; Liu, Hui; Zhang, Qiong; Zhang, Jun; Wu, Jieying; Tian, Yupeng

    2018-02-01

    Three novel coordination polymers, [Zn(μ2-HTCA)(Phen)]n (1), {[Cd(μ3-HTCA)(Phen)]·2H2O}n (2), [Mn(μ2-HTCA)(Phen)(H2O)]n (3) were prepared by hydrothermal synthesis from the 4, 4', 4''-nitrilotribenzoicacid (H3TCA) and 1, 10-phenanthroline monohydrate (Phen) with different transition metal salts, which were characterized by elemental analysis, IR spectra, powder and single-crystal X-ray diffraction and thermogravimetric analysis. The photophysical properties of the complexes were investigated by solid-state diffuse reflectance spectra, photoluminescent properties, lifetime and quantum yield. For these complexes, it was found that the band gaps follow the order: 3 < 2 < 1 < 2.80 eV, fluorescence intensity order: 1 > H3TCA > 2 > 3; quantum yield order: H3TCA > 1 > 2 > 3; while the lifetime order: 1 > 2 > H3TCA > 3.

  8. Two novel metal-organic coordination polymers based on diphosphonate and oxalate: Synthesis, structures and properties

    NASA Astrophysics Data System (ADS)

    Niu, Qing-Jun; Zheng, Yue-Qing; Zhou, Lin-Xia; Zhu, Hong-Lin

    2015-07-01

    Two 2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonato and oxalic acid bridged coordination polymers (H2en)[Co3(H2zdn)2(ox)(H2O)2] (1) and Cd2(H2zdn)(ox)0.5(H2O) (2) (2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonic acid=H5zdn; oxalic acid=H2ox) were synthesized under hydrothermal conditions and characterized by the infrared (IR), thermogravimetric analyses (TGA), elemental analyses (EA) and X-ray diffraction (XRD). Compound 1 is bridged by phosphonate anions to 1D chain, and further linked by oxalate anions to 2D layer. Compound 2 is bridged by O-P-O units of H5zdn to the layer, and then pillared by oxalate anions to generate 3D frameworks. Compound 1 shows anti-ferromagnetic behaviors analyzed with the temperature-dependent zero-field ac magnetic susceptibilities, while compound 2 exhibits an influence on the luminescent property.

  9. Efficient tetracycline adsorption and photocatalytic degradation of rhodamine B by uranyl coordination polymer

    NASA Astrophysics Data System (ADS)

    Ren, Ya-Nan; Xu, Wei; Zhou, Lin-Xia; Zheng, Yue-Qing

    2017-07-01

    Two mixed uranyl-cadmium malonate coordination polymers [(UO2)2Cd(H-bipy)2(mal)4(H2O)2]·4H2O 1 and [(UO2)Cd(bipy)(mal)2]·H2O 2 (H2mal = malonic acid, bipy =4,4‧-bipyridine) have been synthesized in room temperature. Compound 1 represents a one-dimensional (1D) chain assembly of Cd(II) ions, uranyl centers and malonate ligands. Compound 2 exhibits a two-dimensional (2D) 2D +2D → 3D polycatenated framework based on inclined interlocked 2D 44 sql grids. The two compounds have been characterized by elemental analysis, IR and UV-vis spectroscopy, thermal analysis, powder X-ray diffraction and photoluminescence spectroscopy. And the ferroelectric property of 2 also has been studied. Moreover, compound 2 exhibits good photocatalytic activity for dye degradation under UV light and is excellent adsorbent for removing tetracycline antibiotics in the aqueous solution.

  10. The Hydrofacies Approach and Why ln K σ 2 <5-10 is Unlikely

    NASA Astrophysics Data System (ADS)

    Fogg, G. E.

    2004-12-01

    When heterogeneity of geologic systems is characterized in terms of hydrofacies rather than solely based on K measurements, the resulting flow and transport models typically contain not only aquifer materials but also significant volumes (10-70%) of aquitard materials. This leads to clear, heuristic rationale for the ln K σ 2 commonly exceeding 5 to 10, contradicting published data on ln K σ 2. I will explain the inconsistencies between commonly held assumptions of low (<1-2) ln K σ 2 and abundant geologic and hydrologic field data that indicate substantially larger values. The K data commonly cited in support of the low ln K σ 2 assumption have been misinterpreted because of unintentional, biased sampling. Geologic fundamentals and field data indicate that ln K σ 2 is commonly >10 and can easily exceed 20 in typical sedimentary deposits (not surficial soils) at spatial scales on the order of 101 to 102 m. Presence of large ln K σ 2 can be paramount in transport models and is often requisite for modeling observed transport phenomena such as preferential flow, extreme tailing, difficult remediation including frequent pump-and-treat failure, and significant, unanticipated mixing of groundwater ages.

  11. Family of defect-dicubane Ni4Ln2 (Ln = Gd, Tb, Dy, Ho) and Ni4Y2 complexes: rare Tb(III) and Ho(III) examples showing SMM behavior.

    PubMed

    Zhao, Lang; Wu, Jianfeng; Ke, Hongshan; Tang, Jinkui

    2014-04-07

    Reactions of Ln(III) perchlorate (Ln = Gd, Tb, Dy, and Ho), NiCl2·6H2O, and a polydentate Schiff base resulted in the assembly of novel isostructural hexanuclear Ni4Ln2 complexes [Ln = Gd (1), Tb (2), Dy (3), Ho (4)] with an unprecedented 3d-4f metal topology consisting of two defect-dicubane units. The corresponding Ni4Y2 (5) complex containing diamagnetic Y(III) atoms was also isolated to assist the magnetic studies. Interestingly, complexes 2 and 3 exhibit SMM characteristics and 4 shows slow relaxation of the magnetization. The absence of frequency-dependent in-phase and out-of-phase signals for the Ni-Y species suggests that the Ln ions' contribution to the slow relaxation must be effectual as previously observed in other Ni-Dy samples. However, the observation of χ″ signals with zero dc field for the Ni-Tb and Ni-Ho derivatives is notable. Indeed, this is the first time that such a behavior is observed in the Ni-Tb and Ni-Ho complexes.

