Markolf, Keith L; Jackson, Steven R; McAllister, David R
2012-02-01
Tears of the medial meniscus posterior horn attachment (PHA) occur clinically, and an anterior cruciate ligament (ACL)-deficient knee may be more vulnerable to this injury. The PHA forces from applied knee loadings will increase after removal of the ACL. Controlled laboratory study. A cap of bone containing the medial meniscus PHA was attached to a load cell that measured PHA tensile force. Posterior horn attachment forces were recorded before and after ACL removal during anteroposterior (AP) laxity testing at ±200 N and during passive knee extension tests with 5 N·m tibial torque and varus-valgus moment. Selected tests were also performed with 500 N joint load. For AP tests with no joint load, ACL removal increased laxity between 0° and 90° and increased PHA force generated by applied anterior tibial force between 30° and 90°. For AP tests with an intact ACL, application of joint load approximately doubled PHA forces. Anteroposterior testing of ACL-deficient knees was not possible with joint load because of bone cap failures from high PHA forces. Removal of the ACL during knee extension tests under joint load significantly increased PHA forces between 20° and 90° of flexion. For unloaded tests with applied tibial torque and varus-valgus moment, ACL removal had no significant effect on PHA forces. Applied anterior tibial force and external tibial torque were loading modes that produced relatively high PHA forces, presumably by impingement of the medial femoral condyle against the medial meniscus posterior horn rim. Under joint load, an ACL-deficient knee was particularly susceptible to PHA injury from applied anterior tibial force. Because tensile forces developed in the PHA are also borne by meniscus tissue near the attachment site, loading mechanisms that produce high PHA forces could also produce complete or partial radial tears near the posterior horn, a relatively common clinical observation.
40 CFR 86.229-94 - Road load force, test weight, and inertia weight class determination.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Road load force, test weight, and... § 86.229-94 Road load force, test weight, and inertia weight class determination. (a) Flywheels, electrical forces, or other means of simulating test weight as shown in the table in this paragraph shall be...
Influence of central set on anticipatory and triggered grip-force adjustments
NASA Technical Reports Server (NTRS)
Winstein, C. J.; Horak, F. B.; Fisher, B. E.; Peterson, B. W. (Principal Investigator)
2000-01-01
The effects of predictability of load magnitude on anticipatory and triggered grip-force adjustments were studied as nine normal subjects used a precision grip to lift, hold, and replace an instrumented test object. Experience with a predictable stimulus has been shown to enhance magnitude scaling of triggered postural responses to different amplitudes of perturbations. However, this phenomenon, known as a central-set effect, has not been tested systematically for grip-force responses in the hand. In our study, predictability was manipulated by applying load perturbations of different magnitudes to the test object under conditions in which the upcoming load magnitude was presented repeatedly or under conditions in which the load magnitudes were presented randomly, each with two different pre-load grip conditions (unconstrained and constrained). In constrained conditions, initial grip forces were maintained near the minimum level necessary to prevent pre-loaded object slippage, while in unconstrained conditions, no initial grip force restrictions were imposed. The effect of predictable (blocked) and unpredictable (random) load presentations on scaling of anticipatory and triggered grip responses was tested by comparing the slopes of linear regressions between the imposed load and grip response magnitude. Anticipatory and triggered grip force responses were scaled to load magnitude in all conditions. However, regardless of pre-load grip force constraint, the gains (slopes) of grip responses relative to load magnitudes were greater when the magnitude of the upcoming load was predictable than when the load increase was unpredictable. In addition, a central-set effect was evidenced by the fewer number of drop trials in the predictable relative to unpredictable load conditions. Pre-load grip forces showed the greatest set effects. However, grip responses showed larger set effects, based on prediction, when pre-load grip force was constrained to lower levels. These results suggest that anticipatory processes pertaining to load magnitude permit the response gain of both voluntary and triggered rapid grip force adjustments to be set, at least partially, prior to perturbation onset. Comparison of anticipatory set effects for reactive torque and lower extremity EMG postural responses triggered by surface translation perturbations suggests a more general rule governing anticipatory processes.
NASA Technical Reports Server (NTRS)
Lynn, Keith C. (Inventor); Acheson, Michael J. (Inventor); Commo, Sean A. (Inventor); Landman, Drew (Inventor)
2016-01-01
An In-Situ Load System for calibrating and validating aerodynamic properties of scaled aircraft in ground-based aerospace testing applications includes an assembly having upper and lower components that are pivotably interconnected. A test weight can be connected to the lower component to apply a known force to a force balance. The orientation of the force balance can be varied, and the measured forces from the force balance can be compared to applied loads at various orientations to thereby develop calibration factors.
40 CFR 86.529-98 - Road load force and inertia weight determination.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Road load force and inertia weight... Emission Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.529-98 Road load force and... of this section. Velocity V is in km/h and force (F) is in newtons. The forces given by the equation...
Wind tunnel investigation of rotor lift and propulsive force at high speed: Data analysis
NASA Technical Reports Server (NTRS)
Mchugh, F.; Clark, R.; Soloman, M.
1977-01-01
The basic test data obtained during the lift-propulsive force limit wind tunnel test conducted on a scale model CH-47b rotor are analyzed. Included are the rotor control positions, blade loads and six components of rotor force and moment, corrected for hub tares. Performance and blade loads are presented as the rotor lift limit is approached at fixed levels of rotor propulsive force coefficients and rotor tip speeds. Performance and blade load trends are documented for fixed levels of rotor lift coefficient as propulsive force is increased to the maximum obtainable by the model rotor. Test data is also included that defines the effect of stall proximity on rotor control power. The basic test data plots are presented in volumes 2 and 3.
1. EAST ENTRANCE FROM LOADING AREA. CONCRETE TUNNEL TO TEST ...
1. EAST ENTRANCE FROM LOADING AREA. CONCRETE TUNNEL TO TEST STAND 1-3 IS AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Effect of the Addition of 3% Co in NiTi Alloy on Loading/Unloading Force
NASA Astrophysics Data System (ADS)
Phukaoluan, A.; Dechkunakorn, S.; Anuwongnukroh, N.; Khantachawana, A.; Kaewtathip, P.; Kajornchaiyakul, J.; Wichai, W.
2017-11-01
The study evaluated the loading-unloading force in the load-deflection curve of the fabricated NiTiCo and NiTi wires. Wire alloys with Nickel, Titanium, and Cobalt (purity-99.95%) with atomic weight ratio 47Ni:50Ti:3Co and 50.6Ni:49.4Ti were prepared, sliced, and cold-rolled at 30% reduction, followed by heat treatment in a furnace at 400oC for 1 hour. The specimens of wire size of 0.016 x 0.022 inch2 were cut and subjected to three-point bending test to investigate the load-deflection curve at deflection point 0.25, 0.5, 0.75, 1.0, 1.25, and 1.5 mm. Descriptive statistic was used to evaluate each variables and independent t-test was used to compare between the groups. The results presented a load-deflection curve that resembled a typical superelastic wire. However, significant differences were seen in the loading-unloading forces between the two with an average loading force of 412.53g and 304.98g and unloading force of 292.40g and 208.08g for NiTiCo and NiTi wire, respectively. The force at each deflection point of NiTiCo in loading-unloading force was higher than NiTi wire. This study concluded that the addition of 3%Co in NiTi alloy can increase the loading-unloading force of NiTi wire but were within the range for orthodontic tooth movement.
Role of the Middle Lumbar Fascia on Spinal Mechanics: A Human Biomechanical Assessment.
Ranger, Tom A; Newell, Nicolas; Grant, Caroline A; Barker, Priscilla J; Pearcy, Mark J
2017-04-15
Biomechanical experiment. The aims of the present study were to test the effect of fascial tension on lumbar segmental axial rotation and lateral flexion and the effect of the angle of fascial attachment. Tension in the middle layer of lumbar fascia has been demonstrated to affect mechanical properties of lumbar segmental flexion and extension in the neutral zone. The effect of tension on segmental axial rotation and lateral flexion has, however, not been investigated. Seven unembalmed lumbar spines were divided into segments and mounted for testing. A 6 degree-of-freedom robotic testing facility was used to displace the segments in each anatomical plane (flexion-extension, lateral bending, and axial rotation) with force and moment data recorded by a load cell positioned beneath the test specimen. Tests were performed with and without a 20 N fascia load and the subsequent forces and moments were compared. In addition, forces and moments were compared when the specimens were held in a set position and the fascia loading angle was varied. A fascial tension of 20 N had no measurable effect on the forces or moments measured when the specimens were displaced in any plane of motion (P > 0.05). When 20 N of fascial load were applied to motion segments in a set position small segmental forces and moments were measured. Changing the angle of the fascial load did not significantly alter these measurements. Application of a 20 N fascial load did not produce a measureable effect on the mechanics of a motion segment, even though it did produce small measurable forces and moments on the segments when in a fixed position. Results from the present study are inconsistent with previous studies, suggesting that further investigation using multiple testing protocols and different loading conditions is required to determine the effects of fascial loading on spinal segment behavior. N/A.
Using Maximal Isometric Force to Determine the Optimal Load for Measuring Dynamic Muscle Power
NASA Technical Reports Server (NTRS)
Spiering, Barry A.; Lee, Stuart M. C.; Mulavara, Ajitkumar P.; Bentley, Jason R.; Nash, Roxanne E.; Sinka, Joseph; Bloomberg, Jacob J.
2009-01-01
Maximal power output occurs when subjects perform ballistic exercises using loads of 30-50% of one-repetition maximum (1-RM). However, performing 1-RM testing prior to power measurement requires considerable time, especially when testing involves multiple exercises. Maximal isometric force (MIF), which requires substantially less time to measure than 1-RM, might be an acceptable alternative for determining the optimal load for power testing. PURPOSE: To determine the optimal load based on MIF for maximizing dynamic power output during leg press and bench press exercises. METHODS: Twenty healthy volunteers (12 men and 8 women; mean +/- SD age: 31+/-6 y; body mass: 72 +/- 15 kg) performed isometric leg press and bench press movements, during which MIF was measured using force plates. Subsequently, subjects performed ballistic leg press and bench press exercises using loads corresponding to 20%, 30%, 40%, 50%, and 60% of MIF presented in randomized order. Maximal instantaneous power was calculated during the ballistic exercise tests using force plates and position transducers. Repeated-measures ANOVA and Fisher LSD post hoc tests were used to determine the load(s) that elicited maximal power output. RESULTS: For the leg press power test, six subjects were unable to be tested at 20% and 30% MIF because these loads were less than the lightest possible load (i.e., the weight of the unloaded leg press sled assembly [31.4 kg]). For the bench press power test, five subjects were unable to be tested at 20% MIF because these loads were less than the weight of the unloaded aluminum bar (i.e., 11.4 kg). Therefore, these loads were excluded from analysis. A trend (p = 0.07) for a main effect of load existed for the leg press exercise, indicating that the 40% MIF load tended to elicit greater power output than the 60% MIF load (effect size = 0.38). A significant (p . 0.05) main effect of load existed for the bench press exercise; post hoc analysis indicated that the effect of load on power output was: 30% > 40% > 50% = 60%. CONCLUSION: Loads of 40% and 30% of MIF elicit maximal power output during dynamic leg presses and bench presses, respectively. These findings are similar to those obtained when loading is based on 1-RM.
Markolf, Keith L; Jackson, Steven; McAllister, David R
2012-09-01
Syndesmosis (high ankle) sprains produce disruption of the distal tibiofibular ligaments. Forces on the distal fibula that produce these injuries are unknown. Twenty-seven fresh-frozen lower extremities were used for this study. A load cell recorded forces acting on the distal fibula from forced ankle dorsiflexion and applied external foot torque; medial-lateral and anterior-posterior displacements of the distal fibula were recorded. Fibular forces and axial displacements were also recorded with applied axial force. During forced ankle dorsiflexion and external foot torque tests, the distal fibula always displaced posteriorly with respect to the tibia with no measurable medial-lateral displacement. With 10 Nm dorsiflexion moment, cutting the tibiofibular ligaments approximately doubled fibular force and displacement values. Cutting the tibiofibular ligaments significantly increased fibular displacement from applied external foot torque. Fibular forces and axial displacements from applied axial weight-bearing force were highest with the foot dorsiflexed. The highest mean fibular force in the study (271.9 N) occurred with 10 Nm external foot torque applied to a dorsiflexed foot under 1000 N axial force. Two important modes of loading that could produce high ankle sprains were identified: forced ankle dorsiflexion and external foot torque applied to a dorsiflexed ankle loaded with axial force. The distal tibiofibular ligaments restrained fibular displacement during these tests. Residual mortise widening observed at surgery may be the result of tibiofibular ligament injuries caused by posterior displacement of the fibula. Therefore, a syndesmosis screw used to fix the fibula would be subjected to posterior bending forces from these loading modes. Ankle bracing to prevent extreme ankle dorsiflexion during rehabilitation may be advisable to prevent excessive fibular motions that could affect syndesmosis healing.
NASA Astrophysics Data System (ADS)
Karamış, M. B.; Yıldızlı, K.; Çakırer, H.
2004-05-01
Surface properties of the Al-Mo-Ni coating plasma sprayed on the piston ring material and the frictional forces obtained by testing carried out under different loads, temperatures and frictional conditions were evaluated. Al-Mo-Ni composite material was deposited on the AISI 440C test steel using plasma spraying method. The coated and uncoated samples were tested by being exposed to frictional testing under dry and lubricated conditions. Test temperatures of 25, 100, 200, and 300 °C and loads of 83, 100, 200, and 300 N were applied during the tests in order to obtain the frictional response of the coating under conditions similar to real piston ring/cylinder friction conditions. Gray cast iron was used as a counterface material. All the tests were carried out with a constant sliding speed of 1 m/s. The properties of the coating were determined by using EDX and SEM analyses. Hardness distribution on the cross-section of the coating was also determined. In addition, the variations of the surface roughness after testing with test temperatures and loads under dry and lubricated conditions were recorded versus sliding distance. It was determined that the surface roughness increased with increasing loads. It increased with temperature up to 200 °C and then decreased at 300 °C under dry test conditions. Under lubricated conditions, the roughness decreased under the loads of 100 N and then increased. The roughness decreased at 200 °C but below and above this point it increased with the test temperature. Frictional forces observed under dry and lubricated test conditions increased with load at running-in period of the sliding. The steady-state period was then established with the sliding distance as a normal situation. However, the frictional forces were generally lower at a higher test temperature than those at a lower test temperature. Surprisingly, the test temperature of 200 °C was a critical point for frictional forces and surface roughness.
Load apparatus and method for bolt-loaded compact tension test specimen
Buescher, B.J. Jr.; Lloyd, W.R.; Ward, M.B.; Epstein, J.S.
1997-02-04
A bolt-loaded compact tension test specimen load apparatus includes: (a) a body having first and second opposing longitudinal ends, the first end comprising an externally threaded portion sized to be threadedly received within the test specimen threaded opening; (b) a longitudinal loading rod having first and second opposing longitudinal ends, the loading rod being slidably received in a longitudinal direction within the body internally through the externally threaded portion and slidably extending longitudinally outward of the body first longitudinal end; (c) a force sensitive transducer slidably received within the body and positioned to engage relative to the loading rod second longitudinal end; and (d) a loading bolt threadedly received relative to the body, the loading bolt having a bearing end surface and being positioned to bear against the transducer to forcibly sandwich the transducer between the loading bolt and loading rod. Also disclosed is a method of in situ determining applied force during crack propagation in a bolt-loaded compact tension test specimen. 6 figs.
Load apparatus and method for bolt-loaded compact tension test specimen
Buescher, Jr., Brent J.; Lloyd, W. Randolph; Ward, Michael B.; Epstein, Jonathan S.
1997-01-01
A bolt-loaded compact tension test specimen load apparatus includes: a) a body having first and second opposing longitudinal ends, the first end comprising an externally threaded portion sized to be threadedly received within the test specimen threaded opening; b) a longitudinal loading rod having first and second opposing longitudinal ends, the loading rod being slidably received in a longitudinal direction within the body internally through the externally threaded portion and slidably extending longitudinally outward of the body first longitudinal end; c) a force sensitive transducer slidably received within the body and positioned to engage relative to the loading rod second longitudinal end; and d) a loading bolt threadedly received relative to the body, the loading bolt having a bearing end surface and being positioned to bear against the transducer to forcibly sandwich the transducer between the loading bolt and loading rod. Also disclosed is a method of in situ determining applied force during crack propagation in a bolt-loaded compact tension test specimen.
40 CFR 86.229-94 - Road load force, test weight, and inertia weight class determination.
Code of Federal Regulations, 2013 CFR
2013-07-01
... inertia weight class determination. 86.229-94 Section 86.229-94 Protection of Environment ENVIRONMENTAL... § 86.229-94 Road load force, test weight, and inertia weight class determination. (a) Flywheels... vehicle weight (pounds) Equivalent test weight (pounds) Inertia weight class (pounds) Up-1,062 1,000 1,000...
40 CFR 86.229-94 - Road load force, test weight, and inertia weight class determination.
Code of Federal Regulations, 2011 CFR
2011-07-01
... inertia weight class determination. 86.229-94 Section 86.229-94 Protection of Environment ENVIRONMENTAL... § 86.229-94 Road load force, test weight, and inertia weight class determination. (a) Flywheels... vehicle weight (pounds) Equivalent test weight (pounds) Inertia weight class (pounds) Up-1,062 1,000 1,000...
40 CFR 86.229-94 - Road load force, test weight, and inertia weight class determination.
Code of Federal Regulations, 2012 CFR
2012-07-01
... inertia weight class determination. 86.229-94 Section 86.229-94 Protection of Environment ENVIRONMENTAL... § 86.229-94 Road load force, test weight, and inertia weight class determination. (a) Flywheels... vehicle weight (pounds) Equivalent test weight (pounds) Inertia weight class (pounds) Up-1,062 1,000 1,000...
NASA Technical Reports Server (NTRS)
Carter, John F.; Nagy, Christopher J.; Barnicki, Joseph S.
1997-01-01
Forces generated by the Space Shuttle orbiter tire under varying vertical load, slip angle, speed, and surface conditions were measured using the Landing System Research Aircraft (LSRA). Resulting data were used to calculate a mathematical model for predicting tire forces in orbiter simulations. Tire side and drag forces experienced by an orbiter tire are cataloged as a function of vertical load and slip angle. The mathematical model is compared to existing tire force models for the Space Shuttle orbiter. This report describes the LSRA and a typical test sequence. Testing methods, data reduction, and error analysis are presented. The LSRA testing was conducted on concrete and lakebed runways at the Edwards Air Force Flight Test Center and on concrete runways at the Kennedy Space Center (KSC). Wet runway tire force tests were performed on test strips made at the KSC using different surfacing techniques. Data were corrected for ply steer forces and conicity.
A novel sensor for bite force determinations.
Fernandes, Cláudio P; Glantz, Per Olof J; Svensson, Stig A; Bergmark, Anders
2003-03-01
The clinical usefulness, accuracy and precision of a novel bite force sensor based on force sensing resistors were tested in six subjects wearing maxillary removable partial dentures retained by conical crowns. The surfaces of the sensor were manufactured in a silicone material that had mechanical properties similar to those of tough foodstuffs. In two separate series of standardized bite force tests, submaximum force levels were recorded with the sensor and with a strain gaged bite fork. Subjects were assisted in the loading tests with visual feedback instrumentation. Reliability estimates for the bite force sensor were calculated in order to show their reproducibility. Strain gages attached to the prostheses were used to determine the pattern of force distribution during loading tests. The bite force results obtained with the new bite force sensor and with the bite fork were analyzed with ANOVA and Scheffés tests. The strain patterns registered with strain gages were analyzed with F-test. The bite force sensor and the bite fork transducer showed no statistically significant differences in respect of intra-individual bite force levels (range 50-300N). The bite forces registered with the new sensor were dependent on the loading position (p<0.05), sex (p<0.05) and test subject (p<0.05). The reliability of the new sensor for submaximum bite forces was calculated to be 93%. Strain gage results showed that the new sensor generated strain patterns of less variance (p<0.05) than the bite fork and therefore allowed for higher precision during biting tests. The presented instrument has such clinical merits, as to favor its use in experimental clinical studies on the biomechanics of prosthetic appliances.
Evaluation of the XSENS Force Shoe on ISS
NASA Technical Reports Server (NTRS)
Hanson, A. M.; Peters, B. T.; Newby, N.; Ploutz-Snyder, L
2014-01-01
The Advanced Resistive Exercise Device (ARED) offers crewmembers a wide range of resistance exercises but does not provide any type of load monitoring; any load data received are based on crew self-report of dialed in load. This lack of real-time ARED load monitoring severely limits research analysis. To address this issue, portable load monitoring technologies are being evaluated to act as a surrogate to ARED's failed instrumentation. The XSENS ForceShoe"TM" is a commercial portable load monitoring tool, and performed well in ground tests. The ForceShoe "TM" was recently deployed on the International Space Station (ISS), and is being evaluated as a tool to monitor ARED loads.
NASA Technical Reports Server (NTRS)
Pawlik, Ralph; Krause, David; Bremenour, Frank
2011-01-01
The Force Limit System (FLS) was developed to protect test specimens from inadvertent overload. The load limit value is fully adjustable by the operator and works independently of the test system control as a mechanical (non-electrical) device. When a test specimen is loaded via an electromechanical or hydraulic test system, a chance of an overload condition exists. An overload applied to a specimen could result in irreparable damage to the specimen and/or fixturing. The FLS restricts the maximum load that an actuator can apply to a test specimen. When testing limited-run test articles or using very expensive fixtures, the use of such a device is highly recommended. Test setups typically use electronic peak protection, which can be the source of overload due to malfunctioning components or the inability to react quickly enough to load spikes. The FLS works independently of the electronic overload protection.
Bennett, Charles R; Kelly, Brian P
2013-08-09
Standard in-vitro spine testing methods have focused on application of isolated and/or constant load components while the in-vivo spine is subject to multiple components that can be resolved into resultant dynamic load vectors. To advance towards more in-vivo like simulations the objective of the current study was to develop a methodology to apply robotically-controlled, non-zero, real-time dynamic resultant forces during flexion-extension on human lumbar motion segment units (MSU) with initial application towards simulation of an ideal follower load (FL) force vector. A proportional-integral-derivative (PID) controller with custom algorithms coordinated the motion of a Cartesian serial manipulator comprised of six axes each capable of position- or load-control. Six lumbar MSUs (L4-L5) were tested with continuously increasing sagittal plane bending to 8 Nm while force components were dynamically programmed to deliver a resultant 400 N FL that remained normal to the moving midline of the intervertebral disc. Mean absolute load-control tracking errors between commanded and experimental loads were computed. Global spinal ranges of motion and sagittal plane inter-body translations were compared to previously published values for non-robotic applications. Mean TEs for zero-commanded force and moment axes were 0.7 ± 0.4N and 0.03 ± 0.02 Nm, respectively. For non-zero force axes mean TEs were 0.8 ± 0.8 N, 1.3 ± 1.6 Nm, and 1.3 ± 1.6N for Fx, Fz, and the resolved ideal follower load vector FL(R), respectively. Mean extension and flexion ranges of motion were 2.6° ± 1.2° and 5.0° ± 1.7°, respectively. Relative vertebral body translations and rotations were very comparable to data collected with non-robotic systems in the literature. The robotically coordinated Cartesian load controlled testing system demonstrated robust real-time load-control that permitted application of a real-time dynamic non-zero load vector during flexion-extension. For single MSU investigations the methodology has potential to overcome conventional follower load limitations, most notably via application outside the sagittal plane. This methodology holds promise for future work aimed at reducing the gap between current in-vitro testing and in-vivo circumstances. Copyright © 2013 Elsevier Ltd. All rights reserved.
Li, Ying-Jun; Yang, Cong; Wang, Gui-Cong; Zhang, Hui; Cui, Huan-Yong; Zhang, Yong-Liang
2017-09-01
This paper presents a novel integrated piezoelectric six-dimensional force sensor which can realize dynamic measurement of multi-dimensional space load. Firstly, the composition of the sensor, the spatial layout of force-sensitive components, and measurement principle are analyzed and designed. There is no interference of piezoelectric six-dimensional force sensor in theoretical analysis. Based on the principle of actual work and deformation compatibility coherence, this paper deduces the parallel load sharing principle of the piezoelectric six-dimensional force sensor. The main effect factors which affect the load sharing ratio are obtained. The finite element model of the piezoelectric six-dimensional force sensor is established. In order to verify the load sharing principle of the sensor, a load sharing test device of piezoelectric force sensor is designed and fabricated. The load sharing experimental platform is set up. The experimental results are in accordance with the theoretical analysis and simulation results. The experiments show that the multi-dimensional and heavy force measurement can be realized by the parallel arrangement of the load sharing ring and the force sensitive element in the novel integrated piezoelectric six-dimensional force sensor. The ideal load sharing effect of the sensor can be achieved by appropriate size parameters. This paper has an important guide for the design of the force measuring device according to the load sharing mode. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Self-aligning biaxial load frame
Ward, M.B.; Epstein, J.S.; Lloyd, W.R.
1994-01-18
An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed cross head, and by alignment and linear motion elements of one load assembly relative to the load frame. 3 figures.
Self-aligning biaxial load frame
Ward, Michael B.; Epstein, Jonathan S.; Lloyd, W. Randolph
1994-01-01
An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed crosshead, and by alignment and linear motion elements of one load assembly relative to the load frame.
Force Limited Vibration Testing: Computation C2 for Real Load and Probabilistic Source
NASA Astrophysics Data System (ADS)
Wijker, J. J.; de Boer, A.; Ellenbroek, M. H. M.
2014-06-01
To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications, in which the factor C2 is besides the random vibration specification, the total mass and the turnover frequency of the load(test item), a very important parameter. A number of computational methods to estimate C2 are described in the literature, i.e. the simple and the complex two degrees of freedom system, STDFS and CTDFS, respectively. Both the STDFS and the CTDFS describe in a very reduced (simplified) manner the load and the source (adjacent structure to test item transferring the excitation forces, i.e. spacecraft supporting an instrument).The motivation of this work is to establish a method for the computation of a realistic value of C2 to perform a representative random vibration test based on force limitation, when the adjacent structure (source) description is more or less unknown. Marchand formulated a conservative estimation of C2 based on maximum modal effective mass and damping of the test item (load) , when no description of the supporting structure (source) is available [13].Marchand discussed the formal description of getting C 2 , using the maximum PSD of the acceleration and maximum PSD of the force, both at the interface between load and source, in combination with the apparent mass and total mass of the the load. This method is very convenient to compute the factor C 2 . However, finite element models are needed to compute the spectra of the PSD of both the acceleration and force at the interface between load and source.Stevens presented the coupled systems modal approach (CSMA), where simplified asparagus patch models (parallel-oscillator representation) of load and source are connected, consisting of modal effective masses and the spring stiffnesses associated with the natural frequencies. When the random acceleration vibration specification is given the CMSA method is suitable to compute the valueof the parameter C 2 .When no mathematical model of the source can be made available, estimations of the value C2 can be find in literature.In this paper a probabilistic mathematical representation of the unknown source is proposed, such that the asparagus patch model of the source can be approximated. The computation of the value C2 can be done in conjunction with the CMSA method, knowing the apparent mass of the load and the random acceleration specification at the interface between load and source, respectively.Strength & stiffness design rules for spacecraft, instrumentation, units, etc. will be practiced, as mentioned in ECSS Standards and Handbooks, Launch Vehicle User's manuals, papers, books , etc. A probabilistic description of the design parameters is foreseen.As an example a simple experiment has been worked out.
NASA Technical Reports Server (NTRS)
Wong, Kin C.
2003-01-01
This paper documents the derivation of the data reduction equations for the calibration of the six-component thrust stand located in the CE-22 Advanced Nozzle Test Facility. The purpose of the calibration is to determine the first-order interactions between the axial, lateral, and vertical load cells (second-order interactions are assumed to be negligible). In an ideal system, the measurements made by the thrust stand along the three coordinate axes should be independent. For example, when a test article applies an axial force on the thrust stand, the axial load cells should measure the full magnitude of the force, while the off-axis load cells (lateral and vertical) should read zero. Likewise, if a lateral force is applied, the lateral load cells should measure the entire force, while the axial and vertical load cells should read zero. However, in real-world systems, there may be interactions between the load cells. Through proper design of the thrust stand, these interactions can be minimized, but are hard to eliminate entirely. Therefore, the purpose of the thrust stand calibration is to account for these interactions, so that necessary corrections can be made during testing. These corrections can be expressed in the form of an interaction matrix, and this paper shows the derivation of the equations used to obtain the coefficients in this matrix.
NASA Astrophysics Data System (ADS)
Gallasch, Eugen; Kozlovskaya, Inessa
2007-02-01
Long term space flights induce atrophy and contractile changes on postural muscles such effecting tonic motor control. Functional testing of tonic motor control structures is a challenge because of the difficulties to deliver appropriate test forces on crew members. In this paper we propose two approaches for functional testing by using limb attached loading devices. The first approach is based on a frequency and amplitude controllable moving magnet exciter to deliver sinusoidal test forces during limb postures. The responding limb deflection is recorded by an embedded accelerometer to obtain limb impedance. The second approach is based on elastic limb loading to evoke self-excited oscillations during arm extensions. Here the contraction force at the oscillation onset provides information about limb stiffness. The rationale for both testing approaches is based on Feldman's λ-model. An arm expander based on the second approach was probed in a 6-month MIR space flight. The results obtained from the load oscillations, confirmed that this device is well suited to capture space flight induced neuromuscular changes.
NASA Astrophysics Data System (ADS)
Kong, Xiangdong; Ba, Kaixian; Yu, Bin; Cao, Yuan; Zhu, Qixin; Zhao, Hualong
2016-05-01
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit (HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.
40 CFR 86.108-00 - Dynamometer.
Code of Federal Regulations, 2010 CFR
2010-07-01
... load force and inertia specified for the vehicle being tested, and shall determine the distance... capable of dynamically controlling inertia load during the US06 test cycle as a function of a vehicle... equal to eight seconds, the test inertia load may be adjusted during any of five EPA specified...
40 CFR 86.108-00 - Dynamometer.
Code of Federal Regulations, 2011 CFR
2011-07-01
... load force and inertia specified for the vehicle being tested, and shall determine the distance... capable of dynamically controlling inertia load during the US06 test cycle as a function of a vehicle... equal to eight seconds, the test inertia load may be adjusted during any of five EPA specified...
40 CFR 86.108-00 - Dynamometer.
Code of Federal Regulations, 2013 CFR
2013-07-01
... load force and inertia specified for the vehicle being tested, and shall determine the distance... capable of dynamically controlling inertia load during the US06 test cycle as a function of a vehicle... equal to eight seconds, the test inertia load may be adjusted during any of five EPA specified...
40 CFR 86.108-00 - Dynamometer.
Code of Federal Regulations, 2014 CFR
2014-07-01
... load force and inertia specified for the vehicle being tested, and shall determine the distance... capable of dynamically controlling inertia load during the US06 test cycle as a function of a vehicle... equal to eight seconds, the test inertia load may be adjusted during any of five EPA specified...
40 CFR 86.108-00 - Dynamometer.
Code of Federal Regulations, 2012 CFR
2012-07-01
... load force and inertia specified for the vehicle being tested, and shall determine the distance... capable of dynamically controlling inertia load during the US06 test cycle as a function of a vehicle... equal to eight seconds, the test inertia load may be adjusted during any of five EPA specified...
Rasnick, Robert; Standifird, Tyler; Reinbolt, Jeffrey A.; Cates, Harold E.
2016-01-01
Total knee replacement (TKR) is commonly used to correct end-stage knee osteoarthritis. Unfortunately, difficulty with stair climbing often persists and prolongs the challenges of TKR patents. Complete understanding of loading at the knee is of great interest in order to aid patient populations, implant manufacturers, rehabilitation, and future healthcare research. Musculoskeletal modeling and simulation approximates joint loading and corresponding muscle forces during a movement. The purpose of this study was to determine if knee joint loadings following TKR are recovered to the level of healthy individuals, and determine the differences in muscle forces causing those loadings. Data from five healthy and five TKR patients were selected for musculoskeletal simulation. Variables of interest included knee joint reaction forces (JRF) and the corresponding muscle forces. A paired samples t-test was used to detect differences between groups for each variable of interest (p<0.05). No differences were observed for peak joint compressive forces between groups. Some muscle force compensatory strategies appear to be present in both the loading and push-off phases. Evidence from knee extension moment and muscle forces during the loading response phase indicates the presence of deficits in TKR in quadriceps muscle force production during stair ascent. This result combined with greater flexor muscle forces resulted in similar compressive JRF during loading response between groups. PMID:27258086
A method for continuous monitoring of the Ground Reaction Force during daily activity
NASA Technical Reports Server (NTRS)
Whalen, Robert; Quintana, Jason; Emery, Jeff
1993-01-01
Theoretical models and experimental studies of bone remodeling have identified peak cyclic force levels (or cyclic tissue strain energy density), number of daily loading cycles, and load (strain) rate as possible contributors to bone modeling and remodeling stimulus. To test our theoretical model and further investigate the influence of mechanical forces on bone density, we have focused on the calcaneus as a model site loaded by calcaneal surface tractions which are predominantly determined by the magnitude of the external ground reaction force (GRF).
Shake Test Results and Dynamic Calibration Efforts for the Large Rotor Test Apparatus
NASA Technical Reports Server (NTRS)
Russell, Carl R.
2014-01-01
A shake test of the Large Rotor Test Apparatus (LRTA) was performed in an effort to enhance NASAscapability to measure dynamic hub loads for full-scale rotor tests. This paper documents the results of theshake test as well as efforts to calibrate the LRTA balance system to measure dynamic loads.Dynamic rotor loads are the primary source of vibration in helicopters and other rotorcraft, leading topassenger discomfort and damage due to fatigue of aircraft components. There are novel methods beingdeveloped to reduce rotor vibrations, but measuring the actual vibration reductions on full-scale rotorsremains a challenge. In order to measure rotor forces on the LRTA, a balance system in the non-rotatingframe is used. The forces at the balance can then be translated to the hub reference frame to measure therotor loads. Because the LRTA has its own dynamic response, the balance system must be calibrated toinclude the natural frequencies of the test rig.
Kemper, Andrew R; Beeman, Stephanie M; Madigan, Michael L; Duma, Stefan M
2014-01-01
The purpose of this study was to investigate the effects of pre-impact bracing on the chest compression, reaction forces, and accelerations experienced by human occupants during low-speed frontal sled tests. A total of twenty low-speed frontal sled tests, ten low severity (∼2.5g, Δv=5 kph) and ten medium severity (∼5g, Δv=10 kph), were performed on five 50th-percentile male human volunteers. Each volunteer was exposed to two impulses at each severity, one relaxed and the other braced prior to the impulse. A 59-channel chestband, aligned at the nipple line, was used to quantify the chest contour and anterior-posterior sternum deflection. Three-axis accelerometer cubes were attached to the sternum, 7th cervical vertebra, and sacrum of each subject. In addition, three linear accelerometers and a three-axis angular rate sensor were mounted to a metal mouthpiece worn by each subject. Seatbelt tension load cells were attached to the retractor, shoulder, and lap portions of the standard three-point driver-side seatbelt. In addition, multi-axis load cells were mounted to each interface between the subject and the test buck to quantify reaction forces. For relaxed tests, the higher test severity resulted in significantly larger peak values for all resultant accelerations, all belt forces, and three resultant reaction forces (right foot, seatpan, and seatback). For braced tests, the higher test severity resulted in significantly larger peak values for all resultant accelerations, and two resultant reaction forces (right foot and seatpan). Bracing did not have a significant effect on the occupant accelerations during the low severity tests, but did result in a significant decrease in peak resultant sacrum linear acceleration during the medium severity tests. Bracing was also found to significantly reduce peak shoulder and retractor belt forces for both test severities, and peak lap belt force for the medium test severity. In contrast, bracing resulted in a significant increase in the peak resultant reaction force for the right foot and steering column at both test severities. Chest compression due to belt loading was observed for all relaxed subjects at both test severities, and was found to increase significantly with increasing severity. Conversely, chest compression due to belt loading was essentially eliminated during the braced tests for all but one subject, who sustained minor chest compression due to belt loading during the medium severity braced test. Overall, the data from this study illustrate that muscle activation has a significant effect on the biomechanical response of human occupants in low-speed frontal impacts.
Calculation of Resistive Loads for Elastic Resistive Exercises.
Picha, Kelsey; Uhl, Tim
2018-03-14
What is the correct resistive load to start resistive training with elastic resistance to gain strength? This question is typically answered by the clinician's best estimate and patient's level of discomfort without objective evidence. To determine the average level of resistance to initiate a strengthening routine with elastic resistance following isometric strength testing. Cohort. Clinical. 34 subjects (31 ± 13 y, 73 ± 17 kg, 170 ± 12 cm). The force produced was measured in Newtons (N) with an isometric dynamometer. The force distance was the distance from center of joint to location of force applied was measured in meters to calculate torque that was called "Test Torque" for the purposes of this report. This torque data was converted to "Exercise Load" in pounds based on the location where the resistance was applied, specifically the distance away from the center of rotation of the exercising limb. The average amount of exercise load as percentage of initial Test Torque for each individual for each exercise was recorded to determine what the average level of resistance that could be used for elastic resistance strengthening program. The percentage of initial test torque calculated for the exercise was recorded for each exercise and torque produced was normalized to body weight. The average percentage of maximal isometric force that was used to initiate exercises was 30 ± 7% of test torque. This provides clinicians with an objective target load to start elastic resistance training. Individual variations will occur but utilization of a load cell during elastic resistance provides objective documentation of exercise progression.
Little, J P; Tevelen, G; Adam, C J; Evans, J H; Pearcy, M J
2009-07-01
Biological tissues are subjected to complex loading states in vivo and in order to define constitutive equations that effectively simulate their mechanical behaviour under these loads, it is necessary to obtain data on the tissue's response to multiaxial loading. Single axis and shear testing of biological tissues is often carried out, but biaxial testing is less common. We sought to design and commission a biaxial compression testing device, capable of obtaining repeatable data for biological samples. The apparatus comprised a sealed stainless steel pressure vessel specifically designed such that a state of hydrostatic compression could be created on the test specimen while simultaneously unloading the sample along one axis with an equilibrating tensile pressure. Thus a state of equibiaxial compression was created perpendicular to the long axis of a rectangular sample. For the purpose of calibration and commissioning of the vessel, rectangular samples of closed cell ethylene vinyl acetate (EVA) foam were tested. Each sample was subjected to repeated loading, and nine separate biaxial experiments were carried out to a maximum pressure of 204 kPa (30 psi), with a relaxation time of two hours between them. Calibration testing demonstrated the force applied to the samples had a maximum error of 0.026 N (0.423% of maximum applied force). Under repeated loading, the foam sample demonstrated lower stiffness during the first load cycle. Following this cycle, an increased stiffness, repeatable response was observed with successive loading. While the experimental protocol was developed for EVA foam, preliminary results on this material suggest that this device may be capable of providing test data for biological tissue samples. The load response of the foam was characteristic of closed cell foams, with consolidation during the early loading cycles, then a repeatable load-displacement response upon repeated loading. The repeatability of the test results demonstrated the ability of the test device to provide reproducible test data and the low experimental error in the force demonstrated the reliability of the test data.
DOT National Transportation Integrated Search
1976-12-01
The aerodynamic forces on trailers and containers on flatcars have been measured in wind tunnel tests. The forces were measured on the central car of a five-car train consisting of a locomotive, three flatcars with various loadings and a boxcar. Test...
Paepoemsin, T; Reichart, P A; Chaijareenont, P; Strietzel, F P; Khongkhunthian, P
2016-01-01
The aim of this study was to evaluate the removal torque of three different abutment screws and pull out strength of implant-abutment connection for single implant restorations after mechanical cyclic loading. The study was performed in accordance with ISO 14801:2007. Three implant groups (n=15) were used: group A, PW Plus® with flat head screw; group B, PW Plus® with tapered screw; and group C, Conelog® with flat head screw. All groups had the same implant-abutment connection feature: cone with mandatory index. All screws were tightened with manufacturer's recommended torque. Ten specimens in each group underwent cyclic loading (1×106 cycles, 10 Hz, and 250 N). Then, all specimens were un-tightened, measured for the removal torque, and underwent a tensile test. The force that dislodged abutment from implant fixture was recorded. The data were analysed using independent sample t-test, ANOVA and Tukey HSD test. Before cyclic loading, removal torque in groups A, B and C were significantly different (B> A> C, P<.05). After cyclic loading, removal torque in all groups decreased significantly (P<.05). Group C revealed significantly less removal torque than groups A and B (P<.005). Tensile force in all groups significantly increased after cyclic loading (P<.05), group A had significantly less tensile force than groups B and C (P<.005). Removal torque reduced significantly after cyclic loading. Before cyclic loading, tapered screws maintained more preload than did flat head screws. After cyclic loading, tapered and flat head screws maintained even amounts of preload. The tensile force that dislodged abutment from implant fixture increased immensely after cyclic loading.
PAEPOEMSIN, T.; REICHART, P. A.; CHAIJAREENONT, P.; STRIETZEL, F. P.; KHONGKHUNTHIAN, P.
2016-01-01
SUMMARY Purpose The aim of this study was to evaluate the removal torque of three different abutment screws and pull out strength of implant-abutment connection for single implant restorations after mechanical cyclic loading. Methods The study was performed in accordance with ISO 14801:2007. Three implant groups (n=15) were used: group A, PW Plus® with flat head screw; group B, PW Plus® with tapered screw; and group C, Conelog® with flat head screw. All groups had the same implant-abutment connection feature: cone with mandatory index. All screws were tightened with manufacturer’s recommended torque. Ten specimens in each group underwent cyclic loading (1×106 cycles, 10 Hz, and 250 N). Then, all specimens were un-tightened, measured for the removal torque, and underwent a tensile test. The force that dislodged abutment from implant fixture was recorded. The data were analysed using independent sample t-test, ANOVA and Tukey HSD test. Results Before cyclic loading, removal torque in groups A, B and C were significantly different (B> A> C, P<.05). After cyclic loading, removal torque in all groups decreased significantly (P<.05). Group C revealed significantly less removal torque than groups A and B (P<.005). Tensile force in all groups significantly increased after cyclic loading (P<.05), group A had significantly less tensile force than groups B and C (P<.005). Conclusions Removal torque reduced significantly after cyclic loading. Before cyclic loading, tapered screws maintained more preload than did flat head screws. After cyclic loading, tapered and flat head screws maintained even amounts of preload. The tensile force that dislodged abutment from implant fixture increased immensely after cyclic loading. PMID:28042450
Copper, Aluminum and Nickel: A New Monocrystalline Orthodontic Alloy
NASA Astrophysics Data System (ADS)
Wierenga, Mark
Introduction: This study was designed to evaluate, via tensile and bend testing, the mechanical properties of a newly-developed monocrystalline orthodontic archwire comprised of a blend of copper, aluminum, and nickel (CuAlNi). Methods: The sample was comprised of three shape memory alloys; CuAlNi, copper nickel titanium (CuNiTi), and nickel titanium (NiTi); from various orthodontic manufacturers in both 0.018" round and 0.019" x 0.025" rectangular dimensions. Additional data was gathered for similarly sized stainless steel and beta-titanium archwires as a point of reference for drawing conclusions about the relative properties of the archwires. Measurements of loading and unloading forces were recorded in both tension and deflection testing. Repeated-measure ANOVA (alpha= 0.05) was used to compare loading and unloading forces across wires and one-way ANOVA (alpha= 0.05) was used to compare elastic moduli and hysteresis. To identify significant differences, Tukey post-hoc comparisons were performed. Results: The modulus of elasticity, deflection forces, and hysteresis profiles of CuAlNi were significantly different than the other superelastic wires tested. In all tests, CuAlNi had a statistically significant lower modulus of elasticity compared to the CuNiTi and NiTi wires (P <0.0001). The CuAlNi wire exhibited significantly lower loading and unloading forces than any other wire tested. In round wire tensile tests, loading force at all deflections was significantly lower for CuAlNi than CuNiTi or NiTi (P <0.0001). In tensile testing, the CuAlNi alloy was able to recover from a 7 mm extension (10% elongation) without permanent deformation and with little to no loss in force output. In large-deflection bend tests at 4, 5, and 6 mm deflection, CuAlNi showed the significantly lowest loading forces across the three wire materials (P <0.0001). The NiTi wires showed up to 12 times the amount of energy loss due to hysteresis compared to CuAlNi. CuAlNi showed a hysteresis loss that was significantly less than any other wire tested in this study (P <0.0001). Conclusions: The relatively constant force delivered for a long period of time during the deactivation of this wire, the minimal hysteresis loss, the low force output in deflection, and the relatively low modulus of elasticity suggest that CuAlNi wires should be considered an important material addition to orthodontic metallurgy.
Active transmission isolation/rotor loads measurement system
NASA Technical Reports Server (NTRS)
Kenigsberg, I. J.; Defelice, J. J.
1973-01-01
Modifications were incorporated into a helicopter active transmission isolation system to provide the capability of utilizing the system as a rotor force measuring device. These included; (1) isolator redesign to improve operation and minimize friction, (2) installation of pressure transducers in each isolator, and (3) load cells in series with each torque restraint link. Full scale vibration tests performed during this study on a CH-53A helicopter airframe verified that these modifications do not degrade the systems wide band isolation characteristics. Bench tests performed on each isolator unit indicated that steady and transient loads can be measured to within 1 percent of applied load. Individual isolator vibratory load measurement accuracy was determined to be 4 percent. Load measurement accuracy was found to be independent of variations in all basic isolator operating characteristics. Full scale system load calibration tests on the CH-53A airframe established the feasibility of simultaneously providing wide band vibration isolation and accurate measurement of rotor loads. Principal rotor loads (lift, propulsive force, and torque) were measured to within 2 percent of applied load.
Roghani, Taybeh; Khalkhali Zavieh, Minoo; Rahimi, Abbas; Talebian, Saeed; Manshadi, Farideh Dehghan; Akbarzadeh Baghban, Alireza; King, Nicole; Katzman, Wendy
2018-01-25
The purpose of this study was to investigate the intra-rater reliability and validity of a designed load cell setup for the measurement of back extensor muscle force and endurance. The study sample included 19 older women with hyperkyphosis, mean age 67.0 ± 5.0 years, and 14 older women without hyperkyphosis, mean age 63.0 ± 6.0 years. Maximum back extensor force and endurance were measured in a sitting position with a designed load cell setup. Tests were performed by the same examiner on two separate days within a 72-hour interval. The intra-rater reliability of the measurements was analyzed using intraclass correlation coefficient (ICC), standard errors of measurement (SEM), and minimal detectable change (MDC). The validity of the setup was determined using Pearson correlation analysis and independent t-test. Using our designed load cell, the values of ICC indicated very high reliability of force measurement (hyperkyphosis group: 0.96, normal group: 0.97) and high reliability of endurance measurement (hyperkyphosis group: 0.82, normal group: 0.89). For all tests, the values of SEM and MDC were low in both groups. A significant correlation between two documented forces (load cell force and target force) and significant differences in the muscle force and endurance among the two groups were found. The measurements of static back muscle force and endurance are reliable and valid with our designed setup in older women with and without hyperkyphosis.
40 CFR 86.529-98 - Road load force and inertia weight determination.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Road load force and inertia weight... inertia weight determination. (a)(1) Road load as a function of speed is given by the following equation: F = A + CV2 (2) The values for coefficients A and C and the test inertia are given in Figure F98-9...
40 CFR 86.529-98 - Road load force and inertia weight determination.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Road load force and inertia weight... inertia weight determination. (a)(1) Road load as a function of speed is given by the following equation: F = A + CV2 (2) The values for coefficients A and C and the test inertia are given in Figure F98-9...
40 CFR 86.529-98 - Road load force and inertia weight determination.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Road load force and inertia weight... inertia weight determination. (a)(1) Road load as a function of speed is given by the following equation: F = A + CV2 (2) The values for coefficients A and C and the test inertia are given in Figure F98-9...
40 CFR 86.529-98 - Road load force and inertia weight determination.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Road load force and inertia weight... inertia weight determination. (a)(1) Road load as a function of speed is given by the following equation: F = A + CV2 (2) The values for coefficients A and C and the test inertia are given in Figure F98-9...
Biomechanical analysis of loading/unloading a ladder on a truck.
Moriguchi, Cristiane Shinohara; Carnaz, Leticia; de Miranda, Luiz Carlos; Marklin, Richard William; Coury, Helenice Jane Cote Gil
2012-01-01
Loading/unloading a ladder on vehicles are frequent tasks and involve overhead handling that may expose workers to risk factors of shoulder musculoskeletal disorders. The objective of the present study was to evaluate posture, forces required and perceived exertion when loading and unloading the ladder on a utility truck. Thirteen male overhead line workers from an electric utility in Brazil participated in this study. Shoulder elevation angle was measured using inclinometers. The required force to load/unload the ladder was measured by dynamometer. Subjective assessment of the perceived exertion was recorded to compare the exertion reported during the test conditions to the field conditions. The task of loading/unloading the ladder presented risks of shoulder musculoskeletal disorders (MSDs) to workers because it requires high levels of force (approximately 60% of the maximal force) combined with overhead posture of the shoulders (more than 100° from the neutral posture). Age and height presented to interfere in biomechanical risks presented in load/unload task. There was no significant difference between the subjective exertion during the test conditions and handling the ladder in the field. Ergonomic intervention is recommended to reduce these risks for shoulder MSDs.
Shock Isolation Elements Testing for High Input Loadings. Volume II. Foam Shock Isolation Elements.
SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*EXPANDED PLASTICS, (*SHOCK(MECHANICS), REDUCTION), TEST METHODS, SHOCK WAVES, STRAIN(MECHANICS), LOADS(FORCES), MATHEMATICAL MODELS, NUCLEAR EXPLOSIONS, HARDENING.
Soldier-relevant body borne loads increase knee joint contact force during a run-to-stop maneuver.
Ramsay, John W; Hancock, Clifford L; O'Donovan, Meghan P; Brown, Tyler N
2016-12-08
The purpose of this study was to understand the effects of load carriage on human performance, specifically during a run-to-stop (RTS) task. Using OpenSim analysis tools, knee joint contact force, grounds reaction force, leg stiffness and lower extremity joint angles and moments were determined for nine male military personnel performing a RTS under three load configurations (light, ~6kg, medium, ~20kg, and heavy, ~40kg). Subject-based means for each biomechanical variable were submitted to repeated measures ANOVA to test the effects of load. During the RTS, body borne load significantly increased peak knee joint contact force by 1.2 BW (p<0.001) and peak vertical (p<0.001) and anterior-posterior (p=0.002) ground reaction forces by 0.6 BW and 0.3 BW, respectively. Body borne load also had a significant effect on hip (p=0.026) posture with the medium load and knee (p=0.046) posture with the heavy load. With the heavy load, participants exhibited a substantial, albeit non-significant increase in leg stiffness (p=0.073 and d=0.615). Increases in joint contact force exhibited during the RTS were primarily due to greater GRFs that impact the soldier with each incremental addition of body borne load. The stiff leg, extended knee and large braking force the soldiers exhibited with the heavy load suggests their injury risk may be greatest with that specific load configuration. Further work is needed to determine if the biomechanical profile exhibited with the heavy load configuration translates to unsafe shear forces at the knee joint and consequently, a higher likelihood of injury. Published by Elsevier Ltd.
Single-strain-gage force/stiffness buckling prediction techniques on a hat-stiffened panel
NASA Technical Reports Server (NTRS)
Hudson, Larry D.; Thompson, Randolph C.
1991-01-01
Predicting the buckling characteristics of a test panel is necessary to ensure panel integrity during a test program. A single-strain-gage buckling prediction method was developed on a hat-stiffened, monolithic titanium buckling panel. The method is an adaptation of the original force/stiffness method which requires back-to-back gages. The single-gage method was developed because the test panel did not have back-to-back gages. The method was used to predict buckling loads and temperatures under various heating and loading conditions. The results correlated well with a finite element buckling analysis. The single-gage force/stiffness method was a valid real-time and post-test buckling prediction technique.
NASA Technical Reports Server (NTRS)
Mulder, Andrew; Skelley, Stephen
2011-01-01
Fluctuating pressure data from water flow testing of an unshrouded two blade inducer revealed a cavitation induced oscillation with the potential to induce a radial load on the turbopump shaft in addition to other more traditionally analyzed radial loads. Subsequent water flow testing of the inducer with a rotating force measurement system confirmed that the cavitation induced oscillation did impart a radial load to the inducer. After quantifying the load in a baseline configuration, two inducer shroud treatments were selected and tested to reduce the cavitation induced load. The first treatment was to increase the tip clearance, and the second was to introduce a circumferential groove near the inducer leading edge. Increasing the clearance resulted in a small load decrease along with some steady performance degradation. The groove greatly reduced the hydrodynamic load with little to no steady performance loss. The groove did however generate some new, relatively high frequency, spatially complex oscillations to the environment.
NASA Technical Reports Server (NTRS)
Mulder, Andrew; Skelley, Stephen
2011-01-01
Fluctuating pressure data from water flow testing of an unshrouded two blade inducer revealed a cavitation induced oscillation with the potential to induce a radial load on the turbopump shaft in addition to other more traditionally analyzed radial loads. Subsequent water flow testing of the inducer with a rotating force measurement system confirmed that the cavitation induced oscillation did impart a radial load to the inducer. After quantifying the load in a baseline configuration, two inducer shroud treatments were selected and tested to reduce the cavitation induced load. The first treatment was to increase the tip clearance, and the second was to introduce a circumferential groove near the inducer leading edge. Increasing the clearance resulted in a small decrease in radial load along with some steady performance degradation. The groove greatly reduced the hydrodynamic load with little to no steady performance loss. The groove did however generate some new, relatively high frequency, spatially complex oscillations to the flow environment.
Force Relaxation Characteristics of Medium Force Orthodontic Latex Elastics: A Pilot Study
Fernandes, Daniel J.; Abrahão, Gisele M.; Elias, Carlos N.; Mendes, Alvaro M.
2011-01-01
To evaluate force extension relaxation of different brands and diameters of latex elastics subjected to static tensile testing under an apparatus designed to simulate oral environments, sample sizes of 5 elastics from American Orthodontics (AO), Tp, and Morelli Orthodontics (Mo) of equivalent medium force, (3/16, 1/4, and 5/16 inch size) were tested. The forces were read after 1-, 3-, 6-, 12- and 24-hour periods in Emic testing machine with 30 mm/min cross-head speed and load cell of 20 N. Two-way ANOVA and Bonferroni tests were used to identify statistical significance. There were statistically differences among different manufacturers at all observation intervals (P < 0.0001). The relationships among loads at 24-hour time period were as follows: Morelli>AO>Tp for 3/16, 1/4, and 5/16 elastics. The force decay pattern showed a notable drop-off of forces until 3 hours, a slight increase in some groups from 3–6 hours and a more homogeneous force pattern over 6–24 hours. PMID:21991478
[On evaluating the robot-based experimental system for biomechanical experiment of human knee].
Deng, Guoyong; Tian, Lianfang; Bai, Bo; Sun, Hui
2010-02-01
This is a report on how we use the hybrid force-displacement control method to load the human knee and analyze the effect and value of our robot experimental system through the biomechanical experiments of total meniscal resection of human knee. The whole robot control system can load continuously on the specimens, thus overcoming the shortcomings of the traditional loading methods which can only load discretely. In the meantime, by using the robot-based testing system, the force (torque) of the specimens and the spatial position under the force can be measured in real-time, which overcomes the shortcomings caused by the separation of force (torque) measurement from displacement measurement and so greatly improves the measurement accuracy.
NASA Technical Reports Server (NTRS)
Poole, Lamont R.; Councill, Earl L., Jr.
1972-01-01
A series of tests has been conducted to investigate the elastic behavior of Viking-type suspension-line material under dynamic loading conditions. Results indicate that there is a decrease in both rupture-load capability and elongation at rupture as the test strain rate is increased. Preliminary examination of force-strain characteristics indicates that, on the average, the material exhibits some type of viscous effect which results in a greater force being produced, for a particular value of strain, under dynamic loading conditions than that produced under quasi-static loading conditions. A great deal of uncertainty exists in defining a priori the tensile properties of viscoelastic materials, such as nylon or dacron, under dynamic loading conditions. Additional uncertainty enters the picture when woven configurations such as suspension,line material are considered. To eliminate these uncertainties, with respect to the Viking parachute configuration, a test program has been conducted to obtain data on the tensile properties of Viking-type suspension-line material over a wide range of strain rates. Based on preliminary examination of these data, the following conclusions can be drawn: 1. Material rupture-load capability decreases as strain-rate is increased. At strain rates above 75 percent/sec, no rupture loads were observed which would meet the minimum tensile strength specification of 880 pounds. 2. The material, on the average, exhibits some type of viscous effect which, for a particular value of strain, produces a greater load under dynamic loading conditions than that produced under quasi-static loading conditions.
Wind loads on flat plate photovoltaic array fields
NASA Technical Reports Server (NTRS)
Miller, R. D.; Zimmerman, D. K.
1981-01-01
The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads. The arrays located at the outer boundary of an array field have a protective influence on the interior arrays of the field. A significant decrease of the array wind loads were recorded in the wind tunnel test on array panels located behind a fence and/or interior to the array field compared to the arrays on the boundary and unprotected from the wind. The magnitude of this decrease was the same whether caused by a fence or upwind arrays.
Biomechanical Modeling Analysis of Loads Configuration for Squat Exercise
NASA Technical Reports Server (NTRS)
Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen; De Witt, John K.
2017-01-01
INTRODUCTION: Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to assist loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft for travel to the Moon or to Mars is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. METHODS The computational models currently under development utilize the OpenSim [1] software platform, consisting of open source code for musculoskeletal modeling, using biomechanical input data from test subjects for estimation of muscle and joint loads. The OpenSim Full Body Model [2] is used for all analyses. The model incorporates simplified wrap surfaces, a new knee model and updated lower body muscle parameters derived from cadaver measurements and magnetic resonance imaging of young adults. The upper body uses torque actuators at the lumbar and extremity joints. The test subjects who volunteer for this study are instrumented with reflective markers for motion capture data collection while performing squat exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device (ZIN Technologies, Middleburg Heights, OH). Ground reaction force data is collected with force plates under the feet, and device loading is recorded through load cells internal to the HULK. Test variables include the applied device load and the dual cable long bar or single cable T-bar interface between the test subject and the device. Data is also obtained using free weights with the identical loading for a comparison to the resistively loaded exercise device trials. The data drives the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. RESULTS Lower body kinematics, joint moments, joint forces and muscle forces are obtained from the OpenSim biomechanical analysis of the squat exercises under different loading conditions. Preliminary results from the model for the loading conditions will be presented as will hypotheses developed for follow on work.
Loading tests of a wing structure for a hypersonic aircraft
NASA Technical Reports Server (NTRS)
Fields, R. A.; Reardon, L. F.; Siegel, W. H.
1980-01-01
Room-temperature loading tests were conducted on a wing structure designed with a beaded panel concept for a Mach 8 hypersonic research airplane. Strain, stress, and deflection data were compared with the results of three finite-element structural analysis computer programs and with design data. The test program data were used to evaluate the structural concept and the methods of analysis used in the design. A force stiffness technique was utilized in conjunction with load conditions which produced various combinations of panel shear and compression loading to determine the failure envelope of the buckling critical beaded panels The force-stiffness data did not result in any predictions of buckling failure. It was, therefore, concluded that the panels were conservatively designed as a result of design constraints and assumptions of panel eccentricities. The analysis programs calculated strains and stresses competently. Comparisons between calculated and measured structural deflections showed good agreement. The test program offered a positive demonstration of the beaded panel concept subjected to room-temperature load conditions.
Force testing manual for the Langley 20-inch Mach 6 tunnel
NASA Technical Reports Server (NTRS)
Keyes, J. W.
1977-01-01
Data reduction and procedures for conducting force tests in a 20 inch Mach 6 tunnel are described. A discussion of pretest and testing phases are included. Items that are to be checked during model design and construction are outlined as well as safety requirements, starting loads tests, instructions for data acquisition and model installation. Measurement of balance and model misalignment and instructions for calibrating the angle of attack screen are covered. Procedures for making reference pressure, attitude tare, and data runs are included. The 20 inch tunnel force program is examined, and a description of data recording system input and load contrast sheets is given. An appendix presents a description, operating characteristics, and Mach number calibration of the tunnel, as well as tunnel characteristics.
Upper and Lower Neck Loads in Belted Human Surrogates in Frontal Impacts
Yoganandan, Narayan; Pintar, Frank A.; Moore, Jason; Rinaldi, James; Schlick, Michael; Maiman, Dennis J.
2012-01-01
The upper and lower neck loads in the restrained Hybrid III dummy and Test Device for Human Occupant Restraint (THOR) were computed in simulated frontal impact sled tests at low, medium, and high velocities; repeatability performance of the two dummies were evaluated at all energy inputs; peak forces and moments were compared with computed loads at the occipital condyles and cervical-thoracic junctions from tests using post mortem human surrogates (PMHS). A custom sled buck was used to position the surrogates. Repeated tests were conducted at each velocity for each dummy and sufficient time was allowed to elapse between the two experiments. The upper and lower neck forces and moments were determined from load cell measures and its locations with respect to the ends of the neck. Both dummies showed good repeatability for axial and shear forces and bending moments at all changes in velocity inputs. Morphological characteristics in the neck loading responses were similar in all surrogates, although the peak magnitudes of the variables differed. In general, the THOR better mimicked the PMHS response than the Hybrid III dummy, and factors such as neck design and chest compliance were attributed to the observed variations. While both dummies were not designed for use at the two extremes of the tested velocities, results from the present study indicate that, currently the THOR may be the preferred anthropomorphic testing device in crashworthiness research studies and full-scale vehicle tests at all velocities. PMID:23169123
Joda, Tim; Voumard, Benjamin; Zysset, Philippe K; Brägger, Urs; Ferrari, Marco
2018-04-01
The aims were to analyze stiffness, ultimate force, and failure modes of a 2-piece zirconium dioxide (ZrO 2 ) implant system. Eleven 2-piece ZrO 2 implants, each mounted with ZrO 2 abutments plus bonded monolithic lithium disilicate (LS 2 ) restorations, were grouped for 3.3mm (A) and 4.1mm (B) diameter samples. Quasi-static load was monotonically applied under a standardized test set-up (loading configuration according to DIN ISO 14801). The ultimate force was defined as the maximum force that implants are able to carry out until fracture; stiffness was measured as the maximum slope during loading. An unpaired t-test was performed between group A and B for ultimate force and stiffness (p<0.05). Force-displacement curves revealed statistically homogenous inner-group results for all samples. Failure modes showed characteristic fractures at the neck configuration of the implants independent of the diameter. Mean stiffness was 1099N/mm (±192) for group A, and significantly lower compared to group B with 1630N/mm (±274) (p<0.01); whereas mean ultimate force was 348N (±53) for group A, and significantly increased for group B with 684N (±29) (p<0.0001). The examined 2-piece ZrO 2 implant system mounted to LS 2 -restorations seems to be a stable unit under in-vitro conditions with mechanical properties compared to loading capacity of physiological force. The metal-free implant reconstructions demonstrated high stiffness and ultimate force under quasi-static load for single tooth replacement under consideration of the dental indication of narrow and standard diameter implants. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Ground reaction forces on stairs. Part II: knee implant patients versus normals.
Stacoff, Alex; Kramers-de Quervain, Inès A; Luder, Gerhard; List, Renate; Stüssi, Edgar
2007-06-01
The goal of this study was to compare selected parameters of vertical ground reaction forces (GRF) of good outcome patients with different prosthesis designs with a matched control group during level walking, stair ascent and descent. Forty subjects, 29 with three main implant designs (including four subjects with a passive knee flexion restriction), and 11 healthy controls were measured with 8-10 repetitions. Vertical ground reaction forces were measured during two consecutive steps with force plates embedded in the walkway and the staircase. Defined parameters of the force signals were used to compare the results of the test groups. The results show, that, postoperatively, good outcome patients produce gait patterns of the vertical ground reaction force which are comparable to normal healthy subjects with the exception of a few distinct differences: a significant reduction (p<0.05) in the vertical loading on the operated side during level walking at take-off, at weight acceptance and take-off during stair ascent of the normal stair. During stair descent, the patients did not reduce load on the operated side, but increased load variation and side-to-side asymmetry; thus, the mechanical loads on the implants were high, which may be important information with respect to loading protocols of knee implant simulators. No systematic differences in any of the test parameters were found between posterior cruciate-retaining (LCS MB and Innex CR) versus non-retaining (LCS RP and Innex UCOR) implant designs. The restricted group showed significant reductions (p<0.05) of several loading parameters as well as an increased side-to-side asymmetry. About one third of the force parameters of the good outcome patients showed a side-to-side asymmetry between two consecutive steps, which was over a proposed level of acceptance.
Strain distribution in the lumbar vertebrae under different loading configurations.
Cristofolini, Luca; Brandolini, Nicola; Danesi, Valentina; Juszczyk, Mateusz M; Erani, Paolo; Viceconti, Marco
2013-10-01
The stress/strain distribution in the human vertebrae has seldom been measured, and only for a limited number of loading scenarios, at few locations on the bone surface. This in vitro study aimed at measuring how strain varies on the surface of the lumbar vertebral body and how such strain pattern depends on the loading conditions. Eight cadaveric specimens were instrumented with eight triaxial strain gauges each to measure the magnitude and direction of principal strains in the vertebral body. Each vertebra was tested in a three adjacent vertebrae segment fashion. The loading configurations included a compressive force aligned with the vertebral body but also tilted (15°) in each direction in the frontal and sagittal planes, a traction force, and torsion (both directions). Each loading configuration was tested six times on each specimen. The strain magnitude varied significantly between strain measurement locations. The strain distribution varied significantly when different loading conditions were applied (compression vs. torsion vs. traction). The strain distribution when the compressive force was tilted by 15° was also significantly different from the axial compression. Strains were minimal when the compressive force was applied coaxial with the vertebral body, compared with all other loading configurations. Also, strain was significantly more uniform for the axial compression, compared with all other loading configurations. Principal strains were aligned within 19° to the axis of the vertebral body for axial-compression and axial-traction. Conversely, when the applied force was tilted by 15°, the direction of principal strain varied by a much larger angle (15° to 28°). This is the first time, to our knowledge, that the strain distribution in the vertebral body is measured for such a variety of loading configurations and a large number of strain sensors. The present findings suggest that the structure of the vertebral body is optimized to sustain compressive forces, whereas even a small tilt angle makes the vertebral structure work under suboptimal conditions. Copyright © 2013 Elsevier Inc. All rights reserved.
Hosseinzadeh Nik, T; Ghadirian, H; Ahmadabadi, M Nili; Shahhoseini, T; Haj-Fathalian, M
2012-01-01
Most published results about the characteristics of NiTi wires are based on the mechanical laboratory tests on the as-received wires.The purpose of this study was to investigate the effect of saliva on load-deflection characteristics of superelastic NiTi wires. In this experimental study, 15 wires of three kinds of superelastic NiTi wires (Sentalloy, Force I and Truflex) were prepared. Five specimens of each wire were tested in the as-received condition (T0) to provide baseline information and the remaining wires were divided into two groups of five. Half of them were kept inside artificial saliva for one month (T1), while the others were kept in air (T2). After 30 days, three-point bending test was done in a dental arch model and data from selected points on the unloading phase of the generated graphs were used for statistical analysis. Force I and Truflex showed significantly greater force than Sentalloy. The load values of Truflex and Force I after one month exposed to artificial saliva (T1) decreased significantly, but Sentalloy was not affected significantly. The plateau gap values were not considerably different among T0, T1 and T2. Saliva decreased the load of Force I and Truflex significantly, but it did not have a statistically significant effect on Sentalloy.
Inverse Force Determination on a Small Scale Launch Vehicle Model Using a Dynamic Balance
NASA Technical Reports Server (NTRS)
Ngo, Christina L.; Powell, Jessica M.; Ross, James C.
