Science.gov

Sample records for lng facility siting

  1. The role of consequence modeling in LNG facility siting.

    PubMed

    Taylor, Dennis W

    2007-04-11

    Liquefied natural gas (LNG) project modeling focuses on two primary issues, facility siting and the physical layout of element spacing. Modeling often begins with an analysis of these issues, while ensuring code compliance and sound engineering practice. The most commonly performed analysis involves verifying compliance with the siting provisions of NFPA 59A, which primarily concern property-line spacing (offsite hazard impacts). If the facility is located in the US, compliance with 49 CFR 193 is also required. Other consequence modeling is often performed to determine the spacing of elements within the facility (onsite hazard impacts). Often, many issues concerning in-plant spacing are addressed with the guidance provided in Europe's LNG standard, EN-1473. Spacing of plant buildings in relation to process areas is also a concern as analyzed using the approach given in API RP 752. Studies may also include probabilistic analysis, depending on the perceived risk and cost of mitigation.

  2. The role of consequence modeling in LNG facility siting.

    PubMed

    Taylor, Dennis W

    2007-04-11

    Liquefied natural gas (LNG) project modeling focuses on two primary issues, facility siting and the physical layout of element spacing. Modeling often begins with an analysis of these issues, while ensuring code compliance and sound engineering practice. The most commonly performed analysis involves verifying compliance with the siting provisions of NFPA 59A, which primarily concern property-line spacing (offsite hazard impacts). If the facility is located in the US, compliance with 49 CFR 193 is also required. Other consequence modeling is often performed to determine the spacing of elements within the facility (onsite hazard impacts). Often, many issues concerning in-plant spacing are addressed with the guidance provided in Europe's LNG standard, EN-1473. Spacing of plant buildings in relation to process areas is also a concern as analyzed using the approach given in API RP 752. Studies may also include probabilistic analysis, depending on the perceived risk and cost of mitigation. PMID:16934395

  3. 49 CFR 193.2019 - Mobile and temporary LNG facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS General § 193.2019 Mobile and temporary LNG... during gas pipeline systems repair/alteration, or for other short term applications need not meet...

  4. 49 CFR 193.2019 - Mobile and temporary LNG facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS General § 193.2019 Mobile and temporary LNG... during gas pipeline systems repair/alteration, or for other short term applications need not meet...

  5. 49 CFR 193.2019 - Mobile and temporary LNG facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS General § 193.2019 Mobile and temporary LNG... during gas pipeline systems repair/alteration, or for other short term applications need not meet...

  6. 49 CFR 193.2019 - Mobile and temporary LNG facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS General § 193.2019 Mobile and temporary LNG... during gas pipeline systems repair/alteration, or for other short term applications need not meet...

  7. United states regulations for siting LNG terminals: problems and potential.

    PubMed

    Havens, Jerry; Spicer, Tom

    2007-02-20

    The regulations being applied to liquefied natural gas (LNG) import terminal siting in the United States are reviewed. There are no requirements for exclusion zones to protect the public from LNG spills onto water. Serious problems with current practices used to determine exclusion zones on the land-based part of the facility are identified. Many of the questions that are considered relate to the use of computational fluid dynamic (CFD) models, which appear to offer the best potential for realistic modeling to determine vapor cloud exclusion zones that result from LNG spills into impounded areas with or without dispersion in the presence of other obstacles to the wind flow. Failure to use CFD models, which are already approved by the regulation, and continued use of practices which have been demonstrated to be in error, raises important questions of credibility as well as denies the applicant full use of scientific tools that are available to optimize the design of such facilities so as to best provide for safety of the public. PMID:17110028

  8. Analysis of LNG peakshaving-facility release-prevention systems

    SciTech Connect

    Pelto, P.J.; Baker, E.G.; Powers, T.B.; Schreiber, A.M.; Hobbs, J.M.; Daling, P.M.

    1982-05-01

    The purpose of this study is to provide an analysis of release prevention systems for a reference LNG peakshaving facility. An overview assessment of the reference peakshaving facility, which preceeded this effort, identified 14 release scenarios which are typical of the potential hazards involved in the operation of LNG peakshaving facilities. These scenarios formed the basis for this more detailed study. Failure modes and effects analysis and fault tree analysis were used to estimate the expected frequency of each release scenario for the reference peakshaving facility. In addition, the effectiveness of release prevention, release detection, and release control systems were evaluated.

  9. Development of mid-scale and floating LNG facilities

    SciTech Connect

    Price, B.C.; Mortko, R.A.

    1998-12-31

    The development of large-scale base load LNG facilities has dominated the process industry for decades. However, in many areas of the world, base load facilities are not feasible due to inadequate reserves. Mid-scale facilities can be economically attractive in certain locations and, in fact, have several advantages which aid in their development. The PRICO II LNG liquefaction process offers a process configuration which fits well with these developments. The process has been used in a range of facility sizes from base load to peak shaving applications. In addition to onshore facilities, floating liquefaction facilities can be developed on barges or tankers to handle mid-scale to large scale LNG production. Concepts for several sizes and configurations of floating facilities have been developed using the PRICO II process integrated into a total production, liquefaction, and load-out system. This paper covers the PRICO process concept, application areas and facility configurations which are currently being developed for mid-scale and floating LNG facilities.

  10. Raley's LNG Truck Site Final Data Report

    SciTech Connect

    Battelle

    1999-07-01

    Raley's is a 120-store grocery chain with headquarters in Sacramento, California, that has been operating eight heavy-duty LNG trucks (Kenworth T800 trucks with Cummins L10-300G engines) and two LNG yard tractors (Ottawa trucks with Cummins B5.9G engines) since April 1997. This report describes the results of data collection and evaluation of the eight heavy-duty LNG trucks compared to similar heavy-duty diesel trucks operating at Raley's. The data collection and evaluation are a part of the U.S. Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) Alternative Fuel Truck Evaluation Project.

  11. Survey of fire-protection systems at LNG facilities. Topical report, July-November 1990

    SciTech Connect

    Atallah, S.; Borows, K.A.

    1991-04-05

    The objectives of the study were to collect and analyze data relating to the types, costs, and operational problems of gas leak and fire detection devices and of fire prevention and suppression systems used at LNG facilities operating in the United States. Data from 39 LNG facilities, which accounted for 45% of the total U.S. storage capacity, were collected. The report provides information relating to equipment manufacturers, site applications, operational problems, initial installation costs, annual operational costs, and equipment lifetime. Equipment of interest included fixed gas leak, fire and cryogenic detection systems, water deluge and barrier systems, thermal radiation walls and protective coatings, and fixed high expansion foam, dry chemical, carbon dioxide and halon fire suppression systems. In addition, internal fire fighting capabilities were reviewed.

  12. Supplying LNG markets using nitrogen rejection units at Exxon Shute Creek Facility

    SciTech Connect

    Hanus, P.M.; Kimble, E.L.

    1995-11-01

    Interest is growing in the United States for using Liquid Natural Gas (LNG) as an alternative transportation fuel for diesel and as a source of heating fuel. For gas producers, LNG offers a premium price opportunity versus conventional natural gas sales. To supply this developing market, two existing Nitrogen Rejection Units (NRU) at the Exxon Shute Creek Facility in Wyoming were modified allowing LNG extraction and truck loading for transport to customers. The modifications involved adding heat exchanger capacity to the NRUs to compensate for the refrigeration loss when LNG is removed. Besides allowing for LNG extraction, the modifications also debottlenecked the NRUs resulting in higher methane recovery and lower compression costs. With the modifications, the NRUs are capable of producing for sale 60,000 gpd (5 MMscfd gas equivalent) of high purity LNG. Total investment has been $5 million with initial sales of LNG occurring in September 1994.

  13. 75 FR 54025 - Revision of LNG and LHG Waterfront Facility General Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... (WSA) requirements for liquefied natural gas (LNG) and liquefied hazardous gas (LHG) facilities. The...) under the Paperwork Reduction Act of 1995. The OMB Control Number is 1625-0049. DATES: The collection of... final rule entitled ``Revision of LNG and LHG Waterfront Facility General Requirements'' (75 FR...

  14. 75 FR 29420 - Revision of LNG and LHG Waterfront Facility General Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... facilities to submit WSAs to the Coast Guard. The Coast Guard's Office of Operating and Environmental Standards (CG-5222) maintains guidance on preparation and submission of WSAs to the Coast Guard. Contact... Regulatory Commission FR Federal Register LHG Liquefied hazardous gas LNG Liquefied natural gas LOI Letter...

  15. Caribbean LNG project marks progress; LNG tanker launched

    SciTech Connect

    1997-10-20

    World LNG trade continues to expand as construction of a major LNG project in the Caribbean hits full stride this fall and another LNG carrier was launched earlier this year. Engineering is nearly complete and construction is nearing midway on Trinidad`s Atlantic LNG. In Japan, NKK Corp. launched another LNG tanker that employs the membrane-storage system. The 50-mile pipeline to move natural gas to the Atlantic LNG facility is also on track for completion by October 1998.

  16. 18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and review process for LNG terminal facilities and other natural gas facilities prior to filing of... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC CONVENIENCE AND NECESSITY AND FOR ORDERS PERMITTING AND APPROVING ABANDONMENT UNDER SECTION 7 OF THE...

  17. 18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and review process for LNG terminal facilities and other natural gas facilities prior to filing of... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC CONVENIENCE AND NECESSITY AND FOR ORDERS PERMITTING AND APPROVING ABANDONMENT UNDER SECTION 7 OF THE...

  18. 18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... and review process for LNG terminal facilities and other natural gas facilities prior to filing of... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC CONVENIENCE AND NECESSITY AND FOR ORDERS PERMITTING AND APPROVING ABANDONMENT UNDER SECTION 7 OF THE...

  19. 18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and review process for LNG terminal facilities and other natural gas facilities prior to filing of... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC... and Approving Abandonment under Section 7 of the Natural Gas Act, as Amended, Concerning Any...

  20. 18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and review process for LNG terminal facilities and other natural gas facilities prior to filing of... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC... and Approving Abandonment under Section 7 of the Natural Gas Act, as Amended, Concerning Any...

  1. 49 CFR 193.2019 - Mobile and temporary LNG facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of siting, leakage containment or control, fire fighting equipment, and methods employed to restrict public access, except that in the case of emergency where such notice is not possible, as much advance... during gas pipeline systems repair/alteration, or for other short term applications need not meet...

  2. 77 FR 70886 - Reconsideration of Letters of Recommendation for Waterfront Facilities Handling LNG and LHG

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-28

    ... Commission FR Federal Register LHG Liquefied hazardous gas LNG Liquefied natural gas LOI Letter of Intent LOR... Captain of the Port regarding the suitability of a waterway for liquefied natural gas (LNG) or liquefied... liquefied natural gas (LNG) or liquefied hazardous gas (LHG), or......

  3. New LNG process scheme

    SciTech Connect

    Foglietta, J.H.

    1999-07-01

    A new LNG cycle has been developed for base load liquefaction facilities. This new design offers a different technical and economical solution comparing in efficiency with the classical technologies. The new LNG scheme could offer attractive business opportunities to oil and gas companies that are trying to find paths to monetize gas sources more effectively; particularly for remote or offshore locations where smaller scale LNG facilities might be applicable. This design offers also an alternative route to classic LNG projects, as well as alternative fuel sources. Conceived to offer simplicity and access to industry standard equipment, This design is a hybrid result of combining a standard refrigeration system and turboexpander technology.

  4. LCOGT Sites and Facilities

    NASA Astrophysics Data System (ADS)

    Martinez, John; Brown, Timothy M.; Conway, Patrick; Elphick, Mark; Falarski, Michael; Hawkins, Eric; Rosing, Wayne; Shobbrook, John

    2011-03-01

    LCOGT is currently building and deploying a world-wide network of at least twelve 1-meter and twenty-four 0.4-meter telescopes to as many as 4 sites in the Southern hemisphere (Chile, South Africa, Eastern Australia) and 4 in the Northern hemisphere (Hawaii, West Texas, Canary Islands). Our deployment and operations model emphasizes modularity and interchangeability of major components, maintenance and troubleshooting personnel who are local to the site, and autonomy of operation. We plan to ship, install, and spare large units (in many cases entire telescopes), with minimal assembly on site.

  5. Fusion facility siting considerations

    NASA Astrophysics Data System (ADS)

    Bussell, G. T.

    1985-02-01

    Inherent in the fusion program's transition from hydrogen devices to commercial power machines is a general increase in the size and scope of succeeding projects. This growth will lead to increased emphasis on safety, environmental impact, and the external effects of fusion in general, and of each new device in particular. An important consideration in this regard is site selection. Major siting issues that may affect the economics, safety, and environmental impact of fusion are examined.

  6. National Ignition Facility site requirements

    SciTech Connect

    1996-07-01

    The Site Requirements (SR) provide bases for identification of candidate host sites for the National Ignition Facility (NIF) and for the generation of data regarding potential actual locations for the facilities. The SR supplements the NIF Functional Requirements (FR) with information needed for preparation of responses to queries for input to HQ DOE site evaluation. The queries are to include both documents and explicit requirements for the potential host site responses. The Sr includes information extracted from the NIF FR (for convenience), data based on design approaches, and needs for physical and organization infrastructure for a fully operational NIF. The FR and SR describe requirements that may require new construction or may be met by use or modification of existing facilities. The SR do not establish requirements for NIF design or construction project planning. The SR document does not constitute an element of the NIF technical baseline.

  7. LNG plants in the US and abroad

    SciTech Connect

    Blazek, C.F.; Biederman, R.T.

    1992-12-31

    The Institute of Gas Technology recently conducted a comprehensive survey of LNG production and storage facilities in North America. This survey was performed as part of IGT`s LNG Observer newsletter which covers both domestic and international LNG news, reports on LNG related economics and statistics, and routinely conducts interviews with key industry leaders. In addition to providing consulting services to the LNG industry, IGT has cosponsored the International Conference on Liquefied Natural Gas for the part 20 years. The objective of this paper is to present a summary of our recent survey results as well as provide an overview of world LNG trade. This information is important in assessing the potential near term availability of LNG for transportation applications. The IGT LNG Survey appraised the capacity and current market activity of LNG peak shaving, satellite storage, and import receiving facilities in the United States and Canada. Information was requested from facilities on three main topics: liquefaction, storage, and regasification. Additional questions were posed regarding the year of operation, designer/contractor for liquefaction cycle and storage, source of LNG (for storage-only facilities), plans for expansion, and level of interest in providing LNG as a vehicle fuel. The IGT LNG Survey has to date received information on 56 LNG peak shaving facilities, 28 satellite storage facilities, and 4 LNG import receiving terminals.

  8. Site maps and facilities listings

    SciTech Connect

    Not Available

    1993-11-01

    In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used for production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities.

  9. 78 FR 18970 - Trunkline LNG Company, LLC; Trunkline LNG Export, LLC; Trunkline Gas Company, LLC; Supplemental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... Energy Regulatory Commission Trunkline LNG Company, LLC; Trunkline LNG Export, LLC; Trunkline Gas Company... Trunkline LNG Company, LLC; Trunkline LNG Export, LLC; and Trunkline Gas Company, LLC (collectively referred... entitled ``An Interstate Natural Gas Facility On My Land? What Do I Need To Know?'' is available...

  10. Siting hazardous waste treatment facilities

    SciTech Connect

    Portney, K.E.

    1991-01-01

    The book focuses on the facility-siting dilemma in the U.S. and what can be done to find new policies that work. It analyzes what does and does not work in easing the effects of what the author calls the Nimby (not in my back yard) syndrome.

  11. The North West Shelf Project; Australian LNG facility ahead of schedule

    SciTech Connect

    Not Available

    1989-10-01

    The LNG complex, one of the most important natural resource developments ever undertaken in Australia, will provide a major new export industry for the country. It is based on vast hydrocarbon resources, primarily natural gas, discovered in the early 1970s on the North West Continental Shelf. The project consists of the North Rankin A gas drilling and production platform, a 70-mile subsea pipeline carrying the gas to shore, a domestic gas plant and three LNG trains. A second drilling and production platform, to be located in the Goodwyn field about 23 km from the North Rankin A platform, is now in the development stages. The complex is detailed in this paper.

  12. LNG plants in the US and abroad. [Liquefied Natural Gas (LNG)

    SciTech Connect

    Blazek, C.F.; Biederman, R.T.

    1992-01-01

    The Institute of Gas Technology recently conducted a comprehensive survey of LNG production and storage facilities in North America. This survey was performed as part of IGT's LNG Observer newsletter which covers both domestic and international LNG news, reports on LNG related economics and statistics, and routinely conducts interviews with key industry leaders. In addition to providing consulting services to the LNG industry, IGT has cosponsored the International Conference on Liquefied Natural Gas for the part 20 years. The objective of this paper is to present a summary of our recent survey results as well as provide an overview of world LNG trade. This information is important in assessing the potential near term availability of LNG for transportation applications. The IGT LNG Survey appraised the capacity and current market activity of LNG peak shaving, satellite storage, and import receiving facilities in the United States and Canada. Information was requested from facilities on three main topics: liquefaction, storage, and regasification. Additional questions were posed regarding the year of operation, designer/contractor for liquefaction cycle and storage, source of LNG (for storage-only facilities), plans for expansion, and level of interest in providing LNG as a vehicle fuel. The IGT LNG Survey has to date received information on 56 LNG peak shaving facilities, 28 satellite storage facilities, and 4 LNG import receiving terminals.

  13. Nippon Kokan technical report No. 42, December 1984: overseas. LNG technology special issue

    SciTech Connect

    Not Available

    1984-01-01

    Contents INCLUDE: fracture toughness of 9% Ni steel and safety of LNG storage tank; fatigue strength and safety assessment of membrane components; comparison of LNG carriers of membrane tank system and spherical tank system; diesel-driven LNG carrier with reliquefaction plant; construction of TGZ MK I system LNG carrier model tank and its cryogenic tests; vacuum insulation test using LNG model tank; estimation of impact pressure and hydrodynamic force due to sloshing in LNG carrier; Higashi-Ohgishima LNG receiving facility for the Tokyo Electric Power Co., Inc.; design of LNG receiving facility; receiving and circulation control system of Higashi-Ohgishima LNG terminal; welding procedure of LNG pipelines; the design method of inground LNG storage tank; the design method of aboveground LNG storage tank; various applications of LNG tank roll-over simulation program ROSP.

  14. Area coverage maximization in service facility siting

    NASA Astrophysics Data System (ADS)

    Matisziw, Timothy C.; Murray, Alan T.

    2009-06-01

    Traditionally, models for siting facilities in order to optimize coverage of area demand have made use of discrete space representations to efficiently handle both candidate facility locations and demand. These discretizations of space are often necessary given the linear functional forms of many siting models and the complexities associated with evaluating continuous space. Recently, several spatial optimization approaches have been proposed to address the more general problem of identifying facility sites that maximize regional coverage for the case where candidate sites and demand are continuously distributed across space. One assumption of existing approaches is that only demand falling within a prescribed radius of the facility can be effectively served. In many practical applications, however, service areas are not necessarily circular, as terrain, transportation, and service characteristics of the facility often result in irregular shapes. This paper develops a generalized service coverage approach, allowing a sited facility to have any continuous service area shape, not simply a circle. Given that demand and facility sites are assumed to be continuous throughout a region, geometrical properties of the demand region and the service facility coverage area are exploited to identify a facility site to optimize the correspondence between the two areas. In particular, we consider the case where demand is uniformly distributed and the service area is translated to maximize coverage. A heuristic approach is proposed for efficient model solution. Application results are presented for siting a facility given differently shaped service areas.

  15. 33 CFR 127.319 - LNG transfer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.319 LNG transfer. During LNG transfer... between sunset and sunrise. Note: Vessel transfer requirements are published in 46 CFR Part 154....

  16. LNG transportation

    SciTech Connect

    Picard, J.

    1988-01-01

    In the beginning of 1965, the participants to the starting up of first French LNG transportation system between ARZEW and LE HAVRE were indeed pioneers when they started the cool-down of the three tanks of LE HAVRE, with a LNG freight delivered by old liberty-ship ''BEAUVAIS''. Could they forecast the development of LNG industry in FRANCE and in the world and imagine that modest 'JULES VERNE' and his two english brothers would have, 25 years later, 80 successors - more than five times as big, for the main part of them, that 12 liquefaction plants would be running in the world, supplying about twenty LNG terminals. For the first time, a country - FRANCE - can draw the lessons from the exploitation of the 3 LNG transportation systems during a long period. That is the subject of the present paper.

  17. Research of design challenges and new technologies for floating LNG

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hyun; Ha, Mun-Keun; Kim, Soo-Young; Shin, Sung-Chul

    2014-06-01

    With the rate of worldwide LNG demand expected to grow faster than that of gas demand, most major oil companies are currently investing their resources to develop floating LNG-FLNG (i.e. LNG FSRU and LNG FPSO). The global Floating LNG (FLNG) market trend will be reviewed based on demand and supply chain relationships. Typical technical issues associated with FLNG design are categorized in terms of global performance evaluation. Although many proven technologies developed through LNG carrier and oil FPSO projects are available for FLNG design, we are still faced with several technical challenges to clear for successful FLNG projects. In this study, some of the challenges encountered during development of the floating LNG facility (i.e. LNG FPSO and FSRU) will be reviewed together with their investigated solution. At the same time, research of new LNG-related technologies such as combined containment system will be presented.

  18. Preliminary siting characterization Salt Disposition Facility - Site B

    SciTech Connect

    Wyatt, D.

    2000-01-04

    A siting and reconnaissance geotechnical program has been completed in S-Area at the Savannah River Site in South Carolina. This program investigated the subsurface conditions for the area known as ``Salt Disposition Facility (SDF), Site B'' located northeast of H-Area and within the S-Area. Data acquired from the Site B investigation includes both field exploration and laboratory test data.

  19. 76 FR 78188 - Reconsideration of Letters of Recommendation for Waterfront Facilities Handling LNG and LHG

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... . (2) Fax: (202) 493-2251. (3) Mail: Docket Management Facility (M-30), U.S. Department of...: If you have questions on this proposed rule, call or email Ken Smith (CG-5222), U.S. Coast Guard... then become highlighted in blue. In the ``Enter Keyword or ID'' box insert ``USCG-2011-0227'' and...

  20. Nevada Test Site Sensor Test Facility

    SciTech Connect

    Gomez, B.J.; Boyer, W.B.

    1996-12-01

    A Sensor Test Facility (STF) was recently established at the Department of Energy`s Nevada Test Site (NTS). It has been used for a series of sensor tests that have demonstrated the usefulness of the testbed. The facility consists of a cut-and-cover bunker complex and the two square mile surrounding area. The STF was developed as a scientific testbed optimized for the development and evaluation of advanced sensor systems, including ground sensor systems designed to identify and detect hardened underground facilities. This was accomplished by identifying a facility in a remote location where seismic, acoustic, and electromagnetic interference would be minimal, establishing a testbed that would be accommodating to field testing, and conducting a thorough geophysical characterization of the area surrounding the facility in order to understand the local geology and its effects on geophysical signals emanating from the facility. The STF is representative of a number of cut-and-cover bunkers around the world that are used for the manufacture and/or storage of weapons of mass destruction. This paper provides a general description of the Nevada Test Site, the Sensor Test Facility, and the Geophysical Site Characterization.

  1. 49 CFR 193.2623 - Inspecting LNG storage tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Inspecting LNG storage tanks. 193.2623 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2623 Inspecting LNG storage tanks. Each LNG storage tank must be inspected or tested to verify that each of the following conditions does not...

  2. Site and facility transportation services planning documents

    SciTech Connect

    Ratledge, J.E. ); Danese, L.; Schmid, S. )

    1990-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) will eventually ship Purchasers' (10 CFR 961.3) spent nuclear fuel from approximately 122 commercial nuclear facilities. The preparation and processing of Site and Facility Specific Transportation Services Planning Documents (SPDs) and Site Specific Servicing Plans (SSSPs) provides a focus for advanced planning and the actual shipping of waste, as well as the overall development of transportation requirements for the waste transportation system. SPDs will be prepared for each of the affected nuclear waste facilities over the next 2 years with initial emphasis on facilities likely to be served during the earliest years of the Federal Waste Management System (FWMS) operations. 3 figs., 1 tab.

  3. 78 FR 20312 - Downeast LNG, Inc., Downeast Pipeline, LLC.; Notice of Availability of the Supplemental Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... Energy Regulatory Commission Downeast LNG, Inc., Downeast Pipeline, LLC.; Notice of Availability of the... Impact Statement (EIS) for the Downeast LNG Project, proposed by Downeast LNG, Inc. and Downeast Pipeline... gas pipeline, and associated facilities in Washington County, Maine. The Downeast LNG Project...

  4. Waste Management's LNG Truck Fleet: Final Results

    SciTech Connect

    Chandler, K.; Norton, P.; Clark, N.

    2001-01-25

    Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

  5. Development of polymer concrete for dike insulation at LNG facilities: Phase 4, Low cost materials

    SciTech Connect

    Kukacka, L.E.

    1991-01-01

    Earlier GRI-sponsored work at Brookhaven National Laboratory has resulted in the development and utilization of insulating polymer concrete composites (IPC) as a means of reducing the evaporation rate of liquified natural gas in the event of a spill into a containment dike, thereby improving the safety at these sites. Although all of the required properties can be attained with the IPC, it was estimated that a low-cost replacement for the expensive organic binder would be necessary before use of the material would be cost-effective. In the current program, several latex modified cement formulations were evaluated and the most promising one identified. A mixture of two carboxylated styrene-butadiene latexes was selected for use in detailed laboratory property characterizations and a subsequent field evaluation. When compared to the properties of IPC, the latex-modified insulating materials display somewhat higher thermal conductivities, greater permeability to water, and reduced strength. However, these properties still meet most of the performance criteria, and the unit cost of the material is less than one-fifth that of IPC made with epoxy binders. When installed as a 0.75-in. thick overlay, material costs are estimated to be $1.00/ft{sup 2}.

  6. Strategic evaluation central to LNG project formation

    SciTech Connect

    Nissen, D.; DiNapoli, R.N.; Yost, C.C.

    1995-07-03

    An efficient-scale, grassroots LNG facility of about 6 million metric tons/year capacity requires a prestart-up outlay of $5 billion or more for the supply facilities--production, feedgas pipeline, liquefaction, and shipping. The demand side of the LNG chain requires a similar outlay, counting the import-regasification terminal and a combination of 5 gigawatts or more of electric power generation or the equivalent in city gas and industrial gas-using facilities. There exist no well-developed commodity markets for free-on-board (fob) or delivered LNG. A new LNG supply project is dedicated to its buyers. Indeed, the buyers` revenue commitment is the project`s only bankable asset. For the buyer to make this commitment, the supply venture`s capability and commitment must be credible: to complete the project and to deliver the LNG reliably over the 20+ years required to recover capital committed on both sides. This requirement has technical, economic, and business dimensions. In this article the authors describe a LNG project evaluation system and show its application to typical tasks: project cost of service and participant shares; LNG project competition; alternative project structures; and market competition for LNG-supplied electric power generation.

  7. National Ignition Facility Project Site Safety Program

    SciTech Connect

    Dun, C

    2003-09-30

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES&H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES&H requirements are consistent with the ''LLNL ES&H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B.

  8. 49 CFR 193.2623 - Inspecting LNG storage tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2623 Inspecting LNG storage tanks. Each...

  9. Nuclear facility decommissioning and site remedial actions

    SciTech Connect

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  10. Nuclear facility decommissioning and site remedial actions

    SciTech Connect

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  11. National Ignition Facility Project Site Safety Program

    SciTech Connect

    Moses, E

    2001-09-30

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during the construction, equipment installation, and commissioning activities. As the NIF Project transitions from a conventional facility construction activity to one of equipment installation, commissioning, initial laser operations, and other more routine-like operations, new safety requirements are needed. The NIF Project Site Safety Program (NPSSP) requires that all activities at the NIF Project site be performed in accordance with the ''LLNL ES&H Manual'', and the augmented set of controls and processes described in this NIF Project Site Safety Program. More specific requirements for construction activities under the Integration Management and Installation (IMI) contract are provided in the ''NIF Infrastructure Health and Safety Plan'', subtier to this program. Specifically this document: Defines the fundamental NIF site safety philosophy, Defines the areas covered by this safety program (see Appendix B), Identifies management roles and responsibilities, Defines core safety management processes, and Identifies NIF site-specific safety requirements.

  12. GMT site: facilities and enclosure design overview

    NASA Astrophysics Data System (ADS)

    Teran, Jose; Sheehan, Michael; Neff, Daniel H.; Grigel, Eric; Adriaanse, David; Farahani, Arash

    2014-07-01

    The Giant Magellan Telescope (GMT), one of several next generation Extremely Large Telescopes (ELTs), is a 25.4 meter diameter altitude over azimuth design set to be built at the summit of Cerro Campanas at the Las Campanas Observatory in Chile. This paper provides an update and overview of the ongoing efforts for the GMT site, infrastructure, facilities and enclosure design. The paper provides insight of the proposed systems, trade studies and approach resulting in the current design solution.

  13. 33 CFR 127.321 - Release of LNG.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.321 Release of LNG. (a) The operator...

  14. 33 CFR 127.321 - Release of LNG.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.321 Release of LNG. (a) The operator...

  15. 33 CFR 127.321 - Release of LNG.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.321 Release of LNG. (a) The operator...

  16. 33 CFR 127.321 - Release of LNG.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.321 Release of LNG. (a) The operator...

  17. 33 CFR 127.321 - Release of LNG.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.321 Release of LNG. (a) The operator...

  18. LNG fire and vapor control system technologies

    SciTech Connect

    Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

    1982-06-01

    This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

  19. 76 FR 77814 - Cameron LNG, LLC; Notice of Intent To Prepare an Environmental Assessment for the Proposed BOG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... Energy Regulatory Commission Cameron LNG, LLC; Notice of Intent To Prepare an Environmental Assessment... construction and operation of facilities by Cameron LNG, LLC (Cameron LNG) in Cameron Parish, Louisiana. This... encourage them to comment on their areas of concern. Summary of the Proposed Project Cameron LNG plans...

  20. LNG production for peak shaving operations

    SciTech Connect

    Price, B.C.

    1999-07-01

    LNG production facilities are being developed as an alternative or in addition to underground storage throughout the US to provide gas supply during peak gas demand periods. These facilities typically involved a small liquefaction unit with a large LNG storage tank and gas sendout facilities capable of responding to peak loads during the winter. Black and Veatch is active in the development of LNG peak shaving projects for clients using a patented mixed refrigerant technology for efficient production of LNG at a low installed cost. The mixed refrigerant technology has been applied in a range of project sizes both with gas turbine and electric motor driven compression systems. This paper will cover peak shaving concepts as well as specific designs and projects which have been completed to meet this market need.

  1. Cold vacuum drying facility site evaluation report

    SciTech Connect

    Diebel, J.A.

    1996-03-11

    In order to transport Multi-Canister Overpacks to the Canister Storage Building they must first undergo the Cold Vacuum Drying process. This puts the design, construction and start-up of the Cold Vacuum Drying facility on the critical path of the K Basin fuel removal schedule. This schedule is driven by a Tri-Party Agreement (TPA) milestone requiring all of the spent nuclear fuel to be removed from the K Basins by December, 1999. This site evaluation is an integral part of the Cold Vacuum Drying design process and must be completed expeditiously in order to stay on track for meeting the milestone.

  2. Method for siting detectors within a facility

    DOEpatents

    Gleason, Nathaniel Jeremy Meyer

    2007-12-11

    A method, system and article of manufacture of siting one or more detectors in a facility represented with zones are provided. Signals S.sub.i,j representing an effect in zone j in response to a release of contaminant in zone i for one or more flow conditions are provided. A candidate architecture has one or more candidate zones. A limiting case signal is determined for each flow condition for multiple candidate architectures. The limiting case signal is a smallest system signal of multiple system signals associated with a release in a zone. Each system signal is a maximum one of the signals representing the effect in the candidate zones from the release in one zone for the flow condition. For each candidate architecture, a robust limiting case signal is determined based on a minimum of the limiting case signals. One candidate architecture is selected based on the robust limiting case signals.

  3. Study of gelled LNG. Final technical report

    SciTech Connect

    Rudnicki, M I; Cabeal, J A; Hoffman, L C; Newton, R A; Schaplowsky, R K; Vander Wall, E M

    1980-01-01

    Research involved the characterization of gelled LNG (GELNG) with respect to process, flow, and use properties and an examination of the degree of safety enhancement attainable by gelation. The investigation included (1) an experimental examination of gel properties and gel safety characteristics as well as (2) an analytical study involving the economics and preliminary design of an industrial scale gelation system. The safety-related criterion for successful application of gelled LNG is the substantial reduction of the Maximum Distance to the Lower Flammability Limit, MDLFL. This will be achieved by first, gel-inhibition of the hydrodynamic pooling and spreading of the spill, and second, the suppressed thermal transport properties of the GELNG relative to those of LNG. The industrial scale gelation study evaluated a design capable of producing 11,000 gallons (LNG tank truck) of gel in two hours. The increased cost of gelation using this equipment was estimated at $0.23/10/sup 6/ Btu for plants with liquefaction facilities. The technical results of this study are supportive of the conclusion that gelation of LNG will reduce, relative to ungelled LNG, the hazard associated with a given size spill. Parameters of interest to the LNG facility operator (such as pumpability) are not significantly affected by gelation, and the impact on LNG delivery cost appears to be small, about 5%. Thus, the initial assumption that gelation would provide a practical means to enhance safety is supported by the results of this study. Larger scale, comparative spill tests of LNG and GELNG are now required to confirm the safety aspects of use of the gelled material.

  4. 78 FR 933 - Cameron LNG, LLC; Cameron Interstate Pipeline, LLC; Notice of Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ...-000 and Docket No. PF12-12-000] Cameron LNG, LLC; Cameron Interstate Pipeline, LLC; Notice of Applications Take notice that on December 7, 2012, Cameron LNG, LLC (Cameron LNG), 101 Ash Street, San Diego... operate new liquefaction and export facilities in Cameron and Calcasieu Parishes, Louisiana...

  5. Site Development Planning--A Must for Education Facilities.

    ERIC Educational Resources Information Center

    Perkins, James K.

    1989-01-01

    School site development planning involves consideration of location, topography, utilities, accessibility, lighting, landscaping, traffic and parking, playground areas, and athletic facilities. A checklist is provided. (MLF)

  6. 75 FR 11169 - AES Sparrows Point LNG, LLC; Mid-Atlantic Express, LLC; Notice of Availability of the Revised...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Sparrows Point LNG Terminal and Pipeline Project March 1, 2010. The staff of the Federal Energy Regulatory... operation of a liquefied natural gas (LNG) import terminal and natural gas pipeline proposed by AES Sparrows... LNG terminal and natural gas pipeline facilities: A ship unloading facility, with two berths,...

  7. 75 FR 353 - AES Sparrows Point LNG, LLC and Mid-Atlantic Express, LLC; Notice of Availability of the Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... Terminal and Pipeline Project December 29, 2009. The staff of the Federal Energy Regulatory Commission... natural gas (LNG) import terminal and natural gas pipeline proposed by AES Sparrows Point LNG, LLC and Mid... operation of the following LNG terminal and natural gas pipeline facilities: A ship unloading facility,...

  8. 49 CFR 193.2623 - Inspecting LNG storage tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2623 Inspecting LNG storage tanks. Each LNG... the structural integrity or safety of the tank: (a) Foundation and tank movement during...

  9. 49 CFR 193.2623 - Inspecting LNG storage tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Inspecting LNG storage tanks. 193.2623 Section 193.2623 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2623 Inspecting LNG storage tanks. Each...

  10. 49 CFR 193.2623 - Inspecting LNG storage tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Inspecting LNG storage tanks. 193.2623 Section 193.2623 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2623 Inspecting LNG storage tanks. Each...

  11. 78 FR 41047 - UGI LNG, Inc.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission UGI LNG, Inc.; Notice of Application On June 17, 2013, UGI LNG, Inc. (UGI... an existing liquefaction plant at its Temple liquefied national gas storage facility located...

  12. Landfill Gas Conversion to LNG and LCO{sub 2}. Final Report

    SciTech Connect

    Brown, W.R.; Cook, W. J.; Siwajek, L.A.

    2000-10-20

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery. Work was done in the following areas: (1) production of natural gas pipeline methane for liquefaction at an existing LNG facility, (2) production of LNG from sewage digester gas, (3) the use of mixed refrigerants for process cooling in the production of LNG, liquid CO{sub 2} and pipeline methane, (4) cost estimates for an LNG production facility at the Arden Landfill in Washington PA.

  13. The hazardous waste facility siting controversy: the Massachusetts experience.

    PubMed

    1987-01-01

    Intense local opposition has frequently frustrated efforts to site hazardous waste facilities. This Note examines states' attempts to balance the increasing need for such facilities with growing community opposition. The Note focuses on the Massachusetts response to this problem, and argues that the Massachusetts program has failed to adequately preempt a locality's power to block facility siting. The Note proposes an alternative model, based on the National Environmental Policy Act, which addresses local concerns while achieving its purpose of siting safe containment facilities for toxic substances.

  14. 20 CFR 638.303 - Site selection and facilities management.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....303 Section 638.303 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR JOB CORPS PROGRAM UNDER TITLE IV-B OF THE JOB TRAINING PARTNERSHIP ACT Funding, Site Selection, and Facilities Management § 638.303 Site selection and facilities management. (a) The Job Corps Director...

  15. 77 FR 60125 - Generic Drug Facilities, Sites and Organizations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ... HUMAN SERVICES Food and Drug Administration Generic Drug Facilities, Sites and Organizations AGENCY: Food and Drug Administration, HHS. ACTION: Notice of Requirement. SUMMARY: The Food and Drug Administration (FDA) is notifying generic drug facilities, and certain sites and organizations identified in...

  16. Site and Facilities: A Resource Book for Camps.

    ERIC Educational Resources Information Center

    Ball, Armand, Ed.; Ball, Beverly, Ed.

    This resource book draws together articles on the development and maintenance of camp sites and facilities. The articles, previously published by "Camping Magazine" and "Journal of Christian Camping," cover (1) site planning and long-range development, including redesigning multiple camp facilities for year-round programs, remodeling and…

  17. Site Inventory for Outdoor Education Facilities and Recreational Camps.

    ERIC Educational Resources Information Center

    Blythe, Chris

    1994-01-01

    Once the function of an outdoor educational facility has been determined, a site inventory should examine the site's physical characteristics, soil types, vegetation, water resources, and wildlife. Provides suggestions on maximizing usage of the site while minimizing detrimental effects of site development and long-term environmental damage. (LP)

  18. Monitored retrievable storage facility site screening and evaluation report

    SciTech Connect

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed site and facility designs...'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluated potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the task force presented in this report includes: site screening (Sections 3, 4, and 5), the MRS facilities which are to be sited are described; the criteria, process and outcome of the screening process is presented; and descriptions of the candidate MRS facility sites are given, and site evaluations (Sections 6 through 9) where the rational for the site evaluations are presented, along with each evaluation and findings of the Task Force.

  19. Savannah River Site Surplus Facilities Available for Reuse

    SciTech Connect

    Clarke, R.M.; Owens, M.B.; Lentz, D.W.

    1995-09-14

    The purpose of this document is to provide a current, centralized list of Savannah River Site facilities, which are surplus and available for reuse. These surplus facilities may be made available for other DOE site missions, commercial economic development reuse, or other governmental reuse. SRS procedures also require that before new construction can be approved, available surplus facilities are screened for possible reuse in lieu of the proposed new construction.

  20. Comparative safety analysis of LNG storage tanks

    SciTech Connect

    Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

    1982-07-01

    LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

  1. Use of remote sensing in facility siting

    NASA Technical Reports Server (NTRS)

    Moon, M. L.; Hunt, R. F.; Mcfall, J., Jr.; Pijanowski, J. A.; Price, R. D.

    1978-01-01

    Environmental parameters important to, and necessary for, an environment impact assessment in terms of site selection for an electric power plant are defined. Remote sensing techniques and/or instrumentation applicable to site evaluation are described. Problem areas are discussed and recommendations given.

  2. 75 FR 26744 - Cameron LNG, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... Energy Regulatory Commission Cameron LNG, LLC; Notice of Application May 5, 2010. On April 22, 2010, Cameron LNG, LLC filed with the Federal Energy Regulatory Commission (Commission) an application under... site of its existing liquefied natural gas terminal in Cameron Parish, Louisiana. Questions...

  3. 78 FR 22553 - Generic Drug Facilities, Sites, and Organizations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... HUMAN SERVICES Food and Drug Administration Generic Drug Facilities, Sites, and Organizations AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing that the generic drug facility self-identification reporting period for fiscal year (FY) 2014...

  4. Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site

    SciTech Connect

    Wike, L.D.

    2000-08-17

    A site selection study was conducted to evaluate locations for the proposed Surplus Plutonium Disposition Facilities. Facilities to be located include the Mixed Oxide (MOX) Fuel Fabrication Facility, the Pit Disassembly and Conversion Facility (PDCF), and the Plutonium Immobilization Project (PIP) facility. Objectives of the study include: (1) Confirm that the Department of Energy (DOE) selected locations for the MOX and PDCF were suitable based on selected siting criteria, (2) Recommend a site in the vicinity of F Area that is suitable for the PIP, and (3) Identify alternative suitable sites for one or more of these facilities in the event that further geotechnical characterization or other considerations result in disqualification of a currently proposed site.

  5. 75 FR 57766 - Notice of Petition To Amend Authorizations Under Section 3 of the Natural Gas Act; Cameron LNG, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... Gas Act; Cameron LNG, LLC September 15, 2010. Take notice that on September 3, 2010, Cameron LNG, LLC (Cameron), 101 Ash Street, San Diego, California 92101, filed a petition to amend the authorizations issued... liquefied natural gas (LNG) terminal facility located in Cameron Parish, Louisiana, for the...

  6. 78 FR 13330 - Pangea LNG (North America) Holdings, LLC; Application for Long-Term Authorization To Export...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... liquefaction and storage solutions around the globe. Pangea LNG's ordinary shares are owned by Daewoo... LNG Project and utilizing up to 50% of the liquefaction and export capacity of the ST LNG Project.\\2... and will include natural gas treatment, compression, liquefaction and storage ] facilities, as well...

  7. Making or Breaking Waste Facility Siting Successes with a Siting Framework

    NASA Astrophysics Data System (ADS)

    Zeiss, Chris; Lefsrud, Lianne

    1996-01-01

    Waste facility siting successes depend on many linked factors of facility design and impacts, site characteristics, and community beliefs and values. A facility siting framework is constructed to combine important elements and cause-effect linkages that affect the siting outcome. The framework consists of three main components: (1) core elements of facility design, effects, and community beliefs, attitude and response; (2) contributing factors of site and community characteristics, community beliefs and values that affect the interpretation of the facility and its effects; and (3) siting management interventions to manage the process and facility impacts. The framework is applied in an unsuccessful and a successful siting case to determine the key elements that contribute to siting outcome: (1) thorough need justification for the facility from the proponent’s and the community’s perspective; (2) careful facility design and prediction of the impacts and to select impact management compensation measures; (3) screening and selection of communities where the beliefs and values are compatible with the type of facility and its effects, (4) cooperatively selected impact reduction (i.e., prevention, control, and mitigation) measures followed by compensation and incentives; and (5) intensive process management to balance the community characteristics and values with the proponent’s efforts to plan, design, assess and manage impacts, and ultimately, gain approval of the facility. The siting framework provides a comprehensive and robust structure of key factors that contribute to siting outcome and, therefore, provides the tool to identify, evaluate, and design siting interventions to enhance the chances of successful siting outcome.

  8. Brownfields vs greenfields -- Considerations for facility siting

    SciTech Connect

    Hale, D.W.; Kaiding, D.C.; DeMaria, M.J.

    1995-12-31

    Since the promulgation of the ``Superfund`` component of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) in 1980, the sale and acquisition of industrial properties (brownfields) have been sluggish at best or non-existent where significant environmental contamination has been detected. As a result, many urban areas contain numerous brownfield sites that lie vacant due to the presence or the potential existence of contaminants. Wary of the potential remedial costs associated with brownfield sites, industry has focused its development on greenfield areas -- undeveloped areas where the potential for previous environmental contamination is remote. This paper evaluates the impact of the development of these brownfield areas from both an environmental and economic perspective. Critical to this evaluation is the impact of brownfield development as it relates to urban areas. Mature, heavily developed urban areas are usually unable to offer substantial greenfield areas, and as a result, have suffered a declining tax base, as employment opportunities are shifted beyond city limits. This paper also explores the advantages and disadvantages of developing brownfield versus greenfield areas, including issues such as: infrastructure, proximity to public transportation, public acceptance, and zoning and permitting. Furthermore, this paper provides an overview of current and pending legislation from both the federal government and various state agencies with regard to incentives being offered for the development of brownfield sites.

  9. Site-wide seismic risk model for Savannah River Site nuclear facilities

    SciTech Connect

    Eide, S.A.; Shay, R.S.; Durant, W.S.

    1993-09-01

    The 200,000 acre Savannah River Site (SRS) has nearly 30 nuclear facilities spread throughout the site. The safety of each facility has been established in facility-specific safety analysis reports (SARs). Each SAR contains an analysis of risk from seismic events to both on-site workers and the off-site population. Both radiological and chemical releases are considered, and air and water pathways are modeled. Risks to the general public are generally characterized by evaluating exposure to the maximally exposed individual located at the SRS boundary and to the off-site population located within 50 miles. Although the SARs are appropriate methods for studying individual facility risks, there is a class of accident initiators that can simultaneously affect several of all of the facilities, Examples include seismic events, strong winds or tornados, floods, and loss of off-site electrical power. Overall risk to the off-site population from such initiators is not covered by the individual SARs. In such cases multiple facility radionuclide or chemical releases could occur, and off-site exposure would be greater than that indicated in a single facility SAR. As a step towards an overall site-wide risk model that adequately addresses multiple facility releases, a site-wide seismic model for determining off-site risk has been developed for nuclear facilities at the SRS. Risk from seismic events up to the design basis earthquake (DBE) of 0.2 g (frequency of 2.0E-4/yr) is covered by the model. Present plans include expanding the scope of the model to include other types of initiators that can simultaneously affect multiple facilities.

  10. Monitored Retrievable Storage facility site screening and evaluation report

    SciTech Connect

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs {hor ellipsis}'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report, all site evaluations (sections 13 through 16) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This is Volume 3 of a three volume document. References are also included in this volume.

  11. Monitored retrievable storage facility site screening and evaluation report

    SciTech Connect

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs{hor ellipsis}'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report include: site evaluations (sections 10 through 12) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This in Volume 2 of a three volume document.

  12. Mixed waste disposal facilities at the Savannah River Site

    SciTech Connect

    Wells, M.N.; Bailey, L.L.

    1991-12-31

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE`s Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site`s waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

  13. Hanford tank initiative test facility site selection study

    SciTech Connect

    Staehr, T.W.

    1997-04-03

    The Hanford Tanks Initiative (HTI) project is developing equipment for the removal of hard heel waste from the Hanford Site underground single-shell waste storage tanks. The HTI equipment will initially be installed in the 241-C-106 tank where its operation will be demonstrated. This study evaluates existing Hanford Site facilities and other sites for functional testing of the HTI equipment before it is installed into the 241-C-106 tank.

  14. Sociological perspective on the siting of hazardous waste facilities

    SciTech Connect

    Mileti, D.S.; Williams, R.G.

    1985-01-01

    The siting of hazardous waste facilities has been, and will likely continue to be, both an important societal need and a publically controversial topic. Sites have been denounced, shamed, banned, and moved at the same time that the national need for their installation and use has grown. Despite available technologies and physical science capabilities, the effective siting of facilitites stands more as a major contemporary social issue than it is a technological problem. Traditional social impact assessment approaches to the siting process have largely failed to meaningfully contribute to successful project implementation; these efforts have largely ignored the public perception aspects of risk and hazard on the success or failure of facility siting. This paper proposes that the siting of hazardous waste facilities could well take advantage of two rich but somewhat disparate research histories in the social sciences. A convergent and integrated approach would result from the successful blending of social impact assessment, which seeks to define and mitigate problems, with an approach used in hazards policy studies, which has sought to understand and incorporate public risk perceptions into effective public decision-making. It is proposed in this paper that the integration of these two approaches is necessary for arriving at more readily acceptable solutions to siting hazardous waste facilities. This paper illustrates how this integration of approaches could be implemented.

  15. NN-SITE: A remote monitoring testbed facility

    SciTech Connect

    Kadner, S.; White, R.; Roman, W.; Sheely, K.; Puckett, J.; Ystesund, K.