  12. Molecular Motion in Polymers: Mechanical Behavior of Polymers Near the Glass-Rubber Transition Temperature.

    ERIC Educational Resources Information Center

    Sperling, L. H.

    1982-01-01

    The temperature at which the onset of coordinated segmental motion begins is called the glass-rubber transition temperature (Tg). Natural rubber at room temperature is a good example of a material above its Tg. Describes an experiment examining the response of a typical polymer to temperature variations above and below Tg. (Author/JN)

  13. Formation of Gd coordination polymer with 1D chains mediated by Bronsted acidic ionic liquids

    NASA Astrophysics Data System (ADS)

    Luo, Qianqian; Han, Ying; Lin, Hechun; Zhang, Yuanyuan; Duan, Chungang; Peng, Hui

    2017-03-01

    One dimensional coordination polymer Gd[(SO4)(NO3)(C2H6SO)2] (1) is prepared through the mediation of Bronsted acid ionic liquid, which crystallized in the monoclinic space of C2/c. In this polymer, adjacent Gd atoms are linked by two SO42- ions to generate a 1-D chain, and all oxygen atoms in SO42- groups are connected to three nearest Gd atoms in μ3:η1:η1:η2 fashion. Gd, S and N from SO42- and NO3- are precisely coplanar. The planar is coordinated by a pair of DMSO molecules, which is parallel and linked by hydrogen bonding to form a three-dimensional supramolecular network. Magnetic susceptibility measurement of 1 reveals weak antiferromagnetic interactions between the Gd (III) ions. It exhibits relatively large magneto-caloric effect with -ΔSm=28.8 J Kg-1 K-1 for ΔH=7 T.

  14. CdO-NPs; synthesis from 1D new nano Cd coordination polymer, characterization and application as anti-cancer drug for reducing the viability of cancer cells

    NASA Astrophysics Data System (ADS)

    Afzalian Mend, Behnaz; Delavar, Mahmoud; Darroudi, Majid

    2017-04-01

    The hexagonal CdO nano-particles (CdO-NPs) was prepared using new nano Cd coordination polymer, [Cd(NO3)(bipy)(pzca)]n (1) as a precursor, through direct calcination process at 500 °C. The precursor (1) was synthesized by sonochemical method. The new nano compound (1) was characterized by IR spectroscopy, elemental analyses, X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and thermal gravimetric analyses. The structure of nano coordination polymer was determined by comparing the XRD pattern of nano and single-crystal of compound (1). The nano CdO was characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). In addition, the activity and efficiency of nano CdO as an anti-cancer drug was studied on cancer cells with different concentration. The results shows that the viability of cancer cells reduced above 2 μg/mL of CdO-NPs concentration.

  15. Studies on the relation between the size and dispersion of metallic silver nanoparticles and morphologies of initial silver(I) coordination polymer precursor

    NASA Astrophysics Data System (ADS)

    Moradi, Zhaleh; Akhbari, Kamran; Phuruangrat, Anukorn; Costantino, Ferdinando

    2017-04-01

    Micro and nano-structures of [Ag2(μ2-dcpa)2]n (1), [Hdcpa = 2,4-dichlorophenoxyacetic acid] which is a one-dimensional coordination polymer with corrugated tape chains, were synthesized as the bulk sample (1B), by sonochemical process (1S) and from mechanochemical reaction (1M). These three samples have been used as new precursors for fabricating silver nanoparticles via direct calcination at 300 °C and also thermal decomposition in oleic acid (OA) as a surfactant at 180 °C. In the presence of OA less agglomerated nanostructures were formed. It seems that the size, dispersion, morphology and agglomeration of initial precursor have direct influence on size, dispersion, morphology and agglomeration of metallic silver. This coordination polymer with various micro and nano morphologies were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Thermal stability of these samples were studied and compared with each other, too.

  16. Air Quality Data for Metals 1970 Through 1974 from the ...

    EPA Pesticide Factsheets

    ... Ln f i i Ln ' F P 1 .nin • • t LI ! p Ln p p i Ln ' Ln T Ln • Ln • Ln ! i i Ln • Ln ! Ln • Ln • Ln • • • t .nn7 > .ni^ • LD ' .nin i t t i .PZT ! .nn7 • ,nn= • ?ND. QTR. ...

  17. Supramolecular architectures in Co(II) and Cu(II) complexes with thiophene-2-carboxylate and 2-amino-4,6-dimethoxypyrimidine ligands.

    PubMed

    Karthikeyan, Ammasai; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-05-01

    The coordination chemistry of mixed-ligand complexes continues to be an active area of research since these compounds have a wide range of applications. Many coordination polymers and metal-organic framworks are emerging as novel functional materials. Aminopyrimidine and its derivatives are flexible ligands with versatile binding and coordination modes which have been proven to be useful in the construction of organic-inorganic hybrid materials and coordination polymers. Thiophenecarboxylic acid, its derivatives and their complexes exhibit pharmacological properties. Cobalt(II) and copper(II) complexes of thiophenecarboxylate have many biological applications, for example, as antifungal and antitumor agents. Two new cobalt(II) and copper(II) complexes incorporating thiophene-2-carboxylate (2-TPC) and 2-amino-4,6-dimethoxypyrimidine (OMP) ligands have been synthesized and characterized by X-ray diffraction studies, namely (2-amino-4,6-dimethoxypyrimidine-κN)aquachlorido(thiophene-2-carboxylato-κO)cobalt(II) monohydrate, [Co(C5H3O2S)Cl(C6H9N3O2)(H2O)]·H2O, (I), and catena-poly[copper(II)-tetrakis(μ-thiophene-2-carboxylato-κ(2)O:O')-copper(II)-(μ-2-amino-4,6-dimethoxypyrimidine-κ(2)N(1):N(3))], [Cu2(C5H3O2S)4(C6H9N3O2)]n, (II). In (I), the Co(II) ion has a distorted tetrahedral coordination environment involving one O atom from a monodentate 2-TPC ligand, one N atom from an OMP ligand, one chloride ligand and one O atom of a water molecule. An additional water molecule is present in the asymmetric unit. The amino group of the coordinated OMP molecule and the coordinated carboxylate O atom of the 2-TPC ligand form an interligand N-H...O hydrogen bond, generating an S(6) ring motif. The pyrimidine molecules also form a base pair [R2(2)(8) motif] via a pair of N-H...N hydrogen bonds. These interactions, together with O-H...O and O-H...Cl hydrogen bonds and π-π stacking interactions, generate a three-dimensional supramolecular architecture. The one-dimensional coordination polymer (II) contains the classical paddle-wheel [Cu2(CH3COO)4(H2O)2] unit, where each carboxylate group of four 2-TPC ligands bridges two square-pyramidally coordinated Cu(II) ions and the apically coordinated OMP ligands bridge the dinuclear copper units. Each dinuclear copper unit has a crystallographic inversion centre, whereas the bridging OMP ligand has crystallographic twofold symmetry. The one-dimensional polymeric chains self-assemble via N-H...O, π-π and C-H...π interactions, generating a three-dimensional supramolecular architecture.