2017-01-01
A launch vehicle can experience large unsteady aerodynamic forces in the transonic regime that, while usually only lasting for tens of seconds during launch, could be devastating if structural components and electronic hardware are not designed to account for them. These aerodynamic loads are difficult to experimentally measure and even harder to computationally estimate. The current method for estimating buffet loads is through the use of a few hundred unsteady pressure transducers and wind tunnel test. Even with a large number of point measurements, the computed integrated load is not an accurate enough representation of the total load caused by buffeting. This paper discusses an attempt at using a dynamic balance to experimentally determine buffet loads on a generic scale hammer head launch vehicle model tested at NASA Ames Research Center's 11' x 11' transonic wind tunnel. To use a dynamic balance, the structural characteristics of the model needed to be identified so that the natural modal response could be and removed from the aerodynamic forces. A finite element model was created on a simplified version of the model to evaluate the natural modes of the balance flexures, assist in model design, and to compare to experimental data. Several modal tests were conducted on the model in two different configurations to check for non-linearity, and to estimate the dynamic characteristics of the model. The experimental results were used in an inverse force determination technique with a psuedo inverse frequency response function. Due to the non linearity, the model not being axisymmetric, and inconsistent data between the two shake tests from different mounting configuration, it was difficult to create a frequency response matrix that satisfied all input and output conditions for wind tunnel configuration to accurately predict unsteady aerodynamic loads.
Xu, Yan; Liu, Jianyu; Kramer, Scott; Martins, Cesar; Kato, Yuki; Linde-Rosen, Monica; Smolinski, Patrick; Fu, Freddie H
2011-02-01
High tunnel placement is common in single- and double-bundle anterior cruciate ligament (ACL) reconstructions. Similar nonanatomic tunnel placement may also occur in ACL augmentation surgery. In this study, in situ forces and knee kinematics were compared between nonanatomic high anteromedial (AM) and anatomic AM augmentation in a knee with isolated AM bundle injury. Controlled laboratory study. Seven fresh-frozen cadaver knees were used (age, 48 ± 12.5 years). First, intact knee kinematics was tested with a robotic-universal force sensor testing system under 2 loading conditions. An 89-N anterior load was applied, and an anterior tibial translation was measured at knee flexion angles of 0°, 30°, 60°, and 90°. Then, combined rotatory loads of 7-N·m valgus and 5-N·m internal tibial rotation were applied at 15° and 30° of knee flexion angles, which mimic the pivot shift. Afterward, only the AM bundle of the ACL was cut arthroscopically, keeping the posterolateral bundle intact. The knee was again tested using the intact knee kinematics to measure the in situ force of the AM bundle. Then, arthroscopic anatomic AM bundle reconstruction was performed with an allograft, and the knee was tested to give the in situ force of the reconstructed AM bundle. Knee kinematics under the 3 conditions (intact, anatomic AM augmentation, and nonanatomic high AM augmentation) and the in situ force were compared and analyzed. The high AM graft had significantly lower in situ force than the intact and anatomic reconstructed AM bundle at 0° of knee flexion (P < .05) and the intact AM bundle at 30° of knee flexion under anterior tibial loading. There were no differences between anatomic graft and intact AM bundle. The high AM graft also had a significantly lower in situ force than the intact and anatomic reconstructed AM with simulated pivot-shift loading at 15° and 30° of flexion (P < .05). Under anterior tibial and rotatory loading, there was a difference in tibial displacement between anatomic and high AM reconstructions and between the high AM graft and intact ACL under rotational loading with the knee at 15° of flexion. Anatomic AM augmentation can lead to biomechanical advantages at time zero when compared with the nonanatomic (high AM) augmentation. Anatomic AM augmentation better restores the knee kinematics to the intact ACL state.
Li, Junyan; Redmond, Anthony C; Jin, Zhongmin; Fisher, John; Stone, Martin H; Stewart, Todd D
2014-08-01
Preclinical durability testing of hip replacement implants is standardised by ISO-14242-1 (2002) which is based on historical inverse dynamics analysis using data obtained from a small sample of normal healthy individuals. It has not been established whether loading cycles derived from normal healthy individuals are representative of loading cycles occurring in patients following total hip replacement. Hip joint kinematics and hip contact forces derived from multibody modelling of forces during normal walking were obtained for 15 asymptomatic total hip replacement patients and compared to 38 normal healthy individuals and to the ISO standard for pre-clinical testing. Hip kinematics in the total hip replacement patients were comparable to the ISO data and the hip contact force in the normal healthy group was also comparable to the ISO cycles. Hip contact forces derived from the asymptomatic total hip replacement patients were comparable for the first part of the stance period but exhibited 30% lower peak loads at toe-off. Although the ISO standard provides a representative kinematic cycle, the findings call into question whether the hip joint contact forces in the ISO standard are representative of those occurring in the joint following total hip replacement. Copyright © 2014. Published by Elsevier Ltd.
Experiments with airplane brakes
NASA Technical Reports Server (NTRS)
Michael, Franz
1931-01-01
This report begins by examining the forces on the brake shoes. For the determination of the load distribution over the shoes it was assumed that the brake linings follow Hooke's law, are neatly fitted and bedded in by wear. The assumption of Hooke's law, that is, the proportionality between compression of the lining and the absorption of force, is fulfilled to a certain extent for the loading, as becomes apparent from the load tests described further on. But there is a material discrepancy at unloading. From the load distribution we merely defined the position of the normal force resultant, while for the rest, the effect of the distribution was disregarded in the comparison of the different shoe dispositions.
Chiu, Haw-Yen; Hsu, Hsiu-Yun; Kuo, Li-Chieh; Chang, Jer-Hao; Su, Fong-Chin
2009-08-01
A precise magnitude and timing control of pinch performance is based on accurate feed-forward and feedback control mechanisms. Ratio of peak pinch force and maximum load force during a functional performance is a sensitive parameter to reflect the ability to scale pinch force output according to actual loads. A pinch apparatus was constructed to detect momentary pinch force modulation of 20 subjects with normal hand sensation. The results indicated high intra-class correlation coefficient and small coefficient of variation of the detected force ratio among three repeated tests, which represented that the stability test of the measured response confirmed the feasibility of this apparatus. The force ratio for a 480 g object with a steel surface ranged between 1.77 and 1.98. Normal subjects were able to scale and contribute pinch force precisely to a pinch-holding-up test. This study may provide clinicians a reliable apparatus and method to analyze the recovery of functional sensibility in patients with nerve injuries. Copyright 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Biomechanical analysis of tension band fixation for olecranon fracture treatment.
Kozin, S H; Berglund, L J; Cooney, W P; Morrey, B F; An, K N
1996-01-01
This study assessed the strength of various tension band fixation methods with wire and cable applied to simulated olecranon fractures to compare stability and potential failure or complications between the two. Transverse olecranon fractures were simulated by osteotomy. The fracture was anatomically reduced, and various tension band fixation techniques were applied with monofilament wire or multifilament cable. With a material testing machine load displacement curves were obtained and statistical relevance determined by analysis of variance. Two loading modes were tested: loading on the posterior surface of olecranon to simulate triceps pull and loading on the anterior olecranon tip to recreate a potential compressive loading on the fragment during the resistive flexion. All fixation methods were more resistant to posterior loading than to an anterior load. Individual comparative analysis for various loading conditions concluded that tension band fixation is more resilient to tensile forces exerted by the triceps than compressive forces on the anterior olecranon tip. Neither wire passage anterior to the K-wires nor the multifilament cable provided statistically significant increased stability.
Lawless, I M; Ding, B; Cazzolato, B S; Costi, J J
2014-09-22
Robotic biomechanics is a powerful tool for further developing our understanding of biological joints, tissues and their repair. Both velocity-based and hybrid force control methods have been applied to biomechanics but the complex and non-linear properties of joints have limited these to slow or stepwise loading, which may not capture the real-time behaviour of joints. This paper presents a novel force control scheme combining stiffness and velocity based methods aimed at achieving six degree of freedom unconstrained force control at physiological loading rates. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lintilhac, Phillip M.; Vesecky, Thompson B.
1995-01-01
Apparatus and methods are disclosed facilitating the application of forces and measurement of dimensions of a test subject. In one arrangement the test subject is coupled to a forcing frame and controlled forces applied thereto. Force applied to the test subject is measured and controlled. A dimensional characteristic of the test subject, such as growth, is measured by a linear variable differential transformer. The growth measurement data can be used to control the force applied. The transducer module receives force and dimensional data from the forcing frame. The transducer module is a separate, microprocessor-based unit that communicates the test data to a controller unit that controls the application of force to the test subject and receives the test data from the transducer module for force control, storage, and/or communication to the user.
Lintilhac, P.M.; Vesecky, T.B.
1995-09-19
An apparatus and methods are disclosed facilitating the application of forces and measurement of dimensions of a test subject. In one arrangement the test subject is coupled to a forcing frame and controlled forces applied thereto. Force applied to the test subject is measured and controlled. A dimensional characteristic of the test subject, such as growth, is measured by a linear variable differential transformer. The growth measurement data can be used to control the force applied. The transducer module receives force and dimensional data from the forcing frame. The transducer module is a separate, microprocessor-based unit that communicates the test data to a controller unit that controls the application of force to the test subject and receives the test data from the transducer module for force control, storage, and/or communication to the user. 8 figs.
Calculating Nozzle Side Loads using Acceleration Measurements of Test-Based Models
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ruf, Joe
2007-01-01
As part of a NASA/MSFC research program to evaluate the effect of different nozzle contours on the well-known but poorly characterized "side load" phenomena, we attempt to back out the net force on a sub-scale nozzle during cold-flow testing using acceleration measurements. Because modeling the test facility dynamics is problematic, new techniques for creating a "pseudo-model" of the facility and nozzle directly from modal test results are applied. Extensive verification procedures were undertaken, resulting in a loading scale factor necessary for agreement between test and model based frequency response functions. Side loads are then obtained by applying a wide-band random load onto the system model, obtaining nozzle response PSD's, and iterating both the amplitude and frequency of the input until a good comparison of the response with the measured response PSD for a specific time point is obtained. The final calculated loading can be used to compare different nozzle profiles for assessment during rocket engine nozzle development and as a basis for accurate design of the nozzle and engine structure to withstand these loads. The techniques applied within this procedure have extensive applicability to timely and accurate characterization of all test fixtures used for modal test.A viewgraph presentation on a model-test based pseudo-model used to calculate side loads on rocket engine nozzles is included. The topics include: 1) Side Loads in Rocket Nozzles; 2) Present Side Loads Research at NASA/MSFC; 3) Structural Dynamic Model Generation; 4) Pseudo-Model Generation; 5) Implementation; 6) Calibration of Pseudo-Model Response; 7) Pseudo-Model Response Verification; 8) Inverse Force Determination; 9) Results; and 10) Recent Work.
Boskovski, Marko T; Shmuylovich, Leonid; Kovács, Sándor J
2008-12-01
The new echocardiography-based, load-independent index of diastolic filling (LIIDF) M was assessed using load-/shape-varying E-waves after premature ventricular contractions (PVCs). Twenty-six PVCs in 15 subjects from a preexisting simultaneous echocardiography-catheterization database were selected. Perturbed load-state beats, defined as the first two post-PVC E-waves, and steady-state E-waves, were subjected to conventional and model-based analysis. M, a dimensionless index, defined by the slope of the peak driving-force vs. peak (filling-opposing) resistive-force regression, was determined from steady-state E-waves alone, and from load-perturbed E-waves combined with a matched number of subsequent beats. Despite high degrees of E-wave shape variation, M derived from load-varying, perturbed beats and M derived from steady-state beats alone were indistinguishable. Because the peak driving-force vs. peak resistive-force relation determining M remains highly linear in the extended E-wave shape and load variation regime observed, we conclude that M is a robust LIIDF.
Load Bearing Equipment for Bone and Muscle Project
NASA Technical Reports Server (NTRS)
Terrier, Douglas; Clayton, Ronald G.; Shackelford, Linda
2015-01-01
Axial skeletal loads coupled with muscle torque forces around joints maintain bone. Astronauts working in pairs to exercise can provide high eccentric loads for each other that are most effective. A prototype of load bearing equipment that will allow astronauts to perform exercises using each other for counter force generation in a controlled fashion and provide eccentric overload is proposed. A frame and attachments that can be rapidly assembled for use and easily stored will demonstrate feasibility of a design that can be adapted for ISS testing and Orion use.
Kato, Hatsumi; Kuroshima, Shinichiro; Inaba, Nao; Uto, Yusuke; Sawase, Takashi
2018-02-01
The aim of this study was to clarify whether marginal grooves on dental implants affect osseointegration, bone structure, and the alignment of collagen fibers to determine bone quality under loaded conditions. Anodized Ti-6Al-4V alloy dental implants, with and without marginal grooves (test and control implants, respectively), were used (3.7 × 8.0 mm). Fourth premolars and first molars of 6 beagle mandibles were extracted. Two control and test implants were placed in randomly selected healed sites at 12 weeks after tooth extraction. Screw-retained single crowns for first molars were fabricated. Euthanasia was performed at 8 weeks after the application of occlusal forces. Implant marginal bone level, bone to implant contact (BIC), bone structure around dental implants, and the alignment of collagen fibers determining bone quality were analyzed. The marginal bone level in test implants was significantly higher than that in control implants. Occlusal forces significantly increased BIC in test implants ( P = .007), whereas BIC did not change in control implants, irrespective of occlusal forces ( P = .303). Moreover, occlusal forces significantly increased BIC in test implants compared with control implants ( P = .032). Additionally, occlusal forces preferentially aligned collagen fibers in test implants, but not control implants. Hence, marginal grooves on dental implants have positive effects on increased osseointegration and adapted bone quality based on the preferential alignment of collagen fibers around dental implants under loaded conditions.
Comparison of load distribution for implant overdenture attachments.
Porter, Joseph A; Petropoulos, Vicki C; Brunski, John B
2002-01-01
The aim of this study was to compare the force and moment distributions that develop on different implant overdenture attachments when vertical compressive forces are applied to an implant-retained overdenture. The following attachments were examined: Nobel Biocare bar and clip (NBC), Nobel Biocare standard ball (NSB), Nobel Biocare 2.25-mm-diameter ball (NB2), Zest Anchor Advanced Generation (ZAAG), Sterngold ERA white (SEW), Sterngold ERA orange (SEO), Compliant Keeper System with titanium shims (CK-Ti), Compliant Keeper System with black nitrile 2SR90 sleeve rings (CK-70), and Compliant Keeper System with clear silicone 2SR90 sleeve rings (CK-90). The attachments were tested using custom strain-gauged abutments and 2 Brånemark System implants placed in a test model. Each attachment type had one part embedded in a denture-like housing and the other part (the abutment) screwed into the implants. Compressive static loads of 100 N were applied (1) bilaterally, over the distal midline (DM); (2) unilaterally, over the right implant (RI); (3) unilaterally, over the left implant (LI); and (4) between implants in the mid-anterior region (MA). Both the force and bending moment on each implant were recorded for each loading location and attachment type. Results were analyzed using 2-way analysis of variance and the Duncan multiple-range test. Both loading location and attachment type were statistically significant factors (P < .05). In general, the force and moment on an implant were greater when the load was applied directly over the implant or at MA. While not significant at every loading location, the largest implant forces tended to occur with ZAAG attachments; the smallest were found with the SEW, the SEO, the NSB, the CK-70, and the CK-90. Typically, higher moments existed for NBC and ZAAG, while lower moments existed for SEW, SEO, NSB, CK-90, and CK-70. For different loading locations, significant differences were found among the different overdenture attachment systems.
Experimental investigation on the failure of T-joints at elevated temperature under unaxial loading
NASA Astrophysics Data System (ADS)
Bahri, N. F.; Afendi, M.; Razlan, Z. M.; Nor, A.; Baharuddin, S. A.
2017-09-01
In this study, the mechanical properties and maximum failure load of a bulk and T-joints subjected to tensile loading were investigated experimentally. A bulk and the T-joint specimens were fabricated and tested in order to investigate the effects of temperature conditions on the failure of the joints. The adherent and adhesive used for T-joint are 304 L stainless steel and Hysol E 214 HP with the adhesive thickness of 1.0 mm. The tensile test of the bulk specimen and adhesively T-joint were conducted by using a universal testing machine (UTM) at room temperature (RT), 55 °C, 75 °C, 100 °C and 120 °C, respectively. It was found that as the temperature increases, the failure force strength decreases for bulk and T-joint specimen. Data obtained from the tests at 120 °C showed the failure force of the bulk adhesive decreased by approximately 44 % compared to the specimen tested at RT. Next, the bulk of Hysol failure force result was compared with Araldite at RT and 100 °C. Araldite data was taken from the previous study [1]. It has also been found that the bulk for Hysol has higher failure force compared to Araldite at RT and 100 °C.
Axial calibration methods of piezoelectric load sharing dynamometer
NASA Astrophysics Data System (ADS)
Zhang, Jun; Chang, Qingbing; Ren, Zongjin; Shao, Jun; Wang, Xinlei; Tian, Yu
2018-06-01
The relationship between input and output of load sharing dynamometer is seriously non-linear in different loading points of a plane, so it's significant for accutately measuring force to precisely calibrate the non-linear relationship. In this paper, firstly, based on piezoelectric load sharing dynamometer, calibration experiments of different loading points are performed in a plane. And then load sharing testing system is respectively calibrated based on BP algorithm and ELM (Extreme Learning Machine) algorithm. Finally, the results show that the calibration result of ELM is better than BP for calibrating the non-linear relationship between input and output of loading sharing dynamometer in the different loading points of a plane, which verifies that ELM algorithm is feasible in solving force non-linear measurement problem.
Response to reflected-force feedback to fingers in teleoperations
NASA Technical Reports Server (NTRS)
Sutter, P. H.; Iatridis, J. C.; Thakor, N. V.
1989-01-01
Reflected-force feedback is an important aspect of teleoperations. The objective is to determine the ability of the human operator to respond to that force. Telerobotics operation is simulated by computer control of a motor-driven device with capabilities for programmable force feedback and force measurement. A computer-controlled motor drive is developed that provides forces against the fingers as well as (angular) position control. A load cell moves in a circular arc as it is pushed by a finger and measures reaction forces on the finger. The force exerted by the finger on the load cell and the angular position are digitized and recorded as a function of time by the computer. Flexure forces of the index, long and ring fingers of the human hand in opposition to the motor driven load cell are investigated. Results of the following experiments are presented: (1) Exertion of maximum finger force as a function of angle; (2) Exertion of target finger force against a computer controlled force; and (3) Test of the ability to move to a target force against a force that is a function of position. Averaged over ten individuals, the maximum force that could be exerted by the index or long finger is about 50 Newtons, while that of the ring finger is about 40 Newtons. From the tests of the ability of a subject to exert a target force, it was concluded that reflected-force feedback can be achieved with the direct kinesthetic perception of force without the use of tactile or visual clues.
Alavi, Shiva; Sinaee, Neda
2012-01-01
Background: Sterilization techniques could affect the characteristics of orthodontic wires. The aim of the present study was to evaluate the effect of steam and dry heat sterilization techniques on load-deflection behavior of five types of β-titanium alloy wires. Materials and Methods: The samples consisted of 30 straight lengths of five types of β-titanium alloy wires: Titanium Molybdenum Alloy (TMA) Low Friction (TMAL), TMA Low Friction Colored (HONE), Resolve (RES), BetaForce (BETA), and BETA CNA (CNA). Thirty wire segments were divided into three groups of 10. Group 1 was the control group and the group 2 samples were sterilized by dry heat in an oven (60 minutes at 160°C) and group 3 by steam in an autoclave (15 minutes at 121°C). Then all the wire samples underwent a three-point bending test in a testing machine to evaluate load-deflection properties. Data was analyzed by repeated measures ANOVA and Scheffé's test (α = 0.05). Results: The results showed that dry heat sterilization significantly increased force levels during both loading and unloading of CNA, BETA and RES and during loading of HONE (P < 0.05). Steam sterilization significantly increased force levels during both loading and unloading of BETA and during unloading of HONE (P < 0.05), with no effects on the load-deflection characteristics of TMAL, CNA and RES (P > 0.05). Conclusion: It appears dry heat sterilization increases stiffness of RES, BETA, CNA and HONE but autoclave sterilization did not have any effect on load-deflection characteristics of most of the β-titanium wires tested, indicating that clinicians who want to provide maximum safety for their patients can autoclave TMAL, RES and CNA before applying them. PMID:23559917
[Research of joint-robotics-based design of biomechanics testing device on human spine].
Deng, Guoyong; Tian, Lianfang; Mao, Zongyuan
2009-12-01
This paper introduces the hardware and software of a biomechanical robot-based testing device. The bottom control orders, posture and torque data transmission, and the control algorithms are integrated in a unified visual control platform by Visual C+ +, with easy control and management. By using hybrid force-displacement control method to load the human spine, we can test the organizational structure and the force state of the FSU (Functional spinal unit) well, which overcomes the shortcomings due to the separation of the force and displacement measurement, thus greatly improves the measurement accuracy. Also it is esay to identify the spinal degeneration and the load-bearing impact on the organizational structure of the FSU after various types of surgery.
Instrument for the application of controlled mechanical loads to tissues in sterile culture
Lintilhac, Phillip M.; Vesecky, Thompson B.
1995-01-01
Apparatus and methods are disclosed facilitating the application of forces and measurement of dimensions of a test subject. In one arrangement the test subject is coupled to a forcing frame and controlled forces applied thereto by a series of guideways and sliders. The sliders, which contact the test subject are in force transmitting relation to a forcing frame. Tension, compression and bending forces can be applied to the test subject. Force applied to the test subject is measured and controlled. A dimensional characteristic of the test subject, such as growth, is measured by a linear variable differential transformer. The growth measurement data can be used to control the force applied. Substantially uniaxial stretching is achieved by placing the test subject on an elastic membrane stretched by an arrangement of members securing the elastic member to the forcing frame.
Hermsdörfer, J; Elias, Z; Cole, J D; Quaney, B M; Nowak, D A
2008-01-01
Although feed-forward mechanisms of grip force control are a prerequisite for skilled object manipulation, somatosensory feedback is essential to acquire, maintain, and adapt these mechanisms. Individuals with complete peripheral deafferentation provide the unique opportunity to study the function of the motor system deprived of somatosensory feedback. Two individuals (GL and IW) with complete chronic deafferentation of the trunk and limbs were tested during cyclic vertical movements of a hand-held object. Such movements induce oscillating loads that are typically anticipated by parallel modulations of the grip force. Load magnitude was altered by varying either the movement frequency or object weight. GL and IW employed excessive grip forces probably reflecting a compensatory mechanism. Despite this overall force increase, both deafferented participants adjusted their grip force level according to the load magnitude, indicating preserved scaling of the background grip force to physical demands. The dynamic modulation of the grip force with the load force was largely absent in GL, whereas in IW only slower movements were clearly affected. The authors hypothesize that the deafferented patients may have utilized visual and vestibular cues and/or an efferent copy of the motor command of the arm movement to scale the grip force level. Severely impaired grip force-load coupling in GL suggests that sensory information is important for maintaining a precise internal model of dynamic grip force control. However, comparably better performance in IW argues for the possibility that alternative cues can be used to trigger a residual internal model.
Chang, Yen-Hsiang; Yu, Jin-Jie; Lin, Chun-Li
2014-12-13
This study investigates CAD/CAM ceramic cusp-replacing restoration resistance with and without buccal cusp replacement under static and dynamic cyclic loads, monitored using the acoustic emission (AE) technique. The cavity was designed in a typical MODP (mesial-occlusal-distal-palatal) restoration failure shape when the palatal cusp has been lost. Two ceramic restorations [without coverage (WOC) and with (WC) buccal cuspal coverage with 2.0 mm reduction in cuspal height] were prepared to perform the fracture and fatigue tests with normal (200 N) and high (600 N) occlusal forces. The load versus AE signals in the fracture and fatigue tests were recorded to evaluate the restored tooth failure resistance. The results showed that non-significant differences in load value in the fracture test and the accumulated number of AE signals under normal occlusal force (200 N) in the fatigue test were found between with and without buccal cuspal coverage restorations. The first AE activity occurring for the WOC restoration was lower than that for the WC restoration in the fracture test. The number of AE signals increased with the cyclic load number. The accumulated number of AE signals for the WOC restoration was 187, higher than that (85) for the WC restoration under 600 N in the fatigue test. The AE technique and fatigue tests employed in this study were used as an assessment tool to evaluate the resistances in large CAD/CAM ceramic restorations. Non-significant differences in the tested fracture loads and accumulated number of AE signals under normal occlusal force (200 N) between different restorations indicated that aggressive treatment (with coverage preparation) in palatal cusp-replacing ceramic premolars require more attention for preserving and protecting the remaining tooth.
Variable Acceleration Force Calibration System (VACS)
NASA Technical Reports Server (NTRS)
Rhew, Ray D.; Parker, Peter A.; Johnson, Thomas H.; Landman, Drew
2014-01-01
Conventionally, force balances have been calibrated manually, using a complex system of free hanging precision weights, bell cranks, and/or other mechanical components. Conventional methods may provide sufficient accuracy in some instances, but are often quite complex and labor-intensive, requiring three to four man-weeks to complete each full calibration. To ensure accuracy, gravity-based loading is typically utilized. However, this often causes difficulty when applying loads in three simultaneous, orthogonal axes. A complex system of levers, cranks, and cables must be used, introducing increased sources of systematic error, and significantly increasing the time and labor intensity required to complete the calibration. One aspect of the VACS is a method wherein the mass utilized for calibration is held constant, and the acceleration is changed to thereby generate relatively large forces with relatively small test masses. Multiple forces can be applied to a force balance without changing the test mass, and dynamic forces can be applied by rotation or oscillating acceleration. If rotational motion is utilized, a mass is rigidly attached to a force balance, and the mass is exposed to a rotational field. A large force can be applied by utilizing a large rotational velocity. A centrifuge or rotating table can be used to create the rotational field, and fixtures can be utilized to position the force balance. The acceleration may also be linear. For example, a table that moves linearly and accelerates in a sinusoidal manner may also be utilized. The test mass does not have to move in a path that is parallel to the ground, and no re-leveling is therefore required. Balance deflection corrections may be applied passively by monitoring the orientation of the force balance with a three-axis accelerometer package. Deflections are measured during each test run, and adjustments with respect to the true applied load can be made during the post-processing stage. This paper will present the development and testing of the VASC concept.
NASA Technical Reports Server (NTRS)
Miller, Eric J.; Cruz, Josue; Lung, Shun-Fat; Kota, Sridhar; Ervin, Gregory; Lu, Kerr-Jia; Flick, Pete
2016-01-01
A seamless adaptive compliant trailing edge (ACTE) flap was demonstrated in flight on a Gulfstream III aircraft at the NASA Armstrong Flight Research Center. The trailing edge flap was deflected between minus 2 deg up and plus 30 deg down in flight. The safety-of-flight parameters for the ACTE flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. The attachment fittings connecting the flap to the aircraft wing rear spar were instrumented with strain gages and calibrated using known loads for measuring hinge moment and normal force loads in flight. The safety-of-flight parameters for the ACTE flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. The attachment fittings connecting the flap to the aircraft wing rear spar were instrumented with strain gages and calibrated using known loads for measuring hinge moment and normal force loads in flight. The interface hardware instrumentation layout and load calibration are discussed. Twenty-one applied calibration test load cases were developed for each individual fitting. The 2-sigma residual errors for the hinge moment was calculated to be 2.4 percent, and for normal force was calculated to be 7.3 percent. The hinge moment and normal force generated by the ACTE flap with a hinge point located at 26-percent wing chord were measured during steady state and symmetric pitch maneuvers. The loads predicted from analysis were compared to the loads observed in flight. The hinge moment loads showed good agreement with the flight loads while the normal force loads calculated from analysis were over-predicted by approximately 20 percent. Normal force and hinge moment loads calculated from the pressure sensors located on the ACTE showed good agreement with the loads calculated from the installed strain gages.
Calculations of current-induced forces on moored tankers, using the theory of manoeuvring ships
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirza, S.
1996-12-31
The knowledge of current induced loads on moored tankers is important in the design of mooring lines. Normally, these current loads are determined from controlled laboratory experiments and field tests or from the Oil Companies International Marine Forum (OCIMF) data (1977). Chakrabarti (1995) mentions that the validity of some of this data is doubtful, and he conducted some tank tests. To save time involved in preparation of elaborate tank tests, it will be useful to have some analytical tools to calculate the current induced loads. In this paper, an attempt has been made to calculate the lateral forces in currentmore » only conditions, using the theory of manoeuvring ships. The manoeuvring model was developed by Wellicome (1981). The sway forces on the hull are modelled by conformal transformation of the hull into a circle plane and applying the flow field. The forces on the bilge keel are modelled by vortex panel method. The results for the simulation are compared with the test results of Chakrabarti (1995). There is good correlation between the experimental and theoretical results for the case of hull with bilge keels. This is true for the streaming flow velocity up to an angle of 45 to the longitudinal direction of the hull. For the case of bare hull, the computational model grossly underpredicts the sway forces. This may be due to the dominance of viscous forces than the potential ones.« less
NASA Technical Reports Server (NTRS)
Panda, Jayatana; Martin, Fred W.; Sutliff, Daniel L.
2008-01-01
At the wake of the Columbia (STS-107) accident it was decided to remove the Protuberance Aerodynamic Load (PAL) Ramp that was originally intended to protect various protuberances outside of the Space Shuttle External Tank from high buffet load induced by cross-flows at transonic speed. In order to establish the buffet load without the PAL ramp, a wind tunnel test was conducted where segments of the protuberances were instrumented with dynamic pressure transducers; and power-spectra of sectional lift and drag forces at various span-wise locations between two adjacent support brackets were measured under different cross flow angles, Mach number and other conditions. Additionally, frequency-dependent spatial correlations between the sectional forces were also established. The sectional forces were then adjusted by the correlation length to establish span-averaged spectra of normal and lateral forces that can be suitably "added" to various other unsteady forces encountered by the protuberance. This paper describes the methodology used for calculating the correlation-adjusted power spectrum of the buffet load. A second part of the paper describes wind-tunnel results on the difference in the buffet load on the protuberances with and without the PAL ramp. In general when the ramp height is the same as that of the protuberance height, such as that found on the liquid Oxygen part of the tank, the ramp is found to cause significant reduction of the unsteady aerodynamic load. However, on the liquid Hydrogen part of the tank, where the Oxygen feed-line is far larger in diameter than the height of the PAL ramp, little protection is found to be available to all but the Cable Tray.
Study on Mechanical Properties of Barite Concrete under Impact Load
NASA Astrophysics Data System (ADS)
Chen, Z. F.; Cheng, K.; Wu, D.; Gan, Y. C.; Tao, Q. W.
2018-03-01
In order to research the mechanical properties of Barite concrete under impact load, a group of concrete compression tests was carried out under the impact load by using the drop test machine. A high-speed camera was used to record the failure process of the specimen during the impact process. The test results show that:with the increase of drop height, the loading rate, the peak load, the strain under peak load, the strain rate and the dynamic increase factor (DIF) all increase gradually. The ultimate tensile strain is close to each other, and the time of impact force decreases significantly, showing significant strain rate effect.
Structural Benchmark Tests of Composite Combustion Chamber Support Completed
NASA Technical Reports Server (NTRS)
Krause, David L.; Thesken, John C.; Shin, E. Eugene; Sutter, James K.
2005-01-01
A series of mechanical load tests was completed on several novel design concepts for extremely lightweight combustion chamber support structures at the NASA Glenn Research Center (http://www.nasa.gov/glenn/). The tests included compliance evaluation, preliminary proof loadings, high-strain cyclic testing, and finally residual strength testing of each design (see the photograph on the left). Loads were applied with single rollers (see the photograph on the right) or pressure plates (not shown) located midspan on each side to minimize the influence of contact stresses on corner deformation measurements. Where rollers alone were used, a more severe structural loading was produced than the corresponding equal-force pressure loading: the maximum transverse shear force existed over the entire length of each side, and the corner bending moments were greater than for a distributed (pressure) loading. Failure modes initiating at the corner only provided a qualitative indication of the performance limitations since the stress state was not identical to internal pressure. Configurations were tested at both room and elevated temperatures. Experimental results were used to evaluate analytical prediction tools and finite-element methodologies for future work, and they were essential to provide insight into the deformation at the corners. The tests also were used to assess fabrication and bonding details for the complicated structures. They will be used to further optimize the design of the support structures for weight performance and the efficacy of corner reinforcement.
Evaluation of a load cell model for dynamic calibration of the rotor systems research aircraft
NASA Technical Reports Server (NTRS)
Duval, R. W.; Bahrami, H.; Wellman, B.
1985-01-01
The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission system from the fuselage. An analytical model of the relationship between applied rotor loads and the resulting load cell measurements is derived by applying a force-and-moment balance to the isolated rotor/transmission system. The model is then used to estimate the applied loads from measured load cell data, as obtained from a ground-based shake test. Using nominal design values for the parameters, the estimation errors, for the case of lateral forcing, were shown to be on the order of the sensor measurement noise in all but the roll axis. An unmodeled external load appears to be the source of the error in this axis.
Kiyak, Gorkem; Balikci, Tevfik; Heydar, Ahmed Majid; Bezer, Murat
2018-02-01
Mechanical study. To compare the pullout strength of different screw designs and augmentation techniques in an osteoporotic bone model. Adequate bone screw pullout strength is a common problem among osteoporotic patients. Various screw designs and augmentation techniques have been developed to improve the biomechanical characteristics of the bone-screw interface. Polyurethane blocks were used to mimic human osteoporotic cancellous bone, and six different screw designs were tested. Five standard and expandable screws without augmentation, eight expandable screws with polymethylmethacrylate (PMMA) or calcium phosphate augmentation, and distal cannulated screws with PMMA and calcium phosphate augmentation were tested. Mechanical tests were performed on 10 unused new screws of each group. Screws with or without augmentation were inserted in a block that was held in a fixture frame, and a longitudinal extraction force was applied to the screw head at a loading rate of 5 mm/min. Maximum load was recorded in a load displacement curve. The peak pullout force of all tested screws with or without augmentation was significantly greater than that of the standard pedicle screw. The greatest pullout force was observed with 40-mm expandable pedicle screws with four fins and PMMA augmentation. Augmented distal cannulated screws did not have a greater peak pullout force than nonaugmented expandable screws. PMMA augmentation provided a greater peak pullout force than calcium phosphate augmentation. Expandable pedicle screws had greater peak pullout forces than standard pedicle screws and had the advantage of augmentation with either PMMA or calcium phosphate cement. Although calcium phosphate cement is biodegradable, osteoconductive, and nonexothermic, PMMA provided a significantly greater peak pullout force. PMMA-augmented expandable 40-mm four-fin pedicle screws had the greatest peak pullout force.
Biomechanical Modeling of Split-leg Squat and Heel Raise on the Hybrid Ultimate Lifting Kit (HULK)
NASA Technical Reports Server (NTRS)
Thompson, William K.; Gallo, Christopher A.; Lewandowski, Beth E.; Jagodnik, Kathleen M.; Humphreys, Brad; Funk, Justin; Funk, Nathan; Dewitt, John K.
2016-01-01
Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and musculoskeletal forces that occur during exercises performed on the prototype devices. Computational models currently use OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from subjects for estimation of muscle and joint loads. Subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the loads on the body. Multiple exercises are performed and evaluated during a test session such as a full squat, single leg squat, heel raise and dead lift. Variables for these exercises include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data from free weights are compared to the resistively loaded exercise device. The focus of this presentation is to summarize the results from the single-leg squat and heel raise exercises performed during three sessions occurring in 2015. Differences in loading configuration, cadence and stance produce differences in kinematics, joint toques and force and muscle forces.
Brandauer, B; Timmann, D; Häusler, A; Hermsdörfer, J
2010-02-01
Various studies showed a clear impairment of cerebellar patients to modulate grip force in anticipation of the loads resulting from movements with a grasped object. This failure corroborated the theory of internal feedforward models in the cerebellum. Cerebellar damage also impairs the coordination of multiple-joint movements and this has been related to deficient prediction and compensation of movement-induced torques. To study the effects of disturbed torque control on feedforward grip-force control, two self-generated load conditions with different demands on torque control-one with movement-induced and the other with isometrically generated load changes-were directly compared in patients with cerebellar degeneration. Furthermore the cerebellum is thought to be more involved in grip-force adjustment to self-generated loads than to externally generated loads. Consequently, an additional condition with externally generated loads was introduced to further test this hypothesis. Analysis of 23 patients with degenerative cerebellar damage revealed clear impairments in predictive feedforward mechanisms in the control of both self-generated load types. Besides feedforward control, the cerebellar damage also affected more reactive responses when the externally generated load destabilized the grip, although this impairment may vary with the type of load as suggested by control experiments. The present findings provide further support that the cerebellum plays a major role in predictive control mechanisms. However, this impact of the cerebellum does not strongly depend on the nature of the load and the specific internal forward model. Contributions to reactive (grip force) control are not negligible, but seem to be dependent on the physical characteristics of an externally generated load.
Good Enough for the X-38, but Made for Commercial Aircraft
NASA Technical Reports Server (NTRS)
2001-01-01
Aircraft Belts, Inc. (ABI), of Kemah, Texas, was looking for a way to ensure the safety of its customers by developing a thorough test system for aviation restraint systems. Previous safety restraint test methods did not properly measure the load distribution placed on the restraints, leaving an unknown factor in meeting safety standards. ABI needed to improve its testing methods and update its test equipment. Through a partnership with NASA's Johnson Space Center Technical Outreach Program, the need was met. With the assistance of NASA engineers, ABI developed a hydraulic test system that provides the consumer with in-depth data about the load placed on the restraint system throughout the duration of the test. The old systems were only able to detect if the belts could sustain the applied force and could not target the problem of providing load data. In comparison, the new system modeled after the one used by NASA, can collect data that tells exactly what went wrong with belts that break and why. Depending on the test requirements of various restraint components, the system can exert a subjected force ranging from merely a few pounds to thousands. The test force can be applied to an entire safety restraint system or to its individual parts, including, stitching, webbing, and hardware.
Holst, Alexandra Ioana; Karl, Matthias; Karolczak, Marek; Goellner, Matthias; Holst, Stefan
2010-01-01
Primary stability and micromovement of orthodontic mini-implants depends on a number of factors and influences clinical success or failure. The purpose of this study was to assess the behavior of orthodontic mini-implants upon initial load application. Orthodontic mini-implants (n = 39) were inserted in the alveolar process of maxillary human cadaver specimens (n = 10). Increasing horizontal forces (up to 2.5 N) were applied, and triggered images were taken in 0.5-N load intervals. Additionally, peri-implant parameters based on micro-CT volume data were recorded. Data were subjected to a two-sided nonparametric Wilcoxon signed rank test, and between-group comparisons were assessed with a Mann-Whitney test (alpha = .05). Initial load application led to displacement beyond elastic recovery of the surrounding bone after force release (P < .001). Cortical thickness and insertion depth, despite numeric differences, did not reveal any statistical differences, while displacement of mini-implants was significantly affected by contact to neighboring teeth (P < .001). Insertion technique and initial load application on orthodontic mini-implants may be regarded as two crucial factors for success, while repeated application of orthodontic force does not seem to increase screw mobility.
2015-12-15
during shipment, protect the threads of the valve stem, and shield the folded tube against abrasion by the threads . A metal valve cap contains a...Test types include force and moment, rolling resistance , steer frequency response, load-deflection curves, characteristics, endurance, and...several on-vehicle tests. 15. SUBJECT TERMS tire test rig force and moment rolling resistance steer frequency response
Lateral pile cap load tests with gravel backfill of limited width.
DOT National Transportation Integrated Search
2010-08-01
This study investigated the increase in passive force produced by compacting a dense granular fill adjacent to a pile cap or abutment wall when the surrounding soil is in a relative loose state. Lateral load tests were performed on a pile cap with th...
Instrument for the application of controlled mechanical loads to tissues in sterile culture
Lintilhac, P.M.; Vesecky, T.B.
1995-04-18
Apparatus and methods are disclosed facilitating the application of forces and measurement of dimensions of a test subject. In one arrangement the test subject is coupled to a forcing frame and controlled forces applied thereto by a series of guideways and sliders. The sliders, which contact the test subject are in force transmitting relation to a forcing frame. Tension, compression and bending forces can be applied to the test subject. Force applied to the test subject is measured and controlled. A dimensional characteristic of the test subject, such as growth, is measured by a linear variable differential transformer. The growth measurement data can be used to control the force applied. Substantially uniaxial stretching is achieved by placing the test subject on an elastic membrane stretched by an arrangement of members securing the elastic member to the forcing frame. 8 figs.
Thiesen, Guilherme; Shimizu, Roberto Hideo; do Valle, Caio Vinicius Martins; do Valle-Corotti, Karyna Martins; Pereira, Jefferson Ricardo; Conti, Paulo Cesar Rodrigues
2013-03-15
To determine the mechanical characteristics of teardrop loop with and without helix fabricated using different metal alloy compositions (stainless steel and beta-titanium), submitted to different intensities of bends preactivation (0° and 40°), and with different cross-sectional dimension of the wire used to build these loops (0.017 x 0.025-in and 0.019 x 0.025-in). Eighty loops used to close spaces were submitted to mechanical tests. The magnitudes of horizontal force, the moment/force ratio, and the load/deflection ratio produced by the specimens were quantified. Loops were submitted to a total activation of 5.0 mm and the values were registered for each 1.0 mm of activation. For statistic data analysis, a analysis of variance was performed and a Tukey's Multiple Comparison test was used as supplement, considering a 5% level of significance. In general, teardrop loops with helix produced lower magnitudes of horizontal force and load/deflection ratio, and higher moment/force ratio than teardrop loops without helix. Among all analyzed variables, metal alloy composition presented greater influence in the horizontal force and in the load/deflection ratio. The moment/force ratio showed to be more influenced by the preactivation of loops for space closure.
Ground reaction forces and knee kinetics during single and repeated badminton lunges.
Lam, Wing Kai; Ding, Rui; Qu, Yi
2017-03-01
Repeated movement (RM) lunge that frequently executed in badminton might be used for footwear evaluation. This study examined the influence of single movement (SM) and RM lunges on the ground reaction forces (GRFs) and knee kinetics during the braking phase of a badminton lunge step. Thirteen male university badminton players performed left-forward lunges in both SM and RM sessions. Force platform and motion capturing system were used to measure GRFs and knee kinetics variables. Paired t-test was performed to determine any significant differences between SM and RM lunges regarding mean and coefficient of variation (CV) in each variable. The kinetics results indicated that compared to SM lunges, the RM lunges had shorter contact time and generated smaller maximum loading rate of impact force, peak knee anterior-posterior force, and peak knee sagittal moment but generated larger peak horizontal resultant forces (Ps < 0.05). Additionally, the RM lunges had lower CV for peak knee medial-lateral and vertical forces (Ps < 0.05). These results suggested that the RM testing protocols had a distinct loading response and adaptation pattern during lunge and that the RM protocol showed higher within-trial reliability, which may be beneficial for the knee joint loading evaluation under different interventions.
A device for testing the dynamic performance of in situ force plates.
East, Rebecca H; Noble, Jonathan J; Arscott, Richard A; Shortland, Adam P
2017-09-01
Force plates are often incorporated into motion capture systems for the calculation of joint kinetic variables and other data. This project aimed to create a system that could be used to check the dynamic performance of force plate in situ. The proposed solution involved the design and development of an eccentrically loaded wheel mounted on a weighted frame. The frame was designed to hold a wheel mounted in two orthogonal positions. The wheel was placed on the force plate and spun. A VICON™ motion analysis system captured the positional data of the markers placed around the rim of the wheel which was used to create a simulated force profile, and the force profile was dependent on spin speed. The root mean square error between the simulated force profile and the force plate measurement was calculated. For nine trials conducted, the root mean square error between the two simultaneous measures of force was calculated. The difference between the force profiles in the x- and y-directions is approximately 2%. The difference in the z-direction was under 0.5%. The eccentrically loaded wheel produced a predictable centripetal force in the plane of the wheel which varied in direction as the wheel was spun and magnitude dependent on the spin speed. There are three important advantages to the eccentrically loaded wheel: (1) it does not rely on force measurements made from other devices, (2) the tests require only 15 min to complete per force plate and (3) the forces exerted on the plate are similar to those of paediatric gait.
Applying an overstress principle in accelerated testing of absorbing mechanisms
NASA Astrophysics Data System (ADS)
Tsyss, V. G.; Sergaeva, M. Yu; Sergaev, A. A.
2018-04-01
The relevance of using overstress test as a forced one to determine the pneumatic absorber lifespan was studied. The obtained results demonstrated that at low load overstress the relative error for the absorber lifespan evaluation is no more than 3%. This means that the test results spread has almost no effect on the lifespan evaluation, and this effect is several times less than that at high load overstress tests. Accelerated testing of absorbers with low load overstress is more acceptable since the relative error for the lifespan evaluation is negligible.
Wimmer, Timea; Huffmann, Anne Mildred Sophie; Eichberger, Marlis; Schmidlin, Patrick R; Stawarczyk, Bogna
2016-06-01
To test and compare the two-body wear rate of three CAD/CAM polymer materials and the influence of specimen geometry, antagonist material and test set-up configuration. Three CAD/CAM polymeric materials were assessed: a thermoplastic polyetheretherketone (PEEK), an experimental nanohybrid composite (COMP) and a PMMA-based material (PMMA). Crown-shaped and flat specimens were prepared from each material. The specimens underwent thermo-mechanical loading (50N, 5/55°C; 600,000 chewing cycles) opposed to human enamel and stainless steel antagonists. Half of the specimens of each group were loaded with a sliding movement of 0.7mm, the remaining half without. Thereby, 24 different test set-ups were investigated (n=12). Wear of the materials and antagonists was evaluated with a match-3D procedure. The topography of all surfaces was examined with scanning electron microscopy (SEM). Data were statistically evaluated with four-/one-way ANOVA followed by Scheffé post hoc test and unpaired t-test (p<0.05). All PEEK specimens showed significantly less material loss than COMP and PMMA specimens when loaded laterally. Within the axial loaded groups this was only true for the flat specimens tested with enamel antagonists. Crown specimens of these groups exhibited lower loss values than flat ones. Lateral force application led mostly to significantly higher material loss than the axial load application. On the antagonist side, no impact of CAD/CAM polymer material, antagonist material, force application and specimen geometry was found. Wear of PEEK was lower than that of the resin-based materials when lateral forces were applied, but showed comparable antagonist wear rates at the same time. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Using grasping tasks to evaluate hand force coordination in children with hemiplegic cerebral palsy.
Mackenzie, Samuel J; Getchell, Nancy; Modlesky, Christopher M; Miller, Freeman; Jaric, Slobodan
2009-08-01
Mackenzie SJ, Getchell N, Modlesky CM, Miller F, Jaric S. Using grasping tasks to evaluate hand force coordination in children with hemiplegic cerebral palsy. To assess force coordination in children with hemiplegic cerebral palsy (CP) using a device that allows for testing both unimanual and bimanual manipulation tasks performed under static and dynamic conditions. Nonequivalent groups design. University research laboratory for motor control. Six children with hemiplegic CP (age, mean +/- SD, 11.6+/-1.8 y) and 6 typically developing controls (11.6+/-1.6 y). Not applicable. Children performed simple lifting and force-matching static ramp tasks by way of both unimanual and bimanual pulling using a device that measures grip force (force acting perpendicularly at the digits-device contact area) and load force (tangential force). Main outcome measures were grip/load force ratios (grip force scaling) and correlation coefficients (force coupling). CP subjects showed significantly higher grip/load force ratios (P<.05) and slightly lower correlation coefficients than the control group, with more pronounced differences for most tasks when using their involved hand. For subjects with CP, switching from unimanual to bimanual conditions did not bring changes in scaling or coupling for the involved hand (P>.05). Compared with healthy children, the impaired hand function in the hemiplegic CP pediatric population could be reflected in excessive grip force that is also decoupled from ongoing changes in load force. Therefore, the bimanual grip load device used in this study could provide a sensitive measure of grip force coordination in CP, although nonmotor deficits should be taken into account when asking children to perform more complex tasks.
NASA Astrophysics Data System (ADS)
Haris, A.; Goh, B. W. Y.; Tay, T. E.; Lee, H. P.; Rammohan, A. V.; Tan, V. B. C.
2018-01-01
The objective of this research is to develop a smart hip protector by incorporating shear thickening fluid (STF) into conventional foam hip protectors. The shear thickening properties of fumed silica particles dispersed in liquid polyethylene glycol (PEG) were determined from rheological tests. Dynamic drop tests, using a 4 kg drop platen at 0.5 m drop height, were conducted to study how STF improves energy absorption as compared to unfilled foam and PEG filled foam. The results show that PEG filled foam reduces the mean peak force transmitted by a further 55% and mean peak displacement by 32.5% as compared to the unfilled foam; the STF filled foam further reduces mean peak force and displacement by 15% and 41% respectively when compared to the PEG filled foam. At a displacement of 22 mm, the STF filled foam absorbs 7.4 times more energy than the PEG filled foam. The results of varying the drop mass and drop height show that the energy absorbed per unit displacement for STF filled foam is always higher than that of PEG filled foam. Finally, the effectiveness of a prototype of hip protector made from 15 mm thick STF filled foam in preventing hip fractures was studied under two different loading conditions: distributed load (plate drop test) and concentrated load (ball drop test). The results of the plate and ball drop tests show that among all hip protectors tested in this study, only the prototype can reduce the mean peak impact force to be lower than the force required to fracture a hip bone (3.1 kN) regardless of the type of loading. Moreover, the peak force of the prototype is about half of this value, suggesting thinner prototype could have been used instead. These findings show that STF is effective in improving the performance of hip protectors.
Orbay, Jorge L; Mijares, Michael R; Berriz, Cecilia G
2016-01-01
When designing a radial head replacement, the magnitude and direction of forces applied across the proximal radio-ulnar joint (PRUJ) and the radiocapitellar joint must be included. These designs often focus on axial loads transmitted to the radial head by the capitellum; however, the radial head also bears a significant transverse force at the PRUJ. Load transmission by the central band of the interosseous ligament induces a force component in a lateral direction perpendicular to the axis of the limb, which is borne by the articular surfaces of the proximal and distal radio-ulnar joints. The objective of this study is to establish the relationship between distally applied axial forces and proximal transverse reaction forces. Five cadaveric, human forearms with intact interosseous membranes were used to measure the magnitude of transversely-directed forces experienced by the radial head during axial loading of the forearm at the lunate fossa. A Mark-10 test stand applied a gradual and continuous axial load on the articular surface of the distal radius. A Mark-10 force gauge measured the resultant transverse force experienced by the radial head in the proximal radioulnar joint. Classical mechanics and static force analysis were applied in order to predict lateral force values that would occur when the interosseous ligament is treated as the major load transmitter between the radius and ulna. Acquired data show that the radial head bears a force in the transverse direction that averages 18% (SD 3.89%) in magnitude of the axial force applied at the wrist. This figure is in close accordance with the predicted value of 22% that was calculated by way of free-body plotting. Physiologic forearm loading results in a clinically significant transverse force component transmitted through the interosseous ligament complex. The existence of transverse forces in the human forearm may explain clinical problems seen after radial head resection and suggest that radial head implants be designed to sustain substantial transverse forces. Basic science study, anatomical. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nanoindentation cannot accurately predict the tensile strength of graphene or other 2D materials
NASA Astrophysics Data System (ADS)
Han, Jihoon; Pugno, Nicola M.; Ryu, Seunghwa
2015-09-01
Due to the difficulty of performing uniaxial tensile testing, the strengths of graphene and its grain boundaries have been measured in experiments by nanoindentation testing. From a series of molecular dynamics simulations, we find that the strength measured in uniaxial simulation and the strength estimated from the nanoindentation fracture force can differ significantly. Fracture in tensile loading occurs simultaneously with the onset of crack nucleation near 5-7 defects, while the graphene sheets often sustain the indentation loads after the crack initiation because the sharply concentrated stress near the tip does not give rise to enough driving force for further crack propagation. Due to the concentrated stress, strength estimation is sensitive to the indenter tip position along the grain boundaries. Also, it approaches the strength of pristine graphene if the tip is located slightly away from the grain boundary line. Our findings reveal the limitations of nanoindentation testing in quantifying the strength of graphene, and show that the loading-mode-specific failure mechanism must be taken into account in designing reliable devices from graphene and other technologically important 2D materials.Due to the difficulty of performing uniaxial tensile testing, the strengths of graphene and its grain boundaries have been measured in experiments by nanoindentation testing. From a series of molecular dynamics simulations, we find that the strength measured in uniaxial simulation and the strength estimated from the nanoindentation fracture force can differ significantly. Fracture in tensile loading occurs simultaneously with the onset of crack nucleation near 5-7 defects, while the graphene sheets often sustain the indentation loads after the crack initiation because the sharply concentrated stress near the tip does not give rise to enough driving force for further crack propagation. Due to the concentrated stress, strength estimation is sensitive to the indenter tip position along the grain boundaries. Also, it approaches the strength of pristine graphene if the tip is located slightly away from the grain boundary line. Our findings reveal the limitations of nanoindentation testing in quantifying the strength of graphene, and show that the loading-mode-specific failure mechanism must be taken into account in designing reliable devices from graphene and other technologically important 2D materials. Electronic ESI (ESI) available: Modelling of polycrystalline graphene, verification of loading speed, biaxial tensile simulations, comparison of stress distribution, size effects of indenter radius, force-deflection curves, and stability analysis of crack propagation. See DOI: 10.1039/c5nr04134a
Tactility as a function of grasp force: Effects of glove, orientation, pressure, load, and handle
NASA Technical Reports Server (NTRS)
Bishu, Ram R.; Bronkema, Lisa A.; Garcia, Dishayne; Klute, Glenn; Rajulu, Sudhakar
1994-01-01
One of the reasons for reduction in performance when gloves are donned is the lack of tactile sensitivity. It was argued that grasping force for a weight to be grasped will be a function of the weight to be lifted and the hand conditions. It was further reasoned that the differences in grasping force for various hand conditions will be a correlate of the tactile sensitivity of the corresponding hand conditions. The objective of this experiment, therefore, was to determine the effects of glove type, pressure, and weight of load on the initial grasping force and stable grasping force. It was hypothesized that when a person grasps an object, he/she grasps very firmly initially and then releases the grasp slightly after realizing what force is needed to maintain a steady grasp. This would seem to be particularly true when a person is wearing a glove and has lost some tactile sensitivity and force feedback during the grasp. Therefore, the ratio of initial force and stable force and the stable force itself would represent the amount of tactile adjustment that is made when picking up an object, and this adjustment should vary with the use of gloves. A dynamometer was fabricated to measure the grasping force; the tests were performed inside a glove box. Four female and four male subjects participated in the study, which measured the effects of four variables: load effect, gender effect, glove type, and pressure variance. The only significant effects on the peak and stable force were caused by gender and the weight of the load lifted. Neither gloves nor pressure altered these forces when compared to a bare-handed condition, as was suspected before the test. It is possible that gloves facilitate in holding due to coefficient of friction while they deter in peak grasp strength.
Brasileiro, Bernardo Ferreira; Grotta-Grempel, Rafael; Ambrosano, Glaucia Maria Bovi; Passeri, Luis Augusto
2012-04-01
The aim of this study was to evaluate the biomechanical features of 3 different methods of rigid internal fixation for sagittal split ramus osteotomy for mandibular setback in vitro. Sixty polyurethane replicas of human hemimandibles were used as substrates, simulating a 5-mm setback surgery by sagittal split ramus osteotomy. These replicas served to reproduce 3 different techniques of fixation, including 1) a 4-hole plate and 4 monocortical screws (miniplate group), 2) a 4-hole plate and 4 monocortical screws with 1 additional bicortical positional screw (hybrid group), and 3) 3 bicortical positional screws in a traditional inverted-L pattern (inverted-L group). After fixation, hemimandibles were adapted to a test support and subjected to lateral torsional forces on the buccal molar surface and vertical cantilever loading on the incisal edge with an Instron 4411 mechanical testing unit. Peak loadings at 1, 3, 5, and 10 mm of displacement were recorded. Means and standard deviation were analyzed using analysis of variance and Tukey test with a 5% level of significance, and failures during tests were recorded. Regardless of the amount of displacement and direction of force, the miniplate group always showed the lowest load peak scores (P < .01) compared with the other fixation techniques. The hybrid group demonstrated behavior similar to the inverted-L group in lateral and vertical forces at any loading displacement (P > .05). Molar load tests required more force than incisal load tests to promote the same displacement in the mandibular setback model (P < .05). For mandibular setback surgery of 5 mm, this study concluded that the fixation technique based on the miniplate group was significantly less rigid than the fixation observed in the hybrid and inverted-L groups. Mechanically, adding 1 bicortical positional screw in the retromolar region in the miniplate technique may achieve the same stabilization offered by inverted-L fixation for mandibular sagittal split ramus osteotomy setback surgery in vitro. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Effect of added mass on treadmill performance and pulmonary function.
Walker, Rachel E; Swain, David P; Ringleb, Stacie I; Colberg, Sheri R
2015-04-01
Military personnel engage in strenuous physical activity and load carriage. This study evaluated the role of body mass and of added mass on aerobic performance (uphill treadmill exercise) and pulmonary function. Performance on a traditional unloaded run test (4.8 km) was compared with performance on loaded tasks. Subjects performed an outdoor 4.8-km run and 4 maximal treadmill tests wearing loads of 0, 10, 20, and 30 kg. Subjects' pulmonary function (forced expired volume in 1 second [FEV1], forced vital capacity [FVC], and maximal voluntary ventilation [MVV]) was tested with each load, and peak values of heart rate, oxygen consumption ((Equation is included in full-text article.)), ventilation (VE), and respiratory exchange ratio (RER) were measured during each treadmill test. Performance on the 4.8-km run was correlated with treadmill performance, measured as time to exhaustion (TTE), with the strength of the correlation decreasing with load (r = 0.87 for 0 kg to 0.76 for 30 kg). Body mass was not correlated with TTE, other than among men with the 30-kg load (r = 0.48). During treadmill exercise, all peak responses other than RER decreased with load. Pulmonary function measures (FEV1, FVC, and MVV) decreased with load. Body mass was poorly correlated with treadmill performance, but added mass decreased performance. The decreased performance may be in part because of decreased pulmonary function. Unloaded 4.8-km run performance was correlated to unloaded uphill treadmill performance, but less so as load increased. Therefore, traditional run tests may not be an effective means of evaluating aerobic performance for military field operations.
Validity and reliability of a controlled pneumatic resistance exercise device.
Paulus, David C; Reynolds, Michael C; Schilling, Brian K
2008-01-01
During the concentric portion of the free-weight squat exercise, accelerating the mass from rest results in a fluctuation in ground reaction force. It is characterized by an initial period of force greater than the load while accelerating from rest followed by a period of force lower than the external load during negative acceleration. During the deceleration phase, less force is exerted and muscles are loaded sub-optimally. Thus, using a reduced inertia form of resistance such as pneumatics has the capability to minimize these inertial effects as well as control the force in real time to maximize the force exerted over the exercise cycle. To improve the system response of a preliminary design, a squat device was designed with a reduced mass barbell and two smaller pneumatic cylinders. The resistance was controlled by regulating cylinder pressure such that it is capable of adjusting force within a repetition to maximize force exerted during the lift. The resistance force production of the machine was statically validated with the input voltage and output force R2 =0.9997 for at four increments of the range of motion, and the intraclass correlation coefficient (ICC) between trials at the different heights equaled 0.999. The slew rate at three forces was 749.3 N/s +/- 252.3. Dynamic human subject testing showed the desired input force correlated with average and peak ground reaction force with R2 = 0.9981 and R2 = 0.9315, respectively. The ICC between desired force and average and peak ground reaction force was 0.963. Thus, the system is able to deliver constant levels of static and dynamic force with validity and reliability. Future work will be required to develop the control strategy required for real-time control, and performance testing is required to determine its efficacy.
Experimental studies of breaking of elastic tired wheel under variable normal load
NASA Astrophysics Data System (ADS)
Fedotov, A. I.; Zedgenizov, V. G.; Ovchinnikova, N. I.
2017-10-01
The paper analyzes the braking of a vehicle wheel subjected to disturbances of normal load variations. Experimental tests and methods for developing test modes as sinusoidal force disturbances of the normal wheel load were used. Measuring methods for digital and analogue signals were used as well. Stabilization of vehicle wheel braking subjected to disturbances of normal load variations is a topical issue. The paper suggests a method for analyzing wheel braking processes under disturbances of normal load variations. A method to control wheel baking processes subjected to disturbances of normal load variations was developed.
Dynamic Loads Generation for Multi-Point Vibration Excitation Problems
NASA Technical Reports Server (NTRS)
Shen, Lawrence
2011-01-01
A random-force method has been developed to predict dynamic loads produced by rocket-engine random vibrations for new rocket-engine designs. The method develops random forces at multiple excitation points based on random vibration environments scaled from accelerometer data obtained during hot-fire tests of existing rocket engines. This random-force method applies random forces to the model and creates expected dynamic response in a manner that simulates the way the operating engine applies self-generated random vibration forces (random pressure acting on an area) with the resulting responses that we measure with accelerometers. This innovation includes the methodology (implementation sequence), the computer code, two methods to generate the random-force vibration spectra, and two methods to reduce some of the inherent conservatism in the dynamic loads. This methodology would be implemented to generate the random-force spectra at excitation nodes without requiring the use of artificial boundary conditions in a finite element model. More accurate random dynamic loads than those predicted by current industry methods can then be generated using the random force spectra. The scaling method used to develop the initial power spectral density (PSD) environments for deriving the random forces for the rocket engine case is based on the Barrett Criteria developed at Marshall Space Flight Center in 1963. This invention approach can be applied in the aerospace, automotive, and other industries to obtain reliable dynamic loads and responses from a finite element model for any structure subject to multipoint random vibration excitations.
Sensitivity of Space Launch System Buffet Forcing Functions to Buffet Mitigation Options
NASA Technical Reports Server (NTRS)
Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.
2016-01-01
Time-varying buffet forcing functions arise from unsteady aerodynamic pressures and are one of many load environments, which contribute to the overall loading condition of a launch vehicle during ascent through the atmosphere. The buffet environment is typically highest at transonic conditions and can excite the vehicle dynamic modes of vibration. The vehicle response to these buffet forcing functions may cause high structural bending moments and vibratory environments, which can exceed the capabilities of the structure, or of vehicle components such as payloads and avionics. Vehicle configurations, protuberances, payload fairings, and large changes in stage diameter can trigger undesirable buffet environments. The Space Launch System (SLS) multi-body configuration and its structural dynamic characteristics presented challenges to the load cycle design process with respect to buffet-induced loads and responses. An initial wind-tunnel test of a 3-percent scale SLS rigid buffet model was conducted in 2012 and revealed high buffet environments behind the booster forward attachment protuberance, which contributed to reduced vehicle structural margins. Six buffet mitigation options were explored to alleviate the high buffet environments including modified booster nose cones and fences/strakes on the booster and core. These studies led to a second buffet test program that was conducted in 2014 to assess the ability of the buffet mitigation options to reduce buffet environments on the vehicle. This paper will present comparisons of buffet forcing functions from each of the buffet mitigation options tested, with a focus on sectional forcing function rms levels within regions of the vehicle prone to high buffet environments.
Measurement of Vehicle-Bridge-Interaction force using dynamic tire pressure monitoring
NASA Astrophysics Data System (ADS)
Chen, Zhao; Xie, Zhipeng; Zhang, Jian
2018-05-01
The Vehicle-Bridge-Interaction (VBI) force, i.e., the normal contact force of a tire, is a key component in the VBI mechanism. The VBI force measurement can facilitate experimental studies of the VBI as well as input-output bridge structural identification. This paper introduces an innovative method for calculating the interaction force by using dynamic tire pressure monitoring. The core idea of the proposed method combines the ideal gas law and a basic force model to build a relationship between the tire pressure and the VBI force. Then, unknown model parameters are identified by the Extended Kalman Filter using calibration data. A signal filter based on the wavelet analysis is applied to preprocess the effect that the tire rotation has on the pressure data. Two laboratory tests were conducted to check the proposed method's validity. The effects of different road irregularities, loads and forward velocities were studied. Under the current experiment setting, the proposed method was robust to different road irregularities, and the increase in load and velocity benefited the performance of the proposed method. A high-speed test further supported the use of this method in rapid bridge tests. Limitations of the derived theories and experiment were also discussed.
Zivkovic, Milena Z; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan
2017-07-01
A range of force (F) and velocity (V) data obtained from functional movement tasks (e.g., running, jumping, throwing, lifting, cycling) performed under variety of external loads have typically revealed strong and approximately linear F-V relationships. The regression model parameters reveal the maximum F (F-intercept), V (V-intercept), and power (P) producing capacities of the tested muscles. The aim of the present study was to evaluate the level of agreement between the routinely used "multiple-load model" and a simple "two-load model" based on direct assessment of the F-V relationship from only 2 external loads applied. Twelve participants were tested on the maximum performance vertical jumps, cycling, bench press throws, and bench pull performed against a variety of different loads. All 4 tested tasks revealed both exceptionally strong relationships between the parameters of the 2 models (median R = 0.98) and a lack of meaningful differences between their magnitudes (fixed bias below 3.4%). Therefore, addition of another load to the standard tests of various functional tasks typically conducted under a single set of mechanical conditions could allow for the assessment of the muscle mechanical properties such as the muscle F, V, and P producing capacities.
A Mechatronic Loading Device to Stimulate Bone Growth via a Human Knee.
Prabhala, Sai Krishna; Chien, Stanley; Yokota, Hiroki; Anwar, Sohel
2016-09-29
This paper presents the design of an innovative device that applies dynamic mechanical load to human knee joints. Dynamic loading is employed by applying cyclic and periodic force on a target area. The repeated force loading was considered to be an effective modality for repair and rehabilitation of long bones that are subject to ailments like fractures, osteoporosis, osteoarthritis, etc. The proposed device design builds on the knowledge gained in previous animal and mechanical studies. It employs a modified slider-crank linkage mechanism actuated by a brushless Direct Current (DC) motor and provides uniform and cyclic force. The functionality of the device was simulated in a software environment and the structural integrity was analyzed using a finite element method for the prototype construction. The device is controlled by a microcontroller that is programmed to provide the desired loading force at a predetermined frequency and for a specific duration. The device was successfully tested in various experiments for its usability and full functionality. The results reveal that the device works according to the requirements of force magnitude and operational frequency. This device is considered ready to be used for a clinical study to examine whether controlled knee-loading could be an effective regimen for treating the stated bone-related ailments.
A Mechatronic Loading Device to Stimulate Bone Growth via a Human Knee
Prabhala, Sai Krishna; Chien, Stanley; Yokota, Hiroki; Anwar, Sohel
2016-01-01
This paper presents the design of an innovative device that applies dynamic mechanical load to human knee joints. Dynamic loading is employed by applying cyclic and periodic force on a target area. The repeated force loading was considered to be an effective modality for repair and rehabilitation of long bones that are subject to ailments like fractures, osteoporosis, osteoarthritis, etc. The proposed device design builds on the knowledge gained in previous animal and mechanical studies. It employs a modified slider-crank linkage mechanism actuated by a brushless Direct Current (DC) motor and provides uniform and cyclic force. The functionality of the device was simulated in a software environment and the structural integrity was analyzed using a finite element method for the prototype construction. The device is controlled by a microcontroller that is programmed to provide the desired loading force at a predetermined frequency and for a specific duration. The device was successfully tested in various experiments for its usability and full functionality. The results reveal that the device works according to the requirements of force magnitude and operational frequency. This device is considered ready to be used for a clinical study to examine whether controlled knee-loading could be an effective regimen for treating the stated bone-related ailments. PMID:27690057
Connor, David E; Shamieh, Khader Samer; Ogden, Alan L; Mukherjee, Debi P; Sin, Anthony; Nanda, Anil
2012-12-01
Dynamic anterior cervical plating is well established as a means of enhancing graft loading and subsequent arthrodesis. Current concerns center on the degree of adjacent-level stress induced by these systems. The aim of this study was to evaluate and compare the load transferred to adjacent levels for single-level anterior cervical discectomy and fusion utilizing rigid compared to dynamic anterior plating systems. Nine cadaveric adult human cervical spine specimens were subjected to range-of-motion testing prior to and following C5-C6 anterior cervical discectomy and fusion procedures. Interbody grafting was performed with human fibula tissue. Nondestructive biomechanical testing included flexion/extension and lateral bending loading modes. A constant displacement of 5mm was applied in each direction and the applied load was measured in newtons (N). Specimens were tested in the following order: intact, following discectomy, after rigid plating, then after dynamic plating. Adjacent level (C4-C5 [L(S)] and C6-C7 [L(I)]) compressive forces were measured using low profile load cells inserted into each disc space. The measured load values for plating systems were then normalized using values measured for the intact specimens. Mean loads transferred to L(S) and L(I) during forced flexion in specimens with rigid plating were 23.47 N and 8.76 N, respectively; while the corresponding values in specimens with dynamic plating were 18.55 N and 1.03 N, respectively. Dynamic plating yielded no significant change at L(I) and a 21.0% decrease in load at L(S) when compared with rigid plating, although the difference was not significant. The observed trend suggests that dynamic plating may diminish superior adjacent level compressive stresses. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effects of a New Cooling Technology on Physical Performance in US Air Force Military Personnel.