    1997-08-01

    DOE, Aquila Technologies, LANL and SNL recently launched collaborative efforts to create a Non-Proliferation Network Systems Integration and Test (NN-Site, pronounced N-Site) facility. NN-Site will focus on wide area, local area, and local operating level network connectivity including Internet access. This facility will provide thorough and cost-effective integration, testing and development of information connectivity among diverse operating systems and network topologies prior to full-scale deployment. In concentrating on instrument interconnectivity, tamper indication, and data collection and review, NN-Site will facilitate efforts of equipment providers and system integrators in deploying systems that will meet nuclear non-proliferation and safeguards objectives. The following will discuss the objectives of ongoing remote monitoring efforts, as well as the prevalent policy concerns. An in-depth discussion of the Non-Proliferation Network Systems Integration and Test facility (NN-Site) will illuminate the role that this testbed facility can perform in meeting the objectives of remote monitoring efforts, and its potential contribution in promoting eventual acceptance of remote monitoring systems in facilities worldwide.

  16. Project financing knits parts of costly LNG supply chain

    SciTech Connect

    Minyard, R.J.; Strode, M.O.

    1997-06-02

    The supply and distribution infrastructure of an LNG project requires project sponsors and LNG buyers to make large, interdependent capital investments. For a grassroots project, substantial investments may be necessary for each link in the supply chain: field development; liquefaction plant and storage; ports and utilities; ships; receiving terminal and related facilities; and end-user facilities such as power stations or a gas distribution network. The huge sums required for these projects make their finance ability critical to implementation. Lenders have become increasingly comfortable with LNG as a business and now have achieved a better understanding of the risks associated with it. Raising debt financing for many future LNG projects, however, will present new and increasingly difficult challenges. The challenge of financing these projects will be formidable: political instability, economic uncertainty, and local currency volatility will have to be recognized and mitigated. Described here is the evolution of financing LNG projects, including the Rasgas LNG project financing which broke new ground in this area. The challenges that lie ahead for sponsors seeking to finance future projects selling LNG to emerging markets are also discussed. And the views of leading experts from the field of project finance, specifically solicited for this article, address major issues that must be resolved for successful financing of these projects.

  17. Mixed waste disposal facilities at the Savannah River Site

    SciTech Connect

    Wells, M.N.; Bailey, L.L.

    1991-01-01

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

  18. New instrument calibration facility for the DOE Savannah River Site

    SciTech Connect

    Wilkie, W.H.; Polz, E.J.

    1993-12-31

    A new laboratory facility is being designed, constructed, and equipped at the Savannah River Site (SRS) as a fiscal year 1992 line item project. This facility will provide space and equipment for test, evaluation, repair, maintenance, and calibration of radiation monitoring instrumentation. The project will replace an obsolete facility and will allow implementation of program upgrades necessary to meet ANSI N323 requirements and National Voluntary Laboratory Accreditation Program (NVLAP) criteria for accreditation of federally owned secondary calibration laboratories. An outline of the project is presented including description, scope, cost, management organization, chronology, and current status. Selected design criteria and their impacts on the project are discussed. The upgraded SRS calibration program is described, and important features of the new facility and equipment that will accommodate this program are listed. The floor plan for the facility is shown, and equipment summaries and functional descriptions for each area are provided.

  19. The Asia Pacific LNG trade: Status and technology development

    SciTech Connect

    Hovdestad, W.R.

    1995-10-01

    The Asia Pacific Region is experiencing a period of sustained economic expansion. Economic growth has led to an increasing demand for energy that has spurred a rapid expansion of baseload liquefied natural gas (LNG) facilities in this region. This is illustrated by the fact that seven of the ten baseload facilities in existence provide LNG for markets in the Asia Pacific region. With the three exceptions having been initially commissioned in 1972 and earlier, it is fair to observed that most advances in LNG technology have been developed and applied for this market. The paper presents the current status and identified future trends for the Asia Pacific LNG trade. Technology development in terms of application to onstream production, processing and transportation facilities, including LNG tankers, is presented. The potential of future advances to applied technology and operational practices to improve the cost-effectiveness of new and existing facilities is discussed. Current design data and methods as actually used are examined in terms of identifying where fundamental research and basic physical data are insufficient for optimization purposes. These findings are then summarized and presented in terms of the likely evolution of future and existing LNG projects in the Asia Pacific region.

  20. Partial site release at a power reactor facility.

    PubMed

    Darman, Joseph; Whitney, Michael; Dubiel, Richard

    2004-01-01

    U.S. NRC licensed facilities undergoing decommissioning may wish to remove portions of their site from the jurisdiction of their license, prior to final license termination. The method of partial site release, relevant to radiological conditions, described herein employs NUREG-1505 methodology for demonstrating indistinguishability from background. The partial site release process was also informed by NRC Regulatory Issue Summary 2000-19 "Partial Release of Reactor Site for Unrestricted Use Before NRC Approval of the License Termination Plan." However, the focus of this discussion is the radiological aspects of partial site release, relevant to the implementation of NUREG-1505 methodology for demonstrating indistinguishability from background, based on the 137Cs concentrations at the site and a suitable background reference area. This type of approach was found acceptable by the NRC, and the partial site release was granted. PMID:14695009

  1. Qualitative Risk Assessment for an LNG Refueling Station and Review of Relevant Safety Issues

    SciTech Connect

    Siu, N.; Herring, J.S.; Cadwallader, L.; Reece, W.; Byers, J.

    1998-02-01

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural gas (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tank truck deliveries, and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects Analysis, and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of ``best practice`` information throughout the LNG community.

  2. Interim qualitative risk assessment for an LNG refueling station and review of relevant safety issues

    SciTech Connect

    Siu, N.; Herring, S.; Cadwallader, L.; Reece, W.; Byers, J.

    1997-07-01

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tanker truck delivers and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects analysis and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of best practice information throughout the LNG community.

  3. Overview study of LNG release prevention and control systems

    SciTech Connect

    Pelto, P.J.; Baker, E.G.; Holter, G.M.; Powers, T.B.

    1982-03-01

    The liquefied natural gas (LNG) industry employs a variety of release prevention and control techniques to reduce the likelihood and the consequences of accidental LNG releases. A study of the effectiveness of these release prevention and control systems is being performed. Reference descriptions for the basic types of LNG facilities were developed. Then an overview study was performed to identify areas that merit subsequent and more detailed analyses. The specific objectives were to characterize the LNG facilities of interest and their release prevention and control systems, identify possible weak links and research needs, and provide an analytical framework for subsequent detailed analyses. The LNG facilities analyzed include a reference export terminal, marine vessel, import terminal, peakshaving facility, truck tanker, and satellite facility. A reference description for these facilities, a preliminary hazards analysis (PHA), and a list of representative release scenarios are included. The reference facility descriptions outline basic process flows, plant layouts, and safety features. The PHA identifies the important release prevention operations. Representative release scenarios provide a format for discussing potential initiating events, effects of the release prevention and control systems, information needs, and potential design changes. These scenarios range from relatively frequent but low consequence releases to unlikely but large releases and are the principal basis for the next stage of analysis.

  4. Potential for long-term LNG supplies to the United States

    SciTech Connect

    Not Available

    1992-02-01

    Liquefied natural gas (LNG) has been a component of the US gas supply mix since 1970. Between 1970 and 1981 LNG terminals were constructed that have the current capability of receiving annual LNG shipments equivalent to about 700 Bcf. Additional terminal capacity was proposed and sites were under consideration in 1985 when reduced demand for natural gas and softening of gas prices resulted in the termination of plans for new capacity and suspension of contracts for imports. In the 1990s, however, shipments of LNG are again being received, and it is expected that imports of LNG by seaborne trade will play a significant role in meeting the growing US requirements for natural gas supply. It is expected that all existing US terminals will be operational by the mid-1990s, and the existing terminal capacity would be fully utilized by the year 2000. The report summarizes the analysis of the LNG terminal capacity aimed at identifying future LNG liquefaction and transportation needs.

  5. Facility siting as a decision process at the Savannah River Site

    SciTech Connect

    Wike, L.D.

    1995-12-31

    Site selection for new facilities at Savannah River Site (SRS) historically has been a process dependent only upon specific requirements of the facility. While this approach is normally well suited to engineering and operational concerns, it can have serious deficiencies in the modern era of regulatory oversight and compliance requirements. There are many issues related to the site selection for a facility that are not directly related to engineering or operational requirements; such environmental concerns can cause large schedule delays and budget impact,s thereby slowing or stopping the progress of a project. Some of the many concerns in locating a facility include: waste site avoidance, National Environmental Policy Act requirements, Clean Water Act, Clean Air Act, wetlands conservation, US Army Corps of Engineers considerations, US Fish and Wildlife Service statutes including threatened and endangered species issues, and State of South Carolina regulations, especially those of the Department of Health and Environmental Control. In addition, there are SRS restrictions on research areas set aside for National Environmental Research Park (NERP), Savannah River Ecology Laboratory, Savannah River Forest Station, University of South Carolina Institute of Archaeology and Anthropology, Southeastern Forest Experimental Station, and Savannah River Technology Center (SRTC) programs. As with facility operational needs, all of these siting considerations do not have equal importance. The purpose of this document is to review recent site selection exercises conducted for a variety of proposed facilities, develop the logic and basis for the methods employed, and standardize the process and terminology for future site selection efforts.

  6. Site Selection for the Salt Disposition Facility at the Savannah River Site

    SciTech Connect

    Gladden, J.B.; Rueter, K.J.; Morin, J.P.

    2000-11-15

    A site selection study was conducted to identify a suitable location for the construction and operation of a new Salt Disposition Facility (SDF) at the Savannah River Site (SRS). The facility to be sited is a single processing facility and support buildings that could house either of three technology alternatives being developed by the High Level Waste Systems Engineering Team: Small Tank Tetraphenylborate Precipitation, Crystalline Silicotitanate Non-Elutable Ion Exchange or Caustic Side Solvent Extraction. A fourth alternative, Direct Disposal in grout, is not part of the site selection study because a location has been identified that is unique to this technology (i.e., Z-Area). Facility site selection at SRS is a formal, documented process that seeks to optimize siting of new facilities with respect to facility-specific engineering requirements, sensitive environmental resources, and applicable regulatory requirements. In this manner, the prime objectives of cost minimization, environmental protection, and regulatory compliance are achieved. The results from this geotechnical characterization indicated that continued consideration be given to Site B for the proposed SDF. Suitable topography, the lack of surface hydrology and floodplain issues, no significant groundwater contamination, the presence of minor soft zones along the northeast portion of footprint, and no apparent geological structure in the Gordon Aquitard support this recommendation.

  7. Risk management study for the retired Hanford Site facilities: Qualitative risk evaluation for the retired Hanford Site facilities. Volume 3

    SciTech Connect

    Coles, G.A.; Shultz, M.V.; Taylor, W.E.

    1993-09-01

    This document provides a risk evaluation of the 100 and 200 Area retired, surplus facilities on the Hanford Site. Also included are the related data that were compiled by the risk evaluation team during investigations performed on the facilities. Results are the product of a major effort performed in fiscal year 1993 to produce qualitative information that characterizes certain risks associated with these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1,450-km{sup 2} (570-mi{sup 2}) Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30-km (20 mi) southeast of the 200 Area. During walkdown investigations of these facilities, data on real and potential hazards that threatened human health or safety or created potential environmental release issues were identified by the risk evaluation team. Using these findings, the team categorized the identified hazards by facility and evaluated the risk associated with each hazard. The factors contributing to each risk, and the consequence and likelihood of harm associated with each hazard also are included in this evaluation.

  8. Earthquake research for the safer siting of critical facilities

    SciTech Connect

    Cluff, J.L.

    1980-01-01

    The task of providing the necessities for living, such as adequate electrical power, water, and fuel, is becoming more complicated with time. Some of the facilities that provide these necessities would present potential hazards to the population if serious damage were to occur to them during earthquakes. Other facilities must remain operable immediately after an earthquake to provide life-support services to people who have been affected. The purpose of this report is to recommend research that will improve the information available to those who must decide where to site these critical facilities, and thereby mitigate the effects of the earthquake hazard. The term critical facility is used in this report to describe facilities that could seriously affect the public well-being through loss of life, large financial loss, or degradation of the environment if they were to fail. The term critical facility also is used to refer to facilities that, although they pose a limited hazard to the public, are considered critical because they must continue to function in the event of a disaster so that they can provide vital services.

  9. Perceived risk impacts from siting hazardous waste facilities

    SciTech Connect

    Hemphill, R.C.; Edwards, B.K.; Bassett, G.W. Jr.

    1992-08-01

    This paper describes methods for evaluating perception-based economic impacts resulting from siting hazardous waste facilities. Socioeconomic impact analysis has devoted increasing attention to the potential implications of changed public perceptions of risk due to an activity or situation. This contrasts with traditional socioecconomic impact analysis, which has been limited to measuring direct and indirect consequences of activities, e.g., the employment effects of placing a military base in a specified location. Approaches to estimating economic impacts due to changes in public perceptions are ex ante or ex post. The former predict impacts prior to the construction and operation of a facility, while the later is based on impacts that become evident only when the facility is up and running. The theoretical foundations and practical requirements for demonstrating impacts, resulting from the siting of a hazardous facility are described. The theoretical rationale supporting the study of perceived risk research is presented along with discussion of problems that arise in demonstrating the existence and measuring the quantitative importance of economic impacts due to changes in perceived risk. The high-level nuclear waste facility being considered in Nevada is presented as an example in which there is potential for impacts, but where the link between perceived risk and economic conditions has not yet been developed.

  10. Decommissioning of facilities at the Savannah River Site

    SciTech Connect

    Marek, J.M.; Street, G.H.

    1994-12-31

    The U.S. Department of Energy (DOE) and Savannah River Site (SRS) are undergoing a major transformation as priorities are shifted to reflect the end of the Cold War. This mission shift and associated fiscal constraints are resulting in a significant number of SRS facilities that are owned by Defense Programs becoming surplus. Some facilities owned by other DOE organizations (EM-30) have also become surplus because of obsolescence or replacement. The financial requirements of surplus facilities have become a burden to DOE at a time when budgets are being drastically reduced. Also, there is a concern that safety and environmental problems will develop if the surplus facilities are not properly managed and maintained. There is a desire on the part of DOE to rapidly deactivate these facilities to reduce costs and risk and transfer ownership from Defense Programs to Environmental Management. However, some surplus facilities offer the potential for reuse, either for other government programs or commercialization. These valuable assets must be quickly identified and analyzed for reuse to help minimize cost and economic impact.

  11. Offshore gas liquefaction without offshore LNG plants

    SciTech Connect

    Haines, G.H.; Thompson, J.

    1980-02-18

    Constructors John Brown Ltd.'s Cold Box Shuttle liquefaction system offers an economical means of recovering offshore gas by eliminating the need for platform liquefaction facilities and by producing onshore the bulk of the cold for LNG refrigeration. Under the C.B.S. concept, a ship provided with heat-exchange equipment conveys liquid nitrogen from a shore terminal out to the platform, where the ship is attached to a single-point mooring (SPM). Heat exchange between the liquid nitrogen and the gas from the platform produces LNG for transport back to port in the same ship. At the port terminal, the cold in LNG can help generate the power needed in the liquid-nitrogen plant. The production efficiency of the C.B.S. system depends upon the gas production rate, the number and size of LNG vessels served by the shore terminal, the limiting wave heights for mooring and loading, the journey time, the mooring time, the planned maintenance of SPM, and the unplanned downtime of the SPM.

  12. Risk management study for the Hanford Site facilities: Risk reduction cost comparison for the retired Hanford Site facilities. Volume 4

    SciTech Connect

    Coles, G.A.; Egge, R.G.; Senger, E.; Shultz, M.W.; Taylor, W.E.

    1994-02-01

    This document provides a cost-comparison evaluation for implementing certain risk-reduction measures and their effect on the overall risk of the 100 and 200 Area retired, surplus facilities. The evaluation is based on conditions that existed at the time the risk evaluation team performed facility investigations, and does not acknowledge risk-reduction measures that occurred soon after risk identification. This evaluation is one part of an overall risk management study for these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1450-km{sup 2} Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30 km southeast of the 200 Area. This cost-comparison evaluation (1) determines relative costs for reducing risk to acceptable levels; (2) compares the cost of reducing risk using different risk-reduction options; and (3) compares the cost of reducing risks at different facilities. The result is an identification of the cost effective risk-reduction measures. Supporting information required to develop costs of the various risk-reduction options also is included.

  13. FACILITY DEACTIVATION AND DECOMMISSIONING AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Gilmour, J; William Austin, W; Cathy Sizemore, C

    2007-01-31

    In February 2002, the U.S. Department of Energy initiated actions to expedite Cleanup, focus on significant and early risk reduction, and reduce costs at the Savannah River Site (SRS). In response SRS started on a project focused on completing the decommissioning of inactive facilities in T, D, and M Areas, areas that on the perimeter of the Site, by the end of 2006. In June 2003, the Department of Energy Savannah River Operations Office (DOE-SR), the South Carolina Department of Health and Environmental Control (SCDHEC), and the Environmental Protection Agency, Region 4 (EPA-4) endorsed a Memorandum of Agreement (MOA) concerning cleanup at the Savannah River Site (SRS). The vision of the Agreement is that SRS will reduce its operations footprint to establish a buffer zone at the perimeter if the Site, while the central core area of the Site will be reserved for continuing or future long-term operations. DOE-SR, EPA-4, and SCDHEC agreed that establishing this buffer zone and appropriately sequencing environmental restoration and decommissioning activities can lead to greater efficiency and accelerate completion of entire site areas. This vision is embodied in the concept of Area Completion--which integrated operations, deactivation and decommissioning (D&D), and soils and groundwater cleanup into a time-phased approach to completing all the work necessary to address the Cold War legacy. D&D addresses the ''footprint'' of the building or structure, while the soils and groundwater project addresses any environmental remediation that may be required in the underlying and surrounding soils and groundwater. Since then, {approx}250 facilities have been decommissioned at the SRS, ranging from guard stations to nuclear fuel production facilities.

  14. Expedited site characterization for remedial investigations at federal facilities

    SciTech Connect

    Burton, J.C.

    1994-04-01

    Argonne National Laboratory`s Expedited Side Characterization (ESC) methodology gives federal agencies a process for producing high-quality CERCLA and RCRA site characterizations and remedial investigations in a cost- and time-efficient manner. The ESC process has been successfully tested and applied at numerous federal facilities. Examples include expanded site investigations for the Department of Interior`s Bureau of Land Management and remedial investigations for the Commodity Credit Corporation/US Dept. of Agriculture (CCC/USDA). In particular, the CCC/USDA has been the major sponsor in the development of the ESC process at Argonne. The technical successes and the cost and time savings of the ESC process for these programs have been detailed in previous papers. The Argonne ESC is currently being implemented at a Department of Energy facility (Pantex) and is schedules for implementation in the Department of Defense base closure program in order to meet accelerated schedules for remedial actions by these agencies.

  15. Incentives and the siting of radioactive waste facilities

    SciTech Connect

    Carnes, S.A.; Copenhaver, E.D.; Reed, J.H.; Soderstrom, E.J.; Sorensen, J.H.; Peelle, E.; Bjornstad, D.J.

    1982-08-01

    The importance of social and institutional issues in the siting of nuclear waste facilities has been recognized in recent years. Limited evidence from a survey of rural Wisconsin residents in 1980 indicates that incentives may help achieve the twin goals of increasing local support and decreasing local opposition to hosting nuclear waste facilities. Incentives are classified according to functional categories (i.e., mitigation, compensation, and reward) and the conditions which may be prerequisites to the use of incentives are outlined (i.e., guarantee of public health and safety, some measure of local control, and a legitimation of negotiations during siting). Criteria for evaluating the utility of incentives in nuclear waste repository siting are developed. Incentive packages may be more useful than single incentives, and nonmonetary incentives, such as independent monitoring and access to credible information, may be as important in eliciting support as monetary incentives. Without careful attention to prerequisites in the siting process it is not likely that incentives will facilitate the siting process.

  16. Facility siting and compensation: Lessons from the Massachusetts experience

    SciTech Connect

    O'Hare, M. ); Sanderson, D. )

    1993-01-01

    In 1980, Massachusetts enacted a unique and comprehensive process for siting hazardous waste facilities. No facility has been constructed or approved since then, however, so it seems appropriate to ask whether the process was fundamentally flawed in concept, implemented imperfectly, or whether some other lesson can be drawn. The authors of this study were closely involved with the legislation at its inception, and Sanderson has stayed involved with it professionally, most recently as manager of the Clean Harbors project. In this essay they combine analysis and memoir to examine the reasons why the Massachusetts siting process has not yet delivered a facility. They argue that the critical factors were both specific design defects of the law itself and general characteristics of the Massachusetts public decisionmaking process. The Massachusetts negotiated compensation model of facility siting is so complicated in practice, and so contingent on local factors, that no one can judge confidently whether it is on the whole hopeless, flawed but correctable, or merely unlucky. We believe its principal liability is that it offers two fatal temptations: to public officials, it appears to offer an alternative to taking leadership risks; and to frightened citizens, it appears to offer a way to avoid, rather than confront and control, physical risks and anxiety. Specific features of the process - its complexity, the inherent delay, the unfortunate design of the siting council - might be corrected with good effect. But we see larger and more pervasive forces as the real obstacle. The NIMBY problem is, at heart, symptomatic of the pessimistic expectations; raising those expectations is not a task that can be accomplished by any legislated decision process. 4 refs., 1 tabs.

  17. Federal Facilities Compliance Act, Conceptual Site Treatment Plan. Part 1

    SciTech Connect

    1993-10-29

    This Conceptual Site Treatment Plan was prepared by Ames Laboratory to meet the requirements of the Federal Facilities Compliance Act. Topics discussed in this document include: general discussion of the plan, including the purpose and scope; technical aspects of preparing plans, including the rationale behind the treatability groupings and a discussion of characterization issues; treatment technology needs and treatment options for specific waste streams; low-level mixed waste options; TRU waste options; and future waste generation from restoration activities.

  18. LNG: still a growth industry

    SciTech Connect

    Not Available

    1980-11-01

    Orders for new LNG and LPG carriers have fallen to less than half the worldwide level of the years 1975 to 1977. Defects that have appeared in LNG tankers, such as those of El Paso, are discussed. International politics, domestic pressure, and technical problems are continuing to delay transport of LNG on the seas. The Algerian and Malaysian LNG projects have been successful, however. Some of the companies and organizations which have been involved in the production of LNG-related equipment or services are listed. (DLC)

  19. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    SciTech Connect

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

  20. Sensor test facilities and capabilities at the Nevada test site

    NASA Astrophysics Data System (ADS)

    Boyer, William B.; Burke, Larry J.; Gomez, Bernard J.; Livingston, Leonard; Nelson, Daniel S.; Smathers, Douglas C.

    1997-07-01

    Sandia National Laboratories has recently developed two major field test capabilities for unattended ground sensor systems at the Department of Energy's Nevada Test Site (NTS). The first capability utilizes the NTS large area, varied terrain, and intrasite communications systems for testing sensors for detecting and tracking vehicular traffic. Sensor and ground truth data can be collected at either of two secure control centers. This system also includes an automated ground truth capability that consists of differential Global Positioning Satellite receivers on test vehicles and live TV coverage of critical road sections. Finally there is a high-speed, secure computer network link between the control centers and the Air Force's Theater Air Command and Control Simulation Facility in Albuquerque NM. The second capability is Bunker 2-300. It is a facility for evaluating advanced sensor systems for monitoring activities in underground cut-and-cover facilities. The main part of the facility consists of an underground bunker with three large rooms for operating various types of equipment. This equipment includes simulated chemical production machinery and controlled seismic and acoustic signal sources. There has been a thorough geologic and electromagnetic characterization of the region around the bunker. Since the facility is in a remote location, it is well-isolated from seismic, acoustic, and electromagnetic interference.

  1. Environmental criteria in industrial facility siting decisions: An analysis

    NASA Astrophysics Data System (ADS)

    Briassoulis, Helen

    1995-03-01

    Environmental criteria are increasingly being employed in industrial facility siting, usually in multicriteria decision contexts, together with technical, socioeconomic and other considerations. This paper analyzes the criteria that have appeared in the published literature with the aim to offer guidance for their selection in a particular facility location problem. A number of alternative classification schemes are presented, first based on the most prevalent classification dimensions which are: the economy-environment relationship, purpose of the criterion, complexity, spatial and temporal scale, and level of measurement. The major scheme adopted draws from the economy-environment relationship and assigns environmental critera to one of seven categories: general characterizations of the environment, characteristics of individual environmental components, measures of the magnitude and intensity of the activity, measures of the nature and volume of wastes which are produced, characteristics of impacts on separate environmental media and receptors, general characterizations of environmental quality, and impacts on humans. Within each of these categories the criteria are analyzed in terms of the other classification dimensions. Common characteristics among the various criteria as well as future trends in their development are identified. This paper also discusses the most important factors conditioning the choice of criteria in a particular facility siting context and outlines a systematic procedure for their selection in real-world applications.

  2. The Phoenix series large scale LNG pool fire experiments.

    SciTech Connect

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  3. LNG annotated bibliography

    SciTech Connect

    Bomelburg, H.J.; Counts, C.A.; Cowan, C.E.; Davis, W.E.; DeSteese, J.G.; Pelto, P.J.

    1982-09-01

    This document updates the bibliography published in Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: third status report (PNL-4172) and is a complete listing of literature reviewed and reported under the LNG Technical Surveillance Task. The bibliography is organized alphabetically by author.

  4. LNG infrastructure and equipment

    SciTech Connect

    Forgash, D.J.

    1995-12-31

    Sound engineering principals have been used by every company involved in the development of the LNG infrastructure, but there is very little that is new. The same cryogenic technology that is used in the manufacture and sale of nitrogen, argon, and oxygen infrastructure is used in LNG infrastructure. The key component of the refueling infrastructure is the LNG tank which should have a capacity of at least 15,000 gallons. These stainless steel tanks are actually a tank within a tank separated by an annular space that is void of air creating a vacuum between the inner and outer tank where superinsulation is applied. Dispensing can be accomplished by pressure or pump. Either works well and has been demonstrated in the field. Until work is complete on NFPA 57 or The Texas Railroad Commission Rules for LNG are complete, the industry is setting the standards for the safe installation of refueling infrastructure. As a new industry, the safety record to date has been outstanding.

  5. CEOS database of worldwide calibration facilities and validation test sites

    NASA Astrophysics Data System (ADS)

    Butler, James J.; Wanchoo, Lalit; Le, Truong

    2001-02-01

    12 Since 1995, the CEOS Calibration/Validation (Cal/Val) Database has provided the international Earth remote sensing science community with a) a central repository for information on current and planned Calibration/Validation activities and b) a means to foster collaboration on common Cal/Val issues. The Cal/Val Database uses an ORACLE relation database management system to store the data and is accessed via the World Wide Web (WWW) using PERL scripts to search and query the database. The search queries are structured such that users can define any combination of fields, either through selection of valids, or by directly typing the information. All query results are displayed in the text form. The text displays are interactive allowing the user to point and click to access more detailed information. System functionality provides an on-line form of all of the three questionnaires for submitting new information and allows a user with the assigned password to edit archived information for their facility. This functionality allows users to update information, as it becomes available. In 2000, the Cal/Val database was updated through a process of additional surveying of existing and planned Cal/Val capabilities to support the NASA's Earth Science Enterprise (ESE) and other international Earth observing missions. A set of three updated questionnaires was prepared: one for calibration laboratories, one for test sites, and one for field instruments. The information requested included: a description of the facility, instruments available, instrument characteristics, types of measurements performed, programs/projects that have used the facility, etc. These questionnaires with cover letter were mailed to over 250 research groups that included CEOS members and facilities within the USA. The information collected from worldwide facilities was used to construct and update this on-line database for use not only by the CEOS members, but also the broader international Earth

  6. Steady-state and dynamic simulation study on boil-off gas minimization and recovery strategies at LNG exporting terminals

    NASA Astrophysics Data System (ADS)

    Kurle, Yogesh

    Liquefied natural gas (LNG) is becoming one of the prominent clean energy sources with its abundance, high calorific value, low emission, and price. Vapors generated from LNG due to heat leak are called boil-off gas (BOG). As world-wide LNG productions are increasing fast, BOG generation and handling problems are becoming more critical. Also, due to stringent environmental regulations, flaring of BOG is not a viable option. In this study, typical Propane-and-Mixed-Refrigerant (C3-MR) process, storage facilities, and loading facilities are modeled and simulated to study BOG generation at LNG exporting terminals, including LNG processing, storage, and berth loading areas. Factors causing BOG are presented, and quantities of BOG generated due to each factor at each location are calculated under different LNG temperatures. Various strategies to minimize, recover, and reuse BOG are also studied for their feasibility and energy requirements. Rate of BOG generation during LNG loading---Jetty BOG (JBOG)---changes significantly with loading time. In this study, LNG vessel loading is simulated using dynamic process simulation software to obtain JBOG generation profile and to study JBOG recovery strategies. Also, fuel requirements for LNG plant to run steam-turbine driven compressors and gas-turbine driven compressors are calculated. Handling of JBOG generated from multiple loadings is also considered. The study would help proper handling of BOG problems in terms of minimizing flaring at LNG exporting terminals, and thus reducing waste, saving energy, and protecting surrounding environments.

  7. Justice, community knowledge, and waste facility siting in Taiwan.

    PubMed

    Fan, Mei-Fang

    2012-05-01

    This article examines justice in the context of a controversial industrial waste facility siting in a Hakka (a minority ethnic group) town in Taiwan. It provides analysis of local perceptions of disproportionate risk, community knowledge claims, and the challenges of citizens to the controversial environmental impact assessment process. It explores knowledge disputes among regulators, developers, and local activists; it considers the struggle of local actors for recognition and inclusion in decision-making; and it argues for the development of institutional procedures that promote dialogue among stakeholders in order to avoid the preemption of debate, the control of the frame by the government and experts, and the centralization of power.

  8. Consolidated Incineration Facility, Savannah River Site. Environmental Assessment

    SciTech Connect

    Not Available

    1992-12-01

    This environmental assessment (EA) was prepared by the US Department of Energy (DOE) to assess the potential impacts associated with the siting, construction, and operation of the proposed Consolidated Incineration Facility (CIF), at the Savannah River Site, Aiken, South Carolina. The text of the document is unchanged from the EA issued in June 1992, with the following three exceptions: (1) Section 2.1 refers to recent solid waste forecast information; (2) Section 4.5.1 deletes the reference to dioxin emission standards; and (3) a footnote to Section 4.6.2 includes the results of a morr, conservative risk factor. An additional appendix has also been added to the EA. Appendix B presents comments received on the June 1992 EA and the Proposed FONSI from federal, state, and local agencies, interest groups, and individuals. Appendix B also contains both general and specific DOE responses to these comments.

  9. 5 CFR 2604.201 - Public reading room facility and Web site.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Public reading room facility and Web site... DISCLOSURE REPORTS FOIA Public Reading Room Facility and Web Site; Index Identifying Information for the Public § 2604.201 Public reading room facility and Web site. (a)(1) Location of public reading...

  10. 5 CFR 2604.201 - Public reading room facility and Web site.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Public reading room facility and Web site... DISCLOSURE REPORTS FOIA Public Reading Room Facility and Web Site; Index Identifying Information for the Public § 2604.201 Public reading room facility and Web site. (a)(1) Location of public reading...

  11. 5 CFR 2604.201 - Public reading room facility and Web site.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Public reading room facility and Web site... DISCLOSURE REPORTS FOIA Public Reading Room Facility and Web Site; Index Identifying Information for the Public § 2604.201 Public reading room facility and Web site. (a)(1) Location of public reading...

  12. 5 CFR 2604.201 - Public reading room facility and Web site.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 3 2012-01-01 2012-01-01 false Public reading room facility and Web site... DISCLOSURE REPORTS FOIA Public Reading Room Facility and Web Site; Index Identifying Information for the Public § 2604.201 Public reading room facility and Web site. (a)(1) Location of public reading...

  13. 5 CFR 2604.201 - Public reading room facility and Web site.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Public reading room facility and Web site... DISCLOSURE REPORTS FOIA Public Reading Room Facility and Web Site; Index Identifying Information for the Public § 2604.201 Public reading room facility and Web site. (a)(1) Location of public reading...

  14. Sludge treatment facility preliminary siting study for the sludge treatment project (A-13B)

    SciTech Connect

    WESTRA, A.G.

    1999-06-24

    This study evaluates various sites in the 100 K area and 200 areas of Hanford for locating a treatment facility for sludge from the K Basins. Both existing facilities and a new standalone facility were evaluated. A standalone facility adjacent to the AW Tank Farm in the 200 East area of Hanford is recommended as the best location for a sludge treatment facility.

  15. Los Alamos studies of the Nevada test site facilities for the testing of nuclear rockets

    NASA Technical Reports Server (NTRS)

    Hynes, Michael V.

    1993-01-01

    The topics are presented in viewgraph form and include the following: Nevada test site geographic location; location of NRDA facilities, area 25; assessment program plan; program goal, scope, and process -- the New Nuclear Rocket Program; nuclear rocket engine test facilities; EMAD Facility; summary of final assessment results; ETS-1 Facility; and facilities cost summary.

  16. Los Alamos studies of the Nevada test site facilities for the testing of nuclear rockets

    NASA Astrophysics Data System (ADS)

    Hynes, Michael V.

    The topics are presented in viewgraph form and include the following: Nevada test site geographic location; location of NRDA facilities, area 25; assessment program plan; program goal, scope, and process -- the New Nuclear Rocket Program; nuclear rocket engine test facilities; EMAD Facility; summary of final assessment results; ETS-1 Facility; and facilities cost summary.

  17. Closure End States for Facilities, Waste Sites, and Subsurface Contamination

    SciTech Connect

    Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

    2012-11-21

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE’s Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead

  18. National Ignition Facility Project Site Safety Program Appendix A

    SciTech Connect

    Moses, E

    2001-09-30

    These rules apply to all National Ignition Facility (NIF) workers (workers), which include Lawrence Livermore National Laboratory (LLNL) employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other national laboratories, participating guests, visitors and students) and contractors/subcontractors. The General Rules and NIF Code of Safe Practices shall be used by management to promote the prevention of incidents through indoctrination, safety and health training, and on-the-job application. As a condition for contract award, all employers shall conduct an orientation for all newly hired and rehired employees before those workers will be permitted to start work in this facility. This orientation shall include a discussion of the following information. The General Rules and NIF Code of Safe Practices must be posted at a conspicuous location at the job site office or be provided to each supervisory worker who shall have it readily available. Copies of the General Rules and NIF Code of Safe Practices can also be included in employee safety pamphlets. The Environmental, Safety, and Health (ES&H) rules at the NIF Project site are based upon compliance with the most stringent of Department of Energy (DOE), LLNL, Federal Occupational Safety and Health Administration (OSHA), California (Cal)/OSHA, and federal and state environmental requirements.

  19. Commercial facility site selection simulating based on MAS

    NASA Astrophysics Data System (ADS)

    Chao, Yi; Li, Qingquan; Zheng, Guizhou

    2008-10-01

    The location of commercial facility decides the benefit of the operator to a large degree. Existing location methods can express the static relationships between site selection result and location factors, but there still are some limites when express the dynamic and uncertain relationship between them. Hence, a dynamic, stochastic and forecastable location model should be built which can introduce the customer's behavior into the model and combine the macro pattern and micro spatial interaction. So the authors proposes Geosim-LM based on MAS. Geosim-LM has 3 kinds of agents, CustAgent, SiteAgent and GovAgent. They represent the customers, commercial fercilities and government. The land type, land price and traffic are the model environment. Then Geosim-LM is applied in the bank branches site evaluation and selection in Liwan district, Guangzhou. In existing bank branches site evaluation, there are 70% consistent in score grade between result of Geosim-LM after 200 round runing and actual rebust location. It proves the model is reliable and feasible. The conclusions can be get from the paper. MAS have advantages in location choice than existed methods. The result of Geosim-LM running can powerfully proves that building location model based on MAS is feasible.

  20. Public participation in energy facility siting. Part 2; Future directions

    SciTech Connect

    Whitlatch, E.E. . Dept. of Civil Engineering)

    1990-08-01

    The first planning era for energy facility siting was typified by technological decision making in a climate of eminent domain. The second planning era, from 1970 to present, involves regulatory/adjudicatory decision making in a climate of adversarial proceedings. However, outcomes are not much different than in the first: Decisions are still largely made on technological grounds, sites are secretly selected and anonymously secured, and public participation has little effect on decisions. The result has been endgame litigation that delays needed projects increases cost, and polarizes participants. Utilities are understandably reluctant to plan large base-load plants, yet almost all projections of electricity use indicate that such plants will be needed after 1996, if not before. The author discusses how it is in the self-interest of all three principal actors---industry, environmental groups, and state and local government---to move beyond confrontation to a third planning era based on negotiation. Unassisted negotiation (open siting or open planning) and assisted negotiation (facilitation and mediation) promise to produce mutual gain for all parties through cooperative and creative problem solving. Most importantly, they lay the groundwork for future productive interaction.

  1. Yucca Mountain Site Characterization Project exploratory studies facilities construction status

    SciTech Connect

    Allan, J.N.; Leonard, T.M.

    1993-12-31

    This paper discusses the progress to date on the construction planning and development of the Yucca Mountain Site Characterization Project (YMP) Exploratory Studies Facilities (ESF). The purpose of the ESF is to determine early site suitability and to characterize the subsurface of the Yucca Mountain site to assess its suitability for a potential high level nuclear waste repository. The present ESF configuration concept is for two main ramps to be excavated by tunnel boring machines (TBM) from the surface to the Topopah Spring Member of the Paintbrush Tuff Formation. From the main ramps, slightly above Topopah Spring level, supplemental ramps will be penetrated to the Calico Hills formation below the potential repository. There will be exploratory development drifts driven on both levels with the Main Test Area being located on the Topopah Spring level, which is the level of the proposed repository. The Calico Hills formation lies below the Topopah Spring member and is expected to provide the main geo-hydrologic barrier between the potential repository and the underlying saturated zones in the Crater Flat Tuff.

  2. Design control for the Savannah River Site Consolidated Incineration Facility

    SciTech Connect

    Walker, R.E.; Rider, R.L. )

    1991-01-01

    The initiation, development, and control of the design for the Consolidated Incineration Facility at the US Department of Energy Savannah River Site has been, from the inception, a precisely and formally controlled process. A plan was developed and implemented to ensure output properly aligned with approved design criteria and conformed to applicable regulations throughout the design process. The key element of design control was the technical baseline which established the benchmark against which all changes to the design was evaluated. During the conceptual design phase of the project, design criteria were written to reflect the project objectives and functional requirements. Governmental regulations were reviewed to determine permitting and licensing actions required. Hazards assessments were performed to establish design classifications. The resulting design criteria, permitting requirements, and facility classifications were incorporated into the design plan which provided the basis for subsequent design activities. As the project proceeded through the various design phases, design control was maintained according to the design plan. Review of all design products was performed by the project team routinely. Formal independent design reviews were accomplished prior to releasing the design for construction. Alignment between criteria and design output was verified periodically throughout the design process. A formal design change control board was invoked to effect design changes impacting technical baselines. All changes to design initiated following issue for construction also were subject to procedural control.

  3. Design control for the Savannah River Site Consolidated Incineration Facility

    SciTech Connect

    Walker, R.E.; Rider, R.L.

    1991-12-31

    The initiation, development, and control of the design for the Consolidated Incineration Facility at the US Department of Energy Savannah River Site has been, from the inception, a precisely and formally controlled process. A plan was developed and implemented to ensure output properly aligned with approved design criteria and conformed to applicable regulations throughout the design process. The key element of design control was the technical baseline which established the benchmark against which all changes to the design was evaluated. During the conceptual design phase of the project, design criteria were written to reflect the project objectives and functional requirements. Governmental regulations were reviewed to determine permitting and licensing actions required. Hazards assessments were performed to establish design classifications. The resulting design criteria, permitting requirements, and facility classifications were incorporated into the design plan which provided the basis for subsequent design activities. As the project proceeded through the various design phases, design control was maintained according to the design plan. Review of all design products was performed by the project team routinely. Formal independent design reviews were accomplished prior to releasing the design for construction. Alignment between criteria and design output was verified periodically throughout the design process. A formal design change control board was invoked to effect design changes impacting technical baselines. All changes to design initiated following issue for construction also were subject to procedural control.

  4. Hanford Site Treated Effluent Disposal Facility process flow sheet

    SciTech Connect

    Bendixsen, R.B.

    1993-04-01

    This report presents a novel method of using precipitation, destruction and recycle factors to prepare a process flow sheet. The 300 Area Treated Effluent Disposal Facility (TEDF) will treat process sewer waste water from the 300 Area of the Hanford Site, located near Richland, Washington, and discharge a permittable effluent flow into the Columbia River. When completed and operating, the TEDF effluent water flow will meet or exceed water quality standards for the 300 Area process sewer effluents. A preliminary safety analysis document (PSAD), a preconstruction requirement, needed a process flow sheet detailing the concentrations of radionuclides, inorganics and organics throughout the process, including the effluents, and providing estimates of stream flow quantities, activities, composition, and properties (i.e. temperature, pressure, specific gravity, pH and heat transfer rates). As the facility begins to operate, data from process samples can be used to provide better estimates of the factors, the factors can be entered into the flow sheet and the flow sheet will estimate more accurate steady state concentrations for the components. This report shows how the factors were developed and how they were used in developing a flow sheet to estimate component concentrations for the process flows. The report concludes with how TEDF sample data can improve the ability of the flow sheet to accurately predict concentrations of components in the process.

  5. Not in whose backyard? Minority population concentrations and noxious facility sites

    SciTech Connect

    Nieves, L.A.

    1992-04-01

    The NIMBY (not in may backyard) syndrome has become the nemesis of facility siting efforts in the USA. Given people`s reluctance to live near noxious facilities, in whose backyard are such facilities located? This study employs US county-level data to examine relative concentrations of minorities living near noxious facilities. Facility types analyzed include electric generating plants, manufacturing plants, Superfund sites, and radioactive waste disposal sites. While this study does not address which cam first, the minority population concentration or the noxious facilities, it documents their current degree of association.

  6. Not in whose backyard Minority population concentrations and noxious facility sites

    SciTech Connect

    Nieves, L.A.

    1992-01-01

    The NIMBY (not in may backyard) syndrome has become the nemesis of facility siting efforts in the USA. Given people's reluctance to live near noxious facilities, in whose backyard are such facilities located This study employs US county-level data to examine relative concentrations of minorities living near noxious facilities. Facility types analyzed include electric generating plants, manufacturing plants, Superfund sites, and radioactive waste disposal sites. While this study does not address which cam first, the minority population concentration or the noxious facilities, it documents their current degree of association.

  7. Liquefied Natural Gas (LNG) dispenser verification device

    NASA Astrophysics Data System (ADS)

    Xiong, Maotao; Yang, Jie-bin; Zhao, Pu-jun; Yu, Bo; Deng, Wan-quan

    2013-01-01

    The composition of working principle and calibration status of LNG (Liquefied Natural Gas) dispenser in China are introduced. According to the defect of weighing method in the calibration of LNG dispenser, LNG dispenser verification device has been researched. The verification device bases on the master meter method to verify LNG dispenser in the field. The experimental results of the device indicate it has steady performance, high accuracy level and flexible construction, and it reaches the international advanced level. Then LNG dispenser verification device will promote the development of LNG dispenser industry in China and to improve the technical level of LNG dispenser manufacture.

  8. Probability of Liquefaction for Pit Disassembly and Conversion Facility (PDCF) Site, Savannah River Site

    SciTech Connect

    Lee, R.C.

    2003-09-30

    This report documents the probability of liquefaction (POL) for the Pit Disassembly and Conversion Facility (PDCF). The procedure for analysis of a critical layer of interest requires the following basic steps: (1) establish the probability of occurrence (POO) of ranges of 2.5 Hz bedrock motion based on a probabilistic seismic hazard assessment (PSHA); (2) define the critical layer that may be susceptible to liquefaction; (3) estimate distributions of cyclic stress ratio (CSR) (i.e., seismic demand) for the critical layer using site-specific soil properties corresponding to the bedrock motions; (4) estimate capacity of the critical layer based on site-specific cone penetration test (CPT) soundings and standard penetration test (SPT) blowcount data; and (5) sum the probability of liquefaction for each range of bedrock motion using empirical data correlating demand and capacity with liquefaction. The soil layer most susceptible to liquefaction is the critical layer. The critical layer is characterized by relatively low blowcount and low fines content and is established from soil layers below the water table. A key component for seismic demand is the establishment of the soil profile and it's uncertainty. The PDCF site is consistent with the 1997 SRS-specific model used to compute the site amplification database. Thus, previously derived site amplification functions reflecting the uncertainty in site properties and stratigraphy can be used to predict distributions of CSR given a specific earthquake magnitude and level of bedrock motion. The previously developed site amplification database reflects uncertainty in site response based on the large database of site shear-wave velocity profiles. Consequently, for each level of bedrock motion (from the PSHA) the site amplification database is used to establish the distribution of the expected CSR (demand) in the critical layer.

  9. Monitoring, safety systems for LNG and LPG operators

    SciTech Connect

    True, W.R.

    1998-11-16

    Operators in Korea and Australia have chosen monitoring and control systems in recent contracts for LNG and LPG storage. Korea Gas Corp. (Kogas) has hired Whessoe Varec, Calais, to provide monitoring systems for four LNG storage tanks being built at Kogas` Inchon terminal. For Elgas Ltd., Port Botany, Australia, Whessoe Varec has already shipped a safety valve-shutdown system to a new LPG cavern-storage facility under construction. The paper describes the systems, terminal monitoring, dynamic approach to tank management, and meeting the growing demand for LPG.

  10. 76 FR 33746 - Freeport LNG Development, L.P.; Application for Blanket Authorization To Export Liquefied Natural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... behalf or as agent for others, up to a total of the equivalent of 24 Bcf of foreign-source LNG from the... liquefied natural gas (LNG) that previously had been imported into the United States from foreign sources on... facilities on Quintana Island, Texas, in an amount up to the equivalent of 24 billion cubic feet (Bcf)...

  11. 78 FR 47691 - UGI, Inc.; Notice of Intent to Prepare an Environmental Assessment for the Proposed Temple LNG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... Proposed Temple LNG Liquefaction Upgrade and Request for Comments on Environmental Issues The staff of the...) that will discuss the environmental impacts of the Temple LNG Liquefaction Upgrade involving.... Summary of the Proposed Project UGI plans to construct and operate facilities to increase the...

  12. LNG Observer: Second Qatargas train goes onstream

    SciTech Connect

    1997-01-01

    The January-February, 1997 issue of the LNG Observer is presented. The following topics are discussed: second Qatargas train goes onstream; financing for the eighth Indonesian liquefaction train; Koreans take stakes in Oman LNG; US imports and exports of LNG in 1996; A 60% increase in proved reserves on the North West Shelf; proposals for Indian LNG terminal CEDIGAZ forecasts world LNG trade by 2010; growth for North African gas production and exports; and new forecast sees strong growth for Asian gas.

  13. Assessment of the facilities on Jackass Flats and other Nevada Test Site facilities for the new nuclear rocket program

    SciTech Connect

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D.

    1992-12-01

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research L, Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad. The total cost for such a refurbishment we estimate to be about $253M which includes additional contractor fees related to indirect, construction management, profit, contingency, and management reserves. This figure also includes the cost of the required NEPA, safety, and security documentation.

  14. LNG -- Technology on the edge

    SciTech Connect

    Alexander, C.B.

    1995-10-01

    With immense promise and many supporters, LNG as a vehicular fuel is still, a nascent industry. In about two years, an array of LNG engines should be commercially available, and infrastructure greatly expanded. These developments should reduce the present premium of LNG equipment, greatly improving industry economics. The most propitious sign for LNG-market developed lies in the natural gas industry`s recently refined strategy for natural gas vehicles. The new strategy targets the right competitor--diesel, not gasoline. It also targets the right market for an emerging fuel--high-fuel-usage fleets made up of medium- and heavy-duty vehicles, often driven long distances. But problems persist in critical areas of development. These problems are related to the materials handling of LNG and the refueling of vehicles. The paper discusses the studies on LNG handling procedures, its performance benefits to high-fuel use vehicles, economic incentives for its use, tax disadvantages that are being fought, and LNG competition with ``clean`` diesel fuels.

  15. Best available practices for lng fueling of fleet vehicles. Topical report, March-November 1995, tasks 85 and 86

    SciTech Connect

    Midgett, D.E.

    1996-02-01

    The report provides essential information on the design and operation of liquefied natural gas (LNG) fueling stations for fleet vehicles. The report serves to evaluate current practices in LNG fleet vehicle fueling station designs, and provide fleet operators with a tool for use in discussions with permitting agencies, engineering firms, fabricators, and contractors who permit, design, or construct LNG fueling stations. Representative sites (i.e., LNG fueling stations) were evaluated for technical feasibility, customer satisfaction, economics, operating and maintenance history, problems encountered/overcome, and regulatory environment. The compiled information in this report reveals that LNG fueling stations have advanced to the point where LNG is a viable alternative to gasoline and/or diesel fuel.

  16. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    SciTech Connect

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

  17. RCRA Facility Investigation/Remedial Investigation Report for the Grace Road Site (631-22G)

    SciTech Connect

    Palmer, E.

