A method to approximate a closest loadability limit using multiple load flow solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yorino, Naoto; Harada, Shigemi; Cheng, Haozhong
A new method is proposed to approximate a closest loadability limit (CLL), or closest saddle node bifurcation point, using a pair of multiple load flow solutions. More strictly, the obtainable points by the method are the stationary points including not only CLL but also farthest and saddle points. An operating solution and a low voltage load flow solution are used to efficiently estimate the node injections at a CLL as well as the left and right eigenvectors corresponding to the zero eigenvalue of the load flow Jacobian. They can be used in monitoring loadability margin, in identification of weak spotsmore » in a power system and in the examination of an optimal control against voltage collapse. Most of the computation time of the proposed method is taken in calculating the load flow solution pair. The remaining computation time is less than that of an ordinary load flow.« less
Gulati, Shelly; Stubblefield, Ashley A; Hanlon, Jeremy S; Spier, Chelsea L; Stringfellow, William T
2014-03-01
Measuring the discharge of diffuse pollution from agricultural watersheds presents unique challenges. Flows in agricultural watersheds, particularly in Mediterranean climates, can be predominately irrigation runoff and exhibit large diurnal fluctuation in both volume and concentration. Flow and pollutant concentrations in these smaller watersheds dominated by human activity do not conform to a normal distribution and it is not clear if parametric methods are appropriate or accurate for load calculations. The objective of this study was to compare the accuracy of five load estimation methods to calculate pollutant loads from agricultural watersheds. Calculation of loads using results from discrete (grab) samples was compared with the true-load computed using in situ continuous monitoring measurements. A new method is introduced that uses a non-parametric measure of central tendency (the median) to calculate loads (median-load). The median-load method was compared to more commonly used parametric estimation methods which rely on using the mean as a measure of central tendency (mean-load and daily-load), a method that utilizes the total flow volume (volume-load), and a method that uses measure of flow at the time of sampling (instantaneous-load). Using measurements from ten watersheds in the San Joaquin Valley of California, the average percent error compared to the true-load for total dissolved solids (TDS) was 7.3% for the median-load, 6.9% for the mean-load, 6.9% for the volume-load, 16.9% for the instantaneous-load, and 18.7% for the daily-load methods of calculation. The results of this study show that parametric methods are surprisingly accurate, even for data that have starkly non-normal distributions and are highly skewed. Copyright © 2013 Elsevier Ltd. All rights reserved.
An evaluation of flow-stratified sampling for estimating suspended sediment loads
Robert B. Thomas; Jack Lewis
1995-01-01
Abstract - Flow-stratified sampling is a new method for sampling water quality constituents such as suspended sediment to estimate loads. As with selection-at-list-time (SALT) and time-stratified sampling, flow-stratified sampling is a statistical method requiring random sampling, and yielding unbiased estimates of load and variance. It can be used to estimate event...
NASA Technical Reports Server (NTRS)
Schmucker, R. H.
1983-01-01
Methods aimed at reduction of overexpansion and side load resulting from asymmetric flow separation for rocket nozzles with a high opening ratio are described. The methods employ additional measures for nozzles with a fixed opening ratio. The flow separation can be controlled by several types of nozzle inserts, the properties of which are discussed. Side loads and overexpansion can be reduced by adapting the shape of the nozzle and taking other additional measures for controlled separation of the boundary layer, such as trip wires.
NASA Technical Reports Server (NTRS)
Runyan, Harry L; Woolston, Donald S
1957-01-01
A method is presented for calculating the loading on a finite wing oscillating in subsonic or sonic flow. The method is applicable to any plan form and may be used for determining the loading on deformed wings. The procedure is approximate and requires numerical integration over the wing surface.
Fatigue loading history reconstruction based on the rain-flow technique
NASA Technical Reports Server (NTRS)
Khosrovaneh, A. K.; Dowling, N. E.
1989-01-01
Methods are considered for reducing a non-random fatigue loading history to a concise description and then for reconstructing a time history similar to the original. In particular, three methods of reconstruction based on a rain-flow cycle counting matrix are presented. A rain-flow matrix consists of the numbers of cycles at various peak and valley combinations. Two methods are based on a two dimensional rain-flow matrix, and the third on a three dimensional rain-flow matrix. Histories reconstructed by any of these methods produce a rain-flow matrix identical to that of the original history, and as a result the resulting time history is expected to produce a fatigue life similar to that for the original. The procedures described allow lengthy loading histories to be stored in compact form.
An alternative method for centrifugal compressor loading factor modelling
NASA Astrophysics Data System (ADS)
Galerkin, Y.; Drozdov, A.; Rekstin, A.; Soldatova, K.
2017-08-01
The loading factor at design point is calculated by one or other empirical formula in classical design methods. Performance modelling as a whole is out of consideration. Test data of compressor stages demonstrates that loading factor versus flow coefficient at the impeller exit has a linear character independent of compressibility. Known Universal Modelling Method exploits this fact. Two points define the function - loading factor at design point and at zero flow rate. The proper formulae include empirical coefficients. A good modelling result is possible if the choice of coefficients is based on experience and close analogs. Earlier Y. Galerkin and K. Soldatova had proposed to define loading factor performance by the angle of its inclination to the ordinate axis and by the loading factor at zero flow rate. Simple and definite equations with four geometry parameters were proposed for loading factor performance calculated for inviscid flow. The authors of this publication have studied the test performance of thirteen stages of different types. The equations are proposed with universal empirical coefficients. The calculation error lies in the range of plus to minus 1,5%. The alternative model of a loading factor performance modelling is included in new versions of the Universal Modelling Method.
Estimation of particulate nutrient load using turbidity meter.
Yamamoto, K; Suetsugi, T
2006-01-01
The "Nutrient Load Hysteresis Coefficient" was proposed to evaluate the hysteresis of the nutrient loads to flow rate quantitatively. This could classify the runoff patterns of nutrient load into 15 patterns. Linear relationships between the turbidity and the concentrations of particulate nutrients were observed. It was clarified that the linearity was caused by the influence of the particle size on turbidity output and accumulation of nutrients on smaller particles (diameter < 23 microm). The L-Q-Turb method, which is a new method for the estimation of runoff loads of nutrients using a regression curve between the turbidity and the concentrations of particulate nutrients, was developed. This method could raise the precision of the estimation of nutrient loads even if they had strong hysteresis to flow rate. For example, as for the runoff load of total phosphorus load on flood events in a total of eight cases, the averaged error of estimation of total phosphorus load by the L-Q-Turb method was 11%, whereas the averaged estimation error by the regression curve between flow rate and nutrient load was 28%.
NASA Technical Reports Server (NTRS)
Schmucker, R. H.
1984-01-01
Methods for measuring the lateral forces, occurring as a result of asymmetric nozzle flow separation, are discussed. The effect of some parameters on the side load is explained. A new method was developed for calculation of the side load. The values calculated are compared with side load data of the J-2 engine. Results are used for predicting side loads of the space shuttle main engine.
Parallel processing methods for space based power systems
NASA Technical Reports Server (NTRS)
Berry, F. C.
1993-01-01
This report presents a method for doing load-flow analysis of a power system by using a decomposition approach. The power system for the Space Shuttle is used as a basis to build a model for the load-flow analysis. To test the decomposition method for doing load-flow analysis, simulations were performed on power systems of 16, 25, 34, 43, 52, 61, 70, and 79 nodes. Each of the power systems was divided into subsystems and simulated under steady-state conditions. The results from these tests have been found to be as accurate as tests performed using a standard serial simulator. The division of the power systems into different subsystems was done by assigning a processor to each area. There were 13 transputers available, therefore, up to 13 different subsystems could be simulated at the same time. This report has preliminary results for a load-flow analysis using a decomposition principal. The report shows that the decomposition algorithm for load-flow analysis is well suited for parallel processing and provides increases in the speed of execution.
An approach for the regularization of a power flow solution around the maximum loading point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kataoka, Y.
1992-08-01
In the conventional power flow solution, the boundary conditions are directly specified by active power and reactive power at each node, so that the singular point coincided with the maximum loading point. For this reason, the computations are often disturbed by ill-condition. This paper proposes a new method for getting the wide-range regularity by giving some modifications to the conventional power flow solution method, thereby eliminating the singular point or shifting it to the region with the voltage lower than that of the maximum loading point. Then, the continuous execution of V-P curves including maximum loading point is realized. Themore » efficiency and effectiveness of the method are tested in practical 598-nodes system in comparison with the conventional method.« less
NASA Technical Reports Server (NTRS)
Clothiaux, John D.; Dowling, Norman E.
1992-01-01
The suitability of using rain-flow reconstructions as an alternative to an original loading spectrum for component fatigue life testing is investigated. A modified helicopter maneuver history is used for the rain-flow cycle counting and history regenerations. Experimental testing on a notched test specimen over a wide range of loads produces similar lives for the original history and the reconstructions. The test lives also agree with a simplified local strain analysis performed on the specimen utilizing the rain-flow cycle count. The rain-flow reconstruction technique is shown to be a viable test spectrum alternative to storing the complete original load history, especially in saving computer storage space and processing time. A description of the regeneration method, the simplified life prediction analysis, and the experimental methods are included in the investigation.
Experimental Study on Impact Load on a Dam Due to Debris Flow
lwao Miyoshi
1991-01-01
When a dam is struck by mud or debris flow, it is put under a great impact load and sometimes is destroyed. To prevent such destruction, it is important to perform basic research about the impact load on a dam due to debris flow. Thus, we have made an experimental study and tried to establish a method to estimate such a impact load on the dam. The experiment was...
DOT National Transportation Integrated Search
1999-05-01
The Federal Aviation Administration (FAA) has a continuing program to collect data and develop predictive methods for aircraft flight loads. Some of the most severe and potentially catastrophic flight loads are produced by separated flows. Structural...
Development of parallel algorithms for electrical power management in space applications
NASA Technical Reports Server (NTRS)
Berry, Frederick C.
1989-01-01
The application of parallel techniques for electrical power system analysis is discussed. The Newton-Raphson method of load flow analysis was used along with the decomposition-coordination technique to perform load flow analysis. The decomposition-coordination technique enables tasks to be performed in parallel by partitioning the electrical power system into independent local problems. Each independent local problem represents a portion of the total electrical power system on which a loan flow analysis can be performed. The load flow analysis is performed on these partitioned elements by using the Newton-Raphson load flow method. These independent local problems will produce results for voltage and power which can then be passed to the coordinator portion of the solution procedure. The coordinator problem uses the results of the local problems to determine if any correction is needed on the local problems. The coordinator problem is also solved by an iterative method much like the local problem. The iterative method for the coordination problem will also be the Newton-Raphson method. Therefore, each iteration at the coordination level will result in new values for the local problems. The local problems will have to be solved again along with the coordinator problem until some convergence conditions are met.
Methods of computing steady-state voltage stability margins of power systems
Chow, Joe Hong; Ghiocel, Scott Gordon
2018-03-20
In steady-state voltage stability analysis, as load increases toward a maximum, conventional Newton-Raphson power flow Jacobian matrix becomes increasingly ill-conditioned so power flow fails to converge before reaching maximum loading. A method to directly eliminate this singularity reformulates the power flow problem by introducing an AQ bus with specified bus angle and reactive power consumption of a load bus. For steady-state voltage stability analysis, the angle separation between the swing bus and AQ bus can be varied to control power transfer to the load, rather than specifying the load power itself. For an AQ bus, the power flow formulation is only made up of a reactive power equation, thus reducing the size of the Jacobian matrix by one. This reduced Jacobian matrix is nonsingular at the critical voltage point, eliminating a major difficulty in voltage stability analysis for power system operations.
The Effect of Laminar Flow on Rotor Hover Performance
NASA Technical Reports Server (NTRS)
Overmeyer, Austin D.; Martin, Preston B.
2017-01-01
The topic of laminar flow effects on hover performance is introduced with respect to some historical efforts where laminar flow was either measured or attempted. An analysis method is outlined using combined blade element, momentum method coupled to an airfoil analysis method, which includes the full e(sup N) transition model. The analysis results compared well with the measured hover performance including the measured location of transition on both the upper and lower blade surfaces. The analysis method is then used to understand the upper limits of hover efficiency as a function of disk loading. The impact of laminar flow is higher at low disk loading, but significant improvement in terms of power loading appears possible even up to high disk loading approaching 20 ps f. A optimum planform design equation is derived for cases of zero profile drag and finite drag levels. These results are intended to be a guide for design studies and as a benchmark to compare higher fidelity analysis results. The details of the analysis method are given to enable other researchers to use the same approach for comparison to other approaches.
Ganju, N.K.; Knowles, N.; Schoellhamer, D.H.
2008-01-01
In this study we used hydrologic proxies to develop a daily sediment load time-series, which agrees with decadal sediment load estimates, when integrated. Hindcast simulations of bathymetric change in estuaries require daily sediment loads from major tributary rivers, to capture the episodic delivery of sediment during multi-day freshwater flow pulses. Two independent decadal sediment load estimates are available for the Sacramento/San Joaquin River Delta, California prior to 1959, but they must be downscaled to a daily interval for use in hindcast models. Daily flow and sediment load data to the Delta are available after 1930 and 1959, respectively, but bathymetric change simulations for San Francisco Bay prior to this require a method to generate daily sediment load estimates into the Delta. We used two historical proxies, monthly rainfall and unimpaired flow magnitudes, to generate monthly unimpaired flows to the Sacramento/San Joaquin Delta for the 1851-1929 period. This step generated the shape of the monthly hydrograph. These historical monthly flows were compared to unimpaired monthly flows from the modern era (1967-1987), and a least-squares metric selected a modern water year analogue for each historical water year. The daily hydrograph for the modern analogue was then assigned to the historical year and scaled to match the flow volume estimated by dendrochronology methods, providing the correct total flow for the year. We applied a sediment rating curve to this time-series of daily flows, to generate daily sediment loads for 1851-1958. The rating curve was calibrated with the two independent decadal sediment load estimates, over two distinct periods. This novel technique retained the timing and magnitude of freshwater flows and sediment loads, without damping variability or net sediment loads to San Francisco Bay. The time-series represents the hydraulic mining period with sustained periods of increased sediment loads, and a dramatic decrease after 1910, corresponding to a reduction in available mining debris. The analogue selection procedure also permits exploration of the morphological hydrograph concept, where a limited set of hydrographs is used to simulate the same bathymetric change as the actual set of hydrographs. The final daily sediment load time-series and morphological hydrograph concept will be applied as landward boundary conditions for hindcasting simulations of bathymetric change in San Francisco Bay.
NASA Astrophysics Data System (ADS)
Telang, Aparna S.; Bedekar, P. P.
2017-09-01
Load flow analysis is the initial and essential step for any power system computation. It is required for choosing better options for power system expansion to meet with ever increasing load demand. Implementation of Flexible AC Transmission System (FACTS) device like STATCOM, in the load flow, which is having fast and very flexible control, is one of the important tasks for power system researchers. This paper presents a simple and systematic approach for steady state power flow calculations with FACTS controller, static synchronous compensator (STATCOM) using command line usage of MATLAB tool-power system analysis toolbox (PSAT). The complexity of MATLAB language programming increases due to incorporation of STATCOM in an existing Newton-Raphson load flow algorithm. Thus, the main contribution of this paper is to show how command line usage of user friendly MATLAB tool, PSAT, can extensively be used for quicker and wider interpretation of the results of load flow with STATCOM. The novelty of this paper lies in the method of applying the load increase pattern, where the active and reactive loads have been changed simultaneously at all the load buses under consideration for creating stressed conditions for load flow analysis with STATCOM. The performance have been evaluated on many standard IEEE test systems and the results for standard IEEE-30 bus system, IEEE-57 bus system, and IEEE-118 bus system are presented.
Thermally determining flow and/or heat load distribution in parallel paths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.
A method including obtaining calibration data for at least one sub-component in a heat transfer assembly, wherein the calibration data comprises at least one indication of coolant flow rate through the sub-component for a given surface temperature delta of the sub-component and a given heat load into said sub-component, determining a measured heat load into the sub-component, determining a measured surface temperature delta of the sub-component, and determining a coolant flow distribution in a first flow path comprising the sub-component from the calibration data according to the measured heat load and the measured surface temperature delta of the sub-component.
Thermally determining flow and/or heat load distribution in parallel paths
Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.
2016-12-13
A method including obtaining calibration data for at least one sub-component in a heat transfer assembly, wherein the calibration data comprises at least one indication of coolant flow rate through the sub-component for a given surface temperature delta of the sub-component and a given heat load into said sub-component, determining a measured heat load into the sub-component, determining a measured surface temperature delta of the sub-component, and determining a coolant flow distribution in a first flow path comprising the sub-component from the calibration data according to the measured heat load and the measured surface temperature delta of the sub-component.
NASA Astrophysics Data System (ADS)
Wang, Yaping; Lin, Shunjiang; Yang, Zhibin
2017-05-01
In the traditional three-phase power flow calculation of the low voltage distribution network, the load model is described as constant power. Since this model cannot reflect the characteristics of actual loads, the result of the traditional calculation is always different from the actual situation. In this paper, the load model in which dynamic load represented by air conditioners parallel with static load represented by lighting loads is used to describe characteristics of residents load, and the three-phase power flow calculation model is proposed. The power flow calculation model includes the power balance equations of three-phase (A,B,C), the current balance equations of phase 0, and the torque balancing equations of induction motors in air conditioners. And then an alternating iterative algorithm of induction motor torque balance equations with each node balance equations is proposed to solve the three-phase power flow model. This method is applied to an actual low voltage distribution network of residents load, and by the calculation of three different operating states of air conditioners, the result demonstrates the effectiveness of the proposed model and the algorithm.
Novel Method for Loading Microporous Ceramics Bone Grafts by Using a Directional Flow
Seidenstuecker, Michael; Kissling, Steffen; Ruehe, Juergen; Suedkamp, Norbert P.; Mayr, Hermann O.; Bernstein, Anke
2015-01-01
The aim of this study was the development of a process for filling the pores of a β-tricalcium phosphate ceramic with interconnected porosity with an alginate hydrogel. For filling of the ceramics, solutions of alginate hydrogel precursors with suitable viscosity were chosen as determined by rheometry. For loading of the porous ceramics with the gel the samples were placed at the flow chamber and sealed with silicone seals. By using a vacuum induced directional flow, the samples were loaded with alginate solutions. The loading success was controlled by ESEM and fluorescence imaging using a fluorescent dye (FITC) for staining of the gel. After loading of the pores, the alginate is transformed into a hydrogel through crosslinking with CaCl2 solution. The biocompatibility of the obtained composite material was tested with a live dead cell staining by using MG-63 Cells. The loading procedure via vacuum assisted directional flow allowed complete filling of the pores of the ceramics within a few minutes (10 ± 3 min) while loading through simple immersion into the polymer solution or through a conventional vacuum method only gave incomplete filling. PMID:26703749
Elwan, Ahmed; Singh, Ranvir; Patterson, Maree; Roygard, Jon; Horne, Dave; Clothier, Brent; Jones, Geoffrey
2018-01-11
Better management of water quality in streams, rivers and lakes requires precise and accurate estimates of different contaminant loads. We assessed four sampling frequencies (2 days, weekly, fortnightly and monthly) and five load calculation methods (global mean (GM), rating curve (RC), ratio estimator (RE), flow-stratified (FS) and flow-weighted (FW)) to quantify loads of nitrate-nitrogen (NO 3 - -N), soluble inorganic nitrogen (SIN), total nitrogen (TN), dissolved reactive phosphorus (DRP), total phosphorus (TP) and total suspended solids (TSS), in the Manawatu River, New Zealand. The estimated annual river loads were compared to the reference 'true' loads, calculated using daily measurements of flow and water quality from May 2010 to April 2011, to quantify bias (i.e. accuracy) and root mean square error 'RMSE' (i.e. accuracy and precision). The GM method resulted into relatively higher RMSE values and a consistent negative bias (i.e. underestimation) in estimates of annual river loads across all sampling frequencies. The RC method resulted in the lowest RMSE for TN, TP and TSS at monthly sampling frequency. Yet, RC highly overestimated the loads for parameters that showed dilution effect such as NO 3 - -N and SIN. The FW and RE methods gave similar results, and there was no essential improvement in using RE over FW. In general, FW and RE performed better than FS in terms of bias, but FS performed slightly better than FW and RE in terms of RMSE for most of the water quality parameters (DRP, TP, TN and TSS) using a monthly sampling frequency. We found no significant decrease in RMSE values for estimates of NO 3 - N, SIN, TN and DRP loads when the sampling frequency was increased from monthly to fortnightly. The bias and RMSE values in estimates of TP and TSS loads (estimated by FW, RE and FS), however, showed a significant decrease in the case of weekly or 2-day sampling. This suggests potential for a higher sampling frequency during flow peaks for more precise and accurate estimates of annual river loads for TP and TSS, in the study river and other similar conditions.
An evaluation of methods for estimating decadal stream loads
NASA Astrophysics Data System (ADS)
Lee, Casey J.; Hirsch, Robert M.; Schwarz, Gregory E.; Holtschlag, David J.; Preston, Stephen D.; Crawford, Charles G.; Vecchia, Aldo V.
2016-11-01
Effective management of water resources requires accurate information on the mass, or load of water-quality constituents transported from upstream watersheds to downstream receiving waters. Despite this need, no single method has been shown to consistently provide accurate load estimates among different water-quality constituents, sampling sites, and sampling regimes. We evaluate the accuracy of several load estimation methods across a broad range of sampling and environmental conditions. This analysis uses random sub-samples drawn from temporally-dense data sets of total nitrogen, total phosphorus, nitrate, and suspended-sediment concentration, and includes measurements of specific conductance which was used as a surrogate for dissolved solids concentration. Methods considered include linear interpolation and ratio estimators, regression-based methods historically employed by the U.S. Geological Survey, and newer flexible techniques including Weighted Regressions on Time, Season, and Discharge (WRTDS) and a generalized non-linear additive model. No single method is identified to have the greatest accuracy across all constituents, sites, and sampling scenarios. Most methods provide accurate estimates of specific conductance (used as a surrogate for total dissolved solids or specific major ions) and total nitrogen - lower accuracy is observed for the estimation of nitrate, total phosphorus and suspended sediment loads. Methods that allow for flexibility in the relation between concentration and flow conditions, specifically Beale's ratio estimator and WRTDS, exhibit greater estimation accuracy and lower bias. Evaluation of methods across simulated sampling scenarios indicate that (1) high-flow sampling is necessary to produce accurate load estimates, (2) extrapolation of sample data through time or across more extreme flow conditions reduces load estimate accuracy, and (3) WRTDS and methods that use a Kalman filter or smoothing to correct for departures between individual modeled and observed values benefit most from more frequent water-quality sampling.
An evaluation of methods for estimating decadal stream loads
Lee, Casey; Hirsch, Robert M.; Schwarz, Gregory E.; Holtschlag, David J.; Preston, Stephen D.; Crawford, Charles G.; Vecchia, Aldo V.
2016-01-01
Effective management of water resources requires accurate information on the mass, or load of water-quality constituents transported from upstream watersheds to downstream receiving waters. Despite this need, no single method has been shown to consistently provide accurate load estimates among different water-quality constituents, sampling sites, and sampling regimes. We evaluate the accuracy of several load estimation methods across a broad range of sampling and environmental conditions. This analysis uses random sub-samples drawn from temporally-dense data sets of total nitrogen, total phosphorus, nitrate, and suspended-sediment concentration, and includes measurements of specific conductance which was used as a surrogate for dissolved solids concentration. Methods considered include linear interpolation and ratio estimators, regression-based methods historically employed by the U.S. Geological Survey, and newer flexible techniques including Weighted Regressions on Time, Season, and Discharge (WRTDS) and a generalized non-linear additive model. No single method is identified to have the greatest accuracy across all constituents, sites, and sampling scenarios. Most methods provide accurate estimates of specific conductance (used as a surrogate for total dissolved solids or specific major ions) and total nitrogen – lower accuracy is observed for the estimation of nitrate, total phosphorus and suspended sediment loads. Methods that allow for flexibility in the relation between concentration and flow conditions, specifically Beale’s ratio estimator and WRTDS, exhibit greater estimation accuracy and lower bias. Evaluation of methods across simulated sampling scenarios indicate that (1) high-flow sampling is necessary to produce accurate load estimates, (2) extrapolation of sample data through time or across more extreme flow conditions reduces load estimate accuracy, and (3) WRTDS and methods that use a Kalman filter or smoothing to correct for departures between individual modeled and observed values benefit most from more frequent water-quality sampling.
Internet traffic load balancing using dynamic hashing with flow volume
NASA Astrophysics Data System (ADS)
Jo, Ju-Yeon; Kim, Yoohwan; Chao, H. Jonathan; Merat, Francis L.
2002-07-01
Sending IP packets over multiple parallel links is in extensive use in today's Internet and its use is growing due to its scalability, reliability and cost-effectiveness. To maximize the efficiency of parallel links, load balancing is necessary among the links, but it may cause the problem of packet reordering. Since packet reordering impairs TCP performance, it is important to reduce the amount of reordering. Hashing offers a simple solution to keep the packet order by sending a flow over a unique link, but static hashing does not guarantee an even distribution of the traffic amount among the links, which could lead to packet loss under heavy load. Dynamic hashing offers some degree of load balancing but suffers from load fluctuations and excessive packet reordering. To overcome these shortcomings, we have enhanced the dynamic hashing algorithm to utilize the flow volume information in order to reassign only the appropriate flows. This new method, called dynamic hashing with flow volume (DHFV), eliminates unnecessary flow reassignments of small flows and achieves load balancing very quickly without load fluctuation by accurately predicting the amount of transferred load between the links. In this paper we provide the general framework of DHFV and address the challenges in implementing DHFV. We then introduce two algorithms of DHFV with different flow selection strategies and show their performances through simulation.
Continuation Power Flow Analysis for PV Integration Studies at Distribution Feeders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiyu; Zhu, Xiangqi; Lubkeman, David L.
2017-10-30
This paper presents a method for conducting continuation power flow simulation on high-solar penetration distribution feeders. A load disaggregation method is developed to disaggregate the daily feeder load profiles collected in substations down to each load node, where the electricity consumption of residential houses and commercial buildings are modeled using actual data collected from single family houses and commercial buildings. This allows the modeling of power flow and voltage profile along a distribution feeder on a continuing fashion for a 24- hour period at minute-by-minute resolution. By separating the feeder into load zones based on the distance between the loadmore » node and the feeder head, we studied the impact of PV penetration on distribution grid operation in different seasons and under different weather conditions for different PV placements.« less
NASA Astrophysics Data System (ADS)
Hauptmann, S.; Bülk, M.; Schön, L.; Erbslöh, S.; Boorsma, K.; Grasso, F.; Kühn, M.; Cheng, P. W.
2014-12-01
Design load simulations for wind turbines are traditionally based on the blade- element-momentum theory (BEM). The BEM approach is derived from a simplified representation of the rotor aerodynamics and several semi-empirical correction models. A more sophisticated approach to account for the complex flow phenomena on wind turbine rotors can be found in the lifting-line free vortex wake method. This approach is based on a more physics based representation, especially for global flow effects. This theory relies on empirical correction models only for the local flow effects, which are associated with the boundary layer of the rotor blades. In this paper the lifting-line free vortex wake method is compared to a state- of-the-art BEM formulation with regard to aerodynamic and aeroelastic load simulations of the 5MW UpWind reference wind turbine. Different aerodynamic load situations as well as standardised design load cases that are sensitive to the aeroelastic modelling are evaluated in detail. This benchmark makes use of the AeroModule developed by ECN, which has been coupled to the multibody simulation code SIMPACK.
Theoretical study of hull-rotor aerodynamic interference on semibuoyant vehicles
NASA Technical Reports Server (NTRS)
Spangler, S. B.; Smith, C. A.; Mendenhall, M. R.
1977-01-01
Theoretical methods are being developed to predict the mutual interference between rotor wakes and the hull for semibuoyant vehicles. The objective of the investigation is to predict the pressure distribution and overall loads on the hull in the presence of rotors whose locations, tilt angles, and disk loading are arbitrarily specified. The methods involve development of potential flow models for the hull alone in a nonuniform onset flow, a rotor wake which has the proper features to predict induced flow outside the wake, and a wake centerline specification technique which accounts for the reactions of the wake to a nonuniform crossflow. The flow models are used in sequence to solve for the mutual influence of the hull and rotor(s) on each other and the resulting loads. A flow separation model is included to estimate the influence of separation on hull loads at high sideslip angles. Only limited results have been obtained to date. These were obtained on a configuration which was tested in the Ames Research Center 7- by 10-Foot Low Speed Tunnel under Goodyear Aircraft Corporation sponsorship and indicate the nature of the interference pressure distribution on a configuration in hover.
A method for analyzing dynamic stall of helicopter rotor blades
NASA Technical Reports Server (NTRS)
Crimi, P.; Reeves, B. L.
1972-01-01
A model for each of the basic flow elements involved in the unsteady stall of a two-dimensional airfoil in incompressible flow is presented. The interaction of these elements is analyzed using a digital computer. Computations of the loading during transient and sinusoidal pitching motions are in good qualitative agreement with measured loads. The method was used to confirm that large torsional response of helicopter blades detected in flight tests can be attributed to dynamic stall.
NASA Technical Reports Server (NTRS)
Hanson, D. B.
1991-01-01
A unified theory for the aerodynamics and noise of advanced turboprops are presented. Aerodynamic topics include calculation of performance, blade load distribution, and non-uniform wake flow fields. Blade loading can be steady or unsteady due to fixed distortion, counter-rotating wakes, or blade vibration. The aerodynamic theory is based on the pressure potential method and is therefore basically linear. However, nonlinear effects associated with finite axial induction and blade vortex flow are included via approximate methods. Acoustic topics include radiation of noise caused by blade thickness, steady loading (including vortex lift), and unsteady loading. Shielding of the fuselage by its boundary layer and the wing are treated in separate analyses that are compatible but not integrated with the aeroacoustic theory for rotating blades.
Load flow and state estimation algorithms for three-phase unbalanced power distribution systems
NASA Astrophysics Data System (ADS)
Madvesh, Chiranjeevi
Distribution load flow and state estimation are two important functions in distribution energy management systems (DEMS) and advanced distribution automation (ADA) systems. Distribution load flow analysis is a tool which helps to analyze the status of a power distribution system under steady-state operating conditions. In this research, an effective and comprehensive load flow algorithm is developed to extensively incorporate the distribution system components. Distribution system state estimation is a mathematical procedure which aims to estimate the operating states of a power distribution system by utilizing the information collected from available measurement devices in real-time. An efficient and computationally effective state estimation algorithm adapting the weighted-least-squares (WLS) method has been developed in this research. Both the developed algorithms are tested on different IEEE test-feeders and the results obtained are justified.
The United States of America as represented by the United States Department of Energy
2009-12-15
An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.
Fully three-dimensional and viscous semi-inverse method for axial/radial turbomachine blade design
NASA Astrophysics Data System (ADS)
Ji, Min
2008-10-01
A fully three-dimensional viscous semi-inverse method for the design of turbomachine blades is presented in this work. Built on a time marching Reynolds-Averaged Navier-Stokes solver, the inverse scheme is capable of designing axial/radial turbomachinery blades in flow regimes ranging from very low Mach number to transonic/supersonic flows. In order to solve flow at all-speed conditions, the preconditioning technique is incorporated into the basic JST time-marching scheme. The accuracy of the resulting flow solver is verified with documented experimental data and commercial CFD codes. The level of accuracy of the flow solver exhibited in those verification cases is typical of CFD analysis employed in the design process in industry. The inverse method described in the present work takes pressure loading and blade thickness as prescribed quantities and computes the corresponding three-dimensional blade camber surface. In order to have the option of imposing geometrical constraints on the designed blade shapes, a new inverse algorithm is developed to solve the camber surface at specified spanwise pseudo stream-tubes (i.e. along grid lines), while the blade geometry is constructed through ruling (e.g. straight-line element) at the remaining spanwise stations. The new inverse algorithm involves re-formulating the boundary condition on the blade surfaces as a hybrid inverse/analysis boundary condition, preserving the full three-dimensional nature of the flow. The new design procedure can be interpreted as a fully three-dimensional viscous semi-inverse method. The ruled surface design ensures the blade surface smoothness and mechanical integrity as well as achieves cost reduction for the manufacturing process. A numerical target shooting experiment for a mixed flow impeller shows that the semi-inverse method is able to accurately recover the target blade composed of straightline element from a different initial blade. The semi-inverse method is proved to work well with various loading strategies for the mixed flow impeller. It is demonstrated that uniformity of impeller exit flow and performance gain can be achieved with appropriate loading combinations at hub and shroud. An application of this semi-inverse method is also demonstrated through a redesign of an industrial shrouded subsonic centrifugal impeller. The redesigned impeller shows improved performance and operating range from the original one. Preliminary studies of blade designs presented in this work show that through the choice of the prescribed pressure loading profiles, this semi-inverse method can be used to design blade with the following objectives: (1) Various operating envelope. (2) Uniformity of impeller exit flow. (3) Overall performance improvement. By designing blade geometry with the proposed semi-inverse method whereby the blade pressure loading is specified instead of the conventional design approach of manually adjusting the blade angle to achieve blade design objectives, designers can discover blade geometry design space that has not been explored before.
The effect of unsteadiness on the time-mean thermal loads in a turbine stage
NASA Technical Reports Server (NTRS)
Kirtley, K. R.; Celestina, M. L.; Adamczyk, J. J.
1993-01-01
Two steady numerical analysis methods and one unsteady method are used to study the viscous three-dimensional flow in the middle stage of the Pratt & Whitney alternate design Space Shuttle Main Engine fuel turbine. The principal characteristic of this flow is that the secondary flows generated in the rotor blade reconfigure a radial inlet total temperature distortion into one with a pitchwise exit hot streak distortion. Secondary flows in the following vane redistribute the radial variation while unsteadiness causes a segregation of hot and cold flow from the hot streak within the vane. Such redistribution and segregation can lead to unexpected thermal loads and reduced durability. The physical phenomena and the ability of a steady analysis to capture them are investigated by performing a numerical experiment whereby the results of the two steady analysis methods are compared to the time-mean of the unsteady simulation. The flow physics related to the segregation and mixing of total temperature are discussed.
Runner, Michael S.; Turnipseed, D. Phil; Coupe, Richard H.
2002-01-01
Increased nutrient loading to the Gulf of Mexico from off-continent flux has been identified as contributing to the increase in the areal extent of the low dissolved-oxygen zone that develops annually off the Louisiana and Texas coast. The proximity of the Yazoo River Basin in northwestern Mississippi to the Gulf of Mexico, and the intensive agricultural activities in the basin have led to speculation that the Yazoo River Basin contributes a disproportionate amount of nitrogen and phosphorus to the Mississippi River and ultimately to the Gulf of Mexico. An empirical measurement of the flux of nitrogen and phosphorus from the Yazoo Basin has not been possible due to the hydrology of the lower Yazoo River Basin. Streamflow for the Yazoo River below Steele Bayou is affected by backwater from the Mississippi River. Flow at the gage is non-uniform and varying, with bi-directional and reverse flows possible. Streamflow was computed by using remote sensing and acoustic and conventional discharge and velocity measurement techniques. Streamflow from the Yazoo River for the 1996-2000 period accounted for 2.8 percent of the flow of the Mississippi River for the same period. Water samples from the Yazoo River were collected from February 1996 through December 2000 and were analyzed for total nitrogen, nitrate, total phosphorus, and orthophosphorus as part of the U.S. Geological Survey National Water-Quality Assessment Program. These data were used to compute annual loads of nitrogen and phosphorus discharged from the Yazoo River for the period 1996-2000. Annual loads of nitrogen and phosphorus were calculated by two methods. The first method used multivariate regression and the second method multiplied the mean annual concentration by the total annual flow. Load estimates based on the product of the mean annual concentration and the total annual flow were within the 95 percent confidence interval for the load calculated by multivariate regression in 10 of 20 cases. The Yazoo River loads, compared to average annual loads in the Mississippi River, indicated that the Yazoo River was contributing 1.4 percent of the total nitrogen load, 0.7 percent of the nitrate load, 3.4 percent of the total phosphorus load, and 1.6 percent of the orthophosphorus load during 1996 - 2000. The total nitrogen, nitrate, and orthophosphorus loads in the Yazoo River Basin were less than expected, whereas the total phosphorus load was slightly higher than expected based on discharge.
Levesque, V.A.; Hammett, K.M.
1997-01-01
The Myakka and Peace River Basins constitute more than 60 percent of the total inflow area and contribute more than half the total tributary inflow to the Charlotte Harbor estuarine system. Water discharge and nutrient enrichment have been identified as significant concerns in the estuary, and consequently, it is important to accurately estimate the magnitude of discharges and nutrient loads transported by inflows from both rivers. Two methods for estimating discharge and nutrient loads from tidally affected reaches of the Myakka and Peace Rivers were compared. The first method was a tidal-estimation method, in which discharge and nutrient loads were estimated based on stage, water-velocity, discharge, and water-quality data collected near the mouths of the rivers. The second method was a traditional basin-ratio method in which discharge and nutrient loads at the mouths were estimated from discharge and loads measured at upstream stations. Stage and water-velocity data were collected near the river mouths by submersible instruments, deployed in situ, and discharge measurements were made with an acoustic Doppler current profiler. The data collected near the mouths of the Myakka River and Peace River were filtered, using a low-pass filter, to remove daily mixed-tide effects with periods less than about 2 days. The filtered data from near the river mouths were used to calculate daily mean discharge and nutrient loads. These tidal-estimation-method values were then compared to the basin-ratio-method values. Four separate 30-day periods of differing streamflow conditions were chosen for monitoring and comparison. Discharge and nutrient load estimates computed from the tidal-estimation and basin-ratio methods were most similar during high-flow periods. However, during high flow, the values computed from the tidal-estimation method for the Myakka and Peace Rivers were consistently lower than the values computed from the basin-ratio method. There were substantial differences between discharges and nutrient loads computed from the tidal-estimation and basin-ratio methods during low-flow periods. Furthermore, the differences between the methods were not consistent. Discharges and nutrient loads computed from the tidal-estimation method for the Myakka River were higher than those computed from the basin-ratio method, whereas discharges and nutrients loads computed by the tidal-estimation method for the Peace River were not only lower than those computed from the basin-ratio method, but they actually reflected a negative, or upstream, net movement. Short-term tidal measurement results should be used with caution, because antecedent conditions can influence the discharge and nutrient loads. Continuous tidal data collected over a 1- or 2-year period would be necessary to more accurately estimate the tidally affected discharge and nutrient loads for the Myakka and Peace River Basins.
Quantitative identification of riverine nitrogen from point, direct runoff and base flow sources.
Huang, Hong; Zhang, Baifa; Lu, Jun
2014-01-01
We present a methodological example for quantifying the contributions of riverine total nitrogen (TN) from point, direct runoff and base flow sources by combining a recursive digital filter technique and statistical methods. First, we separated daily riverine flow into direct runoff and base flow using a recursive digital filter technique; then, a statistical model was established using daily simultaneous data for TN load, direct runoff rate, base flow rate, and temperature; and finally, the TN loading from direct runoff and base flow sources could be inversely estimated. As a case study, this approach was adopted to identify the TN source contributions in Changle River, eastern China. Results showed that, during 2005-2009, the total annual TN input to the river was 1,700.4±250.2 ton, and the contributions of point, direct runoff and base flow sources were 17.8±2.8%, 45.0±3.6%, and 37.2±3.9%, respectively. The innovation of the approach is that the nitrogen from direct runoff and base flow sources could be separately quantified. The approach is simple but detailed enough to take the major factors into account, providing an effective and reliable method for riverine nitrogen loading estimation and source apportionment.
The calculation of downwash behind supersonic wings with an application to triangular plan forms
NASA Technical Reports Server (NTRS)
Lomax, Harvard; Sluder, Loma; Heaslet, Max A
1950-01-01
A method is developed consistent with the assumptions of small perturbation theory which provides a means of determining the downwash behind a wing in supersonic flow for a known load distribution. The analysis is based upon the use of supersonic doublets which are distributed over the plan form and wake of the wing in a manner determined from the wing loading. The equivalence in subsonic and supersonic flow of the downwash at infinity corresponding to a given load distribution is proved.
Dombrowski, T.R.; Wilson, G.S.; Thurman, E.M.
1998-01-01
Anion-exchange and immunoaffinity particle loaded membranes (PLMs) were investigated as a mechanism for the isolation of charged organic analytes from water. Kinetic properties determined theoretically included dynamic capacity, pressure drop (??P), residence and diffusion times (Tr, Td), and total membrane porosity (???T). These properties were confirmed through experimental evaluation, and the PLM method showed significant improvement over conventional solid-phase extraction (SPE) and ion-exchange formats. Recoveries of more than 90% were observed for a variety of test compounds at flow rates up to 70 mL/min (equipment-limited maximum flow rate). A fast-flow immunoaffinity column was developed using antibodies (Abs) attached to the PLMs. Reproducible recoveries (88% ?? 4%) were observed at flow rates up to 70 mL/min for the antibody (Ab)-loaded PLMs. Findings indicate increased selectivity over anion-exchange PLMs and conventional SPE or ion-exchange methods and rapid Ab-antigen binding rates given the excellent mass-transfer characteristics of the PLMs.
Aeroelastic loads prediction for an arrow wing. Task 1: Evaluation of R. P. White's method
NASA Technical Reports Server (NTRS)
Borland, C. J.; Manro, M. E.
1983-01-01
The separated flow method is evaluated. This method was developed for moderately swept wings with multiple, constant strength vortex systems. The flow on the highly swept wing used in this evaluation is characterized by a single vortex system of continuously varying strength.
NASA Technical Reports Server (NTRS)
Rogallo, Vernon L; Yaggy, Paul F; Mccloud, John L , III
1956-01-01
A simplified procedure is shown for calculating the once-per-revolution oscillating aerodynamic thrust loads on propellers of tractor airplanes at zero yaw. The only flow field information required for the application of the procedure is a knowledge of the upflow angles at the horizontal center line of the propeller disk. Methods are presented whereby these angles may be computed without recourse to experimental survey of the flow field. The loads computed by the simplified procedure are compared with those computed by a more rigorous method and the procedure is applied to several airplane configurations which are believed typical of current designs. The results are generally satisfactory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard
In this paper, a short-term load forecasting approach based network reconfiguration is proposed in a parallel manner. Specifically, a support vector regression (SVR) based short-term load forecasting approach is designed to provide an accurate load prediction and benefit the network reconfiguration. Because of the nonconvexity of the three-phase balanced optimal power flow, a second-order cone program (SOCP) based approach is used to relax the optimal power flow problem. Then, the alternating direction method of multipliers (ADMM) is used to compute the optimal power flow in distributed manner. Considering the limited number of the switches and the increasing computation capability, themore » proposed network reconfiguration is solved in a parallel way. The numerical results demonstrate the feasible and effectiveness of the proposed approach.« less
Vacuum-assisted cell loading enables shear-free mammalian microfluidic culture
Kolnik, Martin; Tsimring, Lev S; Hasty, Je
2012-01-01
Microfluidic perfusion cultures for mammalian cells provide a novel means for probing single-cell behavior but require the management of culture parameters such as flow-induced shear stress. Methods to eliminate shear stress generally focus on capturing cells in regions with high resistance to fluid flow. Here, we present a novel trapping design to easily and reliably load a high density of cells into culture chambers that are extremely isolated from potentially damaging flow effects. We utilize a transient on-chip vacuum to remove air from the culture chambers and rapidly replace the volume with a liquid cell suspension. We demonstrate the ability of this simple and robust method to load and culture three commonly used cell lines. We show how the incorporation of an on-chip function generator can be used for dynamic stimulation of cells during long-term continuous perfusion culture. PMID:22961584
A study of fluid-structure problems
NASA Astrophysics Data System (ADS)
Lam, Dennis Kang-Por
The stability of structures with and without fluid load is investigated. A method is developed for determining the fluid load in terms of added structural mass. Finite element methods are employed to study the buckling of a cylindrical shell under axial compression and liquid storage tanks under hydrodynamic load. Both linear and nonlinear analyses are performed. Diamond modes are found to be the possible postbuckling shapes of the cylindrical shell. Local buckling including elephant-foot buckle and diamond buckle are found for the liquid storage tank models. Comparison between the linear and nonlinear results indicates a substantial difference in buckling mode shapes, though the buckling loads are close to each other. The method for determining the hydrodynamic mass is applied to the impeller stage of a centrifugal pump. The method is based on a linear perturbation technique which assumes that the disturbance in the flow boundaries and velocities caused by the motion of the structure is small. A potential method is used to estimate the velocity flow field. The hydrodynamic mass is then obtained by calculating the total force which results from the pressure induced by a perturbation of the structure.
Evaluation of nutrient loads from a mountain forest including storm runoff loads.
Kunimatsu, T; Otomori, T; Osaka, K; Hamabata, E; Komai, Y
2006-01-01
Water quality and flow rates at a weir installed on the end of Aburahi-S Experimental Watershed (3.34 ha) were measured once a week from 2001 to 2003 and in appropriate intervals from 30 min to 6 h during five storm runoff events caused by each rainfall from 8 mm to 417 mm. The average annual loads of total nitrogen (TN) and total phosphorus (TP) were calculated to be 19.0 and 0.339 kg ha(-1) y(-1) from the periodical data by using the integration interval-loads method (ILM), which did not properly account for storm runoff loads. Three types of L(Q) equations (L = aQ(b)) were derived from correlations between loading rates L and flow rates Q obtained from the periodic observation and from storm runoff observation. L(Q) equation method (LQM), which was derived from the storm runoff observation and allowed for the hysteresis of discharge of materials, gave 9.68 and 0.159 kg ha(-1) y(-1), respectively, by substitution of the sequential hourly data of flow rates. L(R) equation (L = c(R - r)d) was derived from the correlations between the loads and the effective rainfall depth (R - r) measured during the storm runoff events, and L(R) equation method (LRM) calculated 9.83 +/- 1.68 and 0.175 +/- 0.0761 kg ha(-1) y(-1), respectively, by using the rainfall data for the past 16 years. The atmospheric input-fluxes of TN and TP were 16.5 and 0.791 kg ha(-1) y(-1).
Overview for Design and Construction of Drilled Shafts in Cohesive Soils.
1981-08-01
water flowing around supporting columns of bridges. Methods for determining the lateral load -deflection behavior of drilled shafts are based on solutions...PROCEDURES. ..... ............... 22 Axial Load Behavior of Single Shafts .... ......... 22 Lateral Load Behavior of Single Shafts .... ........ 54 Load ...on the shaft (Patey 1977, Claessen and Horvat 1974). Large-diameter shafts can be more easily constructed to resist lateral loads than driven piles or
Overview of aerothermodynamic loads definition study
NASA Technical Reports Server (NTRS)
Gaugler, Raymond E.
1991-01-01
The objective of the Aerothermodynamic Loads Definition Study is to develop methods of accurately predicting the operating environment in advanced Earth-to-Orbit (ETO) propulsion systems, such as the Space Shuttle Main Engine (SSME) powerhead. Development of time averaged and time dependent three dimensional viscous computer codes as well as experimental verification and engine diagnostic testing are considered to be essential in achieving that objective. Time-averaged, nonsteady, and transient operating loads must all be well defined in order to accurately predict powerhead life. Described here is work in unsteady heat flow analysis, improved modeling of preburner flow, turbulence modeling for turbomachinery, computation of three dimensional flow with heat transfer, and unsteady viscous multi-blade row turbine analysis.
NASA Astrophysics Data System (ADS)
van Rooij, Michael P. C.
Current turbomachinery design systems increasingly rely on multistage Computational Fluid Dynamics (CFD) as a means to assess performance of designs. However, design weaknesses attributed to improper stage matching are addressed using often ineffective strategies involving a costly iterative loop between blading modification, revision of design intent, and evaluation of aerodynamic performance. A design methodology is presented which greatly improves the process of achieving design-point aerodynamic matching. It is based on a three-dimensional viscous inverse design method which generates the blade camber surface based on prescribed pressure loading, thickness distribution and stacking line. This inverse design method has been extended to allow blading analysis and design in a multi-blade row environment. Blade row coupling was achieved through a mixing plane approximation. Parallel computing capability in the form of MPI has been implemented to reduce the computational time for multistage calculations. Improvements have been made to the flow solver to reach the level of accuracy required for multistage calculations. These include inclusion of heat flux, temperature-dependent treatment of viscosity, and improved calculation of stress components and artificial dissipation near solid walls. A validation study confirmed that the obtained accuracy is satisfactory at design point conditions. Improvements have also been made to the inverse method to increase robustness and design fidelity. These include the possibility to exclude spanwise sections of the blade near the endwalls from the design process, and a scheme that adjusts the specified loading area for changes resulting from the leading and trailing edge treatment. Furthermore, a pressure loading manager has been developed. Its function is to automatically adjust the pressure loading area distribution during the design calculation in order to achieve a specified design objective. Possible objectives are overall mass flow and compression ratio, and radial distribution of exit flow angle. To supplement the loading manager, mass flow inlet and exit boundary conditions have been implemented. Through appropriate combination of pressure or mass flow inflow/outflow boundary conditions and loading manager objectives, increased control over the design intent can be obtained. The three-dimensional multistage inverse design method with pressure loading manager was demonstrated to offer greatly enhanced blade row matching capabilities. Multistage design allows for simultaneous design of blade rows in a mutually interacting environment, which permits the redesigned blading to adapt to changing aerodynamic conditions resulting from the redesign. This ensures that the obtained blading geometry and performance implied by the prescribed pressure loading distribution are consistent with operation in the multi-blade row environment. The developed methodology offers high aerodynamic design quality and productivity, and constitutes a significant improvement over existing approaches used to address design-point aerodynamic matching.
Compilation of load spectrum of loader drive axle
NASA Astrophysics Data System (ADS)
Wei, Yongxiang; Zhu, Haoyue; Tang, Heng; Yuan, Qunwei
2018-03-01
In order to study the preparation method of gear fatigue load spectrum for loaders, the load signal of four typical working conditions of loader is collected. The signal that reflects the law of load change is obtained by preprocessing the original signal. The torque of the drive axle is calculated by using the rain flow counting method. According to the operating time ratio of each working condition, the two dimensional load spectrum based on the real working conditions of the drive axle of loader is established by the cycle extrapolation and synthesis method. The two-dimensional load spectrum is converted into one-dimensional load spectrum by means of the mean of torque equal damage method. Torque amplification includes the maximum load torque of the main reduction gear. Based on the theory of equal damage, the accelerated cycles are calculated. In this way, the load spectrum of the loading condition of the drive axle is prepared to reflect loading condition of the loader. The load spectrum can provide reference for fatigue life test and life prediction of loader drive axle.
Park, Daeryong; Roesner, Larry A
2012-12-15
This study examined pollutant loads released to receiving water from a typical urban watershed in the Los Angeles (LA) Basin of California by applying a best management practice (BMP) performance model that includes uncertainty. This BMP performance model uses the k-C model and incorporates uncertainty analysis and the first-order second-moment (FOSM) method to assess the effectiveness of BMPs for removing stormwater pollutants. Uncertainties were considered for the influent event mean concentration (EMC) and the aerial removal rate constant of the k-C model. The storage treatment overflow and runoff model (STORM) was used to simulate the flow volume from watershed, the bypass flow volume and the flow volume that passes through the BMP. Detention basins and total suspended solids (TSS) were chosen as representatives of stormwater BMP and pollutant, respectively. This paper applies load frequency curves (LFCs), which replace the exceedance percentage with an exceedance frequency as an alternative to load duration curves (LDCs), to evaluate the effectiveness of BMPs. An evaluation method based on uncertainty analysis is suggested because it applies a water quality standard exceedance based on frequency and magnitude. As a result, the incorporation of uncertainty in the estimates of pollutant loads can assist stormwater managers in determining the degree of total daily maximum load (TMDL) compliance that could be expected from a given BMP in a watershed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Assessment of PIV-based unsteady load determination of an airfoil with actuated flap
NASA Astrophysics Data System (ADS)
Sterenborg, J. J. H. M.; Lindeboom, R. C. J.; Simão Ferreira, C. J.; van Zuijlen, A. H.; Bijl, H.
2014-02-01
For complex experimental setups involving movable structures it is not trivial to directly measure unsteady loads. An alternative is to deduce unsteady loads indirectly from measured velocity fields using Noca's method. The ultimate aim is to use this method in future work to determine unsteady loads for fluid-structure interaction problems. The focus in this paper is first on the application and assessment of Noca's method for an airfoil with an oscillating trailing edge flap. To our best knowledge Noca's method has not been applied yet to airfoils with moving control surfaces or fluid-structure interaction problems. In addition, wind tunnel corrections for this type of unsteady flow problem are considered.
Dynamic Load Predictions for Launchers Using Extra-Large Eddy Simulations X-Les
NASA Astrophysics Data System (ADS)
Maseland, J. E. J.; Soemarwoto, B. I.; Kok, J. C.
2005-02-01
Flow-induced unsteady loads can have a strong impact on performance and flight characteristics of aerospace vehicles and therefore play a crucial role in their design and operation. Complementary to costly flight tests and delicate wind-tunnel experiments, unsteady loads can be calculated using time-accurate Computational Fluid Dynamics. A capability to accurately predict the dynamic loads on aerospace structures at flight Reynolds numbers can be of great value for the design and analysis of aerospace vehicles. Advanced space launchers are subject to dynamic loads in the base region during the ascent to space. In particular the engine and nozzle experience aerodynamic pressure fluctuations resulting from massive flow separations. Understanding these phenomena is essential for performance enhancements for future launchers which operate a larger nozzle. A new hybrid RANS-LES turbulence modelling approach termed eXtra-Large Eddy Simulations (X-LES) holds the promise to capture the flow structures associated with massive separations and enables the prediction of the broad-band spectrum of dynamic loads. This type of method has become a focal point, reducing the cost of full LES, driven by the demand for their applicability in an industrial environment. The industrial feasibility of X-LES simulations is demonstrated by computing the unsteady aerodynamic loads on the main-engine nozzle of a generic space launcher configuration. The potential to calculate the dynamic loads is qualitatively assessed for transonic flow conditions in a comparison to wind-tunnel experiments. In terms of turn-around-times, X-LES computations are already feasible within the time-frames of the development process to support the structural design. Key words: massive separated flows; buffet loads; nozzle vibrations; space launchers; time-accurate CFD; composite RANS-LES formulation.
NASA Astrophysics Data System (ADS)
Galerkin, Y. B.; Voinov, I. B.; Drozdov, A. A.
2017-08-01
Computational Fluid Dynamics (CFD) methods are widely used for centrifugal compressors design and flow analysis. The calculation results are dependent on the chosen software, turbulence models and solver settings. Two of the most widely applicable programs are NUMECA Fine Turbo and ANSYS CFX. The objects of the study were two different stages. CFD-calculations were made for a single blade channel and for full 360-degree flow paths. Stage 1 with 3D impeller and vaneless diffuser was tested experimentally. Its flow coefficient is 0.08 and loading factor is 0.74. For stage 1 calculations were performed with different grid quality, a different number of cells and different models of turbulence. The best results have demonstrated the Spalart-Allmaras model and mesh with 1.854 million cells. Stage 2 with return channel, vaneless diffuser and 3D impeller with flow coefficient 0.15 and loading factor 0.5 was designed by the known Universal Modeling Method. Its performances were calculated by the well identified Math model. Stage 2 performances by CFD calculations shift to higher flow rate in comparison with design performances. The same result was obtained for stage 1 in comparison with measured performances. Calculated loading factor is higher in both cases for a single blade channel. Loading factor performance calculated for full flow path (“360 degrees”) by ANSYS CFX is in satisfactory agreement with the stage 2 design performance. Maximum efficiency is predicted accurately by the ANSYS CFX “360 degrees” calculation. “Sector” calculation is less accurate. Further research is needed to solve the problem of performances mismatch.
Predicting Peak Flows following Forest Fires
NASA Astrophysics Data System (ADS)
Elliot, William J.; Miller, Mary Ellen; Dobre, Mariana
2016-04-01
Following forest fires, peak flows in perennial and ephemeral streams often increase by a factor of 10 or more. This increase in peak flow rate may overwhelm existing downstream structures, such as road culverts, causing serious damage to road fills at stream crossings. In order to predict peak flow rates following wildfires, we have applied two different tools. One is based on the U.S.D.A Natural Resource Conservation Service Curve Number Method (CN), and the other is by applying the Water Erosion Prediction Project (WEPP) to the watershed. In our presentation, we will describe the science behind the two methods, and present the main variables for each model. We will then provide an example of a comparison of the two methods to a fire-prone watershed upstream of the City of Flagstaff, Arizona, USA, where a fire spread model was applied for current fuel loads, and for likely fuel loads following a fuel reduction treatment. When applying the curve number method, determining the time to peak flow can be problematic for low severity fires because the runoff flow paths are both surface and through shallow lateral flow. The WEPP watershed version incorporates shallow lateral flow into stream channels. However, the version of the WEPP model that was used for this study did not have channel routing capabilities, but rather relied on regression relationships to estimate peak flows from individual hillslope polygon peak runoff rates. We found that the two methods gave similar results if applied correctly, with the WEPP predictions somewhat greater than the CN predictions. Later releases of the WEPP model have incorporated alternative methods for routing peak flows that need to be evaluated.
Rolling moments in a trailing vortex flow field
NASA Technical Reports Server (NTRS)
Mcmillan, O. J.; Schwind, R. G.; Nielsen, J. N.; Dillenius, M. F. E.
1977-01-01
Pressure distributions are presented which were measured on a wing in close proximity to a tip vortex of known structure generated by a larger, upstream semispan wing. Overall loads calculated by integration of these pressures are checked by independent measurements made with an identical model mounted on a force balance. Several conventional methods of wing analysis are used to predict the loads on the following wing. Strip theory is shown to give uniformly poor results for loading distribution, although predictions of overall lift and rolling moment are sometimes acceptable. Good results are obtained for overall coefficients and loading distribution by using linearized pressures in vortex-lattice theory in conjunction with a rectilinear vortex. The equivalent relation from reverse-flow theory that can be used to give economic predictions for overall loads is presented.
Ji, Haoran; Wang, Chengshan; Li, Peng; ...
2017-09-20
The integration of distributed generators (DGs) exacerbates the feeder power flow fluctuation and load unbalanced condition in active distribution networks (ADNs). The unbalanced feeder load causes inefficient use of network assets and network congestion during system operation. The flexible interconnection based on the multi-terminal soft open point (SOP) significantly benefits the operation of ADNs. The multi-terminal SOP, which is a controllable power electronic device installed to replace the normally open point, provides accurate active and reactive power flow control to enable the flexible connection of feeders. An enhanced SOCP-based method for feeder load balancing using the multi-terminal SOP is proposedmore » in this paper. Furthermore, by regulating the operation of the multi-terminal SOP, the proposed method can mitigate the unbalanced condition of feeder load and simultaneously reduce the power losses of ADNs. Then, the original non-convex model is converted into a second-order cone programming (SOCP) model using convex relaxation. In order to tighten the SOCP relaxation and improve the computation efficiency, an enhanced SOCP-based approach is developed to solve the proposed model. Finally, case studies are performed on the modified IEEE 33-node system to verify the effectiveness and efficiency of the proposed method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Haoran; Wang, Chengshan; Li, Peng
The integration of distributed generators (DGs) exacerbates the feeder power flow fluctuation and load unbalanced condition in active distribution networks (ADNs). The unbalanced feeder load causes inefficient use of network assets and network congestion during system operation. The flexible interconnection based on the multi-terminal soft open point (SOP) significantly benefits the operation of ADNs. The multi-terminal SOP, which is a controllable power electronic device installed to replace the normally open point, provides accurate active and reactive power flow control to enable the flexible connection of feeders. An enhanced SOCP-based method for feeder load balancing using the multi-terminal SOP is proposedmore » in this paper. Furthermore, by regulating the operation of the multi-terminal SOP, the proposed method can mitigate the unbalanced condition of feeder load and simultaneously reduce the power losses of ADNs. Then, the original non-convex model is converted into a second-order cone programming (SOCP) model using convex relaxation. In order to tighten the SOCP relaxation and improve the computation efficiency, an enhanced SOCP-based approach is developed to solve the proposed model. Finally, case studies are performed on the modified IEEE 33-node system to verify the effectiveness and efficiency of the proposed method.« less
Mass load estimation errors utilizing grab sampling strategies in a karst watershed
Fogle, A.W.; Taraba, J.L.; Dinger, J.S.
2003-01-01
Developing a mass load estimation method appropriate for a given stream and constituent is difficult due to inconsistencies in hydrologic and constituent characteristics. The difficulty may be increased in flashy flow conditions such as karst. Many projects undertaken are constrained by budget and manpower and do not have the luxury of sophisticated sampling strategies. The objectives of this study were to: (1) examine two grab sampling strategies with varying sampling intervals and determine the error in mass load estimates, and (2) determine the error that can be expected when a grab sample is collected at a time of day when the diurnal variation is most divergent from the daily mean. Results show grab sampling with continuous flow to be a viable data collection method for estimating mass load in the study watershed. Comparing weekly, biweekly, and monthly grab sampling, monthly sampling produces the best results with this method. However, the time of day the sample is collected is important. Failure to account for diurnal variability when collecting a grab sample may produce unacceptable error in mass load estimates. The best time to collect a sample is when the diurnal cycle is nearest the daily mean.
Aulenbach, Brent T.
2013-01-01
A regression-model based approach is a commonly used, efficient method for estimating streamwater constituent load when there is a relationship between streamwater constituent concentration and continuous variables such as streamwater discharge, season and time. A subsetting experiment using a 30-year dataset of daily suspended sediment observations from the Mississippi River at Thebes, Illinois, was performed to determine optimal sampling frequency, model calibration period length, and regression model methodology, as well as to determine the effect of serial correlation of model residuals on load estimate precision. Two regression-based methods were used to estimate streamwater loads, the Adjusted Maximum Likelihood Estimator (AMLE), and the composite method, a hybrid load estimation approach. While both methods accurately and precisely estimated loads at the model’s calibration period time scale, precisions were progressively worse at shorter reporting periods, from annually to monthly. Serial correlation in model residuals resulted in observed AMLE precision to be significantly worse than the model calculated standard errors of prediction. The composite method effectively improved upon AMLE loads for shorter reporting periods, but required a sampling interval of at least 15-days or shorter, when the serial correlations in the observed load residuals were greater than 0.15. AMLE precision was better at shorter sampling intervals and when using the shortest model calibration periods, such that the regression models better fit the temporal changes in the concentration–discharge relationship. The models with the largest errors typically had poor high flow sampling coverage resulting in unrepresentative models. Increasing sampling frequency and/or targeted high flow sampling are more efficient approaches to ensure sufficient sampling and to avoid poorly performing models, than increasing calibration period length.
Estimation of suspended-sediment rating curves and mean suspended-sediment loads
Crawford, Charles G.
1991-01-01
A simulation study was done to evaluate: (1) the accuracy and precision of parameter estimates for the bias-corrected, transformed-linear and non-linear models obtained by the method of least squares; (2) the accuracy of mean suspended-sediment loads calculated by the flow-duration, rating-curve method using model parameters obtained by the alternative methods. Parameter estimates obtained by least squares for the bias-corrected, transformed-linear model were considerably more precise than those obtained for the non-linear or weighted non-linear model. The accuracy of parameter estimates obtained for the biascorrected, transformed-linear and weighted non-linear model was similar and was much greater than the accuracy obtained by non-linear least squares. The improved parameter estimates obtained by the biascorrected, transformed-linear or weighted non-linear model yield estimates of mean suspended-sediment load calculated by the flow-duration, rating-curve method that are more accurate and precise than those obtained for the non-linear model.
NASA Technical Reports Server (NTRS)
Katzoff, S; Faison, M Frances; Dubose, Hugh C
1954-01-01
The field of a uniformly loaded wing in subsonic flow is discussed in terms of the acceleration potential. It is shown that, for the design of such wings, the slope of the mean camber surface at any point can be determined by a line integration around the wing boundary. By an additional line integration around the wing boundary, this method is extended to include the case where the local section lift coefficient varies with spanwise location (the chordwise loading at every section still remaining uniform). For the uniformly loaded wing of polygonal plan form, the integrations necessary to determine the local slope of the surface and the further integration of the slopes to determine the ordinate can be done analytically. An outline of these integrations and the resulting formulas are included. Calculated results are given for a sweptback wing with uniform chordwise loading and a highly tapered spanwise loading, a uniformly loaded delta wing, a uniformly loaded sweptback wing, and the same sweptback wing with uniform chordwise loading but elliptical span load distribution.
Ortiz, Roderick F.
2004-01-01
Effective management of existing water-storage capacity in the Arkansas River Basin is anticipated to help satisfy the need for water in southeastern Colorado. A strategy to meet these needs has been developed, but implementation could affect the water quality of the Arkansas River and Fountain Creek in the vicinity of Pueblo, Colorado. Because no known methods are available to determine what effects future changes in operations will have on water quality, the U.S. Geological Survey, in cooperation with the Southeastern Colorado Water Activity Enterprise, began a study in 2002 to develop methods that could identify if future water-quality conditions have changed significantly from background (preexisting) water-quality conditions. A method was developed to identify when significant departures from background (preexisting) water-quality conditions occur in the lower Arkansas River and Fountain Creek in the vicinity of Pueblo, Colorado. Additionally, the methods described in this report provide information that can be used by various water-resource agencies for an internet-based decision-support tool. Estimated dissolved-solids concentrations at five sites in the study area were evaluated to designate historical background conditions and to calculate tolerance limits used to identify statistical departures from background conditions. This method provided a tool that could be applied with defined statistical probabilities associated with specific tolerance limits. Drought data from 2002 were used to test the method. Dissolved-solids concentrations exceeded the tolerance limits at all four sites on the Arkansas River at some point during 2002. The number of exceedances was particularly evident when streamflow from Pueblo Reservoir was reduced, and return flows and ground-water influences to the river were more prevalent. No exceedances were observed at the site on Fountain Creek. These comparisons illustrated the need to adjust the concentration data to account for varying streamflow. As such, similar comparisons between flow-adjusted data were done. At the site Arkansas River near Avondale, nearly all the 2002 flow-adjusted concentration data were less than the flow-adjusted tolerance limit which illustrated the effects of using flow-adjusted concentrations. Numerous exceedances of the flow-adjusted tolerance limits, however, were observed at the sites Arkansas River above Pueblo and Arkansas River at Pueblo. These results indicated that the method was able to identify a change in the ratio of source waters under drought conditions. Additionally, tolerance limits were calculated for daily dissolved-solids load and evaluated in a similar manner. Several other mass-load approaches were presented to help identify long-term changes in water quality. These included comparisons of cumulative mass load at selected sites and comparisons of mass load contributed at the Arkansas River near Avondale site by measured and unmeasured sources.
Investigation of the Flow Field and Performances of a Centrifugal Pump at Part Load
NASA Astrophysics Data System (ADS)
Prunières, R.; Inoue, Y.; Nagahara, T.
2016-11-01
Centrifugal pump performance curve instability, characterized by a local dent at part load, can be the consequence of flow instabilities in rotating or stationary parts. Such flow instabilities often result in abnormal operating conditions which can damage both the pump and the system. In order for the pump to have reliable operation over a wide flow rate range, it is necessary to achieve a design free of instability. The present paper focuses on performance curve instability of a centrifugal pump of mid specific speed (ωs = 0.65) for which instability was observed at part load during tests. The geometry used for this research consist of the first stage of a multi-stage centrifugal pump and is composed of a suction bend, a closed-type impeller, a vaned diffuser and return guide vanes. In order to analyse the instability phenomenon, PIV and CFD analysis were performed. Both methods qualitatively agree relatively well. It appears that the main difference before and after head drop is an increase of reverse flow rate at the diffuser passage inlet on the hub side. This reverse flow decreases the flow passing area at the diffuser passage inlet, disallowing effective flow deceleration and impairing static pressure recovery.
NASA Astrophysics Data System (ADS)
Rozemeijer, J.; Jansen, S.; de Jonge, H.; Lindblad Vendelboe, A.
2014-12-01
Considering their crucial role in water and solute transport, enhanced monitoring and modeling of agricultural subsurface tube drain systems is important for adequate water quality management. For example, previous work in lowland agricultural catchments has shown that subsurface tube drain effluent contributed up to 80% of the annual discharge and 90-92% of the annual NO3 loads from agricultural fields towards the surface water. However, existing monitoring techniques for flow and contaminant loads from tube drains are expensive and labor-intensive. Therefore, despite the unambiguous relevance of this transport route, tube drain monitoring data are scarce. The presented study aimed developing a cheap, simple, and robust method to monitor loads from tube drains. We are now ready to introduce the Flowcap that can be attached to the outlet of tube drains and is capable of registering total flow, contaminant loads, and flow-averaged concentrations. The Flowcap builds on the existing SorbiCells, a modern passive sampling technique that measures average concentrations over longer periods of time (days to months) for various substances. By mounting SorbiCells in our Flowcap, a flow-proportional part of the drain effluent is sampled from the main stream. Laboratory testing yielded good linear relations (R-squared of 0.98) between drainage flow rates and sampling rates. The Flowcap was tested in practice for measuring NO3 loads from two agricultural fields and one glasshouse in the Netherlands. The Flowcap registers contaminant loads from tube drains without any need for housing, electricity, or maintenance. This enables large-scale monitoring of non-point contaminant loads via tube drains, which would facilitate the improvement of contaminant transport models and would yield valuable information for the selection and evaluation of mitigation options to improve water quality.
Analyzing the uncertainty of suspended sediment load prediction using sequential data assimilation
NASA Astrophysics Data System (ADS)
Leisenring, Marc; Moradkhani, Hamid
2012-10-01
SummaryA first step in understanding the impacts of sediment and controlling the sources of sediment is to quantify the mass loading. Since mass loading is the product of flow and concentration, the quantification of loads first requires the quantification of runoff volume. Using the National Weather Service's SNOW-17 and the Sacramento Soil Moisture Accounting (SAC-SMA) models, this study employed particle filter based Bayesian data assimilation methods to predict seasonal snow water equivalent (SWE) and runoff within a small watershed in the Lake Tahoe Basin located in California, USA. A procedure was developed to scale the variance multipliers (a.k.a hyperparameters) for model parameters and predictions based on the accuracy of the mean predictions relative to the ensemble spread. In addition, an online bias correction algorithm based on the lagged average bias was implemented to detect and correct for systematic bias in model forecasts prior to updating with the particle filter. Both of these methods significantly improved the performance of the particle filter without requiring excessively wide prediction bounds. The flow ensemble was linked to a non-linear regression model that was used to predict suspended sediment concentrations (SSCs) based on runoff rate and time of year. Runoff volumes and SSC were then combined to produce an ensemble of suspended sediment load estimates. Annual suspended sediment loads for the 5 years of simulation were finally computed along with 95% prediction intervals that account for uncertainty in both the SSC regression model and flow rate estimates. Understanding the uncertainty associated with annual suspended sediment load predictions is critical for making sound watershed management decisions aimed at maintaining the exceptional clarity of Lake Tahoe. The computational methods developed and applied in this research could assist with similar studies where it is important to quantify the predictive uncertainty of pollutant load estimates.
NASA Technical Reports Server (NTRS)
Gloss, B. B.; Johnson, F. T.
1976-01-01
The Boeing Commercial Airplane Company developed an inviscid three-dimensional lifting surface method that shows promise in being able to accurately predict loads, subsonic and supersonic, on wings with leading-edge separation and reattachment.