O'Hara, Reginald; Vojta, Christopher; Henry, Amy; Caldwell, Lydia; Wade, Molly; Swanton, Stacie; Linderman, Jon K; Ordway, Jason
2016-01-01
Heat-related illness is a critical factor for military personnel operating in hyperthermic environments. Heat illness can alter cognitive and physical performance during sustained operations missions. Therefore, the primary purpose of this investigation was to determine the effects of a novel cooling shirt on core body temperature in highly trained US Air Force personnel. Twelve trained (at least 80th percentile for aerobic fitness according to the American College of Sports Medicine, at least 90% on the US Air Force fitness test), male Air Force participants (mean values: age, 25 ± 2.8 years; height, 178 ± 7.9cm; body weight 78 ± 9.6kg; maximal oxygen uptake, 57 ± 1.9mL/kg/ min; and body fat, 10% ± 0.03%) completed this study. Subjects performed a 70-minute weighted treadmill walking test and 10-minute, 22.7kg sandbag shuttle test under two conditions: (1) "loaded" (shirt with cooling inserts) and (2) "unloaded" (shirt with no cooling inserts). Core body temperature, exercise heart rate, capillary blood lactate, and ratings of perceived exertion were recorded. Core body temperature was lower (ρ = .001) during the 70-minute treadmill walking test in the loaded condition. Peak core temperature during the 70-minute walking test was also significantly lower (ρ = .038) in the loaded condition. This lightweight (471g), passive cooling technology offers multiple hours of sustained cooling and reduced core and peak body temperature during a 70-minute, 22.7kg weighted-vest walking test. 2016.
Hsu, Hsiu-Yun; Kuo, Li-Chieh; Chiu, Haw-Yen; Jou, I-Ming; Su, Fong-Chin
2009-11-01
Patients with median nerve compression at the carpal tunnel often have poor sensory afferents. Without adequate sensory modulation control, these patients frequently exhibit clumsy performance and excessive force output in the affected hand. We analyzed precision grip function after the sensory recovery of patients with carpal tunnel syndrome (CTS) who underwent carpal tunnel release (CTR). Thirteen CTS patients were evaluated using a custom-designed pinch device and conventional sensory tools before and after CTR to measure sensibility, maximum pinch strength, and anticipated pinch force adjustments to movement-induced load fluctuations in a pinch-holding-up activity. Based on these tests, five force-related parameters and sensory measurements were used to determine improvements in pinch performance after sensory recovery. The force ratio between the exerted pinch force and maximum load force of the lifting object was used to determine pinch force coordination and to prove that CTR enabled precision motor output. The magnitude of peak pinch force indicated an economic force output during manipulations following CTR. The peak pinch force, force ratio, and percentage of maximum pinch force also demonstrated a moderate correlation with the Semmes-Weinstein test. Analysis of these tests revealed that improved sensory function helped restore patients' performance in precise pinch force control evaluations. These results suggest that sensory information plays an important role in adjusting balanced force output in dexterous manipulation. (c) 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Squat Biomechanical Modeling Results from Exercising on the Hybrid Ultimate Lifting Kit
NASA Technical Reports Server (NTRS)
Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen M.
2016-01-01
Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. The computational models currently under development utilize the OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from test subjects for estimation of muscle and joint loads. The subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. Test variables include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data is also obtained using free weights for a comparison to the resistively loaded exercise device. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. The focus of this presentation is to summarize the results from the full squat exercises across the different test variables.
NCAP test improvements with pretensioners and load limiters.
Walz, Marie
2004-03-01
New Car Assessment Program (NCAP) test scores, measured by the United States Department of Transportation's (USDOT) National Highway Traffic Safety Administration (NHTSA), were analyzed in order to assess the benefits of equipping safety belt systems with pretensioners and load limiters. Safety belt pretensioners retract the safety belt almost instantly in a crash to remove excess slack. They tie the occupant to the vehicle's deceleration early during the crash, reducing the peak load experienced by the occupant. Load limiters and other energy management systems allow safety belts to yield in a crash, preventing the shoulder belt from directing too much energy on the chest of the occupant. In NCAP tests, vehicles are crashed into a fixed barrier at 35 mph. During the test, instruments measure the accelerations of the head and chest, as well as the force on the legs of anthropomorphic dummies secured in the vehicle by safety belts. NCAP data from model year 1998 through 2001 cars and light trucks were examined. The combination of pretensioners and load limiters is estimated to reduce Head Injury Criterion (HIC) by 232, chest acceleration by an average of 6.6 g's, and chest deflection (displacement) by 10.6 mm, for drivers and right front passengers. The unit used to measure chest acceleration (g) is defined as a unit of force equal to the force exerted by gravity. All of these reductions are statistically significant. When looked at individually, pretensioners are more effective in reducing HIC scores for both drivers and right front passengers, as well as chest acceleration and chest deflection scores for drivers. Load limiters show greater reductions in chest acceleration and chest deflection scores for right front passengers. By contrast, in make-models for which neither load limiters nor pretensioners have been added, there is little change during 1998 to 2001 in HIC, chest acceleration, or chest deflection values in NCAP tests.
Goto, Takaharu; Nagao, Kan; Ishida, Yuichi; Tomotake, Yoritoki; Ichikawa, Tetsuo
2015-02-01
This in vitro study investigated the effect of attachment installation conditions on the load transfer and denture movements of implant overdentures, and aims to clarify the differences among the three types of attachments, namely ball, Locator, and magnet attachments. Three types of attachments, namely ball, Locator, and magnetic attachments were used. An acrylic resin mandibular edentulous model with two implants placed in the bilateral canine regions and removable overdenture were prepared. The two implants and bilateral molar ridges were connected to three-axis load-cell transducers, and a universal testing machine was used to apply a 50 N vertical force to each site of the occlusal table in the first molar region. The denture movement was measured using a G(2) motion sensor. Three installation conditions, namely, the application of 0, 50, and 100 N loads were used to install each attachment on the denture base. The load transfer and denture movement were then evaluated. The resultant force decreased with increasing installation load for all attachments. In particular, the resultant force on implants on the loading side of the Locator attachment significantly decreased when the installation load was increased from 0 to 50 N, and that for magnetic attachment significantly decreased when the installation load was increased from 50 to 100 N. For the residual ridges on the loading side, the direction of the forces for all attachments changed to downward with increasing installation load. Furthermore, the yaw Euler angle increased with increasing installation load for the magnetic attachment. Subject to the limitations of this study, the use of any installation load greater than 0 N is recommended for the installation of ball and Locator attachments on a denture base. Regarding magnetic attachments, our results also recommend installation on a denture base using any installation load greater than 0 N, and suggest that the resultant force acting on the implant can be decreased by increasing the installation load; however, a large installation load of 100 N should be avoided when installing the attachment on the denture base to avoid increasing the denture movement. © 2014 by the American College of Prosthodontists.
Flight Force Measurements on a Spacecraft to Launch Vehicle Interface
NASA Astrophysics Data System (ADS)
Kaufman, Daniel S.; Gordon, Scott A.
2012-07-01
For several years we had wanted to measure interface forces between a launch vehicle and the Payload. Finally in July 2006 a proposal was made and funded to evaluate the use of flight force measurements (FFM) to improve the loads process of a Spacecraft in its design and test cycle. A NASA/Industry team was formed, the core Team consisted of 20 people. The proposal identified two questions that this assessment would attempt to address by obtaining the flight forces. These questions were: 1) Is flight correlation and reconstruction with acceleration methods sufficient? 2) How much can the loads and therefore the design and qualification be reduced by having force measurements? The objective was to predict the six interface driving forces between the Spacecraft and the Launch Vehicle throughout the boost phase. Then these forces would be compared with reconstructed loads analyses for evaluation in an attempt to answer them. The paper will present the development of a strain based force measurement system and also an acceleration method, actual flight results, post flight evaluations and lessons learned.
Determination of Elevator and Rudder Hinge Forces on the Learjet Model 55 Aircraft
NASA Technical Reports Server (NTRS)
Boroughs, R. R.; Padmanabhan, V.
1983-01-01
The empennage structure on the Learjet 55 aircraft was quite similar to the empennage structure on earlier Learjet models. However, due to an important structural change in the vertical fin along with the new loads environment on the 50 series aircraft, a structural test was required on the vertical fin, but the horizontal tail was substantiated by a comparative analysis with previous tests. NASTRAN analysis was used to investigate empennage deflections, stress levels, and control surface hinge forces. The hinge force calculations were made with the control surfaces in the deflected as well as undeflected configurations. A skin panel buckling analysis was also performed, and the non-linear effects of buckling were simulated in the NASTRAN model to more accurately define internal loads and stress levels. Comparisons were then made between the Model 55 and the Model 35/36 stresses and internal forces to determine which components were qualified by previous tests. Some of the methods and techniques used in this analysis are described.
Viking Mars lander 1975 dynamic test model/orbiter developmental test model forced vibration test
NASA Technical Reports Server (NTRS)
Fortenberry, J.; Brownlee, G. R.
1974-01-01
The Viking Mars Lander 1975 dynamic test model and orbiter developmental test model were subjected to forced vibration sine tests. Flight acceptance (FA) and type approval (TA) test levels were applied to the spacecraft structure in a longitudinal test configuration using a 133,440-N (30,000-lb) force shaker. Testing in the two lateral axes (X, Y) was performed at lower levels using four 667-N (150-lb) force shakers. Forced vibration qualification (TA) test levels were successfully imposed on the spacecraft at frequencies down to 10 Hz. Measured responses showed the same character as analytical predictions, and correlation was reasonably good. Because of control system test tolerances, orbiter primary structure generally did not reach the design load limits attained in earlier static testing. A post-test examination of critical orbiter structure disclosed no apparent damage to the structure as a result of the test environment.
Ramoutar, Darryl N; Crosnier, Emilie A; Shivji, Faiz; Miles, Anthony W; Gill, Harinderjit S
2017-05-01
Most femoral components used now for total hip arthroplasty are modular, requiring a strong connection at assembly. The aim of this study was to assess the effect of assembly force on the strength of head-trunnion interface and to measure the initial displacement of the head on the trunnion with different assembly forces. Three assembly load levels were assessed (A: 2 kN, B: 4 kN, C: 6 kN) with 4 implants in each group. The stems were mounted in a custom rig and the respective assembly loads were applied to the head at a constant rate of 0.05 kN/s (ISO7260-10:2003). Load levels were recorded during assembly. Head displacement was measured with a laser sensor. The disassembly force was determined by a standard pull-off test. The maximum head displacement on the trunnion was significantly different between the 2 kN group and the other 2 groups (4 kN, 6 kN, P = .029), but not between the 4 kN and 6 kN groups (P = .89). The disassembly forces between the 3 groups were significantly different (mean ± standard deviation, A: 1316 ± 223 kN; B: 2224 ± 151 kN; C: 3965 ± 344 kN; P = .007), with increasing assembly load leading to a higher pull-off force. For the 4 kN and 6 kN groups, a first peak of approximately 2.5 kN was observed on the load recordings during assembly before the required assembly load was eventually reached corresponding to sudden increase in head displacement to approximately 150 μm. An assembly force of 2 kN may be too low to overcome the frictional forces needed to engage the head and achieve maximum displacement on the trunnion and thus an assembly load of greater than 2.5 kN is recommended. Copyright © 2016 Elsevier Inc. All rights reserved.
Crevier-Denoix, N; Pourcelot, P; Ravary, B; Robin, D; Falala, S; Uzel, S; Grison, A C; Valette, J P; Denoix, J M; Chateau, H
2009-03-01
Although track surfaces are a risk factor of tendon injuries, their effects on tendon loading at high speed are unknown. Using a noninvasive ultrasonic technique, it is now possible to evaluate the forces in the superficial digital flexor tendon (SDFT) in exercise conditions. To compare the effects of an all-weather waxed track (W) vs. a crushed sand track (S), on the SDFT loading in the trotter horse at high speed. Two trotter horses were equipped with the ultrasonic device (1 MHz ultrasonic probe, fixed on the palmar metacarpal area of the right forelimb). For each trial, data acquisition was made at 400 Hz and 10 consecutive strides were analysed. In each session, the 2 track surfaces were tested in a straight line. The speed was imposed at 10 m/s and recorded. The right forelimb was also equipped with a dynamometric horseshoe and skin markers. The horse was filmed with a high-speed camera (600 Hz); all recordings were synchronised. Statistical differences were tested using the GLM procedure (SAS; P < 0.05). Maximal tendon force was significantly lower on W compared with S. In addition to maximal force peaks around mid-stance, earlier peaks were observed, more pronounced on S than on W, at about 13% (horse 2) and 30% (both horses) of the stance phase. Comparison with kinematic data revealed that these early peaks were accompanied by plateaux in the fetlock angle-time chart. For high tendon forces, the tendon maximal loading rate was significantly lower on W than on S. CONCLUSIONS AND POTENTIAL CLINICAL RELEVANCE: The all-weather waxed track appears to induce a lesser and more gradual SDFT loading than crushed sand. The SDFT loading pattern at high speed trot suggests proximal interphalangeal joint movements during limb loading.
Measurement of external forces and torques on a large pointing system
NASA Technical Reports Server (NTRS)
Morenus, R. C.
1980-01-01
Methods of measuring external forces and torques are discussed, in general and as applied to the Large Pointing System wind tunnel tests. The LPS tests were in two phases. The first test was a preliminary test of three models representing coelostat, heliostat, and on-gimbal telescope configurations. The second test explored the coelostat configuration in more detail. The second test used a different setup for measuring external loads. Some results are given from both tests.
Improving the Response of a Load Cell by Using Optimal Filtering
Hernandez, Wilmar
2006-01-01
Load cells are transducers used to measure force or weight. Despite the fact that there is a wide variety of load cells, most of these transducers that are used in the weighing industry are based on strain gauges. In this paper, an s-beam load cell based on strain gauges was suitably assembled to the mechanical structure of several seats of a bus under performance tests and used to measure the resistance of their mechanical structure to tension forces applied horizontally to the seats being tested. The load cell was buried in a broad-band noise background where the unwanted information and the relevant signal sometimes share a very similar frequency spectrum and its performance was improved by using a recursive least-squares (RLS) lattice algorithm. The experimental results are satisfactory and a significant improvement in the signal-to-noise ratio at the system output of 27 dB was achieved, which is a good performance factor for judging the quality of the system.
Dynamic Calibration of the NASA Ames Rotor Test Apparatus Steady/Dynamic Rotor Balance
NASA Technical Reports Server (NTRS)
Peterson, Randall L.; vanAken, Johannes M.
1996-01-01
The NASA Ames Rotor Test Apparatus was modified to include a Steady/Dynamic Rotor Balance. The dynamic calibration procedures and configurations are discussed. Random excitation was applied at the rotor hub, and vibratory force and moment responses were measured on the steady/dynamic rotor balance. Transfer functions were computed using the load cell data and the vibratory force and moment responses from the rotor balance. Calibration results showing the influence of frequency bandwidth, hub mass, rotor RPM, thrust preload, and dynamic loads through the stationary push rods are presented and discussed.
NASA Astrophysics Data System (ADS)
Kuang, Yang; Daniels, Alice; Zhu, Meiling
2017-08-01
This paper presents a sandwiched piezoelectric transducer (SPT) for energy harvesting in large force environments with increased load capacity and electric power output. The SPT uses (1) flex end-caps to amplify the applied load force so as to increase its power output and (2) a sandwiched piezoelectric-substrate structure to reduce the stress concentration in the piezoelectric material so as to increase the load capacity. A coupled piezoelectric-circuit finite element model (CPC-FEM) was developed, which is able to directly predict the electric power output of the SPT connected to a load resistor. The CPC-FEM was used to study the effects of various parameters of the SPT on the performance to obtain an optimal design. These parameters included the substrate thickness, the end-cap material and thickness, the electrode length, the joint length, the end-cap internal angle and the PZT thickness. A prototype with optimised parameters was tested on a loading machine, and the experimental results were compared with simulation. A good agreement was observed between simulation and experiment. When subjected to a 1 kN 2 Hz sinusoidal force applied by the loading machine, the SPT produced an average power of 4.68 mW. The application of the SPT as a footwear energy harvester was demonstrated by fitting the SPT into a boot and performing the tests on a treadmill, and the SPT generated an average power of 2.5 mW at a walking speed of 4.8 km h-1.
Effect of low-speed impact damage on the buckling properties of E-glass/epoxy laminates
NASA Astrophysics Data System (ADS)
Yapici, A.; Metin, M.
2009-11-01
The postimpact buck ling loads of E-glass/epoxy laminates have been measured. Composite samples with the stacking sequence [+45/-45/90/0]2s were subjected to low-speed impact loadings at various energy levels. The tests were conducted on a specially developed vertical drop-weight testing machine. The main impact parameters, such as the peak load, absorbed energy, deflection at the peak load, and damage area, were evaluated and com pared. The damaged specimens were subjected to compressive axial forces, and their buckling loads were determined. The relation between the level of impact energy and buck ling loads is investigated.
Experimental Approach on the Behavior of Composite Laminated Shell under Transverse Impact Loading
NASA Astrophysics Data System (ADS)
Kim, Y. N.; Im, K. H.; Lee, K. S.; Cho, Y. J.; Kim, S. H.; Yang, I. Y.
2005-04-01
Composites are to be considered for many structural applications structural weight. These materials have high strength-to-weight and stiffness-to-weight ratios. However, they are susceptible to impact loading because they are laminar systems with weak interfaces. Matrix cracking and delamination are the most common damage mechanisms of low velocity impact and are dependent on each other. This paper is to study the behavior of composite shell under transverse impact loading. In this study, carbon-epoxy composite laminates with various curvatures was used. Low velocity impact tests were performed using a drop weight testing machine. The 100mm×100mm shells were clamped in order to produce a central circular area (φ=80mm). An hemispherical impactor (m=0.1kg and φ=10mm) was used and the tests were done with velocities ranging from 2.8 to 4.8 m/s. The real curve force/time was registered in order to obtain the maximum contact force and contact time. And then, we know that contact force and delamination area of flat-plate is higher than cylindrical shell panel in the same kinetic energy level, and flat-plate is easily penetrated than cylindrical shell panel. And contact force, deflection and delamination area decrease as the curvature increase.
Role of optimization criterion in static asymmetric analysis of lumbar spine load.
Daniel, Matej
2011-10-01
A common method for load estimation in biomechanics is the inverse dynamics optimization, where the muscle activation pattern is found by minimizing or maximizing the optimization criterion. It has been shown that various optimization criteria predict remarkably similar muscle activation pattern and intra-articular contact forces during leg motion. The aim of this paper is to study the effect of the choice of optimization criterion on L4/L5 loading during static asymmetric loading. Upright standing with weight in one stretched arm was taken as a representative position. Musculoskeletal model of lumbar spine model was created from CT images of Visible Human Project. Several criteria were tested based on the minimization of muscle forces, muscle stresses, and spinal load. All criteria provide the same level of lumbar spine loading (difference is below 25%), except the criterion of minimum lumbar shear force which predicts unrealistically high spinal load and should not be considered further. Estimated spinal load and predicted muscle force activation pattern are in accordance with the intradiscal pressure measurements and EMG measurements. The L4/L5 spine loads 1312 N, 1674 N, and 1993 N were predicted for mass of weight in hand 2, 5, and 8 kg, respectively using criterion of mininum muscle stress cubed. As the optimization criteria do not considerably affect the spinal load, their choice is not critical in further clinical or ergonomic studies and computationally simpler criterion can be used.
Force-velocity property of leg muscles in individuals of different level of physical fitness
Cuk, Ivan; Mirkov, Dragan; Nedeljkovic, Aleksandar; Kukolj, Milos; Ugarkovic, Dusan; Jaric, Slobodan
2016-01-01
The present study explored the method of testing muscle mechanical properties through the linear force-velocity (F–V) relationships obtained from loaded vertical jumps. Specifically, we hypothesised that the F-V relationship parameters depicting the force, power, and velocity of the tested muscles will differ among individuals of different physical fitness. Strength trained, physically active, and sedentary male participants (N=10+10+10; age 20–29 years) were tested on maximum countermovement and squat jumps where manipulation of external loads provided a range of F and V data. The observed F–V relationships of the tested leg muscles were approximately linear and mainly strong (median correlation coefficients ranged from 0.77 to 0.92; all p < 0.05), independently of either the tested group or the jump type. The maximum power revealed higher values in the strength trained than in the physically active and sedentary participants. This difference originated from the differences in F-intercepts, rather than from the V-intercepts. We conclude that the observed parameters could be sensitive enough to detect the differences among both the individuals of different physical fitness and various jump types. The present findings support using loaded vertical jumps and, possibly, other maximum performance multi-joint movements for the assessment of mechanical properties of active muscles. PMID:27111493
Static Load Test on Instrumented Pile - Field Data and Numerical Simulations
NASA Astrophysics Data System (ADS)
Krasiński, Adam; Wiszniewski, Mateusz
2017-09-01
Static load tests on foundation piles are generally carried out in order to determine load - the displacement characteristic of the pile head. For standard (basic) engineering practices this type of test usually provides enough information. However, the knowledge of force distribution along the pile core and its division into the friction along the shaft and the resistance under the base can be very useful. Such information can be obtained by strain gage pile instrumentation [1]. Significant investigations have been completed on this technology, proving its utility and correctness [8], [10], [12]. The results of static tests on instrumented piles are not easy to interpret. There are many factors and processes affecting the final outcome. In order to understand better the whole testing process and soil-structure behavior some investigations and numerical analyses were done. In the paper, real data from a field load test on instrumented piles is discussed and compared with numerical simulation of such a test in similar conditions. Differences and difficulties in the results interpretation with their possible reasons are discussed. Moreover, the authors used their own analytical solution for more reliable determination of force distribution along the pile. The work was presented at the XVII French-Polish Colloquium of Soil and Rock Mechanics, Łódź, 28-30 November 2016.
Analysis of the Constraint Joint Loading in the Thumb During Pipetting.
Wu, John Z; Sinsel, Erik W; Zhao, Kristin D; An, Kai-Nan; Buczek, Frank L
2015-08-01
Dynamic loading on articular joints is essential for the evaluation of the risk of the articulation degeneration associated with occupational activities. In the current study, we analyzed the dynamic constraint loading for the thumb during pipetting. The constraint loading is considered as the loading that has to be carried by the connective tissues of the joints (i.e., the cartilage layer and the ligaments) to maintain the kinematic constraints of the system. The joint loadings are solved using a classic free-body approach, using the external loading and muscle forces, which were obtained in an inverse dynamic approach combined with an optimization procedure in anybody. The constraint forces in the thumb joint obtained in the current study are compared with those obtained in the pinch and grasp tests in a previous study (Cooney and Chao, 1977, "Biomechanical Analysis of Static Forces in the Thumb During Hand Function," J. Bone Joint Surg. Am., 59(1), pp. 27-36). The maximal compression force during pipetting is approximately 83% and 60% greater than those obtained in the tip pinch and key pinch, respectively, while substantially smaller than that obtained during grasping. The maximal lateral shear force is approximately six times, 32 times, and 90% greater than those obtained in the tip pinch, key pinch, and grasp, respectively. The maximal dorsal shear force during pipetting is approximately 3.2 and 1.4 times greater than those obtained in the tip pinch and key pinch, respectively, while substantially smaller than that obtained during grasping. Our analysis indicated that the thumb joints are subjected to repetitive, intensive loading during pipetting, compared to other daily activities.
Fatigue Crack Closure Analysis Using Digital Image Correlation
NASA Technical Reports Server (NTRS)
Leser, William P.; Newman, John A.; Johnston, William M.
2010-01-01
Fatigue crack closure during crack growth testing is analyzed in order to evaluate the critieria of ASTM Standard E647 for measurement of fatigue crack growth rates. Of specific concern is remote closure, which occurs away from the crack tip and is a product of the load history during crack-driving-force-reduction fatigue crack growth testing. Crack closure behavior is characterized using relative displacements determined from a series of high-magnification digital images acquired as the crack is loaded. Changes in the relative displacements of features on opposite sides of the crack are used to generate crack closure data as a function of crack wake position. For the results presented in this paper, remote closure did not affect fatigue crack growth rate measurements when ASTM Standard E647 was strictly followed and only became a problem when testing parameters (e.g., load shed rate, initial crack driving force, etc.) greatly exceeded the guidelines of the accepted standard.
Effect of load eccentricity on the buckling of thin-walled laminated C-columns
NASA Astrophysics Data System (ADS)
Wysmulski, Pawel; Teter, Andrzej; Debski, Hubert
2018-01-01
The study investigates the behaviour of short, thin-walled laminated C-columns under eccentric compression. The tested columns are simple-supported. The effect of load inaccuracy on the critical and post-critical (local buckling) states is examined. A numerical analysis by the finite element method and experimental tests on a test stand are performed. The samples were produced from a carbon-epoxy prepreg by the autoclave technique. The experimental tests rest on the assumption that compressive loads are 1.5 higher than the theoretical critical force. Numerical modelling is performed using the commercial software package ABAQUS®. The critical load is determined by solving an eigen problem using the Subspace algorithm. The experimental critical loads are determined based on post-buckling paths. The numerical and experimental results show high agreement, thus demonstrating a significant effect of load inaccuracy on the critical load corresponding to the column's local buckling.
Nozzle Side Load Testing and Analysis at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Ruf, Joseph H.; McDaniels, David M.; Brown, Andrew M.
2009-01-01
Realistic estimates of nozzle side loads, the off-axis forces that develop during engine start and shutdown, are important in the design cycle of a rocket engine. The estimated magnitude of the nozzle side loads has a large impact on the design of the nozzle shell and the engine s thrust vector control system. In 2004 Marshall Space Flight Center (MSFC) began developing a capability to quantify the relative magnitude of side loads caused by different types of nozzle contours. The MSFC Nozzle Test Facility was modified to measure nozzle side loads during simulated nozzle start. Side load results from cold flow tests on two nozzle test articles, one with a truncated ideal contour and one with a parabolic contour are provided. The experimental approach, nozzle contour designs and wall static pressures are also discussed
NASA Astrophysics Data System (ADS)
Bigoni, Davide; Kirillov, Oleg N.; Misseroni, Diego; Noselli, Giovanni; Tommasini, Mirko
2018-07-01
Flutter instability in elastic structures subject to follower load, the most important cases being the famous Beck's and Pflüger's columns (two elastic rods in a cantilever configuration, with an additional concentrated mass at the end of the rod in the latter case), have attracted, and still attract, a thorough research interest. In this field, the most important issue is the validation of the model itself of follower force, a nonconservative action which was harshly criticized and never realized in practice for structures with diffused elasticity. An experimental setup to introduce follower tangential forces at the end of an elastic rod was designed, realized, validated, and tested, in which the follower action is produced by exploiting Coulomb friction on an element (a freely-rotating wheel) in sliding contact against a flat surface (realized by a conveyor belt). It is therefore shown that follower forces can be realized in practice and the first experimental evidence is given for both the flutter and divergence instabilities occurring in the Pflüger's column. In particular, load thresholds for the two instabilities are measured and the detrimental effect of dissipation on the critical load for flutter is experimentally demonstrated, while a slight increase in load is found for the divergence instability. The presented approach to follower forces discloses new horizons for testing self-oscillating structures and for exploring and documenting dynamic instabilities possible when nonconservative loads are applied.
Loading Rate Effects on the One-Dimensional Compressibility of Four Partially Saturated Soils
1986-12-01
representations are referred to as constitutive models. Numerous constitutive models incorporating loading rate effects have been developed ( Baladi and Rohani...and probably more indicative of the true values of applied pressure and average strain produced during the test. A technique developed by Baladi and...Sand," Technical Report No. AFWL-TR-66-146, Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico, June, 1967. 4. Baladi , George Y., and
Non-Invasive Investigation of Bone Adaptation in Humans to Mechanical Loading
NASA Technical Reports Server (NTRS)
Whalen, R.
1999-01-01
Experimental studies have identified peak cyclic forces, number of loading cycles, and loading rate as contributors to the regulation of bone metabolism. We have proposed a theoretical model that relates bone density to a mechanical stimulus derived from average daily cumulative peak cyclic 'effective' tissue stresses. In order to develop a non-invasive experimental model to test the theoretical model we need to: (1) monitor daily cumulative loading on a bone, (2) compute the internal stress state(s) resulting from the imposed loading, and (3) image volumetric bone density accurately, precisely, and reproducibly within small contiguous volumes throughout the bone. We have chosen the calcaneus (heel) as an experimental model bone site because it is loaded by ligament, tendon and joint contact forces in equilibrium with daily ground reaction forces that we can measure; it is a peripheral bone site and therefore more easily and accurately imaged with computed tomography; it is composed primarily of cancellous bone; and it is a relevant site for monitoring bone loss and adaptation in astronauts and the general population. This paper presents an overview of our recent advances in the areas of monitoring daily ground reaction forces, biomechanical modeling of the forces on the calcaneus during gait, mathematical modeling of calcaneal bone adaptation in response to cumulative daily activity, accurate and precise imaging of the calcaneus with quantitative computed tomography (QCT), and application to long duration space flight.
RATE-DEPENDENT PULL-OUT BEARING CAPACITY OF PILES BY SIMILITUDE MODEL TESTS USING SEEPAGE FORCE
NASA Astrophysics Data System (ADS)
Kato, Tatsuya; Kokusho, Takaji
Pull-out test of model piles was conducted by varying the pull-out velocity and skin friction of piles using a seepage force similitude model test apparatus. Due to the seepage consolidation under the pressure of 150kPa, the effective stress distribution in a prototype saturated soil of 17m could be successfully reproduced in the model ground of 28cm thick, in which the pull-out tests were carried out. The pull-out load rose to a peak value at small displacement, and then decreased to a residual value. At the same time, pore pressure in the vicinity of the pile decreased due to suction near the tip and the positive dilatancy near the pile skin. The maximum pull-out load, pile axial load, side friction and the corresponding displacement increased dramatically with increasing pull-out velocity. It was found that these rate-dependent trends become more prominent with increasing skin friction.
Dittmer, Marc Philipp; Nensa, Moritz; Stiesch, Meike; Kohorst, Philipp
2013-01-01
Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics. The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks. Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo depends on additional aspects. Further studies are needed to address these aspects.
DITTMER, Marc Philipp; NENSA, Moritz; STIESCH, Meike; KOHORST, Philipp
2013-01-01
Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics. Objective The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks. Material and Methods Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). Results All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. Conclusion The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo depends on additional aspects. Further studies are needed to address these aspects. PMID:24037068
NASA Technical Reports Server (NTRS)
St.hilaire, A. O.; Carta, F. O.; Fink, M. R.; Jepson, W. D.
1979-01-01
Aerodynamic experiments were performed on an oscillating NACA 0012 airfoil utilizing a tunnel-spanning wing in both unswept and 30 degree swept configurations. The airfoil was tested in steady state and in oscillatory pitch about the quarter chord. The unsteady aerodynamic loading was measured using pressure transducers along the chord. Numerical integrations of the unsteady pressure transducer responses were used to compute the normal force, chord force, and moment components of the induced loading. The effects of sweep on the induced aerodynamic load response was examined. For the range of parameters tested, it was found that sweeping the airfoil tends to delay the onset of dynamic stall. Sweeping was also found to reduce the magnitude of the unsteady load variation about the mean response. It was determined that at mean incidence angles greater than 9 degrees, sweep tends to reduce the stability margin of the NACA 0012 airfoil; however, for all cases tested, the airfoil was found to be stable in pure pitch. Turbulent eddies were found to convect downstream above the upper surface and generate forward-moving acoustic waves at the trailing edge which move upstream along the lower surface.
A tensile machine with a novel optical load cell for soft biological tissues application.
Faturechi, Rahim; Hashemi, Ata; Abolfathi, Nabiollah
2014-11-01
The uniaxial tensile testing machine is the most common device used to measure the mechanical properties of industrial and biological materials. The need for a low-cost uniaxial tension testing device for small research centers has always been the subject of research. To address this need, a novel uniaxial tensile testing machine was designed and fabricated to measure the mechanical properties of soft biological tissues. The device is equipped with a new low-cost load cell which works based on the linear displacement/force relationship of beams. The deflection of the beam load cell is measured optically by a digital microscope with an accuracy of 1 µm. The stiffness of the designed load cell was experimentally and theoretically determined at 100 N mm(-1). The stiffness of the load cell can be easily adjusted according to the tissue's strength. The force-time behaviour of soft tissue specimens was obtained by an in-house image processing program. To demonstrate the efficiency of the fabricated device, the mechanical properties of amnion tissue was measured and compared with available data. The obtained results indicate a strong agreement with that of previous studies.
Sekiya, Jon K; Jolly, John; Debski, Richard E
2012-02-01
Hill-Sachs defects have been associated with failed repairs for anterior shoulder instability. However, the biomechanical consequences of these defects are not well understood because of the complicated interaction between the passive soft tissue and bony stabilizers. The creation of a 25% Hill-Sachs defect would not significantly alter the glenohumeral translations but would increase the in situ forces in the glenohumeral capsule as well as the glenohumeral bony contact forces. Controlled laboratory study. A robotic/universal force-moment sensor (UFS) testing system was used to apply joint compression (22 N) and an anterior or posterior load (44 N) to cadaveric shoulders (n = 9) with the skin and deltoid removed (intact) at 3 glenohumeral joint positions (abduction/external rotation): 0°/0°, 30°/30°, and 60°/60° (corresponds to 90°/90° of shoulder abduction/external rotation). A 25% bony defect on the posterolateral humeral head (defect) was then created in the most common position of anterior shoulder dislocation (90°/90°), and the loading protocol was repeated. A nonparametric repeated-measures Friedman test with a Wilcoxon signed-rank post hoc test was performed to compare translations, in situ forces in the capsule, and bony contact forces between each state (P < .05). At 0°/0°, anterior translation significantly increased from 15.3 ± 8.2 mm to 16.6 ± 9.0 mm (P < .05) in response to an anterior load. At 30°/30°, anterior and posterior translations, respectively, significantly increased in response to both anterior (intact: 13.6 ± 7.1 mm vs defect: 14.2 ± 7 mm; P < .05) and posterior loads (intact: 15.7 ± 5.8 mm vs defect: 17.7 ± 5.1 mm; P < .05). In situ force in the capsule during anterior loading was increased in the defect state at both 60°/60° (intact: 38.9 ± 14.4 N vs defect: 43.2 ± 15.9 N; P < .05) and 30°/30° (intact: 39.6 ± 13.8 N vs defect: 45.6 ± 9.3 N; P < .05). The medial bony contact forces were also increased in the defect state at 30°/30° (intact: 25.0 ± 13.8 N vs defect: 28.9 ± 13.2 N; P < .05) during anterior loading. We believe that the stabilizing function of the intact capsule was the primary contributor to the finding of only small increases of anterior translation, capsule forces, and bony contact forces observed with a 25% Hill-Sachs defect in response to an anterior load. These findings imply that a 25% Hill-Sachs defect in isolation may not be responsible for recurrent instability if the function of the capsule is restored to the intact state and that the presence of the Hill-Sachs defect may be a marker for significant concomitant injury to the anterior glenoid rim. However, the small changes in these parameters may have long-term implications for the development of osteoarthritis.
NASA Technical Reports Server (NTRS)
Guy, Lawrence D; Hadaway, William M
1955-01-01
Aerodynamic forces and moments have been obtained in the Langley 9- by 12-inch blowdown tunnel on an external store and on a 45 degree swept-back wing-body combination measured separately at Mach numbers from 0.70 to 1.96. The wing was cantilevered and had an aspect ratio of 4.0; the store was independently sting-mounted and had a Douglas Aircraft Co. (DAC) store shape. The angle of attack range was from -3 degrees to 12 degrees and the Reynolds number (based on wing mean aerodynamic chord) varied from 1.2 x10(6) to 1.7 x 10(6). Wing-body transonic forces and moments have been compared with data of a geometrically similar full-scale model tested in the Langley 16-foot and 8-foot transonic tunnels in order to aid in the evaluation of transonic-tunnel interference. The principal effect of the store, for the position tested, was that of delaying the wing-fuselage pitch-up tendency to higher angles of attack at Mach numbers from 0.70 to 0.90 in a manner similar to that of a wing chord extension. The most critical loading condition on the store was that due to side force, not only because the loads were of large magnitude but also because they were in the direction of least structural strength of the supporting pylon. These side loads were greatest at high angles of attack in the supersonic speed range. Removal of the supporting pylon (or increasing the gap between the store and wing) reduced the values of the variation of side-force coefficientwith angle of attack by about 50 percent at all test Mach numbers, indicating that important reductions in store side force may be realized by proper design or location of the necessary supporting pylon. A change of the store skew angle (nose inboard) was found to relieve the excessive store side loads throughout the Mach number range. It was also determined that the relative position of the fuselage nose to the store can appreciably affect the store side forces at supersonic speeds.
Abd El Megeid Abdallah, Amira Abdallah
2016-04-01
Increased impact loading is implicated in knee osteoarthritis development and progression. This study examined the impact ground reaction force (GRF) peak, its loading rate, its relative timing to stance phase timing, and walking speed during unilateral and bilateral use of laterally wedged insoles with arch supports. Within-subject design. Thirty-three female patients with medial knee osteoarthritis were examined with (unilateral 6° and 11°, and bilateral 0°, 6°, and 11°) and without insole use. Repeated measures MANOVA revealed that the impact force increased significantly in bilateral 11° versus unilateral 6° and without-insole conditions. The loading rate decreased significantly in unilateral 11° versus bilateral 6° insoles. The relative timing increased significantly in each of bilateral 6°, bilateral 11°, and unilateral 11° versus bilateral 0° insoles and in each of bilateral 11° and unilateral 11° versus without-insole condition. There were significant positive correlations between the walking speed and each of the force and loading rate. The Chi-square test revealed insignificant association between the insole condition and the presence of impact forces. Unilateral 11° insoles are capable of reducing impact loading possibly through increasing foot pronation. Walking slowly is another possible strategy to reduce loading. Unilaterally applied 11° laterally wedged insoles are capable of reducing and delaying the initial impact ground reaction forces and reducing their loading rates during walking in patients with medial knee osteoarthritis, thus reducing osteoarthritis progression. Walking slowly could also be used as a strategy to reduce impact loading. © The International Society for Prosthetics and Orthotics 2015.
Evaluation of Load Analysis Methods for NASAs GIII Adaptive Compliant Trailing Edge Project
NASA Technical Reports Server (NTRS)
Cruz, Josue; Miller, Eric J.
2016-01-01
The Air Force Research Laboratory (AFRL), NASA Armstrong Flight Research Center (AFRC), and FlexSys Inc. (Ann Arbor, Michigan) have collaborated to flight test the Adaptive Compliant Trailing Edge (ACTE) flaps. These flaps were installed on a Gulfstream Aerospace Corporation (GAC) GIII aircraft and tested at AFRC at various deflection angles over a range of flight conditions. External aerodynamic and inertial load analyses were conducted with the intention to ensure that the change in wing loads due to the deployed ACTE flap did not overload the existing baseline GIII wing box structure. The objective of this paper was to substantiate the analysis tools used for predicting wing loads at AFRC. Computational fluid dynamics (CFD) models and distributed mass inertial models were developed for predicting the loads on the wing. The analysis tools included TRANAIR (full potential) and CMARC (panel) models. Aerodynamic pressure data from the analysis codes were validated against static pressure port data collected in-flight. Combined results from the CFD predictions and the inertial load analysis were used to predict the normal force, bending moment, and torque loads on the wing. Wing loads obtained from calibrated strain gages installed on the wing were used for substantiation of the load prediction tools. The load predictions exhibited good agreement compared to the flight load results obtained from calibrated strain gage measurements.
Evaluation of New Actuators in a Buffet Loads Environment
NASA Technical Reports Server (NTRS)
Moses, Robert W.; Wieseman, Carol D.; Bent, Aaron A.; Pizzochero, Alessandro E.
2001-01-01
Ongoing research in buffet loads alleviation has provided an application for recently developed piezoelectric actuators capable of higher force output than previously existing actuators could provide and that can be embedded within the vehicle s structure. These new actuators, having interdigitated electrodes, promise increased performance over previous piezoelectric actuators that were tested on the fin of an F/A-18 aircraft. Two new actuators being considered by the United States Air Force to reduce buffet loads on high performance aircraft were embedded into the fins of an F/A-18 wind-tunnel model and tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center. The purpose of this test program, called ENABLE (Evaluation of New Actuators in a Buffet Loads Environment), was to examine the performance of the new actuators in alleviating fin buffeting, leading to a systems -level study of a fin buffet loads alleviation system architecture being considered by the USAF, Boeing, and NASA for implementation on high performance aircraft. During this windtunnel test, the two actuators performed superbly in alleviating fin buffeting. Peak values of the power spectral density functions for tip acceleration were reduced by as much as 85%. RMS values of tip acceleration were reduced by as much as 40% while using less than 50% of the actuators capacity. Details of the wind-tunnel model and results of the wind-tunnel test are provided herein.
NASA Technical Reports Server (NTRS)
Lokos, William; Miller, Eric; Hudson, Larry; Holguin, Andrew; Neufeld, David; Haraguchi, Ronnie
2015-01-01
This paper describes the design and conduct of the strain gage load calibration ground test of the SubsoniC Research Aircraft Testbed, Gulfstream III aircraft, and the subsequent data analysis and its results. The goal of this effort was to create and validate multi-gage load equations for shear force, bending moment, and torque for two wing measurement stations. For some of the testing the aircraft was supported by three air bags in order to isolate the wing structure from extraneous load inputs through the main landing gear. Thirty-two strain gage bridges were installed on the left wing. Hydraulic loads were applied to the wing lower surface through a total of 16 load zones. Some dead weight load cases were applied to the upper wing surface using shot bags. Maximum applied loads reached 54,000 pounds.
Biaxial and Shear Testing Apparatus with Force Controls
2006-03-30
materials as the test specimen. (2) Description of the Prior Art [0004] It is known in the art that pressurized fabric tubes ; pressure-stabilized beams...apparatus is that these roller pins prevent any torsional load from reaching the test specimen. [0010] In Ward et al., (United States Patent No. 5,279,166...loading a specimen through pressurizing the inside surface of a cylinder is disclosed. A thin-wall tube specimen is biaxially tested for stress analysis
Two-loads Method for Distinguishing among the Muscle Force, Velocity, and Power Producing Capacities
Jaric, Slobodan
2016-01-01
It has been generally accepted that muscles could have different mechanical capacities, such as those for producing high force (F), velocity (V), and power (P) outputs. Nevertheless, the standard procedures of the evaluation of muscle function both in research and routine testing are typically conducted under a single mechanical condition, such as under a single external load. Therefore, the observed outcomes do not allow for distinguishing among the different muscle capacities. As a result, the outcomes of most of the routine testing procedures have been of limited informational value, while a number of debated issues in research have originated from arbitrarily interpreted experimental findings regarding specific muscle capacities. A solution for the discussed problem could be based on the approximately linear and exceptionally strong F-V relationship typically observed from various functional tasks performed under different external loads. These findings allow for the 'two-loads method' proposed in this Current Opinion: the functional movement tasks (e.g., maximum jumping, cycling, running, pushing, lifting, or throwing) should be tested against just 2 distinctive external loads. Namely, the F-V relationship determined by 2 pairs of the F and V data could provide the parameters depicting the maximum F (i.e., the F-intercept), V (V-intercept), and P (calculated from the product of F and V) output of the tested muscles. Therefore, the proposed two-loads method applied in both research and routine testing could provide a deeper insight into the mechanical properties and function of the tested muscles and resolve a number of debated issues in the literature. PMID:27075326
Makuch, Anna M; Skalski, Konstanty R; Pawlikowski, Marek
2017-01-01
The goal of the study was to determine the influence of DSI test conditions, i.e., loading/unloading rates, hold time, and the value of the maximum loading force on selected mechanical properties of trabecular bone tissue. The test samples were resected from a femoral head of a patient qualified for a hip replacement surgery. During the DSI tests hardness (HV, HM, HIT) and elastic modulus (EIT) of trabecular bone tissue were measured using the Micro Hardness Tester (MHT, CSEM). The analysis of the results of measurements and the calculations of total energy, i.e., elastic and inelastic (Wtotal, Welastic, Winelastic) and those of hardness and elasticity made it possible to assess the impact of the process parameters (loading velocity, force and hold time) on mechanical properties of bone structures at a microscopic level. The coefficient k dependent on the EIT/HIT ratio and on the stored energy (ΔW = Wtotal - Welastic) is a measure of the material reaction to the loading and the deformation of tissue.
Seacrist, Thomas; Mathews, Emily A; Balasubramanian, Sriram; Maltese, Matthew R; Arbogast, Kristy B
2013-11-01
Debate exists in the automotive community regarding the validity of the pediatric ATD neck response and corresponding neck loads. Previous research has shown that the pediatric ATDs exhibit hyper-flexion and chin-to-chest contact resulting in overestimations of neck loads and neck injury criteria. Our previous work comparing the kinematics of the Hybrid III and Q-series 6 and 10-year-old ATDs to pediatric volunteers in low-speed frontal sled tests revealed decreased ATD cervical and thoracic spine excursions. These kinematic differences may contribute to the overestimation of upper neck loads by the ATD. The current study compared upper neck loads of the Hybrid III and Q-series 6 and 10-year-old ATDs against size-matched male pediatric volunteers in low-speed frontal sled tests. A 3-D near-infrared target tracking system quantified the position of markers on the ATD and pediatric volunteers (head top, nasion, bilateral external auditory meatus). Shear force (F x ), axial force (F z ), bending moment (M y ), and head angular acceleration ([Formula: see text]) were calculated about the upper neck using standard equations of motion. In general, the ATDs underestimated axial force and overestimated bending moment compared to the human volunteers. The Hybrid III 6, Q6, and Q10 exhibited reduced head angular acceleration and modest increases in upper neck shear compared to the pediatric volunteers. The reduction in axial force and bending moment has important implications for neck injury predictions as both are used when calculating N ij . These analyses provide insight into the biofidelity of the pediatric ATD upper neck loads in low-speed crash environments.
Study on loading and unloading performance of new energy vehicle battery sensor
NASA Astrophysics Data System (ADS)
Wu, Bin; Ren, Kai; Liu, Ying
2017-04-01
This paper first introduces the 18650 battery, describes the importance of the battery temperature sensor, uses Ansys Workbench finite element simulation software and the mean of the combination of displacement constraint and reaction force, studies the force and the size of the change of new energy vehicle battery temperature sensor in the loading, translation and unloading of the three cases, then make the test to verify its accuracy. At last, the test results are compared with the usual maximum acceleration of the vehicle in driving which verified the sensor of the car will not fall off in the car driving process and work normally.
Toomey, D E; Yang, K H; Van Ee, C A
2014-01-01
Physical biomechanical surrogates are critical for testing the efficacy of injury-mitigating safety strategies. The interpretation of measured Hybrid III neck loads in test scenarios resulting in compressive loading modes would be aided by a further understanding of the correlation between the mechanical responses in the Hybrid III neck and the probability of injury in the human cervical spine. The anthropomorphic test device (ATD) peak upper and lower neck responses were measured during dynamic compressive loading conditions comparable to those of postmortem human subject (PMHS) experiments. The peak ATD response could then be compared to the PMHS injury outcomes. A Hybrid III 50th percentile ATD head and neck assembly was tested under conditions matching those of male PMHS tests conducted on an inverted drop track. This includes variation in impact plate orientation (4 sagittal plane and 2 frontal plane orientations), impact plate surface friction, and ATD initial head/neck orientation. This unique matched data with known injury outcomes were used to evaluate existing ATD neck injury criteria. The Hybrid III ATD head and neck assembly was found to be robust and repeatable under severe loading conditions. The initial axial force response of the ATD head and neck is very comparable to PMHS experiments up to the point of PMHS cervical column buckle or material failure. An ATD lower neck peak compressive force as low as 6,290 N was associated with an unstable orthopedic cervical injury in a PMHS under equivalent impact conditions. ATD upper neck peak compressive force associated with a 5% probability of unstable cervical orthopedic injury ranged from as low as 3,708 to 3,877 N depending on the initial ATD neck angle. The correlation between peak ATD compressive neck response and PMHS test outcome in the current study resulted in a relationship between axial load and injury probability consistent with the current Hybrid III injury assessment reference values. The results add to the current understanding of cervical injury probability based on ATD neck compressive loading in that it is the only known study, in addition to Mertz et al. (1978), formulated directly from ATD compressive loading scenarios with known human injury outcomes.
NASA Technical Reports Server (NTRS)
Lundquist, Eugene E; Schwartz, Edward B
1942-01-01
The results of a theoretical and experimental investigation to determine the critical compression load for a universal testing machine are presented for specimens loaded through knife edges. The critical load for the testing machine is the load at which one of the loading heads becomes laterally instable in relation to the other. For very short specimens the critical load was found to be less than the rated capacity given by the manufacturer for the machine. A load-length diagram is proposed for defining the safe limits of the test region for the machine. Although this report is particularly concerned with a universal testing machine of a certain type, the basic theory which led to the derivation of the general equation for the critical load, P (sub cr) = alpha L can be applied to any testing machine operated in compression where the specimen is loaded through knife edges. In this equation, L is the length of the specimen between knife edges and alpha is the force necessary to displace the upper end of the specimen unit horizontal distance relative to the lower end of the specimen in a direction normal to the knife edges through which the specimen is loaded.
High shear rate flow in a linear stroke magnetorheological energy absorber
NASA Astrophysics Data System (ADS)
Hu, W.; Wereley, N. M.; Hiemenz, G. J.; Ngatu, G. T.
2014-05-01
To provide adaptive stroking load in the crew seats of ground vehicles to protect crew from blast or impact loads, a magnetorheological energy absorber (MREA) or shock absorber was developed. The MREA provides appropriate levels of controllable stroking load for different occupant weights and peak acceleration because the viscous stroking load generated by the MREA force increases with velocity squared, thereby reducing its controllable range at high piston velocity. Therefore, MREA behavior at high piston velocity is analyzed and validated experimentally in order to investigate the effects of velocity and magnetic field on MREA performance. The analysis used to predict the MREA force as a function of piston velocity squared and applied field is presented. A conical fairing is mounted to the piston head of the MREA in order reduce predicted inlet flow loss by 9% at nominal velocity of 8 m/s, which resulted in a viscous force reduction of nominally 4%. The MREA behavior is experimentally measured using a high speed servo-hydraulic testing system for speeds up to 8 m/s. The measured MREA force is used to validate the analysis, which captures the transient force quite accurately, although the peak force is under-predicted at the peak speed of 8 m/s.
46 CFR 38.05-3 - Design and construction of pressure vessel type cargo tanks-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... subjected to external loads. Consideration shall also be given to excessive loads that can be imposed on the tanks by their support due to static and dynamic forces under operating conditions or during testing...
46 CFR 38.05-3 - Design and construction of pressure vessel type cargo tanks-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... subjected to external loads. Consideration shall also be given to excessive loads that can be imposed on the tanks by their support due to static and dynamic forces under operating conditions or during testing...
46 CFR 38.05-3 - Design and construction of pressure vessel type cargo tanks-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... subjected to external loads. Consideration shall also be given to excessive loads that can be imposed on the tanks by their support due to static and dynamic forces under operating conditions or during testing...
46 CFR 38.05-3 - Design and construction of pressure vessel type cargo tanks-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... subjected to external loads. Consideration shall also be given to excessive loads that can be imposed on the tanks by their support due to static and dynamic forces under operating conditions or during testing...
Stability of the anterior arm of three different Hyrax hybrid expanders: an in vitro study
de la Iglesia, Gonzalo; Walter, André; de la Iglesia, Fernando; Winsauer, Heinz; Puigdollers, Andreu
2018-01-01
ABSTRACT Introduction: The force applied to the teeth by fixed orthopaedic expanders has previously been studied, but not the force applied to the orthodontic mini-implant (OMI) used to expand the maxilla with Hyrax hybrid expanders (HHE). Objective: The aim of this article was to evaluate the clinical safety of the components (OMI, abutment and double wire arms) of three different force-transmitting systems (FTS) for conducting orthopaedic maxillary expansion: Jeil Medical & Tiger Dental™, Microdent™ and Ortholox™. Methods: For the realization of this in vitro study of the resistance to mechanical load, three different abutment types (bonded, screwed on, and coupling) and three different OMIs’ diameters (Jeil™ 2.5 mm, Microdent™ 1.6 mm and Ortholox™ 2.2 mm) were used. Ten tests for each of these three FTS were carried out in a static lateral load in artificial bone blocks (Sawbones™) by a Galdabini universal testing machine, then comparing its performance. Comparisons of loads, deformations and fractures were carried out by means of radiographs of FTS components in each case. Results: At 1- mm load and within the elastic deformation, FTS values ranged from 67 ± 13 N to 183 ± 48 N. Under great deformations, Jeil & Tiger™ was the one who withstood the greatest loads, with an average 378 ± 22 N; followed by Microdent™, with 201 ± 18 N, and Ortholox™, with 103 ± 10 N. At 3 mm load, the OMIs shaft bends and deforms when the diameter is smaller than 2.5 mm. The abutment fixation is crucial to transmit forces and moments. Conclusions: The present study shows the importance of a rigid design of the different components of HHEs, and also that HHEs would be suitable for maxillary expansion in adolescents and young adults, since its mean expansion forces exceed 120N. Furthermore, early abutment detachment or smaller mini-implants diameter would only be appropriate for children. PMID:29791684
Buckling behavior of Rene 41 tubular panels for a hypersonic aircraft wing
NASA Technical Reports Server (NTRS)
Ko, W. L.; Fields, R. A.; Shideler, J. L.
1986-01-01
The buckling characteristics of Rene 41 tubular panels for a hypersonic aircraft wing were investigated. The panels were repeatedly tested for buckling characteristics using a hypersonic wing test structure and a universal tension/compression testing machine. The nondestructive buckling tests were carried out under different combined load conditions and in different temperature environments. The force/stiffness technique was used to determine the buckling loads of the panels. In spite of some data scattering resulting from large extrapolations of the data-fitting curve (because of the termination of applied loads at relatively low percentages of the buckling loads), the overall test data correlate fairly well with theoretically predicted buckling interaction curves. Also, the structural efficiency of the tubular panels was found to be slightly higher than that of beaded panels.
Buckling behavior of Rene 41 tubular panels for a hypersonic aircraft wing
NASA Technical Reports Server (NTRS)
Ko, W. L.; Shideler, J. L.; Fields, R. A.
1986-01-01
The buckling characteristics of Rene 41 tubular panels for a hypersonic aircraft wing were investigated. The panels were repeatedly tested for buckling characteristics using a hypersonic wing test structure and a universal tension/compression testing machine. The nondestructive buckling tests were carried out under different combined load conditions and in different temperature environments. The force/stiffness technique was used to determine the buckling loads of the panel. In spite of some data scattering, resulting from large extrapolations of the data fitting curve (because of the termination of applied loads at relatively low percentages of the buckling loads), the overall test data correlate fairly well with theoretically predicted buckling interaction curves. Also, the structural efficiency of the tubular panels was found to be slightly higher than that of beaded panels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.
As part of the Phase II testing at the HDR Test Facility in Kahl/Main, FRG, two series of high-level seismic/vibrational experiments were performed. In the first of these (SHAG) a coast-down shaker, mounted on the reactor operating floor and capable of generating 1000 tonnes of force, was used to investigate full-scale structural response, soil-structure interaction (SSI), and piping/equipment response at load levels equivalent to those of a design basis earthquake. The HDR soil/structure system was tested to incipient failure exhibiting highly nonlinear response. In the load transmission from structure to piping/equipment significant response amplifications and shifts to higher frequencies occurred.more » The performance of various pipe support configurations was evaluated. This latter effort was continued in the second series of tests (SHAM), in which an in-plant piping system was investigated at simulated seismic loads (generated by two servo-hydraulic actuators each capable of generating 40 tonnes of force), that exceeded design levels manifold and resulted in considerable pipe plastification and failure of some supports (snubbers). The evaluation of six different support configurations demonstrated that proper system design (for a given spectrum) rather than number of supports or system stiffness is essential to limiting pipe stresses. Pipe strains at loads exceeding the design level eightfold were still tolerable, indicating that pipe failure even under extreme seismic loads is unlikely inspite of multiple support failures. Conservatively, an excess capacity (margin) of at least four was estimated for the piping system, and the pipe damping was found to be 4%. Comparisons of linear and nonlinear computational results with measurements showed that analytical predictions have wide scatter and do not necessarily yield conservative responses, underpredicting, in particular, peak support forces.« less
What is the best method for assessing lower limb force-velocity relationship?
Giroux, C; Rabita, G; Chollet, D; Guilhem, G
2015-02-01
This study determined the concurrent validity and reliability of force, velocity and power measurements provided by accelerometry, linear position transducer and Samozino's methods, during loaded squat jumps. 17 subjects performed squat jumps on 2 separate occasions in 7 loading conditions (0-60% of the maximal concentric load). Force, velocity and power patterns were averaged over the push-off phase using accelerometry, linear position transducer and a method based on key positions measurements during squat jump, and compared to force plate measurements. Concurrent validity analyses indicated very good agreement with the reference method (CV=6.4-14.5%). Force, velocity and power patterns comparison confirmed the agreement with slight differences for high-velocity movements. The validity of measurements was equivalent for all tested methods (r=0.87-0.98). Bland-Altman plots showed a lower agreement for velocity and power compared to force. Mean force, velocity and power were reliable for all methods (ICC=0.84-0.99), especially for Samozino's method (CV=2.7-8.6%). Our findings showed that present methods are valid and reliable in different loading conditions and permit between-session comparisons and characterization of training-induced effects. While linear position transducer and accelerometer allow for examining the whole time-course of kinetic patterns, Samozino's method benefits from a better reliability and ease of processing. © Georg Thieme Verlag KG Stuttgart · New York.
Force-velocity property of leg muscles in individuals of different level of physical fitness.
Cuk, Ivan; Mirkov, Dragan; Nedeljkovic, Aleksandar; Kukolj, Milos; Ugarkovic, Dusan; Jaric, Slobodan
2016-06-01
The present study explored the method of testing muscle mechanical properties through the linear force-velocity (F-V) relationships obtained from loaded vertical jumps. Specifically, we hypothesised that the F-V relationship parameters depicting the force, power, and velocity of the tested muscles will differ among individuals of different physical fitness. Strength trained, physically active, and sedentary male participants (N = 10 + 10 + 10; age 20-29 years) were tested on maximum countermovement and squat jumps where manipulation of external loads provided a range of F and V data. The observed F-V relationships of the tested leg muscles were approximately linear and mainly strong (median correlation coefficients ranged from 0.77 to 0.92; all p < 0.05), independently of either the tested group or the jump type. The maximum power revealed higher values in the strength trained than in the physically active and sedentary participants. This difference originated from the differences in F-intercepts, rather than from the V-intercepts. We conclude that the observed parameters could be sensitive enough to detect the differences among both the individuals of different physical fitness and various jump types. The present findings support using loaded vertical jumps and, possibly, other maximum performance multi-joint movements for the assessment of mechanical properties of active muscles.
Development of a pneumatic tensioning device for gap measurement during total knee arthroplasty.
Kwak, Dai-Soon; Kong, Chae-Gwan; Han, Seung-Ho; Kim, Dong-Hyun; In, Yong
2012-09-01
Despite the importance of soft tissue balancing during total knee arthroplasty (TKA), all estimating techniques are dependent on a surgeon's manual distraction force or subjective feeling based on experience. We developed a new device for dynamic gap balancing, which can offer constant load to the gap between the femur and tibia, using pneumatic pressure during range of motion. To determine the amount of distraction force for the new device, 3 experienced surgeons' manual distraction force was measured using a conventional spreader. A new device called the consistent load pneumatic tensor was developed on the basis of the biomechanical tests. Reliability testing for the new device was performed using 5 cadaveric knees by the same surgeons. Intraclass correlation coefficients (ICCs) were calculated. The distraction force applied to the new pneumatic tensioning device was determined to be 150 N. The interobserver reliability was very good for the newly tested spreader device with ICCs between 0.828 and 0.881. The new pneumatic tensioning device can enable us to properly evaluate the soft tissue balance throughout the range of motion during TKA with acceptable reproducibility.
Development of superconducting magnetic bearing using superconducting coil and bulk superconductor
NASA Astrophysics Data System (ADS)
Seino, H.; Nagashima, K.; Arai, Y.
2008-02-01
The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated.
Nilsson, Johnny E; Rosdahl, Hans G
2014-03-01
The purpose was to develop and validate portable force-measurement devices for recording push and pull forces applied by each foot to the foot bar of a kayak and the horizontal force at the seat. A foot plate on a single-point force transducer mounted on the kayak foot bar underneath each foot allowed the push and pull forces to be recorded. Two metal frames interconnected with 4 linear ball bearings, and a force transducer allowed recording of horizontal seat force. The foot-bar-force device was calibrated by loading each foot plate with weights in the push-pull direction perpendicular to the foot plate surface, while the seat-force device was calibrated to horizontal forces with and without weights on the seat. A strong linearity (r2 = .99-1.0) was found between transducer output signal and load force in the push and pull directions for both foot-bar transducers perpendicular to the foot plate and the seat-force-measuring device. Reliability of both devices was tested by means of a test-retest design. The coefficient of variation (CV) for foot-bar push and pull forces ranged from 0.1% to 1.1%, and the CV for the seat forces varied from 0.6% to 2.2%. The current study opens up a field for new investigations of the forces generated in the kayak and ways to optimize kayak-paddling performance.
Highly Loaded Composite Strut Test Results
NASA Technical Reports Server (NTRS)
Wu, K. C.; Jegley, Dawn C.; Barnard, Ansley; Phelps, James E.; McKeney, Martin J.
2011-01-01
Highly loaded composite struts from a proposed truss-based Altair lunar lander descent stage concept were selected for development under NASA's Advanced Composites Technology program. Predicted compressive member forces during launch and ascent of over -100,000 lbs were much greater than the tensile loads. Therefore, compressive failure modes, including structural stability, were primary design considerations. NASA's industry partner designed and built highly loaded struts that were delivered to NASA for testing. Their design, fabricated on a washout mandrel, had a uniform-diameter composite tube with composite tapered ends. Each tapered end contained a titanium end fitting with facing conical ramps that are overlaid and overwrapped with composite materials. The highly loaded struts were loaded in both tension and compression, with ultimate failure produced in compression. Results for the two struts tested are presented and discussed, along with measured deflections, strains and observed failure mechanisms.
A Study of the Engraving of the M855 5.56-mm Projectile
2009-03-01
handgun , and shotgun cleaning kit and bore brushes. At the start of a test, a bullet was placed into the barrel so that it made contact with the...interaction with the forcing cone, it cannot be determined if that material remained on the forcing cone or was transferred further down the barrel ...The load vs. displacement plots of figures 6–12 do not show any load spikes further down the barrel to indicate a build up and release of material
THE BUREAU OF AERONAUTICS RESEARCH AND DEVELOPMENT PROGRAM FOR WATER-BASED AIRCRAFT,
WATER BASED AIRCRAFT, BUDGETS), RESEARCH MANAGEMENT, FLIGHT TESTING, WIND TUNNEL MODELS, TABLES(DATA), AIRCRAFT, TEST VEHICLES, HYDRODYNAMICS, PIERS, FLOATING DOCKS, LOADS(FORCES), WATER , STABILITY, SPRAYS, NAVAL AIRCRAFT.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and guying must be designed to withstand maximum horizontal and vertical forces encountered when... be designed to withstand maximum horizontal and vertical forces encountered when operating within...”). (D) Applicable terms in section 7-0.2 (“Definitions”). (ii) Load tests for new hoists. The employer...
Code of Federal Regulations, 2012 CFR
2012-07-01
... and guying must be designed to withstand maximum horizontal and vertical forces encountered when... be designed to withstand maximum horizontal and vertical forces encountered when operating within...”). (D) Applicable terms in section 7-0.2 (“Definitions”). (ii) Load tests for new hoists. The employer...
Code of Federal Regulations, 2011 CFR
2011-07-01
... and guying must be designed to withstand maximum horizontal and vertical forces encountered when... be designed to withstand maximum horizontal and vertical forces encountered when operating within...”). (D) Applicable terms in section 7-0.2 (“Definitions”). (ii) Load tests for new hoists. The employer...
Code of Federal Regulations, 2014 CFR
2014-07-01
... and guying must be designed to withstand maximum horizontal and vertical forces encountered when... be designed to withstand maximum horizontal and vertical forces encountered when operating within...”). (D) Applicable terms in section 7-0.2 (“Definitions”). (ii) Load tests for new hoists. The employer...
Force Measurement on the GLAST Delta II Flight
NASA Technical Reports Server (NTRS)
Gordon, Scott; Kaufman, Daniel
2009-01-01
This viewgraph presentation reviews the interface force measurement at spacecraft separation of GLAST Delta II. The contents include: 1) Flight Force Measurement (FFM) Background; 2) Team Members; 3) GLAST Mission Overview; 4) Methodology Development; 5) Ground Test Validation; 6) Flight Data; 7) Coupled Loads Simulation (VCLA & Reconstruction); 8) Basedrive Simulation; 9) Findings; and 10) Summary and Conclusions.
Synthesized multi-station tribo-test system for bio-tribological evaluation in vitro
NASA Astrophysics Data System (ADS)
Wu, Tonghai; Du, Ying; Li, Yang; Wang, Shuo; Zhang, Zhinan
2016-07-01
Tribological tests play an important role on the evaluation of long-term bio-tribological performances of prosthetic materials for commercial fabrication. Those tests focus on the motion simulation of a real joint in vitro with only normal loads and constant velocities, which are far from the real friction behavior of human joints characterized with variable loads and multiple directions. In order to accurately obtain the bio-tribological performances of artificial joint materials, a tribological tester with a miniature four-station tribological system is proposed with four distinctive features. Firstly, comparability and repeatability of a test are ensured by four equal stations of the tester. Secondly, cross-linked scratch between tribo-pairs of human joints can be simulated by using a gear-rack meshing mechanism to produce composite motions. With this mechanism, the friction tracks can be designed by varying reciprocating and rotating speeds. Thirdly, variable loading system is realized by using a ball-screw mechanism driven by a stepper motor, by which loads under different gaits during walking are simulated. Fourthly, dynamic friction force and normal load can be measured simultaneously. The verifications of the performances of the developed tester show that the variable frictional tracks can produce different wear debris compared with one-directional tracks, and the accuracy of loading and friction force is within ±5%. Thus the high consistency among different stations can be obtained. Practically, the proposed tester system could provide more comprehensive and accurate bio-tribological evaluations for prosthetic materials.
Recovering Aerodynamic Side Loads on Rocket Nozzles using Quasi-Static Strain-Gage Measurements
NASA Technical Reports Server (NTRS)
Brown, Andrew; Ruf, Joseph H.; McDaniels, David M.