  18. Synthesis, structures, and luminescent and magnetic properties of Ln-Ag heterometal-organic frameworks.

    PubMed

    Zhao, Xiao-Qing; Zhao, Bin; Wei, Shi; Cheng, Peng

    2009-12-07

    A series of Ln-Ag heterometal-organic frameworks based on 4-hydroxylpyridine-2,6-dicarboxylic acid (H(3)CAM) with formulas {LaAg(2)(CAM)(HCAM)(H(2)O)(2)}(n) (1), {LnAg(HCAM)(2)(H(2)O)(3)}(n) (Ln = Pr, 2; Nd, 3; Sm, 4; Eu, 5), and {LnAg(3)(CAM)(2)(H(2)O)}(n) (Ln = Gd, 6; Tb, 7; Dy, 8; Tm, 9; Yb, 10), have been synthesized with the hydrothermal reaction of Ln(OH)(3), Ag(2)O, and H(3)CAM at 160 degrees C. The single-crystal X-ray diffraction analyses reveal that three kinds of structures are exclusively governed by the size of lanthanide ions and the progression of structures is mainly ascribed to the lanthanide contraction effect. Compound 1 consists of a 3D network with an alpha-polonium-like Ag(+)-homometallic net and helical La(3+) chain. Compounds 2-5 display a 2D honeycomb-like structure with 18-membered Ln(3)Ag(3)O(12) motifs, and compounds 6-10 can be described as a sandwich-like 3D framework built of a 3D Ag(+)-homometallic net and 2D Ln(3+)-4(4) layer. In 4 (Sm), 5 (Eu), 7 (Tb), and 8 (Dy) samples, the efficient energy transfer from CAM to Ln(III) ions was observed, which results in the typical intense emissions of corresponding Ln(III) ions in the visible region, and the strongest emissions are (4)G(5/2) --> (6)H(7/2) (602 nm), (5)D(0) --> (7)F(2) (614 nm), (5)D(4) --> (7)F(5) (548 nm), and (4)F(9/2) --> (6)H(13/2) (576 nm) transitions. Variable-temperature magnetic susceptibility measurements of 6-10 show that the ferromagnetic interaction between gadolinium(III) ions appears in 6, whereas the mu(eff) values of 7-10 smoothly decrease on cooling. For the orbital contribution of Ln(III) ions, it is very difficult to determine the intrinsic magnetic interactions between Ln(III) ions.

  19. A two-dimensional layered Cd(II) coordination polymer with a three-dimensional supramolecular architecture incorporating mixed multidentate N- and O-donor ligands.

    PubMed

    Huang, Qiu-Ying; Su, Ming-Yang; Meng, Xiang-Ru

    2015-06-01

    The combination of N-heterocyclic and multicarboxylate ligands is a good choice for the construction of metal-organic frameworks. In the title coordination polymer, poly[bis{μ2-1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole-κ(2)N(3):N(4)}(μ4-butanedioato-κ(4)O(1):O(1'):O(4):O(4'))(μ2-butanedioato-κ(2)O(1):O(4))dicadmium], [Cd(C4H4O4)(C9H8N6)]n, each Cd(II) ion exhibits an irregular octahedral CdO4N2 coordination geometry and is coordinated by four O atoms from three carboxylate groups of three succinate (butanedioate) ligands and two N atoms from two 1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole (bimt) ligands. Cd(II) ions are connected by two kinds of crystallographically independent succinate ligands to generate a two-dimensional layered structure with bimt ligands located on each side of the layer. Adjacent layers are further connected by hydrogen bonding, leading to a three-dimensional supramolecular architecture in the solid state. Thermogravimetric analysis of the title polymer shows that it is stable up to 529 K and then loses weight from 529 to 918 K, corresponding to the decomposition of the bimt ligands and succinate groups. The polymer exhibits a strong fluorescence emission in the solid state at room temperature.

  20. Syntheses, structures and selective dye adsorption of five formic-based coordination polymers prepared by in-situ hydrolysis of N, N‧-dimethylformamide

    NASA Astrophysics Data System (ADS)

    Zhu, Zheng; Meng, Xiang-min; Zhang, Dong-mei; Zhang, Xia; Wang, Mei; Jin, Fan; Fan, Yu-hua

    2017-04-01

    Five functional coordination polymers (formic-based CPs) namely: {[Cu2(CHOO)3(bibp)2]·CHOO}n (1), {[Co2(CHOO)3(bibp)2]·NO3·H2O}n (2), {[Ni2(CHOO)3(bibp)2]·NO3·H2O}n (3) [Co(CHOO)2(bbibp)]n (4) and [Zn(CHOO)2(bbibp)]n (5) (bibp=4,4‧-bis(imidazolyl)biphenyl, bbibp=4,4‧-bis(benzoimidazo-1-yl)biphenyl) have been successfully hydrothermally synthesized using the in-situ hydrolysis of N, N‧-dimethylformamide (DMF) as the source of formate. All of these five polymers were characterized by single-crystal X-ray diffraction, elemental analysis, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analysis. Complexes 1-3 have the similar three-dimensional 3D kag topological framework built from the bibp ligand as the support member between the neighboring formic planes. Both complexes 4 and 5 have the similar one-dimensional 1D linear chain which is further assembled into 3D supermolecular structure by C-H…O hydrogen bonds. The dyes adsorption experiments have also been investigated systematically. The results show that complexes 2 and 3 exhibit high selective adsorption ability towards anionic dyes in their aqueous solution. Moreover, complex 2 displays good reversibility in the process of the dyes adsorption-release. Meanwhile, the unusual blocking phenomenon was firstly observed when complex 2 was in MO/OIV aqueous solutions with different concentration.