On Characterizing Particle Shape
NASA Technical Reports Server (NTRS)
Ennis, Bryan J.; Rickman, Douglas; Rollins, A. Brent; Ennis, Brandon
2014-01-01
It is well known that particle shape affects flow characteristics of granular materials, as well as a variety of other solids processing issues such as compaction, rheology, filtration and other two-phase flow problems. The impact of shape crosses many diverse and commercially important applications, including pharmaceuticals, civil engineering, metallurgy, health, and food processing. Two applications studied here include the dry solids flow of lunar simulants (e.g. JSC-1, NU-LHT-2M, OB-1), and the flow properties of wet concrete, including final compressive strength. A multi-dimensional generalized, engineering method to quantitatively characterize particle shapes has been developed, applicable to both single particle orientation and multi-particle assemblies. The two-dimension, three dimension inversion problem is also treated, and the application of these methods to DEM model particles will be discussed. In the case of lunar simulants, flow properties of six lunar simulants have been measured, and the impact of particle shape on flowability - as characterized by the shape method developed here -- is discussed, especially in the context of three simulants of similar size range. In the context of concrete processing, concrete construction is a major contributor to greenhouse gas production, of which the major contributor is cement binding loading. Any optimization in concrete rheology and packing that can reduce cement loading and improve strength loading can also reduce currently required construction safety factors. The characterization approach here is also demonstrated for the impact of rock aggregate shape on concrete slump rheology and dry compressive strength.
NASA Astrophysics Data System (ADS)
Harrington, Seán T.; Harrington, Joseph R.
2013-03-01
This paper presents an assessment of the suspended sediment rating curve approach for load estimation on the Rivers Bandon and Owenabue in Ireland. The rivers, located in the South of Ireland, are underlain by sandstone, limestones and mudstones, and the catchments are primarily agricultural. A comprehensive database of suspended sediment data is not available for rivers in Ireland. For such situations, it is common to estimate suspended sediment concentrations from the flow rate using the suspended sediment rating curve approach. These rating curves are most commonly constructed by applying linear regression to the logarithms of flow and suspended sediment concentration or by applying a power curve to normal data. Both methods are assessed in this paper for the Rivers Bandon and Owenabue. Turbidity-based suspended sediment loads are presented for each river based on continuous (15 min) flow data and the use of turbidity as a surrogate for suspended sediment concentration is investigated. A database of paired flow rate and suspended sediment concentration values, collected between the years 2004 and 2011, is used to generate rating curves for each river. From these, suspended sediment load estimates using the rating curve approach are estimated and compared to the turbidity based loads for each river. Loads are also estimated using stage and seasonally separated rating curves and daily flow data, for comparison purposes. The most accurate load estimate on the River Bandon is found using a stage separated power curve, while the most accurate load estimate on the River Owenabue is found using a general power curve. Maximum full monthly errors of - 76% to + 63% are found on the River Bandon with errors of - 65% to + 359% found on the River Owenabue. The average monthly error on the River Bandon is - 12% with an average error of + 87% on the River Owenabue. The use of daily flow data in the load estimation process does not result in a significant loss of accuracy on either river. Historic load estimates (with a 95% confidence interval) were hindcast from the flow record and average annual loads of 7253 ± 673 tonnes on the River Bandon and 1935 ± 325 tonnes on the River Owenabue were estimated to be passing the gauging stations.
Nitrate and phosphorus transport through subsurface drains under free and controlled drainage.
Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen
2018-05-28
Controlled drainage (CD) is a structural conservation practice in which the drainage outlet is managed in order to reduce drain flow volume and nutrient loads to water bodies. The goal of this study was to evaluate the potential of CD to improve water quality for two different seasons and levels of outlet control, using ten years of data collected from an agricultural drained field in eastern Indiana with two sets of paired plots. The Rank Sum test was used to quantify the impact of CD on cumulative annual drain flow and nitrate-N and phosphorus loads. CD plots had a statistically significant (at 5% level) lower annual drain flow (eastern pair: 39%; western pair: 25%) and nitrate load (eastern pair: 43%; western pair: 26%) compared to free draining (FD) plots, while annual soluble reactive phosphorus (SRP) and total phosphorus (TP) loads were not significantly different. An ANCOVA model was used to evaluate the impact of CD on daily drain flow, nitrate-N, SRP and TP concentrations and loads during the two different periods of control. The average percent reduction of daily drain flow was 68% in the eastern pair and 58% in the western pair during controlled drainage at the higher outlet level (winter) and 64% and 58% at the lower outlet level (summer) in the eastern and western pairs, respectively. Nitrate load reduction was similar to drain flow reduction, while the effect of CD on SRP and TP loads was not significant except for the increase in SRP in one pair. These results from a decade-long field monitoring and two different statistical methods enhance our knowledge about water quality impacts of CD system and support this management practice as a reliable system for reducing nitrate loss through subsurface drains, mainly caused by flow reduction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Inrush Current Suppression Circuit and Method for Controlling When a Load May Be Fully Energized
NASA Technical Reports Server (NTRS)
Schwerman, Paul (Inventor)
2017-01-01
A circuit and method for controlling when a load may be fully energized includes directing electrical current through a current limiting resistor that has a first terminal connected to a source terminal of a field effect transistor (FET), and a second terminal connected to a drain terminal of the FET. The gate voltage magnitude on a gate terminal of the FET is varied, whereby current flow through the FET is increased while current flow through the current limiting resistor is simultaneously decreased. A determination is made as to when the gate voltage magnitude on the gate terminal is equal to or exceeds a predetermined reference voltage magnitude, and the load is enabled to be fully energized when the gate voltage magnitude is equal to or exceeds the predetermined reference voltage magnitude.
NASA Technical Reports Server (NTRS)
Chen, Shu-Cheng S.
2017-01-01
A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.
Cavitation erosion prediction based on analysis of flow dynamics and impact load spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihatsch, Michael S., E-mail: michael.mihatsch@aer.mw.tum.de; Schmidt, Steffen J.; Adams, Nikolaus A.
2015-10-15
Cavitation erosion is the consequence of repeated collapse-induced high pressure-loads on a material surface. The present paper assesses the prediction of impact load spectra of cavitating flows, i.e., the rate and intensity distribution of collapse events based on a detailed analysis of flow dynamics. Data are obtained from a numerical simulation which employs a density-based finite volume method, taking into account the compressibility of both phases, and resolves collapse-induced pressure waves. To determine the spectrum of collapse events in the fluid domain, we detect and quantify the collapse of isolated vapor structures. As reference configuration we consider the expansion ofmore » a liquid into a radially divergent gap which exhibits unsteady sheet and cloud cavitation. Analysis of simulation data shows that global cavitation dynamics and dominant flow events are well resolved, even though the spatial resolution is too coarse to resolve individual vapor bubbles. The inviscid flow model recovers increasingly fine-scale vapor structures and collapses with increasing resolution. We demonstrate that frequency and intensity of these collapse events scale with grid resolution. Scaling laws based on two reference lengths are introduced for this purpose. We show that upon applying these laws impact load spectra recorded on experimental and numerical pressure sensors agree with each other. Furthermore, correlation between experimental pitting rates and collapse-event rates is found. Locations of high maximum wall pressures and high densities of collapse events near walls obtained numerically agree well with areas of erosion damage in the experiment. The investigation shows that impact load spectra of cavitating flows can be inferred from flow data that captures the main vapor structures and wave dynamics without the need for resolving all flow scales.« less
Comparison of Deterministic and Probabilistic Radial Distribution Systems Load Flow
NASA Astrophysics Data System (ADS)
Gupta, Atma Ram; Kumar, Ashwani
2017-12-01
Distribution system network today is facing the challenge of meeting increased load demands from the industrial, commercial and residential sectors. The pattern of load is highly dependent on consumer behavior and temporal factors such as season of the year, day of the week or time of the day. For deterministic radial distribution load flow studies load is taken as constant. But, load varies continually with a high degree of uncertainty. So, there is a need to model probable realistic load. Monte-Carlo Simulation is used to model the probable realistic load by generating random values of active and reactive power load from the mean and standard deviation of the load and for solving a Deterministic Radial Load Flow with these values. The probabilistic solution is reconstructed from deterministic data obtained for each simulation. The main contribution of the work is: Finding impact of probable realistic ZIP load modeling on balanced radial distribution load flow. Finding impact of probable realistic ZIP load modeling on unbalanced radial distribution load flow. Compare the voltage profile and losses with probable realistic ZIP load modeling for balanced and unbalanced radial distribution load flow.
The measurement of total sediment load in alluvial streams
Benedict, P.C.; Matejka, D.Q.; McNown, John S.; Boyer, M.C.
1953-01-01
The measurement of the total sediment load transported by streams that flow in alluvial channels has been a perplexing problem to engineers and geologists for over a century. Until the last decade the development of equipment to measure bed load and suspended load was carried on almost independently, and without primary consideration of the fundamental laws governing the transportation of fluvial sediments. French investigators during the nineteenth century described methods of measurement and a mathematical approach for computing the rate of bed-load movement. The comprehensive laboratory investigations by Gilbert early in this century provided data that are still being used for studies of sediment transport. Detailed laboratory investigations of bed-load movement conducted during the last two decades by a number of investigators have resulted in the development of additional mathematical formulas for computing rates of bed-load movement. Likewise, studies of turbulent flow have provided the turbulence suspension theory for suspended sediment as it is known today.
NASA Astrophysics Data System (ADS)
Huang, W. D.; Fan, H. G.; Chen, N. X.
2012-11-01
To study the interaction between the transient flow in pipe and the unsteady turbulent flow in turbine, a coupled model of the transient flow in the pipe and three-dimensional unsteady flow in the turbine is developed based on the method of characteristics and the fluid governing equation in the accelerated rotational relative coordinate. The load-rejection process under the closing of guide vanes of the hydraulic power plant is simulated by the coupled method, the traditional transient simulation method and traditional three-dimensional unsteady flow calculation method respectively and the results are compared. The pressure, unit flux and rotation speed calculated by three methods show a similar change trend. However, because the elastic water hammer in the pipe and the pressure fluctuation in the turbine have been considered in the coupled method, the increase of pressure at spiral inlet is higher and the pressure fluctuation in turbine is stronger.
Bernstein, Andrey; Wang, Cong; Dall'Anese, Emiliano; ...
2018-01-01
This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for themore » non-singularity of the load-flow Jacobian is proposed. Finally, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, Andrey; Wang, Cong; Dall'Anese, Emiliano
This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for themore » non-singularity of the load-flow Jacobian is proposed. Finally, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.« less
NASA Astrophysics Data System (ADS)
Dean, Cleon E.; Braselton, James P.
2004-05-01
Color-coded and vector-arrow grid representations of the Poynting vector field are used to show the energy flow in and around a fluid-loaded elastic cylindrical shell for both forward- and backward-propagating waves. The present work uses a method adapted from a simpler technique due to Kaduchak and Marston [G. Kaduchak and P. L. Marston, ``Traveling-wave decomposition of surface displacements associated with scattering by a cylindrical shell: Numerical evaluation displaying guided forward and backward wave properties,'' J. Acoust. Soc. Am. 98, 3501-3507 (1995)] to isolate unidirectional energy flows.
NASA Astrophysics Data System (ADS)
Gusti, T. P.; Hertanti, D. R.; Bahsan, E.; Soeryantono, H.
2013-12-01
Particle-based numerical methods, such as Smoothed Particle Hydrodynamics (SPH), may be able to simulate some hydrodynamic and morphodynamic behaviors better than grid-based numerical methods. This study simulates hydrodynamics in meanders and advection and turbulent diffusion in straight river channels using Microsoft Excel and Visual Basic. The simulators generate three-dimensional data for hydrodynamics and one-dimensional data for advection-turbulent diffusion. Fluid at rest, sloshing, and helical flow are simulated in the river meanders. Spill loading and step loading are done to simulate concentration patterns associated with advection-turbulent diffusion. Results indicate that helical flow is formed due to disturbance in morphology and particle velocity in the stream and the number of particles does not have a significant effect on the pattern of advection-turbulent diffusion concentration.
NASA Astrophysics Data System (ADS)
1992-09-01
ESDU 92026 provides a procedure for the design and performance analysis of the bearings with five or more identical equally-spaced rectangular recesses (or pockets) fed by identical capillary restrictors from a constant pressure supply. The method takes account of stiffness and overload capacity requirements and determines the bearing overall size and proportions from the required load, speed and shaft diameter, recommends the clearance and supply pressure, and defines the recess dimensions and capillary restrictor size from the properties of the chosen lubricant. Equations and charts allow prediction of the journal displacement under load, the power loss, the lubricant flow rate, and the bearing and lubricant temperatures. The method applies to laminar flow and guidance is given for assessing the onset of non-laminar flow in the bearing and restrictors. Guidance is also given on the likelihood of bearing-induced instability. The user is assisted by flowcharts in applying the method, and two practical worked examples illustrate the procedure. ESDU 92037 introduces a FORTRAN program that implements the method, and magnetic media are available in ESDUpac A9237.
Continuation Power Flow with Variable-Step Variable-Order Nonlinear Predictor
NASA Astrophysics Data System (ADS)
Kojima, Takayuki; Mori, Hiroyuki
This paper proposes a new continuation power flow calculation method for drawing a P-V curve in power systems. The continuation power flow calculation successively evaluates power flow solutions through changing a specified value of the power flow calculation. In recent years, power system operators are quite concerned with voltage instability due to the appearance of deregulated and competitive power markets. The continuation power flow calculation plays an important role to understand the load characteristics in a sense of static voltage instability. In this paper, a new continuation power flow with a variable-step variable-order (VSVO) nonlinear predictor is proposed. The proposed method evaluates optimal predicted points confirming with the feature of P-V curves. The proposed method is successfully applied to IEEE 118-bus and IEEE 300-bus systems.
NASA Technical Reports Server (NTRS)
Gardner, J. E.; Dixon, S. C.
1984-01-01
Research was done in the following areas: development and validation of solution algorithms, modeling techniques, integrated finite elements for flow-thermal-structural analysis and design, optimization of aircraft and spacecraft for the best performance, reduction of loads and increase in the dynamic structural stability of flexible airframes by the use of active control, methods for predicting steady and unsteady aerodynamic loads and aeroelastic characteristics of flight vehicles with emphasis on the transonic range, and methods for predicting and reducing helicoper vibrations.
Helicopter rotor loads using a matched asymptotic expansion technique
NASA Technical Reports Server (NTRS)
Pierce, G. A.; Vaidyanathan, A. R.
1981-01-01
The theoretical basis and computational feasibility of the Van Holten method, and its performance and range of validity by comparison with experiment and other approximate methods was examined. It is found that within the restrictions of incompressible, potential flow and the assumption of small disturbances, the method does lead to a valid description of the flow. However, the method begins to break down under conditions favoring nonlinear effects such as wake distortion and blade/rotor interaction.
Wilson, Timothy P.; Bonin, Jennifer L.
2007-01-01
A study was undertaken to determine the concentrations and loads of sediment and chemicals delivered to Newark and Raritan Bays by five major tributaries: the Raritan, Passaic, Rahway, Elizabeth, and Hackensack Rivers. This study was initiated by the State of New Jersey as Study I-C of the New Jersey Toxics Reduction Workplan for the New York-New Jersey Harbor, working under the NY-NJ Harbor Estuary Program (HEP) Contaminant Assessment and Reduction Program (CARP). The CARP is a comprehensive effort to evaluate the levels and sources of toxic contaminants to the tributaries and estuarine areas of the NY-NJ Harbor, including Newark and Raritan Bays. The Raritan and Passaic Rivers are large rivers (mean daily discharges of 1,189 and 1,132 cubic feet per second (ft3/s), respectively), that drain large, mixed rural/urban basins. The Elizabeth and Rahway Rivers are small rivers (mean daily discharges of 25.9 and 49.1 ft3/s, respectively) that drain small, highly urbanized and industrialized basins. The Hackensack River drains a small, mixed rural/urban basin, and its flow is highly controlled by an upstream reservoir (mean daily discharge of 90.4 ft3/s). These rivers flow into urbanized estuaries and ultimately, to the Atlantic Ocean. Each of these tributaries were sampled during two to four storm events, and twice each during low-flow discharge conditions. Samples were collected using automated equipment installed at stations adjacent to U.S. Geological Survey streamflow-gaging stations near the heads-of-tide of these rivers. Large-volume (greater than 50 liters of water and a target of 1 gram of sediment), flow-weighted composite samples were collected for chemical analysis using filtration to collect suspended particulates and exchange resin (XAD-2) to sequester dissolved contaminants. Composite whole-water samples were collected for dissolved polycyclic aromatic hydrocarbons (PAH) and for trace element analysis. Additional discrete grab samples were collected throughout each event for trace-element analysis, and multiple samples were collected for suspended sediment (SS), particulate carbon (POC), and dissolved organic carbon (DOC) analysis. The suspended sediment and exchange resin were analyzed for 114 polychlorinated biphenyls (PCBs, by US EPA method 1668A, modified), seven 2,3,7,8-substituted chlorinated dibenzo-p-dioxins (CDD) and 10 dibenzo-p-difurans (CDF) (by US EPA method 1613), 24 PAHs (by low-resolution isotope dilution/mass-spectral methods), 27 organo-chlorine pesticides (OCPs) (by high resolution isotope dilution/mass-spectral methods), and the trace elements mercury (Hg), methyl-mercury (MeHg), lead (Pb), and cadmium (Cd). Isotope dilution methods using gas chromatography and high-and low-resolution mass spectral (GC/MS) detection were used to accurately identify and quantify organic compounds in the sediment and water phases. Trace elements were measured using inductively coupled plasma-mass spectrometry and cold-vapor atomic fluorescence spectrometry methods. The loads of sediment, carbon, and chemicals were calculated for each storm and low-flow event sampled. Because only a few storm events were sampled, yearly loads of sediment were calculated from rating curves developed using historical SS and POC data. The average annual loads of sediment and carbon were calculated for the period 1975-2000, along with the loads for the selected water years being modeled as part of the New York New Jersey Harbor Estuary Program CARP. Comparison of loads calculated using the rating curve method to loads measured during the sampled storm events indicated that the rating curve method likely underpredicts annual loads. Average annual loads of suspended sediment in the tributaries were estimated to be 395,000 kilograms per year (kg/yr) in the Hackensack River, 417,000 kg/yr in the Elizabeth River, 882,000 kg/yr in the Rahway River, 22,700,000 kg/yr in the Passaic River, and 93,100,000 kg/yr in the Raritan River. Averag
NASA Astrophysics Data System (ADS)
Chen, Ting; Zheng, Xianghao; Zhang, Yu-ning; Li, Shengcai
2018-02-01
Owing to the part-load operations for the enhancement of grid flexibility, the Francis turbine often suffers from severe low-frequency and large-amplitude hydraulic instability, which is mostly pertinent to the highly unsteady swirling vortex rope in the draft tube. The influence of disturbances in the upstream (e.g., large-scale vortex structures in the spiral casing) on the draft-tube vortex flow is not well understood yet. In the present paper, the influence of the upstream disturbances on the vortical flow in the draft tube is studied based on the vortex identification method and the analysis of several important parameters (e.g., the swirl number and the velocity profile). For a small guide vane opening (representing the part-load condition), the vortices triggered in the spiral casing propagate downstream and significantly affect the swirling vortex-rope precession in the draft tube, leading to the changes of the intensity and the processional frequency of the swirling vortex rope. When the guide vane opening approaches the optimum one (representing the full-load condition), the upstream disturbance becomes weaker and thus its influences on the downstream flow are very limited.
Grubbs, J.W.; Pittman, J.R.
1997-01-01
Water flow and quality data were collected from December 1994 to September 1995 to evaluate variations in discharge, water quality, and chemical fluxes (loads) through Perdido Bay, Florida. Data were collected at a cross section parallel to the U.S. Highway 98 bridge. Discharges measured with an acoustic Doppler current profiler (ADCP) and computed from stage-area and velocity ratings varied roughly between + or - 10,000 cubic feet per second during a typical tidal cycle. Large reversals in flow direction occurred rapidly (less than 1 hour), and complete reversals (resulting in near peak net-upstream or downstream discharges) occurred within a few hours of slack water. Observations of simultaneous upstream and downstream flow (bidirectional flow) were quite common in the ADCP measurements, with opposing directions of flow occurring predominantly in vertical layers. Continuous (every 15 minutes) discharge data were computed for the period from August 18, 1995, to September 28, 1995, and filtered daily mean discharge values were computed for the period from August 19 to September 26, 1995. Data were not computed prior to August 18, 1995, either because of missing data or because the velocity rating was poorly defined (because of insufficient data) for the period prior to landfall of hurricane Erin (August 3, 1995). The results of the study indicate that acoustical techniques can yield useful estimates of continuous (instantaneous) discharge in Perdido Bay. Useful estimates of average daily net flow rates can also be obtained, but the accuracy of these estimates will be limited by small rating shifts that introduce bias into the instantaneous values that are used to compute the net flows. Instantaneous loads of total nitrogen ranged from -180 to 220 grams per second for the samples collected during the study, and instantaneous loads of total phosphorous ranged from -10 to 11 grams per second (negative loads indicate net upstream transport). The chloride concentrations from the water samples collected from Perdido Bay indicated a significant amount of mixing of saltwater and freshwater. Mixing effects could greatly reduce the accuracy of estimates of net loads of nutrients or other substances. The study results indicate that acoustical techniques can yield acceptable estimates of instantaneous loads in Perdido Bay. However, estimates of net loads should be interpreted with great caution and may have unacceptably large errors, especially when saltwater and freshwater concentrations differ greatly.
NASA Technical Reports Server (NTRS)
Mendenhall, M. R.; Goodwin, F. K.; Spangler, S. B.
1976-01-01
A vortex lattice lifting-surface method is used to model the wing and multiple flaps. Each lifting surface may be of arbitrary planform having camber and twist, and the multiple-slotted trailing-edge flap system may consist of up to ten flaps with different spans and deflection angles. The engine wakes model consists of a series of closely spaced vortex rings with circular or elliptic cross sections. The rings are normal to a wake centerline which is free to move vertically and laterally to accommodate the local flow field beneath the wing and flaps. The two potential flow models are used in an iterative fashion to calculate the wing-flap loading distribution including the influence of the waves from up to two turbofan engines on the semispan. The method is limited to the condition where the flow and geometry of the configurations are symmetric about the vertical plane containing the wing root chord. The calculation procedure starts with arbitrarily positioned wake centerlines and the iterative calculation continues until the total configuration loading converges within a prescribed tolerance. Program results include total configuration forces and moments, individual lifting-surface load distributions, including pressure distributions, individual flap hinge moments, and flow field calculation at arbitrary field points.
Definition of hydraulic stability of KVGM-100 hot-water boiler and minimum water flow rate
NASA Astrophysics Data System (ADS)
Belov, A. A.; Ozerov, A. N.; Usikov, N. V.; Shkondin, I. A.
2016-08-01
In domestic power engineering, the methods of quantitative and qualitative-quantitative adjusting the load of the heat supply systems are widely distributed; furthermore, during the greater part of the heating period, the actual discharge of network water is less than estimated values when changing to quantitative adjustment. Hence, the hydraulic circuits of hot-water boilers should ensure the water velocities, minimizing the scale formation and excluding the formation of stagnant zones. The results of the calculations of hot-water KVGM-100 boiler and minimum water flow rate for the basic and peak modes at the fulfillment of condition of the lack of surface boil are presented in the article. The minimal flow rates of water at its underheating to the saturation state and the thermal flows in the furnace chamber were defined. The boiler hydraulic calculation was performed using the "Hydraulic" program, and the analysis of permissible and actual velocities of the water movement in the pipes of the heating surfaces was carried out. Based on the thermal calculations of furnace chamber and thermal- hydraulic calculations of heating surfaces, the following conclusions were drawn: the minimum velocity of water movement (by condition of boiling surface) at lifting movement of environment increases from 0.64 to 0.79 m/s; it increases from 1.14 to 1.38 m/s at down movement of environmental; the minimum water flow rate by the boiler in the basic mode (by condition of the surface boiling) increased from 887 t/h at the load of 20% up to 1074 t/h at the load of 100%. The minimum flow rate is 1074 t/h at nominal load and is achieved at the pressure at the boiler outlet equal to 1.1 MPa; the minimum water flow rate by the boiler in the peak mode by condition of surface boiling increases from 1669 t/h at the load of 20% up to 2021 t/h at the load of 100%.
Methods for Estimating Annual Wastewater Nutrient Loads in the Southeastern United States
McMahon, Gerard; Tervelt, Larinda; Donehoo, William
2007-01-01
This report describes an approach for estimating annual total nitrogen and total phosphorus loads from point-source dischargers in the southeastern United States. Nutrient load estimates for 2002 were used in the calibration and application of a regional nutrient model, referred to as the SPARROW (SPAtially Referenced Regression On Watershed attributes) watershed model. Loads from dischargers permitted under the National Pollutant Discharge Elimination System were calculated using data from the U.S. Environmental Protection Agency Permit Compliance System database and individual state databases. Site information from both state and U.S. Environmental Protection Agency databases, including latitude and longitude and monitored effluent data, was compiled into a project database. For sites with a complete effluent-monitoring record, effluent-flow and nutrient-concentration data were used to develop estimates of annual point-source nitrogen and phosphorus loads. When flow data were available but nutrient-concentration data were missing or incomplete, typical pollutant-concentration values of total nitrogen and total phosphorus were used to estimate load. In developing typical pollutant-concentration values, the major factors assumed to influence wastewater nutrient-concentration variability were the size of the discharger (the amount of flow), the season during which discharge occurred, and the Standard Industrial Classification code of the discharger. One insight gained from this study is that in order to gain access to flow, concentration, and location data, close communication and collaboration are required with the agencies that collect and manage the data. In addition, the accuracy and usefulness of the load estimates depend on the willingness of the states and the U.S. Environmental Protection Agency to provide guidance and review for at least a subset of the load estimates that may be problematic.
NASA Technical Reports Server (NTRS)
Booth, E., Jr.; Yu, J. C.
1986-01-01
An experimental investigation of two dimensional blade vortex interaction was held at NASA Langley Research Center. The first phase was a flow visualization study to document the approach process of a two dimensional vortex as it encountered a loaded blade model. To accomplish the flow visualization study, a method for generating two dimensional vortex filaments was required. The numerical study used to define a new vortex generation process and the use of this process in the flow visualization study were documented. Additionally, photographic techniques and data analysis methods used in the flow visualization study are examined.
Dynamics of Phosphorus export from small forested catchments in low mountain ranges in Germany
NASA Astrophysics Data System (ADS)
Julich, Stefan; Julich, Dorit; Benning, Raphael; Feger, Karl-Heinz
2017-04-01
Phosphorus (P) plays an important role in the nutrition of forest ecosystem. The transport of P in forest soils predominantly occurs along preferential water flow pathways bypassing large parts of the soil matrix. Therefore, rapid flow processes by preferential flow and/or during storm events may lead to significant P losses from forest soils. However only little knowledge about the dynamics, magnitude and driving processes of P exports into surface water exist. In this contribution, we present the results of two studies where two small forested catchments have been monitored for a period around 3 years. Both catchments are situated in low mountain ranges in Saxony (catchment size 21 ha) and Thuringia (catchment size 5 ha) representing medium P contents in the topsoil of 1142 mg kg-1 and 834 mg kg-1 respectively. During the regular sampling (monthly to weekly sampling frequency), the mean Total-P concentrations of 23 μg L-1(Thuringian Site) and 8 μg L-1(Saxonian Site) have been measured. However, during single storm events Total-P concentrations increased considerably with maximum concentrations of 134 μg L-1(Thuringian Site) and 203 μg L-1(Saxonian Site). Our findings indicate that during storm events, especially after longer dry periods, significant amounts of phosphorus can be exported from forest ecosystems. Comparison of discharge-concentration patterns of Total-P, Nitrogen and DOC, as well as dye tracer experiments, suggest that preferential flow along biopores and stone surfaces, and the interface between mineral soil and litter layer are main pathways of export from forests. For the site in Saxony we calculated mean annual export rates of 32.8 to 33.5 g ha-1 a-1 based on the weekly sampling with different load calculation methods (flow weighted methods up to linear regression models). If the events are included into the annual load calculation the mean annual export fluxes increase from 47.8 to 58.6 g ha-1 a-1 based on the different load calculation methods. This implies that the estimation of P-exports from forested catchments need to be based on appropriate monitoring schemes and load estimation methods.
Optimal Scheduling Method of Controllable Loads in DC Smart Apartment Building
NASA Astrophysics Data System (ADS)
Shimoji, Tsubasa; Tahara, Hayato; Matayoshi, Hidehito; Yona, Atsushi; Senjyu, Tomonobu
2015-12-01
From the perspective of global warming suppression and the depletion of energy resources, renewable energies, such as the solar collector (SC) and photovoltaic generation (PV), have been gaining attention in worldwide. Houses or buildings with PV and heat pumps (HPs) are recently being used in residential areas widely due to the time of use (TOU) electricity pricing scheme which is essentially inexpensive during middle-night and expensive during day-time. If fixed batteries and electric vehicles (EVs) can be introduced in the premises, the electricity cost would be even more reduced. While, if the occupants arbitrarily use these controllable loads respectively, power demand in residential buildings may fluctuate in the future. Thus, an optimal operation of controllable loads such as HPs, batteries and EV should be scheduled in the buildings in order to prevent power flow from fluctuating rapidly. This paper proposes an optimal scheduling method of controllable loads, and the purpose is not only the minimization of electricity cost for the consumers, but also suppression of fluctuation of power flow on the power supply side. Furthermore, a novel electricity pricing scheme is also suggested in this paper.
NASA Technical Reports Server (NTRS)
Clark, William S.; Hall, Kenneth C.
1994-01-01
A linearized Euler solver for calculating unsteady flows in turbomachinery blade rows due to both incident gusts and blade motion is presented. The model accounts for blade loading, blade geometry, shock motion, and wake motion. Assuming that the unsteadiness in the flow is small relative to the nonlinear mean solution, the unsteady Euler equations can be linearized about the mean flow. This yields a set of linear variable coefficient equations that describe the small amplitude harmonic motion of the fluid. These linear equations are then discretized on a computational grid and solved using standard numerical techniques. For transonic flows, however, one must use a linear discretization which is a conservative linearization of the non-linear discretized Euler equations to ensure that shock impulse loads are accurately captured. Other important features of this analysis include a continuously deforming grid which eliminates extrapolation errors and hence, increases accuracy, and a new numerically exact, nonreflecting far-field boundary condition treatment based on an eigenanalysis of the discretized equations. Computational results are presented which demonstrate the computational accuracy and efficiency of the method and demonstrate the effectiveness of the deforming grid, far-field nonreflecting boundary conditions, and shock capturing techniques. A comparison of the present unsteady flow predictions to other numerical, semi-analytical, and experimental methods shows excellent agreement. In addition, the linearized Euler method presented requires one or two orders-of-magnitude less computational time than traditional time marching techniques making the present method a viable design tool for aeroelastic analyses.
Simulations of Heterogeneous Detonations and Post Detonation Turbulent Mixing and Afterburning
NASA Astrophysics Data System (ADS)
Menon, Suresh; Gottiparthi, Kalyana
2011-06-01
Most metal-loaded explosives and thermobaric explosives exploit the afterburning of metals to maintain pressure and temperature conditions.The use of such explosives in complex environment can result in post detonation flow containing many scales of vortical motion, flow jetting and shear, as well as plume-surface interactions due to flow impingement and wall flows. In general, all these interactions can lead to highly turbulent flow fields even if the initial ambient conditions were quiescent. Thus, turbulent mixing can dominate initial mixing and impact the final afterburn. We conduct three-dimensional numerical simulations of the propagation of detonation resulting from metal-loaded (inert or reacting) explosives and analyze the afterburn process as well as the generation of multiple scales of mixing in the post detonation flow field. Impact of the detonation and post-detonation flow field on solid surface is also considered for a variety of initial conditions. Comparison with available data is carried out to demonstrate validity of the simulation method. Supported by Defense Threat Reduction Agency
Othman, Rahimah; Vladisavljević, Goran T; Thomas, Noreen L; Nagy, Zoltan K
2016-05-01
Paracetamol (PCM)-loaded composite nanoparticles (NPs) composed of a biodegradable poly(d,l-lactide) (PLA) polymer matrix filled with organically modified montmorillonite (MMT) nanoparticles were fabricated by antisolvent nanoprecipitation in a microfluidic co-flow glass capillary device. The incorporation of MMT in the polymer improved both the drug encapsulation efficiency and the drug loading, and extended the rate of drug release in simulated intestinal fluid (pH 7.4). The particle size increased on increasing both the drug loading and the concentration of MMT in the polymer matrix, and decreased on increasing the aqueous to organic flow rate ratio. The drug encapsulation efficiency in the NPs was higher at higher aqueous to organic flow rate ratio due to faster formation of the NPs. The PCM-loaded PLA NPs containing 2 wt% MMT in PLA prepared at an aqueous to organic flow rate ratio of 10 with an orifice size of 200 μm exhibited a spherical shape with a mean size of 296 nm, a drug encapsulation efficiency of 38.5% and a drug loading of 5.4%. The encapsulation of MMT and PCM in the NPs was confirmed by transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis and attenuated total reflection-Fourier transform infrared spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.
Predicting vibratory stresses from aero-acoustic loads
NASA Astrophysics Data System (ADS)
Shaw, Matthew D.
Sonic fatigue has been a concern of jet aircraft engineers for many years. As engines become more powerful, structures become more lightly damped and complex, and materials become lighter, stiffer, and more complicated, the need to understand and predict structural response to aeroacoustic loads becomes more important. Despite decades of research, vibration in panels caused by random pressure loads, such as those found in a supersonic jet, is still difficult to predict. The work in this research improves on current prediction methods in several ways, in particular for the structural response due to wall pressures induced by supersonic turbulent flows. First, solutions are calculated using time-domain input pressure loads that include shock cells and their interaction with turbulent flow. The solutions include both mean (static) and oscillatory components. Second, the time series of stresses are required for many fatigue assessment counting algorithms. To do this, a method is developed to compute time-dependent solutions in the frequency domain. The method is first applied to a single-degree-of-freedom system. The equations of motion are derived and solved in both the frequency domain and the time domain. The pressure input is a random (broadband) signal representative of jet flow. The method is then applied to a simply-supported beam vibrating in flexure using a line of pressure inputs computed with computational fluid dynamics (CFD). A modal summation approach is used to compute structural response. The coupling between the pressure field and the structure, through the joint acceptance, is reviewed and discussed for its application to more complicated structures. Results from the new method and from a direct time domain method are compared for method verification. Because the match is good and the new frequency domain method is faster computationally, it is chosen for use in a more complicated structure. The vibration of a two-dimensional panel loaded by jet nozzle discharge flow is addressed. The surface pressures calculated at Pratt and Whitney using viscous and compressible CFD are analyzed and compared to surface pressure measurements made at the United Technologies Research Center (UTRC). A structural finite element model is constructed to represent a flexible panel also used in the UTRC setup. The mode shapes, resonance frequencies, modal loss factors, and surface pressures are input into the solution method. Displacement time series and power spectral densities are computed and compared to measurement and show good agreement. The concept of joint acceptance is further addressed for two-dimensional plates excited by supersonic jet flow. Static and alternating stresses in the panel are also computed, and the most highly stressed modes are identified. The surface pressures are further analyzed in the wavenumber domain for insight into the physics of sonic fatigue. Most of the energy in the wall pressure wavenumber-frequency spectrum at subsonic speeds is in turbulent structures near the convective wavenumber. In supersonic flow, however, the shock region dominates the spectrum at low frequencies, but convective behavior is still dominant at higher frequencies. When the forcing function wavenumber energy overlaps the modal wavenumbers, the acceptance of energy by the structure from the flow field is greatest. The wavenumber analysis suggests a means of designing structures to minimize overlap of excitation and structural wavenumber peaks to minimize vibration and sonic fatigue.
NASA Technical Reports Server (NTRS)
Lamar, J. E.; Luckring, J. M.
1978-01-01
A review is presented of recent progress in a research program directed towards the development of an improved vortex-flow technology base. It is pointed out that separation induced vortex-flows from the leading and side edges play an important role in the high angle-of-attack aerodynamic characteristics of a wide range of modern aircraft. In the analysis and design of high-speed aircraft, a detailed knowledge of this type of separation is required, particularly with regard to critical wind loads and the stability and performance at various off-design conditions. A description of analytical methods is presented. The theoretical methods employed are divided into two classes which are dependent upon the underlying aerodynamic assumptions. One conical flow method is considered along with three different nonconical flow methods. Comparisons are conducted between the described methods and available aerodynamic data. Attention is also given to a vortex flow drag study and a vortex flow wing design using suction analogy.
NASA Astrophysics Data System (ADS)
Chen, Fan; Huang, Shaoxiong; Ding, Jinjin; Ding, Jinjin; Gao, Bo; Xie, Yuguang; Wang, Xiaoming
2018-01-01
This paper proposes a fast reliability assessing method for distribution grid with distributed renewable energy generation. First, the Weibull distribution and the Beta distribution are used to describe the probability distribution characteristics of wind speed and solar irradiance respectively, and the models of wind farm, solar park and local load are built for reliability assessment. Then based on power system production cost simulation probability discretization and linearization power flow, a optimal power flow objected with minimum cost of conventional power generation is to be resolved. Thus a reliability assessment for distribution grid is implemented fast and accurately. The Loss Of Load Probability (LOLP) and Expected Energy Not Supplied (EENS) are selected as the reliability index, a simulation for IEEE RBTS BUS6 system in MATLAB indicates that the fast reliability assessing method calculates the reliability index much faster with the accuracy ensured when compared with Monte Carlo method.
Gilbreath, Alicia N; McKee, Lester J
2015-09-01
Urban runoff has been identified in water quality policy documents for San Francisco Bay as a large and potentially controllable source of pollutants. In response, concentrations of suspended sediments and a range of trace organic pollutants were intensively measured in dry weather and storm flow runoff from a 100% urban watershed. Flow in this highly urban watershed responded very quickly to rainfall and varied widely resulting in rapid changes of turbidity, suspended sediments and pollutant concentrations. Concentrations of each organic pollutant class were within similar ranges reported in other studies of urban runoff, however comparison was limited for several of the pollutants given information scarcity. Consistently among PCBs, PBDEs, and PAHs, the more hydrophobic congeners were transported in larger proportions during storm flows relative to low flows. Loads for Water Years 2007-2010 were estimated using regression with turbidity during the monitored months and a flow weighted mean concentration for unmonitored dry season months. More than 91% of the loads for every pollutant measured were transported during storm events, along with 87% of the total discharge. While this dataset fills an important local data gap for highly urban watersheds of San Francisco Bay, the methods, the uniqueness of the analyte list, and the resulting interpretations have applicability for managing pollutant loads in urban watersheds in other parts of the world. Copyright © 2015 Elsevier B.V. All rights reserved.
Numerical Study of Flow Augmented Thermal Management for Entry and Re-Entry Environments
NASA Technical Reports Server (NTRS)
Cheng, Gary C.; Neroorkar, Kshitij D.; Chen, Yen-Sen; Wang, Ten-See; Daso, Endwell O.
2007-01-01
The use of a flow augmented thermal management system for entry and re-entr environments is one method for reducing heat and drag loads. This concept relies on jet penetration from supersonic and hypersonic counterflowing jets that could significantly weaken and disperse the shock-wave system of the spacecraft flow field. The objective of this research effort is to conduct parametric studies of the supersonic flow over a 2.6% scale model of the Apollo capsule, with and without the counterflowing jet, using time-accurate and steady-state computational fluid dynamics simulations. The numerical studies, including different freestream Mach number angle of attack counterflowing jet mass flow rate, and nozzle configurations, were performed to examine their effect on the drag and beat loads and to explore the counternowing jet condition. The numerical results were compared with the test data obtained from transonic blow-down wind-tunnel experiments conducted independently at NASA MSFC.
The effect of gas and fluid flows on nonlinear lateral vibrations of rotating drill strings
NASA Astrophysics Data System (ADS)
Khajiyeva, Lelya; Kudaibergenov, Askar; Kudaibergenov, Askat
2018-06-01
In this work we develop nonlinear mathematical models describing coupled lateral vibrations of a rotating drill string under the effect of external supersonic gas and internal fluid flows. An axial compressive load and a torque also affect the drill string. The mathematical models are derived by the use of Novozhilov's nonlinear theory of elasticity with implementation of Hamilton's variation principle. Expressions for the gas flow pressure are determined according to the piston theory. The fluid flow is considered as added mass inside the curved tube of the drill string. Using an algorithm developed in the Mathematica computation program on the basis of the Galerkin approach and the stiffness switching method the numerical solution of the obtained approximate differential equations is found. Influences of the external loads, drill string angular speed of rotation, parameters of the gas and fluid flows on the drill string vibrations are shown.
Determination of Failure Point of Asphalt-Mixture Fatigue-Test Results Using the Flow Number Method
NASA Astrophysics Data System (ADS)
Wulan, C. E. P.; Setyawan, A.; Pramesti, F. P.
2018-03-01
The failure point of the results of fatigue tests of asphalt mixtures performed in controlled stress mode is difficult to determine. However, several methods from empirical studies are available to solve this problem. The objectives of this study are to determine the fatigue failure point of the results of indirect tensile fatigue tests using the Flow Number Method and to determine the best Flow Number model for the asphalt mixtures tested. In order to achieve these goals, firstly the best asphalt mixture of three was selected based on their Marshall properties. Next, the Indirect Tensile Fatigue Test was performed on the chosen asphalt mixture. The stress-controlled fatigue tests were conducted at a temperature of 20°C and frequency of 10 Hz, with the application of three loads: 500, 600, and 700 kPa. The last step was the application of the Flow Number methods, namely the Three-Stages Model, FNest Model, Francken Model, and Stepwise Method, to the results of the fatigue tests to determine the failure point of the specimen. The chosen asphalt mixture is EVA (Ethyl Vinyl Acetate) polymer -modified asphalt mixture with 6.5% OBC (Optimum Bitumen Content). Furthermore, the result of this study shows that the failure points of the EVA-modified asphalt mixture under loads of 500, 600, and 700 kPa are 6621, 4841, and 611 for the Three-Stages Model; 4271, 3266, and 537 for the FNest Model; 3401, 2431, and 421 for the Francken Model, and 6901, 6841, and 1291 for the Stepwise Method, respectively. These different results show that the bigger the loading, the smaller the number of cycles to failure. However, the best FN results are shown by the Three-Stages Model and the Stepwise Method, which exhibit extreme increases after the constant development of accumulated strain.
Patil, Narendra G; Rebrov, Evgeny V; Eränen, Kari; Benaskar, Faysal; Meuldijk, Jan; Mikkola, Jyri-Pekka; Hessel, Volker; Hulshof, Lumbertus A; Murzin, Dmitry Yu; Schouten, Jaap C
2012-01-01
A novel heating efficiency analysis of the microwave heated stop-flow (i.e. stagnant liquid) and continuous-flow reactors has been presented. The thermal losses to the surrounding air by natural convection have been taken into account for heating efficiency calculation of the microwave heating process. The effect of the load diameter in the range of 4-29 mm on the heating efficiency of ethylene glycol was studied in a single mode microwave cavity under continuous flow and stop-flow conditions. The variation of the microwave absorbing properties of the load with temperature was estimated. Under stop-flow conditions, the heating efficiency depends on the load diameter. The highest heating efficiency has been observed at the load diameter close to the half wavelength of the electromagnetic field in the corresponding medium. Under continuous-flow conditions, the heating efficiency increased linearly. However, microwave leakage above the propagation diameter restricted further experimentation at higher load diameters. Contrary to the stop-flow conditions, the load temperature did not raise monotonously from the inlet to outlet under continuous-flow conditions. This was due to the combined effect of lagging convective heat fluxes in comparison to volumetric heating. This severely disturbs the uniformity of the electromagnetic field in the axial direction and creates areas of high and low field intensity along the load Length decreasing the heating efficiency as compared to stop-flow conditions.
Constituent loads in small streams: the process and problems of estimating sediment flux
R. B. Thomas
1989-01-01
Constituent loads in small streams are often estimated poorly. This is especially true for discharge-related constituents like sediment, since their flux is highly variable and mainly occurs during infrequent high-flow events. One reason for low-quality estimates is that most prevailing data collection methods ignore sampling probabilities and only partly account for...
Tavakoli, Ali; Nikoo, Mohammad Reza; Kerachian, Reza; Soltani, Maryam
2015-04-01
In this paper, a new fuzzy methodology is developed to optimize water and waste load allocation (WWLA) in rivers under uncertainty. An interactive two-stage stochastic fuzzy programming (ITSFP) method is utilized to handle parameter uncertainties, which are expressed as fuzzy boundary intervals. An iterative linear programming (ILP) is also used for solving the nonlinear optimization model. To accurately consider the impacts of the water and waste load allocation strategies on the river water quality, a calibrated QUAL2Kw model is linked with the WWLA optimization model. The soil, water, atmosphere, and plant (SWAP) simulation model is utilized to determine the quantity and quality of each agricultural return flow. To control pollution loads of agricultural networks, it is assumed that a part of each agricultural return flow can be diverted to an evaporation pond and also another part of it can be stored in a detention pond. In detention ponds, contaminated water is exposed to solar radiation for disinfecting pathogens. Results of applying the proposed methodology to the Dez River system in the southwestern region of Iran illustrate its effectiveness and applicability for water and waste load allocation in rivers. In the planning phase, this methodology can be used for estimating the capacities of return flow diversion system and evaporation and detention ponds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naughton, Jonathan W.
2014-08-05
The growth of wind turbines has led to highly variable loading on the blades. Coupled with the relative reduced stiffness of longer blades, the need to control loading on the blades has become important. One method of controlling loads and maximizing energy extraction is local control of the flow on the wind turbine blades. The goal of the present work was to better understand the sources of the unsteady loading and then to control them. This is accomplished through an experimental effort to characterize the unsteadiness and the effect of a Gurney flap on the flow, as well as anmore » analytical effort to develop control approaches. It was planned to combine these two efforts to demonstrate control of a wind tunnel test model, but that final piece still remains to be accomplished.« less
Ganni, Venkatarao
2008-08-12
A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.
Ganni, Venkatarao
2007-10-09
A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.
NASA Astrophysics Data System (ADS)
Keylock, C. J.; Nishimura, K.; Peinke, J.
2012-03-01
Kolmogorov's classic theory for turbulence assumed an independence between velocity increments and the value for the velocity itself. However, recent work has called this assumption in to question, which has implications for the structure of atmospheric, oceanic and fluvial flows. Here we propose a conceptually simple analytical framework for studying velocity-intermittency coupling that is similar in essence to the popular quadrant analysis method for studying near-wall flows. However, we study the dominant (longitudinal) velocity component along with a measure of the roughness of the signal, given mathematically by its series of Hölder exponents. Thus, we permit a possible dependence between velocity and intermittency. We compare boundary layer data obtained in a wind tunnel to turbulent jets and wake flows. These flow classes all have distinct characteristics, which cause them to be readily distinguished using our technique and the results are robust to changes in flow Reynolds numbers. Classification of environmental flows is then possible based on their similarities to the idealized flow classes and we demonstrate this using laboratory data for flow in a parallel-channel confluence. Our results have clear implications for sediment transport in a range of geophysical applications as they suggest that the recently proposed impulse-based methods for studying bed load transport are particularly relevant in domains such as gravel bed river flows where the boundary layer is disrupted and wake interactions predominate.
Effect of compression load and temperature on thermomechanical tests for gutta-percha and Resilon®.
Tanomaru-Filho, M; Silveira, G F; Reis, J M S N; Bonetti-Filho, I; Guerreiro-Tanomaru, J M
2011-11-01
To analyse a method used to evaluate the thermomechanical properties of gutta-percha and Resilon(®) at different temperatures and compression loads. Two hundred and seventy specimens measuring 10 mm in diameter and 1.5 mm in height were made from the following materials: conventional gutta-percha (GCO), thermoplastic gutta-percha (GTP) and Resilon(®) cones (RE). After 24 h, the specimens were placed in water at 50 °C, 60 °C or 70 °C for 60 s. After that, specimens were placed between two glass slabs, and loads weighing 1.0, 3.0 or 5.0 kg were applied. Images of the specimens were digitized before and after the test and analysed using imaging software to determine their initial and final areas. The thermomechanical property of each material was determined by the difference between the initial and final areas of the specimens. Data were subjected to anova and SNK tests at 5% significance. To verify a possible correlation between the results of the materials, linear regression coefficients (r) were calculated. Data showed higher flow area values for RE under all compression loads at 70 °C and under the 5.0 kg load at 60 °C (P < 0.05). Regarding gutta-percha, GTP showed higher flow under loads weighing 3.0 and 5.0 kg, at 60 and 70 °C (P < 0.05). GCO presented higher flow at 70 °C with a load of 5.0 kg. Regression analyses showed a poor linear correlation amongst the results of the materials under the different experimental conditions. Gutta-percha and Resilon(®) cones require different compression loads and temperatures for evaluation of their thermomechanical properties. For all materials, the greatest flow occurred at 70 °C under a load of 5.0 kg; therefore, these parameters may be adopted when evaluating endodontic filling materials. © 2011 International Endodontic Journal.
Theoretical study of aerodynamic characteristics of wings having vortex flow
NASA Technical Reports Server (NTRS)
Reddy, C. S.
1979-01-01
The aerodynamic characteristics of slender wings having separation induced vortex flows are investigated by employing three different computer codes--free vortex sheet, quasi vortex lattice, and suction analogy methods. Their capabilities and limitations are examined, and modifications are discussed. Flat wings of different configurations: arrow, delta, and diamond shapes, as well as cambered delta wings, are studied. The effect of notch ratio on the load distributions and the longitudinal characteristics of a family of arrow and diamond wings is explored. The sectional lift coefficients and the accumulated span loadings are determined for an arrow wing and are seen to be unusual in comparison with the attached flow results. The theoretically predicted results are compared with the existing experimental values.
NASA Astrophysics Data System (ADS)
Huang, Haiyun; Zhang, Junping; Li, Yonghe
2018-05-01
Under the weight charge policy, the weigh in motion data at a toll station on the Jing-Zhu Expressway were collected. The statistic analysis of vehicle load data was carried out. For calculating the operating vehicle load effects on bridges, by Monte Carlo method used to generate random traffic flow and influence line loading method, the maximum bending moment effect of simple supported beams were obtained. The extreme value I distribution and normal distribution were used to simulate the distribution of the maximum bending moment effect. By the extrapolation of Rice formula and the extreme value I distribution, the predicted values of the maximum load effects were obtained. By comparing with vehicle load effect according to current specification, some references were provided for the management of the operating vehicles and the revision of the bridge specifications.
PIC simulation of the vacuum power flow for a 5 terawatt, 5 MV, 1 MA pulsed power system
NASA Astrophysics Data System (ADS)
Liu, Laqun; Zou, Wenkang; Liu, Dagang; Guo, Fan; Wang, Huihui; Chen, Lin
2018-03-01
In this paper, a 5 Terawatt, 5 MV, 1 MA pulsed power system based on vacuum magnetic insulation is simulated by the particle-in-cell (PIC) simulation method. The system consists of 50 100-kV linear transformer drive (LTD) cavities in series, using magnetically insulated induction voltage adder (MIVA) technology for pulsed power addition and transmission. The pulsed power formation and the vacuum power flow are simulated when the system works in self-limited flow and load-limited flow. When the pulsed power system isn't connected to the load, the downstream magnetically insulated transmission line (MITL) works in the self-limited flow, the maximum of output current is 1.14 MA and the amplitude of voltage is 4.63 MV. The ratio of the electron current to the total current is 67.5%, when the output current reached the peak value. When the impedance of the load is 3.0 Ω, the downstream MITL works in the self-limited flow, the maximums of output current and the amplitude of voltage are 1.28 MA and 3.96 MV, and the ratio of the electron current to the total current is 11.7% when the output current reached the peak value. In addition, when the switches are triggered in synchronism with the passage of the pulse power flow, it effectively reduces the rise time of the pulse current.
NASA Astrophysics Data System (ADS)
Sakaida, Satoshi; Tabe, Yutaka; Chikahisa, Takemi
2017-09-01
A method for the large-scale simulation with the lattice Boltzmann method (LBM) is proposed for liquid water movement in a gas diffusion layer (GDL) of polymer electrolyte membrane fuel cells. The LBM is able to analyze two-phase flows in complex structures, however the simulation domain is limited due to heavy computational loads. This study investigates a variety means to reduce computational loads and increase the simulation areas. One is applying an LBM treating two-phases as having the same density, together with keeping numerical stability with large time steps. The applicability of this approach is confirmed by comparing the results with rigorous simulations using actual density. The second is establishing the maximum limit of the Capillary number that maintains flow patterns similar to the precise simulation; this is attempted as the computational load is inversely proportional to the Capillary number. The results show that the Capillary number can be increased to 3.0 × 10-3, where the actual operation corresponds to Ca = 10-5∼10-8. The limit is also investigated experimentally using an enlarged scale model satisfying similarity conditions for the flow. Finally, a demonstration is made of the effects of pore uniformity in GDL as an example of a large-scale simulation covering a channel.
NASA Astrophysics Data System (ADS)
Abdelmoula, Nouha; Harthong, Barthélémy; Imbault, Didier; Dorémus, Pierre
2017-12-01
The multi-particle finite element method involving assemblies of meshed particles interacting through finite-element contact conditions is adopted to study the plastic flow of a granular material with highly deformable elastic-plastic grains. In particular, it is investigated whether the flow rule postulate applies for such materials. Using a spherical stress probing method, the influence of incremental stress on plastic strain increment vectors was assessed for numerical samples compacted along two different loading paths up to different values of relative density. Results show that the numerical samples studied behave reasonably well according to an associated flow rule, except in the vicinity of the loading point where the influence of the stress increment proved to be very significant. A plausible explanation for the non-uniqueness of the direction of plastic flow is proposed, based on the idea that the resistance of the numerical sample to plastic straining can vary by an order of magnitude depending on the direction of the accumulated stress. The above-mentioned dependency of the direction of plastic flow on the direction of the stress increment was related to the difference in strength between shearing and normal stressing at the scale of contact surfaces between particles.
Research on virtual network load balancing based on OpenFlow
NASA Astrophysics Data System (ADS)
Peng, Rong; Ding, Lei
2017-08-01
The Network based on OpenFlow technology separate the control module and data forwarding module. Global deployment of load balancing strategy through network view of control plane is fast and of high efficiency. This paper proposes a Weighted Round-Robin Scheduling algorithm for virtual network and a load balancing plan for server load based on OpenFlow. Load of service nodes and load balancing tasks distribution algorithm will be taken into account.
Development of Ciprofloxacin-loaded contact lenses using fluorous chemistry
Zhu, Zhiling; Li, Siheng; McDermott, Alison M.
2017-01-01
In this work, we developed a simple method to load drugs into commercially available contact lenses utilizing fluorous chemistry. We demonstrated this method using model compounds including fluorous-tagged fluorescein and antibiotic ciprofloxacin. We showed that fluorous interactions facilitated the loading of model molecules into fluorocarbon-containing contact lenses, and that the release profiles exhibited sustained release. Contact lenses loaded with fluorous-tagged ciprofloxacin exhibited antimicrobial activity against Pseudomonas aeruginosa in vitro, while no cytotoxicity towards human corneal epithelial cells was observed. To mimic the tear turnover, we designed a porcine eye infection model under flow conditions. Significantly, the modified lenses also exhibited antimicrobial efficacy against Pseudomonas aeruginosa in the ex vivo infection model. Overall, utilizing fluorous chemistry, we can construct a drug delivery system that exhibits high drug loading capacity, sustained drug release, and robust biological activity. PMID:28188995
Method to predict external store carriage characteristics at transonic speeds
NASA Technical Reports Server (NTRS)
Rosen, Bruce S.
1988-01-01
Development of a computational method for prediction of external store carriage characteristics at transonic speeds is described. The geometric flexibility required for treatment of pylon-mounted stores is achieved by computing finite difference solutions on a five-level embedded grid arrangement. A completely automated grid generation procedure facilitates applications. Store modeling capability consists of bodies of revolution with multiple fore and aft fins. A body-conforming grid improves the accuracy of the computed store body flow field. A nonlinear relaxation scheme developed specifically for modified transonic small disturbance flow equations enhances the method's numerical stability and accuracy. As a result, treatment of lower aspect ratio, more highly swept and tapered wings is possible. A limited supersonic freestream capability is also provided. Pressure, load distribution, and force/moment correlations show good agreement with experimental data for several test cases. A detailed computer program description for the Transonic Store Carriage Loads Prediction (TSCLP) Code is included.
Influence of various water quality sampling strategies on load estimates for small streams
Robertson, Dale M.; Roerish, Eric D.
1999-01-01
Extensive streamflow and water quality data from eight small streams were systematically subsampled to represent various water‐quality sampling strategies. The subsampled data were then used to determine the accuracy and precision of annual load estimates generated by means of a regression approach (typically used for big rivers) and to determine the most effective sampling strategy for small streams. Estimation of annual loads by regression was imprecise regardless of the sampling strategy used; for the most effective strategy, median absolute errors were ∼30% based on the load estimated with an integration method and all available data, if a regression approach is used with daily average streamflow. The most effective sampling strategy depends on the length of the study. For 1‐year studies, fixed‐period monthly sampling supplemented by storm chasing was the most effective strategy. For studies of 2 or more years, fixed‐period semimonthly sampling resulted in not only the least biased but also the most precise loads. Additional high‐flow samples, typically collected to help define the relation between high streamflow and high loads, result in imprecise, overestimated annual loads if these samples are consistently collected early in high‐flow events.
Parallel DSMC Solution of Three-Dimensional Flow Over a Finite Flat Plate
NASA Technical Reports Server (NTRS)
Nance, Robert P.; Wilmoth, Richard G.; Moon, Bongki; Hassan, H. A.; Saltz, Joel
1994-01-01
This paper describes a parallel implementation of the direct simulation Monte Carlo (DSMC) method. Runtime library support is used for scheduling and execution of communication between nodes, and domain decomposition is performed dynamically to maintain a good load balance. Performance tests are conducted using the code to evaluate various remapping and remapping-interval policies, and it is shown that a one-dimensional chain-partitioning method works best for the problems considered. The parallel code is then used to simulate the Mach 20 nitrogen flow over a finite-thickness flat plate. It is shown that the parallel algorithm produces results which compare well with experimental data. Moreover, it yields significantly faster execution times than the scalar code, as well as very good load-balance characteristics.
Finite-difference computations of rotor loads
NASA Technical Reports Server (NTRS)
Caradonna, F. X.; Tung, C.
1985-01-01
This paper demonstrates the current and future potential of finite-difference methods for solving real rotor problems which now rely largely on empiricism. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advance-ratio flight. Comparisons are made with experimental pressure data.
Finite-difference computations of rotor loads
NASA Technical Reports Server (NTRS)
Caradonna, F. X.; Tung, C.
1985-01-01
The current and future potential of finite difference methods for solving real rotor problems which now rely largely on empiricism are demonstrated. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advanced-ratio flight. Comparisons are made with experimental pressure data.
The influence of passenger flow on the topology characteristics of urban rail transit networks
NASA Astrophysics Data System (ADS)
Hu, Yingyue; Chen, Feng; Chen, Peiwen; Tan, Yurong
2017-05-01
Current researches on the network characteristics of metro networks are generally carried out on topology networks without passenger flows running on it, thus more complex features of the networks with ridership loaded on it cannot be captured. In this study, we incorporated the load of metro networks, passenger volume, into the exploration of network features. Thus, the network can be examined in the context of operation, which is the ultimate purpose of the existence of a metro network. To this end, section load was selected as an edge weight to demonstrate the influence of ridership on the network, and a weighted calculation method for complex network indicators and robustness were proposed to capture the unique behaviors of a metro network with passengers flowing in it. The proposed method was applied on Beijing Subway. Firstly, the passenger volume in terms of daily origin and destination matrix was extracted from exhausted transit smart card data. Using the established approach and the matrix as weighting, common indicators of complex network including clustering coefficient, betweenness and degree were calculated, and network robustness were evaluated under potential attacks. The results were further compared to that of unweighted networks, and it suggests indicators of the network with consideration of passenger volumes differ from that without ridership to some extent, and networks tend to be more vulnerable than that without load on it. The significance sequence for the stations can be changed. By introducing passenger flow weighting, actual operation status of the network can be reflected more accurately. It is beneficial to determine the crucial stations and make precautionary measures for the entire network’s operation security.
NASA Astrophysics Data System (ADS)
1992-12-01
ESDU 92035 provides details of a FORTRAN program that implements the calculation method of ESDU 83004. It allows performance analysis of an existing design, or the design of a bearing dimensions, subject to any space constraint, are recommended. The predicted performance includes the lubricant film thickness under load, its temperature and flow rate, the power loss, and the bearing temperature. Recommendations are also made on surface finish. Warning messages are output in the following cases, for each of which possible remedial actions are suggested: drain or pad temperature too high, churning losses too great, film thickness too small, pad number too high, ratio or inner to outer pad radius too large, flow rate too great, lubricant or pad temperature outside usable range. A lubricant database is provided that may be extended or edited. The program applies to Newtonian lubricants in laminar flow. Worked examples illustrate the use of the program.
NASA Technical Reports Server (NTRS)
Mendenhall, M. R.
1978-01-01
A user's manual is presented for a computer program in which a vortex-lattice lifting-surface method is used to model the wing and multiple flaps. The engine wake model consists of a series of closely spaced vortex rings with rectangular cross sections. The jet wake is positioned such that the lower boundary of the jet is tangent to the wing and flap upper surfaces. The two potential flow models are used to calculate the wing-flap loading distribution including the influence of the wakes from up to two engines on the semispan. The method is limited to the condition where the flow and geometry of the configurations are symmetric about the vertical plane containing the wing root chord. The results include total configuration forces and moments, individual lifting-surface load distributions, pressure distributions, flap hinge moments, and flow field calculation at arbitrary field points. The use of the program, preparation of input, the output, program listing, and sample cases are described.
NASA Technical Reports Server (NTRS)
Medan, R. T.; Ray, K. S.
1974-01-01
A description of and users manual are presented for a U.S.A. FORTRAN 4 computer program which evaluates spanwise and chordwise loading distributions, lift coefficient, pitching moment coefficient, and other stability derivatives for thin wings in linearized, steady, subsonic flow. The program is based on a kernel function method lifting surface theory and is applicable to a large class of planforms including asymmetrical ones and ones with mixed straight and curved edges.
Electrical Load Profile Analysis Using Clustering Techniques
NASA Astrophysics Data System (ADS)
Damayanti, R.; Abdullah, A. G.; Purnama, W.; Nandiyanto, A. B. D.
2017-03-01
Data mining is one of the data processing techniques to collect information from a set of stored data. Every day the consumption of electricity load is recorded by Electrical Company, usually at intervals of 15 or 30 minutes. This paper uses a clustering technique, which is one of data mining techniques to analyse the electrical load profiles during 2014. The three methods of clustering techniques were compared, namely K-Means (KM), Fuzzy C-Means (FCM), and K-Means Harmonics (KHM). The result shows that KHM is the most appropriate method to classify the electrical load profile. The optimum number of clusters is determined using the Davies-Bouldin Index. By grouping the load profile, the demand of variation analysis and estimation of energy loss from the group of load profile with similar pattern can be done. From the group of electric load profile, it can be known cluster load factor and a range of cluster loss factor that can help to find the range of values of coefficients for the estimated loss of energy without performing load flow studies.
NASA Technical Reports Server (NTRS)
Schnitzer, Emanuel
1953-01-01
A theoretical method is derived for the determination of the motions and loads during chine-immersed water landings of prismatic bodies. This method makes use of a variation of two-dimensional deflected water mass over the complete range of immersion, modified by a correction for three-dimensional flow. Equations are simplified through omission of the term proportional to the acceleration of the deflected mass for use in calculation of loads on hulls having moderate and heavy beam loading. The effects of water rise at the keel are included in these equations. In order to make a direct comparison of theory with experiment, a modification of the equations was made to include the effect of finite test-carriage mass. A simple method of computation which can be applied without reading the body of this report is presented as an appendix along with the required theoretical plots for determination of loads and motions in chine-immersed landings.
A method for improving predictions of bed-load discharges to reservoirs
Lopes, V.L.; Osterkamp, W.R.; Bravo-Espinosa, M.
2007-01-01
Effective management options for mitigating the loss of reservoir water storage capacity to sedimentation depend on improved predictions of bed-load discharges into the reservoirs. Most predictions of bed-load discharges, however, are based on the assumption that the rates of bed-load sediment availability equal the transport capacity of the flow, ignoring the spatio-temporal variability of the sediment supply. This paper develops a semiquantitative method to characterize bed-load sediment transport in alluvial channels, assuming a channel reach is non-supply limited when the bed-load discharge of a given sediment particle-size class is functionally related to the energy that is available to transport that fraction of the total bed-load. The method was applied to 22 alluvial stream channels in the USA to determine whether a channel reach had a supply-limited or non-supply-limited bed-load transport regime. The non-supply-limited transport regime was further subdivided into two groups on the basis of statistical tests. The results indicated the pattern of bed-load sediment transport in alluvial channels depends on the complete spectrum of sediment particle sizes available for transport rather than individual particle-size fractions represented by one characteristic particle size. The application of the method developed in this paper should assist reservoir managers in selecting bed-load sediment transport equations to improve predictions of bed-load discharge in alluvial streams, thereby significantly increasing the efficiency of management options for maintaining the storage capacity of waterbodies. ?? 2007 Blackwell Publishing Asia Pty Ltd.
NASA Technical Reports Server (NTRS)
Hauser, Cavour H; Plohr, Henry W
1951-01-01
The nature of the flow at the exit of a row of turbine blades for the range of conditions represented by four different blade configurations was evaluated by the conservation-of-momentum principle using static-pressure surveys and by analysis of Schlieren photographs of the flow. It was found that for blades of the type investigated, the maximum exit tangential-velocity component is a function of the blade geometry only and can be accurately predicted by the method of characteristics. A maximum value of exit velocity coefficient is obtained at a pressure ratio immediately below that required for maximum blade loading followed by a sharp drop after maximum blade loading occurs.
NASA Technical Reports Server (NTRS)
Manro, M. E.
1983-01-01
Two separated flow computer programs and a semiempirical method for incorporating the experimentally measured separated flow effects into a linear aeroelastic analysis were evaluated. The three dimensional leading edge vortex (LEV) code is evaluated. This code is an improved panel method for three dimensional inviscid flow over a wing with leading edge vortex separation. The governing equations are the linear flow differential equation with nonlinear boundary conditions. The solution is iterative; the position as well as the strength of the vortex is determined. Cases for both full and partial span vortices were executed. The predicted pressures are good and adequately reflect changes in configuration.
Cold-tip off-state conduction loss of miniature Stirling cycle cryocoolers
NASA Technical Reports Server (NTRS)
Kotsubo, V.; Johnson, D. L.; Ross, R. G., Jr.
1991-01-01
For redundant miniature Stirling-cycle cryocoolers in space applications, the off-state heat conduction down the coldfinger of one cooler is a parasitic heat load on the other coolers. At JPL, a heat flow transducer specifically designed to measure this load has been developed, and measurements have been performed on the coldfinger of a British Aerospace 80 K Stirling cooler with the tip temperature ranging between 40 and 170 K. Measurements have also been made using a transient warmup technique, where the warmup rates of the coldtip under various applied heat loads are used to determine the static conduction load. There is a difference between the results of these two methods, and these differences are discussed with regard to the applicability of the transient warmup method to a nonoperating coldfinger.
New method to improve dynamic stiffness of electro-hydraulic servo systems
NASA Astrophysics Data System (ADS)
Bai, Yanhong; Quan, Long
2013-09-01
Most current researches working on improving stiffness focus on the application of control theories. But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated, so the control action is lagged. Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms. In this paper, the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed. On this basis, the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward. And a scheme using double servo valves to realize flow feedforward compensation is presented, in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time. The two valves are arranged in parallel to control the cylinder jointly. Furthermore, the model of flow compensation is derived, by which the product of the amplitude and width of the valve’s pulse command signal can be calculated. And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations. Using the proposed scheme, simulations and experiments at different positions with different force changes are conducted. The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time. That is, system dynamic load stiffness is evidently raised. This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems.
Bria, Carmen R M; Skelly, Patrick W; Morse, James R; Schaak, Raymond E; Williams, S Kim Ratanathanawongs
2017-05-26
The design and performance of a semi-preparative asymmetrical flow field-flow fractionation (SP-AF4) channel are investigated with the objective of better understanding and exploiting the relationship between channel dimensions, sample loading, and resolution. Most size-based separations of nanometer and submicrometer particles are currently limited to analytical scale quantities (<100μg). However, there is a strong need to fractionate and collect larger quantities so that fundamental properties of the more narrowly dispersed fractions can be studied using additional characterization methods and for subsequent applications. In this work, dimensions of the spacer that defines the form of SP-AF4 channels are varied and their performances are assessed with respect to sample focusing position and loading. Separations are performed in aqueous and organic carrier fluids. A critical evaluation of channel dimensions showed that increasing the channel breadth is a practical and effective route to maintaining separation resolution while increasing sample loads to milligram quantities. Good size resolution (∼1.0) is achieved for separations of 10mg of 50 and 100nm silica nanoparticles suspended in water and up to 0.6mg of ∼10 to 35nm inorganic hybrid nanoparticles suspended in tetrahydrofuran. This work represents important advances in the understanding of SP-AF4 separations and extends sample loading capacities in both aqueous and organic solvents. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kawai, T.
Among the topics discussed are the application of FEM to nonlinear free surface flow, Navier-Stokes shallow water wave equations, incompressible viscous flows and weather prediction, the mathematical analysis and characteristics of FEM, penalty function FEM, convective, viscous, and high Reynolds number FEM analyses, the solution of time-dependent, three-dimensional and incompressible Navier-Stokes equations, turbulent boundary layer flow, FEM modeling of environmental problems over complex terrain, and FEM's application to thermal convection problems and to the flow of polymeric materials in injection molding processes. Also covered are FEMs for compressible flows, including boundary layer flows and transonic flows, hybrid element approaches for wave hydrodynamic loadings, FEM acoustic field analyses, and FEM treatment of free surface flow, shallow water flow, seepage flow, and sediment transport. Boundary element methods and FEM computational technique topics are also discussed. For individual items see A84-25834 to A84-25896
Analysis on Voltage Profile of Distribution Network with Distributed Generation
NASA Astrophysics Data System (ADS)
Shao, Hua; Shi, Yujie; Yuan, Jianpu; An, Jiakun; Yang, Jianhua
2018-02-01
Penetration of distributed generation has some impacts on a distribution network in load flow, voltage profile, reliability, power loss and so on. After the impacts and the typical structures of the grid-connected distributed generation are analyzed, the back/forward sweep method of the load flow calculation of the distribution network is modelled including distributed generation. The voltage profiles of the distribution network affected by the installation location and the capacity of distributed generation are thoroughly investigated and simulated. The impacts on the voltage profiles are summarized and some suggestions to the installation location and the capacity of distributed generation are given correspondingly.
Savoie, Jennifer G.; Mullaney, John R.; Bent, Gardner C.
2017-02-21
Trends in long-term water-quality and streamflow data from six water-quality-monitoring stations within three major river basins in Massachusetts and Rhode Island that flow into Narragansett Bay and Little Narragansett Bay were evaluated for water years 1979–2015. In this study, conducted by the U.S. Geological Survey in cooperation with the Rhode Island Department of Environmental Management, the Rhode Island Water Resources Board, and the U.S. Environmental Protection Agency, water-quality and streamflow data were evaluated with a Weighted Regressions on Time, Discharge, and Season smoothing method, which removes the effects of year-to-year variation in water-quality conditions due to variations in streamflow (discharge). Trends in annual mean, annual median, annual maximum, and annual 7-day minimum flows at four continuous streamgages were evaluated by using a time-series smoothing method for water years 1979–2015.Water quality at all monitoring stations changed over the study period. Decreasing trends in flow-normalized nutrient concentrations and loads were observed during the period at most monitoring stations for total nitrogen, nitrite plus nitrate, and total phosphorus. Average flow-normalized loads for water years 1979–2015 decreased in the Blackstone River by up to 46 percent in total nitrogen, 17 percent in nitrite plus nitrate, and 69 percent in total phosphorus. The other rivers also had decreasing flow-normalized trends in nutrient concentrations and loads, except for the Pawtuxet River, which had an increasing trend in nitrite plus nitrate. Increasing trends in flow-normalized chloride concentrations and loads were observed during the study period at all of the rivers, with increases of more than 200 percent in the Blackstone River.Small increasing trends in annual mean daily streamflow were observed in 3 of the 4 rivers, with increases of 1.2 to 11 percent; however, the trends were not significant. All 4 rivers had decreases in streamflow for the annual 7-day minimums, but only 3 of the 4 rivers had decreases that were significant (34 to 54 percent). The Branch River had decreasing annual mean daily streamflow (7.5 percent) and the largest decrease in the annual 7-day minimum streamflow. The Blackstone and Pawtuxet Rivers had the largest increases in annual maximum daily flows but had decreases in the annual 7-day minimum flows.