2009-01-01
During over-expanded operation of rocket nozzles, which is defined to be when the exit pressure is greater than internal pressure over some part of the nozzle, the nozzle will experience a transverse forcing function due to the pressure differential across the nozzle wall. Over-expansion occurs during the nozzle start-up and shutdown transient, even in high-altitude engines, because most test facilities cannot completely reproduce the near-vacuum pressures at those altitudes. During this transient, the pressure differential moves axially down the nozzle as it becomes pressurized, but this differential is never perfectly symmetric circumferentially. The character of the forcing function is highly complex and defined by a series of restricted and free shock separations. The subject of this paper is the determination of the magnitude of this loading during sub-scale testing via measurement of the structural dynamic response of the nozzle and its support structure. An initial attempt at back-calculating this load using the inverse of the transfer function was performed, but this attempt was shown to be highly susceptible to numerical error. The final method chosen was to use statically calibrated strain data and to filter out the system fundamental frequency such that the measured response yields close to the correct dynamic loading function. This method was shown to capture 93% of the pressure spectral energy using controlled load shaker testing. This method is one of the only practical ways for the inverse determination of the forcing function for non-stationary excitations, and, to the authors' knowledge, has not been described in the literature to date.
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Vetter, Travis K.; Penning, Kevin B.; Coulson, David A.; Heeg, Jennifer.
2013-01-01
of a two part document. Part 2 is titled: "Aeroservoelastic Testing of Free Flying Wind Tunnel Models, Part 2: A Centerline Supported Fullspan Model Tested for Gust Load Alleviation." A team comprised of the Air Force Research Laboratory (AFRL), Northrop Grumman, Lockheed Martin, and the NASA Langley Research Center conducted three aeroservoelastic wind tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, flexible vehicles. In the first of these three tests, a semispan, aeroelastically scaled, wind tunnel model of a flying wing SensorCraft vehicle was mounted to a force balance to demonstrate gust load alleviation. In the second and third tests, the same wing was mated to a new, multi-degree of freedom, sidewall mount. This mount allowed the half-span model to translate vertically and pitch at the wing root, allowing better simulation of the full span vehicle's rigid body modes. Gust load alleviation (GLA) and Body freedom flutter (BFF) suppression were successfully demonstrated. The rigid body degrees-of-freedom required that the model be flown in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort.
Liebsch, Christian; Zimmermann, Julia; Graf, Nicolas; Schilling, Christoph; Wilke, Hans-Joachim; Kienle, Annette
2018-01-01
Biomechanical in vitro tests analysing screw loosening often include high standard deviations caused by high variabilities in bone mineral density and pedicle geometry, whereas standardized mechanical models made of PU foam often do not integrate anatomical or physiological boundary conditions. The purpose of this study was to develop a most realistic mechanical model for the standardized and reproducible testing of pedicle screws regarding the resistance against screw loosening and the holding force as well as to validate this model by in vitro experiments. The novel mechanical testing model represents all anatomical structures of a human vertebra and is consisting of PU foam to simulate cancellous bone, as well as a novel pedicle model made of short carbon fibre filled epoxy. Six monoaxial cannulated pedicle screws (Ø6.5 × 45mm) were tested using the mechanical testing model as well as human vertebra specimens by applying complex physiological cyclic loading (shear, tension, and bending; 5Hz testing frequency; sinusoidal pulsating forces) in a dynamic materials testing machine with stepwise increasing load after each 50.000 cycles (100.0N shear force + 20.0N per step, 51.0N tension force + 10.2N per step, 4.2Nm bending moment + 0.8Nm per step) until screw loosening was detected. The pedicle screw head was fixed on a firmly clamped rod while the load was applied in the vertebral body. For the in vitro experiments, six human lumbar vertebrae (L1-3, BMD 75.4 ± 4.0mg/cc HA, pedicle width 9.8 ± 0.6mm) were tested after implanting pedicle screws under X-ray control. Relative motions of pedicle screw, specimen fixture, and rod fixture were detected using an optical motion tracking system. Translational motions of the mechanical testing model experiments in the point of load introduction (0.9-2.2mm at 240N shear force) were reproducible within the variation range of the in vitro experiments (0.6-3.5mm at 240N shear force). Screw loosening occurred continuously in each case between 140N and 280N, while abrupt failures of the specimen were observed only in vitro. In the mechanical testing model, no translational motion was detected in the screw entry point, while in vitro, translational motions of up to 2.5mm in inferior direction were found, leading to a slight shift of the centre of rotation towards the screw tip. Translational motions of the screw tip of about 5mm in superior direction were observed both in vitro and in the mechanical testing model, while they were continuous in the mechanical testing model and rapidly increasing after screw loosening initiation in vitro. The overall pedicle screw loosening characteristics were qualitatively and quantitatively similar between the mechanical testing model and the human vertebral specimens as long as there was no translation of the screw at the screw entrance point. Therefore, the novel mechanical testing model represents a promising method for the standardized testing of pedicle screws regarding screw loosening for cases where the screw rotates around a point close to the screw entry point. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structural Element Tests in Support of the Keyworker Blast Shelter Program
1985-10-01
forced concrete -lab with two transverse reinforced concrete floor beams to transfer the interior column loads to the floor slab. Using a roof slab... lateral buck- "-4 ling; however, this could have occurred after a column buckled and the roof collapsed. Since load cell 2 (middle column ) recorded the...ANALYSIS OF FREE-FIELD AND STRUCTURE LOADING DATA ... ........ .. 102 6.1.1 Loading Wave Velocity ........... .................... ... 102 6.1.2 Lateral
Dynamic behaviors of historical wrought iron truss bridges: a field testing case study
NASA Astrophysics Data System (ADS)
Dai, Kaoshan; Wang, Ying; Hedric, Andrew; Huang, Zhenhua
2016-04-01
The U.S. transportation infrastructure has many wrought iron truss bridges that are more than a century old and still remain in use. Understanding the structural properties and identifying the health conditions of these historical bridges are essential to deciding the maintenance or rebuild plan of the bridges. This research involved an on-site full-scale system identification test case study on the historical Old Alton Bridge (a wrought iron truss bridge built in 1884 in Denton, Texas) using a wireless sensor network. The study results demonstrate a practical and convenient experimental system identification method for historical bridge structures. The method includes the basic steps of the in-situ experiment and in-house data analysis. Various excitation methods are studied for field testing, including ambient vibration by wind load, forced vibration by human jumping load, and forced vibration by human pulling load. Structural responses of the bridge under these different excitation approaches were analyzed and compared with numerical analysis results.
Physical load handling and listening comprehension effects on balance control.
Qu, Xingda
2010-12-01
The purpose of this study was to determine the physical load handling and listening comprehension effects on balance control. A total of 16 young and 16 elderly participants were recruited in this study. The physical load handling task required holding a 5-kg load in each hand with arms at sides. The listening comprehension task involved attentive listening to a short conversation. Three short questions were asked regarding the conversation right after the testing trial to test the participants' attentiveness during the experiment. Balance control was assessed by centre of pressure-based measures, which were calculated from the force platform data when the participants were quietly standing upright on a force platform. Results from this study showed that both physical load handling and listening comprehension adversely affected balance control. Physical load handling had a more deleterious effect on balance control under the listening comprehension condition vs. no-listening comprehension condition. Based on the findings from this study, interventions for the improvement of balance could be focused on avoiding exposures to physically demanding tasks and cognitively demanding tasks simultaneously. STATEMENT OF RELEVANCE: Findings from this study can aid in better understanding how humans maintain balance, especially when physical and cognitive loads are applied. Such information is useful for developing interventions to prevent fall incidents and injuries in occupational settings and daily activities.
NASA Technical Reports Server (NTRS)
Pepper, Stephen V.; Jones, William R., Jr.; Kingsbury, Edward; Jansen, Mark J.
2007-01-01
The spiral orbit tribometer (SOT) bridges the gap between full-scale life testing and typically unrealistic accelerated life testing of ball-bearing lubricants in conjunction with bearing ball and race materials. The SOT operates under realistic conditions and quickly produces results, thereby providing information that can guide the selection of lubricant, ball, and race materials early in a design process. The SOT is based upon a simplified, retainerless thrust bearing comprising one ball between flat races (see figure). The SOT measures lubricant consumption and degradation rates and friction coefficients in boundary lubricated rolling and pivoting contacts. The ball is pressed between the lower and upper races with a controlled force and the lower plate is rotated. The combination of load and rotation causes the ball to move in a nearly circular orbit that is, more precisely, an opening spiral. The spiral s pitch is directly related to the friction coefficient. At the end of the orbit, the ball contacts the guide plate, restoring the orbit to its original radius. The orbit is repeatable throughout the entire test. A force transducer, mounted in-line with the guide plate, measures the force between the ball and the guide plate, which directly relates to the friction coefficient. The SOT, shown in the figure, can operate in under ultra-high vacuum (10(exp -9) Torr) or in a variety of gases at atmospheric pressure. The load force can be adjusted between 45 and 450 N. By varying the load force and ball diameter, mean Hertzian stresses between 0.5 and 5.0 GPa can be obtained. The ball s orbital speed range is between 1 and 100 rpm.
A prediction model for lift-fan simulator performance. M.S. Thesis - Cleveland State Univ.
NASA Technical Reports Server (NTRS)
Yuska, J. A.
1972-01-01
The performance characteristics of a model VTOL lift-fan simulator installed in a two-dimensional wing are presented. The lift-fan simulator consisted of a 15-inch diameter fan driven by a turbine contained in the fan hub. The performance of the lift-fan simulator was measured in two ways: (1) the calculated momentum thrust of the fan and turbine (total thrust loading), and (2) the axial-force measured on a load cell force balance (axial-force loading). Tests were conducted over a wide range of crossflow velocities, corrected tip speeds, and wing angle of attack. A prediction modeling technique was developed to help in analyzing the performance characteristics of lift-fan simulators. A multiple linear regression analysis technique is presented which calculates prediction model equations for the dependent variables.
Lorenz, Andrea; Bobrowitsch, Evgenij; Wünschel, Markus; Walter, Christian; Wülker, Nikolaus; Leichtle, Ulf G
2015-07-23
Anterior knee pain is often associated with patellar maltracking and instability. However, objective measurement of patellar stability under clinical and experimental conditions is difficult, and muscular activity influences the results. In the present study, a new experimental setting for in vitro measurement of patellar stability was developed and the mediolateral force-displacement behavior of the native knee analyzed with special emphasis on patellar tilt and muscle loading. In the new experimental setup, two established testing methods were combined: an upright knee simulator for positioning and loading of the knee specimens, and an industry robot for mediolateral patellar displacement. A minimally invasive coupling and force control mechanism enabled unconstrained motion of the patella as well as measurement of patellar motion in all six degrees of freedom via an external ultrasonic motion-tracking system. Lateral and medial patellar displacement were measured on seven fresh-frozen human knee specimens in six flexion angles with varying muscle force levels, muscle force distributions, and displacement forces. Substantial repeatability was achieved for patellar shift (ICC(3,1) = 0.67) and tilt (ICC(3,1) = 0.75). Patellar lateral and medial shift decreased slightly with increasing flexion angle. Additional measurement of patellar tilt provided interesting insights into the different displacement mechanisms in lateral and medial directions. For lateral displacement, the patella tilted in the same (lateral) direction, and tilted in the opposite direction (again laterally) for medial displacement. With regard to asymmetric muscle loading, a significant influence (p < 0.03, up to 5 mm shift and 8° tilt) was found for lateral displacement and a reasonable relationship between muscle and patellar force, whereas no effect was visible in the medial direction. The developed experimental setup delivered reproducible results and was found to be an excellent testing method for the in vitro analysis of patellar stability and future investigation of surgical techniques for patellar stabilization and total knee arthroplasty. We demonstrated a significant influence of asymmetric quadriceps loading on patellar stability. In particular, increased force application on the vastus lateralis muscle led to a clear increase of lateral patellar displacement.
Paulus, David C; Reynolds, Michael C; Schilling, Brian K
2010-01-01
The ground reaction force during the concentric (raising) portion of the squat exercise was compared to that of isoinertial loading (free weights) for three pneumatically controlled resistance methods: constant resistance, cam force profile, and proportional force control based on velocity. Constant force control showed lower ground reaction forces than isoinertial loading throughout the range of motion (ROM). The cam force profile exhibited slightly greater ground reaction forces than isoinertial loading at 10 and 40% ROM with fifty-percent greater loading at 70% ROM. The proportional force control consistently elicited greater ground reaction force than isoinertial loading, which progressively ranged from twenty to forty percent increase over isoinertial loading except for being approximately equal at 85% ROM. Based on these preliminary results, the proportional control shows the most promise for providing loading that is comparable in magnitude to isoinertial loading. This technology could optimize resistance exercise for sport-specific training or as a countermeasure to atrophy during spaceflight.
Plantar loading during cutting while wearing a rigid carbon fiber insert.
Queen, Robin M; Abbey, Alicia N; Verma, Ravi; Butler, Robert J; Nunley, James A
2014-01-01
Stress fractures are one of the most common injuries in sports, accounting for approximately 10% of all overuse injuries. Treatment of fifth metatarsal stress fractures involves both surgical and nonsurgical interventions. Fifth metatarsal stress fractures are difficult to treat because of the risks of delayed union, nonunion, and recurrent injuries. Most of these injuries occur during agility tasks, such as those performed in soccer, basketball, and lacrosse. To examine the effect of a rigid carbon graphite footplate on plantar loading during 2 agility tasks. Crossover study. Laboratory. A total of 19 recreational male athletes with no history of lower extremity injury in the past 6 months and no previous metatarsal stress fractures were tested. Seven 45° side-cut and crossover-cut tasks were completed in a shoe with or without a full-length rigid carbon plate. Testing order between the shoe conditions and the 2 cutting tasks was randomized. Plantar-loading data were recorded using instrumented insoles. Peak pressure, maximum force, force-time integral, and contact area beneath the total foot, the medial and lateral midfoot, and the medial, middle, and lateral forefoot were analyzed. A series of paired t tests was used to examine differences between the footwear conditions (carbon graphite footplate, shod) for both cutting tasks independently (α = .05). During the side-cut task, the footplate increased total foot and lateral midfoot peak pressures while decreasing contact area and lateral midfoot force-time integral. During the crossover-cut task, the footplate increased total foot and lateral midfoot peak pressure and lateral forefoot force-time integral while decreasing total and lateral forefoot contact area. Although a rigid carbon graphite footplate altered some aspects of the plantar-pressure profile during cutting in uninjured participants, it was ineffective in reducing plantar loading beneath the fifth metatarsal.
Novel approach to tensile testing of micro- and nanoscale fibers
NASA Astrophysics Data System (ADS)
Tan, E. P. S.; Lim, C. T.
2004-08-01
Due to the strength and size of the micro- and nanoscale fibers, larger conventional universal testing machines are not suitable in performing stretch test of such fibers. Existing microtensile testing machines are custom-made and are complex and expensive to construct. Here, a novel method of using an existing atomic force microscope (AFM)-based nanoindenation system for the tensile testing of microscale or bundled nanoscale fibers is proposed. The microscale poly (L-lactic-co-glycolic acid) fiber (˜25 μm diameter) was used as an example to illustrate this technique. The microfiber was first attached to a nanoindenter tip and the base via a custom-made holder to ensure that the microfiber was taut and vertically aligned. The force transducer of the nanoindenter was used to measure the tensile force required to stretch the microfiber. The microfiber was stretched using the stepper motor of the AFM system. The elongation of the microfiber was measured by subtracting the elongation of the transducer spring from the total elongation of the microfiber and transducer spring. A plot of the load against elongation of the microfiber was then obtained. The stress and strain of the microfiber was measured by subtracting the elongation of the transducer spring from the total elongation of the microfiber was then obtained. The stress and strain of the microfiber was obtained by dividing the load and elongation by cross-sectional area and gauge length, respectively. With this data, the mechanical behavior of the sample at small strains can be studied. This system is able to provide a high load resolution of 80 nN and displacement resolution of 0.5 nm. However, maximum load and sample elongation is limited and handling of the sample still remains a challenge.
NASA Technical Reports Server (NTRS)
Hoff, N J; Klein, Bertram
1944-01-01
In the present part I of a series of reports on the inward bulge type buckling of monocoque cylinders the buckling load in combined bending and compression is first derived. Next the reduction in the buckling load because of a nonlinear direct stress distribution is determined. In experiments nonlinearity may result from an inadequate stiffness of the end attachments in actual airplanes from the existence of concentrated loads or cut-outs. The effect of a shearing force upon the critical load is investigated through an analysis of the results of tests carried out at GALCIT with 55 reinforced monocoque cylinders. Finally, a simple criterion of general instability is presented in the form of a buckling inequality which should be helpful to the designer of a monocoque in determining the sizes of the rings required for excluding the possibility of inward bulge type buckling.
Axial force and efficiency tests of fixed center variable speed belt drive
NASA Technical Reports Server (NTRS)
Bents, D. J.
1981-01-01
An investigation of how the axial force varies with the centerline force at different speed ratios, speeds, and loads, and how the drive's transmission efficiency is affected by these related forces is described. The tests, intended to provide a preliminary performance and controls characterization for a variable speed belt drive continuously variable transmission (CVT), consisted of the design and construction of an experimental test rig geometrically similar to the CVT, and operation of that rig at selected speed ratios and power levels. Data are presented which show: how axial forces exerted on the driver and driven sheaves vary with the centerline force at constant values of speed ratio, speed, and output power; how the transmission efficiency varies with centerline force and how it is also a function of the V belt coefficient; and the axial forces on both sheaves as normalized functions of the traction coefficient.
Initial stability of press-fit acetabular components under rotational forces.
Fehring, Keith A; Owen, John R; Kurdin, Anton A; Wayne, Jennifer S; Jiranek, William A
2014-05-01
The primary goal of this study was to determine the initial press-fit stability in acetabular components without screw fixation. Mechanical testing was performed with the implantation of press-fit acetabular components in cadaveric specimens. No significant difference was found in load to failure testing between 1 and 2 mm of under-reaming. However, there was significant variability in bending forces required to create 150 μm of micromotion ranging from 49.3 N to 214.4 N. This study shows that cups implanted in a press-fit fashion, which are felt to be clinically stable, have high degrees of variability in resisting load and may be at risk for loosening. There is a need for more objective intra-operative techniques to test cup stability. © 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James Schondel; Henry S. Chu
Lightweight panels have been designed to protect buildings and vehicles from blast pressures by activating energy dissipation mechanisms under the influence of blast loading. Panels were fabricated which featured a variety of granular materials and hydraulic dissipative deformation mechanisms and the test articles were subjected to full-scale blast loading. The force time-histories transmitted by each technology were measured by a novel method that utilized inexpensive custom-designed force sensors. The array of tests revealed that granular materials can effectively dissipate blast energy if they are employed in a way that they easily crush and rearrange. Similarly, hydraulic dissipation can effectively dissipatemore » energy if the panel features a high fraction of porosity and the panel encasement features low compressive stiffness.« less
Dwyer, Tim; Willett, Thomas L; Dold, Andrew P; Petrera, Massimo; Wasserstein, David; Whelan, Danny B; Theodoropoulos, John S
2016-02-01
The purpose of this study was to evaluate the biomechanical behavior of an all-suture glenoid anchor in comparison with a more conventional screw-in glenoid anchor, with regard to maximum load to failure and tensile displacement. All mechanical testing was performed using an Instron ElectroPuls E1000 mechanical machine, with a 10 N pre-load and displacement rate of 10 mm/min. Force-displacement curves were generated, with calculation of maximum load, maximum displacement, displacement at 50 N and stiffness. Pretesting of handset Y-Knots in bone analog models revealed low force displacement below 60 N of force. Subsequently, three groups of anchors were tested for pull out strength in bovine bone and cadaver glenoid bone: a bioabsorbable screw-in anchor (Bio Mini-Revo, ConMed Linvatec), a handset all-suture anchor (Y-Knot, ConMed Linvatec) and a 60 N pre-tensioned all-suture anchor (Y-Knot). A total of 8 anchors from each group was tested in proximal tibia of bovine bone and human glenoids (age range 50-90). In bovine bone, the Bio Mini-Revo displayed greater maximum load to failure (206 ± 77 N) than both the handset (140 ± 51 N; P = 0.01) and the pre-tensioned Y-Knot (135 ± 46 N; P = 0.001); no significant difference was seen between the three anchor groups in glenoid bone. Compared to the screw-in anchors, the handset all-suture anchor displayed inferior fixation, early displacement and greater laxity in the bovine bone and cadaveric bone (P < 0.05). Pre-tensioning the all-suture anchor to 60 N eliminated this behavior in all bone models. Handset Y-Knots display low force anchor displacement, which is likely due to slippage in the pilot hole. Pre-tensioning the Y-Knot to 60 N eliminates this behavior. I.
Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong
2015-01-01
Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.
Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong
2015-01-01
Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range. PMID:25723492
Zhu, Q A; Park, Y B; Sjovold, S G; Niosi, C A; Wilson, D C; Cripton, P A; Oxland, T R
2008-02-01
Experimental measurement of the load-bearing patterns of the facet joints in the lumbar spine remains a challenge, thereby limiting the assessment of facet joint function under various surgical conditions and the validation of computational models. The extra-articular strain (EAS) technique, a non-invasive measurement of the contact load, has been used for unilateral facet joints but does not incorporate strain coupling, i.e. ipsilateral EASs due to forces on the contralateral facet joint. The objectives of the present study were to establish a bilateral model for facet contact force measurement using the EAS technique and to determine its effectiveness in measuring these facet joint contact forces during three-dimensional flexibility tests in the lumbar spine. Specific goals were to assess the accuracy and repeatability of the technique and to assess the effect of soft-tissue artefacts. In the accuracy and repeatability tests, ten uniaxial strain gauges were bonded to the external surface of the inferior facets of L3 of ten fresh lumbar spine specimens. Two pressure-sensitive sensors (Tekscan) were inserted into the joints after the capsules were cut. Facet contact forces were measured with the EAS and Tekscan techniques for each specimen in flexion, extension, axial rotation, and lateral bending under a +/- 7.5 N m pure moment. Four of the ten specimens were tested five times in axial rotation and extension for repeatability. These same specimens were disarticulated and known forces were applied across the facet joint using a manual probe (direct accuracy) and a materials-testing system (disarticulated accuracy). In soft-tissue artefact tests, a separate set of six lumbar spine specimens was used to document the virtual facet joint contact forces during a flexibility test following removal of the superior facet processes. Linear strain coupling was observed in all specimens. The average peak facet joint contact forces during flexibility testing was greatest in axial rotation (71 +/- 25 N), followed by extension (27 +/- 35 N) and lateral bending (25 +/- 28 N), and they were most repeatable in axial rotation (coefficient of variation, 5 per cent). The EAS accuracy was about 20 per cent in the direct accuracy assessment and about 30 per cent in the disarticulated accuracy test. The latter was very similar to the Tekscan accuracy in the same test. Virtual facet loads (r.m.s.) were small in axial rotation (12 N) and lateral bending (20 N), but relatively large in flexion (34 N) and extension (35 N). The results suggested that the bilateral EAS model could be used to determine the facet joint contact forces in axial rotation but may result in considerable error in flexion, extension, and lateral bending.
An approach to improve the spatial resolution of a force mapping sensing system
NASA Astrophysics Data System (ADS)
Negri, Lucas Hermann; Manfron Schiefer, Elberth; Sade Paterno, Aleksander; Muller, Marcia; Luís Fabris, José
2016-02-01
This paper proposes a smart sensor system capable of detecting sparse forces applied to different positions of a metal plate. The sensing is performed with strain transducers based on fiber Bragg gratings (FBG) distributed under the plate. Forces actuating in nine squared regions of the plate, resulting from up to three different loads applied simultaneously to the plate, were monitored with seven transducers. The system determines the magnitude of the force/pressure applied on each specific area, even in the absence of a dedicated transducer for that area. The set of strain transducers with coupled responses and a compressive sensing algorithm are employed to solve the underdetermined inverse problem which emerges from mapping the force. In this configuration, experimental results have shown that the system is capable of recovering the value of the load distributed on the plate with a signal-to-noise ratio better than 12 dB, when the plate is submitted to three simultaneous test loads. The proposed method is a practical illustration of compressive sensing algorithms for the reduction of the number of FBG-based transducers used in a quasi-distributed configuration.
Grips for Lightweight Tensile Specimens
NASA Technical Reports Server (NTRS)
Witte, William G., Jr.; Gibson, Walter D.
1987-01-01
Set of grips developed for tensile testing of lightweight composite materials. Double-wedge design substantially increases gripping force and reduces slippage. Specimen held by grips made of hardened wedges. Assembly screwed into load cell in tensile-testing machine.
Injury tolerance criteria for short-duration axial impulse loading of the isolated tibia.
Quenneville, Cheryl E; McLachlin, Stewart D; Greeley, Gillian S; Dunning, Cynthia E
2011-01-01
Impulse loading of the lower leg during events such as ejection seat landings or in-vehicle land mine blasts may result in devastating injuries. These impacts achieve higher forces over shorter durations than car crashes, from which experimental results have formed the current basis for protective measures of an axial force limit of 5.4 kN, as registered by an anthropomorphic test device (ATD). The hypotheses of this study were that the injury tolerance of the isolated tibia to short-duration axial loading is higher than that previously reported and that secondary parameters such as momentum or kinetic energy are significant for fracture tolerance, in addition to force. Seven pairs of cadaveric tibias were impacted using a pneumatic testing apparatus, replicating short-duration axial impulse events. One specimen from each pair was impacted with a light mass and the contralateral impacted with a heavy mass, to investigate the effects of momentum and kinetic energy, as well as force, on injury. Impacts were applied incrementally until failure. Force, kinetic energy, age, and height were shown to be significant factors in the probability of fracture. A 10% risk of injury corresponded to an impact force of 7.9 kN, with an average kinetic energy of 240 J. In comparison, this same impact level applied to an ATD would register a force of 16.2 kN because of the higher stiffness of the ATD. These results suggest that the current injury standard may be too conservative for the tibia during high-speed impacts such as in-vehicle land mine blasts and that factors in addition to force should be taken into consideration.
NASA Technical Reports Server (NTRS)
Goldie, James H.; Bushko, Dariusz A.; Gerver, Michael J.
1995-01-01
In technique for measuring tensile force of bolt, specially fabricated magnetostrictive washer used as force transducer. Compact, portable inductive electronic sensor placed against washer to measure tension force. New system provides accurate, economical, and convenient way to measure bolt tension in field. Measurements on test assembly shows that tension can be measured to accuracy of about plus or minus 1 percent of load capacity of typical bolt.
Manorama, Abinand; Meyer, Ronald; Wiseman, Robert; Bush, Tamara Reid
2013-06-01
Forces applied to the skin cause a decrease in regional blood flow. This decrease in blood flow can cause tissue necrosis and lead to the formation of deep, penetrating wounds called pressure ulcers. These wounds are detrimental to individuals with compromised health, such as the elderly and spinal-cord injured. Although surface pressure is known to be a primary risk factor for developing a pressure ulcer, a seated individual rarely experiences pressure alone but rather combined loading which includes pressure as well as shear force on the skin. However, little research has been conducted to quantify the effects of shear forces on blood flow. Fifteen men were tested in a magnetic resonance imaging scanner under no load, a normal load, and a combination of normal and shear loads. Changes in arterial and venous blood flow in the forearm were measured using magnetic resonance angiography phase-contrast imaging. The blood flow in the anterior interosseous artery and basilic vein of the forearm decreased with the application of normal loads, and decreased further with the addition of shear loads. Marginal to significant differences at a 90% confidence level (P=0.08, 0.10) were observed, and medium to high effect sizes (0.3 to 0.5) were obtained. Based on these results, shear force is an important factor to consider in relation to pressure ulcer propagation and prevention, and hence, future prevention approaches should also focus on mitigating shear loads. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chieruzzi, Manila; Rallini, Marco; Pagano, Stefano; Eramo, Stefano; D'Errico, Potito; Torre, Luigi; Kenny, José M
2014-02-01
The aim of this study was to investigate the mechanical behavior of a dental system built up with fiber-reinforced composite (FRC) endodontic posts with different types of fibers and two cements (the first one used with a primer, the second one without it). Six FRC posts were used. Each system was characterized in terms of structural efficiency under external applied loads similar to masticatory forces. An oblique force was applied and stiffness and maximum load data were obtained. The same test was used for the dentine. The systems were analyzed by scanning electron microscope (SEM) to investigate the surface of the post and inner surface of root canal after failure. The mechanical tests showed that load values in dental systems depend on the post material and used cement. The highest load (281 ± 59 N) was observed for the conical glass fiber posts in the cement without primer. There was a 50 and 85% increase in the maximum load for two of the conical posts with glass fibers and a 229% increase for the carbon fiber posts in the cement without primer as compared with the cement with primer. Moreover, almost all the studied systems showed fracture resistances higher than the typical masticatory loads. The microscopic analysis underlined the good adhesion of the second cement at the interfaces between dentine and post. The mechanical tests confirmed that the strength of the dental systems subjected to masticatory loads was strictly related to the bond at the interface post/cement and cement/dentine. Copyright © 2013 Wiley Periodicals, Inc.
Impact force as a scaling parameter
NASA Technical Reports Server (NTRS)
Poe, Clarence C., Jr.; Jackson, Wade C.
1994-01-01
The Federal Aviation Administration (FAR PART 25) requires that a structure carry ultimate load with nonvisible impact damage and carry 70 percent of limit flight loads with discrete damage. The Air Force has similar criteria (MIL-STD-1530A). Both civilian and military structures are designed by a building block approach. First, critical areas of the structure are determined, and potential failure modes are identified. Then, a series of representative specimens are tested that will fail in those modes. The series begins with tests of simple coupons, progresses through larger and more complex subcomponents, and ends with a test on a full-scale component, hence the term 'building block.' In order to minimize testing, analytical models are needed to scale impact damage and residual strength from the simple coupons to the full-scale component. Using experiments and analysis, the present paper illustrates that impact damage can be better understood and scaled using impact force than just kinetic energy. The plate parameters considered are size and thickness, boundary conditions, and material, and the impact parameters are mass, shape, and velocity.
Active Flap Control of the SMART Rotor for Vibration Reduction
NASA Technical Reports Server (NTRS)
Hall, Steven R.; Anand, R. Vaidyanathan; Straub, Friedrich K.; Lau, Benton H.
2009-01-01
Active control methodologies were applied to a full-scale active flap rotor obtained during a joint Boeing/ DARPA/NASA/Army test in the Air Force National Full-Scale Aerodynamic Complex 40- by 80-foot anechoic wind tunnel. The active flap rotor is a full-scale MD 900 helicopter main rotor with each of its five blades modified to include an on-blade piezoelectric actuator-driven flap with a span of 18% of radius, 25% of chord, and located at 83% radius. Vibration control demonstrated the potential of active flaps for effective control of vibratory loads, especially normal force loads. Active control of normal force vibratory loads using active flaps and a continuous-time higher harmonic control algorithm was very effective, reducing harmonic (1-5P) normal force vibratory loads by 95% in both cruise and approach conditions. Control of vibratory roll and pitch moments was also demonstrated, although moment control was less effective than normal force control. Finally, active control was used to precisely control blade flap position for correlation with pretest predictions of rotor aeroacoustics. Flap displacements were commanded to follow specific harmonic profiles of 2 deg or more in amplitude, and the flap deflection errors obtained were less than 0.2 deg r.m.s.
Musculoskeletal loading during the round-off in female gymnastics: the effect of hand position.
Farana, Roman; Jandacka, Daniel; Uchytil, Jaroslav; Zahradnik, David; Irwin, Gareth
2014-06-01
Chronic elbow injuries from tumbling in female gymnastics present a serious problem for performers. This research examined how the biomechanical characteristics of impact loading and elbow kinematics and kinetics change as a function of technique selection. Seven international-level female gymnasts performed 10 trials of the round-off from a hurdle step to flic-flac with 'parallel' and 'T-shape' hand positions. Synchronized kinematic (3D-automated motion analysis system; 247 Hz) and kinetic (two force plates; 1,235 Hz) data were collected for each trial. Wilcoxon non-parametric test and effect-size statistics determined differences between the hand positions examined in this study. Significant differences (p < 0.05) and large effect sizes (ES > 0.8) were observed for peak vertical ground reaction force (GRF), anterior-posterior GRF, resultant GRF, loading rates of these forces and elbow joint angles, and internal moments of force in sagittal, transverse, and frontal planes. In conclusion, the T-shape hand position reduces vertical, anterior-posterior, and resultant contact forces and has a decreased loading rate indicating a safer technique for the round-off. Significant differences observed in joint elbow moments highlighted that the T-shape position may prevent overloading of the joint complex and consequently reduce the potential for elbow injury.
NASA Astrophysics Data System (ADS)
Pakkratoke, M.; Sanponpute, T.
2017-09-01
The penetrated depth of the Rockwell hardness testing machine is normally not more than 0.260 mm. Using commercial load cell cannot achieve the proposed force calibration according to ISO 6508-2[1]. For these reason, the high stiffness load cell (HSL) was fabricated. Its obvious advantage is deformation less than 0.020 mm at 150 kgf maximum load applied. The HSL prototype was designed in concept of direct compression and then confirmed with finite element analysis, FEA. The results showed that the maximum deformation was lower than 0.012 mm at capacity.
Muscle Force-Velocity Relationships Observed in Four Different Functional Tests.
Zivkovic, Milena Z; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan
2017-02-01
The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force-velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles.
Contact resistance evolution of highly cycled, lightly loaded micro-contacts
NASA Astrophysics Data System (ADS)
Stilson, Christopher; Coutu, Ronald
2014-03-01
Reliable microelectromechanical systems (MEMS) switches are critical for developing high performance radio frequency circuits like phase shifters. Engineers have attempted to improve reliability and lifecycle performance using novel contact metals, unique mechanical designs and packaging. Various test fixtures including: MEMS devices, atomic force microscopes (AFM) and nanoindentors have been used to collect resistance and contact force data. AFM and nanoindentor test fixtures allow direct contact force measurements but are severely limited by low resonance sensors, and therefore low data collection rates. This paper reports the contact resistance evolution results and fabrication of thin film, sputtered and evaporated gold, micro-contacts dynamically tested up to 3kHz. The upper contact support structure consists of a gold surface micromachined, fix-fix beam designed with sufficient restoring force to overcome adhesion. The hemisphere-upper and planar-lower contacts are mated with a calibrated, external load resulting in approximately 100μN of contact force and are cycled in excess of 106 times or until failure. Contact resistance is measured, in-situ, using a cross-bar configuration and the entire apparatus is isolated from external vibration and housed in an enclosure to minimize contamination due to ambient environment. Additionally, contact cycling and data collection are automated using a computer and LabVIEW. Results include contact resistance measurements of 6 and 8 μm radius contact bumps and lifetime testing up to 323.6 million cycles.
Time- & Load-Dependence of Triboelectric Effect.
Pan, Shuaihang; Yin, Nian; Zhang, Zhinan
2018-02-06
Time- and load-dependent friction behavior is considered as important for a long time, due to its time-evolution and force-driving characteristics. However, its electronic behavior, mainly considered in triboelectric effect, has almost never been given the full attention and analyses from the above point of view. In this paper, by experimenting with fcc-latticed aluminum and copper friction pairs, the mechanical and electronic behaviors of friction contacts are correlated by time and load analyses, and the behind physical understanding is provided. Most importantly, the difference of "response lag" in force and electricity is discussed, the extreme points of coefficient of friction with the increasing normal loads are observed and explained with the surface properties and dynamical behaviors (i.e. wear), and the micro and macro theories linking tribo-electricity to normal load and wear (i.e. the physical explanation between coupled electrical and mechanical phenomena) are successfully developed and tested.
Oranchuk, Dustin J; Robinson, Tracey L; Switaj, Zachary J; Drinkwater, Eric J
2017-04-15
Weightlifting movements have high skill demands and require expert coaching. Loaded jumps have a comparably lower skill demand, but may be similarly effective for improving explosive performance. The purpose of this study was to compare vertical jump performance, isometric force, and rate of force development (RFD) following a ten-week intervention employing the hang high-pull (hang-pull) or trap-bar jump squat (jump-squat). Eighteen NCAA Division II swimmers (8 males, 10 females) with at least one year of resistance training experience volunteered to participate. Testing included the squat jump (SJ), countermovement jump (CMJ) and the isometric mid-thigh pull (IMTP). Vertical ground reaction forces were analyzed to obtain jump height and relative peak power. Relative peak force, peak RFD and relative force at five time bands were obtained from the IMTP. Subjects were randomly assigned to either a hang-pull (n = 9) or jump-squat (n = 9) training group and completed a ten-week, volume-equated, periodized training program. While there was a significant main effect of training for both groups, no statistically significant between-group differences were found (p ≥ 0.17) for any of the dependent variables. However, medium effect sizes in favor of the jump-squat training group were seen in SJ height (d = 0.56) and SJ peak power (d = 0.69). Loaded jumps seem equally effective as weightlifting derivatives for improving lower-body power in experienced athletes. Since loaded jumps require less skill and less coaching expertise than weightlifting, loaded jumps should be considered where coaching complex movements is difficult.
Preliminary Results of Stability and Control Investigation of the Bell X-5 Research Airplane
NASA Technical Reports Server (NTRS)
Finch, Thomas W; Briggs, Donald W
1953-01-01
During the acceptance tests of the Bell X-5 airplane, measurements of the static stability and control characteristics and horizontal-tail loads were obtained by the NACA High-Speed Flight Research Station. The results of the stability and control measurements are presented in this paper. A change in sweep angle between 20 deg and 59 deg had a minor effect on the longitudinal trim, with a maximum change of about 2.5 deg in elevator deflection being required at a Mach number near 0.85; however, sweeping the wings produced a total stick-force change of about 40 pounds. At low Mach numbers there was a rapid increase in stability at high normal-force coefficients for both 20 0 and 1100 sweepback, whereas a condition of neutral stability existed for 58 0 sweepback at high normal-force coefficients. At Mach numbers near 0.8 there was an instability at normal-force coefficients above 0.5 for all sweep angles tested. In the low normal-force-coefficient range a high degree of stability resulted in high stick forces which limited the maximum load factors attainable in the demonstration flights to values under 5g for all sweep angles at a Mach number near 0.8 and an altitude of 12,000 feet. The aileron effectiveness at 200 sweepback was found to be low over the Mach number range tested.
Impact Forces from Tsunami-Driven Debris
NASA Astrophysics Data System (ADS)
Ko, H.; Cox, D. T.; Riggs, H.; Naito, C. J.; Kobayashi, M. H.; Piran Aghl, P.
2012-12-01
Debris driven by tsunami inundation flow has been known to be a significant threat to structures, yet we lack the constitutive equations necessary to predict debris impact force. The objective of this research project is to improve our understanding of, and predictive capabilities for, tsunami-driven debris impact forces on structures. Of special interest are shipping containers, which are virtually everywhere and which will float even when fully loaded. The forces from such debris hitting structures, for example evacuation shelters and critical port facilities such as fuel storage tanks, are currently not known. This research project focuses on the impact by flexible shipping containers on rigid columns and investigated using large-scale laboratory testing. Full-scale in-air collision experiments were conducted at Lehigh University with 20 ft shipping containers to experimentally quantify the nonlinear behavior of full scale shipping containers as they collide into structural elements. The results from the full scale experiments were used to calibrate computer models and used to design a series of simpler, 1:5 scale wave flume experiments at Oregon State University. Scaled in-air collision tests were conducted using 1:5 scale idealized containers to mimic the container behavior observed in the full scale tests and to provide a direct comparison to the hydraulic model tests. Two specimens were constructed using different materials (aluminum, acrylic) to vary the stiffness. The collision tests showed that at higher speeds, the collision became inelastic as the slope of maximum impact force/velocity decreased with increasing velocity. Hydraulic model tests were conducted using the 1:5 scaled shipping containers to measure the impact load by the containers on a rigid column. The column was instrumented with a load cell to measure impact forces, strain gages to measure the column deflection, and a video camera was used to provide the debris orientation and speed. The tsunami was modeled as a transient pulse command signal to the wavemaker to provide a low amplitude long wave. Results are expected to show the effect of the water on the debris collision by comparing water tests with the in-air tests. It is anticipated that the water will provide some combination of added mass and cushioning of the collision. Results will be compared with proposed equations for the new ASCE-7 standard and with numerical models at the University of Hawaii.
Bennett, Charles R; DiAngelo, Denis J; Kelly, Brian P
2015-01-01
Extremely few in-vitro biomechanical studies have incorporated shear loads leaving a gap for investigation, especially when applied in combination with compression and bending under dynamic conditions. The objective of this study was to biomechanically compare sagittal plane application of two standard protocols, pure moment (PM) and follower load (FL), with a novel trunk weight (TW) loading protocol designed to induce shear in combination with compression and dynamic bending in a neutrally potted human cadaveric L4-L5 motion segment unit (MSU) model. A secondary objective and novelty of the current study was the application of all three protocols within the same testing system serving to reduce artifacts due to testing system variability. Six L4-L5 segments were tested in a Cartesian load controlled system in flexion-extension to 8Nm under PM, simulated ideal 400N FL, and vertically oriented 400N TW loading protocols. Comparison metrics used were rotational range of motion (RROM), flexibility, neutral zone (NZ) range of motion, and L4 vertebral body displacements. Significant differences in vertebral body translations were observed with different initial force applications but not with subsequent bending moment application. Significant reductions were observed in combined flexion-extension RROM, in flexibility during extension, and in NZ region flexibility with the TW loading protocol as compared to PM loading. Neutral zone ranges of motion were not different between all protocols. The combined compression and shear forces applied across the spinal joint in the trunk weight protocol may have a small but significantly increased stabilizing effect on segment flexibility and kinematics during sagittal plane flexion and extension.
Bennett, Charles R.; DiAngelo, Denis J.
2015-01-01
Background Extremely few in-vitro biomechanical studies have incorporated shear loads leaving a gap for investigation, especially when applied in combination with compression and bending under dynamic conditions. The objective of this study was to biomechanically compare sagittal plane application of two standard protocols, pure moment (PM) and follower load (FL), with a novel trunk weight (TW) loading protocol designed to induce shear in combination with compression and dynamic bending in a neutrally potted human cadaveric L4-L5 motion segment unit (MSU) model. A secondary objective and novelty of the current study was the application of all three protocols within the same testing system serving to reduce artifacts due to testing system variability. Methods Six L4-L5 segments were tested in a Cartesian load controlled system in flexion-extension to 8Nm under PM, simulated ideal 400N FL, and vertically oriented 400N TW loading protocols. Comparison metrics used were rotational range of motion (RROM), flexibility, neutral zone (NZ) range of motion, and L4 vertebral body displacements. Results Significant differences in vertebral body translations were observed with different initial force applications but not with subsequent bending moment application. Significant reductions were observed in combined flexion-extension RROM, in flexibility during extension, and in NZ region flexibility with the TW loading protocol as compared to PM loading. Neutral zone ranges of motion were not different between all protocols. Conclusions The combined compression and shear forces applied across the spinal joint in the trunk weight protocol may have a small but significantly increased stabilizing effect on segment flexibility and kinematics during sagittal plane flexion and extension. PMID:26273551
Dennerlein, J T; Yang, M C
2001-01-01
Pointing devices, essential input tools for the graphical user interface (GUI) of desktop computers, require precise motor control and dexterity to use. Haptic force-feedback devices provide the human operator with tactile cues, adding the sense of touch to existing visual and auditory interfaces. However, the performance enhancements, comfort, and possible musculoskeletal loading of using a force-feedback device in an office environment are unknown. Hypothesizing that the time to perform a task and the self-reported pain and discomfort of the task improve with the addition of force feedback, 26 people ranging in age from 22 to 44 years performed a point-and-click task 540 times with and without an attractive force field surrounding the desired target. The point-and-click movements were approximately 25% faster with the addition of force feedback (paired t-tests, p < 0.001). Perceived user discomfort and pain, as measured through a questionnaire, were also smaller with the addition of force feedback (p < 0.001). However, this difference decreased as additional distracting force fields were added to the task environment, simulating a more realistic work situation. These results suggest that for a given task, use of a force-feedback device improves performance, and potentially reduces musculoskeletal loading during mouse use. Actual or potential applications of this research include human-computer interface design, specifically that of the pointing device extensively used for the graphical user interface.
Muscle Force-Velocity Relationships Observed in Four Different Functional Tests
Zivkovic, Milena Z.; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan
2017-01-01
Abstract The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force–velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles. PMID:28469742
Automatic force balance calibration system
NASA Technical Reports Server (NTRS)
Ferris, Alice T. (Inventor)
1995-01-01
A system for automatically calibrating force balances is provided. The invention uses a reference balance aligned with the balance being calibrated to provide superior accuracy while minimizing the time required to complete the calibration. The reference balance and the test balance are rigidly attached together with closely aligned moment centers. Loads placed on the system equally effect each balance, and the differences in the readings of the two balances can be used to generate the calibration matrix for the test balance. Since the accuracy of the test calibration is determined by the accuracy of the reference balance and current technology allows for reference balances to be calibrated to within +/-0.05% the entire system has an accuracy of +/-0.2%. The entire apparatus is relatively small and can be mounted on a movable base for easy transport between test locations. The system can also accept a wide variety of reference balances, thus allowing calibration under diverse load and size requirements.
Automatic force balance calibration system
NASA Technical Reports Server (NTRS)
Ferris, Alice T. (Inventor)
1996-01-01
A system for automatically calibrating force balances is provided. The invention uses a reference balance aligned with the balance being calibrated to provide superior accuracy while minimizing the time required to complete the calibration. The reference balance and the test balance are rigidly attached together with closely aligned moment centers. Loads placed on the system equally effect each balance, and the differences in the readings of the two balances can be used to generate the calibration matrix for the test balance. Since the accuracy of the test calibration is determined by the accuracy of the reference balance and current technology allows for reference balances to be calibrated to within .+-.0.05%, the entire system has an accuracy of a .+-.0.2%. The entire apparatus is relatively small and can be mounted on a movable base for easy transport between test locations. The system can also accept a wide variety of reference balances, thus allowing calibration under diverse load and size requirements.
NASA Technical Reports Server (NTRS)
Hertel, Heinrich
1930-01-01
This report is intended to furnish bases for load assumptions in the designing of airplane controls. The maximum control forces and quickness of operation are determined. The maximum forces for a strong pilot with normal arrangement of the controls is taken as 1.25 times the mean value obtained from tests with twelve persons. Tests with a number of persons were expected to show the maximum forces that a man of average strength can exert on the control stick in operating the elevator and ailerons and also on the rudder bar. The effect of fatigue, of duration and of the nature (static or dynamic) of the force, as also the condition of the test subject (with or without belt) were also considered.
Dynamic load testing on the bearing capacity of prestressed tubular concrete piles in soft ground
NASA Astrophysics Data System (ADS)
Yu, Chuang; Liu, Songyu
2008-11-01
Dynamic load testing (DLT) is a high strain test method for assessing pile performance. The shaft capacity of a driven PTC (prestressed tubular concrete) pile in marine soft ground will vary with time after installation. The DLT method has been successfully transferred to the testing of prestressed pipe piles in marine soft clay of Lianyungang area in China. DLT is investigated to determine the ultimate bearing capacity of single pile at different period after pile installation. The ultimate bearing capacity of single pile was founded to increase more than 70% during the inventing 3 months, which demonstrate the time effect of rigid pile bearing capacity in marine soft ground. Furthermore, the skin friction and axial force along the pile shaft are presented as well, which present the load transfer mechanism of pipe pile in soft clay. It shows the economy and efficiency of DLT method compared to static load testing method.
A Large Motion Suspension System for Simulation of Orbital Deployment
NASA Technical Reports Server (NTRS)
Straube, T. M.; Peterson, L. D.
1994-01-01
This paper describes the design and implementation of a vertical degree of freedom suspension system which provides a constant force off-load condition to counter gravity over large displacements. By accommodating motions up to one meter for structures weighing up to 100 pounds, the system is useful for experiments which simulate the on-orbit deployment of spacecraft components. A unique aspect of this system is the combination of a large stroke passive off-load device augmented by electromotive torque actuated force feedback. The active force feedback has the effect of reducing breakaway friction by an order of magnitude over the passive system alone. The paper describes the development of the suspension hardware and the feedback control algorithm. Experiments were performed to verify the suspensions system's ability to provide a gravity off-load as well as its effect on the modal characteristics of a test article.
Liu, Ping; Wang, Jianquan; Xu, Yan; Ao, Yingfang
2015-04-01
The aim of this study was to determine the in situ forces and length patterns of the fibular collateral ligament (FCL) and kinematics of the knee under various loading conditions. Six fresh-frozen cadaveric knees were used (mean age 46 ± 14.4 years; range 20-58). In situ forces and length patterns of FCL and kinematics of the knee were determined under the following loading conditions using a robotic/universal force-moment sensor testing system: no rotation, varus (10 Nm), external rotation (5 Nm), and internal rotation (5 Nm) at 0°, 15°, 30°, 60º, 90°, and 120° of flexion, respectively. Under no rotation loading, the distances between the centres of the FCL attachments decreased as the knee flexed. Under varus loading, the force in FCL peaked at 15° of flexion and decreased with further knee flexion, while distances remained nearly constant and the varus rotation increased with knee flexion. Using external rotation, the force in the FCL also peaked at 15° flexion and decreased with further knee flexion, the distances decreased with flexion, and external rotation increased with knee flexion. Using internal rotation load, the force in the FCL was relatively small across all knee flexion angles, and the distances decreased with flexion; the amount of internal rotation was fairly constant. FCL has a primary role in preventing varus and external rotation at 15° of flexion. The FCL does not perform isometrically following knee flexion during neutral rotation, and tibia rotation has significant effects on the kinematics of the FCL. Varus and external rotation laxity increased following knee flexion. By providing more realistic data about the function and length patterns of the FCL and the kinematics of the intact knee, improved reconstruction and rehabilitation protocols can be developed.
Innovative Alternatives to Lifting Overturned Military Vehicles
2014-04-25
NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS( ES ) United States Air Force Academy,Washington,DC,20301 8...PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS( ES ) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR...Initial testing of the prototype involved using a SATEC load frame to apply a load. As previously stated, during the first test the design failed
Ground Reaction Forces Generated During Rhythmical Squats as a Dynamic Loads of the Structure
NASA Astrophysics Data System (ADS)
Pantak, Marek
2017-10-01
Dynamic forces generated by moving persons can lead to excessive vibration of the long span, slender and lightweight structure such as floors, stairs, stadium stands and footbridges. These dynamic forces are generated during walking, running, jumping and rhythmical body swaying in vertical or horizontal direction etc. In the paper the mathematical models of the Ground Reaction Forces (GRFs) generated during squats have been presented. Elaborated models was compared to the GRFs measured during laboratory tests carried out by author in wide range of frequency using force platform. Moreover, the GRFs models were evaluated during dynamic numerical analyses and dynamic field tests of the exemplary structure (steel footbridge).
Severe snow loads on mountain afforestation in Japan
Ryuzo Nitta; Yoshio Ozeki; Shoichi Niwano
1991-01-01
A simple device for estimating snow settling force on tree branches was used to determine the distribution of snow settling force at various heights in a snowy mountainous region in Japan. A trapezoidal distribution of snow settling force was found to exist at all sites tested. It is thought that a zoning scheme based on the damaging potential of snow on young man-made...
Comparison of Ares I-X Wind-Tunnel Derived Buffet Environment with Flight Data
NASA Technical Reports Server (NTRS)
Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.
2011-01-01
The Ares I-X Flight Test Vehicle (FTV), launched in October 2009, carried with it over 243 buffet verification pressure sensors and was one of the most heavily instrumented launch vehicle flight tests. This flight test represented a unique opportunity for NASA and its partners to compare the wind-tunnel derived buffet environment with that measured during the flight of Ares I-X. It is necessary to define the launch vehicle buffet loads to ensure that structural components and vehicle subsystems possess adequate strength, stress, and fatigue margins when the vehicle structural dynamic response to buffet forcing functions are considered. Ares I-X buffet forcing functions were obtained via wind-tunnel testing of a rigid buffet model (RBM) instrumented with hundreds of unsteady pressure transducers designed to measure the buffet environment across the desired frequency range. This paper discusses the comparison of RBM and FTV buffet environments, including fluctuating pressure coefficient and normalized sectional buffet forcing function root-mean-square magnitudes, frequency content of power-spectral density functions, and force magnitudes of an alternating flow phenomena. Comparison of wind-tunnel model and flight test vehicle buffet environments show very good agreement with root-mean-square magnitudes of buffet forcing functions at the majority of vehicle stations. Spectra proved a challenge to compare because of different wind-tunnel and flight test conditions and data acquisition rates. However, meaningful and promising comparisons of buffet spectra are presented. Lastly, the buffet loads resulting from the transition of subsonic separated flow to supersonic attached flow were significantly over-predicted by wind-tunnel results.
Pile Model Tests Using Strain Gauge Technology
NASA Astrophysics Data System (ADS)
Krasiński, Adam; Kusio, Tomasz
2015-09-01
Ordinary pile bearing capacity tests are usually carried out to determine the relationship between load and displacement of pile head. The measurement system required in such tests consists of force transducer and three or four displacement gauges. The whole system is installed at the pile head above the ground level. This approach, however, does not give us complete information about the pile-soil interaction. We can only determine the total bearing capacity of the pile, without the knowledge of its distribution into the shaft and base resistances. Much more information can be obtained by carrying out a test of instrumented pile equipped with a system for measuring the distribution of axial force along its core. In the case of pile model tests the use of such measurement is difficult due to small scale of the model. To find a suitable solution for axial force measurement, which could be applied to small scale model piles, we had to take into account the following requirements: - a linear and stable relationship between measured and physical values, - the force measurement accuracy of about 0.1 kN, - the range of measured forces up to 30 kN, - resistance of measuring gauges against aggressive counteraction of concrete mortar and against moisture, - insensitivity to pile bending, - economical factor. These requirements can be fulfilled by strain gauge sensors if an appropriate methodology is used for test preparation (Hoffmann [1]). In this paper, we focus on some aspects of the application of strain gauge sensors for model pile tests. The efficiency of the method is proved on the examples of static load tests carried out on SDP model piles acting as single piles and in a group.
Experimental Verification of the Structural Glass Beam-Columns Strength
NASA Astrophysics Data System (ADS)
Pešek, Ondřej; Melcher, Jindřich; Balázs, Ivan
2017-10-01
This paper deals with experimental research of axially and laterally loaded members made of structural (laminated) glass. The purpose of the research is the evaluation of buckling strength and actual behaviour of the beam-columns due to absence of standards for design of glass load-bearing structures. The experimental research follows the previous one focusing on measuring of initial geometrical imperfections of glass members, testing of glass beams and columns. Within the frame of the research 9 specimens were tested. All of them were of the same geometry (length 2000 mm, width 200 mm and thickness 16 mm) but different composition - laminated double glass made of annealed glass or fully tempered glass panes bonded together by PVB or EVASAFE foil. Specimens were at first loaded by axial force and then by constantly increasing bending moment up to failure. During testing lateral deflections, vertical deflection and normal stresses at mid-span were measured. A maximum load achieved during testing has been adopted as flexural-lateral-torsional buckling strength. The results of experiments were statistically evaluated according to the European standard for design of structures EN 1990, appendix D. There are significant differences between specimens made of annealed glass or fully tempered glass. Differences between specimens loaded by axial forces 1 kN and 2 kN are negligible. The next step was to determine the design strength by calculation procedure based on buckling curves approach intended for design of steel columns and develop interaction criterion for glass beams-columns.
Field Test of Driven Pile Group under Lateral Loading
NASA Astrophysics Data System (ADS)
Gorska, Karolina; Rybak, Jaroslaw; Wyjadlowski, Marek
2017-12-01
All the geotechnical works need to be tested because the diversity of soil parameters is much higher than in other fields of construction. Horizontal load tests are necessary to determine the lateral capacity of driven piles subject to lateral load. Various load tests were carried out altogether on the test field in Kutno (Poland). While selecting the piles for load tests, different load combinations were taken into account. The piles with diverse length were chosen, on the basis of the previous tests of their length and integrity. The subsoil around the piles consisted of mineral soils: clays and medium compacted sands with the density index ID>0.50. The pile heads were free. The points of support of the “base” to which the dial gauges (displacement sensors) were fastened were located at the distance of 0.7 m from the side surface of the pile loaded laterally. In order to assure the independence of measurement, additional control (verifying) geodetic survey of the displacement of the piles subject to the load tests was carried out (by means of the alignment method). The trial load was imposed in stages by means of a hydraulic jack. The oil pressure in the actuator was corrected by means of a manual pump in order to ensure the constant value of the load in the on-going process of the displacement of the pile under test. On the basis of the obtained results it is possible to verify the numerical simulations of the behaviour of piles loaded by a lateral force.
Development of a 5-Component Balance for Water Tunnel Applications
NASA Technical Reports Server (NTRS)
Suarez, Carlos J.; Kramer, Brian R.; Smith, Brooke C.
1999-01-01
The principal objective of this research/development effort was to develop a multi-component strain gage balance to measure both static and dynamic forces and moments on models tested in flow visualization water tunnels. A balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The balance mounts internally in the model and is used in a manner typical of wind tunnel balances. The key differences between a water tunnel balance and a wind tunnel balance are the requirement for very high sensitivity since the loads are very low (typical normal force is 90 grams or 0.2 lbs), the need for water proofing the gage elements, and the small size required to fit into typical water tunnel models. The five-component balance was calibrated and demonstrated linearity in the responses of the primary components to applied loads, very low interactions between the sections and no hysteresis. Static experiments were conducted in the Eidetics water tunnel with delta wings and F/A-18 models. The data were compared to forces and moments from wind tunnel tests of the same or similar configurations. The comparison showed very good agreement, providing confidence that loads can be measured accurately in the water tunnel with a relatively simple multi-component internal balance. The success of the static experiments encouraged the use of the balance for dynamic experiments. Among the advantages of conducting dynamic tests in a water tunnel are less demanding motion and data acquisition rates than in a wind tunnel test (because of the low-speed flow) and the capability of performing flow visualization and force/moment (F/M) measurements simultaneously with relative simplicity. This capability of simultaneous flow visualization and for F/M measurements proved extremely useful to explain the results obtained during these dynamic tests. In general, the development of this balance should encourage the use of water tunnels for a wider range of quantitative and qualitative experiments, especially during the preliminary phase of aircraft design.
Overview of the Space Launch System Transonic Buffet Environment Test Program
NASA Technical Reports Server (NTRS)
Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.; Florance, James R.; Ivanco, Thomas G.
2015-01-01
Fluctuating aerodynamic loads are a significant concern for the structural design of a launch vehicle, particularly while traversing the transonic flight environment. At these trajectory conditions, unsteady aerodynamic pressures can excite the vehicle dynamic modes of vibration and result in high structural bending moments and vibratory environments. To ensure that vehicle structural components and subsystems possess adequate strength, stress, and fatigue margins in the presence of buffet and other environments, buffet forcing functions are required to conduct the coupled load analysis of the launch vehicle. The accepted method to obtain these buffet forcing functions is to perform wind-tunnel testing of a rigid model that is heavily instrumented with unsteady pressure transducers designed to measure the buffet environment within the desired frequency range. Two wind-tunnel tests of a 3 percent scale rigid buffet model have been conducted at the Langley Research Center Transonic Dynamics Tunnel (TDT) as part of the Space Launch System (SLS) buffet test program. The SLS buffet models have been instrumented with as many as 472 unsteady pressure transducers to resolve the buffet forcing functions of this multi-body configuration through integration of the individual pressure time histories. This paper will discuss test program development, instrumentation, data acquisition, test implementation, data analysis techniques, and several methods explored to mitigate high buffet environment encountered during the test program. Preliminary buffet environments will be presented and compared using normalized sectional buffet forcing function root-meansquared levels along the vehicle centerline.
[Design on tester of pull-out force for orthodontic micro implant].
Su, He; Wu, Pei; Wang, Huiyuan; Chen, Yan; Bao, Xuemei
2013-09-01
A special device for measuring the pull-out force of orthodontic micro implant was designed, which has the characteristics of simple construction and easy operation, and can be used to detect the pull-out-force of orthodontic micro implant. The tested data was stored and analyzed by a computer, and as the results, the pull-out-force curve, maximum pull-out force as well as average pull-out force were outputted, which was applied in analyzing or investigating the initial stability and immediate loading property of orthodontic micro implant.
Grip force and force sharing in two different manipulation tasks with bottles.
Cepriá-Bernal, Javier; Pérez-González, Antonio; Mora, Marta C; Sancho-Bru, Joaquín L
2017-07-01
Grip force and force sharing during two activities of daily living were analysed experimentally in 10 right-handed subjects. Four different bottles, filled to two different levels, were manipulated for two tasks: transporting and pouring. Each test subject's hand was instrumented with eight thin wearable force sensors. The grip force and force sharing were significantly different for each bottle model. Increasing the filling level resulted in an increase in grip force, but the ratio of grip force to load force was higher for lighter loads. The task influenced the force sharing but not the mean grip force. The contributions of the thumb and ring finger were higher in the pouring task, whereas the contributions of the palm and the index finger were higher in the transport task. Mean force sharing among fingers was 30% for index, 29% for middle, 22% for ring and 19% for little finger. Practitioner Summary: We analysed grip force and force sharing in two manipulation tasks with bottles: transporting and pouring. The objective was to understand the effects of the bottle features, filling level and task on the contribution of different areas of the hand to the grip force. Force sharing was different for each task and the bottles features affected to both grip force and force sharing.
Nowak, Dennis A; Hermsdörfer, Joachim; Marquardt, Christian; Topka, Helge
2003-03-01
Anticipatory grip force adjustments to movement-induced load fluctuations of a hand-held object suggest that motion planning is based on an internal forward model of both the external object properties and the dynamics of the own motor apparatus. However, the central nervous system also refers to real time sensory feedback from the grasping digits in order to achieve a highly economical coupling between grip force and the actual loading requirements. We analyzed grip force control during vertical point-to-point arm movements with a hand-held instrumented object in 9 patients with moderately impaired tactile sensibility of the grasping digits due to chronic median nerve compression (n = 3), axonal (n = 3) and demyelinating sensory polyneuropathy (n = 3) in comparison to 9 healthy age- and sex-matched control subjects. Point-to-point arm movements started and ended with the object being held stationary at rest. Load force changes arose from inertial loads related to the movement. A maximum of load force occurred early in upward and near the end of downward movements. Compared to healthy controls, patients with impaired manual sensibility generated similar static grip forces during stationary holding of the object and similar force ratios between maximum grip and load force. These findings reflect effective grip force scaling in relation to the movement-induced loads despite reduced afferent feedback from the grasping digits. For both groups the maxima of grip and load force coincided very closely in time, indicating that the temporal regulation of the grip force profile with the load profile was processed with a similar high precision. In addition, linear regression analyses between grip and load forces during movement-related load increase and load decrease phases revealed a similar precise temporo-spatial coupling between grip and load forces for patients and controls. Our results suggest that the precise and anticipatory adjustment of the grip force profile to the load force profile arising from voluntary arm movements with a hand-held object is centrally mediated and less under sensory feedback control. As suggested by previous investigations, the efficient scaling of the grip force magnitude in relation to the movement-induced loads may be intact when deficits of tactile sensibility from the grasping fingers are moderate.
Midsole material-related force control during heel-toe running.
Kersting, Uwe G; Brüggemann, Gert-Peter
2006-01-01
The impact maximum and rearfoot eversion have been used as indicators of load on internal structures in running. The midsole hardness of a typical running shoe was varied systematically to determine the relationship between external ground reaction force (GRF), in-shoe force, and kinematic variables. Eight subjects were tested during overground running at 4 m/s. Rearfoot movement as well as in-shoe forces and external GRF varied nonsystematically with midsole hardness. Kinematic parameters such as knee flexion and foot velocity at touchdown (TD), also varied nonsystematically with altered midsole hardness. Results demonstrate that considerable variations of in-shoe loading occur that were not depicted by external GRF measurements alone. Individuals apparently use different strategies of mechanical and neuromuscular adaptation in response to footwear modifications. In conclusion, shoe design effects on impact forces or other factors relating to injuries depend on the individual and therefore cannot be generalized.
Aerosol-Induced Changes of Convective Cloud Anvils Produce Strong Climate Warming
NASA Technical Reports Server (NTRS)
Koren, I.; Remer, L. A.; Altaratz, O.; Martins, J. V.; Davidi, A.
2010-01-01
The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm(exp-2) . Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing. We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvi1 clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming) at top-of-atmosphere. Furthermore we introduce the cloud optical depth (r), cloud height (Z) forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene. Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds; increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations.
Calibration Variable Selection and Natural Zero Determination for Semispan and Canard Balances
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert M.
2013-01-01
Independent calibration variables for the characterization of semispan and canard wind tunnel balances are discussed. It is shown that the variable selection for a semispan balance is determined by the location of the resultant normal and axial forces that act on the balance. These two forces are the first and second calibration variable. The pitching moment becomes the third calibration variable after the normal and axial forces are shifted to the pitch axis of the balance. Two geometric distances, i.e., the rolling and yawing moment arms, are the fourth and fifth calibration variable. They are traditionally substituted by corresponding moments to simplify the use of calibration data during a wind tunnel test. A canard balance is related to a semispan balance. It also only measures loads on one half of a lifting surface. However, the axial force and yawing moment are of no interest to users of a canard balance. Therefore, its calibration variable set is reduced to the normal force, pitching moment, and rolling moment. The combined load diagrams of the rolling and yawing moment for a semispan balance are discussed. They may be used to illustrate connections between the wind tunnel model geometry, the test section size, and the calibration load schedule. Then, methods are reviewed that may be used to obtain the natural zeros of a semispan or canard balance. In addition, characteristics of three semispan balance calibration rigs are discussed. Finally, basic requirements for a full characterization of a semispan balance are reviewed.
A proposed method for determining peak power in the jump squat exercise.
Li, Li; Olson, Michael W; Winchester, Jason B
2008-03-01
In recent years a great deal of research has been published using peak power (PP) in the jump squat (JS) exercise as a measure of athletic performance. However, no standardized method for the determination of PP exists at this time to accurately evaluate this variable. Our proposed method (PM) for determining PP (PPPM) in the JS uses the product of vertical ground reaction forces and velocity of the center of mass of both the subject and the external resistance of a loaded Olympic bar. Fifteen male subjects with a mean age of 27 +/- 3 years, weight of 78 +/- 17 kg, and height of 175 +/- 10 cm participated in this study. PP was measured in the JS at five different testing loads (30%, 35%, 40%, 45%, and 50% body weight) based on methods commonly discussed in the literature to compare PP results of previous methods to those obtained using the PM. Paired t-tests at different load levels were used for statistical analysis with an overall alpha = 0.05. The average PP among five testing loads, measured by the PM, was 3782 +/- 906 W. PP derived from the product of force and velocity of the bar alone was 72% lower than PPPM at 1057 +/- 243 W (P < 0.0001). The PP estimated by the product of bar velocity and vertical ground reaction forces of the bar plus the subject was 8% higher than PPPM at 4100 +/- 844 W (P = 0.0001). Our results indicate that using the methods traditionally reported in the literature may cause an overestimation of PP during athletic performance. Using the PM in future research will facilitate test validity and enable the generalization of results outside the scope of specific research projects.
Survival Model for Foot and Leg High Rate Axial Impact Injury Data.
Bailey, Ann M; McMurry, Timothy L; Poplin, Gerald S; Salzar, Robert S; Crandall, Jeff R
2015-01-01
Understanding how lower extremity injuries from automotive intrusion and underbody blast (UBB) differ is of key importance when determining whether automotive injury criteria can be applied to blast rate scenarios. This article provides a review of existing injury risk analyses and outlines an approach to improve injury prediction for an expanded range of loading rates. This analysis will address issues with existing injury risk functions including inaccuracies due to inertial and potential viscous resistance at higher loading rates. This survival analysis attempts to minimize these errors by considering injury location statistics and a predictor variable selection process dependent upon failure mechanisms of bone. Distribution of foot/ankle/leg injuries induced by axial impact loading at rates characteristic of UBB as well as automotive intrusion was studied and calcaneus injuries were found to be the most common injury; thus, footplate force was chosen as the main predictor variable because of its proximity to injury location to prevent inaccuracies associated with inertial differences due to loading rate. A survival analysis was then performed with age, sex, dorsiflexion angle, and mass as covariates. This statistical analysis uses data from previous axial postmortem human surrogate (PMHS) component leg tests to provide perspectives on how proximal boundary conditions and loading rate affect injury probability in the foot/ankle/leg (n = 82). Tibia force-at-fracture proved to be up to 20% inaccurate in previous analyses because of viscous resistance and inertial effects within the data set used, suggesting that previous injury criteria are accurate only for specific rates of loading and boundary conditions. The statistical model presented in this article predicts 50% probability of injury for a plantar force of 10.2 kN for a 50th percentile male with a neutral ankle position. Force rate was found to be an insignificant covariate because of the limited range of loading rate differences within the data set; however, compensation for inertial effects caused by measuring the force-at-fracture in a location closer to expected injury location improved the model's predictive capabilities for the entire data set. This study provides better injury prediction capabilities for both automotive and blast rates because of reduced sensitivity to inertial effects and tibia-fibula load sharing. Further, a framework is provided for future injury criteria generation for high rate loading scenarios. This analysis also suggests key improvements to be made to existing anthropomorphic test device (ATD) lower extremities to provide accurate injury prediction for high rate applications such as UBB.