  1. Molecular dynamics simulation of polymer electrolytes based on poly(ethylene oxide) and ionic liquids. I. Structural properties.

    PubMed

    Costa, Luciano T; Ribeiro, Mauro C C

    2006-05-14

    Molecular dynamics (MD) simulations have been performed for prototype models of polymer electrolytes in which the salt is an ionic liquid based on 1-alkyl-3-methylimidazolium cations and the polymer is poly(ethylene oxide), PEO. The MD simulations were performed by combining the previously proposed models for pure ionic liquids and polymer electrolytes containing simple inorganic ions. A systematic investigation of ionic liquid concentration, temperature, and the 1-alkyl- chain length, [1,3-dimethylimidazolium]PF6, and [1-butyl-3-methylimidazolium]PF6, effects on resulting equilibrium structure is provided. It is shown that the ionic liquid is dispersed in the polymeric matrix, but ionic pairs remain in the polymer electrolyte. Imidazolium cations are coordinated by both the anions and the oxygen atoms of PEO chains. Probability density maps of occurrences of nearest neighbors around imidazolium cations give a detailed physical picture of the environment experienced by cations. Conformational changes on PEO chains upon addition of the ionic liquid are identified. The equilibrium structure of simulated systems is also analyzed in reciprocal space by using the static structure factor, S(k). Calculated S(k) display a low wave-vector peak, indicating that spatial correlation in an extended-range order prevail in the ionic liquid polymer electrolytes. Long-range correlations are assigned to nonuniform distribution of ionic species within the simulation box.

  2. Fatigue Properties of Modified 316LN Stainless Steel at 4 K for High Field Cable-In Applications

    NASA Astrophysics Data System (ADS)

    Toplosky, V. J.; Walsh, R. P.; Han, K.

    2010-04-01

    Cable-In-Conduit-Conductor (CICC) alloys, exposed to Nb3Sn reaction heat-treatments, such as modified 316LN require a design specific database. A lack of fatigue life data (S-n curves) that could be applied in the design of the ITER CS and the NHMFL Series Connected Hybrid magnets is the impetus for the research presented here. The modified 316LN is distinguished by a lower carbon content and higher nitrogen content when compared to conventional 316LN. Because the interstitial alloying elements affect the mechanical properties significantly, it is necessary to characterize this alloy in a systematic way. In conjunction, to ensure magnet reliability and performance, several criteria and expectations must be met, including: high fatigue life at the operating stresses, optimal stress management at cryogenic temperatures and thin walled conduit to reduce coil mass. Tension-tension load control axial fatigue tests have good applicability to CICC solenoid magnet design, thus a series of 4 K strength versus fatigue life curves have been generated. In-situ samples of 316LN base metal, seam welded, butt welded and seam plus butt welded are removed directly from the conduit in order to address base and weld material fatigue life variability. The more than 30 fatigue tests show good grouping on the fatigue life curve and allow discretionary 4 K fatigue life predictions for conduit made with modified 316LN.

  3. [Concentrations and Distribution of Metals in the Core Sediments from Estuary and City Section of Liaohe River].

    PubMed

    Wang, Wei-jie; Zhou, Jun-li; Pei, Shu-wei; Liu, Zheng-tao

    2016-01-15

    The particle size, total organic carbon (TOC), total nitrogen (TN), C/N ratio and metal concentrations as well as activities of 210Pb were determined in Liaohe River estuary area (LN-2) and Shenyang area (LN-5), and the organic matter resources were discussed in two core sediments. Also the index of geoaccumulation (Igeo) and enrichment factors (EFs) methods were applied to evaluate the state of heavy metal contamination in the studied sties. The study showed that both sediment cores LN-2 and LN-5 were dominated by silts, and the vertical variations of grain-size composition and organic matter were well distributed in LN- 2 while fluctuated in LN-5. According to the organic matter source analysis through C/N ratio, C/N ratio varied in the scale of 5. 24-7.93 in LN-2 which was dominated by river source, and 9.94-14.21 in LN-5 which was dominated by terrestrial input. Al, Ca, Fe, Mn, Ni, Cu, Zn, Cd, Pb and Cr in two sediment cores had different vertical changing rules, Ni and Zn in LN-2 as well as Pb and Zn in LN-5 were affected by both natural and human factors, other elements had similar distributions to those of organic matters, which showed that these elements were mainly affected by the natural activities. Based on Igeo and EFs, both sediment cores were more severely polluted with Ni, Zn and Pb than other metals. The effects of human activities on the environment were also discussed in this study, combined with the economical development of Liaoning Province and the studied sites in the past 20 years.