Design of Aspirated Compressor Blades Using Three-dimensional Inverse Method
NASA Technical Reports Server (NTRS)
Dang, T. Q.; Rooij, M. Van; Larosiliere, L. M.
2003-01-01
A three-dimensional viscous inverse method is extended to allow blading design with full interaction between the prescribed pressure-loading distribution and a specified transpiration scheme. Transpiration on blade surfaces and endwalls is implemented as inflow/outflow boundary conditions, and the basic modifications to the method are outlined. This paper focuses on a discussion concerning an application of the method to the design and analysis of a supersonic rotor with aspiration. Results show that an optimum combination of pressure-loading tailoring with surface aspiration can lead to a minimization of the amount of sucked flow required for a net performance improvement at design and off-design operations.
Monitoring stream sediment loads in response to agriculture in Prince Edward Island, Canada.
Alberto, Ashley; St-Hilaire, Andre; Courtenay, Simon C; van den Heuvel, Michael R
2016-07-01
Increased agricultural land use leads to accelerated erosion and deposition of fine sediment in surface water. Monitoring of suspended sediment yields has proven challenging due to the spatial and temporal variability of sediment loading. Reliable sediment yield calculations depend on accurate monitoring of these highly episodic sediment loading events. This study aims to quantify precipitation-induced loading of suspended sediments on Prince Edward Island, Canada. Turbidity is considered to be a reasonably accurate proxy for suspended sediment data. In this study, turbidity was used to monitor suspended sediment concentration (SSC) and was measured for 2 years (December 2012-2014) in three subwatersheds with varying degrees of agricultural land use ranging from 10 to 69 %. Comparison of three turbidity meter calibration methods, two using suspended streambed sediment and one using automated sampling during rainfall events, revealed that the use of SSC samples constructed from streambed sediment was not an accurate replacement for water column sampling during rainfall events for calibration. Different particle size distributions in the three rivers produced significant impacts on the calibration methods demonstrating the need for river-specific calibration. Rainfall-induced sediment loading was significantly greater in the most agriculturally impacted site only when the load per rainfall event was corrected for runoff volume (total flow minus baseflow), flow increase intensity (the slope between the start of a runoff event and the peak of the hydrograph), and season. Monitoring turbidity, in combination with sediment modeling, may offer the best option for management purposes.
NASA Astrophysics Data System (ADS)
Kumar Sharma, A.; Murty, V. V. S. N.
2014-12-01
The distribution system is the final link between bulk power system and consumer end. A distinctive load flow solution method is used for analysis of the load flow of radial and weakly meshed network based on Kirchhoff's Current Law (KCL) and KVL. This method has excellent convergence characteristics for both radial as well as weakly meshed structure and is based on bus injection to branch current and branch-current to bus-voltage matrix. The main contribution of the paper is: (i) an analysis has been carried out for a weekly mesh network considering number of loops addition and its impact on the losses, kW and kVAr requirements from a system, and voltage profile, (ii) different load models, realistic ZIP load model and load growth impact on losses, voltage profile, kVA and kVAr requirements, (iii) impact of addition of loops on losses, voltage profile, kVA and kVAr requirements from substation, and (iv) comparison of system performance with radial distribution system. Voltage stability is a major concern in planning and operation of power systems. This paper also includes identifying the closeness critical bus which is the most sensitive to the voltage collapse in radial distribution networks. Node having minimum value of voltage stability index is the most sensitive node. Voltage stability index values are computed for meshed network with number of loops added in the system. The results have been obtained for IEEE 33 and 69 bus test system. The results have also been obtained for radial distribution system for comparison.
A generalized threshold model for computing bed load grain size distribution
NASA Astrophysics Data System (ADS)
Recking, Alain
2016-12-01
For morphodynamic studies, it is important to compute not only the transported volumes of bed load, but also the size of the transported material. A few bed load equations compute fractional transport (i.e., both the volume and grain size distribution), but many equations compute only the bulk transport (a volume) with no consideration of the transported grain sizes. To fill this gap, a method is proposed to compute the bed load grain size distribution separately to the bed load flux. The method is called the Generalized Threshold Model (GTM), because it extends the flow competence method for threshold of motion of the largest transported grain size to the full bed surface grain size distribution. This was achieved by replacing dimensional diameters with their size indices in the standard hiding function, which offers a useful framework for computation, carried out for each indices considered in the range [1, 100]. New functions are also proposed to account for partial transport. The method is very simple to implement and is sufficiently flexible to be tested in many environments. In addition to being a good complement to standard bulk bed load equations, it could also serve as a framework to assist in analyzing the physics of bed load transport in future research.
NASA Astrophysics Data System (ADS)
Shin, Sangmook
2001-07-01
A three-dimensional unstructured incompressible RANS code has been developed using artificial compressibility and Spalart-Allmaras eddy viscosity model. A node-based finite volume method is used in which all flow variables are defined at the vertices of tetrahedrons in an unstructured grid. The inviscid fluxes are computed by using the Roe's flux difference splitting method, and higher order accuracy is attained by data reconstruction based on Taylor series expansion. Gauss theorem is used to formulate necessary gradients. For time integration, an implicit scheme based on linearized Euler backward method is used. A tetrahedral unstructured grid generation code has been also developed and applied to the tip clearance flow in a highly staggered cascade. Surface grids are first generated in the flow passage and blade tip by using several triangulation methods including Delaunay triangulation, advancing front method and advancing layer method. Then the whole computational domain including tip gap region is filled with prisms using the surface grids. The code has been validated by comparisons with available computational and experimental results for several test cases: inviscid flow around NACA section, laminar and turbulent flow over a flat plate, turbulent flow through double-circular arc cascade and laminar flow through a square duct with 90° bend. Finally the code is applied to a linear cascade that has GE rotor B section with tip clearance and a high stagger angle of 56.9°. The overall structure of the tip clearance flow is well predicted. Loss of loading due to tip leakage flow and reloading due to tip leakage vortex are presented. On the end wall, separation line of the tip leakage vortex and reattachment line of passage vortex are identified. Prediction of such an interaction presents a challenge to RANS computations. The effects of blade span on the flow structure have been also investigated. Two cascades with blades of aspect ratios of 0.5 and 1.0 are considered. By comparing pressure distributions on the blade, it is shown that the aspect ratio has strong effects on loading distribution on the blade although the tip gap height is very small (0.016 chord). Grid convergence study has been carried out with three different grids for pressure distributions and limiting streamlines on the end wall. (Abstract shortened by UMI.)
Continuous Passive Sampling of Solutes from Agricultural Subsurface Drainage Tubes
NASA Astrophysics Data System (ADS)
Lindblad Vendelboe, Anders; de Jonge, Hubert; Rozemeijer, Joachim; Wollesen de Jonge, Lis
2015-04-01
Agricultural subsurface tube drain systems play an important role in water and solute transport. One study, focusing on lowland agricultural catchments, showed that subsurface tube drainage contributed up to 80% of the annual discharge and 90% of the annual NO3 load from agricultural fields to the receiving water bodies. Knowledge of e.g. nutrient loads and drainage volumes, based on measurements and modelling, are important for adequate water quality management. Despite the importance of tube drain transport of solutes, monitoring data are scarce. This scarcity is a result of the existing monitoring techniques for flow and contaminant load from tube drains being expensive and labor-extensive. The study presented here aimed at developing a cheap, simple, and robust method to monitor solute loads from tube drains. The method is based on the newly developed Flowcap, which can be attached to existing tube drain outlets and can measure total flow, contaminant load and flow-averaged concentrations of solutes in the drainage. The Flowcap builds on the existing Sorbicell principle, a passive sampling system that measures average concentrations over longer periods of time (days to months) for various compounds. The Sorbicell consists of two compartments permeable to water. One compartment contains an adsorbent and one contains a tracer. When water passes through the Sorbicell the compound of interest is absorbed while a tracer is released. Using the tracer loss to calculate the volume of water that has passed the Sorbicell it is possible to calculate the average concentration of the compound. When mounting Sorbicells in the Flowcap, a flow-proportional part of the drainage is sampled from the main stream. To accommodate the wide range of drainage flow rates two Flowcaps with different capacities were tested in the laboratory: one with a capacity of 25 L min-1 (Q25) and one with a capacity of 256 L min-1 (Q256). In addition, Sorbicells with two different hydraulic resistances were tested, again to accommodate a large range of potential drainage flows rates. The experiment was continued until the Sorbicell's capacity was exhausted, which gave experimentation times from 6 to 34 days, while continuously changing the drainage flow rate to simulate field drainage conditions, and to test the range of the Flowcap. The laboratory testing yielded a very good linear correlation between drainage flow rates and Sorbicell sampling rates, giving r = 0.99 for both the Q25 and the Q256 Flowcap. The Sorbicells in this experiment were designed to measure NO3, but the Flowcap can be used with any Sorbicell and thus be used to measure any compound of interest. The Flowcap does not need housing, electricity, or maintenance and continuously register drainage volumes and contaminant loads for periods up to one month. This, in addition to the low cost of the monitoring system, enables large-scale monitoring of contaminant loads via tube drains, giving valuable data for the improvement of contaminant transport models. Further, these data will help select and evaluate the different mitigation option to improve water quality.
Maupin, Molly A.; Ivahnenko, Tamara
2011-01-01
Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1 million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using "typical pollutant concentrations" to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point-source nutrient loads. These loads can be used to inform a wide range of water-quality management, watershed modeling, and research efforts at multiple scales.
Optimal Operation Method of Smart House by Controllable Loads based on Smart Grid Topology
NASA Astrophysics Data System (ADS)
Yoza, Akihiro; Uchida, Kosuke; Yona, Atsushi; Senju, Tomonobu
2013-08-01
From the perspective of global warming suppression and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all electrification apartment house or residence such as DC smart house have increased in recent years. However, due to fluctuating power from renewable energy sources and loads, supply-demand balancing fluctuations of power system become problematic. Therefore, "smart grid" has become very popular in the worldwide. This article presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuations. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuations, it is possible to reduce the maximum electric power consumption and the electric cost. This system consists of photovoltaics generator, heat pump, battery, solar collector, and load. In order to verify the effectiveness of the proposed system, MATLAB is used in simulations.
Wall, G.R.; Ingleston, H.H.; Litten, S.
2005-01-01
Total mercury (THg) load in rivers is often calculated from a site-specific "rating-curve" based on the relation between THg concentration and river discharge along with a continuous record of river discharge. However, there is no physical explanation as to why river discharge should consistently predict THg or any other suspended analyte. THg loads calculated by the rating-curve method were compared with those calculated by a "continuous surrogate concentration" (CSC) method in which a relation between THg concentration and suspended-sediment concentration (SSC) is constructed; THg loads then can be calculated from the continuous record of SSC and river discharge. The rating-curve and CSC methods, respectively, indicated annual THg loads of 46.4 and 75.1 kg for the Mohawk River, and 52.9 and 33.1 kg for the upper Hudson River. Differences between the results of the two methods are attributed to the inability of the rating-curve method to adequately characterize atypical high flows such as an ice-dam release, or to account for hysteresis, which typically degrades the strength of the relation between stream discharge and concentration of material in suspension. ?? Springer 2005.
NASA Technical Reports Server (NTRS)
Armstrong, G. P.; Carlier, S. G.; Fukamachi, K.; Thomas, J. D.; Marwick, T. H.
1999-01-01
OBJECTIVES: To validate a simplified estimate of peak power (SPP) against true (invasively measured) peak instantaneous power (TPP), to assess the feasibility of measuring SPP during exercise and to correlate this with functional capacity. DESIGN: Development of a simplified method of measurement and observational study. SETTING: Tertiary referral centre for cardiothoracic disease. SUBJECTS: For validation of SPP with TPP, seven normal dogs and four dogs with dilated cardiomyopathy were studied. To assess feasibility and clinical significance in humans, 40 subjects were studied (26 patients; 14 normal controls). METHODS: In the animal validation study, TPP was derived from ascending aortic pressure and flow probe, and from Doppler measurements of flow. SPP, calculated using the different flow measures, was compared with peak instantaneous power under different loading conditions. For the assessment in humans, SPP was measured at rest and during maximum exercise. Peak aortic flow was measured with transthoracic continuous wave Doppler, and systolic and diastolic blood pressures were derived from brachial sphygmomanometry. The difference between exercise and rest simplified peak power (Delta SPP) was compared with maximum oxygen uptake (VO(2)max), measured from expired gas analysis. RESULTS: SPP estimates using peak flow measures correlated well with true peak instantaneous power (r = 0.89 to 0.97), despite marked changes in systemic pressure and flow induced by manipulation of loading conditions. In the human study, VO(2)max correlated with Delta SPP (r = 0.78) better than Delta ejection fraction (r = 0.18) and Delta rate-pressure product (r = 0.59). CONCLUSIONS: The simple product of mean arterial pressure and peak aortic flow (simplified peak power, SPP) correlates with peak instantaneous power over a range of loading conditions in dogs. In humans, it can be estimated during exercise echocardiography, and correlates with maximum oxygen uptake better than ejection fraction or rate-pressure product.
NASA Technical Reports Server (NTRS)
Homicz, G. F.; Moselle, J. R.
1985-01-01
A hybrid numerical procedure is presented for the prediction of the aerodynamic and acoustic performance of advanced turboprops. A hybrid scheme is proposed which in principle leads to a consistent simultaneous prediction of both fields. In the inner flow a finite difference method, the Approximate-Factorization Alternating-Direction-Implicit (ADI) scheme, is used to solve the nonlinear Euler equations. In the outer flow the linearized acoustic equations are solved via a Boundary-Integral Equation (BIE) method. The two solutions are iteratively matched across a fictitious interface in the flow so as to maintain continuity. At convergence the resulting aerodynamic load prediction will automatically satisfy the appropriate free-field boundary conditions at the edge of the finite difference grid, while the acoustic predictions will reflect the back-reaction of the radiated field on the magnitude of the loading source terms, as well as refractive effects in the inner flow. The equations and logic needed to match the two solutions are developed and the computer program implementing the procedure is described. Unfortunately, no converged solutions were obtained, due to unexpectedly large running times. The reasons for this are discussed and several means to alleviate the situation are suggested.
Performance back-deduction from a loading to flow coefficient map: Application to radial turbine
NASA Astrophysics Data System (ADS)
Carbonneau, Xavier; Binder, Nicolas
2012-12-01
Radial turbine stages are often used for applications requiring off-design operation, as turbocharging for instance. The off-design ability of such stages is commonly analyzed through the traditional turbine map, plotting the reduced mass-flow against the pressure-ratio, for reduced-speed lines. However, some alternatives are possible, such as the flow-coefficient ( Ψ) to loading-coefficient ( φ) diagram where the pressure-ratio lines are actually straight lines, very convenient property to perform prediction. A robust method re-creating this map from a predicted Ψ-φ diagram is needed. Recent work has shown that this back-deduction quality, without the use of any loss models, depends on the knowledge of an intermediate pressure-ratio. A modelization of this parameter is then proposed. The comparison with both experimental and CFD results is presented, with quite good agreement for mass flow rate and rotational speed, and for the intermediate pressure ratio. The last part of the paper is dedicated to the application of the intermediate pressure-ratio knowledge to the improvement of the deduction of the pressure ratio lines in the Ψ-φ diagram. Beside this improvement, the back-deduction method of the classical map is structured, applied and evaluated.
Analysis of Ares Crew Launch Vehicle Transonic Alternating Flow Phenomenon
NASA Technical Reports Server (NTRS)
Sekula, Martin K.; Piatak, David J.; Rausch, Russ D.
2012-01-01
A transonic wind tunnel test of the Ares I-X Rigid Buffet Model (RBM) identified a Mach number regime where unusually large buffet loads are present. A subsequent investigation identified the cause of these loads to be an alternating flow phenomenon at the Crew Module-Service Module junction. The conical design of the Ares I-X Crew Module and the cylindrical design of the Service Module exposes the vehicle to unsteady pressure loads due to the sudden transition between a subsonic separated and a supersonic attached flow about the cone-cylinder junction as the local flow randomly fluctuates back and forth between the two flow states. These fluctuations produce a square-wave like pattern in the pressure time histories resulting in large amplitude, impulsive buffet loads. Subsequent testing of the Ares I RBM found much lower buffet loads since the evolved Ares I design includes an ogive fairing that covers the Crew Module-Service Module junction, thereby making the vehicle less susceptible to the onset of alternating flow. An analysis of the alternating flow separation and attachment phenomenon indicates that the phenomenon is most severe at low angles of attack and exacerbated by the presence of vehicle protuberances. A launch vehicle may experience either a single or, at most, a few impulsive loads since it is constantly accelerating during ascent rather than dwelling at constant flow conditions in a wind tunnel. A comparison of a windtunnel- test-data-derived impulsive load to flight-test-data-derived load indicates a significant over-prediction in the magnitude and duration of the buffet load. I. Introduction One
Universal resilience patterns in cascading load model: More capacity is not always better
NASA Astrophysics Data System (ADS)
Wang, Jianwei; Wang, Xue; Cai, Lin; Ni, Chengzhang; Xie, Wei; Xu, Bo
We study the problem of universal resilience patterns in complex networks against cascading failures. We revise the classical betweenness method and overcome its limitation of quantifying the load in cascading model. Considering that the generated load by all nodes should be equal to the transported one by all edges in the whole network, we propose a new method to quantify the load on an edge and construct a simple cascading model. By attacking the edge with the highest load, we show that, if the flow between two nodes is transported along the shortest paths between them, then the resilience of some networks against cascading failures inversely decreases with the enhancement of the capacity of every edge, i.e. the more capacity is not always better. We also observe the abnormal fluctuation of the additional load that exceeds the capacity of each edge. By a simple graph, we analyze the propagation of cascading failures step by step, and give a reasonable explanation of the abnormal fluctuation of cascading dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Z.Y., E-mail: zhengye.zhong@hzg.de; Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht; Brokmeier, H.-G.
2015-10-15
The dislocation density evolution along the loading axis of a textured AA 7020-T6 aluminum alloy during uniaxial tension was investigated by in-situ synchrotron diffraction. The highly parallel synchrotron beam at the High Energy Materials Science beamline P07 in PETRA III, DESY, offers excellent conditions to separate different influences for line broadening from which micro-strains are obtained using the modified Williamson–Hall method which is also for defect density investigations. During tensile loading the dislocation density evolution was documented from the as-received material (initial micro-strain state) to the relaxation of the strains during elastic deformation. After yield, the increasing rate of dislocationmore » density growth was relatively fast till half-way between yield and UTS. After that, the rate started to decrease and the dislocation density fluctuated as the elongation increased due to the generation and annihilation of dislocations. When dislocation generation is dominant, the correlation between the flow stress and dislocation density satisfies the Taylor equation. Besides, a method to correct the thickness effect on peak broadening is developed in the present study. - Highlights: • In-situ synchrotron diffraction was applied to characterize peak broadening. • Dislocation evolution along the loading axis during uniaxial tension was investigated. • A method to correct the sample thickness effect on peak broadening was developed. • Dislocation density and flow stress satisfy the Taylor equation at a certain range. • The texture before load and after sample fracture was analyzed.« less
Gastroesophageal Reflux is Not Associated with Dental Erosion in Children
Wild, Yvette K.; Heyman, Melvin B.; Vittinghoff, Eric; Dalal, Deepal H.; Wojcicki, Janet M.; Clark, Ann L.; Rechmann, Beate; Rechmann, Peter
2011-01-01
Background & Aims Dental erosion is a complication of gastroesophageal reflux (GER) in adults; in children, it is not clear if GER has a role in dental pathologic conditions. Dietary intake, oral hygiene, high bacterial load, and decreased salivary flow might contribute independently to GER development or dental erosion, but their potential involvement in dental erosion from GER is not understood. We investigated the prevalence of dental erosion among children with and without GER symptoms, and whether salivary flow rate or bacterial load contribute to location-specific dental erosion. Methods We performed a cross-sectional study of 59 children (ages 9–17 y) with symptoms of GER and 20 asymptomatic children (controls); all completed a questionnaire on dietary exposure. Permanent teeth were examined for erosion into dentin, erosion locations, and affected surfaces. The dentist was not aware of GER status, nor was the gastroenterologist aware of dental status. Stimulated salivary flow was measured and salivary bacterial load was calculated for total bacteria, Streptococcus mutans and Lactobacilli. Results Controlling for age, dietary intake, and oral hygiene, there was no association between GER symptoms and dental erosion, by tooth location or affected surface. Salivary flow did not correlate with GER symptoms or erosion. Erosion location and surface were independent of total bacteria and levels of Streptococcus mutans and Lactobacilli. Conclusions Location-specific dental erosion is not associated with GER, salivary flow, or bacterial load. Prospective studies are required to determine the pathogenesis of GER-associated dental erosion and the relationship between dental caries to GER and dental erosion. PMID:21820389
Overview of Aerothermodynamic Loads Definition Study
NASA Technical Reports Server (NTRS)
Povinelli, L. A.
1985-01-01
The Aerothermodynamic Loads Definition were studied to develop methods to more accurately predict the operating environment in the space shuttle main engine (SSME) components. Development of steady and time-dependent, three-dimensional viscous computer codes and experimental verification and engine diagnostic testing are considered. The steady, nonsteady, and transient operating loads are defined to accurately predict powerhead life. Improvements in the structural durability of the SSME turbine drive systems depends on the knowledge of the aerothermodynamic behavior of the flow through the preburner, turbine, turnaround duct, gas manifold, and injector post regions.
PIV measurements in a compact return diffuser under multi-conditions
NASA Astrophysics Data System (ADS)
Zhou, L.; Lu, W. G.; Shi, W. D.
2013-12-01
Due to the complex three-dimensional geometries of impellers and diffusers, their design is a delicate and difficult task. Slight change could lead to significant changes in hydraulic performance and internal flow structure. Conversely, the grasp of the pump's internal flow pattern could benefit from pump design improvement. The internal flow fields in a compact return diffuser have been investigated experimentally under multi-conditions. A special Particle Image Velocimetry (PIV) test rig is designed, and the two-dimensional PIV measurements are successfully conducted in the diffuser mid-plane to capture the complex flow patterns. The analysis of the obtained results has been focused on the flow structure in diffuser, especially under part-load conditions. The vortex and recirculation flow patterns in diffuser are captured and analysed accordingly. Strong flow separation and back flow appeared at the part-load flow rates. Under the design and over-load conditions, the flow fields in diffuser are uniform, and the flow separation and back flow appear at the part-load flow rates, strong back flow is captured at one diffuser passage under 0.2Qdes.
Mahdavi, Alireza; Haghighat, Fariborz; Bahloul, Ali; Brochot, Clothilde; Ostiguy, Claude
2015-06-01
It is necessary to investigate the efficiencies of filtering facepiece respirators (FFRs) exposed to ultrafine particles (UFPs) for long periods of time, since the particle loading time may potentially affect the efficiency of FFRs. This article aims to investigate the filtration efficiency for a model of electrostatic N95 FFRs with constant and 'inhalation-only' cyclic flows, in terms of particle loading time effect, using different humidity conditions. Filters were exposed to generated polydisperse NaCl particles. Experiments were performed mimicking an 'inhalation-only' scenario with a cyclic flow of 85 l min(-1) as the minute volume [or 170 l min(-1) as mean inhalation flow (MIF)] and for two constant flows of 85 and 170 l min(-1), under three relative humidity (RH) levels of 10, 50, and 80%. Each test was performed for loading time periods of 6h and the particle penetration (10-205.4nm in electrical mobility diameter) was measured once every 2h. For a 10% RH, the penetration of smaller size particles (<80nm), including the most penetrating particle size (MPPS), decreased over time for both constant and cyclic flows. For 50 and 80% RH levels, the changes in penetration were typically observed in an opposite direction with less magnitude. The penetrations at MPPS increased with respect to loading time under constant flow conditions (85 and 170 l min(-1)): it did not substantially increase under cyclic flows. The comparison of the cyclic flow (85 l min(-1) as minute volume) and constant flow equal to the cyclic flow minute volume indicated that, for all conditions the penetration was significantly less for the constant flow than that of cyclic flow. The comparison between the cyclic (170 l min(-1) as MIF) and constant flow equal to cyclic flow MIF indicated that, for the initial stage of loading, the penetrations were almost equal, but they were different for the final stages of the loading time. For a 10% RH, the penetration of a wide range of sizes was observed to be higher with the cyclic flow (170 as MIF) than with the equivalent constant flow (170 l min(-1)). For 50 and 80% RH levels, the penetrations were usually greater with a constant flow (170 l min(-1)) than with a cyclic flow (170 l min(-1) as MIF). It is concluded that, for the tested electrostatic N95 filters, the change in penetration as a function of the loading time does not necessarily take place with the same rate under constant (MIF) and cyclic flow. Moreover, for all tested flow rates, the penetration is not only affected by the loading time but also by the RH level. Lower RH levels (10%) have decreasing penetration rates in terms of loading time, while higher RH levels (50 and 80%) have increasing penetration rates. Also, the loading of the filter is normally accompanied with a shift of MPPS towards larger sizes. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Wash load and bed-material load transport in the Yellow River
Yang, C.T.; Simoes, F.J.M.
2005-01-01
It has been the conventional assumption that wash load is supply limited and is only indirectly related to the hydraulics of a river. Hydraulic engineers also assumed that bed-material load concentration is independent of wash load concentration. This paper provides a detailed analysis of the Yellow River sediment transport data to determine whether the above assumptions are true and whether wash load concentration can be computed from the original unit stream power formula and the modified unit stream power formula for sediment-laden flows. A systematic and thorough analysis of 1,160 sets of data collected from 9 gauging stations along the Middle and Lower Yellow River confirmed that the method suggested by the conjunctive use of the two formulas can be used to compute wash load, bed-material load, and total load in the Yellow River with accuracy. Journal of Hydraulic Engineering ?? ASCE.
The effect of mass loading on the temperature of a flowing plasma. [in vicinity of Io
NASA Technical Reports Server (NTRS)
Linker, Jon A.; Kivelson, Margaret G.; Walker, Raymond J.
1989-01-01
How the addition of ions at rest (mass loading) affects the temperature of a flowing plasma in a MHD approximation is investigated, using analytic theory and time dependent, three-dimensional MHD simulations of plasma flow past Io. The MHD equations show that the temperature can increase or decrease relative to the background, depending on the local sonic Mach number M(S), of the flow. For flows with M(S) of greater than sq rt 9/5 (when gamma = 5/3), mass loading increases the plasma temperature. However, the simulations show a nonlinear response to the addition of mass. If the mass loading rate is large enough, the temperature increase may be smaller than expected, or the temperature may actually decrease, because a large mass loading rate slows the flow and decreases the thermal energy of the newly created plasma.
Tilt rotor hover aeroacoustics
NASA Technical Reports Server (NTRS)
Coffen, Charles David
1992-01-01
The methodology, results, and conclusions of a study of tilt rotor hover aeroacoustics and aerodynamics are presented. Flow visualization and hot wire velocity measurement were performed on a 1/12-scale model of the XV-15 Tilt Rotor Aircraft in hover. The wing and fuselage below the rotor cause a complex recirculating flow. Results indicate the physical dimensions and details of the flow including the relative unsteadiness and turbulence characteristics of the flow. Discrete frequency harmonic thickness and the loading noise mechanism were predicted using WOPWOP for the standard metal blades and the Advanced Technology Blades. The recirculating flow created by the wing below the rotor is a primary sound mechanism for a hovering tilt rotor. The effects of dynamic blade response should be included for fountain flow conditions which produce impulsive blade loading. Broadband noise mechanisms were studied using Amiet's method with azimuthally varying turbulence characteristics derived from the measurements. The recirculating fountain flow with high turbulence levels in the recirculating zone is the dominant source of broadband noise for a hovering rotor. It is shown that tilt rotor hover aeroacoustic noise mechanisms are now understood. Noise predictions can be made based on reasonably accurate aerodynamic models developed here.
Momose, Mitsuhiro; Takaki, Akihiro; Matsushita, Tsuyoshi; Yanagisawa, Shin; Yano, Kesato; Miyasaka, Tadashi; Ogura, Yuka; Kadoya, Masumi
2011-01-01
AQCEL enables automatic reconstruction of single-photon emission computed tomogram (SPECT) without image degradation and quantitative analysis of cerebral blood flow (CBF) after the input of simple parameters. We ascertained the usefulness and quality of images obtained by the application software AQCEL in clinical practice. Twelve patients underwent brain perfusion SPECT using technetium-99m ethyl cysteinate dimer at rest and after acetazolamide (ACZ) loading. Images reconstructed using AQCEL were compared with those reconstructed using conventional filtered back projection (FBP) method for qualitative estimation. Two experienced nuclear medicine physicians interpreted the image quality using the following visual scores: 0, same; 1, slightly superior; 2, superior. For quantitative estimation, the mean CBF values of the normal hemisphere of the 12 patients using ACZ calculated by the AQCEL method were compared with those calculated by the conventional method. The CBF values of the 24 regions of the 3-dimensional stereotaxic region of interest template (3DSRT) calculated by the AQCEL method at rest and after ACZ loading were compared to those calculated by the conventional method. No significant qualitative difference was observed between the AQCEL and conventional FBP methods in the rest study. The average score by the AQCEL method was 0.25 ± 0.45 and that by the conventional method was 0.17 ± 0.39 (P = 0.34). There was a significant qualitative difference between the AQCEL and conventional methods in the ACZ loading study. The average score for AQCEL was 0.83 ± 0.58 and that for the conventional method was 0.08 ± 0.29 (P = 0.003). During quantitative estimation using ACZ, the mean CBF values of 12 patients calculated by the AQCEL method were 3-8% higher than those calculated by the conventional method. The square of the correlation coefficient between these methods was 0.995. While comparing the 24 3DSRT regions of 12 patients, the squares of the correlation coefficient between AQCEL and conventional methods were 0.973 and 0.986 for the normal and affected sides at rest, respectively, and 0.977 and 0.984 for the normal and affected sides after ACZ loading, respectively. The quality of images reconstructed using the application software AQCEL were superior to that obtained using conventional method after ACZ loading, and high correlations were shown in quantity at rest and after ACZ loading. This software can be applied to clinical practice and is a useful tool for improvement of reproducibility and throughput.
Analysis of multi lobe journal bearings with surface roughness using finite difference method
NASA Astrophysics Data System (ADS)
PhaniRaja Kumar, K.; Bhaskar, SUdaya; Manzoor Hussain, M.
2018-04-01
Multi lobe journal bearings are used for high operating speeds and high loads in machines. In this paper symmetrical multi lobe journal bearings are analyzed to find out the effect of surface roughnessduring non linear loading. Using the fourth order RungeKutta method, time transient analysis was performed to calculate and plot the journal centre trajectories. Flow factor method is used to evaluate the roughness and the finite difference method (FDM) is used to predict the pressure distribution over the bearing surface. The Transient analysis is done on the multi lobe journal bearings for threedifferent surface roughness orientations. Longitudinal surface roughness is more effective when compared with isotopic and traverse surface roughness.
Shear-induced intracellular loading of cells with molecules by controlled microfluidics.
Hallow, Daniel M; Seeger, Richard A; Kamaev, Pavel P; Prado, Gustavo R; LaPlaca, Michelle C; Prausnitz, Mark R
2008-03-01
This study tested the hypothesis that controlled flow through microchannels can cause shear-induced intracellular loading of cells with molecules. The overall goal was to design a simple device to expose cells to fluid shear stress and thereby increase plasma membrane permeability. DU145 prostate cancer cells were exposed to fluid shear stress in the presence of fluorescent cell-impermeant molecules by using a cone-and-plate shearing device or high-velocity flow through microchannels. Using a syringe pump, cell suspensions were flowed through microchannels of 50-300 microm diameter drilled through Mylar sheets using an excimer laser. As quantified by flow cytometry, intracellular uptake and loss of viability correlated with the average shear stress. Optimal results were observed when exposing the cells to high shear stress for short durations in conical channels, which yielded uptake to over one-third of cells while maintaining viability at approximately 80%. This method was capable of loading cells with molecules including calcein (0.62 kDa), large molecule weight dextrans (150-2,000 kDa), and bovine serum albumin (66 kDa). These results supported the hypothesis that shear-induced intracellular uptake could be generated by flow of cell suspensions through microchannels and further led to the design of a simple, inexpensive, and effective device to deliver molecules into cells. Such a device could benefit biological research and the biotechnology industry. Copyright 2007 Wiley Periodicals, Inc.
Shear-induced intracellular loading of cells with molecules by controlled microfluidics
Hallow, Daniel M.; Seeger, Richard A.; Kamaev, Pavel P.; Prado, Gustavo R.; LaPlaca, Michelle C.; Prausnitz, Mark R.
2010-01-01
This study tested the hypothesis that controlled flow through microchannels can cause shear-induced intracellular loading of cells with molecules. The overall goal was to design a simple device to expose cells to fluid shear stress and thereby increase plasma membrane permeability. DU145 prostate cancer cells were exposed to fluid shear stress in the presence of fluorescent cell-impermeant molecules by using a cone-and-plate shearing device or high-velocity flow through microchannels. Using a syringe pump, cell suspensions were flowed through microchannels of 50 – 300 μm diameter drilled through Mylar® sheets using an excimer laser. As quantified by flow cytometry, intracellular uptake and loss of viability correlated with the average shear stress. Optimal results were observed when exposing the cells to high shear stress for short durations in conical channels, which yielded uptake to over one third of cells while maintaining viability at approximately 80%. This method was capable of loading cells with molecules including calcein (0.62 kDa), large molecule weight dextrans (150 - 2000 kDa), and bovine serum albumin (66 kDa). These results supported the hypothesis that shear-induced intracellular uptake could be generated by flow of cell suspensions through microchannels and further led to the design of a simple, inexpensive, and effective device to deliver molecules into cells. Such a device could benefit biological research and the biotechnology industry. PMID:17879304
Mine Blast Loading: Experiments and Simulations
2010-04-01
plates by approximately 50%. We investigated the root cause for this discrepancy. The simulations calculate a turbulent-like flow field characterized...Toussaint [19] evaluated two numerical methods, Smooth Particle Hydrodynamics ( SPH ) and Arbitrary Lagrangian Eulerian (ALE), to simulate a mine blast on...That is, the mine blast products were not flowing along the solid plate boundary in the simulations as freely as they should. 6 In particular, the V
NASA Astrophysics Data System (ADS)
Dowell, E. H.; Au-Yang, M. K.
1985-09-01
The response of a two-layer elastic coating to pressure disturbances from a turbulent boundary layer is considered along with the application of the finite element method in the calculation of transmission loss of flat and curved panels, the application of various solution techniques to the calculation of transonic flutter boundaries, and noise transmission of double wall composite shells. Other topics explored are related to chaotic behavior of a simple single-degree-of-freedom system, the entrainment of self-sustained flow oscillations, the effects of strong shock loading on coupled bending-torssion flutter of tuned and mistuned cascades, and turbulent buffeting of a multispan tube bundle. Attention is given to the dynamics of heat exchangers U-bend tubes with flat bar supports, a review of flow induced vibration of two circular cylinders in crossflow, the avoidance of leakage flow-induced vibration by a tube-in-tube slip joint, random load from multiple sources and its assessment, and wake-induced vibration of a conductor in the wake of another via a 3-D finite element method.
Laminar flow control perforated wing panel development
NASA Technical Reports Server (NTRS)
Fischler, J. E.
1986-01-01
Many structural concepts for a wing leading edge laminar flow control hybrid panel were analytically investigated. After many small, medium, and large tests, the selected design was verified. New analytic methods were developed to combine porous titanium sheet bonded to a substructure of fiberglass and carbon/epoxy cloth. At -65 and +160 F test conditions, the critical bond of the porous titanium to the composite failed at lower than anticipated test loads. New cure cycles, design improvements, and test improvements significantly improved the strength and reduced the deflections from thermal and lateral loadings. The wave tolerance limits for turbulence were not exceeded. Consideration of the beam column midbay deflections from the combinations of the axial and lateral loadings and thermal bowing at -65 F, room temperature, and +160 F were included. Many lap shear tests were performed at several cure cycles. Results indicate that sufficient verification was obtained to fabricate a demonstration vehicle.
Aerodynamic effects by cooling flows within engine room of a car model
NASA Astrophysics Data System (ADS)
Sawaguchi, T.; Takakura, Y.
2017-10-01
The purpose of this research is to clarify the change of characteristics of aerodynamic drag and lift of a car by the engine loading system (engine arrangement) and the air inlet system (opening area and position) with and without a radiator in wind-tunnel experiments. A simplified car model with 1/5 scale is generated with reproduction of the engine room covered with the transparent acryl externals for visualization. In the wind-tunnel experiments, the moving-belt ground board is adopted to include ground effects with force measurements by use of load cells. The flows are visualized by the smoke method. As results, with enlargement of the opening area, the drag increased overall although depending largely on the engine loading system and the inlet opening position, the front lift increased and the rear left decreased; the effect of the radiator was to relieve the change of the drag and lift.
Bonin, Jennifer L.
2010-01-01
Samples of surface water and suspended sediment were collected from the two branches that make up the Elizabeth River in New Jersey - the West Branch and the Main Stem - from October to November 2008 to determine the concentrations of selected chlorinated organic and inorganic constituents. The sampling and analyses were conducted as part of Phase II of the New York-New Jersey Harbor Estuary Plan-Contaminant Assessment and Reduction Program (CARP), which is overseen by the New Jersey Department of Environmental Protection. Phase II of the New Jersey Workplan was conducted by the U.S. Geological Survey to define upstream tributary and point sources of contaminants in those rivers sampled during Phase I work, with special emphasis on the Passaic and Elizabeth Rivers. This portion of the Phase II study was conducted on the two branches of the Elizabeth River, which were previously sampled during July and August of 2003 at low-flow conditions. Samples were collected during 2008 from the West Branch and Main Stem of the Elizabeth River just upstream from their confluence at Hillside, N.J. Both tributaries were sampled once during low-flow discharge conditions and once during high-flow discharge conditions using the protocols and analytical methods that were used in the initial part of Phase II of the Workplan. Grab samples of streamwater also were collected at each site and were analyzed for cadmium, suspended sediment, and particulate organic carbon. The measured concentrations, along with available historical suspended-sediment and stream-discharge data were used to estimate average annual loads of suspended sediment and organic compounds in the two branches of the Elizabeth River. Total suspended-sediment loads for 1975 to 2000 were estimated using rating curves developed from historical U.S. Geological Survey suspended-sediment and discharge data, where available. Concentrations of suspended-sediment-bound polychlorinated biphenyls (PCBs) in the Main Stem and the West Branch of the Elizabeth River during low-flow conditions were 534 ng/g (nanograms per gram) and 1,120 ng/g, respectively, representing loads of 27 g/yr (grams per year) and 416 g/yr, respectively. These loads were estimated using contaminant concentrations during low flow, and the assumed 25-year average discharge, and 25-year average suspended-sediment concentration. Concentrations of suspended-sediment-bound PCBs in the Main Stem and the West Branch of the Elizabeth River during high-flow conditions were 3,530 ng/g and 623 ng/g, respectively, representing loads of 176 g/yr and 231 g/yr, respectively. These loads were estimated using contaminant concentrations during high-flow conditions, the assumed 25-year average discharge, and 25-year average suspended-sediment concentration. Concentrations of suspended-sediment-bound polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-p-difuran compounds (PCDD/PCDFs) during low-flow conditions were 2,880 pg/g (picograms per gram) and 5,910 pg/g in the Main Stem and West Branch, respectively, representing average annual loads of 0.14 g/yr and 2.2 g/yr, respectively. Concentrations of suspended-sediment-bound PCDD/PCDFs during high-flow conditions were 40,900 pg/g and 12,400 pg/g in the Main Stem and West Branch, respectively, representing average annual loads of 2.05 g/yr and 4.6 g/yr, respectively. Total toxic equivalency (TEQ) loads (sum of PCDD/PCDF and PCB TEQs) were 3.1 mg/yr (milligrams per year) (as 2, 3, 7, 8-TCDD) in the Main Stem and 28 mg/yr in the West Branch during low-flow conditions. Total TEQ loads (sum of PCDD/PCDFs and PCBs) were 27 mg/yr (as 2, 3, 7, 8-TCDD) in the Main Stem and 32 mg/yr in the West Branch during high-flow conditions. All of these load estimates, however, are directly related to the assumed annual discharge for the two branches. Long-term measurement of stream discharge and suspended-sediment concentrations would be needed to verify these loads. On the basis of the loads cal
Numerical Investigation of the Flow Structure in a Kaplan Draft Tube at Part Load
NASA Astrophysics Data System (ADS)
Maddahian, R.; Cervantes, M. J.; Sotoudeh, N.
2016-11-01
This research presents numerical simulation of the unsteady flow field inside the draft tube of a Kaplan turbine at part load condition. Due to curvature of streamlines, the ordinary two-equations turbulence models fail to predict the flow features. Therefore, a modification of the Shear Stress Transport (SST-SAS) model is utilized to approximate the turbulent stresses. A guide vane, complete runner and draft tube are considered to insure the real boundary conditions at the draft tube inlet. The outlet boundary is assumed to discharge into the atmosphere. The obtained pressure fluctuations inside the draft tube are in good agreement with available experimental data. In order to further investigate the RVR formation and its movement, the λ2 criterion, relating the position of the vortex core and strength to the second largest Eigen value of the velocity gradient tensor, is employed. The method used for vortex identification shows the flow structure and vortex motion inside the draft tube accurately.
Kimball, B.A.; Runkel, R.L.; Walton-Day, K.
2010-01-01
Historical mining has left complex problems in catchments throughout the world. Land managers are faced with making cost-effective plans to remediate mine influences. Remediation plans are facilitated by spatial mass-loading profiles that indicate the locations of metal mass-loading, seasonal changes, and the extent of biogeochemical processes. Field-scale experiments during both low- and high-flow conditions and time-series data over diel cycles illustrate how this can be accomplished. A low-flow experiment provided spatially detailed loading profiles to indicate where loading occurred. For example, SO42 - was principally derived from sources upstream from the study reach, but three principal locations also were important for SO42 - loading within the reach. During high-flow conditions, Lagrangian sampling provided data to interpret seasonal changes and indicated locations where snowmelt runoff flushed metals to the stream. Comparison of metal concentrations between the low- and high-flow experiments indicated substantial increases in metal loading at high flow, but little change in metal concentrations, showing that toxicity at the most downstream sampling site was not substantially greater during snowmelt runoff. During high-flow conditions, a detailed temporal sampling at fixed sites indicated that Zn concentration more than doubled during the diel cycle. Monitoring programs must account for diel variation to provide meaningful results. Mass-loading studies during different flow conditions and detailed time-series over diel cycles provide useful scientific support for stream management decisions.
NASA Astrophysics Data System (ADS)
Minaudo, C.; Moatar, F.; Abbott, B. W.; Dupas, R.; Gascuel-Odoux, C.; Pinay, G.; Roubeix, V.; Danis, P. A.
2017-12-01
Many lakes and reservoirs in Europe suffer from severe eutrophication. Accurate quantification of nutrient loads are critical for effective mitigation measures, but this information is often unknown. For example, in France, only 50 out of 481 lakes and reservoirs have national monitoring allowing estimation of interannual nitrogen and phosphorus loads, and even these loads are computed from low-frequency data. To address this lack of data, we developed a straightforward method to predict seasonal loads in lake tributaries. First, we analyzed concentration-discharge (C-Q) curves in monitored catchments and identified slopes, intercepts, and coefficient of variation of the log(C)-log(Q) regressions determined for both low and high flows, separated by the median daily flow [Moatar et al., 2017]. Then, we used stepwise multiple linear regression models to empirically link the characteristics of C-Q curves with a set of catchment descriptors such as land use, lithology, morphology indices, climate, and hydrological indicators. Modeled C-Q relationships were then used to estimate annual and seasonal nutrient loads in nearby and similar unmonitored catchments. We implemented this approach on a large dataset from France where stream flow was surveyed daily and water quality (suspended solids, nitrate, total phosphorus, and orthophosphate concentrations) was measured on a monthly basis at 233 stations over the past 20 years in catchments from 10 to 3000 km². The concentration at the median daily flow (seen here as a metric of the general level of contamination in a catchment) was predicted with uncertainty ranging between 30 and 100 %, depending on the variable. C-Q slopes were predicted with large errors, but a sensitivity analysis was conducted to determine the impact of C-Q slopes uncertainties on computed annual and seasonal loads. This approach allows estimation of seasonal and annual nutrient loads and could be potentially implemented to improve protection and restoration of aquatic ecosystems. Moatar, F., B. W. Abbott, C. Minaudo, F. Curie, and G. Pinay. 2017. Elemental properties, hydrology, and biology interact to shape concentration-discharge curves for carbon, nutrients, sediment, and major ions. Water Resources Research 53:1270-1287.
NASA Astrophysics Data System (ADS)
Abdelmalek, B. F.; Karpyn, Z.; Liu, S.
2014-12-01
Over the last several years, hydrocarbon exploitation and development in North America has been heavily centered on shale gas plays. However, the physical attributes of shales and their manifestation on transport properties and storage capacity remain poorly understood. Therefore, more experimentally based data are needed to fill the gaps in understanding both transport and storage of fluids in shale. The proposed work includes installation and testing of an experimental system which is capable of monitoring the dynamic evolution of shale core permeability under variable loading conditions and in coordination with X-ray microCT imaging. The goal of this study is to better understand and quantify fluid flow patterns and associated transport dynamics of fractured shale samples. The independent variables considered in this study are: mechanical loading and pore pressure. The mechanical response of shale core is captured for different loading paths. To best replicate the in-situ production scenario, the pore pressure is progressively depleted to mimic pressure decline. During the course of experimentation, permeability is estimated using the pulse-decay method under tri-axial stress boundary conditions. Simultaneously, X-ray microCT imaging is used with a tracer gas that is allowed to flow through the sample as an illuminating agent. In the presence of an illuminating agent, either Xenon or Krypton, the X-ray CT scanner can image fractures, global pathways and diffusional fronts in the matrix, as well as sorption sites that reflect heterogeneities in the sample and localized deformation. Anticipated results from these experiments will help quantify permeability evolution as a function of different loading conditions and pore pressure depletion. Also, the X-ray images will help visualize the change of flow patterns and the intensity of sorption as a function of mechanical loading and pore pressure.
NASA Astrophysics Data System (ADS)
Liao, G. K.; Long, Z. L.; Zhao, M. S. Z.; Peng, L.; Chai, W.; Ping, Z. H.
2018-04-01
This paper presents the research on the evolution of shear transformation zone (STZ) in a Pd-based bulk metallic glass (BMG) during serrated flow under nanoindentation. A novel method of estimating the STZ volume through statistical analysis of the serrated flow behavior was proposed for the first time. Based on the proposed method, the STZ volume of the studied BMG at various peak loads have been systematically investigated. The results indicate that the measured STZ volumes are in good agreement with that documented in literature, and the STZ size exhibits an increasing trend during indentation. Moreover, the correlation between the serrated flow dynamics and the STZ activation has also been evaluated. It is found that the STZ activation can promote the formation of self-organized critical (SOC) state during serrated flow.
40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.
Code of Federal Regulations, 2011 CFR
2011-07-01
....053 (3) The column should be connected to a recycling pump capable of controlling flows of... the carrier is not achieved due to partition effects on the surface of the carrier. (2) The loading of... this, the recycling pump is connected and the apparatus allowed to run until equilibration is...
40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.
Code of Federal Regulations, 2013 CFR
2013-07-01
....053 (3) The column should be connected to a recycling pump capable of controlling flows of... the carrier is not achieved due to partition effects on the surface of the carrier. (2) The loading of... this, the recycling pump is connected and the apparatus allowed to run until equilibration is...
40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.
Code of Federal Regulations, 2012 CFR
2012-07-01
....053 (3) The column should be connected to a recycling pump capable of controlling flows of... the carrier is not achieved due to partition effects on the surface of the carrier. (2) The loading of... this, the recycling pump is connected and the apparatus allowed to run until equilibration is...
40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.
Code of Federal Regulations, 2014 CFR
2014-07-01
....053 (3) The column should be connected to a recycling pump capable of controlling flows of... the carrier is not achieved due to partition effects on the surface of the carrier. (2) The loading of... this, the recycling pump is connected and the apparatus allowed to run until equilibration is...
Development of a nonlinear vortex method
NASA Technical Reports Server (NTRS)
Kandil, O. A.
1982-01-01
Steady and unsteady Nonliner Hybrid Vortex (NHV) method, for low aspect ratio wings at large angles of attack, is developed. The method uses vortex panels with first-order vorticity distribution (equivalent to second-order doublet distribution) to calculate the induced velocity in the near field using closed form expressions. In the far field, the distributed vorticity is reduced to concentrated vortex lines and the simpler Biot-Savart's law is employed. The method is applied to rectangular wings in steady and unsteady flows without any restriction on the order of magnitude of the disturbances in the flow field. The numerical results show that the method accurately predicts the distributed aerodynamic loads and that it is of acceptable computational efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasquariello, Vito, E-mail: vito.pasquariello@tum.de; Hammerl, Georg; Örley, Felix
2016-02-15
We present a loosely coupled approach for the solution of fluid–structure interaction problems between a compressible flow and a deformable structure. The method is based on staggered Dirichlet–Neumann partitioning. The interface motion in the Eulerian frame is accounted for by a conservative cut-cell Immersed Boundary method. The present approach enables sub-cell resolution by considering individual cut-elements within a single fluid cell, which guarantees an accurate representation of the time-varying solid interface. The cut-cell procedure inevitably leads to non-matching interfaces, demanding for a special treatment. A Mortar method is chosen in order to obtain a conservative and consistent load transfer. Wemore » validate our method by investigating two-dimensional test cases comprising a shock-loaded rigid cylinder and a deformable panel. Moreover, the aeroelastic instability of a thin plate structure is studied with a focus on the prediction of flutter onset. Finally, we propose a three-dimensional fluid–structure interaction test case of a flexible inflated thin shell interacting with a shock wave involving large and complex structural deformations.« less
Evaluation of Computational Method of High Reynolds Number Slurry Flow for Caverns Backfilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bettin, Giorgia
2015-05-01
The abandonment of salt caverns used for brining or product storage poses a significant environmental and economic risk. Risk mitigation can in part be address ed by the process of backfilling which can improve the cavern geomechanical stability and reduce the risk o f fluid loss to the environment. This study evaluate s a currently available computational tool , Barracuda, to simulate such process es as slurry flow at high Reynolds number with high particle loading . Using Barracuda software, a parametric sequence of simu lations evaluated slurry flow at Re ynolds number up to 15000 and loading up tomore » 25%. Li mitations come into the long time required to run these simulation s due in particular to the mesh size requirement at the jet nozzle. This study has found that slurry - jet width and centerline velocities are functions of Re ynold s number and volume fractio n The solid phase was found to spread less than the water - phase with a spreading rate smaller than 1 , dependent on the volume fraction. Particle size distribution does seem to have a large influence on the jet flow development. This study constitutes a first step to understand the behavior of highly loaded slurries and their ultimate application to cavern backfilling.« less
NASA Astrophysics Data System (ADS)
Guissart, A.; Bernal, L. P.; Dimitriadis, G.; Terrapon, V. E.
2017-05-01
This work presents, compares and discusses results obtained with two indirect methods for the calculation of aerodynamic forces and pitching moment from 2D Particle Image Velocimetry (PIV) measurements. Both methodologies are based on the formulations of the momentum balance: the integral Navier-Stokes equations and the "flux equation" proposed by Noca et al. (J Fluids Struct 13(5):551-578, 1999), which has been extended to the computation of moments. The indirect methods are applied to spatio-temporal data for different separated flows around a plate with a 16:1 chord-to-thickness ratio. Experimental data are obtained in a water channel for both a plate undergoing a large amplitude imposed pitching motion and a static plate at high angle of attack. In addition to PIV data, direct measurements of aerodynamic loads are carried out to assess the quality of the indirect calculations. It is found that indirect methods are able to compute the mean and the temporal evolution of the loads for two-dimensional flows with a reasonable accuracy. Nonetheless, both methodologies are noise sensitive, and the parameters impacting the computation should thus be chosen carefully. It is also shown that results can be improved through the use of dynamic mode decomposition (DMD) as a pre-processing step.
A Numerical Model of Unsteady, Subsonic Aeroelastic Behavior. Ph.D Thesis
NASA Technical Reports Server (NTRS)
Strganac, Thomas W.
1987-01-01
A method for predicting unsteady, subsonic aeroelastic responses was developed. The technique accounts for aerodynamic nonlinearities associated with angles of attack, vortex-dominated flow, static deformations, and unsteady behavior. The fluid and the wing together are treated as a single dynamical system, and the equations of motion for the structure and flow field are integrated simultaneously and interactively in the time domain. The method employs an iterative scheme based on a predictor-corrector technique. The aerodynamic loads are computed by the general unsteady vortex-lattice method and are determined simultaneously with the motion of the wing. Because the unsteady vortex-lattice method predicts the wake as part of the solution, the history of the motion is taken into account; hysteresis is predicted. Two models are used to demonstrate the technique: a rigid wing on an elastic support experiencing plunge and pitch about the elastic axis, and an elastic wing rigidly supported at the root chord experiencing spanwise bending and twisting. The method can be readily extended to account for structural nonlinearities and/or substitute aerodynamic load models. The time domain solution coupled with the unsteady vortex-lattice method provides the capability of graphically depicting wing and wake motion.
Unthank, Michael D.; Newson, Jeremy K.; Williamson, Tanja N.; Nelson, Hugh L.
2012-01-01
Flow- and load-duration curves were constructed from the model outputs of the U.S. Geological Survey's Water Availability Tool for Environmental Resources (WATER) application for streams in Kentucky. The WATER application was designed to access multiple geospatial datasets to generate more than 60 years of statistically based streamflow data for Kentucky. The WATER application enables a user to graphically select a site on a stream and generate an estimated hydrograph and flow-duration curve for the watershed upstream of that point. The flow-duration curves are constructed by calculating the exceedance probability of the modeled daily streamflows. User-defined water-quality criteria and (or) sampling results can be loaded into the WATER application to construct load-duration curves that are based on the modeled streamflow results. Estimates of flow and streamflow statistics were derived from TOPographically Based Hydrological MODEL (TOPMODEL) simulations in the WATER application. A modified TOPMODEL code, SDP-TOPMODEL (Sinkhole Drainage Process-TOPMODEL) was used to simulate daily mean discharges over the period of record for 5 karst and 5 non-karst watersheds in Kentucky in order to verify the calibrated model. A statistical evaluation of the model's verification simulations show that calibration criteria, established by previous WATER application reports, were met thus insuring the model's ability to provide acceptably accurate estimates of discharge at gaged and ungaged sites throughout Kentucky. Flow-duration curves are constructed in the WATER application by calculating the exceedence probability of the modeled daily flow values. The flow-duration intervals are expressed as a percentage, with zero corresponding to the highest stream discharge in the streamflow record. Load-duration curves are constructed by applying the loading equation (Load = Flow*Water-quality criterion) at each flow interval.
NASA Technical Reports Server (NTRS)
Sadler, S. G.
1971-01-01
Rotor wake geometries are predicted by a process similar to the startup of a rotor in a free stream. An array of discrete trailing and shed vortices is generated with vortex strengths corresponding to stepwise radial and azimuthal blade circulations. The array of shed and trailing vortices is limited to an arbitrary number of azimuthal steps behind each blade. The remainder of the wake model of each blade is an arbitrary number of trailing vortices. Vortex element end points were allowed to be transported by the resultant velocity of the free stream and vortex-induced velocities. Wake geometry, wake flow, and wake-induced velocity influence coefficients are generated by this program for use in the blade loads portion of the calculations. Blade loads computations include the effects of nonuniform inflow due to a free wake, nonlinear airfoil characteristics, and response of flexible blades to the applied loads. Computed wake flows and blade loads are compared with experimentally measured data. Predicted blade loads, response and shears and moments are obtained for a model rotor system having two independent rotors. The effects of advance ratio, vertical separation of rotors, different blade radius ratios, and different azimuthal spacing of the blades of one rotor with respect to the other are investigated.
Estimation of historic flows and sediment loads to San Francisco Bay,1849–2011
Moftakhari, H.R.; Jay, D.A.; Talke, S.A.; Schoellhamer, David H.
2015-01-01
River flow and sediment transport in estuaries influence morphological development over decadal and century time scales, but hydrological and sedimentological records are typically too short to adequately characterize long-term trends. In this study, we recover archival records and apply a rating curve approach to develop the first instrumental estimates of daily delta inflow and sediment loads to San Francisco Bay (1849–1929). The total sediment load is constrained using sedimentation/erosion estimated from bathymetric survey data to produce continuous daily sediment transport estimates from 1849 to 1955, the time period prior to sediment load measurements. We estimate that ∼55% (45–75%) of the ∼1500 ± 400 million tons (Mt) of sediment delivered to the estuary between 1849 and 2011 was the result of anthropogenic alteration in the watershed that increased sediment supply. Also, the seasonal timing of sediment flux events has shifted because significant spring-melt floods have decreased, causing estimated springtime transport (April 1st to June 30th) to decrease from ∼25% to ∼15% of the annual total. By contrast, wintertime sediment loads (December 1st to March 31st) have increased from ∼70% to ∼80%. A ∼35% reduction of annual flow since the 19th century along with decreased sediment supply has resulted in a ∼50% reduction in annual sediment delivery. The methods developed in this study can be applied to other systems for which unanalyzed historic data exist.
Microencapsulation of curcumin in PLGA microcapsules by coaxial flow focusing
NASA Astrophysics Data System (ADS)
Lei, Fan; Si, Ting; Luo, Xisheng; Xu, Ronald X.
2014-03-01
Curcumin-loaded PLGA microcapsules are fabricated by a liquid-driving coaxial flow focusing device. In the process, a stable coaxial cone-jet configuration is formed under the action of a coflowing liquid stream and the coaxial liquid jet eventually breaks up into microcapsules because of flow instability. This process can be well controlled by adjusting the flow rates of three phases including the driving PVA water solution, the outer PLGA ethyl acetate solution and the inner curcumin propylene glycol solution. Confocal and SEM imaging methods clearly indicate the core-shell structure of the resultant microcapsules. The encapsulation rate of curcumin in PLGA is measured to be more than 70%, which is much higher than the tranditional methods such as emulsion. The size distribution of resultant microcapsules under different conditions is presented and compared. An in vitro release simulation platform is further developed to verify the feasibility and reliability of the method.
NASA Technical Reports Server (NTRS)
Whitlow, W., Jr.; Bennett, R. M.
1982-01-01
Since the aerodynamic theory is nonlinear, the method requires the coupling of two iterative processes - an aerodynamic analysis and a structural analysis. A full potential analysis code, FLO22, is combined with a linear structural analysis to yield aerodynamic load distributions on and deflections of elastic wings. This method was used to analyze an aeroelastically-scaled wind tunnel model of a proposed executive-jet transport wing and an aeroelastic research wing. The results are compared with the corresponding rigid-wing analyses, and some effects of elasticity on the aerodynamic loading are noted.
Analytical study of pressure balancing in gas film seals
NASA Technical Reports Server (NTRS)
Zuk, J.
1973-01-01
The load factor is investigated for subsonic and choked flow conditions, laminar and turbulent flows, and various seal entrance conditions. Both parallel sealing surfaces and surfaces with small linear deformation were investigated. The load factor for subsonic flow depends strongly on pressure ratio; under choked flow conditions, however the load factor is found to depend more strongly on film thickness and flow entrance conditions rather than pressure ratio. The importance of generating hydrodynamic forces to keep the seal balanced under severe and multipoint operation is also discussed.
Algorithms for parallel flow solvers on message passing architectures
NASA Technical Reports Server (NTRS)
Vanderwijngaart, Rob F.
1995-01-01
The purpose of this project has been to identify and test suitable technologies for implementation of fluid flow solvers -- possibly coupled with structures and heat equation solvers -- on MIMD parallel computers. In the course of this investigation much attention has been paid to efficient domain decomposition strategies for ADI-type algorithms. Multi-partitioning derives its efficiency from the assignment of several blocks of grid points to each processor in the parallel computer. A coarse-grain parallelism is obtained, and a near-perfect load balance results. In uni-partitioning every processor receives responsibility for exactly one block of grid points instead of several. This necessitates fine-grain pipelined program execution in order to obtain a reasonable load balance. Although fine-grain parallelism is less desirable on many systems, especially high-latency networks of workstations, uni-partition methods are still in wide use in production codes for flow problems. Consequently, it remains important to achieve good efficiency with this technique that has essentially been superseded by multi-partitioning for parallel ADI-type algorithms. Another reason for the concentration on improving the performance of pipeline methods is their applicability in other types of flow solver kernels with stronger implied data dependence. Analytical expressions can be derived for the size of the dynamic load imbalance incurred in traditional pipelines. From these it can be determined what is the optimal first-processor retardation that leads to the shortest total completion time for the pipeline process. Theoretical predictions of pipeline performance with and without optimization match experimental observations on the iPSC/860 very well. Analysis of pipeline performance also highlights the effect of uncareful grid partitioning in flow solvers that employ pipeline algorithms. If grid blocks at boundaries are not at least as large in the wall-normal direction as those immediately adjacent to them, then the first processor in the pipeline will receive a computational load that is less than that of subsequent processors, magnifying the pipeline slowdown effect. Extra compensation is needed for grid boundary effects, even if all grid blocks are equally sized.
Improvement of suspended sediment concentration estimation for the Yarlung Zangbo river
NASA Astrophysics Data System (ADS)
Zeng, C.; Zhang, F.
2017-12-01
Suspended sediment load of a river represents integrated results of soil erosion, ecosystem variation and landform change occurring within basin over a specified period. Accurate estimation of suspended sediment concentration is important for calculating suspended sediment load, therefore is helpful for evaluating the impact of natural and anthropogenic factors on earth system processes under the background of global climate change. However, long-term observation of suspended sediment concentration usually very difficult in harsh condition areas e.g. rivers on the Tibet Plateau. This study proposed two sediment rating curve subdivision methods, the flood rank method and suspended sediment concentration stages method, to improve the estimations of daily suspended sediment concentration of the Yarlung Zangbo river during 2007 to 2009. The flood rank method, hypothesized that the higher water flow with larger erosive power can mobilize sediment sources not available during lower flows, suitable for application where sediments were mainly transported by first few flood events. The suspended sediment concentration stages method, assumed that precipitation is the dominating driving force of sediment erosion and transport processes during the flooding periods, suitable for application where soil erosion was closely related to precipitation events. Compared to traditional sediment rating curve and subdivision methods, results showed that the proposed methods can improve suspended sediment concentration and subsequent suspended sediment load estimations in the middle reach of the Yarlung Zangbo river with higher coefficients of determination (R2) and Nash-Sutcliffe efficiency coefficients (NSE), and yielded smaller bias (BIAS) and root-mean-square errors (RMSE). This study can provide guidelines for regional ecological and environmental management.
Load flows and faults considering dc current injections
NASA Technical Reports Server (NTRS)
Kusic, G. L.; Beach, R. F.
1991-01-01
The authors present novel methods for incorporating current injection sources into dc power flow computations and determining network fault currents when electronic devices limit fault currents. Combinations of current and voltage sources into a single network are considered in a general formulation. An example of relay coordination is presented. The present study is pertinent to the development of the Space Station Freedom electrical generation, transmission, and distribution system.
A potential method for lift evaluation from velocity field data
NASA Astrophysics Data System (ADS)
de Guyon-Crozier, Guillaume; Mulleners, Karen
2017-11-01
Computing forces from velocity field measurements is one of the challenges in experimental aerodynamics. This work focuses on low Reynolds flows, where the dynamics of the leading and trailing edge vortices play a major role in lift production. Recent developments in 2D potential flow theory, using discrete vortex models, have shown good results for unsteady wing motions. A method is presented to calculate lift from experimental velocity field data using a discrete vortex potential flow model. The model continuously adds new point vortices at leading and trailing edges whose circulations are set directly from vorticity measurements. Forces are computed using the unsteady Blasius equation and compared with measured loads.
NASA Astrophysics Data System (ADS)
Antonini, Alessandro; Guerrero, Massimo; Rüther, Nils; Stokseth, Siri
2016-04-01
A huge thread to Hydropower plants (HPP) is incoming sediments in suspension from the rivers upstream. The sediments settle in the reservoir and reduce the effective head as well as the volume and reduce consequently the lifetime of the reservoir. In addition are the fine sediments causing severe damages to turbines and infrastructure of a HPP. For estimating the amount of in-coming sediments in suspension and the consequent planning of efficient counter measures, it is essential to monitor the rivers within the catchment of the HPP for suspended sediments. This work is considerably time consuming and requires highly educated personnel and is therefore expensive. Surrogate-indirect methods using acoustic and optic devices have bee developed since the last decades that may be efficiently applied for the continuous monitoring of suspended sediment loads. The presented study proposes therefore to establish a research station at a cross section of a river which is the main tributary to a reservoir of a HPP and equip this station with surrogate as well as with common method of measuring suspended load concentrations and related flow discharge and level. The logger at the research station delivers data automatically to a server. Therefore it is ensured that also large flood events are covered. Data during flood are of high interest to the HPP planners since they carried the most part of the sediment load in a hydrological year. Theses peaks can hardly be measured with common measurement methods. Preliminary results of the wet season 2015/2016 are presented. The data gives insight in the applicable range, in terms of scattering particles concentration-average size and corresponding flow discharge and level, eventually enabling the study of suspended sediment load-water flow correlations during peak events. This work is carried out as part of a larger research project on sustainable hydro power plants exposed to high sediment yield, SediPASS. SediPASS is funded by the Norwegian Research council and Statkraft AS. Statkraft is supporting this project in the framework of a large R&D project on future handling strategies of sediments at hydro power plants.
Simulating wind and marine hydrokinetic turbines with actuator lines in RANS and LES
NASA Astrophysics Data System (ADS)
Bachant, Peter; Wosnik, Martin
2015-11-01
As wind and marine hydrokinetic (MHK) turbine designs mature, focus is shifting towards improving turbine array layouts for maximizing overall power output, i.e., minimizing wake interference for axial-flow or horizontal-axis turbines, or taking advantage of constructive wake interaction for cross-flow or vertical-axis turbines. Towards this goal, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier-Stokes models. The ALM predicts turbine loading with the blade element method combined with sub-models for dynamic stall and flow curvature. The open-source software is written as an extension library for the OpenFOAM CFD package, which allows the ALM body force to be applied to their standard RANS and LES solvers. Turbine forcing is also applied to volume of fluid (VOF) models, e.g., for predicting free surface effects on submerged MHK devices. An additional sub-model is considered for injecting turbulence model scalar quantities based on actuator line element loading. Results are presented for the simulation of performance and wake dynamics of axial- and cross-flow turbines and compared with moderate Reynolds number experiments and body-fitted mesh, blade-resolving CFD. Work supported by NSF-CBET grant 1150797.
Screen test for cadmium and nickel plates as developed and used within the Aerospace Corporation
NASA Technical Reports Server (NTRS)
Phan, A. H.; Zimmerman, A. H.
1994-01-01
A new procedure described here was recently developed to quantify loading uniformity of nickel and cadmium plates and to screen finished electrodes prior to cell assembly. The technique utilizes the initial solubility rates of the active material in a standard chemical deloading solution at fixed conditions. The method can provide a reproducible indication of plate loading uniformity in situations where high surface loading limits the free flow of deloading solution into the internal porosity of the sinter plate. A preliminary study indicates that 'good' cell performance is associated with higher deloading rates.
Respirator fit and protection through determination of air and particle leakage.
Xu, M; Han, D; Hangal, S; Willeke, K
1991-02-01
A laboratory technique for determining the respirator protection factor from a test of fit is described. A dynamic pressure test quantifies the air flow through the leak. Calibration data, stored in a computer, relate the contaminant influx to this air flow, and a similar pressure test determines the flow through the respirator cartridges and, therefore, the dilution characteristics. Contaminant removal characteristics of the cartridges are stored in the computer. The contaminant penetration is calculated from these data on flow and removal efficiency. Through specification of the aerosol size distribution and the method of measurement, protection factors are calculated for specific work environments, work loads and respirator cartridges. The protection factor is shown to be highly dependent on the method of measuring the contaminant and on the cartridges used.
Flow Past a Descending Balloon
NASA Technical Reports Server (NTRS)
Baginski, Frank
2001-01-01
In this report, we present our findings related to aerodynamic loading of partially inflated balloon shapes. This report will consider aerodynamic loading of partially inflated inextensible natural shape balloons and some relevant problems in potential flow. For the axisymmetric modeling, we modified our Balloon Design Shape Program (BDSP) to handle axisymmetric inextensible ascent shapes with aerodynamic loading. For a few simple examples of two dimensional potential flows, we used the Matlab PDE Toolbox. In addition, we propose a model for aerodynamic loading of strained energy minimizing balloon shapes with lobes. Numerical solutions are presented for partially inflated strained balloon shapes with lobes and no aerodynamic loading.
NASA Astrophysics Data System (ADS)
Yang, Zhichun; Zhou, Jian; Gu, Yingsong
2014-10-01
A flow field modified local piston theory, which is applied to the integrated analysis on static/dynamic aeroelastic behaviors of curved panels, is proposed in this paper. The local flow field parameters used in the modification are obtained by CFD technique which has the advantage to simulate the steady flow field accurately. This flow field modified local piston theory for aerodynamic loading is applied to the analysis of static aeroelastic deformation and flutter stabilities of curved panels in hypersonic flow. In addition, comparisons are made between results obtained by using the present method and curvature modified method. It shows that when the curvature of the curved panel is relatively small, the static aeroelastic deformations and flutter stability boundaries obtained by these two methods have little difference, while for curved panels with larger curvatures, the static aeroelastic deformation obtained by the present method is larger and the flutter stability boundary is smaller compared with those obtained by the curvature modified method, and the discrepancy increases with the increasing of curvature of panels. Therefore, the existing curvature modified method is non-conservative compared to the proposed flow field modified method based on the consideration of hypersonic flight vehicle safety, and the proposed flow field modified local piston theory for curved panels enlarges the application range of piston theory.
NASA Technical Reports Server (NTRS)
Brune, G. W.; Weber, J. A.; Johnson, F. T.; Lu, P.; Rubbert, P. E.
1975-01-01
A method of predicting forces, moments, and detailed surface pressures on thin, sharp-edged wings with leading-edge vortex separation in incompressible flow is presented. The method employs an inviscid flow model in which the wing and the rolled-up vortex sheets are represented by piecewise, continuous quadratic doublet sheet distributions. The Kutta condition is imposed on all wing edges. Computed results are compared with experimental data and with the predictions of the leading-edge suction analogy for a selected number of wing planforms over a wide range of angle of attack. These comparisons show the method to be very promising, capable of producing not only force predictions, but also accurate predictions of detailed surface pressure distributions, loads, and moments.
A linearized Euler analysis of unsteady flows in turbomachinery
NASA Technical Reports Server (NTRS)
Hall, Kenneth C.; Crawley, Edward F.