Effect of electrical spot welding on load deflection rate of orthodontic wires.
Alavi, Shiva; Abrishami, Arezoo
2015-01-01
One of the methods used for joining metals together is welding, which can be carried out using different techniques such as electric spot welding. This study evaluated the effect of electric spot welding on the load deflection rate of stainless steel and chromium-cobalt orthodontic wires. In this experimental-laboratory study, load deflection rate of 0.016 × 0.022 inch stainless steel and chromium cobalt wires were evaluated in five groups (n =18): group one: Stainless steel wires, group two: chromium-cobalt wires, group three: stainless steel wires welded to stainless steel wires, group four: Stainless steel wires welded to chromium-cobalt wires, group five: chromium-cobalt wire welded to chromium-cobalt wires. Afterward, the forces induced by the samples in 0.5 mm, 1 mm, 1.5 mm deflection were measured using a universal testing machine. Then mean force measured for each group was compared with other groups. The data were analyzed using repeated measure analysis of variance (ANOVA), one-way ANOVA, and paired t-test by the SPSS software. The significance level was set as 0.05. The Tukey test showed that there were significant differences between the load deflection rates of welded groups compared to control ones (P < 0.001). Considering the limitation of this study, the electric spot welding process performed on stainless steel and chromium-cobalt wires increased their load deflection rates.
Thermo-mechanical cyclic testing of carbon-carbon primary structure for an SSTO vehicle
NASA Astrophysics Data System (ADS)
Croop, Harold C.; Leger, Kenneth B.; Lowndes, Holland B.; Hahn, Steven E.; Barthel, Chris A.
1999-01-01
An advanced carbon-carbon structural component is being experimentally evaluated for use as primary load carrying structure for future single-stage-to-orbit (SSTO) vehicles. The component is a wing torque box section featuring an advanced, three-spar design. This design features 3D-woven, angle-interlock skins, 3D integrally woven spar webs and caps, oxidation inhibited matrix, chemical vapor deposited (CVD) oxidation protection coating, and ceramic matrix composite fasteners. The box spar caps are nested into the skins which, when processed together through the carbon-carbon processing cycle, resulted in monolithic box halves. The box half sections were then joined at the spar web intersections using ceramic matrix composite fasteners. This method of fabrication eliminated fasteners through both the upper and lower skins. Development of the carbon-carbon wing box structure was accomplished in a four phase design and fabrication effort, conducted by Boeing, Information, Space and Defense Systems, Seattle, WA, under contract to the Air Force Research Laboratory (AFRL). The box is now set up for testing and will soon begin cyclic loads testing in the AFRL Structural Test Facility at Wright-Patterson Air Force Base (WPAFB), OH. This paper discusses the latest test setup accomplishments and the results of the pre-cyclic loads testing performed to date.
Caldas, Sergei Godeiro Fernandes Rabelo; Martins, Renato Parsekian; Galvão, Marília Regalado; Vieira, Camilla Ivini Viana; Martins, Lídia Parsekian
2011-08-01
The objective of this research was to compare the effect of preactivation on the force system of beta-titanium T-loop springs (TLSs). Twenty TLSs with dimensions of 6 × 10 mm, of 0.017 × 0.025-in beta-titanium alloy, were randomly divided into 2 groups according to their preactivation. By using a moment transducer coupled to a digital extensometer indicator adapted to a testing machine, the amounts of horizontal force and moment produced were recorded at every 0.5 mm of deactivation from 5 mm of the initial activation in an interbracket distance of 23 mm. The moment-to-force ratio, the "neutral position" and the load-deflection ratio were also calculated. TLSs preactivated by curvature delivered horizontal forces significantly lower than those preactivated by concentrated bends. No differences were found in relation to the moments produced throughout the deactivation of both groups. The moment-to-force ratios were systematically higher on the TLSs preactivated by curvature than those preactivated by concentrated bends, except on 5 mm of activation. Significant differences were found in the load-deflection rates and "neutral position." The TLSs preactivated by curvature delivered lower horizontal forces and higher moment-to-force and load-deflection ratios than did those preactivated by concentrated bends. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Hedenstierna, Sofia; Halldin, Peter; Siegmund, Gunter P
2009-11-15
A finite element (FE) model of the human neck was used to study the distribution of neck muscle loads during multidirectional impacts. The computed load distributions were compared to experimental electromyography (EMG) recordings. To quantify passive muscle loads in nonactive cervical muscles during impacts of varying direction and energy, using a three-dimensional (3D) continuum FE muscle model. Experimental and numerical studies have confirmed the importance of muscles in the impact response of the neck. Although EMG has been used to measure the relative activity levels in neck muscles during impact tests, this technique has not been able to measure all neck muscles and cannot directly quantify the force distribution between the muscles. A numerical model can give additional insight into muscle loading during impact. An FE model with solid element musculature was used to simulate frontal, lateral, and rear-end vehicle impacts at 4 peak accelerations. The peak cross-sectional forces, internal energies, and effective strains were calculated for each muscle and impact configuration. The computed load distribution was compared with experimental EMG data. The load distribution in the cervical muscles varied with load direction. Peak sectional forces, internal energies, and strains increased in most muscles with increasing impact acceleration. The dominant muscles identified by the model for each direction were splenius capitis, levator scapulae, and sternocleidomastoid in lateral impacts, splenius capitis, and trapezoid in frontal impacts, and sternocleidomastoid, rectus capitis posterior minor, and hyoids in rear-end impacts. This corresponded with the most active muscles identified by EMG recordings, although within these muscles the distribution of forces and EMG levels were not the same. The passive muscle forces, strains, and energies computed using a continuum FE model of the cervical musculature distinguished between impact directions and peak accelerations, and on the basis of prior studies, isolated the most important muscles for each direction.
NASA Astrophysics Data System (ADS)
Hill, Craig; Vanness, Katherine; Stewart, Andy; Polagye, Brian; Aliseda, Alberto
2016-11-01
Turbulence-induced unsteady forcing on turbines extracting power from river, tidal, or ocean currents will affect performance, wake characteristics, and structural integrity. A laboratory-scale axial-flow turbine, 0 . 45 m in diameter, incorporating rotor speed sensing and independent blade pitch control has been designed and tested with the goal of increasing efficiency and/or decreasing structural loading. Laboratory experiments were completed in a 1 m wide, 0.75 m deep open-channel flume at moderate Reynolds number (Rec =6104 -2105) and turbulence intensity (T . I . = 2 - 10 %). A load cell connecting the hub to the shaft provided instantaneous forces and moments on the device, quantifying turbine performance under unsteady inflow and for different controls. To mitigate loads, blade pitch angles were controlled via individual stepper motors, while a six-axis load cell mounted at the root of one blade measured instantaneous blade forces and moments, providing insights into variable loading due to turbulent inflow and blade-tower interactions. Wake characteristics with active pitch control were compared to fixed blade pitch and rotor speed operation. Results are discussed in the context of optimization of design for axial-flow Marine Hydrokinetic turbines.
Load-bearing capacity of all-ceramic posterior inlay-retained fixed dental prostheses.
Puschmann, Djamila; Wolfart, Stefan; Ludwig, Klaus; Kern, Matthias
2009-06-01
The purpose of this in vitro study was to compare the quasi-static load-bearing capacity of all-ceramic resin-bonded three-unit inlay-retained fixed dental prostheses (IRFDPs) made from computer-aided design/computer-aided manufacturing (CAD/CAM)-manufactured yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) frameworks with two different connector dimensions, with and without fatigue loading. Twelve IRFDPs each were made with connector dimensions 3 x 3 mm(2) (width x height) (control group) and 3 x 2 mm(2) (test group). Inlay-retained fixed dental prostheses were adhesively cemented on identical metal-models using composite resin cement. Subgroups of six specimens each were fatigued with maximal 1,200,000 loading cycles in a chewing simulator with a weight load of 25 kg and a load frequency of 1.5 Hz. The load-bearing capacity was tested in a universal testing machine for IRFDPs without fatigue loading and for IRFDPs that had not already fractured during fatigue loading. During fatigue testing one IRFDP (17%) of the test group failed. Under both loading conditions, IRFDPs of the control group exhibited statistically significantly higher load-bearing capacities than the test group. Fatigue loading reduced the load-bearing capacity in both groups. Considering the maximum chewing forces in the molar region, it seems possible to use zirconia ceramic as a core material for IRFDPs with a minimum connector dimension of 9 mm(2). A further reduction of the connector dimensions to 6 mm(2) results in a significant reduction of the load-bearing capacity.
Effects of Angle Variations in Suspension Push-up Exercise.
Gulmez, Irfan
2017-04-01
Gulmez, I. Effects of angle variations in suspension push-up exercise. J Strength Cond Res 31(4): 1017-1023, 2017-This study aimed to determine and compare the amount of loads on the TRX Suspension Trainer (TRX) straps and ground reaction forces at 4 different angles during TRX push-ups. Twenty-eight male (mean age, 24.1 ± 2.9 years; height, 179.4 ± 8.0 m; weight, 78.8 ± 9.8 kg) physical education and sports university students participated in this study. The subjects were tested at TRX angles (0, 15, 30, 45°) during the TRX push-ups. Force data were recorded by a force platform and load cells integrated into the TRX straps. The results show that as the TRX angle was reduced, the load applied to the TRX straps increased and simultaneously the load measured by the force platform decreased. This was true for both the elbow joint changing from flexion to extension and vice versa. When the TRX angle was set at 0° and subjects' elbows were at extension during TRX push-up, 50.4% of the subjects' body weight, and when the elbows were at flexion, 75.3% of the body weight was registered by the sensors on the TRX straps. The results of this study can be used in the calculation of the training load and volume (resistance training programming) during TRX push-up exercises at varying angles.
NASA Technical Reports Server (NTRS)
Duval, R. W.; Bahrami, M.
1985-01-01
The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight.
A data-driven wavelet-based approach for generating jumping loads
NASA Astrophysics Data System (ADS)
Chen, Jun; Li, Guo; Racic, Vitomir
2018-06-01
This paper suggests an approach to generate human jumping loads using wavelet transform and a database of individual jumping force records. A total of 970 individual jumping force records of various frequencies were first collected by three experiments from 147 test subjects. For each record, every jumping pulse was extracted and decomposed into seven levels by wavelet transform. All the decomposition coefficients were stored in an information database. Probability distributions of jumping cycle period, contact ratio and energy of the jumping pulse were statistically analyzed. Inspired by the theory of DNA recombination, an approach was developed by interchanging the wavelet coefficients between different jumping pulses. To generate a jumping force time history with N pulses, wavelet coefficients were first selected randomly from the database at each level. They were then used to reconstruct N pulses by the inverse wavelet transform. Jumping cycle periods and contract ratios were then generated randomly based on their probabilistic functions. These parameters were assigned to each of the N pulses which were in turn scaled by the amplitude factors βi to account for energy relationship between successive pulses. The final jumping force time history was obtained by linking all the N cycles end to end. This simulation approach can preserve the non-stationary features of the jumping load force in time-frequency domain. Application indicates that this approach can be used to generate jumping force time history due to single people jumping and also can be extended further to stochastic jumping loads due to groups and crowds.
A variable acceleration calibration system
NASA Astrophysics Data System (ADS)
Johnson, Thomas H.
2011-12-01
A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.
Experimental Aerodynamic Facilities of the Aerodynamics Research and Concepts Assistance Section
1983-02-01
experimental data desired. Internal strain gage balances covering a range of sizes and load capabilities are available for static force and moment tests...tunnel. Both sting and side wall model mounts are available which can be adapted to a variety of internal strain gage balance systems for force and...model components or liquids in the test section. A selection of internal and external strain gage balances and associated mounting fixtures are
Robotic cadaver testing of a new total ankle prosthesis model (German Ankle System).
Richter, Martinus; Zech, Stefan; Westphal, Ralf; Klimesch, Yvone; Gosling, Thomas
2007-12-01
An investigation was carried out into possible increased forces, torques, and altered motions during load-bearing ankle motion after implantation of two different total ankle prostheses. We hypothesized that the parameters investigated would not differ in relation to the two implants compared. We included two different ankle prostheses (Hintegra, Newdeal, Vienne, France; German Ankle System, R-Innovation, Coburg, Germany). The prostheses were implanted in seven paired cadaver specimens. The specimens were mounted on an industrial robot that enables complex motion under predefined conditions (RX 90, Stäubli, Bayreuth, Germany). The robot detected the load-bearing (30 kg) motion of the 100(th) cycle of the specimens without prostheses as the baseline for the later testing, and mimicked that exact motion during 100 cycles after the prostheses were implanted. The resulting forces, torques, and bone motions were recorded and the differences between the prostheses compared. The Hintegra and German Ankle System, significantly increased the forces and torques in relation to the specimen without a prosthesis with one exception (one-sample-t-test, each p < or = 0.01; exception, parameter lateral force measured with the German Ankle System, p = 0.34). The force, torque, and motion differences between the specimens before and after implantation of the prostheses were lower with the German Ankle System than with the Hintegra (unpaired t-test, each p < or = 0.05). The German Ankle System prosthesis had less of an effect on resulting forces and torques during partial weightbearing passive ankle motion than the Hintegra prosthesis. This might improve function and minimize loosening during the clinical use.
The effect of osteoporotic vertebral fracture on predicted spinal loads in vivo.
Briggs, Andrew M; Wrigley, Tim V; van Dieën, Jaap H; Phillips, Bev; Lo, Sing Kai; Greig, Alison M; Bennell, Kim L
2006-12-01
The aetiology of osteoporotic vertebral fractures is multi-factorial, and cannot be explained solely by low bone mass. After sustaining an initial vertebral fracture, the risk of subsequent fracture increases greatly. Examination of physiologic loads imposed on vertebral bodies may help to explain a mechanism underlying this fracture cascade. This study tested the hypothesis that model-derived segmental vertebral loading is greater in individuals who have sustained an osteoporotic vertebral fracture compared to those with osteoporosis and no history of fracture. Flexion moments, and compression and shear loads were calculated from T2 to L5 in 12 participants with fractures (66.4 +/- 6.4 years, 162.2 +/- 5.1 cm, 69.1 +/- 11.2 kg) and 19 without fractures (62.9 +/- 7.9 years, 158.3 +/- 4.4 cm, 59.3 +/- 8.9 kg) while standing. Static analysis was used to solve gravitational loads while muscle-derived forces were calculated using a detailed trunk muscle model driven by optimization with a cost function set to minimise muscle fatigue. Least squares regression was used to derive polynomial functions to describe normalised load profiles. Regression co-efficients were compared between groups to examine differences in loading profiles. Loading at the fractured level, and at one level above and below, were also compared between groups. The fracture group had significantly greater normalised compression (p = 0.0008) and shear force (p < 0.0001) profiles and a trend for a greater flexion moment profile. At the level of fracture, a significantly greater flexion moment (p = 0.001) and shear force (p < 0.001) was observed in the fracture group. A greater flexion moment (p = 0.003) and compression force (p = 0.007) one level below the fracture, and a greater flexion moment (p = 0.002) and shear force (p = 0.002) one level above the fracture was observed in the fracture group. The differences observed in multi-level spinal loading between the groups may explain a mechanism for increased risk of subsequent vertebral fractures. Interventions aimed at restoring vertebral morphology or reduce thoracic curvature may assist in normalising spine load profiles.
Fundamental considerations in ski binding analysis.
Mote, C D; Hull, M L
1976-01-01
1. The static adjustment of a ski binding by hand or by available machines is only an adjustment and is neither a static nor a dynamic evaluation of the binding design. Bindings of different design with identical static adjustments will perform differently in environments in which the forces are static or dynamic. 2. The concept of binding release force is a useful measure of binding adjustment, but it is inappropriate as a criterion for binding evaluation. First, it does not direct attention toward the injury causing mechanism, strain, or displacement in the leg. Second, it is only part of the evaluation in dynamic problems. 3. The binding release decision in present bindings is displacement controlled. The relative displacement of the boot and ski is the system variable. For any specified relative displacement the binding force can be any of an infinite number of possibilities determined by the loading path. 4. The response of the leg-ski system to external impulses applied to the ski is independent of the boot-ski relative motion as long as the boot recenters quickly in the binding. Response is dependent upon the external impulse plus system inertia, damping and stiffness. 5. When tested under half sinusoidal forces applied to a test ski, all bindings will demonstrate static and impulse loading regions. In the static region the force drives the binding to a relative release displacement. In the impulse region the initial velocity of the ski drives the binding to a release displacement. 6. The transition between the static and impulse loading regions is determined by the binding's capacity to store and dissipate energy along the principal loading path. Increased energy capacity necessitates larger external impulses to produce release. 7. In all bindings examined to date, the transmitted leg displacement or strain at release under static loading exceeds leg strain under dynamic or impact loading. Because static loading is responsible for many injuries, a skier should be able to release his bindings in every mode by simply pulling or twisting his foot outward. If that cannot be done without injury, the skier has identified for himself one type of fall that will result in injury. 8. And lastly, a little advice from Ben Franklin--"Carelessness does more harm than a want of knowledge."
NASA Astrophysics Data System (ADS)
Sudalaimuthu, Vignesh; Liu, Xiaofeng
2017-11-01
A series of wind tunnel aerodynamic force measurements have been conducted on a 2D hollow cylinder with perforated holes uniformly-distributed on its surface to evaluate the efficacy of perforation as a means of passive flow control in reducing unsteady aerodynamic forces. Both smooth and perforated cylinders were tested for comparison at Reynolds numbers ranging from 50,000 to 200,000 corresponding to free stream velocities varying from 5 to 20 m/s (at an increment of 5 m/s) and a cylinder diameter of 0.152 m. The aerodynamic forces acting on the testing model were measured using a 6-component load cell. For each tunnel speed, the test has been repeated for 10 runs at a sampling rate of 10 kHz for 60 seconds each, with a total of 6,000,000 samples acquired for each test. Both mean and r.m.s. values of the lift and drag coefficients were calculated. Power spectral density distributions of the unsteady aerodynamic force loading was analyzed to investigate the effect of the perforation on the frequency composition. Comparisons indicate that the perforated cylinder with a 8% porosity and a hole diameter of about 2% of that of the cylinder gives both substantially less unsteady drag and lift than those of the smooth cylinder for the entire Reynolds number range tested, with the r.m.s. force reduction from 8% to 82% for the drag and 64% to 85% for the lift, confirming a corresponding beneficial reduction in flow-induced cylinder vibration as observed during the experiments. Sponsor: San Diego State University.
Shock Mounting for Heavy Machines
NASA Technical Reports Server (NTRS)
Thompson, A. R.
1984-01-01
Elastomeric bearings eliminate extraneous forces. Rocket thrust transmitted from motor to load cells via support that absorbs extraneous forces so they do not affect accuracy of thrust measurements. Adapter spoked cone fits over forward end of rocket motor. Shock mounting developed for rocket engines under test used as support for heavy machines, bridges, or towers.
MEMS resonant load cells for micro-mechanical test frames: feasibility study and optimal design
NASA Astrophysics Data System (ADS)
Torrents, A.; Azgin, K.; Godfrey, S. W.; Topalli, E. S.; Akin, T.; Valdevit, L.
2010-12-01
This paper presents the design, optimization and manufacturing of a novel micro-fabricated load cell based on a double-ended tuning fork. The device geometry and operating voltages are optimized for maximum force resolution and range, subject to a number of manufacturing and electromechanical constraints. All optimizations are enabled by analytical modeling (verified by selected finite elements analyses) coupled with an efficient C++ code based on the particle swarm optimization algorithm. This assessment indicates that force resolutions of ~0.5-10 nN are feasible in vacuum (~1-50 mTorr), with force ranges as large as 1 N. Importantly, the optimal design for vacuum operation is independent of the desired range, ensuring versatility. Experimental verifications on a sub-optimal device fabricated using silicon-on-glass technology demonstrate a resolution of ~23 nN at a vacuum level of ~50 mTorr. The device demonstrated in this article will be integrated in a hybrid micro-mechanical test frame for unprecedented combinations of force resolution and range, displacement resolution and range, optical (or SEM) access to the sample, versatility and cost.
Development of a multicomponent force and moment balance for water tunnel applications, volume 1
NASA Technical Reports Server (NTRS)
Suarez, Carlos J.; Malcolm, Gerald N.; Kramer, Brian R.; Smith, Brooke C.; Ayers, Bert F.
1994-01-01
The principal objective of this research effort was to develop a multicomponent strain gauge balance to measure forces and moments on models tested in flow visualization water tunnels. An internal balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The five-components to applied loads, low interactions between the sections and no hysteresis. Static experiments (which are discussed in this Volume) were conducted in the Eidetics water tunnel with delta wings and a model of the F/A-18. Experiments with the F/A-18 model included a thorough baseline study and investigations of the effect of control surface deflections and of several Forebody Vortex Control (FVC) techniques. Results were compared to wind tunnel data and, in general, the agreement is very satisfactory. The results of the static tests provide confidence that loads can be measured accurately in the water tunnel with a relatively simple multicomponent internal balance. Dynamic experiments were also performed using the balance, and the results are discussed in detail in Volume 2 of this report.
Identification of Vehicle Axle Loads from Bridge Dynamic Responses
NASA Astrophysics Data System (ADS)
ZHU, X. Q.; LAW, S. S.
2000-09-01
A method is presented to identify moving loads on a bridge deck modelled as an orthotropic rectangular plate. The dynamic behavior of the bridge deck under moving loads is analyzed using the orthotropic plate theory and modal superposition principle, and Tikhonov regularization procedure is applied to provide bounds to the identified forces in the time domain. The identified results using a beam model and a plate model of the bridge deck are compared, and the conditions under which the bridge deck can be simplified as an equivalent beam model are discussed. Computation simulation and laboratory tests show the effectiveness and the validity of the proposed method in identifying forces travelling along the central line or at an eccentric path on the bridge deck.
Influence of the gap size on the wind loading on heliostats
NASA Astrophysics Data System (ADS)
Poulain, Pierre E.; Craig, Ken J.; Meyer, Josua P.
2016-05-01
Generally built in desert areas, heliostat fields undergo various wind loading conditions. An ANSYS Fluent CFD model of an isolated heliostat in worst-case orientation for the drag force is realized via numerical simulations using the realizable k-ɛ turbulence model. This paper focuses on the gap width between the panels and its influence on the wind loading that heliostats are subjected to. An atmospheric boundary layer profile is generated based on a wind tunnel experiment. For a heliostat in upright and tilted orientations with the wind angle being zero degrees, the gap width is varied and the force and moment coefficients are calculated. In the range tested, all the coefficients globally increase with the widening of the gaps.
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Vetter, Travis K.; Penning, Kevin B.; Coulson, David A.; Heeg, Jennifer
2014-01-01
This is part 2 of a two part document. Part 1 is titled: "Aeroservoelastic Testing of Free Flying Wind Tunnel Models Part 1: A Sidewall Supported Semispan Model Tested for Gust Load Alleviation and Flutter Suppression." A team comprised of the Air Force Research Laboratory (AFRL), Boeing, and the NASA Langley Research Center conducted three aeroservoelastic wind tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, flexible vehicles. In the first of these three tests, a full-span, aeroelastically scaled, wind tunnel model of a joined wing SensorCraft vehicle was mounted to a force balance to acquire a basic aerodynamic data set. In the second and third tests, the same wind tunnel model was mated to a new, two degree of freedom, beam mount. This mount allowed the full-span model to translate vertically and pitch. Trimmed flight at10 percent static margin and gust load alleviation were successfully demonstrated. The rigid body degrees of freedom required that the model be flown in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free-flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort. The balance and free flying wind tunnel tests will be summarized. The design of the trim and gust load alleviation control laws along with the associated results will also be discussed.
Quantifying in vivo laxity in the anterior cruciate ligament and individual knee joint structures.
Westover, L M; Sinaei, N; Küpper, J C; Ronsky, J L
2016-11-01
A custom knee loading apparatus (KLA), when used in conjunction with magnetic resonance imaging, enables in vivo measurement of the gross anterior laxity of the knee joint. A numerical model was applied to the KLA to understand the contribution of the individual joint structures and to estimate the stiffness of the anterior-cruciate ligament (ACL). The model was evaluated with a cadaveric study using an in situ knee loading apparatus and an ElectroForce test system. A constrained optimization solution technique was able to predict the restraining forces within the soft-tissue structures and joint contact. The numerical model presented here allowed in vivo prediction of the material stiffness parameters of the ACL in response to applied anterior loading. Promising results were obtained for in vivo load sharing within the structures. The numerical model overestimated the ACL forces by 27.61-92.71%. This study presents a novel approach to estimate ligament stiffness and provides the basis to develop a robust and accurate measure of in vivo knee joint laxity.
Injury risk curves for the skeletal knee-thigh-hip complex for knee-impact loading.
Rupp, Jonathan D; Flannagan, Carol A C; Kuppa, Shashi M
2010-01-01
Injury risk curves for the skeletal knee-thigh-hip (KTH) relate peak force applied to the anterior aspect of the flexed knee, the primary source of KTH injury in frontal motor-vehicle crashes, to the probability of skeletal KTH injury. Previous KTH injury risk curves have been developed from analyses of peak knee-impact force data from studies where knees of whole cadavers were impacted. However, these risk curves either neglect the effects of occupant gender, stature, and mass on KTH fracture force, or account for them using scaling factors derived from dimensional analysis without empirical support. A large amount of experimental data on the knee-impact forces associated with KTH fracture are now available, making it possible to estimate the effects of subject characteristics on skeletal KTH injury risk by statistically analyzing empirical data. Eleven studies were identified in the biomechanical literature in which the flexed knees of whole cadavers were impacted. From these, peak knee-impact force data and the associated subject characteristics were reanalyzed using survival analysis with a lognormal distribution. Results of this analysis indicate that the relationship between peak knee-impact force and the probability of KTH fracture is a function of age, total body mass, and whether the surface that loads the knee is rigid. Comparisons between injury risk curves for the midsize adult male and small adult female crash test dummies defined in previous studies and new risk curves for these sizes of occupants developed in this study suggest that previous injury risk curves generally overestimate the likelihood of KTH fracture at a given peak knee-impact force. Future work should focus on defining the relationships between impact force at the human knee and peak axial compressive forces measured by load cells in the crash test dummy KTH complex so that these new risk curves can be used with ATDs.
Testing techniques for determining static mechanical properties of Pneumatic tires
NASA Technical Reports Server (NTRS)
Dodge, R. N.; Larson, R. B.; Clark, S. K.; Nybakken, G. H.
1974-01-01
Fore-aft, lateral, and vertical spring rates of model and full-scale pneumatic tires were evaluated by testing techniques generally employed by industry and various testing groups. The purpose of this experimental program was to investigate what effects the different testing techniques have on the measured values of these important static tire mechanical properties. The testing techniques included both incremental and continuous loadings applied at various rates over half, full, and repeated cycles. Of the three properties evaluated, the fore-aft stiffness was demonstrated to be the most affected by the different testing techniques used to obtain it. Appreciable differences in the fore-aft spring rates occurred using both the increment- and continuous-loading techniques; however, the most significant effect was attributed to variations in the size of the fore-aft force loop. The dependence of lateral stiffness values on testing techniques followed the same trends as that for fore-aft stiffness, except to a lesser degree. Vertical stiffness values were found to be nearly independent of testing procedures if the nonlinear portion of the vertical force-deflection curves is avoided.
NASA Technical Reports Server (NTRS)
Schuster, David M.; Panda, Jayanta; Ross, James C.; Roozeboom, Nettie H.; Burnside, Nathan J.; Ngo, Christina L.; Kumagai, Hiro; Sellers, Marvin; Powell, Jessica M.; Sekula, Martin K.;
2016-01-01
This NESC assessment examined the accuracy of estimating buffet loads on in-line launch vehicles without booster attachments using sparse unsteady pressure measurements. The buffet loads computed using sparse sensor data were compared with estimates derived using measurements with much higher spatial resolution. The current method for estimating launch vehicle buffet loads is through wind tunnel testing of models with approximately 400 unsteady pressure transducers. Even with this relatively large number of sensors, the coverage can be insufficient to provide reliable integrated unsteady loads on vehicles. In general, sparse sensor spacing requires the use of coherence-length-based corrections in the azimuthal and axial directions to integrate the unsteady pressures and obtain reasonable estimates of the buffet loads. Coherence corrections have been used to estimate buffet loads for a variety of launch vehicles with the assumption methodology results in reasonably conservative loads. For the Space Launch System (SLS), the first estimates of buffet loads exceeded the limits of the vehicle structure, so additional tests with higher sensor density were conducted to better define the buffet loads and possibly avoid expensive modifications to the vehicle design. Without the additional tests and improvements to the coherence-length analysis methods, there would have been significant impacts to the vehicle weight, cost, and schedule. If the load estimates turn out to be too low, there is significant risk of structural failure of the vehicle. This assessment used a combination of unsteady pressure-sensitive paint (uPSP), unsteady pressure transducers, and a dynamic force and moment balance to investigate the integration schemes used with limited unsteady pressure data by comparing them with direct integration of extremely dense fluctuating pressure measurements. An outfall of the assessment was to evaluate the potential of using the emerging uPSP technique in a production test environment for future launch vehicles. The results show that modifications to the current technique can improve the accuracy of buffet estimates. More importantly, the uPSP worked remarkably well and, with improvements to the frequency response, sensitivity, and productivity, will provide an enhanced method for measuring wind tunnel buffet forcing functions (BFFs).
The Anterolateral Capsule of the Knee Behaves Like a Sheet of Fibrous Tissue.
Guenther, Daniel; Rahnemai-Azar, Amir A; Bell, Kevin M; Irarrázaval, Sebastián; Fu, Freddie H; Musahl, Volker; Debski, Richard E
2017-03-01
The function of the anterolateral capsule of the knee has not been clearly defined. However, the contribution of this region of the capsule to knee stability in comparison with other anterolateral structures can be determined by the relative force that each structure carries during loading of the knee. Purpose/Hypothesis: The purpose of this study was to determine the forces in the anterolateral structures of the intact and anterior cruciate ligament (ACL)-deficient knee in response to an anterior tibial load and internal tibial torque. It was hypothesized that the anterolateral capsule would not function like a traditional ligament (ie, transmitting forces only along its longitudinal axis). Controlled laboratory study. Loads (134-N anterior tibial load and 7-N·m internal tibial torque) were applied continuously during flexion to 7 fresh-frozen cadaveric knees in the intact and ACL-deficient state using a robotic testing system. The lateral collateral ligament (LCL) and the anterolateral capsule were separated from the surrounding tissue and from each other. This was done by performing 3 vertical incisions: lateral to the LCL, medial to the LCL, and lateral to the Gerdy tubercle. Attachments of the LCL and anterolateral capsule were detached from the underlying tissue (ie, meniscus), leaving the insertions and origins intact. The force distribution in the anterolateral capsule, ACL, and LCL was then determined at 30°, 60°, and 90° of knee flexion using the principle of superposition. In the intact knee, the force in the ACL in response to an anterior tibial load was greater than that in the other structures ( P < .001). However, in response to an internal tibial torque, no significant differences were found between the ACL, LCL, and forces transmitted between each region of the anterolateral capsule after capsule separation. The anterolateral capsule experienced smaller forces (~50% less) compared with the other structures ( P = .048). For the ACL-deficient knee in response to an anterior tibial load, the force transmitted between each region of the anterolateral capsule was 434% greater than was the force in the anterolateral capsule ( P < .001) and 54% greater than the force in the LCL ( P = .036) at 30° of flexion. In response to an internal tibial torque at 30°, 60°, or 90° of knee flexion, no significant differences were found between the force transmitted between each region of the anterolateral capsule and the LCL. The force in the anterolateral capsule was significantly smaller than that in the other structures at all knee flexion angles for both loading conditions ( P = .004 for anterior tibial load and P = .04 for internal tibial torque). The anterolateral capsule carries negligible forces in the longitudinal direction, and the forces transmitted between regions of the capsule were similar to the forces carried by the other structures at the knee, suggesting that it does not function as a traditional ligament. Thus, the anterolateral capsule should be considered a sheet of tissue. Surgical repair techniques for the anterolateral capsule should restore the ability of the tissue to transmit forces between adjacent regions of the capsule rather than along its longitudinal axis.
Arun, Mike W J; Yoganandan, Narayan; Stemper, Brian D; Pintar, Frank A
2014-12-01
While studies have used acoustic sensors to determine fracture initiation time in biomechanical studies, a systematic procedure is not established to process acoustic signals. The objective of the study was to develop a methodology to condition distorted acoustic emission data using signal processing techniques to identify fracture initiation time. The methodology was developed from testing a human cadaver lumbar spine column. Acoustic sensors were glued to all vertebrae, high-rate impact loading was applied, load-time histories were recorded (load cell), and fracture was documented using CT. Compression fracture occurred to L1 while other vertebrae were intact. FFT of raw voltage-time traces were used to determine an optimum frequency range associated with high decibel levels. Signals were bandpass filtered in this range. Bursting pattern was found in the fractured vertebra while signals from other vertebrae were silent. Bursting time was associated with time of fracture initiation. Force at fracture was determined using this time and force-time data. The methodology is independent of selecting parameters a priori such as fixing a voltage level(s), bandpass frequency and/or using force-time signal, and allows determination of force based on time identified during signal processing. The methodology can be used for different body regions in cadaver experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nam, Kanghyun
2015-11-11
This article presents methods for estimating lateral vehicle velocity and tire cornering stiffness, which are key parameters in vehicle dynamics control, using lateral tire force measurements. Lateral tire forces acting on each tire are directly measured by load-sensing hub bearings that were invented and further developed by NSK Ltd. For estimating the lateral vehicle velocity, tire force models considering lateral load transfer effects are used, and a recursive least square algorithm is adapted to identify the lateral vehicle velocity as an unknown parameter. Using the estimated lateral vehicle velocity, tire cornering stiffness, which is an important tire parameter dominating the vehicle's cornering responses, is estimated. For the practical implementation, the cornering stiffness estimation algorithm based on a simple bicycle model is developed and discussed. Finally, proposed estimation algorithms were evaluated using experimental test data.
Trajectory-Based Loads for the Ares I-X Test Flight Vehicle
NASA Technical Reports Server (NTRS)
Vause, Roland F.; Starr, Brett R.
2011-01-01
In trajectory-based loads, the structural engineer treats each point on the trajectory as a load case. Distributed aero, inertial, and propulsion forces are developed for the structural model which are equivalent to the integrated values of the trajectory model. Free-body diagrams are then used to solve for the internal forces, or loads, that keep the applied aero, inertial, and propulsion forces in dynamic equilibrium. There are several advantages to using trajectory-based loads. First, consistency is maintained between the integrated equilibrium equations of the trajectory analysis and the distributed equilibrium equations of the structural analysis. Second, the structural loads equations are tied to the uncertainty model for the trajectory systems analysis model. Atmosphere, aero, propulsion, mass property, and controls uncertainty models all feed into the dispersions that are generated for the trajectory systems analysis model. Changes in any of these input models will affect structural loads response. The trajectory systems model manages these inputs as well as the output from the structural model over thousands of dispersed cases. Large structural models with hundreds of thousands of degrees of freedom would execute too slowly to be an efficient part of several thousand system analyses. Trajectory-based loads provide a means for the structures discipline to be included in the integrated systems analysis. Successful applications of trajectory-based loads methods for the Ares I-X vehicle are covered in this paper. Preliminary design loads were based on 2000 trajectories using Monte Carlo dispersions. Range safety loads were tied to 8423 malfunction turn trajectories. In addition, active control system loads were based on 2000 preflight trajectories using Monte Carlo dispersions.
Load measurement system with load cell lock-out mechanism
NASA Technical Reports Server (NTRS)
Le, Thang; Carroll, Monty; Liu, Jonathan
1995-01-01
In the frame work of the project Shuttle Plume Impingement Flight Experiment (SPIFEX), a Load Measurement System was developed and fabricated to measure the impingement force of Shuttle Reaction Control System (RCS) jets. The Load Measurement System is a force sensing system that measures any combination of normal and shear forces up to 40 N (9 lbf) in the normal direction and 22 N (5 lbf) in the shear direction with an accuracy of +/- 0.04 N (+/- 0.01 lbf) Since high resolution is required for the force measurement, the Load Measurement System is built with highly sensitive load cells. To protect these fragile load cells in the non-operational mode from being damaged due to flight loads such as launch and landing loads of the Shuttle vehicle, a motor driven device known as the Load Cell Lock-Out Mechanism was built. This Lock-Out Mechanism isolates the load cells from flight loads and re-engages the load cells for the force measurement experiment once in space. With this highly effective protection system, the SPIFEX load measurement experiment was successfully conducted on STS-44 in September 1994 with all load cells operating properly and reading impingement forces as expected.
Design, analysis, and fabrication of a piezoelectric force plate
NASA Astrophysics Data System (ADS)
Hoummadi, Elias; Safaei, Mohsen; Anton, Steven R.
2017-04-01
Force plates are used to detect static and dynamic reaction forces due to presence of stationary or moving objects as well as the location of applied forces. The application of force plates in various biomechanical fields, such as gait analysis, has been widely suggested and investigated in the past. Several sensor technologies like piezoelectrics, capacitance gauges, and piezoresistive sensors are utilized to develop force plates with special characteristics. Among the technologies employed in force plate designs, piezoelectrics present the ability of providing a self-powered sensory system. Recently, it has been suggested to implement piezoelectric transducers as sensors in the tibial bearing of total knee replacement (TKR) implants in order to transform the knee bearing into a force plate with the ability to detect force and contact point location for in vivo knee load analysis. Considering this application, a simplified design of a force plate instrumented with six piezoelectric transducers is presented in this study. The force plate is modeled using a finite element (FE) model to investigate the sensing performance of the system. In order to validate the simulation, a prototype force plate is fabricated and tested under the same loading condition applied on the FE model. The results are presented in terms of measured location and amplitude of applied force measured by the piezoelectric transducers. For the FE simulation, the deviation of the measured location of the applied force from the actual location is obtained as 0.62 mm in the x-direction and 0.13 mm in the y-direction, and the error in the amplitude of the measured force is 0.03% of the applied force. On the other hand, the deviation in the measured location of the force from the experimental test is 0.53 mm in the x-direction and 0.1 mm in the y-direction, while the error in force is 3.6% of the applied force. The small quantities of error in both sensed location and amplitude of applied force obtained from the FE simulation and experimental test results demonstrates the potential of the proposed design to be utilized as the sensor in the knee bearing of TKR implants.
Ouweltjes, W; Gussekloo, S W S; Spoor, C W; van Leeuwen, J L
2016-02-01
Claw and locomotion problems are widespread in ungulates. Although it is presumed that mechanical overload is an important contributor to claw tissue damage and impaired locomotion, deformation and claw injury as a result of mechanical loading has been poorly quantified and, as a result, practical solutions to reduce such lesions have been established mostly through trial and error. In this study, an experimental technique was developed that allowed the measurement under controlled loading regimes of minute deformations in the lower limbs of dissected specimens from large ungulates. Roentgen stereophotogrammetric analysis (RSA) was applied to obtain 3D marker coordinates with an accuracy of up to 0.1 mm with optimal contrast and to determine changes in the spatial conformation. A force plate was used to record the applied forces in three dimensions. The results obtained for a test sample (cattle hind leg) under three loading conditions showed that small load-induced deformations and translations as well as small changes in centres of force application could be measured. Accuracy of the order of 0.2-0.3 mm was feasible under practical circumstances with suboptimal contrast. These quantifications of claw deformation during loading improve understanding of the spatial strain distribution as a result of external loading and the risks of tissue overload. The method promises to be useful in determining load-deformation relationships for a wide variety of specimens and circumstances. Copyright © 2015 Elsevier Ltd. All rights reserved.
A technique for measuring dynamic friction coefficient under impact loading
NASA Astrophysics Data System (ADS)
Lin, Y. L.; Qin, J. G.; Chen, R.; Zhao, P. D.; Lu, F. Y.
2014-09-01
We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m2/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.
A technique for measuring dynamic friction coefficient under impact loading.
Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y
2014-09-01
We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.
Nucera, Riccardo; Gatto, Elda; Borsellino, Chiara; Aceto, Pasquale; Fabiano, Francesca; Matarese, Giovanni; Perillo, Letizia; Cordasco, Giancarlo
2014-05-01
To evaluate how different bracket-slot design characteristics affect the forces released by superelastic nickel-titanium (NiTi) alignment wires at different amounts of wire deflection. A three-bracket bending and a classic-three point bending testing apparatus were used to investigate the load-deflection properties of one superelastic 0.014-inch NiTi alignment wire in different experimental conditions. The selected NiTi archwire was tested in association with three bracket systems: (1) conventional twin brackets with a 0.018-inch slot, (2) a self-ligating bracket with a 0.018-inch slot, and (3) a self-ligating bracket with a 0.022-inch slot. Wire specimens were deflected at 2 mm and 4 mm. Use of a 0.018-inch slot bracket system, in comparison with use of a 0.022-inch system, increases the force exerted by the superelastic NiTi wires at a 2-mm deflection. Use of a self-ligating bracket system increases the force released by NiTi wires in comparison with the conventional ligated bracket system. NiTi wires deflected to a different maximum deflection (2 mm and 4 mm) release different forces at the same unloading data point (1.5 mm). Bracket design, type of experimental test, and amount of wire deflection significantly affected the amount of forces released by superelastic NiTi wires (P<.05). This phenomenon offers clinicians the possibility to manipulate the wire's load during alignment.
The effects of oscillating forces upon the flow of dental cements.
Judge, R B; Wilson, P R
1999-11-01
The aim of this study was to evaluate the effect of oscillating forces upon the flow of five dental cements. A laboratory investigation was carried out using a crown and die. It showed that the application of oscillating forces improved the flow of the tested dental cements when combined with low static loads and wide crown-die separations. The oscillating forces enhanced the late, particle-dominated phase of cement flow. Further investigations characterised the nature of the oscillating forces applied in this experiment and revealed yield stress behaviour shown by one cement.
Moving Force Identification: a Time Domain Method
NASA Astrophysics Data System (ADS)
Law, S. S.; Chan, T. H. T.; Zeng, Q. H.
1997-03-01
The solution for the vertical dynamic interaction forces between a moving vehicle and the bridge deck is analytically derived and experimentally verified. The deck is modelled as a simply supported beam with viscous damping, and the vehicle/bridge interaction force is modelled as one-point or two-point loads with fixed axle spacing, moving at constant speed. The method is based on modal superposition and is developed to identify the forces in the time domain. Both cases of one-point and two-point forces moving on a simply supported beam are simulated. Results of laboratory tests on the identification of the vehicle/bridge interaction forces are presented. Computation simulations and laboratory tests show that the method is effective, and acceptable results can be obtained by combining the use of bending moment and acceleration measurements.
NASA Technical Reports Server (NTRS)
Lokos, William A.; Miller, Eric J.; Hudson, Larry D.; Holguin, Andrew C.; Neufeld, David C.; Haraguchi, Ronnie
2015-01-01
This paper describes the design and conduct of the strain-gage load calibration ground test of the SubsoniC Research Aircraft Testbed, Gulfstream III aircraft, and the subsequent data analysis and results. The goal of this effort was to create and validate multi-gage load equations for shear force, bending moment, and torque for two wing measurement stations. For some of the testing the aircraft was supported by three airbags in order to isolate the wing structure from extraneous load inputs through the main landing gear. Thirty-two strain gage bridges were installed on the left wing. Hydraulic loads were applied to the wing lower surface through a total of 16 load zones. Some dead-weight load cases were applied to the upper wing surface using shot bags. Maximum applied loads reached 54,000 lb. Twenty-six load cases were applied with the aircraft resting on its landing gear, and 16 load cases were performed with the aircraft supported by the nose gear and three airbags around the center of gravity. Maximum wing tip deflection reached 17 inches. An assortment of 2, 3, 4, and 5 strain-gage load equations were derived and evaluated against independent check cases. The better load equations had root mean square errors less than 1 percent. Test techniques and lessons learned are discussed.
NASA Astrophysics Data System (ADS)
tongqing, Wu; liang, Li; xinjian, Liu; Xu, nianchun; Tian, Mao
2018-03-01
Self-balanced method is carried out on the large diameter rock-socketed filling piles of high-pile wharf at Inland River, to explore the distribution laws of load-displacement curve, pile internal force, pile tip friction resistance and pile side friction resistance under load force. The results showed that: the tip resistance of S1 and S2 test piles accounted for 53.4% and 53.6% of the pile bearing capacity, respectively, while the total side friction resistance accounted for 46.6% and 46.4% of the pile bearing capacity, respectively; both the pile tip friction resistance and pile side friction resistance can be fully played, and reach to the design requirements. The reasonability of large diameter rock-socketed filling design is verified through test analysis, which can provide basis for the optimization of high-pile wharf structural type, thus reducing the wharf project cost, and also providing reference for the similar large diameter rock-socketed filling piles of high-pile wharf at Inland River.
Cornering characteristics of the nose-gear tire of the space shuttle orbiter
NASA Technical Reports Server (NTRS)
Vogler, W. A.; Tanner, J. A.
1981-01-01
An experimental investigation was conducted to evaluate cornering characteristics of the 32 x 8.8 nose gear tire of the space shuttle orbiter. Data were obtained on a dry concrete runway at nominal ground speeds ranging from 50 to 100 knots and over a range of tire vertical loads and yaw angles which span the expected envelope of loads and yaw angles to be encountered during space shuttle landing operations. The cornering characteristics investigated included side and drag forces and friction coefficients, aligning and overturning torques, friction force moment arm, and the lateral center of pressure shift. Results of this investigation indicate that the cornering characteristics of the space shuttle nose gear tire are insensitive to variations in ground speed over the range tested. The effects on cornering characteristics of variations in the tire vertical load and yaw angle are as expected. Trends observed are consistent with trends observed during previous cornering tests involving other tire sizes.
Three-Component Force Measurements on a Scramjet in a Reflected-Shock Tunnel
NASA Technical Reports Server (NTRS)
Tsai, C.-Y.; Bakos, R. J.; Mee, D. J.
1998-01-01
A three-component stress-wave force-balance for a large scramjet has been designed, calibrated and tested in the HYPULSE reflected shock tunnel at GASL Inc., New York. The scramjet model is over 3-foot long and weighs in excess of 90 Ibm. The stress-wave force-balance is comprised of three stress bars which are attached to the model. Calibration results indicate that the force balance responds well within about 1 ms and that the sensitivity of the balance to the distribution of load is not large. Results with and without fuel injection were obtained in the tunnel operated for Mach 7 and Mach 10 flight simulation. These tests showed the force-balance can resolve axial force increments due to combustion of about 40 lb in the presence of model lift forces of 500-700 lb.
Kowalsky, Marc S; Kremenic, Ian J; Orishimo, Karl F; McHugh, Malachy P; Nicholas, Stephen J; Lee, Steven J
2010-11-01
Recently, some have suggested that the acromioclavicular articulation confers stability to the construct after coracoclavicular ligament reconstruction for acromioclavicular joint separation. Therefore, it has been suggested that distal clavicle excision should not be performed in this context to protect the graft during healing. Sectioning the acromioclavicular ligaments would significantly increase in situ forces of a coracoclavicular ligament graft, whereas performing a distal clavicle resection would not further increase in situ graft forces. Controlled laboratory study. A simulated coracoclavicular reconstruction was performed on 5 cadaveric shoulders. Static loads of 80 N and 210 N were applied directly to the clavicle in 5 directions: anterior, anterosuperior, superior, posterosuperior, and posterior. The in situ graft force was measured using a force transducer under 3 testing conditions: (1) intact acromioclavicular ligaments, (2) sectioned acromioclavicular ligaments, and (3) distal clavicle excision. For both magnitudes of load, in all directions, in situ graft force with intact acromioclavicular ligaments was significantly less than that with sectioned acromioclavicular ligaments (P < .001). Distal clavicle excision did not further increase the in situ graft forces with load applied to the clavicle in an anterior, anterosuperior, or superior direction. However, in situ graft forces were increased with distal clavicle excision when the clavicle was loaded with 210 N in the posterosuperior direction (60.4 ± 6.3 N vs 52.5 ± 7.1 N; P = .048) and tended to be increased with posterior loading of the clavicle (71.8 ± 6.2 N vs 53.1 ± 8.8 N; P = .125). Intact acromioclavicular ligaments protect the coracoclavicular reconstruction by decreasing the in situ graft force. The slight increase in the in situ graft force only in the posterosuperior and posterior direction after distal clavicle excision suggests only a marginal protective role of the acromioclavicular articulation. Further, the peak graft forces observed represent only a small fraction of the ultimate failure strength of the graft. Distal clavicle excision can perhaps be safely performed in the context of coracoclavicular ligament reconstruction without subjecting the graft to detrimental in situ force. Although the acromioclavicular articulation serves only a marginal role in protecting the coracoclavicular ligament graft, reconstruction of the acromioclavicular ligaments may serve an important role in decreasing in situ graft force during healing.
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Castelluccio, Mark A.; Coulson, David A.; Heeg, Jennifer
2011-01-01
A team comprised of the Air Force Research Laboratory (AFRL), Boeing, and the NASA Langley Research Center conducted three aeroservoelastic wind-tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, exible vehicles. In the first of these three tests, a full-span, aeroelastically scaled, wind-tunnel model of a joined-wing SensorCraft vehicle was mounted to a force balance to acquire a basic aerodynamic data set. In the second and third tests, the same wind-tunnel model was mated to a new, two-degree-of-freedom, beam mount. This mount allowed the full-span model to translate vertically and pitch. Trimmed flight at -10% static margin and gust load alleviation were successfully demonstrated. The rigid body degrees of freedom required that the model be own in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free-flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort. The balance and free ying wind-tunnel tests will be summarized. The design of the trim and gust load alleviation control laws along with the associated results will also be discussed.
Marques, Mário C.; Saavedra, Francisco J.; Abrantes, Catarina; Aidar, Felipe J.
2011-01-01
Performance assessment has become an invaluable component of monitoring participant’s development in distinct sports, yet limited and contradictory data are available in trained subjects. The purpose of this study was to examine the relationship between ball throwing velocity during a 3-step running throw in elite team handball players and selected measures of rate of force development like force, power, velocity, and bar displacement during a concentric only bench press exercise in elite male handball players. Fitteen elite senior male team handball players volunteered to participate. Each volunteer had power and bar velocity measured during a concentric only bench press test with 25, 35, and 45 kg as well as having one-repetition maximum strength determined. Ball throwing velocity was evaluated with a standard 3-step running throw using a radar gun. The results of this study indicated significant associations between ball velocity and time at maximum rate of force development (0, 66; p<0.05) and rate of force development at peak force (0,56; p<0.05) only with 25kg load. The current research indicated that ball velocity was only median associated with maximum rate of force development with light loads. A training regimen designed to improve ball-throwing velocity in elite male team handball players should emphasize bench press movement using light loads. PMID:23487363
Marques, Mário C; Saavedra, Francisco J; Abrantes, Catarina; Aidar, Felipe J
2011-09-01
Performance assessment has become an invaluable component of monitoring participant's development in distinct sports, yet limited and contradictory data are available in trained subjects. The purpose of this study was to examine the relationship between ball throwing velocity during a 3-step running throw in elite team handball players and selected measures of rate of force development like force, power, velocity, and bar displacement during a concentric only bench press exercise in elite male handball players. Fitteen elite senior male team handball players volunteered to participate. Each volunteer had power and bar velocity measured during a concentric only bench press test with 25, 35, and 45 kg as well as having one-repetition maximum strength determined. Ball throwing velocity was evaluated with a standard 3-step running throw using a radar gun. The results of this study indicated significant associations between ball velocity and time at maximum rate of force development (0, 66; p<0.05) and rate of force development at peak force (0,56; p<0.05) only with 25kg load. The current research indicated that ball velocity was only median associated with maximum rate of force development with light loads. A training regimen designed to improve ball-throwing velocity in elite male team handball players should emphasize bench press movement using light loads.
NASA Astrophysics Data System (ADS)
Hidayat, Dony; Istiyanto, Jos; Agus Sumarsono, Danardono
2018-04-01
Loads at main landing gear while touchdown impact is function of aircraft weight and ground reaction load factor. In regulation states ground reaction load factor at Vsink = 3.05 m/s is below 3. Contact/impact force from simulation using MSC ADAMS is 94680 N, while using Solidworks Motion Analysis is 97691 N. The difference between MSC ADAMS and Solidworks Motion Analysis is 3.08%. The ground reaction load factor in MSC ADAMS is 2.78 while in Solidworks Motion Analysis is 2.87.
Single ball bearing lubricant and material evaluator
NASA Technical Reports Server (NTRS)
Hall, Philip B. (Inventor); Novak, Howard L. (Inventor)
2005-01-01
A test apparatus provides an applied load to a monoball through a trolley which moves along a loading axis. While applying the load to the monoball, the torque meter is in communication with the spherical monoball, and a load cell senses the application of applied force to the monoball. Meanwhile, a rotary actuary imports rotary oscillating motion to the monoball which is sensed by a position sensor and a torque meter. Accordingly, a processor can determine the coefficient of friction in substantially real time along with a cycles per second rate.
Single Ball Bearing Lubricant and Material Evaluator
NASA Technical Reports Server (NTRS)
Hall, Philip B. (Inventor); Novak, Howard L. (Inventor)
2005-01-01
A test apparatus provides an applied load to a monoball through a trolley which moves along a loading axis. While applying the load to the monoball, the torque meter is in communication with the spherical monoball, and a load cell senses the application of applied force to the monoball. Meanwhile, a rotary actuary imports rotary oscillating motion to the monoball which is sensed by a position sensor and a torque meter. Accordingly, a processor can determine the coefficient of friction in substantially real time along with a cycles per second rate.
Eshoj, H; Juul-Kristensen, Birgit; Jørgensen, Rene Gam Bender; Søgaard, Karen
2017-02-01
For the lower limbs, the Nintendo Wii Balance Board (NWBB) has been widely used to measure postural control. However, this has not been performed for upper limb measurements. Further, the NWBB has shown to produce more background noise with decreasing loads, which may be of concern when used for upper limb testing. The aim was to investigate reproducibility and validity of the NWBB. A test-retest design was performed with 68 subjects completing three different prone lying, upper limb weight-bearing balance tasks on a NWBB: two-arms, eyes closed (1) one-arm, non-dominant/non-injured (2) and one-arm, dominant/injured (3). Each task was repeated three times over the course of two test sessions with a 30-min break in between. Further, the level of background noise from a NWBB was compared with a force platform through systematic loading of both boards with increasing deadweights ranging from 5 to 90kg. Test-retest reproducibility was high with ICCs ranging from 0.95 to 0.97 (95% CI 0.92 to 0.98). However, systematic bias and tendencies for funnel effects in the Bland Altman plots for both one-armed tests were present. The concurrent validity of the NWBB was low (CCC 0.17 (95% CI 0.12-0.22)) due to large differences between the NWBB and force platform in noise sensitivity at low deadweights (especially below 50kg). The NWBB prone lying, shoulder sensorimotor control test was highly reproducible. Though, concurrent validity of the NWBB was poor compared to a force platform. Further investigation of the impact of the background noise, especially at low loads, is needed. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schaeffner, Maximilian; Götz, Benedict; Platz, Roland
2016-06-01
Buckling of slender beam-columns subject to axial compressive loads represents a critical design constraint for light-weight structures. Active buckling control provides a possibility to stabilize slender beam-columns by active lateral forces or bending moments. In this paper, the potential of active buckling control of an axially loaded beam-column with circular solid cross-section by piezo-elastic supports is investigated experimentally. In the piezo-elastic supports, lateral forces of piezoelectric stack actuators are transformed into bending moments acting in arbitrary directions at the beam-column ends. A mathematical model of the axially loaded beam-column is derived to design an integral linear quadratic regulator (LQR) that stabilizes the system. The effectiveness of the stabilization concept is investigated in an experimental test setup and compared with the uncontrolled system. With the proposed active buckling control it is possible to stabilize the beam-column in arbitrary lateral direction for axial loads up to the theoretical critical buckling load of the system.
Rohlmann, Antonius; Gabel, Udo; Graichen, Friedmar; Bender, Alwina; Bergmann, Georg
2007-06-01
Realistic loads on a spinal implant are required among others for optimization of implant design and preclinical testing. In addition, such data may help to choose the optimal physiotherapy program for patients with such an implant and to evaluate the efficacy of aids like braces or crutches. Presently, no implant is available that can measure loads in the anterior spinal column during activities of daily life. Therefore, an implant instrumented for in vivo load measurement was developed for vertebral body replacement. The aim of this paper is to describe in detail a telemeterized implant that measures forces and moments acting on it. Six load sensors, a nine-channel telemetry unit and a coil for inductive power supply of the electronic circuits were integrated into a modified vertebral body replacement (Synex). The instrumented part of the implant is hermetically sealed. Patients are videotaped during measurements, and implant loads are displayed on and off line. The average accuracy of load measurement is better than 2% for force and 5% for moment components with reference to the maximum value of 3000 N and 20 Nm, respectively. The measuring implant described here will provide additional information on spinal loads.
Wright, Glenn A; Pustina, Andrew A; Mikat, Richard P; Kernozek, Thomas W
2012-03-01
The purpose of this study was to determine the efficacy of estimating peak lower body power from a maximal jump squat using 3 different vertical jump prediction equations. Sixty physically active college students (30 men, 30 women) performed jump squats with a weighted bar's applied load of 20, 40, and 60% of body mass across the shoulders. Each jump squat was simultaneously monitored using a force plate and a contact mat. Peak power (PP) was calculated using vertical ground reaction force from the force plate data. Commonly used equations requiring body mass and vertical jump height to estimate PP were applied such that the system mass (mass of body + applied load) was substituted for body mass. Jump height was determined from flight time as measured with a contact mat during a maximal jump squat. Estimations of PP (PP(est)) for each load and for each prediction equation were compared with criterion PP values from a force plate (PP(FP)). The PP(est) values had high test-retest reliability and were strongly correlated to PP(FP) in both men and women at all relative loads. However, only the Harman equation accurately predicted PP(FP) at all relative loads. It can therefore be concluded that the Harman equation may be used to estimate PP of a loaded jump squat knowing the system mass and peak jump height when more precise (and expensive) measurement equipment is unavailable. Further, high reliability and correlation with criterion values suggest that serial assessment of power production across training periods could be used for relative assessment of change by either of the prediction equations used in this study.
NASA Astrophysics Data System (ADS)
Chang, Ho; Lan, Chou-Wei; Guo, Jia-Bin
2011-12-01
This paper studies the influence of addition of 100 nm diameter nickel nano-particles on the friction properties of synthetic grease (Li base, VG100) in pneumatic cylinder. The friction force test of pneumatic cylinder equipment measures the frictional force between seal and cylinder bore in pneumatic cylinders. The lubricants with addition of nickel nano-particles were used for lubricating the contact interface between seal and cylinder bore. The friction force test equipment employ a load cell force sensor to measure the friction force between seals and cylinder bores. Results obtained from experimental tests are compared to determine the friction force between seals and cylinder bore in pneumatic cylinders. The study leads to the conclusion that the addition of nickel nano-particles to synthetic grease results in a decrease in friction force between seals and cylinder bores in pneumatic cylinder. This tribological behavior is closely related to the deposition of nano-particles on the rubbing surfaces
Force reflecting hand controller for manipulator teleoperation
NASA Technical Reports Server (NTRS)
Bryfogle, Mark D.
1991-01-01
A force reflecting hand controller based upon a six degree of freedom fully parallel mechanism, often termed a Stewart Platform, has been designed, constructed, and tested as an integrated system with a slave robot manipulator test bed. A force reflecting hand controller comprises a kinesthetic device capable of transmitting position and orientation commands to a slave robot manipulator while simultaneously representing the environmental interaction forces of the slave manipulator back to the operator through actuators driving the hand controller mechanism. The Stewart Platform was chosen as a novel approach to improve force reflecting teleoperation because of its inherently high ratio of load generation capability to system mass content and the correspondingly high dynamic bandwidth. An additional novelty of the program was to implement closed loop force and torque control about the hand controller mechanism by equipping the handgrip with a six degree of freedom force and torque measuring cell. The mechanical, electrical, computer, and control systems are discussed and system tests are presented.
Miura, Michiaki; Nakamura, Junichi; Matsuura, Yusuke; Wako, Yasushi; Suzuki, Takane; Hagiwara, Shigeo; Orita, Sumihisa; Inage, Kazuhide; Kawarai, Yuya; Sugano, Masahiko; Nawata, Kento; Ohtori, Seiji
2017-12-16
Finite element analysis (FEA) of the proximal femur has been previously validated with large mesh size, but these were insufficient to simulate the model with small implants in recent studies. This study aimed to validate the proximal femoral computed tomography (CT)-based specimen-specific FEA model with smaller mesh size using fresh frozen cadavers. Twenty proximal femora from 10 cadavers (mean age, 87.1 years) were examined. CT was performed on all specimens with a calibration phantom. Nonlinear FEA prediction with stance configuration was performed using Mechanical Finder (mesh,1.5 mm tetrahedral elements; shell thickness, 0.2 mm; Poisson's coefficient, 0.3), in comparison with mechanical testing. Force was applied at a fixed vertical displacement rate, and the magnitude of the applied load and displacement were continuously recorded. The fracture load and stiffness were calculated from force-displacement curve, and the correlation between mechanical testing and FEA prediction was examined. A pilot study with one femur revealed that the equations proposed by Keller for vertebra were the most reproducible for calculating Young's modulus and the yield stress of elements of the proximal femur. There was a good linear correlation between fracture loads of mechanical testing and FEA prediction (R 2 = 0.6187) and between the stiffness of mechanical testing and FEA prediction (R 2 = 0.5499). There was a good linear correlation between fracture load and stiffness (R 2 = 0.6345) in mechanical testing and an excellent correlation between these (R 2 = 0.9240) in FEA prediction. CT-based specimen-specific FEA model of the proximal femur with small element size was validated using fresh frozen cadavers. The equations proposed by Keller for vertebra were found to be the most reproducible for the proximal femur in elderly people.
2014-01-01
Background Mechanical loads induced through muscle contraction, vibration, or compressive forces are thought to modulate tissue plasticity. With the emergence of regenerative medicine, there is a need to understand the optimal mechanical environment (vibration, load, or muscle force) that promotes cellular health. To our knowledge no mechanical system has been proposed to deliver these isolated mechanical stimuli in human tissue. We present the design, performance, and utilization of a new technology that may be used to study localized mechanical stimuli on human tissues. A servo-controlled vibration and limb loading system were developed and integrated into a single instrument to deliver vibration, compression, or muscle contractile loads to a single limb (tibia) in humans. The accuracy, repeatability, transmissibility, and safety of the mechanical delivery system were evaluated on eight individuals with spinal cord injury (SCI). Findings The limb loading system was linear, repeatable, and accurate to less than 5, 1, and 1 percent of full scale, respectively, and transmissibility was excellent. The between session tests on individuals with spinal cord injury (SCI) showed high intra-class correlations (>0.9). Conclusions All tests supported that therapeutic loads can be delivered to a lower limb (tibia) in a safe, accurate, and measureable manner. Future collaborations between engineers and cellular physiologists will be important as research programs strive to determine the optimal mechanical environment for developing cells and tissues in humans. PMID:24894666
Gonik, Bernard; Zhang, Ning; Grimm, Michele J
2003-04-01
A computer model was modified to study the impact of maternal endogenous and clinician-applied exogenous delivery loads on the contact force between the anterior fetal shoulder and the maternal symphysis pubis. Varying endogenous and exogenous loads were applied, and the contact force was determined. Experiments also examined the effect of pelvic orientation and the direction of load application on contact force behind the symphysis pubis. Exogenous loading forces (50-100 N) resulted in anterior shoulder contact forces of 107 to 127 N, with delivery accomplished at 100 N of applied load. Higher contact forces (147-272 N) were noted for endogenously applied loads (100-400 N), with delivery occurring at 400 N of maternal force. Pelvic rotation from lithotomy to McRoberts' positioning resulted in reduced contact forces. Downward lateral flexion of the fetal head led to little difference in contact force but required 30% more exogenous load to achieve delivery. Compared with clinician-applied exogenous force, larger maternally derived endogenous forces are needed to clear the impacted anterior fetal shoulder. This is associated with >2 times more contact force by the obstructing symphysis pubis. McRoberts' positioning reduces shoulder-symphysis pubis contact force. Lateral flexion of the fetal head results in the larger forces that are needed for delivery but has little effect on contact force. Model refinements are needed to examine delivery forces and brachial plexus stretching more specifically.
Dynamic Loading Assembly for Testing Actuators of Segmented Mirror Telescope
NASA Astrophysics Data System (ADS)
Deshmukh, Prasanna Gajanan; Parihar, Padmakar; Balasubramaniam, Karthik A.; Mishra, Deepta Sundar; Mahesh, P. K.
Upcoming large telescopes are based on Segmented Mirror Telescope (SMT) technology which uses small hexagonal mirror segments placed side by side to form the large monolithic surface. The segments alignment needs to be maintained against external disturbances like wind, gravity, temperature and structural vibration. This is achieved by using three position actuators per segment working at few-nanometer scale range along with a local closed loop controller. The actuator along with a controller is required to meet very stringent performance requirements, such as track rates up to 300nm/s (90mN/s) with tracking errors less than 5nm, dynamical forces of up to ±40N, ability to reject disturbances introduced by the wind as well as by mechanical vibration generated in the mirror cell, etc. To conduct these performance tests in more realistic manner, we have designed and developed a Dynamic Loading Assembly (DLA) at Indian Institute of Astrophysics (IIA), Bangalore. DLA is a computer controlled force-inducing device, designed in a modular fashion to generate different types of user-defined disturbances in extremely precise and controlled manner. Before realizing the device, using a simple spring-mass-damper-based mathematical model, we ensured that the concept would indeed work. Subsequently, simple concept was converted into a detailed mechanical design and parts were manufactured and assembled. DLA has static and dynamic loading capabilities up to 250N and 18N respectively, with a bandwidth sufficient to generate wind disturbances. In this paper, we present various performance requirements of SMT actuators as well as our effort to develop a dynamic loading device which can be used to test these actuators. Well before using DLA for meaningful testing of the actuator, the DLA itself have gone through various tests and improvements phases. We have successfully demonstrated that DLA can be used to check the extreme performance of two different SMT actuators, which are expected to track the position/force with a few nanometer accuracy.
Plantar Loading During Cutting While Wearing a Rigid Carbon Fiber Insert.
Queen, Robin M; Abbey, Alicia N; Verma, Ravi; Butler, Robert J; Nunley, James A
2014-02-12
Context : Stress fractures are one of the most common injuries in sports, accounting for approximately 10% of all overuse injuries. Treatment of fifth metatarsal stress fractures involves both surgical and nonsurgical interventions. Fifth metatarsal stress fractures are difficult to treat because of the risks of delayed union, nonunion, and recurrent injuries. Most of these injuries occur during agility tasks, such as those performed in soccer, basketball, and lacrosse. Objective : To examine the effect of a rigid carbon graphite footplate on plantar loading during 2 agility tasks. Design : Crossover study. Setting : Laboratory. Patients or Other Participants : A total of 19 recreational male athletes with no history of lower extremity injury in the past 6 months and no previous metatarsal stress fractures were tested. Main Outcome Measure(s) : Seven 45° side-cut and crossover-cut tasks were completed in a shoe with or without a full-length rigid carbon plate. Testing order between the shoe conditions and the 2 cutting tasks was randomized. Plantar-loading data were recorded using instrumented insoles. Peak pressure, maximum force, force-time integral, and contact area beneath the total foot, the medial and lateral midfoot, and the medial, middle, and lateral forefoot were analyzed. A series of paired t tests was used to examine differences between the footwear conditions (carbon graphite footplate, shod) for both cutting tasks independently (α = .05). Results : During the side-cut task, the footplate increased total foot and lateral midfoot peak pressures while decreasing contact area and lateral midfoot force-time integral. During the crossover-cut task, the footplate increased total foot and lateral midfoot peak pressure and lateral forefoot force-time integral while decreasing total and lateral forefoot contact area. Conclusions : Although a rigid carbon graphite footplate altered some aspects of the plantar- pressure profile during cutting in uninjured participants, it was ineffective in reducing plantar loading beneath the fifth metatarsal.