    1998-10-02

    This report summarizes the activities and documents the results of a Resource Conservation and Recovery Act Facility Investigation/Remedial Investigation conducted at Grace Road Site on the Savannah River Site near Aiken, South Carolina.

  18. Radiological safety evaluation for a Savannah River Site Waste Transfer Facility. Revision 1

    SciTech Connect

    Ades, M.J.

    1994-01-01

    This paper describes a radiological safety evaluation performed in support of operation of a typical Waste Transfer Facility (WTF) located at the Savannah River Site (SRS). This facility transfers liquid radioactive waste from and to various waste processing, storage, and treatment facilities.

  19. Analysis of LNG import terminal release prevention systems

    SciTech Connect

    Baker, E G

    1982-04-01

    The release prevention systems of liquefied natural gas (LNG) import terminal were analyzed. A series of potential release scenarios were analyzed to determine the frequency of the release events, the probability these releases are not stopped or isolated by emergency shutdown systems, the estimated release quantities, and the critical components of the system. The two plant areas identified as being most significant with respect to safety are the unloading system and the storage system. Rupture of the main transfer line and gross failure of the storage tanks are the two release scenarios of primary safety interest. Reducing the rate of failure by improved design, better maintenance and testing, or adding redundancy of the critical system components for these plant areas and release scenarios will result in improved safety. Several design alternatives which have the potential to significantly reduce the probability of a large release of LNG occurring at an import terminal are identified. These design alternatives would reduce the probability of a large release of LNG by reducing the expected number of failures which could cause a release or by reducing the magnitude of releases that do occur. All of these alternatives are technically feasible and have been used or considered for use in at least one LNG facility. A more rigorous analysis of the absolute risk of LNG import terminal operation is necessary before the benefits of these design alternatives can be determined. In addition, an economic evaluation of these alternatives must be made so the costs and benefits can be compared. It is concludd that for remotely located facilities many of these alternatives are probably not justified; however, for facilities located in highly populated areas, these alternatives deserve serious consideration.

  20. North American LNG Project Sourcebook

    SciTech Connect

    2007-06-15

    The report provides a status of the development of LNG Import Terminal projects in North America, and includes 1-2 page profiles of 63 LNG projects in North America which are either in operation, under construction, or under development. For each project, the sourcebook provides information on the following elements: project description, project ownership, project status, projected operation date, storage capacity, sendout capacity, and pipeline interconnection.

  1. Library Facility Siting and Location Handbook. The Greenwood Library Management Collection.

    ERIC Educational Resources Information Center

    Koontz, Christine M.

    This handbook is a guide to the complex process of library facility siting and location. It includes relevant research and professionals' siting experiences, as well as actual case studies of closures, openings, mergers, and relocations of library facilities. While the bulk of the volume provides practical information, the work also presents an…

  2. Environmental Assessment for the construction and operation of the Health Physics Site Support Facility on the Savannah River Site

    SciTech Connect

    1995-07-01

    DOE has prepared an environmental assessment for the proposed construction and operation of the Health Physics Site Support Facility on the Savannah River Site. This (new) facility would meet requirements of the site radiological protection program and would ensure site compliance with regulations. It was determined that the proposed action is not a major Federal action significantly affecting the quality of the environment within the meaning of NEPA. Therefore, a finding of no significant impact is made, and no environmental impact statement is needed.

  3. 76 FR 9573 - Sabine Pass Liquefaction, LLC and Sabine Pass LNG, L.P.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... Energy Regulatory Commission Sabine Pass Liquefaction, LLC and Sabine Pass LNG, L.P.; Notice of Application Take notice that on January 31, 2011, Sabine Pass Liquefaction, LLC and Sabine Pass LNG, L.P... the Commission's Regulations, to site, construct, and operate liquefaction and export...

  4. The effects of refueling system operating pressure on LNG and CNG economics

    SciTech Connect

    Corless, A.J.; Barclay, J.A.

    1996-12-31

    Natural gas (NG) liquefaction and compression are energy intensive processes which make up a significant portion of the overall delivered price of liquefied NG (LNG) and compressed NG (CNG). Increases in system efficiency and/or process changes which reduce the required amount of work will improve the overall economics of NG as a vehicle fuel. This paper describes a method of reducing the delivered cost of LNG by liquefying the gas above ambient pressures. Higher pressure LNG is desirable because OEM NG engine manufacturers would like NG delivered to the engine intake manifold at elevated pressures to avoid compromising engine performance. Producing LNG at higher pressures reduces the amount of work required for liquefaction but it is only practical when the LNG is liquefied on-site. Using a thermo-economic approach, it is shown that NG fuel costs can be reduced by as much as 10% when producing LNG at higher pressures. A reduction in the delivered cost is also demonstrated for CNG produced on-site from high pressure LNG.

  5. 46 CFR 154.703 - Methane (LNG).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.703 Methane (LNG). Unless a cargo tank carrying methane (LNG)...

  6. Computer-aided Siting of Coal Conversion Facilities

    NASA Technical Reports Server (NTRS)

    Moreno, D. D.

    1982-01-01

    The value of using geographic information systems in site selection for coal conversion plants is discussed. Environmental and cultural factors and capital/operating costs were considered to determine site suitability.

  7. Multidimensional Programming Methods for Energy Facility Siting: Alternative Approaches

    NASA Technical Reports Server (NTRS)

    Solomon, B. D.; Haynes, K. E.

    1982-01-01

    The use of multidimensional optimization methods in solving power plant siting problems, which are characterized by several conflicting, noncommensurable objectives is addressed. After a discussion of data requirements and exclusionary site screening methods for bounding the decision space, classes of multiobjective and goal programming models are discussed in the context of finite site selection. Advantages and limitations of these approaches are highlighted and the linkage of multidimensional methods with the subjective, behavioral components of the power plant siting process is emphasized.

  8. Method for processing LNG for rankine cycle

    SciTech Connect

    Aoki, I.; Matsumoto, O.

    1983-06-14

    A method is disclosed for processing lng using a mixed heat medium for performing a rankine cycle to gasify the lng. The medium is prepared by batch distillation using only lng. The method comprises the steps of condensing an upflow vapor in a single distillation column employing part of the lng in an lng batch distillation cycle, venting one fraction having low boiling point components mainly containing methane, and accumulating the other fractions containing ethane and components heavier than ethane. The supply of lng to be distilled in the column is halted. A total condensing operation is performed in which the other fractions are sequentially condensed by part of the lng at the condenser to sequentially recover and mix each component with the other fractions. Lng is added as the methane component to the recovered mixture of components to prepare a mixed heat medium consisting of components selected from hydrocarbons having 1-6 carbon atoms, or hydrocarbons having 1-6 carbon atoms and nitrogen. The mixed heat medium is stored. A mixed heat medium vapor generated by heat input to the stored mixed heat medium is condensed by lng and returned to the mixed heat medium; collection and complete gasification of the low boiling point components mainly containing methane and the lng is gasified by condensation to provide an lng vapor gas. Lng is gasified by performing the rankine cycle with the mixed heat medium.

  9. Hanford Site waste tank farm facilities design reconstitution program plan

    SciTech Connect

    Vollert, F.R.

    1994-09-06

    Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980`s has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result in end-products inconsistent with the facility needs or expectations. A design reconstitution program plan is developed here for the Hanford waste tank farms facility as a consequence of the DOE Standard on operational configuration management. This design reconstitution plan provides for the recovery or regeneration of design requirements and basis, the compilation of Design Information Summaries, and a methodology to disposition items open for regeneration that were discovered during the development of Design Information Summaries. Implementation of this plan will culminate in an end-product of about 30 Design Information Summary documents. These documents will be developed to identify tank farms facility design requirements and design bases and thereby capture the technical baselines of the facility. This plan identifies the methodology necessary to systematically recover documents that are sources of design input information, and to evaluate and disposition open items or regeneration items discovered during the development of the Design Information Summaries or during the verification and validation processes. These development activities will be governed and implemented by three procedures and a guide that are to be developed as an outgrowth of this plan.

  10. Assessment of the facilities on Jackass Flats and other Nevada test site facilities for the new nuclear rocket program

    NASA Astrophysics Data System (ADS)

    Chandler, George; Collins, Donald; Dye, Ken; Eberhart, Craig; Hynes, Michael; Kovach, Richard; Ortiz, Robert; Perea, Jake; Sherman, Donald

    1993-01-01

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research & Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. In particular we have assumed that the program goal will be to certify a full engine system design as flight test ready. All nuclear and non-nuclear components will be individually certified as ready for such a test at sites remote from the NRDA facilities, the components transported to NRDA, and the engine assembled. We also assume that engines of 25,000-100,000 lb thrust levels will be tested with burn times of 1 hour or longer. After a test, the engine will be disassembled, time critical inspections will be executed, and a selection of components will be transported to remote inspection sites. The majority of the components will be stored for future inspection at Jackass Flats. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad. The total cost for such a refurbishment we estimate to be about 253M which includes additional contractor fees related to indirect

  11. Recommended research on LNG safety

    SciTech Connect

    Carpenter, H.J.; Gilmore, F.R.

    1981-03-01

    The US Department of Energy (DOE) is conducting research on the safety and other environmental aspects of liquefied energy gases including liquefied natural gas (LNG). The effort reported here was conducted as part of the planning for further research into the safety aspects of transporting and storing LNG, with primary emphasis on public safety. Although the modern LNG industry has enjoyed excellent success in providing for safe operations, significant questions remain on the part of many, the expressions of which were intensified with the addition of marine-based LNG import terminals. Public safety with regard to large-scale importation of this fuel has received widespread attention in the US Congress, state legislatures, county and city governments, and from various individuals and public groups, with coverage in all the news media, including books published on the subject. The safety concerns have centered around the consequences to the public of a large spill of the cryogenic liquid from an ocean tanker or a larger storage tank, either of which might hold as much as 125,000 m/sup 3/ of LNG.

  12. Natural gas and CO2 price variation: impact on the relative cost-efficiency of LNG and pipelines

    PubMed Central

    Ulvestad, Marte; Overland, Indra

    2012-01-01

    This article develops a formal model for comparing the cost structure of the two main transport options for natural gas: liquefied natural gas (LNG) and pipelines. In particular, it evaluates how variations in the prices of natural gas and greenhouse gas emissions affect the relative cost-efficiency of these two options. Natural gas is often promoted as the most environmentally friendly of all fossil fuels, and LNG as a modern and efficient way of transporting it. Some research has been carried out into the local environmental impact of LNG facilities, but almost none into aspects related to climate change. This paper concludes that at current price levels for natural gas and CO2 emissions the distance from field to consumer and the volume of natural gas transported are the main determinants of transport costs. The pricing of natural gas and greenhouse emissions influence the relative cost-efficiency of LNG and pipeline transport, but only to a limited degree at current price levels. Because more energy is required for the LNG process (especially for fuelling the liquefaction process) than for pipelines at distances below 9100 km, LNG is more exposed to variability in the price of natural gas and greenhouse gas emissions up to this distance. If the prices of natural gas and/or greenhouse gas emission rise dramatically in the future, this will affect the choice between pipelines and LNG. Such a price increase will be favourable for pipelines relative to LNG. PMID:24683269

  13. Natural gas and CO2 price variation: impact on the relative cost-efficiency of LNG and pipelines.

    PubMed

    Ulvestad, Marte; Overland, Indra

    2012-06-01

    THIS ARTICLE DEVELOPS A FORMAL MODEL FOR COMPARING THE COST STRUCTURE OF THE TWO MAIN TRANSPORT OPTIONS FOR NATURAL GAS: liquefied natural gas (LNG) and pipelines. In particular, it evaluates how variations in the prices of natural gas and greenhouse gas emissions affect the relative cost-efficiency of these two options. Natural gas is often promoted as the most environmentally friendly of all fossil fuels, and LNG as a modern and efficient way of transporting it. Some research has been carried out into the local environmental impact of LNG facilities, but almost none into aspects related to climate change. This paper concludes that at current price levels for natural gas and CO2 emissions the distance from field to consumer and the volume of natural gas transported are the main determinants of transport costs. The pricing of natural gas and greenhouse emissions influence the relative cost-efficiency of LNG and pipeline transport, but only to a limited degree at current price levels. Because more energy is required for the LNG process (especially for fuelling the liquefaction process) than for pipelines at distances below 9100 km, LNG is more exposed to variability in the price of natural gas and greenhouse gas emissions up to this distance. If the prices of natural gas and/or greenhouse gas emission rise dramatically in the future, this will affect the choice between pipelines and LNG. Such a price increase will be favourable for pipelines relative to LNG.

  14. Natural gas and CO2 price variation: impact on the relative cost-efficiency of LNG and pipelines.

    PubMed

    Ulvestad, Marte; Overland, Indra

    2012-06-01

    THIS ARTICLE DEVELOPS A FORMAL MODEL FOR COMPARING THE COST STRUCTURE OF THE TWO MAIN TRANSPORT OPTIONS FOR NATURAL GAS: liquefied natural gas (LNG) and pipelines. In particular, it evaluates how variations in the prices of natural gas and greenhouse gas emissions affect the relative cost-efficiency of these two options. Natural gas is often promoted as the most environmentally friendly of all fossil fuels, and LNG as a modern and efficient way of transporting it. Some research has been carried out into the local environmental impact of LNG facilities, but almost none into aspects related to climate change. This paper concludes that at current price levels for natural gas and CO2 emissions the distance from field to consumer and the volume of natural gas transported are the main determinants of transport costs. The pricing of natural gas and greenhouse emissions influence the relative cost-efficiency of LNG and pipeline transport, but only to a limited degree at current price levels. Because more energy is required for the LNG process (especially for fuelling the liquefaction process) than for pipelines at distances below 9100 km, LNG is more exposed to variability in the price of natural gas and greenhouse gas emissions up to this distance. If the prices of natural gas and/or greenhouse gas emission rise dramatically in the future, this will affect the choice between pipelines and LNG. Such a price increase will be favourable for pipelines relative to LNG. PMID:24683269

  15. Development of polymer concrete for dike insulation at LNG facilities: Phase 4, Low cost materials. Final report, September 1, 1987--April 30, 1990

    SciTech Connect

    Kukacka, L.E.

    1991-01-01

    Earlier GRI-sponsored work at Brookhaven National Laboratory has resulted in the development and utilization of insulating polymer concrete composites (IPC) as a means of reducing the evaporation rate of liquified natural gas in the event of a spill into a containment dike, thereby improving the safety at these sites. Although all of the required properties can be attained with the IPC, it was estimated that a low-cost replacement for the expensive organic binder would be necessary before use of the material would be cost-effective. In the current program, several latex modified cement formulations were evaluated and the most promising one identified. A mixture of two carboxylated styrene-butadiene latexes was selected for use in detailed laboratory property characterizations and a subsequent field evaluation. When compared to the properties of IPC, the latex-modified insulating materials display somewhat higher thermal conductivities, greater permeability to water, and reduced strength. However, these properties still meet most of the performance criteria, and the unit cost of the material is less than one-fifth that of IPC made with epoxy binders. When installed as a 0.75-in. thick overlay, material costs are estimated to be $1.00/ft{sup 2}.

  16. Public concerns and the public role in siting nuclear and chemical waste facilities

    NASA Astrophysics Data System (ADS)

    Johnson, Branden B.

    1987-09-01

    Nuclear and chemical waste facilities can be successfully sited, despite nimby responses, if siting programs account for the sources of public concern. Irrational fear is not the main source; instead, waste managers must deal with perceived inequities in the distribution of benefits and costs, and concern about facility safety. Benefit-cost inequities may be dealt with in part by keeping wastes where they are generated, through political restrictions, or by providing economic compensation and political incentives (for example, a local veto). Assuring people of facility safety includes allowing local control (monitoring, health assessment, regulation), and enhancing trust of facility managers through such means as rectifying past mistakes, individual-oriented education campaigns, and negotiation of compensation packages with local residents. These means should reduce —without eliminating—public opposition to local siting of nuclear and chemical waste facilities.

  17. 75 FR 2126 - Calais Pipeline Company, LLC; Calais LNG Project Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... 7(c) of the Natural Gas Act (NGA), respectively, as amended and Parts 153, 157, 284 and 380 of the... gas (LNG) import, storage, and vaporization terminal and associated facilities on the St. Croix River... approximately 20.7 miles of 36-inch-diameter pipeline and related facilities in order to transport natural...

  18. ARM Operations and Engineering Procedure Mobile Facility Site Startup

    SciTech Connect

    Voyles, Jimmy W

    2015-05-01

    This procedure exists to define the key milestones, necessary steps, and process rules required to commission and operate an Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF), with a specific focus toward on-time product delivery to the ARM Data Archive. The overall objective is to have the physical infrastructure, networking and communications, and instrument calibration, grooming, and alignment (CG&A) completed with data products available from the ARM Data Archive by the Operational Start Date milestone.

  19. Reactor-pumped laser facility at DOE's Nevada Test Site

    NASA Astrophysics Data System (ADS)

    Lipinski, Ronald J.

    1994-05-01

    The Nevada Test Site (NTS) is one excellent possibility for a laser power beaming site. It is in the low latitudes of the U.S., is in an exceptionally cloud-free area of the southwest, is already an area of restricted access (which enhances safety considerations), and possesses a highly skilled technical team with extensive engineering and research capabilities from underground testing of our nation's nuclear deterrence. The average availability of cloud-free clear line of site to a given point in space is about 84%. With a beaming angle of +/- 60 degree(s) from the zenith, about 52 geostationary-orbit (GEO) satellites could be accessed continuously from NTS. In addition, the site would provide an average view factor of about 10% for orbital transfer from low earth orbit to GEO. One of the major candidates for a long-duration, high- power laser is a reactor-pumped laser being developed by DOE. The extensive nuclear expertise at NTS makes this site a prime candidate for utilizing the capabilities of a rector pumped laser for power beaming. The site then could be used for many dual-use roles such as industrial material processing research, defense testing, and removing space debris.

  20. Potential for long-term LNG supplies to the United States

    SciTech Connect

    Lihn, M.L.

    1992-02-01

    Topics discussed here include: (1) terminal capacity; (2) potential sources for US LNG (liquefied natural gas) imports; (3) LNG liquefaction and transportation capacity; (4) historical US LNG imports; (5) LNG supply costs; (6)delivered cost of future LNG imports.

  1. DREDGED MATERIAL RECLAMATION AT THE JONES ISLAND CONFINED DISPOSAL FACILITY SITE CAPSULE

    EPA Science Inventory

    In this SITE demonstration, phytoremediation technology was applied to contaminated dredged materials from the Jones Island Confined Disposal Facility (CDF) located in Milwaukee Harbor, Wisconsin. The Jones Island CDF receives dredged materials from normal maintenance of Milwauke...

  2. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes

    SciTech Connect

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  3. Lessons learned from the Siting Process of an Interim Storage Facility in Spain - 12024

    SciTech Connect

    Lamolla, Meritxell Martell

    2012-07-01

    On 29 December 2009, the Spanish government launched a site selection process to host a centralised interim storage facility for spent fuel and high-level radioactive waste. It was an unprecedented call for voluntarism among Spanish municipalities to site a controversial facility. Two nuclear municipalities, amongst a total of thirteen municipalities from five different regions, presented their candidatures to host the facility in their territories. For two years the government did not make a decision. Only in November 30, 2011, the new government elected on 20 November 2011 officially selected a non-nuclear municipality, Villar de Canas, for hosting this facility. This paper focuses on analysing the factors facilitating and hindering the siting of controversial facilities, in particular the interim storage facility in Spain. It demonstrates that involving all stakeholders in the decision-making process should not be underestimated. In the case of Spain, all regional governments where there were candidate municipalities willing to host the centralised interim storage facility, publicly opposed to the siting of the facility. (author)

  4. Impact of the resource conservation and recovery act on energy facility siting

    SciTech Connect

    Tevepaugh, C.W.

    1982-01-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 is a multifaceted approach to the management of both solid and hazardous waste. The focus of this research is on the RCRA mandated proposed regulations for the siting of hazardous waste disposal facilities. This research is an analysis of the interactions among hazardous waste disposal facilities, energy supply technologies and land use issues. This study addresses the impact of RCRA hazardous waste regulations in a descriptive and exploratory manner. A literature and legislative review, interviews and letters of inquiry were synthesized to identify the relationship between RCRA hazardous waste regulations and the siting of selected energy supply technologies. The results of this synthesis were used to determine if and how RCRA influences national land use issues. It was found that the interaction between RCRA and the siting of hazardous waste disposal facilities required by energy supply technologies will impact national land use issues. All energy supply technologies reviewed generate hazardous waste. The siting of industrial functions such as energy supply facilities and hazardous waste disposal facilities will influence future development patterns. The micro-level impacts from the siting of hazardous waste disposal facilities will produce a ripple effect on land use with successive buffer zones developing around the facilities due to the interactive growth of the land use sectors.

  5. The Struggle between States and the Federal Government on the Siting of LNG Import Terminals: Has a Red Tide Washed Ashore in the Blue States?

    SciTech Connect

    Desautels, Denise; Ray, Peter

    2005-10-01

    The Energy Policy Act of 2005 transfers, in some circumstances, implementation of the public trust doctrine from the state to the federal government. Implicit in the public trust doctrine is the issue of public safety and environmental concerns. Proponents of such facilities are challenged with weighing such factors to make a successful proposal to federal and state agencies.

  6. National Ignition Facility subsystem design requirements NIF site improvements SSDR 1.2.1

    SciTech Connect

    Kempel, P.; Hands, J.

    1996-08-19

    This Subsystem Design Requirements (SSDR) document establishes the performance, design, and verification requirements associated with the NIF Project Site at Lawrence Livermore National Laboratory (LLNL) at Livermore, California. It identifies generic design conditions for all NIF Project facilities, including siting requirements associated with natural phenomena, and contains specific requirements for furnishing site-related infrastructure utilities and services to the NIF Project conventional facilities and experimental hardware systems. Three candidate sites were identified as potential locations for the NIF Project. However, LLNL has been identified by DOE as the preferred site because of closely related laser experimentation underway at LLNL, the ability to use existing interrelated infrastructure, and other reasons. Selection of a site other than LLNL will entail the acquisition of site improvements and infrastructure additional to those described in this document. This SSDR addresses only the improvements associated with the NIF Project site located at LLNL, including new work and relocation or demolition of existing facilities that interfere with the construction of new facilities. If the Record of Decision for the PEIS on Stockpile Stewardship and Management were to select another site, this SSDR would be revised to reflect the characteristics of the selected site. Other facilities and infrastructure needed to support operation of the NIF, such as those listed below, are existing and available at the LLNL site, and are not included in this SSDR. Office Building. Target Receiving and Inspection. General Assembly Building. Electro- Mechanical Shop. Warehousing and General Storage. Shipping and Receiving. General Stores. Medical Facilities. Cafeteria services. Service Station and Garage. Fire Station. Security and Badging Services.

  7. Neutral Site Planning Project, Final Report. Volume IV: Facilities Analysis.

    ERIC Educational Resources Information Center

    Providence School Dept., RI.

    This report focuses on predicting the various physical impacts that proposed magnet school programs will have on potential magnet school sites in Providence, Rhode Island. Included are brief descriptions of the secondary schools in Providence being considered for the magnet programs and a listing of prevailing standards and building regulations…

  8. Determinations of TSD facility acceptability under the CERCLA Off-Site Rule

    SciTech Connect

    1997-06-01

    On September 22, 1993, the US Environmental Protection Agency (EPA) published the ``Off-Site Rule`` to implement section 121(d)(3) of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). CERCLA {section}121(d)(3) requires that wastes generated as a result of remediation activities taken under CERCLA authority and transferred off-site be managed only at facilities that comply with the Resource Conservation and Recovery Act. In 1994, the DOE`s Office of Environmental Policy and Assistance (OEPA), RCRA/CERCLA Division (EH-413) published a CERCLA Information Brief titled ``The Off-Site Rule`` which describes the content of the Off-Site Rule and clarifies some of its implications for DOE remedial actions under CERCLA. Additionally, EH-413 published the Guide on Selecting Compliant Off-Site Hazardous Waste Treatment, Storage and Disposal Facilities which provides a regulatory roadmap for accomplishing off-site transfers of environmental restoration and process hazardous waste at DOE facilities in a manner compliant with the Off-Site Rule and other relevant Federal regulations. Those guidance documents concentrate primarily on DOE`s perspective as a hazardous waste generator. The purpose of this Information Brief is to address the implications of the Off-Site Rule for DOE-owned hazardous waste treatment, storage or disposal facilities that accept CERCLA remediation wastes from off-site locations.

  9. Ambient airborne [sup 222]Rn concentrations at selected Hanford Site facilities

    SciTech Connect

    Atencio, E.M.; Gleckler, B.P.; Smith, C.Y.

    1993-01-01

    Summary of ambient airborne [sup 222]Rn concentrations measured at selected US Department of Energy Hanford Site facilities located in southeastern Washington. Measurements were made using a 3 [times] 3 sodium-iodide gamma spectroscopy counting system, and then quantified using verified and validated computer software. Over the last 2 years, eight Hanford Site facilities were thoroughly characterized, the results are presented. The facilities characterized in response to the Indoor Radon Abatement Act, Public Law 100--551. Results from test samples reveal relatively low levels of airborne radon.

  10. Ambient airborne {sup 222}Rn concentrations at selected Hanford Site facilities

    SciTech Connect

    Atencio, E.M.; Gleckler, B.P.; Smith, C.Y.

    1993-01-01

    Summary of ambient airborne {sup 222}Rn concentrations measured at selected US Department of Energy Hanford Site facilities located in southeastern Washington. Measurements were made using a 3 {times} 3 sodium-iodide gamma spectroscopy counting system, and then quantified using verified and validated computer software. Over the last 2 years, eight Hanford Site facilities were thoroughly characterized, the results are presented. The facilities characterized in response to the Indoor Radon Abatement Act, Public Law 100--551. Results from test samples reveal relatively low levels of airborne radon.

  11. Abandoned SSC Site can provide underground facility for geoscience research

    NASA Astrophysics Data System (ADS)

    Wang, Herbert F.; Myer, Larry R.; Witherspoon, Paul A.; Nelson, Priscilla P.; Logan, John M.; Dutton, Alan R.; Younker, Leland W.

    By the time Congress terminated the Superconducting Super Collider (SSC) project in October 1993, the Department of Energy and the state of Texas had sunk $2 billion into the project. Now closure and remediation of the disturbed surface and subsurface lands are underway with a budget of $22 million, according to a recent agreement between the DOE and Texas. Rather than chalking up the creation of the large, expensive hole in the ground to failure, however, some are hailing the site as an excellent test-bed for geoenvironmental and geotechnical research (Figure 1). They hope to use the site's tunnel, exploratory shaft, and test wells to identify new and improved methods for investigating subsurface fluid flow and transport processes, to characterize physical properties of weak and fractured rock through geophysics and geomechanical testing, and to test model predictions through large-scale experiments conducted underground.

  12. The siting of a polluting facility in an urban environment

    SciTech Connect

    Griffin, J.J.

    1991-01-01

    Siting of a trash incinerator to serve a medium-sized city is analyzed. A model of residential locational choice is developed. In the model, households gather to live in proximity to employment, which is assumed to be concentrated at a central point. Land prices and residential density adjust to reflect this preference for central location. Land prices also reflect variation in environmental characteristics over space, for example the level of ambient air quality at a given location. The question of siting an incinerator is addressed within this framework. Transport of waste is more costly if the incinerator is placed in a remote location while more households are affected by the external impacts of the incinerator if it is placed at a central location. A complication, previously unaddressed in locational analyses, arises from the realization that any incinerator location influences long-run residential locational choices. This work analyzes the impact of siting and related policy questions within a long-run framework, which takes full account of subsequent residential locational patterns. because of the complexity of the model, a computer simulation is designed to allow the solution of a long-run equilibrium.

  13. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    SciTech Connect

    NSTec Environmental Management

    2009-01-31

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).

  14. Compensation for risks: host community benefits in siting locally unwanted facilities

    NASA Astrophysics Data System (ADS)

    Himmelberger, Jeffery J.; Ratick, Samuel J.; White, Allen L.

    1991-09-01

    This article analyzes the recent negotiations connected with siting 24 solid-waste landfills in Wisconsin. We examine the association between the type and amount of compensation paid to host communities by facility developers and the size of facilities, certain facility characteristics, the timing of negotiated agreements, the size of the host community, and the socioeconomic status of the host area. Our findings suggest that the level of compensation after adjusting for landfill capacity is positively associated with the percentage of total facility capacity dedicated to host community use, positively associated with the percentage of people of the host area who are in poverty, and larger for public facilities that accept municipal wastes. Other explanatory variables we examined, whose association with levels of compensation proved statistically insignificant, were facility size, facility status (new vs expansion), facility use (countyonly vs multicounty), timing of negotiation, host community size, and the host area education level, population density, and per capita income. We discuss the policy implications of our principal findings and future research questions in light of the persistent opposition surrounding the siting of solid-waste and other waste-management facilities.

  15. 40 CFR 63.7882 - What site remediation sources at my facility does this subpart affect?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false What site remediation sources at my... Remediation What This Subpart Covers § 63.7882 What site remediation sources at my facility does this subpart... remediation as designated by paragraphs (a)(1) through (3) of this section. (1) Process vents. The...

  16. Alternative energy facility siting policies for urban coastal areas: executive summary of findings and policy recommendations

    SciTech Connect

    Morell, D; Singer, G

    1980-11-01

    An analysis was made of siting issues in the coastal zone, one of the nation's most critical natural resource areas and one which is often the target for energy development proposals. The analysis addressed the changing perceptions of citizens toward energy development in the coastal zone, emphasizing urban communities where access to the waterfront and revitalization of waterfront property are of interest to the citizen. The findings of this analysis are based on an examination of energy development along New Jersey's urban waterfront and along the Texas-Louisiana Gulf Coast, and on redevelopment efforts in Seattle, San Francisco, Boston, and elsewhere. The case studies demonstrate the significance of local attitudes and regional cooperation in the siting process. In highly urbanized areas, air quality has become a predominant concern among citizen groups and an influential factor in development of alternative energy facility siting strategies, such as consideration of inland siting connected by pipeline to a smaller coastal facility. The study addresses the economic impact of the permitting process on the desirability of energy facility investments, and the possible effects of the location selected for the facility on the permitting process and investment economics. The economic analysis demonstrates the importance of viewing energy facility investments in a broad perspective that includes the positive or negative impacts of various alternative siting patterns on the permitting process. Conclusions drawn from the studies regarding Federal, state, local, and corporate politics; regulatory, permitting, licensing, environmental assessment, and site selection are summarized. (MCW)

  17. Cooperative fish-rearing programs in Hanford Site excess facilities

    SciTech Connect

    Herborn, D.I.; Anderson, B.N.

    1994-05-01

    In, 1993, two successful fish-rearing pilot projects were conducted in Hanford Site 100 K Area water treatment pools (K Pools) that are excess to the US Department of Energy needs. Beginning this spring, two larger cooperative fish programs will be undertaken in the K Pools. One program will involve the Yakama Indian Nation, which will rear, acclimate, and release 500,000 fall chinook salmon. The other program involves the Washington Department of Fish and Wildlife, which will rear warm-water specie (walleye and channel catfish) for planting in state lakes. Renewed economic vitality is the goal expected from these and follow-on fish programs.

  18. 77 FR 59603 - Notice of Intent To Prepare an Environmental Impact Statement for the Proposed Oregon LNG Export...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... Export Project. The Oregon LNG Export Project would be comprised of: (1) Liquefaction facilities to be.... Specifically, the Export Project would be comprised of: (1) Liquefaction and export facilities to be located at... commencing at milepost 47.5 of the pending proposed Oregon Pipeline. Liquefaction facilities would include:...

  19. Hanford Site near-facility environmental monitoring data report for calendar year 1998

    SciTech Connect

    DIEDIKER, L.P.

    1999-07-29

    This document summarizes the results of the U.S. Department of Energy's Near-Facility Environmental Monitoring program conducted by Waste Management Federal Services of Hanford, Inc. for Fluor Daniel Hanford, Inc. for 1998 in the 100,200/600, and 300/400 Areas of the Hanford Site, in southcentral Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

  20. Applications of remote sensing to wind power facility siting

    NASA Astrophysics Data System (ADS)

    Wade, J. E.; Rosenfeld, C. L.; Maule, P. A.

    A method by which wind energy prospectors can use remote sensing to rapidly examine extensive geographical areas to identify potential wind turbine generators' sites is outlined. Remote sensing in wind prospecting is not being considered as a tool for determining wind power potential but, rather, as an aid in identifying terrestrial, marine, and atmospheric characteristics associated with desirable wind power sites. It is noted that locations with interesting features noted in a regional assessment can be more closely evaluated using medium-scale imagery, which can be acquired from a number of different agencies, among them the U.S. Forest Service, the Bureau of Land Management, Water and Power Resources and the Soil Conservation Service. Once specific locations have been identified from small- and medium-scale imagery, low-level aerial reconnaissance in a locally chartered aircraft can verify the information obtained. Wind-deformed trees, active slip faces on dunes, snow cornices, snow fences, and the slopes of ridges can be evaluated.

  1. Federal Facilities Compliance Act, Draft Site Treatment Plan: Background Volume, Part 2, Volume 1

    SciTech Connect

    1994-08-31

    This Draft Site Treatment Plan was prepared by Ames Laboratory to meet the requirements of the Federal Facilities Compliance Act. Topics discussed include: purpose and scope of the plan; site history and mission; draft plant organization; waste minimization; waste characterization; preferred option selection process; technology for treating low-level radioactive wastes and TRU wastes; future generation of mixed waste streams; funding; and process for evaluating disposal issues in support of the site treatment plan.

  2. Site and facility waste transport planning documents (SPDs) status and findings

    SciTech Connect

    Schmid, S P; Danese, F L; Wankerl, M W

    1993-05-01

    Site and Facility Waste Transportation Services Planning Documents (SPDS) are detailed desk-top reference documents that initiate planning for shipping commercial spent nuclear fuel (SNF) from the sites where it is currently generated and/or stored to another location. Because of the unique design features and individual variations in the spent fuel handling and cask loading operation requirements for each facility, one SPD will be written for each of the commercial facilities currently expected to deliver SNF into the Civilian Radioactive Waste Management System (CRWMS) disposal system. One primary purpose of an SPD is to initiate the discussions that will lead to a determination of the type of spent fuel cask and transport mode that will be used to transport spent fuel from each facility. The initial assessment of which cask type and mode would best serve each facility is based on the principle that the largest possible capacity casks should be used at the greatest number of facilities to reduce the total number of spent fuel shipments. The final selection of cask and transportation mode will be arrived at following discussion with the facility licensed operator. Once agreed upon by OCRWM and the facility owner, the SPD wig be used as a primary input to the development of a Site Specific Servicing Plan (SSSP) that will detail chosen servicing options for the individual site. This paper will discuss the purpose and development of SPDs and the preliminary results of an evaluation of the ability of delivering facilities to handle and ship spent fuel casks within the confines of the local nation infrastructure.

  3. Comparison of Candidate Sites for installation of Landfill facility at Ignalina NPP Site Using Fuzzy Logic Approach

    SciTech Connect

    Poskas, P.; Kilda, R.; Poskas, G.

    2008-07-01

    There is only one nuclear power plant in Lithuania - Ignalina NPP (Nuclear Power Plant). Two similar units with installed capacity of 1500 MW (each) were commissioned in 1983 and 1987 respectively. But the first Unit of Ignalina NPP was finally shutdown December 31, 2004, and second Unit is planned to be shutdown before 2010. Operational radioactive waste of different activities is generated at Ignalina NPP. After closure of INPP a waste from decommissioning should be managed also. According to Lithuanian regulatory requirements (1) the waste depending on the activity must be managed in different ways. In compliance with this Regulation very low-level radioactive waste (VLLW) could be disposed of in a Landfill facility. In such case very simple engineered barriers are required. A cap on the top of the repository is necessary from long-term safety point of view. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components: the site, the disposal facility and the waste form. The basic objective of the siting process is to select a suitable site for disposal and demonstrate that this site has characteristics which provide adequate isolation of radionuclides from the biosphere for desired periods of time. The methodology and results on evaluation and comparison of two candidate sites intended for construction of Landfill facility at Ignalina NPP site are presented in the paper. Criteria for comparison are based on the IAEA (International Atomic Energy Agency) recommendations (2). Modeling of the radionuclide releases has been performed using ISAM (Improving of Safety Assessment Methodologies for Near Surface Disposal facilities) methodology (3). For generalization of the information and elaboration of the recommendations Fuzzy Logic approach was used (4). (authors)

  4. Optimizing PT Arun LNG main heat exchanger

    SciTech Connect

    Irawan, B.

    1995-12-01

    The capacity of a LNG liquefaction unit has been increased by upgrading the refrigeration system, without making changes to the main heat exchanger (MHE). It is interesting, that after all modifications were completed, a higher refrigerant circulation alone could not increase LNG production. However, by optimizing the refrigerant component ratio, the UA of the MHE increased and LNG production improved. This technical evaluation will provide recommendations and show how the evaluation of the internal temperature profile helped optimize the MHE operating conditions.

  5. Dismantlement and decontamination of a plutonium-238 facility at the Savannah river site

    SciTech Connect

    Smith, R.H.; Hootman, H.E.

    1994-01-01

    Very little documented decontamination and decommissioning (D&D) experience exists on which to project cleanup costs and schedules for plutonium facilities at DOE sites. A plutonium-238 processing facility at Savannah River Site (SRS) has been undergoing D&D intermittently since 1984. Although this cleanup effort was not originally intended to quantify results, some key data have been accumulated, and the project has demonstrated effective methods of performing D&D work under conditions of high contamination. Some data is presented here; however, more specific tests and data may be obtained during the remainder of this project. This project has been recommended as a candidate test facility for a DOE planned {open_quotes}Integrated D&D Demonstration{close_quotes} managed by EM-50 to develop and demonstrate technology for D&D and surplus facilities deactivation.

  6. Changes in Attitudes towards and Awareness of A Medical Waste Incinerator during the Facility Siting Process.

    PubMed

    Ostry; Hertzman; Marion

    1995-01-01

    The authors investigated the impact of the process of siting a medical waste incinerator on knowledge and attitudes among subgroups within an adjacent community using a model of risk perception that conceptually divided the community into attitudinal and behavioral subgroups based on awareness and concern in relation to the planned facility. The study design was a one-year survey and a three-year postintervention survey conducted during the siting process. The authors also documented the siting process in order to relate siting inputs to attitudinal and knowledge changes within the community. After three years of promotion, 80% of the respondents remained unaware of the site. The authors conclude that it may be very difficult to engender awareness in affected communities and more difficult still to influence attitudes towards the proposed facility.

  7. Comparative approaches to siting low-level radioactive waste disposal facilities

    SciTech Connect

    Newberry, W.F.

    1994-07-01

    This report describes activities in nine States to select site locations for new disposal facilities for low-level radioactive waste. These nine States have completed processes leading to identification of specific site locations for onsite investigations. For each State, the status, legal and regulatory framework, site criteria, and site selection process are described. In most cases, States and compact regions decided to assign responsibility for site selection to agencies of government and to use top-down mapping methods for site selection. The report discusses quantitative and qualitative techniques used in applying top-down screenings, various approaches for delineating units of land for comparison, issues involved in excluding land from further consideration, and different positions taken by the siting organizations in considering public acceptance, land use, and land availability as factors in site selection.

  8. Qatargas exporting LNG from Qatar`s new Ras Laffan Port

    SciTech Connect

    1997-02-24

    When the 135,000 cu m LNG carrier Al Zubarah departed Ras Laffan Port in December, Qatar entered a new era of commerce that will both boost the emirate`s economic development and influence energy trade around the world. The event capped more than a decade of planning, design, and construction of Ras Laffan Port--the world`s newest and largest LNG exporting facility. During the 1980s, the focus in Qatar was on exploration and development of North field, which holds the world`s largest reserves of nonassociated natural gas. In the 1990s, efforts concentrated on establishing a direct production and export link between North field, the new multi-billion-dollar Qatar Liquefied Gas Co. (Qatargas) gas liquefaction plant at Ras Laffan, and LNG export facilities at the 8.5 sq km Ras Laffan Port. Markets of the Far East will be first to be served by LNG from Ras Laffan Port. Two 25-year LNG supply contracts have been signed with buyers in Japan and South Korea, and negotiations are under way with potential customers from China, Taiwan, and Thailand. The paper describes the port, its operations, and export projects.

  9. Guide to radiological accident considerations for siting and design of DOE nonreactor nuclear facilities

    SciTech Connect

    Elder, J.C.; Graf, J.M.; Dewart, J.M.; Buhl, T.E.; Wenzel, W.J.; Walker, L.J.; Stoker, A.K.

    1986-01-01

    This guide was prepared to provide the experienced safety analyst with accident analysis guidance in greater detail than is possible in Department of Energy (DOE) Orders. The guide addresses analysis of postulated serious accidents considered in the siting and selection of major design features of DOE nuclear facilities. Its scope has been limited to radiological accidents at nonreactor nuclear facilities. The analysis steps addressed in the guide lead to evaluation of radiological dose to exposed persons for comparison with siting guideline doses. Other possible consequences considered are environmental contamination, population dose, and public health effects. Choices of models and parameters leading to estimation of source terms, release fractions, reduction and removal factors, dispersion and dose factors are discussed. Although requirements for risk analysis have not been established, risk estimates are finding increased use in siting of major nuclear facilities, and are discussed in the guide. 3 figs., 9 tabs.

  10. Environmental Assessment for the new Whole Body Counter facility at the Savannah River Site

    SciTech Connect

    Not Available

    1993-01-01

    The U.S. Department of Energy proposes to construct and operate a new in-vivo counting facility at the Savannah River Site for the monitoring of employees for internal radionuclides. The proposed facility, titled the new Whole Body Counter (WBC) facility, would house both the existing and additional new invivo counting equipment and facility support operations. The proposed facility would be sited and located in an area of the SRS in which background radiation levels are sufficiently low to assure accurate in-vivo counts and a location that would assure ease of access for occupational workers. This Environmental Assessment has been prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, and the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CPR Parts 1500-1508). NEPA requires the assessment of environmental consequences of Federal actions that may affect the quality of the human environment. The proposed action has independent utility to the Savannah River operations and will be necessary to support plant activities regardless of the makeup of the future mission at the site. As such, the proposed new WBC facility is treated as part of the preliminary Reconfiguration Programmatic Environmental Impact Statement ``No Action`` alternative.

  11. RESEARCH AND DEVELOPMENT ACTIVITIES AT SAVANNAH RIVER SITE'S H CANYON FACILITY

    SciTech Connect

    Sexton, Lindsay; Fuller, Kenneth

    2013-07-09

    The Savannah River Site's (SRS) H Canyon Facility is the only large scale, heavily shielded, nuclear chemical separations plant still in operation in the U.S. The facility's operations historically recovered uranium-235 (U-235) and neptunium-237 (Np-237) from aluminum-clad, enriched-uranium fuel tubes from Site nuclear reactors and other domestic and foreign research reactors. Today the facility, in conjunction with HB Line, is working to provide the initial feed material to the Mixed Oxide Facility also located on SRS. Many additional campaigns are also in the planning process. Furthermore, the facility has started to integrate collaborative research and development (R&D) projects into its schedule. H Canyon can serve as the appropriate testing location for many technologies focused on monitoring the back end of the fuel cycle, due to the nature of the facility and continued operation. H Canyon, in collaboration with the Savannah River National Laboratory (SRNL), has been working with several groups in the DOE complex to conduct testing demonstrations of novel technologies at the facility. The purpose of conducting these demonstrations at H Canyon will be to demonstrate the capabilities of the emerging technologies in an operational environment. This paper will summarize R&D testing activities currently taking place in H Canyon and discuss the possibilities for future collaborations.

  12. Overview of Fiscal Year 2002 Research and Development for Savannah River Site's Salt Waste Processing Facility

    SciTech Connect

    H. D. Harmon, R. Leugemors, PNNL; S. Fink, M. Thompson, D. Walker, WSRC; P. Suggs, W. D. Clark, Jr

    2003-02-26

    The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste program is responsible for storage, treatment, and immobilization of high-level waste for disposal. The Salt Processing Program (SPP) is the salt (soluble) waste treatment portion of the SRS high-level waste effort. The overall SPP encompasses the selection, design, construction and operation of treatment technologies to prepare the salt waste feed material for the site's grout facility (Saltstone) and vitrification facility (Defense Waste Processing Facility). Major constituents that must be removed from the salt waste and sent as feed to Defense Waste Processing Facility include actinides, strontium, cesium, and entrained sludge. In fiscal year 2002 (FY02), research and development (R&D) on the actinide and strontium removal and Caustic-Side Solvent Extraction (CSSX) processes transitioned from technology development for baseline process selection to providing input for conceptual design of the Salt Waste Processing Facility. The SPP R&D focused on advancing the technical maturity, risk reduction, engineering development, and design support for DOE's engineering, procurement, and construction (EPC) contractors for the Salt Waste Processing Facility. Thus, R&D in FY02 addressed the areas of actual waste performance, process chemistry, engineering tests of equipment, and chemical and physical properties relevant to safety. All of the testing, studies, and reports were summarized and provided to the DOE to support the Salt Waste Processing Facility, which began conceptual design in September 2002.

  13. Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada & Kauai Test Facility, Hawaii.

    SciTech Connect

    Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

    2005-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b).

  14. Environmental Assessment for the Independent Waste Handling Facility, 211-F at the Savannah River Site

    SciTech Connect

    1995-08-01

    Currently, liquid Low Activity Waste (LAW) and liquid High Activity Waste (HAW) are generated from various process operational facilities/processes throughout the Savannah River Site (SRS) as depicted on Figure 2-1. Prior to storage in the F-Area tank farm, these wastes are neutralized and concentrated to minimize their volume. The Waste Handling Facility (211-3F) at Building 211-F Complex (see Figure 2-2) is the only existing facility onsite equipped to receive acidic HAW for neutralization and volume reduction processing. Currently, Building 221-F Canyon (see Figure 2-2) houses the neutralization and evaporation facilities for HAW volume reduction and provides support services such as electric power and plant, process, and instrument air, waste transfer capabilities, etc., for 21 1-F operations. The future plan is to deactivate the 221-F building. DOE`s purpose is to be able to process the LAW/HAW that will continue to be generated on site. DOE needs to establish an alternative liquid waste receipt and treatment capability to support site facilities with a continuing mission. The desire is for Building 211-F to provide the receipt and neutralization functions for LAW and HAW independent of 221-F Canyon. The neutralization capability is required to be part of the Nuclear Materials Stabilization Programs (NMSP) facilities since the liquid waste generated by the various site facilities is acidic. Tn order for Waste Management to receive the waste streams, the solutions must be neutralized to meet Waste Management`s acceptance criteria. The Waste Management system is caustic in nature to prevent corrosion and the subsequent potential failure of tanks and associated piping and hardware.

  15. Site selection modeling system for a production facility at Savannah River site

    SciTech Connect

    Shedrow, C.B.; Shedrow, D.M.

    1996-12-31

    The Savannah River site (SRS) is located along the Savannah River in southwestern South Carolina and encompasses an area of {approximately}832 km (198 344 acres). Major land covers include evergreen and deciduous forests, surface water, wetlands, and administrative/industrial areas. Less than 10% of the site`s surface area is developed. Several endangered and threatened species are found on the SRS, including the red-cockaded woodpecker, the southern bald eagle, the wood stork, and the smooth purple coneflower. With the cessation of the Cold War, the traditional defense-related missions at the SRS have been significantly reduced. The implementation of new missions at the SRS will require the utilization of effective siting and prioritization methodologies to ensure the best use of available land resources and protection of the environment. The objective of this paper is to describe the utilization of the Site Selection Modeling System (SSMS) for the selection of potential industrial development sites within the SRS. The SSMS is a raster geographic information system (GIS)-based system that integrates the graphical interface ArcView 2.1 with the GRID modeling functionality of ARC/INFO. The proposed industrial development being sited is a linear accelerator, which will be used for the accelerator production of tritium.

  16. Environmental Assessment for the Health Protection Instrument Calibration Facility at the Savannah River Site

    SciTech Connect

    Not Available

    1993-08-01

    The purpose of this Environmental Assessment (EA) is to review the possible environmental consequences associated with the construction and operation of a Health Protection Instrument Calibration Facility on the Savannah River Site (SRS). The proposed replacement calibration facility would be located in B Area of SRS and would replace an inadequate existing facility currently located within A Area of SRS (Building 736-A). The new facility would provide laboratories, offices, test equipment and the support space necessary for the SRS Radiation Monitoring Instrument Calibration Program to comply with DOE Orders 5480.4 (Environmental Protection, Safety and Health Protection Standards) and 5480.11 (Radiation Protection for Occupational Workers). The proposed facility would serve as the central site source for the evaluation, selection, inspection, testing, calibration, and maintenance of all SRS radiation monitoring instrumentation. The proposed facility would be constructed on a currently undeveloped portion in B Area of SRS. The exact plot associated with the proposed action is a 1.2 hectare (3 acre) tract of land located on the west side of SRS Road No. 2. The proposed facility would lie approximately 4.4 km (2.75 mi) from the nearest SRS site boundary. The proposed facility would also lie within the confines of the existing B Area, and SRS safeguards and security systems. Archaeological, ecological, and land use reviews have been conducted in connection with the use of this proposed plot of land, and a detailed discussion of these reviews is contained herein. Socioeconomic, operational, and accident analyses were also examined in relation to the proposed project and the findings from these reviews are also contained in this EA.