1987-01-01
A method for calculating unsteady flows in cascades is presented. The model, which is based on the linearized unsteady Euler equations, accounts for blade loading shock motion, wake motion, and blade geometry. The mean flow through the cascade is determined by solving the full nonlinear Euler equations. Assuming the unsteadiness in the flow is small, then the Euler equations are linearized about the mean flow to obtain a set of linear variable coefficient equations which describe the small amplitude, harmonic motion of the flow. These equations are discretized on a computational grid via a finite volume operator and solved directly subject to an appropriate set of linearized boundary conditions. The steady flow, which is calculated prior to the unsteady flow, is found via a Newton iteration procedure. An important feature of the analysis is the use of shock fitting to model steady and unsteady shocks. Use of the Euler equations with the unsteady Rankine-Hugoniot shock jump conditions correctly models the generation of steady and unsteady entropy and vorticity at shocks. In particular, the low frequency shock displacement is correctly predicted. Results of this method are presented for a variety of test cases. Predicted unsteady transonic flows in channels are compared to full nonlinear Euler solutions obtained using time-accurate, time-marching methods. The agreement between the two methods is excellent for small to moderate levels of flow unsteadiness. The method is also used to predict unsteady flows in cascades due to blade motion (flutter problem) and incoming disturbances (gust response problem).
Correlation between vortex structures and unsteady loads for flapping motion in hover
NASA Astrophysics Data System (ADS)
Jardin, Thierry; Chatellier, Ludovic; Farcy, Alain; David, Laurent
2009-10-01
During the past decade, efforts were made to develop a new generation of unmanned aircrafts, qualified as Micro-Air Vehicles. The particularity of these systems resides in their maximum dimension limited to 15 cm, which, in terms of aerodynamics, corresponds to low Reynolds number flows ( Re ≈ 102 to 104). At low Reynolds number, the concept of flapping wings seems to be an interesting alternative to the conventional fixed and rotary wings. Despite the fact that this concept may lead to enhanced lift forces and efficiency ratios, it allows hovering coupled with a low-noise generation. Previous studies (Dickinson et al. in Science 284:1954-1960, 1999) revealed that the flow engendered by flapping wings is highly vortical and unsteady, inducing significant temporal variations of the loads experienced by the airfoil. In order to enhance the aerodynamic performance of such flapping wings, it is essential to give further insight into the loads generating mechanisms by correlating the spatial and temporal evolution of the vortical structures together with the time-dependent lift and drag. In this paper, Time Resolved Particle Image Velocimetry is used as a basis to evaluate both unsteady forces and vortical structures generated by an airfoil undergoing complex motion (i.e. asymmetric flapping flight), through the momentum equation approach and a multidimensional wavelet-like vortex parameterization method, respectively. The momentum equation approach relies on the integration of flow variables inside and around a control volume surrounding the airfoil (Noca et al. in J Fluids Struct 11:345-350, 1997; Unal et al. in J Fluids Struct 11:965-971, 1997). Besides the direct link performed between the flow behavior and the force mechanisms, the load characterization is here non-intrusive and specifically convenient for flapping flight studies thanks to its low Reynolds flows’ sensitivity and adaptability to moving bodies. Results are supported by a vortex parameterization which evaluates the circulation of the multiple vortices generated in such complex flows. The temporal evolution of the loads matches the flow behavior and hence reveals the preponderant inertial force component and that due to vortical structures.
Deng, J.; Hudnut, K.; Gurnis, M.; Hauksson, E.
1999-01-01
Following the M(w) 6.7 Northridge earthquake, significant postseismic displacements were resolved with GPS. Using a three-dimensional viscoelastic model, we suggest that this deformation is mainly driven by viscous flow in the lower crust. Such flow can transfer stress to the upper crust and load the rupture zone of the main shock at a decaying rate. Most aftershocks within the rupture zone, especially those that occurred after the first several weeks of the main shock, may have been triggered by continuous stress loading from viscous flow. The long-term decay time of aftershocks (about 2 years) approximately matches the decay of viscoelastic loading, and thus is controlled by the viscosity of the lower crust. Our model provides a physical interpretation of the observed correlation between aftershock decay rate and surface heat flow.Following the Mw 6.7 Northridge earthquake, significant postseismic displacements were resolved with GPS. Using a three-dimensional viscoelastic model, we suggest that this deformation is mainly driven by viscous flow in the lower crust. Such flow can transfer stress to the upper crust and load the rupture zone of the main shock at a decaying rate. Most aftershocks within the rupture zone, especially those that occurred after the first several weeks of the main shock, may have been triggered by continuous stress loading from viscous flow. The long-term decay time of aftershocks (about 2 years) approximately matches the decay of viscoelastic loading, and thus is controlled by the viscosity of the lower crust. Our model provides a physical interpretation of the observed correlation between aftershock decay rate and surface heat flow.
ESTIMATING URBAN WET-WEATHER POLLUTANT LOADING
This paper presents procedures for estimating pollutant loads in urban watersheds emanating from wet-weather flow discharge. Equations for pollutant loading estimates will focus on the effects of wastewater characteristics, sewer flow carrying velocity, and sewer-solids depositi...
Su, Kuo-Chih; Chang, Chih-Han; Chuang, Shu-Fen; Ng, Eddie Yin-Kwee
2013-06-01
This study uses a fluid-structure interaction (FSI) simulation to evaluate the fluid flow in a dental intrapulpal chamber induced by the deformation of the tooth structure during loading in various directions. The FSI is used for the biomechanics simulation of dental intrapulpal responses with the force loading gradually increasing from 0 to 100N at 0°, 30°, 45°, 60°, and 90° on the tooth surface in 1s, respectively. The effect of stress or deformation on tooth and fluid flow changes in the pulp chamber are evaluated. A horizontal loading force on a tooth may induce tooth structure deformation, which increases fluid flow velocity in the coronal pulp. Thus, horizontal loading on a tooth may easily induce tooth pain. This study suggests that experiments to investigate the relationship between loading in various directions and dental pain should avoid measuring the bulk pulpal fluid flow from radicular pulp, but rather should measure the dentinal fluid flow in the dentinal tubules or coronal pulp. The FSI analysis used here could provide a powerful tool for investigating problems with coupled solid and fluid structures in dental biomechanics. Copyright © 2012 Elsevier Ltd. All rights reserved.
Impact of Groundwater Flow and Energy Load on Multiple Borehole Heat Exchangers.
Dehkordi, S Emad; Schincariol, Robert A; Olofsson, Bo
2015-01-01
The effect of array configuration, that is, number, layout, and spacing, on the performance of multiple borehole heat exchangers (BHEs) is generally known under the assumption of fully conductive transport. The effect of groundwater flow on BHE performance is also well established, but most commonly for single BHEs. In multiple-BHE systems the effect of groundwater advection can be more complicated due to the induced thermal interference between the boreholes. To ascertain the influence of groundwater flow and borehole arrangement, this study investigates single- and multi-BHE systems of various configurations. Moreover, the influence of energy load balance is also examined. The results from corresponding cases with and without groundwater flow as well as balanced and unbalanced energy loads are cross-compared. The groundwater flux value, 10(-7) m/s, is chosen based on the findings of previous studies on groundwater flow interaction with BHEs and thermal response tests. It is observed that multi-BHE systems with balanced loads are less sensitive to array configuration attributes and groundwater flow, in the long-term. Conversely, multi-BHE systems with unbalanced loads are influenced by borehole array configuration as well as groundwater flow; these effects become more pronounced with time, unlike when the load is balanced. Groundwater flow has more influence on stabilizing loop temperatures, compared to array characteristics. Although borehole thermal energy storage (BTES) systems have a balanced energy load function, preliminary investigation on their efficiency shows a negative impact by groundwater which is due to their dependency on high temperature gradients between the boreholes and surroundings. © 2014, National Ground Water Association.
Walter, Donald A.
2008-01-01
The unconsolidated glacial sediments underlying Cape Cod, Massachusetts compose a regional aquifer system that is used both as a source of drinking water and as a disposal site for wastewater; in addition, the discharge of clean ground water from the aquifer system is needed for the maintenance of freshwater and marine ecosystems throughout the region. Because these uses of the aquifer conflict with one another in many areas of the Cape, local and regional planners have begun to develop sustainable wastewater plans that will facilitate the disposal of wastewater while protecting water supplies and improving the health of aquatic ecosystems. To assist local and regional planners in these efforts, the U.S. Geological Survey conducted a 2-year investigation to (1) assist local and regional planners in the evaluation of potential wastewater scenarios, (2) use results and interpretation from these analyses to develop hydrologic concepts transferable throughout the region, and (3) establish and test methods that would be of use in future evaluations. Wastewater-disposal scenarios need to be evaluated in the context of the regional ground-water-flow system. For a given rate of disposal, wastewater from sites at or near a regional ground-water divide is transported in a wider arc of flow directions, flows deeper in the system, and contaminates a larger part of the aquifer than does wastewater discharged from sites farther from the divide. Also, traveltimes of wastewater from sites near a ground-water divide to receptors are longer (as much as several hundred years) than traveltimes from sites farther from the divide. Thus, wastewater disposal at or near a divide will affect a larger part of the aquifer and likely contribute wastewater to more receptors than wastewater disposal farther from a divide; however, longer traveltimes could allow for more attenuation of wastewater-derived nitrate from those sites. Ground-water-flow models and particle tracking can be used to identify advective-transport patterns downgradient from wastewater-disposal sites and estimate traveltimes; however, these tools cannot predict the distribution of mass or concentrations of wastewater constituents, such as nitrate, in the aquifer. Flow-based particle-tracking analyses can be used to estimate mass-loading rates and time-varying concentrations at wells and ecological receptors by the accounting of mass-weighted particles discharging into the receptor of interest. This method requires no additional development beyond the flow model; however, post-modeling analyses are required. In addition, the method is based on the assumption that no mass is lost during transport, an assumption that likely is not valid in many systems. Solute-transport models simulate the subsurface transport of nitrate through the aquifer and predict the distribution of the mass of a solute in the aquifer at different transport times. This method does require additional model development beyond the flow model, but can predict timevarying concentrations at receptors. Estimates of mass-loading rates require minimal post-modeling analyses. Time-varying concentrations and mass-loading rates calculated for wells in eastern Barnstable by the two methods generally were in reasonable agreement. Inherent in the flow-based particle-tracking method is the assumption that mass is conserved along a given flow line and that there is no spreading of mass in the aquifer. Although the solute-transport models also incorporate a system-wide conservation of mass, these models allow for a spreading of mass in the aquifer, and mass is not conserved along a given flow line. As a result, estimates of concentrations and mass loading rates generally were higher in particle-tracking analyses than in solute-transport simulations. Results from the two types of simulations agreed best for wells that receive large amounts of wastewater with short traveltimes (less than 10 years) because insufficient transport
NASA Technical Reports Server (NTRS)
Mccomb, Harvey G , Jr
1954-01-01
Equations are derived for the stress distributions caused by three types of loading on infinitely long circular, semimonocoque cylinders with flexible rings. The results are given as formula for the stringer loads and shear flows in the shell due to each type of loading. For each loading case these formulas can be used to construct tables of influence coefficients giving stringer loads and shear flows in the neighborhood of the load due to a unit magnitude of the load. (author)
Predicted changes in advanced turboprop noise with shaft angle of attack
NASA Technical Reports Server (NTRS)
Padula, S. L.; Block, P. J. W.
1984-01-01
Advanced turboprop blade designs and new propeller installation schemes motivated an effort to include unsteady loading effects in existing propeller noise prediction computer programs. The present work validates the prediction capability while studing the effects of shaft inclination on the radiated sound field. Classical methods of propeller performance analysis supply the time-dependent blade loading needed to calculate noise. Polar plots of the sound pressure level (SPL) of the first four harmonics and overall SPL are indicative of the change in directivity pattern as a function of propeller angle of attack. Noise predictions are compared with newly available wind tunnel data and the accuracy and applicability of the prediction method are discussed. It is concluded that unsteady blade loading caused by inclining the propeller with respect to the flow changes the directionality and the intensity of the radiated noise. These changes are well modeled by the present quasi-steady prediction method.
Unsteady load on an oscillating Kaplan turbine runner
NASA Astrophysics Data System (ADS)
Puolakka, O.; Keto-Tokoi, J.; Matusiak, J.
2013-02-01
A Kaplan turbine runner oscillating in turbine waterways is subjected to a varying hydrodynamic load. Numerical simulation of the related unsteady flow is time-consuming and research is very limited. In this study, a simplified method based on unsteady airfoil theory is presented for evaluation of the unsteady load for vibration analyses of the turbine shaft line. The runner is assumed to oscillate as a rigid body in spin and axial heave, and the reaction force is resolved into added masses and dampings. The method is applied on three Kaplan runners at nominal operating conditions. Estimates for added masses and dampings are considered to be of a magnitude significant for shaft line vibration. Moderate variation in the added masses and minor variation in the added dampings is found in the frequency range of interest. Reference results for added masses are derived by solving the boundary value problem for small motions of inviscid fluid using the finite element method. Good correspondence is found in the added mass estimates of the two methods. The unsteady airfoil method is considered accurate enough for design purposes. Experimental results are needed for validation of unsteady load analyses.
Dynamic Load Balancing Based on Constrained K-D Tree Decomposition for Parallel Particle Tracing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru
Particle tracing is a fundamental technique in flow field data visualization. In this work, we present a novel dynamic load balancing method for parallel particle tracing. Specifically, we employ a constrained k-d tree decomposition approach to dynamically redistribute tasks among processes. Each process is initially assigned a regularly partitioned block along with duplicated ghost layer under the memory limit. During particle tracing, the k-d tree decomposition is dynamically performed by constraining the cutting planes in the overlap range of duplicated data. This ensures that each process is reassigned particles as even as possible, and on the other hand the newmore » assigned particles for a process always locate in its block. Result shows good load balance and high efficiency of our method.« less
Axial flow heat exchanger devices and methods for heat transfer using axial flow devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P.
Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferredmore » across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.« less
NASA Technical Reports Server (NTRS)
Berdanier, Reid A.; Key, Nicole L.
2015-01-01
The focus of this work was to characterize the fundamental flow physics and the overall performance effects due to increased rotor tip clearance heights in axial compressors. Data have been collected in the three-stage axial research compressor at Purdue University with a specific focus on analyzing the multistage effects resulting from the tip leakage flow. Three separate rotor tip clearance heights were studied with nominal tip clearance heights of 1.5%, 3.0%, and 4.0% based on a constant annulus height. Overall compressor performance was investigated at four corrected speedlines (100%, 90%, 80%, and 68%) for each of the three tip clearance configurations using total pressure and total temperature rakes distributed throughout the compressor. The results have confirmed results from previous authors showing a decrease of total pressure rise, isentropic efficiency, and stall margin which is approximately linear with increasing tip clearance height. The stall inception mechanisms have also been evaluated at the same corrected speeds for each of the tip clearance configurations. Detailed flow field measurements have been collected at two loading conditions, nominal loading (NL) and high loading (HL), on the 100% corrected speedline for the smallest and largest tip clearance heights (1.5% and 4.0%). Steady detailed radial traverses of total pressure at the exit of each stator row have been supported by flow visualization techniques to identify regions of flow recirculation and separation. Furthermore, detailed radial traverses of time-resolved total pressures at the exit of each rotor row have been measured with a fast-response pressure probe. These data have helped to quantify the size of the leakage flow at the exit of each rotor. Thermal anemometry has also been implemented to evaluate the time-resolved three-dimensional components of velocity throughout the compressor and calculate blockage due to the rotor tip leakage flow throughout the compressor. These measurements have also been used to calculate streamwise vorticity. Time-resolved static pressure measurements have been collected over the rotor tips for all rotors with each of the three tip clearance configurations for up to five loading conditions along the 100% corrected speedline using fast-response piezoresistive pressure sensors. These time-resolved static pressure measurements, as well as the time-resolved total pressures and velocities have helped to reveal a profound influence of the upstream stator vane on the size and shape of the rotor tip leakage flow. Finally, a novel particle image velocimetry (PIV) technique has been developed as a proof-of- concept. In contrast to PIV methods that have been typically been utilized for turbomachinery applications in the past, the method used for this study introduced the laser light through the same access window that was also used to image the flow. This new method addresses potential concerns related to the intrusive laser-introducing techniques that have typically been utilized by other authors in the past. Ultimately, the data collected for this project represent a unique data set which contributes to build a better understanding of the tip leakage flow field and its associated loss mechanisms. These data will facilitate future engine design goals leading to small blade heights in the rear stages of high pressure compressors and aid in the development of new blade designs which are desensitized to the performance penalties attributed to rotor tip leakage flows.
NASA Astrophysics Data System (ADS)
Elliott, Emily A.; Monbureau, Elaine; Walters, Glenn W.; Elliott, Mark A.; McKee, Brent A.; Rodriguez, Antonio B.
2017-12-01
Identifying the source and abundance of sediment transported within tidal creeks is essential for studying the connectivity between coastal watersheds and estuaries. The fine-grained suspended sediment load (SSL) makes up a substantial portion of the total sediment load carried within an estuarine system and efficient sampling of the SSL is critical to our understanding of nutrient and contaminant transport, anthropogenic influence, and the effects of climate. Unfortunately, traditional methods of sampling the SSL, including instantaneous measurements and automatic samplers, can be labor intensive, expensive and often yield insufficient mass for comprehensive geochemical analysis. In estuaries this issue is even more pronounced due to bi-directional tidal flow. This study tests the efficacy of a time-integrated mass sediment sampler (TIMS) design, originally developed for uni-directional flow within the fluvial environment, modified in this work for implementation the tidal environment under bi-directional flow conditions. Our new TIMS design utilizes an 'L' shaped outflow tube to prevent backflow, and when deployed in mirrored pairs, each sampler collects sediment uniquely in one direction of tidal flow. Laboratory flume experiments using dye and particle image velocimetry (PIV) were used to characterize the flow within the sampler, specifically, to quantify the settling velocities and identify stagnation points. Further laboratory tests of sediment indicate that bidirectional TIMS capture up to 96% of incoming SSL across a range of flow velocities (0.3-0.6 m s-1). The modified TIMS design was tested in the field at two distinct sampling locations within the tidal zone. Single-time point suspended sediment samples were collected at high and low tide and compared to time-integrated suspended sediment samples collected by the bi-directional TIMS over the same four-day period. Particle-size composition from the bi-directional TIMS were representative of the array of single time point samples, but yielded greater mass, representative of flow and sediment-concentration conditions at the site throughout the deployment period. This work proves the efficacy of the modified bi-directional TIMS design, offering a novel tool for collection of suspended sediment in the tidally-dominated portion of the watershed.
An Efficient Method for Co-purification of Eggshell Matrix Proteins OC-17, OC-116, and OCX-36
2016-01-01
In this study, we improved the eggshell-membrane separation process by separating the shell and membrane with EDTA solution, evaluating effects of three different extraction solutions (acetic acid, EDTA, and phosphate solution), and co-purifying multiple eggshell proteins with two successive ion-exchange chromatography procedures (CM Sepharose Fast Flow and DEAE Sepharose Fast Flow). The recovery and residual rates of eggshell and membrane separated by the modified method with added EDTA solution were 93.88%, 91.15% and 1.01%, 2.87%, respectively. Ovocleidin-116 (OC-116) and ovocalyxin-36 (OCX-36) were obtained by loading 50 mM Na-Hepes, pH 7.5, 2 mM DTT and 350 mM NaCl buffer onto the DEAE-FF column at a flow rate of 1 mL/min, ovocleidin-17 (OC-17) was obtained by loading 100 mM NaCl, 50 mM Tris, pH 8.0 on the CM-FF column at a flow rate of 0.5 mL/min. The purities of OCX-36, OC-17 and OC-116 were 96.82%, 80.15% and 73.22%, and the recovery rates were 55.27%, 53.38% and 36.34%, respectively. Antibacterial activity test suggested that phosphate solution extract exhibited significantly higher activity against the tested bacterial strains than the acetic acid or EDTA extract, probably due to more types of proteins in the extract. These results demonstrate that this separation method is feasible and efficient. PMID:28115888
CFD-based design load analysis of 5MW offshore wind turbine
NASA Astrophysics Data System (ADS)
Tran, T. T.; Ryu, G. J.; Kim, Y. H.; Kim, D. H.
2012-11-01
The structure and aerodynamic loads acting on NREL 5MW reference wind turbine blade are calculated and analyzed based on advanced Computational Fluid Dynamics (CFD) and unsteady Blade Element Momentum (BEM). A detailed examination of the six force components has been carried out (three force components and three moment components). Structure load (gravity and inertia load) and aerodynamic load have been obtained by additional structural calculations (CFD or BEM, respectively,). In CFD method, the Reynolds Average Navier-Stokes approach was applied to solve the continuity equation of mass conservation and momentum balance so that the complex flow around wind turbines was modeled. Written in C programming language, a User Defined Function (UDF) code which defines transient velocity profile according to the Extreme Operating Gust condition was compiled into commercial FLUENT package. Furthermore, the unsteady BEM with 3D stall model has also adopted to investigate load components on wind turbine rotor. The present study introduces a comparison between advanced CFD and unsteady BEM for determining load on wind turbine rotor. Results indicate that there are good agreements between both present methods. It is importantly shown that six load components on wind turbine rotor is significant effect under Extreme Operating Gust (EOG) condition. Using advanced CFD and additional structural calculations, this study has succeeded to construct accuracy numerical methodology to estimate total load of wind turbine that compose of aerodynamic load and structure load.
Impact of Uncertainty from Load-Based Reserves and Renewables on Dispatch Costs and Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bowen; Maroukis, Spencer D.; Lin, Yashen
2016-11-21
Aggregations of controllable loads are considered to be a fast-responding, cost-efficient, and environmental-friendly candidate for power system ancillary services. Unlike conventional service providers, the potential capacity from the aggregation is highly affected by factors like ambient conditions and load usage patterns. Previous work modeled aggregations of controllable loads (such as air conditioners) as thermal batteries, which are capable of providing reserves but with uncertain capacity. A stochastic optimal power flow problem was formulated to manage this uncertainty, as well as uncertainty in renewable generation. In this paper, we explore how the types and levels of uncertainty, generation reserve costs, andmore » controllable load capacity affect the dispatch solution, operational costs, and CO2 emissions. We also compare the results of two methods for solving the stochastic optimization problem, namely the probabilistically robust method and analytical reformulation assuming Gaussian distributions. Case studies are conducted on a modified IEEE 9-bus system with renewables, controllable loads, and congestion. We find that different types and levels of uncertainty have significant impacts on dispatch and emissions. More controllable loads and less conservative solution methodologies lead to lower costs and emissions.« less
NASA Astrophysics Data System (ADS)
Keener, V. W.; Feyereisen, G. W.; Lall, U.; Jones, J. W.; Bosch, D. D.; Lowrance, R.
2010-02-01
SummaryAs climate variability increases, it is becoming increasingly critical to find predictable patterns that can still be identified despite overall uncertainty. The El-Niño/Southern Oscillation is the best known pattern. Its global effects on weather, hydrology, ecology and human health have been well documented. Climate variability manifested through ENSO has strong effects in the southeast United States, seen in precipitation and stream flow data. However, climate variability may also affect water quality in nutrient concentrations and loads, and have impacts on ecosystems, health, and food availability in the southeast. In this research, we establish a teleconnection between ENSO and the Little River Watershed (LRW), GA., as seen in a shared 3-7 year mode of variability for precipitation, stream flow, and nutrient load time series. Univariate wavelet analysis of the NINO 3.4 index of sea surface temperature (SST) and of precipitation, stream flow, NO 3 concentration and load time series from the watershed was used to identify common signals. Shared 3-7 year modes of variability were seen in all variables, most strongly in precipitation, stream flow and nutrient load in strong El Niño years. The significance of shared 3-7 year periodicity over red noise with 95% confidence in SST and precipitation, stream flow, and NO 3 load time series was confirmed through cross-wavelet and wavelet-coherence transforms, in which common high power and co-variance were computed for each set of data. The strongest 3-7 year shared power was seen in SST and stream flow data, while the strongest co-variance was seen in SST and NO 3 load data. The strongest cross-correlation was seen as a positive value between the NINO 3.4 and NO 3 load with a three-month lag. The teleconnection seen in the LRW between the NINO 3.4 index and precipitation, stream flow, and NO 3 load can be utilized in a model to predict monthly nutrient loads based on short-term climate variability, facilitating management in high risk seasons.
A Fictitious Domain Method for Resolving the Interaction of Blood Flow with Clot Growth
NASA Astrophysics Data System (ADS)
Mukherjee, Debanjan; Shadden, Shawn
2016-11-01
Thrombosis and thrombo-embolism cause a range of diseases including heart attack and stroke. Closer understanding of clot and blood flow mechanics provides valuable insights on the etiology, diagnosis, and treatment of thrombotic diseases. Such mechanics are complicated, however, by the discrete and multi-scale phenomena underlying thrombosis, and the complex interactions of unsteady, pulsatile hemodynamics with a clot of arbitrary shape and microstructure. We have developed a computational technique, based on a fictitious domain based finite element method, to study these interactions. The method can resolve arbitrary clot geometries, and dynamically couple fluid flow with static or growing clot boundaries. Macroscopic thrombus-hemodynamics interactions were investigated within idealized vessel geometries representative of the common carotid artery, with realistic unsteady flow profiles as inputs. The method was also employed successfully to resolve micro-scale interactions using a model driven by in-vivo morphology data. The results provide insights into the flow structures and hemodynamic loading around an arbitrarily grown clot at arterial length-scales, as well as flow and transport within the interstices of platelet aggregates composing the clot. The work was supported by AHA Award No: 16POST27500023.
Nutrient Loadings to Streams of the Continental United States from Municipal and Industrial Effluent
Maupin, M.A.; Ivahnenko, T.
2011-01-01
Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using "typical pollutant concentrations" to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point-source nutrient loads. These loads can be used to inform a wide range of water-quality management, watershed modeling, and research efforts at multiple scales. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.
Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient.
Fritze, Andreas; Hens, Felicitas; Kimpfler, Andrea; Schubert, Rolf; Peschka-Süss, Regine
2006-10-01
This study examines a new method for the remote loading of doxorubicin into liposomes. It was shown that doxorubicin can be loaded to a level of up to 98% into large unilamellar vesicles composed of egg phosphatidylcholine/cholesterol (7/3 mol/mol) with a transmembrane phosphate gradient. The different encapsulation efficiencies which were achieved with ammonium salts (citrate 100%, phosphate 98%, sulfate 95%, acetate 77%) were significantly higher as compared to the loading via sodium salts (citrate 54%, phosphate 52%, sulfate 44%, acetate 16%). Various factors, including pH-value, buffer capacity, solubility of doxorubicin in different salt solutions and base counter-flow, which likely has an influence on drug accumulation in the intraliposomal interior are taken into account. In contrast to other methods, the newly developed remote loading method exhibits a pH-dependent drug release property which may be effective in tumor tissues. At physiological pH-value doxorubicin is retained in the liposomes, whereas drug release is achieved by lowering the pH to 5.5 (approximately 25% release at 25 degrees C or 30% at 37 degrees C within two h). The DXR release of liposomes which were loaded via a sulfate gradient showed a maximum of 3% at pH 5.5.
METHODS FOR OPTIMIZING URBAN WET-WEATHER CONTROL SYSTEM
To minimize impacts of urban nonpoint source pollution and associated costs of control (storage and treatment) associated with wet-weather flows (WWFs), stormwater runoff volumes and pollutant loads must be reduced. A number of control strategies, so-called “best management pract...
An Novel Continuation Power Flow Method Based on Line Voltage Stability Index
NASA Astrophysics Data System (ADS)
Zhou, Jianfang; He, Yuqing; He, Hongbin; Jiang, Zhuohan
2018-01-01
An novel continuation power flow method based on line voltage stability index is proposed in this paper. Line voltage stability index is used to determine the selection of parameterized lines, and constantly updated with the change of load parameterized lines. The calculation stages of the continuation power flow decided by the angle changes of the prediction of development trend equation direction vector are proposed in this paper. And, an adaptive step length control strategy is used to calculate the next prediction direction and value according to different calculation stages. The proposed method is applied clear physical concept, and the high computing speed, also considering the local characteristics of voltage instability which can reflect the weak nodes and weak area in a power system. Due to more fully to calculate the PV curves, the proposed method has certain advantages on analysing the voltage stability margin to large-scale power grid.
Theoretical study of hull-rotor aerodynamic interference on semibuoyant vehicles
NASA Technical Reports Server (NTRS)
Spangler, S. B.; Smith, C. A.
1978-01-01
Analytical methods are developed to predict the pressure distribution and overall loads on the hulls of airships which have close coupled, relatively large and/or high disk loading propulsors for attitude control, station keeping, and partial support of total weight as well as provision of thrust in cruise. The methods comprise a surface-singularity, potential-flow model for the hull and lifting surfaces (such as tails) and a rotor model which calculates the velocity induced by the rotor and its wake at points adjacent to the wake. Use of these two models provides an inviscid pressure distribution on the hull with rotor interference. A boundary layer separation prediction method is used to locate separation on the hull, and a wake pressure is imposed on the separated region for purposes of calculating hull loads. Results of calculations are shown to illustrate various cases of rotor-hull interference and comparisons with small scale data are made to evaluate the method.
Medalie, Laura
2007-01-01
The effectiveness of best-management practices (BMPs) in improving water quality in Lake Champlain tributaries was evaluated from 2000 through 2005 on the basis of analysis of data collected on concentrations of total phosphorus and suspended sediment in Englesby Brook, an urban stream in Burlington, and Little Otter Creek, an agricultural stream in Ferrisburg. Data also were collected on concentrations of total nitrogen in the Englesby Brook watershed. In the winter of 2001-2002, one of three planned structural BMPs was installed in the urban watershed. At approximately the same time, a set of barnyard BMPs was installed in the agricultural watershed; however, the other planned BMPs, which included streambank fencing and nutrient management, were not implemented within the study period. At Englesby Brook, concentrations of phosphorus ranged from 0.024 to 0.3 milligrams per liter (mg/L) during base-flow and from 0.032 to 11.8 mg/L during high-flow conditions. Concentrations of suspended sediment ranged from 3 to 189 mg/L during base-flow and from 5 to 6,880 mg/L during high-flow conditions. An assessment of the effectiveness of an urban BMP was made by comparing concentrations and loads of phosphorus and suspended sediment before and after a golf-course irrigation pond in the Englesby Brook watershed was retrofitted with the objective of reducing sediment transport. Results from a modified paired watershed study design showed that the BMP reduced concentrations of phosphorus and suspended sediment during high-flow events - when average streamflow was greater than 3 cubic feet per second. While construction of the BMP did not reduce storm loads of phosphorus or suspended sediment, an evaluation of changes in slope of double-mass curves showing cumulative monthly streamflow plotted against cumulative monthly loads indicated a possible reduction in cumulative loads of phosphorus and suspended sediment after BMP construction. Results from the Little Otter Creek assessment of agricultural BMPs showed that concentrations of phosphorus ranged from 0.016 to 0.141 mg/L during base-flow and from 0.019 to 0.565 mg/L during high-flow conditions at the upstream monitoring station. Concentrations of suspended sediment ranged from 2 to 13 mg/L during base-flow and from 1 to 473 mg/L during high-flow conditions at the upstream monitoring station. Concentrations of phosphorus ranged from 0.018 to 0.233 mg/L during base-flow and from 0.019 to 1.95 mg/L during high-flow conditions at the downstream monitoring station. Concentrations of suspended sediment ranged from 10 to 132 mg/L during base-flow and from 8 to 1,190 mg/L during high-flow conditions at the downstream monitoring station. Annual loads of phosphorus at the downstream monitoring station were significantly larger than loads at the upstream monitoring station, and annual loads of suspended sediment at the downstream monitoring station were larger than loads at the upstream monitoring station for 4 out of 6 years. On a monthly basis, loads of phosphorus and suspended sediment at the downstream monitoring station were significantly larger than loads at the upstream monitoring station. Pairs of concentrations of phosphorus and monthly loads of phosphorus and suspended sediment from the upstream and downstream monitoring stations were evaluated using the paired watershed study design. The only significant reduction between the calibration and treatment periods was for monthly loads of phosphorus; all other evaluations showed no change between periods.
Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow
Orosa, John
2014-03-11
An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.
A preliminary test method for masonry heater particulate matter and carbon monoxide emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, C.H.; Jaasma, D.R.; Shelton, J.W.
1991-08-01
A test method for determining carbon monoxide (CO) and particulate matter (PM) emissions from masonry heaters is described and results of tests on two masonry heaters are presented. The method specifies fueling protocol and laboratory measurement procedures for determination of both emission factors (g/kg) and rates (g/hr). The fuel load size and fueling intervals are dependent upon the firebox volume of the masonry heater. The test method starts with a room temperature masonry heater and involves five firings to achieve burn rates in two ranges, where the burn rate is defined as the dry mass of the fuel load dividedmore » by the time between loadings. Emission samples are extracted from a dilution tunnel with a set flow rate and configuration. Particulate matter sampling is similar to US EPA Method 5G for woodstoves, and Co concentration is measured by a nondispersive infrared (NDIR) gas analyzer. The emissions results for each firing are weighted according to EPA Method 28 to obtain the overall emission totals for the test.« less
Modeling Dissolved Solids in the Rincon Valley, New Mexico Using RiverWare
NASA Astrophysics Data System (ADS)
Abudu, S.; Ahn, S. R.; Sheng, Z.
2017-12-01
Simulating transport and storage of dissolved solids in surface water and underlying alluvial aquifer is essential to evaluate the impacts of surface water operations, groundwater pumping, and climate variability on the spatial and temporal variability of salinity in the Rio Grande Basin. In this study, we developed a monthly RiverWare water quantity and quality model to simulate the both concentration and loads of dissolved solids for the Rincon Valley, New Mexico from Caballo Reservoir to Leasburg Dam segment of the Rio Grande. The measured flows, concentration and loads of dissolved solids in the main stream and drains were used to develop RiveWare model using 1980-1988 data for calibration, and 1989-1995 data for validation. The transport of salt is tracked using discretized salt and post-process approaches. Flow and salt exchange between the surface water and adjacent groundwater objects is computed using "soil moisture salt with supplemental flow" method in the RiverWare. In the groundwater objects, the "layered salt" method is used to simulate concentration of the dissolved solids in the shallow groundwater storage. In addition, the estimated local inflows under different weather conditions by using a calibrated Soil Water Assessment Tool (SWAT) were fed into the RiverWare to refine the simulation of the flow and dissolved solids. The results show the salt concentration and loads increased at Leasburg Dam, which indicates the river collects salts from the agricultural return flow and the underlying aquifer. The RiverWare model with the local inflow fed by SWAT delivered the better quantification of temporal and spatial salt exchange patterns between the river and the underlying aquifer. The results from the proposed modeling approach can be used to refine the current mass-balance budgets for dissolved-solids transport in the Rio Grande, and provide guidelines for planning and decision-making to control salinity in arid river environment.
Accuracy of State-of-the-Art Actuator-Line Modeling for Wind Turbine Wakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jha, Pankaj; Churchfield, Matthew; Moriarty, Patrick
The current actuator line method (ALM) within an OpenFOAM computational fluid dynamics (CFD) solver was used to perform simulations of the NREL Phase VI rotor under rotating and parked conditions, two fixed-wing designs both with an elliptic spanwise loading, and the NREL 5-MW turbine. The objective of this work is to assess and improve the accuracy of the state-of-the-art ALM in predicting rotor blade loads, particularly by focusing on the method used to project the actuator forces onto the flow field as body forces. Results obtained for sectional normal and tangential force coefficients were compared to available experimental data andmore » to the in-house performance code XTurb-PSU. It was observed that the ALM results agree well with measured data and results obtained from XTurb-PSU except in the root and tip regions if a three-dimensional Gaussian of width, ε, constant along the blade span is used to project the actuator force onto the flow field. A new method is proposed where the Gaussian width, ε, varies along the blade span following an elliptic distribution. A general criterion is derived that applies to any planform shape. It is found that the new criterion for ε leads to improved prediction of blade tip loads for a variety of blade planforms and rotor conditions considered.« less
NASA Technical Reports Server (NTRS)
Tyson, R. W.; Muraca, R. J.
1975-01-01
The local linearization method for axisymmetric flow is combined with the transonic equivalence rule to calculate pressure distribution on slender bodies at free-stream Mach numbers from .8 to 1.2. This is an approximate solution to the transonic flow problem which yields results applicable during the preliminary design stages of a configuration development. The method can be used to determine the aerodynamic loads on parabolic arc bodies having either circular or elliptical cross sections. It is particularly useful in predicting pressure distributions and normal force distributions along the body at small angles of attack. The equations discussed may be extended to include wing-body combinations.
Field-aligned currents observed in the vicinity of a moving auroral arc
NASA Technical Reports Server (NTRS)
Goertz, C. K.; Bruening, K.
1984-01-01
The sounding rocket Porcupine F4 was launched into an auroral arc and the field aligned currents were independently deduced from magnetic field measurements; the horizontal current deduced from the electric field measurements and height integrated conductivity calculations; and measurements of electron fluxes. Above the arc the different methods agree. The magnetosphere acts as generator and the ionosphere as load. North of the arc, the first two methods disagree, possibly due to an Alfven wave carrying the observed magnetic field perturbation. The energy flow is out of the ionosphere. Here the ionosphere acts as generator and the magnetosphere as load.
Wang, Chih-Wei; Bains, Aman; Sinton, David; Moffitt, Matthew G
2013-07-02
We investigate the loading efficiencies of two chemically distinct hydrophobic fluorescent probes, pyrene and naphthalene, for self-assembly and loading of polystyrene-block-poly(acrylic acid) (PS-b-PAA) micelles in gas-liquid segmented microfluidic reactors under different chemical and flow conditions. On-chip loading efficiencies are compared to values obtained via off-chip dropwise water addition to a solution of copolymer and probe. On-chip, probe loading efficiencies depend strongly on the chemical probe, initial solvent, water content, and flow rate. For pyrene and naphthalene probes, maximum on-chip loading efficiencies of 73 ± 6% and 11 ± 3%, respectively, are obtained, in both cases using the more polar solvent (DMF), an intermediate water content (2 wt % above critical), and a low flow rate (∼5 μL/min); these values are compared to 81 ± 6% and 48 ± 2%, respectively, for off-chip loading. On-chip loading shows a significant improvement over the off-chip process where shear-induced formation of smaller micelles enables increased encapsulation of probe. As well, we show that on-chip loading allows off-chip release kinetics to be controlled via flow rate: compared to vehicles produced at ∼5 μL/min, pyrene release kinetics from vehicles produced at ∼50 μL/min showed a longer initial period of burst release, followed by slow release over a longer total period. These results demonstrate the necessity to match probes, solvents, and running conditions to achieve effective loading, which is essential information for further developing these on-chip platforms for manufacturing drug delivery formulations.
Wind turbine rotor simulation using the actuator disk and actuator line methods
NASA Astrophysics Data System (ADS)
Tzimas, M.; Prospathopoulos, J.
2016-09-01
The present paper focuses on wind turbine rotor modeling for loads and wake flow prediction. Two steady-state models based on the actuator disk approach are considered, using either a uniform thrust or a blade element momentum calculation of the wind turbine loads. A third model is based on the unsteady-state actuator line approach. Predictions are compared with measurements in wind tunnel experiments and in atmospheric environment and the capabilities and weaknesses of the different models are addressed.
Method of determining the open circuit voltage of a battery in a closed circuit
Brown, William E.
1980-01-01
The open circuit voltage of a battery which is connected in a closed circuit is determined without breaking the circuit or causing voltage upsets therein. The closed circuit voltage across the battery and the current flowing through it are determined under normal load and then a fractional change is made in the load and the new current and voltage values determined. The open circuit voltage is then calculated, according to known principles, from the two sets of values.
Method and apparatus for rapid stopping and starting of a thermoacoustic engine
Swift, Gregory W.; Backhaus, Scott N.; Gardner, David L.
2003-11-11
A thermoacoustic engine-driven system with a hot heat exchanger, a regenerator or stack, and an ambient heat exchanger includes a side branch load for rapid stopping and starting, the side branch load being attached to a location in the thermoacoustic system having a nonzero oscillating pressure and comprising a valve, a flow resistor, and a tank connected in series. The system is rapidly stopped simply by opening the valve and rapidly started by closing the valve.
NASA Technical Reports Server (NTRS)
Liu, A. F.
1974-01-01
A systematic approach for applying methods for fracture control in the structural components of space vehicles consists of four major steps. The first step is to define the primary load-carrying structural elements and the type of load, environment, and design stress levels acting upon them. The second step is to identify the potential fracture-critical parts by means of a selection logic flow diagram. The third step is to evaluate the safe-life and fail-safe capabilities of the specified part. The last step in the sequence is to apply the control procedures that will prevent damage to the fracture-critical parts. The fracture control methods discussed include fatigue design and analysis methods, methods for preventing crack-like defects, fracture mechanics analysis methods, and nondestructive evaluation methods. An example problem is presented for evaluation of the safe-crack-growth capability of the space shuttle crew compartment skin structure.
Exploring the role of flood transience in coarse bed load sediment transport
NASA Astrophysics Data System (ADS)
Phillips, C. B.; Singer, M. B.; Hill, K. M.; Paola, C.
2015-12-01
The rate of bed load transport under steady flow is known to vary both spatially and temporally due to various hydrologic and granular phenomena. Grain size distributions and riverbed properties (packing, imbrication, etc.) are known to affect flux for a particular value of applied flow stress, while hydrology is mainly assumed to control the magnitude of the applied bed stress above the threshold for bed material entrainment. The prediction of bed load sediment transport in field settings is further complicated by the inherent transience in flood hydrology, but little is known about how such flood transience influences bed load flux over a range of applied bed stress. Here we investigate the role of flood transience for gravel bed load transport through controlled laboratory experiments in a 28 m long 0.5 meter wide flume. We explore transient flow as the combination of unsteady and intermittent flow, where unsteady flow varies in magnitude over a given duration, and intermittent flow is characterized by turning the flow on and off. We systematically vary these details of flood hydrographs from one experiment to the next, and monitor the bed load as it varies with water discharge in real time by measuring sediment flux and tracking particles. We find that even with a narrow unimodal grain size distribution and constant sediment supply we observe hysteresis in bed load flux, different thresholds for entrainment and distrainment for the rising and falling limbs of a flood, and a threshold of entrainment that can vary one flood hydrograph to the next. Despite these complex phenomena we find that the total bed load transported for each flood plots along a linear trend with the integrated excess stress, consistent with prior field results. These results suggest that while the effects of transient flow and the shape of the hydrograph are measurable, they are second-order compared to the integrated excess stress.
McKee, Lester J; Gilbreath, Alicia N
2015-08-01
Water-quality policy documents throughout the world often identify urban stormwater as a large and controllable impact to sensitive ecosystems, yet there is often limited data to characterize concentrations and loads especially for rare and more difficult to quantify pollutants. In response, concentrations of suspended sediments and silver, mercury and selenium including speciation, and other trace elements were measured in dry and wet weather stormwater flow from a 100% urban watershed near San Francisco. Suspended sediment concentrations ranged between 1.4 and 2700 mg/L and varied with storm intensity. Turbidity was shown to correlate strongly with suspended sediments and most trace elements and was used as a surrogate with regression to estimate concentrations during unsampled periods and to compute loads. Mean suspended sediment yield was 31.5 t/km(2)/year. Total mercury ranged between 1.4 and 150 ng/L and was, on average, 92% particulate, 0.9% methylated, and 1.2% acid labile. Total mercury yield averaged 5.7 μg/m(2)/year. Total selenium ranged between non-detect and 2.9 μg/L and, on average, the total load (0.027 μg/m(2)/year) was 61% transported in dissolved phase. Selenate (Se(VI)) was the dominant species. Silver concentrations ranged between non-detect and 0.11 μg/L. Concentrations and loads of other trace elements were also highly variable and were generally similar to other urban systems with the exceptions of Ag and As (seldom reported) and Cr and Zn which exhibited concentrations and loads in the upper range of those reported elsewhere. Consistent with the semi-arid climatic setting, >95% of suspended sediment, 94% of total Hg, and 85-95 % of all other trace element loads were transported during storm flows with the exception of selenium which showed an inverse relationship between concentration and flow. Treatment of loads is made more challenging in arid climate settings due to low proportions of annual loads and greater dissolved phase during low flow conditions. This dataset fills an important local data gap for highly urban watersheds of San Francisco Bay. The field and interpretative methods, the uniqueness of the analyte list, and resulting information have general applicability for managing pollutant concentrations and loads in urban watersheds in other parts of the world and may have particularly useful application in more arid climates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, J.S.; Huttelmaier, H.P.; Cheng, B.R.
1995-12-31
For a heavy object falling on a free-span pipeline, this study assesses three-dimensional (3-D) pipe-span responses with the torsional ({theta}x-) coupling of a pipeline through the biaxial (y) bending responses. The static pipe-span equilibrium is achieved with its self-weight and buoyancy and the external torsional moment induced by the cross-flow (y-directional) current on the sagged pipe span. Load steps taken for 2 different sequences of applying static loads induced different pipe deformations, and the pipe twists in entirely different pattern. The two types of impact loads are applied in the vertical (z-) direction to excite the pipe span in itsmore » static equilibrium: (1) triangular impulse loading and (2) ramp loading. Boundary condition of the span supports is ``fixed-fixed`` at both ends in both displacement and rotation. 3-D coupled axial (x-), bending (y- and z-) and torsional ({theta}x-) responses, both state and dynamic, to the z-directional impact loadings, are modeled and analyzed by a nonlinear FEM method for a 16-in pipeline. The 3-D responses are compared with 2-D responses. The comparison shows significant torsional vibrations caused by the cross-flow current, especially for longer spans. The torsional ({theta}x-) coupling is very sensitive to the time-step size in achieving numerical stability and accuracy, particularly for the ramp loading and for a shorter span. For very large impact loads, the response frequencies differ from the fundamental frequencies of the span, exhibiting beatings and strong bending-to-axial and to-twist couplings. Also, the eigenvalues for the linear system are not necessarily the resonance frequencies for these nonlinear coupled responses.« less
Manorama, Abinand; Meyer, Ronald; Wiseman, Robert; Bush, Tamara Reid
2013-06-01
Forces applied to the skin cause a decrease in regional blood flow. This decrease in blood flow can cause tissue necrosis and lead to the formation of deep, penetrating wounds called pressure ulcers. These wounds are detrimental to individuals with compromised health, such as the elderly and spinal-cord injured. Although surface pressure is known to be a primary risk factor for developing a pressure ulcer, a seated individual rarely experiences pressure alone but rather combined loading which includes pressure as well as shear force on the skin. However, little research has been conducted to quantify the effects of shear forces on blood flow. Fifteen men were tested in a magnetic resonance imaging scanner under no load, a normal load, and a combination of normal and shear loads. Changes in arterial and venous blood flow in the forearm were measured using magnetic resonance angiography phase-contrast imaging. The blood flow in the anterior interosseous artery and basilic vein of the forearm decreased with the application of normal loads, and decreased further with the addition of shear loads. Marginal to significant differences at a 90% confidence level (P=0.08, 0.10) were observed, and medium to high effect sizes (0.3 to 0.5) were obtained. Based on these results, shear force is an important factor to consider in relation to pressure ulcer propagation and prevention, and hence, future prevention approaches should also focus on mitigating shear loads. Copyright © 2013 Elsevier Ltd. All rights reserved.
Power flows and Mechanical Intensities in structural finite element analysis
NASA Technical Reports Server (NTRS)
Hambric, Stephen A.
1989-01-01
The identification of power flow paths in dynamically loaded structures is an important, but currently unavailable, capability for the finite element analyst. For this reason, methods for calculating power flows and mechanical intensities in finite element models are developed here. Formulations for calculating input and output powers, power flows, mechanical intensities, and power dissipations for beam, plate, and solid element types are derived. NASTRAN is used to calculate the required velocity, force, and stress results of an analysis, which a post-processor then uses to calculate power flow quantities. The SDRC I-deas Supertab module is used to view the final results. Test models include a simple truss and a beam-stiffened cantilever plate. Both test cases showed reasonable power flow fields over low to medium frequencies, with accurate power balances. Future work will include testing with more complex models, developing an interactive graphics program to view easily and efficiently the analysis results, applying shape optimization methods to the problem with power flow variables as design constraints, and adding the power flow capability to NASTRAN.
Masaki, Nami; Sugama, Junko; Okuwa, Mayumi; Inagaki, Misako; Matsuo, Junko; Nakatani, Tosio; Sanada, Hiromi
2013-07-01
The purpose of this study was to evaluate the differences in heel blood flow during loading and off-loading in bedridden adults older than 65 years. The patients were divided into three groups based on ankle-brachial pressure index (ABI) and transcutaneous oxygen tension (tcPO₂): (1) patients with an ABI ≥ 0.8 (Group A); (2) patients with an ABI < 0.8 and heel tcPO₂ ≥ 10 mmHg (Group B); and (3) patients with an ABI < 0.8 and heel tcPO₂ < 10 mmHg (Group C). Heel blood flow was monitored using tcPO₂ sensors. Data were collected with the heel (1) suspended above the bed surface (preload), (2) on the bed surface for 30 min (loading), and (3) again suspended above the bed surface for 60 min (off-loading). Heel blood flow during off-loading was assessed using three parameters: oxygen recovery index (ORI), total tcPO₂ for the first 10 min, and change in tcPO₂ after 60 min of off-loading. ORI in Group C (n = 8) was significantly shorter than in Groups A (n = 22) and B (n = 15). Total tcPO₂ for the first 10 min of off-loading in Group C was significantly less than that in Groups A and B. Change in tcPO₂ after 60 min of off-loading in Group C was less than in Group A. Based on these findings, additional preventive care against heel blood flow decrease in older adults with an ABI < 0.8 and heel tcPO₂ < 10 mmHg might be necessary after loading.
Spahr, Norman E.; Dubrovsky, Neil M.; Gronberg, JoAnn M.; Franke, O. Lehn; Wolock, David M.
2010-01-01
Hydrograph separation was used to determine the base-flow component of streamflow for 148 sites sampled as part of the National Water-Quality Assessment program. Sites in the Southwest and the Northwest tend to have base-flow index values greater than 0.5. Sites in the Midwest and the eastern portion of the Southern Plains generally have values less than 0.5. Base-flow index values for sites in the Southeast and Northeast are mixed with values less than and greater than 0.5. Hypothesized flow paths based on relative scaling of soil and bedrock permeability explain some of the differences found in base-flow index. Sites in areas with impermeable soils and bedrock (areas where overland flow may be the primary hydrologic flow path) tend to have lower base-flow index values than sites in areas with either permeable bedrock or permeable soils (areas where deep groundwater flow paths or shallow groundwater flow paths may occur). The percentage of nitrate load contributed by base flow was determined using total flow and base flow nitrate load models. These regression-based models were calibrated using available nitrate samples and total streamflow or base-flow nitrate samples and the base-flow component of total streamflow. Many streams in the country have a large proportion of nitrate load contributed by base flow: 40 percent of sites have more than 50 percent of the total nitrate load contributed by base flow. Sites in the Midwest and eastern portion of the Southern Plains generally have less than 50 percent of the total nitrate load contributed by base flow. Sites in the Northern Plains and Northwest have nitrate load ratios that generally are greater than 50 percent. Nitrate load ratios for sites in the Southeast and Northeast are mixed with values less than and greater than 50 percent. Significantly lower contributions of nitrate from base flow were found at sites in areas with impermeable soils and impermeable bedrock. These areas could be most responsive to nutrient management practices designed to reduce nutrient transport to streams by runoff. Conversely, sites with potential for shallow or deep groundwater contribution (some combination of permeable soils or permeable bedrock) had significantly greater contributions of nitrate from base flow. Effective nutrient management strategies would consider groundwater nitrate contributions in these areas. Mean annual base-flow nitrate concentrations were compared to shallow-groundwater nitrate concentrations for 27 sites. Concentrations in groundwater tended to be greater than base-flow concentrations for this group of sites. Sites where groundwater concentrations were much greater than base-flow concentrations were found in areas of high infiltration and oxic groundwater conditions. The lack of correspondingly high concentrations in the base flow of the paired surface-water sites may have multiple causes. In some settings, there has not been sufficient time for enough high-nitrate shallow groundwater to migrate to the nearby stream. In these cases, the stream nitrate concentrations lag behind those in the shallow groundwater, and concentrations may increase in the future as more high-nitrate groundwater reaches the stream. Alternatively, some of these sites may have processes that rapidly remove nitrate as water moves from the aquifer into the stream channel. Partitioning streamflow and nitrate load between the quick-flow and base-flow portions of the hydrograph coupled with relative scales of soil permeability can infer the importance of surface water compared to groundwater nitrate sources. Study of the relation of nitrate concentrations to base-flow index and the comparison of groundwater nitrate concentrations to stream nitrate concentrations during times when base-flow index is high can provide evidence of potential nitrate transport mechanisms. Accounting for the surface-water and groundwater contributions of nitrate is crucial to effective management and remediat
The flow field investigations of no load conditions in axial flow fixed-blade turbine
NASA Astrophysics Data System (ADS)
Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.
2014-03-01
During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.
Unsteady Loss in the Stator Due to the Incoming Rotor Wake in a Highly-Loaded Transonic Compressor
NASA Technical Reports Server (NTRS)
Hah, Chunill
2015-01-01
The present paper reports an investigation of unsteady loss generation in the stator due to the incoming rotor wake in an advanced GE transonic compressor design with a high-fidelity numerical method. This advanced compressor with high reaction and high stage loading has been investigated both experimentally and analytically in the past. The measured efficiency in this advanced compressor is significantly lower than the design intention goal. The general understanding is that the current generation of compressor design analysis tools miss some important flow physics in this modern compressor design. To pinpoint the source of the efficiency miss, an advanced test with a detailed flow traverse was performed for the front one and a half stage at the NASA Glenn Research Center.
The effect of circumferential distortion on fan performance at two levels of blade loading
NASA Technical Reports Server (NTRS)
Hartmann, M. J.; Sanger, N. L.
1975-01-01
Single stage fans designed for two levels of pressure ratio or blade loading were subjected to screen-induced circumferential distortions of 90-degree extent. Both fan rotors were designed for a blade tip speed of 425 m/sec, blade solidity of 1.3 and a hub-to-tip radius ratio of 0.5. Circumferential measurements of total pressure, temperature, static pressure, and flow angle were obtained at the hub, mean and tip radii at five axial stations. Rotor loading level did not appear to have a significant influence on rotor response to distorted flow. Losses in overall pressure ratio due to distortion were most severe in the stator hub region of the more highly loaded stage. At the near stall operating condition tip and hub regions of (either) rotor demonstrated different response characteristics to the distorted flow. No effect of loading was apparent on interactions between rotor and upstream distorted flow fields.
Effect of load transients on SOFC operation—current reversal on loss of load
NASA Astrophysics Data System (ADS)
Gemmen, Randall S.; Johnson, Christopher D.
The dynamics of solid oxide fuel cell (SOFC) operation have been considered previously, but mainly through the use of one-dimensional codes applied to co-flow fuel cell systems. In this paper several geometries are considered, including cross-flow, co-flow, and counter-flow. The details of the model are provided, and the model is compared with some initial experimental data. For parameters typical of SOFC operation, a variety of transient cases are investigated, including representative load increase and decrease and system shutdown. Of particular note for large load decrease conditions (e.g., shutdown) is the occurrence of reverse current over significant portions of the cell, starting from the moment of load loss up to the point where equilibrated conditions again provide positive current. Consideration is given as to when such reverse current conditions might most significantly impact the reliability of the cell.
NASA Astrophysics Data System (ADS)
Errico, F.; Ichchou, M.; De Rosa, S.; Bareille, O.; Franco, F.
2018-06-01
The stochastic response of periodic flat and axial-symmetric structures, subjected to random and spatially-correlated loads, is here analysed through an approach based on the combination of a wave finite element and a transfer matrix method. Although giving a lower computational cost, the present approach keeps the same accuracy of classic finite element methods. When dealing with homogeneous structures, the accuracy is also extended to higher frequencies, without increasing the time of calculation. Depending on the complexity of the structure and the frequency range, the computational cost can be reduced more than two orders of magnitude. The presented methodology is validated both for simple and complex structural shapes, under deterministic and random loads.
A dissipative particle dynamics method for arbitrarily complex geometries
NASA Astrophysics Data System (ADS)
Li, Zhen; Bian, Xin; Tang, Yu-Hang; Karniadakis, George Em
2018-02-01
Dissipative particle dynamics (DPD) is an effective Lagrangian method for modeling complex fluids in the mesoscale regime but so far it has been limited to relatively simple geometries. Here, we formulate a local detection method for DPD involving arbitrarily shaped geometric three-dimensional domains. By introducing an indicator variable of boundary volume fraction (BVF) for each fluid particle, the boundary of arbitrary-shape objects is detected on-the-fly for the moving fluid particles using only the local particle configuration. Therefore, this approach eliminates the need of an analytical description of the boundary and geometry of objects in DPD simulations and makes it possible to load the geometry of a system directly from experimental images or computer-aided designs/drawings. More specifically, the BVF of a fluid particle is defined by the weighted summation over its neighboring particles within a cutoff distance. Wall penetration is inferred from the value of the BVF and prevented by a predictor-corrector algorithm. The no-slip boundary condition is achieved by employing effective dissipative coefficients for liquid-solid interactions. Quantitative evaluations of the new method are performed for the plane Poiseuille flow, the plane Couette flow and the Wannier flow in a cylindrical domain and compared with their corresponding analytical solutions and (high-order) spectral element solution of the Navier-Stokes equations. We verify that the proposed method yields correct no-slip boundary conditions for velocity and generates negligible fluctuations of density and temperature in the vicinity of the wall surface. Moreover, we construct a very complex 3D geometry - the "Brown Pacman" microfluidic device - to explicitly demonstrate how to construct a DPD system with complex geometry directly from loading a graphical image. Subsequently, we simulate the flow of a surfactant solution through this complex microfluidic device using the new method. Its effectiveness is demonstrated by examining the rich dynamics of surfactant micelles, which are flowing around multiple small cylinders and stenotic regions in the microfluidic device without wall penetration. In addition to stationary arbitrary-shape objects, the new method is particularly useful for problems involving moving and deformable boundaries, because it only uses local information of neighboring particles and satisfies the desired boundary conditions on-the-fly.
Application of the mobility power flow approach to structural response from distributed loading
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1988-01-01
The problem of the vibration power flow through coupled substructures when one of the substructures is subjected to a distributed load is addressed. In all the work performed thus far, point force excitation was considered. However, in the case of the excitation of an aircraft fuselage, distributed loading on the whole surface of a panel can be as important as the excitation from directly applied forces at defined locations on the structures. Thus using a mobility power flow approach, expressions are developed for the transmission of vibrational power between two coupled plate substructures in an L configuration, with one of the surfaces of one of the plate substructures being subjected to a distributed load. The types of distributed loads that are considered are a force load with an arbitrary function in space and a distributed load similar to that from acoustic excitation.
Software defined network architecture based research on load balancing strategy
NASA Astrophysics Data System (ADS)
You, Xiaoqian; Wu, Yang
2018-05-01
As a new type network architecture, software defined network has the key idea of separating the control place of the network from the transmission plane, to manage and control the network in a concentrated way; in addition, the network interface is opened on the control layer and the data layer, so as to achieve programmable control of the network. Considering that only the single shortest route is taken into the calculation of traditional network data flow transmission, and congestion and resource consumption caused by excessive load of link circuits are ignored, a link circuit load based flow media business QoS gurantee system is proposed in this article to divide the flow in the network into ordinary data flow and QoS flow. In this way, it supervises the link circuit load with the controller so as to calculate reasonable route rapidly and issue the flow table to the exchanger, to finish rapid data transmission. In addition, it establishes a simulation platform to acquire optimized result through simulation experiment.
Stopped-in-loop flow analysis of trace vanadium in water.
Teshima, Norio; Ohno, Shinsuke; Sakai, Tadao
2007-01-01
The new concept of stopped-in-loop flow analysis (SIL-FA) is proposed, and an SIL-FA method for the catalytic determination of vanadium is demonstrated. In an SIL format, a sample solution merges with reagent(s), and the well-mixed solution is loaded into a loop. The solution in the loop is separated by a six-way switching valve from the main stream. While the reaction proceeds in the stationary loop, the SIL-FA system does not need to establish a baseline continuously. This leads to a reduction in reagent consumption and waste generation compared with traditional flow injection analysis.
NASA Astrophysics Data System (ADS)
Jawitz, J. W.
2011-12-01
What are the relative contributions of climatic variability, land management, and local geomorphology in determining the temporal dynamics of streamflow and the export of solutes from watersheds to receiving water bodies? A simple analytical framework is introduced for characterizing the temporal inequality of stream discharge and solute export from catchments using Lorenz diagrams and the associated Gini coefficient. These descriptors are used to illustrate a broad range of observed flow variability with a synthesis of multi-decadal flow data from 22 rivers in Florida. The analytical framework is extended to comprehensively link variability in flows and loads to climatically-driven inputs in terms of these inequality-based metrics. Further, based on a synthesis of data from the basins of the Baltic Sea, the Mississippi River, the Kissimmee River and other tributaries to Lake Okeechobee, FL, it is shown that inter-annual variations in exported loads for geogenic constituents, and for total N and total P, are dominantly controlled by discharge. Emergence of this consistent pattern across diverse managed catchments is attributed to the anthropogenic legacy of accumulated nutrient sources generating memory, similar to ubiquitously present sources for geogenic constituents. Multi-decadal phosphorus load data from 4 of the primary tributaries to Lake Okeechobee and sodium and nitrate load data from 9 of the Hubbard Brook, NH long-term study site catchments are used to examine the relation between inequality of climatic inputs, river flows and catchment loads. The intra-annual loads to Lake Okeechobee are shown to be highly unequal, such that 90% of annual load is delivered in as little as 15% of the time. Analytic expressions are developed for measures of inequality in terms of parameters of the lognormal distribution under general conditions that include intermittency. In cases where climatic variability is high compared to that of concentrations (chemostatic conditions), such as for P in the Lake Okeechobee basin and Na in Hubbard Brook, the temporal inequality of rainfall and flow are strong surrogates for load inequality. However, in cases where variability of concentrations is high compared to that of flows (chemodynamic conditions), such as for nitrate in the Hubbard Brook catchments, load inequality is greater than rainfall or flow inequality. The measured degree of correspondence between climatic, flow, and load inequality for these data sets are shown to be well described using the general inequality framework introduced here. Important implications are that (1) variations in hydro-climatic or anthropogenic forcing can be used to robustly predict inter-annual variations in flows and loads, (2) water quality problems in receiving inland and coastal waters may persist until the accumulated storages of nutrients have been substantially depleted, and (3) remedial measures designed to intercept or capture exported flows and loads must be designed with consideration of the intra-annual inequality.
[Nitrogen flow in Huizhou region].
Ma, Xiaobo; Wang, Zhaoyin; Koenig, Albert; Deng, Jiaquan
2006-06-01
Eutrophication is a serious problem of water body pollution. By the method of material flow accounting, this paper studied the human activities- related nitrogen flow in the system of environment and anthroposphere in Huizhou region. The non-point source pollution was quantified by export coefficient method, and the domestic discharge was estimated by demand-supply method. The statistic and dynamic analyses based on the investigation data of 1998 showed that the major nitrogen flows in this region were river loads, fertilizer and feedstuff imports, atmospheric deposition, animal excretes' degradation and volatilization, and the processes relating to burning and other emissions. In 1998, about 40% of nitrogen was detained in the system, which could be accumulated and yield potential environmental problems. The nitrogen export in this region was mainly by rivers, accounted for about 57%. A comparison of Huizhou region with the Danube and Changjiang basins showed that the unit area nitrogen exports in these three regions were of the same magnitude, and the per capita nitrogen exports were comparable.
NASA Astrophysics Data System (ADS)
Okajima, Kenji; Imai, Junichi; Tanaka, Tadatsugu; Iida, Toshiaki
Damage to piles in the liquefied ground is frequently reported. Buckling by the excess vertical load could be one of the causes of the pile damage, as well as the lateral flow of the ground and the lateral load at the pile head. The buckling mechanism is described as a complicated interaction between the pile deformation by the vertical load and the earth pressure change cased by the pile deformation. In this study, series of static buckling model tests of a pile were carried out in dried sand ground with various thickness of the layer. Finite element analysis was applied to the test results to verify the effectiveness of the elasto-plastic finite element analysis combining the implicit-explicit mixed type dynamic relaxation method with the return mapping method to the pile buckling problems. The test results and the analysis indicated the possibility that the buckling load of a pile decreases greatly where the thickness of the layer increases.
A zonal method for modeling powered-lift aircraft flow fields
NASA Technical Reports Server (NTRS)
Roberts, D. W.
1989-01-01
A zonal method for modeling powered-lift aircraft flow fields is based on the coupling of a three-dimensional Navier-Stokes code to a potential flow code. By minimizing the extent of the viscous Navier-Stokes zones the zonal method can be a cost effective flow analysis tool. The successful coupling of the zonal solutions provides the viscous/inviscid interations that are necessary to achieve convergent and unique overall solutions. The feasibility of coupling the two vastly different codes is demonstrated. The interzone boundaries were overlapped to facilitate the passing of boundary condition information between the codes. Routines were developed to extract the normal velocity boundary conditions for the potential flow zone from the viscous zone solution. Similarly, the velocity vector direction along with the total conditions were obtained from the potential flow solution to provide boundary conditions for the Navier-Stokes solution. Studies were conducted to determine the influence of the overlap of the interzone boundaries and the convergence of the zonal solutions on the convergence of the overall solution. The zonal method was applied to a jet impingement problem to model the suckdown effect that results from the entrainment of the inviscid zone flow by the viscous zone jet. The resultant potential flow solution created a lower pressure on the base of the vehicle which produces the suckdown load. The feasibility of the zonal method was demonstrated. By enhancing the Navier-Stokes code for powered-lift flow fields and optimizing the convergence of the coupled analysis a practical flow analysis tool will result.
Experimental investigation of the mass flow gain factor in a draft tube with cavitation vortex rope
NASA Astrophysics Data System (ADS)
Landry, C.; Favrel, A.; Müller, A.; Yamamoto, K.; Alligné, S.; Avellan, F.
2017-04-01
At off-design operating operations, cavitating flow is often observed in hydraulic machines. The presence of a cavitation vortex rope may induce draft tube surge and electrical power swings at part load and full load operations. The stability analysis of these operating conditions requires a numerical pipe model taking into account the complexity of the two-phase flow. Among the hydroacoustic parameters describing the cavitating draft tube flow in the numerical model, the mass flow gain factor, representing the mass excitation source expressed as the rate of change of the cavitation volume as a function of the discharge, remains difficult to model. This paper presents a quasi-static method to estimate the mass flow gain factor in the draft tube for a given cavitation vortex rope volume in the case of a reduced scale physical model of a ν = 0.27 Francis turbine. The methodology is based on an experimental identification of the natural frequency of the test rig hydraulic system for different Thoma numbers. With the identification of the natural frequency, it is possible to model the wave speed, the cavitation compliance and the volume of the cavitation vortex rope. By applying this new methodology for different discharge values, it becomes possible to identify the mass flow gain factor and improve the accuracy of the system stability analysis.
Evaluation of bed load transport subject to high shear stress fluctuations
NASA Astrophysics Data System (ADS)
Cheng, Nian-Sheng; Tang, Hongwu; Zhu, Lijun
2004-05-01
Many formulas available in the literature for computing sediment transport rates are often expressed in terms of time mean variables such as time mean bed shear stress or flow velocity, while effects of turbulence intensity, e.g., bed shear stress fluctuation, on sediment transport were seldom considered. This may be due to the fact that turbulence fluctuation is relatively limited in laboratory open-channel flows, which are often used for conducting sediment transport experiments. However, turbulence intensity could be markedly enhanced in practice. This note presents an analytical method to compute bed load transport by including effects of fluctuations in the bed shear stress. The analytical results obtained show that the transport rate enhanced by turbulence can be expressed as a simple function of the relative fluctuation of the bed shear stress. The results are also verified using data that were collected recently from specifically designed laboratory experiments. The present analysis is applicable largely for the condition of a flat bed that is comprised of uniform sand particles subject to unidirectional flows.
Dynamic force response of spherical hydrostatic journal bearing for cryogenic applications
NASA Technical Reports Server (NTRS)
Sanandres, Luis
1994-01-01
Hydrostatic Journal Bearings (HJB's) are reliable and resilient fluid film rotor support elements ideal to replace roller bearings in cryogenic turbomachinery. HJB' will be used for primary space-power applications due to their long lifetime, low friction and wear, large load capacity, large direct stiffness, and damping force coefficients. An analysis for the performance characteristics of turbulent flow, orifice compensated, spherical hydrostatic journal bearings (HJB's) is presented. Spherical bearings allow tolerance for shaft misalignment without force performance degradation and have also the ability to support axial loads. The spherical HJB combines these advantages to provide a bearing design which could be used efficiently on high performance turbomachinery. The motion of a barotropic liquid on the thin film bearing lands is described by bulk-flow mass and momentum equations. These equations are solved numerically using an efficient CFD method. Numerical predictions of load capacity and force coefficients for a 6 recess, spherical HJB in a LO2 environment are presented. Fluid film axial forces and force coefficients of a magnitude about 20% of the radial load capacity are predicted for the case analyzed. Fluid inertia effects, advective and centrifugal, are found to affect greatly the static and dynamic force performance of the bearing studied.
NASA Technical Reports Server (NTRS)
Hoff, N J; Libby, Paul A; Klein, Bertran
1946-01-01
This report deals with the calculation of the bending moments in and the distortions of fuselage rings upon which known concentrated and distributed loads are acting. In the procedure suggested, the ring is divided into a number of beams each having a constant radius of curvature. The forces and moments caused in the end sections of the beams by individual unit displacements of the end sections are listed in a table designated as the operations table in conformity with Southwell's nomenclature. The operations table and the external loads are equivalent to a set of linear equations. For their solution the following three procedures are presented: 1) Southwell's method of systematic relaxations. This is a step-by-step approximation procedure guided by the physical interpretation of the changes in the values of the unknown. 2) The growing unit procedure in which the individual beams are combined successively into beams of increasing length until finally the entire ring becomes a single beam. In each step of the procedure a set of not more than three simultaneous linear equations is solved. 3) Solution of the entire set of simultaneous equations by the methods of the matrix calculus. In order to demonstrate the manner in which the calculations may be carried out, the following numerical examples are worked out: 1) Curved beam with both its end sections rigidly fixed. The load is a concentrated force. 2) Egg-shape ring with symmetric concentrated loads. 3) Circular ring with antisymmetric concentrated loads and shear flow (torsion of the fuselage). 4) Same with V-braces incorporated in the ring. 5) Egg-shape ring with antisymmetric concentrated loads and shear flow (torsion of the fuselage). 6) Same with V-braces incorporated in the ring. The results of these calculations are checked, whenever possible, by calculations carried out according to known methods of analysis. The agreement is found to be good. The amount of work necessary for the solution of ring problems by the methods described in the present report is practically independent of the degree of redundancy of the structure. For this reason the methods are recommended for use particularly in problems of rings having one or more internal bracing elements.
NASA Technical Reports Server (NTRS)
Sinha, Neeraj; Brinckman, Kevin; Jansen, Bernard; Seiner, John
2011-01-01
A method was developed of obtaining propulsive base flow data in both hot and cold jet environments, at Mach numbers and altitude of relevance to NASA launcher designs. The base flow data was used to perform computational fluid dynamics (CFD) turbulence model assessments of base flow predictive capabilities in order to provide increased confidence in base thermal and pressure load predictions obtained from computational modeling efforts. Predictive CFD analyses were used in the design of the experiments, available propulsive models were used to reduce program costs and increase success, and a wind tunnel facility was used. The data obtained allowed assessment of CFD/turbulence models in a complex flow environment, working within a building-block procedure to validation, where cold, non-reacting test data was first used for validation, followed by more complex reacting base flow validation.