Plantar Loading During Cutting While Wearing a Rigid Carbon Fiber Insert
Queen, Robin M.; Abbey, Alicia N.; Verma, Ravi; Butler, Robert J.; Nunley, James A.
2014-01-01
Context Stress fractures are one of the most common injuries in sports, accounting for approximately 10% of all overuse injuries. Treatment of fifth metatarsal stress fractures involves both surgical and nonsurgical interventions. Fifth metatarsal stress fractures are difficult to treat because of the risks of delayed union, nonunion, and recurrent injuries. Most of these injuries occur during agility tasks, such as those performed in soccer, basketball, and lacrosse. Objective: To examine the effect of a rigid carbon graphite footplate on plantar loading during 2 agility tasks. Design: Crossover study. Setting: Laboratory. Patients or Other Participants: A total of 19 recreational male athletes with no history of lower extremity injury in the past 6 months and no previous metatarsal stress fractures were tested. Main Outcome Measure(s): Seven 45° side-cut and crossover-cut tasks were completed in a shoe with or without a full-length rigid carbon plate. Testing order between the shoe conditions and the 2 cutting tasks was randomized. Plantar-loading data were recorded using instrumented insoles. Peak pressure, maximum force, force-time integral, and contact area beneath the total foot, the medial and lateral midfoot, and the medial, middle, and lateral forefoot were analyzed. A series of paired t tests was used to examine differences between the footwear conditions (carbon graphite footplate, shod) for both cutting tasks independently (α = .05). Results: During the side-cut task, the footplate increased total foot and lateral midfoot peak pressures while decreasing contact area and lateral midfoot force-time integral. During the crossover-cut task, the footplate increased total foot and lateral midfoot peak pressure and lateral forefoot force-time integral while decreasing total and lateral forefoot contact area. Conclusions: Although a rigid carbon graphite footplate altered some aspects of the plantar-pressure profile during cutting in uninjured participants, it was ineffective in reducing plantar loading beneath the fifth metatarsal. PMID:24955620
A mathematical method for quantifying in vivo mechanical behaviour of heel pad under dynamic load.
Naemi, Roozbeh; Chatzistergos, Panagiotis E; Chockalingam, Nachiappan
2016-03-01
Mechanical behaviour of the heel pad, as a shock attenuating interface during a foot strike, determines the loading on the musculoskeletal system during walking. The mathematical models that describe the force deformation relationship of the heel pad structure can determine the mechanical behaviour of heel pad under load. Hence, the purpose of this study was to propose a method of quantifying the heel pad stress-strain relationship using force-deformation data from an indentation test. The energy input and energy returned densities were calculated by numerically integrating the area below the stress-strain curve during loading and unloading, respectively. Elastic energy and energy absorbed densities were calculated as the sum of and the difference between energy input and energy returned densities, respectively. By fitting the energy function, derived from a nonlinear viscoelastic model, to the energy density-strain data, the elastic and viscous model parameters were quantified. The viscous and elastic exponent model parameters were significantly correlated with maximum strain, indicating the need to perform indentation tests at realistic maximum strains relevant to walking. The proposed method showed to be able to differentiate between the elastic and viscous components of the heel pad response to loading and to allow quantifying the corresponding stress-strain model parameters.
Wind turbine blade testing system using base excitation
Cotrell, Jason; Thresher, Robert; Lambert, Scott; Hughes, Scott; Johnson, Jay
2014-03-25
An apparatus (500) for fatigue testing elongate test articles (404) including wind turbine blades through forced or resonant excitation of the base (406) of the test articles (404). The apparatus (500) includes a testing platform or foundation (402). A blade support (410) is provided for retaining or supporting a base (406) of an elongate test article (404), and the blade support (410) is pivotally mounted on the testing platform (402) with at least two degrees of freedom of motion relative to the testing platform (402). An excitation input assembly (540) is interconnected with the blade support (410) and includes first and second actuators (444, 446, 541) that act to concurrently apply forces or loads to the blade support (410). The actuator forces are cyclically applied in first and second transverse directions. The test article (404) responds to shaking of its base (406) by oscillating in two, transverse directions (505, 507).
Calculation of Dynamic Loads Due to Random Vibration Environments in Rocket Engine Systems
NASA Technical Reports Server (NTRS)
Christensen, Eric R.; Brown, Andrew M.; Frady, Greg P.
2007-01-01
An important part of rocket engine design is the calculation of random dynamic loads resulting from internal engine "self-induced" sources. These loads are random in nature and can greatly influence the weight of many engine components. Several methodologies for calculating random loads are discussed and then compared to test results using a dynamic testbed consisting of a 60K thrust engine. The engine was tested in a free-free condition with known random force inputs from shakers attached to three locations near the main noise sources on the engine. Accelerations and strains were measured at several critical locations on the engines and then compared to the analytical results using two different random response methodologies.
16 CFR 1508.4 - Spacing of crib components.
Code of Federal Regulations, 2010 CFR
2010-01-01
... by 4-inch high by 4-inch long) rectangular block which shall not pass through the space. (b) The...) direct force is applied in accordance with the test method in § 1508.5. For contoured or irregular slats... below the loading wedge when a 9-kilogram (20-pound) direct force is applied in accordance with said...
Device for measuring hole elongation in a bolted joint
NASA Technical Reports Server (NTRS)
Wichorek, Gregory R. (Inventor)
1987-01-01
A device to determine the operable failure mode of mechanically fastened lightweight composite joints by measuring the hole elongation of a bolted joint is disclosed. The double-lap joint test apparatus comprises a stud, a test specimen having a hole, two load transfer plates, and linear displacement measuring instruments. The test specimen is sandwiched between the two load transfer plates and clamped together with the stud. Spacer washers are placed between the test specimen and each load transfer plate to provide a known, controllable area for the determination of clamping forces around the hole of the specimen attributable to bolt torque. The spacer washers also provide a gap for the mounting of reference angles on each side of the test specimen. Under tensile loading, elongation of the hole of the test specimen causes the stud to move away from the reference angles. This displacement is measured by the voltage output of two linear displacement measuring instruments that are attached to the stud and remain in contact with the reference angles throughout the tensile loading. The present invention obviates previous problems in obtaining specimen deformation measurements by monitoring the reference angles to the test specimen and the linear displacement measuring instruments to the stud.
Control of finger forces during fast, slow and moderate rotational hand movements.
Kazemi, Hamed; Kearney, Robert E; Milner, Theodore E
2014-01-01
The goal of this study was to investigate the effect of speed on patterns of grip forces during twisting movement involving forearm supination against a torsional load (combined elastic and inertial load). For slow and moderate speed rotations, the grip force increased linearly with load torque. However, for fast rotations in which the contribution of the inertia to load torque was significantly greater than slower movements, the grip force-load torque relationship could be segmented into two phases: a linear ascending phase corresponding to the acceleration part of the movement followed by a plateau during deceleration. That is, during the acceleration phase, the grip force accurately tracked the combined elastic and inertial load. However, the coupling between grip force and load torque was not consistent during the deceleration phase of the movement. In addition, as speed increased, both the position and the force profiles became smoother. No differences in the baseline grip force, safety margin to secure the grasp during hold phase or the overall change in grip force were observed across different speeds.
Van Toen, Carolyn; Carter, Jarrod W; Oxland, Thomas R; Cripton, Peter A
2014-12-01
The tolerance of the spine to bending moments, used for evaluation of injury prevention devices, is often determined through eccentric axial compression experiments using segments of the cadaver spine. Preliminary experiments in our laboratory demonstrated that eccentric axial compression resulted in "unexpected" (artifact) moments. The aim of this study was to evaluate the static and dynamic effects of test configuration on bending moments during eccentric axial compression typical in cadaver spine segment testing. Specific objectives were to create dynamic equilibrium equations for the loads measured inferior to the specimen, experimentally verify these equations, and compare moment responses from various test configurations using synthetic (rubber) and human cadaver specimens. The equilibrium equations were verified by performing quasi-static (5 mm/s) and dynamic experiments (0.4 m/s) on a rubber specimen and comparing calculated shear forces and bending moments to those measured using a six-axis load cell. Moment responses were compared for hinge joint, linear slider and hinge joint, and roller joint configurations tested at quasi-static and dynamic rates. Calculated shear force and bending moment curves had similar shapes to those measured. Calculated values in the first local minima differed from those measured by 3% and 15%, respectively, in the dynamic test, and these occurred within 1.5 ms of those measured. In the rubber specimen experiments, for the hinge joint (translation constrained), quasi-static and dynamic posterior eccentric compression resulted in flexion (unexpected) moments. For the slider and hinge joints and the roller joints (translation unconstrained), extension ("expected") moments were measured quasi-statically and initial flexion (unexpected) moments were measured dynamically. In the cadaver experiments with roller joints, anterior and posterior eccentricities resulted in extension moments, which were unexpected and expected, for those configurations, respectively. The unexpected moments were due to the inertia of the superior mounting structures. This study has shown that eccentric axial compression produces unexpected moments due to translation constraints at all loading rates and due to the inertia of the superior mounting structures in dynamic experiments. It may be incorrect to assume that bending moments are equal to the product of compression force and eccentricity, particularly where the test configuration involves translational constraints and where the experiments are dynamic. In order to reduce inertial moment artifacts, the mass, and moment of inertia of any loading jig structures that rotate with the specimen should be minimized. Also, the distance between these structures and the load cell should be reduced.
Scaling Effects in Carbon/Epoxy Laminates Under Transverse Quasi-Static Loading
NASA Technical Reports Server (NTRS)
Nettles, Alan T.; Douglas, Michael J.; Estes, Eric E.
1999-01-01
Scaling effects were considered for 8, 16, 32, and 64 ply IM-7/8551-7 carbon/epoxy composites plates transversely loaded to the first significant load drop by means of both a quasi-static and an equivalent impact force. The resulting damage was examined by x-ray and photomicroscopy analysis. Load-deflection curves were generated for the quasi-static tests and the resulting indentation depth was measured. Results showed that the load-deflection data scaled well for most of the various thicknesses of plates. However, damage did not scale as well. No correlation could be found between dent depth and any of the other parameters measured in this study. The impact test results showed that significantly less damage was formed compared to the quasi- static results for a given maximum transverse load. The criticality of ply-level scaling (grouping plies) was also examined.
Lateral resistance of piles near vertical MSE abutment walls.
DOT National Transportation Integrated Search
2013-03-01
Full scale lateral load tests were performed on eight piles located at various distances behind MSE walls. The objective of the testing was to determine the effect of spacing from the wall on the lateral resistance of the piles and on the force induc...
Thermally Activated Composite with Two-Way and Multi-Shape Memory Effects
Basit, Abdul; L’Hostis, Gildas; Pac, Marie José; Durand, Bernard
2013-01-01
The use of shape memory polymer composites is growing rapidly in smart structure applications. In this work, an active asymmetric composite called “controlled behavior composite material (CBCM)” is used as shape memory polymer composite. The programming and the corresponding initial fixity of the composite structure is obtained during a bending test, by heating CBCM above thermal glass transition temperature of the used Epoxy polymer. The shape memory properties of these composites are investigated by a bending test. Three types of recoveries are conducted, two classical recovery tests: unconstrained recovery and constrained recovery, and a new test of partial recovery under load. During recovery, high recovery displacement and force are produced that enables the composite to perform strong two-way actuations along with multi-shape memory effect. The recovery force confirms full recovery with two-way actuation even under a high load. This unique property of CBCM is characterized by the recovered mechanical work. PMID:28788316
Saliba, Christopher M; Clouthier, Allison L; Brandon, Scott C E; Rainbow, Michael J; Deluzio, Kevin J
2018-05-29
Abnormal loading of the knee joint contributes to the pathogenesis of knee osteoarthritis. Gait retraining is a non-invasive intervention that aims to reduce knee loads by providing audible, visual, or haptic feedback of gait parameters. The computational expense of joint contact force prediction has limited real-time feedback to surrogate measures of the contact force, such as the knee adduction moment. We developed a method to predict knee joint contact forces using motion analysis and a statistical regression model that can be implemented in near real-time. Gait waveform variables were deconstructed using principal component analysis and a linear regression was used to predict the principal component scores of the contact force waveforms. Knee joint contact force waveforms were reconstructed using the predicted scores. We tested our method using a heterogenous population of asymptomatic controls and subjects with knee osteoarthritis. The reconstructed contact force waveforms had mean (SD) RMS differences of 0.17 (0.05) bodyweight compared to the contact forces predicted by a musculoskeletal model. Our method successfully predicted subject-specific shape features of contact force waveforms and is a potentially powerful tool in biofeedback and clinical gait analysis.
The Effects of Ballistic and Non-Ballistic Bench Press on Mechanical Variables.
Moir, Gavin L; Munford, Shawn N; Moroski, Lindsey L; Davis, Shala E
2017-02-21
To investigate the effects of ballistic and non-ballistic bench press performed with loads equivalent to 30 and 90% 1-repetition maximum (1-RM) on mechanical variables. Eleven resistance-trained men (age: 23.0 ± 1.4 years; mass: 98.4 ± 14.4 kg) attended four testing sessions where they performed one of the following sessions: 1) three sets of five non-ballistic repetitions performed with a load equivalent to 30% 1-RM (30N-B), 2) three sets of five ballistic repetitions performed with a load equivalent to 30% 1-RM (30B), 3) three sets of four non-ballistic repetitions with a load equivalent to 90% 1-RM (90N-B), 4) three sets of four ballistic repetitions with a load equivalent to 90% 1-RM (90B). Force plates and a 3-D motion analysis system were used to determine the velocity, force, power output (PO) and work during each repetition. The heavier loads resulted in significantly greater forces applied to the barbell (mean differences: 472-783 N, p<0.001), but lower barbell velocities (mean differences: 0.85-1.20 m/s, p<0.001) and PO (mean differences: 118-492 W, p≤0.022). The ballistic conditions enhanced the mechanical variables only at the lower load with 30B producing significantly greater force (mean difference: 263 N, p<0.001), velocity (mean difference: 0.33 m/s, p<0.001), and PO (mean difference: 335 W, p<0.001) compared to 30N-B. Furthermore, the increase in PO across the 3 sets in 30B was significantly different from all other conditions (p=0.013). The total mechanical work performed was significantly greater for the conditions with the heavier loads compared to those with the lighter loads (mean differences: 3,62-5,600 J, p<0.001) and that performed during the ballistic conditions was significantly greater than that performed during the non-ballistic conditions with the same load (mean differences: 945-1,030 J, p<0.001). Ballistic bench press may be an effective exercise for developing power output and multiple sets may elicit post-activation potentiation that enhances force production. However, these benefits may be negated at heavier loads.
Nissan, Joseph; Barnea, Eitan; Bar Hen, Doron; Assif, David
2008-09-01
Endodontically treated maxillary first premolars present a restorative challenge. The objective of the present study was to assess the resistance to fracture of crowned endodontically treated maxillary first premolars under simulated occlusal load, while preserving various degrees of remaining coronal structure. The study consisted of 50 intact maxillary first premolars with bifurcated roots and similar root diameter and length, randomly divided into 5 equal experimental groups. All dowels were luted with Flexi-Flow titanium-reinforced composite resin cement. TiCore titanium-reinforced composite resin was used to fabricate the core. Complete cast crowns were fabricated and cemented with zinc phosphate cement. Forces at fracture and mode of failure were recorded. Statistically significant differences (P < .05) were found among mean failure forces for all tested groups in their resistance to fracture under load with the Kruskal-Wallias test and among all combinations of the 5 groups (Z = -1.56/-2.34; P > .05) with the Mann-Whitney test. This indicates that crowned maxillary first premolars with varying degrees of remaining coronal structure differ significantly in their resistance to fracture under occlusal load. There was increased protection against fracture under occlusal loads with more remaining tooth structure. Within the limitations of this study, remaining coronal structure influenced the fracture resistance of crowned endodontically treated maxillary first premolars. Preservation of tooth structure is important for its protection against fracture under occlusal loads and may influence the tooth prognosis.
Application of Novel Lateral Tire Force Sensors to Vehicle Parameter Estimation of Electric Vehicles
Nam, Kanghyun
2015-01-01
This article presents methods for estimating lateral vehicle velocity and tire cornering stiffness, which are key parameters in vehicle dynamics control, using lateral tire force measurements. Lateral tire forces acting on each tire are directly measured by load-sensing hub bearings that were invented and further developed by NSK Ltd. For estimating the lateral vehicle velocity, tire force models considering lateral load transfer effects are used, and a recursive least square algorithm is adapted to identify the lateral vehicle velocity as an unknown parameter. Using the estimated lateral vehicle velocity, tire cornering stiffness, which is an important tire parameter dominating the vehicle’s cornering responses, is estimated. For the practical implementation, the cornering stiffness estimation algorithm based on a simple bicycle model is developed and discussed. Finally, proposed estimation algorithms were evaluated using experimental test data. PMID:26569246
Monitoring dynamic loads on wind tunnel force balances
NASA Technical Reports Server (NTRS)
Ferris, Alice T.; White, William C.
1989-01-01
Two devices have been developed at NASA Langley to monitor the dynamic loads incurred during wind-tunnel testing. The Balance Dynamic Display Unit (BDDU), displays and monitors the combined static and dynamic forces and moments in the orthogonal axes. The Balance Critical Point Analyzer scales and sums each normalized signal from the BDDU to obtain combined dynamic and static signals that represent the dynamic loads at predefined high-stress points. The display of each instrument is a multiplex of six analog signals in a way that each channel is displayed sequentially as one-sixth of the horizontal axis on a single oscilloscope trace. Thus this display format permits the operator to quickly and easily monitor the combined static and dynamic level of up to six channels at the same time.
Inducer Hydrodynamic Forces in a Cavitating Environment
NASA Technical Reports Server (NTRS)
Skelley, Stephen E.
2004-01-01
Marshall Space Flight Center has developed and demonstrated a measurement device for sensing and resolving the hydrodynamic loads on fluid machinery. The device - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining the amplitude and frequency content associated with operating in various cavitation modes. The rotating balance was calibrated statically using a dead-weight load system in order to generate the 6 x 12 calibration matrix later used to convert measured voltages to engineering units. Structural modeling suggested that the rotating assembly first bending mode would be significantly reduced with the balance s inclusion. This reduction in structural stiffness was later confirmed experimentally with a hammer-impact test. This effect, coupled with the relatively large damping associated with the rotating balance waterproofing material, limited the device s bandwidth to approximately 50 Hertz Other pre-test validations included sensing the test article rotating assembly built-in imbalance for two configurations and directly measuring the assembly mass and buoyancy while submerged under water. Both tests matched predictions and confirmed the device s sensitivity while stationary and rotating. The rotating balance was then demonstrated in a water test of a full-scale Space Shuttle Main Engine high-pressure liquid oxygen pump inducer. Experimental data was collected a scaled operating conditions at three flow coefficients across a range of cavitation numbers for the single inducer geometry and radial clearance. Two distinct cavitation modes were observed symmetric tip vortex cavitation and alternate-blade cavitation. Although previous experimental tests on the same inducer demonstrated two additional cavitation modes at lower inlet pressures, these conditions proved unreachable with the rotating balance installed due to the intense dynamic environment. The sensed radial load was less influenced by flow coefficient than by cavitation number or cavitation mode although the flow coefficient range was relatively narrow. Transition from symmetric tip vortex to alternate-blade cavitation corresponded to changes in both radial load magnitude and radial load orientation relative to the inducer. Sensed moments indicated that the effective load center moved downstream during this change in cavitation mode. An occurrence of "higher+rdex cavitation" was also detected in both the stationary pressures and the rotating balance data although the frequency of the phenomena was well above the reliable bandwidth of the rotating balance. In summary the experimental tests proved both the concept and device s capability despite the limitations and confirmed that hydrodynamically-induced forces and moments develop in response to the unbalanced pressure field, which is, in turn, a product of the cavitation environment.
Performance and loads data from an outdoor hover test of a Lynx tail rotor
NASA Technical Reports Server (NTRS)
Signor, David B.; Yamauchi, Gloria K.; Smith, Charles A.; Hagen, Martin J.
1989-01-01
A Lynx tail rotor was tested in hover at the Outdoor Aerodynamic Research Facility at NASA Ames Research Center. The test objectives were to measure the isolated rotor performance to provide a baseline for subsequent testing, and to operate the rotor throughout the speed and collective envelope before testing in the NFAC 40- by 80-Foot Wind Tunnel. Rotor forces and blade bending moments were measured at ambient wind conditions from zero to 6.23 m/sec. The test envelope was limited to rotor speeds of 1550 to 1850 rpm and minus 13 deg to plus 20 deg of blade collective pitch. The isolated rotor performance and blade loads data are presented.
Buckling characteristics of hypersonic aircraft wing tubular panels
NASA Technical Reports Server (NTRS)
Ko, William L.; Shideler, John L.; Fields, Roger A.
1986-01-01
The buckling characteristics of Rene 41 tubular panels installed as wing panels on a hypersonic wing test structure (HWTS) were determined nondestructively through use of a force/stiffness technique. The nondestructive buckling tests were carried out under different combined load conditions and different temperature environments. Two panels were subsequently tested to buckling failure in a universal tension compression testing machine. In spite of some data scattering because of large extrapolations of data points resulting from termination of the test at a somewhat low applied load, the overall test data correlated fairly well with theoretically predicted buckling interaction curves. The structural efficiency of the tubular panels was slightly higher than that of the beaded panels which they replaced.
Huang, Zhen
2017-01-01
This paper uses experimental investigation and theoretical derivation to study the unified failure mechanism and ultimate capacity model of reinforced concrete (RC) members under combined axial, bending, shear and torsion loading. Fifteen RC members are tested under different combinations of compressive axial force, bending, shear and torsion using experimental equipment designed by the authors. The failure mechanism and ultimate strength data for the four groups of tested RC members under different combined loading conditions are investigated and discussed in detail. The experimental research seeks to determine how the ultimate strength of RC members changes with changing combined loads. According to the experimental research, a unified theoretical model is established by determining the shape of the warped failure surface, assuming an appropriate stress distribution on the failure surface, and considering the equilibrium conditions. This unified failure model can be reasonably and systematically changed into well-known failure theories of concrete members under single or combined loading. The unified calculation model could be easily used in design applications with some assumptions and simplifications. Finally, the accuracy of this theoretical unified model is verified by comparisons with experimental results. PMID:28414777
Katona, T R; Chen, J
1994-08-01
The stress levels within the cement layer (hence, the apparent strength) of a direct bonded orthodontic bracket depends, to a large extent, on the alignment of the tensile loads that are applied to the specimen. The purpose of this analysis was to determine how the construction of a ligature wire harness affects the alignment of the applied loads. Tensile tests conducted on a modified bracket/cement system showed large variations in the force-elongation curve profiles. An engineering model was developed to explain these deviations. The results indicate that it is virtually impossible to evenly apply tensile loads to the bracket. It was also proposed that long harnesses constructed with thin ligature wire, prestressing the harness, and lubrication may reduce some of the effects of unavoidable load-bracket misalignment.
Koo, Terry K; Cohen, Jeffrey H; Zheng, Yongping
2011-11-01
Soft tissue exhibits nonlinear stress-strain behavior under compression. Characterizing its nonlinear elasticity may aid detection, diagnosis, and treatment of soft tissue abnormality. The purposes of this study were to develop a rate-controlled Mechano-Acoustic Indentor System and a corresponding finite element optimization method to extract nonlinear elastic parameters of soft tissue and evaluate its test-retest reliability. An indentor system using a linear actuator to drive a force-sensitive probe with a tip-mounted ultrasound transducer was developed. Twenty independent sites at the upper lateral quadrant of the buttock from 11 asymptomatic subjects (7 men and 4 women from a chiropractic college) were indented at 6% per second for 3 sessions, each consisting of 5 trials. Tissue thickness, force at 25% deformation, and area under the load-deformation curve from 0% to 25% deformation were calculated. Optimized hyperelastic parameters of the soft tissue were calculated with a finite element model using a first-order Ogden material model. Load-deformation response on a standardized block was then simulated, and the corresponding area and force parameters were calculated. Between-trials repeatability and test-retest reliability of each parameter were evaluated using coefficients of variation and intraclass correlation coefficients, respectively. Load-deformation responses were highly reproducible under repeated measurements. Coefficients of variation of tissue thickness, area under the load-deformation curve from 0% to 25% deformation, and force at 25% deformation averaged 0.51%, 2.31%, and 2.23%, respectively. Intraclass correlation coefficients ranged between 0.959 and 0.999, indicating excellent test-retest reliability. The automated Mechano-Acoustic Indentor System and its corresponding optimization technique offers a viable technology to make in vivo measurement of the nonlinear elastic properties of soft tissue. This technology showed excellent between-trials repeatability and test-retest reliability with potential to quantify the effects of a wide variety of manual therapy techniques on the soft tissue elastic properties. Copyright © 2011 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.
Hsieh, Hong-Jung; Hu, Chih-Chung; Lu, Tung-Wu; Lu, Hsuan-Lun; Kuo, Mei-Ying; Kuo, Chien-Chung; Hsu, Horng-Chaung
2016-06-07
Robot-based joint-testing systems (RJTS) can be used to perform unconstrained laxity tests, measuring the stiffness of a degree of freedom (DOF) of the joint at a fixed flexion angle while allowing the other DOFs unconstrained movement. Previous studies using the force-position hybrid (FPH) control method proposed by Fujie et al. (J Biomech Eng 115(3):211-7, 1993) focused on anterior/posterior tests. Its convergence and applicability on other clinically relevant DOFs such as valgus/varus have not been demonstrated. The current s1tudy aimed to develop a 6-DOF RJTS using an industrial robot, to propose two new force-position hybrid control methods, and to evaluate the performance of the methods and FPH in controlling the RJTS for anterior/posterior and valgus/varus laxity tests of the knee joint. An RJTS was developed using an industrial 6-DOF robot with a 6-component load-cell attached at the effector. The performances of FPH and two new control methods, namely force-position alternate control (FPA) and force-position hybrid control with force-moment control (FPHFM), for unconstrained anterior/posterior and valgus/varus laxity tests were evaluated and compared with traditional constrained tests (CT) in terms of the number of control iterations, total time and the constraining forces and moments. As opposed to CT, the other three control methods successfully reduced the constraining forces and moments for both anterior/posterior and valgus/varus tests, FPHFM being the best followed in order by FPA and FPH. FPHFM had root-mean-squared constraining forces and moments of less than 2.2 N and 0.09 Nm, respectively at 0° flexion, and 2.3 N and 0.14 Nm at 30° flexion. The corresponding values for FPH were 8.5 N and 0.33 Nm, and 11.5 N and 0.45 Nm, respectively. Given the same control parameters including the compliance matrix, FPHFM and FPA reduced the constraining loads of FPH at the expense of additional control iterations, and thus increased total time, FPA taking about 10 % longer than FPHFM. The FPHFM would be the best choice among the methods considered when longer total time is acceptable in the intended clinical applications. The current results will be useful for selecting a force-position hybrid control method for unconstrained laxity tests using an RJTS.
Static Footprint Local Forces, Areas, and Aspect Ratios for Three Type 7 Aircraft Tires
NASA Technical Reports Server (NTRS)
Howell, William E.; Perez, Sharon E.; Vogler, William A.
1991-01-01
The National Tire Modeling Program (NTMP) is a joint NASA/industry effort to improve the understanding of tire mechanics and develop accurate analytical design tools. This effort includes fundamental analytical and experimental research on the structural mechanics of tires. Footprint local forces, areas, and aspect ratios were measured. Local footprint forces in the vertical, lateral, and drag directions were measured with a special footprint force transducer. Measurements of the local forces in the footprint were obtained by positioning the transducer at specified locations within the footprint and externally loading the tires. Three tires were tested: (1) one representative of those used on the main landing gear of B-737 and DC-9 commercial transport airplanes, (2) a nose landing gear tire for the Space Shuttle Orbiter, and (3) a main landing gear tire for the Space Shuttle Orbiter. Data obtained for various inflation pressures and vertical loads are presented for two aircraft tires. The results are presented in graphical and tabulated forms.
NASA Technical Reports Server (NTRS)
Land, Norman S.; Pelz, Charles A.
1952-01-01
Force characteristics determined from tank tests of a 1/5.78 scale model of a hydro-ski-wheel combination for the Grumman JRF-5 airplane are presented. The model was tested in both the submerged and planing conditions over a range of trim, speed, and load sufficiently large to represent the most probable full-size conditions.
Hangody, Gy; Pánics, G; Szebényi, G; Kiss, R; Hangody, L; Pap, K
2016-03-01
The goal of the study was to find a proper technique to fix tendon grafts into an INSTRON loading machine. From 8 human cadavers, 40 grafts were collected. We removed the bone-patella tendon-bone grafts, the semitendinosus and gracilis tendons, the quadriceps tendon-bone grafts, the Achilles tendons, and the peroneus longus tendons from each lower extremity. We tested the tendon grafts with five different types of fixation devices: surgical thread (Premicron 3), general mounting clamp, wire mesh, cement fixation, and a modified clamp for an INSTRON loading machine. The mean failure load in case of surgical thread fixation was (381N ± 26N). The results with the general clamp were (527N ± 45N). The wire meshes were more promising (750N ± 21N), but did not reach the outcomes we desired. Easy slippages of the ends of the tendons from the cement encasements were observed (253N ± 18N). We then began to use Shi's clamp that could produce 977N ± 416N peak force. We combined Shi's clamp with freezing of the graft and the rupture of the tendon itself demonstrated an average force of 2198 N ± 773N. We determined that our modified frozen clamp fixed the specimens against high tensile forces.
Zatsiorsky, Vladimir M; Gao, Fan; Latash, Mark L
2005-04-01
According to basic physics, the local effects induced by gravity and acceleration are identical and cannot be separated by any physical experiment. In contrast-as this study shows-people adjust the grip forces associated with gravitational and inertial forces differently. In the experiment, subjects oscillated a vertically-oriented handle loaded with five different weights (from 3.8 N to 13.8 N) at three different frequencies in the vertical plane: 1 Hz, 1.5 Hz and 2.0 Hz. Three contributions to the grip force-static, dynamic, and stato-dynamic fractions-were quantified. The static fraction reflects grip force related to holding a load statically. The stato-dynamic fraction reflects a steady change in the grip force when the same load is moved cyclically. The dynamic fraction is due to acceleration-related adjustments of the grip force during oscillation cycles. The slope of the relation between the grip force and the load force was steeper for the static fraction than for the dynamic fraction. The stato-dynamic fraction increased with the frequency and load. The slope of the dynamic grip force-load force relation decreased with frequency, and as a rule, increased with the load. Hence, when adjusting grip force to task requirements, the central controller takes into account not only the expected magnitude of the load force but also such factors as whether the force is gravitational or inertial and the contributions of the object mass and acceleration to the inertial force. As an auxiliary finding, a complex finger coordination pattern aimed at preserving the rotational equilibrium of the object during shaking movements was reported.
NASA Astrophysics Data System (ADS)
Zhu, Ning; Sun, Shou-Guang; Li, Qiang; Zou, Hua
2014-12-01
One of the major problems in structural fatigue life analysis is establishing structural load spectra under actual operating conditions. This study conducts theoretical research and experimental validation of quasi-static load spectra on bogie frame structures of high-speed trains. The quasistatic load series that corresponds to quasi-static deformation modes are identified according to the structural form and bearing conditions of high-speed train bogie frames. Moreover, a force-measuring frame is designed and manufactured based on the quasi-static load series. The load decoupling model of the quasi-static load series is then established via calibration tests. Quasi-static load-time histories, together with online tests and decoupling analysis, are obtained for the intermediate range of the Beijing—Shanghai dedicated passenger line. The damage consistency calibration of the quasi-static discrete load spectra is performed according to a damage consistency criterion and a genetic algorithm. The calibrated damage that corresponds with the quasi-static discrete load spectra satisfies the safety requirements of bogie frames.
A Single-Vector Force Calibration Method Featuring the Modern Design of Experiments
NASA Technical Reports Server (NTRS)
Parker, P. A.; Morton, M.; Draper, N.; Line, W.
2001-01-01
This paper proposes a new concept in force balance calibration. An overview of the state-of-the-art in force balance calibration is provided with emphasis on both the load application system and the experimental design philosophy. Limitations of current systems are detailed in the areas of data quality and productivity. A unique calibration loading system integrated with formal experimental design techniques has been developed and designated as the Single-Vector Balance Calibration System (SVS). This new concept addresses the limitations of current systems. The development of a quadratic and cubic calibration design is presented. Results from experimental testing are compared and contrasted with conventional calibration systems. Analyses of data are provided that demonstrate the feasibility of this concept and provide new insights into balance calibration.
TTI (Texas Transportation Institute) track/dynamometer study. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reineman, M.; Thompson, G.
1983-01-01
Seven passenger cars and one light truck were operated over the EPA urban and highway driving cycles to compare fuel economy measurements obtained on a test track with the fuel economy results obtained on a chassis dynamometer. The test program was designed to duplicate, as closely as possible, the track force loading (as determined by standard EPA road coastdown procedures) on the dynamometer. Experimental parameters which were investigated included loading differences between front- and rear-wheel drive vehicles, volumetric versus carbon balance fuel measurement techniques, coupled versus uncoupled roll dynamometer tests, and curved track versus straight track coastdowns.
1999-03-01
aerodynamics to affect load motions. The effects include a load trail angle in proportion to the drag specific force, and modification of the load pendulum...equations algorithm for flight data filtering architeture . and data consistency checking; and SCIDNT 8, an output architecture. error identification...accelerations at the seven sensor locations, identified system is proportional to the number When system identification is performed, as of flexible modes
Ravier, G; Grappe, F; Rouillon, J D
2004-12-01
The aim of this study was to analyze the links between tests performances (vertical jump and force-velocity sprint on cycle ergometer) and 2 different karate level groups in order to propose a test battery adjusted to karate. Twenty-two karate competitors (10 national junior team (IJ) and 12 national competition level (NL)) performed 4 maximal squat jumps (SJ), 4 maximal counter movement jumps (CMJ) on an ergojump and 3 8-s sprints on a friction braked cycle ergometer (friction loads of 0.5, 0.7, 0.9 N x kg(-1)). The maximal theoretical force (F(0)) and velocity (V(0)), the maximal power output (P(max)) and the optimal pedalling velocity (V(opt)) were derived from both the force -- velocity and the power -- velocity relationships plotted from all the 3 friction loads data. V(0), F(0), V(opt), P(max) and the best SJ and CMJ, were compared between IJ and NL groups. The IJ group was characterised by significantly higher values of V(0) (+13%) and SJ (+14.3%) compared to NL group, whereas no significant difference was observed between groups for F(0). Thus, karate performance would depend on maximal velocity and explosive strength. In addition, V(opt) was significantly higher in IJ group compared to NL group (135.4 rpm vs 119.2 rpm, p<0.001). Although based upon indirect evidence, these results accounted for mechanical functional capabilities of experts which could be particularly valuable when monitoring training of karate competitor. A force-velocity and a vertical jump tests may be applied in the functional assessment of karate competitor.
Deflection test evaluation of different lots of the same nickel-titanium wire commercial brand
Neves, Murilo Gaby; Lima, Fabrício Viana Pereira; Gurgel, Júlio de Araújo; Pinzan-Vercelino, Célia Regina Maio; Rezende, Fernanda Soares; Brandão, Gustavo Antônio Martins
2016-01-01
Introduction: The aim of this in vitro study was to compare the elastic properties of the load-deflection ratio of orthodontic wires of different lot numbers and the same commercial brand. Methods: A total of 40 nickel-titanium (NiTi) wire segments (Morelli OrtodontiaTM - Sorocaba, SP, Brazil), 0.016-in in diameter were used. Groups were sorted according to lot numbers (lots 1, 2, 3 and 4). 28-mm length segments from the straight portion (ends) of archwires were used. Deflection tests were performed in an EMIC universal testing machine with 5-N load cell at 1 mm/minute speed. Force at deactivation was recorded at 0.5, 1, 2 and 3 mm deflection. Analysis of variance (ANOVA) was used to compare differences between group means. Results: When comparing the force of groups at the same deflection (3, 2 and 1 mm), during deactivation, no statistical differences were found. Conclusion: There are no changes in the elastic properties of different lots of the same commercial brand; thus, the use of different lots of the orthodontic wires used in this research does not compromise the final outcomes of the load-deflection ratio. PMID:27007760
Deflection test evaluation of different lots of the same nickel-titanium wire commercial brand.
Neves, Murilo Gaby; Lima, Fabrício Viana Pereira; Gurgel, Júlio de Araújo; Pinzan-Vercelino, Célia Regina Maio; Rezende, Fernanda Soares; Brandão, Gustavo Antônio Martins
2016-01-01
The aim of this in vitro study was to compare the elastic properties of the load-deflection ratio of orthodontic wires of different lot numbers and the same commercial brand. A total of 40 nickel-titanium (NiTi) wire segments (Morelli Ortodontia™--Sorocaba, SP, Brazil), 0.016-in in diameter were used. Groups were sorted according to lot numbers (lots 1, 2, 3 and 4). 28-mm length segments from the straight portion (ends) of archwires were used. Deflection tests were performed in an EMIC universal testing machine with 5-N load cell at 1 mm/minute speed. Force at deactivation was recorded at 0.5, 1, 2 and 3 mm deflection. Analysis of variance (ANOVA) was used to compare differences between group means. When comparing the force of groups at the same deflection (3, 2 and 1 mm), during deactivation, no statistical differences were found. There are no changes in the elastic properties of different lots of the same commercial brand; thus, the use of different lots of the orthodontic wires used in this research does not compromise the final outcomes of the load-deflection ratio.
Experimental and numerical study of Bondura® 6.6 PIN joints
NASA Astrophysics Data System (ADS)
Berkani, I.; Karlsen, Ø.; Lemu, H. G.
2017-12-01
Pin joints are widely used in heavy-duty machinery such as aircrafts, cranes and offshore drilling equipment to transfer multi-dimensional shear forces. Their strength and service life depend on the clamping force in the contact region that is provided by interference fits. Though the interference fits provide full contact at the pin-hole interface under pretension loads, the contact interface reduces when the pin is subjected to an external load and hence a smaller contact surface leads to dramatic increase of the contact stress. The PIN joint of Bondura® Technology, investigated in this study, is an innovative solution intended to reduce the slack at the contact surface of the pin joint of heavy-duty machinery by using tapered sleeves on each end of the PIN. The study is aimed to better understand the contact pressure build-up and stress distribution in the supporting contact surface under pre-loading of the joint and the influence of temperature difference between part assembly and operation conditions. Numerical simulation using finite element method and diverse experimental tests were conducted. The numerical simulation and the test results, particularly the tests conducted with lubricated joints, show good conformance.
NASA Astrophysics Data System (ADS)
Abramski, Marcin
2017-10-01
Porous concrete is commonly used in civil engineering due to its good thermal insulation properties in comparison with normal concrete and high compression strength in comparison with other building materials. Reducing of the concrete density can be obviously obtained by using lightweight aggregate (e.g. pumice). The concrete density can be further minimized by using specially graded coarse aggregate and little-to-no fine aggregates. In this way a large number of air voids arise. The aggregate particles are coated by a cement paste and bonded together with it just in contact points. Such an extremely porous concrete, called ‘lightweight aggregate concrete with open structure’ (LAC), is used in some German plants to produce prefabricated wall components. They are used mainly in hall buildings, e.g. supermarkets. The need of improving thermal insulation properties was an inspiration for the prefabrication plant managers, engineers and a scientific staff of the Technical University of Kaiserslautern / Germany to realise an interesting project. Its aim was to reduce the heat transfer coefficient for the wall components. Three different wall structure types were designed and compared in full-scale laboratory tests with originally produced wall components in terms of load-carrying capacity and stiffness. The load was applied perpendicularly to the wall plane. As the components are not originally used for load-bearing walls, but for curtain walls only, the wind load is the main load for them. The wall components were tested in horizontal position and the load was applied vertically. Totally twelve wall components 8.00 × 2.00 × 0.25m (three for every series) were produced in the prefabrication plant and tested in the University of Kaiserslautern laboratory. The designed and tested components differed from each other in the amount of expanded polystyrene (EPS), which was placed in the plant inside the wall structure. The minimal amount of it was designed in the original wall component type. Besides, two improved types of prefabricated wall had built-in steel lattice girders. The failure mode was the same for all the tested components: diagonal cracks occurred on the sides of each component due to their insufficient shear-force-capacity. The span deflection was measured during all the tests by means of LVDTs. Load-carrying capacities obtained in the tests were for all wall structure types similar and much higher (many times) than internal forces (i.e. bending moments and shear forces) calculated for a wind load acting on a typical hall building according to the German codes. An increased amount of EPS (up to 30 per cent in volume) did not influence significantly the wall structural strength. The use of the steel lattice girders caused some technological problems and led to a quality loss of the produced components. The future use of the lattice girders would require a change in the production process: it would have to be more labour consuming.
Mechanical testing and finite element analysis of orthodontic teardrop loop.
Coimbra, Maria Elisa Rodrigues; Penedo, Norman Duque; de Gouvêa, Jayme Pereira; Elias, Carlos Nelson; de Souza Araújo, Mônica Tirre; Coelho, Paulo Guilherme
2008-02-01
Understanding how teeth move in response to mechanical loads is an important aspect of orthodontic treatment. Treatment planning should include consideration of the appliances that will meet the desired loading of the teeth to result in optimized treatment outcomes. The purpose of this study was to evaluate the use of computer simulation to predict the force and the torsion obtained after the activation of tear drop loops of 3 heights. Seventy-five retraction loops were divided into 3 groups according to height (6, 7, and 8 mm). The loops were subjected to tensile load through displacements of 0.5, 1.0, 1.5, and 2.0 mm, and the resulting forces and torques were recorded. The loops were designed in AutoCAD software(2005; Autodesk Systems, Alpharetta, GA), and finite element analysis was performed with Ansys software(version 7.0; Swanson Analysis System, Canonsburg, PA). Statistical analysis of the mechanical experiment results was obtained by ANOVA and the Tukey post-hoc test (P < .01). The correlation test and the paired t test (P < .05) were used to compare the computer simulation with the mechanical experiment. The computer simulation accurately predicted the experimentally determined mechanical behavior of tear drop loops of different heights and should be considered an alternative for designing orthodontic appliances before treatment.
Flexible Blades for Wind Turbines
NASA Astrophysics Data System (ADS)
Collins, Madeline Carlisle; Macphee, David; Harris, Caleb
2016-11-01
Previous research has shown that windmills with flexible blades are more efficient than those with rigid blades. Flexibility offers passive pitch control, preferable to active pitch control which is costly and requires maintenance. Flexible blades morph such that the blade more closely resembles its design point at part load and over load. The lift-to-drag ratios on individual blades was investigated. A mold was designed and machined from an acrylic slab for the casting of blades with a NACA 0012 cross section. A flexible blade was cast from silicone and a rigid blade was cast from polyurethane. Each of these blades was tested in a wind tunnel, cantilever mounted, spanning the whole test section. The angle of attack was varied by rotating the mount. All tests were performed at the same wind speed. A load cell within the mount measured forces on the blade, from which the lift and drag forces were calculated. The stall point for the flexible blade occurred later than for the rigid blade, which agrees with previous research. Lift-to-drag ratios were larger for the flexible blade at all angles of attack tested. Flexible blades seem to be a viable option for passive pitch control. Future research will include different airfoil cross sections, wind speeds, and blade materials. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.
Meylan, César M P; Cronin, John B; Oliver, Jon L; Hughes, Michael M G; Jidovtseff, Boris; Pinder, Shane
2015-03-01
The purpose of this study was to quantify the inter-session reliability of force-velocity-power profiling and estimated maximal strength in youth. Thirty-six males (11-15 years old) performed a ballistic supine leg press test at five randomized loads (80%, 100%, 120%, 140%, and 160% body mass) on three separate occasions. Peak and mean force, power, velocity, and peak displacement were collected with a linear position transducer attached to the weight stack. Mean values at each load were used to calculate different regression lines and estimate maximal strength, force, velocity, and power. All variables were found reliable (change in the mean [CIM] = - 1 to 14%; coefficient of variation [CV] = 3-18%; intraclass correlation coefficient [ICC] = 0.74-0.99), but were likely to benefit from a familiarization, apart from the unreliable maximal force/velocity ratio (CIM = 0-3%; CV = 23-25%; ICC = 0.35-0.54) and load at maximal power (CIM = - 1 to 2%; CV = 10-13%; ICC = 0.26-0.61). Isoinertial force-velocity-power profiling and maximal strength in youth can be assessed after a familiarization session. Such profiling may provide valuable insight into neuromuscular capabilities during growth and maturation and may be used to monitor specific training adaptations.
Force Measurements in Magnetic Suspension and Balance System
NASA Technical Reports Server (NTRS)
Kuzin, Alexander; Shapovalov, George; Prohorov, Nikolay
1996-01-01
The description of an infrared telemetry system for measurement of drag forces in Magnetic Suspension and Balance Systems (MSBS) is presented. This system includes a drag force sensor, electronic pack and transmitter placed in the model which is of special construction, and receiver with a microprocessor-based measuring device, placed outside of the test section. Piezosensitive resonators as sensitive elements and non-magnetic steel as the material for the force sensor are used. The main features of the proposed system for load measurements are discussed and the main characteristics are presented.
Solid lubrication design methodology
NASA Technical Reports Server (NTRS)
Aggarwal, B. B.; Yonushonis, T. M.; Bovenkerk, R. L.
1984-01-01
A single element traction rig was used to measure the traction forces at the contact of a ball against a flat disc at room temperature under combined rolling and sliding. The load and speed conditions were selected to match those anticipated for bearing applications in adiabatic diesel engines. The test program showed that the magnitude of traction forces were almost the same for all the lubricants tested; a lubricant should, therefore, be selected on the basis of its ability to prevent wear of the contact surfaces. Traction vs. slide/roll ratio curves were similar to those for liquid lubricants but the traction forces were an order of magnitude higher. The test data was used to derive equations to predict traction force as a function of contact stress and rolling speed. Qualitative design guidelines for solid lubricated concentrated contacts are proposed.
NASA Technical Reports Server (NTRS)
Anderson, L. R.; Miller, R. D.
1979-01-01
The LOADS computer program L218 which calculates dynamic load coefficient matrices utilizing the force summation method is described. The load equations are derived for a flight vehicle in straight and level flight and excited by gusts and/or control motions. In addition, sensor equations are calculated for use with an active control system. The load coefficient matrices are calculated for the following types of loads: (1) translational and rotational accelerations, velocities, and displacements; (2) panel aerodynamic forces; (3) net panel forces; and (4) shears, bending moments, and torsions.
Injection by hydrostatic pressure in conjunction with electrokinetic force on a microfluidic chip.
Gai, Hongwei; Yu, Linfen; Dai, Zhongpeng; Ma, Yinfa; Lin, Bingcheng
2004-06-01
A simple method was developed for injecting a sample on a cross-form microfluidic chip by means of hydrostatic pressure combined with electrokinetic forces. The hydrostatic pressure was generated simply by adjusting the liquid level in different reservoirs without any additional driven equipment such as a pump. Two dispensing strategies using a floating injection and a gated injection, coupled with hydrostatic pressure loading, were tested. The fluorescence observation verified the feasibility of hydrostatic pressure loading in the separation of a mixture of fluorescein sodium salt and fluorescein isothiocyanate. This method was proved to be effective in leading cells to a separation channel for single cell analysis.
Wilson, D A; Keegan, K G; Carson, W L
1999-01-01
This study compared the mechanical properties of the normal intact suspensory apparatus and two methods of fixation for repair of transverse, midbody fractures of the proximal sesamoid bones of adult horses: transfixation wiring (TW) and screws placed in lag fashion (LS). An in vitro, paired study using equine cadaver limbs mounted in a loading apparatus was used to test the mechanical properties of TW and LS. Seventeen paired (13 repaired, 4 normal) equine cadaver limbs consisting of the suspensory apparatus third metacarpal bone, and first and second phalanges. The two methods of repair and normal intact specimens were evaluated in single cycle-to-failure loading. Yield failure was defined to occur at the first notable discontinuity (>50 N) in the load-displacement curve, the first visible failure as evident on the videotape, or a change in the slope of the moment-fetlock angle curve. Ultimate failure was defined to occur at the highest load resisted by the specimen. Corresponding resultant force and force per kg of body weight on the suspensory apparatus, fetlock joint moment, and angle of fetlock dorsiflexion were calculated by use of specimen dimensions and applied load. These were compared along with specimen stiffness, and ram displacement. Load on the suspensory apparatus, load on the suspensory apparatus per kg of body weight, moment, applied load, and angle of fetlock dorsiflexion at yield failure were significantly greater for the TW-repaired than for the LS-repaired specimens. A 3 to 5 mm gap was observed before yield failure in most TW-repaired osteotomies. Transfixation wiring provided greater strength to yield failure than screws placed in lag fashion in single cycle load-to-failure mechanical testing of repaired transverse osteotomized specimens of the medial proximal forelimb sesamoid bone.
Estimating bridge stiffness using a forced-vibration technique for timber bridge health monitoring
James P. Wacker; Xiping Wang; Brian Brashaw; Robert J. Ross
2006-01-01
This paper describes an effort to refine a global dynamic testing technique for evaluating the overall stiffness of timber bridge superstructures. A forced vibration method was used to measure the frequency response of several simple-span, sawn timber beam (with plank deck) bridges located in St. Louis County, Minnesota. Static load deflections were also measured to...
Structural tests on a tile/strain isolation pad thermal protection system. [space shuttles
NASA Technical Reports Server (NTRS)
Williams, J. G.
1980-01-01
The aluminum skin of the space shuttle is covered by a thermal protection system (TPS) consisting of a low density ceramic tile bonded to a matted-felt material called strain insulation pad (SIP). The structural characteristics of the TPS were studied experimentally under selected extreme load conditions. Three basic types of loads were imposed: tension, eccentrically applied tension, and combined in-plane force and transverse pressure. For some tests, transverse pressure was applied rapidly to simulate a transient shock wave passing over the tile. The failure mode for all specimens involved separation of the tile from the SIP at the silicone rubber bond interface. An eccentrically applied tension load caused the tile to separate from the SIP at loads lower than experienced at failure for pure tension loading. Moderate in-plane as well as shock loading did not cause a measurable reduction in the TPS ultimate failure strength. A strong coupling, however, was exhibited between in-plane and transverse loads and displacements.
On Generating Fatigue Crack Growth Thresholds
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Newman, James, Jr.; Forman, Royce G.
2003-01-01
The fatigue crack growth threshold, defining crack growth as either very slow or nonexistent, has been traditionally determined with standardized load reduction methodologies. These experimental procedures can induce load history effects that result in crack closure. This history can affect the crack driving force, i.e. during the unloading process the crack will close first at some point along the wake or blunt at the crack tip, reducing the effective load at the crack tip. One way to reduce the effects of load history is to propagate a crack under constant amplitude loading. As a crack propagates under constant amplitude loading, the stress intensity factor range, Delta K, will increase, as will the crack growth rate. da/dN. A fatigue crack growth threshold test procedure is experimentally validated that does not produce load history effects and can be conducted at a specified stress ratio, R. The authors have chosen to study a ductile aluminum alloy where the plastic deformations generated during testing may be of the magnitude to impact the crack opening.
40 CFR 1066.410 - Dynamometer test procedure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... configuration that allows for proper simulation of vehicle cooling during in-use operation, subject to our... simulation of the actual normal forces that the tire and dynamometer roll interface would see if a loaded...
40 CFR 1066.410 - Dynamometer test procedure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... configuration that allows for proper simulation of vehicle cooling during in-use operation, subject to our... simulation of the actual normal forces that the tire and dynamometer roll interface would see if a loaded...
Modal Analysis with the Mobile Modal Testing Unit
NASA Technical Reports Server (NTRS)
Wilder, Andrew J.
2013-01-01
Recently, National Aeronautics and Space Administration's (NASA's) White Sands Test Facility (WSTF) has tested rocket engines with high pulse frequencies. This has resulted in the use of some of WSTF's existing thrust stands, which were designed for static loading, in tests with large dynamic forces. In order to ensure that the thrust stands can withstand the dynamic loading of high pulse frequency engines while still accurately reporting the test data, their vibrational modes must be characterized. If it is found that they have vibrational modes with frequencies near the pulsing frequency of the test, then they must be modified to withstand the dynamic forces from the pulsing rocket engines. To make this determination the Mobile Modal Testing Unit (MMTU), a system capable of determining the resonant frequencies and mode shapes of a structure, was used on the test stands at WSTF. Once the resonant frequency has been determined for a test stand, it can be compared to the pulse frequency of a test engine to determine whether or not that stand can avoid resonance and reliably test that engine. After analysis of test stand 406 at White Sands Test Facility, it was determined that natural frequencies for the structure are located around 75, 125, and 240 Hz, and thus should be avoided during testing.
Analysis and correlation with theory of rotor lift-limit test data
NASA Technical Reports Server (NTRS)
Sheffler, M.
1979-01-01
A wind tunnel test program to define the cruise performance and determine any limitations to lift and propulsive force of a conventional helicopter rotor is described. A 2.96 foot radius model rotor was used. The maximum lift and propulsive force obtainable from an articulated rotor for advance ratios of 0.4 to 0.67, and the blade load growth as the lift approaches the limit are determined. Cruise rotor performance for advance ratios of 0.4 to 0.67 and the sensitivity of the rotor forces and moments to rotor control inputs as the lift limit is approached are established.
Lachance, Chantelle C; Korall, Alexandra M B; Russell, Colin M; Feldman, Fabio; Robinovitch, Stephen N; Mackey, Dawn C
2018-09-01
Purpose-designed compliant flooring and carpeting have been promoted as a means for reducing fall-related injuries in high-risk environments, such as long-term care. However, it is not known whether these surfaces influence the forces that long-term care staff exert when pushing residents in wheelchairs. We studied 14 direct-care staff who pushed a loaded wheelchair instrumented with a triaxial load cell to test the effects on hand force of flooring overlay (vinyl versus carpet) and flooring subfloor (concrete versus compliant rubber [brand: SmartCells]). During straight-line pushing, carpet overlay increased initial and sustained hand forces compared to vinyl overlay by 22-49% over a concrete subfloor and by 8-20% over a compliant subfloor. Compliant subflooring increased initial and sustained hand forces compared to concrete subflooring by 18-31% when under a vinyl overlay. In contrast, compliant flooring caused no change in initial or sustained hand forces compared to concrete subflooring when under a carpet overlay. Copyright © 2018 Elsevier Ltd. All rights reserved.
JT9D performance deterioration results from a simulated aerodynamic load test
NASA Technical Reports Server (NTRS)
Stakolich, E. G.; Stromberg, W. J.
1981-01-01
The results of testing to identify the effects of simulated aerodynamic flight loads on JT9D engine performance are presented. The test results were also used to refine previous analytical studies on the impact of aerodynamic flight loads on performance losses. To accomplish these objectives, a JT9D-7AH engine was assembled with average production clearances and new seals as well as extensive instrumentation to monitor engine performance, case temperatures, and blade tip clearance changes. A special loading device was designed and constructed to permit application of known moments and shear forces to the engine by the use of cables placed around the flight inlet. The test was conducted in the Pratt & Whitney Aircraft X-Ray Test Facility to permit the use of X-ray techniques in conjunction with laser blade tip proximity probes to monitor important engine clearance changes. Upon completion of the test program, the test engine was disassembled, and the condition of gas path parts and final clearances were documented. The test results indicate that the engine lost 1.1 percent in thrust specific fuel consumption (TSFC), as measured under sea level static conditions, due to increased operating clearances caused by simulated flight loads. This compares with 0.9 percent predicted by the analytical model and previous study efforts.
Vibration and Acoustic Testing for Mars Micromission Spacecraft
NASA Technical Reports Server (NTRS)
Kern, Dennis L.; Scharton, Terry D.
1999-01-01
The objective of the Mars Micromission program being managed by the Jet Propulsion Laboratory (JPL) for NASA is to develop a common spacecraft that can carry telecommunications equipment and a variety of science payloads for exploration of Mars. The spacecraft will be capable of carrying robot landers and rovers, cameras, probes, balloons, gliders or aircraft, and telecommunications equipment to Mars at much lower cost than recent NASA Mars missions. The lightweight spacecraft (about 220 Kg mass) will be launched in a cooperative venture with CNES as a TWIN auxiliary payload on the Ariane 5 launch vehicle. Two or more Mars Micromission launches are planned for each Mars launch opportunity, which occur every 26 months. The Mars launch window for the first mission is November 1, 2002 through April 2003, which is planned to be a Mars airplane technology demonstration mission to coincide with the 100 year anniversary of the Kittyhawk flight. Several subsequent launches will create a telecommunications network orbiting Mars, which will provide for continuous communication with lenders and rovers on the Martian surface. Dedicated science payload flights to Mars are slated to start in 2005. This new cheaper and faster approach to Mars exploration calls for innovative approaches to the qualification of the Mars Micromission spacecraft for the Ariane 5 launch vibration and acoustic environments. JPL has in recent years implemented new approaches to spacecraft testing that may be effectively applied to the Mars Micromission. These include 1) force limited vibration testing, 2) combined loads, vibration and modal testing, and 3) direct acoustic testing. JPL has performed nearly 200 force limited vibration tests in the past 9 years; several of the tests were on spacecraft and large instruments, including the Cassini and Deep Space One spacecraft. Force limiting, which measures and limits the spacecraft base reaction force using triaxial force gages sandwiched between the spacecraft and the test fixture, alleviates the severe overtest at spacecraft resonances inherent in rigid fixture vibration tests. It has the distinct advantage over response limiting that the method is not dependent on the accuracy of a detailed dynamic model of the spacecraft. Combined loads, vibration, and modal testing were recently performed on the QuikSCAT spacecraft. The combined tests were performed in a single test setup per axis on a vibration shaker, reducing test time by a factor of two or three. Force gages were employed to measure the true c.g. acceleration of the spacecraft for structural loads verification using a sine burst test, to automatically notch random vibration test input accelerations at spacecraft resonances based on predetermined force limits, and to directly measure modal masses in a base drive modal test. In addition to these combined tests on the shaker, the QuikSCAT spacecraft was subjected to a direct field acoustic test by surrounding the spacecraft, still on the vibration shaker, with rock concert type acoustic speakers. Since the spacecraft contractor does not have a reverberant field acoustic test facility, performing a direct field acoustic test -saved the program nearly two weeks schedule time that would have been required for packing / unpacking and shipping of the spacecraft. This paper discusses the rationale behind and advantages of the above test approaches and provides examples of their actual implementation and comparisons to flight data. The applicability of the test approaches to Mars Micromission spacecraft qualification is discussed.
Novel platens to measure the hardness of a pentagonal shaped tablet.
Malladi, Jaya; Sidik, Kurex; Wu, Sutan; McCann, Ryan; Dougherty, Jeffrey; Parab, Prakash; Carragher, Thomas
2017-03-01
Tablet hardness, a measure of the breaking force of a tablet, is based on numerous factors. These include the shape of the tablet and the mode of the application of force. For instance, when a pentagonal-shaped tablet was tested with a traditional hardness tester with flat platens, there was a large variation in hardness measurements. This was due to the propensity of vertices of the tablet to crush, referred to as an "improper break". This article describes a novel approach to measure the hardness of pentagonal-shaped tablets using modified platens. The modified platens have more uniform loading than flat platens. This is because they reduce loading on the vertex of the pentagon and apply forces on tablet edges to generate reproducible tablet fracture. The robustness of modified platens was assessed using a series of studies, which included feasibility and Gauge Repeatability & Reproducibility (R&R) studies. A key finding was that improper breaks, generated frequently with a traditional hardness tester using flat platens, were eliminated. The Gauge R&R study revealed that the tablets tested with novel platens generated consistent values in hardness measurements, independent of batch, hardness level, and day of testing, operator and tablet dosage strength.
NASA Astrophysics Data System (ADS)
Liu, Wei; Li, Ying-jun; Jia, Zhen-yuan; Zhang, Jun; Qian, Min
2011-01-01
In working process of huge heavy-load manipulators, such as the free forging machine, hydraulic die-forging press, forging manipulator, heavy grasping manipulator, large displacement manipulator, measurement of six-dimensional heavy force/torque and real-time force feedback of the operation interface are basis to realize coordinate operation control and force compliance control. It is also an effective way to raise the control accuracy and achieve highly efficient manufacturing. Facing to solve dynamic measurement problem on six-dimensional time-varying heavy load in extremely manufacturing process, the novel principle of parallel load sharing on six-dimensional heavy force/torque is put forward. The measuring principle of six-dimensional force sensor is analyzed, and the spatial model is built and decoupled. The load sharing ratios are analyzed and calculated in vertical and horizontal directions. The mapping relationship between six-dimensional heavy force/torque value to be measured and output force value is built. The finite element model of parallel piezoelectric six-dimensional heavy force/torque sensor is set up, and its static characteristics are analyzed by ANSYS software. The main parameters, which affect load sharing ratio, are analyzed. The experiments for load sharing with different diameters of parallel axis are designed. The results show that the six-dimensional heavy force/torque sensor has good linearity. Non-linearity errors are less than 1%. The parallel axis makes good effect of load sharing. The larger the diameter is, the better the load sharing effect is. The results of experiments are in accordance with the FEM analysis. The sensor has advantages of large measuring range, good linearity, high inherent frequency, and high rigidity. It can be widely used in extreme environments for real-time accurate measurement of six-dimensional time-varying huge loads on manipulators.
Experimental Investigation of Forces Produced by Misaligned Steel Rollers
NASA Technical Reports Server (NTRS)
Krantz, Timothy; DellaCorte, Christopher; Dube, Michael
2010-01-01
The International Space Station Solar Alpha Rotary Joint (SARJ) uses a roller-based mechanism for positioning of the solar arrays. The forces and moments that develop at the roller interfaces are influenced by the design including the kinematic constraints and the lubrication condition. To help understand the SARJ operation, a set of dedicated experiments were completed using roller pairs. Of primary interest was to measure the axial force directed along the axis of rotation of the roller as a function of shaft misalignment. The conditions studied included dry and clean surfaces; one surface plated by a gold film, and greased surfaces. For the case of a bare 440C roller against a nitrided 15-5 roller without lubrication, the axial force can be as great as 0.4 times the normal load for a shaft angle of 0.5 degree. Such a magnitude of force on a roller in the SARJ mechanism would cause roller tipping and contact pressures much greater than anticipated by the designers. For the case of a bare 440C roller against a nitrided 15-5 roller with grease lubrication, the axial force does not exceed about 0.15 times the normal load even for the largest misalignment angles tested. Gold films provided good lubrication for the short duration testing reported herein. Grease lubrication limited the magnitude of the axial force to even smaller magnitudes than was achieved with the gold films. The experiments demonstrate the critical role of good lubrication for the SARJ mechanism.
Experimental Investigation of Forces Produced by Misaligned Steel Rollers
NASA Technical Reports Server (NTRS)
Krantz, Timothy; DellaCorte, Christopher; Dube, Michael
2010-01-01
The International Space Station (ISS) Solar Alpha Rotary Joint (SARJ) uses a roller-based mechanism for positioning of the solar arrays. The forces and moments that develop at the roller interfaces are influenced by the design including the kinematic constraints and the lubrication condition. To help understand the SARJ operation, a set of dedicated experiments were completed using roller pairs. Of primary interest was to measure the axial force directed along the axis of rotation of the roller as a function of shaft misalignment. The conditions studied included dry and clean surfaces; one surface plated by a gold film, and greased surfaces. For the case of a bare 440C roller against a nitrided 15-5 roller without lubrication, the axial force can be as great as 0.4 times the normal load for a shaft angle of 0.5 deg. Such a magnitude of force on a roller in the SARJ mechanism would cause roller tipping and contact pressures much greater than anticipated by the designers. For the case of a bare 440C roller against a nitrided 15-5 roller with grease lubrication, the axial force does not exceed about 0.15 times the normal load even for the largest misalignment angles tested. Gold films provided good lubrication for the short duration testing reported herein. Grease lubrication limited the magnitude of the axial force to even smaller magnitudes than was achieved with the gold films. The experiments demonstrate the critical role of good lubrication for the SARJ mechanism.
Simple go/no-go test for subcritical damage in body armor panels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, Jason; Chimenti, D. E.
2011-06-23
The development of a simple test for subcritical damage in body armor panels using pressure-sensitive dye-indicator film has been performed and demonstrated effective. Measurements have shown that static indicator levels are accurately reproduced in dynamic loading events. Impacts from hard blunt impactors instrumented with an accelerometer and embedded force transducer were studied. Reliable correlations between the indicator film and instrumented impact force are shown for a range of impact energies. Force and acceleration waveforms with corresponding indicator film results are presented for impact events onto damaged and undamaged panels. We find that panel damage can occur at impact levels farmore » below the National Institute of Justice acceptance test standard.« less
Assessment of the Uniqueness of Wind Tunnel Strain-Gage Balance Load Predictions
NASA Technical Reports Server (NTRS)
Ulbrich, N.
2016-01-01
A new test was developed to assess the uniqueness of wind tunnel strain-gage balance load predictions that are obtained from regression models of calibration data. The test helps balance users to gain confidence in load predictions of non-traditional balance designs. It also makes it possible to better evaluate load predictions of traditional balances that are not used as originally intended. The test works for both the Iterative and Non-Iterative Methods that are used in the aerospace testing community for the prediction of balance loads. It is based on the hypothesis that the total number of independently applied balance load components must always match the total number of independently measured bridge outputs or bridge output combinations. This hypothesis is supported by a control volume analysis of the inputs and outputs of a strain-gage balance. It is concluded from the control volume analysis that the loads and bridge outputs of a balance calibration data set must separately be tested for linear independence because it cannot always be guaranteed that a linearly independent load component set will result in linearly independent bridge output measurements. Simple linear math models for the loads and bridge outputs in combination with the variance inflation factor are used to test for linear independence. A highly unique and reversible mapping between the applied load component set and the measured bridge output set is guaranteed to exist if the maximum variance inflation factor of both sets is less than the literature recommended threshold of five. Data from the calibration of a six{component force balance is used to illustrate the application of the new test to real-world data.
Wind tunnel test of a variable-diameter tiltrotor (VDTR) model
NASA Technical Reports Server (NTRS)
Matuska, David; Dale, Allen; Lorber, Peter
1994-01-01
This report documents the results from a wind tunnel test of a 1/6th scale Variable Diameter Tiltrotor (VDTR). This test was a joint effort of NASA Ames and Sikorsky Aircraft. The objective was to evaluate the aeroelastic and performance characteristics of the VDTR in conversion, hover, and cruise. The rotor diameter and nacelle angle of the model were remotely changed to represent tiltrotor operating conditions. Data is presented showing the propulsive force required in conversion, blade loads, angle of attack stability and simulated gust response, and hover and cruise performance. This test represents the first wind tunnel test of a variable diameter rotor applied to a tiltrotor concept. The results confirm some of the potential advantages of the VDTR and establish the variable diameter rotor a viable candidate for an advanced tiltrotor. This wind tunnel test successfully demonstrated the feasibility of the Variable Diameter rotor for tilt rotor aircraft. A wide range of test points were taken in hover, conversion, and cruise modes. The concept was shown to have a number of advantages over conventional tiltrotors such as reduced hover downwash with lower disk loading and significantly reduced longitudinal gust response in cruise. In the conversion regime, a high propulsive force was demonstrated for sustained flight with acceptable blade loads. The VDTR demonstrated excellent gust response capabilities. The horizontal gust response correlated well with predictions revealing only half the response to turbulence of the conventional civil tiltrotor.