  17. LNG Safety Assessment Evaluation Methods

    SciTech Connect

    Muna, Alice Baca; LaFleur, Angela Christine

    2015-05-01

    Sandia National Laboratories evaluated published safety assessment methods across a variety of industries including Liquefied Natural Gas (LNG), hydrogen, land and marine transportation, as well as the US Department of Defense (DOD). All the methods were evaluated for their potential applicability for use in the LNG railroad application. After reviewing the documents included in this report, as well as others not included because of repetition, the Department of Energy (DOE) Hydrogen Safety Plan Checklist is most suitable to be adapted to the LNG railroad application. This report was developed to survey industries related to rail transportation for methodologies and tools that can be used by the FRA to review and evaluate safety assessments submitted by the railroad industry as a part of their implementation plans for liquefied or compressed natural gas storage ( on-board or tender) and engine fueling delivery systems. The main sections of this report provide an overview of various methods found during this survey. In most cases, the reference document is quoted directly. The final section provides discussion and a recommendation for the most appropriate methodology that will allow efficient and consistent evaluations to be made. The DOE Hydrogen Safety Plan Checklist was then revised to adapt it as a methodology for the Federal Railroad Administration’s use in evaluating safety plans submitted by the railroad industry.

  18. Site/Systems Operations, Maintenance and Facilities Management of the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Site

    SciTech Connect

    Wu, Susan

    2005-08-01

    This contract covered the site/systems operations, maintenance, and facilities management of the DOE Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Site.

  19. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Impoundment capacity: LNG storage tanks. 193.2181... Impoundment capacity: LNG storage tanks. Each impounding system serving an LNG storage tank must have a minimum volumetric liquid impoundment capacity of: (a) 110 percent of the LNG tank's maximum...

  20. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Impoundment capacity: LNG storage tanks. 193.2181... Impoundment capacity: LNG storage tanks. Each impounding system serving an LNG storage tank must have a minimum volumetric liquid impoundment capacity of: (a) 110 percent of the LNG tank's maximum...

  1. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Impoundment capacity: LNG storage tanks. 193.2181... Impoundment capacity: LNG storage tanks. Each impounding system serving an LNG storage tank must have a minimum volumetric liquid impoundment capacity of: (a) 110 percent of the LNG tank's maximum...

  2. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Impoundment capacity: LNG storage tanks. 193.2181... Impoundment capacity: LNG storage tanks. Each impounding system serving an LNG storage tank must have a minimum volumetric liquid impoundment capacity of: (a) 110 percent of the LNG tank's maximum...

  3. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    SciTech Connect

    Scott, D.E.; Pechmann, J.H.K.; Knox, J.N.; Estes, R.A.; McGregor, J.H.; Bailey, K.

    1988-12-01

    The Savannah River Ecology Laboratory has completed 10 years of ecological studies related to the construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site. This progress report examines water quality studies on streams peripheral to the DWPF construction site and examines the effectiveness of refuge ponds'' in ameliorating the effects of construction on local amphibians. Individual papers on these topics are indexed separately. 93 refs., 15 figs., 15 tabs. (MHB)

  4. Hydrogeologic site evaluation of the Department of Energy, Portsmouth Uranium Enrichment Facility. Final report. Volume I

    SciTech Connect

    Johe, D.; Taft, L.; DeNiro, D.; McCandlish, C.; St. John, K.; Craig, C.

    1986-04-01

    The purpose was to assess all available information relating to the geology and groundwater conditions beneath the DOE Reservation to determine the impact of the facility on groundwater resources at the site. Geologic cross sections were constructed, direction of groundwater flow identified, and geologic conditions described. Current groundwater monitoring programs were assessed. Areas that appear to have potential for use as waste disposal sites were identified. (ACR)

  5. The Ohio River Basin Energy Facility siting model. Volume 2: Sites and on-line dates

    NASA Astrophysics Data System (ADS)

    Fowler, G. L.; Bailey, R. E.; Jansen, S. D.; Randolph, J. C.; Jones, W. W.; Gordon, S. I.

    1981-09-01

    The siting model developed for the Ohio River Basin Energy Study, and specifically designed for regional policy analysis is included. The region includes 423 counties in an area that consists of all of Kentucky and substantial portions of Illinois, Indiana, Ohio, Pennsylvania, and West Virginia. Detailed schedules of county-level sites and on-line dates for coal-fired and nuclear-fueled generating unit additions for each ORBES scenario are included.

  6. Guidance on risk analysis and safety implications of a large liquefied natural gas (LNG) spill over water.

    SciTech Connect

    Wellman, Gerald William; Melof, Brian Matthew; Luketa-Hanlin, Anay Josephine; Hightower, Marion Michael; Covan, John Morgan; Gritzo, Louis Alan; Irwin, Michael James; Kaneshige, Michael Jiro; Morrow, Charles W.

    2004-12-01

    While recognized standards exist for the systematic safety analysis of potential spills or releases from LNG (Liquefied Natural Gas) storage terminals and facilities on land, no equivalent set of standards or guidance exists for the evaluation of the safety or consequences from LNG spills over water. Heightened security awareness and energy surety issues have increased industry's and the public's attention to these activities. The report reviews several existing studies of LNG spills with respect to their assumptions, inputs, models, and experimental data. Based on this review and further analysis, the report provides guidance on the appropriateness of models, assumptions, and risk management to address public safety and property relative to a potential LNG spill over water.

  7. Removal site evaluation report for the Isotope Facilities at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-07-01

    This removal site evaluation (RmSE) report of the Isotope Facilities at Oak Ridge National Laboratory (ORNL) was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the Isotopes Facility pose a substantial risk to human health or the environment and if remedial site evaluations (RSEs) or removal actions are required. The scope of the project included: (1) a review of historical evidence regarding operations and use of the facility; (2) interviews with facility personnel concerning current and past operating practices; (3) a site inspection; and (4) identification of hazard areas requiring maintenance, removal, or remedial actions. The results of RmSE indicate that no substantial risks exist from contaminants present in the Isotope Facilities because adequate controls and practices exist to protect human health and the environment. The recommended correction from the RmSE are being conducted as maintenance actions; accordingly, this RmSE is considered complete and terminated.

  8. 77 FR 73627 - 2012 LNG Export Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ... not account for the impact of energy price changes on the global utilization pattern for existing..., FE Docket No. 11-128-LNG, 76 FR 76698 (December 8, 2011); Carib Energy (USA) LLC, FE Docket No. 11..., 2012); Jordan Cove Energy Project, L.P.,FE Docket No. 12-32-LNG, 77 FR 33446 (June 6, 2012);...

  9. LNG links remote supplies and markets

    SciTech Connect

    Avidan, A.A.; Gardner, R.E.; Nelson, D.; Borrelli, E.N.; Rethore, T.J.

    1997-06-02

    Liquefied natural gas (LNG) has established a niche for itself by matching remote gas supplies to markets that both lacked indigenous gas reserves and felt threatened in the aftermath of the energy crises of the 1970s and 1980s. It has provided a cost-effective energy source for these markets, while also offering an environmentally friendly fuel long before that was fashionable. The introduction of natural-gas use via LNG in the early years (mostly into France and Japan) has also allowed LNG to play a major role in developing gas infrastructure. Today, natural gas, often supplied as LNG, is particularly well-suited for use in the combined cycle technology used in independent power generation projects (IPPs). Today, LNG players cannot simply focus on monetizing gas resources. Instead, they must adapt their projects to meet the needs of changing markets. The impact of these changes on the LNG industry has been felt throughout the value chain from finding and producing gas, gas treatment, liquefaction, transport as a liquid, receiving terminals and regasification, and finally, to consumption by power producers, industrial users, and households. These factors have influenced the evolution of the LNG industry and have implications for the future of LNG, particularly in the context of worldwide natural gas.

  10. Feasibility study for the construction of a new LNG receiving terminal. Turkey. Volume 1. Export trade information. [LNG (liquified natural gas)

    SciTech Connect

    Not Available

    1993-06-01

    The report was prepared by The M. W. Kellogg Co. for BOTAS Petroleum Pipeline Corporation of Ankara, Turkey. The study was undertaken to evaluate the cost and economics of constructing a second liquified natural gas (LNG) terminal in Turkey to meet future requirements for natural gas. Volume 1 is divided into the following sections: (1) Introduction; (2) Summary and Conclusions; (3) Design Basis; (4) Site Evaluation; (5) LNG Terminal Design; (6) Major Equipment and Instrumentation; (7) Marine Operations; (8) Safety Considerations; (9) Environmental Review; (10) Preliminary Project Execution Strategy; (11) Cost Estimates; (12) Project Master Schedule; (13) Economic Analysis; (14) Financing; (15) Future Work.

  11. School Sites: Selection, Development and Utilization. Educational Facilities Series: A Guide to Planning.

    ERIC Educational Resources Information Center

    New Jersey State Dept. of Education, Trenton. Bureau of Facility Planning.

    School sites are an integral part of educational facilities. Modern educational programs emphasize the discovery approach to learning where pupils do more than just read about the world around them. For example, they become active explorers and participate in discovering nature and how best to enjoy it and care for it. Thus, there is a curricular…

  12. Hanford Site Near-Facility Environmental Monitoring Data Report for Calendar Year 2005

    SciTech Connect

    Perkins, Craig J.; Dorsey, Michael C.; Mckinney, Stephen M.; Mitchell, Ronald M.

    2006-09-28

    This Appendix contains brief discussions, specific sampling location information, and complete analytical data results for the various near-facility environmental monitoring efforts for 2005. Detailed discussions and summarized analytical results are provided in PNNL-15892, Hanford Site Environmental Report for Calendar Year 2005.

  13. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    SciTech Connect

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

  14. Finding a Place for Energy: Siting Coal Conversion Facilities. Resource Publications in Geography.

    ERIC Educational Resources Information Center

    Calzonetti, Frank J.; Eckert, Mark S.

    The process of identifying, licensing, and developing energy facility sites for the conversion of coal into more useful forms is the focus of this book, intended for geography students, professors, and researchers. The use of domestic coal resources will ameliorate U.S. dependency on imported fuel. However, because coal is a bulky, dirty fuel…

  15. 10. AERIAL VIEW OF CROSSCUT FACILITY SITE, SHOWING STEAM/DIESEL PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. AERIAL VIEW OF CROSSCUT FACILITY SITE, SHOWING STEAM/DIESEL PLANT BUILDING, RUNNING GENERALLY ACROSS PHOTO, AND INDIAN BEND POND IN UPPER RIGHT CORNER. November 7, 1955 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  16. Social & Economic Issues in Siting a Hazardous Waste Facility: Ideas for Communities and Local Assessment Committees.

    ERIC Educational Resources Information Center

    Hurley, Mike

    This handbook was prepared for communities selected as potential sites for hazardous waste facilities, identifying issues which need to be addressed and suggesting specific and positive steps that communities can take to shape proposals to meet their concerns. Following an introduction, specific areas addressed include: community controls,…

  17. 15 CFR 716.8 - On-site monitoring of Schedule 1 facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false On-site monitoring of Schedule 1 facilities. 716.8 Section 716.8 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION...

  18. 15 CFR 716.8 - On-site monitoring of Schedule 1 facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false On-site monitoring of Schedule 1 facilities. 716.8 Section 716.8 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION...

  19. 15 CFR 716.8 - On-site monitoring of Schedule 1 facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 2 2014-01-01 2014-01-01 false On-site monitoring of Schedule 1 facilities. 716.8 Section 716.8 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION...

  20. 15 CFR 716.8 - On-site monitoring of Schedule 1 facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false On-site monitoring of Schedule 1 facilities. 716.8 Section 716.8 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION...

  1. 15 CFR 716.8 - On-site monitoring of Schedule 1 facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 2 2013-01-01 2013-01-01 false On-site monitoring of Schedule 1 facilities. 716.8 Section 716.8 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION...

  2. Lessons Learned from the On-Site Distillation of Used Solvents Generated by Health Care Facilities.

    ERIC Educational Resources Information Center

    Huang, Ching-San; Ciesla, John

    1992-01-01

    Discusses the sources of contaminants found in used solvents generated by the histopathological laboratories at health care facilities and the technical problems, corrective measures, and economic analysis associated with the on-site recycling and reusing of these solvents. An appendix contains an economic analysis for a used-solvent recycling…

  3. 10 CFR 26.715 - Recordkeeping requirements for collection sites, licensee testing facilities, and laboratories...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... testing facilities, and laboratories certified by the Department of Health and Human Services. 26.715... laboratories certified by the Department of Health and Human Services. (a) Collection sites providing services... NRC or by any licensee or other entity for whom services are being provided. (b) Documentation...

  4. 10 CFR 26.715 - Recordkeeping requirements for collection sites, licensee testing facilities, and laboratories...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... testing facilities, and laboratories certified by the Department of Health and Human Services. 26.715... laboratories certified by the Department of Health and Human Services. (a) Collection sites providing services... NRC or by any licensee or other entity for whom services are being provided. (b) Documentation...

  5. 10 CFR 26.715 - Recordkeeping requirements for collection sites, licensee testing facilities, and laboratories...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... testing facilities, and laboratories certified by the Department of Health and Human Services. 26.715... laboratories certified by the Department of Health and Human Services. (a) Collection sites providing services... NRC or by any licensee or other entity for whom services are being provided. (b) Documentation...

  6. 10 CFR 26.715 - Recordkeeping requirements for collection sites, licensee testing facilities, and laboratories...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... testing facilities, and laboratories certified by the Department of Health and Human Services. 26.715... laboratories certified by the Department of Health and Human Services. (a) Collection sites providing services... NRC or by any licensee or other entity for whom services are being provided. (b) Documentation...

  7. 10 CFR 26.715 - Recordkeeping requirements for collection sites, licensee testing facilities, and laboratories...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Recordkeeping requirements for collection sites, licensee testing facilities, and laboratories certified by the Department of Health and Human Services. 26.715 Section 26.715 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Recordkeeping and Reporting Requirements § 26.715...

  8. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    SciTech Connect

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.

  9. 76 FR 2677 - Southern LNG Company, LLC; Notice of Public Scoping Meeting for the Proposed LNG Truck Loading...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... Energy Regulatory Commission Southern LNG Company, LLC; Notice of Public Scoping Meeting for the Proposed LNG Truck Loading Project January 7, 2011. On February 2, 2011, the Office of Energy Projects staff... Southern LNG Company, LLC's (Southern) LNG Truck Loading Project. We scheduled this meeting to...

  10. Pollution Prevention Plan for the Y-12 Analytical Chemistry Organization Off-Site Union Valley Facility

    SciTech Connect

    Jackson, J. G.

    2010-03-01

    The Y-12 Analytical Chemistry Organization (ACO) Off-Site Union Valley Facility (Union Valley Facility) is managed by Babcock and Wilcox Technical Services Y-12, L.L.C. (B and W Y-12) through the Y-12 National Security Complex organization. Accordingly, the Y-12 Pollution Prevention Program encompasses the operations conducted at the Union Valley Facility. The Y-12 Program is designed to fully comply with state, federal and U.S. Department of Energy (DOE) requirements concerning waste minimization/pollution prevention as documented in the Y-12 Pollution Prevention Program Plan. The Program is formulated to reduce the generation and toxicity of all Y-12 wastes in all media, including those wastes generated by the Union Valley Facility operations. All regulatory and DOE requirements are met by the Y-12 Program Plan.

  11. 20-GHz bands receiving facilities at sub-earth-station for CS site diversity switching experiments

    NASA Astrophysics Data System (ADS)

    Kumagai, H.; Kimura, S.; Katto, T.; Komuro, H.; Ouchi, C.; Ohbu, K.; Isobe, T.; Ouchi, E.; Nishino, T.; Hori, T.

    1982-09-01

    Site diversity switching experiments using CS (Medium-capacity Communications Satellite for Expperimental Purposes) were programmed. The satellite communication facilities used in the experiments both at the main- and the sub-earth-station have been constructed in the ECS project. In addition, receiving facilities at 20-GHz bands of CS down-link were newly installed at the sub-earth-station. They were composed of an antenna feed, a low-noise receiver, and a down converter. In the present paper, the outline and the performance of the facilities added at the sub-earth-station are described. The performance of these facilities has proved to be good enough to carry out the experiments.

  12. Descriptions of representative contaminated sites and facilities within the DOE complex

    SciTech Connect

    Short, S.M.; Buck, J.W.; Clark, L.L.; Fletcher, J.F.; Glantz, C.S.; Holdren, G.R.; Huesties, L.R.; Williams, M.D.; Oates, L.

    1994-10-01

    The U.S. Department of Energy (DOE) has initiated efforts to prepare a Programmatic Environmental Impact Statement (PEIS) that will analyze the existing environmental restoration and waste management program and evaluate alternatives for an integrated program. The alternatives being evaluated include (1) a {open_quotes}No Action{close_quotes} alternative as required by the National Environmental Policy Act (NEPA), (2) an Applicable, Relevant, and Appropriate Requirements (ARAR)-driven alternative, (3) a land-use-driven alternative, (4) a health-risk-driven alternative, and (5) a combination land-use and health-risk-driven alternative. The analytical approach being taken to evaluate each of these alternatives is to perform a remedial engineering analysis and human health and ecosystem effects analyses on every contaminated site and facility in the DOE complex. One of Pacific Northwest Laboratory`s (PNL) roles in this approach has been to compile the source term and environmental setting data needed to drive each of these analyses. To date, over 10,000 individual contaminated sites and facilities located throughout the DOE complex of installations have been identified and at least some minimal data compiled on each. The PEIS analyses have been appreciably simplified by categorizing all of these contaminated sites and facilities into six broad categories: (1) contaminated buildings, (2) contaminated soils, (3) solid waste sites (e.g., burial grounds), (4) liquid containment structures (e.g., tanks), (5) surface water sites, and (6) contaminated groundwater sites. A report containing a complete description of each of these thousands of contaminated sites and facilities would be tremendously large and unwildy, as would separate reports describing the application of the analytical methodologies to each.

  13. LLRW disposal facility siting approaches: Connecticut`s innovative volunteer approach

    SciTech Connect

    Forcella, D.; Gingerich, R.E.; Holeman, G.R.

    1994-12-31

    The Connecticut Hazardous Waste Management Service (CHWMS) has embarked on a volunteer approach to siting a LLRW disposal facility in Connecticut. This effort comes after an unsuccessful effort to site a facility using a step-wise, criteria-based site screening process that was a classic example of the decide/announce/defend approach. While some of the specific features of the CHWMS` volunteer process reflect the unique challenge presented by the state`s physical characteristics, political structure and recent unsuccessful siting experience, the basic elements of the process are applicable to siting LLRW disposal facilities in many parts of the United States. The CHWMS` volunteer process is structured to reduce the {open_quotes}outrage{close_quotes} dimension of two of the variables that affect the public`s perception of risk. The two variables are the degree to which the risk is taken on voluntarily (voluntary risks are accepted more readily than those that are imposed) and the amount of control one has over the risk (risks under individual control are accepted more readily than those under government control). In the volunteer process, the CHWMS will only consider sites that have been been voluntarily offered by the community in which they are located and the CHWMS will share control over the development and operation of the facility with the community. In addition to these elements which have broad applicability, the CHWMS has tailored the volunteer approach to take advantage of the unique opportunities made possible by the earlier statewide site screening process. Specifically, the approach presents a {open_quotes}win-win{close_quotes} situation for elected officials in many communities if they decide to participate in the process.

  14. Resource Conservation and Recovery Act industrial site environmental restoration, site characterization plan: Area 6 Decontamination Pond Facility. Revision 1

    SciTech Connect

    1996-08-01

    This plan presents the strategy for the characterization of the Area 6 Decontamination Pond Facility at the Nevada Test Site which will be conducted for the US Department of Energy, Nevada Operations Office, Environmental Restoration Division. The objectives of the planned activities are to: obtain sufficient, sample analytical data from which further assessment, remediation, and/or closure strategies may be developed for the site; obtain sufficient, sample analytical data for management of investigation-derived waste. The scope of the characterization may include surface radiation survey(s), surface soil sampling, subsurface soil boring (i.e., drilling), and sampling of soil in and around the pond; in situ sampling of the soil within subsurface soil borings; and sample analysis for both site characterization and waste management purposes.

  15. How Gaz de France optimizes LNG regasification

    SciTech Connect

    Colonna, J.L.; Lecomte, B.; Caudron, S.

    1986-05-05

    A regasification optimization program was implemented at Montoir-de-Bretagne in 1984, and rapidly accepted by the operators. It has been an important tool for decision-making in the optimizing operation of this liquefied natural gas (LNG) storage and regasification terminal. The models used are regularly and easily updated on the basis of equipment behavior: aging or fouling. The Montoir-de-Bretagne LNG terminal is in the port area of Nates-Saint Nazaire on the Atlantic coast. It was commissioned in 1982 by Gaz de France. This terminal is used for receiving, storing, and regasifying the Algerian LNG received under a contract between Gaz de France and Sonatrach, as well as the LNG imported by Belgium and temporarily routed through France. It is designed to receive 25,000 to 200,000 cu m LNG carriers and has three 120,000 cm m LNG storage tanks. The daily sendout ranges between 6.7 million cu m and 36 million cu m. Monitor terminal supplies mainly Brittany and the Paris area. Two identifical berths allow the simultaneous reception of two LNG carriers. LNG is carried to the storage tanks in 32-in. lines at a rate of 12,000 cu m/hr. Each storage tank is equipped with three submerged 450 cu m/hr pumps with which the LNG is sent from the tanks to the secondary pumps at 8 bar. The nine high-pressure (HP) secondary pumps, with a capacity of either 450 cu m/hr or 180 cu m/hr, raise the LNG pressure to a level at least equal to pipeline pressure prior to revaporization.

  16. A NOVEL PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LNG

    SciTech Connect

    Michael M. McCall; William M. Bishop; Marcus Krekel; James F. Davis; D. Braxton Scherz

    2005-05-31

    This cooperative research project validates use of man made salt caverns to receive and store the cargoes of LNG ships in lieu of large liquid LNG tanks. Salt caverns will not tolerate direct injection of LNG because it is a cryogenic liquid, too cold for contact with salt. This research confirmed the technical processes and the economic benefits of pressuring the LNG up to dense phase, warming it to salt compatible temperatures and then directly injecting the dense phase gas into salt caverns for storage. The use of salt caverns to store natural gas sourced from LNG imports, particularly when located offshore, provides a highly secure, large scale and lower cost import facility as an alternative to tank based LNG import terminals. This design can unload a ship in the same time as unloading at a tank based terminal. The Strategic Petroleum Reserve uses man made salt caverns to securely store large quantities of crude oil. Similarly, this project describes a novel application of salt cavern gas storage technologies used for the first time in conjunction with LNG receiving. The energy industry uses man made salt caverns to store an array of gases and liquids but has never used man made salt caverns directly in the importation of LNG. This project has adapted and expanded the field of salt cavern storage technology and combined it with novel equipment and processes to accommodate LNG importation. The salt cavern based LNG receiving terminal described in the project can be located onshore or offshore, but the focus of the design and cost estimates has been on an offshore location, away from congested channels and ports. The salt cavern based terminal can provide large volumes of gas storage, high deliverability from storage, and is simplified in operation compared to tank based LNG terminals. Phase I of this project included mathematical modeling that proved a salt cavern based receiving terminal could be built at lower capital cost, and would have significantly higher

  17. Applications of human factors engineering to LNG release prevention and control

    SciTech Connect

    Shikiar, R.; Rankin, W.L.; Rideout, T.B.

    1982-06-01

    The results of an investigation of human factors engineering and human reliability applications to LNG release prevention and control are reported. The report includes a discussion of possible human error contributions to previous LNG accidents and incidents, and a discussion of generic HF considerations for peakshaving plants. More specific recommendations for improving HF practices at peakshaving plants are offered based on visits to six facilities. The HF aspects of the recently promulgated DOT regulations are reviewed, and recommendations are made concerning how these regulations can be implemented utilizing standard HF practices. Finally, the integration of HF considerations into overall system safety is illustrated by a presentation of human error probabilities applicable to LNG operations and by an expanded fault tree analysis which explicitly recognizes man-machine interfaces.

  18. 78 FR 17189 - Trunkline LNG Export, LLC; Application for Long-Term Authorization to Export Liquefied Natural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... to the Regulation of Imported Natural Gas, 49 FR 6,684 (February 22, 1984) (``Policy Guidelines... liquefaction facility and hold the LNG export authorization. The owners of TLNG and TLNG Export include Energy... entities). As such, the existing Lake Charles Terminal, the proposed liquefaction facility, and the...

  19. Lessons Learned from the On-Site Disposal Facility at Fernald Closure Project

    SciTech Connect

    Kumthekar, U.A.; Chiou, J.D.

    2006-07-01

    The On-Site Disposal Facility (OSDF) at the U.S. Department of Energy's (DOE) Fernald Closure Project near Cincinnati, Ohio is an engineered above-grade waste disposal facility being constructed to permanently store low level radioactive waste (LLRW) and treated mixed LLRW generated during Decommissioning and Demolition (D and D) and soil remediation performed in order to achieve the final land use goal at the site. The OSDF is engineered to store 2.93 million cubic yards of waste derived from the remediation activities. The OSDF is intended to isolate its LLRW from the environment for at least 200 years and for up to 1,000 years to the extent practicable and achievable. Construction of the OSDF started in 1997 and waste placement activities will complete by the middle of April 2006 with the final cover (cap) placement over the last open cell by the end of Spring 2006. An on-site disposal alternative is considered critical to the success of many large-scale DOE remediation projects throughout the United States. However, for various reasons this cost effective alternative is not readily available in many cases. Over the last ten years Fluor Fernald Inc. has cumulated many valuable lessons learned through the complex engineering, construction, operation, and closure processes of the OSDF. Also in the last several years representatives from other DOE sites, State agencies, as well as foreign government agencies have visited the Fernald site to look for proven experiences and practices, which may be adapted for their sites. This paper present a summary of the major issues and lessons leaned at the Fernald site related to engineering, construction, operation, and closure processes for the disposal of remediation waste. The purpose of this paper is to share lessons learned and to benefit other projects considering or operating similar on-site disposal facilities from our successful experiences. (authors)

  20. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1995

    SciTech Connect

    Hartman, M.J.

    1996-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1994 and September 1995. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

  1. FEM3A simulations of selected LNG vapor barrier verification field tests

    SciTech Connect

    Chan, S.T.

    1990-10-01

    In order to evaluate and eventually predict the possible mitigating effects of vapor fences on the dispersion of the vapor cloud resulting from an accidental liquefied natural gas (LNG) spill in storage areas, a research program was initiated to evaluate methods for predicting LNG dispersion distances for realistic facility configurations. As part of the program, Lawrence Livermore National Laboratory (LLNL) conducted a series of large-scale field experiments called the LNG Vapor Barrier Verification Field Trials (also referred to as the Falcon Series) at the Liquefied Gaseous Fuels Spill Test Facility (LGFSTF), Nevada. Objectives were (1) to provide a data base on LNG vapor dispersion from spill involving complex field obstacles to assist in validation of wind tunnel and mathematical models, and (2) to assess the effectiveness of vapor fences for mitigating LNG vapor dispersion hazards in the events of an accidental spill. Five spill experiments were conducted on water in order to generate vapor at rates equivalent to the liquid spill rates. In this study, the FEM3A model was applied to simulate four of the Falcon experiments. The objectives of this study were, through numerical modeling and a detailed model-data comparison: (1) to improve our understanding of LNG vapor dispersion involving vapor barriers, (2) to assess FEM3A in modeling such complex vapor dispersion scenarios, and (3) to complement the results of field and wind tunnel tests, such as providing plausible explanations for unexpected results and filling in data gaps due to instrument failure or limited array size. Toward these goals, the relevant field measurements were analyzed and several series of 2-D and 3-D simulations were carried out. 11 refs., 93 figs., 11 tabs.

  2. Facility Closure Report for T-Tunnel (U12t), Area 12, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2008-08-01

    This Facility Closure Report (FCR) has been prepared to document the actions taken to permanently close the remaining accessible areas of U12t-Tunnel (T-Tunnel) in Area 12 of the Nevada Test Site (NTS). The closure of T-Tunnel was a prerequisite to transfer facility ownership from the Defense Threat Reduction Agency (DTRA) to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Closure of the facility was accomplished with the cooperation and concurrence of both NNSA/NSO and the Nevada Division of Environmental Protection (NDEP). The purpose of this FCR is to document that the closure of T-Tunnel complied with the closure requirements specified in the Facility Closure Plan for N- and T-Tunnels Area 12, Nevada Test Site (Appendix D) and that the facility is ready for transfer to NNSA/NSO. The Facility Closure Plan (FCP) is provided in Appendix D. T-Tunnel is located approximately 42 miles north of Mercury in Area 12 of the NTS (Figure 1). Between 1970 and 1987, T-Tunnel was used for six Nuclear Weapons Effects Tests (NWETs). The tunnel was excavated horizontally into the volcanic tuffs of Rainier Mesa. The T-Tunnel complex consists of a main access drift with two NWET containment structures, a Gas Seal Plug (GSP), and a Gas Seal Door (GSD) (Figure 2). The T-Tunnel complex was mothballed in 1993 to preserve the tunnel for resumption of testing, should it happen in the future, to stop the discharge of tunnel effluent, and to prevent unauthorized access. This was accomplished by sealing the main drift GSD.

  3. Environmental assessment for the Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory

    SciTech Connect

    1995-11-01

    Lawrence Livermore National Laboratory proposes to build, permit, and operate the Explosive Waste Treatment Facility (EWTF) to treat explosive waste at LLNL`s Experimental Test Site, Site 300. It is also proposed to close the EWTF at the end of its useful life in accordance with the regulations. The facility would replace the existing Building 829 Open Burn Facility (B829) and would treat explosive waste generated at the LLNL Livermore Site and at Site 300 either by open burning or open detonation, depending on the type of waste. The alternatives addressed in the 1992 sitewide EIS/EIR are reexamined in this EA. These alternatives included: (1) the no-action alternative which would continue open burning operations at B829; (2) continuation of only open burning at a new facility (no open detonation); (3) termination of open burning operations with shipment of explosive waste offsite; and (4) the application of alternative treatment technologies. This EA examines the impact of construction, operation, and closure of the EWTF. Construction of the EWTF would result in the clearing of a small amount of previously disturbed ground. No adverse impact is expected to any state or federal special status plant or animal species (special status species are classified as threatened, endangered, or candidate species by either state or federal legislation). Operation of the EWTF is expected to result in a reduced threat to involved workers and the public because the proposed facility would relocate existing open burning operations to a more remote area and would incorporate design features to reduce the amount of potentially harmful emissions. No adverse impacts were identified for activities necessary to close the EWTF at the end of its useful life.

  4. A New Automated Instrument Calibration Facility at the Savannah River Site

    SciTech Connect

    Polz, E.; Rushton, R.O.; Wilkie, W.H.; Hancock, R.C.

    1998-06-01

    The Health Physics Instrument Calibration Facility at the Savannah River Site in Aiken, SC was expressly designed and built to calibrate portable radiation survey instruments. The facility incorporates recent advances in automation technology, building layout and construction, and computer software to improve the calibration process. Nine new calibration systems automate instrument calibration and data collection. The building is laid out so that instruments are moved from one area to another in a logical, efficient manner. New software and hardware integrate all functions such as shipping/receiving, work flow, calibration, testing, and report generation. Benefits include a streamlined and integrated program, improved efficiency, reduced errors, and better accuracy.

  5. Clay Cap Test Program for the Mixed Waste Management Facility closure at the Savannah River Site

    SciTech Connect

    Newell, J.W. , Inc., Charlotte, NC )

    1989-01-01

    A 58 acre low-level radioactive waste disposal facility at the Savannah River Site, a Department of Energy facility near Aiken, South Carolina, requires closure with a RCRA clay cap. A three-foot thick can requiring 300,000 cubic yards of local Tertiary Kaolin clay with an in-situ permeability of less than or equal to 1 {times} 10{sup -7} centimeters per second is to be constructed. The Clay Cap Test Program was conducted to evaluate the source, lab permeability, in-situ permeability, compaction characteristics, representative kaolin clays from the Aiken, SC vicinity. 11 refs., 8 figs., 1 tab.

  6. Plutonium production story at the Hanford site: processes and facilities history

    SciTech Connect

    Gerber, M.S., Westinghouse Hanford

    1996-06-20

    This document tells the history of the actual plutonium production process at the Hanford Site. It contains five major sections: Fuel Fabrication Processes, Irradiation of Nuclear Fuel, Spent Fuel Handling, Radiochemical Reprocessing of Irradiated Fuel, and Plutonium Finishing Operations. Within each section the story of the earliest operations is told, along with changes over time until the end of operations. Chemical and physical processes are described, along with the facilities where these processes were carried out. This document is a processes and facilities history. It does not deal with the waste products of plutonium production.

  7. Site characterization techniques used at a low-level waste shallow land burial field demonstration facility

    SciTech Connect

    Davis, E.C.; Boegly, W.J. Jr.; Rothschild, E.R.; Spalding, B.P.; Vaughan, N.D.; Haase, C.S.; Huff, D.D.; Lee, S.Y.; Walls, E.C.; Newbold, J.D.

    1984-07-01

    The Environmental Sciences Division of the Oak Ridge National Laboratory has been investigating improved shallow land burial technology for application in the humd eastern United States. As part of this effort, a field demonstration facility (Engineered Test Facility, or ETF) has been established in Solid Waste Storage Area 6 for purposes of investigatig the ability of two trench treatments (waste grouting prior to cover emplacement and waste isolation with trench liners) to prevent water-waste contact and thus minimize waste leaching. As part of the experimental plan, the ETF site has been characterized for purposes of constructing a hydrologic model. Site characterization is an extremely important component of the waste disposal site selection process; during these activities, potential problems, which might obviate the site from further consideration, may be found. This report describes the ETF site characterization program and identifies and, where appropriate, evaluates those tests that are of most value in model development. Specific areas covered include site geology, soils, and hydrology. Each of these areas is further divided into numerous subsections, making it easy for the reader to examine a single area of interest. Site characterization is a multidiscipliary endeavor with voluminous data, only portions of which are presented and analyzed here. The information in this report is similar to that which will be required of a low-level waste site developer in preparing a license application for a potential site in the humid East, (a discussion of licensing requirements is beyond its scope). Only data relevant to hydrologic model development are included, anticipating that many of these same characterization methods will be used at future disposal sites with similar water-related problems.

  8. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    SciTech Connect

    Dean, L.N.

    1994-02-01

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

  9. Hanford site near-facility environmental monitoring annual report, calendar year 1996

    SciTech Connect

    Perkins, C.J.

    1997-08-05

    This document summarizes the results of the near-facility environmental monitoring results for 1996 in the 100, 200/600, and 300/400 areas of the Hanford Site in south-central Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. The monitoring implements applicable portions of DOE Orders 5400.1 (DOE 1988a), 5400.5 (DOE 1990), and 5820.2A (DOE 1988b); Washington Administrative Code (WAC) 246-247; and Title 40 Code of Federal Regulations (CFR) Part 61, Subpart H (EPA 1989). In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels were slightly elevated when compared to offsite locations, the differences are less than in previous years.

  10. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    SciTech Connect

    Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

    1984-09-01

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

  11. Identifying Potential Areas for Siting Interim Nuclear Waste Facilities Using Map Algebra and Optimization Approaches

    SciTech Connect

    Omitaomu, Olufemi A; Liu, Cheng; Cetiner, Sacit M; Belles, Randy; Mays, Gary T; Tuttle, Mark A

    2013-01-01

    The renewed interest in siting new nuclear power plants in the United States has brought to the center stage, the need to site interim facilities for long-term management of spent nuclear fuel (SNF). In this paper, a two-stage approach for identifying potential areas for siting interim SNF facilities is presented. In the first stage, the land area is discretized into grids of uniform size (e.g., 100m x 100m grids). For the continental United States, this process resulted in a data matrix of about 700 million cells. Each cell of the matrix is then characterized as a binary decision variable to indicate whether an exclusion criterion is satisfied or not. A binary data matrix is created for each of the 25 siting criteria considered in this study. Using map algebra approach, cells that satisfy all criteria are clustered and regarded as potential siting areas. In the second stage, an optimization problem is formulated as a p-median problem on a rail network such that the sum of the shortest distance between nuclear power plants with SNF and the potential storage sites from the first stage is minimized. The implications of obtained results for energy policies are presented and discussed.

  12. Cost reduction ideas for LNG terminals

    SciTech Connect

    Habibullah, A.; Weldin, F.

    1999-07-01

    LNG projects are highly capital intensive and this has long been regarded as being inevitable. However, recent developments are forcing the LNG industry to aggressively seek cost reductions. For example, the gas-to-liquids (GTL) process is increasingly seen as a potential rival technology and is often being touted as an economically superior alternative fuel source. Another strong driving force behind needed cost reductions is the low crude oil price which seems to have settled in the $10--13/bb. range. LNG is well positioned as the fuel of choice for environmentally friendly new power projects. As a result of the projected demand for power especially in the Pacific Rim countries several LNG terminal projects are under consideration. Such projects will require a new generation of LNG terminal designs emphasizing low cost, small scale and safe and fully integrated designs from LNG supply to power generation. The integration of the LNG terminal with the combined cycle gas turbine (CCGT) power plant offers substantial cost savings opportunities for both plants. Various cost reduction strategies and their impact on the terminal design are discussed including cost reduction due to integration.

  13. LNG -- A paradox of propulsion potential

    SciTech Connect

    McKay, D.J.

    1995-12-31

    Liquefied natural gas (LNG) has been demonstrating its viability as a clean-burning alternative fuel for buses and medium- and heavy-duty trucks for the past 30 years. The first known LNG vehicle project began in San Diego in 1965, When San Diego Gas and Electric converted 22 utility trucks and three passenger vehicles to dedicated LNG. A surge in LNG vehicle project activity over the past five years has led to a fairly robust variety of vehicles testing the fuel, from Class 8 tractors, refuse haulers and transit buses to railroad locomotives and ferry boats. Recent technology improvements in engine design, cryogenic tanks, fuel nozzles and other related equipment have made LNG more practical to use than in the 1960s. LNG delivers more than twice the driving range from the same-sized fuel tank as a vehicle powered by compressed natural gas (CNG). Although technical and economic hurdles must be overcome before this fuel can achieve widespread use, various ongoing demonstration projects are showing LNG`s practicality, while serving the vital role of pinpointing those areas of performance that are the prime candidates for improvement.

  14. Potential for world trade in LNG

    SciTech Connect

    Anderson, P.J.

    1980-01-01

    Deliveries of LNG in 1978 in international trade amounted to about 24.77 billion cu m; of the actual deliveries, 9% were received by the U.S., 30% by West European countries, and 61% by Japan. For Spain, these deliveries represented 100% of its natural gas supply; for the U.S., they represented only 2% of natural gas demand. By the mid-1980's, the international LNG growth rate will slow to approx. 16%/yr, although projects totaling 130 million cu m/day may be completed. During the late 1980's, another 94.1 million cu m/day of LNG projects could be implemented. The over-all growth rate for the decade would then be approx. 11%/yr in LNG volumes. After 1990, several LNG export projects could be put into operation, possibly in the Middle East, West Africa, and the U.S.S.R. In 1980-2000, energy demand may increase by 2%/yr. Oil should retain its 65-70% of the primary energy supply; whether natural gas can increase its relative share depends on economic and political factors. Pipeline transport of gas costs twice as much as crude oil, and sea transport of LNG costs four to five times as much as crude oil. Wider use of the refrigeration available at LNG import terminals could affect project economics favorably. Tables.

  15. 10 CFR 50.83 - Release of part of a power reactor facility or site for unrestricted use.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... release. Nuclear power reactor licensees seeking NRC approval shall— (1) Evaluate the effect of releasing... 10 Energy 1 2013-01-01 2013-01-01 false Release of part of a power reactor facility or site for... of a power reactor facility or site for unrestricted use. (a) Prior written NRC approval is...

  16. 10 CFR 50.83 - Release of part of a power reactor facility or site for unrestricted use.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... release. Nuclear power reactor licensees seeking NRC approval shall— (1) Evaluate the effect of releasing... 10 Energy 1 2014-01-01 2014-01-01 false Release of part of a power reactor facility or site for... of a power reactor facility or site for unrestricted use. (a) Prior written NRC approval is...

  17. 10 CFR 50.83 - Release of part of a power reactor facility or site for unrestricted use.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... release. Nuclear power reactor licensees seeking NRC approval shall— (1) Evaluate the effect of releasing... 10 Energy 1 2010-01-01 2010-01-01 false Release of part of a power reactor facility or site for... of a power reactor facility or site for unrestricted use. (a) Prior written NRC approval is...

  18. 10 CFR 50.83 - Release of part of a power reactor facility or site for unrestricted use.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... release. Nuclear power reactor licensees seeking NRC approval shall— (1) Evaluate the effect of releasing... 10 Energy 1 2011-01-01 2011-01-01 false Release of part of a power reactor facility or site for... of a power reactor facility or site for unrestricted use. (a) Prior written NRC approval is...

  19. 10 CFR 50.83 - Release of part of a power reactor facility or site for unrestricted use.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... release. Nuclear power reactor licensees seeking NRC approval shall— (1) Evaluate the effect of releasing... 10 Energy 1 2012-01-01 2012-01-01 false Release of part of a power reactor facility or site for... of a power reactor facility or site for unrestricted use. (a) Prior written NRC approval is...

  20. Assessment, approval, design and construction of a facility on a Superfund site in 36 months

    SciTech Connect

    Drag, D.J.; Webb, C.K.; Luenenborg, G.W.

    1996-11-01

    The Union Pacific Resources Corporation (UPRC) owned and operated a 600-acre crude oil production field in Wilmington, California. UPRC granted a lease to the TCL Corporation in 1951 for the disposal of oil and gas drilling field wastes. In the 1950s and 1960s, waste materials consisting of oil-free rotary mud, as well as rotary mud containing oil and crude oil tank bottoms were accepted at the site. Site testing and record investigations have shown that some other wastes, inconsistent with those permitted by the agreement between UPRC and TCL, were also disposed of at the site. Soil samples collected from the site in 1981 showed moderately high levels of metals in the soils at the site. In 1983, the site was included on the California State Superfund list of hazardous waste contaminated sites. In 1988, UPRC signed a Consent order Agreement with the Department of Toxic Substance Control (DTSC) whereby UPRC agreed to investigate a 31-acre area of the Study Area and develop a Remedial Action Plan (RAP) with DTSC oversight. The Port of Long Beach (POLB) is assuming the responsibility for implementing subsequent investigative and remedial activities at the portions of the site which they have since purchased from UPRC. The overall project objective was to investigate a 31-acre parcel within the Study Area (TCL site), develop a RAP, remediate the oil sump soils, and develop the parcel as an automobile distribution facility to be used by Toyota Motor Sales (TMS).

  1. Hanford Site near-facility environmental monitoring annual report, calendar year 1997

    SciTech Connect

    Perkins, C.J.

    1998-07-28

    Near-facility environmental monitoring provides a means to measure the impacts of operations, waste management, and remediation activities on the environment adjacent to facilities and ensure compliance with local, state, and federal environmental regulations. Specifically, near-facility environmental monitoring monitors new and existing sites, processes, and facilities for potential impacts and releases; fugitive emissions and diffuse sources associated with contaminated areas, facilities (both active and those undergoing surveillance and maintenance), and environmental restoration activities. External radiation, ambient air particulates, ground and surface water, soil, sediment, and biota (plants and animals) are sampled or monitored. Parameters include, as appropriate, radionuclides; radiation fields; chemical or physical constituents, such as nitrates; pH; and water temperature. All ambient air results were below the US Department of Energy (DOE) Derived Concentration Guides (DCGs). Groundwater concentrations at the two wells at the 107-N Facility were below both the DOE DCG and US Environmental Protection Agency Interim Drinking Water Standards for gamma emitting radionuclides. Soil and vegetation results were generally within historic ranges and mostly below the Accessible Soil Concentration limits (included in HNF-PRO-454, Inactive Waste Sites) with the exception of one soil sampling location at 1 00 N Area. External radiation fields continued an overall downward trend. Surface water disposal unit samples (water, sediment, and aquatic vegetation) showed radionuclide concentrations below their respective DCG and Accessible Soil Concentration limits. The 100 N Area Columbia river shoreline springs results were below DCGs with the exception of one Sr concentration. More than 4,600 ha (11,300 acres) of radiologically controlled areas were surveyed in 1997, approximately the same as in 1996.

  2. Savannah River Site RCRA Facility Investigation plan: Road A Chemical Basin

    SciTech Connect

    Not Available

    1989-06-01

    The nature of wastes disposed of at the Road A Chemical Basin (RACB) is such that some degree of soil contamination is probable. Lead has also been detected in site monitoring wells at concentrations above SRS background levels. A RCRA Facility Investigation (RFI) is proposed for the RACB and will include a ground penetrating radar (GPR) survey, collection and chemical and radiological analyses of soil cores, installation of groundwater monitoring wells, collection and chemical and radiological analyses of groundwater samples, and collection of chemical and radiological analyses of surface water and sediment samples. Upon completion of the proposed RFI field work and chemical and radiological analyses, and RFI report should be prepared to present conclusions on the nature and extent of contamination at the site, and to make recommendations for site remediation. If contamination is detected at concentrations above SRS background levels, a receptor analysis should be done to evaluate potential impacts of site contamination on nearby populations.

  3. Federal Facility Compliance Act: Conceptual Site Treatment Plan for Lawrence Livermore National Laboratory, Livermore, California

    SciTech Connect

    Not Available

    1993-10-01

    The Department of Energy (DOE) is required by section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (the Act), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The Act requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the State or EPA for approval, approval with modification, or disapproval. The Lawrence Livermore National Laboratory (LLNL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the Act and is being provided to California, the US Environmental Protection Agency (EPA), and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix 1.1 of this document. Please note that Appendix 1.1 appears as Appendix A, pages A-1 and A-2 in this document.

  4. Surficial geology and performance assessment for a Radioactive Waste Management Facility at the Nevada Test Site

    SciTech Connect

    Snyder, K.E.; Gustafson, D.L.; Huckins-Gang, H.E.; Miller, J.J.; Rawlinson, S.E.

    1995-02-01

    At the Nevada Test Site, one potentially disruptive scenario being evaluated for the Greater Confinement Disposal (GCD) Facility Performance Assessment is deep post-closure erosion that would expose buried radioactive waste to the accessible environment. The GCD Facility located at the Area 5 Radioactive Waste Management Site (RWMS) lies at the juncture of three alluvial fan systems. Geomorphic surface mapping in northern Frenchman Flat indicates that reaches of these fans where the RWMS is now located have been constructional since at least the middle Quaternary. Mapping indicates a regular sequence of prograding fans with entrenchment of the older fan surfaces near the mountain fronts and construction of progressively younger inset fans farther from the mountain fronts. At the facility, the oldest fan surfaces are of late Pleistocene and Holocene age. More recent geomorphic activity has been limited to erosion and deposition along small channels. Trench and pit wall mapping found maximum incision in the vicinity of the RWMS to be less than 1.5 m. Based on collected data, natural geomorphic processes are unlikely to result in erosion to a depth of more than approximately 2 m at the facility within the 10,000-year regulatory period.

  5. Nuclear facility decommissioning and site remedial actions. Volume 1. A selected bibliography

    SciTech Connect

    Faust, R.A.; Fore, C.S.; Knox, N.P.

    1980-09-01

    This bibliography of 633 references represents the first in a series to be produced by the Remedial Actions Program Information Center (RAPIC) containing scientific, technical, economic, and regulatory information concerning the decommissioning of nuclear facilities. Major chapters selected for this bibliography are Facility Decommissioning, Uranium Mill Tailings Cleanup, Contaminated Site Restoration, and Criteria and Standards. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for (1) author(s), (2) keywords, (3) title, (4) technology development, and (5) publication description. An appendix of 123 entries lists recently acquired references relevant to decommissioning of nuclear facilities. These references are also arranged according to one of the four subject categories and followed by author, title, and publication description indexes. The bibliography was compiled from a specialized data base established and maintained by RAPIC to provide information support for the Department of Energy's Remedial Actions Program, under the cosponsorship of its three major components: Surplus Facilities Management Program, Uranium Mill Tailings Remedial Actions Program, and Formerly Utilized Sites Remedial Actions Program. RAPIC is part of the Ecological Sciences Information Center within the Information Center Complex at Oak Ridge National Laboratory.