A general mixture model and its application to coastal sandbar migration simulation
NASA Astrophysics Data System (ADS)
Liang, Lixin; Yu, Xiping
2017-04-01
A mixture model for general description of sediment laden flows is developed and then applied to coastal sandbar migration simulation. Firstly the mixture model is derived based on the Eulerian-Eulerian approach of the complete two-phase flow theory. The basic equations of the model include the mass and momentum conservation equations for the water-sediment mixture and the continuity equation for sediment concentration. The turbulent motion of the mixture is formulated for the fluid and the particles respectively. A modified k-ɛ model is used to describe the fluid turbulence while an algebraic model is adopted for the particles. A general formulation for the relative velocity between the two phases in sediment laden flows, which is derived by manipulating the momentum equations of the enhanced two-phase flow model, is incorporated into the mixture model. A finite difference method based on SMAC scheme is utilized for numerical solutions. The model is validated by suspended sediment motion in steady open channel flows, both in equilibrium and non-equilibrium state, and in oscillatory flows as well. The computed sediment concentrations, horizontal velocity and turbulence kinetic energy of the mixture are all shown to be in good agreement with experimental data. The mixture model is then applied to the study of sediment suspension and sandbar migration in surf zones under a vertical 2D framework. The VOF method for the description of water-air free surface and topography reaction model is coupled. The bed load transport rate and suspended load entrainment rate are all decided by the sea bed shear stress, which is obtained from the boundary layer resolved mixture model. The simulation results indicated that, under small amplitude regular waves, erosion occurred on the sandbar slope against the wave propagation direction, while deposition dominated on the slope towards wave propagation, indicating an onshore migration tendency. The computation results also shows that the suspended load will also make great contributions to the topography change in the surf zone, which is usually neglected in some previous researches.
Effects of residence time on summer nitrate uptake in Mississippi River flow-regulated backwaters
James, W.F.; Richardson, W.B.; Soballe, D.M.
2008-01-01
Nitrate uptake may be improved in regulated floodplain rivers by increasing hydrological connectivity to backwaters. We examined summer nitrate uptake in a series of morphologically similar backwaters on the Upper Mississippi River receiving flow-regulated nitrate loads via gated culverts. Flows into individual backwaters were held constant over a summer period but varied in the summers of 2003 and 2004 to provide a range of hydraulic loads and residence times (??). The objectives were to determine optimum loading and ?? for maximum summer uptake. Higher flow adjustment led to increased loading but lower ?? and contact time for uptake. For highest flows, ?? was less than 1 day resulting in lower uptake rates (Unet, 4000 m). For low flows, ?? was greater than 5 days and U% approached 100%, but Unet was 200 mg m-2 day-1. Snet was < half the length of the backwaters under these conditions indicating that most of the load was assimilated in the upper reaches, leading to limited delivery to lower portions. Unet was maximal (384-629 mg m-2 day-1) for intermediate flows and ?? ranging between 1 and 1.5 days. Longer Snet (2000-4000 m) and lower U% (20-40%) reflected limitation of uptake in upper reaches by contact time, leading to transport to lower reaches for additional uptake. Uptake by ???10 000 ha of reconnected backwaters along the Upper Mississippi River (13% of the total backwater surface area) at a Unet of ???630 mg m-2 day-1 would be the equivalent of ???40% of the summer nitrate load (155 mg day-1) discharged from Lock and Dam 4. These results indicate that backwater nitrate uptake can play an important role in reducing nitrate loading to the Gulf of Mexico. Copyright ?? 2008 John Wiley & Sons, Ltd.
A method for modeling finite-core vortices in wake-flow calculations
NASA Technical Reports Server (NTRS)
Stremel, P. M.
1984-01-01
A numerical method for computing nonplanar vortex wakes represented by finite-core vortices is presented. The approach solves for the velocity on an Eulerian grid, using standard finite-difference techniques; the vortex wake is tracked by Lagrangian methods. In this method, the distribution of continuous vorticity in the wake is replaced by a group of discrete vortices. An axially symmetric distribution of vorticity about the center of each discrete vortex is used to represent the finite-core model. Two distributions of vorticity, or core models, are investigated: a finite distribution of vorticity represented by a third-order polynomial, and a continuous distribution of vorticity throughout the wake. The method provides for a vortex-core model that is insensitive to the mesh spacing. Results for a simplified case are presented. Computed results for the roll-up of a vortex wake generated by wings with different spanwise load distributions are presented; contour plots of the flow-field velocities are included; and comparisons are made of the computed flow-field velocities with experimentally measured velocities.
NASA Technical Reports Server (NTRS)
Komar, P. D.
1980-01-01
The paper discusses application to Martian water flows of the criteria that determine which grain-size ranges are transported as bed load, suspension, and wash load. The results show nearly all sand-sized material and finer would have been transported as wash load and that basalt pebbles and even cobbles could have been transported at rapid rates of suspension. An analysis of the threshold of sediment motion on Mars further indicates that the flows would have been highly competent, the larger flows having been able to transport boulder-sized material. Comparisons with terrestrial rivers which transport hyperconcentration levels of sediments suggest that the Martian water flows could have achieved sediment concentrations up to 70% in weight. Although it is possible that flows could have picked up enough sediment to convert to pseudolaminar mud flows, they probably remained at hyperconcentration levels and fully turbulent in flow character.
Steam-load-forecasting technique for central-heating plants. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, M.C.; Carnahan, J.V.
Because boilers generally are most efficient at full loads, the Army could achieve significant savings by running fewer boilers at high loads rather than more boilers at low loads. A reliable load prediction technique could help ensure that only those boilers required to meet demand are on line. This report presents the results of an investigation into the feasibility of forecasting heat plant steam loads from historical patterns and weather information. Using steam flow data collected at Fort Benjamin Harrison, IN, a Box-Jenkins transfer function model with an acceptably small prediction error was initially identified. Initial investigation of forecast modelmore » development appeared successful. Dynamic regression methods using actual ambient temperatures yielded the best results. Box-Jenkins univariate models' results appeared slightly less accurate. Since temperature information was not needed for model building and forecasting, however, it is recommended that Box-Jenkins models be considered prime candidates for load forecasting due to their simpler mathematics.« less
Kim, L H; Jeong, S M; Ko, S O
2007-01-01
Recently the Ministry of Environment in Korea has developed the total maximum daily load program in accordance with the target pollutant and its concentration goal on four major large rivers. Since the program is largely related to regional development, nonpoint source control is both important and topical. Of the various nonpoint sources, highways are stormwater intensive land uses since they are impervious and have high pollutant mass emissions from vehicular activity. The event mean concentration (EMC) is useful in estimating the loadings to receiving water bodies. However, the EMC does not provide information on the time varying changes in pollutant concentration or mass emissions, which are often important for best management practice development, or understanding shock loads. Therefore, in this study a new concept, the dynamic EMC determination method, will be introduced to clearly verify the relationship between EMC and the first flush effect. Three monitoring sites in Daejeon metropolitan city areas were equipped with an automatic rainfall gauge and a flow meter for accumulating the data such as rainfall and runoff flow. The dynamic EMC method was applied to more than 17 events, and the improved first flush criteria were determined on the ranges of storm duration and accumulated rainfall.
Load calculation on the nozzle in a flue gas desulphurization system
NASA Astrophysics Data System (ADS)
Róbert, Olšiak; Zoltán, Fuszko; Zoltán, Csuka
2017-09-01
The desulphurization system is used to remove sulfur oxides from exhaust, so-called flue gases through absorbing them via the sprayed suspension. The suspension delivered from the pump system to the atmospheric bi-directional double hollow cone nozzle has the prescribed working pressure. The unknown mechanical load on the solid body of the nozzle is present through the change of moment due to the flow of the suspension through the bi-directional outflow areas [1], [4]. The calculation of the acting forces and torques in the 3 directions was carried out with the methods of computational fluid dynamics (CFD) in the software ANSYS Fluent. The geometric model of the flow areas of the nozzle were created with the methods of reverse engineering. The computational mesh required by the CFD solver was created, and its quality verified with the standard criteria. The used boundary conditions were defined by the hydraulic parameters of the pump system, the properties of the suspension present in the hydraulic system were specified by sample analysis. The post-processed and analyzed results of the CFD calculation, the pressure-field and the velocity magnitudes in particular directions were further used as input parameters at the mechanical analysis of the load on the bi-directional nozzle.
Estimating sediment discharge: Appendix D
Gray, John R.; Simões, Francisco J. M.
2008-01-01
Sediment-discharge measurements usually are available on a discrete or periodic basis. However, estimates of sediment transport often are needed for unmeasured periods, such as when daily or annual sediment-discharge values are sought, or when estimates of transport rates for unmeasured or hypothetical flows are required. Selected methods for estimating suspended-sediment, bed-load, bed- material-load, and total-load discharges have been presented in some detail elsewhere in this volume. The purposes of this contribution are to present some limitations and potential pitfalls associated with obtaining and using the requisite data and equations to estimate sediment discharges and to provide guidance for selecting appropriate estimating equations. Records of sediment discharge are derived from data collected with sufficient frequency to obtain reliable estimates for the computational interval and period. Most sediment- discharge records are computed at daily or annual intervals based on periodically collected data, although some partial records represent discrete or seasonal intervals such as those for flood periods. The method used to calculate sediment- discharge records is dependent on the types and frequency of available data. Records for suspended-sediment discharge computed by methods described by Porterfield (1972) are most prevalent, in part because measurement protocols and computational techniques are well established and because suspended sediment composes the bulk of sediment dis- charges for many rivers. Discharge records for bed load, total load, or in some cases bed-material load plus wash load are less common. Reliable estimation of sediment discharges presupposes that the data on which the estimates are based are comparable and reliable. Unfortunately, data describing a selected characteristic of sediment were not necessarily derived—collected, processed, analyzed, or interpreted—in a consistent manner. For example, bed-load data collected with different types of bed-load samplers may not be comparable (Gray et al. 1991; Childers 1999; Edwards and Glysson 1999). The total suspended solids (TSS) analytical method tends to produce concentration data from open-channel flows that are biased low with respect to their paired suspended-sediment concentration values, particularly when sand-size material composes more than about a quarter of the material in suspension. Instantaneous sediment-discharge values based on TSS data may differ from the more reliable product of suspended- sediment concentration values and the same water-discharge data by an order of magnitude (Gray et al. 2000; Bent et al. 2001; Glysson et al. 2000; 2001). An assessment of data comparability and reliability is an important first step in the estimation of sediment discharges. There are two approaches to obtaining values describing sediment loads in streams. One is based on direct measurement of the quantities of interest, and the other on relations developed between hydraulic parameters and sediment- transport potential. In the next sections, the most common techniques for both approaches are briefly addressed.
A network flow model for load balancing in circuit-switched multicomputers
NASA Technical Reports Server (NTRS)
Bokhari, Shahid H.
1990-01-01
In multicomputers that utilize circuit switching or wormhole routing, communication overhead depends largely on link contention - the variation due to distance between nodes is negligible. This has a major impact on the load balancing problem. In this case, there are some nodes with excess load (sources) and others with deficit load (sinks) and it is required to find a matching of sources to sinks that avoids contention. The problem is made complex by the hardwired routing on currently available machines: the user can control only which nodes communicate but not how the messages are routed. Network flow models of message flow in the mesh and the hypercube were developed to solve this problem. The crucial property of these models is the correspondence between minimum cost flows and correctly routed messages. To solve a given load balancing problem, a minimum cost flow algorithm is applied to the network. This permits one to determine efficiently a maximum contention free matching of sources to sinks which, in turn, tells one how much of the given imbalance can be eliminated without contention.
Flow resistance under conditions of intense gravel transport
Pitlick, John
1992-01-01
A study of flow resistance was undertaken in a channelized reach of the North Fork Toutle River, downstream of Mount St. Helens, Washington. Hydraulic and sediment transport data were collected in flows with velocities up to 3 m/s and shear stresses up to 7 times the critical value needed for bed load transport. Details of the flow structure as revealed in vertical velocity profiles indicate that weak bed load transport over a plane gravel bed has little effect on flow resistance. The plane gravel bed persists up to stresses ∼3 times critical, at which point, irregular bed forms appear. Bed forms greatly increase flow resistance and cause velocity profiles to become distorted. The latter arises as an effect of flows becoming depth-limited as bed form amplitude increases. At very high rates of bed load transport, an upper stage plane bed appeared. Velocity profiles measured in these flows match the law of the wall closely, with the equivalent roughness being well represented by ks = 3D84 of the bed load. The effects noted here will be important in very large floods or in rivers that are not free to widen, such as those cut into bedrock.
NASA Astrophysics Data System (ADS)
Xie, Beibei; Yang, Dong; Xie, Haiyan; Nie, Xin; Liu, Wanyu
2016-08-01
In order to expand the study on flow instability of supercritical circulating fluidized bed (CFB) boiler, a new numerical computational model considering the heat storage of the tube wall metal was presented in this paper. The lumped parameter method was proposed for wall temperature calculation and the single channel model was adopted for the analysis of flow instability. Based on the time-domain method, a new numerical computational program suitable for the analysis of flow instability in the water wall of supercritical CFB boiler with annular furnace was established. To verify the code, calculation results were respectively compared with data of commercial software. According to the comparisons, the new code was proved to be reasonable and accurate for practical engineering application in analysis of flow instability. Based on the new program, the flow instability of supercritical CFB boiler with annular furnace was simulated by time-domain method. When 1.2 times heat load disturbance was applied on the loop, results showed that the inlet flow rate, outlet flow rate and wall temperature fluctuated with time eventually remained at constant values, suggesting that the hydrodynamic flow was stable. The results also showed that in the case of considering the heat storage, the flow in the water wall is easier to return to stable state than without considering heat storage.
Effect of binder burnout on the sealing performance of glass ceramics for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Ertugrul, Tugrul Y.; Celik, Selahattin; Mat, Mahmut D.
2013-11-01
The glass ceramics composite sealants are among few materials suitable for the solid oxide fuel cells (SOFC) due to their high operating temperatures (600 °C-850 °C). The glass ceramics chemically bond to both the metallic interconnector and the ceramic electrolyte and provide a gas tight connection. A careful and several stages manufacturing procedure is required to obtain a gas tight sealing. In this study, effects of binder burnout process on the sealing performance are investigated employing commercially available glass ceramic powders. The glass ceramic laminates are produced by mixing glass ceramic powders with the organic binders and employing a tape casting method. The laminates are sandwiched between the metallic interconnectors of an SOFC cell. The burnout and subsequent sealing quality are analyzed by measuring leakage rate and final macrostructure of sealing region. The effects of heating rate, dead weight load, solid loading, carrier gas and their flow rates are investigated. It is found that sealing quality is affected from all investigated parameters. While a slower heating rate is required for a better burnout, the mass flow rate of sweep gas must be adequate for removal of the burned gas. The leakage rate is reduced to 0.1 ml min-1 with 2 °C min-1 + 1 °C min-1 heating rate, 86.25% solid loading, 200 N dead weight load and 500 ml min-1 sweep gas flow rate.
Benítez, Francisco Moreno; Camacho, Antonio Letrán; Del Cuvillo Bernal, Alfonso; de Medina, Pedro Lobatón Sánchez; Cózar, Francisco J García; Romeu, Ma Luisa Espinazo
2013-07-10
Background: There is an increase in the incidence of pollen related allergy, thus information on pollen schedules would be a great asset for physicians to improve the clinical care of patients. Like cypress pollen sensitization shows a high prevalence among the causes of allergic rhinitis, and therefore it is of interest to use it like a model of study, distinguishing cypress pollen, pollen count and allergenic load level. In this work, we use a flow cytometry based technique to obtain both Cupressus arizonica pollen count and allergenic load, using specific rabbit polyclonal antibody Cup a1 and its comparison with optical microscopy technique measurement. Methods: Airborne samples were collected from Burkard Spore-Trap and Burkard Cyclone Cupressus arizonica pollen was studied using specific rabbit polyclonal antibody Cup a1, labelled with AlexaFluor ® 488 or 750 and analysed by Flow Cytometry in both an EPICS XL and Cyan ADP cytometers (Beckman Coulter ® ). Optical microscopy study was realized with a Leica optical microscope. Bland & Altman was used to determine agreement between both techniques measured. Results: We can identify three different populations based on rabbit polyclonal antibody Cup a1 staining. The main region (44.5%) had 97.3% recognition, a second region (25%) with 28% and a third region (30.5%) with 68% respectively. Immunofluorescence and confocal microscopy showed that main region corresponds to whole pollen grains, the second region are pollen without exine and the third region is constituted by smaller particles with allergenic properties. Pollen schedule shows a higher correlation measured by optical microscopy and flow cytometry in the pollen count with a p-value: 0.0008E -2 and 0.0002 with regard to smaller particles, so the Bland & Altman measurement showed a good correlation between them, p-value: 0,0003. Conclusion: Determination of pollen count and allergenic load by flow cytometry represents an important tool in the determination of airborne respiratory allergens. We showed that not only whole pollen but also smaller particles could induce allergic sensitization. This is the first study where flow cytometry is used for calculating pollen counts and allergenic load. © 2013 Clinical Cytometry Society. Copyright © 2013 Clinical Cytometry Society.
ESTIMATION OF SHEAR STRESS WORKING ON SUBMERGED HOLLOW FIBRE MEMBRANE BY CFD METHOD IN MBRs
NASA Astrophysics Data System (ADS)
Zaw, Hlwan Moe; Li, Tairi; Nagaoka, Hiroshi
This study was conducted to evaluate shear stress working on submerged hollow fibre membrane by CFD (Computation Fluid Dynamics) method in MBRs. Shear stress on hollow fibre membrane caused by aeration was measured directly using a two-direction load sensor. The measurement of water-phase flow velocity was done also by using laser doppler velocimeter. It was confirmed that the shear stress was possible to be evaluated from the water-phase flow velocityby the result of comparison of time average shear stress actually measured with one hollow fibre membrane and the one calculated by the water-phase flow velocity. In the estimation of the water-phase flow velocity using the CFD method, time average water-phase flow velocity estimated by consideration of the fluid resistance of the membrane module nearly coincided with the measured values, and it was shown that it was possible to be estimated also within the membrane module. Moreover, the measured shear stress and drag force well coincided with the values calculated from the estimated water-phase flow velocity outside of membrane module and in the center of membrane module, and it was suggested that the shear stress on the hollow fibre membrane could be estimated by the CFD method in MBRs.
NASA Astrophysics Data System (ADS)
Dhruv, Akash; Blower, Christopher; Wickenheiser, Adam M.
2015-03-01
The ability of UAVs to operate in complex and hostile environments makes them useful in military and civil operations concerning surveillance and reconnaissance. However, limitations in size of UAVs and communication delays prohibit their operation close to the ground and in cluttered environments, which increase risks associated with turbulence and wind gusts that cause trajectory deviations and potential loss of the vehicle. In the last decade, scientists and engineers have turned towards bio-inspiration to solve these issues by developing innovative flow control methods that offer better stability, controllability, and maneuverability. This paper presents an aerodynamic load solver for bio-inspired wings that consist of an array of feather-like flaps installed across the upper and lower surfaces in both the chord- and span-wise directions, mimicking the feathers of an avian wing. Each flap has the ability to rotate into both the wing body and the inbound airflow, generating complex flap configurations unobtainable by traditional wings that offer improved aerodynamic stability against gusting flows and turbulence. The solver discussed is an unsteady three-dimensional iterative doublet panel method with vortex particle wakes. This panel method models the wake-body interactions between multiple flaps effectively without the need to define specific wake geometries, thereby eliminating the need to manually model the wake for each configuration. To incorporate viscous flow characteristics, an iterative boundary layer theory is employed, modeling laminar, transitional and turbulent regions over the wing's surfaces, in addition to flow separation and reattachment locations. This technique enables the boundary layer to influence the wake strength and geometry both within the wing and aft of the trailing edge. The results obtained from this solver are validated using experimental data from a low-speed suction wind tunnel operating at Reynolds Number 300,000. This method enables fast and accurate assessment of aerodynamic loads for initial design of complex wing configurations compared to other methods available.
Wu, Lei; Gao, Jian-en; Ma, Xiao-yi; Li, Dan
2015-07-01
Chinese Loess Plateau is considered as one of the most serious soil loss regions in the world, its annual sediment output accounts for 90 % of the total sediment loads of the Yellow River, and most of the Loess Plateau has a very typical characteristic of "soil and water flow together", and water flow in this area performs with a high sand content. Serious soil loss results in nitrogen and phosphorus loss of soil. Special processes of water and soil in the Loess Plateau lead to the loss mechanisms of water, sediment, nitrogen, and phosphorus are different from each other, which are greatly different from other areas of China. In this study, the modified export coefficient method considering the rainfall erosivity factor was proposed to simulate and evaluate non-point source (NPS) nitrogen and phosphorus loss load caused by soil and water loss in the Yanhe River basin of the hilly and gully area, Loess Plateau. The results indicate that (1) compared with the traditional export coefficient method, annual differences of NPS total nitrogen (TN) and total phosphorus (TP) load after considering the rainfall erosivity factor are obvious; it is more in line with the general law of NPS pollution formation in a watershed, and it can reflect the annual variability of NPS pollution more accurately. (2) Under the traditional and modified conditions, annual changes of NPS TN and TP load in four counties (districts) took on the similar trends from 1999 to 2008; the load emission intensity not only is closely related to rainfall intensity but also to the regional distribution of land use and other pollution sources. (3) The output structure, source composition, and contribution rate of NPS pollution load under the modified method are basically the same with the traditional method. The average output structure of TN from land use and rural life is about 66.5 and 17.1 %, the TP is about 53.8 and 32.7 %; the maximum source composition of TN (59 %) is farmland; the maximum source composition of TP (38.1 %) is rural life; the maximum contribution rates of TN and TP in Baota district are 36.26 and 39.26 %, respectively. Results may provide data support for NPS pollution prevention and control in the loess hilly and gully region and also provide scientific reference for the protection of ecological environment of the Loess Plateau in northern Shaanxi.
40 CFR 92.107 - Fuel flow measurement.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...
40 CFR 92.107 - Fuel flow measurement.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...
40 CFR 92.107 - Fuel flow measurement.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...
40 CFR 92.107 - Fuel flow measurement.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...
40 CFR 92.107 - Fuel flow measurement.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...
Research on the Micro Sheet Stamping Process Using Plasticine as Soft Punch
Wang, Xiao; Zhang, Di; Gu, Chunxing; Shen, Zongbao; Liu, Huixia
2014-01-01
Plasticine is widely used in the analysis of metal forming processes, due to its excellent material flow ability. In this study, plasticine is used as the soft punch to fabricate array micro-channels on metal sheet in the micro sheet stamping process. This is because plasticine can produce a large material flow after being subjected to force and through the material flow, the plasticine can cause the sheet to fill into the micro-channels of the rigid die, leading to the generation of micro-channels in the sheet. The distribution of array micro-channels was investigated as well as the influence of load forces on the sheet deformations. It was found that the depth of micro-channels increases as the load force increases. When the load force reaches a certain level, a crack can be observed. The micro sheet stamping process was also investigated by the method of numerical simulation. The obtained experimental and numerical results for the stamping process showed that they were in good agreement. Additionally, from the simulation results, it can be seen that the corner region of the micro-channel-shape work piece has a risk to crack due to the existence of maximum von Mises stress and significant thinning. PMID:28788668
NASA Technical Reports Server (NTRS)
Stanitz, John D; Sheldrake, Leonard J
1953-01-01
A technique is developed for the application of a channel design method to the design of high-solidity cascades with prescribed velocity distributions as a function of arc length along the blade-element profile. The technique is applied to both incompressible and subsonic compressible, nonviscous, irrotational fluid motion. For compressible flow, the ratio of specific heats is assumed equal to -1.0. An impulse cascade with 90 degree turning was designed for incompressible flow and was tested at the design angle of attack over a range of downstream Mach number from 0.2 to coke flow. To achieve good efficiency, the cascade was designed for prescribed velocities and maximum blade loading according to limitations imposed by considerations of boundary-layer separation.
Gravity flow of powder in a lunar environment. Part 2: Analysis of flow initiation
NASA Technical Reports Server (NTRS)
Pariseau, W. G.
1971-01-01
A small displacement-small strain finite element technique utilizing the constant strain triangle and incremental constitutive equations for elasticplastic (media nonhardening and obeying a Coulomb yield condition) was applied to the analysis of gravity flow initiation. This was done in a V-shaped hopper containing a powder under lunar environmental conditions. Three methods of loading were examined. Of the three, the method of computing the initial state of stress in a filled hopper prior to drawdown, by adding material to the hopper layer by layer, was the best. Results of the analysis of a typical hopper problem show that the initial state of stress, the elastic moduli, and the strength parameters have an important influence on material response subsequent to the opening of the hopper outlet.
NASA Astrophysics Data System (ADS)
Miller, Matthew P.; Tesoriero, Anthony J.; Hood, Krista; Terziotti, Silvia; Wolock, David M.
2017-12-01
The myriad hydrologic and biogeochemical processes taking place in watersheds occurring across space and time are integrated and reflected in the quantity and quality of water in streams and rivers. Collection of high-frequency water quality data with sensors in surface waters provides new opportunities to disentangle these processes and quantify sources and transport of water and solutes in the coupled groundwater-surface water system. A new approach for separating the streamflow hydrograph into three components was developed and coupled with high-frequency nitrate data to estimate time-variable nitrate loads from chemically dilute quick flow, chemically concentrated quick flow, and slowflow groundwater end-member pathways for periods of up to 2 years in a groundwater-dominated and a quick-flow-dominated stream in central Wisconsin, using only streamflow and in-stream water quality data. The dilute and concentrated quick flow end-members were distinguished using high-frequency specific conductance data. Results indicate that dilute quick flow contributed less than 5% of the nitrate load at both sites, whereas 89 ± 8% of the nitrate load at the groundwater-dominated stream was from slowflow groundwater, and 84 ± 25% of the nitrate load at the quick-flow-dominated stream was from concentrated quick flow. Concentrated quick flow nitrate concentrations varied seasonally at both sites, with peak concentrations in the winter that were 2-3 times greater than minimum concentrations during the growing season. Application of this approach provides an opportunity to assess stream vulnerability to nonpoint source nitrate loading and expected stream responses to current or changing conditions and practices in watersheds.
Environmental impact of irrigation in la violada district (Spain): I. Salt export patterns.
Isidoro, D; Quílez, D; Aragüés, R
2006-01-01
Salt loading in irrigation return flows contributes to the salinization of the receiving water bodies, particularly when originated in salt-affected areas as frequently found in the middle Ebro River basin (Spain). We determined the salt loading in La Violada Gully from the total dissolved solids (TDS) and flows (Q) during the 1995 to 1998 hydrological years. Since this gully collects flows from various sources, an end-member mixing analysis (EMMA) was performed to quantify the drainage flow from La Violada Irrigation District (VID). Three flow components were identified in La Violada Gully: drainage waters from VID (Qd); tail-waters from irrigation ditches, spill-over, and seepage from the Monegros Canal (Qo); and ground water inflows (Qg) originating in the dryland watershed. Gypsum in the soils of VID was the main source for salts in La Violada Gully (flow-weighted mean TDS=1720 mg L-1, dominated by sulfate and calcium). The contribution of Qg to the total gully flow during the 1996 irrigation season was low (6.5% of the total flow). The 1995 to 1998 annual salt load average in La Violada Gully was 78 628 Mg, 71% of which was exported during the irrigation season. The 1995 to 1998 irrigation season salt load average in Qd was 43 015 Mg (77% of the total load). Thus, irrigated agriculture in VID was the main source of salt loading in this gully, with a yield of 11.1 Mg of salts per hectare of irrigated land for the irrigation season. Efficient irrigation systems and irrigation management practices that reduce Qd are key factors for controlling off-site salt pollution of these gypsum-rich irrigated areas.
Alameddine, Ibrahim; Qian, Song S; Reckhow, Kenneth H
2011-01-01
In-stream nutrient concentrations are well known to exhibit a strong relationship with river flow. The use of flow measurements to predict nutrient concentrations and subsequently nutrient loads is common in water quality modeling. Nevertheless, most adopted models assume that the relationship between flow and concentration is fixed across time as well as across different flow regimes. In this study, we developed a Bayesian changepoint-threshold model that relaxes these constraints and allows for the identification and quantification of any changes in the underlying flow-concentration relationship across time. The results from our study support the occurrence of a changepoint in time around the year 1999, which coincided with the period of implementing nitrogen control measures as part of the TMDL program developed for the Neuse Estuary in North Carolina. The occurrence of the changepoint challenges the underlying assumption of temporal invariance in the flow-concentrations relationship. The model results also point towards a transition in the river nitrogen delivery system from a point source dominated loading system towards a more complicated nonlinear system, where non-point source nutrient delivery plays a major role. Moreover, we use the developed model to assess the effectiveness of the nitrogen reduction measures in achieving a 30% drop in loading. The results indicate that while there is a strong evidence of a load reduction, there still remains a high level of uncertainty associated with the mean nitrogen load reduction. We show that the level of uncertainty around the estimated load reduction is not random but is flow related. Copyright © 2010 Elsevier Ltd. All rights reserved.
Study on energy saving of subway station based on orthogonal experimental method
NASA Astrophysics Data System (ADS)
Guo, Lei
2017-05-01
With the characteristics of quick, efficient and large amount transport, the subway has become an important way to solve urban traffic congestion. As the subway environment will follow the change of external environment factors such as temperature and load of personnel changes, three-dimensional numerical simulations study is conducted by using CFD software for air distribution of subway platform. The influence of different loads (the supply air temperature and velocity of air condition, personnel load, heat flux of the wall) on the subway platform flow field are also analysed. The orthogonal experiment method is applied to the numerical simulation analysis for human comfort under different parameters. Based on those results, the functional relationship between human comfort and the boundary conditions of the platform is produced by multiple linear regression fitting method, the order of major boundary conditions which affect human comfort is obtained. The above study provides a theoretical basis for the final energy-saving strategies.
NASA Astrophysics Data System (ADS)
Kewel, M.; Renner, J.
2017-12-01
The variation of hydraulic properties during sliding events is of importance for source mechanics and analyses of the evolution in effective stresses. We conducted laboratory experiments on samples of Padang granite to elucidate the interrelation between shear displacement on faults and their hydraulic properties. The cylindrical samples of 30 mm diameter and 75 mm length were prepared with a ground sawcut, inclined 35° to the cylindrical axis and accessed by a central bore of 3 mm diameter. The conventional triaxial compression experiments were conducted at effective pressures of 30, 50, and 70 MPa at slip rates of 2×10-4 and 8×10-4 mm s-1. The nominally constant fluid pressure of 30 MPa was modulated by oscillations with an amplitude of up to 0.5 MPa. Permeability and specific storage capacity of the fault were determined using the oscillatory radial-flow method that rests on an analysis of amplitude ratio and phase shift between the oscillatory fluid pressure and the oscillatory fluid flow from and into the fault plane. This method allowed us to continuously monitor the hydraulic evolution during elastic loading and frictional sliding. The chosen oscillation period of 60 s guaranteed a resolution of hydraulic properties for slip increments as small as 20 μm. The determined hydraulic properties show a fairly uniform dependence on normal stress at hydrostatic conditions and initial elastic loading. The samples exhibited stable frictional sliding with modest strengthening with increasing strain. Since not all phase-shift values fell inside the theoretical range for purely radial pressure diffusion during frictional sliding, the records of equivalent hydraulic properties exhibit some gaps. In the phases with evaluable phase-shift values, permeability fluctuates by almost one order of magnitude over slip intervals of as little as 100 μm. We suppose that the observed fluctuations are related to comminution and reconfiguration of asperities on the fault planes that constantly alter the flow path geometry. Temporarily, the flow regime deviates from approximately radial flow and a specific direction dominates leading to one-dimensional flow. Further analytical and numerical modelling is necessary to elucidate possible flow patterns.
Calorimetry of 25 Ah lithium/thionyl chloride cells
NASA Technical Reports Server (NTRS)
Johnson, C. J.; Dawson, S.
1991-01-01
Heat flow measurements of 25-Ah lithium thionyl chloride cells provided a method to calculate an effective thermal potential, E(TP) of 3.907 V. The calculation is useful to determine specific heat generation of this cell chemistry and design. The E(TP) value includes heat generation by electrochemical cell reactions, competitive chemical reactions, and resistance heating at the tabs, connectors, and leads. Heat flow was measured while applying electrical loads to the cell in an isothermal calorimeter set at 0, 20, and 60 C.
Power flow control using quadrature boosters
NASA Astrophysics Data System (ADS)
Sadanandan, Sandeep N.
A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.
NASA Astrophysics Data System (ADS)
Smith, Natalie Rochelle
While the gas turbine engine has existed for nearly 80 years, much of the complex aerodynamics which governs compressor performance is still not well understood. The unsteady flow field consists of periodic blade row interactions from the wakes and potential fields of each blade and vane. Vane clocking is the relative circumferential indexing of adjacent vane rows with the same vane count, and it is one method to change blade row interactions. Though the potential of performance benefits with vane clocking is known, the driving flow physics have yet to be identified. This research examines the effects of blade row interactions on embedded stator total pressure loss and boundary layer transition in the Purdue 3-stage axial compressor. The inlet guide vane, Stator 1, and Stator 2 all have 44 vanes which enable vane clocking of the embedded stage, while the rotors have different blade counts producing amplitude modulation of the unsteady interactions. A detailed investigation of corrected conditions is presented to establish repeatable, compressor performance year-round in a facility utilizing ambient inlet conditions. Without proper humidity accounting of compressor corrected conditions and an understanding of the potential for inlet temperature changes to affect clearances due to thermal growth, measurements of small performance changes in detailed research studies could be indiscernible. The methodology and implementation of a powder-paint flow visualization technique along with the illuminated flow physics are presented in detail. This method assists in understanding the loss development in the compressor by highlighting stator corner separations and endwall flow patterns. Effects of loading condition, rotor tip clearance height, and stator wake and rotor tip leakage interactions are shown with this technique. Vane clocking effects on compressor performance were quantified for nine loading conditions and six clocking configurations - the largest vane clocking dataset in the open literature. These data show that vane clocking effects are small at low loading conditions, including peak efficiency operation, but become stronger as loading increases, and then eventually lessen at near stall operation. Additionally, stator wake profiles and flow visualization reveal that total pressure loss changes are due to a corner separation modulation between clocking configurations. To further address these clocking trends, high-frequency response data were acquired at the Stator 2 inlet and along the Stator 2 surface. The unsteadiness at the Stator 2 inlet was quantified with detailed radial traverses for the different clocking configurations. These data show the effects of interactions between the Stator 1 wake and Rotor 2 tip leakage flow, which result in significantly different inlet flow conditions for Stator 2. The high unsteadiness and blockage region formed by the rotor tip leakage flow changes in size and shape between clocking configurations. Finally, measurements of the Stator 2 surface flows were acquired to investigate the vane clocking effects on unsteady surface pressures and boundary layer transition. These data reveal that Stator 2 performance is influenced by blade row interactions including rotor-rotor interactions, stator wake-rotor tip leakage flow interactions, and vane clocking.
Analytical method for thermal stress analysis of plasma facing materials
NASA Astrophysics Data System (ADS)
You, J. H.; Bolt, H.
2001-10-01
The thermo-mechanical response of plasma facing materials (PFMs) to heat loads from the fusion plasma is one of the crucial issues in fusion technology. In this work, a fully analytical description of the thermal stress distribution in armour tiles of plasma facing components is presented which is expected to occur under typical high heat flux (HHF) loads. The method of stress superposition is applied considering the temperature gradient and thermal expansion mismatch. Several combinations of PFMs and heat sink metals are analysed and compared. In the framework of the present theoretical model, plastic flow and the effect of residual stress can be quantitatively assessed. Possible failure features are discussed.
Aircraft Noise Prediction Program theoretical manual: Propeller aerodynamics and noise
NASA Technical Reports Server (NTRS)
Zorumski, W. E. (Editor); Weir, D. S. (Editor)
1986-01-01
The prediction sequence used in the aircraft noise prediction program (ANOPP) is described. The elements of the sequence are called program modules. The first group of modules analyzes the propeller geometry, the aerodynamics, including both potential and boundary-layer flow, the propeller performance, and the surface loading distribution. This group of modules is based entirely on aerodynamic strip theory. The next group of modules deals with the first group. Predictions of periodic thickness and loading noise are determined with time-domain methods. Broadband noise is predicted by a semiempirical method. Near-field predictions of fuselage surface pressrues include the effects of boundary layer refraction and scattering. Far-field predictions include atmospheric and ground effects.
Buck, Stephanie D.
2014-01-01
The Poteau Valley Improvement Authority uses Wister Lake in southeastern Oklahoma as a public water supply. Total phosphorus, total nitrogen, and suspended sediments from agricultural runoff and discharges from wastewater treatment plants and other sources have degraded water quality in the lake. As lake-water quality has degraded, water-treatment cost, chemical usage, and sludge production have increased for the Poteau Valley Improvement Authority. The U.S. Geological Survey (USGS), in cooperation with the Poteau Valley Improvement Authority, investigated and summarized concentrations of total phosphorus, total nitrogen, suspended sediment, and bacteria (Escherichia coli and Enterococcus sp.) in surface water flowing to Wister Lake. Estimates of total phosphorus, total nitrogen, and suspended sediment loads, yields, and flow-weighted mean concentrations of total phosphorus and total nitrogen concentrations were made for the Wister Lake Basin for a 3-year period from October 2010 through September 2013. Data from water samples collected at fixed time increments during base-flow conditions and during runoff conditions at the Poteau River at Loving, Okla. (USGS station 07247015), the Poteau River near Heavener, Okla. (USGS station 07247350), and the Fourche Maline near Leflore, Okla. (USGS station 07247650), water-quality stations were used to evaluate water quality over the range of streamflows in the basin. These data also were collected to estimate annual constituent loads and yields by using regression models. At the Poteau River stations, total phosphorus, total nitrogen, and suspended sediment concentrations in surface-water samples were significantly larger in samples collected during runoff conditions than in samples collected during base-flow conditions. At the Fourche Maline station, in contrast, concentrations of these constituents in water samples collected during runoff conditions were not significantly larger than concentrations during base-flow conditions. Flow-weighted mean total phosphorus concentrations at all three stations from 2011 to 2013 were several times larger than the Oklahoma State Standard for Scenic Rivers (0.037 milligrams per liter [mg/L]), with the largest flow-weighted phosphorus concentrations typically being measured at the Poteau River at Loving, Okla., station. Flow-weighted mean total nitrogen concentrations did not vary substantially between the Poteau River stations and the Fourche Maline near Leflore, Okla., station. At all of the sampled water-quality stations, bacteria (Escherichia coli and Enterococcus sp.) concentrations were substantially larger in water samples collected during runoff conditions than in water samples collected during base-flow conditions from 2011 to 2013. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Poteau River stations during runoff conditions ranged from 82 to 98 percent of the total annual loads of those constituents. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Fourche Maline during runoff conditions ranged from 86 to nearly 100 percent of the total annual loads. Estimated seasonal total phosphorus loads generally were smallest during base-flow and runoff conditions in autumn. Estimated seasonal total phosphorus loads during base-flow conditions tended to be largest in winter and during runoff conditions tended to be largest in the spring. Estimated seasonal total nitrogen loads tended to be smallest in autumn during base-flow and runoff conditions and largest in winter during runoff conditions. Estimated seasonal suspended sediment loads tended to be smallest during base-flow conditions in the summer and smallest during runoff conditions in the autumn. The largest estimated seasonal suspended sediment loads during runoff conditions typically were in the spring. The estimated mean annual total phosphorus yield was largest at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual total phosphorus yield was largest during base flow at the Poteau River at Loving, Okla., water-quality station and at both of the Poteau River water-quality stations during runoff conditions. The estimated mean annual total nitrogen yields were largest at the Poteau River water-quality stations. Estimated mean annual total nitrogen yields were largest during base-flow and runoff conditions at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual suspended sediment yield was largest at the Poteau River near Heavener, Okla., water-quality station during base-flow and runoff conditions. Flow-weighted mean concentrations indicated that total phosphorus inputs from the Poteau River Basin in the Wister Lake Basin were larger than from the Fourche Maline Basin. Flow-weighted mean concentrations of total nitrogen did not vary spatially in a consistent manner. The Poteau River and the Fourche Maline contributed estimated annual total phosphorus loads of 137 to 278 tons per year (tons/yr) to Wister Lake. Between 89 and 95 percent of the annual total phosphorus loads were transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total nitrogen loads of 657 to 1,294 tons/yr, with 86 to 94 percent of the annual total nitrogen loads being transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total suspended sediment loads of 110,919 to 234,637 tons/yr, with 94 to 99 percent of the annual suspended sediment loads being transported to Wister Lake during runoff conditions. Most of the total phosphorus and suspended sediment were delivered to Wister Lake during runoff conditions in the spring. The majority of the total nitrogen was delivered to Wister Lake during runoff conditions in winter.
Aerodynamic Characteristics of Controls.
1979-09-01
efforts. CONTENT 1. Introduction 2. Subsonic attached flow 3. Transonic attached flow 4. Supersonic attached flow 5. Leading edge vortex flow 6... introduction of these loading functions the integral-equation is reduced to a system of linear equations where the scale factors of the loading... introduction of different regions of influence for the subsonic and the supersonic case 1511. In the unsteady case this brings no difficulties since these
Multiscale Sediment-Laden Flow Theory and Its Application in Flood Risk Management
NASA Astrophysics Data System (ADS)
Cao, Z. X.; Pender, G.; Hu, P.
2011-09-01
Sediment-laden flows over erodible bed normally feature multiple time scales. The time scales of sediment transport and bed deformation relative to the flow essentially measure how fast sediment transport adapts to capacity regime in line with local flow scenario and the bed deforms as compared to the flow, which literally dictate if a capacity based and/or decoupled model is justified. This paper synthesizes the recently developed multiscale theory for sediment-laden flows over erodible bed, with bed load and suspended load transport respectively. It is unravelled that bed load transport can adapt to capacity sufficiently rapidly even under highly unsteady flows and thus a capacity model is mostly applicable, whereas a non-capacity model is critical for suspended sediment because of the lower rate of adaptation to capacity. Physically coupled modeling is critical for cases characterized by rapid bed variation. Applications are outlined on flash floods and landslide dam break floods.
Nonplanar wing load-line and slender wing theory
NASA Technical Reports Server (NTRS)
Deyoung, J.
1977-01-01
Nonplanar load line, slender wing, elliptic wing, and infinite aspect ratio limit loading theories are developed. These are quasi two dimensional theories but satisfy wing boundary conditions at all points along the nonplanar spanwise extent of the wing. These methods are applicable for generalized configurations such as the laterally nonplanar wing, multiple nonplanar wings, or wing with multiple winglets of arbitrary shape. Two dimensional theory infers simplicity which is practical when analyzing complicated configurations. The lateral spanwise distribution of angle of attack can be that due to winglet or control surface deflection, wing twist, or induced angles due to multiwings, multiwinglets, ground, walls, jet or fuselage. In quasi two dimensional theory the induced angles due to these extra conditions are likewise determined for two dimensional flow. Equations are developed for the normal to surface induced velocity due to a nonplanar trailing vorticity distribution. Application examples are made using these methods.
Xu, Wen-Hong; Han, Min; Dong, Qi; Fu, Zhi-Xuan; Diao, Yuan-Yuan; Liu, Hai; Xu, Jing; Jiang, Hong-Liang; Zhang, Su-Zhan; Zheng, Shu; Gao, Jian-Qing; Wei, Qi-Chun
2012-01-01
Background The purpose of this study is to evaluate the efficacy of composite doxorubicinloaded micelles for enhancing doxorubicin radiosensitivity in multicellular spheroids from a non-small cell lung cancer cell line. Methods A novel composite doxorubicin-loaded micelle consisting of polyethylene glycolpolycaprolactone/Pluronic P105 was developed, and carrier-mediated doxorubicin accumulation and release from multicellular spheroids was evaluated. We used confocal laser scanning microscopy and flow cytometry to study the accumulation and efflux of doxorubicin from A549 multicellular spheroids. Doxorubicin radiosensitization and the combined effects of irradiation and doxorubicin on cell migration and proliferation were compared for the different doxorubicin delivery systems. Results Confocal laser scanning microscopy and quantitative flow cytometry studies both verified that, for equivalent doxorubicin concentrations, composite doxorubicin-loaded micelles significantly enhanced cellular doxorubicin accumulation and inhibited doxorubicin release. Colony-forming assays demonstrated that composite doxorubicin-loaded micelles are radiosensitive, as shown by significantly reduced survival of cells treated by radiation + composite micelles compared with those treated with radiation + free doxorubicin or radiation alone. The multicellular spheroid migration area and growth ability verified higher radiosensitivity for the composite micelles loaded with doxorubicin than for free doxorubicin. Conclusion Our composite doxorubicin-loaded micelle was demonstrated to have radiosensitization. Doxorubicin loading in the composite micelles significantly increased its cellular uptake, improved drug retention, and enhanced its antitumor effect relative to free doxorubicin, thereby providing a novel approach for treatment of cancer. PMID:22679376
Tomlinson, Ryan E.; Silva, Matthew J.; Shoghi, Kooresh I.
2013-01-01
Purpose Blood flow is an important factor in bone production and repair, but its role in osteogenesis induced by mechanical loading is unknown. Here, we present techniques for evaluating blood flow and fluoride metabolism in a pre-clinical stress fracture model of osteogenesis in rats. Procedures Bone formation was induced by forelimb compression in adult rats. 15O water and 18F fluoride PET imaging were used to evaluate blood flow and fluoride kinetics 7 days after loading. 15O water was modeled using a one-compartment, two-parameter model, while a two-compartment, three-parameter model was used to model 18F fluoride. Input functions were created from the heart, and a stochastic search algorithm was implemented to provide initial parameter values in conjunction with a Levenberg–Marquardt optimization algorithm. Results Loaded limbs are shown to have a 26% increase in blood flow rate, 113% increase in fluoride flow rate, 133% increase in fluoride flux, and 13% increase in fluoride incorporation into bone as compared to non-loaded limbs (p < 0.05 for all results). Conclusions The results shown here are consistent with previous studies, confirming this technique is suitable for evaluating the vascular response and mineral kinetics of osteogenic mechanical loading. PMID:21785919
Arc burst pattern analysis fault detection system
NASA Technical Reports Server (NTRS)
Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)
1997-01-01
A method and apparatus are provided for detecting an arcing fault on a power line carrying a load current. Parameters indicative of power flow and possible fault events on the line, such as voltage and load current, are monitored and analyzed for an arc burst pattern exhibited by arcing faults in a power system. These arcing faults are detected by identifying bursts of each half-cycle of the fundamental current. Bursts occurring at or near a voltage peak indicate arcing on that phase. Once a faulted phase line is identified, a comparison of the current and voltage reveals whether the fault is located in a downstream direction of power flow toward customers, or upstream toward a generation station. If the fault is located downstream, the line is de-energized, and if located upstream, the line may remain energized to prevent unnecessary power outages.
NASA Technical Reports Server (NTRS)
Mulder, Andrew; Skelley, Stephen
2011-01-01
Fluctuating pressure data from water flow testing of an unshrouded two blade inducer revealed a cavitation induced oscillation with the potential to induce a radial load on the turbopump shaft in addition to other more traditionally analyzed radial loads. Subsequent water flow testing of the inducer with a rotating force measurement system confirmed that the cavitation induced oscillation did impart a radial load to the inducer. After quantifying the load in a baseline configuration, two inducer shroud treatments were selected and tested to reduce the cavitation induced load. The first treatment was to increase the tip clearance, and the second was to introduce a circumferential groove near the inducer leading edge. Increasing the clearance resulted in a small decrease in radial load along with some steady performance degradation. The groove greatly reduced the hydrodynamic load with little to no steady performance loss. The groove did however generate some new, relatively high frequency, spatially complex oscillations to the flow environment.
Method for making generally cylindrical underground openings
Routh, J.W.
1983-05-26
A rapid, economical and safe method for making a generally cylindrical underground opening such as a shaft or a tunnel is described. A borehole is formed along the approximate center line of where it is desired to make the underground opening. The borehole is loaded with an explodable material and the explodable material is detonated. An enlarged cavity is formed by the explosive action of the detonated explodable material forcing outward and compacting the original walls of the borehole. The enlarged cavity may be increased in size by loading it with a second explodable material, and detonating the second explodable material. The process may be repeated as required until the desired underground opening is made. The explodable material used in the method may be free-flowing, and it may be contained in a pipe.
Jet Flap Stator Blade Test in the High Reaction Turbine Blade Cascade Tunnel
1970-03-21
A researcher examines the setup of a jet flap blade in the High Reaction Turbine Blade Cascade Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers were seeking ways to increase turbine blade loading on aircraft engines in an effort to reduce the overall size and weight of engines. The ability of each blade to handle higher loads meant that fewer stages and fewer blades were required. This study analyzed the performance of a turbine blade using a jet flap and high loading. A jet of air was injected into the main stream from the pressure surface near the trailing edge. The jet formed an aerodynamic flap which deflected the flow and changed the circulation around the blade and thus increased the blade loading. The air jet also reduced boundary layer thickness. The jet-flap blade design was appealing because the cooling air may also be used for the jet. The performance was studied in a two-dimensional cascade including six blades. The researcher is checking the jet flat cascade with an exit survey probe. The probe measured the differential pressure that was proportional to the flow angle. The blades were tested over a range of velocity ratios and three jet flow conditions. Increased jet flow improved the turning and decreased both the weight flow and the blade loading. However, high blade loadings were obtained at all jet flow conditions.
Calibration and Data Analysis of the MC-130 Air Balance
NASA Technical Reports Server (NTRS)
Booth, Dennis; Ulbrich, N.
2012-01-01
Design, calibration, calibration analysis, and intended use of the MC-130 air balance are discussed. The MC-130 balance is an 8.0 inch diameter force balance that has two separate internal air flow systems and one external bellows system. The manual calibration of the balance consisted of a total of 1854 data points with both unpressurized and pressurized air flowing through the balance. A subset of 1160 data points was chosen for the calibration data analysis. The regression analysis of the subset was performed using two fundamentally different analysis approaches. First, the data analysis was performed using a recently developed extension of the Iterative Method. This approach fits gage outputs as a function of both applied balance loads and bellows pressures while still allowing the application of the iteration scheme that is used with the Iterative Method. Then, for comparison, the axial force was also analyzed using the Non-Iterative Method. This alternate approach directly fits loads as a function of measured gage outputs and bellows pressures and does not require a load iteration. The regression models used by both the extended Iterative and Non-Iterative Method were constructed such that they met a set of widely accepted statistical quality requirements. These requirements lead to reliable regression models and prevent overfitting of data because they ensure that no hidden near-linear dependencies between regression model terms exist and that only statistically significant terms are included. Finally, a comparison of the axial force residuals was performed. Overall, axial force estimates obtained from both methods show excellent agreement as the differences of the standard deviation of the axial force residuals are on the order of 0.001 % of the axial force capacity.
Developments in boundary element methods - 2
NASA Astrophysics Data System (ADS)
Banerjee, P. K.; Shaw, R. P.
This book is a continuation of the effort to demonstrate the power and versatility of boundary element methods which began in Volume 1 of this series. While Volume 1 was designed to introduce the reader to a selected range of problems in engineering for which the method has been shown to be efficient, the present volume has been restricted to time-dependent problems in engineering. Boundary element formulation for melting and solidification problems in considered along with transient flow through porous elastic media, applications of boundary element methods to problems of water waves, and problems of general viscous flow. Attention is given to time-dependent inelastic deformation of metals by boundary element methods, the determination of eigenvalues by boundary element methods, transient stress analysis of tunnels and caverns of arbitrary shape due to traveling waves, an analysis of hydrodynamic loads by boundary element methods, and acoustic emissions from submerged structures.
Quantitative Assessment of Temperature Sensitivity of the ...
The Total Maximum Daily Load (TMDL) program, established by the Clean Water Act, is used to establish limits on loading of pollutants from point and nonpoint sources necessary to achieve water quality standards. One important use of a temperature TMDL is to allocate thermal loads to achieve water temperature criteria established for the protection of cold water fisheries. The pollutant in this case is thermal load and allocations to reduce the load often involve restoration of stream shading, which reduces the solar input. While many temperature TMDLs have been established, the supporting analyses have generally assumed a stationary climate under which historical data on flow and air temperature can serve as an adequate guide to future conditions. Projected changes in climate over the 21st century contradict this assumption. Air temperature is expected to increase in most parts of the US, accompanied in many areas by seasonal shifts in the timing and amount of precipitation, which in turn will alter stream flow. This study evaluates the implications of climate change for the water temperature TMDL developed for the South Fork Nooksack River in northwest Washington by the Department of Ecology, where multiple water body segments exceed temperature criteria established for the protection of cold water salmonid populations (Ecology, 2016). The purpose of this report is to provide a “companion technical methods manual” as documentation for the draft SFNR tempera
High Fidelity Simulations for Unsteady Flow Through the Orbiter LH2 Feedline Flowliner
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.; Kwak, Dochan; Chan, William; Housman, Jeffrey
2005-01-01
High fidelity computations were carried out to analyze the orbiter M2 feedline flowliner. Various computational models were used to characterize the unsteady flow features in the turbopump, including the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer, the orbiter manifold and a test article used to represent the manifold. Unsteady flow originating from the orbiter LPFTP inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the gimbal flowliners just upstream of the LPFTP. The flow fields for the orbiter manifold and representative test article are computed and analyzed for similarities and differences. An incompressible Navier-Stokes flow solver INS3D, based on the artificial compressibility method, was used to compute the flow of liquid hydrogen in each test article.
Nonlinear model for offline correction of pulmonary waveform generators.
Reynolds, Jeffrey S; Stemple, Kimberly J; Petsko, Raymond A; Ebeling, Thomas R; Frazer, David G
2002-12-01
Pulmonary waveform generators consisting of motor-driven piston pumps are frequently used to test respiratory-function equipment such as spirometers and peak expiratory flow (PEF) meters. Gas compression within these generators can produce significant distortion of the output flow-time profile. A nonlinear model of the generator was developed along with a method to compensate for gas compression when testing pulmonary function equipment. The model and correction procedure were tested on an Assess Full Range PEF meter and a Micro DiaryCard PEF meter. The tests were performed using the 26 American Thoracic Society standard flow-time waveforms as the target flow profiles. Without correction, the pump loaded with the higher resistance Assess meter resulted in ten waveforms having a mean square error (MSE) higher than 0.001 L2/s2. Correction of the pump for these ten waveforms resulted in a mean decrease in MSE of 87.0%. When loaded with the Micro DiaryCard meter, the uncorrected pump outputs included six waveforms with MSE higher than 0.001 L2/s2. Pump corrections for these six waveforms resulted in a mean decrease in MSE of 58.4%.
Highly-resolved numerical simulations of bed-load transport in a turbulent open-channel flow
NASA Astrophysics Data System (ADS)
Vowinckel, Bernhard; Kempe, Tobias; Nikora, Vladimir; Jain, Ramandeep; Fröhlich, Jochen
2015-11-01
The study presents the analysis of phase-resolving Direct Numerical Simulations of a horizontal turbulent open-channel flow laden with a large number of spherical particles. These particles have a mobility close to their threshold of incipient motion andare transported in bed-load mode. The coupling of the fluid phase with the particlesis realized by an Immersed Boundary Method. The Double-Averaging Methodology is applied for the first time convolutingthe data into a handy set of quantities averaged in time and space to describe the most prominent flow features.In addition, a systematic study elucidatesthe impact of mobility and sediment supply on the pattern formation of particle clusters ina very large computational domain. A detailed description of fluid quantities links the developed particle patterns to the enhancement of turbulence and to a modified hydraulic resistance. Conditional averaging isapplied toerosion events providingthe processes involved inincipient particle motion. Furthermore, the detection of moving particle clusters as well as their surrounding flow field is addressedby a a moving frameanalysis. Funded by German Research Foundation (DFG), project FR 1593/5-2, computational time provided by ZIH Dresden, Germany, and JSC Juelich, Germany.
The effects of particle loading on turbulence structure and modelling
NASA Technical Reports Server (NTRS)
Squires, Kyle D.; Eaton, J. K.
1989-01-01
The objective of the present research was to extend the Direct Numerical Simulation (DNS) approach to particle-laden turbulent flows using a simple model of particle/flow interaction. The program addressed the simplest type of flow, homogeneous, isotropic turbulence, and examined interactions between the particles and gas phase turbulence. The specific range of problems examined include those in which the particle is much smaller than the smallest length scales of the turbulence yet heavy enough to slip relative to the flow. The particle mass loading is large enough to have a significant impact on the turbulence, while the volume loading was small enough such that particle-particle interactions could be neglected. Therefore, these simulations are relevant to practical problems involving small, dense particles conveyed by turbulent gas flows at moderate loadings. A sample of the results illustrating modifications of the particle concentration field caused by the turbulence structure is presented and attenuation of turbulence by the particle cloud is also illustrated.
NASA Astrophysics Data System (ADS)
Xian, Benzhong; Wang, Junhui; Gong, Chenglin; Yin, Yu; Chao, Chuzhi; Liu, Jianping; Zhang, Guodong; Yan, Qi
2018-06-01
Subaquatic channels are known as active conduits for the delivery of terrigenous sediments into related marine and lacustrine basins, as well as important targets for hydrocarbon exploration. Compared to submarine channels, lacustrine subaqueous channels created by hyperpycnal flows are understudied. Using well-exposed outcrops collected from three different locations in the southern Ordos Basin, central China, morphologies and architecture of a channelized hyperpycnal system were studied and classified. Six facies associations represent sedimentary processes from strong erosion by bedload dominated hyperpycnal flows, to transitional deposition jointly controlled by bedload and suspended-load dominated hyperpycnal flows, finally to deposition from suspended-load dominated hyperpycnal flows. On the basis of channel morphologies, infilling sediments and sedimentary processes, the documented channels can be classified into four main categories, which are erosional, bedload dominated, suspended-load dominated, and depositional channels. In very proximal and very distal locations, erosional channels and depositional channels serve as two end-members, while in middle areas, bedload-dominated channels and suspended-load dominated channels are transitional types. Erosional channels, as a response to strong erosion from bedload dominated hyperpycnal flows on upper slope, were mainly filled by mud interbedded with thin sand beds. As flow energy decreases, bedload dominated channels develop on middle slopes, which are characterized mainly by under- to balanced sediment infillings with cross-bedded sandstones and/or minor massive sandstones. Compared to bedload dominated channels, suspended-load dominated channels mainly develop in deeper water, and were filled mainly by massive or planar-laminated sandstones. Depositional channels, as a response to suspended-load dominated hyperpycnal flows in deep-water areas, are characterized by thin-medium bed classical turbidites with Bouma sequences and thin- to thick massive sandstones. Such evolution patterns of hyperpycnal channel systems are ascribed to the progressive decrease in flow capacity of hyperpycnal flows, and provide an adequate explanation for the basinward channelization behavior of hyperpycnal systems.
NASA Astrophysics Data System (ADS)
Park, George Ilhwan; Moin, Parviz
2016-01-01
This paper focuses on numerical and practical aspects associated with a parallel implementation of a two-layer zonal wall model for large-eddy simulation (LES) of compressible wall-bounded turbulent flows on unstructured meshes. A zonal wall model based on the solution of unsteady three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations on a separate near-wall grid is implemented in an unstructured, cell-centered finite-volume LES solver. The main challenge in its implementation is to couple two parallel, unstructured flow solvers for efficient boundary data communication and simultaneous time integrations. A coupling strategy with good load balancing and low processors underutilization is identified. Face mapping and interpolation procedures at the coupling interface are explained in detail. The method of manufactured solution is used for verifying the correct implementation of solver coupling, and parallel performance of the combined wall-modeled LES (WMLES) solver is investigated. The method has successfully been applied to several attached and separated flows, including a transitional flow over a flat plate and a separated flow over an airfoil at an angle of attack.
NASA Technical Reports Server (NTRS)
Markey, Melvin F.
1959-01-01
A theory is derived for determining the loads and motions of a deeply immersed prismatic body. The method makes use of a two-dimensional water-mass variation and an aspect-ratio correction for three-dimensional flow. The equations of motion are generalized by using a mean value of the aspect-ratio correction and by assuming a variation of the two-dimensional water mass for the deeply immersed body. These equations lead to impact coefficients that depend on an approach parameter which, in turn, depends upon the initial trim and flight-path angles. Comparison of experiment with theory is shown at maximum load and maximum penetration for the flat-bottom (0 deg dead-rise angle) model with bean-loading coefficients from 36.5 to 133.7 over a wide range of initial conditions. A dead-rise angle correction is applied and maximum-load data are compared with theory for the case of a model with 300 dead-rise angle and beam-loading coefficients from 208 to 530.
Scott, Brendan R; Peiffer, Jeremiah J; Goods, Paul S R
2017-08-01
Scott, BR, Peiffer, JJ, and Goods, PSR. The effects of supplementary low-load blood flow restriction training on morphological and performance-based adaptations in team sport athletes. J Strength Cond Res 31(8): 2147-2154, 2017-Low-load resistance training with blood flow restriction (BFR) may be a method to enhance muscular development even in trained athletes. This study aimed to assess whether supplemental low-load BFR training can improve muscle size, strength, and physical performance characteristics in team sport athletes. Twenty-one semiprofessional Australian football athletes were assessed for 3-repetition maximum (3RM) and muscular endurance in the back squat, vastus lateralis muscle architecture, and performance in sprint and vertical jump tasks. Participants then undertook a 5-week training program, consisting of normal high-load resistance training supplemented by low-load squats with (LLBFR) or without (LL) BFR. Participants also performed regular conditioning and football training during this period. After the training intervention, participants again completed the pretraining testing battery. Squat 3RM and endurance increased from pretraining levels in both LL (3RM = 12.5% increase; endurance = 24.1% increase; p ≤ 0.007) and LLBFR (3RM = 12.3% increase; endurance = 21.2% increase; p = 0.007) groups, though there were no between-group differences. No post-training changes were observed for muscle architecture, or performance in sprinting and jumping tasks. Although squat 3RM and endurance performance increased in both groups, adding BFR during supplemental exercise did not enhance these responses. Similarly, there were no large differences in the assessments of sprint, acceleration, and jumping performance between the groups after training. These findings suggest that although LLBFR did not negatively affect adaptive responses to resistance training, this training strategy may not provide added benefit for healthy Australian football athletes already undertaking a rigorous training schedule.
Curran, Christopher A.; Grossman, Eric E.; Magirl, Christopher S.; Foreman, James R.
2016-05-26
On average, the Nisqually River delivers about 100,000 metric tons per year (t/yr) of suspended sediment to Puget Sound, western Washington, a small proportion of the estimated 1,200,000 metric tons (t) of sediment reported to flow in the upper Nisqually River that drains the glaciated, recurrently active Mount Rainier stratovolcano. Most of the upper Nisqually River sediment load is trapped in Alder Lake, a reservoir completed in 1945. For water year 2011 (October 1, 2010‒September 30, 2011), daily sediment and continuous turbidity data were used to determine that 106,000 t of suspended sediment were delivered to Puget Sound, and 36 percent of this load occurred in 2 days during a typical winter storm. Of the total suspended-sediment load delivered to Puget Sound in the water year 2011, 47 percent was sand (particle size >0.063 millimeters), and the remainder (53 percent) was silt and clay. A sediment-transport curve developed from suspended-sediment samples collected from July 2010 to November 2011 agreed closely with a curve derived in 1973 using similar data-collection methods, indicating that similar sediment-transport conditions exist. The median annual suspended-sediment load of 73,000 t (water years 1980–2014) is substantially less than the average load, and the correlation (Pearson’s r = 0.80, p = 8.1E-9, n=35) between annual maximum 2-day sediment loads and normalized peak discharges for the period indicates the importance of wet years and associated peak discharges of the lower Nisqually River for sediment delivery to Puget Sound. The magnitude of peak discharges in the lower Nisqually River generally is suppressed by flow regulation, and relative to other free-flowing, glacier-influenced rivers entering Puget Sound, the Nisqually River delivers proportionally less sediment because of upstream sediment trapping from dams.
Euler Flow Computations on Non-Matching Unstructured Meshes
NASA Technical Reports Server (NTRS)
Gumaste, Udayan
1999-01-01
Advanced fluid solvers to predict aerodynamic performance-coupled treatment of multiple fields are described. The interaction between the fluid and structural components in the bladed regions of the engine is investigated with respect to known blade failures caused by either flutter or forced vibrations. Methods are developed to describe aeroelastic phenomena for internal flows in turbomachinery by accounting for the increased geometric complexity, mutual interaction between adjacent structural components and presence of thermal and geometric loading. The computer code developed solves the full three dimensional aeroelastic problem of-stage. The results obtained show that flow computations can be performed on non-matching finite-volume unstructured meshes with second order spatial accuracy.
Analysis of viscous transonic flow over airfoil sections
NASA Technical Reports Server (NTRS)
Huff, Dennis L.; Wu, Jiunn-Chi; Sankar, L. N.
1987-01-01
A full Navier-Stokes solver has been used to model transonic flow over three airfoil sections. The method uses a two-dimensional, implicit, conservative finite difference scheme for solving the compressible Navier-Stokes equations. Results are presented as prescribed for the Viscous Transonic Airfoil Workshop to be held at the AIAA 25th Aerospace Sciences Meeting. The NACA 0012, RAE 2822 and Jones airfoils have been investigated for both attached and separated transonic flows. Predictions for pressure distributions, loads, skin friction coefficients, boundary layer displacement thickness and velocity profiles are included and compared with experimental data when possible. Overall, the results are in good agreement with experimental data.
NASA Astrophysics Data System (ADS)
Marshaline Seles, M.; Suryanarayanan, R.; Vivek, S. S.; Dhinakaran, G.
2017-07-01
The conventional concrete when used for structures having dense congested reinforcement, the problems such as external compaction and vibration needs special attention. In such case, the self compacting concrete (SCC) which has the properties like flow ability, passing and filling ability would be an obvious answer. All those SCC flow behavior was governed by EFNARC specifications. In present study, the combination type of SCC was prepared by replacing cement with silica fume (SF) and metakaolin (MK) along with optimum dosages of chemical admixtures. From the fresh property test, cube compressive strength and cylinder split tensile strength, optimum ternary mix was obtained. In order to study the flexural behavior, the optimum ternary mix was taken in which beam specimens of size 1200 mm x 100 mm x 200 mm was designed as singly reinforced section according to IS: 456-2000, Limit state method. Finally the comparative experimental analysis was made between conventional RCC and SCC beams of same grade in terms of flexural strength namely yield load & ultimate load, load- deflection curve, crack size and pattern respectively.
Numerical Investigation of Synthetic-jet based Flow Control on Vertical-axis Wind Turbine Blades
NASA Astrophysics Data System (ADS)
Menon, Ashwin; Tran, Steven; Sahni, Onkar
2013-11-01
Vertical-axis wind turbines encounter large unsteady aerodynamic loads in a sustained fashion due to the continuously varying angle of attack that is experienced by turbine blades during each revolution. Moreover, the detachment of the leading edge vortex at high angles of attack leads to sudden change in aerodynamic loads that result in structural vibrations and fatigue, and possibly failure. This numerical study focuses on using synthetic-jet based fluidic actuation to reduce the unsteady loading on VAWT blades. In the simulations, the jets are placed at the dominant separation location that is observed in the baseline case. We consider different tip-speed ratios, O(2-5), and we also study the effect of blowing ratio (to be in O(0.5-1.5)) and reduced frequency, i.e., ratio of jet frequency to flow frequency (to be in O(5-15)). For all cases, unsteady Reynolds-averaged Navier-Stokes simulations are carried out by using the Spallart-Allamaras turbulence model, where stabilized finite element method is employed for spatial discretization along with an implicit time-integration scheme.
Control Valve Trajectories for SOFC Hybrid System Startup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorrell, Megan; Banta, Larry; Rosen, William
2012-07-01
Control and management of cathode airflow in a solid oxide fuel cell gas turbine hybrid power system was analyzed using the Hybrid Performance (HyPer) hardware simulation at the National Energy Technology (NETL), U.S. Department of Energy. This work delves into previously unexplored operating practices for HyPer, via simultaneous manipulation of bypass valves and the electric load on the generator. The work is preparatory to the development of a Multi-Input, Multi-Output (MIMO) controller for HyPer. A factorial design of experiments was conducted to acquire data for 81 different combinations of the manipulated variables, which consisted of three air flow control valvesmore » and the electric load on the turbine generator. From this data the response surface for the cathode airflow with respect to bypass valve positions was analyzed. Of particular interest is the control of airflow through the cathode during system startup and during large load swings. This paper presents an algorithm for controlling air mass flow through the cathode based on a modification of the steepest ascent method.« less
Space station electrical power distribution analysis using a load flow approach
NASA Technical Reports Server (NTRS)
Emanuel, Ervin M.
1987-01-01
The space station's electrical power system will evolve and grow in a manner much similar to the present terrestrial electrical power system utilities. The initial baseline reference configuration will contain more than 50 nodes or busses, inverters, transformers, overcurrent protection devices, distribution lines, solar arrays, and/or solar dynamic power generating sources. The system is designed to manage and distribute 75 KW of power single phase or three phase at 20 KHz, and grow to a level of 300 KW steady state, and must be capable of operating at a peak of 450 KW for 5 to 10 min. In order to plan far into the future and keep pace with load growth, a load flow power system analysis approach must be developed and utilized. This method is a well known energy assessment and management tool that is widely used throughout the Electrical Power Utility Industry. The results of a comprehensive evaluation and assessment of an Electrical Distribution System Analysis Program (EDSA) is discussed. Its potential use as an analysis and design tool for the 20 KHz space station electrical power system is addressed.
Lagrangian and Eulerian description of bed-load particle kinematics
NASA Astrophysics Data System (ADS)
Ballio, Francesco; Sadabadi, Seyed Abbas Hosseini; Pokrajac, Dubravka; Radice, Alessio
2016-04-01
The motion of bed-load sediment particles transported by a flow can be analyzed within a Lagrangian or an Eulerian framework. In the former case, we consider the particles as individual objects in motion and we study their kinematic properties. The latter approach is instead referred to suitably chosen control volumes. Quantities describing sediment motion in the two frameworks are different, and the relationships among the two approaches are not straightforward. In this work, we intend to discuss the kinematic properties of sediment transport: first, a set of quantities is univocally defined; then, relationships among different representations are explored. Proof-of-concept results presented in the study are from a recent experiment involving weak bed-load sediment transport, where the moving particles were released over a fixed rough bed. The bulk flow velocity was 1.4 times the critical value for incipient particle motion, and particles were mostly moving by rolling and sliding, with limited saltation. The particle motion was filmed from the top and the measurements were conducted by image-based methods, obtaining extensive samples of virtually-instantaneous quantities.
NASA Astrophysics Data System (ADS)
Anwar, Proma; Islam, Md. Quamrul; Ali, Mohammad
2017-06-01
In this research work an experiment is conducted to observe the effect of wind load around square and hexagonal shaped cylinders in staggered form. The experiment is performed in an open circuit wind tunnel at a Reynolds number of 4.23×104 based on the face width of the cylinder across the flow direction. The flow velocity has been kept uniform at 14.3 m/s throughout the experiment. The test is conducted for single cylinders first and then in staggered form. The cylinders are rotated to create different angles of attack and the angles are chosen at a definite interval. The static pressure readings are taken at different locations of the cylinder by inclined multi-manometers. From the surface static pressure readings pressure coefficients, drag coefficients and lift coefficients are calculated using numerical integration method. These results will surely help engineers to design buildings more stable against wind load. All the results are expressed in non-dimensional form, so that they can be applied for prototype structures.
Tortorelli, Robert L.