  4. Synthesis and Characterization of Templated Ion Exchange Resins for the Selective Complexion of Actinide Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murrray, George M.; Uy, O. Manuel

    The purpose of this research is to develop polymeric extractants for the selective complexation of uranyl ions (and subsequently other actinyl and actinide ions) from aqueous solutions. Selectivity for a specific actinide ion is obtained by providing the polymers with cavities lined with complexing ligands so arranged as to match the charge, coordination number, coordination geometry, and size of the actinide ion. These cavity-containing polymers are produced by using a specific actinide ion (or surrogate) as a template around which monomeric complexing ligands are polymerized. The polymers provide useful sequestering agents for removing actinide ions from wastes and will formmore » the basis for a variety of analytical techniques for actinide determination.« less

  5. Facile synthesis of 2D Zn(II) coordination polymer and its crystal structure, selective removal of methylene blue and molecular simulations

    NASA Astrophysics Data System (ADS)

    Sezer, Güneş Günay; Yeşilel, Okan Zafer; Şahin, Onur; Arslanoğlu, Hasan; Erucar, İlknur

    2017-09-01

    A new coordination polymer {[Zn(μ3-ppda)(H2O)(μ-bpa)Zn(μ-ppda)(μ-bpa)]·4H2O}n (1) (ppda = 1,4-phenylenediacetate, bpa = 1,2-bis(4-pyridyl)ethane) has been synthesized by microwave-assisted reaction and characterized by elemental analysis, IR spectroscopy, single-crystal and powder X-ray diffractions. The asymmetric unit of 1 consists of two Zn(II) ions, two bpa ligands, two ppda ligands, one coordinated and four non-coordinated water molecules. In 1, ppda2- anions are linked the adjacent Zn(II) centers to generate 1D double-stranded chains. These chains are connected into 2D sheets by the bridging bpa ligands. Atomically detailed modeling was performed to compute single and binary component adsorption isotherms of H2, CO2, CH4 and N2 in complex 1. Results showed that 1 exhibits a high adsorption selectivity towards CO2 due to its high affinity for CO2. Results of this study will be helpful to guide the microwave-assisted reaction of coordination polymers to design promising adsorbents for gas storage and gas separation applications. The luminescent property of 1 and the selective removal of dyes in 1 have been also discussed. Results showed that 1 can be a potential candidate for luminescence applications and can selectively adsorb methylene blue (MB) dye molecules.

  6. Porphyrin framework solids. Synthesis and structure of hybrid coordination polymers of tetra(carboxyphenyl)porphyrins and lanthanide-bridging ions.

    PubMed

    Muniappan, Sankar; Lipstman, Sophia; George, Sumod; Goldberg, Israel

    2007-07-09

    New types of porphyrin-based framework solids were constructed by reacting meso-tetra(3-carboxyphenyl)porphyrin and meso-tetra(4-carboxyphenyl)metalloporphyrins with common salts of lanthanide metal ions. The large size, high coordination numbers and strong affinity for oxo ligands of the latter, combined with favorable hydrothermal reaction conditions, allowed the formation of open three-dimensional single-framework architectures by coordination polymerization, in which the tetradentate porphyrin units are intercoordinated by multinuclear assemblies of the bridging metal ions. The latter serve as construction pillars of the supramolecular arrays, affording stable structures. Several modes of coordination polymerization were revealed by single-crystal X-ray diffraction. They differ by the spatial functionality of the porphyrin building blocks, the coordination patterns of the lanthanide-carboxylate assemblies, and the topology of the resulting frameworks. The seven new reported structures exhibit periodically spaced 0.4-0.6 nm wide channel voids that perforate the respective crystalline polymeric architectures and are accessible to solvent components. Materials based on the m-carboxyphenyl derivative reveal smaller channels than those based on the p-carboxyphenyl analogues. An additional complex of the former with a smaller third-row transition metal (Co) is characterized by coordination connectivity in two dimensions only. Thermal and powder-diffraction analyses confirm the stability of the lanthanide-TmCPP (TmCPP=tetra(m-carboxyphenyl)porphyrin) frameworks.

  7. A supramolecular Tröger's base derived coordination zinc polymer for fluorescent sensing of phenolic-nitroaromatic explosives in water† †Electronic supplementary information (ESI) available: Spectroscopic (multinuclear NMR, IR HRMS) characterizations, optimized structure, TGA, powder diffraction and fluorescence titration profiles. See DOI: 10.1039/c6sc04367d Click here for additional data file.

    PubMed Central

    Dabadie, Charlyne; Byrne, Kevin; Savyasachi, Aramballi J.; Umadevi, Deivasigamani; Schmitt, Wolfgang; Kitchen, Jonathan A.

    2017-01-01

    A V-Shaped 4-amino-1,8-napthalimide derived tetracarboxylic acid linker (L; bis-[N-(1,3-benzenedicarboxylic acid)]-9,18-methano-1,8-naphthalimide-[b,f][1,5]diazocine) comprising the Tröger's base (TB) structural motif was rationally designed and synthesised to access a nitrogen-rich fluorescent supramolecular coordination polymer. By adopting the straight forward precipitation method, a new luminescent nanoscale Zn(ii) coordination polymer (TB-Zn-CP) was synthesized in quantitative yield using Zn(OAc)2·2H2O and tetraacid linker L (1 : 0.5) in DMF at room temperature. The phase-purity of as-synthesised TB-Zn-CP was confirmed by X-ray powder diffraction analysis, infra-red spectroscopy, and elemental analysis. Thermogravimetric analysis suggests that TB-Zn-CP is thermally stable up to 330 °C and the morphological features of TB-Zn-CP was analysed by SEM and AFM techniques. The N2 adsorption isotherm of thermally activated TB-Zn-CP at 77 K revealed a type-II reversible adsorption isotherm and the calculated Brunauer–Emmett–Teller (BET) surface area was found to be 72 m2 g–1. Furthermore, TB-Zn-CP displayed an excellent CO2 uptake capacity of 76 mg g–1 at 273 K and good adsorption selectivity for CO2 over N2 and H2. The aqueous suspension of as-synthesized TB-Zn-CP showed strong green fluorescence (λ max = 520 nm) characteristics due to the internal-charge transfer (ICT) transition and was used as a fluorescent sensor for the discriminative sensing of nitroaromatic explosives. The aqueous suspension of TB-Zn-CP showed the largest quenching responses with high selectivity for phenolic-nitroaromatics (4-NP, 2,4-DNP and PA) even in the concurrent presence of other potentially competing nitroaromatic analytes. The fluorescence titration studies also provide evidence that TB-Zn-CP detects picric acid as low as the parts per billion (26.3 ppb) range. Furthermore, the observed fluorescence quenching responses of TB-Zn-CP towards picric acid were highly reversible. The highly selective fluorescence quenching responses including the reversible detection efficiency make the nanoscale coordination polymer TB-Zn-CP a potential material for the discriminative fluorescent sensing of nitroaromatic explosives. PMID:28572910