  6. Facility preparations for the initial International Atomic Energy Agency Inpsection of Hanford Site excess material

    SciTech Connect

    Johnson, W.C.; Scott, D.D.; Bartlett, W.D.; Delegard, C.H.; McRae, L.P.; Six, D.E.; Amacker, O.P.

    1995-09-01

    In September 1993 President Clinton offered to place excess US nuclear materials under IAEA safeguards. In January 1994, the Hanford Site was identified as the second site in the US to be prepared for placement on the eligibility list for LAEA safeguards selection. Planning and preparation started at Hanford in February 1994. The PFP mission is to provide safe storage of Category 1 and 2 special nuclear material (SNM) and laboratory support to the Hanford Site. The mission includes the stabilizing and packaging of SNM for temporary storage sufficient to support the deactivation and cleanup function of the facility. The storage of Category 1 and 2 SNM at this facility indirectly supports national security interests, and safe storage is accomplished in a manner that ensures the health and safety of the public and employees are not compromised. The PFP is located in the approximate center of the Hanford Site inside the 200 West Area. The PFP is within a designated protected area (PA) and is located approximately 10.5 km from the Columbia River and 34 km northwest of the Richland city limits. The, Hanford Site is located in Southeastern Washington and has been associated with plutonium production since the mid 1940s. Excess plutonium oxide has been placed under IAEA safeguards in a phased approach at the PFP`s Plutonium Storage Vault. This paper is an overview and summary of the many tasks required to meet IAEA safeguards requirements.

  7. Testing carbon sequestration site monitor instruments using a controlled carbon dioxide release facility

    NASA Astrophysics Data System (ADS)

    Humphries, Seth D.; Nehrir, Amin R.; Keith, Charlie J.; Repasky, Kevin S.; Dobeck, Laura M.; Carlsten, John L.; Spangler, Lee H.

    2008-02-01

    Two laser-based instruments for carbon sequestration site monitoring have been developed and tested at a controlled carbon dioxide (CO2) release facility. The first instrument uses a temperature tunable distributed feedback (DFB) diode laser capable of accessing the 2.0027-2.0042 μm spectral region that contains three CO2 absorption lines and is used for aboveground atmospheric CO2 concentration measurements. The second instrument also uses a temperature tunable DFB diode laser capable of accessing the 2.0032-2.0055 μm spectral region that contains five CO2 absorption lines for underground CO2 soil gas concentration measurements. The performance of these instruments for carbon sequestration site monitoring was studied using a newly developed controlled CO2 release facility. A 0.3 ton CO2/day injection experiment was performed from 3-10 August 2007. The aboveground differential absorption instrument measured an average atmospheric CO2 concentration of 618 parts per million (ppm) over the CO2 injection site compared with an average background atmospheric CO2 concentration of 448 ppm demonstrating this instrument's capability for carbon sequestration site monitoring. The underground differential absorption instrument measured a CO2 soil gas concentration of 100,000 ppm during the CO2 injection, a factor of 25 greater than the measured background CO2 soil gas concentration of 4000 ppm demonstrating this instrument's capability for carbon sequestration site monitoring

  8. Analysis of 2011 Meteorological Data from the Knolls Atomic Power Laboratory and Kesselring Site Operations Facilities

    SciTech Connect

    Aluzzi, F J

    2012-02-27

    Both the Knolls Atomic Power Laboratory (KAPL) in Schenectady, NY and the Kesselring Site Operations (KSO) facility near Ballston Spa, NY are required to estimate the effects of hypothetical emissions of radiological material from their respective facilities by the US Environmental Protection Agency (EPA), which regulates these facilities. An atmospheric dispersion model known as CAP88, which was developed and approved by the EPA for such purposes, is used by KAPL and KSO to meet this requirement. CAP88 calculations over a given time period are based on statistical data on the meteorological conditions for that period. Both KAPL and KSO have on-site meteorological towers which take atmospheric measurements at a frequency ideal for EPA regulatory model input. However, an independent analysis and processing of the meteorological data from each tower is required to derive a data set appropriate for use in the CAP88 model. The National Atmospheric Release Advisory Center (NARAC) was contracted by KAPL to process the on-site data for the calendar year 2011. The purpose of this document is to: (1) summarize the procedures used in the preparation/analysis of the 2011 meteorological data; and (2) document adherence of these procedures to the guidance set forth in 'Meteorological Monitoring Guidance for Regulatory Modeling Applications', EPA document - EPA-454/R-99-005 (EPA-454). This document outlines the steps in analyzing and processing meteorological data from the Knolls Atomic Power Laboratory and Kesselring Site Operations facilities into a format that is compatible with the steady state dispersion model CAP88. This process is based on guidance from the EPA regarding the preparation of meteorological data for use in regulatory dispersion models. The analysis steps outlined in this document can be easily adapted to process data sets covering time period other than one year. The procedures will need to be modified should the guidance in EPA-454 be updated or revised.

  9. Characterization and reclamation assessment for the central shops diesel storage facility at Savannah River Site

    SciTech Connect

    Fliermans, C.B.; Hazen, T.C.; Bledsoe, H.W.

    1994-12-31

    The contamination of subsurface terrestrial environments by organic contaminants is a global phenomenon. The remediation of such environments requires innovative assessment techniques and strategies for successful cleanups. Using innovative approaches, the central Shops Diesel Storage Facility at the Savannah River Site (SRS) was characterized to determine the extent of subsurface diesel fuel contamination. Effective bioremediation techniques for cleaning up of the contaminant plume were established.

  10. Shrapnel protection testing in support of the proposed Site 300 Contained Firing Facility

    SciTech Connect

    Pastrnak, J W; Baker, C F; Simmons, L F

    1992-08-04

    In preparation for the planned Contained Firing Facility at LLNL's Site 300, various multi-layered shrapnel protection schemes were investigated with the intent of minimizing the amount of material used in the shielding. As a result of testing, it was found that two pieces of 1-in.-thick mild steel plate provide adequate general-purpose protection from shrapnel generated by normal hydrodynamic and cylinder shots at Bunker 801. 8 refs.

  11. Second performance assessment iteration of the Greater Confinement Disposal facility at the Nevada Test Site

    SciTech Connect

    Baer, T.A.; Emery, J.N.; Price, L.L.; Olague, N.E.

    1994-04-01

    The Greater Confinement Disposal (GCD) facility was established in Area 5 at the Nevada Test Site for containment of waste inappropriate for shallow land burial. Some transuranic (TRU) waste has been disposed of at the GCD facility, and compliance of this disposal system with EPA regulation 40 CFR 191 must be evaluated. We have adopted an iterative approach in which performance assessment results guide site data collection, which in turn influences the parameters and models used in performance assessment. The first iteration was based upon readily available data, and indicated that the GCD facility would likely comply with 40 CFR 191 and that the downward flux of water through the vadose zone (recharge) had a major influence on the results. Very large recharge rates, such as might occur under a cooler, wetter climate, could result in noncompliance. A project was initiated to study recharge in Area 5 by use of three environmental tracers. The recharge rate is so small that the nearest groundwater aquifer will not be contaminated in less than 10,000 years. Thus upward liquid diffusion of radionuclides remained as the sole release pathway. This second assessment iteration refined the upward pathway models and updated the parameter distributions based upon new site information. A new plant uptake model was introduced to the upward diffusion pathway; adsorption and erosion were also incorporated into the model. Several modifications were also made to the gas phase radon transport model. Plutonium solubility and sorption coefficient distributions were changed based upon new information, and on-site measurements were used to update the moisture content distributions. The results of the assessment using these models indicate that the GCD facility is likely to comply with all sections of 40 CFR 191 under undisturbed conditions.

  12. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    SciTech Connect

    Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

    1988-09-01

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.

  13. Site characterization report for the Old Hydrofracture Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1995-01-01

    Several Old Hydrofracture Facility (OHF) structures (i.e., Building 7852, the bulk storage bins, the pump house, water tank T-5, and pump P-3) are surplus facilities at Oak Ridge National Laboratory (ORNL) slated for decontamination and decommissioning (D and D). OHF was constructed in 1963 to allow experimentation and operations with an integrated solids storage, handling, mixing, and grout injection facility. It was shut down in 1980 and transferred to ORNL`s Surveillance and Maintenance Program. The hydrofracture process was a unique disposal method that involved injecting waste materials mixed with grout and additives under pumping pressures of 2,000 psi or greater into a deep, low-permeability shale formation. The injected slurry spread along fractures and bedding planes for hundreds of feet from the injection points, forming thin grout sheets (often less than 1/8 in. thick). The grout ostensibly immobilized and solidified the liquid wastes. Site characterization activities were conducted in the winter and spring of 1994 to collect information necessary to plan the D and D of OHF structures. This site characterization report documents the results of the investigation of OHF D and D structures, presenting data from the field investigation and laboratory analyses in the form of a site description, as-built drawings, summary tables of radiological and chemical contaminant concentrations, and a waste volume estimate. 25 refs., 54 figs., 17 tabs.

  14. Critical Protection Item classification for a waste processing facility at Savannah River Site

    SciTech Connect

    Ades, M.J.; Garrett, R.J.

    1993-10-01

    This paper describes the methodology for Critical Protection Item (CPI) classification and its application to the Structures, Systems and Components (SSC) of a waste processing facility at the Savannah River Site (SRS). The WSRC methodology for CPI classification includes the evaluation of the radiological and non-radiological consequences resulting from postulated accidents at the waste processing facility and comparison of these consequences with allowable limits. The types of accidents considered include explosions and fire in the facility and postulated accidents due to natural phenomena, including earthquakes, tornadoes, and high velocity straight winds. The radiological analysis results indicate that CPIs are not required at the waste processing facility to mitigate the consequences of radiological release. The non-radiological analysis, however, shows that the Waste Storage Tank (WST) and the dike spill containment structures around the formic acid tanks in the cold chemical feed area and waste treatment area of the facility should be identified as CPIs. Accident mitigation options are provided and discussed.

  15. Radiological safety evaluation for a Waste Transfer Facility at Savannah River Site

    SciTech Connect

    Ades, M.J.

    1993-10-01

    This paper provides a review of the radiological safety evaluation performed for a Waste Transfer Facility (WTF) located at the Savannah River Site (SRS). This facility transfers liquid radioactive waste between various waste processing facilities and waste storage facilities. The WTF includes functional components such as the diversion box and the pump pits, waste transfer lines, and the outside yard service piping and electrical services. The WSRC methodology is used to evaluate the consequences of postulated accidents that result in the release of radioactive material. Such accidents include transfer line breaks, underground liquid pathway release, fire in pump tank cells and HEPA filters, accidents due to natural phenomena, and externally induced events. Chemical hazards accidents are not considered. The analysis results indicate that the calculated mean onsite and offsite radiological consequences are bounded by the corresponding WSRC dose limits for each accident considered. Moreover, the results show that the maximum onsite and offsite doses calculated for the WTF are lower than the maximum doses determined for the whole radioactive waste facility where the WTF is located.

  16. Site study plan for Exploratory shaft facilities design foundation boreholes (shaft surface facility foundation borings), Deaf Smith County Site, Texas: Surface-based geotechnical field program: Preliminary draft

    SciTech Connect

    Not Available

    1987-12-01

    This site study plan describes the Exploratory Shaft Facilities (ESF) Design Foundation Boreholes field activities to be conducted during early stages of Site Characterization at the Deaf Smith County, Texas, site. The field program has been designed to provide data useful in addressing information/data needs resulting from federal/state/local regulations, and repository program requirements. Approximately 50 foundation boreholes will be drilled within the ESP location to provide data necessary for design of the ESF and to satisfy applicable shaft permitting requirements. Soils and subsurface rock will be sampled as the foundation boreholes are advanced. Soil samples or rock core will be taken through the Blackwater Draw and Ogallala Formations and the Dockum Group. Hydrologic testing will be performed in boreholes that penetrates the water table. In-situ elastic properties will be determined from both the soil strata and rock units along the length of the boreholes. Field methods/tests are chosen that provide the best or only means of obtaining the required data. The Salt Repository Project (SRP) Networks specify the schedule under which the program will operate. Drilling will not begin until after site ground water baseline conditions have been established. The Technical Field Services Contractor is responsible for conducting the field program of drilling and testing. Samples and data will be handled and reported in accordance with established SRP procedures. A quality assurance program will be utilized to assure that activities affecting quality are performed correctly and that the appropriate documentation is maintained. 25 refs., 10 figs., 6 tabs.

  17. Gas treating alternatives for LNG plants

    SciTech Connect

    Clarke, D.S.; Sibal, P.W.

    1998-12-31

    This paper covers the various gas treating processes available for treating sour natural gas to specifications required for LNG production. The LNG product specification requires that the total sulfur level be less than 30--40 ppmv, the CO{sub 2} level be less than 50 ppmv and the water level be less than 100 ppmv to prevent freezing problems in the LNG cryogenic column. A wide variety of natural gas compositions are encountered in the various fields and the gas treating process selection is dependent on the type of impurities present in the gas, namely, levels of H{sub 2}S, CO{sub 2}, mercaptans and other organic sulfur compounds. This paper discusses the implications various components in the feed to the LNG plant can have on process selection, and the various treating processes that are available to condition the gas. Process selection criteria, design and operating philosophies are discussed. An economic comparison for two treating schemes is provided.

  18. Damage-detection system for LNG carriers

    NASA Technical Reports Server (NTRS)

    Mastandrea, J. R.; Scherb, M. V.

    1978-01-01

    System utilizes array of acoustical transducers to detect cracks and leaks in liquefied natural gas (LNG) containers onboard ships. In addition to detecting leaks, device indicates location and leak rate.

  19. LNG carrier using membrane tank system delivered

    SciTech Connect

    Not Available

    1993-12-06

    The world's first LNG carrier that incorporates the Technigaz Mark 3 membrane tank system was delivered in October to its owner, Asia LNG Transport Sdn. Bhd., a joint venture between Nippon Yusen K.K. and Perbadanan Nasional Shipping Line Berhad of Malaysia. NKK built the 18,800 cu m, fully double-hull carrier Aman Bintulu at its Tsu works. Construction was completed in September with more than 2 months of sea trials and gas tests using [minus]190 C. Liquid nitrogen and final gas trails with LNG. The orthogonally corrugated stainless membrane primary barrier and the triplex (aluminum foil/fiber glass cloth) composite-material secondary barrier prevent LNG from leaking in the event of an accident.

  20. Norcal Prototype LNG Truck Fleet: Final Results

    SciTech Connect

    Not Available

    2004-07-01

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final evaluation results.

  1. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    SciTech Connect

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  2. Risk perception, uncertainty, and facility siting: Lessons from merchant power in California

    NASA Astrophysics Data System (ADS)

    Schively, Carissa

    This dissertation highlights the results of an investigation of the effects of uncertainty on siting decisions involving locally unwanted land uses (LULUs). Focusing specifically on the siting of natural gas-powered energy facilities in California, the analysis of data gathered from a survey of participants illustrates the effects of participants' uncertainties on siting processes and outcomes. The research focuses on four specific types of uncertainties: environmental risk uncertainty; solution uncertainty; interaction uncertainty; and commitment uncertainty. Environmental risk uncertainty is associated with perceived impacts on the environment. Solution uncertainty is tied to the process of evaluating and selecting proposed solutions or alternatives. Interaction uncertainty relates to the difficulty in determining the perceptions of others, the information that they hold, their preferences for solutions, and their likely actions. Commitment uncertainty influences participants' assessments of the credibility of commitments made by other parties in the siting process. The findings point to the presence of each of the four types of uncertainty among siting process participants. In addition, the research suggests that participants exhibited certain actions as a result of their uncertainties including questioning experts, exhibiting reduced trust, focusing on a narrow set of issues, and manipulating analyses of alternatives. Further, the findings provide insights into the influence of uncertainty on siting process outcomes such as decision optimality and conflict among participants. Overall, the research suggests the importance of understanding the underlying basis of LULU responses and the need to craft siting processes that mitigate or at least account for participants' uncertainties.

  3. LNG ventures raise economic, technical, partnership issues

    SciTech Connect

    Acord, H.K.

    1995-07-03

    The author feels that natural gas will remain a competitive energy alternative and the preferred fuel for many residential and industrial customers around the globe. The article attempts to explain where liquefied natural gas will fit into the global picture. The paper discusses the growth in the Asia-Pacific region; the complex interactions in a LNG project involving buyers, sellers, governments, financial institutions, and shipping companies; the cost of development of such projects; and the elements of a LNG venture.

  4. Analysis of 2014 Meteorological Data from the Knolls Atomic Power Laboratory and Kesselring Site Operations Facilities

    SciTech Connect

    Aluzzi, Fernando J.

    2015-02-25

    Both the Knolls Atomic Power Laboratory (KAPL) in Schenectady, N.Y. and the Kesselring Site Operations (KSO) facility near Ballston Spa, N.Y. are required to estimate the effects of hypothetical emissions of radiological material from their respective facilities by the U.S. Environmental Protection Agency (EPA), which regulates both sites. An atmospheric dispersion model known as CAP88, which was developed and approved by the EPA for such purposes, is used by KAPL and KSO to meet this requirement. CAP88 calculations over a given time period are based on statistical data on the meteorological conditions for that period. Both KAPL and KSO have on-site meteorological towers which take atmospheric measurements at a frequency ideal for EPA regulatory model input. However, an independent analysis and processing of the meteorological data from each tower is required to derive a data set appropriate for use in the CAP88 model. The National Atmospheric Release Advisory Center (NARAC) was contracted by KAPL to process the on-site data for the calendar year 2014.

  5. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text

    SciTech Connect

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  6. The Methodology of Interactive Parametric Modelling of Construction Site Facilities in BIM Environment

    NASA Astrophysics Data System (ADS)

    Kozlovská, Mária; Čabala, Jozef; Struková, Zuzana

    2014-11-01

    Information technology is becoming a strong tool in different industries, including construction. The recent trend of buildings designing is leading up to creation of the most comprehensive virtual building model (Building Information Model) in order to solve all the problems relating to the project as early as in the designing phase. Building information modelling is a new way of approaching to the design of building projects documentation. Currently, the building site layout as a part of the building design documents has a very little support in the BIM environment. Recently, the research of designing the construction process conditions has centred on improvement of general practice in planning and on new approaches to construction site layout planning. The state of art in field of designing the construction process conditions indicated an unexplored problem related to connection of knowledge system with construction site facilities (CSF) layout through interactive modelling. The goal of the paper is to present the methodology for execution of 3D construction site facility allocation model (3D CSF-IAM), based on principles of parametric and interactive modelling.

  7. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    SciTech Connect

    Pechmann, J.H.K.; Scott, D.E.; McGregor, J.H.; Estes, R.A.; Chazal, A.C.

    1993-02-01

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980's. The Savannah River Ecology Laboratory (SREL) has completed 12 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of refuge ponds'' as alternative breeding sites for amphibians that formerly bred at Sun Bay Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10CFR1022).

  8. Resource Conservation and Recovery Act Industrial Site Environmental Restoration Site Characterization Plan, Area 6 Decontamination Pond Facility, Revision 1

    SciTech Connect

    1996-08-12

    This plan presents the strategy for the characterization of the Area 6 Decontamination Pond Facility (DPF) at the Nevada Test Site (NTS) which will be conducted for the U.S. Department of Energy, Nevada Operations OffIce (DOE/NV), Environmental Restoration Division (ERD). The objectives of the planned activities are to: o Obtain sufficient, ample analytical data from which further assessment, remediation, and/or closure strategies maybe developed for the site. o Obtain sufficient, sample analytical data for management of investigation-derived waste. All references to regulations contained in this plan are to the versions of the regulations that are current at the time of publication of this plan. The scope of the characterization may include surface radiation survey(s), surface soil sampling, subsurface soil boring (i.e., drilling), and sampling of soil in and Mound the pond; in situ sampling of the soil within subsurface soil borings; and sample analysis for both site . . characterization and waste management purposes.

  9. Niagara Falls Storage Site, Annual site environmental report, Lewiston, New York, Calendar year 1986: Surplus Facilities Management Program (SFMP)

    SciTech Connect

    Not Available

    1987-06-01

    During 1986, the environmental monitoring program was continued at the Niagara Falls Storage Site (NFSS), a US Department of Energy (DOE) surplus facility located in Niagara County, New York, presently used for the interim storage of radioactive residues and contaminated soils and rubble. The monitoring program is being conducted by Bechtel National, Inc. The monitoring program at the NFSS measures radon gas concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess its potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenario described in the report, this individual would receive an annual external exposure approximately equivalent to 6% of the DOE radiation protection standard of 100 mrem/yr. By comparison, the incremental dose received from living in a brick house versus a wooden house is 10 mrem/yr above background. The cumulative dose to the population within an 80-km (50-mi) radius of the NFSS that would result from radioactive materials present at the site would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. Results of the 1986 monitoring show that the NFSS is in compliance with the DOE radiation protection standard. 14 refs., 11 figs., 14 tabs.

  10. Effects of lng Mutations on LngA Expression, Processing, and CS21 Assembly in Enterotoxigenic Escherichia coli E9034A.

    PubMed

    Saldaña-Ahuactzi, Zeus; Rodea, Gerardo E; Cruz-Córdova, Ariadnna; Rodríguez-Ramírez, Viridiana; Espinosa-Mazariego, Karina; González-Montalvo, Martín A; Ochoa, Sara A; González-Pedrajo, Bertha; Eslava-Campos, Carlos A; López-Villegas, Edgar O; Hernández-Castro, Rigoberto; Arellano-Galindo, José; Patiño-López, Genaro; Xicohtencatl-Cortes, Juan

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of morbidity in children under 5 years of age in low- and middle-income countries and a leading cause of traveler's diarrhea worldwide. The ability of ETEC to colonize the intestinal epithelium is mediated by fimbrial adhesins, such as CS21 (Longus). This adhesin is a type IVb pilus involved in adherence to intestinal cells in vitro and bacterial self-aggregation. Fourteen open reading frames have been proposed to be involved in CS21 assembly, hitherto only the lngA and lngB genes, coding for the major (LngA) and minor (LngB) structural subunit, have been characterized. In this study, we investigated the role of the LngA, LngB, LngC, LngD, LngH, and LngP proteins in the assembly of CS21 in ETEC strain E9034A. The deletion of the lngA, lngB, lngC, lngD, lngH, or lngP genes, abolished CS21 assembly in ETEC strain E9034A and the adherence to HT-29 cells was reduced 90%, compared to wild-type strain. Subcellular localization prediction of CS21 proteins was similar to other well-known type IV pili homologs. We showed that LngP is the prepilin peptidase of LngA, and that ETEC strain E9034A has another peptidase capable of processing LngA, although with less efficiency. Additionally, we present immuno-electron microscopy images to show that the LngB protein could be localized at the tip of CS21. In conclusion, our results demonstrate that the LngA, LngB, LngC, LngD, LngH, and LngP proteins are essential for CS21 assembly, as well as for bacterial aggregation and adherence to HT-29 cells. PMID:27536289

  11. Effects of lng Mutations on LngA Expression, Processing, and CS21 Assembly in Enterotoxigenic Escherichia coli E9034A.

    PubMed

    Saldaña-Ahuactzi, Zeus; Rodea, Gerardo E; Cruz-Córdova, Ariadnna; Rodríguez-Ramírez, Viridiana; Espinosa-Mazariego, Karina; González-Montalvo, Martín A; Ochoa, Sara A; González-Pedrajo, Bertha; Eslava-Campos, Carlos A; López-Villegas, Edgar O; Hernández-Castro, Rigoberto; Arellano-Galindo, José; Patiño-López, Genaro; Xicohtencatl-Cortes, Juan

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of morbidity in children under 5 years of age in low- and middle-income countries and a leading cause of traveler's diarrhea worldwide. The ability of ETEC to colonize the intestinal epithelium is mediated by fimbrial adhesins, such as CS21 (Longus). This adhesin is a type IVb pilus involved in adherence to intestinal cells in vitro and bacterial self-aggregation. Fourteen open reading frames have been proposed to be involved in CS21 assembly, hitherto only the lngA and lngB genes, coding for the major (LngA) and minor (LngB) structural subunit, have been characterized. In this study, we investigated the role of the LngA, LngB, LngC, LngD, LngH, and LngP proteins in the assembly of CS21 in ETEC strain E9034A. The deletion of the lngA, lngB, lngC, lngD, lngH, or lngP genes, abolished CS21 assembly in ETEC strain E9034A and the adherence to HT-29 cells was reduced 90%, compared to wild-type strain. Subcellular localization prediction of CS21 proteins was similar to other well-known type IV pili homologs. We showed that LngP is the prepilin peptidase of LngA, and that ETEC strain E9034A has another peptidase capable of processing LngA, although with less efficiency. Additionally, we present immuno-electron microscopy images to show that the LngB protein could be localized at the tip of CS21. In conclusion, our results demonstrate that the LngA, LngB, LngC, LngD, LngH, and LngP proteins are essential for CS21 assembly, as well as for bacterial aggregation and adherence to HT-29 cells.

  12. Effects of lng Mutations on LngA Expression, Processing, and CS21 Assembly in Enterotoxigenic Escherichia coli E9034A

    PubMed Central

    Saldaña-Ahuactzi, Zeus; Rodea, Gerardo E.; Cruz-Córdova, Ariadnna; Rodríguez-Ramírez, Viridiana; Espinosa-Mazariego, Karina; González-Montalvo, Martín A.; Ochoa, Sara A.; González-Pedrajo, Bertha; Eslava-Campos, Carlos A.; López-Villegas, Edgar O.; Hernández-Castro, Rigoberto; Arellano-Galindo, José; Patiño-López, Genaro; Xicohtencatl-Cortes, Juan

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of morbidity in children under 5 years of age in low- and middle-income countries and a leading cause of traveler's diarrhea worldwide. The ability of ETEC to colonize the intestinal epithelium is mediated by fimbrial adhesins, such as CS21 (Longus). This adhesin is a type IVb pilus involved in adherence to intestinal cells in vitro and bacterial self-aggregation. Fourteen open reading frames have been proposed to be involved in CS21 assembly, hitherto only the lngA and lngB genes, coding for the major (LngA) and minor (LngB) structural subunit, have been characterized. In this study, we investigated the role of the LngA, LngB, LngC, LngD, LngH, and LngP proteins in the assembly of CS21 in ETEC strain E9034A. The deletion of the lngA, lngB, lngC, lngD, lngH, or lngP genes, abolished CS21 assembly in ETEC strain E9034A and the adherence to HT-29 cells was reduced 90%, compared to wild-type strain. Subcellular localization prediction of CS21 proteins was similar to other well-known type IV pili homologs. We showed that LngP is the prepilin peptidase of LngA, and that ETEC strain E9034A has another peptidase capable of processing LngA, although with less efficiency. Additionally, we present immuno-electron microscopy images to show that the LngB protein could be localized at the tip of CS21. In conclusion, our results demonstrate that the LngA, LngB, LngC, LngD, LngH, and LngP proteins are essential for CS21 assembly, as well as for bacterial aggregation and adherence to HT-29 cells. PMID:27536289

  13. Voluntary siting and equity: the MRS facility experience in Native America.

    PubMed

    Rajeev Gowda, M V; Easterling, D

    2000-12-01

    This article focuses on aspects of intragenerational and intergenerational equity in the context of a unique policy experiment: the effort of the U.S. government to site a monitored, retrievable storage (MRS) facility for high-level civilian nuclear waste. This process and its outcomes are examined from both normative and subjective perspectives. While the MRS siting process was designed to be equitable, its eventual focus on Native American communities raises profound questions about environmental justice, as well as procedural, outcome, and intergenerational equity in cross-cultural contexts. The diverse reactions among Native American tribes demonstrate that translating theoretical concepts of equity into practice is an extraordinarily complex exercise. The MRS siting process, instead of being a bold policy experiment that promoted equity, emerges substantially flawed after its implementation in the Native American context.

  14. Pre-operational environmental monitoring plan for the Device Assembly Facility at the Nevada Test Site

    SciTech Connect

    Ferate, F.D.

    1995-01-01

    Nuclear explosives operations have been and may continue to be an important component of the DOE mission at the NTS. This mission has been to conduct the nation`s nuclear testing program in a safe, secure, and efficient manner while assuring full compliance with state and federal regulations, and DOE order`s and directives. These operations have generally included assembly, disassembly or modification, staging, transportation, and tesbng of nuclear explosive devices. They may also include maintenance, repair, retrofit, and surveillance. The Device Assembly Facility (DAF) was constructed to provide a dedicated facility in which to prepare nuclear explosives assemblies for their intended disposition. This facility will provide for combined operations (replacing two separate facilities) and incorporates state-of-the-art safety and security features while minimizing the risks of environmental impacts. The facility has been completed but not yet operated, so the impacts to be considered will b e based on normal operations and not on the impacts of construction activities. The impacts will arise from nuclear explosives operations that require the handling of high explosives in combination with special nuclear materials. Wastes from operation of the earlier device assembly facilities have included grams of epoxies, pints of solvents, and small quantities of waste explosives. These are hazardous (includes radioactive) wastes and are disposed of in accordance with state and federal regulations. Assuming similar operations at the DAF, non-hazardous (includes non-radioactive) solid waste would be transported to a permitted landfill. Waste explosives would be sent to the Area 11 Explosive Ordnance Disposal Unit. Other hazardous waste would be sent to the Area 5 Radioactive Waste.Management Site for shipment or burial.

  15. Preliminary siting criteria for the proposed mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect

    Jorgenson-Waters, M.

    1992-09-01

    The Mixed and Low-Level Waste Treatment Facility project was established in 1991 by the US Department of Energy Idaho Field Office. This facility will provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies the siting requirements imposed on facilities that treat and store these waste types by Federal and State regulatory agencies and the US Department of Energy. Site selection criteria based on cost, environmental, health and safety, archeological, geological and service, and support requirements are presented. These criteria will be used to recommend alternative sites for the new facility. The National Environmental Policy Act process will then be invoked to evaluate the alternatives and the alternative sites and make a final site determination.

  16. Environmental assessment for device assembly facility operations, Nevada Test Site, Nye County, Nevada. Final report

    SciTech Connect

    1995-05-01

    The U.S. Department of Energy, Nevada Operations Office (DOE/NV), has prepared an environmental assessment (EA), (DOE/EA-0971), to evaluate the impacts of consolidating all nuclear explosive operations at the newly constructed Device Assembly Facility (DAF) in Area 6 of the Nevada Test Site. These operations generally include assembly, disassembly or modification, staging, transportation, testing, maintenance, repair, retrofit, and surveillance. Such operations have previously been conducted at the Nevada Test Site in older facilities located in Area 27. The DAF will provide enhanced capabilities in a state-of-the-art facility for the safe, secure, and efficient handling of high explosives in combination with special nuclear materials (plutonium and highly enriched uranium). Based on the information and analyses in the EA, DOE has determined that the proposed action would not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (42 U.S.C. 4321 et seq.). Therefore, an environmental impact statement is not required, and DOE is issuing this finding of no significant impact.

  17. New challenges for the maintenance strategies on large astronomical facilities at remote observing sites

    NASA Astrophysics Data System (ADS)

    Silber, Armin

    2012-09-01

    The Change from a reacting to a proactive maintenance concept represents for large Observatories at remote operational sites a new challenge, considering the increasing numbers of complex subsystems. Conventional operational maintenance models will not cover all the requirements, will lead to more down time and the operational cost cannot be reduced. For the successful astronomical observation with large telescope facilities new strategies have to be applied. In this contribution we will demonstrate on the example of the 78 Cryogenic Sub-systems of ALMA how a proactive maintenance strategy help to increase the efficiency, to reduce the operational cost and the required staff resources. With respect to the growing number of complex subsystems on future telescope facilities the operational staff needs proper diagnostic and monitoring tools to allow a precise prediction respectively synchronization of the service activities. This leads away from a pure scheduling of preventive maintenance and enables a longer availability of the subsystems as tendencies and performance are monitored and controlled. Having this strategy considered during the developing phase of future large astronomical facilities allows the optimization of the required Infrastructure, a proper definition of the LRU1 strategy and to which level maintenance can be cost efficient on site.

  18. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12

    SciTech Connect

    Owen, P. T.; Webb, J. R.; Knox, N. P.; Goins, L. F.; Harrell, R. E.; Mallory, P. K.; Cravens, C. D.

    1991-09-01

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  19. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12. Environmental Restoration Program

    SciTech Connect

    Not Available

    1991-09-01

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  20. Acid mine drainage risks - A modeling approach to siting mine facilities in Northern Minnesota USA

    NASA Astrophysics Data System (ADS)

    Myers, Tom

    2016-02-01

    Most watershed-scale planning for mine-caused contamination concerns remediation of past problems while future planning relies heavily on engineering controls. As an alternative, a watershed scale groundwater fate and transport model for the Rainy Headwaters, a northeastern Minnesota watershed, has been developed to examine the risks of leaks or spills to a pristine downstream watershed. The model shows that the risk depends on the location and whether the source of the leak is on the surface or from deeper underground facilities. Underground sources cause loads that last longer but arrive at rivers after a longer travel time and have lower concentrations due to dilution and attenuation. Surface contaminant sources could cause much more short-term damage to the resource. Because groundwater dominates baseflow, mine contaminant seepage would cause the most damage during low flow periods. Groundwater flow and transport modeling is a useful tool for decreasing the risk to downgradient sources by aiding in the placement of mine facilities. Although mines are located based on the minerals, advance planning and analysis could avoid siting mine facilities where failure or leaks would cause too much natural resource damage. Watershed scale transport modeling could help locate the facilities or decide in advance that the mine should not be constructed due to the risk to downstream resources.

  1. Biofouling of microfilters at the Savannah River Site F/H-Area Effluent Treatment Facility

    SciTech Connect

    McCabe, D.J.; Wiggins, A.W.; Poirier, M.R.; Hazen, T.C.

    1991-12-31

    The F/H-Effluent Treatment Facility uses state-of-the-art water treatment processes to remove contaminants from low-level radioactive wastewater at the Savannah River Site. The plant replaces seepage basins that were closed to comply with the 1984 amendments to the Resource Conservation and Recovery Act (RCRA). The facility removes both radioactive and nonradioactive contaminants from the effluents orginating from onsite waste management facilities. The unit processes involve filtration, ion exchange, activated carbon absorption, and reverse osmosis. The filtration step is prone to considerable fouling, reducing the overall throughput of the facility. The filters utilized in the process are Norton Ceraflo{trademark} ceramic microfilters. It was discovered that bacteria were primarily responsible for the severe filter fouling. Inorganic fouling was also observed, but was not normally as severe as the bacterial fouling. The bacteria densities necessary to induce severe fouling were not significantly higher than those often found in surface water streams. Diversion of waste streams containing the highest quantity of bacteria, and various methods of source reduction were implemented, which dramatically improved the filter performance. Addition of aluminum nitrate at low pH further improved the filter performance.

  2. Biofouling of microfilters at the Savannah River Site F/H-Area Effluent Treatment Facility

    SciTech Connect

    McCabe, D.J.; Wiggins, A.W.; Poirier, M.R.; Hazen, T.C.

    1991-01-01

    The F/H-Effluent Treatment Facility uses state-of-the-art water treatment processes to remove contaminants from low-level radioactive wastewater at the Savannah River Site. The plant replaces seepage basins that were closed to comply with the 1984 amendments to the Resource Conservation and Recovery Act (RCRA). The facility removes both radioactive and nonradioactive contaminants from the effluents orginating from onsite waste management facilities. The unit processes involve filtration, ion exchange, activated carbon absorption, and reverse osmosis. The filtration step is prone to considerable fouling, reducing the overall throughput of the facility. The filters utilized in the process are Norton Ceraflo{trademark} ceramic microfilters. It was discovered that bacteria were primarily responsible for the severe filter fouling. Inorganic fouling was also observed, but was not normally as severe as the bacterial fouling. The bacteria densities necessary to induce severe fouling were not significantly higher than those often found in surface water streams. Diversion of waste streams containing the highest quantity of bacteria, and various methods of source reduction were implemented, which dramatically improved the filter performance. Addition of aluminum nitrate at low pH further improved the filter performance.

  3. Facility site check report transportation safeguards divsision (TSD) underground storage tanks 2334-U and 2335-U at Building 9714

    SciTech Connect

    1995-09-01

    This document presents an overview of the underground storage tank (UST)-related events that have taken place at the Transportation Safeguards Division (TSD) Facility (Facility ID 0-730168). The TSD facility is managed by Lockheed Martin Energy Systems, Inc. (LMES) for the U.S. Department of Energy (DOE), and is used to maintain and fuel specialty fleet vehicles. The facility is located approximately one mile east of the K-25 site at the intersection of Blair Road and the Oak Ridge Turnpike (Hwy 58). The location of the USTs at the TSD facility are illustrated.

  4. Exergy of LNG regasification - possible utilization method. Case study of LNG - ANG coupling

    NASA Astrophysics Data System (ADS)

    Roszak, E. A.; Chorowski, M.

    2014-01-01

    This article gives an overview on new exergy recovery methods for LNG. The concept is based on coupling the LNG regasification unit with the filling process of Adsorbed Natural Gas (ANG) tanks. The latent heat of the LNG vaporization is directly used for precooling the ANG adsorption bed. This reduces the back pressure from filling ANG tanks due to strong adsorption temperature dependency. This improves the economic attractiveness of ANG storage (no need for compressors, longer lifetime cycle of adsorbent). This case study presents the concept of LNG - ANG coupling. Presented results are based on experimental adsorption data. A brief exergy analysis of the process shows an advantage of this method over others. This LNG-ANG method is worth consideration as a cost optimizing solution, especially for periodically working regasification stations.

  5. Potential seen for doubling U. S. LNG imports

    SciTech Connect

    Not Available

    1980-04-21

    According to a U.S. Office of Technology Assessment report, Nigeria, Indonesia, Australia, Malaysia, Trinidad, Colombia, and Chile are the most likely sources of U.S. imports of LNG, although the areas with the greatest amounts of exportable surplus LNG are the Persian Gulf, with > 231 trillion cu ft/yr, and the U.S.S.R., with 439 trillion cu ft/yr. The import of LNG would increase the U.S. balance of payments deficit, but LNG imports seem preferable to oil imports. LNG producers have a tendency to sell to Europe or Japan, since these areas are closer to the LNG sources. Maritime Administration and Export-Import Bank programs favor the use of domestic rather than foreign LNG tankers, which tends to reduce the financial stake of foreign suppliers in uninterrupted deliveries. Exportable LNG surpluses (in trillions of cu ft/yr) include: Algeria, 8; Nigeria, 33; Southeast Asia, 41; and Western Hemisphere, 19.

  6. Critical Protection Item Classification for a waste processing facility at Savannah River Site. Revision 1

    SciTech Connect

    Ades, M.J.; Garrett, R.J.

    1993-12-31

    As a part of its compliance with the Department of Energy requirements for safety of nuclear facilities at the Savannah River Site (SRS), Westinghouse Savannah River Company (WSRC) assigns functional classifications to structures, systems and components (SSCs). As a result, changes in design, operations, maintenance, testing, and inspections of SSCs are performed and backfit requirements are established. This paper describes the Critical Protection Item (CPI) Classification for waste processing facility (WPF) at SRS. The descriptions of the WPF and the processes considered are provided elsewhere. The proposed CPI classification methodology includes the evaluation of the onsite radiological consequences, and the onsite and offsite non-radiological consequences from postulated accidents at the WPF, and comparison of these consequences with allowable frequency-dependent limits. When allowable limits are exceeded, CPIs are identified for accident mitigation.

  7. Facility for Antiproton and Ion Research, FAIR, at the GSI site

    NASA Astrophysics Data System (ADS)

    Rosner, Guenther

    2006-11-01

    FAIR is a new large-scale particle accelerator facility to be built at the GSI site in Germany. The research pursued at FAIR will cover a wide range of topics in nuclear and hadron physics, as well as high density plasma physics, atomic and antimatter physics, and applications in condensed matter physics and biology. The working horse of FAIR will be a 1.1km circumference double ring of rapidly cycling 100 and 300Tm synchrotrons, which will be used to produce high intensity secondary beams of short-lived radioactive ions or antiprotons. A subsequent suite of cooler and storage rings will deliver heavy ion and antiproton beams of unprecedented quality. Large experimental facilities are presently being designed by the NUSTAR, PANDA, PAX, CBM, SPARC, FLAIR, HEDgeHOB and BIOMAT collaborations.

  8. Keys to modeling LNG spills on water.

    PubMed

    Hissong, D W

    2007-02-20

    Although no LNG ship has experienced a loss of containment in over 40 years of shipping, it is important for risk management planning to understand the predicted consequences of a spill. A key parameter in assessing the impact of an LNG spill is the pool size. LNG spills onto water generally result in larger pools than land spills because they are unconfined. Modeling of LNG spills onto water is much more difficult than for land spills because the phenomena are more complex and the experimental basis is more limited. The most prevalent practice in predicting pool sizes is to treat the release as instantaneous or constant-rate, and to calculate the pool size using an empirical evaporation or burn rate. The evaporation or burn rate is particularly difficult to estimate for LNG spills on water, because the available data are so limited, scattered, and difficult to extrapolate to the large releases of interest. A more effective modeling of possible spills of LNG onto water calculates, rather than estimating, the evaporation or burn rate. The keys to this approach are to: * Use rigorous multicomponent physical properties. * Use a time-varying analysis of spill and evaporation. * Use a material and energy balance approach. * Estimate the heat transfer from water to LNG in a way that reflects the turbulence. These keys are explained and demonstrated by predictions of a model that incorporates these features. The major challenges are describing the effects of the LNG-water turbulence and the heat transfer from the pool fire to the underlying LNG pool. The model includes a fundamentally based framework for these terms, and the current formulation is based on some of the largest tests to-date. The heat transfer coefficient between the water and LNG is obtained by applying a "turbulence factor" to the value from correlations for quiescent film and transition boiling. The turbulence factor is based on two of the largest unignited tests on water to-date. The heat transfer from

  9. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Vol. 18. Part 2. Indexes

    SciTech Connect

    1997-09-01

    This bibliography contains 3638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D&D), uranium mill tailings management, and site remedial actions. This report is the eighteenth in a series of bibliographies prepared annually for the U.S. Department of Energy (DOE) Office of Environmental Restoration. Citations to foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - have been included in Part 1 of the report. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D&D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Programs; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluations; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues. Within the 16 sections, the citations are sorted by geographic location. If a geographic location is not specified, the citations are sorted according to the document title. In Part 2 of the report, indexes are provided for author, author affiliation, selected title phrase, selected title word, publication description, geographic location, and keyword.

  10. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 4

    SciTech Connect

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Faust, R.A.

    1983-09-01

    This bibliography of 657 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fourth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic documents of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - have been references in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; and (6) Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author, or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. Appendix A lists 264 bibliographic references to literature identified during this reporting period but not abstracted due to time constraints. Title and publication description indexes are given for this appendix. Appendix B defines frequently used acronyms, and Appendix C lists the recipients of this report according to their corporate affiliation.

  11. 76 FR 53440 - Freeport LNG Development, LP; Freeport LNG Expansion, LP; FLNG Liquefaction LLC; Notice of Intent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... Energy Regulatory Commission Freeport LNG Development, LP; Freeport LNG Expansion, LP; FLNG Liquefaction LLC; Notice of Intent To Prepare an Environmental Assessment for the Planned Liquefaction Project...) that will discuss the environmental impacts of the Liquefaction Project (Project)...

  12. Nuclear facility licensing, doucumentation and reviews, and the SP-100 test site experience

    NASA Astrophysics Data System (ADS)

    Cornwell, Bruce C.; Deobald, Ted L.; Bitten, Ernest J.

    1992-01-01

    The required approvals and permits to test a nuclear facility are extensive. Numerous regulatory requirements result in the preparation of documentation to support the approval process. The principal regulations for the SP-100 Ground Engineering System (GES) include the National Environmental Policy Act, Clean Air Act, and Atomic Energy Act. The documentation prepared for the SP-100 Nuclear Assembly Test (NAT) included an Environmental Assessment, state permit applications, and Safety Analysis Reports. This paper discusses the regulation documentation requirements and SP-100 NAT Test Site experience.

  13. ONWI (Office of Nuclear Waste Isolation) 30% design review findings report for Exploratory Shaft Facility, Deaf Smith site

    SciTech Connect

    Not Available

    1987-05-08

    This document describes a review of the standards for the design of the high-level radioactive waste facility at the Deaf Smith, Texas site. It includes public comments and the official responses to the designs produced to date. (TEM)

  14. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes. Environmental Restoration Program

    SciTech Connect

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  15. 76 FR 73609 - Cameron LNG, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... Energy Regulatory Commission Cameron LNG, LLC; Notice of Application Take notice that on November 4, 2010, Cameron LNG, LLC (Cameron), 101 Ash Street, San Diego, California 92101, filed in Docket No. CP12- 15-000... operate a boil-off gas (BOG) liquefaction system at its LNG import terminal in Cameron Parish,...

  16. 46 CFR 154.1854 - Methane (LNG) as fuel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Methane (LNG) as fuel. 154.1854 Section 154.1854... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1854 Methane (LNG) as fuel. (a) If methane (LNG) vapors are used as fuel in the main propulsion system of a vessel,...

  17. 46 CFR 154.1854 - Methane (LNG) as fuel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Methane (LNG) as fuel. 154.1854 Section 154.1854... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1854 Methane (LNG) as fuel. (a) If methane (LNG) vapors are used as fuel in the main propulsion system of a vessel,...

  18. 46 CFR 154.1854 - Methane (LNG) as fuel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Methane (LNG) as fuel. 154.1854 Section 154.1854... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1854 Methane (LNG) as fuel. (a) If methane (LNG) vapors are used as fuel in the main propulsion system of a vessel,...

  19. Facilities for Conferences, Retreats and Outdoor Education. A Directory of Sites Approved by the American Camping Association.

    ERIC Educational Resources Information Center

    American Camping Association, Martinsville, IN.

    Brief descriptions of approximately 750 sites approved by the American Camping Association which lease their facilities to others are listed alphabetically by state. Entries list camp address, contact address, capacity, special facilities, services, whether available year-round, and date of information. A narrative provides general information on…

  20. Development of corrective measures technology for shallow land burial facilities at arid sites

    SciTech Connect

    Nyhan, J.W.; Abeele, W.V.; Perkins, B.A.; Lane, L.J.

    1984-01-01

    The field research program involving corrective measure technologies for arid shallow land burial (SLB) sites is described. Soil erosion and infiltration of water into a simulated trench cap with various surface treatments was measured and compared with similar data from agricultural systems across the United States. Field testing of biointrustion barriers at closed-out waste disposal sites at Los Alamos and in the experimental clusters are reported. The final results of an experiment designed to measure the extent of contaminant transport to the surface of a SLB facility, and the influence of plants on this relationship, are presented. An experiment designed to determine the effects of subsidence on the performance of a cobble-gravel biobarrier system is described and current field data are presented. 11 references, 11 figures, 5 tables.

  1. The design of a Phase I non site-specific Centralized Interim Storage Facility

    SciTech Connect

    Stringer, J.; Kane, D.

    1997-10-28

    The Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) recently completed a Topical Safety Analysis Report (TSAR) for a Phase 1 non site specific Centralized Interim Storage Facility (CISF). The TSAR will be used in licensing the CISF when and if a site is designated. The combined Phase 1 and Phase 2 CISF will provide federal storage capability for 40,000 metric tons of uranium (MTU) Spent Nuclear Fuel (SNF) under the oversight of the DOE. The Phase 1 TSAR was submitted to the NRC on May 1, 1997 and is currently under review having been docketed on June 10, 1997. This paper generally describes the Phase 1 CISF design and its operations as presented in the CISF TSAR.

  2. Blanketing effect of expansion foam on liquefied natural gas (LNG) spillage pool.

    PubMed

    Zhang, Bin; Liu, Yi; Olewski, Tomasz; Vechot, Luc; Mannan, M Sam

    2014-09-15

    With increasing consumption of natural gas, the safety of liquefied natural gas (LNG) utilization has become an issue that requires a comprehensive study on the risk of LNG spillage in facilities with mitigation measures. The immediate hazard associated with an LNG spill is the vapor hazard, i.e., a flammable vapor cloud at the ground level, due to rapid vaporization and dense gas behavior. It was believed that high expansion foam mitigated LNG vapor hazard through warming effect (raising vapor buoyancy), but the boil-off effect increased vaporization rate due to the heat from water drainage of foam. This work reveals the existence of blocking effect (blocking convection and radiation to the pool) to reduce vaporization rate. The blanketing effect on source term (vaporization rate) is a combination of boil-off and blocking effect, which was quantitatively studied through seven tests conducted in a wind tunnel with liquid nitrogen. Since the blocking effect reduces more heat to the pool than the boil-off effect adds, the blanketing effect contributes to the net reduction of heat convection and radiation to the pool by 70%. Water drainage rate of high expansion foam is essential to determine the effectiveness of blanketing effect, since water provides the boil-off effect. PMID:25194555

  3. Blanketing effect of expansion foam on liquefied natural gas (LNG) spillage pool.

    PubMed

    Zhang, Bin; Liu, Yi; Olewski, Tomasz; Vechot, Luc; Mannan, M Sam

    2014-09-15

    With increasing consumption of natural gas, the safety of liquefied natural gas (LNG) utilization has become an issue that requires a comprehensive study on the risk of LNG spillage in facilities with mitigation measures. The immediate hazard associated with an LNG spill is the vapor hazard, i.e., a flammable vapor cloud at the ground level, due to rapid vaporization and dense gas behavior. It was believed that high expansion foam mitigated LNG vapor hazard through warming effect (raising vapor buoyancy), but the boil-off effect increased vaporization rate due to the heat from water drainage of foam. This work reveals the existence of blocking effect (blocking convection and radiation to the pool) to reduce vaporization rate. The blanketing effect on source term (vaporization rate) is a combination of boil-off and blocking effect, which was quantitatively studied through seven tests conducted in a wind tunnel with liquid nitrogen. Since the blocking effect reduces more heat to the pool than the boil-off effect adds, the blanketing effect contributes to the net reduction of heat convection and radiation to the pool by 70%. Water drainage rate of high expansion foam is essential to determine the effectiveness of blanketing effect, since water provides the boil-off effect.