NASA Technical Reports Server (NTRS)
Dawson, John R; Mckann, Robert; Hay, Elizabeth S
1946-01-01
The second part of a series of tests made in Langley tank no. 2 to determine the effect of varying design parameters of planing-tail hulls is presented. Results are given to show the effects on resistance characteristics of varying angle of afterbody keel, depth of step, and length of afterbody chine. The effect of varying the gross load is shown for one configuration. The resistance characteristics of planing-tail hulls are compared with those of a conventional flying-boat hull. The forces on the forebody and afterbody of one configuration are compared with the forces on a conventional hull. Increasing the angle of afterbody keel had small effect on hump resistance and no effect on high-speed resistance but increased free-to-trim resistance at intermediate speeds. Increasing the depth of step increased hump resistance, had little effect on high-speed resistance, and increased free-to-trim resistance at intermediate speeds. Omitting the chines on the forward 25 percent of the afterbody had no appreciable effect on resistance. Omitting 70 percent of the chine length had almost no effect on maximum resistance but broadened the hump and increased spray around the afterbody. Load-resistance ratio at the hump decreased more rapidly with increasing load coefficient for the planing-tail hull than for the representative conventional hull, although the load-resistance ratio at the hump was greater for the planing-tail hull than for the conventional hull throughout the range of loads tested. At speeds higher than hump speed, load-resistance ratio for the planing-tail hull was a maximum at a particular gross load and was slightly less at heavier and lighter gross loads. The planing-tail hull was found to have lower resistance than the conventional hull at both the hump and at high speeds, but at intermediate speeds there was little difference. The lower hump resistance of the planing-tail hull was attributed to the ability of the afterbody to carry a greater percentage of the total load while maintaining a higher value of load-resistance ratio.
Optimal Loading for Maximizing Power During Sled-Resisted Sprinting.
Cross, Matt R; Brughelli, Matt; Samozino, Pierre; Brown, Scott R; Morin, Jean-Benoit
2017-09-01
To ascertain whether force-velocity-power relationships could be compiled from a battery of sled-resisted overground sprints and to clarify and compare the optimal loading conditions for maximizing power production for different athlete cohorts. Recreational mixed-sport athletes (n = 12) and sprinters (n = 15) performed multiple trials of maximal sprints unloaded and towing a selection of sled masses (20-120% body mass [BM]). Velocity data were collected by sports radar, and kinetics at peak velocity were quantified using friction coefficients and aerodynamic drag. Individual force-velocity and power-velocity relationships were generated using linear and quadratic relationships, respectively. Mechanical and optimal loading variables were subsequently calculated and test-retest reliability assessed. Individual force-velocity and power-velocity relationships were accurately fitted with regression models (R 2 > .977, P < .001) and were reliable (ES = 0.05-0.50, ICC = .73-.97, CV = 1.0-5.4%). The normal loading that maximized peak power was 78% ± 6% and 82% ± 8% of BM, representing a resistance of 3.37 and 3.62 N/kg at 4.19 ± 0.19 and 4.90 ± 0.18 m/s (recreational athletes and sprinters, respectively). Optimal force and normal load did not clearly differentiate between cohorts, although sprinters developed greater maximal power (17.2-26.5%, ES = 0.97-2.13, P < .02) at much greater velocities (16.9%, ES = 3.73, P < .001). Mechanical relationships can be accurately profiled using common sled-training equipment. Notably, the optimal loading conditions determined in this study (69-96% of BM, dependent on friction conditions) represent much greater resistance than current guidelines (~7-20% of BM). This method has potential value in quantifying individualized training parameters for optimized development of horizontal power.
Choi, Jae-Won; Bae, Ji-Hyeon; Jeong, Chang-Mo; Huh, Jung-Bo
2017-05-01
Implant angulation should be considered when selecting an attachment. Some in vitro studies have investigated the relationship between implant angulation and changes in the retention force of the stud attachment, but few studies have evaluated the effect of cyclic loading and repeated cycles of insertion and removal on the stud attachment. The purpose of this in vitro study was to evaluate the effects of implant angulation on the retentive characteristics of overdentures with 2 different stud attachments, an experimental system and O-rings in red and orange, after cyclic loading and repeated insertion and removal cycles. The canine region of a mandibular experimental model was fitted with 2 implant fixtures with 2 different stud attachment systems at implant angulations of 0, 15, or 30 degrees. A mastication simulator was used to simulate cyclic loading, and a universal testing machine was used to evaluate retentive force changes after repeated insertion and removal cycles. To simulate the numbers of mastication and insertion and removal cycles per annum, 400000 cyclic loadings and 1080 insertion and removal cycles were performed. Wear patterns and attachment surface deformations were evaluated by scanning electron microscopy. Data were analyzed using the Kruskal-Wallis test, Mann-Whitney U test with Bonferroni correction (α=.05/3=.017), and the paired-sample Student t test (α=.05). When retentive forces before and after testing were compared, O-ring showed significant retention loss at all implant angulations (P<.001). In contrast, the experimental system showed little retention loss in the 0- and 15-degree models (P>.05), whereas the 30-degree model showed a significant increase in retentive force (P=.001). At all implant angulations, retention loss increased significantly for the orange O-ring, followed by the red O-ring, and the experimental system (P<.001). Scanning electron microscopy analysis showed more intense wear in the matrix than the patrix (abutment that matches to matrix) and more severe wear and deformation of the O-ring rubber matrix than of the experimental zirconia ball. Upon completion of the experiment, wear and deformation were found for all attachment systems. Even when implants are not installed in parallel, the experimental system can be used without involving great loss of retention. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Sensitivity and specificity of eustachian tube function tests in adults.
Doyle, William J; Swarts, J Douglas; Banks, Julianne; Casselbrant, Margaretha L; Mandel, Ellen M; Alper, Cuneyt M
2013-07-01
The study demonstrates the utility of eustachian tube (ET) function (ETF) test results for accurately assigning ears to disease state. To determine if ETF tests can identify ears with physician-diagnosed ET dysfunction (ETD) in a mixed population at high sensitivity and specificity and to define the interrelatedness of ETF test parameters. Through use of the forced-response, inflation-deflation, Valsalva, and sniffing tests, ETF was evaluated in 15 control ears of adult subjects after unilateral myringotomy (group 1) and in 23 ears of 19 adult subjects with ventilation tubes inserted for ETD (group 2). Data were analyzed using logistic regression including each parameter independently and then a step-down discriminant analysis including all ETF test parameters to predict group assignment. Factor analysis operating over all parameters was used to explore relatedness. ETF testing. ETF parameters for the forced response, inflation-deflation, Valsalva, and sniffing tests measured in 15 control ears of adult subjects after unilateral myringotomy (group 1) and in 23 ears of 19 adult subjects with ventilation tubes inserted for ETD (group 2). The discriminant analysis identified 4 ETF test parameters (Valsalva, ET opening pressure, dilatory efficiency, and percentage of positive pressure equilibrated) that together correctly assigned ears to group 2 at a sensitivity of 95% and a specificity of 83%. Individual parameters representing the efficiency of ET opening during swallowing showed moderately accurate assignments of ears to their respective groups. Three factors captured approximately 98% of the variance among parameters: the first had negative loadings of the ETF structural parameters; the second had positive loadings of the muscle-assisted ET opening parameters; and the third had negative loadings of the muscle-assisted ET opening parameters and positive loadings of the structural parameters. These results show that ETF tests can correctly assign individual ears to physician-diagnosed ETD with high sensitivity and specificity and that ETF test parameters can be grouped into structural-functional categories.
Effect of External Loading on Force and Power Production During Plyometric Push-ups.
Hinshaw, Taylour J; Stephenson, Mitchell L; Sha, Zhanxin; Dai, Boyi
2018-04-01
Hinshaw, TJ, Stephenson, ML, Sha, Z, and Dai, B. Effect of external loading on force and power production during plyometric push-ups. J Strength Cond Res 32(4): 1099-1108, 2018-One common exercise to train upper-body strength and power is the push-up. Training at the loads that would produce the greatest power is an effective way to increase peak power. The purpose of the current study was to quantify the changes in peak force, peak power, and peak velocity among a modified plyometric push-up and plyometric push-ups with or without external loading in physically active young adults. Eighteen male and 17 female participants completed 4 push-ups: (a) modified plyometric push-up on the knees, (b) plyometric push-up without external loading, (c) plyometric push-up with an external load of 5% of body weight, and (d) plyometric push-up with an external load of 10% of body weight. Two force platforms were set up to collect vertical ground reaction forces at the hands and feet. The modified plyometric push-up demonstrated the lowest force, power, and velocity (5.4≥ Cohen's dz ≥1.2). Peak force and force at peak velocity increased (3.8≥ Cohen's dz ≥0.3) and peak velocity and velocity at peak power decreased (1.4≥ Cohen's dz ≥0.8) for the push-up without external loading compared with the 2 push-ups with external loading. No significant differences were observed for peak power among the push-ups with or without external loading (0.4≥ Cohen's dz ≥0.1). Although peak power is similar with or without external loading, push-ups without external loading may be more beneficial for a quick movement, and push-ups with external loading may be more beneficial for a greater force production.
NASA Technical Reports Server (NTRS)
McCoy, Allen H.
1998-01-01
Helicopter external air transportation plays an important role in today's world. For both military and civilian helicopters, external sling load operations offer an efficient and expedient method of handling heavy, oversized cargo. With the ability to reach areas otherwise inaccessible by ground transportation, helicopter external load operations are conducted in industries such as logging, construction, and fire fighting, as well as in support of military tactical transport missions. Historically, helicopter and load combinations have been qualified through flight testing, requiring considerable time and cost. With advancements in simulation and flight test techniques there is potential to substantially reduce costs and increase the safety of helicopter sling load certification. Validated simulation tools make possible accurate prediction of operational flight characteristics before initial flight tests. Real time analysis of test data improves the safety and efficiency of the testing programs. To advance these concepts, the U.S. Army and NASA, in cooperation with the Israeli Air Force and Technion, under a Memorandum of Agreement, seek to develop and validate a numerical model of the UH-60 with sling load and demonstrate a method of near real time flight test analysis. This thesis presents results from flight tests of a U.S. Army Black Hawk helicopter with various external loads. Tests were conducted as the U.S. first phase of this MOA task. The primary load was a container express box (CONEX) which contained a compact instrumentation package. The flights covered the airspeed range from hover to 70 knots. Primary maneuvers were pitch and roll frequency sweeps, steps, and doublets. Results of the test determined the effect of the suspended load on both the aircraft's handling qualities and its control system's stability margins. Included were calculations of the stability characteristics of the load's pendular motion. Utilizing CIFER(R) software, a method for near-real time system identification was also demonstrated during the flight test program.
Wind loading on solar concentrators: some general considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roschke, E. J.
A survey has been completed to examine the problems and complications arising from wind loading on solar concentrators. Wind loading is site specific and has an important bearing on the design, cost, performance, operation and maintenance, safety, survival, and replacement of solar collecting systems. Emphasis herein is on paraboloidal, two-axis tracking systems. Thermal receiver problems also are discussed. Wind characteristics are discussed from a general point of view; current methods for determining design wind speed are reviewed. Aerodynamic coefficients are defined and illustrative examples are presented. Wind tunnel testing is discussed, and environmental wind tunnels are reviewed; recent results onmore » heliostat arrays are reviewed as well. Aeroelasticity in relation to structural design is discussed briefly. Wind loads, i.e., forces and moments, are proportional to the square of the mean wind velocity. Forces are proportional to the square of concentrator diameter, and moments are proportional to the cube of diameter. Thus, wind loads have an important bearing on size selection from both cost and performance standpoints. It is concluded that sufficient information exists so that reasonably accurate predictions of wind loading are possible for a given paraboloidal concentrator configuration, provided that reliable and relevant wind conditions are specified. Such predictions will be useful to the design engineer and to the systems engineer as well. Information is lacking, however, on wind effects in field arrays of paraboloidal concentrators. Wind tunnel tests have been performed on model heliostat arrays, but there are important aerodynamic differences between heliostats and paraboloidal dishes.« less
NASA Astrophysics Data System (ADS)
Chen, Rong; Li, Kang; Xia, Kaiwen; Lin, Yuliang; Yao, Wei; Lu, Fangyun
2016-10-01
A dynamic load superposed on a static pre-load is a key problem in deep underground rock engineering projects. Based on a modified split Hopkinson pressure bar test system, the notched semi-circular bend (NSCB) method is selected to investigate the fracture initiation toughness of rocks subjected to pre-load. In this study, a two-dimensional ANSYS finite element simulation model is developed to calculate the dimensionless stress intensity factor. Three groups of NSCB specimen are tested under a pre-load of 0, 37 and 74 % of the maximum static load and with the loading rate ranging from 0 to 60 GPa m1/2 s-1. The results show that under a given pre-load, the fracture initiation toughness of rock increases with the loading rate, resembling the typical rate dependence of materials. Furthermore, the dynamic rock fracture toughness decreases with the static pre-load at a given loading rate. The total fracture toughness, defined as the sum of the dynamic fracture toughness and initial stress intensity factor calculated from the pre-load, increases with the pre-load at a given loading rate. An empirical equation is used to represent the effect of loading rate and pre-load force, and the results show that this equation can depict the trend of the experimental data.
Results of the first complete static calibration of the RSRA rotor-load-measurement system
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.
1984-01-01
The compound Rotor System Research Aircraft (RSRA) is designed to make high-accuracy, simultaneous measurements of all rotor forces and moments in flight. Physical calibration of the rotor force- and moment-measurement system when installed in the aircraft is required to account for known errors and to ensure that measurement-system accuracy is traceable to the National Bureau of Standards. The first static calibration and associated analysis have been completed with good results. Hysteresis was a potential cause of static calibration errors, but was found to be negligible in flight compared to full-scale loads, and analytical methods have been devised to eliminate hysteresis effects on calibration data. Flight tests confirmed that the calibrated rotor-load-measurement system performs as expected in flight and that it can dependably make direct measurements of fuselage vertical drag in hover.
Wind Loads on Flat Plate Photovoltaic Array Fields
NASA Technical Reports Server (NTRS)
Miller, R.; Zimmerman, D.
1979-01-01
The aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays were investigated. Local pressure distributions and total aerodynamic forces on the arrays are shown. Design loads are presented to cover the conditions of array angles relative to the ground from 20 deg to 60 deg, variable array spacings, a ground clearance gap up to 1.2 m (4 ft) and array slant heights of 2.4 m (8 ft) and 4.8 m (16 ft). Several means of alleviating the wind loads on the arrays are detailed. The expected reduction of the steady state wind velocity with the use of fences as a load alleviation device are indicated to be in excess of a factor of three for some conditions. This yields steady state wind load reductions as much as a factor of ten compared to the load incurred if no fence is used to protect the arrays. This steady state wind load reduction is offset by the increase in turbulence due to the fence but still an overall load reduction of 2.5 can be realized. Other load alleviation devices suggested are the installation of air gaps in the arrays, blocking the flow under the arrays and rounding the edges of the array. A wind tunnel test plan to supplement the theoretical study and to evaluate the load alleviation devices is outlined.
Tees, D F; Waugh, R E; Hammer, D A
2001-01-01
A microcantilever technique was used to apply force to receptor-ligand molecules involved in leukocyte rolling on blood vessel walls. E-selectin was adsorbed onto 3-microm-diameter, 4-mm-long glass fibers, and the selectin ligand, sialyl Lewis(x), was coupled to latex microspheres. After binding, the microsphere and bound fiber were retracted using a computerized loading protocol that combines hydrodynamic and Hookean forces on the fiber to produce a range of force loading rates (force/time), r(f). From the distribution of forces at failure, the average force was determined and plotted as a function of ln r(f). The slope and intercept of the plot yield the unstressed reverse reaction rate, k(r)(o), and a parameter that describes the force dependence of reverse reaction rates, r(o). The ligand was titrated so adhesion occurred in approximately 30% of tests, implying that >80% of adhesive events involve single bonds. Monte Carlo simulations show that this level of multiple bonding has little effect on parameter estimation. The estimates are r(o) = 0.048 and 0.016 nm and k(r)(o) = 0.72 and 2.2 s(-1) for loading rates in the ranges 200-1000 and 1000-5000 pN s(-1), respectively. Levenberg-Marquardt fitting across all values of r(f) gives r(o) = 0.034 nm and k(r)(o) = 0.82 s(-1). The values of these parameters are in the range required for rolling, as suggested by adhesive dynamics simulations. PMID:11159435
Langohr, G Daniel G; Giles, Joshua W; Athwal, George S; Johnson, James A
2015-06-01
Little is known about the effects of glenosphere diameter on shoulder joint loads. The purpose of this biomechanical study was to investigate the effects of glenosphere diameter on joint load, load angle, and total deltoid force required for active abduction and range of motion in internal/external rotation and abduction. A custom, instrumented reverse shoulder arthroplasty implant system capable of measuring joint load and varying glenosphere diameter (38 and 42 mm) and glenoid offset (neutral and lateral) was implanted in 6 cadaveric shoulders to provide at least 80% power for all variables. A shoulder motion simulator was used to produce active glenohumeral and scapulothoracic motion. All implant configurations were tested with active and passive motion with joint kinematics, loads, and moments recorded. At neutral and lateralized glenosphere positions, increasing diameter significantly increased joint load (+12 ± 21 N and +6 ± 9 N; P < .01) and deltoid load required for active abduction (+9 ± 22 N and +11 ± 15 N; P < .02), whereas joint load angle was unaffected (P > .8). Passive internal rotation was reduced with increased diameter at both neutral and lateralized glenosphere positions (-6° ± 6° and -12° ± 6°; P < .002); however, external rotation was not affected (P > .05). At neutral glenosphere position, increasing diameter increased the maximum angles of both adduction (+1° ± 1°; P = .03) and abduction (+8° ± 9°; P < .05). Lateralization also increased abduction range of motion compared with neutral (P < .01). Although increasing glenosphere diameter significantly increased joint load and deltoid force, the clinical impact of these changes is presently unclear. Internal rotation, however, was reduced, which contradicts previous bone modeling studies, which we postulate is due to increased posterior capsular tension as it is forced to wrap around a larger 42 mm implant assembly. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
García-Roncero, Herminio; Caballé-Serrano, Jordi; Cano-Batalla, Jordi; Cabratosa-Termes, Josep; Figueras-Álvarez, Oscar
2015-04-01
In this study, a temporal abutment fixation screw, designed to fracture in a controlled way upon application of an occlusal force sufficient to produce critical micromotion was developed. The purpose of the screw was to protect the osseointegration of immediate loaded single implants. Seven different screw prototypes were examined by fixing titanium abutments to 112 Mozo-Grau external hexagon implants (MG Osseous®; Mozo-Grau, S.A., Valladolid, Spain). Fracture strength was tested at 30° in two subgroups per screw: one under dynamic loading and the other without prior dynamic loading. Dynamic loading was performed in a single-axis chewing simulator using 150,000 load cycles at 50 N. After normal distribution of obtained data was verified by Kolmogorov-Smirnov test, fracture resistance between samples submitted and not submitted to dynamic loading was compared by the use of Student's t-test. Comparison of fracture resistance among different screw designs was performed by the use of one-way analysis of variance. Confidence interval was set at 95%. Fractures occurred in all screws, allowing easy retrieval. Screw Prototypes 2, 5 and 6 failed during dynamic loading and exhibited statistically significant differences from the other prototypes. Prototypes 2, 5 and 6 may offer a useful protective mechanism during occlusal overload in immediate loaded implants.
Aquarius/SAC-D Observatory before Departing Brazil
2011-04-19
After months of environmental tests at Brazil National Institute for Space Research Instituto Nacional de Pesquisas Espaciais, INPE, NASA Aquarius/SAC-D observatory is loaded into a crate for shipment to Vandenberg Air Force Base.
Piezoelectric energy harvester under parquet floor
NASA Astrophysics Data System (ADS)
Bischur, E.; Schwesinger, N.
2011-03-01
The design, fabrication and testing of piezoelectric energy harvesting modules for floors is described. These modules are used beneath a parquet floor to harvest the energy of people walking over it. The harvesting modules consist of monoaxial stretched PVDF-foils. Multilayer modules are built up as roller-type capacitors. The fabrication process of the harvesting modules is simple and very suitable for mass production. Due to the use of organic polymers, the modules are characterized by a great flexibility and the possibility to create them in almost any geometrical size. The energy yield was determined depending on the dynamic loading force, the thickness of piezoelectric active material, the size of the piezoelectric modules, their alignment in the walking direction and their position on the floor. An increase of the energy yield at higher loading forces and higher thicknesses of the modules was observed. It was possible to generate up to 2.1mWs of electric energy with dynamic loads of 70kg using a specific module design. Furthermore a test floor was assembled to determine the influence of the size, alignment and position of the modules on the energy yield.
A Baseline Load Schedule for the Manual Calibration of a Force Balance
NASA Technical Reports Server (NTRS)
Ulbrich, N.; Gisler, R.
2013-01-01
A baseline load schedule for the manual calibration of a force balance is defined that takes current capabilities at the NASA Ames Balance Calibration Laboratory into account. The chosen load schedule consists of 18 load series with a total of 194 data points. It was designed to satisfy six requirements: (i) positive and negative loadings should be applied for each load component; (ii) at least three loadings should be applied between 0 % and 100 % load capacity; (iii) normal and side force loadings should be applied at the forward gage location, aft gage location, and the balance moment center; (iv) the balance should be used in "up" and "down" orientation to get positive and negative axial force loadings; (v) the constant normal and side force approaches should be used to get the rolling moment loadings; (vi) rolling moment loadings should be obtained for 0, 90, 180, and 270 degrees balance orientation. In addition, three different approaches are discussed in the paper that may be used to independently estimate the natural zeros, i.e., the gage outputs of the absolute load datum of the balance. These three approaches provide gage output differences that can be used to estimate the weight of both the metric and non-metric part of the balance. Data from the calibration of a six-component force balance will be used in the final manuscript of the paper to illustrate characteristics of the proposed baseline load schedule.
Control of Precision Grip Force in Lifting and Holding of Low-Mass Objects
Kimura, Daisuke; Kadota, Koji; Ito, Taro
2015-01-01
Few studies have investigated the control of grip force when manipulating an object with an extremely small mass using a precision grip, although some related information has been provided by studies conducted in an unusual microgravity environment. Grip-load force coordination was examined while healthy adults (N = 17) held a moveable instrumented apparatus with its mass changed between 6 g and 200 g in 14 steps, with its grip surface set as either sandpaper or rayon. Additional measurements of grip-force-dependent finger-surface contact area and finger skin indentation, as well as a test of weight discrimination, were also performed. For each surface condition, the static grip force was modulated in parallel with load force while holding the object of a mass above 30 g. For objects with mass smaller than 30 g, on the other hand, the parallel relationship was changed, resulting in a progressive increase in grip-to-load force (GF/LF) ratio. The rayon had a higher GF/LF force ratio across all mass levels. The proportion of safety margin in the static grip force and normalized moment-to-moment variability of the static grip force were also elevated towards the lower end of the object mass for both surfaces. These findings indicate that the strategy of grip force control for holding objects with an extremely small mass differs from that with a mass above 30 g. The data for the contact area, skin indentation, and weight discrimination suggest that a decreased level of cutaneous feedback signals from the finger pads could have played some role in a cost function in efficient grip force control with low-mass objects. The elevated grip force variability associated with signal-dependent and internal noises, and anticipated inertial force on the held object due to acceleration of the arm and hand, could also have contributed to the cost function. PMID:26376484
Villa, Tomaso; La Barbera, Luigi; Galbusera, Fabio
2014-04-01
Preclinical evaluation of the long-term reliability of devices for lumbar fixation is a mandatory activity before they are put into market. The experimental setups are described in two different standards edited by the International Organization for Standardization (ISO) and the American Society for Testing Materials (ASTM), but the evaluation of the suitability of such tests to simulate the actual loading with in vivo situations has never been performed. To calculate through finite element (FE) simulations the stress in the rods of the fixator when subjected to ASTM and ISO standards. To compare the calculated stresses arising in the same fixator once it has been virtually mounted in a physiological environment and loaded with physiological forces and moments. FE simulations and validation experimental tests. FE models of the ISO and ASTM setups were created to conduct simulations of the tests prescribed by standards and calculate stresses in the rods. Validation of the simulations were performed through experimental tests; the same fixator was virtually mounted in an L2-L4 FE model of the lumbar spine and stresses in the rods were calculated when the spine was subjected to physiological forces and moments. The comparison between FE simulations and experimental tests showed good agreement between results obtained using the two methodologies, thus confirming the suitability of the FE method to evaluate stresses in the device in different loading situations. The usage of a physiological load with ASTM standard is impossible due to the extreme severity of the ASTM configuration; in this circumstance, the presence of an anterior support is suggested. Also, ISO prescriptions, although the choice of the setup correctly simulates the mechanical contribution of the discs, seem to overstress the device as compared with a physiological loading condition. Some daily activities, other than walking, can induce a further state of stress in the device that should be taken into account in setting up new experimental procedures. ISO standard loading prescriptions seems to be more severe than the expected physiological ones. The ASTM standard should be completed by including some anterior supporting device and declaring the value of the load to be imposed. Moreover, a further enhancement of standards would be simulating other movements representative of daily activities different from walking. Copyright © 2014 Elsevier Inc. All rights reserved.
Kang, K-T.; Koh, Y-G.; Jung, M.; Nam, J-H.; Son, J.; Lee, Y.H.
2017-01-01
Objectives The aim of the current study was to analyse the effects of posterior cruciate ligament (PCL) deficiency on forces of the posterolateral corner structure and on tibiofemoral (TF) and patellofemoral (PF) contact force under dynamic-loading conditions. Methods A subject-specific knee model was validated using a passive flexion experiment, electromyography data, muscle activation, and previous experimental studies. The simulation was performed on the musculoskeletal models with and without PCL deficiency using a novel force-dependent kinematics method under gait- and squat-loading conditions, followed by probabilistic analysis for material uncertain to be considered. Results Comparison of predicted passive flexion, posterior drawer kinematics and muscle activation with experimental measurements showed good agreement. Forces of the posterolateral corner structure, and TF and PF contact forces increased with PCL deficiency under gait- and squat-loading conditions. The rate of increase in PF contact force was the greatest during the squat-loading condition. The TF contact forces increased on both medial and lateral compartments during gait-loading conditions. However, during the squat-loading condition, the medial TF contact force tended to increase, while the lateral TF contact forces decreased. The posterolateral corner structure, which showed the greatest increase in force with deficiency of PCL under both gait- and squat-loading conditions, was the popliteus tendon (PT). Conclusion PCL deficiency is a factor affecting the variability of force on the PT in dynamic-loading conditions, and it could lead to degeneration of the PF joint. Cite this article: K-T. Kang, Y-G. Koh, M. Jung, J-H. Nam, J. Son, Y.H. Lee, S-J. Kim, S-H. Kim. The effects of posterior cruciate ligament deficiency on posterolateral corner structures under gait- and squat-loading conditions: A computational knee model. Bone Joint Res 2017;6:31–42. DOI: 10.1302/2046-3758.61.BJR-2016-0184.R1. PMID:28077395
Vázquez-Guerrero, Jairo; Moras, Gerard; Baeza, Jennifer; Rodríguez-Jiménez, Sergio
2016-01-01
The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg) were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P < 0.010) and peak force output differed between all loads for each condition (P < 0.045). Mean force outputs were greater in the concentric than in the eccentric phase under both conditions and with all loads (P < 0.001). There were no significant differences in peak force between concentric and eccentric phases at any load in either stable or unstable conditions. In conclusion, squatting with a rotational inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries.
Vázquez-Guerrero, Jairo; Moras, Gerard
2016-01-01
The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg) were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P < 0.010) and peak force output differed between all loads for each condition (P < 0.045). Mean force outputs were greater in the concentric than in the eccentric phase under both conditions and with all loads (P < 0.001). There were no significant differences in peak force between concentric and eccentric phases at any load in either stable or unstable conditions. In conclusion, squatting with a rotational inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries. PMID:27111766
Ares I-X First Stage Separation Loads and Dynamics Reconstruction
NASA Technical Reports Server (NTRS)
Demory, Lee; Rooker, BIll; Jarmulowicz, Marc; Glaese, John
2011-01-01
The Ares I-X flight test provided NASA with the opportunity to test hardware and gather critical data to ensure the success of future Ares I flights. One of the primary test flight objectives was to evaluate the environment during First Stage separation to better understand the conditions that the J-2X second stage engine will experience at ignition [1]. A secondary objective was to evaluate the effectiveness of the stage separation motors. The Ares I-X flight test vehicle was successfully launched on October 29, 2009, achieving most of its primary and secondary test objectives. Ground based video camera recordings of the separation event appeared to show recontact of the First Stage and the Upper Stage Simulator followed by an unconventional tumbling of the Upper Stage Simulator. Closer inspection of the videos and flight test data showed that recontact did not occur. Also, the motion during staging was as predicted through CFD analysis performed during the Ares I-X development. This paper describes the efforts to reconstruct the vehicle dynamics and loads through the staging event by means of a time integrated simulation developed in TREETOPS, a multi-body dynamics software tool developed at NASA [2]. The simulation was built around vehicle mass and geometry properties at the time of staging and thrust profiles for the first stage solid rocket motor as well as for the booster deceleration motors and booster tumble motors. Aerodynamic forces were determined by models created from a combination of wind tunnel testing and CFD. The initial conditions such as position, velocity, and attitude were obtained from the Best Estimated Trajectory (BET), which is compiled from multiple ground based and vehicle mounted instruments. Dynamic loads were calculated by subtracting the inertial forces from the applied forces. The simulation results were compared to the Best Estimated Trajectory, accelerometer flight data, and to ground based video.
NASA Astrophysics Data System (ADS)
Lee, Ho-Young; Lee, Se-Hee
2017-08-01
Mechanical deformation, bending deformation, and distributive magnetic loads were evaluated numerically and experimentally for conducting materials excited with high current. Until now, many research works have extensively studied the area of magnetic force and mechanical deformation by using coupled approaches such as multiphysics solvers. In coupled analysis for magnetoelastic problems, some articles and commercial software have presented the resultant mechanical deformation and stress on the body. To evaluate the mechanical deformation, the Lorentz force density method (LZ) and the Maxwell stress tensor method (MX) have been widely used for conducting materials. However, it is difficult to find any experimental verification regarding mechanical deformation or bending deformation due to magnetic force density. Therefore, we compared our numerical results to those from experiments with two parallel conducting bars to verify our numerical setup for bending deformation. Before showing this, the basic and interesting coupled simulation was conducted to test the mechanical deformations by the LZ (body force density) and the MX (surface force density) methods. This resulted in MX gave the same total force as LZ, but the local force distribution in MX introduced an incorrect mechanical deformation in the simulation of a solid conductor.
Study on longitudinal force simulation of heavy-haul train
NASA Astrophysics Data System (ADS)
Chang, Chongyi; Guo, Gang; Wang, Junbiao; Ma, Yingming
2017-04-01
The longitudinal dynamics model of heavy-haul trains and air brake model used in the longitudinal train dynamics (LTDs) are established. The dry friction damping hysteretic characteristic of steel friction draft gears is simulated by the equation which describes the suspension forces in truck leaf springs. The model of draft gears introduces dynamic loading force, viscous friction of steel friction and the damping force. Consequently, the numerical model of the draft gears is brought forward. The equation of LTDs is strongly non-linear. In order to solve the response of the strongly non-linear system, the high-precision and equilibrium iteration method based on the Newmark-β method is presented and numerical analysis is made. Longitudinal dynamic forces of the 20,000 tonnes heavy-haul train are tested, and models and solution method provided are verified by the test results.
Current and efficiency optimization under oscillating forces in entropic barriers
NASA Astrophysics Data System (ADS)
Nutku, Ferhat; Aydıner, Ekrem
2016-09-01
The transport of externally overdriven particles confined in entropic barriers is investigated under various types of oscillating and temporal forces. Temperature, load, and amplitude dependence of the particle current and energy conversion efficiency are investigated in three dimensions. For oscillating forces, the optimized temperature-load, amplitude-temperature, and amplitude-load intervals are determined when fixing the amplitude, load, and temperature, respectively. By using three-dimensional plots rather than two-dimensional ones, it is clearly shown that oscillating forces provide more efficiency compared with a temporal one in specified optimized parameter regions. Furthermore, the dependency of efficiency to the angle between the unbiased driving force and a constant force is investigated and an asymmetric angular dependence is found for all types of forces. Finally, it is shown that oscillating forces with a high amplitude and under a moderate load lead to higher efficiencies than a temporal force at both low and high temperatures for the entire range of contact angle. Project supported by the Istanbul University, Turkey (Grant No. 55383).
Pedersen, D M; Clark, J A; Johns, R E; White, G L; Hoffman, S
1989-01-01
In this study the authors investigate the percentage of mismatch between job demands and worker physical capacity in Utah National Guard mechanics. This population had demonstrated a higher incidence of low back trouble than other job descriptions reviewed. The authors utilized onsite still and videotape photography and a computerized biomechanical strength prediction model to assess loads on the lumbosacral spine due to various job tasks. Job demands were then compared to the actual physical capacity of the individual workers based on static strength testing in job-related positions. A load cell on the testing apparatus entered the force generated into a computer which averaged the force of the last three seconds of a five-second lift. It was determined that as much as a 38% mismatch existed within this population for some job tasks which these workers were exposed to. Suggestions for preventing job-related low back cumulative trauma disorders are presented, including: engineering redesign, worker selection programs, work hardening, and others.
Design and performance testing of an ultrasonic linear motor with dual piezoelectric actuators.
Smithmaitrie, Pruittikorn; Suybangdum, Panumas; Laoratanakul, Pitak; Muensit, Nantakan
2012-05-01
In this work, design and performance testing of an ultrasonic linear motor with dual piezoelectric actuator patches are studied. The motor system consists of a linear stator, a pre-load weight, and two piezoelectric actuator patches. The piezoelectric actuators are bonded with the linear elastic stator at specific locations. The stator generates propagating waves when the piezoelectric actuators are subjected to harmonic excitations. Vibration characteristics of the linear stator are analyzed and compared with finite element and experimental results. The analytical, finite element, and experimental results show agreement. In the experiments, performance of the ultrasonic linear motor is tested. Relationships between velocity and pre-load weight, velocity and applied voltage, driving force and applied voltage, and velocity and driving force are reported. The design of the dual piezoelectric actuators yields a simpler structure with a smaller number of actuators and lower stator stiffness compared with a conventional design of an ultrasonic linear motor with fully laminated piezoelectric actuators.
Anticipatory effects on anterior cruciate ligament loading during sidestep cutting.
Weinhandl, Joshua T; Earl-Boehm, Jennifer E; Ebersole, Kyle T; Huddleston, Wendy E; Armstrong, Brian S R; O'Connor, Kristian M
2013-07-01
A key to understanding potential anterior cruciate ligament injury mechanisms is to determine joint loading characteristics associated with an injury-causing event. However, direct measurement of anterior cruciate ligament loading during athletic tasks is invasive. Thus, previous research has been unable to study the association between neuromuscular variables and anterior cruciate ligament loading. Therefore, the purpose of this study was to determine the influence of movement anticipation on anterior cruciate ligament loading using a musculoskeletal modeling approach. Twenty healthy recreationally active females were recruited to perform anticipated and unanticipated sidestep cutting. Three-dimensional kinematics and kinetics of the right leg were calculated. Muscle, joint and anterior cruciate ligament forces were then estimated using a musculoskeletal model. Dependent t-tests were conducted to investigate differences between the two cutting conditions. ACL loading significantly increased during unanticipated sidestep cutting (p<0.05). This increase was primarily due to a significant increase in the sagittal plane ACL loading, which contributed 62% of the total loading. Frontal plane ACL loading contributed 26% and transverse plane ACL loading contributed 12%. These results suggest that anterior cruciate ligament loading resulted from a multifaceted interaction of the sagittal plane shear forces (i.e., quadriceps, hamstrings, and tibiofemoral), as well as the frontal and transverse plane knee moments. Additionally, the results of this study confirm the hypothesis in the current literature that unanticipated movements such as sidestep cutting increase anterior cruciate ligament loading. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Influence of Minimalist Footwear on Knee and Ankle Load during Depth Jumping.
Sinclair, J; Hobbs, S J; Selfe, J
2015-01-01
Plyometric training is used by athletes to promote strength and explosive power. However plyometric activities such as depth jumping are associated with a high incidence of injuries. This study examined the influence of minimalist and conventional footwear on the loads experienced by the patellofemoral joint and Achilles tendon. Patellofemoral and Achilles tendon forces were obtained from ten male participants using an eight-camera 3D motion capture system and force platform data as they completed depth jumps in both footwear conditions. Differences between footwear were calculated using paired t-tests. The results show that the minimalist footwear were associated with significantly lower patellofemoral contact force/pressure and also knee abduction moment. It is therefore recommended, based on these observations, that those who are susceptible to knee pain should consider minimalist footwear when performing plyometric training.
NASA Technical Reports Server (NTRS)
Soard, T. L.
1975-01-01
Wind tunnel tests of a 0.0405 scale model of the -1404A/B configuration of the Space Shuttle Vehicle Orbiter are presented. Pressure loads data were obtained from the orbiter in the landing configuration in the presence of the ground for structural strength analysis. This was accomplished by locating as many as 30 static pressure bugs at various locations on external model surfaces as each configuration was tested. A complete pressure loads survey was generated for each configuration by combining data from all bug locations, and these loads are described for the fuselage, wing, vertical tail, and landing gear doors. Aerodynamic force data was measured by a six component internal strain gage balance. This data was recorded to correct model angles of attack and sideslip for sting and balance deflections and to determine the aerodynamic effects of landing gear extension. All testing was conducted at a Mach number of 0.165 and a Reynolds number of 1.2 million per foot. Photographs of test configurations are shown.
Postural Stability Assessment of University Marching Musicians Using Force Platform Measures.
Magnotti, Trevor D; McElhiney, Danielle; Russell, Jeffrey A
2016-09-01
Lower extremity injury is prevalent in marching musicians, and poor postural stability is a possible risk factor for this. The external load of an instrument may predispose these performers to injury by decreasing postural stability. The purpose of this study was to determine the relationship between instrument load and static and dynamic postural stability in this population. Fourteen university marching musicians were recruited and completed a balance assessment protocol on a force platform with and without their instrument. Mean center of pressure (CoP) displacement was then calculated for each exercise in the anterior/posterior and medial/lateral planes. Mean anterior/posterior CoP displacement significantly increased in the instrument condition for the static surface, eyes closed, 2 feet condition (p≤0.005; d=0.89). No significant differences were found in the medial/lateral plane between non-instrument and instrument conditions. Significant differences were not found between test stance conditions independent of group. Comparisons between the non-instrument-loaded and instrument-loaded conditions revealed possible significance of instrument load on postural stability in the anterior/posterior plane. Mean differences indicated that an unstable surface created a greater destabilizing effect on postural stability than instrument load.
Indentation-flexure and low-velocity impact damage in graphite/epoxy laminates
NASA Technical Reports Server (NTRS)
Kwon, Young S.; Sankar, Bhavani V.
1992-01-01
Static indentation and low velocity impact tests were performed on quasi-isotropic and cross ply graphite/epoxy composite laminates. The load deflection relations in static tests and impact force history in the impact tests were recorded. The damage was assessed by using ultrasonic C-scanning and photomicrographic techniques. The static behavior of the laminates and damage progression during loading, unloading, and reloading were explained by a simple plate delamination model. A good correlation existed between the static and impact responses. It was found that results from a few static indentation-flexture tests can be used to predict the response and damage in composite laminates due to a class of low velocity impact events.
Soares, L P; de Vasconcellos, A B; da Silva, A H Monteiro da Fonseca Thomé; Sampaio, E M; Vianna, G A de Deus Carneiro
2010-12-01
The aim of this study was to investigate the flexural properties of five types of fiber-reinforced dowels using a modified three-point bending test. Fiber-reinforced resin dowels were tested by a modified three-point bending test associated with models for cylindrical and conical simple-supported beams. The fracture load ranged from 86 to 246 N and the flexural strength from 423 to 1192 MPa. FRC Postec had significantly higher flexural strength and fracture loads values. Thus, the present study demonstrated higher flexural strength values for the FRC Postec fibre posts, suggesting that this system would present a better response to the forces of mastication.
NASA Astrophysics Data System (ADS)
Sivagurunathan, Rubentheran; Lau Tze Way, Saijod; Sivagurunathan, Linkesvaran; Yaakob, Mohd. Yuhazri
2018-01-01
The usage of composite materials have been improving over the years due to its superior mechanical properties such as high tensile strength, high energy absorption capability, and corrosion resistance. In this present study, the energy absorption capability of circular jute/epoxy composite tubes were tested and evaluated. To induce the progressive crushing of the composite tubes, four different types of triggering mechanisms were used which were the non-trigger, single chamfered trigger, double chamfered trigger and tulip trigger. Quasi-static axial loading test was carried out to understand the deformation patterns and the load-displacement characteristics for each composite tube. Besides that, the influence of energy absorption, crush force efficiency, peak load, mean load and load-displacement history were examined and discussed. The primary results displayed a significant influence on the energy absorption capability provided that stable progressive crushing occurred mostly in the triggered tubes compared to the non-triggered tubes. Overall, the tulip trigger configuration attributed the highest energy absorption.
Cold Flow Propulsion Test Complex Pulse Testing
NASA Technical Reports Server (NTRS)
McDougal, Kris
2016-01-01
When the propellants in a liquid rocket engine burn, the rocket not only launches and moves in space, it causes forces that interact with the vehicle itself. When these interactions occur under specific conditions, the vehicle's structures and components can become unstable. One instability of primary concern is termed pogo (named after the movement of a pogo stick), in which the oscillations (cycling movements) cause large loads, or pressure, against the vehicle, tanks, feedlines, and engine. Marshall Space Flight Center (MSFC) has developed a unique test technology to understand and quantify the complex fluid movements and forces in a liquid rocket engine that contribute strongly to both engine and integrated vehicle performance and stability. This new test technology was established in the MSFC Cold Flow Propulsion Test Complex to allow injection and measurement of scaled propellant flows and measurement of the resulting forces at multiple locations throughout the engine.
Nonlinear elastic behavior of sub-critically damaged body armor panel
NASA Astrophysics Data System (ADS)
Fisher, Jason T.; Chimenti, D. E.
2012-05-01
A simple go/no-go test for body armor panels using pressure-sensitive, dye-indicator film (PSF) has been shown to be statistically effective in revealing subcritical damage to body armor panels. Previous measurements have shown that static indicator levels are accurately reproduced in dynamic loading events. Further impact tests on armor worn by a human resuscitation dummy using instrumented masses with an attached accelerometer and embedded force transducer have been performed and analyzed. New impact tests have shown a reliable correlation between PSF indication (as digitized images) and impact force for a wide range of impactor energies and masses. Numerical evaluation of digital PSF images is presented and correlated with impact parameters. Relationships between impactor mass and energy, and corresponding measured force are shown. We will also report on comparisons between ballistic testing performed on panels damaged under various impact conditions and tests performed on undamaged panels.
Galileo spacecraft modal test and evaluation of testing techniques
NASA Technical Reports Server (NTRS)
Chen, J.-C.
1984-01-01
The structural configuration, modal test requirements and pre-test activities involved in modeling the expected dynamic environment and responses of the Galileo spacecraft are discussed. The probe will be Shuttle-launched in 1986 and will gather data on the Jupiter system. Loads analysis for the 5300 lb spacecraft were performed with the NASTRAN code, and covered 10,000 static degrees of freedom and 1600 mass degrees of freedom. A modal analysis will be used to verify the predictions for natural frequencies, mode shapes, orthogonality checks, residual mass, modal damping and forces, and generalized forces. Verification of the validity of considering only 70 natural modes in the numerical simulation is being performed by examining the forcing functions of the analysis. The analysis led to requirements that 162 channels of accelerometer data and 118 channels of strain gage data be recorded during shaker tests to reveal areas where design changes will be needed to eliminate vibration peaks.
Controlled shear/tension fixture
Hsueh, Chun-Hway [Knoxville, TN; Liu, Chain-tsuan [Knoxville, TN; George, Easo P [Knoxville, TN
2012-07-24
A test fixture for simultaneously testing two material test samples is provided. The fixture provides substantially equal shear and tensile stresses in each test specimens. By gradually applying a load force to the fixture only one of the two specimens fractures. Upon fracture of the one specimen, the fixture and the load train lose contact and the second specimen is preserved in a state of upset just prior to fracture. Particular advantages of the fixture are (1) to control the tensile to shear load on the specimen for understanding the effect of these stresses on the deformation behavior of advanced materials, (2) to control the location of fracture for accessing localized material properties including the variation of the mechanical properties and residual stresses across the thickness of advanced materials, (3) to yield a fractured specimen for strength measurement and an unfractured specimen for examining the microstructure just prior to fracture.
Effects of load on ground reaction force and lower limb kinematics during concentric squats.
Kellis, Eleftherios; Arambatzi, Fotini; Papadopoulos, Christos
2005-10-01
The purpose of this study was to examine the effects of external load on vertical ground reaction force, and linear and angular kinematics, during squats. Eight males aged 22.1 +/- 0.8 years performed maximal concentric squats using loads ranging from 7 to 70% of one-repetition maximum on a force plate while linear barbell velocity and the angular kinematics of the hip, knee and ankle were recorded. Maximum, average and angle-specific values were recorded. The ground reaction force ranged from 1.67 +/- 0.20 to 3.21 +/- 0.29 times body weight and increased significantly as external load increased (P < 0.05). Bar linear velocity ranged from 0.54 +/- 0.11 to 2.50 +/- 0.50 m x s(-1) and decreased significantly with increasing external load (P < 0.05). Hip, knee and ankle angles at maximum ground reaction force were affected by external load (P < 0.05). The force-barbell velocity curves were fitted using linear models with coefficients (r2) ranging from 0.59 to 0.96. The results suggest that maximal force exertion during squat exercises is not achieved at the same position of the lower body as external load is increased. In contrast, joint velocity coordination does not change as load is increased. The force-velocity relationship was linear and independent from the set of data used for its determination.
Improved method for determining the stress relaxation at the crack tip
NASA Astrophysics Data System (ADS)
Grinevich, A. V.; Erasov, V. S.; Avtaev, V. V.
2017-10-01
A technique is suggested to determine the stress relaxation at the crack tip during tests of a specimen of a new type at a constant crack opening fixed by a stay bolt. The shape and geometry of the specimen make it possible to set the load and to determine the crack closure force after long-term exposure using the force transducer of a tensile-testing machine. The stress relaxation at the crack tip is determined in a V95pchT2 alloy specimen at elevated temperatures.
The Effect of Systematic Error in Forced Oscillation Testing
NASA Technical Reports Server (NTRS)
Williams, Brianne Y.; Landman, Drew; Flory, Isaac L., IV; Murphy, Patrick C.
2012-01-01
One of the fundamental problems in flight dynamics is the formulation of aerodynamic forces and moments acting on an aircraft in arbitrary motion. Classically, conventional stability derivatives are used for the representation of aerodynamic loads in the aircraft equations of motion. However, for modern aircraft with highly nonlinear and unsteady aerodynamic characteristics undergoing maneuvers at high angle of attack and/or angular rates the conventional stability derivative model is no longer valid. Attempts to formulate aerodynamic model equations with unsteady terms are based on several different wind tunnel techniques: for example, captive, wind tunnel single degree-of-freedom, and wind tunnel free-flying techniques. One of the most common techniques is forced oscillation testing. However, the forced oscillation testing method does not address the systematic and systematic correlation errors from the test apparatus that cause inconsistencies in the measured oscillatory stability derivatives. The primary objective of this study is to identify the possible sources and magnitude of systematic error in representative dynamic test apparatuses. Sensitivities of the longitudinal stability derivatives to systematic errors are computed, using a high fidelity simulation of a forced oscillation test rig, and assessed using both Design of Experiments and Monte Carlo methods.
Koller, Heiko; Fierlbeck, Johann; Auffarth, Alexander; Niederberger, Alfred; Stephan, Daniel; Hitzl, Wolfgang; Augat, Peter; Zenner, Juliane; Blocher, Martina; Blocher, Martina; Resch, Herbert; Mayer, Michael
2014-03-15
Biomechanical in vitro laboratory study. To compare the biomechanical performance of 3 fixation concepts used for anterior instrumented scoliosis correction and fusion (AISF). AISF is an ideal estimate for selective fusion in adolescent idiopathic scoliosis. Correction is mediated using rods and screws anchored in the vertebral bodies. Application of large correction forces can promote early weakening of the implant-vertebra interfaces, with potential postoperative loss of correction, implant dislodgment, and nonunion. Therefore, improvement of screw-rod anchorage characteristics with AISF is valuable. A total of 111 thoracolumbar vertebrae harvested from 7 human spines completed a testing protocol. Age of specimens was 62.9 ± 8.2 years. Vertebrae were potted in polymethylmethacrylate and instrumented using 3 different devices with identical screw length and unicortical fixation: single constrained screw fixation (SC fixation), nonconstrained dual-screw fixation (DNS fixation), and constrained dual-screw fixation (DC fixation) resembling a novel implant type. Mechanical testing of each implant-vertebra unit using cyclic loading and pullout tests were performed after stress tests were applied mimicking surgical maneuvers during AISF. Test order was as follows: (1) preload test 1 simulating screw-rod locking and cantilever forces; (2) preload test 2 simulating compression/distraction maneuver; (3) cyclic loading tests with implant-vertebra unit subjected to stepwise increased cyclic loading (maximum: 200 N) protocol with 1000 cycles at 2 Hz, tests were aborted if displacement greater than 2 mm occurred before reaching 1000 cycles; and (4) coaxial pullout tests at a pullout rate of 5 mm/min. With each test, the mode of failure, that is, shear versus fracture, was noted as well as the ultimate load to failure (N), number of implant-vertebra units surpassing 1000 cycles, and number of cycles and related loads applied. Thirty-three percent of vertebrae surpassed 1000 cycles, 38% in the SC group, 19% in the DNS group, and 43% in the DC group. The difference between the DC group and the DNS group yielded significance (P = 0.04). For vertebrae not surpassing 1000 cycles, the number of cycles at implant displacement greater than 2 mm in the SC group was 648.7 ± 280.2 cycles, in the DNS group was 478.8 ± 219.0 cycles, and in the DC group was 699.5 ± 150.6 cycles. Differences between the SC group and the DNS group were significant (P = 0.008) as between the DC group and the DNS group (P = 0.0009). Load to failure in the SC group was 444.3 ± 302 N, in the DNS group was 527.7 ± 273 N, and in the DC group was 664.4 ± 371.5 N. The DC group outperformed the other constructs. The difference between the SC group and the DNS group failed significance (P = 0.25), whereas there was a significant difference between the SC group and the DC group (P = 0.003). The DC group showed a strong trend toward increased load to failure compared with the DNS group but without significance (P = 0.067). Surpassing 1000 cycles had a significant impact on the maximum load to failure in the SC group (P = 0.0001) and in the DNS group (P = 0.01) but not in the DC group (P = 0.2), which had the highest number of vertebrae surpassing 1000 cycles. Constrained dual-screw fixation characteristics in modern AISF implants can improve resistance to cyclic loading and pullout forces. DC constructs bear the potential to reduce the mechanical shortcomings of AISF.
1975-02-04
perceiving some thing which resem.- bles nothing within the limits of one’s kowledge , a name is a matter of great difficulty. I have called this unique...of the test bed by a screw and jack arrangement powered by a 1/6 h.p. motor, the axial force being monitored with a Dillon load cell (Fig. 2). Axial
Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head
NASA Technical Reports Server (NTRS)
Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.
2010-01-01
Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC-E2 heater head assembly. These mechanical tests were collectively referred to as "lateral load tests" since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.
Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head
NASA Technical Reports Server (NTRS)
Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.
2011-01-01
Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC-E2 heater head assembly. These mechanical tests were collectively referred to as "lateral load tests" since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.
Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head
NASA Technical Reports Server (NTRS)
Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.
2010-01-01
Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC E2 heater head assembly. These mechanical tests were collectively referred to as lateral load tests since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.
Lombardo, Luca; Toni, Giorgia; Stefanoni, Filippo; Mollica, Francesco; Guarneri, Maria Paola; Siciliani, Giuseppe
2013-03-01
To investigate and compare the characteristics of commonly used types of traditional and heat-activated initial archwires at different temperatures by plotting their load/deflection graphs and quantifying three parameters describing the discharge plateau phase. Forty-eight archwires of cross-sectional diameters ranging from 0.010 inches to 0.016 inches were obtained from seven different manufacturers. A modified three-point wire-bending test was performed on three analogous samples of each type of archwire at 55°C and 5°C, simulating an inserted archwire that is subjected to cold or hot drinks during a meal. For each resulting load/deflection curve the plateau section was isolated and the mean value of each parameter for each type of wire was obtained. Permanent strain was exhibited by all wires tested at 55°C. Statistically significant differences were found between almost all wires for the three considered parameters when tested at 55°C and 5°C. Loads were greater at 55°C than at 5°C. Differences were also found between traditional and heat-activated archwires, the latter of which generated longer plateaus at 55°C, shorter plateaus at 5°C, and lighter mean forces at both temperatures. The increase in average force seen with increasing diameter tended to be rather stable at both temperatures. All nickel-titanium wires tested showed a significant change related to temperature in terms of behavior and force for both traditional and heat-activated wires. Stress under high temperatures can induce permanent strain, whereas the residual strain detected at low temperatures can be recovered from as temperature increases.
Analysis of crack propagation in human long bone by using finite element modeling
NASA Astrophysics Data System (ADS)
Salim, Mohammad Shahril; Salleh, Ahmad Faizal; Daud, Ruslizam
2017-12-01
The aim of this research is to present a numerical modeling of crack for human long bone specifically on femur shaft bone under mode I loading condition. Two - dimensional model (2D) of long bone was developed based on past research study. The finite element analysis and construction of the model are done using Mechanical APDL (ANSYS) v14.0 software. The research was conducted mainly based on two conditions that were at different crack lengths and different loading forces for male and female. In order to evaluate the stress intensity factor (KI) of the femur shaft of long bone, this research employed finite element method to predict the brittle fracture loading by using three-point bending test. The result of numerical test found that the crack was formed when the crack length reached 0.0022 m where KI values are proportional with the crack's length. Also, various loading forces in range of 400 N to 1000 N were applied in an attempt to study their effect on stress intensity factor and it was found that the female dimension has higher KI values compared to male. It was also observed that K values found by this method have good agreement with theoretical results based on previous research.
14 CFR 23.395 - Control system loads.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 1.0 may be used if hinge moments are based on accurate flight test data, the exact reduction depending upon the accuracy and reliability of the data. (c) Pilot forces used for design are assumed to act...
Code of Federal Regulations, 2014 CFR
2014-10-01
... that are designed to engage when subjected to large buff loads to prevent the override of one vehicle... designed retarding force on the train. A brake is not effective if its piston travel is in excess of the... next midnight on a given date. Class I brake test means a complete passenger train brake system test...
White, Nicholas A; Danelson, Kerry A; Gayzik, F Scott; Stitzel, Joel D
2014-11-01
A finite element (FE) simulation environment has been developed to investigate aviator head and neck response during a simulated rotary-wing aircraft impact using both an FE anthropomorphic test device (ATD) and an FE human body model. The head and neck response of the ATD simulation was successfully validated against an experimental sled test. The majority of the head and neck transducer time histories received a CORrelation and analysis (CORA) rating of 0.7 or higher, indicating good overall correlation. The human body model simulation produced a more biofidelic head and neck response than the ATD experimental test and simulation, including change in neck curvature. While only the upper and lower neck loading can be measured in the ATD, the shear force, axial force, and bending moment were reported for each level of the cervical spine in the human body model using a novel technique involving cross sections. This loading distribution provides further insight into the biomechanical response of the neck during a rotary-wing aircraft impact.
Techniques for determination of impact forces during walking and running in a zero-G environment
NASA Technical Reports Server (NTRS)
Greenisen, Michael; Walton, Marlei; Bishop, Phillip; Squires, William
1992-01-01
One of the deleterious adaptations to the microgravity conditions of space flight is the loss of bone mineral content. This loss appears to be at least partially attributable to the minimal skeletal axial loading concomitant with microgravity. The purpose of this study was to develop and fabricate the instruments and hardware necessary to quantify the vertical impact forces (Fz) imparted to users of the space shuttle passive treadmill during human locomotion in a three-dimensional zero-gravity environment. The shuttle treadmill was instrumented using a Kistler forceplate to measure vertical impact forces. To verify that the instruments and hardware were functional, they were tested both in the one-G environment and aboard the KC-135 reduced gravity aircraft. The magnitude of the impact loads generated in one-G on the shuttle treadmill for walking at 0.9 m/sec and running at 1.6 and 2.2 m/sec were 1.1, 1.7, and 1.7 G, respectively, compared with loads of 0.95, 1.2, and 1.5 G in the zero-G environment.
40 CFR 1066.210 - Dynamometers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... chassis dynamometer typically uses electrically generated load forces combined with its rotational inertia... (known as “road load”). Load forces are calculated using vehicle-specific coefficients and response characteristics. The load forces are applied to the vehicle tires by rolls connected to intermediate motor...
40 CFR 1066.210 - Dynamometers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... chassis dynamometer typically uses electrically generated load forces combined with its rotational inertia... (known as “road load”). Load forces are calculated using vehicle-specific coefficients and response characteristics. The load forces are applied to the vehicle tires by rolls connected to intermediate motor...
DOT National Transportation Integrated Search
2014-04-01
The first objective of this study was to develop procedures for determining bracing forces during bridge construction. : Numerical finite element models and analysis techniques were developed for evaluating brace forces induced by construction loads ...
Heinlein, Bernd; Kutzner, Ines; Graichen, Friedmar; Bender, Alwina; Rohlmann, Antonius; Halder, Andreas M; Beier, Alexander; Bergmann, Georg
2009-05-01
Detailed information about the loading of the knee joint is required for various investigations in total knee replacement. Up to now, gait analysis plus analytical musculo-skeletal models were used to calculate the forces and moments acting in the knee joint. Currently, all experimental and numerical pre-clinical tests rely on these indirect measurements which have limitations. The validation of these methods requires in vivo data; therefore, the purpose of this study was to provide in vivo loading data of the knee joint. A custom-made telemetric tibial tray was used to measure the three forces and three moments acting in the implant. This prosthesis was implanted into two subjects and measurements were obtained for a follow-up of 6 and 10 months, respectively. Subjects performed level walking and going up and down stairs using a self-selected comfortable speed. The subjects' activities were captured simultaneously with the load data on a digital video tape. Customized software enabled the display of all information in one video sequence. The highest mean values of the peak load components from the two subjects were as follows: during level walking the forces were 276%BW (percent body weight) in axial direction, 21%BW (medio-lateral), and 29%BW (antero-posterior). The moments were 1.8%BW*m in the sagittal plane, 4.3%BW*m (frontal plane) and 1.0%BW*m (transversal plane). During stair climbing the axial force increased to 306%BW, while the shear forces changed only slightly. The sagittal plane moment increased to 2.4%BW*m, while the frontal and transversal plane moments decreased slightly. Stair descending produced the highest forces of 352%BW (axial), 35%BW (medio-lateral), and 36%BW (antero-posterior). The sagittal and frontal plane moments increased to 2.8%BW*m and 4.6%BW*m, respectively, while the transversal plane moment changed only slightly. Using the data obtained, mechanical simulators can be programmed according to realistic load profiles. Furthermore, musculo-skeletal models can be validated, which until now often lacked the ability to predict properly the non-sagittal load values, e.g. varus-valgus and internal-external moments.
Testing Orions Fairing Separation System
NASA Technical Reports Server (NTRS)
Martinez, Henry; Cloutier, Chris; Lemmon, Heber; Rakes, Daniel; Oldham, Joe; Schlagel, Keith
2014-01-01
Traditional fairing systems are designed to fully encapsulate and protect their payload from the harsh ascent environment including acoustic vibrations, aerodynamic forces and heating. The Orion fairing separation system performs this function and more by also sharing approximately half of the vehicle structural load during ascent. This load-share condition through launch and during jettison allows for a substantial increase in mass to orbit. A series of component-level development tests were completed to evaluate and characterize each component within Orion's unique fairing separation system. Two full-scale separation tests were performed to verify system-level functionality and provide verification data. This paper summarizes the fairing spring, Pyramidal Separation Mechanism and forward seal system component-level development tests, system-level separation tests, and lessons learned.
Kaczka, David W; Lutchen, Kenneth R
2004-04-01
The ability to provide forced oscillatory excitation of the respiratory system can be useful in mechanical impedance measurements as well as high frequency ventilation (HFV). Experimental systems currently used for generating forced oscillations are limited in their ability to provide high amplitude flows or maintain the respiratory system at a constant mean pressure during excitation. This paper presents the design and implementation of a pneumatic pressure oscillator based on a proportional solenoid valve. The device is capable of providing forced oscillatory excitations to the respiratory system over a bandwidth suitable for mechanical impedance measurements and HVF. It delivers high amplitude flows (> 1.4 l/s) and utilizes a servo-control mechanism to maintain a load at a fixed mean pressure during simultaneous oscillation. Under open-loop conditions, the device exhibited a static hysteresis of approximately 7%, while its dynamic magnitude and phase responses were flat out to 10 Hz. Broad-band measurement of total harmonic distortion was approximately 19%. Under closed-loop conditions, the oscillator was able to maintain a mechanical test load at both positive and negative mean pressures during oscillatory excitations from 0.1 to 10.0 Hz. Impedance of the test load agreed closely with theoretical predictions. We conclude that this servo-controlled oscillator can be a useful tool for respiratory impedance measurements as well as HFV.
Van der Loos, H F Machiel; Worthen-Chaudhari, Lise; Schwandt, Douglas; Bevly, David M; Kautz, Steven A
2010-08-01
This paper presents a novel computer-controlled bicycle ergometer, the TiltCycle, for use in human biomechanics studies of locomotion. The TiltCycle has a tilting (reclining) seat and backboard, a split pedal crankshaft to isolate the left and right loads to the feet of the pedaler, and two belt-driven, computer-controlled motors to provide assistance or resistance loads independently to each crank. Sensors measure the kinematics and force production of the legs to calculate work performed, and the system allows for goniometric and electromyography signals to be recorded. The technical description presented includes the mechanical design, low-level software and control algorithms, system identification and validation test results.
Low-speed wind-tunnel tests of an advanced eight-bladed propeller
NASA Technical Reports Server (NTRS)
Coe, P. L., Jr.; Gentry, G. L., Jr.; Dunham, D. M.
1985-01-01
As part of a research program on advanced turboprop aircraft aerodynamics, a low-speed wind-tunnel investigation was conducted to document the basic performance and force and moment characteristics of an advanced eight-bladed propeller. The results show that in addition to the normal force and pitching moment produced by the propeller/nacelle combination at angle of attack, a significant side force and yawing moment are also produced. Furthermore, it is shown that for test conditions wherein compressibility effects can be ignored, accurate simulation of propeller performance and flow fields can be achieved by matching the nondimensional power loading of the model propeller to that of the full-scale propeller.
Sit-to-stand ground reaction force characteristics in blind and sighted female children.
Faraji Aylar, Mozhgan; Jafarnezhadgero, Amir Ali; Salari Esker, Fatemeh
2018-03-05
The association between visual sensory and sit-to-stand ground reaction force characteristics is not clear. Impulse is the amount of force applied over a period of time. Also, free moment represents the vertical moment applied in the center of pressure (COP). How the ground reaction force components, vertical loading rate, impulses and free moment respond to long and short term restricted visual information? Fifteen female children with congenital blindness and 45 healthy girls with no visual impairments participated in this study. The girls with congenital blindness were placed in one group and the 45 girls with no visual impairments were randomly divided into three groups of 15; eyes open, permanently eyes closed, and temporary eyes closed. The participants in the permanently eyes closed group closed their eyes for 20 min before the test, whereas temporary eyes closed group did tests with their eyes closed throughout, and those in the eyes open group kept their eyes open. Congenital blindness was associated with increased vertical loading rate, range of motion of knee and hip in the medio-lateral plane. Also, medio-lateral and vertical ground reaction force impulses. Similar peak negative and positive free moments were observed in three groups. In conclusion, the results reveal that sit-to-stand ground reaction force components in blind children may have clinical importance for improvement of balance control of these individuals. Copyright © 2018 Elsevier B.V. All rights reserved.
Shake Test Results and Dynamic Calibration Efforts for the Large Rotor Test Apparatus
NASA Technical Reports Server (NTRS)
Russell, Carl R.
2014-01-01
Prior to the full-scale wind tunnel test of the UH-60A Airloads rotor, a shake test was completed on the Large Rotor Test Apparatus. The goal of the shake test was to characterize the oscillatory response of the test rig and provide a dynamic calibration of the balance to accurately measure vibratory hub loads. This paper provides a summary of the shake test results, including balance, shaft bending gauge, and accelerometer measurements. Sensitivity to hub mass and angle of attack were investigated during the shake test. Hub mass was found to have an important impact on the vibratory forces and moments measured at the balance, especially near the UH-60A 4/rev frequency. Comparisons were made between the accelerometer data and an existing finite-element model, showing agreement on mode shapes, but not on natural frequencies. Finally, the results of a simple dynamic calibration are presented, showing the effects of changes in hub mass. The results show that the shake test data can be used to correct in-plane loads measurements up to 10 Hz and normal loads up to 30 Hz.
NASA Technical Reports Server (NTRS)
Dufrane, K. F.; Kannel, J. W.; Merriman, T. L.; Rosenfield, A. R.
1985-01-01
Experiments were performed to determine the effect of cyclic loading on bearing cage strength. A long term working tensile load of approximately 1300 N (300 lbs) was found to be the likely maximum. Higher loads caused a decrease in cage tensile strength after the 125,000 cycle testing period. Poisson's ratio in compression was found to be highly dependent upon the direction of the fiberglass plies. At room temperature the value was 0.15 with the plies and 0.68 across the plies. At -196 C (-321 F), the value with the plies was 0.20. The results of the analyses conducted have again demonstrated the critical need for improved lubrication in the high pressure oxygen turbopump bearings. Lubricant films with low shear strength and low friction coefficients promote cage stability and decrease ball/cage forces during marginal operating conditions. The analysis of the effect of combined bearing loads on ball/cage loads has identified a radial load of 3600 N (800 lbs) as the maximum for the current clearance of the balls and cage pockets. Liquid oxygen impinging on the cage in the direction of rotation was found to enhance cage stability.
Foot-ankle complex injury risk curves using calcaneus bone mineral density data.
Yoganandan, Narayan; Chirvi, Sajal; Voo, Liming; DeVogel, Nicholas; Pintar, Frank A; Banerjee, Anjishnu
2017-08-01
Biomechanical data from post mortem human subject (PMHS) experiments are used to derive human injury probability curves and develop injury criteria. This process has been used in previous and current automotive crashworthiness studies, Federal safety standards, and dummy design and development. Human bone strength decreases as the individuals reach their elderly age. Injury risk curves using the primary predictor variable (e.g., force) should therefore account for such strength reduction when the test data are collected from PMHS specimens of different ages (age at the time of death). This demographic variable is meant to be a surrogate for fracture, often representing bone strength as other parameters have not been routinely gathered in previous experiments. However, bone mineral densities (BMD) can be gathered from tested specimens (presented in this manuscript). The objective of this study is to investigate different approaches of accounting for BMD in the development of human injury risk curves. Using simulated underbody blast (UBB) loading experiments conducted with the PMHS lower leg-foot-ankle complexes, a comparison is made between the two methods: treating BMD as a covariate and pre-scaling test data based on BMD. Twelve PMHS lower leg-foot-ankle specimens were subjected to UBB loads. Calcaneus BMD was obtained from quantitative computed tomography (QCT) images. Fracture forces were recorded using a load cell. They were treated as uncensored data in the survival analysis model which used the Weibull distribution in both methods. The width of the normalized confidence interval (NCIS) was obtained using the mean and ± 95% confidence limit curves. The mean peak forces of 3.9kN and 8.6kN were associated with the 5% and 50% probability of injury for the covariate method of deriving the risk curve for the reference age of 45 years. The mean forces of 5.4 kN and 9.2kN were associated with the 5% and 50% probability of injury for the pre-scaled method. The NCIS magnitudes were greater in the covariate-based risk curves (0.52-1.00) than in the risk curves based on the pre-scaled method (0.24-0.66). The pre-scaling method resulted in a generally greater injury force and a tighter injury risk curve confidence interval. Although not directly applicable to the foot-ankle fractures, when compared with the use of spine BMD from QCT scans to pre-scale the force, the calcaneus BMD scaled data produced greater force at the same risk level in general. Pre-scaling the force data using BMD is an alternate, and likely a more accurate, method instead of using covariate to account for the age-related bone strength change in deriving risk curves from biomechanical experiments using PMHS. Because of the proximity of the calcaneus bone to the impacting load, it is suggested to use and determine the BMD of the foot-ankle bone in future UBB and other loading conditions to derive human injury probability curves for the foot-ankle complex. Copyright © 2017. Published by Elsevier Ltd.