2006-01-01
The City of Tulsa, Oklahoma, uses Lake Eucha and Spavinaw Lake in the Eucha-Spavinaw basin in northwestern Arkansas and northeastern Oklahoma for public water supply. Taste and odor problems in the water attributable to blue-green algae have increased in frequency over time. Changes in the algae community in the lakes may be attributable to increases in nutrient levels in the lakes, and in the waters feeding the lakes. The U.S. Geological Survey, in cooperation with the City of Tulsa, conducted an investigation to summarize nitrogen and phosphorus concentrations and provide estimates of nitrogen and phosphorus loads, yields, and flow-weighted concentrations in the Eucha-Spavinaw basin for a 3-year period from January 2002 through December 2004. This report provides information needed to advance knowledge of the regional hydrologic system and understanding of hydrologic processes, and provides hydrologic data and results useful to multiple parties for interstate compacts. Nitrogen and phosphorus concentrations were significantly greater in runoff samples than in base-flow samples at Spavinaw Creek near Maysville, Arkansas; Spavinaw Creek near Colcord, Oklahoma, and Beaty Creek near Jay, Oklahoma. Runoff concentrations were not significantly greater than in base-flow samples at Spavinaw Creek near Cherokee, Arkansas; and Spavinaw Creek near Sycamore, Oklahoma. Nitrogen concentrations in base-flow samples significantly increased in the downstream direction in Spavinaw Creek from the Maysville to Sycamore stations then significantly decreased from the Sycamore to the Colcord stations. Nitrogen in base-flow samples from Beaty Creek was significantly less than in those from Spavinaw Creek. Phosphorus concentrations in base-flow samples significantly increased from the Maysville to Cherokee stations in Spavinaw Creek, probably due to a point source between those stations, then significantly decreased downstream from the Cherokee to Colcord stations. Phosphorus in base-flow samples from Beaty Creek was significantly less than phosphorus in base-flow samples from Spavinaw Creek downstream from the Maysville station. Nitrogen concentrations in runoff samples were not significantly different among the stations on Spavinaw Creek; however, the concentrations at Beaty Creek were significantly less than at all other stations. Phosphorus concentrations in runoff samples were not significantly different among the three downstream stations on Spavinaw Creek, and not significantly different at the Maysville station on Spavinaw Creek and the Beaty Creek station. Phosphorus and nitrogen concentrations in runoff samples from all stations generally increased with increasing streamflow. Estimated mean annual nitrogen total loads from 2002-2004 were substantially greater at the Spavinaw Creek stations than at Beaty Creek and increased in a downstream direction from Maysville to Colcord in Spavinaw Creek, with the load at the Colcord station about 2 times that of Maysville station. Estimated mean annual nitrogen base-flow loads at the Spavinaw Creek stations were about 5 to 11 times greater than base-flow loads at Beaty Creek. The runoff component of the annual nitrogen total load for Beaty Creek was 85 percent, whereas, at the Spavinaw Creek stations, the range in the runoff component was 60 to 66 percent. Estimated mean annual phosphorus total loads from 2002-2004 were greater at the Spavinaw Creek stations from Cherokee to Colcord than at Beaty Creek and increased in a downstream direction from Maysville to Colcord in Spavinaw Creek, with the load at the Colcord station about 2.5 times that of Maysville station. Estimated mean annual phosphorus base-flow loads at the Spavinaw Creek stations were about 2.5 to 19 times greater than at Beaty Creek. Phosphorus base-flow loads increased about 8 times from Maysville to Cherokee in Spavinaw Creek; the base-flow loads were about the same at the three downstream stations. The runoff component
Numerical analysis of rotating stall instabilities of a pump- turbine in pump mode
NASA Astrophysics Data System (ADS)
Xia, L. S.; Cheng, Y. G.; Zhang, X. X.; Yang, J. D.
2014-03-01
Rotating stall may occur at part load flow of a pump-turbine in pump mode. Unstable flow structures developing under stall condition can lead to a sudden drop of efficiency, high dynamic load and even cavitation. CFD simulations on a pump-turbine model in pump mode were carried out to reveal the onset and developed mechanisms of these unstable flow phenomena at part load. The simulation results of energy-discharge and efficiency characteristics are in good agreement with those obtained by experiments. The more deviate from design conditions with decreasing flow rate, the more flow separations within the vanes. Under specific conditions, four stationary separation zones begin to progress on the circumference, rotating at a fraction of the impeller rotation rate. Rotating stalls lead to the flow in the vane diffuser channels alternating between outward jet flow and blockage. Strong jets impact the spiral casing wall causing high pressure pulsations. Severe separations of the stall cells disturb the flow inducing periodical large amplitude pressure fluctuations, of which the intensity at different span wise of the guide vanes is different. The enforced rotating nonuniform pressure distributions on the circumference lead to dynamic uniform forces on the impeller and guide vanes. The results show that the CFD simulations are capable to gain the complicated flow structure information for analysing the unstable characteristics of the pump mode at part load.
Hatzell, Kelsey B; Hatzell, Marta C; Cook, Kevin M; Boota, Muhammad; Housel, Gabrielle M; McBride, Alexander; Kumbur, E Caglan; Gogotsi, Yury
2015-03-03
Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. Chemical oxidation of granular activated carbon (AC) was examined here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (∼21 Pa s) to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g(-1)) without sacrificing flowability (viscosity). The electrical energy required to remove ∼18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (∼60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. It is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.
Hatzell, Kelsey B.; Hatzell, Marta C.; Cook, Kevin M.; ...
2015-01-29
Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. We examine chemical oxidation of granular activated carbon (AC) here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (~21 Pa s)more » to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g –1) without sacrificing flowability (viscosity). The electrical energy required to remove ~18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (~60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. Finally, it is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.« less
Cascade Analysis of a Floating Wind Turbine Rotor
NASA Astrophysics Data System (ADS)
Eliassen, Lene; Jakobsen, Jasna B.; Knauer, Andreas; Nielsen, Finn Gunnar
2014-12-01
Mounting a wind turbine on a floating foundation introduces more complexity to the aerodynamic loading. The floater motion contains a wide range of frequencies. To study some of the basic dynamic load effect on the blades due to these motions, a two-dimensional cascade approach, combined with a potential vortex method, is used. This is an alternative method to study the aeroelastic behavior of wind turbines that is different from the traditional blade element momentum method. The analysis tool demands little computational power relative to a full three dimensional vortex method, and can handle unsteady flows. When using the cascade plane, a "cut" is made at a section of the wind turbine blade. The flow is viewed parallel to the blade axis at this cut. The cascade model is commonly used for analysis of turbo machineries. Due to the simplicity of the code it requires little computational resources, however it has limitations in its validity. It can only handle two-dimensional potential flow, i.e. including neither three-dimensional effects, such as the tip loss effect, nor boundary layers and stall effects are modeled. The computational tool can however be valuable in the overall analysis of floating wind turbines, and evaluation of the rotor control system. A check of the validity of the vortex panel code using an airfoil profile is performed, comparing the variation of the lift force, to the theoretically derived Wagner function. To analyse the floating wind turbine, a floating structure with hub height 90 m is chosen. An axial motion of the rotor is considered.
Marine Propulsion Load Emulation.
1985-06-01
single-entry centrifugal compressor mechanically coupled to a single-stage axial - flow turbine , two cross- connected can type combustion chambers, and...an accessory- drive section. The power output section incorporates a second axial - flow turbine , reduction gears and output shaft, and is driven by the... Flow .... ............. ... 36 4.7 Load Valve Characteristics ... ............. .38 4.8 Photograph of Turbine Test gell .......... 39, * 4.9
A Mechanism for Stratifying Lava Flows
NASA Astrophysics Data System (ADS)
Rice, A.
2005-12-01
Relict lava flows (e.g., komatiites) are often reported to be zoned in the vertical, each zone separated by a sharp contact. Such stratifications in igneous flows, both intrusive and extrusive, can be treated as analogues of suspended loads of sediments in rivers and streams, and hence amenable to quantitative treatment derived for the hydraulic environment as long as dynamic similitude is assured. Situations typically encountered in the hydraulic environment are streams carrying a bed load at the bottom of the stream, the bed load separated by a sharp horizon from a sediment load carried above it. This sediment load may be topped by others of decreasing density as one moves to the surface of the flow, with perhaps the uppermost layer clear of any suspended matter. Rules exist for estimating the thickness D of these loads: one of them is given by D ~ 4.4V3/rgcvs where V is the shear velocity or average velocity of the flow, r = (ρs - ρl)/ρl where ρs is the density of the suspended solid matter, ρl the density of the fluid, g the acceleration of gravity, c the concentration of the particulate content and vs the settling velocity. The settling velocity is secured through Stoke's Law and the velocity of the flow is given by V = R2/3S1/2/n where R is the hydraulic radius, S the gradient along which the fluid flows and n is the Manning Coefficient. In the igneous case, the bed load would be composed of primocrysts, i.e., of the first crystals to come out of solution as the flow cools along its run. This would leave the upper portions of the flow more evolved except perhaps for a quenched crust riding atop the flow. As the viscosity of the flow is dependent not only on temperature but on composition and crystal content, the mean velocity of each layer will be different from the layer above and below it. This requires shear at the interface of adjoining stratifications, which brings into play another mechanism: dispersive pressure (the Bagnold effect). Dispersive pressure will drive primocrysts into boundary layers such as that attending the bottom of the flow and at those separating stratifications. For instance, if the primocrysts were spinals, then a Cr high might be expected at the interfaces separating stratifications. Since the melt throughout is evolving as it moves down stream, compositional variations along strike (as well is in the vertical) might be expected. Application of the above notions falls within the confines of field observation.
Commercial absorption chiller models for evaluation of control strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koeppel, E.A.; Klein, S.A.; Mitchell, J.W.
1995-08-01
A steady-state computer simulation model of a direct fired double-effect water-lithium bromide absorption chiller in the parallel-flow configuration was developed from first principles. Unknown model parameters such as heat transfer coefficients were determined by matching the model`s calculated state points and coefficient of performance (COP) against nominal full-load operating data and COPs obtained from a manufacturer`s catalog. The model compares favorably with the manufacturer`s performance ratings for varying water circuit (chilled and cooling) temperatures at full load conditions and for chiller part-load performance. The model was used (1) to investigate the effect of varying the water circuit flow rates withmore » the chiller load and (2) to optimize chiller part-load performance with respect to the distribution and flow of the weak solution.« less
Demodulation circuit for AC motor current spectral analysis
Hendrix, Donald E.; Smith, Stephen F.
1990-12-18
A motor current analysis method for the remote, noninvasive inspection of electric motor-operated systems. Synchronous amplitude demodulation and phase demodulation circuits are used singly and in combination along with a frequency analyzer to produce improved spectral analysis of load-induced frequencies present in the electric current flowing in a motor-driven system.
Kushner, Joseph; Langdon, Beth A; Hicks, Ian; Song, Daniel; Li, Fasheng; Kathiria, Lalji; Kane, Anil; Ranade, Gautam; Agarwal, Kam
2014-02-01
The impact of filler-lubricant particle size ratio variation (3.4-41.6) on the attributes of an immediate-release tablet was compared with the impacts of the manufacturing method used (direct compression or dry granulation) and drug loading (1%, 5%, and 25%), particle size (D[4,3]: 8-114 μm), and drug type (theophylline or ibuprofen). All batches were successfully manufactured, except for direct compression of 25% drug loading of 8 μm (D[4,3]) drug, which exhibited very poor flow properties. All manufactured tablets possessed adequate quality attributes: tablet weight uniformity <4% RSD, tablet potency: 94%-105%, content uniformity <6% RSD, acceptance value ≤ 15, solid fraction: 0.82-0.86, tensile strength >1 MPa, friability ≤ 0.2% weight loss, and disintegration time < 4 min. The filler-lubricant particle size ratio exhibited the greatest impact on blend and granulation particle size and granulation flow, whereas drug property variation dominated blend flow, ribbon solid fraction, and tablet quality attributes. Although statistically significant effects were observed, the results of this study suggest that the manufacturability and performance of this immediate-release tablet formulation is robust to a broad range of variation in drug properties, both within-grade and extra-grade excipient particle size variations, and the choice of manufacturing method. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Jack Lewis; Sylvia R. Mori; Elizabeth T. Keppeler; Robert R. Ziemer
2001-01-01
Abstract - Models are fit to 11 years of storm peak flows, flow volumes, and suspended sediment loads on a network of 14 stream gaging stations in the North Fork Caspar Creek, a 473-ha coastal watershed bearing a second-growth forest of redwood and Douglas-fir. For the first 4 years of monitoring, the watershed was in a relatively undisturbed state, having last been...
Steady internal flow and aerodynamic loads analysis of shuttle thermal protection system
NASA Technical Reports Server (NTRS)
Petley, D. H.; Alexander, W., Jr.; Ivey, G. W., Jr.; Kerr, P. A.
1984-01-01
An analytical model for calculation of ascent steady state tile loading was developed and validated with wind tunnel data. The analytical model is described and results are given. Results are given for loading due to shocks and skin friction. The analysis included calculation of internal flow (porous media flow and channel flow) to obtain pressures and integration of the pressures to obtain forces and moments on an insulation tile. A heat transfer program was modified by using analogies between heat transfer and fluid flow so that it could be used for internal flow calculation. The type of insulation tile considered was undensified reusable surface insulation (RSI) without gap fillers, and the location studied was the lower surface of the orbiter. Force and moment results are reported for parameter variations on surface pressure distribution, gap sizes, insulation permeability, and tile thickness.
Bulk-Flow Analysis of Hybrid Thrust Bearings for Advanced Cryogenic Turbopumps
NASA Technical Reports Server (NTRS)
SanAndres, Luis
1998-01-01
A bulk-flow analysis and computer program for prediction of the static load performance and dynamic force coefficients of angled injection, orifice-compensated hydrostatic/hydrodynamic thrust bearings have been completed. The product of the research is an efficient computational tool for the design of high-speed thrust bearings for cryogenic fluid turbopumps. The study addresses the needs of a growing technology that requires of reliable fluid film bearings to provide the maximum operating life with optimum controllable rotordynamic characteristics at the lowest cost. The motion of a cryogenic fluid on the thin film lands of a thrust bearing is governed by a set of bulk-flow mass and momentum conservation and energy transport equations. Mass flow conservation and a simple model for momentum transport within the hydrostatic bearing recesses are also accounted for. The bulk-flow model includes flow turbulence with fluid inertia advection, Coriolis and centrifugal acceleration effects on the bearing recesses and film lands. The cryogenic fluid properties are obtained from realistic thermophysical equations of state. Turbulent bulk-flow shear parameters are based on Hirs' model with Moody's friction factor equations allowing a simple simulation for machined bearing surface roughness. A perturbation analysis leads to zeroth-order nonlinear equations governing the fluid flow for the thrust bearing operating at a static equilibrium position, and first-order linear equations describing the perturbed fluid flow for small amplitude shaft motions in the axial direction. Numerical solution to the zeroth-order flow field equations renders the bearing flow rate, thrust load, drag torque and power dissipation. Solution to the first-order equations determines the axial stiffness, damping and inertia force coefficients. The computational method uses well established algorithms and generic subprograms available from prior developments. The Fortran9O computer program hydrothrust runs on a Windows 95/NT personal computer. The program, help files and examples are licensed by Texas A&M University Technology License Office. The study of the static and dynamic performance of two hydrostatic/hydrodynamic bearings demonstrates the importance of centrifugal and advection fluid inertia effects for operation at high rotational speeds. The first example considers a conceptual hydrostatic thrust bearing for an advanced liquid hydrogen turbopump operating at 170,000 rpm. The large axial stiffness and damping coefficients of the bearing should provide accurate control and axial positioning of the turbopump and also allow for unshrouded impellers, therefore increasing the overall pump efficiency. The second bearing uses a refrigerant R134a, and its application in oil-free air conditioning compressors is of great technological importance and commercial value. The computed predictions reveal that the LH2 bearing load capacity and flow rate increase with the recess pressure (i.e. increasing orifice diameters). The bearing axial stiffness has a maximum for a recess pressure rati of approx. 0.55. while the axial damping coefficient decreases as the recess pressure ratio increases. The computer results from three flow models are compared. These models are a) inertialess, b) fluid inertia at recess edges only, and c) full fluid inertia at both recess edges and film lands. The full inertia model shows the lowest flow rates, axial load capacity and stiffness coefficient but on the other hand renders the largest damping coefficients and inertia coefficients. The most important findings are related to the reduction of the outflow through the inner radius and the appearance of subambient pressures. The performance of the refrigerant hybrid thrust bearing is evaluated at two operating speeds and pressure drops. The computed results are presented in dimensionless form to evidence consistent trends in the bearing performance characteristics. As the applied axial load increases, the bearing film thickness and flow rate decrease while the recess pressure increases. The axial stiffness coefficient shows a maximum for a certain intermediate load while the damping coefficient steadily increases. The computed results evidence the paramount of centrifugal fluid inertia at low recess pressures (i.e. low loads), and where there is actually an inflow through the bearing inner diameter, accompanied by subambient pressures just downstream of the bearing recess edge. These results are solely due to centrifugal fluid inertia and advection transport effects. Recommendations include the extension of the computer program to handle flexure pivot tilting pad hybrid bearings and the ability to calculate moment coefficients for shaft angular misalignments.
Baker, Ronald J.; Wieben, Christine M.; Lathrop, Richard G.; Nicholson, Robert S.
2014-01-01
Concentrations, loads, and yields of nutrients (total nitrogen and total phosphorus) were calculated for the Barnegat Bay-Little Egg Harbor (BB-LEH) watershed for 1989–2011 at annual and seasonal (growing and nongrowing) time scales. Concentrations, loads, and yields were calculated at three spatial scales: for each of the 81 subbasins specified by 14-digit hydrologic unit codes (HUC-14s); for each of the three BB-LEH watershed segments, which coincide with segmentation of the BB-LEH estuary; and for the entire BB-LEH watershed. Base-flow and runoff values were calculated separately and were combined to provide total values. Available surface-water-quality data for all streams in the BB-LEH watershed for 1980–2011 were compiled from existing datasets and quality assured. Precipitation and streamflow data were used to distinguish between water-quality samples that were collected during base-flow conditions and those that were collected during runoff conditions. Base-flow separation of hydrographs of six streams in the BB-LEH watershed indicated that base flow accounts for about 72 to 94 percent of total flow in streams in the watershed. Base-flow mean concentrations (BMCs) of total nitrogen (TN) and total phosphorus (TP) for each HUC-14 subbasin were calculated from relations between land use and measured base-flow concentrations. These relations were developed from multiple linear regression models determined from water-quality data collected at sampling stations in the BB-LEH watershed under base-flow conditions and land-use percentages in the contributing drainage basins. The total watershed base-flow volume was estimated for each year and season from continuous streamflow records for 1989–2011 and relations between precipitation and streamflow during base-flow conditions. For each year and season, the base-flow load and yield were then calculated for each HUC-14 subbasin from the BMCs, total base-flow volume, and drainage area. The watershed-loading application PLOAD was used to calculate runoff concentrations, loads, and yields of TN and TP at the HUC-14 scale. Flow-weighted event-mean concentrations (EMCs) for runoff were developed for each major land-use type in the watershed using storm sampling data from four streams in the BB-LEH watershed and three streams outside the watershed. The EMCs were developed separately for the growing and nongrowing seasons, and were typically greater during the growing season. The EMCs, along with annual and seasonal precipitation amounts and percent imperviousness associated with land-use types, were used as inputs to PLOAD to calculate annual and seasonal runoff concentrations, loads, and yields at the HUC-14 scale. Over the period of study (1989–2011), total surface-water loads (base flow plus runoff) for the entire BB-LEH watershed for TN ranged from about 455,000 kilograms (kg) as N (1995) to 857,000 kg as N (2010). For TP, total loads for the watershed ranged from about 17,000 (1995) to 32,000 kg as P (2010). On average, the north segment accounted for about 66 percent of the annual TN load and 63 percent of the annual TP load, and the central and south segments each accounted for less than 20 percent of the nutrient loads. Loads and yields were strongly associated with precipitation patterns, ensuing hydrologic conditions, and land use. HUC-14 subbasins with the highest yields of nutrients are concentrated in the northern part of the watershed, and have the highest percentages of urban or agricultural land use. Subbasins with the lowest TN and TP yields are dominated by forest cover. Percentages of turf (lawn) cover and nonturf cover were estimated for the watershed. Of the developed land in the watershed, nearly one quarter (24.9 percent) was mapped as turf cover. Because there is a strong relation between percent turf and percent developed land, percent turf in the watershed typically increases with percent development, and the amount of development can be considered a reasonable predictor of the amount of turf cover in the watershed. In the BB-LEH watershed, calculated concentrations of TN and TP were greater for developed–turf areas than for developed–nonturf areas, which, in turn, were greater than those for undeveloped areas.
Zoboli, Ottavia; Viglione, Alberto; Rechberger, Helmut; Zessner, Matthias
2015-01-01
Patterns of changes in the concentration of total and soluble reactive phosphorus (TP, SRP) and suspended sediments at different flow levels from 1991 to 2013 in the Austrian Danube are statistically analyzed and related to point and diffuse emissions, as well as to extreme hydrological events. Annual loads are calculated with three methods and their development in time is examined taking into consideration total emissions and hydrological conditions. The reduction of point discharges achieved during the 1990s was well translated into decreasing TP and SRP baseflow concentrations during the same period, but it did not induce any change in the concentrations at higher flow levels nor in the annual transport of TP loads. A sharp and long-lasting decline in TP concentration, affecting all flow levels, took place after a major flood in 2002. It was still visible during another major flood in 2013, which recorded lower TP concentrations than its predecessor. Such decline could not be linked to changes in point or diffuse emissions. This suggests that, as a result of the flood, the river system experienced a significant depletion of its in-stream phosphorus stock and a reduced mobilization of TP rich sediments afterwards. This hypothesis is corroborated by the decoupling of peak phosphorus loads from peak maximum discharges after 2002. These results are highly relevant for the design of monitoring schemes and for the correct interpretation of water quality data in terms of assessing the performance of environmental management measures. PMID:25747371
Simultaneous measurement of passage through the restriction point and MCM loading in single cells
Håland, T. W.; Boye, E.; Stokke, T.; Grallert, B.; Syljuåsen, R. G.
2015-01-01
Passage through the Retinoblastoma protein (RB1)-dependent restriction point and the loading of minichromosome maintenance proteins (MCMs) are two crucial events in G1-phase that help maintain genome integrity. Deregulation of these processes can cause uncontrolled proliferation and cancer development. Both events have been extensively characterized individually, but their relative timing and inter-dependence remain less clear. Here, we describe a novel method to simultaneously measure MCM loading and passage through the restriction point. We exploit that the RB1 protein is anchored in G1-phase but is released when hyper-phosphorylated at the restriction point. After extracting cells with salt and detergent before fixation we can simultaneously measure, by flow cytometry, the loading of MCMs onto chromatin and RB1 binding to determine the order of the two events in individual cells. We have used this method to examine the relative timing of the two events in human cells. Whereas in BJ fibroblasts released from G0-phase MCM loading started mainly after the restriction point, in a significant fraction of exponentially growing BJ and U2OS osteosarcoma cells MCMs were loaded in G1-phase with RB1 anchored, demonstrating that MCM loading can also start before the restriction point. These results were supported by measurements in synchronized U2OS cells. PMID:26250117
Huffman, Brad A.; Hazell, William F.; Oblinger, Carolyn J.
2017-09-06
Federal, State, and local agencies and organizations have expressed concerns regarding the detrimental effects of excessive sediment transport on aquatic resources and endangered species populations in the upper Little Tennessee River and some of its tributaries. In addition, the storage volume of Lake Emory, which is necessary for flood control and power generation, has been depleted by sediment deposition. To help address these concerns, a 2-year study was conducted in the upper Little Tennessee River Basin to characterize the ambient suspended-sediment concentrations and suspended-sediment loads upstream and downstream from Lake Emory in Franklin, North Carolina. The study was conducted by the U.S. Geological Survey in cooperation with Duke Energy. Suspended-sediment samples were collected periodically, and time series of stage and turbidity data were measured from December 2013 to January 2016 upstream and downstream from Lake Emory. The stage data were used to compute time-series streamflow. Suspended-sediment samples, along with time-series streamflow and turbidity data, were used to develop regression models that were used to estimate time-series suspended-sediment concentrations for the 2014 and 2015 calendar years. These concentrations, along with streamflow data, were used to compute suspended-sediment loads. Selected suspended-sediment samples were collected for analysis of particle-size distribution, with emphasis on high-flow events. Bed-load samples were also collected upstream from Lake Emory.The estimated annual suspended-sediment loads (yields) for the upstream site for the 2014 and 2015 calendar years were 27,000 short tons (92 short tons per square mile) and 63,300 short tons (215 short tons per square mile), respectively. The annual suspended-sediment loads (yields) for the downstream site for 2014 and 2015 were 24,200 short tons (75 short tons per square mile) and 94,300 short tons (292 short tons per square mile), respectively. Overall, the suspended-sediment load at the downstream site was about 28,300 short tons greater than the upstream site over the study period.As expected, high-flow events (the top 5 percent of daily mean flows) accounted for the majority of the sediment load; 80 percent at the upstream site and 90 percent at the downstream site. A similar relation between turbidity (the top 5 percent of daily mean turbidity) and high loads was also noted. In general, when instantaneous streamflows at the upstream site exceeded 5,000 cubic feet per second, increased daily loads were computed at the downstream site. During low to moderate flows, estimated suspended-sediment loads were lower at the downstream site when compared to the upstream site, which suggests that sediment deposition may be occurring in the intervening reach during those conditions. During the high-flow events, the estimated suspended-sediment loads were higher at the downstream site; however, it is impossible to say with certainty whether the increase in loading was due to scouring of lake sediment, contributions from the additional source area, model error, or a combination of one or more of these factors. The computed loads for a one-week period (December 24–31, 2015), during which the two largest high-flow events of the study period occurred, were approximately 52 percent of the 2015 annual sediment load (36 percent of 2-year load) at the upstream site and approximately 72 percent of the 2015 annual sediment load (57 percent of 2-year load) at the downstream site. Six bedload samples were collected during three events; two high-flow events and one base-flow event. The contribution of bedload to the total sediment load was determined to be insignificant for sampled flows. In general, streamflows for long-term streamgages in the study area were below normal for the majority of the study period; however, flows during the last 3 months of the study period were above normal, including the extreme events during the last week of the study period.
Lee, C H; Sapuan, S M; Lee, J H; Hassan, M R
2016-01-01
A study of the melt volume flow rate (MVR) and the melt flow rate (MFR) of kenaf fibre (KF) reinforced Floreon (FLO) and magnesium hydroxide (MH) biocomposites under different temperatures (160-180 °C) and weight loadings (2.16, 5, 10 kg) is presented in this paper. FLO has the lowest values of MFR and MVR. The increment of the melt flow properties (MVR and MFR) has been found for KF or MH insertion due to the hydrolytic degradation of the polylactic acid in FLO. Deterioration of the entanglement density at high temperature, shear thinning and wall slip velocity were the possible causes for the higher melt flow properties. Increasing the KF loadings caused the higher melt flow properties while the higher MH contents created stronger bonding for higher macromolecular chain flow resistance, hence lower melt flow properties were recorded. However, the complicated melt flow behaviour of the KF reinforced FLO/MH biocomposites was found in this study. The high probability of KF-KF and KF-MH collisions was expected and there were more collisions for higher fibre and filler loading causing lower melt flow properties.
Clark, David W.; Skinner, Kenneth D.; Pollock, David W.
2006-01-01
A flow and transport model was created with a graphical user interface to simplify the evaluation of nitrogen loading and nitrate transport in the mid-Snake region in south-central Idaho. This model and interface package, the Snake River Nitrate Scenario Simulator, uses the U.S. Geological Survey's MODFLOW 2000 and MOC3D models. The interface, which is enabled for use with geographic information systems (GIS), was created using ESRI's royalty-free MapObjects LT software. The interface lets users view initial nitrogen-loading conditions (representing conditions as of 1998), alter the nitrogen loading within selected zones by specifying a multiplication factor and applying it to the initial condition, run the flow and transport model, and view a graphical representation of the modeling results. The flow and transport model of the Snake River Nitrate Scenario Simulator was created by rediscretizing and recalibrating a clipped portion of an existing regional flow model. The new subregional model was recalibrated with newly available water-level data and spring and ground-water nitrate concentration data for the study area. An updated nitrogen input GIS layer controls the application of nitrogen to the flow and transport model. Users can alter the nitrogen application to the flow and transport model by altering the nitrogen load in predefined spatial zones contained within similar political, hydrologic, and size-constrained boundaries.
Evidence of accumulated stress in Achilles and anterior knee tendons in elite badminton players.
Boesen, Anders Ploug; Boesen, Morten Ilum; Koenig, Merete Juhl; Bliddal, Henning; Torp-Pedersen, Soren; Langberg, Henning
2011-01-01
Tendon-related injuries are a major problem, but the aetiology of tendinopathies is unknown. In tendinopathies as well as during unaccustomed loading, intra-tendinous flow can be detected indicating that extensive loading can provoke intra-tendinous flow. The aim of present study is to evaluate the vascular response as indicated by colour Doppler (CD) activity in both the Achilles and patella tendon after loading during high-level badminton matches. The Achilles tendon was subdivided into a mid-tendon, pre-insertional, and insertional region and the anterior knee tendons into a quadriceps-, patella- and tuberositas region. Intra-tendinous flow was measured using both a semi-quantitative grading system (CD grading) and a quantitative scoring system (CF) on colour Doppler. Intra-tendinous flow in the Achilles and anterior knee tendons was examined in fourteen single players before tournament and after 1st and 2nd match, respectively on both the dominant and non-dominant side. All players had abnormal intra-tendinous flow (Colour Doppler ≥ grade 2) in at least one tendon in at least one scan during the tournament. At baseline, only two of the 14 players had normal flow in all the tendons examined. After 1st match, tendencies to higher intra-tendinous flow were observed in both the dominant patella tendon and non-dominant quadriceps tendon (P-values n.s.). After 2nd match, intra-tendinous flow was significant increased in the dominant patella tendon (P = 0.009). In all other locations, there was a trend towards a stepwise increase in intra-tendinous flow. The preliminary results indicate that high amount of intra-tendinous flow was found in elite badminton players at baseline and was increased after repetitive loading, especially in the patella tendon (dominant leg). The colour Doppler measurement can be used to determine changes in intra-tendinous flow after repetitive loading.
Huiliang, Wang; Zening, Wu; Caihong, Hu; Xinzhong, Du
2015-09-01
Nonpoint source (NPS) pollution is considered as the main reason for water quality deterioration; thus, to quantify the NPS loads reliably is the key to implement watershed management practices. In this study, water quality and NPS loads from a watershed with limited data availability were studied in a mountainous area in China. Instantaneous water discharge was measured through the velocity-area method, and samples were taken for water quality analysis in both flood and nonflood days in 2010. The streamflow simulated by Hydrological Simulation Program-Fortran (HSPF) from 1995 to 2013 and a regression model were used to estimate total annual loads of various water quality parameters. The concentrations of total phosphorus (TP) and total nitrogen (TN) were much higher during the flood seasons, but the concentrations of ammonia nitrogen (NH3-N) and nitrate nitrogen (NO3-N) were lower during the flood seasons. Nevertheless, only TP concentration was positively correlated with the flow rate. The fluctuation of annual load from this watershed was significant. Statistical results indicated the significant contribution of pollutant fluxes during flood seasons to annual fluxes. The loads of TP, TN, NH3-N, and NO3-N in the flood seasons were accounted for 58-85, 60-82, 63-88, 64-81% of the total annual loads, respectively. This study presented a new method for estimation of the water and NPS loads in the watershed with limited data availability, which simplified data collection to watershed model and overcame the scale problem of field experiment method.
Neset, Tina-Simone Schmid; Singer, Heinz; Longrée, Philipp; Bader, Hans-Peter; Scheidegger, Ruth; Wittmer, Anita; Andersson, Jafet Clas Martin
2010-07-15
This paper explores the potential of combining substance-flow modelling with water and wastewater sampling to trace consumption-related substances emitted through the urban wastewater. The method is exemplified on sucralose. Sucralose is a chemical sweetener that is 600 times sweeter than sucrose and has been on the European market since 2004. As a food additive, sucralose has recently increased in usage in a number of foods, such as soft drinks, dairy products, candy and several dietary products. In a field campaign, sucralose concentrations were measured in the inflow and outflow of the local wastewater treatment plant in Linköping, Sweden, as well as upstream and downstream of the receiving stream and in Lake Roxen. This allows the loads emitted from the city to be estimated. A method consisting of solid-phase extraction followed by liquid chromatography and high resolution mass spectrometry was used to quantify the sucralose in the collected surface and wastewater samples. To identify and quantify the sucralose sources, a consumption analysis of households including small business enterprises was conducted as well as an estimation of the emissions from the local food industry. The application of a simple model including uncertainty and sensitivity analysis indicates that at present not one large source but rather several small sources contribute to the load coming from households, small business enterprises and industry. This is in contrast to the consumption pattern seen two years earlier, which was dominated by one product. The inflow to the wastewater treatment plant decreased significantly from other measurements made two years earlier. The study shows that the combination of substance-flow modelling with the analysis of the loads to the receiving waters helps us to understand consumption-related emissions. Copyright 2010 Elsevier B.V. All rights reserved.
The TICTOP nozzle: a new nozzle contouring concept
NASA Astrophysics Data System (ADS)
Frey, Manuel; Makowka, Konrad; Aichner, Thomas
2017-06-01
Currently, mainly two types of nozzle contouring methods are applied in space propulsion: the truncated ideal contour (TIC) and the thrust-optimized parabola (TOP). This article presents a new nozzle contouring method called TICTOP, combining elements of TIC and TOP design. The resulting nozzle is shock-free as the TIC and therefore does not induce restricted shock separation leading to excessive side-loads. Simultaneously, the TICTOP nozzle will allow higher nozzle wall exit pressures and hence give a better separation margin than is the case for a TIC. Hence, this new nozzle type combines the good properties of TIC and TOP nozzles and eliminates their drawbacks. It is especially suited for first stage application in launchers where flow separation and side-loads are design drivers.
Research on Annular Frictional Pressure Loss of Hydraulic-Fracturing in Buckling Coiled Tubing
NASA Astrophysics Data System (ADS)
Liu, Bin; Cai, Meng; Li, Junliang; Xu, Yongquan; Wang, Peng
2018-01-01
Compared with conventional hydraulic fracturing, coiled tubing (CT) annular delivery sand fracturing technology is a new method to enhance the recovery ratio of low permeability reservoir. Friction pressure loss through CT has been a concern in fracturing. The small diameter of CT limits the cross-sectional area open to flow, therefore, to meet large discharge capacity, annular delivery sand technology has been gradually developed in oilfield. Friction pressure is useful for determining the required pump horsepower and fracturing construction design programs. Coiled tubing can buckle when the axial compressive load acting on the tubing is greater than critical buckling load, then the geometry shape of annular will change. Annular friction pressure loss elevates dramatically with increasing of discharge capacity, especially eccentricity and CT buckling. Despite the frequency occurrence of CT buckling in oilfield operations, traditionally annular flow frictional pressure loss considered concentric and eccentric annuli, not discussing the effects of for discharge capacity and sand ratio varying degree of CT buckling. The measured data shows that the factors mentioned above cannot be ignored in the prediction of annular pressure loss. It is necessary to carry out analysis of annulus flow pressure drop loss in coiled tubing annular with the methods of theoretical analysis and numerical simulation. Coiled tubing buckling has great influence on pressure loss of fracturing fluid. Therefore, the correlations have been developed for turbulent flow of Newtonian fluids and Two-phase flow (sand-liquid), and that improve the friction pressure loss estimation in coiled tubing operations involving a considerable level of buckling. Quartz sand evidently increases pressure loss in buckling annular, rising as high as 40%-60% more than fresh water. Meanwhile, annulus flow wetted perimeter increases with decreasing helical buckling pitch of coiled tubing, therefore, the annulus flow frictional pressure loss rapidly increases with decreasing helical buckling pitch. The research achievement provides theoretical guidance for coiled tubing annular delivery sand fracturing operation and design.
Apparatus and methods for supplying auxiliary steam in a combined cycle system
Gorman, William G.; Carberg, William George; Jones, Charles Michael
2002-01-01
To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.
An experimental investigation of wind flow over tall towers in staggered form
NASA Astrophysics Data System (ADS)
Anwar, Proma; Islam, Md. Quamrul; Ali, Mohammad
2016-07-01
In this research work an experiment is conducted to see the effect of wind loading on square, pentagonal and Hexagonal shape cylinders in staggered form. The experiment is done in an open circuit wind tunnel at a Reynolds number of 4.23×104 based on the face width of the cylinder across the flow direction. The flow velocity has been kept uniform throughout the experiment at 14.3 m/s. The test has been conducted for single cylinders first and then in staggered form. Angle of attack is chosen at a definite interval. The static pressure at different locations of the cylinder is measured by inclined multi-manometer. From the surface static pressure readings pressure coefficients are calculated first, then drag and lift coefficients are calculated using numerical Integration Method. These results will surely help engineers to design buildings with such shapes more efficiently. All the results are expressed in non-dimensional form, so they can be applied for prototype buildings and determine the wind loading at any wind speed on structures of similar external shapes.
Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer
NASA Technical Reports Server (NTRS)
Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas
2011-01-01
The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and test scale. The amplitude and frequency of oscillations varied considerably over the pump s operating space, making it difficult to predict blade loads.
Flow Separation Side Loads Excitation of Rocket Nozzle FEM
NASA Technical Reports Server (NTRS)
Smalley, Kurt B.; Brown, Andrew; Ruf, Joseph; Gilbert, John
2007-01-01
Modern rocket nozzles are designed to operate over a wide range of altitudes, and are also built with large aspect ratios to enable high efficiencies. Nozzles designed to operate over specific regions of a trajectory are being replaced in modern launch vehicles by those that are designed to operate from earth to orbit. This is happening in parallel with modern manufacturing and wall cooling techniques allowing for larger aspect ratio nozzles to be produced. Such nozzles, though operating over a large range of altitudes and ambient pressures, are typically designed for one specific altitude. Above that altitude the nozzle flow is 'underexpanded' and below that altitude, the nozzle flow is 'overexpanded'. In both conditions the nozzle produces less than the maximum possible thrust at that altitude. Usually the nozzle design altitude is well above sea level, leaving the nozzle flow in an overexpanded state for its start up as well as for its ground testing where, if it is a reusable nozzle such as the Space Shuttle Main Engine (SSME), the nozzle will operate for the majority of its life. Overexpansion in a rocket nozzle presents the critical, and sometimes design driving, problem of flow separation induced side loads. To increase their understanding of nozzle side loads, engineers at MSFC began an investigation in 2000 into the phenomenon through a task entitled "Characterization and Accurate Modeling of Rocket Engine Nozzle Side Loads", led by A. Brown. The stated objective of this study was to develop a methodology to accurately predict the character and magnitude of nozzle side loads. The study included further hot-fire testing of the MC-l engine, cold flow testing of subscale nozzles, CFD analyses of both hot-fire and cold flow nozzle testing, and finite element (fe.) analysis of the MC-1 engine and cold flow tested nozzles. A follow on task included an effort to formulate a simplified methodology for modeling a side load during a two nodal diameter fluid/structure interaction for a single moment in time.
Transient Side Load Analysis of Out-of-Round Film-Cooled Nozzle Extensions
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike
2012-01-01
There was interest in understanding the impact of out-of-round nozzle extension on the nozzle side load during transient startup operations. The out-of-round nozzle extension could be the result of asymmetric internal stresses, deformation induced by previous tests, and asymmetric loads induced by hardware attached to the nozzle. The objective of this study was therefore to computationally investigate the effect of out-of-round nozzle extension on the nozzle side loads during an engine startup transient. The rocket engine studied encompasses a regeneratively cooled chamber and nozzle, along with a film cooled nozzle extension. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and transient inlet boundary flow properties derived from an engine system simulation. Six three-dimensional cases were performed with the out-of-roundness achieved by three different degrees of ovalization, elongated on lateral y and z axes: one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation line jump was the primary source of the peak side loads. Comparing to the peak side load of the perfectly round nozzle, the peak side loads increased for the slightly and more ovalized nozzle extensions, and either increased or decreased for the two significantly ovalized nozzle extensions. A theory based on the counteraction of the flow destabilizing effect of an exacerbated asymmetrical flow caused by a lower degree of ovalization, and the flow stabilizing effect of a more symmetrical flow, created also by ovalization, is presented to explain the observations obtained in this effort.
Adhesion strength of sputtered TiAlN-coated WC insert tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budi, Esmar; Razali, M. Mohd.; Nizam, A. R. Md.
2013-09-09
The adhesion strength of TiAlN coating that deposited by using DC magnetron sputtering on WC insert tool are studied. TiAlN coating are deposited on Tungsten Carbide (WC) insert tool by varying negatively substrate bias from 79 to 221 volt and nitrogen flow rate from 30 to 72 sccm. The adhesion strength are obtained by using Rockwell indentation test method with a Brale diamond at applied load of 60,100 and 150 kgf. The lateral diameter of indentation is plotted on three different applied loads and the adhesion strength of TiAlN coating was obtained from the curved slopes at 100 and 150more » kgf. The lower curve slop indicated better adhesion strength. The results shows that the adhesion strength of sputterred TiAlN coating tend to increase as the negatively substrate bias and nitrogen flow rate are increased.« less
Study for prediction of rotor/wake/fuselage interference, part 1
NASA Technical Reports Server (NTRS)
Clark, D. R.; Maskew, B.
1985-01-01
A method was developed which allows the fully coupled calculation of fuselage and rotor airloads for typical helicopter configurations in forward flight. To do this, an iterative solution is carried out based on a conventional panel representation of the fuselage and a blade element representation of the rotor where fuselage and rotor singularity strengths are determined simultaneously at each step and the rotor wake is allowed to relax (deform) in response to changes in rotor wake loading and fuselage presence. On completion of the iteration, rotor loading and inflow, fuselage singularity strength (and, hence, pressure and velocity distributions) and rotor wake are all consistent. The results of a fully coupled calculation of the flow around representative helicopter configurations are presented. The effect of fuselage components on the rotor flow field and the overall wake structure is detailed and the aerodynamic interference between the different parts of the aircraft is discussed.
An Examination of Game-Based Learning from Theories of Flow Experience and Cognitive Load
ERIC Educational Resources Information Center
Lai, Chih-Hung; Chu, Chih-Ming; Liu, Hsiang-Hsuan; Yang, Shun-Bo; Chen, Wei-Hsuan
2013-01-01
This study aims to discuss whether game-based learning with the integration of games and digital learning could enhance not only the flow experience in learning but achieve the same flow experience in pure games. In addition, the authors discovered that whether the game-based learning could make learners to reveal higher cognitive load. The…
Simulation of systems for shock wave/compression waves damping in technological plants
NASA Astrophysics Data System (ADS)
Sumskoi, S. I.; Sverchkov, A. M.; Lisanov, M. V.; Egorov, A. F.
2016-09-01
At work of pipeline systems, flow velocity decrease can take place in the pipeline as a result of the pumps stop, the valves shutdown. As a result, compression waves appear in the pipeline systems. These waves can propagate in the pipeline system, leading to its destruction. This phenomenon is called water hammer (water hammer flow). The most dangerous situations occur when the flow is stopped quickly. Such urgent flow cutoff often takes place in an emergency situation when liquid hydrocarbons are being loaded into sea tankers. To prevent environment pollution it is necessary to stop the hydrocarbon loading urgently. The flow in this case is cut off within few seconds. To prevent an increase in pressure in a pipeline system during water hammer flow, special protective systems (pressure relief systems) are installed. The approaches to systems of protection against water hammer (pressure relief systems) modeling are described in this paper. A model of certain pressure relief system is considered. It is shown that in case of an increase in the intensity of hydrocarbons loading at a sea tanker, presence of the pressure relief system allows to organize safe mode of loading.
NASA Technical Reports Server (NTRS)
Hall, G. F.; Shamroth, S. J.; Mcdonald, H.; Briley, W. R.
1976-01-01
A method was developed for determining the aerodynamic loads on the tip of an infinitely thin, swept, cambered semi-infinite wing at an angle of attack which is operating subsonically in an inviscid medium and is subjected to a sinusoidal gust. Under the assumption of linearized aerodynamics, the loads on the tip are obtained by superposition of the steady aerodynamic results for angle of attack and camber, and the unsteady results for the response to the sinusoidal gust. The near field disturbance pressures in the fluid surrounding the tip are obtained by assuming a dipole representation for the loading on the tip and calculating the pressures accordingly. The near field pressures are used to drive a reduced form of the Navier-Stokes equations which yield the tip vortex formation. The combined viscid-inviscid analysis is applied to determining the pressures and examining the vortex rollup in the vicinity of an unswept, uncambered wing moving steadily at a Mach number of 0.2 at an angle of attack of 0.1 rad. The viscous tip flow calculation shows features expected in the tip flow such as the qualitatively proper development of boundary layers on both the upper and lower airfoil surfaces. In addition, application of the viscous solution leads to the generation of a circular type flow pattern above the airfoil suction surface.
High Fidelity Simulations of Unsteady Flow through Turbopumps and Flowliners
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.; Kwak, dochan; Chan, William; Housman, Jeff
2006-01-01
High fidelity computations were carried out to analyze the orbiter LH2 feedline flowliner. Computations were performed on the Columbia platform which is a 10,240-processor supercluster consisting of 20 Altix nodes with 512 processor each. Various computational models were used to characterize the unsteady flow features in the turbopump, including the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer, the orbiter manifold and a test article used to represent the manifold. Unsteady flow originating from the orbiter LPFTP inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the gimbal flowliners just upstream of the LPFTP. The flow fields for the orbiter manifold and representative test article are computed and analyzed for similarities and differences. The incompressible Navier-Stokes flow solver INS3D, based on the artificial compressibility method, was used to compute the flow of liquid hydrogen in each test article.
A Visualization Study of Secondary Flows in Cascades
NASA Technical Reports Server (NTRS)
Herzig, Howard Z; Hansen, Arthur G; Costello, George R
1954-01-01
Flow-visualization techniques are employed to ascertain the streamline patterns of the nonpotential secondary flows in the boundary layers of cascades, and thereby to provide a basis for more extended analyses in turbomachines. The three-dimensional deflection of the end-wall boundary layer results in the formation of a vortex within each cascade passage. The size and tightness of the vortex generated depend upon the main-flow turning in the cascade passage. Once formed, a vortex resists turning in subsequent blade rows, with consequent unfavorable angles of attack and possible flow disturbances on the pressure surfaces of subsequent blade rows when the vortices impinge on these surfaces. Two major tip-clearance effects are observed, the formation of a tip-clearance vortex and the scraping effect of a blade with relative motion past the wall boundary layer. The flow patterns indicate methods for improving the blade tip-loading characteristics of compressors and of low- and high-speed turbulence.
NASA Astrophysics Data System (ADS)
Mottyll, S.; Skoda, R.
2015-12-01
A compressible inviscid flow solver with barotropic cavitation model is applied to two different ultrasonic horn set-ups and compared to hydrophone, shadowgraphy as well as erosion test data. The statistical analysis of single collapse events in wall-adjacent flow regions allows the determination of the flow aggressiveness via load collectives (cumulative event rate vs collapse pressure), which show an exponential decrease in agreement to studies on hydrodynamic cavitation [1]. A post-processing projection of event rate and collapse pressure on a reference grid reduces the grid dependency significantly. In order to evaluate the erosion-sensitive areas a statistical analysis of transient wall loads is utilised. Predicted erosion sensitive areas as well as temporal pressure and vapour volume evolution are in good agreement to the experimental data.
Yang, Junsi; Ciftci, Ozan Nazim
2016-09-01
The main objective of this study was to overcome the issues related to the volatility and strong smell that limit the efficient utilization of essential oils as "natural" antimicrobials in the food industry. Peppermint essential oil-loaded hollow solid lipid micro- and nanoparticles were successfully formed using a novel "green" method based on atomization of CO 2 -expanded lipid mixture. The highest essential oil loading efficiency (47.5%) was achieved at 50% initial essential oil concentration at 200bar expansion pressure and 50μm nozzle diameter, whereas there was no significant difference between the loading efficiencies (35%-39%) at 5%, 7%, 10%, and 20% initial essential oil concentrations (p>0.05). Particles generated at all initial essential oil concentrations were spherical but increasing the initial essential oil concentration to 20% and 50% generated a less smooth particle surface. After 4weeks of storage, 61.2%, 42.5%, 0.2%, and 2.0% of the loaded essential oil was released from the particles formed at 5%, 10%, 20%, and 50% initial essential oil concentrations, respectively. This innovative simple and clean process is able to form spherical hollow micro- and nanoparticles loaded with essential oil that can be used as food grade antimicrobials. These novel hollow solid lipid micro- and nanoparticles are alternatives to the solid lipid nanoparticles, and overcome the issues associated with the solid lipid nanoparticles. The dry free-flowing products make the handling and storage more convenient, and the simple and clean process makes the scaling up more feasible. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bed material transport in the Virgin River, Utah
Andrews, E.D.
2000-01-01
Detailed information concerning the rate and particle size distribution of bed material transport by streamflows can be very difficult and expensive to obtain, especially where peak streamflows are brief and bed material is poorly sorted, including some very large boulders. Such streams, however, are common in steep, arid watersheds. Any computational approach must consider that (1) only the smaller particle sizes present on the streambed move even during large floods and (2) the largest bed particles exert a significant form drag on the flow. Conventional methods that rely on a single particle size to estimate the skin friction shear stress acting on the mobile fraction of the bed material perform poorly. Instead, for this study, the skin friction shear stress was calculated for the observed range of streamflows by calculating the form drag exerted on the reach‐averaged flow field by all particle sizes. Suspended and bed load transported rates computed from reach‐averaged skin friction shear stress are in excellent agreement with measured transport rates. The computed mean annual bed material load, including both bed load and suspended load, of the East Fork Virgin River for the water years 1992‐1996 was approximately 1.3×10 5 t. A large portion of the bed material load consists of sand‐sized particles, 0.062–1.0 mm in diameter, that are transported in suspension. Such particles, however, constituted only 10% of the surface bed material and less than 25% of the subsurface bed material. The mean annual quantity of bed load transported was 1060 t/yr with a median size of 15 mm.
Integration of a supersonic unsteady aerodynamic code into the NASA FASTEX system
NASA Technical Reports Server (NTRS)
Appa, Kari; Smith, Michael J. C.
1987-01-01
A supersonic unsteady aerodynamic loads prediction method based on the constant pressure method was integrated into the NASA FASTEX system. The updated FASTEX code can be employed for aeroelastic analyses in subsonic and supersonic flow regimes. A brief description of the supersonic constant pressure panel method, as applied to lifting surfaces and body configurations, is followed by a documentation of updates required to incorporate this method in the FASTEX code. Test cases showing correlations of predicted pressure distributions, flutter solutions, and stability derivatives with available data are reported.
Phosphorus and suspended sediment load estimates for the Lower Boise River, Idaho, 1994-2002
Donato, Mary M.; MacCoy, Dorene E.
2004-01-01
The U.S. Geological Survey used LOADEST, newly developed load estimation software, to develop regression equations and estimate loads of total phosphorus (TP), dissolved orthophosphorus (OP), and suspended sediment (SS) from January 1994 through September 2002 at four sites on the lower Boise River: Boise River below Diversion Dam near Boise, Boise River at Glenwood Bridge at Boise, Boise River near Middleton, and Boise River near Parma. The objective was to help the Idaho Department of Environmental Quality develop and implement total maximum daily loads (TMDLs) by providing spatial and temporal resolution for phosphorus and sediment loads and enabling load estimates made by mass balance calculations to be refined and validated. Regression models for TP and OP generally were well fit on the basis of regression coefficients of determination (R2), but results varied in quality from site to site. The TP and OP results for Glenwood probably were affected by the upstream wastewater-treatment plant outlet, which provides a variable phosphorus input that is unrelated to river discharge. Regression models for SS generally were statistically well fit. Regression models for Middleton for all constituents, although statistically acceptable, were of limited usefulness because sparse and intermittent discharge data at that site caused many gaps in the resulting estimates. Although the models successfully simulated measured loads under predominant flow conditions, errors in TP and SS estimates at Middleton and in TP estimates at Parma were larger during high- and low-flow conditions. This shortcoming might be improved if additional concentration data for a wider range of flow conditions were available for calibrating the model. The average estimated daily TP load ranged from less than 250 pounds per day (lb/d) at Diversion to nearly 2,200 lb/d at Parma. Estimated TP loads at all four sites displayed cyclical variations coinciding with seasonal fluctuations in discharge. Estimated annual loads of TP ranged from less than 8 tons at Diversion to 570 tons at Parma. Annual loads of dissolved OP peaked in 1997 at all sites and were consistently higher at Parma than at the other sites. The ratio of OP to TP varied considerably throughout the year at all sites. Peaks in the OP:TP ratio occurred primarily when flows were at their lowest annual stages; estimated seasonal OP:TP ratios were highest in autumn at all sites. Conversely, when flows were high, the ratio was low, reflecting increased TP associated with particulate matter during high flows. Parma exhibited the highest OP:TP ratio during all seasons, at least 0.60 in spring and nearly 0.90 in autumn. Similar OP:TP ratios were estimated at Glenwood. Whereas the OP:TP ratio for Parma and Glenwood peaked in November or December, decreased from January through May, and increased again after June, estimates for Diversion showed nearly the opposite pattern ? ratios were highest in July and lowest in January and February. This difference might reflect complex biological and geochemical processes involving nutrient cycling in Lucky Peak Lake, but further data are needed to substantiate this hypothesis. Estimated monthly average SS loads were highest at Diversion, about 400 tons per day (ton/d). Average annual loads from 1994 through 2002 were 144,000 tons at Diversion, 33,000 tons at Glenwood, and 88,000 tons at Parma. Estimated SS loads peaked in the spring at all sites, coinciding with high flows. Increases in TP in the reach from Diversion to Glenwood ranged from 200 to 350 lb/d. Decreases in TP were small in this reach only during high flows in January and February 1997. Decreases in SS, were large during high-flow conditions indicating sediment deposition in the reach. Intermittent data at Middleton indicated that increases and decreases in TP in the reach from Glenwood to Middleton were during low- and high-flow conditions, respectively. All constituents increased in the r
Inferential Framework for Autonomous Cryogenic Loading Operations
NASA Technical Reports Server (NTRS)
Luchinsky, Dmitry G.; Khasin, Michael; Timucin, Dogan; Sass, Jared; Perotti, Jose; Brown, Barbara
2017-01-01
We address problem of autonomous cryogenic management of loading operations on the ground and in space. As a step towards solution of this problem we develop a probabilistic framework for inferring correlations parameters of two-fluid cryogenic flow. The simulation of two-phase cryogenic flow is performed using nearly-implicit scheme. A concise set of cryogenic correlations is introduced. The proposed approach is applied to an analysis of the cryogenic flow in experimental Propellant Loading System built at NASA KSC. An efficient simultaneous optimization of a large number of model parameters is demonstrated and a good agreement with the experimental data is obtained.
Magnus effects at high angles of attack and critical Reynolds numbers
NASA Technical Reports Server (NTRS)
Seginer, A.; Ringel, M.
1983-01-01
The Magnus force and moment experienced by a yawed, spinning cylinder were studied experimentally in low speed and subsonic flows at high angles of attack and critical Reynolds numbers. Flow-field visualization aided in describing a flow model that divides the Magnus phenomenon into a subcritical region, where reverse Magnus loads are experienced, and a supercritical region where these loads are not encountered. The roles of the spin rate, angle of attack, and crossflow Reynolds number in determining the boundaries of the subcritical region and the variations of the Magnus loads were studied.
Solid-loaded flows: applications in technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molerus, O.
1983-01-01
The evaluation of experiments and the representation of the resulting data by nondimensional groups defined ad hoc largely governs the treatment of problems arising with solid-loaded flows in practice. Without doubt, this is a result of the very complex nature of solid-loaded flows and, consequently, empiricism tends to prevail, more or less. To overcome this situation, two sets of nondimensional groups, which take into consideration the translatory, as well as the rotary, motion of particles suspended in a fluid, are derived from the equations of motion of a solid body. The intuitive meaning of these nondimensional groups arises from theirmore » derivation. With respect to applications in engineering, the influence of the rotary motion of a particle on the motion of its center of gravity can thus be taken into account. As such, a common basis for the representation of the different phenomena observed with solid-loaded flows is established. The application of the above concepts to fluidization and hydraulic and pneumatic conveying proves their usefulness. New insights into well-known facts as well as new results demonstrate that taking the real nature of solid particles (i.e., those of finite dimensions) into consideration will provide a common and profound basis for the representation of different phenomena observed with solid-loaded flows in practice.« less
Effect of a dual inlet channel on cell loading in microfluidics.
Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu
2014-11-01
Unwanted sedimentation and attachment of a number of cells onto the bottom channel often occur on relatively large-scale inlets of conventional microfluidic channels as a result of gravity and fluid shear. Phenomena such as sedimentation have become recognized problems that can be overcome by performing microfluidic experiments properly, such as by calculating a meaningful output efficiency with respect to real input. Here, we present a dual-inlet design method for reducing cell loss at the inlet of channels by adding a new " upstream inlet " to a single main inlet design. The simple addition of an upstream inlet can create a vertically layered sheath flow prior to the main inlet for cell loading. The bottom layer flow plays a critical role in preventing the cells from attaching to the bottom of the channel entrance, resulting in a low possibility of cell sedimentation at the main channel entrance. To provide proof-of-concept validation, we applied our design to a microfabricated flow cytometer system (μFCS) and compared the cell counting efficiency of the proposed μFCS with that of the previous single-inlet μFCS and conventional FCS. We used human white blood cells and fluorescent microspheres to quantitatively evaluate the rate of cell sedimentation in the main inlet and to measure fluorescence sensitivity at the detection zone of the flow cytometer microchip. Generating a sheath flow as the bottom layer was meaningfully used to reduce the depth of field as well as the relative deviation of targets in the z-direction (compared to the x-y flow plane), leading to an increased counting sensitivity of fluorescent detection signals. Counting results using fluorescent microspheres showed both a 40% reduction in the rate of sedimentation and a 2-fold higher sensitivity in comparison with the single-inlet μFCS. The results of CD4(+) T-cell counting also showed that the proposed design results in a 25% decrease in the rate of cell sedimentation and a 28% increase in sensitivity when compared to the single-inlet μFCS. This method is simple and easy to use in design, yet requires no additional time or cost in fabrication. Furthermore, we expect that this approach could potentially be helpful for calculating exact cell loading and counting efficiency for a small input number of cells, such as primary cells and rare cells, in microfluidic channel applications.
Thiros, Susan A.
2017-03-23
The U.S. Geological Survey (USGS), in cooperation with the Colorado River Basin Salinity Control Forum, studied trends in dissolved-solids loads at selected sites in and near the Uinta Basin, Utah. The Uinta Basin study area includes the Duchesne River Basin and the Middle Green River Basin in Utah from below Flaming Gorge Reservoir to the town of Green River.Annual dissolved-solids loads for water years (WY) 1989 through 2013 were estimated for 16 gaging stations in the study area using streamflow and water-quality data from the USGS National Water Information System database. Eight gaging stations that monitored catchments with limited or no agricultural land use (natural subbasins) were used to assess loads from natural sources. Four gaging stations that monitored catchments with agricultural land in the Duchesne River Basin were used to assess loads from agricultural sources. Four other gaging stations were included in the dissolved-solids load and trend analysis to help assess the effects of agricultural areas that drain to the Green River in the Uinta Basin, but outside of the Duchesne River Basin.Estimated mean annual dissolved-solids loads for WY 1989–2013 ranged from 1,520 tons at Lake Fork River above Moon Lake, near Mountain Home, Utah (UT), to 1,760,000 tons at Green River near Green River, UT. The flow-normalized loads at gaging stations upstream of agricultural activities showed no trend or a relatively small change. The largest net change in modeled flow-normalized load was -352,000 tons (a 17.8-percent decrease) at Green River near Green River, UT.Annual streamflow and modeled dissolved-solids loads at the gaging stations were balanced between upstream and downstream sites to determine how much water and dissolved solids were transported to the Duchesne River and a section of the Green River, and how much was picked up in each drainage area. Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites show that Green River near Jensen, UT, accounts for 64 percent of the load in the river at Green River, UT, while the Duchesne River and White River contribute 10 and 13 percent, respectively.Annual streamflow and modeled dissolved-solids loads at the gaging stations were balanced between upstream and downstream sites to determine how much water and dissolved solids were transported to the Duchesne River and a section of the Green River, and how much was picked up in each drainage area. Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites show that Green River near Jensen, UT, accounts for 64 percent of the load in the river at Green River, UT, while the Duchesne River and White River contribute 10 and 13 percent, respectively.The flow-normalized dissolved-solids loads estimated at Duchesne River near Randlett, UT, and White River near Watson, UT, decreased by 68,000 and 55,300 tons, or 27.8 and 20.8 percent respectively, when comparing 1989 to 2013. The drainage basins for both rivers have undergone salinity-control projects since the early 1980s to reduce the dissolved-solids load entering the Colorado River. Approximately 19 percent of the net change in flow-normalized load at Green River at Green River, UT, is from changes in load modeled at Duchesne River near Randlett, UT, and 16 percent from changes in load modeled at White River near Watson, UT. The net change in flow-normalized load estimated at Green River near Greendale, UT, for WY 1989–2013 accounts for about 45 percent of the net change estimated at Green River at Green River, UT.Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites in the Duchesne River Basin show that 75,400 tons or 44 percent of the load at the Duchesne River near Randlett, UT, gaging station was not accounted for at any of the upstream gages. Most of this unmonitored load is derived from tributary inflow, groundwater discharge, unconsumed irrigation water, and irrigation tail water.A mass balance of WY 1989–2013 flow-normalized loads estimated at sites in the Duchesne River Basin indicates that the flow-normalized load of unmonitored inflow to the Duchesne River between the Myton and Randlett gaging stations decreased by 38 percent. The total net decrease in flow-normalized load calculated for unmonitored inflow in the drainage basin accounts for 94 percent of the decrease in WY 1989–2013 flow-normalized load modeled at the Duchesne River near Randlett, UT, gaging station. Irrigation improvements in the drainage basin have likely contributed to the decrease in flow-normalized load.Reductions in dissolved-solids load estimated by the Natural Resources Conservation Service (NRCS) and the Bureau of Reclamation (Reclamation) from on- and off-farm improvements in the Uinta Basin totaled about 135,000 tons in 2013 (81,900 tons from on-farm improvements and 53,300 tons from off-farm improvements). The reduction in dissolved-solids load resulting from on- and off-farm improvements facilitated by the NRCS and Reclamation in the Price River Basin from 1989 to 2013 was estimated to be 64,800 tons.The amount of sprinkler-irrigated land mapped in the drainage area or subbasin area for a gaging station was used to estimate the reduction in load resulting from the conversion from flood to sprinkler irrigation. Sprinkler-irrigated land mapped in the Uinta Basin totaled 109,630 acres in 2012. Assuming conversion to wheel-line sprinklers, a reduction in dissolved-solids load in the Uinta Basin of 95,800 tons in 2012 was calculated using the sprinkler-irrigation acreage and a pre-salinity-control project dissolved-solids yield of 1.04 tons per acre.A reduction of 72,800 tons in dissolved-solids load from irrigation improvements was determined from sprinkler-irrigated lands in the Ashley Valley and Jensen, Pelican Lake, and Pleasant Valley areas (mapped in 2012); and in the Price River Basin (mapped in 2011). This decrease in dissolved-solids load is 8,800 tons more than the decrease in unmonitored flow-normalized dissolved-solids load (-64,000 tons) determined for the Green River between the Jensen and Green River gaging stations.The net WY 1989–2013 change in flow-normalized dissolved-solids load at the Duchesne River near Randlett, UT, and the Green River between the Jensen and Green River, UT, gaging stations determined from mass-balance calculations was compared to reported reductions in dissolved-solids load from on- and off-farm improvements and estimated reductions in load determined from mapped sprinkler-irrigated areas in the Duchesne River Basin and the area draining to the Green River between the Jensen and Green River gaging stations. The combined NRCS and Reclamation estimates of reduction in dissolved-solids load from on- and off-farm improvements in the study area (200,000 tons) is more than the reduction in load estimated using the acreage with sprinkler improvements (136,000 tons) or the mass-balance of flow-normalized load (132,000 tons).
Shanley, J.B.; Kram, P.; Hruska, J.; Bullen, T.D.
2004-01-01
Much of the biogeochemical cycling research in catchments in the past 25 years has been driven by acid deposition research funding. This research has focused on vulnerable base-poor systems; catchments on alkaline lithologies have received little attention. In regions of high acid loadings, however, even well-buffered catchments are susceptible to forest decline and episodes of low alkalinity in streamwater. As part of a collaboration between the Czech and U.S. Geological Surveys, we compared biogeochemical patterns in two well-studied, well-buffered catchments: Pluhuv Bor in the western Czech Republic, which has received high loading of atmospheric acidity, and Sleepers River Research Watershed in Vermont, U.S.A., where acid loading has been considerably less. Despite differences in lithology, wetness, forest type, and glacial history, the catchments displayed similar patterns of solute concentrations and flow. At both catchments, base cation and alkalinity diluted with increasing flow, whereas nitrate and dissolved organic carbon increased with increasing flow. Sulfate diluted with increasing flow at Sleepers River, while at Pluhuv Bor the sulfate-flow relation shifted from positive to negative as atmospheric sulfur (S) loadings decreased and soil S pools were depleted during the 1990s. At high flow, alkalinity decreased to near 100 ??eq L-1 at Pluhuv Bor compared to 400 ??eq L-1 at Sleepers River. Despite the large amounts of S flushed from Pluhuv Bor soils, these alkalinity declines were caused solely by dilution, which was greater at Pluhuv Bor relative to Sleepers River due to greater contributions from shallow flow paths at high flow. Although the historical high S loading at Pluhuv Bor has caused soil acidification and possible forest damage, it has had little effect on the acid/base status of streamwater in this well-buffered catchment. ?? 2004 Kluwer Academic Publishers.
Study on casing treatment and stator matching on multistage fan
NASA Astrophysics Data System (ADS)
Wu, Chuangliang; Yuan, Wei; Deng, Zhe
2017-10-01
Casing treatments are required for expanding the stall margin of multi-stage high-load turbofans designed with high blade-tip Mach numbers and high leakage flow. In the case of a low mass flow, the casing treatment effectively reduces the blockages caused by the leakage flow and enlarges the stall margin. However, in the case of a high mass flow, the casing treatment affects the overall flow capacity of the fan, the thrust when operating at the high speeds usually required by design-point specifications. Herein, we study a two-stage high-load fan with three-dimensional numerical simulations. We use the simulation results to propose a scheme that enlarges the stall margin of multistage high-load fans without sacrificing the flow capacity when operating with a large mass flow. Furthermore, a circumferential groove casing treatment is used and adjustments are made to the upstream stator angle to match the casing treatment. The stall margin is thus increased to 16.3%, with no reduction in the maximum mass flow rate or the design thrust performance.
NASA Technical Reports Server (NTRS)
Whitney, W. J.
1977-01-01
The stage work distribution among the three stages was very close to the design value. The specific work output-mass flow characteristics of the three stages were closely matched. The efficiency of the 3 1/2 stage turbine at design specific work output and design speed was within 0.008 of the estimated value, and this agreement was felt to demonstrate the adequacy of the prediction method in the high stage loading factor regime.
Fast Plane Wave 2-D Vector Flow Imaging Using Transverse Oscillation and Directional Beamforming.
Jensen, Jonas; Villagomez Hoyos, Carlos Armando; Stuart, Matthias Bo; Ewertsen, Caroline; Nielsen, Michael Bachmann; Jensen, Jorgen Arendt
2017-07-01
Several techniques can estimate the 2-D velocity vector in ultrasound. Directional beamforming (DB) estimates blood flow velocities with a higher precision and accuracy than transverse oscillation (TO), but at the cost of a high beamforming load when estimating the flow angle. In this paper, it is proposed to use TO to estimate an initial flow angle, which is then refined in a DB step. Velocity magnitude is estimated along the flow direction using cross correlation. It is shown that the suggested TO-DB method can improve the performance of velocity estimates compared with TO, and with a beamforming load, which is 4.6 times larger than for TO and seven times smaller than for conventional DB. Steered plane wave transmissions are employed for high frame rate imaging, and parabolic flow with a peak velocity of 0.5 m/s is simulated in straight vessels at beam-to-flow angles from 45° to 90°. The TO-DB method estimates the angle with a bias and standard deviation (SD) less than 2°, and the SD of the velocity magnitude is less than 2%. When using only TO, the SD of the angle ranges from 2° to 17° and for the velocity magnitude up to 7%. Bias of the velocity magnitude is within 2% for TO and slightly larger but within 4% for TO-DB. The same trends are observed in measurements although with a slightly larger bias. Simulations of realistic flow in a carotid bifurcation model provide visualization of complex flow, and the spread of velocity magnitude estimates is 7.1 cm/s for TO-DB, while it is 11.8 cm/s using only TO. However, velocities for TO-DB are underestimated at peak systole as indicated by a regression value of 0.97 for TO and 0.85 for TO-DB. An in vivo scanning of the carotid bifurcation is used for vector velocity estimations using TO and TO-DB. The SD of the velocity profile over a cardiac cycle is 4.2% for TO and 3.2% for TO-DB.
Duggan, J; Bates, M P; Phillips, C A
2001-06-01
The use of poultry waste as a fertiliser on arable land is an accepted method of waste treatment. However, run-off from such practices may result in contamination of the watercourse by human pathogens. In this study the effectiveness of using constructed wetlands as an alternative treatment for poultry manure waste was evaluated. Enumeration of Campylobacter spp., Escherichia coli, total coliforms and total aerobes were carried out on influent and effluent samples from reed beds loaded with poultry waste. For both sequential loading and continuous loading there was a statistically significant mean log reduction of 3.56 and 4.25 for E. coli, 3.2 and 3.88 for coliforms, 3.85 and 4.2 for total aerobic counts and 3.13 and 2.96 for Campylobacter spp., respectively. This method, which has been previously recognised as cost-effective and environmentally acceptable, provides an efficient method for reducing numbers of these bacteria in poultry waste and therefore an effective alternative treatment for such waste or waters containing run off from land previously spread with poultry manure.
Predicting Flows of Rarefied Gases
NASA Technical Reports Server (NTRS)
LeBeau, Gerald J.; Wilmoth, Richard G.
2005-01-01
DSMC Analysis Code (DAC) is a flexible, highly automated, easy-to-use computer program for predicting flows of rarefied gases -- especially flows of upper-atmospheric, propulsion, and vented gases impinging on spacecraft surfaces. DAC implements the direct simulation Monte Carlo (DSMC) method, which is widely recognized as standard for simulating flows at densities so low that the continuum-based equations of computational fluid dynamics are invalid. DAC enables users to model complex surface shapes and boundary conditions quickly and easily. The discretization of a flow field into computational grids is automated, thereby relieving the user of a traditionally time-consuming task while ensuring (1) appropriate refinement of grids throughout the computational domain, (2) determination of optimal settings for temporal discretization and other simulation parameters, and (3) satisfaction of the fundamental constraints of the method. In so doing, DAC ensures an accurate and efficient simulation. In addition, DAC can utilize parallel processing to reduce computation time. The domain decomposition needed for parallel processing is completely automated, and the software employs a dynamic load-balancing mechanism to ensure optimal parallel efficiency throughout the simulation.
Nimick, David A.; Cleasby, Thomas E.