  4. Interaction of Sr-90 with site candidate soil for demonstration disposal facility at Serpong

    SciTech Connect

    Setiawan, Budi; Mila, Oktri; Safni

    2014-03-24

    Interaction of radiostrontium (Sr-90) with site candidate soil for demonstration disposal facility to be constructed in the near future at Serpong has been done. This activity is to anticipate the interim storage facility at Serpong nuclear area becomes full off condition, and show to the public how radioactive waste can be well managed with the existing technology. To ensure that the location is save, a reliability study of site candidate soil becomes very importance to be conducted through some experiments consisted some affected parameters such as contact time, effect of ionic strength, and effect of Sr{sup +} ion in solution. Radiostrontium was used as a tracer on the experiments and has role as radionuclide reference in low-level radioactive waste due to its long half-live and it's easy to associate with organism in nature. So, interaction of radiostrontium and soil samples from site becomes important to be studied. Experiment was performed in batch method, and soil sample-solution containing radionuclide was mixed in a 20 ml of PE vial. Ratio of solid: liquid was 10{sup −2} g/ml. Objective of the experiment is to collect the specific characteristics data of radionuclide sorption onto soil from site candidate. Distribution coefficient value was used as indicator where the amount of initial and final activities of radiostrontium in solution was compared. Result showed that equilibrium condition was reached after contact time 10 days with Kd values ranged from 1600-2350 ml/g. Increased in ionic strength in solution made decreased of Kd value into soil sample due to competition of background salt and radiostrontium into soil samples, and increased in Sr ion in solution caused decreased of Kd value in soil sample due to limitation of sorption capacity in soil samples. Fast condition in saturated of metal ion into soil samples was reached due to a simple reaction was occurred.

  5. Interaction of Sr-90 with site candidate soil for demonstration disposal facility at Serpong

    NASA Astrophysics Data System (ADS)

    Setiawan, Budi; Mila, Oktri; Safni

    2014-03-01

    Interaction of radiostrontium (Sr-90) with site candidate soil for demonstration disposal facility to be constructed in the near future at Serpong has been done. This activity is to anticipate the interim storage facility at Serpong nuclear area becomes full off condition, and show to the public how radioactive waste can be well managed with the existing technology. To ensure that the location is save, a reliability study of site candidate soil becomes very importance to be conducted through some experiments consisted some affected parameters such as contact time, effect of ionic strength, and effect of Sr+ ion in solution. Radiostrontium was used as a tracer on the experiments and has role as radionuclide reference in low-level radioactive waste due to its long half-live and it's easy to associate with organism in nature. So, interaction of radiostrontium and soil samples from site becomes important to be studied. Experiment was performed in batch method, and soil sample-solution containing radionuclide was mixed in a 20 ml of PE vial. Ratio of solid: liquid was 10-2 g/ml. Objective of the experiment is to collect the specific characteristics data of radionuclide sorption onto soil from site candidate. Distribution coefficient value was used as indicator where the amount of initial and final activities of radiostrontium in solution was compared. Result showed that equilibrium condition was reached after contact time 10 days with Kd values ranged from 1600-2350 ml/g. Increased in ionic strength in solution made decreased of Kd value into soil sample due to competition of background salt and radiostrontium into soil samples, and increased in Sr ion in solution caused decreased of Kd value in soil sample due to limitation of sorption capacity in soil samples. Fast condition in saturated of metal ion into soil samples was reached due to a simple reaction was occurred.

  6. 76 FR 76698 - Dominion Cove Point LNG, LP; Application To Export Domestic Liquefied Natural Gas to Non-Free...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    .... A notice of that application was published in the Federal Register on September 21, 2011, (76 FR... its liquefaction project in service by the end of 2016. Following the approval and construction of the liquefaction and export facilities, DCP intends that the Cove Point LNG Terminal will be operated as a...

  7. Off-site movement of pesticide-contaminated fill from agrichemical facilities during the 1993 flooding in Illinois

    USGS Publications Warehouse

    Roy, W.R.; Chou, S.-F.J.; Krapac, I.G.

    1995-01-01

    Twenty retail agrichemical facilities were flooded. There was a concern that pesticide-contaminated road fill at these facilities had been transported into residential areas by the flooding. Forty fill and flood- related sediment samples were collected at six facilities. No significant accumulation of sediments was present at any of the six facilities. At five of the six facilities, it did not appear that road fill had been transported off-site. Pesticides were detected in sediment samples collected off-site adjacent to five of the facilities. Of the 21 samples collected off-site, atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazide) and metolachlor (2-chloro-6'-ethyl-N-(2-methoxy-1-methylethyl)acet-o-toluidine) were detected in 86 and 81% of the samples, respectively. When compared with on-site concentrations, off-site pesticide concentrations were either at similar levels, or were as much as three orders of magnitude less. The interpretation of the pesticide data was difficult and often inconclusive, because there were no background data on the occurrence and distribution of pesticides at each site before flooding.

  8. Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site

    SciTech Connect

    Patton, S.E.; Novo, M.G.; Shinn, J.H.

    1986-04-01

    The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated.

  9. Pacific Northwest Laboratory FY 1993 Site Maintenance Plan for maintenance of DOE nonnuclear facilities

    SciTech Connect

    Bright, J.D.

    1992-09-28

    This Site Maintenance Plan has been developed for Pacific Northwest Laboratory`s (PNL) Nonnuclear Facilities. It is based on requirements specified by US Department of Energy (DOE) Order 4330.4A, Chapter I, Change No. 4. The objective of this maintenance plan is to provide baseline information for compliance to the DOE Order 4330.4A, to identify needed improvements, and to document the planned maintenance budget for Fiscal Year (FY) 1993 and to estimate maintenance budgets for FY 1994 and FY 1995 for all PNL facilities. Using the results of the self-assessment, PNL has selected 12 of the 36 elements of the Maintenance Program defined by DOE Order 4330.4A, Chapter I, for improvement. The elements selected for improvement are: Facility Condition Inspections; Work Request (Order) System; Formal Job Planning and Estimating; Work Performance (Time) Standards; Priority System; Maintenance Procedures and Other Work-Related Documents; Scheduling System; Post Maintenance Testing; Backlog Work Control; Equipment Repair History and Vendor Information; Work Sampling; and Identification and Control. Based upon a graded approach and current funding, those elements considered most important have been selected as goals for earliest compliance. Commitment dates for these elements have been established for compliance. The remaining elements of noncompliance will be targeted for implementation during later budget periods.

  10. Pacific Northwest Laboratory FY 1993 Site Maintenance Plan for maintenance of DOE nonnuclear facilities

    SciTech Connect

    Bright, J.D.

    1992-09-28

    This Site Maintenance Plan has been developed for Pacific Northwest Laboratory's (PNL) Nonnuclear Facilities. It is based on requirements specified by US Department of Energy (DOE) Order 4330.4A, Chapter I, Change No. 4. The objective of this maintenance plan is to provide baseline information for compliance to the DOE Order 4330.4A, to identify needed improvements, and to document the planned maintenance budget for Fiscal Year (FY) 1993 and to estimate maintenance budgets for FY 1994 and FY 1995 for all PNL facilities. Using the results of the self-assessment, PNL has selected 12 of the 36 elements of the Maintenance Program defined by DOE Order 4330.4A, Chapter I, for improvement. The elements selected for improvement are: Facility Condition Inspections; Work Request (Order) System; Formal Job Planning and Estimating; Work Performance (Time) Standards; Priority System; Maintenance Procedures and Other Work-Related Documents; Scheduling System; Post Maintenance Testing; Backlog Work Control; Equipment Repair History and Vendor Information; Work Sampling; and Identification and Control. Based upon a graded approach and current funding, those elements considered most important have been selected as goals for earliest compliance. Commitment dates for these elements have been established for compliance. The remaining elements of noncompliance will be targeted for implementation during later budget periods.

  11. Safety implications of a large LNG tanker spill over water.

    SciTech Connect

    Hightower, Marion Michael; Gritzo, Louis Alan; Luketa-Hanlin, Anay Josephine

    2005-04-01

    The increasing demand for natural gas in the United States could significantly increase the number and frequency of marine LNG (liquefied natural gas) imports. Although many studies have been conducted to assess the consequences and risks of potential LNG spills, the increasing importance of LNG imports suggests that consistent methods and approaches be identified and implemented to help ensure protection of public safety and property from a potential LNG spill. For that reason the U.S. Department of Energy (DOE), Office of Fossil Energy, requested that Sandia National Laboratories (Sandia) develop guidance on a risk-based analysis approach to assess and quantify potential threats to an LNG ship, the potential hazards and consequences of a large spill from an LNG ship, and review prevention and mitigation strategies that could be implemented to reduce both the potential and the risks of an LNG spill over water. Specifically, DOE requested: (1) An in-depth literature search of the experimental and technical studies associated with evaluating the safety and hazards of an LNG spill from an LNG ship; (2) A detailed review of four recent spill modeling studies related to the safety implications of a large-scale LNG spill over water; (3) Evaluation of the potential for breaching an LNG ship cargo tank, both accidentally and intentionally, identification of the potential for such breaches and the potential size of an LNG spill for each breach scenario, and an assessment of the potential range of hazards involved in an LNG spill; (4) Development of guidance on the use of modern, performance-based, risk management approaches to analyze and manage the threats, hazards, and consequences of an LNG spill over water to reduce the overall risks of an LNG spill to levels that are protective of public safety and property.

  12. Closure End States for Facilities, Waste Sites, and Subsurface Contamination - 12543

    SciTech Connect

    Gerdes, Kurt; Chamberlain, Grover; Whitehurst, Latrincy; Marble, Justin; Wellman, Dawn; Deeb, Rula; Hawley, Elisabeth

    2012-07-01

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE's Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation and decommissioning (D and D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination

  13. The Field Lysimeter Test Facility (FLTF) at the Hanford Site: Installation and initial tests

    SciTech Connect

    Gee, G.W.; Kirkham, R.R.; Downs, J.L.; Campbell, M.D.

    1989-02-01

    The objectives of this program are to test barrier design concepts and to demonstrate a barrier design that meets established performance criteria for use in isolating wastes disposed of near-surface at the Hanford Site. Specifically, the program is designed to assess how well the barriers perform in controlling biointrusion, water infiltration, and erosion, as well as evaluating interactions between environmental variables and design factors of the barriers. To assess barrier performance and design with respect to infiltration control, field lysimeters and small- and large-scale field plots are planned to test the performance of specific barrier designs under actual and modified (enhanced precipitation) climatic conditions. The Field Lysimeter Test Facility (FLTF) is located in the 600 Area of the Hanford Site just east of the 200 West Area and adjacent to the Hanford Meteorological Station. The FLTF data will be used to assess the effectiveness of selected protective barrier configurations in controlling water infiltration. The facility consists of 14 drainage lysimeters (2 m dia x 3 m deep) and four precision weighing lysimeters (1.5 m x 1.5 m x 1.7 m deep). The lysimeters are buried at grade and aligned in a parallel configuration, with nine lysimeters on each side of an underground instrument chamber. The lysimeters were filled with materials to simulate a multilayer protective barrier system. Data gathered from the FLTF will be used to compare key barrier components and to calibrate and test models for predicting long-term barrier performance.

  14. Development of a mixed waste management facility at the Nevada Test Site

    SciTech Connect

    Dolenc, M.R.; Kendall, E.W.

    1989-01-01

    The US Department of Energy (DOE) produces some radioactive low-level wastes (LLW) which contain hazardous components. By definition, the management of those mixed wastes (MW) at the Nevada Test Site (NTS) requires compliance with US Environmental Protection Agency (EPA) and state of Nevada regulations for hazardous wastes, and DOE regulations for LLW. Preparations for operation of a separate Mixed Waste Management Unit (MWMU) in the 1990s are underway. The 167-acre MWMU will be a part of the 732-acre Area 5 Radioactive Waste Management Site (RWMS). The MWMU is being developed in response to a DOE Office of Defense Waste and Transporation Management need to provide enhanced capabilities and facilities for safe, secure, and efficient disposal of defense-related MW in accordance with DOE, EPA, and state of Nevada requirements. Planned activities relating to the development of the MWMU include completing National Environmental Policy Act (NEPA) requirements; responding to any notices of deficiencies (NODs) on the NTS Part B Permit application; conducting generator audits as part of the NTS MW certification program; optimizing the design and operation of the vadose zone monitoring system; developing protocols for the sampling and analysis of MW, and facility construction. This paper describes the permitting and regulatory environment, the specific application of the permit process to the NTS, and the phased development of an MWMU at the NTS.

  15. Occupational radiation dose assessment for a non site specific spent fuel storage facility

    SciTech Connect

    Hadley, J.; Eble, R.G. Jr.

    1997-12-01

    To expedite the licensing process of the non site specific Centralized Interim Storage Facility (CISF) the Department of Energy has completed a phase I CISF Topical Safety Analysis Report (TSAR). The TSAR will be used in licensing the phase I CISF if a site is designated. An occupational radiation does assessment of the facility operations is performed as part of the phase I CISF design. The first phase of the CISF has the capability to receive, transfer, and store SNF in dual-purpose cask/canister systems (DPC`s). Currently there are five vendor technologies under consideration. The preliminary dose assessment is based on estimated occupational exposures using traditional power plant ISFSI and transport cask handling processes. The second step in the process is to recommend ALARA techniques to reduce potential exposures. A final dose assessment is completed implementing the ALARA techniques and a review is performed to ensure that the design is in compliance with regulatory criteria. The dose assessment and ALARA evaluation are determined using the following input information: Dose estimates from vendor SAR`s; ISFSI experience with similar systems; Traditional methods of operations; Expected CISF cask receipt rates; and feasible ALARA techniques. 5 refs., 1 tab.

  16. LNG shipments in 1994 set records

    SciTech Connect

    1996-01-15

    Worldwide LNG shipments by ocean-going vessels in 1994 increased to 1,619 voyages, according to an LNG shipping industry statistical annual. LNG Log 20 published the recently compiled 1994 data in the last quarter of 1995. The publication is from the Society of International Gas Tanker and Terminal Operators Ltd., London. The year`s total was 8.8% more than for 1993 and the most in 35 years of records. The trips were made and the vessels loaded and discharged without report of serious safety or environmental incident, says the publication. Of the voyages completed during the year, 596 were to European receiving terminals (up 2.8% over 1993), and 1,003 went to the Far East (an increase of 10.7%); shipments to the US, however, dropped to 20, from 32 in 1993. This paper shows that the 1,619 voyages represent 3.6 million nautical miles logged by 78 vessels active during the year. These ships pumped ashore record annual volumes of approximately 144.3 million cu m of LNG, 110.1 million cu m (76.3%) of which went to Far Eastern customers. The paper also summarizes containment systems in use in 1994 and since LNG began to be shipped in 1959.

  17. LNG systems for natural gas propelled ships

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Duda, P.; Polinski, J.; Skrzypacz, J.

    2015-12-01

    In order to reduce the atmospheric pollution generated by ships, the International Marine Organization has established Emission Controlled Areas. In these areas, nitrogen oxides, sulphur oxides and particulates emission is strongly controlled. From the beginning of 2015, the ECA covers waters 200 nautical miles from the coast of the US and Canada, the US Caribbean Sea area, the Baltic Sea, the North Sea and the English Channel. From the beginning of 2020, strong emission restrictions will also be in force outside the ECA. This requires newly constructed ships to be either equipped with exhaust gas cleaning devices or propelled with emission free fuels. In comparison to low sulphur Marine Diesel and Marine Gas Oil, LNG is a competitive fuel, both from a technical and economical point of view. LNG can be stored in vacuum insulated tanks fulfilling the difficult requirements of marine regulations. LNG must be vaporized and pressurized to the pressure which is compatible with the engine requirements (usually a few bar). The boil-off must be controlled to avoid the occasional gas release to the atmosphere. This paper presents an LNG system designed and commissioned for a Baltic Sea ferry. The specific technical features and exploitation parameters of the system will be presented. The impact of strict marine regulations on the system's thermo-mechanical construction and its performance will be discussed. The review of possible flow-schemes of LNG marine systems will be presented with respect to the system's cost, maintenance, and reliability.

  18. Estimating the contribution of industrial facilities to annual PM10 concentrations at industrially influenced sites

    NASA Astrophysics Data System (ADS)

    Gladtke, Dieter; Volkhausen, Wolfgang; Bach, Bastian

    If measures to reduce the industrial discharge of PM10 shall be planned with high accuracy, a first step must be to estimate the contribution of single industrial facilities to the overall PM10 burden as accurately as possible. In northern Duisburg as an example, an area where iron and steel producing industry is concentrated, PM10 was measured at 4 sampling sites very close to an industrial complex of blast furnaces, a sinter plant, oxygen steel works and a coke oven plant for 9 months in 2006. At two sites metals in PM10 were determined. The results, together with analytical data of urban background sites in the region and data of wind direction and wind speed were used for an estimation of the contribution of single plants to the PM10 burden. A careful analysis of the data showed, that the data of PM10, calcium, iron and zinc measured at two sites close to the industrial area and information about the urban background aerosol were sufficient to calculate the PM10 contribution of the main single plants. The data could be compared with those of modelling.

  19. Groundwater Monitoring Plan for the Hanford Site 216-B-3 Pond RCRA Facility

    SciTech Connect

    Barnett, D. Brent; Smith, Ronald M.; Chou, Charissa J.

    2000-11-28

    The 216-B-3 Pond was a series of ponds for disposal of liquid effluent from past Hanford production facilities. In 1990, groundwater monitoring at B Pond was elevated from "detection" to assessment status because total organic halides and total organic carbon were found to exceed critical means in two wells. Groundwater quality assessment, which ended in 1996, failed to find any specific hazardous waste contaminant that could have accounted for the isolated occurrences of elevated total organic halides and total organic carbon. Hence, the facility was subsequently returned to detection-level monitoring in 1998. Exhaustive groundwater analyses during the assessment period indicated that only two contaminants, tritium and nitrate, could be positively attributed to the B Pond System, with two others (arsenic and I-129) possibly originating from B Pond. Chemical and radiological analyses of soil at the main pond and 216-B-3-3 ditch has not revealed significant contamination. Based on the observed, minor contamination in groundwater and in the soil column, three parameters were selected for site-specific, semiannual monitoring; gross alpha, gross beta, and specific conductance. Total organic halides and total organic carbon are included as constituents because of regulatory requirements. Nitrate, tritium, arsenic, and iodine-129 will be monitored under the aegis of Hanford site-wide monitoring. Although the B Pond System is not scheduled to advance from RCRA interim status to final status until the year 2003, a contingency plan for an improved monitoring strategy, which will partially emulate final status requirements, will be contemplated before the official change to final status. This modification will allow a more sensible and effective screening of groundwater for the facility.

  20. 2012 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central facilities Area Sewage Treatment Plant

    SciTech Connect

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2011, through October 31, 2012. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2012 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant.

  1. 2010 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant

    SciTech Connect

    Mike lewis

    2011-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2009, through October 31, 2010. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of special compliance conditions • Discussion of the facility’s environmental impacts. During the 2010 permit year, approximately 2.2 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

  2. Asia-Pacific focus of coming LNG trade boom

    SciTech Connect

    Not Available

    1992-11-16

    This paper reports that the Asia-Pacific region remains the centerpiece of a booming world trade in liquefied natural gas. Biggest growth in LNG demand is expected from some of the region's strongest economies such as Japan, South Korea, and Taiwan, Key LNG exporters such as Brunei, Malaysia, and Indonesia are scrambling to implement projects to meet that expected demand growth. Uncertainties cloud the outlook for Far East LNG trade, Australia, for one, is more cautious in pressing expansion of its LNG export capacity as more competing LNG expansions spring up around the world, notably in the Middle East and Africa.

  3. Performance Assessment Program for the Savannah River Site Liquid Waste Facilities - 13610

    SciTech Connect

    Rosenberger, Kent H.

    2013-07-01

    The Liquid Waste facilities at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) are operated by Liquid Waste Operations contractor Savannah River Remediation LLC (SRR). A separate Performance Assessment (PA) is prepared to support disposal operations at the Saltstone Disposal Facility and closure evaluations for the two liquid waste tank farm facilities at SRS, F-Tank Farm and H-Tank Farm. A PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified in operations and closure regulatory guidance. The Saltstone Disposal Facility is subject to a State of South Carolina industrial solid waste landfill permit and the tank farms are subject to a state industrial waste water permit. The three Liquid Waste facilities are also subject to a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Due to the regulatory structure, a PA is a key technical document reviewed by the DOE, the State of South Carolina and the EPA. As the waste material disposed of in the Saltstone Disposal Facility and the residual material in the closed tank farms is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005, the U.S. Nuclear Regulatory Commission (NRC) is also a reviewing agency for the PAs. Pursuant to the Act, the NRC also has a continuing role to monitor disposal actions to assess compliance with stated performance objectives. The Liquid Waste PA program at SRS represents a continual process over the life of the disposal and closure operations. When the need for a PA or PA revision is identified, the first step is to develop a conceptual model to best represent the facility conditions. The conceptual model will include physical dimensions of the closed system, both the engineered and natural system, and modeling

  4. First LNG from North field overcomes feed, start-up problems

    SciTech Connect

    Redha, A.; Rahman, A.; Al-Thani, N.H.; Ishikura, Masayuki; Kikkawa, Yoshitsugi

    1998-08-24

    Qatar Gas LNG is the first LNG project in the gas-development program of the world`s largest gas reservoir, North field. The LNG plant was completed within the budget and schedule. The paper discusses the LNG plant design, LNG storage and loading, alternative mercaptan removal, layout modification, information and control systems, training, data management systems, start-up, and performance testing.

  5. Raley's LNG Truck Fleet: Final Results

    SciTech Connect

    Chandler, K.; Norton, P.; Clark, N.

    2000-05-03

    Raley's, a large retail grocery company based in Northern California, began operating heavy-duty trucks powered by liquefied natural gas (LNG) in 1997, in cooperation with the Sacramento Metropolitan Air Quality Management District (SMAQMD). The US Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT) sponsored a research project to collect and analyze data on the performance and operation costs of eight of Raley's LNG trucks in the field. Their performance was compared with that of three diesel trucks operating in comparable commercial service. The objective of the DOE research project, which was managed by the National Renewable Energy Laboratory (NREL), was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

  6. LNG imports make strong recovery in 1996; exports increase also

    SciTech Connect

    Swain, E.J.

    1998-01-19

    LNG imports to the US jumped in 1996 as Algerian base-load plants resumed operations following major revamps. Exports from Alaska to Japan grew by nearly 4% over 1995. Total LNG imports to the US in 1996 were 40.27 bcf compared to 17.92 bcf in 1995, an increase of 124.8%. Algeria supplied 35.32 bcf; Abu Dhabi, 4.95 bcf. About 82.3% of the imported LNG was received at Distrigas Corp.`s terminal north of Boston. The remaining LNG was received at the Pan National terminal in Lake Charles, LA. LNG imports during 1995 fell to such a low level not because of depressed US demand but because of limited supply. The paper discusses LNG-receiving terminals, base-load producers, LNG pricing, and exports.

  7. Interpretation and Modelling of Data from Site Investigations for a Geological Disposal facility located in the UK

    NASA Astrophysics Data System (ADS)

    Clark, H.; Bailey, L.; Parkes, A.

    2012-04-01

    The Radioactive Waste Management Directorate (RWMD) of the Nuclear Decommissioning Authority (NDA) has been given the responsibility for implementing geological disposal in the United Kingdom. The implementation process envisaged is that once a candidate site or sites for a geological disposal facility have been identified, NDA-RWMD will undertake surface-based investigations at the site or sites. The information acquired through these investigations would be used as an input to the development of the safety case, for engineering design of the disposal facility and to demonstrate confidence to the key stakeholders that the potential disposal facility site is adequately understood. NDA-RWMD proposes to develop and present the information derived from site characterisation activities in the form of a single integrated Site Descriptive Model, i.e. a description of the geometry, properties of the bedrock and water, and the associated interacting processes and mechanisms, which will be used to address the information requirements of all the end users (including the safety case). It is anticipated that, in a similar way to the approach adopted by international radioactive waste programmes led by SKB (Sweden) and Posiva (Finland), the integrated Site Descriptive Model will be divided into parts comprising clearly defined disciplines which may form either chapters or discipline-based models such as: • Geology; • Hydrogeology; • Hydrochemistry; • Geotechnical; • Radionuclide Transport Properties; • Thermal Properties; and • Biosphere. The integrated Site Descriptive Model will evolve as understanding of the particular site advances and will describe the current understanding of a specific site and, where relevant, the historical development of conditions at the site where this supports the conceptual understanding. The Site Descriptive Model will not include prediction of the future evolution of the conditions at the site: this will be an important component

  8. Removal site evaluation report on the Tower Shielding Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-09-01

    This removal site evaluation report for the Tower Shielding Facility (TSF) at Oak Ridge National Laboratory was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the Tower Shielding Facility pose a substantial risk to human health or the environment (i.e., a high probability of adverse effects) and if remedial site evaluations or removal actions are, therefore, required. The scope of the project included a review of historical evidence regarding operations and use of the facility; interviews with facility personnel concerning current and past operating practices; a site inspection; and identification of hazard areas requiring maintenance, removal, or remedial actions. Based an the findings of this removal site evaluation, adequate efforts are currently being made at the TSF to contain and control existing contamination and hazardous substances on site in order to protect human health and the environment No conditions requiring maintenance or removal actions to mitigate imminent or potential threats to human health and the environment were identified during this evaluation. Given the current conditions and status of the buildings associated with the TSF, this removal site evaluation is considered complete and terminated according to the requirements for removal site evaluation termination.

  9. Groundwater monitoring plan for the Hanford Site 200 Area Treated Effluent Disposal Facility

    SciTech Connect

    DB Barnett

    2000-05-17

    Seven years of groundwater monitoring at the 200 Area Treated Effluent Disposal Facility (TEDF) have shown that the uppermost aquifer beneath the facility is unaffected by TEDF effluent. Effluent discharges have been well below permitted and expected volumes. Groundwater mounding from TEDF operations predicted by various models has not been observed, and waterlevels in TEDF wells have continued declining with the dissipation of the nearby B Pond System groundwater mound. Analytical results for constituents with enforcement limits indicate that concentrations of all these are below Practical Quantitation Limits, and some have produced no detections. Likewise, other constituents on the permit-required list have produced results that are mostly below sitewide background. Comprehensive geochemical analyses of groundwater from TEDF wells has shown that most constituents are below background levels as calculated by two Hanford Site-wide studies. Additionally, major ion proportions and anomalously low tritium activities suggest that groundwater in the aquifer beneath the TEDF has been sequestered from influences of adjoining portions of the aquifer and any discharge activities. This inference is supported by recent hydrogeologic investigations which indicate an extremely slow rate of groundwater movement beneath the TEDF. Detailed evaluation of TEDF-area hydrogeology and groundwater geochemistry indicate that additional points of compliance for groundwater monitoring would be ineffective for this facility, and would produce ambiguous results. Therefore, the current groundwater monitoring well network is retained for continued monitoring. A quarterly frequency of sampling and analysis is continued for all three TEDF wells. The constituents list is refined to include only those parameters key to discerning subtle changes in groundwater chemistry, those useful in detecting general groundwater quality changes from upgradient sources, or those retained for comparison with end

  10. Slush hydrogen propellant production, transfer, and expulsion studies at the NASA K-Site Facility

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Whalen, Margaret V.

    1991-01-01

    Slush hydrogen is currently being considered as a fuel for the National AeroSpace Plane (NASP) because it offers the potential for decreased vehicle size and weight. However, no large scale data was available on the production, transfer, and tank pressure control characteristics required to use the fuel for the NASP. Therefore, experiments were conducted at NASA-Lewis K-Site Facility to improve the slush hydrogen data base. Slush hydrogen was produced using the evaporative cooling, or freeze-thaw, technique in batches for approx. 800 gallons. This slush hydrogen was pressure transferred to a 5 ft diameter spherical test tank following production, and flow characteristics were measured during this transfer process. The slush hydrogen in the test tank was pressurized and expelled using a pressurized expulsion technique to obtain information on tank pressure control for the NASP. Results from the production, transfer, pressurization, and pressurized expulsion tests are described.

  11. Slush hydrogen pressurized expulsion studies at the NASA K-Site Facility

    NASA Technical Reports Server (NTRS)

    Whalen, Margaret V.; Hardy, Terry L.

    1992-01-01

    An experiment test series of the slush hydrogen (SLH2) project at the NASA LeRC Plum Brook K-Site Facility was completed. This testing was done as part of the characterization and technology database development on slush hydrogen required for the National Aero-Space Plane (NASP) Program. The primary objective of these experiments was to investigate tank thermodynamic parameters during the pressurized expulsion of slush hydrogen. To accomplish this, maintenance of tank pressure control was investigated during pressurized expulsion of slush hydrogen using gaseous hydrogen and gaseous helium pressurant. In addition, expulsion tests were performed using gaseous helium for initial pressurization, then gaseous hydrogen during expulsion. These tests were conducted with and without mixing of the slush hydrogen. Results from the testing included an evaluation of tank pressure control, pressurant requirements, SLH2 density change, and system mass and energy balances.

  12. West Virginia Geological Survey's role in siting fluidized bed combustion facilities

    USGS Publications Warehouse

    Smith, C.J.; King, Hobart M.; Ashton, K.C.; Kirstein, D.S.; McColloch, G.H.

    1989-01-01

    A project is presented which demonstrates the role of geology in planning and siting a fluidized bed combustion facility. Whenever a project includes natural resource utilization, cooperation between geologists and design engineers will provide an input that could and should save costs, similar to the one stated in our initial premise. Regardless of whether cost reductions stem from a better knowledge of fuel and sorbent availabilities, or a better understanding of the local hydrology, susceptibility to mine-subsidence, or other geologic hazards, the geological survey has a vital role in planning. Input to planning could help the fluidized-bed developer and design-engineer solve some economic questions and stretch the financial resources at their disposal.

  13. Slush hydrogen pressurized expulsion studies at the NASA K-Site Facility

    NASA Astrophysics Data System (ADS)

    Whalen, Margaret V.; Hardy, Terry L.

    1992-07-01

    An experiment test series of the slush hydrogen (SLH2) project at the NASA LeRC Plum Brook K-Site Facility was completed. This testing was done as part of the characterization and technology database development on slush hydrogen required for the National Aero-Space Plane (NASP) Program. The primary objective of these experiments was to investigate tank thermodynamic parameters during the pressurized expulsion of slush hydrogen. To accomplish this, maintenance of tank pressure control was investigated during pressurized expulsion of slush hydrogen using gaseous hydrogen and gaseous helium pressurant. In addition, expulsion tests were performed using gaseous helium for initial pressurization, then gaseous hydrogen during expulsion. These tests were conducted with and without mixing of the slush hydrogen. Results from the testing included an evaluation of tank pressure control, pressurant requirements, SLH2 density change, and system mass and energy balances.

  14. Slush hydrogen propellant production, transfer, and expulsion studies at the NASA K-Site Facility

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Whalen, Margaret V.

    1991-01-01

    Slush hydrogen is currently being considered as a fuel for the National Aero-Space Plane (NASP) because it offers the potential for decreased vehicle size and weight. However, no large-scale data was available on the production, transfer, and tank pressure control characteristics required to use the fuel for the NASP. Therefore, experiments were conducted at the NASA Lewis Research Center K-Site Facility to improve the slush hydrogen database. Slush hydrogen was produced using the evaporative cooling, or freeze-thaw, technique in batches of about 800 gallons. This slush hydrogen was pressure transferred to a 5 ft diameter spherical test tank following production, and flow characteristics were measured during this transfer process. The slush hydrogen in the test tank was pressurized and expelled using a pressurized expulsion technique to obtain information on tank pressure control for the NASP. Results from the production, transfer, pressurization, and pressurized expulsion tests are described.

  15. Cost estimate for a proposed GDF Suez LNG testing program

    SciTech Connect

    Blanchat, Thomas K.; Brady, Patrick Dennis; Jernigan, Dann A.; Luketa, Anay Josephine; Nissen, Mark R.; Lopez, Carlos; Vermillion, Nancy; Hightower, Marion Michael

    2014-02-01

    At the request of GDF Suez, a Rough Order of Magnitude (ROM) cost estimate was prepared for the design, construction, testing, and data analysis for an experimental series of large-scale (Liquefied Natural Gas) LNG spills on land and water that would result in the largest pool fires and vapor dispersion events ever conducted. Due to the expected cost of this large, multi-year program, the authors utilized Sandia's structured cost estimating methodology. This methodology insures that the efforts identified can be performed for the cost proposed at a plus or minus 30 percent confidence. The scale of the LNG spill, fire, and vapor dispersion tests proposed by GDF could produce hazard distances and testing safety issues that need to be fully explored. Based on our evaluations, Sandia can utilize much of our existing fire testing infrastructure for the large fire tests and some small dispersion tests (with some modifications) in Albuquerque, but we propose to develop a new dispersion testing site at our remote test area in Nevada because of the large hazard distances. While this might impact some testing logistics, the safety aspects warrant this approach. In addition, we have included a proposal to study cryogenic liquid spills on water and subsequent vaporization in the presence of waves. Sandia is working with DOE on applications that provide infrastructure pertinent to wave production. We present an approach to conduct repeatable wave/spill interaction testing that could utilize such infrastructure.

  16. Ecological survey for the siting of the Mixed and Low-Level Waste Disposal Facility

    SciTech Connect

    Hoskinson, R.L.

    1994-05-01

    This report summarizes the results of field ecological surveys conducted by the Center for Integrated Environmental Technologies (CIET) on the Idaho National Engineering Lab. (INEL) at two candidate locations for the siting of the Mixed and Low-Level Waste Disposal Facility (MLLWDF). The purpose of these surveys was to comply with all Federal laws and Executive Orders to identify and evaluate any potential environmental impacts because of the project. The boundaries of the candidate locations were marked with blaze-orange lath survey marker stakes by the project management. Global Positioning in System (GPS) measurements of the marker stakes were made, and input to the Arc/Info geographic information system (GIS). Field surveys were conducted to assess any potential impact to any important species, important habitats, and to any environmental study areas. The GIS location data were overlayed onto the INEL vegetation map and an analysis of vegetation classes on the locations was done. Two species of rare vascular plants have previously been reported to occur in the vicinity of the candidate locations. Two C2 species, the ferruginous hawk (Buteo regalis) and the loggerhead shrike (Lanius ludovicianus) would also be expected to frequent the candidate locations. No significant ecological impact is anticipated if the MLLWDF were constructed on either candidate location. However, both candidate locations are in the central area of the INEL where there is minimal disturbance to the ecosystem by facilities or humans.

  17. Evaluation of groundwater monitoring results at the Hanford Site 200 Area Treated Effluent Disposal Facility

    SciTech Connect

    Barnett, D.B.

    1998-09-01

    The Hanford Site 200 Area Treated Effluent Disposal Facility (TEDF) has operated since June 1995. Groundwater monitoring has been conducted quarterly in the three wells surrounding the facility since 1992, with contributing data from nearby B Pond System wells. Cumulative hydrologic and geochemical information from the TEDF well network and other surrounding wells indicate no discernable effects of TEDF operations on the uppermost aquifer in the vicinity of the TEDF. The lateral consistency and impermeable nature of the Ringold Formation lower mud unit, and the contrasts in hydraulic conductivity between this unit and the vadose zone sediments of the Hanford formation suggest that TEDF effluent is spreading laterally with negligible mounding or downward movement into the uppermost aquifer. Hydrographs of TEDF wells show that TEDF operations have had no detectable effects on hydraulic heads in the uppermost aquifer, but show a continuing decay of the hydraulic mound generated by past operations at the B Pond System. Comparison of groundwater geochemistry from TEDF wells and other, nearby RCRA wells suggests that groundwater beneath TEDF is unique; different from both effluent entering TEDF and groundwater in the B Pond area. Tritium concentrations, major ionic proportions, and lower-than-background concentrations of other species suggest that groundwater in the uppermost aquifer beneath the TEDF bears characteristics of water in the upper basalt confined aquifer system. This report recommends retaining the current groundwater well network at the TEDF, but with a reduction of sampling/analysis frequency and some modifications to the list of constituents sought.

  18. SAVANNAH RIVER SITE'S H-CANYON FACILITY: RECOVERY AND DOWN BLEND URANIUM FOR BENEFICIAL USE

    SciTech Connect

    Magoulas, V.

    2013-05-27

    For over fifty years, the H Canyon facility at the Savannah River Site (SRS) has performed remotely operated radiochemical separations of irradiated targets to produce materials for national defense. Although the materials production mission has ended, the facility continues to play an important role in the stabilization and safe disposition of proliferable nuclear materials. As part of the US HEU Disposition Program, SRS has been down blending off-specification (off-spec) HEU to produce LEU since 2003. Off-spec HEU contains fission products not amenable to meeting the American Society for Testing and Material (ASTM) commercial fuel standards prior to purification. This down blended HEU material produced 301 MT of ~5% enriched LEU which has been fabricated into light water reactor fuel being utilized in Tennessee Valley Authority (TVA) reactors in Tennessee and Alabama producing economic power. There is still in excess of ~10 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for beneficial use as either ~5% enriched LEU, or for use in subsequent LEU reactors requiring ~19.75% enriched LEU fuel.

  19. Selection of materials for Savannah River Site Consolidated Incinerator Facility (CIF) offgas system

    SciTech Connect

    Sanders, L.N.; Kelly, P.N.

    1989-01-01

    This paper discusses the choice of materials of chloride containing flue gases, and quench and scrub solutions in the Consolidated Incineration Facility (CIF) (under design for Westinghouse/Bechtel) for incineration of radioactive and hazardous waste. This facility is located at the Savannah River Site in Aiken, South Carolina. A process need is to minimize blowdown waste. Chloride levels in the quench/scrub solutions up to 1 percent as acid or 10 percent as sodium chloride are expected. For low temperature portions of the system (up to 87/degree/C, 190/degree/F) polypropylene lined pipe and Derakane/reg sign/ 470-36 resins for FRP vessels are used. For service up to 250/degree/F, Halar/reg sign/ lined carbon steel is used, and for service up to 93/degree/C (200/degree/F) Flakeline/reg sign/ 103 lined carbon steel is used. For higher temperature portions of the system (up to 1000/degree/F) Hastelloy/reg sign/ alloy C-22 is used. Provisions for containment of low level radioactive gases as it affects materials selection are discussed in this article. Design of emergency quenching systems to avoid temperature excursions which could result in failure leading to hazardous emissions are presented. Technical discussion of material thermal stabilities, aqueous corrosion data, pitting, and crevice corrosion is also given.

  20. Technical report for the generic site add-on facility for plutonium polishing

    SciTech Connect

    Collins, E. D.

    1998-06-01

    The purpose of this report is to provide environmental data and reference process information associated with incorporating plutonium polishing steps (dissolution, impurity removal, and conversion to oxide powder) into the genetic-site Mixed-Oxide Fuel Fabrication Facility (MOXFF). The incorporation of the plutonium polishing steps will enable the removal of undesirable impurities, such as gallium and americium, known to be associated with the plutonium. Moreover, unanticipated impurities can be removed, including those that may be contained in (1) poorly characterized feed materials, (2) corrosion products added from processing equipment, and (3) miscellaneous materials contained in scrap recycle streams. These impurities will be removed to the extent necessary to meet plutonium product purity specifications for MOX fuels. Incorporation of the plutonium polishing steps will mean that the Pit Disassembly and Conversion Facility (PDCF) will need to produce a plutonium product that can b e dissolved at the MOXFF in nitric acid at a suitable rate (sufficient to meet overall production requirements) with the minimal usage of hydrofluoric acid, and its complexing agent, aluminum nitrate. This function will require that if the PDCF product is plutonium oxide powder, that powder must be produced, stored, and shipped without exceeding a temperature of 600 C.

  1. Department of Energy Arm Facilities on the North Slope of Alaska and Plans for a North Slope "Mega-Site"

    NASA Astrophysics Data System (ADS)

    Ivey, M.; Verlinde, J.

    2014-12-01

    The U.S. Department of Energy (DOE), through its scientific user facility, the Atmospheric Radiation Measurement (ARM) Climate Research Facility, provides scientific infrastructure and data to the international Arctic research community via its research sites located on the North Slope of Alaska. The DOE ARM Program has operated an atmospheric measurement facility in Barrow, Alaska, since 1998. Major upgrades to this facility, including scanning radars, were added in 2010. Facilities and infrastructure to support operations of unmanned aerial systems for science missions in the Arctic and North Slope of Alaska were established at Oliktok Point Alaska in 2013. Tethered instrumented balloons will be used in the near future to make measurements of clouds in the boundary layer including mixed-phase clouds. The Atmospheric Radiation Measurement (ARM) Climate Research Facility is implementing "mega-sites" at the Southern Great Plains and North Slope of Alaska sites. Two workshops were held to gather input from the scientific community on these mega-sites. The NSA workshop was held September 10 and 11 in the Washington DC area. The workshops included discussions of additional profiling remote sensors, detailed measurements of the land-atmosphere interface, aerial operations to link the Barrow and Oliktok sites, unmanned aerial system measurements, and routine large eddy simulation model runs. The "mega-sites" represent a significant new scientific and infrastructure investment by DOE Office of Science, Office of Biological and Environmental Research. This poster will present information on plans for a North Slope "Megasite" as well as new opportunities for members of the arctic research community to make atmospheric measurements using unmanned aerial systems or tethered balloons in conjunction with the DOE ARM facilities on the North Slope of Alaska.

  2. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    SciTech Connect

    Reneau, S.L.; Raymond, R. Jr.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau.

  3. Surplus Facilities Management Program. Post-remedial-action survey report for SNAP-8 Experimental Reactor Facility, building 010 site, Santa Susana Field Laboratories, Rockwell International, Ventura County, California

    NASA Astrophysics Data System (ADS)

    Wynveen, R. A.; Smith, W. H.; Sholeem, C. M.; Mayes, C. B.; Justas, A. L.; Flynn, K. F.

    1984-04-01

    Based on the results of the radiological assessment the following conclusions were reached: (1) soil contaminated with the radionuclides Co(60) and Er(152)Eu of undetermined origin was detected in the southwest quadrant of the Building 010 site. Co(60) was also detected in a borehole sample taken from the area that previously held the radioactive gas hold up tanks. Uranium was detected in soil from a hole in the center of the building site and in a second hole southwest of the building site. In all cases, the radionuclide levels encountered in the soil were well below the criteria set by DOE for this site; and (2) the direct instrument readings at the surface of the site were probably the result of natural radiation (terrestrial and celestial), as well as shine from the material being stored at the nearby RMDF facility. There was no evidence that the contaminated soil under the asphalt pad contributed detectable levels to the total background readings.

  4. Environmental Management Waste Management Facility (EMWMF) Site-Specific Health and Safety Plan, Oak Ridge, Tennessee

    SciTech Connect

    Flynn, N.C. Bechtel Jacobs

    2008-04-21

    The Bechtel Jacobs Company LLC (BJC) policy is to provide a safe and healthy workplace for all employees and subcontractors. The implementation of this policy requires that operations of the Environmental Management Waste Management Facility (EMWMF), located one-half mile west of the U.S. Department of Energy (DOE) Y-12 National Security Complex, be guided by an overall plan and consistent proactive approach to environment, safety and health (ES&H) issues. The BJC governing document for worker safety and health, BJC/OR-1745, 'Worker Safety and Health Program', describes the key elements of the BJC Safety and Industrial Hygiene (IH) programs, which includes the requirement for development and implementation of a site-specific Health and Safety Plan (HASP) where required by regulation (refer also to BJC-EH-1012, 'Development and Approval of Safety and Health Plans'). BJC/OR-1745, 'Worker Safety and Health Program', implements the requirements for worker protection contained in Title 10 Code of Federal Regulations (CFR) Part 851. The EMWMF site-specific HASP requirements identifies safe operating procedures, work controls, personal protective equipment, roles and responsibilities, potential site hazards and control measures, site access requirements, frequency and types of monitoring, site work areas, decontamination procedures, and outlines emergency response actions. This HASP will be available on site for use by all workers, management and supervisors, oversight personnel and visitors. All EMWMF assigned personnel will be briefed on the contents of this HASP and will be required to follow the procedures and protocols as specified. The policies and procedures referenced in this HASP apply to all EMWMF operations activities. In addition the HASP establishes ES&H criteria for the day-to-day activities to prevent or minimize any adverse effect on the environment and personnel safety and health and to meet standards that define acceptable waste management practices. The

  5. Inadvertent Intruder Analysis For The Portsmouth On-Site Waste Disposal Facility (OSWDF)

    SciTech Connect

    Smith, Frank G.; Phifer, Mark A.

    2014-01-22

    The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. For the purposes of this analysis, we assume that the waste disposal in the OSWDF occurs at time zero, the site is under institutional control for the next 100 years, and inadvertent intrusion can occur over the following 1,000 year time period. Disposal of low-level radioactive waste in the OSWDF must meet a requirement to assess impacts on such individuals, and demonstrate that the effective dose equivalent to an intruder would not likely exceed 100 mrem per year for scenarios involving continuous exposure (i.e. chronic) or 500 mrem for scenarios involving a single acute exposure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr. Disposal inventory

  6. HOLDUP MEASUREMENTS FOR THREE VISUAL EXAMINATION AND TRU REMEDIATION GLOVEBOX FACILITIES AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Dewberry, R; Donald Pak, D

    2007-05-04

    Visual Examination (VE) gloveboxes are used to remediate transuranic waste (TRU) drums at three separate facilities at the Savannah River Site. Noncompliant items are removed before the drums undergo further characterization in preparation for shipment to the Waste Isolation Pilot Plant (WIPP). Maintaining the flow of drums through the remediation process is critical to the program's seven-days-per-week operation. Conservative assumptions are used to ensure that glovebox contamination from this continual operation is below acceptable limits. Holdup measurements using cooled HPGe spectrometers are performed in order to confirm that these assumptions are conservative. {sup 239}Pu is the main nuclide of interest; however, {sup 241}Pu, equilibrium {sup 237}Np/{sup 233}Pa and {sup 238}Pu (if detected) are typically assayed. At the Savannah River National Laboratory (SRNL) facility {sup 243,244,245}Cm are also generally observed and are always reported at either finite levels or at limits of detection. A complete assay at each of the three facilities includes a measure of TRU content in the gloveboxes and HEPA filters in the glovebox exhaust. This paper includes a description of the {gamma}-PHA acquisitions, of the modeling, and of the calculations of nuclide content. Because each of the remediation facilities is unique and ergonomically unfavorable to {gamma}-ray acquisitions, we have constructed custom detector support devices specific to each set of acquisitions. This paper includes a description and photographs of these custom devices. The description of modeling and calculations include determination and application of container and matrix photon energy dependent absorption factors and also determination and application of geometry factors relative to our detector calibration geometry. The paper also includes a discussion of our measurements accuracy using off-line assays of two SRNL HEPA filters. The comparison includes assay of the filters inside of 55-gallon

  7. Addendum to environmental monitoring plan Nevada Test Site and support facilities

    SciTech Connect

    1992-11-01

    This 1992 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/1 0630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Field Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1992 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

  8. Addendum to Environmental Monitoring Plan, Nevada Test Site and Support Facilities; Addendum 2

    SciTech Connect

    1993-11-01

    This 1993 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/10630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Operations Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1993 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US. All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

  9. 46 CFR 154.703 - Methane (LNG).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... maintained below the set pressure of the safety relief valve for at least 21 days by: (a) A refrigeration... 46 Shipping 5 2013-10-01 2013-10-01 false Methane (LNG). 154.703 Section 154.703 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS...

  10. 46 CFR 154.703 - Methane (LNG).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... maintained below the set pressure of the safety relief valve for at least 21 days by: (a) A refrigeration... 46 Shipping 5 2014-10-01 2014-10-01 false Methane (LNG). 154.703 Section 154.703 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS...