The NASA landing gear test airplane
NASA Technical Reports Server (NTRS)
Carter, John F.; Nagy, Christopher J.
1995-01-01
A tire and landing gear test facility has been developed and incorporated into a Convair 990 aircraft. The system can simulate tire vertical load profiles to 250,000 lb, sideslip angles to 15 degrees, and wheel braking on actual runways. Onboard computers control the preprogrammed test profiles through a feedback loop and also record three axis loads, tire slip angle, and tire condition. The aircraft to date has provided tire force and wear data for the Shuttle Orbiter tire on three different runways and at east and west coast landing sites. This report discusses the role of this facility in complementing existing ground tire and landing gear test facilities, and how this facility can simultaneously simulate the vertical load, tire slip, velocity, and surface for an entire aircraft landing. A description is given of the aircraft as well as the test system. An example of a typical test sequence is presented. Data collection and reduction from this facility are discussed, as well as accuracies of calculated parameters. Validation of the facility through ground and flight tests is presented. Tests to date have shown that this facility can operate at remote sites and gather complete data sets of load, slip, and velocity on actual runway surfaces. The ground and flight tests have led to a successful validation of this test facility.
Gravity-Off-loading System for Large-Displacement Ground Testing of Spacecraft Mechanisms
NASA Technical Reports Server (NTRS)
Han, Olyvia; Kienholz, David; Janzen, Paul; Kidney, Scott
2010-01-01
Gravity-off-loading of deployable spacecraft mechanisms during ground testing is a long-standing problem. Deployable structures which are usually too weak to support their own weight under gravity require a means of gravity-off-loading as they unfurl. Conventional solutions to this problem have been helium-filled balloons or mechanical pulley/counterweight systems. These approaches, however, suffer from the deleterious effects of added inertia or friction forces. The changing form factor of the deployable structure itself and the need to track the trajectory of the center of gravity also pose a challenge to these conventional technologies. This paper presents a novel testing apparatus for high-fidelity zero-gravity simulation for special application to deployable space structures such as solar arrays, magnetometer booms, and robotic arms in class 100,000 clean room environments
How securely is the testicular artery occluded in the spermatic cord by using a ligature?
Rijkenhuizen, A B M; Sommerauer, S; Fasching, M; Velde, K; Peham, C
2013-09-01
There are no studies on the ideal ligature technique for the spermatic cord. To compare the maximal resistance pressure in the testicular artery and the maximal tensile forces to produce failure of 2 different ligature techniques used for ligation of the equine spermatic cord. The capabilities of 2 types of ligatures, single knot loop and double knot loop, were assessed using a pressure-resistance test in testicular arteries and with an in vitro mechanical evaluation of the tensile strength by single cycle-to-failure testing. In the pressure-resistance test, the mean ± s.d. peak force at failure of the single knot loop was 354.4 ± 91.7 mmHg and for the double knot loop 303.2 ± 62.0 mmHg. There was no significant difference between the maximal load to failure of the single knot loop and double knot loop technique. The pressure needed for rupture was significantly higher (P = 0.001) than for leakage. The maximal tensile force at failure of the single knot loop was significantly higher than the double knot loop (P = 0.028). There was no significant difference in load elongation properties to failure between the single knot loop and double knot loop. Although no significant differences were obtained in the pressure-resistance test, the single knot loop sustained significantly greater load to failure than the double knot loop in single cycle-to-failure testing. Based on these findings, it would appear that the performance of the single knot loop should be superior to the double knot loop. Both ligature techniques are able to withstand the normal physiological intravascular pressure. The single knot loop has the greater breaking strength of the 2 ligatures tested and is less time consuming to perform and may therefore have advantages during equine castration. © 2012 EVJ Ltd.
Modeling the biomechanical and injury response of human liver parenchyma under tensile loading.
Untaroiu, Costin D; Lu, Yuan-Chiao; Siripurapu, Sundeep K; Kemper, Andrew R
2015-01-01
The rapid advancement in computational power has made human finite element (FE) models one of the most efficient tools for assessing the risk of abdominal injuries in a crash event. In this study, specimen-specific FE models were employed to quantify material and failure properties of human liver parenchyma using a FE optimization approach. Uniaxial tensile tests were performed on 34 parenchyma coupon specimens prepared from two fresh human livers. Each specimen was tested to failure at one of four loading rates (0.01s(-1), 0.1s(-1), 1s(-1), and 10s(-1)) to investigate the effects of rate dependency on the biomechanical and failure response of liver parenchyma. Each test was simulated by prescribing the end displacements of specimen-specific FE models based on the corresponding test data. The parameters of a first-order Ogden material model were identified for each specimen by a FE optimization approach while simulating the pre-tear loading region. The mean material model parameters were then determined for each loading rate from the characteristic averages of the stress-strain curves, and a stochastic optimization approach was utilized to determine the standard deviations of the material model parameters. A hyperelastic material model using a tabulated formulation for rate effects showed good predictions in terms of tensile material properties of human liver parenchyma. Furthermore, the tissue tearing was numerically simulated using a cohesive zone modeling (CZM) approach. A layer of cohesive elements was added at the failure location, and the CZM parameters were identified by fitting the post-tear force-time history recorded in each test. The results show that the proposed approach is able to capture both the biomechanical and failure response, and accurately model the overall force-deflection response of liver parenchyma over a large range of tensile loadings rates. Copyright © 2014 Elsevier Ltd. All rights reserved.
Herbst, Paulo Eduardo; de Carvalho, Eduardo Bortolas; Salatti, Rafael C; Valgas, Laiz; Tiossi, Rodrigo
To study the force used for tightening tapered one-piece prosthetic abutments and their influence on the removal torque value and stress level of the prosthetic abutment after cyclic loading. Fourteen implants and prosthetic abutments were divided into two groups (n = 7): G1, 20 Ncm; and G2, 32 Ncm (manufacturer recommended). A 20-mm T-shaped horizontal bar was adapted to the abutments. A 12-Hz cyclic loading was applied to the specimens in an electrodynamic testing system with the maximum number of cycles set to 10 6 . Specimens were inclined by 15 degrees from the vertical axis, and a 5-mm off-center vertical load was applied to generate a combination of bending and torquing moments on the tapered connections. Progressive loads (from 164.85 to 362.85 N) were applied when the previous sample survived 10 6 cycles. The paired t test compared the screw removal torque with the initial tightening torque for each group (α = .05). A finite element analysis (FEA) of the mechanical testing analyzed the regions of stress concentration. No specimens failed after 10 6 cyclic loadings. The mean screw removal torque for both groups was similar to the initial abutment torque value applied for each group (G1, 20.36 ± 8.73 Ncm; and G2, 35.61 ± 6.99 Ncm) (P > .05). FEA showed similar stress behavior for both groups in the study despite the different simulated screw preloads (G1: 200 N; G2: 320 N). The coronal region of the implant body presented the highest strain values in both groups. Tightening tapered one-piece prosthetic abutments at 20 and 32 Ncm maintains a stable connection after cyclic loading. The stresses generated by the different tightening forces during cyclic loading are highest at the coronal level of the connection.
Chen, Su-Huang; Lee, Yung-Hui; Lin, Chiuhsiang Joe
2015-01-01
Various parameters related to pushing/pulling tasks have been examined yet the effects of changing the load position in one-wheeled wheelbarrow task has not been examined. To explore the effects of load position and force direction on muscle activity during wheelbarrow tasks. Nine participants were recruited to take part in the experiment. Each participant performed 18 trials consisting of 2 force directions (push and pull) and 9 load positions. The dependent variables were EMG of erector spinae and gripping force. ANOVA was used to identify significant differences between force direction and load position in EMG and gripping force data. Results showed that peak EMG was lowest for the left and right erector spinae when the load was positioned farther from the participant. Peak EMG of the bilateral erector spinae increased when the weight was near the participant and on the ipsilateral hand. Based on the EMG results, we suggest that loads be arranged in the anterior part of the bin in order to reduce muscle activity on the spine during the wheelbarrow task. This finding also provides some directions in the improvement and ergonomic redesign of the one-wheeled wheelbarrow.
Single-Vector Calibration of Wind-Tunnel Force Balances
NASA Technical Reports Server (NTRS)
Parker, P. A.; DeLoach, R.
2003-01-01
An improved method of calibrating a wind-tunnel force balance involves the use of a unique load application system integrated with formal experimental design methodology. The Single-Vector Force Balance Calibration System (SVS) overcomes the productivity and accuracy limitations of prior calibration methods. A force balance is a complex structural spring element instrumented with strain gauges for measuring three orthogonal components of aerodynamic force (normal, axial, and side force) and three orthogonal components of aerodynamic torque (rolling, pitching, and yawing moments). Force balances remain as the state-of-the-art instrument that provide these measurements on a scale model of an aircraft during wind tunnel testing. Ideally, each electrical channel of the balance would respond only to its respective component of load, and it would have no response to other components of load. This is not entirely possible even though balance designs are optimized to minimize these undesirable interaction effects. Ultimately, a calibration experiment is performed to obtain the necessary data to generate a mathematical model and determine the force measurement accuracy. In order to set the independent variables of applied load for the calibration 24 NASA Tech Briefs, October 2003 experiment, a high-precision mechanical system is required. Manual deadweight systems have been in use at Langley Research Center (LaRC) since the 1940s. These simple methodologies produce high confidence results, but the process is mechanically complex and labor-intensive, requiring three to four weeks to complete. Over the past decade, automated balance calibration systems have been developed. In general, these systems were designed to automate the tedious manual calibration process resulting in an even more complex system which deteriorates load application quality. The current calibration approach relies on a one-factor-at-a-time (OFAT) methodology, where each independent variable is incremented individually throughout its full-scale range, while all other variables are held at a constant magnitude. This OFAT approach has been widely accepted because of its inherent simplicity and intuitive appeal to the balance engineer. LaRC has been conducting research in a "modern design of experiments" (MDOE) approach to force balance calibration. Formal experimental design techniques provide an integrated view to the entire calibration process covering all three major aspects of an experiment; the design of the experiment, the execution of the experiment, and the statistical analyses of the data. In order to overcome the weaknesses in the available mechanical systems and to apply formal experimental techniques, a new mechanical system was required. The SVS enables the complete calibration of a six-component force balance with a series of single force vectors.
Predicting the safe load on backpacker's arm using Lagrange multipliers method
NASA Astrophysics Data System (ADS)
Abdalla, Faisal Saleh; Rambely, Azmin Sham
2014-09-01
In this study, a technique has been suggested to reduce a backpack load by transmitting determined loads to the children arm. The purpose of this paper is to estimate school children arm muscles while load carriage as well as to determine the safe load can be carried at wrist while walking with backpack. A mathematical model, as three DOFs model, was investigated in the sagittal plane and Lagrange multipliers method (LMM) was utilized to minimize a quadratic objective function of muscle forces. The muscle forces were minimized with three different load conditions which are termed as 0-L=0 N, 1-L=21.95 N, and 2-L=43.9 N. The investigated muscles were estimated and compared to their maximum forces throughout the load conditions. Flexor and extensor muscles were estimated and the results showed that flexor muscles were active while extensor muscles showed inactivity. The estimated muscle forces were didn't exceed their maximum forces with 0-L and 1-L conditions whereas biceps and FCR muscles exceeded their maximum forces with 2-L condition. Consequently, 1-L condition is quiet safe to be carried by hand whereas 2-L condition is not. Thus to reduce the load in the backpack the transmitted load shouldn't exceed 1-L condition.
Finite Element Model Optimization of the FalconSAT-5 Structural Engineering Model
2009-03-01
for coupled loads analyses. To develop the FE tuning process, this research focuses on the United States Air Force Academy (USAFA) FalconSAT-5 SEM II...Kirtland Air Force Base (KAFB) were sufficient for design engineers to ensure compliance with launch loads. However, for the coupled loads analysis...OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION
NASA Technical Reports Server (NTRS)
Miller, R. D.; Anderson, L. R.
1979-01-01
The LOADS program L218, a digital computer program that calculates dynamic load coefficient matrices utilizing the force summation method, is described. The load equations are derived for a flight vehicle in straight and level flight and excited by gusts and/or control motions. In addition, sensor equations are calculated for use with an active control system. The load coefficient matrices are calculated for the following types of loads: translational and rotational accelerations, velocities, and displacements; panel aerodynamic forces; net panel forces; shears and moments. Program usage and a brief description of the analysis used are presented. A description of the design and structure of the program to aid those who will maintain and/or modify the program in the future is included.
Fabrication of wrist-like SMA-based actuator by double smart soft composite casting
NASA Astrophysics Data System (ADS)
Rodrigue, Hugo; Wei, Wang; Bhandari, Binayak; Ahn, Sung-Hoon
2015-12-01
A new manufacturing method for smart soft composite (SSC) actuators that consists of double casting a SSC actuator to produce an actuator with non-linear shape memory alloy (SMA) wire positioning is proposed. This method is used to manufacture a tube-shaped SSC actuator in which the SMA wires follow the curvature of the tube and is capable of pure-twisting deformations while sustaining a cantilever load. The concept is tested by measuring the maximum twisting angle and a simple control method is proposed to control the twisting angle of the actuator. Then, a soft robotic wrist with a length of 18 cm is built, its load-carrying capability is tested by measuring the cantilever force required for deforming the actuator, and its load-carrying capability during actuation is tested by loading one end with different objects and actuating the actuator. This wrist actuator shows good repeatability, is capable of twisting deformations up to 25° while holding objects weighing 100 g, and can sustain loads above 2 N without undergoing buckling.
Back muscle strength, lifting, and stooped working postures.
Poulsen, E; Jørgensen, K
1971-09-01
When lifting loads and working in a forward stooped position, the muscles of the back rather than the ligaments and bony structures of the spine should overcome the gravitational forces. Formulae, based on measurements of back muscle strength, for prediction of maximal loads to be lifted, and for the ability to sustain work in a stooped position, have been worked out and tested in practical situations. From tests with 50 male and female subjects the simplest prediction formulae for maximum loads were: max. load = 1.10 x isometric back muscle strength for men; and max. load = 0.95 x isometric back muscle strength - 8 kg for women. Some standard values for maximum lifts and permissible single and repeated lifts have been calculated for men and women separately and are given in Table 1. From tests with 65 rehabilitees it was found that the maximum isometric strength of the back muscles measured at shoulder height should exceed 2/3 of the body weight, if fatigue and/or pain in the back muscles is to be avoided during work in a standing stooped position.
Modeling of the UAE Wind Turbine for Refinement of FAST{_}AD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonkman, J. M.
The Unsteady Aerodynamics Experiment (UAE) research wind turbine was modeled both aerodynamically and structurally in the FAST{_}AD wind turbine design code, and its response to wind inflows was simulated for a sample of test cases. A study was conducted to determine why wind turbine load magnitude discrepancies-inconsistencies in aerodynamic force coefficients, rotor shaft torque, and out-of-plane bending moments at the blade root across a range of operating conditions-exist between load predictions made by FAST{_}AD and other modeling tools and measured loads taken from the actual UAE wind turbine during the NASA-Ames wind tunnel tests. The acquired experimental test data representmore » the finest, most accurate set of wind turbine aerodynamic and induced flow field data available today. A sample of the FAST{_}AD model input parameters most critical to the aerodynamics computations was also systematically perturbed to determine their effect on load and performance predictions. Attention was focused on the simpler upwind rotor configuration, zero yaw error test cases. Inconsistencies in input file parameters, such as aerodynamic performance characteristics, explain a noteworthy fraction of the load prediction discrepancies of the various modeling tools.« less
Spinal loads as influenced by external loads: a combined in vivo and in silico investigation.
Zander, Thomas; Dreischarf, Marcel; Schmidt, Hendrik; Bergmann, Georg; Rohlmann, Antonius
2015-02-26
Knowledge of in vivo spinal loads and muscle forces remains limited but is necessary for spinal biomechanical research. To assess the in vivo spinal loads, measurements with telemeterised vertebral body replacements were performed in four patients. The following postures were investigated: (a) standing with arms hanging down on sides, (b) holding dumbbells to subject the patient to a vertical load, and (c) the forward elevation of arms for creating an additional flexion moment. The same postures were simulated by an inverse static model for validation purposes, to predict muscle forces, and to assess the spinal loads in subjects without implants. Holding dumbbells on sides increased implant forces by the magnitude of the weight of the dumbbells. In contrast, elevating the arms yielded considerable implant forces with a high correlation between the external flexion moment and the implant force. Predictions agreed well with experimental findings, especially for forward elevation of arms. Flexion moments were mainly compensated by erector spinae muscles. The implant altered the kinematics and, thus, the spinal loads. Elevation of both arms in vivo increased spinal axial forces by approximately 100N; each additional kg of dumbbell weight held in the hands increased the spinal axial forces by 60N. Model predictions suggest that in the intact situation, the force increase is one-third greater for these loads. In vivo measurements are essential for the validation of analytical models, and the combination of both methods can reveal unquantifiable data such as the spinal loads in the intact non-instrumented situation. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Abdrashitov, G.
1943-01-01
An approximate theory of buffeting is here presented, based on the assumption of harmonic disturbing forces. Two cases of buffeting are considered: namely, for a tail angle of attack greater and less than the stalling angle, respectively. On the basis of the tests conducted and the results of foreign investigators, a general analysis is given of the nature of the forced vibrations the possible load limits on the tail, and the methods of elimination of buffeting.
Flexural Behavior of GFRP Tubes Filled with Magnetically Driven Concrete
Xie, Fang; Chen, Ju; Dong, Xinlong; Feng, Bing
2018-01-01
Experimental investigation of GFRP (glass fiber reinforced polymer) tubes that were filled with magnetically driven concrete was carried out to study the flexural behavior of specimens under bending. Specimens having different cross section and lengths were tested. The test specimens were fabricated by filling magnetically driven concrete into the GFRP tubes and the concrete was vibrated using magnetic force. Specimens vibrated using vibrating tube were also tested for comparison. In addition, specimens having steel reinforcing bars and GFRP bars were both tested to study the effect of reinforcing bars on the magnetically driven concrete. The load-displacement curves, load-strain curves, failure mode, and ultimate strengths of test specimens were obtained. Design methods for the flexural stiffness of test specimens were also discussed in this study. PMID:29316732
Flexural Behavior of GFRP Tubes Filled with Magnetically Driven Concrete.
Xie, Fang; Chen, Ju; Dong, Xinlong; Feng, Bing
2018-01-08
Experimental investigation of GFRP (glass fiber reinforced polymer) tubes that were filled with magnetically driven concrete was carried out to study the flexural behavior of specimens under bending. Specimens having different cross section and lengths were tested. The test specimens were fabricated by filling magnetically driven concrete into the GFRP tubes and the concrete was vibrated using magnetic force. Specimens vibrated using vibrating tube were also tested for comparison. In addition, specimens having steel reinforcing bars and GFRP bars were both tested to study the effect of reinforcing bars on the magnetically driven concrete. The load-displacement curves, load-strain curves, failure mode, and ultimate strengths of test specimens were obtained. Design methods for the flexural stiffness of test specimens were also discussed in this study.
van der Zijden, A M; Groen, B E; Tanck, E; Nienhuis, B; Verdonschot, N; Weerdesteyn, V
2012-06-01
Sideways falls onto the hip are a major cause of femoral fractures in the elderly. Martial arts (MA) fall techniques decrease hip impact forces in sideways falls. The femoral fracture risk, however, also depends on the femoral loading configuration (direction and point of application of the force). The purpose of this study was to determine the effect of fall techniques, landing surface and fall height on the impact force and the loading configuration in sideways falls. Twelve experienced judokas performed sideways MA and Block ('natural') falls on a force plate, both with and without a judo mat on top. Kinematic and force data were analysed to determine the hip impact force and the loading configuration. In falls from a kneeling position, the MA technique reduced the impact force by 27%, but did not change the loading configuration. The use of the mat did not change the loading configuration. Falling from a standing changed the force direction. In all conditions, the point of application was distal and posterior to the greater trochanter, but it was less distal and more posterior in falls from standing than from kneeling position. The present decrease in hip impact force with an unchanged loading configuration indicates the potential protective effect of the MA technique on the femoral fracture risk. The change in loading configuration with an increased fall height warrant further studies to examine the effect of MA techniques on fall severity under more natural fall circumstances. Copyright © 2012 Elsevier Ltd. All rights reserved.
Novel Materials for Prosthetic Liners
NASA Technical Reports Server (NTRS)
Ragolta, Carolina I.; Morford, Megan
2011-01-01
Existing materials for prosthetic liners tend to be thick and airtight, causing perspiration to accumulate inside the liner and potentially causing infection and injury that reduce quality of life. The purpose of this project was to examine the suitability of aerogel for prosthetic liner applications. Three tests were performed on several types of aerogel to assess the properties of each material. Moisture vapor permeability was tested by incubating four aerogel varieties with an artificial sweat solution at 37.0 C and less than 20% relative humidity for 24 hours. Two aerogel varieties were eliminated from the study due to difficulties in handling the material, and further testing proceeded with Pyrogel in 2.0 and 6.0 mm thicknesses. Force distribution was tested by compressing samples under a load of 4448 N at a rate of 2.5 mm/min. Biofilm formation was tested in a high-shear CDC Biofilm Reactor. Results showed that 2.0 mm Pyrogel blanket allowed 55.7 plus or minus 28.7% of an artificial sweat solution to transpire, and 35.5 plus or minus 27.8% transpired through 6.0 mm Pyrogel blanket. Samples also outperformed the load-bearing capabilities of existing liner materials. No statistically significant difference was found between the two Pyrogel thicknesses for either moisture vapor permeability or force distribution. In addition, biofilm formation results showed no change between the two Pyrogel thicknesses. The breathability and load bearing properties of aerogel make it a suitable material for application to prosthetic liners.
Mechanisms and factors involved in hip injuries during frontal crashes.
Yoganandan, N; Pintar, F A; Gennarelli, T A; Maltese, M R; Eppinger, R H
2001-11-01
This study was conducted to collect data and gain insights relative to the mechanisms and factors involved in hip injuries during frontal crashes and to study the tolerance of hip injuries from this type of loading. Unembalmed human cadavers were seated on a standard automotive seat (reinforced) and subjected to knee impact test to each lower extremity. Varying combinations of flexion and adduction/abduction were used for initial alignment conditions and pre-positioning. Accelerometers were fixed to the iliac wings and twelfth thoracic vertebral spinous process. A 23.4-kg padded pendulum impacted the knee at velocities ranging from 4.3 to 7.6 m/s. The impacting direction was along the anteroposterior axis, i.e., the global X-axis, in the body-fixed coordinate system. A load cell on the front of the pendulum recorded the impact force. Peak impact forces ranged from 2,450 to 10,950 N. The rate of loading ranged from 123 to 7,664 N/msec. The impulse values ranged from 12.4 to 31.9 Nsec. Injuries were not apparent in three tests. Eight tests resulted in trauma. Fractures involving the pelvis including the acetabulum and proximal femur occurred in five out of the eight tests, and distal femoral bone fracture occurred in one test. These results underscore the importance of leg pre-positioning and the orientation of the impacting axis to produce specific types of trauma to the pelvic region of the lower extremity.
A Baseline Load Schedule for the Manual Calibration of a Force Balance
NASA Technical Reports Server (NTRS)
Ulbrich, N.; Gisler, R.
2013-01-01
A baseline load schedule for the manual calibration of a force balance was developed that takes current capabilities at the NASA Ames Balance Calibration Laboratory into account. The load schedule consists of 18 load series with a total of 194 data points. It was designed to satisfy six requirements: (i) positive and negative loadings should be applied for each load component; (ii) at least three loadings should be applied between 0 % and 100 % load capacity; (iii) normal and side force loadings should be applied at the forward gage location, the aft gage location, and the balance moment center; (iv) the balance should be used in UP and DOWN orientation to get axial force loadings; (v) the constant normal and side force approaches should be used to get the rolling moment loadings; (vi) rolling moment loadings should be obtained for 0, 90, 180, and 270 degrees balance orientation. Three different approaches are also reviewed that may be used to independently estimate the natural zeros of the balance. These three approaches provide gage output differences that may be used to estimate the weight of both the metric and non-metric part of the balance. Manual calibration data of NASA s MK29A balance and machine calibration data of NASA s MC60D balance are used to illustrate and evaluate different aspects of the proposed baseline load schedule design.
Torcato, Leonardo Bueno; Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; Falcón-Antenucci, Rosse Mary; Santiago Júnior, Joel Ferreira; de Faria Almeida, Daniel Augusto
2015-11-01
Clinicians should consider parafunctional occlusal load when planning treatment. Prosthetic connections can reduce the stress distribution on an implant-supported prosthesis. The purpose of this 3-dimensional finite element study was to assess the influence of parafunctional loading and prosthetic connections on stress distribution. Computer-aided design software was used to construct 3 models. Each model was composed of a bone and an implant (external hexagon, internal hexagon, or Morse taper) with a crown. Finite element analysis software was used to generate the finite element mesh and establish the loading and boundary conditions. A normal force (200-N axial load and 100-N oblique load) and parafunctional force (1000-N axial and 500-N oblique load) were applied. Results were visualized as the maximum principal stress. Three-way analysis of variance and Tukey test were performed, and the percentage of contribution of each variable to the stress concentration was calculated from sum-of squares-analysis. Stress was concentrated around the implant at the cortical bone, and models with the external hexagonal implant showed the highest stresses (P<.001). Oblique loads produced high tensile stress concentrations on the site opposite the load direction. Internal connection implants presented the most favorable biomechanical situation, whereas the least favorable situation was the biomechanical behavior of external connection implants. Parafunctional loading increased the magnitude of stress by 3 to 4 times. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
2015-01-01
PURPOSE In this study, a temporal abutment fixation screw, designed to fracture in a controlled way upon application of an occlusal force sufficient to produce critical micromotion was developed. The purpose of the screw was to protect the osseointegration of immediate loaded single implants. MATERIALS AND METHODS Seven different screw prototypes were examined by fixing titanium abutments to 112 Mozo-Grau external hexagon implants (MG Osseous®; Mozo-Grau, S.A., Valladolid, Spain). Fracture strength was tested at 30° in two subgroups per screw: one under dynamic loading and the other without prior dynamic loading. Dynamic loading was performed in a single-axis chewing simulator using 150,000 load cycles at 50 N. After normal distribution of obtained data was verified by Kolmogorov-Smirnov test, fracture resistance between samples submitted and not submitted to dynamic loading was compared by the use of Student's t-test. Comparison of fracture resistance among different screw designs was performed by the use of one-way analysis of variance. Confidence interval was set at 95%. RESULTS Fractures occurred in all screws, allowing easy retrieval. Screw Prototypes 2, 5 and 6 failed during dynamic loading and exhibited statistically significant differences from the other prototypes. CONCLUSION Prototypes 2, 5 and 6 may offer a useful protective mechanism during occlusal overload in immediate loaded implants. PMID:25932315
Muscle force depends on the amount of transversal muscle loading.
Siebert, Tobias; Till, Olaf; Stutzig, Norman; Günther, Michael; Blickhan, Reinhard
2014-06-03
Skeletal muscles are embedded in an environment of other muscles, connective tissue, and bones, which may transfer transversal forces to the muscle tissue, thereby compressing it. In a recent study we demonstrated that transversal loading of a muscle with 1.3Ncm(-2) reduces maximum isometric force (Fim) and rate of force development by approximately 5% and 25%, respectively. The aim of the present study was to examine the influence of increasing transversal muscle loading on contraction dynamics. Therefore, we performed isometric experiments on rat M. gastrocnemius medialis (n=9) without and with five different transversal loads corresponding to increasing pressures of 1.3Ncm(-2) to 5.3Ncm(-2) at the contact area between muscle and load. Muscle loading was induced by a custom-made plunger which was able to move in transversal direction. Increasing transversal muscle loading resulted in an almost linear decrease in muscle force from 4.8±1.8% to 12.8±2% Fim. Compared to an unloaded isometric contraction, rate of force development decreased from 20.2±4.0% at 1.3Ncm(-2) muscle loading to 34.6±5.7% at 5.3Ncm(-2). Experimental observation of the impact of transversal muscle loading on contraction dynamics may help to better understand muscle tissue properties. Moreover, applying transversal loads to muscles opens a window to analyze three-dimensional muscle force generation. Data presented in this study may be important to develop and validate muscle models which enable simulation of muscle contractions under compression and enlighten the mechanisms behind. Copyright © 2014 Elsevier Ltd. All rights reserved.
Health Monitoring for Condition-Based Maintenance of a HMMWV using an Instrumented Diagnostic Cleat
2008-10-15
identify faults in the bearings, shaft , etc. In wheeled ground vehicles, loading varies significantly as mentioned above. If loads acting on the...vehicle could be fully measured or controlled in terms of the terrain input motions and/or spindle forces/moments, fault identification in wheeled...diagnostic results. - Vehicle speed traversing the cleat can be controlled. - Configuration of cleats can be designed to develop specific tests for
Meyer, Andrew J; D'Lima, Darryl D; Besier, Thor F; Lloyd, David G; Colwell, Clifford W; Fregly, Benjamin J
2013-06-01
Mechanical loading is believed to be a critical factor in the development and treatment of knee osteoarthritis. However, the contact forces to which the knee articular surfaces are subjected during daily activities cannot be measured clinically. Thus, the ability to predict internal knee contact forces accurately using external measures (i.e., external knee loads and muscle electromyographic [EMG] signals) would be clinically valuable. We quantified how well external knee load and EMG measures predict internal knee contact forces during gait. A single subject with a force-measuring tibial prosthesis and post-operative valgus alignment performed four gait patterns (normal, medial thrust, walking pole, and trunk sway) to induce a wide range of external and internal knee joint loads. Linear regression analyses were performed to assess how much of the variability in internal contact forces was accounted for by variability in the external measures. Though the different gait patterns successfully induced significant changes in the external and internal quantities, changes in external measures were generally weak indicators of changes in total, medial, and lateral contact force. Our results suggest that when total contact force may be changing, caution should be exercised when inferring changes in knee contact forces based on observed changes in external knee load and EMG measures. Advances in musculoskeletal modeling methods may be needed for accurate estimation of in vivo knee contact forces. Copyright © 2012 Orthopaedic Research Society.
Goldberg, Jack; Güth, Jan-Frederik; Magne, Pascal
To evaluate the accelerated fatigue resistance of thick CAD/CAM composite resin overlays luted with three different bonding methods. Forty-five sound human second mandibular molars were organized and distributed into three experimental groups. All teeth were restored with a 5-mm-thick CAD/CAM composite resin overlay. Group A: immediate dentin sealing (IDS) with Optibond FL and luted with light-polymerizing composite (Herculite XRV). Group B: IDS with Optibond FL and luted with dual-polymerizing composite (Nexus 3). Group C: direct luting with Optibond FL and dual-polymerizing composite (Nexus 3). Masticatory forces at a frequency of 5 Hz were simulated using closed-loop servo-hydraulics and forces starting with a load of 200 N for 5000 cycles, followed by steps of 400, 600, 800, 1000, 1200 and 1400 N for a maximum of 30,000 cycles. Each step was applied through a flat steel cylinder at a 45-degree angle under submerged conditions. The fatigue test generated one failure in group A, three failures in group B, and no failures in group C. The survival table analysis for the fatigue test did not demonstrate any significant difference between the groups (p = 0.154). The specimens that survived the fatigue test were set up for the load-to-failure test with a limit of 4600 N. The survival table analysis for the load-to-failure test demonstrates an average failure load of 3495.20 N with survival of four specimens in group A, an average failure load of 4103.60 N with survival of six specimens in group B, and an average failure load of 4075.33 N with survival of nine specimens in group C. Pairwise comparisons revealed no significant differences (p < 0.016 after Bonferroni correction). Within the limitations of this in vitro study, it can be concluded that although the dual-polymerizing luting material seems to provide better results under extreme conditions, light-polymerizing luting composites in combination with IDS are not contraindicated with thick restorations.
Ground/Flight Correlation of Aerodynamic Loads with Structural Response
NASA Technical Reports Server (NTRS)
Mangalam, Arun S.; Davis, Mark C.
2009-01-01
Ground and flight tests provide a basis and methodology for in-flight characterization of the aerodynamic and structural performance through the monitoring of the fluid-structure interaction. The NF-15B flight tests of the Intelligent Flight Control System program provided a unique opportunity to test the correlation of aerodynamic loads with points of flow attaching and detaching from the surface, which are also known as flow bifurcation points, as observed in a previous wind tunnel test performed at the U.S. Air Force Academy (Colorado Springs, Colorado). Moreover, flight tests, along with the subsequent unsteady aerodynamic tests in the NASA Transonic Dynamics Tunnel (TDT), provide a basis using surface flow sensors as means of assessing the aeroelastic performance of flight vehicles. For the flight tests, the NF-15B tail was instrumented with hot-film sensors and strain gages for measuring root-bending strains. This data were gathered via selected sideslip maneuvers performed at level flight and subsonic speeds. The aerodynamic loads generated by the sideslip maneuver resulted in a structural response, which were then compared with the hot-film sensor signals. The hot-film sensor signals near the stagnation region were found to be highly correlated with the root-bending strains. For the TDT tests, a flexible wing section developed under the U.S. Air Force Research Lab SensorCraft program was instrumented with strain gages, accelerometers, and hot-film sensors at two span stations. The TDT tests confirmed the correlation between flow bifurcation points and the wing structural response to tunnel-generated gusts. Furthermore, as the wings structural modes were excited by the gusts, a gradual phase change between the flow bifurcation point and the structural mode occurred during a resonant condition.
Pneumatic load compensating or controlling system
NASA Technical Reports Server (NTRS)
Rogers, J. R. (Inventor)
1975-01-01
A pneumatic load compensating or controlling system for restraining a load with a predetermined force or applying a predetermined force to the load is described; it includes a source of pressurized air, a one-way pneumatic actuator operatively connected to a load, and a fluid conduit fluidically connecting the actuator with the source of pressurized air. The actuator is of the piston and cylinder type, and the end of the fluid conduit is connected to the upper or lower portion of the cylinder whereby the actuator alternatively and selectively restrains the load with a predetermined force or apply a predetermined force to the load. Pressure regulators are included within the system for variably selectively adjusting the pressurized fluid to predetermined values as desired or required; a pressure amplifier is included within the system for multiplying the pressurized values so as to achieve greater load forces. An accumulator is incorporated within the system as a failsafe operating mechanism, and visual and aural alarm devices, operatively associated with pressure detecting apparatus, readily indicate the proper or improper functioning of the system.
Frost, David M; Bronson, Stefanie; Cronin, John B; Newton, Robert U
2016-04-01
Because free weight (FW) and pneumatic (PN) resistance are characterized by different inertial properties, training with either resistance could afford unique strength, velocity, and power adaptations. Eighteen resistance-trained men completed baseline tests to determine their FW and PN bench press 1 repetition maximum (1RM). During the FW session, 4 explosive repetitions were performed at loads of 15, 30, 45, 60, 75, and 90% 1RM to assess force, velocity, and power. Participants were then assigned to a FW or PN training group, which involved three 90-minute sessions per week for 8 weeks. Both intervention groups completed identical periodized programs with the exception of the resistance used to perform all bench press movements. Free weight participants significantly increased their FW and PN 1RM (10.4 and 9.4%), and maximum (any load) force (9.8%), velocity (11.6%), and power (22.5%). Pneumatic-trained participants also exhibited increases in FW and PN 1RM (11.6 and 17.5%), and maximum force (8.4%), velocity (13.6%), and power (33.4%). Both interventions improved peak barbell velocity at loads of 15 and 30% 1RM; however, only the PN-trained individuals displayed improvements in peak force and power at these same loads. Training with PN resistance may offer advantages if attempting to improve power at lighter relative loads by affording an opportunity to consistently achieve higher accelerations and velocities (F = ma), in comparison with FW. Exploiting the inertial properties of the resistance, whether mass, elastic or PN, could afford an opportunity to develop mixed-method training strategies and/or elicit unique neuromuscular adaptations to suit the specific needs of athletes from sports characterized by varying demands.
Flight Test of the F/A-18 Active Aeroelastic Wing Airplane
NASA Technical Reports Server (NTRS)
Clarke, Robert; Allen, Michael J.; Dibley, Ryan P.; Gera, Joseph; Hodgkinson, John
2005-01-01
Successful flight-testing of the Active Aeroelastic Wing airplane was completed in March 2005. This program, which started in 1996, was a joint activity sponsored by NASA, Air Force Research Laboratory, and industry contractors. The test program contained two flight test phases conducted in early 2003 and early 2005. During the first phase of flight test, aerodynamic models and load models of the wing control surfaces and wing structure were developed. Design teams built new research control laws for the Active Aeroelastic Wing airplane using these flight-validated models; and throughout the final phase of flight test, these new control laws were demonstrated. The control laws were designed to optimize strategies for moving the wing control surfaces to maximize roll rates in the transonic and supersonic flight regimes. Control surface hinge moments and wing loads were constrained to remain within hydraulic and load limits. This paper describes briefly the flight control system architecture as well as the design approach used by Active Aeroelastic Wing project engineers to develop flight control system gains. Additionally, this paper presents flight test techniques and comparison between flight test results and predictions.
Eguizabal, Johnny; Tufaga, Michael; Scheer, Justin K; Ames, Christopher; Lotz, Jeffrey C; Buckley, Jenni M
2010-05-07
In vitro multi-axial bending testing using pure moment loading conditions has become the standard in evaluating the effects of different types of surgical intervention on spinal kinematics. Simple, cable-driven experimental set-ups have been widely adopted because they require little infrastructure. Traditionally, "fixed ring" cable-driven experimental designs have been used; however, there have been concerns with the validity of this set-up in applying pure moment loading. This study involved directly comparing the loading state induced by a traditional "fixed ring" apparatus versus a novel "sliding ring" approach. Flexion-extension bending was performed on an artificial spine model and a single cadaveric test specimen, and the applied loading conditions to the specimen were measured with an in-line multiaxial load cell. The results showed that the fixed ring system applies flexion-extension moments that are 50-60% less than the intended values. This design also imposes non-trivial anterior-posterior shear forces, and non-uniform loading conditions were induced along the length of the specimen. The results of this study indicate that fixed ring systems have the potential to deviate from a pure moment loading state and that our novel sliding ring modification corrects this error in the original test design. This suggests that the proposed sliding ring design should be used for future in vitro spine biomechanics studies involving a cable-driven pure moment apparatus. Copyright 2010 Elsevier Ltd. All rights reserved.
Coupled loads analysis for Space Shuttle payloads
NASA Technical Reports Server (NTRS)
Eldridge, J.
1992-01-01
Described here is a method for determining the transient response of, and the resultant loads in, a system exposed to predicted external forces. In this case, the system consists of four racks mounted on the inside of a space station resource node module (SSRNMO) which is mounted in the payload bay of the space shuttle. The predicted external forces are forcing functions which envelope worst case forces applied to the shuttle during liftoff and landing. This analysis, called a coupled loads analysis, is used to couple the payload and shuttle models together, determine the transient response of the system, and then recover payload loads, payload accelerations, and payload to shuttle interface forces.
Customer loads of two-wheeled vehicles
NASA Astrophysics Data System (ADS)
Gorges, C.; Öztürk, K.; Liebich, R.
2017-12-01
Customer usage profiles are the most unknown influences in vehicle design targets and they play an important role in durability analysis. This publication presents a customer load acquisition system for two-wheeled vehicles that utilises the vehicle's onboard signals. A road slope estimator was developed to reveal the unknown slope resistance force with the help of a linear Kalman filter. Furthermore, an automated mass estimator was developed to consider the correct vehicle loading. The mass estimation is performed by an extended Kalman filter. Finally, a model-based wheel force calculation was derived, which is based on the superposition of forces calculated from measured onboard signals. The calculated wheel forces were validated by measurements with wheel-load transducers through the comparison of rainflow matrices. The calculated wheel forces correspond with the measured wheel forces in terms of both quality and quantity. The proposed methods can be used to gather field data for improved vehicle design loads.
Kutzner, Ines; Dymke, Jörn; Damm, Philipp; Duda, Georg N.; Günzl, Reiner; Bergmann, Georg
2017-01-01
Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36–55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in the course of rehabilitation or preventive therapies. PMID:28319145
Kutzner, Ines; Richter, Anja; Gordt, Katharina; Dymke, Jörn; Damm, Philipp; Duda, Georg N; Günzl, Reiner; Bergmann, Georg
2017-01-01
Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36-55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in the course of rehabilitation or preventive therapies.
Investigation of fretting behaviour in pressure armour layers of flexible pipes
NASA Astrophysics Data System (ADS)
Don Rasika Perera, Solangarachchige
The incidence of fretting damage in the pressure armour wires of flexible pipes used in offshore oil explorations has been investigated. A novel experimental facility which is capable of simulating nub and valley contact conditions of interlocking wire winding with dynamic slip, representative of actual pipe loading, has been developed. The test set-up is equipped with a state of the art data acquisition system and a controller with transducers to measure and control the normal load, slip amplitude and friction force at the contact, in addition to the hoop stress in the wire. Tests were performed with selected loading and the fretted regions were examined using optical microscopy techniques. Results show that the magnitude of contact loading and the slip amplitude have a distinct influence on surface damage. Surface cracks originated from a fretting scar were observed at high contact loads in mixed slip sliding while surface damage predominantly due to wear was observed under gross slip. The position of surface cracks and the wear profile have been related to the contact pressure distribution. The evolution of friction force and surface damage under different slip and normal pressure conditions has been analysed. A fracture mechanics based numerical procedure has been developed to analyse the fretting damage behaviour. A severity parameter is proposed in order to ascertain whether the crack growth is in mode I or mode II cracking. The analysis show the influence of mode II cracking in the early stages of crack growth following which the crack deviates in the mode I direction making mode I the dominant crack propagation mechanism. The crack path determined by the numerical procedure correlates well with the experimental results. A numerical analysis was carried out for the fretting fatigue condition where a cyclic bulk stress superimposes with the friction force. The analysis correlates well with short crack growth behaviour. The analysis confirms that fretting is a significant factor that should be taken into account in design and operation of the pressure armour wires of flexible pipes at high contact pressure if the bulk cyclic load superimposes with the friction force. As predicted by the numerical procedure and further by experimental investigations, the surface cracks initiating on the wire in this condition are self arresting after propagating into a certain depth.
Van Toen, C; Melnyk, A D; Street, J; Oxland, T R; Cripton, P A
2014-03-21
Current neck injury criteria do not include limits for lateral bending combined with axial compression and this has been observed as a clinically relevant mechanism, particularly for rollover motor vehicle crashes. The primary objectives of this study were to evaluate the effects of lateral eccentricity (the perpendicular distance from the axial force to the centre of the spine) on peak loads, kinematics, and spinal canal occlusions of subaxial cervical spine specimens tested in dynamic axial compression (0.5 m/s). Twelve 3-vertebra human cadaver cervical spine specimens were tested in two groups: low and high eccentricity with initial eccentricities of 1 and 150% of the lateral diameter of the vertebral body. Six-axis loads inferior to the specimen, kinematics of the superior-most vertebra, and spinal canal occlusions were measured. High speed video was collected and acoustic emission (AE) sensors were used to define the time of injury. The effects of eccentricity on peak loads, kinematics, and canal occlusions were evaluated using unpaired Student t-tests. The high eccentricity group had lower peak axial forces (1544 ± 629 vs. 4296 ± 1693 N), inferior displacements (0.2 ± 1.0 vs. 6.6 ± 2.0 mm), and canal occlusions (27 ± 5 vs. 53 ± 15%) and higher peak ipsilateral bending moments (53 ± 17 vs. 3 ± 18 Nm), ipsilateral bending rotations (22 ± 3 vs. 1 ± 2°), and ipsilateral displacements (4.5 ± 1.4 vs. -1.0 ± 1.3 mm, p<0.05 for all comparisons). These results provide new insights to develop prevention, recognition, and treatment strategies for compressive cervical spine injuries with lateral eccentricities. © 2013 Published by Elsevier Ltd.
Wieding, Jan; Souffrant, Robert; Mittelmeier, Wolfram; Bader, Rainer
2013-04-01
Repairing large segmental defects in long bones caused by fracture, tumour or infection is still a challenging problem in orthopaedic surgery. Artificial materials, i.e. titanium and its alloys performed well in clinical applications, are plenary available, and can be manufactured in a wide range of scaffold designs. Although the mechanical properties are determined, studies about the biomechanical behaviour under physiological loading conditions are rare. The goal of our numerical study was to determine the suitability of open-porous titanium scaffolds to act as bone scaffolds. Hence, the mechanical stability of fourteen different scaffold designs was characterized under both axial compression and biomechanical loading within a large segmental distal femoral defect of 30mm. This defect was stabilized with an osteosynthesis plate and physiological hip reaction forces as well as additional muscle forces were implemented to the femoral bone. Material properties of titanium scaffolds were evaluated from experimental testing. Scaffold porosity was varied between 64 and 80%. Furthermore, the amount of material was reduced up to 50%. Uniaxial compression testing revealed a structural modulus for the scaffolds between 3.5GPa and 19.1GPa depending on porosity and material consumption. The biomechanical testing showed defect gap alterations between 0.03mm and 0.22mm for the applied scaffolds and 0.09mm for the intact bone. Our results revealed that minimizing the amount of material of the inner core has a smaller influence than increasing the porosity when the scaffolds are loaded under biomechanical loading. Furthermore, an advanced scaffold design was found acting similar as the intact bone. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Dynamic load synthesis for shock numerical simulation in space structure design
NASA Astrophysics Data System (ADS)
Monti, Riccardo; Gasbarri, Paolo
2017-08-01
Pyroshock loads are the most stressing environments that a space equipment experiences during its operating life from a mechanical point of view. In general, the mechanical designer considers the pyroshock analysis as a very demanding constraint. Unfortunately, due to the non-linear behaviour of the structure under such loads, only the experimental tests can demonstrate if it is able to withstand these dynamic loads. By taking all the previous considerations into account, some preliminary information about the design correctness could be done by performing ;ad-hoc; numerical simulations, for example via commercial finite element software (i.e. MSC Nastran). Usually these numerical tools face the shock solution in two ways: 1) a direct mode, by using a time dependent enforcement and by evaluating the time-response and space-response as well as the internal forces; 2) a modal basis approach, by considering a frequency dependent load and of course by evaluating internal forces in the frequency domain. This paper has the main aim to develop a numerical tool to synthetize the time dependent enforcement based on deterministic and/or genetic algorithm optimisers. In particular starting from a specified spectrum in terms of SRS (Shock Response Spectrum) a time dependent discrete function, typically an acceleration profile, will be obtained to force the equipment by simulating the shock event. The synthetizing time and the interface with standards numerical codes will be two of the main topics dealt with in the paper. In addition a congruity and consistency methodology will be presented to ensure that the identified time dependent loads fully match the specified spectrum.
Measuring spatial variability in soil characteristics
Hoskinson, Reed L.; Svoboda, John M.; Sawyer, J. Wayne; Hess, John R.; Hess, J. Richard
2002-01-01
The present invention provides systems and methods for measuring a load force associated with pulling a farm implement through soil that is used to generate a spatially variable map that represents the spatial variability of the physical characteristics of the soil. An instrumented hitch pin configured to measure a load force is provided that measures the load force generated by a farm implement when the farm implement is connected with a tractor and pulled through or across soil. Each time a load force is measured, a global positioning system identifies the location of the measurement. This data is stored and analyzed to generate a spatially variable map of the soil. This map is representative of the physical characteristics of the soil, which are inferred from the magnitude of the load force.
Accuracy of AHOF400 with a moment-measuring load cell barrier.
DOT National Transportation Integrated Search
2011-06-13
Several performance measures derived from rigid : barrier crash testing have been proposed to assess : vehicle-to-vehicle crash compatibility. One such : measure, the Average Height of Force 400 (AHOF400) : [1], has been proposed to estimate the heig...
Mechanical abuse simulation and thermal runaway risks of large-format Li-ion batteries
NASA Astrophysics Data System (ADS)
Wang, Hsin; Lara-Curzio, Edgar; Rule, Evan T.; Winchester, Clinton S.
2017-02-01
Internal short circuit of large-format Li-ion pouch cells induced by mechanical abuse was simulated using a modified mechanical pinch test. A torsion force was added manually at ∼40% maximum compressive loading force during the pinch test. The cell was twisted about 5° to the side by horizontally pulling a wire attached to the anode tab. The combined torsion-compression force created small failure at the separator yet allowed testing of fully charged large format Li-ion cells without triggering thermal runaway. Two types of commercial cells were tested using 4-6 cells at each state-of-charge (SOC). Commercially available 18 Ahr LiFePO4 (LFP) and 25 Ahr Li(NiMnCo)1/3O2 (NMC) cells were tested, and a thermal runaway risk (TRR) score system was used to evaluate the safety of the cells under the same testing conditions. The aim was to provide the cell manufacturers and end users with a tool to compare different designs and safety features.
Testing of a Loop Heat Pipe Subjective to Variable Accelerations. Part 1; Start-up
NASA Technical Reports Server (NTRS)
Ku, Jentung; Rogers, Paul; Hoff, Craig
2000-01-01
The effect of accelerating forces on the performance of loop heat pipes (LHP) is of interest and importance to terrestrial and space applications. They are being considered for cooling of military combat vehicles and for spinning spacecraft. In order to investigate the effect of an accelerating force on LHP operation, a miniature LHP was installed on a spin table. Variable accelerating forces were imposed on the LHP by spinning the table at different angular speeds. Several patterns of accelerating forces were applied, i.e. continuous spin at different speeds and periodic spin at different speeds and frequencies. The resulting accelerations ranged from 1.17 g's to 4.7 g's. This paper presents the first part of the experimental study, i.e. the effects of a centrifugal force on the LHP start-up. Tests were conducted by varying the heat load to the evaporator, sink temperature, magnitude and frequency of centrifugal force, and LHP orientation relative to the direction of the accelerating force. The accelerating force seems to have little effect on the loop start-up in terms of temperature overshoot and superheat at boiling incipience. Changes in these parameters seem to be stochastic with or without centrifugal accelerating forces. The LHP started successfully in all tests.
Static test induced loads verification beyond elastic limit
NASA Technical Reports Server (NTRS)
Verderaime, V.; Harrington, F.
1996-01-01
Increasing demands for reliable and least-cost high-performance aerostructures are pressing design analyses, materials, and manufacturing processes to new and narrowly experienced performance and verification technologies. This study assessed the adequacy of current experimental verification of the traditional binding ultimate safety factor which covers rare events in which no statistical design data exist. Because large high-performance structures are inherently very flexible, boundary rotations and deflections under externally applied loads approaching fracture may distort their transmission and unknowingly accept submarginal structures or prematurely fracturing reliable ones. A technique was developed, using measured strains from back-to-back surface mounted gauges, to analyze, define, and monitor induced moments and plane forces through progressive material changes from total-elastic to total-inelastic zones within the structural element cross section. Deviations from specified test loads are identified by the consecutively changing ratios of moment-to-axial load.
Static test induced loads verification beyond elastic limit
NASA Technical Reports Server (NTRS)
Verderaime, V.; Harrington, F.
1996-01-01
Increasing demands for reliable and least-cost high performance aerostructures are pressing design analyses, materials, and manufacturing processes to new and narrowly experienced performance and verification technologies. This study assessed the adequacy of current experimental verification of the traditional binding ultimate safety factor which covers rare events in which no statistical design data exist. Because large, high-performance structures are inherently very flexible, boundary rotations and deflections under externally applied loads approaching fracture may distort their transmission and unknowingly accept submarginal structures or prematurely fracturing reliable ones. A technique was developed, using measured strains from back-to-back surface mounted gauges, to analyze, define, and monitor induced moments and plane forces through progressive material changes from total-elastic to total inelastic zones within the structural element cross section. Deviations from specified test loads are identified by the consecutively changing ratios of moment-to-axial load.
Generating Fatigue Crack Growth Thresholds with Constant Amplitude Loads
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Newman, James C., J.; Forman, Royce G.
2002-01-01
The fatigue crack growth threshold, defining crack growth as either very slow or nonexistent, has been traditionally determined with standardized load reduction methodologies. Some experimental procedures tend to induce load history effects that result in remote crack closure from plasticity. This history can affect the crack driving force, i.e. during the unloading process the crack will close first at some point along the wake, reducing the effective load at the crack tip. One way to reduce the effects of load history is to propagate a crack under constant amplitude loading. As a crack propagates under constant amplitude loading, the stress intensity factor, K, will increase, as will the crack growth rate, da/dN. A fatigue crack growth threshold test procedure is developed and experimentally validated that does not produce load history effects and can be conducted at a specified stress ratio, R.
Bidez, Martha W; Cochran, John E; King, Dottie; Burke, Donald S
2007-11-01
Motor vehicle crashes are the leading cause of death in the United States for people ages 3-33, and rollover crashes have a higher fatality rate than any other crash mode. At the request and under the sponsorship of Ford Motor Company, Autoliv conducted a series of dynamic rollover tests on Ford Explorer sport utility vehicles (SUV) during 1998 and 1999. Data from those tests were made available to the public and were analyzed in this study to investigate the magnitude of and the temporal relationship between roof deformation, lap-shoulder seat belt loads, and restrained anthropometric test dummy (ATD) neck loads. During each of the three FMVSS 208 dolly rollover tests of Ford Explorer SUVs, the far-side, passenger ATDs exhibited peak neck compression and flexion loads, which indicated a probable spinal column injury in all three tests. In those same tests, the near-side, driver ATD neck loads never predicted a potential injury. In all three tests, objective roof/pillar deformation occurred prior to the occurrence of peak neck loads (F ( z ), M ( y )) for far-side, passenger ATDs, and peak neck loads were predictive of probable spinal column injury. The production lap and shoulder seat belts in the SUVs, which restrained both driver and passenger ATDs, consistently allowed ATD head contact with the roof while the roof was contacting the ground during this 1000 ms test series. Local peak neck forces and moments were noted each time the far-side, passenger ATD head contacted ("dived into") the roof while the roof was in contact with the ground; however, the magnitude of these local peaks was only 2-13% of peak neck loads in all three tests. "Diving-type" neck loads were not predictive of injury for either driver or passenger ATD in any of the three tests.
Cochran, John E.; King, Dottie; Burke, Donald S.
2007-01-01
Motor vehicle crashes are the leading cause of death in the United States for people ages 3–33, and rollover crashes have a higher fatality rate than any other crash mode. At the request and under the sponsorship of Ford Motor Company, Autoliv conducted a series of dynamic rollover tests on Ford Explorer sport utility vehicles (SUV) during 1998 and 1999. Data from those tests were made available to the public and were analyzed in this study to investigate the magnitude of and the temporal relationship between roof deformation, lap–shoulder seat belt loads, and restrained anthropometric test dummy (ATD) neck loads. During each of the three FMVSS 208 dolly rollover tests of Ford Explorer SUVs, the far-side, passenger ATDs exhibited peak neck compression and flexion loads, which indicated a probable spinal column injury in all three tests. In those same tests, the near-side, driver ATD neck loads never predicted a potential injury. In all three tests, objective roof/pillar deformation occurred prior to the occurrence of peak neck loads (Fz, My) for far-side, passenger ATDs, and peak neck loads were predictive of probable spinal column injury. The production lap and shoulder seat belts in the SUVs, which restrained both driver and passenger ATDs, consistently allowed ATD head contact with the roof while the roof was contacting the ground during this 1000 ms test series. Local peak neck forces and moments were noted each time the far-side, passenger ATD head contacted (“dived into”) the roof while the roof was in contact with the ground; however, the magnitude of these local peaks was only 2–13% of peak neck loads in all three tests. “Diving-type” neck loads were not predictive of injury for either driver or passenger ATD in any of the three tests. PMID:17641975
Engineering behavior of small-scale foundation piers constructed from alternative materials
NASA Astrophysics Data System (ADS)
Prokudin, Maxim Mikhaylovich
Testing small-scale prototype pier foundations to evaluate engineering behavior is an alternative to full-scale testing that facilitates testing of several piers and pier groups at relatively low cost. In this study, various pier systems and pier groups at one tenth scale were subjected to static vertical loading under controlled conditions to evaluate stiffness, bearing capacity, and group efficiency. Pier length, material properties and methods of installation were evaluated. Pier length to diameter ratios varied between four and eight. A unique soil pit with dimensions of 2.1 m in width, 1.5 m in length and 2.0 m in depth was designed to carry out this research. The test pit was filled with moisture conditioned and compacted Western Iowa loess. A special load test frame was designed and fabricated to provide up to 25,000 kg vertical reaction force for load testing. A load cell and displacement instrumentation was setup to capture the load test data. Alternative materials to conventional cement concrete were studied. The pier materials evaluated in this study included compacted aggregate, cement stabilized silt, cementitious grouts, and fiber reinforced silt. Key findings from this study demonstrated that (1) the construction method influences the behavior of aggregate piers, (2) the composition of the pier has a significant impact on the stiffness, (3) group efficiencies were found to be a function of pier length and pier material, (4) in comparison to full-scale testing the scaled piers were found to produce a stiffer response with load-settlement and bearing capacities to be similar. Further, although full-scale test results were not available for all pier materials, the small-scale testing provided a means for comparing results between pier systems. Finally, duplicate pier tests for a given length and material were found to be repeatable.
Magnetic docking aid for orbiter to ISS docking
NASA Technical Reports Server (NTRS)
Schneider, William C.; Nagy, Kornel; Schliesing, John A.
1996-01-01
The present docking system for the Orbiter uses mechanical capture latches that are actuated by contact forces. The forces are generated when the two approaching masses collide at the docking mechanism. There is always a trade-off between having high enough momentum to effect capture and low enough momentum to avoid structural overload or unacceptable angular displacements. The use of the present docking system includes a contact thrusting maneuver that causes high docking loads to be included into Space Station. A magnetic docking aid has been developed to reduce the load s during docking. The magnetic docking aid is comprised of two extendible booms that are attached adjacent to the docking structure with electromagnets attached on the end of the boom. On the mating vehicle, two steel plates are attached. As the Orbiter approaches Space Station, the booms are extended, and the magnets attach to the actuated (without thrusting), by slowly driving the extendible booms to the stowed position, thus reacting the load into the booms. This results in a docking event that has lower loads induced into Space Station structure. This method also greatly simplifies the Station berthing tasks, since the Shuttle Remote Manipulation System (SRMS) arm need only place the element to be berthed on the magnets (no load required), rather than firing the Reaction Control System (RCS) jets to provide the required force for capture latch actuation. The Magnetic Docking Aid was development testing on a six degree-of-freedom (6 DOF) system at JSC.
Leib, Raz; Rubin, Inbar; Nisky, Ilana
2018-05-16
Interaction with an object often requires the estimation of its mechanical properties. We examined whether the hand that is used to interact with the object and their handedness affected people's estimation of these properties using stiffness estimation as a test case. We recorded participants' responses on a stiffness discrimination of a virtual elastic force field and the grip force applied on the robotic device during the interaction. In half of the trials, the robotic device delayed the participants' force feedback. Consistent with previous studies, delayed force feedback biased the perceived stiffness of the force field. Interestingly, in both left-handed and right-handed participants, for the delayed force field, there was even less perceived stiffness when participants used their left hand than their right hand. This result supports the idea that haptic processing is affected by laterality in the brain, not by handedness. Consistent with previous studies, participants adjusted their applied grip force according to the correct size and timing of the load force regardless of the hand that was used, the handedness, or the delay. This suggests that in all these conditions, participants were able to form an accurate internal representation of the anticipated trajectory of the load force (size and timing) and that this representation was used for accurate control of grip force independently of the perceptual bias. Thus, these results provide additional evidence for the dissociation between action and perception in the processing of delayed information.
An evaluation of some unbraked tire cornering force characteristics
NASA Technical Reports Server (NTRS)
Leland, T. J. W.
1972-01-01
An investigation to determine the effects of pavement surface condition on the cornering forces developed by a group of 6.50x13 automobile tires of different tread design was conducted at the Langley aircraft landing loads and traction facility. The tests were made at fixed yaw angles of 3,4.5, and 6 deg at forward speeds up to 80 knots on two concrete surfaces of different texture under dry, damp, and flooded conditions. The results showed that the cornering forces were extremely sensitive to tread pattern and runway surface texture under all conditions and that under flooded conditions tire hydroplaning and complete loss of cornering force occurred at a forward velocity predicted from an existing formula based on tire inflation pressure. Futher, tests on the damp concrete with a smooth tire and a four-groove tire showed higher cornering forces at a yaw angle of 3 deg than at 4.5 deg; this indicated that maximum cornering forces are developed at extremely small steering angles under these conditions.
2012-01-01
Background and purpose The most frequently used bones for mechanical testing of orthopedic and trauma devices are fresh frozen cadaveric bones, embalmed cadaveric bones, and artificial composite bones. Even today, the comparability of these different bone types has not been established. Methods We tested fresh frozen and embalmed cadaveric femora that were similar concerning age, sex, bone mineral density, and stiffness. Artificial composite femora were used as a reference group. Testing parameters were pullout forces of cortex and cancellous screws, maximum load until failure, and type of fracture generated. Results Stiffness and type of fracture generated (Pauwels III) were similar for all 3 bone types (fresh frozen: 969 N/mm, 95% confidence interval (CI): 897–1,039; embalmed: 999 N/mm, CI: 875–1,121; composite: 946 N/mm, CI: 852–1,040). Furthermore, no significant differences were found between fresh frozen and embalmed femora concerning pullout forces of cancellous screws (fresh frozen: 654 N, CI: 471–836; embalmed: 595 N, CI: 365–823) and cortex screws (fresh frozen: 1,152 N, CI: 894–1,408; embalmed: 1,461 N, CI: 880–2,042), and axial load until failure (fresh frozen: 3,427 N, CI: 2,564–4290; embalmed: 3,603 N, CI: 2,898–4,306). The reference group showed statistically significantly different results for pullout forces of cancellous screws (2,344 N, CI: 2,068–2,620) and cortex screws (5,536 N, CI: 5,203–5,867) and for the axial load until failure (> 7,952 N). Interpretation Embalmed femur bones and fresh frozen bones had similar characteristics by mechanical testing. Thus, we suggest that embalmed human cadaveric bone is a good and safe option for mechanical testing of orthopedic and trauma devices. PMID:22978564
Siebert, Tobias; Rode, Christian; Till, Olaf; Stutzig, Norman; Blickhan, Reinhard
2016-05-03
Transversal unidirectional compression applied to muscles via external loading affects muscle contraction dynamics in the longitudinal direction. A recent study reported decreasing longitudinal muscle forces with increasing transversal load applied with a constant contact area (i.e., leading to a simultaneous increase in local pressure). To shed light on these results, we examine whether the decrease in longitudinal force depends on the load, the local pressure, or both. To this end, we perform isometric experiments on rat M. gastrocnemius medialis without and with transversal loading (i) changing the local pressure from 1.1-3.2Ncm(-2) (n=9) at a constant transversal load (1.62N) and (ii) increasing the transversal load (1.15-3.45N) at a constant local pressure of 2.3Ncm(-2) (n=7). While we did not note changes in the decrease in longitudinal muscle force in the first experiment, the second experiment resulted in an almost-linear reduction of longitudinal force between 7.5±0.6% and 14.1±1.7%. We conclude that the observed longitudinal force reduction is not induced by local effects such as malfunction of single muscle compartments, but that similar internal stress conditions and myofilament configurations occur when the local pressure changes given a constant load. The decreased longitudinal force may be explained by increased internal pressure and a deformed myofilament lattice that is likely associated with the decomposition of cross-bridge forces on the one hand and the inhibition of cross-bridges on the other hand. Copyright © 2016 Elsevier Ltd. All rights reserved.
New Approaches in Force-Limited Vibration Testing of Flight Hardware
NASA Technical Reports Server (NTRS)
Kolaini, Ali R.; Kern, Dennis L.
2012-01-01
To qualify flight hardware for random vibration environments the following methods are used to limit the loads in the aerospace industry: (1) Response limiting and notching (2) Simple TDOF model (3) Semi-empirical force limits (4) Apparent mass, etc. and (5) Impedance method. In all these methods attempts are made to remove conservatism due to the mismatch in impedances between the test and the flight configurations of the hardware that are being qualified. Assumption is the hardware interfaces have correlated responses. A new method that takes into account the un-correlated hardware interface responses are described in this presentation.
United States Air Force Research Initiation Program for 1988. Volume 3
1990-04-01
Assignment for Dr. Kenneth M. Sobel Flight Control Design 210-9MG-035 90 Comparative Burning Rates and Duplex Dr. Forrest Thomas (1987) Loads of Solid...Patterson Air Force Base. The test configuration has been designed for injecting fuel droplets in a well controlled laminar on well-characterized turbulent...its counter response may be significant, our system has thus achieved some measure of control over when non -critical processing is actually performed
Insulation bonding test system
NASA Technical Reports Server (NTRS)
Beggs, J. M.; Johnston, G. D.; Coleman, A. D.; Portwood, J. N.; Saunders, J. M.; Redmon, J. W.; Porter, A. C. (Inventor)
1984-01-01
A method and a system for testing the bonding of foam insulation attached to metal is described. The system involves the use of an impacter which has a calibrated load cell mounted on a plunger and a hammer head mounted on the end of the plunger. When the impacter strikes the insulation at a point to be tested, the load cell measures the force of the impact and the precise time interval during which the hammer head is in contact with the insulation. This information is transmitted as an electrical signal to a load cell amplifier where the signal is conditioned and then transmitted to a fast Fourier transform (FFT) analyzer. The FFT analyzer produces energy spectral density curves which are displayed on a video screen. The termination frequency of the energy spectral density curve may be compared with a predetermined empirical scale to determine whether a igh quality bond, good bond, or debond is present at the point of impact.
Phan, Xuan; Grisbrook, Tiffany L; Wernli, Kevin; Stearne, Sarah M; Davey, Paul; Ng, Leo
2017-08-01
This study aimed to determine if a quantifiable relationship exists between the peak sound amplitude and peak vertical ground reaction force (vGRF) and vertical loading rate during running. It also investigated whether differences in peak sound amplitude, contact time, lower limb kinematics, kinetics and foot strike technique existed when participants were verbally instructed to run quietly compared to their normal running. A total of 26 males completed running trials for two sound conditions: normal running and quiet running. Simple linear regressions revealed no significant relationships between impact sound and peak vGRF in the normal and quiet conditions and vertical loading rate in the normal condition. t-Tests revealed significant within-subject decreases in peak sound, peak vGRF and vertical loading rate during the quiet compared to the normal running condition. During the normal running condition, 15.4% of participants utilised a non-rearfoot strike technique compared to 76.9% in the quiet condition, which was corroborated by an increased ankle plantarflexion angle at initial contact. This study demonstrated that quieter impact sound is not directly associated with a lower peak vGRF or vertical loading rate. However, given the instructions to run quietly, participants effectively reduced peak impact sound, peak vGRF and vertical loading rate.
NASA Technical Reports Server (NTRS)
Frost, W.
1985-01-01
The influence of terrain features on wind loading of the space shuttle while on the launch pad, or during early liftoff, was investigated both qualitatively and quantitatively. The climatology and meteorology producing macroscale wind patterns and characteristics for the Vandenburg Air Force Base launch site are described. Field test data are analyzed, and the nature and characteristic of flow disturbances due to the various terrain features, both natural and man-made, are reviewed. The magnitude of these wind loads are estimated. Finally, effects of turbulence are discussed. It is concluded that the influence of complex terrain can create significant wind loading on the vehicle.