2001-01-01
A metal-loading study using tracer-injection and synoptic-sampling methods was conducted in Daisy Creek and a short reach of the Stillwater River during baseflow in August 1999 to quantify the metal inputs from acid rock drainage in the New World Mining District near Yellowstone National Park and to examine the downstream transport of these metals into the Stillwater River. Loads were calculated for many mainstem and inflow sites by combining streamflow determined using the tracer-injection method with concentrations of major ions and metals that were determined in synoptic water-quality samples. Water quality and aquatic habitat in Daisy Creek have been affected adversely by drainage derived from waste rock and adit discharge at the McLaren Mine as well as from natural weathering of pyrite-rich mineralized rock that comprises and surrounds the ore zones. However, the specific sources and transport pathways are not well understood. Knowledge of the main sources and transport pathways of metals and acid can aid resource managers in planning and conducting effective and cost-efficient remediation activities. The metals cadmium, copper, lead, and zinc occur at concentrations that are sufficiently elevated to be potentially lethal to aquatic life in Daisy Creek and to pose a toxicity risk in part of the Stillwater River. Copper is of most concern in Daisy Creek because it occurs at higher concentrations than the other metals. Acidic surface inflows had dissolved concentrations as high as 20.6 micrograms per liter (?g/L) cadmium, 26,900 ?g/L copper, 76.4 ?g/L lead, and 3,000 ?g/L zinc. These inflows resulted in maximum dissolved concentrations in Daisy Creek of 5.8 ?g/L cadmium, 5,790 ?g/L copper, 3.8 ?g/L lead, and 848 ?g/L zinc. Significant copper loading to Daisy Creek occurred only in the upper half of the stream. Sources included subsurface inflow and right-bank (mined side) surface inflows. Copper loads in left-bank (unmined side) surface inflows were negligible. Most (71 percent) of the total copper loading in the study reach occurred along a 341-foot reach near the stream?s headwaters. About 53 percent of the total copper load was contributed by five surface inflows that drain a manganese bog and the southern part of the McLaren Mine. Copper loading from subsurface inflow was substantial, contributing 46 percent of the total dissolved copper load to Daisy Creek. More than half of this subsurface copper loading occurred downstream from the reaches that received significant surface loading. Flow through the shallow subsurface appears to be the main copper-transport pathway from the McLaren Mine and surrounding altered and mineralized bedrock to Daisy Creek during base-flow conditions. Little is known about the source of acid and copper in this subsurface flow. However, possible sources include the mineralized rocks of Fisher Mountain upgradient of the McLaren Mine area, the surficial waste rock at the mine, and the underlying pyritic bedrock.
NASA Astrophysics Data System (ADS)
Gardner, W. P.
2016-12-01
In this presentation the definition of hydraulic connection will be explored with a focus on the role of deep groundwater in streamflow generation and its time and space limits. Regional groundwater flow paths can be important sources of baseflow and potentially event response in surface water systems. This deep groundwater discharge plays an important role in determining how the watershed responds to climatic forcing, whether watersheds are a carbon source or sink and can be significant for watershed geochemistry and nutrient loading. These flow paths potentially "connect" to surface water systems and saturated soil zones at large distances, and over long time scales. However, these flow paths are challenging to detect, especially with hydraulic techniques. Here we will discuss some of the basic physical processes that affect the hydraulic signal along a groundwater flow path and their implications for the definition of hydrologic connection. Methods of measuring hydraulic connection using groundwater head response and their application in detecting regional groundwater discharge will be discussed. Environmental tracers are also a powerful method for identifying connected flowpaths in groundwater systems, and are commonly used to determine flow connection and flow rates in groundwater studies. Isotopic tracer methods for detecting deep, regional flow paths in watersheds will be discussed, along with observations of deep groundwater discharge in shallow alluvial systems around the world. The goal of this talk is to discuss hydraulic and hydrologic connection from a groundwater hydrologist's perspective, spark conversation on the meaning of hydrologic connection, the processes which govern hydraulic response and methods to measure flow connections and flux.
NASA Astrophysics Data System (ADS)
Chen, D.; Zhang, Y.
2008-12-01
The objective of this paper is to describe the statistical properties of experiments on non-uniform bed-load transport as well as the mechanism of bed armoring processes. Despite substantial effort made over the last two decades, the ability to compute the bed-load flux in a turbulent system remains poor. The major obstacles include the poor understanding of the formation of armor lays on bed surfaces. Such a layer is much flow-resistible than the underlying material and therefore significantly inhibits sediment transport from the reach. To study the problem, we conducted a flume study for mixed sand/gravel sediments. We observed that aggregated sediment blocks were the most common characters in armor layers - the largest sizes resist hydraulic forces, while the smaller sizes add interlocking support and prevent loss of fine material through gaps between the larger particles. Fractional transport rates with the existing of armor layers were measured with time by sediment trapping method at the end of flume. To address the intermittent and time-varying behavior of bed-load transport during bed armoring processes, we investigated the probability distribution of the fractional bed-load transport rates, and the underlying dynamic model derived from the continuous time random walk framework. Results indicate that it is critical to consider the impact of armor layers when a flow is sufficient to move some of the finer particles and yet insufficient to move all the larger particles on a channel bed.
Three-dimensional Computational Fluid Dynamics Investigation of a Spinning Helicopter Slung Load
NASA Technical Reports Server (NTRS)
Theorn, J. N.; Duque, E. P. N.; Cicolani, L.; Halsey, R.
2005-01-01
After performing steady-state Computational Fluid Dynamics (CFD) calculations using OVERFLOW to validate the CFD method against static wind-tunnel data of a box-shaped cargo container, the same setup was used to investigate unsteady flow with a moving body. Results were compared to flight test data previously collected in which the container is spinning.
High-throughput biological small-angle X-ray scattering with a robotically loaded capillary cell
Nielsen, S. S.; Møller, M.; Gillilan, R. E.
2012-01-01
With the rise in popularity of biological small-angle X-ray scattering (BioSAXS) measurements, synchrotron beamlines are confronted with an ever-increasing number of samples from a wide range of solution conditions. To meet these demands, an increasing number of beamlines worldwide have begun to provide automated liquid-handling systems for sample loading. This article presents an automated sample-loading system for BioSAXS beamlines, which combines single-channel disposable-tip pipetting with a vacuum-enclosed temperature-controlled capillary flow cell. The design incorporates an easily changeable capillary to reduce the incidence of X-ray window fouling and cross contamination. Both the robot-control and the data-processing systems are written in Python. The data-processing code, RAW, has been enhanced with several new features to form a user-friendly BioSAXS pipeline for the robot. The flow cell also supports efficient manual loading and sample recovery. An effective rinse protocol for the sample cell is developed and tested. Fluid dynamics within the sample capillary reveals a vortex ring pattern of circulation that redistributes radiation-damaged material. Radiation damage is most severe in the boundary layer near the capillary surface. At typical flow speeds, capillaries below 2 mm in diameter are beginning to enter the Stokes (creeping flow) regime in which mixing due to oscillation is limited. Analysis within this regime shows that single-pass exposure and multiple-pass exposure of a sample plug are functionally the same with regard to exposed volume when plug motion reversal is slow. The robot was tested on three different beamlines at the Cornell High-Energy Synchrotron Source, with a variety of detectors and beam characteristics, and it has been used successfully in several published studies as well as in two introductory short courses on basic BioSAXS methods. PMID:22509071
Horstkotte, Burkhard; Chocholouš, Petr; Solich, Petr
2016-04-01
We report on a Lab-On-Valve (LOV) configuration for analyte preconcentration from milliliter sample volumes using confluent mixing in the holding coil for in-line addition of loading buffer. The system was applied to the spectrophotometric determination of iron(II) in acidified seawater using 1,10-phenanthroline as color reagent. A cellulose-based chelating sorbent containing 8-hydroxyquinoline was used for the first time in LOV and excellent retention behavior and loading capacity were found. The flow system employs a syringe pump for handling all solutions (sorbent suspension, loading buffer, water, eluent, and color reagent) and a peristaltic pump for sample propulsion and includes a fit-for-purpose 14 cm long detection glass flow cell and a bubble trap for in-line carrier degasification. Advantage was taken of the LOV flow-through port to keep the eluted analytes for re-aspiration for subsequent chromogenic reaction. In effect, a universal analyzer configuration and preconcentration procedure was developed, which is combinable with other analytes, sorbents, and reagents. Among the studied parameters were the compositions, pH, volumes, and flow rates of loading buffer, eluent, and color reagent, as well as the microcolumn size, repeatability, and system stability. Reproducibility of 4.1% RSD over the entire working range, a LOD of down to 5 nmol L(-1), sampling frequency of 12h(-1), and linearity up to 1 µmol L(-1) for 3.3 mL of sample were obtained and applicability to real samples was demonstrated. It was proven that both Fe(III) and Fe(II) were retained and yielded similar recovery and sensitivity values. The method was applied to coastal seawater samples and spiking experiments yielded recovery values close to 100%. Copyright © 2015 Elsevier B.V. All rights reserved.
Unstructured Adaptive Grid Computations on an Array of SMPs
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Pramanick, Ira; Sohn, Andrew; Simon, Horst D.
1996-01-01
Dynamic load balancing is necessary for parallel adaptive methods to solve unsteady CFD problems on unstructured grids. We have presented such a dynamic load balancing framework called JOVE, in this paper. Results on a four-POWERnode POWER CHALLENGEarray demonstrated that load balancing gives significant performance improvements over no load balancing for such adaptive computations. The parallel speedup of JOVE, implemented using MPI on the POWER CHALLENCEarray, was significant, being as high as 31 for 32 processors. An implementation of JOVE that exploits 'an array of SMPS' architecture was also studied; this hybrid JOVE outperformed flat JOVE by up to 28% on the meshes and adaption models tested. With large, realistic meshes and actual flow-solver and adaption phases incorporated into JOVE, hybrid JOVE can be expected to yield significant advantage over flat JOVE, especially as the number of processors is increased, thus demonstrating the scalability of an array of SMPs architecture.
NASA Technical Reports Server (NTRS)
Borst, H. V.
1978-01-01
A method is presented to design and predict the performance of axial flow rotors operating in a duct. The same method is suitable for the design of ducted fans and open propellers. The unified method is based on the blade element approach and the vortex theory for determining the three dimensional effects, so that two dimensional airfoil data can be used for determining the resultant force on each blade element. Resolution of this force in the thrust and torque planes and integration allows the total performance of the rotor, fan or propeller to be predicted. Three different methods of analysis, one based on a momentum flow theory; another on the vortex theory of propellers; and a third based on the theory of ducted fans, agree and reduce cascade airfoil data to single line as a function of the loading and induced angle of attack at values of constant inflow angle. The theory applies for any solidity from .01 to over 1 and any blade section camber. The effects of the duct and blade number can be determined so that the procedure applies over the entire range from two blade open propellers, to ducted helicopter tail rotors, to axial flow compressors with or without guide vanes, and to wind tunnel drive fans.
Unstart phenomena induced by flow choking in scramjet inlet-isolators
NASA Astrophysics Data System (ADS)
Im, Seong-kyun; Do, Hyungrok
2018-02-01
A review of recent research outcomes in downstream flow choking-driven unstart is presented. Unstart is a flow phenomenon at the inlet that severely reduces the air mass flow rate through the engine, causing a loss of thrust and considerable transient mechanical loading. Therefore, unstart in a scramjet engine crucially affects the design and the operation range of hypersonic vehicles. Downstream flow choking is known to be one of the major mechanisms inducing inlet unstart, as confirmed by recent scramjet-powered flight tests. The current paper examines recent research progress in identifying flow choking mechanisms that trigger unstart. Three different flow choking mechanisms are discussed: flow blockage, mass addition, and heat release from combustion reactions. Current research outcomes on the characteristic of unstarting flows, such as transient and quasi-steady motions, are reviewed for each flow choking mechanism. The characteristics of unstarted flows are described including Buzzing phenomena and oscillatory motions of unstarted shockwaves. Then, the state-of-the-art methods to predict, detect, and control unstart are presented. The review suggests that further investigations with high-enthalpy ground facilities will aid understanding of heat release-driven unstart.
NASA Astrophysics Data System (ADS)
Nakamachi, Kazuo; Fujiwara, Taku; Kawaguchi, Yukio; Tsuno, Hiroshi
The high loading rate oxidation ditch (OD) system with dual dissolved oxygen (DO) control has been developed for the purpose of advanced wastewater treatment and cost saving. For the purpose of scale-up to the real scale, the clean water experiments were conducted, with the full scale oxidation ditch with diffused aeration and vertical flow boosters, to examine the effect to the dual DO control by the design and operational factors, which include a flow characteristics and a oxygen supply capability. In this study, the flow characteristics of the OD channel were analyzed using a tank number and circulation ratio as the parameters. The analysis showed the complicated flow characteristics of the OD channel, which changed from the plug flow to the completely mixing transiently. Based on the tank number N =65~100 which were obtained from the tracer tests, a model of DO mass balance was constructed, then the accurate method for estimate the overall oxygen transfer coefficients was proposed. The potential error of the conventional method in the specific conditions was indicated. In addition, the effect of the flow characteristics on the design and operational parameters of the dual DO control, which include the circulation time or the DO profile, was clarified.
NASA Astrophysics Data System (ADS)
Menegário, Amauri A.; Silva, Ariovaldo José; Pozzi, Eloísa; Durrant, Steven F.; Abreu, Cassio H.
2006-09-01
The yeast Saccharomyces cerevisiae was immobilized in cubes of polyurethane foam and the ability of this immobilized material to separate Sb(III) and Sb(V) was investigated. A method based on sequential determination of total Sb (after on-line reduction of Sb(V) to Sb(III) with thiourea) and Sb(III) (after on-line solid-liquid phase extraction) by hydride generation inductively coupled plasma optical emission spectrometry is proposed. A flow system assembled with solenoid valves was used to manage all stages of the process. The effects of pH, sample loading and elution flow rates on solid-liquid phase extraction of Sb(III) were evaluated. Also, the parameters related to on-line pre-reduction (reaction coil and flow rates) were optimized. Detection limits of 0.8 and 0.15 μg L - 1 were obtained for total Sb and Sb(III), respectively. The proposed method was applied to the analysis of river water and effluent samples. The results obtained for the determination of total Sb were in agreement with expected values, including the river water Standard Reference Material 1640 certified by the National Institute of Standards and Technology (NIST). Recoveries of Sb(III) and Sb(V) in spiked samples were between 81 ± 19 and 111 ±15% when 120 s of sample loading were used.
Microfluidic Remote Loading for Rapid Single-Step Liposomal Drug Preparation
Hood, R.R.; Vreeland, W. N.; DeVoe, D.L.
2014-01-01
Microfluidic-directed formation of liposomes is combined with in-line sample purification and remote drug loading for single step, continuous-flow synthesis of nanoscale vesicles containing high concentrations of stably loaded drug compounds. Using an on-chip microdialysis element, the system enables rapid formation of large transmembrane pH and ion gradients, followed by immediate introduction of amphipathic drug for real-time remote loading into the liposomes. The microfluidic process enables in-line formation of drug-laden liposomes with drug:lipid molar ratios of up to 1.3, and a total on-chip residence time of approximately 3 min, representing a significant improvement over conventional bulk-scale methods which require hours to days for combined liposome synthesis and remote drug loading. The microfluidic platform may be further optimized to support real-time generation of purified liposomal drug formulations with high concentrations of drugs and minimal reagent waste for effective liposomal drug preparation at or near the point of care. PMID:25003823
Dynamic load balance scheme for the DSMC algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jin; Geng, Xiangren; Jiang, Dingwu
The direct simulation Monte Carlo (DSMC) algorithm, devised by Bird, has been used over a wide range of various rarified flow problems in the past 40 years. While the DSMC is suitable for the parallel implementation on powerful multi-processor architecture, it also introduces a large load imbalance across the processor array, even for small examples. The load imposed on a processor by a DSMC calculation is determined to a large extent by the total of simulator particles upon it. Since most flows are impulsively started with initial distribution of particles which is surely quite different from the steady state, themore » total of simulator particles will change dramatically. The load balance based upon an initial distribution of particles will break down as the steady state of flow is reached. The load imbalance and huge computational cost of DSMC has limited its application to rarefied or simple transitional flows. In this paper, by taking advantage of METIS, a software for partitioning unstructured graphs, and taking the total of simulator particles in each cell as a weight information, the repartitioning based upon the principle that each processor handles approximately the equal total of simulator particles has been achieved. The computation must pause several times to renew the total of simulator particles in each processor and repartition the whole domain again. Thus the load balance across the processors array holds in the duration of computation. The parallel efficiency can be improved effectively. The benchmark solution of a cylinder submerged in hypersonic flow has been simulated numerically. Besides, hypersonic flow past around a complex wing-body configuration has also been simulated. The results have displayed that, for both of cases, the computational time can be reduced by about 50%.« less
Green, W. Reed; Haggard, Brian E.
2001-01-01
Water-quality sampling consisting of every other month (bimonthly) routine sampling and storm event sampling (six storms annually) is used to estimate annual phosphorus and nitrogen loads at Illinois River south of Siloam Springs, Arkansas. Hydrograph separation allowed assessment of base-flow and surfacerunoff nutrient relations and yield. Discharge and nutrient relations indicate that water quality at Illinois River south of Siloam Springs, Arkansas, is affected by both point and nonpoint sources of contamination. Base-flow phosphorus concentrations decreased with increasing base-flow discharge indicating the dilution of phosphorus in water from point sources. Nitrogen concentrations increased with increasing base-flow discharge, indicating a predominant ground-water source. Nitrogen concentrations at higher base-flow discharges often were greater than median concentrations reported for ground water (from wells and springs) in the Springfield Plateau aquifer. Total estimated phosphorus and nitrogen annual loads for calendar year 1997-1999 using the regression techniques presented in this paper (35 samples) were similar to estimated loads derived from integration techniques (1,033 samples). Flow-weighted nutrient concentrations and nutrient yields at the Illinois River site were about 10 to 100 times greater than national averages for undeveloped basins and at North Sylamore Creek and Cossatot River (considered to be undeveloped basins in Arkansas). Total phosphorus and soluble reactive phosphorus were greater than 10 times and total nitrogen and dissolved nitrite plus nitrate were greater than 10 to 100 times the national and regional averages for undeveloped basins. These results demonstrate the utility of a strategy whereby samples are collected every other month and during selected storm events annually, with use of regression models to estimate nutrient loads. Annual loads of phosphorus and nitrogen estimated using regression techniques could provide similar results to estimates using integration techniques, with much less investment.
NASA Astrophysics Data System (ADS)
Stark, K.
2017-12-01
One common source of uncertainty in sediment transport modeling of large semi-arid rivers is sediment influx delivered by ephemeral, flood-driven tributaries. Large variations in sediment delivery are associated with these regimes due to the highly variable nature of flows within them. While there are many sediment transport equations, they are typically developed for perennial streams and can be inaccurate for ephemeral channels. Discrete, manual sampling is labor intensive and requires personnel to be on site during flooding. In addition, flooding within these tributaries typically last on the order of hours, making it difficult to be present during an event. To better understand these regimes, automated systems are needed to continuously sample bedload and suspended load. In preparation for the pending installation of an automated site on the Arroyo de los Piños in New Mexico, manual sediment and flow samples have been collected over the summer monsoon season of 2017, in spite of the logistical challenges. These data include suspended and bedload sediment samples at the basin outlet, and stage and precipitation data from throughout the basin. Data indicate a complex system; flow is generated primarily in areas of exposed bedrock in the center and higher elevations of the watershed. Bedload samples show a large coarse-grained fraction, with 50% >2 mm and 25% >6 mm, which is compatible with acoustic measuring techniques. These data will be used to inform future site operations, which will combine direct sediment measurement from Reid-type slot samplers and non-invasive acoustic measuring methods. Bedload will be indirectly monitored using pipe-style microphones, plate-style geophones, channel hydrophones, and seismometers. These instruments record vibrations and acoustic signals from bedload impacts and movement. Indirect methods for measuring of bedload have never been extensively evaluated in ephemeral channels in the southwest United States. Once calibrated these indirect methods of measuring sediment load can be readily and economically deployed elsewhere within the arid Southwest. Ultimately, this experiment will provide more accurate ephemeral channel sediment loads for stream restoration studies, sediment management actions, and reservoir sedimentation studies.
An assessment and application of turbulence models for hypersonic flows
NASA Technical Reports Server (NTRS)
Coakley, T. J.; Viegas, J. R.; Huang, P. G.; Rubesin, M. W.
1990-01-01
The current approach to the Accurate Computation of Complex high-speed flows is to solve the Reynolds averaged Navier-Stokes equations using finite difference methods. An integral part of this approach consists of development and applications of mathematical turbulence models which are necessary in predicting the aerothermodynamic loads on the vehicle and the performance of the propulsion plant. Computations of several high speed turbulent flows using various turbulence models are described and the models are evaluated by comparing computations with the results of experimental measurements. The cases investigated include flows over insulated and cooled flat plates with Mach numbers ranging from 2 to 8 and wall temperature ratios ranging from 0.2 to 1.0. The turbulence models investigated include zero-equation, two-equation, and Reynolds-stress transport models.
Salinity trends in the Ebro River (Spain)
NASA Astrophysics Data System (ADS)
Lorenzo-Gonzalez, M.° Angeles; Isidoro, Daniel; Quilez, Dolores
2016-04-01
In the Ebro River Basin (Spain), the increase in water diversion for irrigation (following the increase in irrigated area) and the recovery of natural vegetation in the upper reaches, along with climate change have induced changes in the river flow and its associated salt loads. This study was supported by the Ebro River Basin Administration (CHE) and aimed to establish the trends in the salt concentrations and loads of the Ebro River at Tortosa (no 027, the extreme downstream gauging station). The CHE databases from 1972-73 to 2011-12, including mean monthly flows (Q) and concentration readings (electrical conductivity converted to total dissolved solids -TDS- by regression) from monthly grab samples, have been used. The trends were established by (i) harmonic regression analysis; (ii) linear regression by month; and (iii) the non-parametric Mann-Kendall method. Additionally, (iv) the regressions of TDS on Q in the current and previous months were established, allowing for analyzing separately the trends in TDS linked to- (TDSq) and independent of- (TDSaj) the observed changes in flow. In all cases, the trends were analyzed for different periods within the full span 1973-2012 (1973 to 2012, 1981 to 2012, 1990-2012 and 2001-2012), trying to account for periods with sensibly similar patterns of land use change. An increase in TDS was found for all the periods analyzed that was lower as shorter periods were used, suggesting that lower salinity changes might be taking place in the last years, possibly due to the reduction in the rate of irrigation development and to the on-going irrigation modernization process. The higher seasonal TDS increases were found in autumn and winter months and the increase in TDS was linked both to intrinsic changes in salinity (TDSaj) and to the observed decrease in flow (TDSq). On the other hand, the salt loads decreased, especially in autumn, as a result of the observed flow decrease. These results are based on the observed evolution of flows and salinity in 1973-2012 and can only be extrapolated into the future if the drivers of this evolution (climate and land use changes) remain unchanged in the following years, what is uncertain. A more comprehensive methodology to estimate the effects of irrigation on water salinity has been developed based on a mass balance approach. Using actual data on volumes and concentrations of return flows observed in the basin (dependent on the actual salinity of soils and waters and the irrigation systems, among other factors), the return flows of the irrigated areas are aggregated to match the actual flows and loads observed in the Ebro River. Once this balance is satisfied, the effect of new irrigated areas, drainage water reuse, irrigation modernization, or climate change would be incorporated to the balance yielding salinity forecasts based on planned irrigation developments and modernization or climate change predictions. A priori, irrigation modernization would produce lower, more concentrated volumes of return flows with lower salt loads that would result in lower TDS concentrations in the Ebro River.
NASA Astrophysics Data System (ADS)
1990-04-01
The papers presented in this volume describe a rotating cryostat for the simulation of mechanical, thermal, and hydraulic processes in superconducting rotors; the problems of cooling the fully superconducting generator stator; an investigation of natural circulation by optical methods; and a method of calculating void fraction for vapor-liquid or gas-liquid flow conditions. Attention is given to an experimental study of the processes of He-3 boiling and condensation, heat transfer in He II at a slow variation of the heat load, an investigation of He II flow crisis in porous media, and cryogenic heat pipes. Other papers are on the stability of rotating superconducting windings for electric machines, the stability of high-temperature superconductors cooled by liquid nitrogen, a calculation of the transpiration cooling of a cylindrical porous wall, and pressure losses in boiling nitrogen flow through horizontal channels.
Propulsion integration for military aircraft
NASA Technical Reports Server (NTRS)
Henderson, William P.
1989-01-01
The transonic aerodynamic characteristics for high-performance aircraft are significantly affected by shock-induced flow interactions as well as other local flow interference effects which usually occur at transonic speeds. These adverse interactions can not only cause high drag, but can cause unusual aerodynamic loadings and/or severe stability and control problems. Many new programs are underway to develop methods for reducing the adverse effects, as well as to develop an understanding of the basic flow conditions which are the primary contributors. It is anticipated that these new programs will result in technologies which can reduce the aircraft cruise drag through improved integration as well as increased aircraft maneuverability throughh the application of thrust vectoring. This paper will identify some of the primary propulsion integration problems for high performance aircraft at transonic speeds, and demonstrate several methods for reducing or eliminating the undesirable characteristics, while enhancing configuration effectiveness.
NASA Astrophysics Data System (ADS)
Apribowo, Chico Hermanu Brillianto; Ibrahim, Muhammad Hamka; Wicaksono, F. X. Rian
2018-02-01
The growing burden of the load and the complexity of the power system has had an impact on the need for optimization of power system operation. Optimal power flow (OPF) with optimal location placement and rating of thyristor controlled series capacitor (TCSC) is an effective solution used to determine the economic cost of operating the plant and regulate the power flow in the power system. The purpose of this study is to minimize the total cost of generation by placing the location and the optimal rating of TCSC using genetic algorithm-design of experiment techniques (GA-DOE). Simulation on Java-Bali system 500 kV with the amount of TCSC used by 5 compensator, the proposed method can reduce the generation cost by 0.89% compared to OPF without using TCSC.
Cartesian Off-Body Grid Adaption for Viscous Time- Accurate Flow Simulation
NASA Technical Reports Server (NTRS)
Buning, Pieter G.; Pulliam, Thomas H.
2011-01-01
An improved solution adaption capability has been implemented in the OVERFLOW overset grid CFD code. Building on the Cartesian off-body approach inherent in OVERFLOW and the original adaptive refinement method developed by Meakin, the new scheme provides for automated creation of multiple levels of finer Cartesian grids. Refinement can be based on the undivided second-difference of the flow solution variables, or on a specific flow quantity such as vorticity. Coupled with load-balancing and an inmemory solution interpolation procedure, the adaption process provides very good performance for time-accurate simulations on parallel compute platforms. A method of using refined, thin body-fitted grids combined with adaption in the off-body grids is presented, which maximizes the part of the domain subject to adaption. Two- and three-dimensional examples are used to illustrate the effectiveness and performance of the adaption scheme.
Tortorelli, Robert L.; Pickup, Barbara E.
2006-01-01
The Illinois River and tributaries, Flint Creek and Baron Fork, are designated scenic rivers in Oklahoma. Recent phosphorus levels in streams in the basin have resulted in the growth of excess algae, which have limited the aesthetic benefits of water bodies in the basin, especially the Illinois River and Lake Tenkiller. The Oklahoma Water Resources Board has established a standard for total phosphorus not to exceed the 30-day geometric mean concentration of 0.037 milligram per liter in Oklahoma Scenic Rivers. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, conducted an investigation to summarize phosphorus concentrations and provide estimates of phosphorus loads, yields, and flow-weighted concentrations in the Illinois River and tributaries from January 2000 through December 2004. Data from water-quality samples collected from 2000 to 2004 were used to summarize phosphorus concentrations and estimate phosphorus loads, yields, and mean flow-weighted concentrations in the Illinois River basin for three 3-year periods - 2000-2002, 2001-2003, and 2002-2004, to update a previous report that used data from water-quality samples from 1997 to 2001. This report provides information needed to advance knowledge of the regional hydrologic system and understanding of hydrologic processes, and provides hydrologic data and results useful to multiple parties for interstate compacts. Phosphorus concentrations in the Illinois River basin were significantly greater in runoff samples than in base-flow samples. Phosphorus concentrations generally decreased with increasing base flow, from dilution, and decreased in the downstream direction in the Illinois River from the Watts to Tahlequah stations. Phosphorus concentrations generally increased with runoff, possibly because of phosphorus resuspension, stream bank erosion, and the addition of phosphorus from nonpoint sources. Estimated mean annual phosphorus loads were greater at the Illinois River stations than at Flint Creek and Baron Fork. Annual total loads in the Illinois River from Watts to Tahlequah, increased slightly for the period 2000-2002 and decreased slightly for the periods 2001-2003 and 2002-2004. Estimated mean annual base-flow loads at stations on the Illinois River were about 11 to 20 times greater than base-flow loads at the station on Baron Fork and 4 to 10 times greater than base-flow loads at the station on Flint Creek. Estimated mean annual runoff loads ranged from 68 to 96 percent of the estimated mean annual total phosphorus loads from 2000-2004. Estimated mean seasonal base-flow loads were generally greatest in spring (March through May) and were least in fall (September through November). Estimated mean seasonal runoff loads generally were greatest in summer (June through August) for the period 2000-2002, but were greatest in winter (December through February) for the period 2001-2003, and greatest in spring for the period 2002-2004. Estimated mean total yields of phosphorus ranged from 192 to 811 pounds per year per square mile, with greatest yields being reported for Illinois River near Watts (576 to 811 pounds per year per square mile), and the least yields being reported for Baron Fork at Eldon for the periods 2000-2002 and 2001-2003 (501 and 192 pounds per year per square mile) and for Illinois River near Tahlequah for the period 2002-2004 (370 pounds per year per square mile). Estimated mean flow-weighted concentrations were more than 10 times greater than the median (0.022 milligram per liter) and were consistently greater than the 75th percentile of flow-weighted phosphorus concentrations in samples collected at relatively undeveloped basins of the United States (0.037 milligram per liter). In addition, flow-weighted phosphorus concentrations in 2000-2002 at all Illinois River stations and at Flint Creek near Kansas were equal to or greater than the 75th percentile of all National Water-Quality Assessment Program station
NASA Astrophysics Data System (ADS)
Hachiya, Yuriko; Ogai, Harutoshi; Okazaki, Hiroko; Fujisaki, Takeshi; Uchida, Kazuhiko; Oda, Susumu; Wada, Futoshi; Mori, Koji
A method for the analysis of fatigue parameters has been rarely researched in VDT operation. Up to now, fatigue was evaluated by changing of biological information. If signals regarding fatigue are detected, fatigue can be measured. The purpose of this study proposed experiment and analysis method to extract parameters related to fatigue from the biological information during VDT operation using the Independent Component Analysis (ICA). An experiment had 11 subjects. As for the experiment were light loaded VDT operation and heavy loaded VDT operation. A measurement item were amount of work, a mistake number, subjective symptom, surface skin temperature (forehead and apex nasi), heart rate, skin blood flow of forearm and respiratory rate. In the heavy loaded operation group, mistake number and subjective symptom score were increased to compare with the other. And Two-factor ANOVA was used for analysis. The result of mistake number was confirmed that heavy loaded. After the moving averages of waveshape were calculated, it was made to extract independent components by using the ICA. The results of the ICA suggest that the independent components increase according to accumulation of fatigue. Thus, the independent components would be a possible parameter of fatigue. However, further experiments should continue in order to obtain the conclusive finding of our research.
Aulenbach, Brent T.; Burns, Douglas A.; Shanley, James B.; Yanai, Ruth D.; Bae, Kikang; Wild, Adam; Yang, Yang; Yi, Dong
2016-01-01
Estimating streamwater solute loads is a central objective of many water-quality monitoring and research studies, as loads are used to compare with atmospheric inputs, to infer biogeochemical processes, and to assess whether water quality is improving or degrading. In this study, we evaluate loads and associated errors to determine the best load estimation technique among three methods (a period-weighted approach, the regression-model method, and the composite method) based on a solute's concentration dynamics and sampling frequency. We evaluated a broad range of varying concentration dynamics with stream flow and season using four dissolved solutes (sulfate, silica, nitrate, and dissolved organic carbon) at five diverse small watersheds (Sleepers River Research Watershed, VT; Hubbard Brook Experimental Forest, NH; Biscuit Brook Watershed, NY; Panola Mountain Research Watershed, GA; and Río Mameyes Watershed, PR) with fairly high-frequency sampling during a 10- to 11-yr period. Data sets with three different sampling frequencies were derived from the full data set at each site (weekly plus storm/snowmelt events, weekly, and monthly) and errors in loads were assessed for the study period, annually, and monthly. For solutes that had a moderate to strong concentration–discharge relation, the composite method performed best, unless the autocorrelation of the model residuals was <0.2, in which case the regression-model method was most appropriate. For solutes that had a nonexistent or weak concentration–discharge relation (modelR2 < about 0.3), the period-weighted approach was most appropriate. The lowest errors in loads were achieved for solutes with the strongest concentration–discharge relations. Sample and regression model diagnostics could be used to approximate overall accuracies and annual precisions. For the period-weighed approach, errors were lower when the variance in concentrations was lower, the degree of autocorrelation in the concentrations was higher, and sampling frequency was higher. The period-weighted approach was most sensitive to sampling frequency. For the regression-model and composite methods, errors were lower when the variance in model residuals was lower. For the composite method, errors were lower when the autocorrelation in the residuals was higher. Guidelines to determine the best load estimation method based on solute concentration–discharge dynamics and diagnostics are presented, and should be applicable to other studies.
Fault current limiter and alternating current circuit breaker
Boenig, Heinrich J.
1998-01-01
A solid-state circuit breaker and current limiter for a load served by an alternating current source having a source impedance, the solid-state circuit breaker and current limiter comprising a thyristor bridge interposed between the alternating current source and the load, the thyristor bridge having four thyristor legs and four nodes, with a first node connected to the alternating current source, and a second node connected to the load. A coil is connected from a third node to a fourth node, the coil having an impedance of a value calculated to limit the current flowing therethrough to a predetermined value. Control means are connected to the thyristor legs for limiting the alternating current flow to the load under fault conditions to a predetermined level, and for gating the thyristor bridge under fault conditions to quickly reduce alternating current flowing therethrough to zero and thereafter to maintain the thyristor bridge in an electrically open condition preventing the alternating current from flowing therethrough for a predetermined period of time.
Fault current limiter and alternating current circuit breaker
Boenig, H.J.
1998-03-10
A solid-state circuit breaker and current limiter are disclosed for a load served by an alternating current source having a source impedance, the solid-state circuit breaker and current limiter comprising a thyristor bridge interposed between the alternating current source and the load, the thyristor bridge having four thyristor legs and four nodes, with a first node connected to the alternating current source, and a second node connected to the load. A coil is connected from a third node to a fourth node, the coil having an impedance of a value calculated to limit the current flowing therethrough to a predetermined value. Control means are connected to the thyristor legs for limiting the alternating current flow to the load under fault conditions to a predetermined level, and for gating the thyristor bridge under fault conditions to quickly reduce alternating current flowing therethrough to zero and thereafter to maintain the thyristor bridge in an electrically open condition preventing the alternating current from flowing therethrough for a predetermined period of time. 9 figs.
Loading-rate-independent delay of catastrophic avalanches in a bulk metallic glass
Chen, S. H.; Chan, K. C.; Wang, G.; ...
2016-02-25
The plastic flow of bulk metallic glasses (BMGs) is characterized by intermittent bursts of avalanches, and this trend results in disastrous failures of BMGs. In the present work, a double-side-notched BMG specimen is designed, which exhibits chaotic plastic flows consisting of several catastrophic avalanches under the applied loading. The disastrous shear avalanches have, then, been delayed by forming a stable plastic-flow stage in the specimens with tailored distances between the bottoms of the notches, where the distribution of a complex stress field is acquired. Differing from the conventional compressive testing results, such a delaying process is independent of loading rate.more » The statistical analysis shows that in the specimens with delayed catastrophic failures, the plastic flow can evolve to a critical dynamics, making the catastrophic failure more predictable than the ones with chaotic plastic flows. Lastly, the findings are of significance in understanding the plastic-flow mechanisms in BMGs and controlling the avalanches in relating solids.« less
Crack instability analysis methods for leak-before-break program in piping systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattar Neto, M.; Maneschy, E.; Nobrega, P.G.B. da
1995-11-01
The instability evaluation of cracks in piping systems is a step that is considered when a high-energy line is investigated in a leak-before-break (LBB) program. Different approaches have been used to assess stability of cracks: (a) local flow stress (LFS); (b) limit load (LL); (c) elastic-plastic fracture mechanics (EPFM) as J-integral versus tearing modulus (J-T) analysis. The first two methods are used for high ductile materials, when it is assumed that remaining ligament of the cracked pipe section becomes fully plastic prior to crack extension. EPFM is considered for low ductile piping when the material reaches unstable ductile tearing priormore » to plastic collapse in the net section. In this paper the LFS, LL and EPFM J-T methodologies were applied to calculate failure loads in circumferential through-wall cracked pipes with different materials, geometries and loads. It presents a comparison among the results obtained from the above three formulations and also compares them with experimental data available in the literature.« less
Transmission Loss Calculation using A and B Loss Coefficients in Dynamic Economic Dispatch Problem
NASA Astrophysics Data System (ADS)
Jethmalani, C. H. Ram; Dumpa, Poornima; Simon, Sishaj P.; Sundareswaran, K.
2016-04-01
This paper analyzes the performance of A-loss coefficients while evaluating transmission losses in a Dynamic Economic Dispatch (DED) Problem. The performance analysis is carried out by comparing the losses computed using nominal A loss coefficients and nominal B loss coefficients in reference with load flow solution obtained by standard Newton-Raphson (NR) method. Density based clustering method based on connected regions with sufficiently high density (DBSCAN) is employed in identifying the best regions of A and B loss coefficients. Based on the results obtained through cluster analysis, a novel approach in improving the accuracy of network loss calculation is proposed. Here, based on the change in per unit load values between the load intervals, loss coefficients are updated for calculating the transmission losses. The proposed algorithm is tested and validated on IEEE 6 bus system, IEEE 14 bus, system IEEE 30 bus system and IEEE 118 bus system. All simulations are carried out using SCILAB 5.4 (www.scilab.org) which is an open source software.
Method for calculating internal radiation and ventilation with the ADINAT heat-flow code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butkovich, T.R.; Montan, D.N.
1980-04-01
One objective of the spent fuel test in Climax Stock granite (SFTC) is to correctly model the thermal transport, and the changes in the stress field and accompanying displacements from the application of the thermal loads. We have chosen the ADINA and ADINAT finite element codes to do these calculations. ADINAT is a heat transfer code compatible to the ADINA displacement and stress analysis code. The heat flow problem encountered at SFTC requires a code with conduction, radiation, and ventilation capabilities, which the present version of ADINAT does not have. We have devised a method for calculating internal radiation andmore » ventilation with the ADINAT code. This method effectively reproduces the results from the TRUMP multi-dimensional finite difference code, which correctly models radiative heat transport between drift surfaces, conductive and convective thermal transport to and through air in the drifts, and mass flow of air in the drifts. The temperature histories for each node in the finite element mesh calculated with ADINAT using this method can be used directly in the ADINA thermal-mechanical calculation.« less
NASA Astrophysics Data System (ADS)
Koh, E. H.; Lee, E.; Kaown, D.; Lee, K. K.; Green, C. T.
2017-12-01
Timing and magnitudes of nitrate contamination are determined by various factors like contaminant loading, recharge characteristics and geologic system. Information of an elapsed time since recharged water traveling to a certain outlet location, which is defined as groundwater age, can provide indirect interpretation related to the hydrologic characteristics of the aquifer system. There are three major methods (apparent ages, lumped parameter model, and numerical model) to date groundwater ages, which differently characterize groundwater mixing resulted by various groundwater flow pathways in a heterogeneous aquifer system. Therefore, in this study, we compared the three age models in a complex aquifer system by using observed age tracer data and reconstructed history of nitrate contamination by long-term source loading. The 3H-3He and CFC-12 apparent ages, which did not consider the groundwater mixing, estimated the most delayed response time and a highest period of the nitrate loading had not reached yet. However, the lumped parameter model could generate more recent loading response than the apparent ages and the peak loading period influenced the water quality. The numerical model could delineate various groundwater mixing components and its different impacts on nitrate dynamics in the complex aquifer system. The different age estimation methods lead to variations in the estimated contaminant loading history, in which the discrepancy in the age estimation was dominantly observed in the complex aquifer system.
Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff
Ranaivoson, Andry Z.; Feyereisen, Gary W.; Rosen, Carl J.; Moncrief, John F.
2016-01-01
Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both. PMID:27930684
Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff.
Ghane, Ehsan; Ranaivoson, Andry Z; Feyereisen, Gary W; Rosen, Carl J; Moncrief, John F
2016-01-01
Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both.
From the track to the ocean: Using flow control to improve marine bio-logging tags for cetaceans
Fiore, Giovani; Anderson, Erik; Garborg, C. Spencer; Murray, Mark; Johnson, Mark; Moore, Michael J.; Howle, Laurens
2017-01-01
Bio-logging tags are an important tool for the study of cetaceans, but superficial tags inevitably increase hydrodynamic loading. Substantial forces can be generated by tags on fast-swimming animals, potentially affecting behavior and energetics or promoting early tag removal. Streamlined forms have been used to reduce loading, but these designs can accelerate flow over the top of the tag. This non-axisymmetric flow results in large lift forces (normal to the animal) that become the dominant force component at high speeds. In order to reduce lift and minimize total hydrodynamic loading this work presents a new tag design (Model A) that incorporates a hydrodynamic body, a channel to reduce fluid speed differences above and below the housing and wing to redirect flow to counter lift. Additionally, three derivatives of the Model A design were used to examine the contribution of individual flow control features to overall performance. Hydrodynamic loadings of four models were compared using computational fluid dynamics (CFD). The Model A design eliminated all lift force and generated up to ~30 N of downward force in simulated 6 m/s aligned flow. The simulations were validated using particle image velocimetry (PIV) to experimentally characterize the flow around the tag design. The results of these experiments confirm the trends predicted by the simulations and demonstrate the potential benefit of flow control elements for the reduction of tag induced forces on the animal. PMID:28196148
NASA Astrophysics Data System (ADS)
Datta, T. S.; Kar, S.; Kumar, M.; Choudhury, A.; Chacko, J.; Antony, J.; Babu, S.; Sahu, S. K.
2015-12-01
Five beam line cryomodules with total 27 superconducting Radio Frequency (RF) cavities are installed and commissioned at IUAC to enhance the energy of heavy ion from 15 UD Pelletron. To reduce the heat load at 4.2 K, liquid nitrogen (LN2) cooled intermediate thermal shield is used for all these cryomodules. For three linac cryomodules, concept of forced flow LN2 cooling is used and for superbuncher and rebuncher, thermo-siphon cooling is incorporated. It is noticed that the shield temperature of superbuncher varies from 90 K to 110 K with respect to liquid nitrogen level. The temperature difference can't be explained by using the basic concept of thermo-siphon with the heat load on up flow line. A simple thermo-siphon experimental set up is developed to simulate the thermal shield temperature profile. Mass flow rate of liquid nitrogen is measured with different heat load on up flow line for different liquid levels. It is noticed that small amount of heat load on down flow line have a significant effect on mass flow rate. The present paper will be investigating the data generated from the thermosiphon experimental set up and a theoretical analysis will be presented here to validate the measured temperature profile of the cryomodule shield.
Climate change and wetland loss impacts on a western river's water quality
NASA Astrophysics Data System (ADS)
Records, R. M.; Arabi, M.; Fassnacht, S. R.; Duffy, W. G.; Ahmadi, M.; Hegewisch, K. C.
2014-11-01
An understanding of potential stream water quality conditions under future climate is critical for the sustainability of ecosystems and the protection of human health. Changes in wetland water balance under projected climate could alter wetland extent or cause wetland loss (e.g., via increased evapotranspiration and lower growing season flows leading to reduced riparian wetland inundation) or altered land use patterns. This study assessed the potential climate-induced changes to in-stream sediment and nutrient loads in the snowmelt-dominated Sprague River, Oregon, western US. Additionally, potential water quality impacts of combined changes in wetland water balance and wetland area under future climatic conditions were evaluated. The study utilized the Soil and Water Assessment Tool (SWAT) forced with statistical downscaling of general circulation model (GCM) data from the Coupled Model Intercomparison Project 5 (CMIP5) using the Multivariate Adaptive Constructed Analogs (MACA) method. Our findings suggest that, in the Sprague River, (1) mid-21st century nutrient and sediment loads could increase significantly during the high-flow season under warmer, wetter climate projections or could change only nominally in a warmer and somewhat drier future; (2) although water quality conditions under some future climate scenarios and no wetland loss may be similar to the past, the combined impact of climate change and wetland losses on nutrient loads could be large; (3) increases in stream total phosphorus (TP) concentration with wetland loss under future climate scenarios would be greatest at high-magnitude, low-probability flows; and (4) loss of riparian wetlands in both headwaters and lowlands could increase outlet TP loads to a similar degree, but this could be due to distinctly different mechanisms in different parts of the watershed.
Ortiz, Roderick F.; Edelmann, Patrick; Ferguson, Sheryl; Stogner, Robert
2002-01-01
Metal contamination in the upper Alamosa River Basin has occurred for decades from the Summitville Mine site, from other smaller mines, and from natural, metal-enriched acidic drainage in the basin. In 1995, the need to quantify contamination from various source areas in the basin and to quantify the spatial, seasonal, and annual metal loads in the basin was identified. Data collection occurred from 1995 through 1997 at numerous sites to address data gaps. Metal loads were calculated and the percentages of metal load contributions from tributaries to three risk exposure areas were determined. Additionally, a modified time-interval method was used to estimate seasonal and annual metal loads in the Alamosa River and Wightman Fork. Sources of dissolved and total-recoverable aluminum, copper, iron, and zinc loads were determined for Exposure Areas 3a, 3b, and 3c. Alum Creek is the predominant contributor of aluminum, copper, iron, and zinc loads to Exposure Area 3a. In general, Wightman Fork was the predominant source of metals to Exposure Area 3b, particularly during the snowmelt and summer-flow periods. During the base-flow period, however, aluminum and iron loads from Exposure Area 3a were the dominant source of these metals to Exposure Area 3b. Jasper and Burnt Creeks generally contributed less than 10 percent of the metal loads to Exposure Area 3b. On a few occasions, however, Jasper and Burnt Creeks contributed a substantial percentage of the loads to the Alamosa River. The metal loads calculated for Exposure Area 3c result from upstream sources; the primary upstream sources are Wightman Fork, Alum Creek, and Iron Creek. Tributaries in Exposure Area 3c did not contribute substantially to the metal load in the Alamosa River. In many instances, the percentage of dissolved and/or total-recoverable metal load contribution from a tributary or the combined percentage of metal load contribution was greater than 100 percent of the metal load at the nearest downstream site on the Alamosa River. These data indicate that metal partitioning and metal deposition from the water column to the streambed may be occurring in Exposure Areas 3a, 3b, and 3c. Metals that are deposited to the streambed probably are resuspended and transported downstream during high streamflow periods such as during snowmelt runoff and rainfall runoff. Seasonal and annual dissolved and totalrecoverable aluminum, copper, iron, and zinc loads> for 1995?97 were estimated for Exposure Areas 1, 2, 3a, 3b, and 3c. During 1995?97, many tons of metals were transported annually through each exposure area. Generally, the largest estimated annual totalrecoverable metal mass for most metals was in 1995. The smallest estimated annual total-recoverable metal mass was in 1996, which also had the smallest annual streamflow. In 1995 and 1997, more than 60 percent of the annual total-recoverable metal loads generally was transported through each exposure area during the snowmelt period. A comparison of the estimated storm load at each site to the corresponding annual load indicated that storms contribute less than 2 percent of the annual load at any site and about 5 to 20 percent of the load during the summer-flow period.
Computational Design Tool for Bridge Hydrodynamic Loading in Inundated Flows of Midwest Rivers
DOT National Transportation Integrated Search
2009-12-01
The hydraulic forces experienced by an inundated bridge deck have great importance in the design of bridges. The proper estimation of loading exerted by the flow on the structure is important for design plans and is pertinent for evaluating its vulne...
Trementozzi, Andrea N; Leung, Cheuk-Yui; Osei-Yeboah, Frederick; Irdam, Erwin; Lin, Yiqing; MacPhee, J Michael; Boulas, Pierre; Karki, Shyam B; Zawaneh, Peter N
2017-05-15
Optimizing powder flow and compaction properties are critical for ensuring a robust tablet manufacturing process. The impact of flow and compaction properties of the active pharmaceutical ingredient (API) becomes progressively significant for higher drug load formulations, and for scaling up manufacturing processes. This study demonstrated that flow properties of a powder blend can be improved through API particle engineering, without critically impacting blend tabletability at elevated drug loadings. In studying a jet milled API (D 50 =24μm) and particle engineered wet milled API (D 50 =70μm and 90μm), flow functions of all API lots were similarly poor despite the vast difference in average particle size (ff c <4). This finding strays from the common notion that powder flow properties are directly correlated to particle size distribution. Upon adding excipients, however, clear trends in flow functions based on API particle size were observed. Wet milled API blends had a much improved flow function (ff c >10) compared with the jet milled API blends. Investigation of the compaction properties of both wet and jet milled powder blends also revealed that both jet and wet milled material produced robust tablets at the drug loadings used. The ability to practically demonstrate this uncommon observation that similarly poor flowing APIs can lead to a marked difference upon blending is important for pharmaceutical development. It is especially important in early phase development during API selection, and is advantageous particularly when material-sparing techniques are utilized. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heard, F.J.; Harris, R.A.; Padilla, A.
The SASSYS/SAS4A systems analysis code was used to simulate a series of unprotected loss of flow (ULOF) tests planned at the Fast Flux Test Facility (FFTF). The subject tests were designed to investigate the transient performance of the FFTF during various ULOF scenarios for two different loading patterns designed to produce extremes in the assembly load pad clearance and the direction of the initial assembly bows. The tests are part of an international program designed to extend the existing data base on the performance of liquid metal reactors (LMR). The analyses demonstrate that a wide range of power-to-flow ratios canmore » be reached during the transients and, therefore, will yield valuable data on the dynamic character of the structural feedbacks in LMRS. These analyses will be repeated once the actual FFTF core loadings for the tests are available. These predictions, similar ones obtained by other international participants in the FFTF program, and post-test analyses will be used to upgrade and further verify the computer codes used to predict the behavior of LMRS.« less
NASA Astrophysics Data System (ADS)
Dascalescu, A. E.; Lazaroiu, G.; Scupi, A. A.; Oanta, E.
2016-08-01
The rotating half-bridge of a settling tank is employed to sweep the sludge from the wastewater and to vacuum and sent it to the central collector. It has a complex geometry but the main beam may be considered a slender bar loaded by the following category of forces: concentrated forces produced by the weight of the scrapping system of blades, suction pipes, local sludge collecting chamber, plus the sludge in the horizontal sludge transporting pipes; forces produced by the access bridge; buoyant forces produced by the floating barrels according to Archimedes’ principle; distributed forces produced by the weight of the main bridge; hydrodynamic forces. In order to evaluate the hydrodynamic loads we have conceived a numerical model based on the finite volume method, using the ANSYS-Fluent software. To model the flow we used the equations of Reynolds Averaged Navier-Stokes (RANS) for liquids together with Volume of Fluid model (VOF) for multiphase flows. For turbulent model k-epsilon we used the equation for turbulent kinetic energy k and dissipation epsilon. These results will be used to increase the accuracy of the loads’ sub-model in the theoretical models, e. the finite element model and the analytical model.
Iredahl, Fredrik; Högstedt, Alexandra; Henricson, Joakim; Sjöberg, Folke; Tesselaar, Erik; Farnebo, Simon
2016-10-01
Insulin causes capillary recruitment in muscle and adipose tissue, but the metabolic and microvascular effects of insulin in the skin have not been studied in detail. The aim of this study was to measure glucose metabolism and microvascular blood flow in the skin during local insulin delivery and after an oral glucose load. Microdialysis catheters were inserted intracutanously in human subjects. In eight subjects two microdialysis catheters were inserted, one perfused with insulin and one with control solution. First the local effects of insulin was studied, followed by a systemic provocation by an oral glucose load. Additionally, as control experiment, six subjects did not recieve local delivery of insulin or the oral glucose load. During microdialysis the local blood flow was measured by urea clearance and by laser speckle contrast imaging (LSCI). Within 15 minutes of local insulin delivery, microvascular blood flow in the skin increased (urea clearance: P=.047, LSCI: P=.002) paralleled by increases in pyruvate (P=.01) and lactate (P=.04), indicating an increase in glucose uptake. An oral glucose load increased urea clearance from the catheters, indicating an increase in skin perfusion, although no perfusion changes were detected with LSCI. The concentration of glucose, pyruvate and lactate increased in the skin after the oral glucose load. Insulin has metabolic and vasodilatory effects in the skin both when given locally and after systemic delivery through an oral glucose load. © 2016 John Wiley & Sons Ltd.
Simulation of load traffic and steeped speed control of conveyor
NASA Astrophysics Data System (ADS)
Reutov, A. A.
2017-10-01
The article examines the possibilities of the step control simulation of conveyor speed within Mathcad, Simulink, Stateflow software. To check the efficiency of the control algorithms and to more accurately determine the characteristics of the control system, it is necessary to simulate the process of speed control with real values of traffic for a work shift or for a day. For evaluating the belt workload and absence of spillage it is necessary to use empirical values of load flow in a shorter period of time. The analytical formulas for optimal speed step values were received using empirical values of load. The simulation checks acceptability of an algorithm, determines optimal parameters of regulation corresponding to load flow characteristics. The average speed and the number of speed switching during simulation are admitted as criteria of regulation efficiency. The simulation example within Mathcad software is implemented. The average conveyor speed decreases essentially by two-step and three-step control. A further increase in the number of regulatory steps decreases average speed insignificantly but considerably increases the intensity of the speed switching. Incremental algorithm of speed regulation uses different number of stages for growing and reducing load traffic. This algorithm allows smooth control of the conveyor speed changes with monotonic variation of the load flow. The load flow oscillation leads to an unjustified increase or decrease of speed. Work results can be applied at the design of belt conveyors with adjustable drives.
dos Santos, Antonio Rodolfo; Kunz, Ulrich; Turek, Thomas
2011-01-01
Summary In this contribution we present for the first time a continuous process for the production of highly active Pt catalysts supported by carbon nanotubes by use of an electrically heated tubular reactor. The synthesized catalysts show a high degree of dispersion and narrow distributions of cluster sizes. In comparison to catalysts synthesized by the conventional oil-bath method a significantly higher electrocatalytic activity was reached, which can be attributed to the higher metal loading and smaller and more uniformly distributed Pt particles on the carbon support. Our approach introduces a simple, time-saving and cost-efficient method for fuel cell catalyst preparation in a flow reactor which could be used at a large scale. PMID:22043252
Caulkins, Carrie; Ebramzadeh, Edward; Winet, Howard
2009-05-01
The direct and indirect effects of muscle contraction on bone microcirculation and fluid flow are neither well documented nor explained. However, skeletal muscle contractions may affect the acquisition and maintenance of bone via stimulation of bone circulatory and interstitial fluid flow parameters. The purposes of this study were to assess the effects of transcutaneous electrical neuromuscular stimulation (TENS)-induced muscle contractions on cortical bone blood flow and bone mineral content, and to demonstrate that alterations in blood flow could occur independently of mechanical loading and systemic circulatory mechanisms. Bone chamber implants were used in a rabbit model to observe real-time blood flow rates and TENS-induced muscle contractions. Video recording of fluorescent microspheres injected into the blood circulation was used to calculate changes in cortical blood flow rates. TENS-induced repetitive muscle contractions uncoupled from mechanical loading instantaneously increased cortical microcirculatory flow, directly increased bone blood flow rates by 130%, and significantly increased bone mineral content over 7 weeks. Heart rates and blood pressure did not significantly increase due to TENS treatment. Our findings suggest that muscle contraction therapies have potential clinical applications for improving blood flow to cortical bone in the appendicular skeleton. Copyright 2008 Orthopaedic Research Society
Stadelmann, Vincent A; Zderic, Ivan; Baur, Annick; Unholz, Cynthia; Eberli, Ursula; Gueorguiev, Boyko
2016-02-01
Vertebroplasty has been shown to reinforce weak vertebral bodies and reduce fracture risks, yet cement leakage is a major problem that can cause severe complications. Since cement flow is nearly impossible to control during surgery, small volumes of cement are injected, but then mechanical benefits might be limited. A better understanding of cement flows within bone structure is required to further optimize vertebroplasty and bone augmentation in general. We developed a novel imaging method, composite time-lapse CT, to characterize cement flow during injection. In brief, composite-resolution time-lapse CT exploits the qualities of microCT and clinical CT. The method consists in overlaying low-resolution time-lapse CT scans acquired during injection onto pre-operative high-resolution microCT scans, generating composite-resolution time-lapse CT series of cement flow within bone. In this in vitro study, composite-resolution time-lapse CT was applied to eight intact and five artificially fractured cadaveric vertebrae during vertebroplasty. The time-lapse scans were acquired at one-milliliter cement injection steps until a total of 10 ml cement was injected. The composite-resolution series were then converted into micro finite element models to compute strains distribution under virtual axial loading. Relocation of strain energy density within bone structure was observed throughout the progression of the procedure. Interestingly, the normalized effect of cement injection on the overall stiffness of the vertebrae was similar between intact and fractured specimens, although at different orders of magnitude. In conclusion, composite time-lapse CT can picture cement flows during bone augmentation. The composite images can also be easily converted into finite element models to compute virtual strain distributions under loading at every step of an injection, providing deeper understanding on the biomechanics of vertebroplasty. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Effects of front-loading and stagger angle on endwall losses of high lift low pressure turbine vanes
NASA Astrophysics Data System (ADS)
Lyall, M. Eric
Past efforts to reduce the airfoil count in low pressure turbines have produced high lift profiles with unacceptably high endwall loss. The purpose of the current work is to suggest alternative approaches for reducing endwall losses. The effects of the fluid mechanics and high lift profile geometry are considered. Mixing effects of the mean flow and turbulence fields are decoupled to show that mean flow shear in the endwall wake is negligible compared to turbulent shear, indicating that turbulence dissipation is the primary cause of total pressure loss. The mean endwall flow field does influence total pressure loss by causing excessive wake growth and perhaps outright separation on the suction surface. For equivalent stagger angles, a front-loaded high lift profile will produce less endwall loss than one aft-loaded, primarily by suppressing suction surface flow separation. Increasing the stagger setting, however, increases the endwall loss due to the static pressure field generating a stronger blockage relative to the incoming endwall boundary layer flow and causing a larger mass of fluid to become entrained in the horseshoe vortex. In short, front-loading the pressure distribution suppresses suction surface separation whereas limiting the stagger angle suppresses inlet boundary layer separation. Results of this work suggest that a front-loaded low stagger profile be used at the endwall to reduce the endwall loss.
Studying NK cell responses to ectromelia virus infections in mice.
Fang, Min; Sigal, Luis
2010-01-01
Here we describe methods for the in vivo study of antiviral NK cell responses using the mouse Orthopoxvirus ectromelia virus as a model, the agent of mousepox. The methods include those specific for the preparation and use of ectromelia virus such as the production of virus stocks in tissue culture and in live mice, the purification of virus stocks, the titration of virus stocks and virus loads in organs, and the infection of mice. The chapter also includes methods for the specific study of NK cell responses in infected mice such as the preparation of organs (lymph nodes, spleen, and liver) for analysis, the study of NK cell responses by flow cytometry, the adoptive transfer of NK cells, the measurement of NK cell cytolytic activity ex vivo and in vivo, and the determination of NK cell proliferation by bromodeoxyuridine loading or by dilution of carboxyfluorescein diacetate succinimidyl ester (CFSE).
NASA Astrophysics Data System (ADS)
Leary, K. C. P.; Schmeeckle, M. W.
2017-12-01
Flow separation/reattachment on the lee side of alluvial bed forms is known to produce a complex turbulence field, but the spatiotemporal details of the associated patterns of bed load sediment transported remain largely unknown. Here we report turbulence-resolving, simultaneous measurements of bed load motion and near-bed fluid velocity downstream of a backward facing step in a laboratory flume. Two synchronized high-speed video cameras simultaneously observed bed load motion and the motion of neutrally buoyant particles in a laser light sheet 6 mm above the bed at 250 frames/s downstream of a 3.8 cm backward facing step. Particle Imaging Velocimetry (PIV) and Acoustic Doppler Velocimetry (ADV) were used to characterize fluid turbulent patterns, while manual particle tracking techniques were used to characterize bed load transport. Octant analysis, conducted using ADV data, coupled with Markovian sequence probability analysis highlights differences in the flow near reattachment versus farther downstream. Near reattachment, three distinct flow patterns are apparent. Farther downstream we see the development of a dominant flow sequence. Localized, intermittent, high-magnitude transport events are more apparent near flow reattachment. These events are composed of streamwise and cross-stream fluxes of comparable magnitudes. Transport pattern and fluid velocity data are consistent with the existence of permeable "splat events," wherein a volume of fluid moves toward and impinges on the bed (sweep) causing a radial movement of fluid in all directions around the point of impingement (outward interaction). This is congruent with flow patterns, identified with octant analysis, proximal to flow reattachment.
Cross-flow turbines: physical and numerical model studies towards improved array simulations
NASA Astrophysics Data System (ADS)
Wosnik, M.; Bachant, P.
2015-12-01
Cross-flow, or vertical-axis turbines, show potential in marine hydrokinetic (MHK) and wind energy applications. As turbine designs mature, the research focus is shifting from individual devices towards improving turbine array layouts for maximizing overall power output, i.e., minimizing wake interference for axial-flow turbines, or taking advantage of constructive wake interaction for cross-flow turbines. Numerical simulations are generally better suited to explore the turbine array design parameter space, as physical model studies of large arrays at large model scale would be expensive. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries, the turbines' interaction with the energy resource needs to be parameterized, or modeled. Most models in use today, e.g. actuator disk, are not able to predict the unique wake structure generated by cross-flow turbines. Experiments were carried out using a high-resolution turbine test bed in a large cross-section tow tank, designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. To improve parameterization in array simulations, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier--Stokes models. The ALM predicts turbine loading with the blade element method combined with sub-models for dynamic stall and flow curvature. The open-source software is written as an extension library for the OpenFOAM CFD package, which allows the ALM body force to be applied to their standard RANS and LES solvers. Turbine forcing is also applied to volume of fluid (VOF) models, e.g., for predicting free surface effects on submerged MHK devices. An additional sub-model is considered for injecting turbulence model scalar quantities based on actuator line element loading. Results are presented for the simulation of performance and wake dynamics of axial- and cross-flow turbines and compared with experiments and body-fitted mesh, blade-resolving CFD. Supported by NSF-CBET grant 1150797.
The relationship between loads and power of a rotor and an actuator disc
NASA Astrophysics Data System (ADS)
van Kuik, Gijs A. M.
2014-12-01
Most state of the art rotor design methods are based on the actuator disc theory developed about one century ago. The actuator disc is an axisymmetric permeable surface carrying a load that represents the load on a real rotor with a finite number of blades N. However, the mathematics of the transition from a real rotor load to an axisymmetrically loaded disc is not yet presented in literature. By formulating an actuator disc equation of motion in which the Bernoulli constant H is expressed in kinematical terms, a comparison of the power conversion and load on the disc and rotor is possible. For both the converted power is expressed as a change of angular momentum times rotational speed. The limits for N → ∞ while the chord c → 0, the rotational speed Ω → ∞, the load F becoming uniform by ∂F/∂r → 0 and the thickness epsilon → 0 confirm that the classical disc represents the rotor with an infinite number of blades. Furthermore, the expressions for the blade load are compared to the expressions in current design and analysis tools. The latter do not include the load on chord-wise vorticity. Including this is expected to give a better modelling of the tip and root flow.
Trends in phosphorus loading to the western basin of Lake ...
Dave Dolan spent much of his career computing and compiling phosphorus loads to the Great Lakes. None of his work in this area has been more valuable than his continued load estimates to Lake Erie, which has allowed us to unambiguously interpret the cyanobacteria blooms and hypoxia development in the lake. To help understand the re-occurrence of cyanobacteria blooms in the Western Basin of Lake Erie, we have examined the phosphorus loading to the Western Basin over the past 15 years. Furthermore, we have examined the relative contributions from various tributaries and the Detroit River. On an annual basis the total phosphorus load has not exhibited a trend, other than being well correlated with flow from major tributaries. However, the dissolved reactive phosphorus (DRP) load has trended upward, returning to levels observed in the mid-1970s. This increase has largely been attributed to the increase in flow-weighted DRP concentration in the Maumee River. Over the period, about half of the phosphorus load comes from the Maumee River with the other half coming from the Detroit River; other tributaries contribute much small amounts to the load. Seasonal analysis shows the highest percentage of the load occurs in the spring during high flow events. We are very grateful to our friend Dave for making this type of analysis possible not applicable
NASA Astrophysics Data System (ADS)
Radchenko, Pavel; Radchenko, Andrey; Batuev, Stanislav
2013-06-01
The high velocity (supersonic) oxy-fuel (HVOF) thermal spray technology is a rather recent addition to family of thermal spray processes. This technique is considered most modern of technologies of spraying. The increase in velocity of the particles at lower temperatures allowed reducing level of oxidation of the particles and to increase the density of a powder coating. In HVOF dry dusting applicators of the first and second generations was used the cylindrical nozzle, whereas in the third generation expanding Laval nozzles are used. This method allows the velocity of a gas flow to exceed to 2000 m/sec, and the velocities of the powder particles 800 m/sec. Recently many results on elastic and strength properties of the multilayer coatings obtained by supersonic flame spraying method are received. But the main part of works on research of the coating obtained by the HVOF method is devoted to research of their stress-strain state at static loadings. In this work the behavior of the steel barrier with the multilayer coating applied by HVOF is researched, at dynamic loading of projectile structure at different velocities of interaction. The problem was solved numerically within Lagrangian approach, a finite element method with the use of the explicit finite difference scheme of G. Johnson.
Stratification and loading of fecal indicator bacteria (FIB) in a tidally muted urban salt marsh.
Johnston, Karina K; Dorsey, John H; Saez, Jose A
2015-03-01
Stratification and loading of fecal indicator bacteria (FIB) were assessed in the main tidal channel of the Ballona Wetlands, an urban salt marsh receiving muted tidal flows, to (1) determine FIB concentration versus loading within the water column at differing tidal flows, (2) identify associations of FIB with other water quality parameters, and (3) compare wetland FIB concentrations to the adjacent estuary. Sampling was conducted four times during spring-tide events; samples were analyzed for FIB and turbidity (NTU) four times over a tidal cycle at pre-allocated depths, depending on the water level. Additional water quality parameters measured included temperature, salinity, oxygen, and pH. Loadings were calculated by integrating the stratified FIB concentrations with water column cross-sectional volumes corresponding to each depth. Enterococci and Escherichia coli were stratified both by concentration and loading, although these variables portrayed different patterns over a tidal cycle. Greatest concentrations occurred in surface to mid-strata levels, during flood tides when contaminated water flowed in from the estuary, and during ebb flows when sediments were suspended. Loading was greatest during flood flows and diminished during low tide periods. FIB concentrations within the estuary often were significantly greater than those within the wetland tide channel, supporting previous studies that the wetlands act as a sink for FIB. For public health water quality monitoring, these results indicate that more accurate estimates of FIB concentrations would be obtained by sampling a number of points within a water column rather than relying only on single surface samples.
Athanasopoulos, Dimitris; Louvaris, Zafeiris; Cherouveim, Evgenia; Andrianopoulos, Vasilis; Roussos, Charis; Zakynthinos, Spyros
2010-01-01
We investigated whether expiratory muscle loading induced by the application of expiratory flow limitation (EFL) during exercise in healthy subjects causes a reduction in quadriceps muscle blood flow in favor of the blood flow to the intercostal muscles. We hypothesized that, during exercise with EFL quadriceps muscle blood flow would be reduced, whereas intercostal muscle blood flow would be increased compared with exercise without EFL. We initially performed an incremental exercise test on eight healthy male subjects with a Starling resistor in the expiratory line limiting expiratory flow to ∼ 1 l/s to determine peak EFL exercise workload. On a different day, two constant-load exercise trials were performed in a balanced ordering sequence, during which subjects exercised with or without EFL at peak EFL exercise workload for 6 min. Intercostal (probe over the 7th intercostal space) and vastus lateralis muscle blood flow index (BFI) was calculated by near-infrared spectroscopy using indocyanine green, whereas cardiac output (CO) was measured by an impedance cardiography technique. At exercise termination, CO and stroke volume were not significantly different during exercise, with or without EFL (CO: 16.5 vs. 15.2 l/min, stroke volume: 104 vs. 107 ml/beat). Quadriceps muscle BFI during exercise with EFL (5.4 nM/s) was significantly (P = 0.043) lower compared with exercise without EFL (7.6 nM/s), whereas intercostal muscle BFI during exercise with EFL (3.5 nM/s) was significantly (P = 0.021) greater compared with that recorded during control exercise (0.4 nM/s). In conclusion, increased respiratory muscle loading during exercise in healthy humans causes an increase in blood flow to the intercostal muscles and a concomitant decrease in quadriceps muscle blood flow. PMID:20507965
Method and apparatus for preventing overspeed in a gas turbine
Walker, William E.
1976-01-01
A method and apparatus for preventing overspeed in a gas turbine in response to the rapid loss of applied load is disclosed. The method involves diverting gas from the inlet of the turbine, bypassing the same around the turbine and thereafter injecting the diverted gas at the turbine exit in a direction toward or opposing the flow of gas through the turbine. The injected gas is mixed with the gas exiting the turbine to thereby minimize the thermal shock upon equipment downstream of the turbine exit.
NASA Technical Reports Server (NTRS)
Pesetskaya, N. N.; Timofeev, I. YA.; Shipilov, S. D.
1988-01-01
In recent years much attention has been given to the development of methods and programs for the calculation of the aerodynamic characteristics of multiblade, saber-shaped air propellers. Most existing methods are based on the theory of lifting lines. Elsewhere, the theory of a lifting surface is used to calculate screw and lifting propellers. In this work, methods of discrete eddies are described for the calculation of the aerodynamic characteristics of propellers using the linear and nonlinear theories of lifting surfaces.
Parallel discontinuous Galerkin FEM for computing hyperbolic conservation law on unstructured grids
NASA Astrophysics Data System (ADS)
Ma, Xinrong; Duan, Zhijian
2018-04-01
High-order resolution Discontinuous Galerkin finite element methods (DGFEM) has been known as a good method for solving Euler equations and Navier-Stokes equations on unstructured grid, but it costs too much computational resources. An efficient parallel algorithm was presented for solving the compressible Euler equations. Moreover, the multigrid strategy based on three-stage three-order TVD Runge-Kutta scheme was used in order to improve the computational efficiency of DGFEM and accelerate the convergence of the solution of unsteady compressible Euler equations. In order to make each processor maintain load balancing, the domain decomposition method was employed. Numerical experiment performed for the inviscid transonic flow fluid problems around NACA0012 airfoil and M6 wing. The results indicated that our parallel algorithm can improve acceleration and efficiency significantly, which is suitable for calculating the complex flow fluid.