  11. LNG fleet increases in size and capabilities

    SciTech Connect

    Linser, H.J. Jr.; Drudy, M.J.; Endrizzi, F.; Urbanelli, A.A.

    1997-06-02

    The LNG fleet as of early 1997 consisted of 99 vessels with total cargo capacity of 10.7 million cu m, equivalent to approximately 4.5 million tons. One of the newest additions to the fleet, the 137,000-cu m tanker Al Zubarah, is five times the size of the original commercial vessel Methane Princess. Al Zubarah`s first loading of more than 60,000 tons occurred in December 1996 for deliver to Japanese buyers from the newly commissioned Qatargas LNG plant at Ras Laffan. That size cargo contains enough clean-burning energy to heat 60,000 homes in Japan for 1 month. Measuring nearly 1,000 ft long, the tanker is among the largest in the industry fleet and joined 70 other vessels of more than 100,000 cu m. Most LNG tankers built since 1975 have been larger-capacity vessels. The paper discusses LNG shipping requirements, containment systems, vessel design, propulsion, construction, operations and maintenance, and the future for larger vessels.

  12. Technology advances keeping LNG cost-competitive

    SciTech Connect

    Bellow, E.J. Jr.; Ghazal, F.P.; Silverman, A.J.; Myers, S.D.

    1997-06-02

    LNG plants, often very expensive in the past, will in the future need to cost less to build and operate and yet maintain high safety and reliability standards, both during construction and operation. Technical advancements, both in the process and in equipment scaling, manufacturing, and metallurgy, will provide much of the impetus for the improved economics. Although world energy demand is predicted to grow on average of about 2% annually over the next decade, LNG is expected to contribute an increasing portion of this growth with annual growth rates averaging about 7%. This steep growth increase will be propelled mainly by the environmentally friendlier burning characteristics of natural gas and the strong industrial growth in Asian and pacific Rim countries. While LNG is emerging as the fuel of choice for developing economies, its delivered cost to consumers will need to stay competitive with alternate energy supplies if it is to remain in front. The paper discusses LNG process development, treating process, equipment developments (man heat exchanger, compressors, drivers, and pressure vessels), and economy of scale.

  13. Obstacle factors and overcoming plans of public communication: With an emphasis on radioactive waste disposal facility siting

    SciTech Connect

    Yoo, Hae-Woon; Oh, Chang-Taeg

    1996-12-31

    Korea is confronting a serious social conflict, which is phenomenon of local residents reaction to radioactive waste disposal facility. This phenomenon is traced back to the reason that the project sponsors and local residents do not communicate sufficiently each other. Accordingly, in order to overcome local residents` reaction to radioactive waste disposal facility siting effectively, it is absolutely necessary to consider the way of solutions and strategies with regard to obstacle factors for public communication. In this content, this study will review three cases (An-myon Island, Gul-up Island, Yang-yang) on local residents reaction to facility siting. As a result of analysis, authoritarian behavior of project sponsors, local stigma, risk, antinuclear activities of environmental group, failures in siting the radioactive waste disposal facility, etc. has negative impact on public communication of the radioactive waste disposal facility siting. In this study, 5 strategies (reform of project sponsor`s authoritarianism, incentive offer, strengthening PA activities, more active talks with environmental groups, promoting credibility of project sponsors) arc suggested to cope with obstacle factors of public communication.

  14. LNG demand, shipping will expand through 2010

    SciTech Connect

    True, W.R.

    1998-02-09

    The 1990s, especially the middle years, have witnessed a dramatic turnaround in the growth of liquefied-natural-gas demand which has tracked equally strong natural-gas demand growth. This trend was underscored late last year by several annual studies of world LNG demand and shipping. As 1998 began, however, economic turmoil in Asian financial markets has clouded near-term prospects for LNG in particular and all energy in general. But the extent of damage to energy markets is so far unclear. A study by US-based Institute of Gas Technology, Des Plaines, IL, reveals that LNG imports worldwide have climbed nearly 8%/year since 1980 and account for 25% of all natural gas traded internationally. In the mid-1970s, the share was only 5%. In 1996, the most recent year for which complete data are available, world LNG trade rose 7.7% to a record 92 billion cu m, outpacing the overall consumption for natural gas which increased 4.7% in 1996. By 2015, says the IGT study, natural-gas use would surpass coal as the world`s second most widely used fuel, after petroleum. Much of this growth will occur in the developing countries of Asia where gas use, before the current economic crisis began, was projected to grow 8%/year through 2015. Similar trends are reflected in another study of LNG trade released at year end 1997, this from Ocean Shipping Consultants Ltd., Surrey, U.K. The study was done too early, however, to consider the effects of the financial problems roiling Asia.

  15. Exploratory shaft facility: It`s role in the characterization of the Yucca Mountain site for a potential nuclear repository

    SciTech Connect

    Kalia, H.N.; Merson, T.J.

    1990-03-01

    The US Department of Energy is characterizing Yucca Mountain, Nevada, to assess its suitability as a potential site for the permanent disposal of high-level radioactive waste from nuclear power plants and defense related activities. The assessment activities include surface investigations, drill holes from the surface, and an underground facility for in situ characterization tests. This underground exploratory shaft facility is being designed to meet the criteria for characterizing the mountain as described in the Site Characterization Plan. 9 refs., 9 figs., 1 tab.

  16. Calendar year 2007 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii,

    SciTech Connect

    Agogino, Karen; Sanchez, Rebecca

    2008-09-30

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE)/National Nuclear Security Administration (NNSA), through the Sandia Site Offi ce (SSO), in Albuquerque, NM, administers the contract and oversees contractor operations at TTR and KTF. Sandia manages and conducts operations at TTR in support of the DOE/NNSA’s Weapons Ordnance Program and has operated the site since 1957. Washington Group International subcontracts to Sandia in administering most of the environmental programs at TTR. Sandia operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2007. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia is responsible only for those environmental program activities related to its operations. The DOE/NNSA/Nevada Site Offi ce (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting Manual (DOE 2007).

  17. Calendar year 2003 : annual site enviromental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.

    SciTech Connect

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

    2004-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2003. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2003) and DOE Order 231.1 Chg 2., Environment, Safety, and Health Reporting (DOE 1996).

  18. Calendar year 2002 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.

    SciTech Connect

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

    2003-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, oversees TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2002. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).

  19. Establishment of a facility for intrusive characterization of transuranic waste at the Nevada Test Site

    SciTech Connect

    Foster, B.D.; Musick, R.G.; Pedalino, J.P.; Cowley, J.L.; Karney, C.C.; Kremer, J.L.

    1998-01-01

    This paper describes design and construction, project management, and testing results associated with the Waste Examination Facility (WEF) recently constructed at the Nevada Test Site (NTS). The WEF and associated systems were designed, procured, and constructed on an extremely tight budget and within a fast track schedule. Part 1 of this paper focuses on design and construction activities, Part 2 discusses project management of WEF design and construction activities, and Part 3 describes the results of the transuranic (TRU) waste examination pilot project conducted at the WEF. In Part 1, the waste examination process is described within the context of Waste Isolation Pilot Plant (WIPP) characterization requirements. Design criteria are described from operational and radiological protection considerations. The WEF engineered systems are described. These systems include isolation barriers using a glove box and secondary containment structure, high efficiency particulate air (HEPA) filtration and ventilation systems, differential pressure monitoring systems, and fire protection systems. In Part 2, the project management techniques used for ensuring that stringent cost/schedule requirements were met are described. The critical attributes of these management systems are described with an emphasis on team work. In Part 3, the results of a pilot project directed at performing intrusive characterization (i.e., examination) of TRU waste at the WEF are described. Project activities included cold and hot operations. Cold operations included operator training, facility systems walk down, and operational procedures validation. Hot operations included working with plutonium contaminated TRU waste and consisted of waste container breaching, waste examination, waste segregation, data collection, and waste repackaging.

  20. Savannah River Site human error data base development for nonreactor nuclear facilities

    SciTech Connect

    Benhardt, H.C.; Held, J.E.; Olsen, L.M.; Vail, R.E.; Eide, S.A.

    1994-02-28

    As part of an overall effort to upgrade and streamline methodologies for safety analyses of nonreactor nuclear facilities at the Savannah River Site (SRS), a human error data base has been developed and is presented in this report. The data base fulfills several needs of risk analysts supporting safety analysis report (SAR) development. First, it provides a single source for probabilities or rates for a wide variety of human errors associated with the SRS nonreactor nuclear facilities. Second, it provides a documented basis for human error probabilities or rates. And finally, it provides actual SRS-specific human error data to support many of the error probabilities or rates. Use of a single, documented reference source for human errors, supported by SRS-specific human error data, will improve the consistency and accuracy of human error modeling by SRS risk analysts. It is envisioned that SRS risk analysts will use this report as both a guide to identifying the types of human errors that may need to be included in risk models such as fault and event trees, and as a source for human error probabilities or rates. For each human error in this report, ffime different mean probabilities or rates are presented to cover a wide range of conditions and influencing factors. The ask analysts must decide which mean value is most appropriate for each particular application. If other types of human errors are needed for the risk models, the analyst must use other sources. Finally, if human enors are dominant in the quantified risk models (based on the values obtained fmm this report), then it may be appropriate to perform detailed human reliability analyses (HRAS) for the dominant events. This document does not provide guidance for such refined HRAS; in such cases experienced human reliability analysts should be involved.

  1. Decommissioning an Active Historical Reactor Facility at the Savannah River Site - 13453

    SciTech Connect

    Bergren, Christopher L.; Long, J. Tony; Blankenship, John K.; Adams, Karen M.

    2013-07-01

    The Savannah River Site (SRS) is an 802 square-kilometer United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina, where Management and Operations are performed by Savannah River Nuclear Solutions (SRNS). In 2004, DOE recognized SRS as structure within the Cold War Historic District of national, state and local significance composed of the first generation of facilities constructed and operated from 1950 through 1989 to produce plutonium and tritium for our nation's defense. DOE agreed to manage the SRS 105-C Reactor Facility as a potentially historic property due to its significance in supporting the U.S. Cold War Mission and for potential for future interpretation. This reactor has five primary areas within it, including a Disassembly Basin (DB) that received irradiated materials from the reactor, cooled them and prepared the components for loading and transport to a Separation Canyon for processing. The 6,317 square meter area was divided into numerous work/storage areas. The walls between the individual basin compartments have narrow vertical openings called 'slots' that permit the transfer of material from one section to another. Data indicated there was over 830 curies of radioactivity associated with the basin sediments and approximately 9.1 M liters of contaminated water, not including a large quantity of activated reactor equipment, scrap metal, and debris on the basin floor. The need for an action was identified in 2010 to reduce risks to personnel in the facility and to eliminate the possible release of contaminants into the environment. The release of DB water could potentially migrate to the aquifer and contaminate groundwater. DOE, its regulators [U. S. Environmental Protection Agency (USEPA)-Region 4 and the South Carolina Department of Health and Environmental Control (SCDHEC)] and the SC Historical Preservation Office (SHPO) agreed/concurred to perform a non-time critical removal

  2. Technical efforts focus on cutting LNG plant costs

    SciTech Connect

    Aoki, Ichizo; Kikkawa, Yoshitsugi

    1995-07-03

    LNG demand is growing due to the nuclear setback and environmental issues spurred by concern about the greenhouse effect and acid rain, especially in the Far East. However, LNG is expensive compared with other energy sources. Efforts continue to minimize capital and operating costs and to increase LNG plant availability and safety. Technical trends in the LNG industry aim at reducing plant costs in pursuit of a competitive LNG price on an energy value basis against the oil price. This article reviews key areas of technical development. Discussed are train size, liquefaction processes, acid gas removal, heavy end removal, nitrogen rejection, refrigeration compressor and drivers, expander application, cooling media selection, LNG storage and loading system, and plant availability.

  3. Hanford Site Near-Facility Environmental Monitoring Data Report for Calendar Year 2008

    SciTech Connect

    Perkins, Craig J.; Dorsey, Michael C.; Mckinney, Stephen M.; Wilde, Justin W.; Poston, Ted M.

    2009-09-15

    Near-facility environmental monitoring is defined as monitoring near facilities that have the potential to discharge or have discharged, stored, or disposed of radioactive or hazardous materials. Monitoring locations are associated with nuclear facilities such as the Plutonium Finishing Plant, Canister Storage Building, and the K Basins; inactive nuclear facilities such as N Reactor and the Plutonium-Uranium Extraction (PUREX) Facility; and waste storage or disposal facilities such as burial grounds, cribs, ditches, ponds, tank farms, and trenches. Much of the monitoring consists of collecting and analyzing environmental samples and methodically surveying areas near facilities. The program is also designed to evaluate acquired analytical data, determine the effectiveness of facility effluent monitoring and controls, assess the adequacy of containment at waste disposal units, and detect and monitor unusual conditions.

  4. Hanford Site Near-Facility Environmental Monitoring Data Report for Calendar Year 2007- Appendix 2

    SciTech Connect

    Perkins, Craig J.; Dorsey, Michael; Mckinney, Stephen M.; Wilde, Justin W.; Duncan, Joanne P.

    2008-10-13

    Near-facility environmental monitoring is defined as monitoring near facilities that have the potential to discharge or have discharged, stored, or disposed of radioactive or hazardous materials. Monitoring locations are associated with nuclear facilities such as the Plutonium Finishing Plant (PFP), Canister Storage Building (CSB), and the K Basins; inactive nuclear facilities such as N Reactor and the Plutonium-Uranium Extraction (PUREX) Facility; and waste storage or disposal facilities such as burial grounds, cribs, ditches, ponds, tank farms, and trenches. Much of the monitoring consists of collecting and analyzing environmental samples and methodically surveying areas near facilities. The program is also designed to evaluate acquired analytical data, determine the effectiveness of facility effluent monitoring and controls, assess the adequacy of containment at waste disposal units, and detect and monitor unusual conditions.

  5. Energy infrastructure of the United States and projected siting needs: Scoping ideas, identifying issues and options. Draft report of the Department of Energy Working Group on Energy Facility Siting to the Secretary

    SciTech Connect

    Not Available

    1993-12-01

    A Department of Energy (DOE) Working Group on Energy Facility Siting, chaired by the Policy Office with membership from the major program and staff offices of the Department, reviewed data regarding energy service needs, infrastructure requirements, and constraints to siting. The Working Group found that the expeditious siting of energy facilities has important economic, energy, and environmental implications for key Administration priorities.

  6. The use of long acting subcutaneous levonorgestrel (LNG) gel depot as an effective contraceptive option for cotton-top tamarins (Saguinus oedipus).

    PubMed

    Wheaton, C J; Savage, A; Shukla, A; Neiffer, D; Qu, W; Sun, Y; Lasley, B L

    2011-01-01

    Cotton-top tamarins (Saguinus oedipus) are a critically endangered species that have been bred successfully in captivity for many years. For two decades, the Cotton-top Tamarin SSP(©) has been challenged with a high rate of reproduction combined with a history of contraceptive failures and nonrecommended births using the current Depo Provera(®) (medroxyprogesterone acetate) injection followed by MGA (melengestrol acetate) implant contraception combination. To address these issues we have developed and tested the use of levonorgestrel (LNG) as an effective contraception option for cotton-top tamarins. LNG was delivered in an injectable, gel matrix consisting of polylactic-co-glycolic acid, triethyl citrate and N-methylpyrrolidone. This gel matrix forms a biodegradable depot at the subcutaneous injection site providing slow release of the active ingredient. Gel matrix composition and LNG concentration were adjusted in four gel formulations to maximize the duration of contraceptive efficacy while minimizing immediate post-injection increases in fecal LNG concentration. LNG treatment (68.44 ± 8.61 mg/kg) successfully eliminated ovarian cycles (fecal pregnanediol-3-glucuronide (PdG) and estrone conjugates (E(1) C)) for 198.8 ± 70.3 days (formulation four; range 19-50 weeks). It was demonstrated that subcutaneous LNG depot injection was an effective, reversible contraceptive option for the management of cotton-top tamarins in captivity.

  7. LPG-recovery processes for baseload LNG plants examined

    SciTech Connect

    Chiu, C.H.

    1997-11-24

    With demand on the rise, LPG produced from a baseload LNG plant becomes more attractive as a revenue-earning product similar to LNG. Efficient use of gas expanders in baseload LNG plants for LPG production therefore becomes more important. Several process variations for LPG recovery in baseload LNG plants are reviewed here. Exergy analysis (based on the Second Law of Thermodynamics) is applied to three cases to compare energy efficiency resulting from integration with the main liquefaction process. The paper discusses extraction in a baseload plant, extraction requirements, process recovery parameters, extraction process variations, and exergy analysis.

  8. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site

    SciTech Connect

    N /A

    2003-11-28

    This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF{sub 6} from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (United States Code, Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (Code of Federal Regulations, Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a Federal Register Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Portsmouth site; from the transportation of all ETTP cylinders (DUF{sub 6}, low-enriched UF6

  9. Possible explosive compounds in the Savannah River Site waste tank farm facilities

    SciTech Connect

    Hobbs, D.T.

    1992-03-15

    Based on a comparison of the known constituents in high-level nuclear waste stored at the Savannah River Site (SRS) and explosive compounds reported in the literature, only two classes of explosive compounds (metal NO{sub x} compounds and organic compounds) were identified as requiring further work to determine if they exist in the waste, and if so, in what quantities. Of the fourteen classes of explosive compounds identified as conceivably being present in tank farm operations, nine classes (metal fulminates, metal azides, halogen compounds, metal-amine complexes, nitrate/oxalate mixtures, metal oxalates, metal oxohalogenates, metal cyanides/cyanates, and peroxides) are not a hazard because these classes of compounds cannot be formed or accumulated in sufficient quantity, or they are not reactive at the conditions which exist in the tank farm facilities. Three of the classes (flammable gases, metal nitrides, and ammonia compounds and derivatives) are known to have the potential to build up to concentrations at which an observable reaction might occur. Controls have been in place for some time to limit the formation or control the concentration of these classes of compounds. A comprehensive list of conceivable explosive compounds is provided in Appendix 3.

  10. Processing of tetraphenylborate precipitates in the Savannah River Site Defense Waste Processing Facility

    SciTech Connect

    Eibling, R.E.

    1990-12-31

    The Savannah River Site has generated 77 million gallons of high level radioactive waste since the early 1950`s. By 1987, evaporation had reduced the concentration of the waste inventory to 35 million gallons. Currently, the wastes reside in large underground tanks as a soluble fraction stored, crystallized salts, and an insoluble fraction, sludge, which consists of hydrated transition metal oxides. The bulk of the radionuclides, 67 percent, are in the sludge while the crystallized salts and supernate are composed of the nitrates, nitrites, sulfates and hydroxides of sodium, potassium, and cesium. The principal radionuclide in the soluble waste is {sup 137}Cs with traces of {sup 90}Sr. The transformation of the high level wastes into a borosilicate glass suitable for permanent disposal is the goal of the Defense Waste Processing Facility (DWPF). To minimize the volume of glass produced, the soluble fraction of the waste is treated with sodium tetraphenylborate and sodium titanate in the waste tanks to precipitate the radioactive cesium ion and absorb the radioactive strontium ion. The precipitate is washed in the waste tanks and is then pumped to the DWPF. The precipitate, as received, is incompatible with the vitrification process because of the high aromatic carbon content and requires further chemical treatment. Within the DWPF, the precipitate is processed in the Salt Processing Cell to remove the aromatic carbon as benzene. The precipitate hydrolysis process hydrolyzes the tetraphenylborate anion to produce borate anion and benzene. The benzene is removed by distillation, decontaminated and transferred out of the DWPF for disposal.

  11. An astronomical site survey at the Barcroft Facility of the White Mountain Research Station

    NASA Astrophysics Data System (ADS)

    Marvil, J.; Ansmann, M.; Childers, J.; Cole, T.; Davis, G. V.; Hadjiyska, E.; Halevi, D.; Heimberg, G.; Kangas, M.; Levy, A.; Leonardi, R.; Lubin, P.; Meinhold, P.; O'Neill, H.; Parendo, S.; Quetin, E.; Stebor, N.; Villela, T.; Williams, B.; Wuensche, C. A.; Yamaguchi, K.

    2006-01-01

    We present a distillation of weather and sky condition data collected from September 2001 to November 2004 at the University of California White Mountain Research Station, Barcroft Facility. Our conclusion is that Barcroft is an excellent site for microwave observation because of a cold microwave zenith temperature, low precipitable water, and a high percentage of clear days. The solar intensity was above 80% of the theoretical maximum 66% of the time. About 71% of the daytime, the cloud cover was acceptable for observing. Median precipitable water vapor was estimated to be 1.75 mm. We measure a median opacity at 225 GHz of 0.11, which corresponds to a transmission of 89.6%. Zenith sky temperatures were determined to be 9.0 ± 0.2 K and 10.0 ± 0.6 K in Q-band (38-46 GHz) and W-band (81-98 GHz), respectively. We also demonstrate a correlation between measurements of precipitable water vapor from a weatherstation and a 225 GHz radiometer.

  12. Near-surface test facility. Phase I. Geologic site characterization report

    SciTech Connect

    Moak, D.J.; Wintczak, T.M.

    1980-08-01

    The report is a description of the geology and characterization of the rock mass of the area in which the Phase I qualification tests at the Near-Surface Test Facility (NSTF) are being performed. The NSTF is located on Gable Mountain within the Hanford Site near Richland, Washington. It is located in the entablature of the Pomona Member, an upper flow in the Columbia River Basalt Group, and is approximately 150 feet (47.5 meters) below the surface. Core logging from the instrument boreholes coupled with joint mapping, statistics, and other test data provided the basis for a detailed characterization of the 16-foot x 20-foot x 28-foot (5-meter x 6-meter x 9-meter) rock masses surrounding Full-Scale Heater Tests No. 1 and No. 2. The Pomona entablature contains three joint sets delineated by their degree of dip, each with apertures averaging 0.25 millimeter and having no preferred strike orientation. Although joint frequencies in the study area exceed 4 joints per foot (13 per meter), the rock-mass classification rating is good.

  13. CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL

    SciTech Connect

    Farfan, E.; Coleman, R.

    2011-03-31

    RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

  14. Closure Report for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada National Security Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2011-09-29

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 [as amended March 2010]). CAU 116 consists of the following two Corrective Action Sites (CASs), located in Area 25 of the Nevada National Security Site: (1) CAS 25-23-20, Nuclear Furnace Piping and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 consisted of Building 3210 and the attached concrete shield wall. CAS 25-23-20 consisted of the nuclear furnace piping and tanks. Closure activities began in January 2007 and were completed in August 2011. Activities were conducted according to Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 116 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2008). This CR provides documentation supporting the completed corrective actions and provides data confirming that closure objectives for CAU 116 were met. Site characterization data and process knowledge indicated that surface areas were radiologically contaminated above release limits and that regulated and/or hazardous wastes were present in the facility.

  15. 77 FR 51811 - Draft Guidance for Industry on Self-Identification of Generic Drug Facilities, Sites, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry on Self-Identification of Generic Drug Facilities, Sites, and Organizations; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing the availability of a...

  16. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    SciTech Connect

    Husler, R.O. ); Weir, T.J. )

    1991-01-01

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.

  17. Characterization and remediation of soil prior to construction of an on-site disposal facility at Fernald

    SciTech Connect

    Hunt, A.; Jones, G.; Janke, R.; Nelson, K.

    1998-03-01

    During the production years at the Feed Materials Production Center (FMPC), the soil of the site and the surrounding areas was surficially impacted by airborne contamination. The volume of impacted soil is estimated at 2.2 million cubic yards. During site remediation, this contamination will be excavated, characterized, and disposed of. In 1986 the US Environmental Protection Agency (EPA) and the Department of Energy (DOE) entered into a Federal Facility Compliance Agreement (FFCA) covering environmental impacts associated with the FMPC. A site wide Remedial Investigation/Feasibility Study (RI/FS) was initiated pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended by the Superfund Amendments and Reauthorization Act (CERCLA). The DOE has completed the RI/FS process and has received approval of the final Records of Decision. The name of the facility was changed to the Fernald Environmental Management Project (FEMP) to emphasize the change in mission to environmental restoration. Remedial actions which address similar scopes of work or types of contaminated media have been grouped into remedial projects for the purpose of managing the remediation of the FEMP. The Soil Characterization and Excavation Project (SCEP) will address the remediation of FEMP soils, certain waste units, at- and below-grade material, and will certify attainment of the final remedial limits (FRLs) for the FEMP. The FEMP will be using an on-site facility for low level radioactive waste disposal. The facility will be an above-ground engineered structure constructed of geological material. The area designated for construction of the base of the on-site disposal facility (OSDF) is referred to as the footprint. Contaminated soil within the footprint must be identified and remediated. Excavation of Phase 1, the first of seven remediation areas, is complete.

  18. Rocketdyne division, environmental monitoring and facility effluent. Annual Report, De Soto and Santa Susana Field Laboratories Sites 1987

    SciTech Connect

    Moore, J. D.

    1988-03-01

    Environmental and facility effluent radioactivity monitoring at the Rocketdyne Division of Rockwell International is performed by the Radiation and Nuclear Safety Group of the Health, Safety, and Environment Department. Soil and surface water are routinely sampled to a distance of 10 miles from Division sites. Ground water from site supply water wells and other test wells is periodically sampled to measure radioactivity in these waters. Continuous ambient air sampling and direct radiation monitoring by thermoluminescent dosimetry are performed at several on-site and off-site locations for measuring airborne radioactivity concentrations and site ambient radiation levels. Radioactivity in effluents discharged to the atmosphere from nuclear facilities is continually sampled and monitored to ensure that amounts released to uncontrolled areas are below appropriate limited and to identify processes that rnay require additional engineering safeguards to minimize radioactivity in such discharges. In addition, selected nonradioactive chemical constituent concentrations in surface water discharged to uncontrolled areas are determined. The environmental radioactivity reported herein is attributed to natural sources and to residual fallout of radioactive material from past atmospheric testing of nuclear devices. Work in nuclear energy research and development in what has become the Rocketdyne Division of Rockwell International Corporation began in 1946. In addition to a broad spectrum of conventional programs in rocket propulsion, utilization of space, and national defense, Rocketdyne is working on the design, development, and testing of components and systems for central station nuclear power plants, the decladding of irradiated nuclear fuel, and the decontamination and decommissioning of facilities.

  19. Summary environmental site assessment report for the U.S. Department of Energy Oxnard Facility, Oxnard, California

    SciTech Connect

    1996-02-01

    This report summarizes the investigations conducted by Rust Geotech at the U.S. Department of Energy (DOE) Oxnard facility, 1235 East Wooley Road, Oxnard, California. These investigations were designed to locate, identify, and characterize any regulated contaminated media on the site. The effort included site visits; research of ownership, historical uses of the Oxnard facility and adjacent properties, incidences of and investigations for contaminants on adjacent properties, and the physical setting of the site; sampling and analysis; and reporting. These investigations identified two friable asbestos gaskets on the site, which were removed, and nonfriable asbestos, which will be managed through the implementation of an asbestos management plan. The California primary drinking water standards were exceeded for aluminum on two groundwater samples and for lead in one sample collected from the shallow aquifer underlying the site; remediation of the groundwater in this aquifer is not warranted because it is not used. Treated water is available from a municipal water system. Three sludge samples indicated elevated heavy metals concentrations; the sludge must be handled as a hazardous waste if disposed. Polychlorinated biphenyls (PCBs) were detected at concentrations below remediation criteria in facility soils at two locations. In accordance with U.S. Environmental Protection Agency (EPA) and State of California guidance, remediation of the PCBs is not required. No other hazardous substances were detected in concentrations exceeding regulatory limits.

  20. Surplus Facilities Management Program. Post-remedial-action survey report for SNAP-8 Experimental Reactor Facility, Building 010 site, Santa Susana Field Laboratories, Rockwell International, Ventura County, California

    SciTech Connect

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Mayes, C.B.; Justus, A.L.; Flynn, K.F.

    1984-04-01

    Based on the results of the radiological assessment, the Argonne National Laboratory Radiological Survey Group arrived at the following conclusions: (1) soil contaminated with the radionuclides /sup 60/Co and /sup 152/Eu of undetermined origin was detected in the southwest quadrant of the Building 010 site. /sup 60/Co was also detected in one environmental sample taken from an area northwest of the site and in a borehole sample taken from the area that previously held the radioactive gas hold-up tanks. Uranium was detected in soil from a hole in the center of the building site and in a second hole southwest of the building site. In all cases, the radionuclide levels encountered in the soil were well below the criteria set by DOE for this site; and (2) the direct instrument readings at the surface of the site were probably the result of natural radiation (terrestrial and celestial), as well as shine from the material being stored at the nearby RMDF facility. There was no evidence that the contaminated soil under the asphalt pad contributed detectable levels to the total background readings.

  1. High efficiency Brayton cycles using LNG

    DOEpatents

    Morrow, Charles W.

    2006-04-18

    A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

  2. Siting algae cultivation facilities for biofuel production in the United States: trade-offs between growth rate, site constructability, water availability, and infrastructure

    SciTech Connect

    Venteris, Erik R.; McBride, Robert; Coleman, Andre M.; Skaggs, Richard; Wigmosta, Mark S.

    2014-02-21

    Locating sites for new algae cultivation facilities is a complex task. The climate must support high growth rates, and cultivation ponds require appropriate land and water resources as well as key utility and transportation infrastructure. We employ our spatiotemporal Biomass Assessment Tool (BAT) to select promising locations based on the open-pond cultivation of Arthrospira sp. and a strain of the order Desmidiales. 64,000 potential sites across the southern United States were evaluated. We progressively apply a range of screening criteria and track their impact on the number of selected sites, geographic location, and biomass productivity. Both strains demonstrate maximum productivity along the Gulf of Mexico coast, with the highest values on the Florida peninsula. In contrast, sites meeting all selection criteria for Arthrospira were located along the southern coast of Texas and for Desmidiales were located in Louisiana and southern Arkansas. Site selection was driven mainly by the lack of oil pipeline access in Florida and elevated groundwater salinity in southern Texas. The requirement for low salinity freshwater (<400 mg L-1) constrained Desmidiales locations; siting flexibility is greater for salt-tolerant species such as Arthrospira. Combined siting factors can result in significant departures from regions of maximum productivity but are within the expected range of site-specific process improvements.

  3. Commissioning and initial operation of the LNG terminal at Zeebrugge, Belgium

    SciTech Connect

    Davreux, J.C.; Cattoor, H.D.

    1988-01-01

    Many site locations had been investigated before the Belgian Government decided in 1977 to have the terminal built on an artificial peninsula in the outer harbour of Zeebrugge. In order to enable gas deliveries from Algeria at the contractual delivery date, Distrigas negotiated an agreement with Gas de France for the unloading of Algerian LNG at its Montoir de Bregane terminal during the period needed for reclaiming of the peninsula and for the construction of the terminal. Cargo's were delivered in Montoir between November 1982 and August 1987. The first cargo has been delivered at Zeebrugge on June 25th, 1987. This paper briefly summarizes the main construction topics and further describes the activities related to the start-up of the LNG receiving terminal of Zeebrugge.

  4. Northern Adriatic LNG receiving terminal: Pre-feasibility study. Part 1. Export trade information

    SciTech Connect

    Not Available

    1991-03-19

    The study evaluated 2 potential sites as the location for a Liquefied Natural Gas (LNG) receiving terminal. The study assumed that the LNG will be obtained in Algeria and transported, via liquefied gas carriers, to either Koper or Omisalj, located on the Northern Adriatic coast of Yugoslavia. The proposed terminal will provide natural gas, via pipeline, to Austria, Czechoslovakia, Hungary and Yugoslavia. The goal of the study was to determine specific transportation and processing costs, per cubic meter of gas, at each delivery station in Yugoslavia and at the respective custody transfer points. Consideration has been given to the overall costs for construction, maintenance and operation, as well as marine transport for the gas and capital equipment of the system.

  5. Submarine tankers proposed for Arctic LNG transport

    SciTech Connect

    Robb, D.

    1982-02-01

    General Dynamics Corporation announced a plan for a proposed US-West German joint venture to transport liquefied natural gas via submarine tanker from Alaska's Prudhoe Bay to ice-free ports in Western Europe and North America. The proposal would call for an investment of $20 billion, with generated revenue estimates of at least $70 billion over a 25 year period. The major advantage of a submarine tanker over a conventional surface tanker would be the reliable and predictable transport of LNG from remote Arctic location regardless of surface weather and ice conditions. The water depths of the proposed transit route would allow the tankers to remain submerged for virtually the entire transit, save for passage through the western Barrow Strait where the water depth at times dips to 91 meters. The proposed plan calls for the construction of 28 submarine tankers and 9 surface tankers over an 11-year period. The proposal also calls for the construction of an Arctic liquefaction plant large enough to process LNG to meet General Dyanmics' target cargo lift of 2 billion cubic feet of LNG a day. (DP)

  6. The National Criticality Experiments Research Center at the Device Assembly Facility, Nevada National Security Site: Status and Capabilities, Summary Report

    SciTech Connect

    S. Bragg-Sitton; J. Bess; J. Werner

    2011-09-01

    The National Criticality Experiments Research Center (NCERC) was officially opened on August 29, 2011. Located within the Device Assembly Facility (DAF) at the Nevada National Security Site (NNSS), the NCERC has become a consolidation facility within the United States for critical configuration testing, particularly those involving highly enriched uranium (HEU). The DAF is a Department of Energy (DOE) owned facility that is operated by the National Nuclear Security Agency/Nevada Site Office (NNSA/NSO). User laboratories include the Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL). Personnel bring their home lab qualifications and procedures with them to the DAF, such that non-site specific training need not be repeated to conduct work at DAF. The NNSS Management and Operating contractor is National Security Technologies, LLC (NSTec) and the NNSS Safeguards and Security contractor is Wackenhut Services. The complete report provides an overview and status of the available laboratories and test bays at NCERC, available test materials and test support configurations, and test requirements and limitations for performing sub-critical and critical tests. The current summary provides a brief summary of the facility status and the method by which experiments may be introduced to NCERC.

  7. 75 FR 51989 - Southern LNG Company, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... Energy Regulatory Commission Southern LNG Company, L.L.C.; Notice of Application August 16, 2010. Take notice that on August 4, 2010, Southern LNG Company, L.L.C. (Southern LNG), Post Office Box 2563... Regulatory, Southern LNG Company, L.L.C., 569 Brookwood Village, Suite 501, Birmingham, Alabama 35209 at...

  8. 75 FR 60095 - Sempra LNG Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... LNG supplies. \\1\\ 15 U.S.C. 717b. \\2\\ See 49 FR 6684, February 22, 1984. Sempra states that in DOE/FE... commencing on February 1, 2011. The LNG would be exported from the Cameron LNG Terminal (Cameron Terminal) owned by Sempra's affiliate, Cameron LNG, LLC, in Cameron Parish, Louisiana to any country with...

  9. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. F Appendix F to Part 50—Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public...

  10. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site

    SciTech Connect

    N /A

    2003-11-28

    This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the ''Federal Register'' (FR) on September 18, 2001 (''Federal Register'', Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (''United States Code'', Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (''Code of Federal Regulations'', Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a ''Federal Register'' Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Paducah site; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride

  11. FACILITY UPGRADES FOR RECEIPT FROM ACTINIDE REMOVAL AND MODULAR CAUSTIC SIDE SOLVENT EXTRACTION PROCESSES AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Fellinger, T; Stephen Phillips, S; Benjamin Culbertson, B; Beverly02 Davis, B; Aaron Staub, A

    2007-02-13

    The Savannah River Site (SRS) is currently on an aggressive program to empty its High Level Waste (HLW) tanks and immobilize its radioactive waste into a durable borosilicate glass in the Defense Waste Processing Facility (DWPF). As a part of that program, two new processes will be brought on-line to assist in emptying the HLW tanks. These processes are in addition to the current sludge removal process and are called the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction (MCU) Process. In order to accept and process the streams generated from these two new processes, several facility modifications are required and are broken down into several projects. These projects are handling the facility modifications required for the Tank Farm (241-96H), and DWPF vitrification facility (221-S), and DWPF ancillary facilities (511-S, and 512-S). Additional modifications to the 221-S building were required to address the flammability concern from the solvent carryover from the MCU process. This paper will describe a summary of the modifications impacting the 511-S, 512-S, and the 221-S facilities in order to receive the new streams from the ARP and MCU processes at the DWPF.

  12. Design wind speeds for high hazard, moderate hazard, important/low hazard and general use facilities at the Savannah River Site

    SciTech Connect

    King, H.H.

    1989-09-11

    The design wind speeds for High Hazard, Moderate Hazard, Important/Low Hazard and General Use facilities at the Savannah River Site are developed below using the procedures and site-specific hazards model required by DOE Order 6430.1A. These are less than the previously required Design Wind Speeds and are: (1) High Hazard (Maximum Resistance) Facility, 185 mph; (2) Moderate Hazard (High Resistance) Facility, 37 mph; (3) Important/Low Hazard (Intermediate) Facility, 83 mph; and, (4) General Use (Standard) Facility, 78 mph.

  13. 46 CFR 154.1854 - Methane (LNG) as fuel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1854 Methane (LNG) as fuel. (a) If methane (LNG) vapors are used as fuel in the main propulsion system of a vessel, the master shall ensure that the fuel oil fired pilot under § 154.705(c) is used when the vessel is on...

  14. 46 CFR 154.1854 - Methane (LNG) as fuel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1854 Methane (LNG) as fuel. (a) If methane (LNG) vapors are used as fuel in the main propulsion system of a vessel, the master shall ensure that the fuel oil fired pilot under § 154.705(c) is used when the vessel is on...

  15. 75 FR 11000 - Security Zone; Freeport LNG Basin, Freeport, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Federal Register (33 FR 19926). We received no comments on the proposed rule. Background and Purpose... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA87 Security Zone; Freeport LNG Basin, Freeport, TX AGENCY... in the Freeport LNG Basin. This security zone is needed to protect vessels, waterfront...

  16. 78 FR 72794 - Revisions to Auxiliary Installations, Replacement Facilities, and Siting and Maintenance Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ... replacement facilities are essential to provide certificated services, and therefore are jurisdictional. We... impact . . . we need to be informed of such activities before they occur.'' Order No. 544, 57 FR 46487... temporary work space used to construct the original ] facility.'' \\32\\ In this rulemaking proceeding, we...

  17. Lessons learned from LNG safety research.

    PubMed

    Koopman, Ronald P; Ermak, Donald L

    2007-02-20

    During the period from 1977 to 1989, the Lawrence Livermore National Laboratory (LLNL) conducted a liquefied gaseous fuels spill effects program under the sponsorship of the US Department of Energy, Department of Transportation, Gas Research Institute and others. The goal of this program was to develop and validate tools that could be used to predict the effects of a large liquefied gas spill through the execution of large scale field experiments and the development of computer models to make predictions for conditions under which tests could not be performed. Over the course of the program, three series of LNG spill experiments were performed to study cloud formation, dispersion, combustion and rapid phase transition (RPT) explosions. The purpose of this paper is to provide an overview of this program, the lessons learned from 12 years of research as well as some recommendations for the future. The general conclusion from this program is that cold, dense gas related phenomena can dominate the dispersion of a large volume, high release rate spill of LNG especially under low ambient wind speed and stable atmospheric conditions, and therefore, it is necessary to include a detailed and validated description of these phenomena in computer models to adequately predict the consequences of a release. Specific conclusions include: * LNG vapor clouds are lower and wider than trace gas clouds and tend to follow the downhill slope of terrain due to dampened vertical turbulence and gravity flow within the cloud. Under low wind speed, stable atmospheric conditions, a bifurcated, two lobed structure develops. * Navier-Stokes models provide the most complete description of LNG dispersion, while more highly parameterized Lagrangian models were found to be well suited to emergency response applications. * The measured heat flux from LNG vapor cloud burns exceeded levels necessary for third degree burns and were large enough to ignite most flammable materials. * RPTs are of two

  18. Lessons learned from LNG safety research.

    PubMed

    Koopman, Ronald P; Ermak, Donald L

    2007-02-20

    During the period from 1977 to 1989, the Lawrence Livermore National Laboratory (LLNL) conducted a liquefied gaseous fuels spill effects program under the sponsorship of the US Department of Energy, Department of Transportation, Gas Research Institute and others. The goal of this program was to develop and validate tools that could be used to predict the effects of a large liquefied gas spill through the execution of large scale field experiments and the development of computer models to make predictions for conditions under which tests could not be performed. Over the course of the program, three series of LNG spill experiments were performed to study cloud formation, dispersion, combustion and rapid phase transition (RPT) explosions. The purpose of this paper is to provide an overview of this program, the lessons learned from 12 years of research as well as some recommendations for the future. The general conclusion from this program is that cold, dense gas related phenomena can dominate the dispersion of a large volume, high release rate spill of LNG especially under low ambient wind speed and stable atmospheric conditions, and therefore, it is necessary to include a detailed and validated description of these phenomena in computer models to adequately predict the consequences of a release. Specific conclusions include: * LNG vapor clouds are lower and wider than trace gas clouds and tend to follow the downhill slope of terrain due to dampened vertical turbulence and gravity flow within the cloud. Under low wind speed, stable atmospheric conditions, a bifurcated, two lobed structure develops. * Navier-Stokes models provide the most complete description of LNG dispersion, while more highly parameterized Lagrangian models were found to be well suited to emergency response applications. * The measured heat flux from LNG vapor cloud burns exceeded levels necessary for third degree burns and were large enough to ignite most flammable materials. * RPTs are of two

  19. Removal site evaluation report on the bulk shielding facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-09-01

    This removal site evaluation report on the Bulk Shielding Facility (BSF) at Oak Ridge National Laboratory was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around BSF buildings pose a substantial risk to human health or the environment (i.e., a high probability of adverse effects) and whether remedial site evaluations or removal actions are, therefore, required. A removal site evaluation was conducted at nine areas associated with the BSF. The scope of each evaluation included (1) a search for, and review of, readily available historical records regarding operations and use of the facility (including hazardous substance usage and existing contamination); (2) interviews with facility personnel concerning current and past practices; and (3) a brief walk-through to visually inspect the facility and identify existing hazard areas requiring maintenance actions or remedial evaluation. The results of the removal site evaluation indicate that no substantial risks exist from contaminants present because adequate efforts are being made to contain and control existing contamination and hazardous substances and to protect human health and the environment. At Building 3004, deteriorated and peeling exterior paint has a direct pathway to the storm water drainage system and can potentially impact local surface water during periods of storm water runoff. The paint is assumed to be lead based, thus posing a potential problem. The paint should be sampled and analyzed to determine its lead content and to assess whether a hazard exists. If so, a maintenance action will be necessary to prevent further deterioration and dislodging of the paint. In addition, if the paint contains lead, then a remedial site evaluation should be conducted to determine whether lead from fallen chips has impacted soils in the immediate area of the building.

  20. Research on energy efficiency design index for sea-going LNG carriers

    NASA Astrophysics Data System (ADS)

    Lin, Yan; Yu, Yanyun; Guan, Guan

    2014-12-01

    This paper describes the characteristics of liquefied natural gas (LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters—fuel substitution rate and recovery of boil of gas (BOG) volume to energy efficiency design index (EEDI) formula are added, and EEDI formula of LNG carriers is established based on ship EEDI formula. Then, based on steam turbine propulsion device of LNG carriers, mathematical models of LNG carriers' reference line value are established in this paper. By verification, the EEDI formula of LNG carriers described in this paper can provide a reference for LNG carrier EEDI calculation and green shipbuilding.

  1. Siting algae cultivation facilities for biofuel production in the United States: trade-offs between growth rate, site constructability, water availability, and infrastructure.

    PubMed

    Venteris, Erik R; McBride, Robert C; Coleman, Andre M; Skaggs, Richard L; Wigmosta, Mark S

    2014-03-18

    Locating sites for new algae cultivation facilities is a complex task. The climate must support high growth rates, and cultivation ponds require appropriate land and water resources, as well as transportation and utility infrastructure. We employ our spatiotemporal Biomass Assessment Tool (BAT) to select promising locations based on the open-pond cultivation of Arthrospira sp. and strains of the order Sphaeropleales. A total of 64,000 sites across the southern United States were evaluated. We progressively applied screening criteria and tracked their impact on the number of potential sites, geographic location, and biomass productivity. Both strains demonstrated maximum productivity along the Gulf of Mexico coast, with the highest values on the Florida peninsula. In contrast, sites meeting all selection criteria for Arthrospira were located along the southern coast of Texas and for Sphaeropleales were located in Louisiana and southern Arkansas. Results were driven mainly by the lack of oil pipeline access in Florida and elevated groundwater salinity in southern Texas. The requirement for low-salinity freshwater (<400 mg L(-1)) constrained Sphaeropleales locations; siting flexibility is greater for salt-tolerant species like Arthrospira. Combined siting factors can result in significant departures from regions of maximum productivity but are within the expected range of site-specific process improvements.

  2. Siting algae cultivation facilities for biofuel production in the United States: trade-offs between growth rate, site constructability, water availability, and infrastructure.

    PubMed

    Venteris, Erik R; McBride, Robert C; Coleman, Andre M; Skaggs, Richard L; Wigmosta, Mark S

    2014-03-18

    Locating sites for new algae cultivation facilities is a complex task. The climate must support high growth rates, and cultivation ponds require appropriate land and water resources, as well as transportation and utility infrastructure. We employ our spatiotemporal Biomass Assessment Tool (BAT) to select promising locations based on the open-pond cultivation of Arthrospira sp. and strains of the order Sphaeropleales. A total of 64,000 sites across the southern United States were evaluated. We progressively applied screening criteria and tracked their impact on the number of potential sites, geographic location, and biomass productivity. Both strains demonstrated maximum productivity along the Gulf of Mexico coast, with the highest values on the Florida peninsula. In contrast, sites meeting all selection criteria for Arthrospira were located along the southern coast of Texas and for Sphaeropleales were located in Louisiana and southern Arkansas. Results were driven mainly by the lack of oil pipeline access in Florida and elevated groundwater salinity in southern Texas. The requirement for low-salinity freshwater (<400 mg L(-1)) constrained Sphaeropleales locations; siting flexibility is greater for salt-tolerant species like Arthrospira. Combined siting factors can result in significant departures from regions of maximum productivity but are within the expected range of site-specific process improvements. PMID:24559117

  3. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    SciTech Connect

    Not Available

    1993-01-01

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice.

  4. Union Pacific Railroad`s LNG locomotive test program

    SciTech Connect

    Grimaila, B.

    1995-12-31

    Union Pacific Railroad is testing LNG in six locomotives through 1997 to determine if the liquefied natural gas technology is right for them. Two of the six LNG test locomotives are switch, or yard, locomotives. These 1,350 horsepower locomotives are the industry`s first locomotives totally fueled by natural gas. They`re being tested in the yard in the Los Angeles area. The other four locomotives are long-haul locomotives fueled by two tenders. These units are duel-fueled, operating on a mixture of LNG and diesel and are being tested primarily on the Los Angeles to North Platte, Nebraska corridor. All the information concerning locomotive emissions, locomotive performance, maintenance requirements, the overall LNG system design and the economic feasibility of the project will be analyzed to determine if UPR should expand, or abandon, the LNG technology.

  5. The 1993 baseline biological studies and proposed monitoring plan for the Device Assembly Facility at the Nevada Test Site

    SciTech Connect

    Woodward, B.D.; Hunter, R.B.; Greger, P.D.; Saethre, M.B.

    1995-02-01

    This report contains baseline data and recommendations for future monitoring of plants and animals near the new Device Assembly Facility (DAF) on the Nevada Test Site (NTS). The facility is a large structure designed for safely assembling nuclear weapons. Baseline data was collected in 1993, prior to the scheduled beginning of DAF operations in early 1995. Studies were not performed prior to construction and part of the task of monitoring operational effects will be to distinguish those effects from the extensive disturbance effects resulting from construction. Baseline information on species abundances and distributions was collected on ephemeral and perennial plants, mammals, reptiles, and birds in the desert ecosystems within three kilometers (km) of the DAF. Particular attention was paid to effects of selected disturbances, such as the paved road, sewage pond, and the flood-control dike, associated with the facility. Radiological monitoring of areas surrounding the DAF is not included in this report.

  6. Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site

    SciTech Connect

    1998-01-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-control and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.

  7. Closure Report for Corrective Action Unit 254: Area 25, R-MAD Decontamination Facility, Nevada Test Site, Nevada

    SciTech Connect

    G. N. Doyle

    2002-02-01

    Corrective Action Unit (CAU) 254 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles) northwest of Las Vegas, Nevada. The site is located within the Reactor Maintenance, Assembly and Disassembly (R-MAD) compound and consists of Building 3126, two outdoor decontamination pads, and surrounding areas within an existing fenced area measuring approximately 50 x 37 meters (160 x 120 feet). The site was used from the early 1960s to the early 1970s as part of the Nuclear Rocket Development Station program to decontaminate test-car hardware and tooling. The site was reactivated in the early 1980s to decontaminate a radiologically contaminated military tank. This Closure Report (CR) describes the closure activities performed to allow un-restricted release of the R-MAD Decontamination Facility.