  8. Synthesis, crystal structure and magnetic characterization of metal(II) coordination polymers based on 2-carboxyethylphosphonic acid and 1,10-phenanthroline (metal=Cu, Co, Cd)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez-Zapico, Eva; Montejo-Bernardo, Jose Manuel; D'Vries, Richard

    2011-12-15

    Three non-isostructural metal(II) coordination polymers (metal=copper, cobalt, cadmium) were synthesized under the same mild hydrothermal conditions (T=408 K) by mixture of the corresponding metal acetate with 2-carboxyethylphosphonic acid and 1,10-phenanthroline (1:1:1 M ratio) and their structures were determined by single-crystal X-ray diffraction. Cu{sub 2}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 2}(H{sub 2}O){sub 2} and Cd{sub 2}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 2} are triclinic (space group P-1) with a=7.908(5) A, b=10.373(5) A, c=11.515(5) A, {alpha}=111.683(5) Degree-Sign , {beta}=95.801(5) Degree-Sign , {gamma}=110.212(5) Degree-Sign (T=120 K), and a=8.162(5) A, b=9.500(5) A, c=11.148(5) A, {alpha}=102.623(5) Degree-Sign , {beta}=98.607(5) Degree-Sign ,more » {gamma}=113.004(5) Degree-Sign (T=293 K), respectively. In contrast, [Co{sub 2}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 2}({mu}-OH{sub 2})](H{sub 2}O) is orthorhombic (space group Pbcn) with a=21.1057(2) A, b=9.8231(1) A, c=15.4251(1) A (T=120 K). For these three compounds, structural features, including H-bond network and the {pi}-{pi} stacking interactions, and thermal stability are reported and discussed. None of the materials present a long-range magnetic order in the range of temperatures investigated from 300 K down to 1.8 K. - Graphical abstract: In same synthetic conditions, both the chemical and structural features of three transition metal(II) coordination polymers based on 2-carboxyethylphosphonate and 1-10 Prime -phenanthroline are influenced by the metal cation characteristics, leading to non-homologous materials with different properties, which show the high chemical versatility of this interesting system. Highlights: Black-Right-Pointing-Pointer Non-isostructural metal coordination polymers were synthesized under mild hydrothermal conditions. Black-Right-Pointing-Pointer Ligand's flexibility provides the opportunity to design compounds with tailored properties. Black-Right-Pointing-Pointer Structural changes in the secondary building units are induced by metal features.« less

  9. Metal-organophosphine and metal-organophosphonium frameworks with layered honeycomb-like structures.

    PubMed

    Humphrey, Simon M; Allan, Phoebe K; Oungoulian, Shaunt E; Ironside, Matthew S; Wise, Erica R

    2009-04-07

    Phosphanotriylbenzenecarboxylic acid (ptbcH(3); P(C(6)H(4)-p-CO(2)H)(3)) and its methyl phosphonium iodide derivative (mptbcH(3)I; {H(3)CP(C(6)H(4)-p-CO(2)H)(3)}I) have been used as organic building blocks in reaction with Zn(ii) salts to obtain a series of related two-dimensional coordination polymers with honeycomb-like networks. The variable coordination number and oxidation states available to phosphorus have been exploited to produce a family of related phosphine coordination materials (PCMs) using a single ligand precursor. The phosphine carboxylate trianion, ptbc(3-), reacted with Zn(ii) to form 3,3-connected undulating hexagonal sheets based on tetrahedral P and Zn nodes, where Zn-ptbc = 1 : 1. When hydroxide was used as an additional framework ligand, Zn(4)(OH)(2) clusters were obtained. The clusters support 6,3-connected bilayers that consist of pairs of fused hexagonal sheets (Zn-ptbc = 2 : 1) with intra-layer pore spaces. The Zn(4)(OH)(2) clusters are also coordinated by solvent, which was preferentially displaced when the bilayer material was synthesized in the presence of ethylene diamine. Treatment of ptbc(3-) with MeI resulted in methylation of the phosphine to give the P(v) phosphonium iodide salt derivative. The formally dianionic methylphosphonium tricarboxylate building block, mptbc(2-), has the same trigonal-pyramidal bridging geometry as the parent phosphine. However, mptbc(2-) reacted with Zn(ii) on a 1 : 1 stoichiometric ratio to give an unusual trilayer sheet polymer that is based exclusively on 3-connected nodes. Solid-state (31)P NMR studies confirmed that the phosphine ligands were resistant to oxidation upon solvothermal reaction under aerobic conditions.

  10. Rational Organization of Lanthanide-Based SMM Dimers into Three-Dimensional Networks.

    PubMed

    Yi, Xiaohui; Calvez, Guillaume; Daiguebonne, Carole; Guillou, Olivier; Bernot, Kevin

    2015-06-01

    Optimization of the reaction of [Ln(hfac)3]·2H2O and pyridine-N-oxide (PyNO), which is known to afford double-bridged dimers, leads to triple-bridged dimers of formula [(Ln(hfac)3)2(PyNO)3] (Ln = Gd (1), Dy (2)) from which the Dy derivative (2) behaves as a single-molecule magnet (SMM). The pseudo threefold axis symmetry of this zero-dimensional building block makes possible its extension into a tridimensional network. By changing PyNO for 4,4'-bipyridine N,N'-dioxide (4,4'BipyNO) a tridimensional compound of formula {[Ln(hfac)3]2(4,4'BipyNO)2]} (Ln = Eu (3), Gd (4), and Dy (5)) is then rationally obtained. This covalent three-dimensional (3D) network has a remarkably high cell volume (V = 24 419 A(3)) and is an arrangement of interpenetrated 3D subnetworks whose triple-bridged dimers still behave as SMMs.