Experiments in Aircraft Roll-Yaw Control using Forebody Tangential Blowing
NASA Technical Reports Server (NTRS)
Pedreiro, Nelson
1997-01-01
Advantages of flight at high angles of attack include increased maneuverability and lift capabilities. These are beneficial not only for fighter aircraft, but also for future supersonic and hypersonic transport aircraft during take-off and landing. At high angles of attack the aerodynamics of the vehicle are dominated by separation, vortex shedding and possibly vortex breakdown. These phenomena severely compromise the effectiveness of conventional control surfaces. As a result, controlled flight at high angles of attack is not feasible for current aircraft configurations. Alternate means to augment the control of the vehicle at these flight regimes are therefore necessary. The present work investigates the augmentation of an aircraft flight control system by the injection of a thin sheet of air tangentially to the forebody of the vehicle. This method, known as Forebody Tangential Blowing (FTB), has been proposed as an effective means of increasing the controllability of aircraft at high angles of attack. The idea is based on the fact that a small amount of air is sufficient to change the separation lines on the forebody. As a consequence, the strength and position of the vortices are altered causing a change on the aerodynamic loads. Although a very effective actuator, forebody tangential blowing is also highly non-linear which makes its use for aircraft control very difficult. In this work, the feasibility of using FTB to control the roll-yaw motion of a wind tunnel model was demonstrated both through simulations and experimentally. The wind tunnel model used in the experiments consists of a wing-body configuration incorporating a delta wing with 70-degree sweep angle and a cone-cylinder fuselage. The model is equipped with forebody slots through which blowing is applied. There are no movable control surfaces, therefore blowing is the only form of actuation. Experiments were conducted at a nominal angle of attack of 45 degrees. A unique apparatus that constrains the model to two degrees-of-freedom, roll and yaw, was designed and built. The apparatus was used to conduct dynamic experiments which showed that the system was unstable, its natural motion divergent. A model for the unsteady aerodynamic loads was developed based on the basic physics of the flow and results from flow visualization experiments. Parameters of the aerodynamic model were identified from experimental data. The model was validated using data from dynamic experiments. The aerodynamic model completes the equations of motion of the system which were used in the design of control laws using blowing as the only actuator. The unsteady aerodynamic model was implemented as part of the real-time vehicle control system. A control strategy using asymmetric blowing was demonstrated experimentally. A discrete vortex method was developed to help understand the main physics of the flow. The method correctly captures the interactions between forebody and wing vortices. Moreover, the trends in static loads and flow structure are correctly represented. Flow visualization results revealed the vortical structure of the flow to be asymmetric even for symmetric flight conditions. The effects of blowing, and roll and yaw angles on the flow structure were determined. It is shown that superimposing symmetric and asymmetric blowing has a linearizing effect on the actuator characteristics. Transient responses of roll and yaw moments to step input blowing were characterized, and their differences were explained based on the physical mechanisms through which these loads are generated.
Dynamic Response during PEM Fuel Cell Loading-up
Pei, Pucheng; Yuan, Xing; Gou, Jun; Li, Pengcheng
2009-01-01
A study on the effects of controlling and operating parameters for a Proton Exchange Membrane (PEM) fuel cell on the dynamic phenomena during the loading-up process is presented. The effect of the four parameters of load-up amplitudes and rates, operating pressures and current levels on gas supply or even starvation in the flow field is analyzed based accordingly on the transient characteristics of current output and voltage. Experiments are carried out in a single fuel cell with an active area of 285 cm2. The results show that increasing the loading-up amplitude can inevitably increase the possibility of gas starvation in channels when a constant flow rate has been set for the cathode; With a higher operating pressure, the dynamic performance will be improved and gas starvations can be relieved. The transient gas supply in the flow channel during two loading-up mode has also been discussed. The experimental results will be helpful for optimizing the control and operation strategies for PEM fuel cells in vehicles.
Zimmerman, Marc J.; Waldron, Marcus C.; DeSimone, Leslie A.
2015-01-01
Analysis of the representative constituents (total phosphorus, total chromium, and suspended sediment) upstream and downstream of impoundments indicated that the existing impoundments, such as Rice City Pond, can be sources of particulate contaminant loads in the Blackstone River. Loads of particulate phosphorus, particulate chromium, and suspended sediment were consistently higher downstream from Rice City Pond than upstream during high-flow events, and there was a positive, linear relation between streamflow and changes in these constituents from upstream to downstream of the impoundment. Thus, particulate contaminants were mobilized from Rice City Pond during high-flow events and transported downstream. In contrast, downstream loads of particulate phosphorus, particulate chromium, and suspended sediment were generally lower than or equal to upstream loads for the former Rockdale Pond impoundment. Sediments associated with the former impoundment at Rockdale Pond, breached in the late 1960s, did not appear to be mobilized during the high-flow events monitored during this study.
Cooling system for superconducting magnet
Gamble, Bruce B.; Sidi-Yekhlef, Ahmed
1998-01-01
A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir.
Cooling system for superconducting magnet
Gamble, B.B.; Sidi-Yekhlef, A.
1998-12-15
A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir. 3 figs.
Design Considerations for Fusible Heat Sink
NASA Technical Reports Server (NTRS)
Cognata, Thomas J.; Leimkuehler, Thomas O.; Sheth, Rubik B.
2011-01-01
Traditionally radiator designs are based off a passive or flow through design depending on vehicle requirements. For cyclical heat loads, a novel idea of combining a full flow through radiator to a phase change material is currently being investigated. The flow through radiator can be designed for an average heat load while the phase change material can be used as a source of supplemental heat rejections when vehicle heat loads go above the average load. Furthermore, by using water as the phase change material, harmful radiation protection can be provided to the crew. This paper discusses numerous trades conducted to understand the most optimal fusible heat sink design for a particular heat load. Trades include configuration concepts, amount of phase change needed for supplemental heat rejection, and the form of interstitial material needed for optimal performance. These trades were used to culminate to a fusible heat sink design. The paper will discuss design parameters taken into account to develop an engineering development unit.
Numerical investigation of the air injection effect on the cavitating flow in Francis hydro turbine
NASA Astrophysics Data System (ADS)
Chirkov, D. V.; Shcherbakov, P. K.; Cherny, S. G.; Skorospelov, V. A.; Turuk, P. A.
2017-09-01
At full and over load operating points, some Francis turbines experience strong self-excited pressure and power oscillations. These oscillations are occuring due to the hydrodynamic instability of the cavitating fluid flow. In many cases, the amplitude of such pulsations may be reduced substantially during the turbine operation by the air injection/ admission below the runner. Such an effect is investigated numerically in the present work. To this end, the hybrid one-three-dimensional model of the flow of the mixture "liquid-vapor" in the duct of a hydroelectric power station, which was proposed previously by the present authors, is augmented by the second gaseous component — the noncondensable air. The boundary conditions and the numerical method for solving the equations of the model are described. To check the accuracy of computing the interface "liquid-gas", the numerical method was applied at first for solving the dam break problem. The algorithm was then used for modeling the flow in a hydraulic turbine with air injection below the runner. It is shown that with increasing flow rate of the injected air, the amplitude of pressure pulsations decreases. The mechanism of the flow structure alteration in the draft tube cone has been elucidated, which leads to flow stabilization at air injection.
Numerical study on the hydrodynamic characteristics of biofouled full-scale net cage
NASA Astrophysics Data System (ADS)
Bi, Chun-wei; Zhao, Yun-peng; Dong, Guo-hai
2015-06-01
The effect of biofouling on the hydrodynamic characteristics of the net cage is of particular interest as biofouled nettings can significantly reduce flow of well-oxygenated water reaching the stocked fish. For computational efficiency, the porous-media fluid model is proposed to simulate flow through the biofouled plane net and full-scale net cage. The porous coefficients of the porous-media fluid model can be determined from the quadratic-function relationship between the hydrodynamic forces on a plane net and the flow velocity using the least squares method. In this study, drag forces on and flow fields around five plane nets with different levels of biofouling are calculated by use of the proposed model. The numerical results are compared with the experimental data of Swift et al. (2006) and the effectiveness of the numerical model is presented. On that basis, flow through full-scale net cages with the same level of biofouling as the tested plane nets are modeled. The flow fields inside and around biofouled net cages are analyzed and the drag force acting on a net cage is estimated by a control volume analysis method. According to the numerical results, empirical formulas of reduction in flow velocity and load on a net cage are derived as function of drag coefficient of the corresponding biofouled netting.
Flow Quality for Turbine Engine Loads Simulator (TELS) Facility
1980-06-01
2.2 GAS INGESTION A mathematical simulation of the turbojet engine and jet deflector was formulated to estimate the severity of the recirculating...3. Swain. R. L. and Mitchell, J. G. "’Smlulatlon of Turbine Engine Operational Loads." Journal of Aircraft Vol. 15, No. 6, June 1978• 4. Ryan, J...3 AEDC-TR-79-83 ~...~ i ,i g - Flow Quality for Turbine Engine Loads Simulator (TELS) Facility R..I. Schulz ARO, Inc. June 1980
NASA Technical Reports Server (NTRS)
Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, Bil; Streett, Craig L; Glass, Christopher E.; Schuster, David M.
2015-01-01
Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads.
Pyroclastic flow transport dynamics for a Montserrat volcano eruption
NASA Astrophysics Data System (ADS)
Cordoba, G.; Sparks, S.; del Risco, E.
2003-04-01
A two phase model of pyroclastic flows dynamics which account for the bed load and suspended load is shown. The model uses the compressible Navier-Stokes equations coupled with the convection-diffusion equation in order to take into account for the sedimentation. The skin friction is taken into account by using the wall functions. In despite of the complex mathematical formulation of the model, it has been implemented in a Personal Computer due to an assumption of two phase one velocity model which reduce the number of equations in the system. This non-linear equation system is solved numerically by using the Finite Element Method. This numerical method let us move the mesh in the direction of the deposition and then accounting for the shape of the bed and the thickness of the deposit The model is applied to the Montserrat's White River basin which extend from the dome to the sea, located about 4 Km away and then compared with the field data from the Boxing Day (26 December, 1997) eruption. Additionally some features as the temporary evolution of the dynamical pressure, particle concentration and temperature along the path at each time step is shown.
Hannouche, Ali; Chebbo, Ghassan; Joannis, Claude; Gasperi, Johnny; Gromaire, Marie-Christine; Moilleron, Régis; Barraud, Sylvie; Ruban, Véronique
2017-12-01
This article describes a stochastic method to calculate the annual pollutant loads and its application over several years at the outlet of three catchments drained by separate storm sewers. A stochastic methodology using Monte Carlo simulations is proposed for assessing annual pollutant load, as well as the associated uncertainties, from a few event sampling campaigns and/or continuous turbidity measurements (representative of the total suspended solids concentration (TSS)). Indeed, in the latter case, the proposed method takes into account the correlation between pollutants and TSS. The developed method was applied to data acquired within the French research project "INOGEV" (innovations for a sustainable management of urban water) at the outlet of three urban catchments drained by separate storm sewers. Ten or so event sampling campaigns for a large range of pollutants (46 pollutants and 2 conventional water quality parameters: TSS and total organic carbon (TOC)) are combined with hundreds of rainfall events for which, at least one among three continuously monitored parameters (rainfall intensity, flow rate, and turbidity) is available. Results obtained for the three catchments show that the annual pollutant loads can be estimated with uncertainties ranging from 10 to 60%, and the added value of turbidity monitoring for lowering the uncertainty is demonstrated. A low inter-annual and inter-site variability of pollutant loads, for many of studied pollutants, is observed with respect to the estimated uncertainties, and can be explained mainly by annual precipitation.
NASA Astrophysics Data System (ADS)
Alesbe, Israa; Abdel-Maksoud, Moustafa; Aljabair, Sattar
2017-06-01
Environmental effects have an important influence on Offshore Wind Turbine (OWT) power generation efficiency and the structural stability of such turbines. In this study, we use an in-house Boundary Element (BEM)— panMARE code—to simulate the unsteady flow behavior of a full OWT with various combinations of aerodynamic and hydrodynamic loads in the time domain. This code is implemented to simulate potential flows for different applications and is based on a three-dimensional first-order panel method. Three different OWT configurations consisting of a generic 5 MW NREL rotor with three different types of foundations (Monopile, Tripod, and Jacket) are investigated. These three configurations are analyzed using the RANSE solver which is carried out using ANSYS CFX for validating the corresponding results. The simulations are performed under the same environmental atmospheric wind shear and rotor angular velocity, and the wave properties are wave height of 4 m and wave period of 7.16 s. In the present work, wave environmental effects were investigated firstly for the two solvers, and good agreement is achieved. Moreover, pressure distribution in each OWT case is presented, including detailed information about local flow fields. The time history of the forces at inflow direction and its moments around the mudline at each OWT part are presented in a dimensionless form with respect to the mean value of the last three loads and the moment amplitudes obtained from the BEM code, where the contribution of rotor force is lower in the tripod case and higher in the jacket case and the calculated hydrodynamic load that effect on jacket foundation type is lower than other two cases.
NASA Technical Reports Server (NTRS)
Yang, Hua; Jones, Michael; Shiota, Takahiro; Qin, Jian Xin; Kim, Yong Jin; Popovic, Zoran B.; Pu, Min; Greenberg, Neil L.; Cardon, Lisa A.; Eto, Yoko;
2002-01-01
BACKGROUND: The aim of our study was to quantitatively compare the changes and correlations between pulmonary venous flow variables and mean left atrial pressure (mLAP) under different loading conditions in animals with chronic mitral regurgitation (MR) and without MR. METHODS: A total of 85 hemodynamic conditions were studied in 22 sheep, 12 without MR as control (NO-MR group) and 10 with MR (MR group). We obtained pulmonary venous flow systolic velocity (Sv) and diastolic velocity (Dv), Sv and Dv time integrals, their ratios (Sv/Dv and Sv/Dv time integral), mLAP, left ventricular end-diastolic pressure, and MR stroke volume. We also measured left atrial a, x, v, and y pressures and calculated the difference between v and y pressures. RESULTS: Average MR stroke volume was 10.6 +/- 4.3 mL/beat. There were good correlations between Sv (r = -0.64 and r = -0.59, P <.01), Sv/Dv (r = -0.62 and r = -0.74, P <.01), and mLAP in the MR and NO-MR groups, respectively. Correlations were also observed between Dv time integral (r = 0.61 and r = 0.57, P <.01) and left ventricular end-diastolic pressure in the MR and NO-MR groups. In velocity variables, Sv (r = -0.79, P <.001) was the best predictor of mLAP in both groups. The sensitivity and specificity of Sv = 0 in predicting mLAP 15 mm Hg or greater were 86% and 85%, respectively. CONCLUSION: Pulmonary venous flow variables correlated well with mLAP under altered loading conditions in the MR and NO-MR groups. They may be applied clinically as substitutes for invasively acquired indexes of mLAP to assess left atrial and left ventricular functional status.
An economic study of an advanced technology supersonic cruise vehicle
NASA Technical Reports Server (NTRS)
Smith, C. L.; Williams, L. J.
1975-01-01
A description is given of the methods used and the results of an economic study of an advanced technology supersonic cruise vehicle. This vehicle was designed for a maximum range of 4000 n.mi. at a cruise speed of Mach 2.7 and carrying 292 passengers. The economic study includes the estimation of aircraft unit cost, operating cost, and idealized cash flow and discounted cash flow return on investment. In addition, it includes a sensitivity study on the effects of unit cost, manufacturing cost, production quantity, average trip length, fuel cost, load factor, and fare on the aircraft's economic feasibility.
A review of developments in the theory of elasto-plastic flow
NASA Technical Reports Server (NTRS)
Swedlow, J. L.
1973-01-01
The theory of elasto-plastic flow is developed so that it may accommodate features such as work-hardening, anisotropy, plastic compressibility, non-continuous loading including local or global unloading, and others. A complete theory is given in quasi-linear form; as a result, many useful attributes are accessible. Several integral theorems may be written, finite deformations may be incorporated, and efficient methods for solving problems may be developed; these and other aspects are described in some detail. The theory is reduced to special forms for 2-space, and extensive experience in solving such problems is cited.
Using repeat lidar to estimate sediment transport in a steep stream
NASA Astrophysics Data System (ADS)
Anderson, Scott; Pitlick, John
2014-03-01
Sediment fluxes in steep mountain streams remain difficult to quantify, despite their importance in geomorphology, ecology, and hazard analysis. In this work, aerial lidar surveys, acquired in 2002, 2008, and 2012, are used to quantify such fluxes in Tahoma Creek, a proglacial stream on Mount Rainier, Washington. As these surveys encompass all coarse sediment sources in the basin, we are able to translate geomorphic change into total bed material transport volumes for the time steps between surveys. By assuming that the relationship between daily sediment transport and daily mean discharge is of the form Qs=a(Q-Qc)b, our two observed total loads and estimates of daily mean discharge allow us to numerically solve for values of a and b to create a bed material sediment rating curve. Comparisons of our transport estimates with sediment deposition in a downstream reservoir indicate that our transport estimates and derived rating curve are reasonable. The method we present thus represents a plausible means of estimating transport rates in energetic settings or during extreme events, applicable whenever at least two cumulative sediment loads and the driving hydrology are known. We use these results to assess the performance of several bed load transport equations. The equations generally overpredict transport at low to moderate flows but significantly underpredict transport rates during an extreme event. Using a critical shear stress value appropriate for steep streams improves agreement at lower flows, whereas a shear-partitioning technique accounting for form drag losses significantly underpredicts transport at all flows.
Granato, Gregory E.; Jones, Susan C.
2014-01-01
In cooperation with FHWA, the U.S. Geological Survey developed the stochastic empirical loading and dilution model (SELDM) to supersede the 1990 FHWA runoff quality model. The SELDM tool is designed to transform disparate and complex scientific data into meaningful information about the adverse risks of runoff on receiving waters, the potential need for mitigation measures, and the potential effectiveness of such measures for reducing such risks. The SELDM tool is easy to use because much of the information and data needed to run it are embedded in the model and obtained by defining the site location and five simple basin properties. Information and data from thousands of sites across the country were compiled to facilitate the use of the SELDM tool. A case study illustrates how to use the SELDM tool for conducting the types of sensitivity analyses needed to properly assess water quality risks. For example, the use of deterministic values to model upstream stormflows instead of representative variations in prestorm flow and runoff may substantially overestimate the proportion of highway runoff in downstream flows. Also, the risks for total phosphorus excursions are substantially affected by the selected criteria and the modeling methods used. For example, if a single deterministic concentration is used rather than a stochastic population of values to model upstream concentrations, then the percentage of water quality excursions in the downstream receiving waters may depend entirely on the selected upstream concentration.
NASA Technical Reports Server (NTRS)
Anderson, W. J.
1980-01-01
The considered investigations deal with some of the more important present day and future bearing requirements, and design methodologies available for coping with them. Solutions to many forthcoming bearing problems lie in the utilization of the most advanced materials, design methods, and lubrication techniques. Attention is given to materials for rolling element bearings, numerical analysis techniques and design methodology for rolling element bearing load support systems, lubrication of rolling element bearings, journal bearing design for high speed turbomachinery, design and energy losses in the case of turbulent flow bearings, and fluid film bearing response to dynamic loading.
Hoghooghi, Nahal; Radcliffe, David E; Habteselassie, Mussie Y; Jeong, Jaehak
2017-05-01
Onsite wastewater treatment systems (OWTSs) can be a source of nitrogen (N) pollution in both surface and ground waters. In metropolitan Atlanta, GA, >26% of homes are on OWTSs. In a previous article, we used the Soil Water Assessment Tool to model the effect of OWTSs on stream flow in the Big Haynes Creek Watershed in metropolitan Atlanta. The objective of this study was to estimate the effect of OWTSs, including failing systems, on nitrate as N (NO-N) load in the same watershed. Big Haynes Creek has a drainage area of 44 km with mainly urban land use (67%), and most of the homes use OWTSs. A USGS gauge station where stream flow was measured daily and NO-N concentrations were measured monthly was used as the outlet. The model was simulated for 12 yr. Overall, the model showed satisfactory daily stream flow and NO-N loads with Nash-Sutcliffe coefficients of 0.62 and 0.58 for the calibration period and 0.67 and 0.33 for the validation period at the outlet of the Big Haynes Watershed. Onsite wastewater treatment systems caused an average increase in NO-N load of 23% at the watershed scale and 29% at the outlet of a subbasin with the highest density of OWTSs. Failing OWTSs were estimated to be 1% of the total systems and did not have a large impact on stream flow or NO-N load. The NO-N load was 74% of the total N load in the watershed, indicating the important effect of OWTSs on stream loads in this urban watershed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Characterization of centrifugally-loaded flame migration for ultra-compact combustors
NASA Astrophysics Data System (ADS)
LeBay, Kenneth D.
The Air Force Research Laboratory (AFRL) has designed a centrifugally-loaded Ultra-Compact Combustor (UCC) showing viable merit for reducing gas turbine combustor length by as much as 66%. The overarching goal of this research was to characterize the migration of centrifugally-loaded flames in a sectional model of the UCC to enable scaling of the design from 15 cm to the 50--75 cm diameter of most engines. Two-line Planar Laser-Induced Fluorescence thermometry (PLIF) of OH, time-resolved Particle Image Velocimetry (PIV), and high-speed video data were collected. Using a sectional UCC model, the flame migration angle was determined to be a function of the UCC/core velocity ratio (VR) while both the VR and the centrifugal or "g-load" affected the migration quantity. Higher g-loads and lower VRs yielding higher migration but lower VRs had lower core flow temperatures due to higher core air mass flow. A comparison of the straight and curved UCC sections showed the centrifugal load increased the flame migration but increased unsteadiness. The flame migration into the core was estimated using pressure and temperature measurements upstream, and PIV measurements downstream of the core flow interface with constant density and velocity profile assumptions. The flame migration quantity was used to estimate the core flow temperature which was in relatively good agreement with the measured PLIF values. The migration quantity scaled relatively linearly with the UCC tangential velocity, which corresponds to the g-load value, with the slope determined by the VR. A simple analytical model resulted for the dependence of the migration quantity on the tangential velocity and VR. The quantitative relationships determined in this research provided a detailed description of the migration of centrifugally-loaded flames in a sectional UCC.
NIRS and indocyanine-green-determined muscle blood flow during exercise in humans
NASA Astrophysics Data System (ADS)
Boushel, Robert; Ide, Kojiro; Moller-Sorensen, Hasse; Fernandes, Alvito; Pott, Frank; Secher, Niels H.
1998-01-01
We present a method for determination of muscle blood flow (MBF) using near infrared spectroscopy (NIRS) with indocyanine green (ICG) as the tracer. MBF was quantified using the integrated arterial [ICG] and the accumulation of ICG in muscle. MBF was determined together with ICG-assessed cardiac output (CO) at rest and during incremental cycling. To further modify CO, the same work loads were performed after cardio-selective beta blockade by metoprolol. In one subject both MBF (9 to 110 ml (DOT) 100 g-1 (DOT) min-1) and CO increased linearly with work rate (8 to 19 l (DOT) min-1). Under beta blockade, both the increase in MBF and CO were lower: 5 to 70 ml (DOT) 100 g-1 (DOT) min-1 and 5 to 161 DOT min-1, respectively. During exercise with and without beta blockade, MBF increased with work load to represent a larger proportion of CO. Also, NIRS could detect an attenuated increase in MBF manifest by the restrained CO during leg exercise after cardio-selective beta blockade. Both observations indicate that NIRS detection of indocyanine green provides an estimate of muscle blood flow over the range from rest to intense exercise.
NIRS and indocyanine-green-determined muscle blood flow during exercise in humans
NASA Astrophysics Data System (ADS)
Boushel, Robert; Ide, Kojiro; Moller-Sorensen, Hasse; Fernandes, Alvito; Pott, Frank; Secher, Niels H.
1997-12-01
We present a method for determination of muscle blood flow (MBF) using near infrared spectroscopy (NIRS) with indocyanine green (ICG) as the tracer. MBF was quantified using the integrated arterial [ICG] and the accumulation of ICG in muscle. MBF was determined together with ICG-assessed cardiac output (CO) at rest and during incremental cycling. To further modify CO, the same work loads were performed after cardio-selective beta blockade by metoprolol. In one subject both MBF (9 to 110 ml (DOT) 100 g-1 (DOT) min-1) and CO increased linearly with work rate (8 to 19 l (DOT) min-1). Under beta blockade, both the increase in MBF and CO were lower: 5 to 70 ml (DOT) 100 g-1 (DOT) min-1 and 5 to 161 DOT min-1, respectively. During exercise with and without beta blockade, MBF increased with work load to represent a larger proportion of CO. Also, NIRS could detect an attenuated increase in MBF manifest by the restrained CO during leg exercise after cardio-selective beta blockade. Both observations indicate that NIRS detection of indocyanine green provides an estimate of muscle blood flow over the range from rest to intense exercise.
Predicting Flutter and Forced Response in Turbomachinery
NASA Technical Reports Server (NTRS)
VanZante, Dale E.; Adamczyk, John J.; Srivastava, Rakesh; Bakhle, Milind A.; Shabbir, Aamir; Chen, Jen-Ping; Janus, J. Mark; To, Wai-Ming; Barter, John
2005-01-01
TURBO-AE is a computer code that enables detailed, high-fidelity modeling of aeroelastic and unsteady aerodynamic characteristics for prediction of flutter, forced response, and blade-row interaction effects in turbomachinery. Flow regimes that can be modeled include subsonic, transonic, and supersonic, with attached and/or separated flow fields. The three-dimensional Reynolds-averaged Navier-Stokes equations are solved numerically to obtain extremely accurate descriptions of unsteady flow fields in multistage turbomachinery configurations. Blade vibration is simulated by use of a dynamic-grid-deformation technique to calculate the energy exchange for determining the aerodynamic damping of vibrations of blades. The aerodynamic damping can be used to assess the stability of a blade row. TURBO-AE also calculates the unsteady blade loading attributable to such external sources of excitation as incoming gusts and blade-row interactions. These blade loadings, along with aerodynamic damping, are used to calculate the forced responses of blades to predict their fatigue lives. Phase-lagged boundary conditions based on the direct-store method are used to calculate nonzero interblade phase-angle oscillations; this practice eliminates the need to model multiple blade passages, and, hence, enables large savings in computational resources.
Liu, Yue; Hu, Jia; Li, Yan; Li, Xiao-Shuang; Wang, Zhong-Liang
2016-10-01
A novel method with high sensitivity for the rapid determination of chrysin, apigenin and luteolin in environment water samples was developed by double-pumps controlled on-line solid-phase extraction (SPE) coupled with high-performance liquid chromatography (HPLC). In the developed technique, metal organic framework MIL-101 was synthesized and applied as a sorbent for SPE. The as-synthesized MIL-101 was characterized by scanning electron microscope, X-ray diffraction spectrometry, thermal gravimetric analysis and micropore physisorption analysis. The MIL-101 behaved as a fast kinetics in the adsorption of chrysin, apigenin and luteolin. On-line SPE of chrysin, apigenin and luteolin was processed by loading a sample solution at a flow rate of 1.0 mL/min for 10 min. The extracted analytes were subsequently eluted into a ZORBAX Bonus-RP analytical column (25 cm long × 4.6 mm i.d.) for HPLC separation under isocratic condition with a mobile phase (MeOH: ACN: 0.02 M H 3 PO 4 = 35:35:30) at a flow rate of 1.0 mL/min. Experimental conditions, including ionic strength, sample pH, sample loading rates, sample loading time and desorption analytes time, were further optimized to obtain efficient preconcentration and high-precision determination of the analytes mentioned above. The method achieved the merits of simplicity, rapidity, sensitivity, wide linear range and high sample throughput. The possible mechanism for the adsorption of flavonoids on MIL-101 was proposed. The developed method has been applied to determine trace chrysin, apigenin and luteolin in a variety of environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sabri, Farhad
Shells of revolution, particularly cylindrical and conical shells, are one of the basic structural elements in the aerospace structures. With the advent of high speed aircrafts, these shells can show dynamic instabilities when they are exposed to a supersonic flow. Therefore, aeroelastic analysis of these elements is one of the primary design criteria which aeronautical engineers are dealing with. This analysis can be done with the help of finite element method (FEM) coupled with the computational fluid dynamic (CFD) or by experimental methods but it is time consuming and very expensive. The purpose of this dissertation is to develop such a numerical tool to do aeroelastic analysis in a fast and precise way. Meanwhile during the design stage, where the different configurations, loading and boundary conditions may need to be analyzed, this numerical method can be used very easily with the high order of reliability. In this study structural modeling is a combination of linear Sanders thin shell theory and classical finite element method. Based on this hybrid finite element method, the shell displacements are found from the exact solutions of shell theory rather than approximating by polynomial function done in traditional finite element method. This leads to a precise and fast convergence. Supersonic aerodynamic modeling is done based on the piston theory and modified piston theory with the shell curvature term. The stress stiffening due to lateral pressure and axial compression are also taken into accounts. Fluid-structure interaction in the presence of inside quiescent fluid is modeled based on the potential theory. In this method, fluid is considered as a velocity potential variable at each node of the shell element where its motion is expressed in terms of nodal elastic displacements at the fluid-structure interface. This proposed hybrid finite element has capabilities to do following analysis: (i) Buckling and vibration of an empty or partially fluid filled circular cylindrical shell or truncated conical shell subjected to internal/external pressure and axial compression loading. This is a typical example of external liquid propellant tanks of space shuttles and re-entry vehicles where they may experience this kind of loading during the flight. In the current work, different end boundary conditions of a circular cylindrical shell with different filling ratios were analyzed. To the best author' knowledge this is the first study where this kind of complex loading and boundary conditions are treated together during such an analysis. Only static instability, divergence, was observed where it showed that the fluid filling ratio does not have any effect on the critical buckling pressure and axial compression. It only reduces the vibration frequencies. It also revealed that the pressurized shell loses its stability at a higher critical axial load. (ii) Aeroelastic analysis of empty or partially liquid filled circular cylindrical and conical shells. Different boundary conditions with different geometries of shells subjected to supersonic air flow are studied here. In all of cases shell loses its stability though the coupled mode flutter. The results showed that internal pressure has a stabilizing effect and increases the critical flutter speed. It is seen that the value of critical dynamic pressure changes rapidly and widely as the filling ratio increases from a low value. In addition, by increasing the length ratio the decrement of flutter speed is decreased and vanishes. This rapid change in critical dynamic pressure at low filling ratios and its almost steady behaviour at large filling ratios indicate that the fluid near the bottom of the shell is largely influenced by elastic deformation when a shell is subjected to external subsonic flow. Based on comparison with the existing numerical, analytical and experimental data and the power of capabilities of this hybrid finite element method to model different boundary conditions and complex loadings, this FEM package can be used effectively for the design of advanced aerospace structures. It provides the results at less computational cost compare to the commercial FEM software, which imposes some restrictions when such an analysis is done.
Garoushi, Sufyan K.; Hatem, Marwa; Lassila, Lippo V. J.; Vallittu, Pekka K.
2015-01-01
Abstract Objectives: To determine the marginal microleakage of Class II restorations made with different composite base materials and the static load-bearing capacity of direct composite onlay restorations. Methods: Class II cavities were prepared in 40 extracted molars. They were divided into five groups (n = 8/group) depending on composite base material used (everX Posterior, SDR, Tetric EvoFlow). After Class II restorations were completed, specimens were sectioned mid-sagitally. For each group, sectioned restorations were immersed in dye. Specimens were viewed under a stereo-microscope and the percentage of cavity leakage was calculated. Ten groups of onlay restorations were fabricated (n = 8/group); groups were made with composite base materials (everX Posterior, SDR, Tetric EvoFlow, Gradia Direct LoFlo) and covered by 1 mm layer of conventional (Tetric N-Ceram) or bulk fill (Tetric EvoCeram Bulk Fill) composites. Groups made only from conventional, bulk fill and short fiber composites were used as control. Specimens were statically loaded until fracture. Data were analyzed using ANOVA (p = 0.05). Results: Microleakage of restorations made of plain conventional composite or short fiber composite base material showed statistically (p < 0.05) lower values compared to other groups. ANOVA revealed that onlay restorations made from short fiber-reinforced composite (FRC) as base or plain restoration had statistically significant higher load-bearing capacity (1593 N) (p < 0.05) than other restorations. Conclusion: Restorations combining base of short FRC and surface layer of conventional composite displayed promising performance related to microleakage and load-bearing capacity. PMID:28642894
Experimental and Theoretical Study of a Rectangular Wing in a Vortical Wake at Low Speed
NASA Technical Reports Server (NTRS)
Smith, Willard G.; Lazzeroni, Frank A.
1960-01-01
A systematic study has been made, experimentally and theoretically, of the effects of a vortical wake on the aerodynamic characteristics of a rectangular wing at subsonic speed. The vortex generator and wing were mounted on a reflection plane to avoid body-wing interference. Vortex position, relative to the wing, was varied both in the spanwise direction and normal to the wing. Angle of attack of the wing was varied from -40 to +60. Both chordwise and spanwise pressure distributions were obtained with the wing in uniform and vortical flow fields. Stream surveys were made to determine the flow characteristics in the vortical wake. The vortex-induced lift was calculated by several theoretical methods including strip theory, reverse-flow theory, and reverse-flow theory including a finite vortex core. In addition, the Prandtl lifting-line theory and the Weissinger theory were used to calculate the spanwise distribution of vortex-induced loads. With reverse-flow theory, predictions of the interference lift were generally good, and with Weissinger's theory the agreement between the theoretical spanwise variation of induced load and the experimental variation was good. Results of the stream survey show that the vortex generated by a lifting surface of rectangular plan form tends to trail back streamwise from the tip and does not approach the theoretical location, or centroid of circulation, given by theory. This discrepancy introduced errors in the prediction of vortex interference, especially when the vortex core passed immediately outboard of the wing tip. The wake produced by the vortex generator in these tests was not fully rolled up into a circular vortex, and so lacked symmetry in the vertical direction of the transverse plane. It was found that the direction of circulation affected the induced loads on the wing either when the wing was at angle of attack or when the vortex was some distance away from the plane of the wing.
Large Eddy Simulation of Crashback in Marine Propulsors
NASA Astrophysics Data System (ADS)
Jang, Hyunchul
Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield negative thrust. The crashback condition is dominated by the interaction of the free stream flow with the strong reverse flow. This interaction forms a highly unsteady vortex ring, which is a very prominent feature of crashback. Crashback causes highly unsteady loads and flow separation on the blade surface. The unsteady loads can cause propulsor blade damage, and also affect vehicle maneuverability. Crashback is therefore well known as one of the most challenging propeller states to analyze. This dissertation uses Large-Eddy Simulation (LES) to predict the highly unsteady flow field in crashback. A non-dissipative and robust finite volume method developed by Mahesh et al. (2004) for unstructured grids is applied to flow around marine propulsors. The LES equations are written in a rotating frame of reference. The objectives of this dissertation are: (1) to understand the flow physics of crashback in marine propulsors with and without a duct, (2) to develop a finite volume method for highly skewed meshes which usually occur in complex propulsor geometries, and (3) to develop a sliding interface method for simulations of rotor-stator propulsor on parallel platforms. LES is performed for an open propulsor in crashback and validated against experiments performed by Jessup et al. (2004). The LES results show good agreement with experiments. Effective pressures for thrust and side-force are introduced to more clearly understand the physical sources of thrust and side-force. Both thrust and side-force are seen to be mainly generated from the leading edge of the suction side of the propeller. This implies that thrust and side-force have the same source---the highly unsteady leading edge separation. Conditional averaging is performed to obtain quantitative information about the complex flow physics of high- or low-amplitude events. The events for thrust and side force show the same tendency. The conditional averages show that during high amplitude events, the vortex ring core is closer to the propeller blades, the reverse flow induced by the propeller rotation is lower, the forward flow is higher at the root of the blades, and leading and trailing edge flow separations are larger. The instantaneous flow field shows that during low amplitude events, the vortex ring is more axisymmetric and the stronger reverse flow induced by the vortex ring suppresses the forward flow so that flow separation on the blades is smaller. During high amplitude events, the vortex ring is less coherent and the weaker reverse flow cannot overcome the forward flow. The stronger forward flow makes flow separation on the blades larger. The effect of a duct on crashback is studied with LES. Thrust mostly arises from the blade surface, but most of side-force is generated from the duct surface. Both mean and RMS of pressure are much higher on inner surface of duct, especially near blade tips. This implies that side-force on the ducted propulsor is caused by the blade-duct interaction. Strong tip leakage flow is observed behind the suction side at the tip gap. The physical source of the tip leakage flow is seen to be the large pressure difference between pressure and suction sides. The conditional average for high amplitude event shows consistent results; the tip leakage flow and pressure difference are significantly higher when thrust and side-force are higher. A sliding interface method is developed to allow simulations of rotor-stator propulsor in crashback. The method allows relative rotations between different parts of the computational grid. Search algorithm for sliding elements, data structures for message passing, and accurate interpolation scheme at the sliding interface are developed for arbitrary shaped unstructured grids on parallel computing platforms. Preliminary simulations of open propulsor in crashback show reasonable performance.
Fracture Mechanics Analysis of LH2 Feed Line Flow Liners
NASA Technical Reports Server (NTRS)
James, Mark A.; Dawicke, David S.; Brzowski, Matthew B.; Raju, Ivatury S.; Elliott, Kenny B.; Harris, Charles E.
2006-01-01
Inspections of the Space Shuttle Main Engine revealed fatigue cracks growing from slots in the flow liner of the liquid hydrogen (LH2) feed lines. During flight, the flow liners experience complex loading induced by flow of LH2 and the resonance characteristics of the structure. The flow liners are made of Inconel 718 and had previously not been considered a fracture critical component. However, fatigue failure of a flow liner could have catastrophic effect on the Shuttle engines. A fracture mechanics study was performed to determine if a damage tolerance approach to life management was possible and to determine the sensitivity to the load spectra, material properties, and crack size. The load spectra were derived separately from ground tests and material properties were obtained from coupon tests. The stress-intensity factors for the fatigue cracks were determined from a shell-dynamics approach that simulated the dominant resonant frequencies. Life predictions were obtained using the NASGRO life prediction code. The results indicated that adequate life could not be demonstrated for initial crack lengths of the size that could be detected by traditional NDE techniques.
Benchmark testing of DIII-D neutral beam modeling with water flow calorimetry
Rauch, J. M.; Crowley, B. J.; Scoville, J. T.; ...
2016-06-02
Power loading on beamline components in the DIII-D neutral beam system is measured in this paper using water flow calorimetry. The results are used to benchmark beam transport models. Finally, anomalously high heat loads in the magnet region are investigated and a speculative hypothesis as to their origin is presented.
NASA Astrophysics Data System (ADS)
Records, R.; Fassnacht, S. R.; Arabi, M.; Duffy, W. G.
2014-12-01
Elevated total phosphorus (P) loading into Upper Klamath Lake, southern Oregon, United States has caused hypereutrophic conditions impacting endangered lake fish species. Increases in P loading have been attributed to land use changes, such as timber harvest and wetland drainage. The contribution of P to Upper Klamath Lake has been estimated from each major tributary, yet little research has explored what land use or other variables have most influence on P loading within the tributaries. In addition, previous work has shown a range of potential hydroclimatic shifts by the 2040s, with potential to alter P loading mechanisms. In this study, we use statistical methods including principle component analysis and multiple linear regression to determine what hydroclimatic and landscape variables best explain flow-weighted P concentration in the Sprague River, one of three main tributaries to Upper Klamath Lake. Identification of key variables affecting P loading has direct implications for management decisions in the Upper Klamath River Basin. Increases in P loading related to sediment loading are due to bank and upslope erosion. The former is more prevalent in areas of historic channel alteration and cattle grazing, while the latter is more dominant in areas of heavy timber harvesting and more precipitation as rain.
NASA Astrophysics Data System (ADS)
Guo, Hang; Liu, Xuan; Zhao, Jian Fu; Ye, Fang; Ma, Chong Fang
2017-06-01
In this work, proton exchange membrane fuel cells (PEMFCs) with transparent windows are designed to study the gas-liquid two-phase flow behaviors inside flow channels and the performance of a PEMFC with vertical channels and a PEMFC with horizontal channels in a normal gravity environment and a 3.6 s short-term microgravity environment. Experiments are conducted under high external circuit load and low external circuit load at low temperature where is 35 °C. The results of the present experimental work demonstrate that the performance and the gas-liquid two-phase flow behaviors of the PEMFC with vertical channels exhibits obvious changes when the PEMFCs enter the 3.6 s short-term microgravity environment from the normal gravity environment. Meanwhile, the performance of the PEMFC with vertical channels increases after the PEMFC enters the 3.6 s short-term microgravity environment under high external circuit load, while under low external circuit load, the PEMFC with horizontal channels exhibits better performance in both the normal gravity environment and the 3.6 s short-term microgravity environment.
Crawford, Charles G.; Wilber, William G.; Peters, James G.
1980-01-01
A digital model calibrated to conditions in the Wabash River in Huntington County, Ind., was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditons, summer and winter low flows. The major point-source waste load affecting the Wabash River in Huntington County is the Huntington wastewater-treatment facility. The most significnt factor potentially affecting the dissolved-oxygen concentration during summer low flows is nitrification. However, nitrification should not be a limiting factor on the allowable nitrogenous and carbonaceous waste loads for the Huntington wastewater-treatment facility during summer low flows if the ammonia-nitrogen toxicity standard for Indiana streams is met. The disolved-oxygen standard for Indiana stream, an average of 5.0 milligrams per liter, should be met during summer and winter low flows if the National Pollution Discharge Elimination System 's 5-day, carbonaceous biochemical-oxygen demands of a monthly average concentration of 30 milligrams per liter and a maximum weekly average of 45 milligrams per liter are not exceeded.
Berkas, Wayne R.
1995-01-01
Sediment data were collected on and along the Missouri River downstream from Garrison Dam during May 1988, May 1989, and April 1991 to characterize sediment transport in the river. Specific study objectives were to (1) identify erosional and depositional reaches during two steady-state low-flow periods and one steady-state high-flow period; (2) determine if the reaches are consistently eroding or depositing, regardless of streamflow; and (3) determine the sources of suspended sediment in the river. Erosional and depositional reaches differed between the two low-flow periods, indicating that slight changes in the channel configuration between the two periods caused changes in erosional and depositional patterns. Erosional and depositional reaches also differed between the low-flow periods and the high-flow period, indicating that channel changes and increased streamflow velocities affect erosional and depositional reaches. The significant sources of suspended sediment in the Missouri River are the riverbed and riverbanks. The riverbed contributes to the silt and sand load in the river, and the riverbanks contribute to the clay, silt, and sand load. The contribution from tributaries to the suspendedsediment load in the Missouri River usually is small. Occasionally, during low-flow periods on the Missouri River, the Knife River can contribute significantly to the suspended-sediment load in the Missouri River.
Effects of subglottal and supraglottal acoustic loading on voice production
NASA Astrophysics Data System (ADS)
Zhang, Zhaoyan; Mongeau, Luc; Frankel, Steven
2002-05-01
Speech production involves sound generation by confined jets through an orifice (the glottis) with a time-varying area. Predictive models are usually based on the quasi-steady assumption. This assumption allows the complex unsteady flows to be treated as steady flows, which are more effectively modeled computationally. Because of the reflective properties of the human lungs, trachea and vocal tract, subglottal and supraglottal resonance and other acoustic effects occur in speech, which might affect glottal impedance, especially in the regime of unsteady flow separation. Changes in the flow structure, or flow regurgitation due to a transient negative transglottal pressure, could also occur. These phenomena may affect the quasi-steady behavior of speech production. To investigate the possible effects of the subglottal and supraglottal acoustic loadings, a dynamic mechanical model of the larynx was designed and built. The subglottal and supraglottal acoustic loadings are simulated using an expansion in the tube upstream of the glottis and a finite length tube downstream, respectively. The acoustic pressures of waves radiated upstream and downstream of the orifice were measured and compared to those predicted using a model based on the quasi-steady assumption. A good agreement between the experimental data and the predictions was obtained for different operating frequencies, flow rates, and orifice shapes. This supports the validity of the quasi-steady assumption for various subglottal and supraglottal acoustic loadings.
NASA Astrophysics Data System (ADS)
Tinterri, R.; Muzzi Magalhaes, P.; Tagliaferri, A.; Cunha, R. S.
2016-10-01
This work discusses the significance of particular types of soft-sediment deformations very common within turbidite deposits, namely convolute laminations and load structures. Detailed facies analyses of the foredeep turbidites in the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (south eastern France) show that these deformational structures tend to increase near morphological obstacles, concomitantly with contained-reflected beds. The lateral and vertical distribution of convolute laminae and load structures, as well as their geometry, has a well-defined depositional logic related to flow decelerations and reflections against bounding slopes. This evidence suggests an interaction between fine-grained sediment and the presence of morphologic relief, and impulsive and cyclic-wave loadings, which are produced by flow impacts or reflected bores and internal waves related to impinging bipartite turbidity currents.
NASA Technical Reports Server (NTRS)
Ericsson, L. E.; Reding, J. P.
1976-01-01
An analysis of the steady and unsteady aerodynamics of the space shuttle orbiter has been performed. It is shown that slender wing theory can be modified to account for the effect of Mach number and leading edge roundness on both attached and separated flow loads. The orbiter unsteady aerodynamics can be computed by defining two equivalent slender wings, one for attached flow loads and another for the vortex-induced loads. It is found that the orbiter is in the transonic speed region subject to vortex-shock-boundary layer interactions that cause highly nonlinear or discontinuous load changes which can endanger the structural integrity of the orbiter wing and possibly cause snap roll problems. It is presently impossible to simulate these interactions in a wind tunnel test even in the static case. Thus, a well planned combined analytic and experimental approach is needed to solve the problem.
Mountcastle, Andrew M.; Combes, Stacey A.
2015-01-01
Bumblebee foragers spend a significant portion of their lives transporting nectar and pollen, often carrying loads equivalent to more than half their body mass. Whereas nectar is stored in the abdomen near the bee’s center of mass, pollen is carried on the hind legs, farther from the center of mass. We examine how load position changes the rotational moment of inertia in bumblebees and whether this affects their flight maneuverability and/or stability. We applied simulated pollen or nectar loads of equal mass to Bombus impatiens bumblebees and examined flight performance in a wind tunnel under three conditions: flight in unsteady flow, tracking an oscillating flower in smooth flow, and flower tracking in unsteady flow. Using an inertial model, we estimated that carrying a load on the legs rather than in the abdomen increases a bee’s moment of inertia about the roll and yaw axes but not the pitch axis. Consistent with these predictions, we found that bees carrying a load on their legs displayed slower rotations about their roll and yaw axes, regardless of whether these rotations were driven by external perturbations or self-initiated steering maneuvers. This allowed pollen-loaded bees to maintain a more stable body orientation and higher median flight speed in unsteady flow but reduced their performance when tracking a moving flower, supporting the concept of a tradeoff between stability and maneuverability. These results demonstrate that the types of resources collected by bees affect their flight performance and energetics and suggest that wind conditions may influence resource selection. PMID:26240364
Testing of a 4 K to 2 K heat exchanger with an intermediate pressure drop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudsen, Peter N.; Ganni, Venkatarao
2015-12-01
Most large sub-atmospheric helium refrigeration systems incorporate a heat exchanger at the load, or in the distribution system, to counter-flow the sub-atmospheric return with the super-critical or liquid supply. A significant process improvement is theoretically obtainable by handling the exergy loss across the Joule-Thompson throttling valve supplying the flow to the load in a simple but different manner. As briefly outlined in previous publications, the exergy loss can be minimized by allowing the supply flow pressure to decrease to a sub-atmospheric pressure concurrent with heat exchange flow from the load. One practical implementation is to sub-divide the supply flow pressuremore » drop between two heat exchanger sections, incorporating an intermediate pressure drop. Such a test is being performed at Jefferson Lab's Cryogenic Test Facility (CTF). This paper will briefly discuss the theory, practical implementation and test results and analysis obtained to date.« less
NASA Technical Reports Server (NTRS)
Parikh, Paresh; Engelund, Walter; Armand, Sasan; Bittner, Robert
2004-01-01
A computational fluid dynamic (CFD) study is performed on the Hyper-X (X-43A) Launch Vehicle stack configuration in support of the aerodynamic database generation in the transonic to hypersonic flow regime. The main aim of the study is the evaluation of a CFD method that can be used to support aerodynamic database development for similar future configurations. The CFD method uses the NASA Langley Research Center developed TetrUSS software, which is based on tetrahedral, unstructured grids. The Navier-Stokes computational method is first evaluated against a set of wind tunnel test data to gain confidence in the code s application to hypersonic Mach number flows. The evaluation includes comparison of the longitudinal stability derivatives on the complete stack configuration (which includes the X-43A/Hyper-X Research Vehicle, the launch vehicle and an adapter connecting the two), detailed surface pressure distributions at selected locations on the stack body and component (rudder, elevons) forces and moments. The CFD method is further used to predict the stack aerodynamic performance at flow conditions where no experimental data is available as well as for component loads for mechanical design and aero-elastic analyses. An excellent match between the computed and the test data over a range of flow conditions provides a computational tool that may be used for future similar hypersonic configurations with confidence.
NASA Technical Reports Server (NTRS)
Ruf, Joseph H.; McDaniels, David M.; Brown, Andrew M.
2010-01-01
Two cold flow subscale nozzles were tested for side load characteristics during simulated nozzle start transients. The two test article contours were a truncated ideal and a parabolic. The current paper is an extension of a 2009 AIAA JPC paper on the test results for the same two nozzle test articles. The side load moments were measured with the strain tube approach in MSFC s Nozzle Test Facility. The processing techniques implemented to convert the strain gage signals into side load moment data are explained. Nozzle wall pressure profiles for separated nozzle flow at many NPRs are presented and discussed in detail. The effect of the test cell diffuser inlet on the parabolic nozzle s wall pressure profiles for separated flow is shown. The maximum measured side load moments for the two contours are compared. The truncated ideal contour s peak side load moment was 45% of that of the parabolic contour. The calculated side load moments, via mean-plus-three-standard-deviations at each nozzle pressure ratio, reproduced the characteristics and absolute values of measured maximums for both contours. The effect of facility vibration on the measured side load moments is quantified and the effect on uncertainty is calculated. The nozzle contour designs are discussed and the impact of a minor fabrication flaw in the nozzle contours is explained.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., and which has a rated primary voltage between 601 V and 34.5 kV. No-load loss means those losses that... no-load loss, 55 °C for load loss of liquid-immersed distribution transformers at 50 percent load... input. Excitation current or no-load current means the current that flows in any winding used to excite...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., and which has a rated primary voltage between 601 V and 34.5 kV. No-load loss means those losses that... no-load loss, 55 °C for load loss of liquid-immersed distribution transformers at 50 percent load... input. Excitation current or no-load current means the current that flows in any winding used to excite...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., and which has a rated primary voltage between 601 V and 34.5 kV. No-load loss means those losses that... no-load loss, 55 °C for load loss of liquid-immersed distribution transformers at 50 percent load... input. Excitation current or no-load current means the current that flows in any winding used to excite...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., and which has a rated primary voltage between 601 V and 34.5 kV. No-load loss means those losses that... no-load loss, 55 °C for load loss of liquid-immersed distribution transformers at 50 percent load... input. Excitation current or no-load current means the current that flows in any winding used to excite...
NASA Astrophysics Data System (ADS)
Nguyen, K. L.; Gabov, V. V.; Zadkov, D. A.; Le, T. B.
2018-03-01
This paper analyzes the processes of removing coal from the area of its dislodging and loading the disintegrated mass onto face conveyors by auger heads of shearer-loader machines. The loading process is assumed to consist of four subprocesses: dislodging coal, removal of the disintegrated mass by auger blades from the crushing area, passive transportation of the disintegrated mass, and forming the load flow on the bearing surface of a face conveyor. Each of the considered subprocesses is different in its physical nature, the number of factors influencing it, and can be complex or multifactor. Possibilities of improving the efficiency of loading coal onto a face conveyor are addressed. The selected criteria of loading efficiency are load rate, specific energy consumption, and coal size reduction. Efficiency is improved by reducing the resistance to movement of the disintegrated mass during loading by increasing the area of the loading window section and the volume of the loading area on the conveyor, as well as by coordination of intensity of flows related to the considered processes in local areas.
Ogino, Takamichi; Ueda, Takayuki; Ogami, Koichiro; Koike, Takashi; Sakurai, Kaoru
2017-01-01
We examined how chewing rate and the extent of reactive hyperemia affect the blood flow in denture-supporting mucosa during chewing. The left palatal mucosa was loaded under conditions of simulated chewing or simulated clenching for 30s, and the blood flow during loading was recorded. We compared the relative blood flow during loading under conditions that recreated different chewing rates by combining duration of chewing cycle (DCC) and occlusal time (OT): fast chewing group, typical chewing group, slow chewing group and clenching group. The relationship between relative blood flow during simulated chewing and the extent of reactive hyperemia was also analyzed. When comparing the different chewing rate, the relative blood flow was highest in fast chewing rate, followed by typical chewing rate and slow chewing rate. Accordingly, we suggest that fast chewing increases the blood flow more than typical chewing or slow chewing. There was a significant correlation between the amount of blood flow during simulated chewing and the extent of reactive hyperemia. Within the limitations of this study, we concluded that slow chewing induced less blood flow than typical or fast chewing in denture-supporting mucosa and that people with less reactive hyperemia had less blood flow in denture-supporting mucosa during chewing. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Modified APEX model for Simulating Macropore Phosphorus Contributions to Tile Drains.
Ford, William I; King, Kevin W; Williams, Mark R; Confesor, Remegio B
2017-11-01
The contribution of macropore flow to phosphorus (P) loadings in tile-drained agricultural landscapes remains poorly understood at the field scale, despite the recognized deleterious impacts of contaminant transport via macropore pathways. A new subroutine that couples existing matrix-excess and matrix-desiccation macropore flow theory and a modified P routine is implemented in the Agricultural Policy Environmental eXtender (APEX) model. The original and modified formulation were applied and evaluated for a case study in a poorly drained field in Western Ohio with 31 months of surface and subsurface monitoring data. Results highlighted that a macropore subroutine in APEX improved edge-of-field discharge calibration and validation for both tile and total discharge from satisfactory and good, respectively, to very good and improved dissolved reactive P load calibration and validation statistics for tile P loads from unsatisfactory to very good. Output from the calibrated macropore simulations suggested median annual matrix-desiccation macropore flow contributions of 48% and P load contributions of 43%, with the majority of loading occurring in winter and spring. While somewhat counterintuitive, the prominence of matrix-desiccation macropore flow during seasons with less cracking reflects the importance of coupled development of macropore pathways and adequate supply of the macropore flow source. The innovative features of the model allow for assessments of annual macropore P contributions to tile drainage and has the potential to inform P site assessment tools. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Study for prediction of rotor/wake/fuselage interference. Part 2: Program users guide
NASA Technical Reports Server (NTRS)
Clark, D. R.; Maskew, B.
1985-01-01
A method was developed which permits the fully coupled calculation of fuselage and rotor airloads for typical helicopter configurations in forward flight. To do this, an iterative solution is carried out based on a conventional panel representation of the fuselage and a blade element representation of the rotor where fuselage and rotor singularity strengths are determined simultaneously at each step and the rotor wake is allowed to relax (deform) in response to changes in rotor wake loading and fuselage presence. On completion of the iteration, rotor loading and inflow, fuselage singularity strength (and, hence, pressure and velocity distributions) and rotor wake are all consistent. The results of a fully coupled calculation of the flow around representative helicopter configurations are presented. The effect of fuselage components on the rotor flow field and the overall wake structure is discussed as well as the aerodynamic interference between the different parts of the aircraft. Details of the computer program are given.
Flow/Damage Surfaces for Fiber-Reinforced Metals Having Different Periodic Microstructures
NASA Technical Reports Server (NTRS)
Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.
1998-01-01
Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics, using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue; for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.
Flow/Damage Surfaces for Fiber-Reinforced Metals having Different Periodic Microstructures
NASA Technical Reports Server (NTRS)
Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.
1998-01-01
Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing, arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics. using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue, for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.
Wilber, William G.; Crawford, Charles G.; Peters, James G.
1979-01-01
A digital model calibrated to conditions in Sand Creek near Greensburg, Ind., was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The only point-source waste load affecting Sand Creek in the vicinity of Greensburg is the Greensburg wastewater-treatment facility. Non-point, unrecorded waste loads seemed to be significant during three water-quality surveys done by the Indiana State Board of Health. Natural streamflow in Sand Creek during the summer and annual 7-day, 10-year low flow is zero so no benefit from dilution is provided. Effluent ammonia-nitrogen concentrations from the Greensburg wastewater-treatment facility will not meet Indiana water-quality standards during summer and winter low flows. To meet the water-quality standard the wastewater-effluent would be limited to a maximum total ammonia-nitrogen concentration of 2.5 mg/l for summer months (June through August) and 4.0 mg/l for winter months (November through March). Model simulations indicate that benthic-oxygen demand, nitrification, and the dissolved-oxygen concentration of the wastewater effluent are the most significant factors affecting the in-stream dissolved-oxygen concentration during summer low flows. The model predicts that with a benthic-oxygen demand of 1.5 grams per square meter per day at 20C the stream has no additional waste-load assimilative capacity. Present carbonaceous biochemical-oxygen demand loads from the Greensburg wastewater-treatment facility will not result in violations of the in-stream dissolved-oxygen standard (5 mg/l) during winter low flows. (Kosco-USGS)
NASA Astrophysics Data System (ADS)
Schroth, A. W.
2015-12-01
Metals and phosphorous are essential micro and macronutrients in aquatic ecosystems, and redox sensitive colloidal and particulate metal (oxy)hydroxide phases can be particularly reactive carriers of solid phase P, as well as other nutrients and/or pollutants in riverine chemical loads. High flow events driven by storms and/or snow or glacial melt often dominate the annual load of such constituents, yet remain poorly understood from a biogeochemical perspective. Our research examines the biogeochemical nature of riverine metal and P loads during targeted high flow events to determine to what extent, and under what environmental conditions, are the concentration and biogeochemical composition of riverine loads of P, Fe, and Mn disproportionately high and relatively reactive v. inert. We present a suite of biogeochemical data derived from water and suspended sediment samples that were collected during these events in multiple catchments and over different seasons within the hydrologic year. We examine the size partitioning (particulate, colloidal, 'truly dissolved') of riverine Fe, Mn, and P during events in glaciated, boreal-forested, and agriculturalized catchments of Vermont and Alaska. Suspended sediment loads are also characterized by relative redox sensitivity to examine the potential reactivity of Fe, Mn, and P in sediment transported during particular events. We demonstrate that metal and P concentration, size partitioning, and redox sensitivity differs both seasonally and by land cover, which is due to different source environments and flow paths that are preferentially activated during high discharge. The conceptual model herein developed is critical to understanding the biogeochemical nature of event-based riverine loads, and how this could evolve with changing frequency and severity of high flow events or land cover associated with climate change and landscape management.
Soltani, Maryam; Kerachian, Reza
2018-04-15
In this paper, a new methodology is proposed for the real-time trading of water withdrawal and waste load discharge permits in agricultural areas along the rivers. Total Dissolved Solids (TDS) is chosen as an indicator of river water quality and the TDS load that agricultural water users discharge to the river are controlled by storing a part of return flows in some evaporation ponds. Available surface water withdrawal and waste load discharge permits are determined using a non-linear multi-objective optimization model. Total available permits are then fairly reallocated among agricultural water users, proportional to their arable lands. Water users can trade their water withdrawal and waste load discharge permits simultaneously, in a bilateral, step by step framework, which takes advantage of differences in their water use efficiencies and agricultural return flow rates. A trade that would take place at each time step results in either more benefit or less diverted return flow. The Nucleolus cooperative game is used to redistribute the benefits generated through trades in different time steps. The proposed methodology is applied to PayePol region in the Karkheh River catchment, southwest Iran. Predicting that 1922.7 Million Cubic Meters (MCM) of annual flow is available to agricultural lands at the beginning of the cultivation year, the real-time optimization model estimates the total annual benefit to reach 46.07 million US Dollars (USD), which requires 6.31 MCM of return flow to be diverted to the evaporation ponds. Fair reallocation of the permits, changes these values to 35.38 million USD and 13.69 MCM, respectively. Results illustrate the effectiveness of the proposed methodology in the real-time water and waste load allocation and simultaneous trading of permits. Copyright © 2018 Elsevier Ltd. All rights reserved.
Debris flow impact estimation on a rigid barrier
NASA Astrophysics Data System (ADS)
Vagnon, Federico; Segalini, Andrea
2016-07-01
The aim of this paper is to analyse debris flow impact against rigid and undrained barrier in order to propose a new formulation for the estimation of acting force after the flow impact to safe design protection structures. For this reason, this work concentrates on the flow impact, by performing a series of small scale tests in a specifically created flume. Flow characteristics (flow height and velocity) and applied loads (dynamic and static) on barrier were measured using four ultrasonic devices, four load cells and a contact surface pressure gauge. The results obtained were compared with main existing models and a new equation is proposed. Furthermore, a brief review of the small scale theory was provided to analyse the scale effects that can affect the results.
Viscous free-surface flows on rotating elliptical cylinders
NASA Astrophysics Data System (ADS)
Li, Weihua; Carvalho, Marcio S.; Kumar, Satish
2017-09-01
The flow of liquid films on rotating discrete objects having complicated cross sections is encountered in coating processes for a broad variety of products. To advance fundamental understanding of this problem, we study viscous free-surface flows on rotating elliptical cylinders by solving the governing equations in a rotating reference frame using the Galerkin finite-element method. Results of our simulations agree well with Hunt's maximum-load condition [Hunt, Numer. Methods Partial Differ. Eqs. 24, 1094 (2008), 10.1002/num.20307], which was obtained in the absence of surface tension and inertia. The simulations are also used to track the transient behavior of the free surface. For O (1 ) cylinder aspect ratios, cylinder rotation results in a droplike liquid bulge hanging on the upward-moving side of the cylinder. This bulge shrinks in size due to surface tension provided that the liquid load is smaller than a critical value, leaving a relatively smooth coating on the cylinder. A decrease in cylinder aspect ratio leads to larger gradients in film thickness, but enhances the rate of bulge shrinkage and thus shortens the time required to obtain a smooth coating. Moreover, with a suitably chosen time-dependent rotation rate, more liquid can be supported by the cylinder relative to the constant-rotation-rate case. For cylinders with even smaller aspect ratios, film rupture and liquid shedding may occur over the cylinder tips, so simultaneous drying and rotation along with the introduction of Marangoni stresses will likely be especially important for obtaining a smooth coating.
Westenburg, C.L.
1995-01-01
The Bureau of Land Management administers about 9,300 square miles of public lands in southeastern Nevada that are part of the Colorado River Basin. The U.S. Geological Survey, in cooperation with the Bureau of Land Management, began a 5-year program in October 1988 to assess the contribution of dissolved solids to the fiver from those lands. About 6,200 square miles of public lands are in the Muddy River subbasin in Nevada. The estimated average dissolved-solids load contributed to the Colorado River from those lands was 28,000 tons per year from October 1988 through September 1993. Subsurface flow contributed about 86 percent (24,000 tons per year) of that load. About 730 square miles of public lands in the Las Vegas Wash subbasin contribute dissolved-solids load to the Colorado River. (About 120 square miles of public lands do not contribute to the river.) The estimated average dissolved-solids load contributed to the river from those lands was about 1,300 tons per year from October 1988 through September 1993. Subsurface flow contributed almost all of that load. About 1,100 square miles of public lands are in the Virgin River subbasin in Nevada. The estimated average dissolved- solids load contributed to the Colorado River from Nevada public lands in the subbasin was 8,700 tons per year. Subsurface flow contributed almost the entire load. About 1,200 square miles of Nevada public lands are in ephemeral tributaries that drain direcfly to the Colorado River or its impoundments (Lake Mead and Lake Mobave). The estimated average dissolved-solids load contributed to the river from those lands was 50 tons per year from surface runoff; however, the dissolved-solids load contributed by subsurface flow was not estimated. From October 1992 to September 1993, the Colorado River carried about 6,600,000 tons of dissolved solids past a streamflow gaging station 0.3 mile downstream from Hoover Dam. In contrast, surface runoff and subsurface flow contribute an estimated average dissolved-solids load of 38,000 tons per year from public lands in southeastern Nevada to the Colorado River. Land-management practices probably would not substantially reduce this contribution.
Norton-Thevenin Receptance Coupling (NTRC) as a Payload Design Tool
NASA Technical Reports Server (NTRS)
Gordon, Scott; Kaufman, Dan; Majed, Arya
2017-01-01
The NASA Engineering and Safety Center (NESC) is funding a study to develop an alternate method for performing coupled loads analysis called Norton-Thevenin Receptance Coupling (NTRC). NTRC combines Receptance Coupling (RC), a frequency-domain synthesis method and Norton-Thevenin (NT) theory, an impedance based approach for simulating the interaction between dynamic systems. The goal of developing the NTRC method is to provide a tool that payload developers can use to reduce the conservatism in defining preliminary design loads, assess the impact of design changes between formal load cycles, and to perform trade studies for design optimization with a minimum amount of data required from the launch vehicle (LV) provider. NTRC also has the ability to perform parametric loads analysis where many different design configurations can be evaluated. This will result in cost and schedule benefits to the payload developer that are currently not possible under the standard coupled loads analysis (CLA) flow where typically only 2-3 official load cycles are performed by the LV provider over the life of a payload program. NTRC is not envisioned as a replacement for the official load cycles performed by the LV provider but rather as a means to address the types of design issues faced by the payload developer before and between official load cycles.The presentation provides an overview of the NTRC methodology and discusses how NTRC can be used to replicate the results from a standard LV CLA. The presentation covers the benchmarking that has been performed as part of the NESC study to demonstrate the accuracy of the technique for both frequency and time domain dynamic analyses. Future plans for benchmarking the NTRC approach against CLA results for NASAs Space Launch System (SLS) and commercial launch vehicles are discussed and the role that NTRC is envisioned to play in the payload development cycle.
Assessing dry weather flow contribution in TSS and COD storm events loads in combined sewer systems.
Métadier, M; Bertrand-Krajewski, J L
2011-01-01
Continuous high resolution long term turbidity measurements along with continuous discharge measurements are now recognised as an appropriate technique for the estimation of in sewer total suspended solids (TSS) and Chemical Oxygen Demand (COD) loads during storm events. In the combined system of the Ecully urban catchment (Lyon, France), this technique is implemented since 2003, with more than 200 storm events monitored. This paper presents a method for the estimation of the dry weather (DW) contribution to measured total TSS and COD event loads with special attention devoted to uncertainties assessment. The method accounts for the dynamics of both discharge and turbidity time series at two minutes time step. The study is based on 180 DW days monitored in 2007-2008. Three distinct classes of DW days were evidenced. Variability analysis and quantification showed that no seasonal effect and no trend over the year were detectable. The law of propagation of uncertainties is applicable for uncertainties estimation. The method has then been applied to all measured storm events. This study confirms the interest of long term continuous discharge and turbidity time series in sewer systems, especially in the perspective of wet weather quality modelling.
Assessment of fatigue life of remanufactured impeller based on FEA
NASA Astrophysics Data System (ADS)
Xu, Lei; Cao, Huajun; Liu, Hailong; Zhang, Yubo
2016-09-01
Predicting the fatigue life of remanufactured centrifugal compressor impellers is a critical problem. In this paper, the S-N curve data were obtained by combining experimentation and theory deduction. The load spectrum was compiled by the rain-flow counting method based on the comprehensive consideration of the centrifugal force, residual stress, and aerodynamic loads in the repair region. A fatigue life simulation model was built, and fatigue life was analyzed based on the fatigue cumulative damage rule. Although incapable of providing a high-precision prediction, the simulation results were useful for the analysis of fatigue life impact factors and fatigue fracture areas. Results showed that the load amplitude greatly affected fatigue life, the impeller was protected from running at over-speed, and the predicted fatigue life was satisfied within the next service cycle safely at the rated speed.
NASA Astrophysics Data System (ADS)
Scholefield, P. A.; Arnscheidt, J.; Jordan, P.; Beven, K.; Heathwaite, L.
2007-12-01
The uncertainties associated with stream nutrient transport estimates are frequently overlooked and the sampling strategy is rarely if ever investigated. Indeed, the impact of sampling strategy and estimation method on the bias and precision of stream phosphorus (P) transport calculations is little understood despite the use of such values in the calibration and testing of models of phosphorus transport. The objectives of this research were to investigate the variability and uncertainty in the estimates of total phosphorus transfers at an intensively monitored agricultural catchment. The Oona Water which is located in the Irish border region, is part of a long term monitoring program focusing on water quality. The Oona Water is a rural river catchment with grassland agriculture and scattered dwelling houses and has been monitored for total phosphorus (TP) at 10 min resolution for several years (Jordan et al, 2007). Concurrent sensitive measurements of discharge are also collected. The water quality and discharge data were provided at 1 hour resolution (averaged) and this meant that a robust estimate of the annual flow weighted concentration could be obtained by simple interpolation between points. A two-strata approach (Kronvang and Bruhn, 1996) was used to estimate flow weighted concentrations using randomly sampled storm events from the 400 identified within the time series and also base flow concentrations. Using a random stratified sampling approach for the selection of events, a series ranging from 10 through to the full 400 were used, each time generating a flow weighted mean using a load-discharge relationship identified through log-log regression and monte-carlo simulation. These values were then compared to the observed total phosphorus concentration for the catchment. Analysis of these results show the impact of sampling strategy, the inherent bias in any estimate of phosphorus concentrations and the uncertainty associated with such estimates. The estimates generated using the full time series underestimate the flow weighted mean concentration of total phosphorus. This work compliments other contemporary work in the area of load estimation uncertainty in the UK (Johnes, 2007). Johnes P,J. 2007, Uncertainties in annual riverine phosphorus load estimation: Impact of load estimation methodology, sampling frequency, baseflow index and catchment population density, Journal of hydrology 332 (1- 2): 241-258 Jordan, P., Arnscheidt, J., McGrogan, H & McCormick, S., 2007. Characterising phosphorus transfers in rural transfers using a continuous bank-side analyser. Hydrology and Earth System Science 11, 372-381 Kronvang B & Bruhn, A. J, 1996. Choice of sampling strategy and estimation method for calculating nitrogen and phosphorus transport in small lowland streams , Hydrological processes 10 (11): 1483-1501
Comprehensive experimental and numerical analysis of instability phenomena in pump turbines
NASA Astrophysics Data System (ADS)
Gentner, Ch; Sallaberger, M.; Widmer, Ch; Bobach, B.-J.; Jaberg, H.; Schiffer, J.; Senn, F.; Guggenberger, M.
2014-03-01
The changes in the electricity market have led to changed requirements for the operation of pump turbines. Utilities need to change fast and frequently between pumping and generating modes and increasingly want to operate at off-design conditions for extended periods. Operation of the units in instable areas of the machine characteristic is not acceptable and may lead to self-excited vibration of the hydraulic system. In turbine operation of pump turbines unstable behaviour can occur at low load off-design operation close to runaway conditions (S-shape of the turbine characteristic). This type of instability may impede the synchronization of the machine in turbine mode and thus increase start-up and switch over times. A pronounced S-shaped instability can also lead to significant drop of discharge in the event of load rejection. Low pressure on the suction side and in the tail-race tunnel could cause dangerous separation of the water column. Understanding the flow features that lead to the instable behaviour of pump turbines is a prerequisite to the design of machines that can fulfil the growing requirements relating to operational flexibility. Flow simulation in these instability zones is demanding due to the complex and highly unsteady flow patterns. Only unsteady simulation methods are able to reproduce the governing physical effects in these operating regions. ANDRITZ HYDRO has been investigating the stability behaviour of pump turbines in turbine operation in cooperation with several universities using simulation and measurements. In order to validate the results of flow simulation of unstable operating points, the Graz University of Technology (Austria) performed detailed experimental investigations. Within the scope of a long term research project, the operating characteristics of several pump turbine runners have been measured and flow patterns in the pump turbine at speed no load and runaway have been examined by 2D Laser particle image velocimetry (PIV). For several wicket gate positions, the flow fields in the vane-less space at runner inlet observed in the experiment are compared with the results of unsteady CFD flow simulations. Physical phenomena are visualized and insight to flow phenomena is given. Analyses using both results of simulation and measurement allow deriving a consistent explanation of the fluid mechanical mechanisms leading to the S-shaped instability of pump turbines.
NASA Astrophysics Data System (ADS)
Howlader, Harun Or Rashid; Matayoshi, Hidehito; Noorzad, Ahmad Samim; Muarapaz, Cirio Celestino; Senjyu, Tomonobu
2018-05-01
This paper presents a smart house-based power system for thermal unit commitment programme. The proposed power system consists of smart houses, renewable energy plants and conventional thermal units. The transmission constraints are considered for the proposed system. The generated power of the large capacity renewable energy plant leads to the violated transmission constraints in the thermal unit commitment programme, therefore, the transmission constraint should be considered. This paper focuses on the optimal operation of the thermal units incorporated with controllable loads such as Electrical Vehicle and Heat Pump water heater of the smart houses. The proposed method is compared with the power flow in thermal units operation without controllable loads and the optimal operation without the transmission constraints. Simulation results show the validation of the proposed method.