  8. 40 CFR Table W - 6 of Subpart W-Default Methane Emission Factors for LNG Import and Export Equipment

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Factors for LNG Import and Export Equipment W Table W Protection of Environment ENVIRONMENTAL... Emission Factors for LNG Import and Export Equipment LNG import and export equipment Emission factor (scf/hour/component) Leaker Emission Factors—LNG Terminals Components, LNG Service Valve 1.19 Pump Seal...

  9. ALL-PATHWAYS DOSE ANALYSIS FOR THE PORTSMOUTH ON-SITE WASTE DISPOSAL FACILITY

    SciTech Connect

    Smith, F.; Phifer, M.

    2014-04-10

    A Portsmouth On-Site Waste Disposal Facility (OSWDF) All-Pathways analysis has been conducted that considers the radiological impacts to a resident farmer. It is assumed that the resident farmer utilizes a farm pond contaminated by the OSWDF to irrigate a garden and pasture and water livestock from which food for the resident farmer is obtained, and that the farmer utilizes groundwater from the Berea sandstone aquifer for domestic purposes (i.e. drinking water and showering). As described by FBP 2014b the Hydrologic Evaluation of Landfill Performance (HELP) model (Schroeder et al. 1994) and the Surface Transport Over Multiple Phases (STOMP) model (White and Oostrom 2000, 2006) were used to model the flow and transport from the OSWDF to the Points of Assessment (POAs) associated with the 680-ft elevation sandstone layer (680 SSL) and the Berea sandstone aquifer. From this modeling the activity concentrations radionuclides were projected over time at the POAs. The activity concentrations were utilized as input to a GoldSimTM (GTG 2010) dose model, described herein, in order to project the dose to a resident farmer over time. A base case and five sensitivity cases were analyzed. The sensitivity cases included an evaluation of the impacts of using a conservative inventory, an uncased well to the Berea sandstone aquifer, a low waste zone uranium distribution coefficient (Kd), different transfer factors, and reference person exposure parameters (i.e. at 95 percentile). The maximum base case dose within the 1,000 year assessment period was projected to be 1.5E-14 mrem/yr, and the maximum base case dose at any time less than 10,000 years was projected to be 0.002 mrem/yr. The maximum projected dose of any sensitivity case was approximately 2.6 mrem/yr associated with the use of an uncased well to the Berea sandstone aquifer. This sensitivity case is considered very unlikely because it assumes leakage from the location of greatest concentration in the 680 SSL in to the

  10. Boise Hydrogeophysical Research Site: Field-Scale Test Facility for Addressing Fundamental Questions of Environmental Science

    NASA Astrophysics Data System (ADS)

    Barrash, W.; Routh, P. S.

    2006-12-01

    The Boise Hydrogeophysical Research Site (BHRS) is a research wellfield or field-scale test facility developed in a shallow, coarse, fluvial aquifer with the objectives of supporting (a) development of cost-effective, non- invasive methods for quantitative characterization and imaging methods in heterogeneous aquifers using hydrologic and geophysical techniques; (b) examination of fundamental relationships and processes at multiple scales; (c) testing theories and models for groundwater flow and solute transport; and (d) educating and training the next generation of professionals in multidisciplinary subsurface science and engineering. The design of the wells and the wellfield provide for a wide range of single-well, cross-hole, multiwell and multilevel hydrologic, geophysical, and combined hydrologic-geophysical experiments. Efforts have been focused largely on (a) establishing the 3D distributions of geologic, hydrologic, and geophysical parameters which can then be used as the basis for testing methods to jointly invert hard and soft data to return the "known" 3D K distribution and (b) developing subsurface measurement and imaging methods including static and time-lapse tomographic imaging methods. From this work we have developed a good understanding of the hydrostratigraphic framework of the BHRS as a hierarchical system which includes layers and lenses; this framework is recognized with geologic, hydrologic, radar, seismic, and EM methods and tracer tests. Work to date has been conducted by Boise State University with some collaboration and exchange with researchers and students from other institutions. At this point the BHRS is functioning well as a field-scale control volume and test cell in a multiscale heterogeneous aquifer so there is an opportunity to increase the range of both collaborative participation and research activities at the BHRS. In this regard, opportunities exist to investigate and monitor process and property variation in time and space

  11. Corrective Action Plan for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility Nevada Test Site, Nevada

    SciTech Connect

    C. M. Obi

    2000-12-01

    The Area 25 Reactor Maintenance, Assembly, and Disassembly Decontamination Facility is identified in the Federal Facility Agreement and Consent Order (FFACO) as Corrective Action Unit (CAU) 254. CAU 254 is located in Area 25 of the Nevada Test Site and consists of a single Corrective Action Site CAS 25-23-06. CAU 254 will be closed, in accordance with the FFACO of 1996. CAU 254 was used primarily to perform radiological decontamination and consists of Building 3126, two outdoor decontamination pads, and surrounding soil within an existing perimeter fence. The site was used to decontaminate nuclear rocket test-car hardware and tooling from the early 1960s through the early 1970s, and to decontaminate a military tank in the early 1980s. The site characterization results indicate that, in places, the surficial soil and building materials exceed clean-up criteria for organic compounds, metals, and radionuclides. Closure activities are expected to generate waste streams consisting of nonhazardous construction waste. petroleum hydrocarbon waste, hazardous waste, low-level radioactive waste, and mixed waste. Some of the wastes exceed land disposal restriction limits and will require off-site treatment before disposal. The recommended corrective action was revised to Alternative 3- ''Unrestricted Release Decontamination, Verification Survey, and Dismantle Building 3126,'' in an addendum to the Correction Action Decision Document.

  12. Rocketdyne division, environmental monitoring and facility effluent. Annual report, De Soto and Santa Susana Field Laboratories Sites, 1986

    SciTech Connect

    Moore, J. D.

    1987-03-01

    Environmental and facility effluent radioactivity monitoring at the Rocketdyne Division of Rockwell International is performed by the Radiation and Nuclear Safety Group of the Health, Safety, and Environment Department. Soil and surface water are routinely sampled to a distance of 10 miles from Division sites. Ground water from site supply water wells and other test wells is periodically sampled to measure radioactivity in these waters. Continuous ambient air sampling and direct radiation monitoring by thermoluminescent dosimetry are performed at several on=site and off-site locations for measuring airborne radioactivity concentrations and site ambient radiation levels. Radioactivity in effluents discharged to the atmosphere from nuclear facilities is continuously sampled and monitored to ensure that amounts released to uncontrolled areas are below appropriate limits and to identify processes that may require additional engineering safeguards to minimize radioactivity in such discharges. In addition, selected nonradioactive chemical constituent concentrations in surface water discharged to uncontrolled areas are determined. The environmental radioactivity reported herein is attributed to natural sources, to local fallout of radioactive debris from the Chernobyl reactor accident, and to residual fallout of radioactive material from past atmospheric testing of nuclear devices.

  13. Characterization and reclamation assessment for the Central Shops Diesel Storage Facility, Savannah River Site, Aiken, South Carolina

    SciTech Connect

    Fliermans, C.B.; Hazen, T.C.; Bledsoe, H.

    1993-10-01

    The contamination of subsurface terrestrial environments by organic contaminants is a global phenomenon. The remediation of such environments requires innovative assessment techniques and strategies for successful clean-ups. Central Shops Diesel Storage Facility at Savannah River Site was characterized to determine the extent of subsurface diesel fuel contamination using innovative approaches and effective bioremediation techniques for clean-up of the contaminant plume have been established.

  14. Facility design criteria AN/GSC-39(V) 1 Earth terminal complex fixed site configuration. Addendum 1. HEMP considerations

    NASA Astrophysics Data System (ADS)

    Clark, S. A., Jr.; Chase, R. J.; Penar, J. D.

    1981-03-01

    This addendum provides high altitude electromagnetic pulse (HEMP) hardening design criteria for the AN/GSC-39 Earth Terminal Complex fixed site facilities. In addition to other criteria, this addendum is to be used for preparing construction plans and specifications for the Earth terminal complex. These HEMP criteria are based on two reports for HEMP hardening of the AN/FSC-78 Satellite Communications Terminal. The hardening measures developed in this Addendum will enhance protection for the digital communications subsystem.

  15. Assessment of Potential Flood Events and Impacts at INL's Proposed Remote-Handled Low-Level Waste Disposal Facility Sites

    SciTech Connect

    A. Jeff Sondrup; Annette L. Schafter

    2010-09-01

    Rates, depths, erosion potential, increased subsurface transport rates, and annual exceedance probability for potential flooding scenarios have been evaluated for the on-site alternatives of Idaho National Laboratory’s proposed remote handled low-level waste disposal facility. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of flood impacts are required to meet the Department of Energy’s Low-Level Waste requirements (DOE-O 435.1), its natural phenomena hazards assessment criteria (DOE-STD-1023-95), and the Radioactive Waste Management Manual (DOE M 435.1-1) guidance in addition to being required by the National Environmental Policy Act (NEPA) environmental assessment (EA). Potential sources of water evaluated include those arising from (1) local precipitation events, (2) precipitation events occurring off of the INL (off-site precipitation), and (3) increased flows in the Big Lost River in the event of a Mackay Dam failure. On-site precipitation events include potential snow-melt and rainfall. Extreme rainfall events were evaluated for the potential to create local erosion, particularly of the barrier placed over the disposal facility. Off-site precipitation carried onto the INL by the Big Lost River channel was evaluated for overland migration of water away from the river channel. Off-site precipitation sources evaluated were those occurring in the drainage basin above Mackay Reservoir. In the worst-case scenarios, precipitation occurring above Mackay Dam could exceed the dam’s capacity, leading to overtopping, and eventually complete dam failure. Mackay Dam could also fail during a seismic event or as a result of mechanical piping. Some of the water released during dam failure, and contributing precipitation, has the potential of being carried onto the INL in the Big Lost River channel. Resulting overland flows from these flood sources were evaluated for

  16. National Bureau of Standards passive solar test facility: Instrumentation and site handbook

    NASA Astrophysics Data System (ADS)

    Mahajan, B. M.

    1984-08-01

    This handbook provides a complete description of the test buildng, thermophysical properties of the building material, location of the sensors installed at the test facility, and data acquisition system and procedures.

  17. Manhattan Project buildings and facilities at the Hanford Site: A construction history

    SciTech Connect

    Gerber, M.S.

    1993-09-01

    This document thoroughly examines the role that the Hanford Engineer Works played in the Manhattan project. The historical aspects of the buildings and facilities are characterized. An in depth look at the facilities, including their functions, methods of fabrication and appearance is given for the 100 AREAS, 200 AREAS, 300 AREAS, 500, 800 and 900 AREAS, 600 AREA, 700 AREA, 1100 AREA and temporary construction structures.

  18. Feasibility study: Assess the feasibility of siting a monitored retrievable storage facility. Phase 1

    SciTech Connect

    King, J.W.

    1993-08-01

    The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction.

  19. Initiating continuing improvement within Greenfield sites: A federal remanufacturing facility case study

    SciTech Connect

    Montgomery, J.C.; Paul, B.K.

    1992-09-01

    The setting for this study was a federal government remanufacturing depot, responsible for the replacement and overhaul of large wheeled vehicles. These vehicles include 2.5 and 5 ton trucks and their major subordinate component items such as engines, axles, and transmissions. At the time of the case study the depot was involved in the design and construction of a 400,000 square foot hard metal subordinate items remanufacturing facility. The purpose of the facility was to consolidate all existing subordinate item remanufacturing under one roof. Commodity items to be remanufactured within the facility included engines, transmissions, transfer cases, axles, differentials, power generators, and other components. From the onset, the concept of consolidating existing processes under one roof had posed a significant material handling problem. Digital simulation was used to analyze material flow patterns within the new facility. As a result it was determined that, without changing the existing flow of material between processes, significant choke points would form in the areas of shared-capacity resources such as cleaning and painting. It was estimated that these choke points, representing piles of work-in-process (WIP) inventory, would clog aisles and prevent forklifts from making essential deliveries. Thus, a strategy was needed for controlling the buildup of WIP inventory within the new facility. To accomplish this objective, a program was begun to certify the WIP inventory levels of each subordinate item commodity line within existing facilities prior to the move into the new facility. This program focused on training workers in new methods of inventory control, production control, and quality control needed to minimize the WIP levels required within the new facility.

  20. Niagara falls storage site: Annual site environmental report, Lewiston, New York, Calendar Year 1988: Surplus Facilities Management Program (SFMP)

    SciTech Connect

    Not Available

    1989-04-01

    The monitoring program at the Niagara Falls Storage Site (NFSS) measures radon concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess its potential effect on public health, the radiation dose was calculated for a hypothetical maximally exposed individual. Based on the conservative scenario described in this report, this hypothetical individual receives an annual external exposure approximately equivalent to 6 percent of the DOE radiation protection standard of 100 mrem/yr. This exposure is less than a person receives during two round-trip flights from New York to Los Angeles (because of the greater amounts of cosmic radiation at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of the NFSS that results from radioactive materials present at the site is indistinguishable from the dose that the same population receives from naturally occurring radioactive sources. Results of the 1988 monitoring show that the NFSS is in compliance with applicable DOE radiation protection standards. 17 refs., 31 figs., 20 tabs.

  1. Space Nuclear Facility test capability at the Baikal-1 and IGR sites Semipalatinsk-21, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Hill, T. J.; Stanley, M. L.; Martinell, J. S.

    1993-01-01

    The International Space Technology Assessment Program was established 1/19/92 to take advantage of the availability of Russian space technology and hardware. DOE had two delegations visit CIS and assess its space nuclear power and propulsion technologies. The visit coincided with the Conference on Nuclear Power Engineering in Space Nuclear Rocket Engines at Semipalatinsk-21 (Kurchatov, Kazakhstan) on Sept. 22-25, 1992. Reactor facilities assessed in Semipalatinski-21 included the IVG-1 reactor (a nuclear furnace, which has been modified and now called IVG-1M), the RA reactor, and the Impulse Graphite Reactor (IGR), the CIS version of TREAT. Although the reactor facilities are being maintained satisfactorily, the support infrastructure appears to be degrading. The group assessment is based on two half-day tours of the Baikals-1 test facility and a brief (2 hr) tour of IGR; because of limited time and the large size of the tour group, it was impossible to obtain answers to all prepared questions. Potential benefit is that CIS fuels and facilities may permit USA to conduct a lower priced space nuclear propulsion program while achieving higher performance capability faster, and immediate access to test facilities that cannot be available in this country for 5 years. Information needs to be obtained about available data acquisition capability, accuracy, frequency response, and number of channels. Potential areas of interest with broad application in the U.S. nuclear industry are listed.

  2. Processing capabilties for the elimination of contaminated metal scrapyards at DOE/ORO-managed sites. [Metal smelting facility

    SciTech Connect

    Mack, J.E.; Williams, L.C.

    1982-01-01

    Capabilities exist for reducing all the contaminated nickel, aluminum, and copper scrap to ingot form by smelting. Processing these metals at existing facilities could be completed in about 5 or 6 years. However, these metals represent only about 20% of the total metal inventories currently on hand at the DOE/ORO-managed sites. No provisions have been made for the ferrous scrap. Most of the ferrous scrap is unclassified and does not require secured storage. Also, the potential resale value of the ferrous scrap at about $100 per ton is very low in comparison. Consequently, this scrap has been allowed to accumulate. With several modifications and equipment additions, the induction melter at PGDP could begin processing ferrous scrap after its commitment to nickel and aluminum. The PGDP smelter is a retrofit installation, and annual throughput capabilities are limited. Processing of the existing ferrous scrap inventories would not be completed until the FY 1995-2000 time frame. An alternative proposal has been the installation of induction melters at the other two enrichment facilities. Conceptual design of a generic metal smelting facility is under way. The design study includes capital and operating costs for scrap preparation through ingot storage at an annual throughput of 10,000 tons per year. Facility design includes an induction melter with the capability of melting both ferrous and nonferrous metals. After three years of operation with scrapyard feed, the smelter would have excess capacity to support on-site decontamination and decomissioning projects or upgrading programs. The metal smelting facility has been proposed for FY 1984 line item funding with start-up operations in FY 1986.

  3. Evaluation of the effects of underground water usage and spillage in the Exploratory Studies Facility; Yucca Mountain Site Characterization Project

    SciTech Connect

    Dunn, E.; Sobolik, S.R.

    1993-12-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level radioactive waste repository. Analyses reported herein were performed to support the design of site characterization activities so that these activities will have a minimal impact on the ability of the site to isolate waste and a minimal impact on underground tests performed as part of the characterization process. These analyses examine the effect of water to be used in the underground construction and testing activities for the Exploratory Studies Facility on in situ conditions. Underground activities and events where water will be used include construction, expected but unplanned spills, and fire protection. The models used predict that, if the current requirements in the Exploratory Studies Facility Design Requirements are observed, water that is imbibed into the tunnel wall rock in the Topopah Springs welded tuff can be removed over the preclosure time period by routine or corrective ventilation, and also that water imbibed into the Paintbrush Tuff nonwelded tuff will not reach the potential waste storage area.

  4. Rocketdyne division, envionmental monitoring and facility effluent. Annual report, De Soto and Santa Susana Field Laboratories Sites, 1988

    SciTech Connect

    Moore, J. D.

    1989-05-01

    Environmental and facility effluent radioactivity monitoring at the Rocketdyne Division of Rockwell International is performed by the Radiation and Nuclear Safety Group of the Health, Safety, and Environment Department. Soil and surface water are routinely sampled to a distance of 16 km from division sites. Groundwater from Santa Susana Field Laboratories (SSFL) supply water wells and other test wells is periodically sampled to measure radioactivity. Continuous ambient air sampling and direct radiation monitoring by thermoluminescent dosimetry are performed at several on-site and off-site locations for measuring airborne radioactivity concentrations and site ambient radiation levels. Radioactivity in effluents discharged to the atmosphere from nuclear facilities is continually sampled and monitored to assure that amounts released to uncontrolled areas are below appropriate limits. These procedures also help identify processes that may require additional engineering safeguards to minimize radioactivity in such discharges. In addition, selected nonradioactive chemical constituent concentrations in surface water discharged to uncontrolled areas are measured. The environmental radioactivity reported herein is attributed to natural sources and to residual fallout of radioactive material from past atmospheric testing of nuclear devices.

  5. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text. Environmental Restoration Program

    SciTech Connect

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  6. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    SciTech Connect

    Not Available

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.

  7. Particle- and Gaseous Emissions from an LNG Powered Ship.

    PubMed

    Anderson, Maria; Salo, Kent; Fridell, Erik

    2015-10-20

    Measurements of particle number and mass concentrations and number size distribution of particles from a ship running on liquefied natural gas (LNG) were made on-board a ship with dual-fuel engines installed. Today there is a large interest in LNG as a marine fuel, as a means to comply with sulfur and NOX regulations. Particles were studied in a wide size range together with measurements of other exhaust gases under different engine loads and different mixtures of LNG and marine gas oil. Results from these measurements show that emissions of particles, NOX, and CO2 are considerably lower for LNG compared to present marine fuel oils. Emitted particles were mainly of volatile character and mainly had diameters below 50 nm. Number size distribution for LNG showed a distinct peak at 9-10 nm and a part of a peak at diameter 6 nm and below. Emissions of total hydrocarbons and carbon monoxide are higher for LNG compared to present marine fuel oils, which points to the importance of considering the methane slip from combustion of LNG. PMID:26422536

  8. Particle- and Gaseous Emissions from an LNG Powered Ship.

    PubMed

    Anderson, Maria; Salo, Kent; Fridell, Erik

    2015-10-20

    Measurements of particle number and mass concentrations and number size distribution of particles from a ship running on liquefied natural gas (LNG) were made on-board a ship with dual-fuel engines installed. Today there is a large interest in LNG as a marine fuel, as a means to comply with sulfur and NOX regulations. Particles were studied in a wide size range together with measurements of other exhaust gases under different engine loads and different mixtures of LNG and marine gas oil. Results from these measurements show that emissions of particles, NOX, and CO2 are considerably lower for LNG compared to present marine fuel oils. Emitted particles were mainly of volatile character and mainly had diameters below 50 nm. Number size distribution for LNG showed a distinct peak at 9-10 nm and a part of a peak at diameter 6 nm and below. Emissions of total hydrocarbons and carbon monoxide are higher for LNG compared to present marine fuel oils, which points to the importance of considering the methane slip from combustion of LNG.

  9. Groundwater monitoring plan for the Hanford Site 216-B-3 pond RCRA facility

    SciTech Connect

    Barnett, D.B.; Chou, C.J.

    1998-06-01

    The 216-B-3 pond system was a series of ponds for disposal of liquid effluent from past Hanford production facilities. In operation since 1945, the B Pond system has been a RCRA facility since 1986, with Resource Conservation and Recovery Act (RCRA) interim-status groundwater monitoring in place since 1988. In 1994, discharges were diverted from the main pond, where the greatest potential for contamination was thought to reside, to the 3C expansion pond. In 1997, all discharges to the pond system were discontinued. In 1990, the B Pond system was elevated from detection groundwater monitoring to an assessment-level status because total organic halogens and total organic carbon were found to exceed critical means in two wells. Subsequent groundwater quality assessment failed to find any specific hazardous waste contaminant that could have accounted for the exceedances, which were largely isolated in occurrence. Thus, it was recommended that the facility be returned to detection-level monitoring.

  10. Nest site characteristics, nesting movements, and lack of long-term nest site fidelity in Agassiz's desert tortoises at a wind energy facility in southern California

    USGS Publications Warehouse

    Lovich, Jeffrey E.; Agha, Mickey; Yackulic, Charles B.; Meyer-Wilkins, Kathie; Bjurlin, Curtis; Ennen, Joshua R.; Arundel, Terry R.; Austin, Meaghan

    2014-01-01

    Nest site selection has important consequences for maternal and offspring survival and fitness. Females of some species return to the same nesting areas year after year. We studied nest site characteristics, fidelity, and daily pre-nesting movements in a population of Agassiz’s desert tortoises (Gopherus agassizii) at a wind energy facility in southern California during two field seasons separated by over a decade. No females returned to the same exact nest site within or between years but several nested in the same general area. However, distances between first and second clutches within a year (2000) were not significantly different from distances between nests among years (2000 and 2011) for a small sample of females, suggesting some degree of fidelity within their normal activity areas. Environmental attributes of nest sites did not differ significantly among females but did among years due largely to changes in perennial plant structure as a result of multiple fires. Daily pre-nesting distances moved by females decreased consistently from the time shelled eggs were first visible in X-radiographs until oviposition, again suggesting some degree of nest site selection. Tortoises appear to select nest sites that are within their long-term activity areas, inside the climate-moderated confines of one of their self-constructed burrows, and specifically, at a depth in the burrow that minimizes exposure of eggs and embryos to lethal incubation temperatures. Nesting in “climate-controlled” burrows and nest guarding by females relaxes some of the constraints that drive nest site selection in other oviparous species.

  11. U.S. LNG imports 1996--1997 should recover from low 1995 levels

    SciTech Connect

    Swain, E.J.

    1997-01-27

    Imports of LNG into the US in 1995 were the lowest since 1988, when 17.5 billion cu ft were imported. Total 1995 LNG imported from Algeria was 17.92 bcf compared to 50.78 in 1994, a decrease of 64.7%. About 72% of imported Algerian LNG was received at the Distrigas Corp. terminal north of Boston. The remaining LNG was received at the Trunkline LNG CO. terminal, Lake Charles, La., which was reopened in December 1989. The dramatic decline in LNG imports over the past 2 years (78%) can largely be attributed to Sonatrach`s multiyear renovation project to restore its LNG plants to their original capacities. This major renovation project has resulted in LNG export curtailments to all of its customers. The paper discusses US terminals, base-load producers, LNG pricing, and exports.

  12. A dispersion safety factor for LNG vapor clouds.

    PubMed

    Vílchez, Juan A; Villafañe, Diana; Casal, Joaquim

    2013-02-15

    The growing importance of liquefied natural gas (LNG) to global energy demand has increased interest in the possible hazards associated with its storage and transportation. Concerning the event of an LNG spill, a study was performed on the relationship between the distance at which the lower flammability limit (LFL) concentration occurs and that corresponding to the visible contour of LNG vapor clouds. A parameter called the dispersion safety factor (DSF) has been defined as the ratio between these two lengths, and two expressions are proposed to estimate it. During an emergency, the DSF can be a helpful parameter to indicate the danger of cloud ignition and flash fire.

  13. Thermoelectric Power Conversion System Combined with LNG Vaporizer

    NASA Astrophysics Data System (ADS)

    Kambe, Mitsuru; Morita, Ryo; Omoto, Kazuyuki; Koji, Yasuhiro; Yoshida, Tatsuo; Noishiki, Koji

    A conceptual design of the thermoelectric power conversion system combined with open rack type LNG (liquefied natural gas) vaporizer to make use of cold heat of LNG is presented. The system performance analysis has been made based on the thermoelectric module performance data obtained at the cryogenic thermoelectric (CTE) test rig which could realize temperature and fluid dynamic condition of the open rack type LNG vaporizer. Conventional bismuth-telluride thermoelectric modules were tested, however, each module is encapsulated in the stainless steel container to achieve water proof. Electricity production cost evaluation of the system is also discussed.

  14. Four band differential radiometer for monitoring LNG vapors

    NASA Technical Reports Server (NTRS)

    Simmonds, J. J.

    1981-01-01

    The development by JPL of a four band differential radiometer (FBDR) which is capable of providing a fast rate of response, accurate measurements of methane, ethane, and propane concentrations on the periphery of a dispersing LNG cloud. The FBDR is a small, low power, lightweight, portable instrument system that uses differential absorption of near infrared radiation by the LNG cloud as a technique for the determination of concentration of the three gases as the LNG cloud passes the instrument position. Instrument design and data analysis approaches are described. The data obtained from the FBDR prototype instrument system deployed in an instrument array during two 40 cubic meter spill tests are discussed.

  15. A dispersion safety factor for LNG vapor clouds.

    PubMed

    Vílchez, Juan A; Villafañe, Diana; Casal, Joaquim

    2013-02-15

    The growing importance of liquefied natural gas (LNG) to global energy demand has increased interest in the possible hazards associated with its storage and transportation. Concerning the event of an LNG spill, a study was performed on the relationship between the distance at which the lower flammability limit (LFL) concentration occurs and that corresponding to the visible contour of LNG vapor clouds. A parameter called the dispersion safety factor (DSF) has been defined as the ratio between these two lengths, and two expressions are proposed to estimate it. During an emergency, the DSF can be a helpful parameter to indicate the danger of cloud ignition and flash fire. PMID:23305750

  16. New energy saving system for future LNG carriers

    SciTech Connect

    Kahara, Susumu; Suetake, Yoshihiro; Ishimaru, Junshiro; Hiraoka, Kazuyoshi

    1994-12-31

    Steam turbine plant, which burns BOG (Boil-Off Gas) as fuel, has bene installed for LNG carriers with the necessity of disposing BOG safely. Are other plants unpractical for LNG carriers? To answer to this question, this paper evaluates (1) dual fuel diesel, (2) diesel with reliquefaction plant, (3) diesel with auxiliary boiler and power assist motor, (4) gas turbine/steam turbine and (5) steam turbine with CRP (Contra Rotating Propeller) from several aspects, such as safety and reliability, maintainability and operability, economy and effect on environment. Based on the above studies, this paper proposes Steam turbine with CRP plant as a new energy saving system for future LNG carriers.

  17. Tritium monitoring in groundwater and evaluation of model predictions for the Hanford Site 200 Area Effluent Treatment Facility

    SciTech Connect

    Barnett, D.B.; Bergeron, M.P.; Cole, C.R.; Freshley, M.D.; Wurstner, S.K.

    1997-08-01

    The Effluent Treatment Facility (ETF) disposal site, also known as the State-Approved Land Disposal Site (SALDS), receives treated effluent containing tritium, which is allowed to infiltrate through the soil column to the water table. Tritium was first detected in groundwater monitoring wells around the facility in July 1996. The SALDS groundwater monitoring plan requires revision of a predictive groundwater model and reevaluation of the monitoring well network one year from the first detection of tritium in groundwater. This document is written primarily to satisfy these requirements and to report on analytical results for tritium in the SALDS groundwater monitoring network through April 1997. The document also recommends an approach to continued groundwater monitoring for tritium at the SALDS. Comparison of numerical groundwater models applied over the last several years indicate that earlier predictions, which show tritium from the SALDS approaching the Columbia River, were too simplified or overly robust in source assumptions. The most recent modeling indicates that concentrations of tritium above 500 pCi/L will extend, at most, no further than {approximately}1.5 km from the facility, using the most reasonable projections of ETF operation. This extent encompasses only the wells in the current SALDS tritium-tracking network.

  18. An exposure assessment of radionuclide emissions associated with potential mixed-low level waste disposal facilities at fifteen DOE sites

    SciTech Connect

    Lombardi, D.A.; Socolof, M.L.

    1996-05-01

    A screening method was developed to compare the doses received via the atmospheric pathway at 15 potential DOE MLLW (mixed low-level waste) sites. Permissible waste concentrations were back calculated using the radioactivity NESHAP (National Emissions Standards for Hazardous Air Pollutants) in 40 FR 61 (DOE Order 5820.2A performance objective). Site-specific soil and meteorological data were used to determine permissible waste concentrations (PORK). For a particular radionuclide, perks for each site do not vary by more than one order of magnitude. perks of {sup 14}C are about six orders of magnitude more restrictive than perks of {sup 3}H because of differences in liquid/vapor partitioning, decay, and exposure dose. When comparing results from the atmospheric pathway to the water and intruder pathways, {sup 14}C disposal concentrations were limited by the atmospheric pathway for most arid sites; for {sup 3}H, the atmospheric pathway was not limiting at any of the sites. Results of this performance evaluation process are to be used for planning for siting of disposal facilities.

  19. Library Off-Site Shelving: Guide for High-Density Facilities.

    ERIC Educational Resources Information Center

    Nitecki, Danuta A., Ed.; Kendrick, Curtis L., Ed.

    This collection of essays addresses the planning, construction, and operating issues relating to high-density library shelving facilities. The volume covers essential topics that address issues relating to the building, its operations, and serving the collections. It begins with an introduction by the volume's editors, "The Paradox and Politics of…

  20. Rapid on-site air sampling with a needle extraction device for evaluating the indoor air environment in school facilities.

    PubMed

    Inoue, Mitsuru; Mizuguchi, Ayako; Ueta, Ikuo; Takahashi, Kazuya; Saito, Yoshihiro

    2013-01-01

    A rapid on-site air sampling technique was developed with a miniaturized needle-type sample preparation device for a systematic evaluation of the indoor air environments in school facilities. With the in-needle extraction device packed with a polymer particle of divinylbenzene and activated carbon particles, various types of volatile organic compounds (VOCs) were successfully extracted. For evaluating the indoor air qualities in school facilities, air samples in renovated rooms using organic solvent as a thinner of the paint were analyzed along with measurements of several VOCs in indoor air samples taken in newly built primary schools mainly using low-VOCs materials. After periodical renovation/maintenance, the time-variation profile of typical VOCs found in the school facilities has also been monitored. From the results, it could be observed that the VOCs in most of the rooms in these primary schools were at a quite low level; however, a relatively higher concentration of VOCs was found in some specially designed rooms, such as music rooms. In addition, some non-regulated compounds, including benzyl alcohol and branched alkanes, were detected in these primary schools. The results showed a good applicability of the needle device to indoor air analysis in schools, suggesting a wide range of future employment of the needle device, especially for indoor air analysis in other types of facilities and rooms including hospitals and hotels. PMID:23665624

  1. Decommissioning and Dismantling of Liquid Waste Storage and Liquid Waste Treatment Facility from Paldiski Nuclear Site, Estonia

    SciTech Connect

    Varvas, M.; Putnik, H.; Johnsson, B.

    2006-07-01

    The Paldiski Nuclear Facility in Estonia, with two nuclear reactors was owned by the Soviet Navy and was used for training the navy personnel to operate submarine nuclear reactors. After collapse of Soviet Union the Facility was shut down and handed over to the Estonian government in 1995. In co-operation with the Paldiski International Expert Reference Group (PIERG) decommission strategy was worked out and started to implement. Conditioning of solid and liquid operational waste and dismantling of contaminated installations and buildings were among the key issues of the Strategy. Most of the liquid waste volume, remained at the Facility, was processed in the frames of an Estonian-Finnish co-operation project using a mobile wastewater purification unit NURES (IVO International OY) and water was discharged prior to the site take-over. In 1999-2002 ca 120 m{sup 3} of semi-liquid tank sediments (a mixture of ion exchange resins, sand filters, evaporator and flocculation slurry), remained after treatment of liquid waste were solidified in steel containers and stored into interim storage. The project was carried out under the Swedish - Estonian co-operation program on radiation protection and nuclear safety. Contaminated installations in buildings, used for treatment and storage of liquid waste (Liquid Waste Treatment Facility and Liquid Waste Storage) were then dismantled and the buildings demolished in 2001-2004. (authors)

  2. Construction of the Largest Radionuclide Commingled Plume Groundwater Treatment Facility for the Department of Energy at the Hanford Site - 12411

    SciTech Connect

    Pargmann, Delise

    2012-07-01

    CH2M Hill Plateau Remediation Company (CHPRC) has constructed the largest groundwater treatment systems of its kind throughout the DOE Complex at the Hanford Site in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds. This complex, one of a kind groundwater treatment facility in Washington State has also attained Leadership in Energy and Environmental Design (LEED) Gold certification. The original concept for the 200 West Area groundwater treatment facility was a 6100 liter per minute (1,600 gallon per minute) facility. With additional ARRA funding, the plant design was improved to construct a 9500 liter per minute (2,500 gallon per minute) facility with expansion areas up to 14,000 liter per minute (3,750 gallon per minute). The current design will remove 53 percent more mass per year for faster clean-up. It is also expected to treat extracted groundwater to 25 percent or less than the Record of Decision-specified limit which improves Monitored Natural Attenuation (MNA) effectiveness. (author)

  3. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    SciTech Connect

    Husler, R.O.; Weir, T.J.

    1991-12-31

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I&C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.

  4. Corrective Action Decision Document for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility, Nevada Test Site, Nevada

    SciTech Connect

    U.S. Department of Energy, Nevada Operations Office

    2000-06-01

    This Corrective Action Decision Document identifies and rationalizes the US Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 254, R-MAD Decontamination Facility, under the Federal Facility Agreement and Consent Order. Located in Area 25 at the Nevada Test Site in Nevada, CAU 254 is comprised of Corrective Action Site (CAS) 25-23-06, Decontamination Facility. A corrective action investigation for this CAS as conducted in January 2000 as set forth in the related Corrective Action Investigation Plan. Samples were collected from various media throughout the CAS and sent to an off-site laboratory for analysis. The laboratory results indicated the following: radiation dose rates inside the Decontamination Facility, Building 3126, and in the storage yard exceeded the average general dose rate; scanning and static total surface contamination surveys indicated that portions of the locker and shower room floor, decontamination bay floor, loft floor, east and west decon pads, north and south decontamination bay interior walls, exterior west and south walls, and loft walls were above preliminary action levels (PALs). The investigation-derived contaminants of concern (COCs) included: polychlorinated biphenyls, radionuclides (strontium-90, niobium-94, cesium-137, uranium-234 and -235), total volatile and semivolatile organic compounds, total petroleum hydrocarbons, and total Resource Conservation and Recovery Act (Metals). During the investigation, two corrective action objectives (CAOs) were identified to prevent or mitigate human exposure to COCs. Based on these CAOs, a review of existing data, future use, and current operations at the Nevada Test Site, three CAAs were developed for consideration: Alternative 1 - No Further Action; Alternative 2 - Unrestricted Release Decontamination and Verification Survey; and Alternative 3 - Unrestricted

  5. Facility Utilization and Risk Analysis for Remediation of Legacy Transuranic Waste at the Savannah River Site - 13572

    SciTech Connect

    Gilles, Michael L.; Gilmour, John C.

    2013-07-01

    Savannah River Nuclear Solutions (SRNS) completed the Accelerated TRU Project for remediating legacy waste at the Savannah River Site with significant cost and schedule efficiencies due to early identification of resources and utilization of risk matrices. Initial project planning included identification of existing facilities that could be modified to meet the technical requirements needed for repackaging and remediating the waste. The project schedule was then optimized by utilization of risk matrices that identified alternate strategies and parallel processing paths which drove the overall success of the project. Early completion of the Accelerated TRU Project allowed SRNS to pursue stretch goals associated with remediating very difficult TRU waste such as concrete casks from the hot cells in the Savannah River National Laboratory. Project planning for stretch goals also utilized existing facilities and the risk matrices. The Accelerated TRU project and stretch goals were funded under the American Recovery and Reinvestment Act (ARRA). (authors)

  6. Technical assistance to Ohio closure sites; Technologies to address leachate from the on-site disposal facility at Fernald Environmental Management Project, Ohio

    SciTech Connect

    Hazen, Terry

    2002-08-26

    On August 6-7, 2002, a Technical Assistance Team (''Team'') from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with Fernald Environmental Management Project (FEMP) personnel in Ohio to assess approaches to remediating uranium-contaminated leachate from the On-Site Disposal Facility (OSDF). The Team was composed of technical experts from national labs, technology centers, and industry and was assembled in response to a request from the FEMP Aquifer Restoration Project. Dave Brettschneider of Fluor Fernald, Inc., requested that a Team of experts be convened to review technologies for the removal of uranium in both brine ion exchange regeneration solution from the Advanced Wastewater Treatment facility and in the leachate from the OSDF. The Team was asked to identify one or more technologies for bench-scale testing as a cost effective alternative to remove uranium so that the brine regeneration solution from the Advanced Waste Water Treatment facility and the leachate from the OSDF can be discharged without further treatment. The Team was also requested to prepare a recommended development and demonstration plan for the alternative technologies. Finally, the Team was asked to make recommendations on the optimal technical solution for field implementation. The Site's expected outcomes for this effort are schedule acceleration, cost reduction, and better long-term stewardship implementation. To facilitate consideration of the most appropriate technologies, the Team was divided into two groups to consider the brine and the leachate separately, since they represent different sources with different constraints on solutions, e.g., short-term versus very long-term and concentrated versus dilute contaminant matrices. This report focuses on the technologies that are most appropriate for the leachate from the OSDF. Upon arriving at FEMP, project personnel asked the Team to concentrate its efforts on evaluating potential technologies and

  7. Using Geographic Information Systems to Determine Site Suitability for a Low-Level Radioactive Waste Storage Facility.

    PubMed

    Wilson, Charles A; Matthews, Kennith; Pulsipher, Allan; Wang, Wei-Hsung

    2016-02-01

    ) sites. Cells above 90%, 95%, and 99% suitability include respectively 404, 88, and 4 cells suitable for further analysis. With these areas identified, the next step in siting a LLW storage facility would be on-site analysis using additional requirements as specified by relevant regulatory guidelines. The GIS based method provides an easy, economic, efficient and effective means in evaluating potential sites for LLW storage facilities where sufficient GIS data exist. PMID:26710161

  8. Using Geographic Information Systems to Determine Site Suitability for a Low-Level Radioactive Waste Storage Facility.

    PubMed

    Wilson, Charles A; Matthews, Kennith; Pulsipher, Allan; Wang, Wei-Hsung

    2016-02-01

    ) sites. Cells above 90%, 95%, and 99% suitability include respectively 404, 88, and 4 cells suitable for further analysis. With these areas identified, the next step in siting a LLW storage facility would be on-site analysis using additional requirements as specified by relevant regulatory guidelines. The GIS based method provides an easy, economic, efficient and effective means in evaluating potential sites for LLW storage facilities where sufficient GIS data exist.

  9. Groundwater Monitoring Plan for the Hanford Site 216-B-3 Pond RCRA Facility

    SciTech Connect

    Barnett, D BRENT.; Smith, Ronald M.; Chou, Charissa J.; McDonald, John P.

    2005-11-01

    The 216-B-3 Pond system was a series of ponds used for disposal of liquid effluent from past Hanford production facilities. In operation from 1945 to 1997, the B Pond System has been a Resource Conservation and Recovery Act (RCRA) facility since 1986, with RCRA interim-status groundwater monitoring in place since 1988. In 1994 the expansion ponds of the facility were clean closed, leaving only the main pond and a portion of the 216-B-3-3 ditch as the currently regulated facility. In 2001, the Washington State Department of Ecology (Ecology) issued a letter providing guidance for a two-year, trial evaluation of an alternate, intrawell statistical approach to contaminant detection monitoring at the B Pond system. This temporary variance was allowed because the standard indicator-parameters evaluation (pH, specific conductance, total organic carbon, and total organic halides) and accompanying interim status statistical approach is ineffective for detecting potential B-Pond-derived contaminants in groundwater, primarily because this method fails to account for variability in the background data and because B Pond leachate is not expected to affect the indicator parameters. In July 2003, the final samples were collected for the two-year variance period. An evaluation of the results of the alternate statistical approach is currently in progress. While Ecology evaluates the efficacy of the alternate approach (and/or until B Pond is incorporated into the Hanford Facility RCRA Permit), the B Pond system will return to contamination-indicator detection monitoring. Total organic carbon and total organic halides were added to the constituent list beginning with the January 2004 samples. Under this plan, the following wells will be monitored for B Pond: 699-42-42B, 699-43-44, 699-43-45, and 699-44-39B. The wells will be sampled semi-annually for the contamination indicator parameters (pH, specific conductance, total organic carbon, and total organic halides) and annually for

  10. Information needs for siting new, and evaluating current, nuclear facilities: ecology, fate and transport, and human health.

    PubMed

    Burger, Joanna; Clarke, James; Gochfeld, Michael

    2011-01-01

    The USA is entering an era of energy diversity, and increasing nuclear capacity and concerns focus on accidents, security, waste, and pollution. Physical buffers that separate outsiders from nuclear facilities often support important natural ecosystems but may contain contaminants. The US Nuclear Regulatory Commission (NRC) licenses nuclear reactors; the applicant provides environmental assessments that serve as the basis for Environmental Impact Statements developed by NRC. We provide a template for the types of information needed for safe siting of nuclear facilities with buffers in three categories: ecological, fate and transport, and human health information that can be used for risk evaluations. Each item on the lists is an indicator for evaluation, and individual indicators can be selected for specific region. Ecological information needs include biodiversity (species, populations, communities) and structure and functioning of ecosystems, habitats, and landscapes, in addition to common, abundant, and unique species and endangered and rare ones. The key variables of fate and transport are sources of release for radionuclides and other chemicals, nature of releases (atmospheric vapors, subsurface liquids), features, and properties of environmental media (wind speed, direction and atmospheric stability, hydraulic gradient, hydraulic conductivity, groundwater chemistry). Human health aspects include receptor populations (demography, density, dispersion, and distance), potential pathways (drinking water sources, gardening, fishing), and exposure opportunities (lifestyle activities). For each of the three types of information needs, we expect that only a few of the indicators will be applicable to a particular site and that stakeholders should agree on a site-specific suite. PMID:20140506

  11. Information needs for siting new, and evaluating current, nuclear facilities: ecology, fate and transport, and human health.

    PubMed

    Burger, Joanna; Clarke, James; Gochfeld, Michael

    2011-01-01

    The USA is entering an era of energy diversity, and increasing nuclear capacity and concerns focus on accidents, security, waste, and pollution. Physical buffers that separate outsiders from nuclear facilities often support important natural ecosystems but may contain contaminants. The US Nuclear Regulatory Commission (NRC) licenses nuclear reactors; the applicant provides environmental assessments that serve as the basis for Environmental Impact Statements developed by NRC. We provide a template for the types of information needed for safe siting of nuclear facilities with buffers in three categories: ecological, fate and transport, and human health information that can be used for risk evaluations. Each item on the lists is an indicator for evaluation, and individual indicators can be selected for specific region. Ecological information needs include biodiversity (species, populations, communities) and structure and functioning of ecosystems, habitats, and landscapes, in addition to common, abundant, and unique species and endangered and rare ones. The key variables of fate and transport are sources of release for radionuclides and other chemicals, nature of releases (atmospheric vapors, subsurface liquids), features, and properties of environmental media (wind speed, direction and atmospheric stability, hydraulic gradient, hydraulic conductivity, groundwater chemistry). Human health aspects include receptor populations (demography, density, dispersion, and distance), potential pathways (drinking water sources, gardening, fishing), and exposure opportunities (lifestyle activities). For each of the three types of information needs, we expect that only a few of the indicators will be applicable to a particular site and that stakeholders should agree on a site-specific suite.

  12. Fire hazards estimation for Fire Hazards Analyses for Department of Energy facilities at the Savannah River Site (SRS)

    SciTech Connect

    McAfee, D.E.

    1992-12-31

    During the performance of Fire Hazards Analyses (FHA) for Department of Energy facilities, the Fire Protection Engineer (FPE) is required to estimate fire hazards within a facility or fire area in question. A FHA attempts to describe and establish the relationships between fire and its environment. However, standardized tools and methods to produce quantitative descriptions of hazards have not been readily available or utilized at DOE sites in the past. The method of {open_quotes}hand type{close_quotes} calculations discussed in this paper, were developed to address deficiencies in the {open_quotes}average fuel loading{close_quotes} method of calculating fire severities. This methodology has been developed as a method of continuing to perform FHAs under the {open_quotes}Interim Guidance{close_quotes} from DOE, on the performance of FHAs. The method described, has not received approval from DOE, nor has any been requested. It is changing and improving during use, and is being presented to provide an example of a potential calculation methodology. Using established engineering relationships and the hazards inventories present within a fire area, an engineer can predict the severities, damage potential, and impact on building systems and occupants. Some of these procedures and correlations have existed for a number of years, however, the computer has made it easy for the FPE to use them on a day to day basis. The method described has been used at the Savannah River Site (SRS) to estimate fire severities and consequences in preparing a revision to the FHA for an existing Chemical Separations Facility. The object was to develop scenarios that predict realistic severities and losses, that would be utilized to develop cost efficient upgrades to protect the employees and public from the consequences of a fire in the facility. This FHA has not been submitted to DOE for review and comment as of the date of this paper.

  13. LNG vehicle markets and infrastructure. Final report, October 1994-October 1995

    SciTech Connect

    Nimocks, R.

    1995-09-01

    A comprehensive primary research of the LNG-powered vehicle market was conducted, including: the status of the LNG vehicle programs and their critical constraints and development needs; estimation of the U.S. LNG liquefaction and delivery capacity; profiling of LNG vehicle products and services vendors; identification and evaluation of key market drivers for specific transportation sector; description of the critical issues that determine the size of market demand for LNG as a transportation fuel; and forecasting the demand for LNG fuel and equipment.

  14. Recommended noise criteria for siting industrial facilities near residential communities with extremely low ambient sound levels

    NASA Astrophysics Data System (ADS)

    Hessler, David M.

    2005-09-01

    Noise limits or criteria in many residential communities are based on an allowable increase in level above the prevailing ambient sound level, usually on the order of 3 to 5 dBA. The theory is that such a small increase results in masking of the new or existing intruding facility noise by the environmental ambient sound. However, many facilities are planned for installation or already exist in remote and very quiet ambient environments with residual levels as low as 25 dBA during the day or nighttime. This paper summarizes a study conducted to determine appropriate criteria in such remote and quiet areas where little or no noise masking will occur from ambient sources. The paper discusses both audible noise measured by the A-weighted level, low frequency noise characterized by the C-weighted level and tonal noise.

  15. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  16. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    SciTech Connect

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  17. The Ohio River Basin energy facility siting model. Volume 1: Methodology

    NASA Astrophysics Data System (ADS)

    Fowler, G. L.; Bailey, R. E.; Gordon, S. I.; Jansen, S. D.; Randolph, J. C.; Jones, W. W.

    1981-04-01

    The siting model developed for ORBES is specifically designed for regional policy analysis. The region includes 423 counties in an area that consists of all of Kentucky and substantial portions of Illinois, Indiana, Ohio, Pennsylvania, and West Virginia.

  18. Marsoweb: A Collaborative Web Facility for Mars Landing Site and Global Data Studies

    NASA Astrophysics Data System (ADS)

    Deardorff, D. G.; Gulick, V. C.; Briggs, G. A.

    2002-03-01

    Marsoweb is an evolving collaborative web environment for interactive 2D and 3D graphical analysis of data for Mars landing site studies, as well as for global Mars datasets of general scientific interest.

  19. 10 CFR 61.52 - Land disposal facility operation and disposal site closure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... vertical controls as checked against USGS or NGS record files. (8) A buffer zone of land must be maintained between any buried waste and the disposal site boundary and beneath the disposed waste. The buffer...

  20. 10 CFR 61.52 - Land disposal facility operation and disposal site closure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... vertical controls as checked against USGS or NGS record files. (8) A buffer zone of land must be maintained between any buried waste and the disposal site boundary and beneath the disposed waste. The buffer...