  11. Eu(III) Complexes of Octadentate 1-Hydroxy-2-pyridinones: Stability and Improved Photophysical Performance[].

    PubMed

    Moore, Evan G; D'Aléo, Anthony; Xu, Jide; Raymond, Kenneth N

    2009-10-13

    The luminescence properties of lanthanoid ions can be dramatically enhanced by coupling them to antenna ligands that absorb light in the UV/visible and then efficiently transfer the energy to the lanthanoid center. The synthesis and the complexation of Ln(III) cations (Ln=Eu; Gd) for a ligand based on four 1-hydroxy-2-pyridinone (1,2-HOPO) chelators appended to a ligand backbone derived by linking two L-lysine units (3LI-bis-LYS) is described. This octadentate Eu(III) complex ([Eu(3LI-bis-LYS-1,2-HOPO)](-)) has been evaluated in terms of its thermodynamic stability, UV/visible absorption and luminescence properties. For this complex the conditional stability constant (pM) is 19.9, which is an order of magnitude higher than diethylenetriaminepentacetic acid (DTPA) at pH= 7.4. This Eu(III) complex also shows an almost two-fold increase in its luminescence quantum yield in aqueous solution (pH= 7.4) when compared to other octadentate ligands. Hence, despite a slight decrease of the molar absorption coefficient, a much higher brightness is obtained for [Eu(3LI-bis-LYS-1,2-HOPO)](-). This overall improvement was achieved by saturating the coordination sphere of the Eu(III) cation, yielding an increased metal centered efficiency by excluding solvent water molecules from the metal's inner sphere.

  12. Effect of concentration of molecular crowder on the unfolding force distribution: emergence of a long tail

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjiv; Singh, Amit Raj; Giri, Debaprasad; Kumar, Sanjay

    2017-03-01

    We investigate the force induced unfolding transitions of a polymer in presence of crowding particles over a wide range of conditions. The polymer conformations are specified by the reaction coordinate i.e. end-to-end distance and the quality of the solvent. Crowding distribution is obtained through the percolation process, which gives rise to a distribution of clusters of different shapes and sizes starting from isolated disorder sites up to clusters with an extent spanning the entire system. It was shown here that the polymer structures are altered by such distributions and induces an array of structural changes in the form of intermediate states. It was found that the mechanical stability of polymer was insensitive at lower concentration, but increases at higher concentration. This is in accordance with experiments. Exact results based on a short polymer revealed that there is emergence of a long tail in the unfolding force distributions. This is less visible at lower concentration, but has significant contribution at higher concentration. This important feature either was overlooked or not explored so far, and therefore, needs further investigation.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingjie, E-mail: yzx@ansto.gov.au; Bhadbhade, Mohan; Karatchevtseva, Inna

    Three new coordination polymers of uranium(VI) with pyromellitic acid (H{sub 4}btca) have been synthesized and structurally characterized. (ED)[(UO{sub 2})(btca)]·(DMSO)·3H{sub 2}O (1) (ED=ethylenediammonium; DMSO=dimethylsulfoxide) has a lamellar structure with intercalation of ED and DMSO. (NH{sub 4}){sub 2}[(UO{sub 2}){sub 6}O{sub 2}(OH){sub 6}(btca)]·~6H{sub 2}O (2) has a 3D framework built from 7-fold coordinated uranyl trinuclear units and btca ligands with 1D diamond-shaped channels (~8.5 Å×~8.6 Å). [(UO{sub 2}){sub 2}(H{sub 2}O)(btca)]·4H{sub 2}O (3) has a 3D network constructed by two types of 7-fold coordinated uranium polyhedron. The unique μ{sub 5}-coordination mode of btca in 3 enables the formation of 1D olive-shaped large channels (~4.5more » Å×~19 Å). Vibrational modes, thermal stabilities and fluorescence properties have been investigated. - Graphical abstract: Table of content: three new uranium(VI) coordination polymers with pyromellitic acid (H{sub 4}btca) have been synthesized via room temperature and hydrothermal synthesis methods, and structurally characterized. Two to three dimensional (3D) frameworks are revealed. All 3D frameworks have unique 1D large channels. Their vibrational modes, thermal stabilities and photoluminescence properties have been investigated. - Highlights: • Three new coordination polymers of U(VI) with pyromellitic acid (H{sub 4}btca). • Structures from a 2D layer to 3D frameworks with unique 1D channels. • Unusual µ{sub 5}-(η{sub 1}:η{sub 2}:η{sub 1}:η{sub 2:}η{sub 1}) coordination mode of btca ligand. • Vibrational modes, thermal stabilities and luminescent properties reported.« less

  14. catena-Poly[[triphenyl-tin(IV)]-μ-phenyl-phosphinato-κO:O'].

    PubMed

    Diop, Tidiane; Diop, Libasse; Kociok-Köhn, Gabriele; Molloy, Kieran C; Stoeckli-Evans, Helen

    2011-12-01

    In the structure of the title coordination polymer, [Sn(C(6)H(5))(3)(C(6)H(6)O(2)P)](n) or [PhP(H)O(2)Sn(IV)(Ph)(3)](n), the Sn(IV) atom is five-coordinate, with the SnC(3)O(2) framework in a trans trigonal-bipyramidal arrangement having the PhP(H)O(2) (-) anions in apical positions. In the crystal, neighbouring polymer chains are linked via C-H⋯π inter-actions, forming a two-dimensional network lying parallel to (001).

  15. Coordination polymers of 5-substituted isophthalic acid

    DOE PAGES

    McCormick, Laura J.; Morris, Samuel A.; Slawin, Alexandra M. Z.; ...

    2015-12-10

    In this work, the synthesis and characterisation of five coordination polymers - Ni 2(mip) 2 (H 2O) 8 ·2H 2O (1), Zn 6(mip) 5(OH) 2(H 2O) 4 ·7.4H 2O (2), Zn 6(mip) 5(OH) 2(H 2O) 2 ·4H 2O (3), Mn(HMeOip) 2 (4), and Mn 3(tbip) 2(Htbip) 2(EtOH) 2 (5) - are reported. Preliminary nitric oxide release data on compounds 2 and 3 are also given.

  16. DNA sensing by a Eu-binding peptide containing a proflavine unit.

    PubMed

    Ancel, Laetitia; Gateau, Christelle; Lebrun, Colette; Delangle, Pascale

    2013-01-18

    Synthesis of a lanthanide-binding peptide (LBP) for the detection of double-stranded DNA is presented. A proflavine moiety was introduced into a high affinity LBP involving two unnatural chelating amino acids in the Ln ion coordination. The Eu(3+)-LBP complex is demonstrated to bind to ct-DNA and to sensitize Eu luminescence. The DNA binding process is effectively detected via the Eu-centered luminescence thanks to the intimate coupling between the LBP scaffold and DNA intercalating unit.

  17. Job Language Performance Requirements for MOS 44B. Metal Worker. Reference Soldier’s Manual Dated 17 April 1979.

    DTIC Science & Technology

    1979-04-17

    i I tie frlr. o, -J*:, i io s )r *i r -is 1 :1 iv 71 1, q. Q’ " n -’ d to - ’ln t i: s ’I osl o SA A~S: 11,0% unid-rs! n d i of ?rint, d c ,,.I tt...readings off dosimeter Coordinate scales Callsigns-suffices Three-letter codes Exmples Calculations Markings Radio comunications Range cards Notes Messages V

  18. Enhancing Cation Diffusion and Suppressing Anion Diffusion via Lewis-Acidic Polymer Electrolytes.

    PubMed

    Savoie, Brett M; Webb, Michael A; Miller, Thomas F

    2017-02-02

    Solid polymer electrolytes (SPEs) have the potential to increase both the energy density and stability of lithium-based batteries, but low Li + conductivity remains a barrier to technological viability. SPEs are designed to maximize Li + diffusivity relative to the anion while maintaining sufficient salt solubility. It is thus remarkable that poly(ethylene oxide) (PEO), the most widely used SPE, exhibits Li + diffusivity that is an order of magnitude smaller than that of typical counterions at moderate salt concentrations. We show that Lewis-basic polymers like PEO favor slow cation and rapid anion diffusion, while this relationship can be reversed in Lewis-acidic polymers. Using molecular dynamics, polyboranes are identified that achieve up to 10-fold increases in Li + diffusivities and significant decreases in anion diffusivities, relative to PEO in the dilute-ion regime. These results illustrate a general principle for increasing Li + diffusivity and transference number with chemistries that exhibit weaker cation and stronger anion coordination.

  19. Application of a novel red-emitting cationic iridium(III) coordination polymer in warm white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chen, Mingxian; Sun, Riyong; Ye, Yanchun; Tang, Huaijun; Dong, Xueyan; Yan, Jialun; Wang, Kaimin; Zhou, Qiang; Wang, Zhengliang

    2018-02-01

    A novel red-emitting cationic iridium(III) coordination polymer using 2-(9-(2-ethylhexyl)-9H-carbazol-3-yl)benzo[d]thiazole as main ligands, 4,4‧-bipyridine as bridging auxiliary ligands and Clˉ as anions was synthesized. It had high thermal stability with a thermal decomposition temperature (Td) of 345 °C and low thermal quenching with an activation energy (Ea) of 0.2760 eV, with the temperature increasing from 20 °C to 100 °C, its photoluminescent intensity decreased to 76.7%. It can be efficiently excited by blue light of GaN chips, the cold white light of GaN-based LEDs using only Y3Al5O12:Ce3+ (YAG:Ce, 7.0 wt% in silicone) as phosphors can become warmer when it was blended in. When blending concentrations were 0.1 wt% and 0.2 wt%, the cold white light became neutral white light, the correlated color temperature (CCT) decreased from 6157 K to 5240 K, then to 4043 K, the color rendering index (CRI) changed from 72.7 to 81.3, then to 78.6, the luminous efficiency (ηL) changed from 134.1 lm·w-1 to 61.9 lm·w-1, then to 46.3 lm·w-1, the Commission Internationale de L'Eclairage (CIE) chromaticity coordinates changed from (0.32, 0.33) to (0.34, 0.33), then to (0.38, 0.36). At 0.3 wt%, the light became warm white light, the corresponding CCT was 3475 K, CRI was 75.6, ηL was 36.9 lm·w-1, and CIE value was (0.41, 0.40). The results suggest the coordination polymer is a promising red-emitting phosphor candidate for neutral and warm white LEDs, especially for warm white LEDs.

  20. Renal-Clearable Ultrasmall Coordination Polymer Nanodots for Chelator-Free 64Cu-Labeling and Imaging-Guided Enhanced Radiotherapy of Cancer.

    PubMed

    Shen, Sida; Jiang, Dawei; Cheng, Liang; Chao, Yu; Nie, Kaiqi; Dong, Ziliang; Kutyreff, Christopher J; Engle, Jonathan W; Huang, Peng; Cai, Weibo; Liu, Zhuang

    2017-09-26

    Developing tumor-homing nanoparticles with integrated diagnostic and therapeutic functions, and meanwhile could be rapidly excreted from the body, would be of great interest to realize imaging-guided precision treatment of cancer. In this study, an ultrasmall coordination polymer nanodot (CPN) based on the coordination between tungsten ions (W VI ) and gallic acid (W-GA) was developed via a simple method. After polyethylene glycol (PEG) modification, PEGylated W-GA (W-GA-PEG) CPNs with an ultrasmall hydrodynamic diameter of 5 nm were rather stable in various physiological solutions. Without the need of chelator molecules, W-GA-PEG CPNs could be efficiently labeled with radioisotope 64 Cu 2+ , enabling positron emission tomography (PET) imaging, which reveals efficient tumor accumulation and rapid renal clearance of W-GA-PEG CPNs upon intravenous injection. Utilizing the radio-sensitizing function of tungsten with strong X-ray absorption, such W-GA-PEG CPNs were able to greatly enhance the efficacy of cancer radiotherapy in inhibiting the tumor growth. With fast clearance and little long-term body retention, those W-GA-PEG CPNs exhibited no appreciable in vivo toxicity. This study presents a type of CPNs with excellent imaging and therapeutic abilities as well as rapid renal clearance behavior, promising for further clinic translation.

Top